
Security and Collaboration Protocols for Mobile
and Sensor Networks

by

Katharine Chang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2012

Doctoral Committee:

Professor Kang G. Shin, Chair
Professor Atul Prakash
Assistant Professor J. Alex Halderman
Assistant Professor Qiaozhu Mei

c⃝ Katharine Chang 2012

All Rights Reserved

To my parents, Karen, and Wei-Ting,

with love and thanks.

ii

ACKNOWLEDGEMENTS

My graduate school journey had been a long and rough ride for me. It was not

possible for me to complete this journey without the help and encouragement from

people around me. I am very grateful and would like to express my gratitude to all

the people who had walked along with me and supported me through the years.

First, I would like to express my deepest gratitude to my advisor, Professor Kang

G. Shin, for his continuous guidance, encouragement, support, and belief in me.

He gave me much freedom and independence in exploring many interesting research

topics. He encouraged me in life like a father and urged me for rigorous research like

a mentor. I was very fortunate to work with him and I believe the training I received

from him will prepare me well for my future career.

I would like to thank my committee members Professor Atul Prakash, Professor

J. Alex Halderman, and Professor Qiaozhu Mei for their valuable and insightful com-

ments and feedbacks to help me improve the quality and depth of my dissertation.

I appreciate the opportunity to work with Professor Atul Prakash, and had learned

many system software building and technical skills. I am also grateful and fortu-

nate to receive the Bell Labs Graduate Fellowship that supported me for part of my

graduate study. I would like to thank my mentors, Dr. Eric Grosse and Dr. Girija

Narlikar, for guiding me during my summer internship at Bell Labs. I would also like

to thank my mentor and collaborator, Dr. Xinwen Zhang, for guiding me during my

internship at Huawei, teaching me how to explore new research ideas, and being a

caring friend.

iii

I am grateful to all the former and current Real-Time Computing Laboratory

members for their friendship and technical assistance. I would like to especially

thank the security group members for their helpful discussions and collaborations,

especially Taejoon Park, Min-Gyu Cho, Matthew Knysz, Xin Hu, and Yuanyuan

Zeng. Many thanks to Chun-Ting Chou, Chang-Hao (Howard) Tsai, Kai-Yuan Hou,

Zhigang Chen, Kyu-Han Kim, Pradeep Padala, Xinyu Zhang, Xiaoen Ju, Caoxie

(Michael) Zhang, and Antino Kim. I am thankful for what they shared with me

professionally and personally over the years of my graduate study. My appreciation

also goes to Stephen Reger for his administrative support.

I was very fortunate to have many wonderful friends to share special moments with

me in my graduate study either in Ann Arbor or around the world. Many thanks

to their friendship, encouragement, and support that made my long graduate study

journey much more delightful. Special thanks to all my friends in Campus Crusade for

Christ Bible studies for their friendship, prayers, and spiritual and physical support.

I would like to thank many of my dear friends, but not limited to: Ya-Yunn Su,

Po-Ju Lin, Nora Han, Yueh-Chuan Tzeng, Kai-Yuan Hou, Ching-Mei Lin, Juliette

Kao, Hui-Yu Hsu, Howard Tsai, Po-Chun Hsu, Dianne and Chuck Roeper, Jane Liu,

Galen Chen, Chun-Chi Hu, Li-Chu Lo, and Pei-Yeh Wu.

I would not be able to complete this dissertation without the unconditional love,

tremendous support, and countless encouragement from my parents, sister Karen,

and husband Wei-Ting. They were always there for me, believing in me, and giving

me strength and comfort when I most needed them. I am very thankful and fortunate

to have them on my side through all the ups and downs in my life. This dissertation

is dedicated to my family.

Last, I would like to give my greatest thanks to God for His incomparable love

and grace for me. I would like to honor Him for persevering through my graduate

study. I pray God would continue to lead me for my life according to His plan.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

ABSTRACT . xi

CHAPTER

I. Introduction . 1

1.1 Background and Motivation 1
1.2 Research Goals . 3
1.3 Overview and Contributions of the Dissertation 5
1.4 Organization of the Dissertation 7

II. Distributed Authentication of Program Integrity Verification
in Wireless Sensor Networks . 8

2.1 Introduction . 8
2.1.1 Organization . 11

2.2 Background: Overview of PIV 12
2.3 Design Overview . 14

2.3.1 Sensor Network Architecture and Limitations 14
2.3.2 Motivation . 15
2.3.3 System Model . 16
2.3.4 Attack Model . 17
2.3.5 Overview of DAPP 19

2.4 DAPP Details . 20
2.4.1 Initialization and PIVS Discovery Phase 22
2.4.2 PIVS Authentication Phase 25
2.4.3 PIVS Revocation 28

2.5 Security Analysis . 32

v

2.5.1 Network Survivability 32
2.5.2 Compromised PIVSs Collusion 33
2.5.3 Probability of PIVS True Authentication 35
2.5.4 Defense Against Various Attacks in Sensor Networks 38
2.5.5 Security Issues and Possible Attacks to PIV 40

2.6 Implementation of DAPP and PIV 43
2.6.1 Changes to the Original PIV Design 43
2.6.2 Message Authenticity and Integrity 46
2.6.3 Overview of the Implementation 47

2.7 Performance Evaluation . 55
2.7.1 Evaluation with Simulation 55
2.7.2 Computation Cost 59
2.7.3 Communication Cost 60
2.7.4 Storage Requirement 61

2.8 Related Work . 61
2.9 Conclusion . 63

III. Application-Layer Intrusion Detection in MANETs 65

3.1 Introduction . 65
3.1.1 Organization . 67

3.2 Why are MAs Needed for Intrusion Detection? 67
3.3 Assumptions, Attack Model, and System Architecture 69

3.3.1 Assumptions . 69
3.3.2 Attack Model . 70
3.3.3 System Architecture 70

3.4 Design of Application-Layer IDS 72
3.4.1 Local IDS for Intrusion Detection 73
3.4.2 MA Functions . 74
3.4.3 MA Authentication and Authorization 77
3.4.4 MA Dispatching . 80
3.4.5 Intrusion Response 83

3.5 Security Analysis . 83
3.5.1 Defense Against Compromised MAs and Nodes . . . 83
3.5.2 Defense Against Various Attacks in Ad Hoc Networks 85

3.6 Evaluation . 87
3.6.1 Simulation Setup 88
3.6.2 Results . 88
3.6.3 Non-uniformly Distributed Network Simulation and

Results . 93
3.7 Related Work . 99
3.8 Conclusion . 101

IV. TGIS: Booting Trust for Secure Information Sharing in Dy-
namic Group Collaborations . 102

vi

4.1 Introduction . 102
4.1.1 Organization . 105

4.2 Motivation . 105
4.3 Cryptographic Primitives . 107

4.3.1 Hierarchical Identity-Based Encryption 107
4.3.2 Attribute-Based Encryption 109

4.4 Overview of TGIS . 110
4.4.1 System Architecture and Assumptions 111
4.4.2 Attack Model . 113
4.4.3 Design Overview . 114

4.5 TGIS Protocol . 114
4.5.1 Domain Setup . 116
4.5.2 Group Setup . 117
4.5.3 User Enrollment . 118
4.5.4 Intra-group Communication 120
4.5.5 Inter-group Collaboration 121
4.5.6 Message Authentication 122

4.6 Decentralizing TGIS . 122
4.7 Security Analysis . 124

4.7.1 Network Survivability 124
4.7.2 Defense Against the Attack Model 125

4.8 Implementation and Evaluation 127
4.8.1 Prototype Implementation 127
4.8.2 Performance . 127

4.9 TGIS Application User Interface 129
4.10 Related Work . 130

4.10.1 Trust Management 130
4.10.2 Access Control . 130

4.11 Conclusion . 131

V. Conclusions . 132

BIBLIOGRAPHY . 135

vii

LIST OF FIGURES

Figure

2.1 Interactions among the AS, the PIVS, and the sensor during PIV. . 14

2.2 A design overview of DAPP. PIVSs interact with one another for
mutual authentication. The solid lines represent the interactions be-
tween the PIVSs and the doted lines represent the interactions be-
tween the PIVSs and the sensor. 19

2.3 Interactions among PIVS A, PIVS A’s reference PIVS B, and sensor
E under DAPP. 28

2.4 DAPP pseudocode to be executed on sensor E, PIVS A, and PIVS B. 29

2.5 Relationship between the probability of PIVS true authentication and
the number of compromised PIVSs. 37

2.6 Relationship between the probability of PIVS true authentication and
the number of required authentication tickets from PIVS. 37

2.7 The sensor flash memory layout in PIV. 41

2.8 (a) Normal sensor flash memory layout; (b) Sensor flash memory
layout with malicious code hidden in the free space. 44

2.9 Overview of our implementation of DAPP and PIV. 48

2.10 A snapshot of the PIVS interface. 50

2.11 Read-While-Write section and No Read-While-Write section in the
sensor flash. 54

2.12 Numbers of sensors that survive with DAPP and with an AS for
authentication, with (A) ReV erify = 0.05 and, (B) ReV erify = 0.1. 57

viii

3.1 The IDS system architecture for MANETs. 71

3.2 The local IDS architecture on a mobile node. 72

3.3 The simulation environment for MA-based IDS. Laptops represent
the MA servers and black circles represent mobile nodes in the network. 89

3.4 The relationship between different MA TTL values and numbers of
MAs dispatched (including the extra sent MAs) by one MA server
using the simulation environment in Figure 3.3(A). The number of
nodes that did not receive any MA is shown in (A) and the number
of nodes that did receive multiple MAs is shown in (B). 91

3.5 The relationship between different MA TTL values and numbers of
MAs dispatched (including the extra sent MAs) by four uniformly po-
sitioned MA servers using the simulation environment in Figure 3.3(B).
The number of nodes that did not receive any MA is shown in (A)
and the number of nodes that did receive multiple MAs is shown in
(B). 92

3.6 The relationship between different MA TTL values and numbers
of MAs dispatched (including the extra sent MAs) by randomly-
deployed MA servers. With four MA servers deployed, the number of
nodes that did not receive any MA is shown in (A) and the number of
nodes that did receive multiple MAs is shown in (B). With five MA
servers deployed the number of nodes that did not receive any MA is
shown in (C) and the number of nodes that did receive multiple MAs
is shown in (D). 94

3.7 The simulated network quadrant layout. 95

3.8 The relationship between different MA TTL values and numbers of
MAs dispatched (including the extra sent MAs) by one MA server
using the simulation environment in Figure 3.3(A). With network
deployment (1), the number of nodes that did not receive any MA is
shown in (A) and the number of nodes that did receive multiple MAs
is shown in (B). Simulation results for network deployment (2) and
(3) are shown in (C), (D), and (E), (F) respectively. 96

3.9 Comparison of MA distribution results between different network de-
ployments. Empty circles represent nodes in the network that did not
receive any MA, and solid circles represent nodes that has received
one or more MAs. 97

ix

3.10 The relationship between different MA TTL values and numbers of
MAs dispatched (including the extra sent MAs) by four uniformly po-
sitioned MA servers using the simulation environment in Figure 3.3(B).
With network deployment (1), the number of nodes that did not re-
ceive any MA is shown in (A) and the number of nodes that did
receive multiple MAs is shown in (B). Simulation results for network
deployment (2) and (3) are shown in (C), (D), and (E), (F) respectively. 98

3.11 The intrusion detection system for MANETs proposed in [57]. . . . 99

4.1 HIBE system architecture. 108

4.2 TGIS System architecture. 112

4.3 TGIS System architecture using The University of Michigan as an
example of a hierarchical organization. 112

4.4 System architecture of users in different organizations forming a dy-
namic group. 113

4.5 Snapshots of the location-based application over TGIS on Android. 128

x

ABSTRACT

Security and Collaboration Protocols for Mobile and Sensor Networks

by

Katharine Chang

Chair: Kang G. Shin

Research in network and computer system architecture is evolving beyond its tra-

ditional focus as mobile devices become ubiquitous and mobile computing triggers

dramatic change in the computing world. Mobile devices can form heterogeneous

mobile networks that provide distributed services and information access in real time

from anywhere in the world. Coincident with this change, the assurance of network

and system security and availability becomes an important problem. This problem is

challenging because it requires the system to be easy to manage and operate, but also

requires reliability and security. For the purpose of securing a network, we usually

require authentication, authorization, and accounting. Authentication requires users

to prove their identity. Accounting requires intrusion detection or forensic analysis

to find attacks, if any, in the system. Finally, authorization requires access control to

ensure data privacy.

This dissertation aims to design security and collaboration protocols to create a

comprehensive trust framework to protect mobile and sensor networks by applying

cryptographic algorithms. It makes three primary contributions. First, we propose

and implement a distributed authentication protocol called DAPP in wireless sensor

xi

networks to allow sensors to authenticate servers without requiring a commonly-used

trusted authentication server. DAPP maintains the distributed nature of sensor net-

works, has low computation and communication overhead, and is resilient to node

compromises. Second, to attain security for nodes in mobile ad hoc networks, we

present an intrusion detection system (IDS) architecture at the application layer to

help detect malicious nodes in the network. We describe the design of this architecture

and the use of mobile agents to augment each node’s IDS. Finally, we design a trusted

group-based information sharing protocol called TGIS for mobile devices to establish

a trust relationship with collaborators and enforce data access control between col-

laborators with different privileges. TGIS is built upon existing trust infrastructures

in individual organizations to enable trust management for group collaboration.

The security and collaboration protocols presented in this dissertation together

achieve secure distributed authentication, authorization, and accounting in mobile

and sensor networks.

xii

CHAPTER I

Introduction

1.1 Background and Motivation

In recent years, mobile computing has changed the world significantly. As mobile

devices become ubiquitous, people can connect to the Internet and access data and

information from various locations. Mobile devices such as smartphones and wireless

sensors can form heterogeneous mobile networks that provide distributed services and

information access in real time. Mobile computing and sensor networks have changed

the world from wired networks and desktop computers to a world of ubiquitous com-

puting.

As research in network and computer system architecture evolves beyond its tra-

ditional focus, the guarantee of network and system security and availability becomes

an increasingly important problem. This problem is challenging because it requires

the system to be easy to manage and operate, but also requires reliability and security.

For the purpose of securing a network, there are usually two lines of defense. The

first line is intrusion prevention. Typical intrusion prevention measures, such as au-

thentication and encryption, can prevent external nodes from disrupting or disabling

the network. The second line of defense is intrusion detection that can discover the

insider attacks mounted by compromised nodes in the network. Upon detection of an

intrusion, a countermeasure is triggered to minimize damages to the network.

1

Intrusion prevention usually includes authentication and encryption. Authenti-

cation is the process of letting one party ensure the valid identity of another party

to communicate with. Encryption, however, is the process of making information

unreadable to anyone without the required key. Traditional intrusion prevention

measures often need a centralized and trusted third-party server to issue credentials

or encryption and decryption keys. Given the distributed structure of sensor and

mobile networks, many traditionally used authentication and encryption mechanisms

are no longer effective.

Intrusion-detection mechanisms used for traditional wired networks are also diffi-

cult to be used for mobile networks because of their architectural differences. With-

out centralized audit points like routers, switches, and gateways, mobile networks can

only collect audit data locally and thus require a distributed and cooperative intru-

sion detection system. Moreover, the devices used in mobile networks and sensors

in sensor networks are all small, and therefore computation- and energy-constrained.

Therefore, when designing security protocols for the mobile devices, we need to design

protocols that are lightweight and energy-efficient.

Achieving trust for secure information sharing in mobile groups, especially between

devices in mobile networks, opens up a new area of research. Establishing a trust

relationship between devices and allowing users to collaborate and communicate with

their collaborators in a distributed fashion is also a new challenge. Achieving trust for

secure information sharing in mobile groups requires authentication to attain trust

and information encryption to achieve access control. Moreover, the collaboration

protocols must be energy-efficient to suit the computation and energy-constrained

mobile devices.

Overall, to protect a network system, we usually require authentication, autho-

rization, and accounting, commonly known as the AAA protocol in computer security,

essential technology to create a trusted environment. Authentication requires users

2

to show passwords, biometrics, or tokens to prove their identities. Accounting, or

sometimes referred to as auditing, requires intrusion detection or forensic analysis on

the system to find attacks. Finally, authorization requires access control to ensure

data privacy in the system, and that also becomes a challenge in mobile networks.

This dissertation is motivated by the above challenges and aims to design security and

collaboration protocols to create a comprehensive trust framework to protect mobile

and sensor networks, and to achieve authentication, authorization, and accounting.

1.2 Research Goals

The goal of this dissertation is to design security and collaboration protocols for

distributed networks to allow secure distributed authentication, authorization, and

accounting by applying cryptographic algorithms. The protocols are designed to

reduce network traffic and resource consumption on the network hosts and nodes.

Without these protocols, it would be difficult to achieve the research goal because

the existing protocols usually require trusted and centralized services and are difficult

and impractical to realize in the distributed network environment. The security and

collaboration protocols proposed in this dissertation are developed with the following

research goals.

• Achieving Distributed Authentication: Authentication is the process of

letting one party ensure the valid identity of another party to communicate with.

It is important for nodes in distributed networks to have mutual authentica-

tion, as this will guard against many security attacks, such as impersonation,

Sybil, and man-in-the-middle attacks. Traditional network authentication pro-

tocols involve a centralized and trusted authentication server (AS). Since the

AS is needed for sensors to authenticate servers in sensor networks, it may

easily become a bottleneck for reliability, security, and communication. Also,

3

requiring a centralized service such as AS is inconsistent with the distributed

structure of sensor networks. Moreover, sensors deployed near the AS will con-

sume more energy to route messages for other sensors, and will thus exhaust

their batteries before others. Therefore, one of our research goals is to eliminate

the requirement of a centralized AS in sensor networks to achieve distributed

authentication and make the system a truly distributed network environment.

• Developing an Intrusion Detection and Accounting Framework: Ac-

counting is the tracking of system and network resource consumption and ac-

tivity, and the recording of system failures to allow the verification of correct

procedures and hosts based on the accounting data. Intrusion detection systems

(IDSs) rely on the accounting data to detect the compromised nodes in the net-

work. The traditional IDSs developed for wired networks are difficult to use for

mobile ad hoc networks (MANETs) because of their architectural differences.

Without centralized audit points like routers, switches, and gateways, MANETs

can only collect audit data locally and thus require a distributed and cooper-

ative IDS. Also, nodes in MANETs can move freely through the network, and

thus their dynamically-changing network topology makes MANETs very differ-

ent from the traditional wired networks. Therefore, one of our research goals is

to develop an application-layer intrusion detection and accounting framework

for nodes in MANETs to detect and prevent viruses, worms, and malicious

applications by using the mobile agent technology to complement the IDS.

• Enabling Trust and Authorization in Group Collaboration: Authoriza-

tion is the function to define the resource access rights, and guarantee access

control to ensure data privacy in the system. For group collaboration, it is

important to verify the identity of group collaborators and achieve trust among

group members, and allow authorization and access control of resources within

4

the group. The fact that mobile devices are often required to be small, light,

and easy to hold places strict limitation on the devices’ resources. Moreover,

mobile devices form dynamic collaborative relationships because of their mobil-

ity. Thus, traditional trust management and authorization mechanisms will not

be effective on mobile devices. So, we would like to design a distributed method

to allow users of mobile devices to establish a trust relationship to collaborate

and communicate with their collaborators, and to have access control over their

shared information among their collaborators.

1.3 Overview and Contributions of the Dissertation

The main focuses of this dissertation are to achieve security in mobile and sensor

networks with security protocols, and realize information sharing in mobile networks

with collaboration protocols. The designed protocols are to allow secure distributed

authentication, authorization, and accounting in distributed networks by applying

cryptographic algorithms.

To meet the research goals mentioned in Section 1.2, we design and implement

protocols that achieve distributed authentication, authorization, and accounting. The

major contributions of this dissertation are summarized as follows.

• Distributed Authentication of Program Integrity Verification inWire-

less Sensor Networks: Wireless sensors are usually deployed in hostile and

unattended environments, and hence, are susceptible to various attacks, includ-

ing tampering and manipulation of the sensor program. Preventing the sensors

from communicating with attackers masquerading as legitimate nodes requires

authentication to verify that the messages had really been sent by genuine

nodes. We propose and develop DAPP, a distributed authentication protocol in

wireless sensor networks to achieve the authentication of servers in a distributed

5

manner without requiring a dedicated and trusted authentication server (AS).

DAPP maintains the distributed nature of sensor networks, and reduces the

sensor communication traffic in the network and the energy consumption on

each sensor as compared to the case of using a centralized trusted AS for au-

thentication. We also show that DAPP is robust and secure against various

attacks in sensor networks.

• Application-Layer Intrusion Detection in MANETs: In a network of mo-

bile devices connected by wireless links, node mobility makes it very challeng-

ing to secure mobile ad hoc networks (MANETs). Moreover, their constantly-

changing topology causes network node density and neighbor relationships to

change dynamically. To detect intrusions in MANETs, we present an intrusion

detection system (IDS) framework for MANETs at the application layer. The

IDS framework can utilize (1) both anomaly and misuse detection schemes to

identify attacks in MANETs and (2) mobile agents (MAs) to augment each

node’s intrusion-detection capability. In particular, each node is equipped with

a local IDS, and MAs will be dispatched periodically or on-demand to augment

each node’s IDS. We present the design of this IDS framework and the overall

network structure, as well as the methods for authenticating and dispatching

MAs. We also evaluate the trade-offs between different design parameters of

MAs.

• TGIS: Booting Trust for Secure Information Sharing in Dynamic

Group Collaborations: The various types of mobile devices and services that

are becoming available introduce many collaboration opportunities for people

using their mobile devices. We explore dynamic group collaboration and infor-

mation sharing with mobile devices, such as smartphones and tablets. In partic-

ular, for secure information sharing among mobile devices, we propose trusted

6

group-based information sharing (TGIS). TGIS is a protocol for mobile devices

to establish trust relationships in order to form group-based information shar-

ing. We exploit existing (group or organizational) identity hierarchies of mobile

users to establish trust between group members with hierarchical identity-based

encryption (HIBE). In order to control information sharing within a group and

among groups, we further leverage attribute-based encryption (ABE) for secure

access control, where attribute secret keys are distributed with the trust rela-

tionship with HIBE. We have implemented and evaluated TGIS on Android

phones, demonstrating its viability.

1.4 Organization of the Dissertation

The remainder of the dissertation is organized as follows. Chapter II describes

DAPP, a distributed authentication protocol without requiring the commonly-used

centralized Authentication Server (AS) for server authentication in sensor networks.

Chapter III presents an intrusion detection system (IDS) framework for mobile ad

hoc networks (MANETs) at the application layer utilizing both anomaly and misuse

detection schemes. Chapter IV presents TGIS, a protocol for mobile devices to estab-

lish trust relationship in order to form group-based information sharing with secure

access control. Chapter V concludes this dissertation.

7

CHAPTER II

Distributed Authentication of Program Integrity

Verification in Wireless Sensor Networks

2.1 Introduction

In recent years, security has become a primary concern to the communications be-

tween mobile nodes. Unlike wired networks, security in wireless networks is difficult

to achieve due to the broadcast nature of inter-node communications. In sensor and

ad-hoc networks, it is even easier for attackers to circumvent the underlying intru-

sion detection system since a malicious user can join the network at one point, hide

inside the network for a while, then mount attacks. If the attacker was detected and

blocked from joining the network, he may just disconnect from the network, change

his personal identification, and then re-join from a completely different location in

the same network.

Wireless sensor networks are becoming important for many emerging applications

such as military surveillance, alerts on terrorists and burglars, and fire, earthquakes,

and volcano emergency systems. The security of sensor networks used for such ap-

plications is of utmost importance. However, the limitations on each sensor device’s

battery energy, memory, computation, and communication capacities make it very

difficult to achieve security in sensor networks. Moreover, sensor networks are often

8

composed of a large number of small low-cost devices and deployed in hostile and

unattended environments, thereby making them susceptible to physical capture and

compromise, which, in turn, makes it difficult to keep the integrity of the original

sensor program. Even just one compromised sensor can make the entire network

insecure. Thus, making sensor devices tamper-resistant is a must.

In order to protect the sensors from physical attacks, including physical tampering

and manipulation of the sensor programs, Park and Shin [39] proposed a soft tamper-

proofing scheme that verifies the integrity of the program in each sensor device, called

the Program Integrity Verification (PIV). Seshadri et al. also proposed a software-

based memory attestation technique called SWATT [46] and Secure Code Update By

Attestation (SCUBA) [45]. All of these deal with the problems of securing sensor

devices and making sensor devices tamper-resistant.

Another important issue is the authentication of the communication between the

sensor nodes and the servers in the network. A sensor node has to verify that the

messages had really been sent by the genuine sender, and also has to prevent itself

from communicating with a malicious server that pretends to be a legitimate one.

For the purpose of securing the network, there are usually two lines of defense.

The first line is intrusion prevention. Typical intrusion prevention measures, such as

authentication and encryption, can be used to prevent external nodes from disrupt-

ing or disabling the network. However, intrusion prevention can only combat outsider

attacks, and cannot handle insider attacks. For example, if a sensor node is phys-

ically captured and compromised, then the attacker can obtain the cryptographic

keys stored in the captured sensor node. Thus, the intrusion prevention measures

that often require sharing secrets between nodes, will not help defend against insider

attacks.

The second line of defense is intrusion detection that can discover the insider at-

tacks mounted by compromised nodes in the network. Upon detection of an intrusion,

9

a countermeasure can be taken to minimize damages to the network. Given the new

vulnerabilities that continue to be discovered, intrusion detection must be effective

and efficient in identifying attacks, and then successfully neutralizing them.

In the PIV protocol [39], the sensors rely on PIV Servers (PIVSs) to verify the

integrity of the sensor programs. The sensors authenticate PIV Servers (PIVSs) with

centralized and trusted third-party entities, such as authentication servers (ASs), in

the network. This chapter mainly addresses the first line of defense. Specifically, we

focus on the authentication of PIVSs instead of the verification of sensors.

In this chapter, we propose a distributed authentication protocol of PIVSs (DAPP)

for sensors to securely communicate with PIVSs without the authentication server

(AS) infrastructure assumed in PIV [39]. DAPP is a solution to the problem of

authenticating PIVSs in a fully-distributed manner and acts as the first line of defense

for the network by enabling each sensor node to prove the identity of a server before

communicating with it. The sensors will then use the PIV protocol to have their

program verified by the authenticated PIVSs, and will be allowed to join the network

only after passing the verification successfully. By “authentication” we mean that one

party ensures the valid identity of another party to communicate with. The proposed

DAPP is to enable sensors to validate a PIVS before using it for their verification.

In addition to DAPP, we present a revocation mechanism for PIVSs to check with

each other to detect and evict malicious PIVSs, if any. This mechanism is part of the

second line of defense. Once a PIVS is determined to be malicious by a majority of

its neighbor PIVSs, the revocation mechanism is used to evict it from the network

and mitigate the possible damage it may cause to the network.

DAPP defends against both passive attacks such as eavesdropping and active at-

tacks such as replay, spoof, drop, or insert false data. It also defends against imperson-

ation attacks by using encryption and requiring pairwise keys between communicating

nodes. Furthermore, DAPP can also tolerate compromised PIVSs via a revocation

10

mechanism for compromised PIVSs and using the majority rule to determine PIVS

authenticity.

DAPP offers the following attractive properties:

• Distributed authentication guarantee: DAPP allows PIVSs be authenticated in

a distributed manner by neighbor PIVSs and guarantees the authentication

result when there are no compromised PIVSs.

• Resilient to node compromise: Even if some PIVSs are compromised, a high

probability exists that DAPP provides a true authentication result as DAPP

uses the majority rule to determine PIVS authenticity.

• Low computation overhead: The computation overhead of DAPP mostly comes

from the setup of pairwise keys and the generation/verification of MAC values,

which are both energy cost-effective.

• Low communication overhead: The communication overhead of DAPP is asso-

ciated with a PIVS’s authentication requests to its neighbor PIVSs. Only two

messages need to be transmitted for a PIVS to authenticate for another PIVS

and thus the communication overhead is low.

• Low storage overhead: In DAPP, each sensor and PIVS only needs to store

a polynomial for establishing pairwise keys with other nodes in the network,

which takes very little memory space.

2.1.1 Organization

The remainder of this chapter is organized as follows. For completeness we first

give an overview of the PIV protocol [39] in Section 2.2. We then present an overview

of our design, including some of sensor device limitations, the motivation of this work,

as well as the system model we use, the attack model we consider, and an overview of

11

DAPP in Section 2.3. Section 2.4 describes the details of DAPP, along with the PIVS

revocation mechanism. Section 2.5 analyzes the security of DAPP and PIV and list

some security issues in PIV, which is followed by our DAPP and PIV implementations

in Section 2.6. Section 2.7 evaluates the performance of DAPP. Finally, we discuss

the related work in Section 2.8 and conclude this chapter in Section 2.9.

2.2 Background: Overview of PIV

The PIV protocol [39] verifies the integrity of the program and data stored in a

sensor device. It is purely software-based protection from physical attacks in sensor

networks. This protocol supports the tamper-proofing of sensors and makes it difficult

for attackers to modify the sensor programs without changing or adding the sensor

hardware. It is triggered infrequently only when a sensor tries to join the network,

or has left the network for a long time, and the verification of each program incurs

a very small overhead. The PIV protocol will, therefore, not degrade normal sensor

functions and services.

The network is composed of sensors and PIV Servers (PIVSs). PIVSs verify the

integrity of the sensors’ programs and maintain a database of the digests of the

original sensor programs. A randomized hash function (RHF) [39] is also employed

in PIV. The RHF is used for computing hash on the program in the sensor device

when the device needs to be verified. For each sensor verification, the PIVS creates a

new RHF and sends it to the sensor in the PIV Code (PIVC). The PIVS can verify

the integrity of the program of each sensor device by comparing the hash value of the

sensor program digests maintained in its local database with the hash value returned

by the sensor after calculating it by executing the PIVC.

The security of sensors is accomplished by authenticating PIVSs before commu-

nicating with them, to protect sensors from malicious or compromised PIV servers.

Sensors authenticate PIVSs with a conventional authentication server (AS), to en-

12

sure that the PIVSs are authentic and safe to communicate with, and the sensors can

safely execute the codes received from the PIVSs.

The PIV protocol performs three tasks: (1) authentication of each PIVS via the

centralized AS; (2) transmission and execution of the PIV code (PIVC); and (3)

program verification by the PIVC and the PIVS. The sensor that wants to join the

network will first ask the AS for authentication of a PIVS. If authentication succeeds,

the sensor will then ask the authenticated PIVS for verification of its program. To

verify a sensor’s program, the PIVS will send a mobile agent, PIVC, containing a new

RHF to the sensor, and then use the RHF to compute a hash value from the digests

of the sensor program stored in its database.

After the sensor receives the PIVC from the PIVS, it executes the PIVC on its

program to compute a hash value. The hash value will then be sent back to the PIVS

for verification. The PIVS finally checks if the two hash values match to determine the

integrity of the sensor’s program. If the sensor passes the verification, then the PIVS

registers it in its database PIV DB, which contains all successfully-verified sensor IDs.

Otherwise, the sensor will be locked, with its ID deleted from PIV DB if it had passed

PIV before, thus becoming unable to join the network. The PIV protocol offers three

ways of actually locking a sensor: (1) the PIVS can ask the sensor’s neighbor sensors

not to replay packets from the sensor; (2) the key manager refreshes a new cluster key

and excludes the sensor from the cluster; and (3) network services like routing may

look up PIV DB to ensure sensors are verified and thus genuine. Figure 2.1 depicts

the interactions among the AS, the PIVS, and the sensor during PIV.

The main objective of PIV is to counter most of the physical attacks, i.e., to

reprogram or manipulate a sensor without adding new sensor hardware, thus making

it extremely difficult for the attackers to modify the sensor program without being

caught. This protocol guarantees the integrity of the sensor program by requiring the

sensor node to verify the integrity of its program before joining the network or after

13

Figure 2.1: Interactions among the AS, the PIVS, and the sensor during PIV.

it has been disconnected from the network for a long period of time. However, PIV

still cannot combat the attack of adding more memory to the sensor nodes.

2.3 Design Overview

In this section, we first describe the architecture and limitations of a typical sensor

network. We then state the motivation of our work, the system model we use, the

attack model we consider, and give an overview of our DAPP design.

2.3.1 Sensor Network Architecture and Limitations

Sensor networks are often used for monitoring environments and information col-

lection & aggregation. Most sensor networks have a base station that acts as their

gateway to an external network. The base station is usually a more powerful node

with larger computation, communication, memory, and energy capacities.

A sensor network may typically consist of hundreds to several thousands of sen-

sor nodes. However, sensor nodes are limited in their computation, communication,

memory, and energy capacities due to their low-cost and size requirements. Because

of the large number of nodes and limited resources, and also due to the fact that

14

sensor nodes are often deployed in hostile and unattended environments, they are

susceptible to physical capture and compromise.

Sensor networks are also limited in other ways. Due to the limited memory,

computation power, and energy capacity of each sensor device, the use of public-key

algorithms, such as the Diffie-Hellman (DH) algorithm [19], is usually not practical in

sensor networks. Public-key algorithms often require considerable memory, complex

computation and processing, and large key length, which have limitations of their

own and will quickly deplete the batteries on sensor devices.

Our scheme was implemented on Mica2 Motes [16]. Mica2 Motes feature an

8-bit 4MHz Atmel ATmega 128L microcontroller with 128K bytes in-system repro-

grammable flash memory, 4K bytes internal SRAM, 4K bytes internal EEPROM,

and 512K bytes external additional data flash memory. The microcontroller is based

on an advanced RISC architecture. Mica2 Motes are powered by two AA batteries,

and communication is using a multi-channel radio. The ISM band 868/916MHz radio

transmitter communicates at a peak rate of approximately 40 Kbps within a range

of up to 500 feet in an outdoor environment.

2.3.2 Motivation

Our main goal is to eliminate the requirement of the centralized authentication

server (AS) in the PIV infrastructure to make PIV a fully-distributed protocol. As

the AS is needed for sensors to authenticate PIVSs, it may easily become a bottleneck

for reliability, security, and communication. Also, requiring a centralized service such

as AS is inconsistent with the distributed structure of sensor networks. Moreover,

sensors deployed near the AS will consume more energy to route messages for other

sensors, and will exhaust their batteries before others. Therefore, having a centralized

AS will not scale well to a large sensor network.

The communication traffic to/from a single AS can, of course, be reduced if the

15

AS is replicated in the network. However, since ASs act as trusted third parties, they

are presumed to be trusted and secure. Therefore, ASs will need secure computing

platforms to protect the servers from attacks. Also, as ASs require more memory,

more energy, and stronger computation power than sensor devices, deploying more

ASs in the network will increase the cost. Another problem with having multiple

ASs is the problem of maintaining consistency among them. How to allow every AS

in the network to maintain the same authentication information about PIVSs and

be consistent with authenticating PIVSs in the network is a difficult issue to deal

with. For these reasons, we would like to remove the need for ASs from the PIV

infrastructure, and distribute the authentication function to PIVSs themselves.

2.3.3 System Model

To generalize our design and analysis, we define the system model as follows.

• Sensors and PIVSs are deployed randomly in their coverage area. Therefore,

we have no prior knowledge about the neighbors or the location of each sensor

and PIVS before deployment.

• There are a maximum of n sensor nodes and s PIVSs in the network, each of

which has a unique node ID.

• PIVSs are equipped with more energy, larger memory, and more computation

and transmission power than sensor devices.

• PIVSs maintain all of the sensor programs in their memory before deployment.

The sensor programs stored at the PIVSs are used to verify the integrity of the

sensors’ programs.

• Each PIVS has dual radio interfaces so that the radios for its communication

with sensors and other PIVSs will not interfere with each other. Note that use

of multiple radios and channels at each node is becoming commonplace.

16

• For most of sensor network applications, sensors are required to be time-synchronized.

Hence, PIVSs are assumed to be loosely time-synchronized.

• Since PIVSs have a longer transmission range than sensors, each PIVS is as-

sumed to have at least t neighbor PIVSs after deployment.

2.3.4 Attack Model

Since the sensor nodes are small and resource-limited and usually deployed in

public or hostile locations, they are vulnerable to physical capture and compromise.

PIVSs are much more powerful servers in the network and can capably defend various

attacks. The goal of the PIV protocol [39] is to defend the sensors from physical

compromise. Our goal in this chapter is to allow the sensors to authenticate PIVSs

in a fully-distributed manner. Below we list the attack models we consider, most of

which are based on the lack of mutual authentication. We categorize the attacks into

passive and active attacks.

• Passive attacks :

– Eavesdropping. This is an obvious threat since wireless communication

is broadcast-based. We assume the attackers can eavesdrop on all traffic

in the network and that data encryption is an effective countermeasure.

• Active attacks :

– Replay, spoof, drop, or insert false data. An attacker might add

a node to the network that simply attempts to interrupt message trans-

mission. A malicious node could trick the system by dropping messages

it is supposed to forward, or by inserting false data into the network. A

malicious node might also attempt to impersonate a legitimate node by re-

playing the messages it received, or by spoofing the messages it is supposed

to send.

17

– Sybil attack. A particularly harmful attack against sensor networks is

known as the Sybil attack [20], in which a Sybil node illegitimately fakes

multiple identities in the network.

– Impersonation attack. This occurs when an attacker has the ability to

impersonate a node. A node sends confidential information to the attacker

rather than to the real recipients. This is typically the hardest attack to

mount and defend against.

– Man-in-the-middle attack. An attacker is in-between the communica-

tion of two nodes and relays messages between them, making them believe

that they are communicating directly. This attack resembles imperson-

ation attack but the attacker controls the entire communication and must

intercept all messages and inject new ones.

– Collusion among compromised PIVSs. When PIVSs are compro-

mised after deployment, the attackers can uncover the encryption keys

used and foster collusion among compromised PIVSs. The compromised

PIVS can pass authentication with a sensor and send malicious code for

the sensor to execute.

Compromised PIVSs collusion can be categorized into the following sce-

narios:

1. The compromised PIVSs need to have direct communication links in

order to collude.

2. The compromised PIVSs can collude through multiple hops and would

require the knowledge of the location and ID of other compromised

PIVSs.

In this chapter, we focus on countering the first collusion scenario above

through collaboration among neighbor PIVSs. We discuss how DAPP

18

PIVS

sensor

Figure 2.2: A design overview of DAPP. PIVSs interact with one another for mutual
authentication. The solid lines represent the interactions between the
PIVSs and the doted lines represent the interactions between the PIVSs
and the sensor.

can be extended to counter against the second collusion scenario in Sec-

tion 2.5.2.

2.3.5 Overview of DAPP

We exploit the PIV protocol [39] summarized in Section 2.2 to protect the integrity

of sensor programs. In order to remove the need for a centralized AS from the

PIV infrastructure, we use PIVSs to perform the AS functions and authenticate one

another to achieve the distributed authentication of PIVSs. Interactions between

PIVSs and sensors are depicted in Figure 2.2, where the large circles represent PIVSs

in the network, and the small ones represent sensors. PIVSs interact with one another

to be authenticated without the need for a centralized AS in the network. The solid

lines represent the interactions between the PIVSs, and the doted lines represent the

interactions between the PIVSs and the sensor.

PIVSs need to share some secrets with one another in order for them to authen-

ticate one another. In our proposed distributed authentication protocol of PIVSs

(DAPP), these secrets are pairwise keys shared between PIVSs which are established

19

by using the Blundo scheme [8]. Before deployment, PIVSs and sensors are loaded

with different functions to establish pairwise keys. After deployment, PIVSs and

sensors can use the loaded functions to establish pairwise keys with any node in the

network.

DAPP has two more objectives in addition to the distribution of the AS function

to PIVSs: reduce (1) the total number of sensor communication messages exchanged

in the network and (2) the energy consumed by each sensor by using DAPP for

authentication.

To remove malicious PIVSs in the network, we also propose a PIVS revocation

mechanism. The PIVS revocation mechanism will allow normal PIVSs to revoke a

malicious PIVS after they detect its malicious behavior. Neighbor PIVSs will monitor

each other’s behavior, and once more than a certain number of its neighbor PIVSs

determined a PIVS to behave maliciously, the PIVS will be evicted from the network.

2.4 DAPP Details

In the original PIV design [39], protection of a sensor from a malicious server/code

disguised as a PIVS/PIVC is achieved by using the AS that acts as a trusted third

party. The AS can help a sensor ensure that the PIVS is authentic, and the PIVC

it receives from the PIVS is thus safe to execute. Here, we propose a distributed

protocol, DAPP, for sensors to authenticate PIVSs without using such a centralized

AS.

DAPP is a protocol used in a sensor network that consists of a maximum of

n sensor nodes and s PIVSs, in which all sensors and PIVSs in the network have

unique node IDs. All PIVSs store all the sensor programs in the network for sensor

verification. Listed below are the notations used in the rest of the chapter.

• A,B, . . . are principals, such as PIVSs or sensor nodes.

20

• NA is a nonce generated by A, which is a randomly-generated number that is

unpredictable and used to achieve freshness.

• KAB is the shared pairwise key between A and B.

• MAC(K,M) is the message authentication code (MAC) of messageM generated

with a symmetric key K.

• TA is the timestamp sent by A.

• f is a symmetric bivariate k-degree polynomial for establishing pairwise keys in

the network.

• F is a one-way function for generating revocation keys for PIVSs.

We apply the Blundo scheme [8] for setting up PIVSs’ and sensors’ pairwise keys.

The Blundo scheme was originally proposed to allow any group of m parties to com-

pute a shared secrete key. Here we use this scheme to establish pairwise keys between

two nodes in the network. In the Blundo scheme, a key server randomly generates a

symmetric bivariate k-degree polynomial f(x, y) which is a secret only known to the

key server. Any two nodes in the network can generate a pairwise key by substituting

x and y by their node IDs. Although we can also use the pairwise key establishment

scheme in LEAP [59], we describe below the protocol using the Blundo scheme for

pairwise key generation.

The elements of the system model described earlier are necessary to understand the

protocol described below. Recall that the PIVSs are computationally more powerful

than sensors, and their memory, energy, and transmission capacities are also greater

than sensors’. Moreover, after the deployment of PIVSs, each PIVS has at least t

neighbor PIVSs, where t depends on PIVSs’ transmission range.

21

2.4.1 Initialization and PIVS Discovery Phase

We now describe the initialization and PIVS discovery phase of DAPP. Note that

nodes can be added to the network after deployment, and use the same phase to join

the network.

2.4.1.1 Pre-deployment Initialization Phase

Before the deployment of sensors and PIVSs, all the nodes are secured. In

this phase, we establish the identity of each PIVS/sensor and its security basis. The

network consists of a maximum of n sensor nodes and s PIVSs. Each sensor and PIVS

is assigned a unique node ID. Not all sensor nodes and PIVSs need to be deployed

at once; some can later join the network. All s PIVSs have the n sensors’ programs

stored in their memory.

As stated above, the Blundo scheme [8] is used to set up pairwise keys. An

offline key server randomly generates a symmetric bivariate k-degree polynomial

f(x, y) =
∑k

i,j=0 aijx
iyj over a finite field Fq, where q is a prime number that is large

enough to accommodate a cryptographic key. For each PIVS and sensor node A, the

key server computes a pairwise key function, f(A, y), and loads the k+ 1 coefficients

as a function of y to node A. The pairwise key function is used for nodes later to

establish pairwise keys with other nodes in the network. Note that since the Blundo

scheme is proven to be unconditionally secure and k-collusion resistant, compromis-

ing only one node A and discovering f(A, y) does not enable the attacker to recover

f(x, y). The attacker needs to compromise more than k nodes in order to recover

f(x, y).

For each PIVS A, the key server randomly generates a base revocation key KA,x

for A, and then generates a sequence of v revocation keys from KA,x using a one-way

function F . The remaining revocation keys are generated by applying F successively,

22

i.e., KA,j = F (KA,j+1). KA,0 is called PIVS A’s revocation verification key. Since

revocation keys are generated by a one-way function, they are forward-computable,

but not backward-computable, i.e., one can compute KA,0, . . . , KA,j given KA,j+1, but

cannot compute KA,j+1 from KA,0, . . . , KA,j. The s PIVSs now all have a chain of

v+1 revocation keys, and will store the revocation verification keys of the other s−1

PIVSs. These keys are used for authenticating the PIVS Revocation Messages (to be

described later in Section 2.4.3).

We require that no two PIVSs will have the same revocation key in their key

chains. This requirement can be met by having the key server first generate a long

sequence of revocation keys by applying the one-way function F successively, and

then assign disjoint chains of keys to each PIVS.

2.4.1.2 Post-deployment PIVS Discovery Phase

The sensors and PIVSs are then randomly deployed in the field. After deployment,

they can discover neighbor PIVSs within their communication range in this phase.

In the post-deployment PIVS discovery phase, each PIVS will periodically broad-

cast a PIVS Beacon Message containing its ID. The neighbor PIVSs that receive this

message can establish shared pairwise keys with the PIVS using the pairwise key

function. When PIVS B wants to establish a pairwise key with PIVS A, it computes

f(B,A) by substituting y with A in f(B, y), the pairwise key function preloaded by

the key server in the pre-deployment initialization phase. Likewise, A can compute

f(A,B). Since f(x, y) is a symmetric function, f(A,B) = f(B,A), so A and B can

establish a pairwise key KAB = f(A,B) between them. The two PIVSs can now ver-

ify one another’s authenticity using the shared pairwise key KAB. Thus, the complete

23

protocol of the PIVS discovery phase is:

A → ∗ : PIVS Beacon Message(A)

B → A : B,NB,MAC(KAB, B|NB)

A → B : A,NA,MAC(KAB, A|NA|NB).

Note that here we use MAC for message authenticity and integrity. MAC can

be viewed as a secure cryptographical checksum for the message. The sender and

the receiver must both have a secret shared pairwise key to compute the MAC. The

computed MAC value helps the receiver detect any change to the message content.

We include nonces in the protocol to prevent replay attacks. The nonces are

randomly chosen and are different each time to make it difficult, if not impossible, for

the attackers to replay the messages. We further optimize the protocol by including

the nonces implicitly in the MAC computation. This way, the PIVSs do not transmit

the nonces again and save the communication traffic while meeting the verification

goal.

After receiving a message, the receiver PIVS recomputes the MAC for the message

and compares it with the MAC it received. If the two match, then the receiver PIVS

can be sure of the sender PIVS’s identity. Otherwise, it will reject the sender PIVS’s

messages. After two PIVSs verify the authenticity of each other with their shared

pairwise key, they add the ID of each other to their PIVS Reference List.

Moreover, the PIVS Beacon Messages from a PIVS allow the newly-deployed

sensors to receive the information about the PIVSs within its communication range.

If a newly-deployed sensor does not receive any PIVS Beacon Message for a certain

period of time, it will broadcast a PIVS LookUp Message to search for PIVSs in its

transmission range. Any PIVS in the network that receives the PIVS LookUp Message

24

will then broadcast the PIVS Beacon Message again, or just unicast it directly to the

sensor.

2.4.2 PIVS Authentication Phase

After the initialization and PIVS discovery phase, the sensors that want to join

the network need to authenticate the PIVSs before starting the PIV and having their

programs verified. In this phase, the sensors will authenticate PIVSs, which will rely

on their neighbor PIVSs to authenticate themselves for the sensors.

Based on the strength of PIVS Beacon Message signals received from all the

PIVSs, a sensor node can choose the one that is closest to it to verify its program. To

authenticate, the sensors will first choose PIVSs within one-hop distance. If no such

PIVSs exist, then sensors can communicate to PIVSs that are multiple hops away

via secure routing [32]. The sensor will first authenticate the PIVS, and if the PIVS

is trustworthy, the sensor will start the PIV protocol with it. However, if the PIVS

fails to authenticate itself, the sensor will choose another PIVS to verify its program

with, and restart the authentication phase with the new PIVS.

For example, for sensor E to authenticate PIVS A, it will first compute the shared

pairwise key KAE = f(E,A) with A. Sensor E will then send a PIVS Auth Message

to A, which includes a randomly-generated nonce NE and the MAC value of NE

computed using KAE. Upon receiving the message, PIVS A will generate the shared

key KAE = f(A,E), and verify the PIVS Auth Message sent by E. If the message is

authentic, then PIVS A will send PIVS Ref Messages including sensor E’s ID, nonce

NE, and the MAC value computed using the shared pairwise keys to the PIVSs on

its PIVS Reference List. The PIVSs that receive the PIVS Ref Messages will check

the authenticity of the message it received. To check the authenticity of a PIVS Ref

Message, a PIVS simply recomputes the MAC value using the shared pairwise key,

and compares the MAC value included in the message. If the two values match,

25

then the message is actually sent from PIVS A since it has the correct pairwise key.

However, if the two values do not match, then the message must have come from a

malicious PIVS faking to be A, and hence, the message will be discarded.

After a reference PIVS authenticates A, it will grant an authentication ticket to

A, which can then provide the authentication ticket to E, proving its authenticity.

Each authentication ticket includes the reference PIVS’s ID, and the MAC value of

NE computed using the reference PIVS and sensor E’s pairwise key. One PIVS needs

to show Nauth authentication tickets to the sensor in order to pass the authentication.

Note that the reason for sensor E to include a randomly-generated nonce in the

PIVS Auth Message is to prevent external attackers from recording the authentication

tickets in the network and then reuse them.

The complete protocol of the PIVS authentication phase is summarized below.

E → A : PIVS Auth Message(NE,MAC(KAE, NE))

A → B : PIVS Ref Message(E,NE,MAC(KAB, E|NE))

B → A : E,AuthTicket(B,MAC(KBE, NE)),

MAC(KAB, E|AuthTicket(B,MAC(KBE, NE)))

......

A → E : AuthTicket(B,MAC(KBE, NE))|AuthTicket(C,MAC(KCE, NE))|...,

MAC(KAE, NE + 1)

Using this same example, for PIVS B to authenticate another PIVS A, B needs

to hold a pairwise key with A. Therefore, if B has received a PIVS Ref Message from

A, it is on A’s PIVS Reference List, and should share a pairwise key with A. When

B grants A the authentication ticket, it will also include the MAC of sensor E’s ID

and the authentication ticket computed using A and B’s pairwise key KAB. If the

MAC value of B’s message matches with the MAC value of B’s message computed by

26

A using their share pairwise key KAB, then A is sure that B is also trustworthy, and

will use the authentication ticket issued by B. After A receives Nauth authentication

tickets issued by its reference PIVSs, it will forward the authentication tickets along

with the MAC value of NE +1 computed using the pairwise key KAE to sensor E for

authentication.

When sensor E receives the response from PIVS A, it will check the authenticity

of A. E will first check if A has replied with the correct MAC value of NE +1. If the

value is correct, then E will continue to check the Nauth authentication tickets. If the

value is incorrect, E will conclude that A failed the authentication. From the Nauth

authentication tickets issued by A’s reference PIVSs, the authentication result must

mask the effects of d or fewer malicious neighbor PIVSs. If we consider Byzantine

failures in the network, then t ≥ Nauth ≥ 3d + 1, where t is the minimum number

of neighbor PIVSs that each PIVS has after deployment. If we do not consider

Byzantine failures, then t ≥ Nauth ≥ 2d+ 1. Thus, the design parameter Nauth needs

to be determined by the PIVSs’ failure model.

If we do not consider Byzantine failures in the network, then if A provides a

correct MAC value, then sensor E will check the correctness of the authentication

tickets and use a simple majority rule to determine A’s authenticity. If more than

Nauth/2 of the authentication tickets have the correct MAC value, then E will conclude

that A is trustworthy. Otherwise, E will try to verify its program with another

PIVS, if any PIVS is available, and restart the authentication procedure with that

PIVS. Figure 2.3 shows the interactions among PIVS A, PIVS A’s reference PIVS

B, and sensor E during DAPP authentication phase. The messages exchanged are

(1) Sensor E sent PIVS Auth Message to PIVS A, which (2) then sent PIVS Ref

Messages to PIVSs on its PIVS Reference List. Next (3) PIVS A’s reference PIVSs

then sent AuthTickets back to A, which (4) collected Nauth AuthTickets from its

reference PIVSs and forwarded the tickets to E for authentication. Figure 2.4 is the

27

,MAC(,)E AE EN K N
1. PIVS Auth Message

()

PIVS A

(,)AEK f A E=

SENSOR E

(,)AEK f E A=

3. ,AuthTicket(,MAC(,)),

MAC(, | AuthTicket(,MAC(,)))

BE E

AB BE E

E B K N

K E B K N

4. AuthTicket(,MAC(,)) , ... , MAC(, +1)BE E AE EB K N K N

, ,MAC(, |)E AB EE N K E N
2. PIVS Ref Message

() D
C

PIVS B

(,)BEK f B E=

PIVSs on the PIVS A

PIVS Reference List

Figure 2.3: Interactions among PIVS A, PIVS A’s reference PIVS B, and sensor E
under DAPP.

pseudocode for sensor E performing DAPP to authenticate PIVS A. The pseudocode

is to be executed on sensor E, PIVS A, and PIVS B, respectively. Sensor E performs

DAPP to authenticate PIVS A, while PIVS B authenticates A for E and is one of

the PIVSs on PIVS A’s PIVS Reference List.

2.4.3 PIVS Revocation

As PIVSs may be compromised and then become malicious after their deployment,

we need a way of detecting and evicting a maliciously or abnormally behaving PIVS

without using a centralized entity, i.e., a distributed PIVS revocation scheme. To

meet this need, we design a PIVS revocation scheme to work harmoniously with

DAPP to better authenticate PIVSs for sensors.

All PIVSs monitor their neighbor PIVSs and are able to issue PIVS Revocation

Messages to other PIVSs when they detect abnormal/malicious behaviors from their

neighbor PIVSs. Since each PIVS has at least t neighbor PIVSs, there are at least

t neighbors who can detect the malicious behavior of a malicious PIVS and then

cooperate to evict it. When a PIVS’s abnormal or malicious behavior is detected, its

28

Sensor E (PIVS_AUTH msg)

If

If

If

Else

Else,

{
Choose PIVS A to authenticate;

Randomly generate N_E;
K_AE = ();

Send PIVS A [PIVS_Authentication_Message];

Receive [

==
Check AuthTicketList;

CorrectAuthTicket >= IncorrectAuthTicket,
PIVS A passes authentication;
Start PIV with PIVS A;

,
PIVS A fails authentication;
Choose another PIVS to authenticate;

}

f E, A
PIVS_Authentication_Message = {N_E, MAC(K_AE, N_E)};

msg.get_source == PIVS A,
AuthTicketList, MAC(K, N +1)];

MAC(K, N +1) MAC(K_AE, N_E +1),

PIVS A fails authentication;
Choose another PIVS to authenticate;

{
PIVS_Reference_List REF_LIST_B;

(PIVS A = msg.get_source) == PIVS on REF_LIST_B
msg == PIVS_Reference_Message,

Receive [E, N, MAC(K, E | N)];
K_AB =

MAC(K, E | N) == MAC(K_AB, E | N),
K_BE =
Send PIVS A [E, AuthTicket(B, MAC(K_BE, N)),
MAC(K_AB, E | AuthTicket(B, MAC(K_BE, N)))];

}

Reference PIVS B (PIVS_AUTH msg)

If and

If

f (B, A);

f (B, E);

PIVS A (PIVS_AUTH msg)

If sg == PIVS_Authentication_Message,

If MAC(K, N_e) == MAC(K_AE, N_e),

For ach PIVS B on REF_LIST_A

If (PIVS B = msg.get_source) == PIVS on REF_LIST_ and

and _ticket <= N_auth,

If MAC(K, E | AuthTicket(B, MAC(K_BE, N))) ==

If N_ticket == N_auth,

{
PIVS_Reference_List REF_LIST_A;
AuthTicket AuthTicketList[N_auth];

N_ticket = 0;

m
sensor E = msg.get_source;
Receive [N_e, MAC(K, N_e)];
K_AE = ;

N_ticket = 0;
e

K_AB =
PIVS_Reference_Message = {E, N_e, MAC(K_AB, E | N_e);
Send PIVS B [PIVS_Reference_Message];

A
msg == [E, AuthTicket(B, MAC(K_BE, N)),
MAC(K, E | AuthTicket(B, MAC(K_BE, N)))] N

MAC(K_AB, E | AuthTicket(B, MAC(K_BE, N)))],
AuthTicketList[N_ticket] = AuthTicket(B, MAC(K_BE, N));
N_ticket++;

Send sensor E [AuthTicketList, MAC(K_AE, N_e + 1)];
}

f (A, E)

f (A, B);

Figure 2.4: DAPP pseudocode to be executed on sensor E, PIVS A, and PIVS B.

29

neighbor PIVSs can send others PIVS Revocation Messages on that PIVS. Examples

of a PIVS’s malicious behavior include authenticating other PIVSs when it is not

expected to or continuing to fail authentications. How to detect PIVSs’ abnormal

output behaviors is the only concern to us in this chapter. As long as a PIVS behaves

normally in interacting with the outside world, we treat it as normal.

Compromised PIVS are detected based on mutual monitoring among neighbor

PIVSs in the network. The detection rules depend on the normal behavior of the

PIVSs and utilize anomaly detection. Behavior-based anomaly detection compares

the traffic being generated by a PIVS with its normal traffic-generation profile. Note

that a PIVS’s normal profile can be derived from its traffic-generation history and/or

the underlying PIV protocol. Any PIVS that deviates from the normal behavior

profile will be flagged as a potentially compromised PIVS. When a PIVS detects one

of its neighbors, say N , to behave abnormally more than a pre-specified number of

times within a time interval of interest, then it will use µTESLA [40] to broadcast a

PIVS Revocation Message about N to other neighbor PIVSs. A receiver PIVS then

uses µTESLA to authenticate the PIVS Revocation Messages it received. Note that

µTESLA uses digital signature for packet authentication and uses only symmetric key

encryption mechanisms. In µTESLA [40], time is divided into intervals, and key Ki is

associated with the i-th time interval. Messages sent in interval i use Ki in MAC for

authentication, and Ki will be disclosed after a delay δ for message authentication.

To use µTESLA, all PIVSs in the network are loosely time-synchronized [22, 51],

and the time is divided into intervals. When PIVS A detects malicious behaviors

from one of its neighbor PIVSs, it will broadcast a PIVS Revocation Message to

the network and include the MAC of the message computed using the preloaded

revocation keys in its key chain described in Section 2.4.1.1. For PIVS A, after key

KA,j is used in a PIVS Revocation Message, it will issue the next PIVS Revocation

Message with KA,j+1 to compute the MAC value.

30

If PIVS A detects the malicious behavior of its neighbor PIVS B, it will broadcast

to its other neighbor PIVSs a PIVS Revocation Message about B that includes a

timestamp TA, the ID of the malicious PIVS B, the position of the revocation key in

the key chain that is used to compute the MAC value, and the MAC of the message

computed using the revocation key. A PIVS Revocation Message broadcast by A is

in the form of:

A → ∗ : TA, B, j,MAC(KA,j, TA|B|j).

The MAC value of a PIVS Revocation Message is generated by a PIVS using the

revocation key in its key chain. After δ time intervals, the used revocation key will

be disclosed. One PIVS can verify the authenticity of the disclosed revocation key by

applying the one-way hash function F to the key a number of times and comparing

the value with the origin PIVS’s revocation verification key. For example, suppose

the PIVS Revocation Message is from PIVS A, and A is using its 4-th revocation

key KA,4 to generate the MAC value of the PIVS Revocation Message. Then, once

the revocation key is disclosed, one can apply the one-way function F four times and

compare the value with A’s revocation verification key KA,0. If F 4(KA,4) = KA,0,

then one can verify that the revocation key is really sent by A. One can then check

the MAC value of the PIVS Revocation Message using the disclosed revocation key

to see if the PIVS Revocation Message is authentic.

If A receives more than Nrevoke PIVS Revocation Messages against B within a

time interval of interest, A will suspect that B is compromised. A will thus stop

authenticating B or ask B to authenticate itself again. Any malicious PIVS that

cannot get authentication tickets from a majority of its neighbor PIVSs will not

pass the authentication, and no sensor will trust such a PIVS. The malicious PIVS’s

neighbor PIVSs will also stop communicating with it. Therefore, the PIVS will be

“evicted” from the network, and will not be able to access any service in the network.

Nrevoke must be smaller than t, the minimum number of neighbor PIVSs one PIVS

31

has, and must be large enough for no PIVSs to be revoked by colluded neighbors.

2.5 Security Analysis

We first discuss network survivability in the event of sensor and PIVS compro-

mises, and next discuss how DAPP can be extended to counter multiple hops com-

promised PIVS collusion. We then mathematically analyze DAPP to show the prob-

ability of PIVS true authentication, after which we analyze the security of DAPP and

PIV against various attacks. We finally identify some possible attacks on the PIV

protocol, along with appropriate countermeasures.

2.5.1 Network Survivability

After compromising a sensor or a PIVS, the attacker can discover the node’s keying

materials, such as the preloaded pairwise key functions. If a PIVS is found to have

been compromised, it can be evicted by using the PIVS revocation scheme with the

cooperation of its neighbor PIVSs. On the other hand, if the compromise of a sensor

is detected/suspected, the sensor will be required to re-verify its program using PIV.

The sensor will be excluded from the network if it fails to pass PIV.

When the compromise of the sensors and PIVSs go undetected, we need to analyze

the survivability of the network, or its ability to maintain an acceptable level of

performance given compromised nodes. For this, we will consider the general attacks

an adversary can mount after compromising a node.

Since each node in the network is only preloaded with the pairwise key function

for it to establish pairwise keys with other nodes in the network, revealing such a

function will only allow the attacker to impersonate that node. We employ the Blundo

scheme [8] for the pairwise key function, which is proven unconditionally secure and

k-collusion resistant. That is, when no more than k nodes are compromised, the

attacker will know nothing about the pairwise key between any two uncompromised

32

nodes in the network. However, if more than k nodes have been compromised, then

the pairwise key function, or the symmetric bivariate k-degree polynomial will be

revealed, and the attacker will know all the pairwise keys in the network. Therefore,

it is important to choose a large enough k for the polynomial to generate the pairwise

keys. As mentioned by Zhu et al. [60], for the current generation of sensor nodes, k

can be around 200.

Each PIVS has a revocation key chain for it to authentically broadcast PIVS

Revocation Messages. Once a PIVS is compromised, its revocation key chain will

be revealed to the attacker, and the attacker can fake PIVS Revocation Messages

to revoke benign PIVSs. However, since each PIVS needs to receive Nrevoke PIVS

Revocation Messages before revoking a PIVS, an attacker will need to compromise

many PIVSs before revoking a PIVS is possible. Or, if an attacker simply uses one

compromised PIVS to continue broadcast PIVS Revocation Messages against other

PIVSs, its abnormal behavior will be detected and it will be revoked by other PIVSs.

We can further modify the PIVS revocation scheme to limit a PIVS to issue only a

certain number of PIVS Revocation Messages against other PIVSs, thus making it

harder for an attacker to use compromised PIVSs to revoke benign PIVSs.

2.5.2 Compromised PIVSs Collusion

As stated in Section 2.3.4, there are two scenarios of compromised PIVSs collusion:

(1) for neighbor PIVSs with direct communication links to collude, and (2) for all

PIVSs in the network with multiple hops to collude. In this chapter, we focus on

defending against collusion scenario (1) since it is easier for PIVSs to collude with

theirs neighbors as they know the locations and IDs of one another and they share

direct communication links. It is harder for PIVSs to collude when they are multiple

hops away since they need to deal with intermediate PIVSs in their communication

path or require setting up separate channels for compromised PIVSs to communicate

33

in order to evade intrusion detection.

If any two compromised PIVSs in the network collude, then one compromised

PIVS can issue authentication tickets for another compromised PIVS in the network.

If one PIVS can find Nauth compromised PIVSs to collude with, then it can pass

the authentication with sensors in the network. Previously we only consider any two

compromised neighbor PIVSs collude, but DAPP can also be extended to counter

against the collusion of any compromised PIVSs in the network.

In Section 2.4.2, we state that from the Nauth authentication tickets issued by a

PISV’s reference PIVSs, the authentication result must mask the effects of d or fewer

malicious neighbor PIVSs. To consider multiple hop compromised PIVSs collusion,

the authentication result must mask the effects of d or fewer malicious PIVSs in the

entire network. Nevertheless, the guideline for choosing Nauth is still the same as be-

fore. If we consider Byzantine failures in the network, then t ≥ Nauth ≥ 3d+ 1, where

t is the minimum number of neighbor PIVSs that each PIVS has after deployment. If

we do not consider Byzantine failures, then t ≥ Nauth ≥ 2d+1. However, considering

compromised PIVSs in the entire network can collude, Nauth needs to be large enough

to mask the effects of d or fewer malicious PIVSs. It is not practical if d is large since

t, the minimum number of neighbor PIVSs that each PIVS has after deployment, will

not be large enough for setting the required Nauth value.

DAPP can defend against the multiple hop compromised PIVSs collusion because

PIVSs have stronger transmission power than sensors; hence, one sensor can also re-

ceive the PIVS Beacon Messages sent by some of a PIVS’s neighbor PIVSs. Therefore,

even though one sensor does not know the entire topology of the network, it knows

the network topology in its proximity. DAPP can be extended to allow sensors to

choose the referencing PIVSs for a PIVS to show authentication tickets from. Thus,

one PIVS has to show authentication tickets from the sensor assigned reference PIVSs

and it might not have control over the reference PIVSs the sensor chooses. By having

34

a sensor sending a list of PIVSs that it wants to have authentication tickets from,

this can force the compromised PIVS to fail the authentication.

Depending on the deployment strategy, on average, a sensor should overhear about

half of a PIVS’s neighbor PIVSs. Moreover, if sensors are equipped with directional

radios, then sensors can choose PIVSs from different directions to avoid compromised

PIVSs collude to launch Sybil attack and claim to be multiple identities.

Our analysis below focus on defending against compromised PIVSs colluding

through direct communication links.

2.5.3 Probability of PIVS True Authentication

As stated in Section 2.3.3, we will now consider a network that consists of s PIVSs

that are evenly distributed and in which each PIVS has at least t neighbor PIVSs after

deployment. The pairwise key function used for the PIVSs and sensors to establish

pairwise keys is a symmetric bivariate k-degree polynomial. We assume the attackers

compromise Nc servers that are evenly distributed in the network and Nc ≤ k.

For a PIVS to claim authenticity, it needs to collect Nauth authentication tickets

from its neighbor PIVSs. The authentication result must mask the effect of d or fewer

malicious neighbor PIVSs. If we consider Byzantine failures in the network, then we

choose t ≥ Nauth ≥ 3d + 1. However, if we do not consider Byzantine failures, then

t ≥ Nauth ≥ 2d + 1. In reality, we would not know how many neighbor PIVSs are

malicious; therefore, it is not possible to determine Nauth based on d. Below we show

how to estimate the probability of DAPP true authentication and how to determine

Nauth from it.

The probability of a compromised PIVS is p = Nc

s
. Among the Nauth neighbors

that provides authentication tickets, the probability that a certain group of i neighbors

35

being compromised is

P[i compromised neighbors] =

(
Nauth

i

)
pi(1− p)Nauth−i.

Note that this is a Binomial Distribution with success probability p for i out of

Nauth successful events.

If we consider Byzantine failures in the network, then for the collaborating neigh-

bor PIVSs to provide a correct authentication result, i ≤ h := ⌊Nauth−1
3

⌋. However, if

we do not consider Byzantine failures, then i ≤ h := ⌊Nauth−1
2

⌋.

Consequently, the probability of PIVS true authentication, or of any PIVS to have

a correct authentication result, can be estimated by

Pcorrect =
h∑

i=0

P[i compromised neighbors] =
h∑

i=0

(
Nauth

i

)
pi(1− p)Nauth−i.

For the discussion below, we assume a network without Byzantine failures. As-

sume there are 250 PIVSs in the network, that is, s = 250, and PIVSs are required to

provide 5 authentication tickets to sensors in the PIVS Authentication Phase, that

is, Nauth = 5. We have shown in Figure 2.5 the relationship between the probability

of PIVS true authentication Pcorrect and the number of compromised PIVSs Nc. As

shown in Figure 2.5, as the number of compromised PIVSs increased in the network,

the probability of PIVS true authentication decreased. However, for a network with

80 compromised PIVSs out of 250 total PIVSs, the probability of getting a PIVS true

authentication with DAPP is still around 80%.

Now consider a network with 250 PIVSs and 90 compromised PIVSs, that is, s =

250 andNc = 90. Then the probability of a compromised PIVS is p = Nc

s
= 90

250
= 0.36.

Figure 2.6 shows the relationship between the probability of PIVS true authentica-

tion Pcorrect and the number of required authentication tickets from a PIVS Nauth.

As shown in Figure 2.6, if Nauth is chosen to be 5, then the probability of getting

36

Figure 2.5: Relationship between the probability of PIVS true authentication and the
number of compromised PIVSs.

Figure 2.6: Relationship between the probability of PIVS true authentication and the
number of required authentication tickets from PIVS.

a PIVS true authentication is around 75%. Therefore, Nauth can be determined by

the desired Pcorrect for the protocol. Note that the graph in Figure 2.6 zigzags be-

cause we don’t consider Byzantine failures in the network and thus we must choose

more than h = ⌊Nauth−1
2

⌋ authentication tickets out of Nauth tickets for the majority

authentication result.

37

2.5.4 Defense Against Various Attacks in Sensor Networks

We now describe how DAPP and PIV can defend against various attacks in sensor

networks.

2.5.4.1 Defense Against Passive Attacks

In DAPP, each message is sent in plain text, along with its MAC value. Even

though an attacker can eavesdrop on the messages, the only content revealed is the

nonces that the sensors and PIVSs exchange. Therefore, the attacker will not gain

any insight into the contents of messages by eavesdropping on the network.

After a sensor authenticates a PIVS, pairwise keys are used to encrypt all the

messages transmitted between sensors and PIVSs in the PIV protocol. Therefore,

the attacker cannot get the contents of the messages by simply eavesdropping on the

messages in the network.

2.5.4.2 Defense Against Active Attacks

To prevent an attacker from spoofing or inserting false data, we equip every mes-

sage with its MAC value computed using a pairwise key between two nodes to achieve

authenticity and integrity. Replay attacks are prevented by including nonces in the

messages. For PIVSs that keep dropping messages or data packets, the PIVSs com-

promised by the attacker can be detected and then revoked by its neighbor PIVSs.

Sybil attacks [20] are particularly harmful in sensor networks. A Sybil node ille-

gitimately fakes to have multiple identities in the network, but DAPP intrinsically

withstands such attacks. It is not possible for the attacker to launch Sybil attacks

against DAPP since each node will need to have a pairwise key with its communicat-

ing node to authenticate its identity. Since each node will have a preloaded pairwise

38

key function for establishing pairwise keys, no nodes can generate the pairwise keys

and pretend to be another node without knowing the function.

Impersonation and man-in-the-middle attacks both require the attacker to fake a

claimed identity. As with how DAPP withstands Sybil attacks, since each node needs

to have a pairwise key with its communicating node to authenticate its identity, it will

be impossible for an attacker to fake a claimed identity without knowing the pairwise

key function to impersonate the node.

In DAPP, for a PIVS to pass by a sensor’s authentication, it needs to present

Nauth authentication tickets. If a PIVS is detected to have been compromised and is

subsequently revoked by its neighbor PIVSs, they will not issue authentication tickets

for the compromised PIVS; therefore, it will not be able to pass authentication. How-

ever, if the reference PIVSs are compromised and send false authentication tickets to

cause the authenticating PIVS to fail authentication, then a majority of the reference

PIVSs must be compromised and in collusion. Otherwise DAPP will mask the effect

of d or fewer compromised PIVSs by selecting Nauth based on the network failure

model as described in Section 2.4.2. Or, if the reference PIVS is detected to be com-

promised and revoked, then the authenticating PIVS will not ask the compromised

PIVS to authenticate for it.

Service disruption and Denial-of-Service (DoS) attacks are caused by malicious

PIVSs. There is no way to prevent such nodes from launching attacks, but these

nodes can be detected and then excluded from the network. Since we let PIVSs

monitor their neighbor PIVSs, once a PIVS (with cooperation from its neighbor

PIVSs) identifies malicious PIVSs, it can use the PIVS revocation scheme to evict

the compromised PIVSs from the network.

Last, PIV is designed to combat physical attacks to sensors in the network. How-

ever, if the sensors are captured and compromised after they passed PIV, then the

network security may be breached. Therefore, to defend sensors against physical

39

attacks after passing the PIV, we make them periodically re-verify their programs.

2.5.5 Security Issues and Possible Attacks to PIV

Listed below are some possible attacks on the PIV protocol that we found and

the possible countermeasures against them.

2.5.5.1 Flash downloader attack

When a PIVS sends the mobile agent, PIVC, to a sensor, the received code will

first be stored in the sensor’s SRAM. We thus need to create a flash downloader to

copy the received code from SRAM to the sensor flash memory. However, the attacker

may try to use the flash downloader to write malicious code from SRAM to the flash.

We handle this attack by verifying the entire sensor flash memory, including (1)

the boot code, (2) the main application code, (3) the mobile agent PIVC, and (4)

the flash downloader. The boot code is the program to be executed before the sensor

passes the verification, and is used for the sensor to communicate with the PIVS and

to execute the PIVC. Verification of the entire flash ensures no malicious code hidden

in the flash that could exploit the flash downloader.

2.5.5.2 Flash free-space compression attack

The free space in the flash can be used by the attacker to hide malicious code,

and the original data in the free space can be compressed for later verification. The

flash free space is shown in Figure 2.7, along with the flash memory layout of different

program components in PIV. The attacker can use the compressed free space data for

verification by uncompressing part of the data at a time for hashing, and still keep

the extra free space to hide the malicious code. Therefore, even hashing the entire

40

Boot Code

Main Application

Code

PIV Code

0100100010000101001000100

0010100100010000101001000

1000010100100010000101001

0001000010100100010000101

0100100010000101001000100

0010100100010000101001000

Flash Downloader
0100100010000101001000100

0010100100010000101001000

Free space

Figure 2.7: The sensor flash memory layout in PIV.

flash for verification will not be able to counter this attack.

We counter this attack by filling the flash’s free space with incompressible bit-

strings before deploying the sensor. By placing incompressible bit-strings in the flash’s

free space, the attacker can neither compress the flash’s free space nor gain more flash

space to exploit.

2.5.5.3 Malicious mobile agent PIVC attack

Another possibility is to have the attacker place malicious code in the flash, and

put the real code in SRAM, EEPROM, or the additional data flash memory. The

attacker can have a malicious PIVC that performs verification normally, but when

validating the part of the flash that the real code is now stored in SRAM, EEPROM,

or the additional data flash memory, use the real code instead. By using the space of

SRAM, EEPROM, or the additional data flash memory, it is possible for the attacker

to place other changes to the program in the flash.

Another attack exploiting the malicious PIVC is the application code compression

attack. The attacker can compress part of the original application code and use the

free space in the flash to store malicious code. When performing the verification,

the attacker can then uncompress the compressed parts of the original code (or part

41

thereof) and use them for verification, and can still keep the extra free space to hide

the malicious code.

One possible countermeasure is to set strict timing constraints on the hashing

algorithm used for verification, and these attacks can be prevented using the tight

upper and lower bounds for the hash-time interval. Since SRAM, EEPROM, and the

additional data flash memory are much slower than the flash and thus require more

CPU clock cycles to read from. Therefore, if we set a tight hash-time interval, then

the attacker will not be able to produce the correct hash values within the tight hash-

time interval. The tight hash-time interval can also be used to counter application-

compression attacks, because uncompressing the compressed original code will take

additional time, making it highly unlikely for the attacker to get the correct hash

values within the hash-time interval.

Similar to the scheme by Shaneck et al. [48], the hash-time interval should be set

to the expected time for the PIVS to receive the hash value from a sensor, which is

the sum of the time taken to compute the hash on the sensor program, the network

roundtrip time, and the expected response delay that accounts for network delay.

Any hash values returned from sensors that are within the hash-time interval will be

accepted, or will otherwise be rejected.

2.5.5.4 Compromised PIVSs and sensors attack

After compromising a PIVS, the attacker may use it as a back-end server to pass

the verification of compromised sensors. For example, when a sensor receives the

PIVC for verification of its program, then it can forward the PIVC to the compromised

PIVS and ask it to compute the hash value for it. The compromised sensor will then

be able to have a correct hash value to pass the verification. Another similar attack

is possible if the attacker compromises a few sensors in the network and use them to

42

cooperate with each other. In this case, the attacker can store its original code in the

other compromised sensors and let them use it to pass their verification.

The tight hash-time interval mentioned above can also be used to handle this

attack. Since it must take a longer time for the sensors to communicate with the

compromised PIVS/sensors and compute the hash value of its program, it is not

possible for the attacker to generate and return the hash value to the PIVS within

the hash-time interval.

2.6 Implementation of DAPP and PIV

This section describes our implementation of the DAPP and the PIV protocol [39]

on Mica2 Motes [16] and laptops. Mica2 sensor nodes have 128K bytes of in-system

reprogrammable flash and 4K bytes of internal SRAM, and run under TinyOS. For

laptops, we used Java to write the PIVS, and for sensors, we used nesC [23] embedded

with assembly to write the Boot code, C embedded with assembly to write the mobile

agent PIV Code (PIVC), and assembly to write the flash downloader.

2.6.1 Changes to the Original PIV Design

We made some modifications to the original PIV designed by Park and Shin [39],

which are listed with their justification.

2.6.1.1 Hash functions: RHF vs. HMAC-MD5

The authors of PIV [39] proposed a special class of cryptographic hash functions,

called randomized hash functions (RHFs). In addition to random hash computation,

RHFs provide two ways of computing the hash value, i.e., one from the program in

the sensor and the other from the digest of the sensor program stored in the PIVS.

However, since the free space in the flash of a sensor can be used by an attacker to

43

(a) (b)

Boot Code

Main Application

Code

PIV Code

Free Space

Free Space

Flash Downloader

Free Space

Boot Code

Main Application

Code

PIV Code

Free Space

Flash Downloader

Free Space

Malicious Code
Free Space

Figure 2.8: (a) Normal sensor flash memory layout; (b) Sensor flash memory layout
with malicious code hidden in the free space.

hide malicious codes, as shown in Figure 2.8 and described in Section 2.5.5.2 as the

flash free-space compression attack, we need to fill up the free space in the flash with

some random incompressible bit-strings before deploying the sensor. Unfortunately,

the use of incompressible bit-strings in flash may remove the advantage of storing

digests in the PIVS memory instead of storing the entire program code of the sensor

flash.

The digests of sensor programs stored in a PIVS as proposed in PIV [39] were

created as follows. B program blocks, x1, . . . ,xB, were built from the original program

x, where xl = [xl,1, . . . , xl,m]
T was an m × 1 vector and xl,i ∈ F. 1 A digest for xl

was defined as an m × m matrix Xl, which consists of all quadratic terms, xl,i xl,j.

That is, Xl = xlx
T
l = (xl,i xl,j). One might think that a digest Xl is actually

m times larger than the original program block xl. However, the size of the total

digests will be smaller than the size required for just storing all sensor programs since

there exist common program blocks for all sensors due to their similar purpose of

service. Therefore, multiple digests were combined into just one digest, thus requiring

a smaller memory size.

1xT (AT) is the transpose of a vector x (a matrix A).

44

By storing incompressible and unique bit-strings for each sensor, the common di-

gests will decrease, and storing digests may require more memory than simply storing

the sensor programs. For the purpose of defending the flash free-space compression

attack, we had to store incompressible strings in the flash free space for each sensor,

and thus, there was little advantage of using RHFs for hash computation. Therefore,

we decided to store sensor programs instead of digests in PIVSs, and not use RHFs

for hash computation.

Instead, we decided to use HMAC [33], a mechanism for message authentication

using cryptographic hash functions, together with an iterative cryptographic hash

function MD5 [41], in combination with a secret shared key. The reason for using

HMAC for verification of sensor programs is that HMAC can be used in combination

with any iterated cryptographic hash functions, such as MD5 [41] or SHA1 [21].

Therefore, we can switch the hash function when needed. HMAC also uses a secret

key for the calculation and verification of the message authentication values, which

meets our need for using different secret keys to verify the sensor programs for each

verification. MD5 [41] is a widely-used cryptographic hash function, and even though

it has been shown to be vulnerable to hash collisions [53], because of the way hash

functions are used in the HMAC construction, the techniques used in the MD5 hash

collision attacks do not apply to HMAC-MD5.

2.6.1.2 The transmission of the PIVC

In the original PIV design, every time a sensor asks for verification, the PIVS sends

the entire PIVC to the sensor node to initiate the verification. However, transferring

the whole PIVC to the sensor each time before verification incurs excessive network

traffic. Moreover, since the flash in Mica2 Mote can allow only 10,000 erases or writes,

allowing the PIVC to be written to the sensor flash before each verification is not a

45

good approach. Therefore, we stored the PIVC in the flash before deployment to

reduce network traffic and reduce flash erases and writes. Since the flash is the only

place in memory where the PIVC can be executed, it is a good location to place the

PIVC.

A version number for the PIVC was assigned and placed at the last part of the

PIVC to avoid repeated transmissions. The PIVC version number is first checked by

the sensor with the PIVS to see if the PIVC is up-to-date before the sensor executes

the PIVC and begins computing the hash value of its program. If the PIVC version

number differs from the current PIVC version number on the PIVS, then the PIVS

will transmit the new PIVC to the sensor. This use of the PIVC version number

allows the PIVC to be updated, if necessary. If the PIVC version number matches

the current PIVC version number on the PIVS, then the sensor will only need to

request the hash key from the PIVS, and execute the PIVC already in the flash with

the received hash key to perform the hash computation, which, in our implementation,

is the HMAC-MD5 [33, 41] computation.

Since the PIVC will not change very often, the PIVS will only transmit the hash

key instead of the entire PIVC to the sensor. By making this modification of keeping

the PIVC in the sensor flash before deployment, we can save energy on the sensor,

reduce network traffic, and extend the sensor flash life with less erases and writes on

the flash.

2.6.2 Message Authenticity and Integrity

In DAPP, we used MAC to achieve message authenticity and integrity to allow

sensors to authenticate PIVSs. The security of the MAC depends on the length of

the MAC value. Conventional security protocols use 16-byte MACs. We chose to use

HMAC-MD5 [33, 41] for generating MACs in our implementation, and truncated the

output of the MAC to use a 10-byte MAC.

46

Most well-known and widely-used MAC algorithms are CBC-MAC and HMAC [33].

CBC-MAC (Cipher Block Chaining Message Authentication Code) utilizes block ci-

phers in CBC mode to create a MAC. HMAC is a keyed hash message authentication

code and is calculated using a cryptographic hash function in combination with a

secret key. These algorithms were evaluated using Crypto++ 5.2.1 benchmarks [17],

which are speed benchmarks for some of the most commonly-used cryptographic

algorithms. In Crypto++ 5.2.1 benchmarks evaluation, HMAC-MD5 outperforms

CBC-MAC-AES and is three times faster. Mills et al. [11] analyzed the memory

requirements for HMAC-MD5 on the Atmel processor. They showed the code size

for HMAC-MD5 is 4.6K bytes and the data size is 386 bytes, which are fine for

our implementation. Therefore, we decided to implement HMAC-MD5 for the MAC

computation in our DAPP implementation.

2.6.3 Overview of the Implementation

Figure 2.9 describes our implementation of DAPP and the modified PIV. A sensor

starts DAPP with one PIVS, and other reference PIVSs authenticate the PIVS for the

sensor. The sensor determines the success or failure of the authentication of the PIVS

based on the responses of the authenticating PIVS and the authentication tickets sent

from the reference PIVSs. If the PIVS passes the authentication, then the sensor will

start the PIV protocol with the PIVS to verify its program.

We now describe implementation details for each component of DAPP and PIV.

2.6.3.1 PIVS Development

A MICA2 Mote sensor and a laptop together are used as a PIVS. They are con-

nected with a serial line that forms the primary channel for wired communication. On

the laptop, a simple Java application, SerialForwarder, provides a relay between the

47

Figure 2.9: Overview of our implementation of DAPP and PIV.

serial data over a TCP/IP socket connection. The PIVS sensor that connects to the

laptop is for sending and receiving messages from the other sensors and PIVSs over

the radio. The received messages are relayed from the sensor to the laptop through

the serial cable, and the sent messages are also relayed from the laptop to the sensor

for broadcast or unicast.

The PIVS is written in Java, and we implemented HMAC-MD5 [33, 41] to generate

MAC when PIVSs run DAPP. PIVSs use the shared pairwise key between the two

PIVSs to generate and verify MACs. The pairwise key length is 16 bytes and the

MAC length is 10 bytes. The PIVS calls a C program to compute HMAC MD5

and hash over the stored sensor programs to verify the integrity of the programs on

sensors. All of the sensor programs are stored on the laptop as files in binary formats,

and are used for sensor verification. When sending the PIVC to a sensor for hash

computation, the PIVS reads the PIVC from a PIVC binary file, and send it over the

radio to the sensor.

48

The PIVS takes care of sensors’ requests for authentication, requests for update of

a mobile agent PIVC, requests for the hash key, requests for verification, and requests

for checking the verified sensors in its PIV DB. The interactions between PIVSs and a

sensor are shown in Figure 2.9 as well as the responses of PIVSs handling the sensor

requests with the arrows between PIVSs and the sensor indicating the exchanged

messages. Once a PIVS sends the verification result to the sensor, it activates the

sensor’s main application code if the sensor passes the verification, or otherwise locks

the sensor, thus blocking it from joining the network.

Upon updating the PIVC or sending the hash key to the sensor, the sensor per-

forms a simple error check by acknowledging to the PIVS the previous data it has

received. If the acknowledging data is not the same as the previous data, then there

was data corruption during the previous transmission, and the PIVS will retransmit

the data to the sensor.

PIVSs randomly generate hash keys for each sensor verification during PIV. If

the previously-sent hash key bytes have been corrupted, the PIVS re-generates the

corrupted bytes of the hash key, and retransmits the hash key bytes to the sensor.

This is to prevent the sensors from reporting the wrong hash key bytes and trying to

gain additional time to generate the correct hash value for verification.

A snapshot of the PIVS interface running on a laptop is given in Figure 2.10.

It shows the current status of the sensors interacting with the PIVS as well as the

connectivity of the sensors to the PIVS. In particular, Sensor 1 is verifying its program

with the PIVS, Sensor 2 is in the middle of receiving the new version of the PIVC

from the PIVS, Sensor 4 has failed the verification, Sensor 6 has just passed the

verification, and Sensor 9 has already passed the verification and starts to run its

main application. The PIVS can choose to broadcast or unicast to a particular sensor

and to reset sensors or to start the sensors’ main applications.

49

Figure 2.10: A snapshot of the PIVS interface.

2.6.3.2 Boot Code Development

The Boot code is used for the sensor as a communication module between the

sensor and the PIVS. The Boot code also allows the program pointer to jump back and

forth between the Boot code, the PIVC, and the flash downloader. We implemented

the Boot code in nesC [23], along with inline assembly mixed in nesC code.

After the communication between the sensor and the PIVS has built up, the Boot

code jumps to the PIVC to get the version number of the PIVC, and then sends it to

the PIVS to check if the version number is up-to-date. If not, then the PIVS sends

the new PIVC to the sensor, with 4 bytes of the PIVC per message. The bytes of the

PIVC received by the sensor will first be stored in the sensor SRAM. After one page

(128 words or 256 bytes) of the PIVC has been received, the Boot code jumps to the

50

flash downloader and writes the page from the SRAM to the flash. The reason why

we didn’t use network programming for PIVC transmission and update is because we

are not reprogramming the entire sensor flash, but only updating part of the flash

with the PIVC.

After the entire PIVC has been written to the flash, the Boot code reports its new

PIVC version number to the PIVS again. If the version numbers match, then the

PIVS sends the hash key to the sensor for computing the hash value over its program.

Finally, the Boot code jumps to the PIVC to start the hash computation over the

entire flash, and then sends back the hash value to PIVS for verification. Upon

receiving the verification result from the PIVS, the Boot code will either activate the

main application code on the sensor if the sensor passes the verification, or the sensor

will otherwise be locked and unable to join the network.

Note that the Boot code is not trusted. If the Boot code does not work properly

as it should, then the sensor will not be able to pass PIV. The PIV protocol offers

three ways of actually locking a sensor: (1) the PIVS can ask the sensor’s neighbor

sensors not to replay packets from the sensor; (2) the key manager refreshes a new

cluster key and excludes the sensor from the cluster; and (3) network services like

routing may look up PIV DB to ensure sensors are verified and thus genuine.

Since PIVSs and sensors communicate through the wireless network, message

losses are common between nodes. The Boot code can also handle any message loss

between PIVSs and sensors. Message losses are handled by timeouts and retransmis-

sions. Upon its transmission of a message, the sensor starts a timer. If the timer has

expired and the sensor still has not received any response from the PIVS, then the

sensor will retransmit the message to the PIVS.

51

2.6.3.3 PIVC Development

The PIV Code (PIVC), or the mobile agent, is written in C along with inline

assembly. The size of the PIVC is about 10K bytes, and it takes about 5 minutes to

transmit the entire PIVC from a PIVS to a sensor. The main function of the PIVC

is to perform HMAC-MD5 on the sensor over the entire sensor flash for verification.

When performing HMAC-MD5 over the entire 128K bytes of the flash, the PIVC

hashes the flash in 64-byte blocks and uses the intermediary hash value as the key

for hashing the next 64-byte block. This way we enforced sequential hashing of the

sensor flash. The hash keys the PIVC uses for HMAC-MD5 are 16 bytes long, and

so are the hash values.

The reason for calculating the hash of the sensor flash in 64-byte blocks is related

to our implementation of PIV and DAPP. Mica2 Mote has a SRAM of 4K bytes which

is too small to hold all the computational variables when the entire flash is hashed

as a one shot. Therefore, we chose to implement the PIVC by hashing the flash in

64-byte blocks.

The security achieved by performing HMAC-MD5 on the entire 128K bytes of

flash is not equivalent to that by sequentially performing HMAC-MD5 on 64-byte

blocks. However, since MD5 operates on 64-byte blocks, if the hash message length is

over 64 bytes, then MD5 will break up the message into blocks of 64 bytes and iterate

over them with a compression function before doing the final hashing. By sequentially

performing HMAC-MD5 on 64-byte blocks one-by-one, we perform hashing multiple

times instead of just once after iterating the data over the compression function. The

cryptographic strength of sequentially hashing in 64-byte blocks is not much worse

than hashing the entire 128K bytes at once.

Our design for the PIVC has the flexibility to change the hash function, key length,

and hash value length as needed. With the update of a new version of the PIVC, the

52

changes can be made. When sending the hash key or the hash value over the network,

the PIVS and the sensor will always specify the length of the data it is transmitting,

and thus, the new version of the PIVC will work correctly. While updating the new

PIVC, the PIVS sends the binary file of the new PIVC for the sensor to write the

new PIVC to the flash for execution.

The version number of the PIVC is placed at the last part of the PIVC. This is

to prevent the sensor from receiving only part of the PIVC, but the sensor still holds

the up-to-date PIVC version number. If the PIVC version number is to be updated

first, then after a failure in the transmission of the PIVC, the sensor will have the

up-to-date PIVC version number, but not the correct PIVC. When the sensor tries

to verify with the PIVS again, the PIVC is not updated because the sensor has the

up-to-date PIVC version number. The sensor will then fail the verification by hashing

the flash using the incorrect PIVC.

Since the PIVC needs to coexist with the Boot code, the main application code,

and the flash downloader in the flash, and their variables will all be stored in the

SRAM, we need to assign locations for the PIVC to be placed in the flash, and

the PIVC variables in the SRAM without overwriting other part of the code and

their variables. We use the avr-objdump command in TinyOS to create a dump

file to analyze the Boot code memory information. The PIVC flash location is then

computed so that the PIVC is placed below the Boot code and the main application

code in the flash. The flash downloader and the PIVC can be placed at the very end of

the flash, so the main application code can occupy the rest of the flash below the Boot

code and above the PIVC. The PIVC flash location can be set once the size of the

application code is decided, or it can be placed right above the flash downloader. The

flash location is set inside the PIVC C program and the Boot code. When compiling

and linking the PIVC C program, we manually assign the SRAM location for the

PIVC. The PIVC and the Boot code also use SRAM for passing variable values, such

53

Figure 2.11: Read-While-Write section and No Read-While-Write section in the sen-
sor flash.

as passing the PIVC version number from the PIVC to the Boot code.

2.6.3.4 Flash Downloader

The flash downloader is written in assembly for writing one page of data to the

sensor flash with the one page of data in SRAM. It is mainly used for the PIVC

update, to write the new PIVC received from a PIVS from SRAM to the sensor flash

for execution.

The sensor flash is divided into two constant sections, the Read-While-Write

(RWW) section and the No Read-While-Write (NRWW) section [4]. Figure 2.11

shows the limit between the two sections in the sensor flash.

The main difference between the two sections is that while erasing or writing a

page inside the RWW section, the NRWW section can be read; however, the inverse

is not true. The CPU is halted during the entire operation of erasing or writing a

page located inside the NRWW section. Therefore, our flash downloader is placed in

the NRWW section at the end of the flash to allow reading while writing a page of

the PIVC to the RWW section in the flash.

54

We use self-programming on the sensor to write data from SRAM to the flash.

The program memory updates itself in a page-by-page fashion. Before writing a page

to the flash with the data stored in the SRAM, the flash downloader first performs a

page erase on the flash. It then fills in the temporary page buffer one word at a time

with the data in the SRAM. It finally performs a page write to write the data in the

page buffer to the page in the flash and complete the update.

2.7 Performance Evaluation

We first evaluate the performance of DAPP using simulation. Then, we evaluate

the computation and communication cost of DAPP, and the storage requirement for

a sensor and PIVS to keep the pairwise keys, demonstrating that DAPP is scalable

and efficient in computation, communication, and storage in sensor networks.

2.7.1 Evaluation with Simulation

We simulated DAPP with randomly-generated networks consisting of 1000 sensors

and 250 PIVSs in a 1000 × 1000 unit area. We assume each sensor has a communica-

tion range of 150 units, and that a PIVS normally communicates with others within

200 units from itself. Each sensor node is initialized with 0.5 J of energy. Once a

sensor node exhausts its battery, it will stop working.

We simulated and compared the number of sensors surviving and continuing to

work using DAPP with that using a single authentication server (AS) in the network

for authentication, to see how many sensors survive with our DAPP approach. When

DAPP is used for authentication, PIVSs monitor and cooperate to authenticate one

another, but the sensor only needs to communicate with the authenticating PIVS. In

our DAPP simulation, we chose Nauth = 5, i.e., a PIVS needs to present 5 authen-

tication tickets to a sensor to pass authentication. In our AS simulation, the AS is

placed at (x = 1070, y = 1070). When a dedicated AS is employed, the sensors need

55

to take multiple hops to reach the AS, making those sensors near the AS relay others’

messages.

The simulation time is divided into rounds of actions. In each round, each sensor

has the probability ReV erify that it needs to re-verify its program with a PIVS and

thus re-authenticate the PIVS. We performed simulation while changing ReV erify

and plotted the results in Figure 2.12, showing the numbers of sensors surviving

using (1) DAPP and (2) a dedicated AS for authentication with ReV erify = 0.05

and 0.1, respectively. More sensors are shown to survive or have a longer life time with

DAPP than using a single AS in the network. The advantage of DAPP becomes more

pronounced, especially when the network is deployed in a highly hostile environment

or sensors need to be re-verified more often.

Figure 2.12 also shows that when using a dedicated AS for authentication, the

curve of the number of sensors surviving in the network cuts off smoothly but not

sharply. This is because all the sensors around the AS exhaust their batteries first,

and then the sensors closer to the AS deplete theirs. Sensors exhaust their batteries

gradually depending on their distance to the AS. In contrast, when using DAPP

for authentication, the curve of the number of sensors surviving in the network cuts

off more sharply because all the sensors, irrespective of their location, use almost

the same amount of energy for authentication, and will exhaust all their batteries

approximately at the same time.

For the same network, we also compared the number of messages exchanged and

the average sensor’s energy consumption by using DAPP and a dedicated AS for

authentication. When using DAPP for authentication, inter-PIVS communications

will not interfere with sensor communications since PIVSs have dual radio interfaces,

one for communication between the sensors and one for communication between the

PIVSs. For each sensor to authenticate one PIVS, there are 2 messages exchanged

between the sensor and the PIVS. Since there are 1,000 sensors in the network, at

56

Figure 2.12: Numbers of sensors that survive with DAPP and with an AS for authen-
tication, with (A) ReV erify = 0.05 and, (B) ReV erify = 0.1.

least 2,000 messages must be exchanged in the network for each sensor to authenticate

one PIVS assuming that no transmission error occurred. When a single AS is used in

the network for authentication, the sensors exchange an average of 22,766 messages

in the network by counting the messages relayed by other sensors as separate mes-

sages. As a result, DAPP reduces the sensor communication traffic in the network by

more than 90% as compared to using a single AS placed at (x = 1070, y = 1070) for

authentication.

57

Using DAPP for authentication also reduces the energy consumption on each sen-

sor. With DAPP for authentication, one sensor dissipates, on average, 1, 114µJ to

authenticate one PIVS. With a single AS for authentication, one sensor dissipates,

on average, 7, 624.5µJ to authenticate one PIVS. The DAPP’s energy consumption

on each sensor improves up to 85% over using an AS placed at (x = 1070, y = 1070)

for authentication. Given an initial sensor energy of 0.5 J, a sensor can authenti-

cate a PIVS 449 times with DAPP but only 66 times with a single AS placed at

(x = 1070, y = 1070).

If the AS is placed in the middle of the network, at (x = 500, y = 500), and when

the AS is used in the network for authentication, then sensors exchange an average

of 10,253 messages in the network by counting the messages relayed by other sensors

as separate messages. Moreover, one sensor dissipates, on average, 3, 290.8µJ to

authenticate one PIVS. In this case, DAPP reduces the sensor communication traffic

in the network by more than 80%, and improves the energy consumption on each

sensor up to 65%.

The increase of sensor communication traffic and energy consumption under a

single AS for authentication comes from sensors relaying authentication messages for

other sensors. It is easy to see that the sensors deployed near the AS will exhaust their

batteries faster than others due to their relaying of more messages for other sensors.

However, sensors’ lifetimes are extended by using DAPP because it authenticates

PIVSs in a distributed manner, and can thus reduce communication traffic and energy

consumption by authenticating PIVSs locally.

We further simulate with multiple ASs placed in the network, in particular with

four ASs placed at (x = 750, y = 250), (x = 250, y = 250), (x = 250, y = 750), and

(x = 750, y = 750) respectively. When these ASs are used in the network for au-

thentication at their respective quadrants, the sensors exchange an average of 6,276

messages in the network by counting the messages relayed by other sensors as sepa-

58

rate messages. Moreover, one sensor dissipates, on average, 1, 914µJ to authenticate

one PIVS. In this case, DAPP reduces the sensor communication traffic in the net-

work by more than 68%, and improves the energy consumption on each sensor up to

40%. This simulation shows even when deploying more ASs in the network, DAPP

still has less communication and computation overhead compared to using ASs to

authenticate PIVSs.

2.7.2 Computation Cost

The computation overhead of DAPP mostly comes from the setup of pairwise keys

and the generation/verification of MAC values. We show below that both actions are

efficient and lightweight.

2.7.2.1 Pairwise Keys Establishment

In DAPP, two nodes (composed of two sensors, two PIVSs, or a sensor and a

PIVS) establish a pairwise key to authenticate their identities to each other using

the Blundo scheme [8]. Each node needs to compute k modulo multiplications and k

modulo additions for a k-degree polynomial in order to generate a pairwise key. As

stated by Zhu et al. [60], if we choose k to be 100, the pairwise key size to be 64 bits,

and the size of node ID to be 16 bits, then the cost of computing a pairwise key is only

about 1/10,000 of that of creating an RSA signature, or of the same order of the cost

for computing an AES encryption. Also, Liu et al. [35] showed that the computational

cost of pairwise key establishment using a k-degree polynomial grows linearly with

respect to k. Therefore, the computational cost of pairwise key establishment using a

k-degree polynomial for k = 200 will be twice as much as the computational cost for

k = 100, still much more efficient than the computational cost for creating an RSA

signature.

59

Wander et al. [52] compared the energy consumption of RSA and Elliptic Curve

Digital Signature Algorithm (ECDSA) on the low-power microcontroller Atmel AT-

mega128L. They showed the energy cost of creating an ECDSA signature is about

3/40 of that of creating an RSA signature. Therefore, the computational cost of pair-

wise key establishment using the Blundo scheme for k = 200 is about 1/375 of that

of creating an ECDSA signature.

2.7.2.2 MAC Generation and Verification

We used HMAC [33] for MAC generation and verification in DAPP. HMAC does

not rely on encryption, but instead uses a cryptographic hash function in combination

with a secret key. According to Sancak et al. [42], HMAC consumes approximately

45.6 µJ if it runs on a Mote. Carman et al. [12] analyzed the impact of security

algorithms on energy consumption for sensor nodes, showing that the computation of

HMAC-MD5 for a 1024-bit message is energy cost-effective for numerous micropro-

cessors.

2.7.3 Communication Cost

The communication overhead of DAPP is associated with a PIVS’s authentica-

tion requests to its neighbor PIVSs. For a PIVS to authenticate another PIVS, two

messages need to be transmitted. Fist, a PIVS has to authenticate itself with Nauth

neighbor PIVSs in order to pass the authentication; then the neighbors reply. There-

fore, there will be 2Nauth messages transmitted to authenticate a PIVS. However,

DAPP is only used before a sensor runs PIV and wants to authenticate a PIVS. Since

a sensor only runs the PIV protocol infrequently, the communication overhead is not

high. Also, because PIVSs have dual radio interfaces, the communications between

PIVSs do not interfere with sensor communications.

60

2.7.4 Storage Requirement

Here we show that the memory requirement for sensors and PIVSs to store the

pairwise keys are very small. Each sensor and PIVS needs to store a k-degree polyno-

mial over a finite field Fq for establishing pairwise keys, and the polynomial occupies

(k+1) log q
8

bytes. For a sensor to authenticate one PIVS, it needs to establish a pairwise

key with it. The sensor also needs to decrypt the Nauth authentication tickets issued

by the authenticating PIVS’s reference PIVSs. Therefore, in DAPP, each sensor needs

to establish at least Nauth + 1 keys before it can authenticate a PIVS. Since each key

is 128 bits (or 16 bytes) long, if we choose Nauth = 5, then a sensor only needs to

store 6 keys, and a total of 96 bytes suffices. Therefore, keys require only 2.3% of the

sensor SRAM since a Mica2 Mote has 4K bytes of SRAM. Similarly, PIVSs use the

same polynomial to establish pairwise keys, and since PIVSs are equipped with more

memory than sensors, they can store more keys than sensors.

Since the PIVSs are storing only a window of history instead of logging the entire

history of PIVSs’ transmissions and they are just monitoring the neighbor PIVSs

instead of all the PIVSs in the network, using the behavior-based anomaly detection

should require an insignificant amount of memory. Also, since PIVSs are equipped

with more memory than sensors, the storage cost for using the anomaly detection on

PIVSs should not be a concern.

2.8 Related Work

In this section, we review the related work that provides possible solutions for

authentication and security mechanisms in ad-hoc networks. We also discuss the

related work in admission control in ad-hoc networks. Last, we include and compare

some work related to software verification in sensor networks and list some of them

in which the Blundo scheme [8] is used as their design basis.

61

Weimerskirch and Thonet [54] presented a security model for low-value trans-

actions, especially focusing on authentication in ad-hoc networks. They used the

recommendation protocol from the Distributed Trust Model [1] to build trust rela-

tionships and extend it by requesting for references in ad-hoc networks. Each node

maintains a local repository of trustworthy nodes in the network, and a path between

any two nodes can be built by indirectly using the repositories of other nodes. They

also introduced the idea of threshold cryptography [18] in which as long as the num-

ber of compromised nodes is below a given threshold, the compromised nodes cannot

harm the network operation.

Hubaux et al. [29] listed the threats and possible solutions for basic mechanisms

and security mechanisms in mobile ad-hoc networks. They developed a self-organizing

public-key infrastructure. In their system, certificates are stored in local certificate

repositories and distributed by the users. Bauer and Lee [6] also proposed a dis-

tributed authentication scheme that is efficient and robust using the well-known con-

cepts of “secrets sharing” cryptography and group “consensus.” However, this scheme

still needs a centralized Processing Center (PC) that is responsible for coordinating

the distribution of secret keys to each node in the network, thus lowering the value

of its distributed nature.

Saxena et al. [44, 13] proposed secure, efficient and non-interactive admission con-

trol protocol and schemes that allow a pair of nodes to compute a shared key without

centralized support in ad-hoc networks. Without the assistance of any centralized

trusted authority, they also use secret sharing techniques based on bi-variate poly-

nomials. In contrast, our work focuses on authentication of servers, while their work

features admission control and pairwise key establishment.

Several researchers studied software verification in sensor networks. Our work is

an extension to PIV [39] which verifies the integrity of the program and data stored

in a sensor device. SWATT [46] is a software-based memory attestation technique

62

that externally attests the code, static data, and the configuration settings of an em-

bedded device. Secure Code Update By Attestation (SCUBA) [45] enables secure

detection and recovery from sensor node compromise. It is based on Indisputable

Code Execution (ICE) to guarantee unhampered execution of code even on a com-

promised node. Shaneck et al. [48] proposed a software-based approach to verification

of the integrity of a sensor’s memory contents over the network without requiring any

physical contact with the sensor.

Recently, many researchers in the area of sensor networks also use the Blundo

scheme [8]. Liu et al. [35] used the Blundo scheme as a basis in their proposed

scheme for establishing pairwise keys in distributed sensor networks. Zhu et al. [60]

presented an interleaved hop-by-hop authentication scheme that guarantees the base

station to detect any injected false data packets. They used the Blundo scheme to

establish multi-hop pairwise keys. Zhang et al. [57] proposed several efficient schemes

to restrict the privilege of a mobile sink without impeding its capability of performing

any authorized operations for an assigned task. They also used the Blundo scheme

for pairwise key establishment.

2.9 Conclusion

In this chapter, we presented a distributed authentication protocol of PIVSs

(DAPP) for sensors to authenticate PIVSs in sensor networks, and implemented

DAPP and the PIV protocol [39] on Mica2 Motes. Along with DAPP, we also de-

veloped a PIVS revocation mechanism for PIVSs to revoke malicious PIVSs detected

in the network. Numerous modifications and improvements were also made to the

original PIV design.

We have also demonstrated that DAPP is robust and secure against various at-

tacks in sensor networks and offers many attractive properties including distributed

authentication guarantee, resilience to node compromise, and low overhead in com-

63

putation, communication, and storage.

Our main contribution in this chapter is the development of DAPP to achieve the

authentication of PIVSs in a distributed manner without requiring a dedicated and

trusted authentication server (AS), an important departure from PIV [39]. DAPP

maintains the distributed nature of sensor networks, but also reduces the sensor com-

munication traffic in the network and the energy consumption on each sensor com-

pared to the case of using a centralized trusted AS for authentication.

64

CHAPTER III

Application-Layer Intrusion Detection in MANETs

3.1 Introduction

Amobile ad hoc network (MANET) is built with mobile nodes which communicate

via wireless radio links. Instead of using a central base station for nodes to commu-

nicate with one another, MANETs do not rely on any pre-defined infrastructure and

operate in peer-to-peer mode. Nodes within the communication range communicate

via wireless radio links, and for those outside the communication range, use other

nodes to relay their packets. Mobile nodes may move away from their current loca-

tions and re-join the network from different locations in the network, thus dynamically

changing their network topology and node density. MANETs are being developed and

deployed for many mission- and life-critical applications such as military tactical oper-

ations (e.g., future combat system (FCS)), emergency search-and-rescue missions, and

mobile tele-conferencing. However, the dynamically-changing topology of MANETs

make them vulnerable to various attacks.

In recent years, security has become a primary concern to the communications

in MANETs. Unlike wired networks, security in wireless networks is difficult to

achieve due to the broadcast nature of inter-node communications. In MANETs, it

is even more difficult to achieve security because of node mobility and constantly-

changing group membership. Intrusion prevention is not guaranteed to work all time

65

either, and can only combat outsider attacks. Therefore, we need a strong intrusion

detection system (IDS) which plays a critical role in securing MANETs. An IDS can

discover malicious activities or insider attacks mounted by compromised nodes in the

network. The IDS then tries to prevent intrusions that compromise system security,

and upon detection of an intrusion, it tries to recover from the damages inflicted by

the intrusion. Considering continuous discovery of new vulnerabilities, the IDS must

be effective and efficient in identifying attacks, and then neutralizing them.

The traditional IDSs developed for wired networks are difficult to use for MANETs

because of their architectural differences. Without centralized audit points like routers,

switches, and gateways, MANETs can only collect audit data locally and thus re-

quire a distributed and cooperative IDS. Other differences between wired networks

and MANETs include traffic patterns, node mobility, and node constraints. These

differences all render the traditional IDSs hard to be directly applied to MANETs.

Nodes in MANETs can move freely through the network, and thus their dynamically-

changing network topology makes MANETs very different from the traditional wired

networks. Also, nodes in MANETs usually have slower communication links, limited

bandwidth, limited battery power, and limited memory. Therefore, these constraints

make the design of IDS in MANETs much more challenging than in wired networks.

Due to the dynamically-changing topology of MANETs, neighbor relationships

and node density vary with time. For MANETs with high node mobility, it is very

difficult to design an IDS that is distributed and light-weighted, and consists of coop-

erative nodes in physical proximity. To meet this challenge, we propose an MA-based

application-layer IDS framework for MANETs. It utilizes both anomaly and misuse

detection to identify attacks and also utilizes MAs to augment each node’s intrusion

detection capability. Our goal is to detect and prevent viruses, worms, and malicious

applications on each node by using the MA technology to complement the IDS.

The main contribution of this chapter is the use of MAs to augment the application-

66

layer IDS in MANETs which is a significant departure from most existing IDSs in

MANETs that target the network layer. Our application-layer IDS uses system-call

sequences to detect intrusions on each node. It also uses MAs to augment the IDS

by updating attack signatures and normal application profiles, and patching and

installing (new) programs on each node. MAs can also augment the detection capa-

bility by being dispatched for further analysis and diagnosis on network nodes when

an anomaly is detected. Finally, MAs can be dispatched to verify the correctness of

IDS agents. Another contribution of this chapter is the mechanism for dispatching

MAs to network nodes for update, analysis, and verification.

3.1.1 Organization

The remainder of this chapter is organized as follows. We first list the advantages

of using MAs in IDSs in Section 3.2. The system architecture is then presented in

Section 3.3 along with the assumptions and the attack model used in this chapter.

Section 3.4 details the design of our MA-based IDS, and the use of MAs in MANETs.

Section 3.5 analyzes the security of the proposed IDS while Section 3.6 evaluates its

performance. We then discuss the related work in Section 3.7. Finally, this chapter

concludes with Section 3.8.

3.2 Why are MAs Needed for Intrusion Detection?

Since the mobile nodes in MANETs are energy-constrained, we need to design

protocols that are lightweight and energy-efficient. MAs offer many advantages [30]

when used in an IDS, and will help overcome the difficulty of building distributed

systems and protocols. Below we list and describe the advantages of using MAs for

intrusion detection.

67

Reducing Network Load MAs transfer the computation and detection function

to the network nodes with audit data instead of transmitting large amounts of audit

data to the servers for computation and detection, thus reducing the network load.

Overcoming Network Latency MAs can be dispatched from the servers to net-

work nodes to detect malware and take corrective actions in real time. The MAs

can operate directly on the nodes and respond faster to a potential intrusion than

communicating with the servers for assistance.

Making the IDS Attack-Resistant MAs can be used in the IDS to avoid single-

point-of-failures. The time of an MA’s arrival at each node, the reporting mechanism,

and the detection algorithm the MA uses are made unpredictable so that attackers

may not know this information.

Autonomous Execution MAs can continue to function even when portions of

the IDS or the network get destroyed or malfunction. MAs can increase the IDS’s

fault-tolerance by operating independently of the platform.

Dynamic Adaptation MAs have the ability to sense the execution environment

and react to changes. Also, MAs can adapt to the environment as they can be

retracted, dispatched, or put to sleep as the network and host conditions change.

Platform Independence MAs can operate in heterogeneous environments by

having a virtual machine or interpreter on the host platform. This capability makes

a perfect fit for MANETs as nodes in the network typically are comprised of many

different computing platforms.

Upgradability MAs can perform program updates, and anomaly and misuse de-

tection on each node. MAs can carry the most up-to-date program patches, normal

68

application profiles, and attack signatures to the nodes for upgrade while the IDS

keeps working on each node.

Scalability MAs help distribute the computational load to different nodes in the

network instead of having all the computation processed on the servers, and reduce

the network load. This advantage enhances scalability and makes the IDS more

fault-resistant.

3.3 Assumptions, Attack Model, and System Architecture

We first state the assumptions we use, then present the attack model, and finally,

describe the system architecture of our IDS design.

3.3.1 Assumptions

A1. A MANET is composed of a large number of mobile nodes and one secure

stationary MA server.

A2. Mobile nodes and the MA server in the network have unique node IDs.

A3. A trusted offline certificate authority (CA) is used to bind public keys with

respective mobile nodes and the MA server. Each node has a pair of private and

public keys, and the public key can be known to other nodes via the certificate

issued by the CA.

A4. The MA server and the mobile nodes have a shared symmetric key for message

encryption. All messages between the MA server and the nodes in the network

are encrypted with this symmetric key.

A5. Before deployment, mobile nodes in the network have agreement with the MA

server about the security policies for the authorized actions an MA can perform

on a node.

69

3.3.2 Attack Model

Security attacks in MANETs can be categorized into passive or active attacks.

Passive attacks include eavesdropping of data, and traffic analysis and monitoring.

Active attacks include replication, modification, insertion and deletion of data to be

exchanged, external service attacks, resource consumption (e.g., DoS attacks), and

physical attacks. Security attacks can also be categorized according to protocol layers.

Some attacks on the application layer are data corruption, repudiation, application

abuses, DoS attacks, and mobile virus and worm attacks. There are also some attacks

that target across multi-layers, such as DoS attacks, impersonation, and man-in-the-

middle attack.

In this chapter, we focus on detecting and defending against application-layer

attacks mentioned above. Our goal is to detect malicious applications and mobile

virus and worm attacks on the nodes in the network.

3.3.3 System Architecture

We consider a network of a large number of mobile nodes and one secure stationary

MA server. There can be multiple MA servers deployed in the network to avoid single-

point-of-failures. However, it will require coordination and interactions between the

MA servers, so we focus on using one MA server in the following design. The MA

server is used for managing MAs, normal application profiles, and attack signatures

generated by MAs in the network, and is deployed in the network along with the

mobile nodes. The MA server is akin to the command and control (C&C) center in

a battle field. The C&C center can issue orders to the troops in the battle field. The

MA server acts like the C&C center and dispatches MAs to the nodes in the network

when needed. It will periodically broadcast beacon messages for nodes in the network

to locate itself. When a node needs an MA for assistance, it will request an MA from

the MA server. The proposed IDS architecture for MANETs is depicted in Figure 3.1.

70

Figure 3.1: The IDS system architecture for MANETs.

Each mobile node has its own local IDS which is responsible for monitoring and

detecting attacks, and for responding to the attacks detected. The local IDS per-

forms anomaly and misuse detection. The misuse detection is used to detect known

attacks on the node, while the anomaly detection is used for the detection of new or

previously-unknown attacks. MAs are designed to update attack signatures and nor-

mal application profiles, patch and install programs, analyze and diagnose anomalous

nodes, and verify the local IDS agents.

Each IDS consists of three agents: the monitoring and detection agent, the re-

sponse agent, and the secure communication. There is also a local database in each

node for storing system audit data, attack signatures, normal application profiles,

and the IDS logs. For the execution of MAs, there is a mobile agent place on each

node. The local IDS architecture in each mobile node is shown in Figure 3.2.

The monitoring and detection agent monitors the application-level activities and

system calls on each node, and also compares the monitoring activities with the attack

signatures and normal application profiles stored in the node’s local database. Once

a malicious activity is detected by the misuse detection via signature matching, a

proper response will be formulated by the response agent to recover the node from

the damages occurred to it. If the monitoring and detection agent detects intrusion

by anomaly detection via an above-threshold deviation from the normal profile but

71

Figure 3.2: The local IDS architecture on a mobile node.

no signatures match the attack, then the response agent will request the MA server

to dispatch an MA for further analysis and diagnosis. The secure communication

component is used for the mobile nodes to securely communicate with the MA server

and other nodes in the network.

3.4 Design of Application-Layer IDS

As mentioned earlier, our goal is to design an application-layer IDS that utilizes

anomaly and misuse detection to identify malicious applications as well as mobile virus

and worm attacks. MAs are utilized to augment each node’s capability of intrusion

detection in the network. We assume the existence of the MA server for managing

and dispatching MAs to nodes in the network. Recall that each node in the network

has its own local IDS.

Described below is the detailed design of using MAs for the application-layer

intrusion detection.

72

3.4.1 Local IDS for Intrusion Detection

We use misuse detection as host-based intrusion detection of known attacks in

each node. The monitoring and detection agent in the IDS audits the application-

level activities and system calls in each node and compares them against the attack

signatures stored in the node’s database that represent worm and virus signatures,

as well as misbehavior signatures of applications. The behavior-based attack signa-

tures capture an incorrect order of instructions or incorrect control flow of programs,

unlike traditionally-used signatures generated from raw byte sequences in malicious

executables and takes up less storage space in the database.

The MAs dispatched to the mobile nodes can generate new attack behavior signa-

tures, usually after the identification of an intrusion via anomaly detection, and the

confirmation of the existence of intrusion after performing analysis and diagnosis of

the nodes. The MAs will report these newly-generated attack signatures to the MA

server, and the MA server will dispatch MAs to other nodes in the network to add

the new attack signatures. For misuse detection, the MA server is used to store and

update the attack signatures collected from the nodes in the network.

To use anomaly detection in our local IDS, a normal profile is computed for each

application program using its audit data on the MA server. As we are targeting the

detection of application-layer intrusions, the audit data collected on the MA server is

the application-level activities and system calls invoked by the application programs.

Specifically, the sequence of the system calls generated by each application program

and collected in the audit data is used to compute the normal profiles.

The nodes will first be deployed in the network with the normal application profiles

generated by the MA server for existing applications. When a new normal application

profile has been generated due to a program patch or new application installation,

MAs will carry the new profile to nodes in the network for update.

The monitoring and detection agent will compare the audit data of system traces

73

on each node with the normal application profiles. The difference between a sequence

of system calls against a normal application profile can be computed using Hamming

distance. Any major deviation of abnormal activities from the normal application

profiles will be detected and can be used as an alert to the local IDS. Once an

anomaly is detected, the response agent will request an MA from the MA server for

further analysis and diagnosis on the node. If the MA confirms the attack, then a

proper response action will be taken at the node and a new attack signature will be

generated for the detected attack.

Each node also logs all the IDS-related activities including both misuse and

anomaly detection histories for MAs to analyze and report to the MA server. In

addition to intrusion detection, MAs can also collect and analyze the audit data and

IDS logs stored in local nodes. The collected information will be reported to the MA

server and used for further analysis.

3.4.2 MA Functions

The MA server creates and dispatches three types of MAs: (1) update MAs, (2)

analysis MAs, and (3) verification MAs. The update MAs are dispatched as needed,

the analysis MAs are dispatched upon request by nodes, and the verification MAs are

dispatched periodically. The three types of MAs are detailed next.

3.4.2.1 The Update MA

The update MAs are used by the MA server to add new attack signatures and

normal application profiles, and patch and install programs on the mobile nodes.

When the MA server receives new attack signatures generated by the analysis MAs,

it will dispatch update MAs carrying the signatures to the nodes in the network.

All nodes need to be updated with these new signatures for effective and up-to-date

74

misuse detection.

If a vulnerability is detected and application programs on the nodes need to be

patched, or new application programs are being installed, then the MA server will

also dispatch to the nodes the update MAs carrying the patches and new programs.

When a program is patched, then the normal application profile needs to be updated,

or if a new program is installed, then the nodes also need to have a normal profile for

the new application. The MA server will dispatch the update MAs along with the

new normal application profiles generated by the MA server to the nodes for update.

The update MAs are dispatched to the nodes when needed, so the nodes need not

request updates from the MA server. This will greatly reduce the number of requests

from nodes and prevent the MA server from becoming a communication bottleneck.

With the update MAs dispatched to the nodes, the MA server need not send the same

updates to different nodes, and thus, the network load will be reduced significantly.

3.4.2.2 The Analysis MA

The analysis MAs are dispatched to the requesting nodes for further analysis and

diagnosis for anomaly behaviors on them. When the monitoring and detection agent

in a node’s local IDS detects an anomaly but the anomaly did not match any attack

signature in its database, then the response agent in the IDS will send an anomaly

report to the MA server and request an analysis MA from the MA server for further

investigation. The anomaly report includes the related IDS logs and the intrusion

information about the anomaly detected on the node. Depending on the content of

the anomaly report, the MA server will choose the most suitable analysis MA. The

analysis MA is capable of a more detailed analysis and diagnosis than the local IDS,

and can evaluate the detected anomaly behavior and determine if it is an intrusion.

If the analysis MA determines the anomaly behavior not to be an intrusion, then

75

it will send a detection report to the MA server and destroy itself. However, if the

anomaly behavior is determined as an intrusion, then the analysis MA will start the

intrusion response through the response agent on the local IDS. Finally, the analysis

MA will create an attack signature of the newly-identified intrusion and report the new

attack signature to the MA server. After completing the response for the intrusion,

the analysis MA will send a detection report to the MA server and destroy itself.

Note that if the analysis MA cannot determine if the anomaly is an intrusion or

not, then it can request a different analysis MA from the MA server for help. The

analysis MA can also migrate to neighbor nodes to perform further investigation.

The investigation at the neighbor nodes is the multi-point network-based anomaly

detection. The analysis MAs can determine new attacks by analyzing and diagnosing

both on a node and on its neighbor nodes. If the analysis MA still cannot (un)confirm

an anomalous behavior, it will then send the relevant IDS logs and audit data back

to the MA server for further analysis.

The analysis MAs are dispatched to the nodes requesting for further analysis of

anomaly behaviors. The reason for sending analysis MAs to the nodes instead of

having the nodes send all the audit data, IDS logs, and related information to the

MA server for analysis is to reduce the network load. Also, the MAs can overcome

network latency as the analysis MAs can be dispatched from the MA server to perform

analysis on nodes in real time. The analysis MAs can be executed on the nodes and

can respond faster instead of needing to communicate back and forth with the MA

server for assistance.

3.4.2.3 The Verification MA

The verification MAs are periodically sent by the MA server to verify the IDS

agents on the nodes and check on the IDS logs and the local IDS execution states.

76

These MAs are used to prevent the local IDS from being compromised by attackers.

Similar to the program integrity verification in PIV [39] and SWATT [46], we use

hash verification to determine the integrity of the IDS agents on the nodes.

The MA server will periodically send the verification MA with a randomly-generated

hash key to the network. The nodes that received the verification MA must execute

it to check the integrity of the IDS agents in its local IDS. Since the MA server keeps

copies of the IDS agents, we can use the verification MA to verify the integrity of

these agents. When the verification MA is executed, it computes a hash over the IDS

agents using the hash key it carries, and the hash value will be sent back to the MA

server for verification. The verification MA will also check the IDS logs and see if

there is any anomaly or unreported events. If a node fails the verification, then the

MA server will either send an update MA to correct the IDS agents or shut down the

entire node.

3.4.3 MA Authentication and Authorization

To authenticate MAs and nodes in the network, we use the public key infrastruc-

ture (PKI). We assume there is a trusted offline certificate authority (CA) that issues

certificates to the MA server and nodes in the network. The certificates contain the

public key and the ID of the owner node and let other nodes in the network verify

the owner node’s credential. The CA also issues each node a corresponding pair of

private and public keys. When the MA server dispatches MAs to the network, it will

include its certificate issued by the CA and sign the MAs with its private key for

authentication.

When an MA is dispatched to the network and needs to send detection information

back to the MA server, it will execute an encrypted function and secretly sign the

detection reports for the MA server [43]. The MA carries a program to nodes in

the network that implements an encrypted function for the digital signature. Before

77

sending a detection report back to the MA server, the MA will execute the encrypted

function on the local node to sign the report and attach the signature along with the

report. When the detection report reaches the MA server, the MA server can check

the signature to verify the authenticity of the report.

The complete authentication steps are described as follows.

S1. The CA issues the MA server S and each mobile node a pair of private and public

keys, and a certificate that contains the public key and ID of the node. S and

mobile nodes share a symmetric key K.

S2. Each update and verification MA MAS sent by S carries S’s certificate CertS,

and S encrypts MAS with K and signs {MAS}K with its private key kS.

S3. Mobile node A that receives {MAS}K from S verifies CertS and gets S’s public

key KS from CertS. If the CertS verification is valid, A will then verify S’s

signature with KS. If the verification of the signature is valid, then {MAS}K

will be decrypted using K and then executed. MAS will be deleted if any of

the verification fails.

S4. IfMAS is an update or verification MA, thenMAS will be sent to another mobile

node B for update or verification. The previous steps are repeated until MAS

expires and is deleted.

S5. If there is an anomaly detected on A by the local IDS, A will send an anomaly

report AReportA to S requesting for an analysis MA. A will encrypt AReportA

with S’s public key KS, and then sign {AReportA}KS
with A’s private key kA

for authentication. Finally, A sends the encrypted report {AReportA}KS
, the

signature, and its certificate CertA to S.

S6. When S receives {AReportA}KS
from A, it will fist verify CertA and get A’s

public key KA. If the CertA verification is valid, S will then verify A’s signature

78

with KA. Finally, S can decrypt {AReportA}KS
with its private key kS if

the verification succeeds. However, AReportA will be discarded if any of the

verification fails.

S7. S will send analysis MA MAS to A as described in S2, and A can authenticate

MAS as described in S3. After MAS is executed on A, MAS will need to send a

detection report DReportMAS
to S for a status report or request for help. A will

first encrypt DReportMAS
with S’s public key KS, then execute MAS to get

the digital signature DS1 for {DReportMAS
}KS

using the encrypted function

carried by MAS. A then signs {DReportMAS
}KS

with its private key kA to get

digital signature DS2 and combine it with DS1. Finally, A sends the encrypted

report {DReportMAS
}KS

, the signatures DS1 +DS2, and its certificate CertA

back to S.

S8. When S receives {DReportMAS
}KS

from A, it will first verify CertA and get A’s

public key KA. If the CertA verification is valid, S will then verify DS1 +DS2

with KA and the encrypted function. Finally, S can decrypt {DReportMAS
}KS

with its private key kS if the verification succeeds. However, the encrypted

report {DReportMAS
}KS

will be discarded if any of the verification fails. De-

pending on DReportMAS
, S will then decide whether to send more verification

MAs to A for intrusion detection and response or to process and update the

reported information received.

As for MA authorization, we assume that before deployment, mobile nodes in the

network have an agreement with the MA server about the security policies for the

authorized actions an MA can perform on the nodes. The MA server should only

authorize legal actions for MAs to perform on each node. Before an MA can be exe-

cuted on each node, it will need to pass the authentication. After the authentication,

however, if the MA attempts to perform actions that are not on the authorized list,

79

the node will disallow the MA to take them.

3.4.4 MA Dispatching

As described in Section 3.4.2, there are three types of MAs: the update MAs, the

analysis MAs, and the verification MAs. The update MAs are sent as needed, the

analysis MAs are sent upon request, and the verification MAs are sent periodically.

The MA server dispatchs MAs and controls the generation of MAs, their quantities,

and their communication timing.

The time interval for periodic verification MAs to be sent to the network can

vary. Depending on the condition and state of each network area, the MA server can

decide adaptively how often to dispatch verification MAs to a certain area to verify

the local IDSs. However, the MA server is susceptible to DoS attacks from malicious

nodes that request analysis MAs or send false detection reports. We can maintain

packets’ path histories and determine the source of attacks. We can also restrict the

number of times a node can contact the MA server within a certain time duration.

For confidentiality and authentication purposes, we use the network-wide symmetric

key for encryption and PKI for digital signature, as stated in Section 3.4.3.

When MAs are dispatched to the network, they send back two types of reports

to the MA server: periodic and detection reports. The periodic reports are for fault-

tolerance and data collection. In case the MA server didn’t receive the periodic reports

from an MA, it will check for the MA or send more MAs to continue the MA’s task.

The update and verification MAs need to periodically send periodic reports back to

the MA server. The periodic reports include the nodes the MA visited, the nodes’

battery information, and the nodes’ update/verification results including the related

IDS information. The detection reports are sent back to the MA server by the analysis

MAs to report the analysis result for the anomaly behaviors detected, to request more

analysis MAs from the MA server, or to report relevant IDS logs, audit data, and

80

intrusion evidence to the MA server for further analysis. The detection reports include

where the anomaly behavior is detected, the related IDS logs for the anomaly, and if

the anomaly is confirmed and countermeasures applied.

Each MA has a time-to-live (TTL) parameter set by the MA server that deter-

mines the number of nodes the MA can visit in the network. After each MA visits a

node, the TTL will be decremented by one. When the TTL on the MA expires, the

MA destroys itself.

The MA-dispatching protocol is summarized as follows.

1. When an MA server S dispatches MAS to the network, it includes its certificate

CertS and encrypts MAS with the network shared symmetric key K and signs

MAS with its private key kS for authentication as described in Section 3.4.3.

2. If MAS is an update MA, then S includes in MAS the new attack signatures it

collected from the network for signature update. S also includes any program

patch or new program in MAS for program update, and the newly-generated

normal application profiles.

3. If MAS is an update MA or a verification MA, then S will dispatch MAS to a

network area for random traverse. If MAS is an analysis MA, then it will be

dispatched to the requesting node.

4. Each MA will have a TTL parameter that determines the number of nodes the

MA can visit in the network.

5. While MAS travels in the network, it sends back periodic or detection reports

to S to report its update/verification or diagnosis results on each node. The

encryption and authentication details are described in Section 3.4.3.

6. An MA destroys itself upon expiration of its TTL.

81

After its execution on one node, the update and verification MA will move to

other nodes in the network for update/verification, and the analysis MA can decide

whether to migrate to neighbor nodes for further analysis and diagnosis or to destroy

itself after it finishes the analysis. The MA server can send multiple MAs to different

network areas. The more MAs sent out, the faster the update/verification will be

done. If fewer MAs are dispatched, then it will take longer for MAs to visit other

nodes and finish their tasks. Dispatching too many MAs will incur more traffic as

the same MA may visit a node multiple times. We would like to limit the amount

of communications between the MA server and the nodes in the network. Therefore,

we need to find an optimum number of MAs to be dispatched to the network.

3.4.4.1 Message-Loss/Compromise Problems

Since MAs need to travel multiple hops through the network to reach certain nodes

or send periodic and detection reports back to the MA server, we need to consider

message-loss/compromise problems that might occur at the intermediate relay nodes.

We use secure routing [38] to send MAs to the network and periodic and detection

reports back to the MA server.

If MAs are lost or captured by malicious intermediate nodes, nodes in the network

will not receive the periodically sent verification MAs or the requested analysis MAs.

If nodes have not received MAs for longer than a certain time TimeMA, then they

can request MAs from the MA server again.

In case periodic reports are lost or captured, the MA server will not receive the pe-

riodic reports from MAs nor know the MA status and the update/verification results

from the reported information. If the MA server has not received periodic reports

from an MA for longer than a certain time Timereport, then the MA server will look

up the previous periodic reports the MA returned and then mark the visited/routing

nodes as suspicious nodes. The MA server will then send query messages to the sus-

82

picious nodes to look for the MA and request periodic reports from the MA. If still no

periodic reports are received by the MA server, then it will send analysis MAs to the

suspicious nodes for anomaly detection. If the detection reports are lost or captured,

then the MA server can send more analysis MAs to the node under investigation.

3.4.5 Intrusion Response

When an intrusion is detected on a node either by misuse detection (via attack

signature matching) or by anomaly detection (via major deviation from a normal

application profile), the response agent in the node’s local IDS will respond to the

detection. The response depends on the degree of damages done by the intrusion,

the type of intrusion, and the type of the malicious application. When an anomaly

is detected, the response agent will ask the MA server for an analysis MA for further

analysis and proper intrusion response.

The response agent can try to re-program or disinfect the compromised node

if the damage caused by the intrusion can be fixed by re-programming the node.

Or, the response agent can ask the MA server for program patches (using update

MAs). The response agent can also send notifications and alerts to the network for

re-authentication, or exclude and shut down the compromised nodes.

3.5 Security Analysis

We first discuss the security of the MA-based IDS when MAs and nodes are

compromised, and then analyze the security of the MA-based IDS protocol against

various attacks.

3.5.1 Defense Against Compromised MAs and Nodes

An attacker must first be able to fake the signature of an MA with the MA

server’s private key before he wants to compromise the MA. Only when the attacker

83

can get the compromised MA to be signed, will the MA pass the authentication and

be executed on nodes in the network. Even if the attacker has successfully faked

the signature and the compromised MA has passed the authentication but tries to

perform illegal actions that are not in the authorized list of the node, then the node

will protect itself by disallowing the MA to execute the unauthorized actions.

It might be possible for the compromised update MAs to carry the faked normal

application profiles and attack signatures to the nodes, and let the node’s IDS detect

intrusions even when the node actually behaves normally. The IDS response agent

will then respond to the attack and request analysis MAs from the MA server for

further analysis and diagnosis. The analysis MAs will be dispatched to the node and

will aid its detection and response to the intrusions. The compromised update MA

can then be detected when the analysis MAs arrive and analyze the IDS logs on the

node.

As for a compromised node that has subverted its local IDS, the verification MAs

will arrive at the node periodically and verify the integrity of the IDS agents on the

node. The compromised IDS will be detected if the IDS agents have been modified,

or the IDS logs and execution states are incorrect. Note that a compromised node

has to execute the verification MA; otherwise, the verification MA will suspect the

node to have been compromised.

If the compromised node can successfully pass the verification and alter its IDS

logs, then it must also pass the analysis performed by the analysis MAs that may be

sent to the node for further investigation. Therefore, for a compromised node to go

undetected by the analysis MAs, it cannot perform abnormal activities during the

MA’s diagnosis. If the node discards the analysis MA and hence no detection reports

are delivered to the MA server, then the MA server will dispatch more analysis MAs

for further detection. Also, when the neighbor nodes detect the abnormal behaviors

from the compromised node, they will request analysis MAs, and the compromised

84

node can be excluded from the network when all the nodes are required to be re-

authenticated.

3.5.2 Defense Against Various Attacks in Ad Hoc Networks

We now describe how the MA-based IDS protocol can defend against various

attacks in MANETs.

3.5.2.1 Defense Against Passive Attacks

When an MA is to be dispatched by the MA server, it is encrypted with the

network-wide shared symmetric key, along with the signature signed by the MA

server’s private key. The encryption is to prevent attackers from eavesdropping the

network and seeing the content of the MAs. However, if one node is compromised

and the shared key is revealed, then it is necessary to renew the shared key among

the nodes in the network. We can also group nodes depending on the geographical

areas of the network and assign different group keys to different groups. When a node

leaves or joins a group, the group key will need to be renewed or distributed securely

to the joining node [36, 55].

As for the periodic and detection reports that the MAs send back to the MA

server, they are all encrypted with the MA server’s public key, so only the MA server

can decrypt the reports. The reports are also signed by the MA’s signature function

and the node where the MA resides. The MA digital signature function is encrypted,

so neither the attacker nor the node can see the signature function. Therefore, the

attacker will not get the contents of the periodic and detection reports by simply

eavesdropping on the network.

85

3.5.2.2 Defense Against Active Attacks

To prevent an attacker from spoofing or inserting false data, we sign every MA,

the periodic and detection reports, and the anomaly reports from nodes with the

MA server’s or the nodes’ private keys to achieve authenticity and integrity. We

also encrypt the MAs with the network-wide symmetric key. The MAs also carry an

encrypted function for digital signature to ensure the authenticity of the periodic and

detection reports.

The node compromised by an attacker can be detected by the local IDS, and the

response agent in the IDS will handle the intrusion. If the local IDS is compromised,

then the periodically-sent verification MAs will be able to detect the faulty IDS agents,

and the MA server will dispatch analysis MAs for diagnosis and response.

Malicious nodes can cause service disruption and Denial-of-Service (DoS) attacks.

There is not an easy way to prevent such nodes from launching attacks, but they can

be detected and then removed from the network. We rely on the local IDS at each

node to detect the nodes’ malicious behaviors. Since we let a local IDS monitor and

detect known intrusions and anomalies on each node, and let MAs aid the detection,

once a node identifies a malicious or anomaly behavior, its IDS response agent can

evict the compromised node from the network and the neighbor nodes will ignore any

messages from the compromised node.

Another potential attack is for a node to launch DoS attacks to the MA server,

requesting MAs from or sending reports to the MA server. This kind of DoS attacks

targeting the MA server can be handled by having the MA server keep path histories

of the messages sent to it in order to pinpoint the attacker and restrict the number

of times a node can contact it within a certain time duration.

Sybil attacks [20] are particularly harmful in MANETs where a Sybil node il-

legitimately fakes to have multiple identities in the network. Our MA-based IDS

86

withstands such attacks since each node will need to have a private key and a match-

ing certificate to authenticate its identity. Since each node will have a preloaded

private key and certificate, no node can generate the private key and certificate, and

pretend to be another node without compromising the node.

3.6 Evaluation

We use simulation to evaluate the trade-offs of different design parameters in the

MA-based IDS. We developed our own simulator using C. We first simulate with

different MA time to live (TTL) values and numbers of MAs dispatched by the MA

server to the network to learn the number of nodes in the network that did not

receive any MA. Our goal is to have as few nodes in the network as possible that did

not receive the dispatched MAs. In this simulation, we study the trade-offs between

dispatching more MAs to the network or allowing the MAs to travel more hops in

the network and have larger TTL values. We can also study the number of nodes in

the network that have received multiple MAs during dispatching. By studying the

number of nodes that did not receive MAs and the number of nodes that did receive

multiple MAs, we can determine the suitable number of MAs to be dispatched and

the appropriate MA TTL value.

We also simulate the deployment of multiple MA servers in the network, and

examine how this affects the MA distribution. In this simulation, we study the trade-

offs between positioning the MA servers randomly or uniformly. We also simulate the

deployment of more MA servers in the network.

Last, we simulate networks that have non-uniformly distributed nodes in skewed

distributions. We compare and discuss the results of the number of nodes in the

network that did not receive any MA and the number of nodes in the network that

did receive multiple MAs to the results in uniformly randomly-generated networks.

87

3.6.1 Simulation Setup

We first simulate the MA-based IDS with uniformly randomly-generated networks

consisting of 1000 nodes and an MA server in a 1000 × 1000 units2 area. Nodes and

the MA server are assumed to have a communication range of 75 units. The MA server

is deployed at the center of the network at (500, 500). On average, the MA server

has 15–20 neighbor nodes. This simulation environment is depicted in Figure 3.3(A).

We simulate and compare the number of MAs dispatched by the MA server with

different MA TTL values. By changing the MA TTL values and the number of

MAs dispatched, we examine the number of nodes that did not receive the MAs

dispatched from the server and the number of nodes that did receive multiple MAs.

In the simulation, the server will first dispatch some MAs to its neighbor nodes in

the network. After receiving and executing the MA, the MA server neighbor node

will forward the MA to another node; this will repeat until the MA’s TTL expires,

at which time the MA will destroy itself.

Next we simulate the case with the deployment of four MA servers in the network.

The four MA servers are deployed at (250, 250), (750, 250), (250, 750), and (750, 750),

respectively. On average, each MA server has 15–20 neighbor nodes. The simulation

environment is depicted in Figure 3.3(B). While changing the MA TTL values and

numbers of MAs dispatched, we study and compare the MA distribution results with

only one MA server in the network. We also simulate the case with the random

deployment of 4 and 5 MA servers in the network and compare the MA distribution

results. With MA servers randomly deployed, each MA server has an average of 10–20

neighbor nodes.

3.6.2 Results

The MA-based IDS is simulated with 10 different MA TTL values, ranging from

20 to 200, with 20-hop increments. The network can be separated into four quadrants,

88

[0,0]

[1000,1000][0,1000]

[1000,0]

(A)

[0,0]

[1000,1000][0,1000]

[1000,0]

(B)

Figure 3.3: The simulation environment for MA-based IDS. Laptops represent the
MA servers and black circles represent mobile nodes in the network.

with one MA server located at the center of the network, as shown in Figure 3.3(A).

Since on average the MA server has 15–20 neighbor nodes, it will dispatch 10 MAs by

sending them to ten of its randomly-selected neighbors. After receiving the MAs from

the servers, the nodes will execute the update or verification MA, then forward the

89

MAs to their randomly-selected neighbor nodes. Note that a node will not forward

the MA to the node where it received the MA from, unless the node has only one

neighbor.

If the MA server dispatches only 10 MAs with TTL=20, then at most 200 nodes

will receive the MAs. There are, however, 1000 nodes in the network; those that have

not received MAs will then need to request MAs from the server. We further let the

server send extra MAs to its neighbors and let them forward the MAs without exe-

cuting them. We simulated the system while the server sends 0 extra MA (Copy=1),

1 extra MA (Copy=2), 2 extra MAs (Copy=3), and 3 extra MAs (Copy=4), respec-

tively.

The simulation results for different MA TTL values and numbers of MAs dis-

patched by the server (including the extra sent MAs) are plotted in Figure 3.4. The

four curves represent different numbers of MAs dispatched by the server. The Copy=1

curve represents the case of the MA server dispatching 10 MAs, whereas the Copy=4

curve represents the case when each MA server dispatches 40 MAs. As shown in the

four curves in Figure 3.4(A), the more MAs dispatched, the fewer nodes in the net-

work are left without MAs visiting them. The MA TTL values also affect the number

of nodes receiving MAs. The larger the MA TTL value, the more nodes the MA can

visit during its lifetime. Therefore, the larger the MA TTL value, the fewer nodes in

the network are left without MAs visiting. However, as shown in Figure 3.4(B), the

more MAs dispatched, the more nodes in the network will have more than one MA

being dispatched to them. Also, the larger the MA TTL value, the more nodes will

have more than one MA dispatched to them.

From Figure 3.4, we can see a trade-off between minimizing the number of nodes

in the network without MAs and the number of nodes that have more than one MA

dispatched to them. The goal is to minimize the number of nodes in the network

without MAs, but at the same time, we should not have too many nodes with the

90

Relationship of MA TTL and # of MAs Dispatched

0

200

400

600

800

1000

20
 40
 60
 80
 100
 120
 140
 160
 180
 200

MA TTL

of

 n
od

es
 w

ith
ou

t M
A

Copy=1

Copy=2

Copy=3

Copy=4

Relationship of MA TTL and # of MAs Dispatched

0

200

400

600

800

1000

20
 40
 60
 80
 100
 120
 140
 160
 180
 200

MA TTL

of

 n
od

es
 w

ith
 m

ul
tip

le
 M

A
s

Copy=1

Copy=2

Copy=3

Copy=4

(A)

(B)

Figure 3.4: The relationship between different MA TTL values and numbers of MAs
dispatched (including the extra sent MAs) by one MA server using the
simulation environment in Figure 3.3(A). The number of nodes that did
not receive any MA is shown in (A) and the number of nodes that did
receive multiple MAs is shown in (B).

same MAs dispatched to them. There is also a trade-off between whether to dispatch

more MAs to the network or to make the MA TTL larger. The more MAs are

dispatched, the greater the traffic and communication overheads. However, the larger

the MA TTL, the longer the MAs will live, the longer it takes for all nodes to receive

91

Relationship of MA TTL and # of MAs Dispatched

0

100

200

300

400

500

600

20
 40
 60
 80
 100
 120
 140
 160
 180
 200

MA TTL

of

 n
od

es
 w

ith
ou

t M
A

Copy=1

Copy=2

Copy=3

Copy=4

Relationship of MA TTL and # of MAs Dispatched

0

200

400

600

800

1000

20
 40
 60
 80
 100
 120
 140
 160
 180
 200

MA TTL

of

 n
od

es
 w

ith
 m

ul
tip

le
 M

A
s

Copy=1

Copy=2

Copy=3

Copy=4

(A)

(B)

Figure 3.5: The relationship between different MA TTL values and numbers of MAs
dispatched (including the extra sent MAs) by four uniformly positioned
MA servers using the simulation environment in Figure 3.3(B). The num-
ber of nodes that did not receive any MA is shown in (A) and the number
of nodes that did receive multiple MAs is shown in (B).

the MAs and the higher risk for the MAs to be captured or compromised.

The simulation results for four MA servers deployed in the network, with one MA

server located at the center of each quadrant as shown in Figure 3.3(B), are plotted

in Figure 3.5. From Figure 3.5, we can see that when the MA TTL becomes 40, both

92

Copy=3 and Copy=4 curves have less then 100 nodes that have not received MAs (65

nodes when Copy=3 and 35 nodes when Copy=4). This is acceptable for a network

of 1000 nodes. Again, there is a trade-off between whether to dispatch more MAs in

each period or to make the MA TTL larger.

From a comparison of Figure 3.4 (one MA server in the network) with Figure 3.5

(four MA servers in the network), we can see that if there are more MA servers

deployed in the network, then more MAs will be dispatched and fewer nodes will go

without receiving MAs. However, there will also be more nodes in the network to

have received more than one MA.

The simulation results for randomly-deployed MA servers are plotted in Figure 3.6.

From Figure 3.6 and Figure 3.5, we can see that when four MA servers are randomly

deployed in the network, the number of nodes without MAs generally increases and

the number of nodes with multiple MAs decreases relative to when the MA servers

deployed at the center of each network quadrant. The reason is because when MA

servers are randomly deployed, there might be multiple MA servers in one quadrant

and no MA server in another quadrant. Therefore, uneven distribution of MA servers

will cause the MA distribution to be less effective.

From a comparison of the MA distribution results of having four randomly-

deployed MA servers (as shown in Figure 3.6 (A) and (B)) against five randomly-

deployed MA servers (as shown in Figure 3.6 (C) and (D)), we can see that the result

is not much different. This is because there are already enough MAs dispatched to

the network; therefore simply dispatching more MAs or deploying more MA servers

in the network will not help the MA distribution.

3.6.3 Non-uniformly Distributed Network Simulation and Results

We have also simulated the MA-based IDS with non-uniformly but rather skewed

randomly-generated networks consisting of 1000 nodes and an MA server in a 1000× 1000

93

Figure 3.6: The relationship between different MA TTL values and numbers of MAs
dispatched (including the extra sent MAs) by randomly-deployed MA
servers. With four MA servers deployed, the number of nodes that did
not receive any MA is shown in (A) and the number of nodes that did
receive multiple MAs is shown in (B). With five MA servers deployed the
number of nodes that did not receive any MA is shown in (C) and the
number of nodes that did receive multiple MAs is shown in (D).

units2 area. The simulation environment is the same as previous simulations and the

MA server is deployed at the center of the network at (500, 500). We divide the

network into four quadrants, as depicted in Figure 3.7. We simulate three different

network deployments: (1) 700 nodes randomly deployed in quadrant 1, and 100 nodes

randomly deployed in quadrant 2, 3, and 4 respectively; (2) 100 nodes randomly de-

ployed in quadrant 1 and 3, and 400 nodes randomly deployed in quadrant 2 and 4;

and (3) 100 nodes randomly deployed in quadrant 1 and 2, and 400 nodes randomly

94

[0,0]

[1000,1000][0,1000]

[1000,0]

12

3 4

Figure 3.7: The simulated network quadrant layout.

deployed in quadrant 3 and 4.

The simulation results for a centrally deployed MA server with three different

skewed network deployments are shown in Figure 3.8. With network deployment (1),

the number of nodes that did not receive any MA is shown in (A) and the number of

nodes that did receive multiple MAs is shown in (B). Simulation results for network

deployment (2) and (3) are shown in (C), (D), and (E), (F) respectively. As shown in

Figure 3.8, the results don’t differ much from the results for a uniformly distributed

network shown in Figure 3.4. This is because nodes that cluster in one quadrant will

be closer to each other and more easily allow the distribution of MAs, but nodes in

other quadrants will be further from each other and more prone to be isolated from

the network. Figure 3.9 shows the MA distribution network diagrams for different

network deployments having a centrally deployed MA server distributing 10 MAs to

the network with MA TTL values set to 80. Empty circles represent nodes in the

network that did not receive any MA, and solid circles represent nodes that have

received one or more MAs. We can see from the diagrams that when networks are

clustered, then the MAs are distributed more in the clustered area; in a uniformly

distributed network, the MAs are evenly distributed in the network.

Last we simulated the MA-based IDS with skewed randomly-generated networks

95

0

100

200

300

400

500

600

700

800

900

20 40 60 80 100 120 140 160 180 200

#
o
f

n
o

d
es

w
it

h
m

u
lt

ip
le

M
A

s

MA TTL

Relationship of MA TTL and # of MAs Dispatched

Copy=1

Copy=2

Copy=3

Copy=4

(B)

0

100

200

300

400

500

600

700

800

900

1000

20 40 60 80 100 120 140 160 180 200

#
o

f
n
o

d
es

w
it

h
o
u

t
M

A

MA TTL

Relationship of MA TTL and # of MAs Dispatched

Copy=1

Copy=2

Copy=3

Copy=4

(A)

0

100

200

300

400

500

600

700

800

900

1000

20 40 60 80 100 120 140 160 180 200

#
o
f

n
o

d
es

w
it

h
m

u
lt

ip
le

M
A

s

MA TTL

Relationship of MA TTL and # of MAs Dispatched

Copy=1

Copy=2

Copy=3

Copy=4

(D)

0

100

200

300

400

500

600

700

800

900

1000

20 40 60 80 100 120 140 160 180 200

#
o
f

n
o

d
es

w
it

h
o

u
t

M
A

MA TTL

Relationship of MA TTL and # of MAs Dispatched

Copy=1

Copy=2

Copy=3

Copy=4

(C)

0

100

200

300

400

500

600

700

800

900

20 40 60 80 100 120 140 160 180 200

#
o

f
n

o
d

es
w

it
h

m
u
lt

ip
le

M
A

s

MA TTL

Relationship of MA TTL and # of MAs Dispatched

Copy=1

Copy=2

Copy=3

Copy=4

(F)

0

100

200

300

400

500

600

700

800

900

1000

20 40 60 80 100 120 140 160 180 200

#
o

f
n

o
d

es
w

it
h

o
u

t
M

A

MA TTL

Relationship of MA TTL and # of MAs Dispatched

Copy=1

Copy=2

Copy=3

Copy=4

(E)

Figure 3.8: The relationship between different MA TTL values and numbers of MAs
dispatched (including the extra sent MAs) by one MA server using the
simulation environment in Figure 3.3(A). With network deployment (1),
the number of nodes that did not receive any MA is shown in (A) and the
number of nodes that did receive multiple MAs is shown in (B). Simulation
results for network deployment (2) and (3) are shown in (C), (D), and
(E), (F) respectively.

96

 0

 200

 400

 600

 800

 1000
 0 100 200 300 400 500 600 700 800 900 1000

 0

 200

 400

 600

 800

 1000
 0 100 200 300 400 500 600 700 800 900 1000

(A) Uniform network deployment (B) Network deployment (1)
 0

 200

 400

 600

 800

 1000
 0 100 200 300 400 500 600 700 800 900 1000

 0

 200

 400

 600

 800

 1000
 0 100 200 300 400 500 600 700 800 900 1000

(C) Network deployment (2) (D) Network deployment (3)

Figure 3.9: Comparison of MA distribution results between different network deploy-
ments. Empty circles represent nodes in the network that did not receive
any MA, and solid circles represent nodes that has received one or more
MAs.

consisting of 1000 nodes in a 1000 × 1000 units2 area and four MA server deployed

at (250, 250), (750, 250), (250, 750), and (750, 750), respectively. The simulation

results for four uniformly deployed MA servers with three different skewed network

deployments are shown in Figure 3.10. With network deployment (1), the number of

nodes that did not receive any MA is shown in (A) and the number of nodes that did

receive multiple MAs is shown in (B). Simulation results for network deployment (2)

and (3) are shown in (C), (D), and (E), (F) respectively. As with the previous simu-

lation, the results here don’t differ much from the results in a uniformly distributed

network as shown in Figure 3.5.

97

(B)

0

100

200

300

400

500

600

700

800

900

1000

20 40 60 80 100 120 140 160 180 200

#
o

f
n

o
d

es
w

it
h

m
u
lt

ip
le

M
A

s

MA TTL

Relationship of MA TTL and # of MAs Dispatched

Copy=1

Copy=2

Copy=3

Copy=4

(A)

0

100

200

300

400

500

600

700

20 40 60 80 100 120 140 160 180 200

#
o
f

n
o
d
es

w
it

h
o

u
t

M
A

MA TTL

Relationship of MA TTL and # of MAs Dispatched

Copy=1

Copy=2

Copy=3

Copy=4

0

100

200

300

400

500

600

700

20 40 60 80 100 120 140 160 180 200

#
o

f
n

o
d

es
w

it
h

o
u

t
M

A

MA TTL

Relationship of MA TTL and # of MAs Dispatched

Copy=1

Copy=2

Copy=3

Copy=4

(C)

0

100

200

300

400

500

600

700

800

900

1000

20 40 60 80 100 120 140 160 180 200

#
o
f

n
o
d
es

w
it

h
m

u
lt

ip
le

M
A

s

MA TTL

Relationship of MA TTL and # of MAs Dispatched

Copy=1

Copy=2

Copy=3

Copy=4

(D)

(E)

0

100

200

300

400

500

600

700

20 40 60 80 100 120 140 160 180 200

#
o
f

n
o
d
es

w
it

h
o

u
t

M
A

MA TTL

Relationship of MA TTL and # of MAs Dispatched

Copy=1

Copy=2

Copy=3

Copy=4

(F)

0

100

200

300

400

500

600

700

800

900

1000

20 40 60 80 100 120 140 160 180 200

#
o

f
n

o
d

es
w

it
h

m
u
lt

ip
le

M
A

s

MA TTL

Relationship of MA TTL and # of MAs Dispatched

Copy=1

Copy=2

Copy=3

Copy=4

Figure 3.10: The relationship between different MA TTL values and numbers of MAs
dispatched (including the extra sent MAs) by four uniformly positioned
MA servers using the simulation environment in Figure 3.3(B). With
network deployment (1), the number of nodes that did not receive any
MA is shown in (A) and the number of nodes that did receive multiple
MAs is shown in (B). Simulation results for network deployment (2) and
(3) are shown in (C), (D), and (E), (F) respectively.

98

Local Data

Collection

Local Detection

Engine

Local

Response

Secure

Communication

Cooperative

Detection

Engine

Global

Response

System call

activities,

communication

activities, and

other traces

Neighboring

IDS agents

Figure 3.11: The intrusion detection system for MANETs proposed in [57].

Therefore, given the simulation results in different network deployments, we can

conclude that the MA distributions will not be affected by the network deployment

and topology, but will be affected by both the MA server deployment and the number

of MAs distributed and the different MA TTL values.

3.7 Related Work

There have been several different proposals for the design of IDSs for MANETs.

We list them below and compare some of them with our proposed approach.

Zhang and Lee [57] proposed a distributed and cooperative intrusion detection

model for MANETs. In their model, every node in the network runs an IDS agent,

and performs data collection and intrusion detection locally, with cooperative detec-

tion and global response triggered whenever a node reports detection of an anomaly.

The intrusion detection architecture is based on statistical anomaly detection tech-

niques [57]. The internal structure of the IDS agent is divided into six models, as

shown in Figure 3.11.

Sergio Marti et al. [37] discussed two techniques, watchdog and pathrater, that

improve throughput in MANETs in the presence of compromised nodes that agree

to forward packets but fail to do so. Watchdogs will identify misbehaving nodes,

99

and pathraters will aid routing protocols to avoid misbehaving nodes. However, the

watchdog technique might not detect misbehaving nodes under certain conditions.

Several researchers proposed the use of MAs for intrusion detection in MANETs.

Local Intrusion Detection System (LIDS) proposed by Albers et al. [3] utilized MAs

on each node in a MANET. LIDSs on different nodes collaborate by using security

data to obtain complementary information from collaborating hosts, and intrusion

alerts to inform others of a locally-detected intrusion. The LIDS agent could use

either anomaly or misuse detection. Our approach differs from LIDS in that LIDS is

a cooperative approach and the decision is based on the data collected from collabo-

rating nodes. Therefore, LIDS will not function well if compromised nodes broadcast

false intrusion-related information.

An intrusion detection architecture based on a static stationary database has been

proposed by Smith [50], where each node in a MANET has an IDS agent running on

it. The IDS agents on each node work together via a cooperative intrusion detection

algorithm to decide when and how the network is being attacked. The architecture is

divided into two parts, the mobile IDS agents that work on each node and the station-

ary secure database that has the signatures of all known misuse attacks and normal

activity patterns of each node. This approach used both anomaly and misuse detec-

tion. Nevertheless, with a centralized database, the mobile nodes need to move and

physically connect to the database periodically to stay up-to-date with the intrusion

information. Also, the stationary secure database can become a single-point-of-failure

if it is compromised. Our approach does not require the mobile nodes to physically

move and connect to the MA server for update and can have multiple MA servers

deployed in the network to avoid a single centralized server as an attack target.

Kachirske and Guha [31] also proposed a distributed IDS for wireless ad hoc net-

works based on the MA technology. By efficiently merging audit data from multiple

network sensors, they analyzed the entire network for intrusions and tried to thwart

100

intrusion attempts. They suggested not to use every possible node as IDS, but those

chosen by a special “clustered network monitoring node selection algorithm.” Desig-

nated nodes decide on intrusion. To avoid malicious votes, a modified independent

decision-making system is used. This system uses a state machine for each known

node, which is updated with threat information gathered by the monitoring agents.

When a certain level or threat is reached, a command is sent to the node in danger,

requesting necessary actions. Our approach has local IDS on each node and differs

from the IDS in [31] where the monitoring and decision agents are on different nodes,

thus requiring more communication and coordination.

3.8 Conclusion

We have proposed a distributed MA-based application-layer IDS framework for

MANETs. The IDS utilizes both anomaly and misuse detection to identify attacks in

MANETs. Also, the MAs augment each node’s intrusion detection capability in the

network by updating attack signatures and normal application profiles, patching and

installing programs, further analyzing and diagnosing each node, and verifying the

integrity of the IDS agents on each node. We have completed the design of the IDS

architecture and the overall network structure, and described the design of protocols

using MAs for the IDS. Our evaluation has demonstrated trade-offs between different

design parameters of MAs.

101

CHAPTER IV

TGIS: Booting Trust for Secure Information

Sharing in Dynamic Group Collaborations

4.1 Introduction

Over the past decade, mobile computing has drawn much attention because of the

various types of mobile devices (e.g., smartphones) and communication mechanisms

(3G/4G and WiFi) that are becoming available. Even though mobile devices have

been increasingly used for entertainment and social applications, there has been an

important oversight: more mobile applications will appear at public safety, health-

care, and even military facilities/sites. For example, the military has started to use

smartphones in the battlefield for communication and collaboration purposes. Of

these trends, in this chapter we explore the use of mobile devices for dynamic and

ad-hoc group communications. For example, soldiers from different units may form a

group for a particular task, or, agents of local police offices, homeland security, and

the FBI may dynamically react to an accident in a local area.

There are several ways for mobile devices to communicate in an ad hoc dynamic

group. For example, an online service can be deployed, and all devices can commu-

nicate with variant public network conductivities, e.g., with 3G/4G or WiFi. The

service implements basic group management mechanisms such as user registration

102

and group creation. Alternatively, mobile router or base station technologies such as

Femtocell 1 can allow communication between mobile devices within a geographical

local area. For example, it is necessary to communicate using mobile routers when

military soldiers are in forests or wilderness for military operations since no base sta-

tions will exist. Even if there are existing base stations, the military will still choose

to use their own mobile routers or tactic radios for security purposes.

Several security requirements are desired for dynamic group communication and

information sharing with mobile devices. First of all, devices must securely commu-

nicate and collaborate with one another within a group. That is, the information

shared in one group must only be accessible to its group members, e.g., authorized

by a group leader. Furthermore, even within a group, information may not be freely

shared by all group members, e.g., due to different security levels, expertise, and job

duties. In addition, cross-group communication is necessary in many scenarios. For

example, one soldier in a military team may want to request assistance from another

team on identifying some weapons, while not wanting to share the information with

every soldier in that team. We find this a common requirement in many dynamic

group communications such as healthcare and first responders (cf. Section 4.2 for

more detailed description). All of the above-mentioned security requirements require

trust management between group members. Also, in the mobile computing environ-

ments, there are many services that provide confidential information to clients that

have various access rights. Therefore, trust, security, and access control are necessary

for mobile devices collaboration.

Recent years have seen increasing reliance on mobile devices for organizational

usage, such as in enterprises, government agencies, and military units. Aiming to

bootstrap trust for dynamic group based information sharing and access control, we

propose and implement trusted group-based information sharing (TGIS). TGIS is

1http://www.femtoforum.org/femto/

103

a distributed security protocol built upon existing trust infrastructures in individ-

ual organizations to enable trust management for group collaborations. We assume

that each device belongs to one organization, which has implemented mechanisms to

deploy credentials for trust management of users within its organization. We then

leverage the user identity hierarchies to establish trust between group members by

exploiting hierarchical identity-based encryption (HIBE) [24]. Specifically, a group

leader can use a user’s hierarchical identity as a public key to distribute group keys.

For controlling information sharing within a group, we use attribute-based encryp-

tion (ABE) [7] for secure access control, whereby the group leader defines group-wide

attributes, generates attribute secret keys, and distributes them to individual group

members. By exposing public information of a group in an authentic manner, other

out-group users can also send information to in-group users with controlled sharing,

i.e., by specifying a user with the particular attributes to access the information.

Mobile devices have some limitations that make it very challenging to establish

trust relationship among devices. First, as mobile devices are often required to be

small, light, and easy to hold, this puts strict limitation on the devices resources.

Thus, traditional trust management mechanisms might not be able to perform ef-

fectively on mobile devices. Also, mobile devices form dynamic collaborative rela-

tionships because of their mobility. Therefore, there must be a distributed method

for trust establishment among devices. Furthermore, devices that belong to different

domains require different collaboration and access rights. Our goal is therefore to

consider these limitations when we design our protocol.

TGIS defends against passive attacks such as eavesdropping and active attacks

such as replay, spoof, drop, or insert false data and impersonation attacks by using

encryption and digital signature with mobile devices’ organizational keys. TGIS can

also prevent attackers and legitimate group members from accessing shared informa-

tion without proper privileges.

104

4.1.1 Organization

The remainder of this chapter is organized as follows. We first present the moti-

vation and applications of TGIS in Section 4.2. In Section 4.3, we review the crypto-

graphic primitives in TGIS. We then give an overview of TGIS design in Section 4.4

and describe the details of TGIS protocol in Section 4.5. Section 4.6 presents how to

distribute the group leader’s tasks of group private key generation and distribution.

Section 4.7 analyzes the security of TGIS, which is followed by our implementation

and performance evaluation in Section 4.8. We discuss the challenges faced in design-

ing a TGIS application user interface in Section 4.9. Finally, we discuss related work

in Section 4.10 and conclude this chapter in Section 4.11.

4.2 Motivation

The main goal of TGIS is to let users use their mobile devices to establish a trust

relationship to collaborate and communicate with their collaborators, and to have ac-

cess control over their shared information among their collaborators. There are many

real life scenarios that would require TGIS for trust management and dynamic group

collaboration. Below we elaborate on the motivational examples of first responders

in emergency rescue events and military soldiers in battlefields.

First responders are trained rescuers that would go to emergency scenes and per-

form search and rescue. For example, the police departments, fire departments, emer-

gency medical services (EMS), and the Department of Homeland Security (DHS) are

all considered to be first responders in the events of large-scale emergencies. First

responders collaborate in emergency rescues, and many of them are from different

organizations. For them to cooperate and share information in the rescue scenes,

they will need to boot trust and establish trust relationship between one another. As

different organizations have different privileges, they will need the dynamic group col-

105

laboration protocol to communicate securely either within or between different rescue

groups.

Take the example of an earthquake first responders disaster search and rescue.

EMS, fire departments, police departments, and DHS agents will all collaborate to

assist with the recovery efforts. TGIS allows the first responders from different orga-

nizations to collaborate in a secure manner and establish trust relationship with one

another. The first responders will be able to authenticate themselves and join a dy-

namic collaboration rescue team for disaster relief. On the other hand, news reporters

or other curious people may not be able to successfully authenticate themselves to

join the rescue team and access the shared information. In the rescue team, there

are classified information that only people with the appropriate level of clearance and

access can view. Such information might only be accessible to polices or DHS agents,

and TGIS also helps with data access control in such scenario.

Another application of TGIS is for the collaboration of military soldiers in the bat-

tlefield. Since soldiers need to collaborate and form dynamic coalition in battlefields

for ad hoc military tasks, they need trust management and dynamic group collabo-

ration. Soldiers that form dynamic teams to perform tasks have different clearance

levels for the information shared among team members, so secure communication

and information access control are required in the coalition. And soldiers in different

coalitions can also share information based on their clearance. For example, in a

military task where a scout team is sent out to detect if there are weapons or mines

in the battlefield, or to eavesdrop or intercept on the enemy’s conversation, the scout

team would consists of weapon specialists and soldiers with different ranks. TGIS can

be used for the scout team members to form a dynamic collaboration coalition using

their devices or mobile devices. It would save device processing time and power if

the devices in the scout team can collaborate or offload heavy computation programs

to other devices without their information been eavesdropped by the enemies. With

106

TGIS, team members can share information to other members with the appropriate

level of clearance and help execute programs for other members, like help to execute

the translation program on the eavesdropped enemy conversation.

As for inter-group collaboration, group members may want to share information

between users in different groups. First responders share information about different

scenes of accidents, and only members with the appropriate clearance can read cer-

tain classified information. Military soldiers exchange information in the battlefield

regarding specific tasks, and only soldiers with the appropriate clearance to the task

can read the information. In our scout team example, weapon specialists may ex-

change related intelligence between different scout teams and only weapon specialists

are authorized to view any confidential information. Our proposed TGIS protocol is

designed to be used in all of the above scenarios.

4.3 Cryptographic Primitives

In this section, we review the cryptographic primitives we use for the construction

and design of TGIS.

4.3.1 Hierarchical Identity-Based Encryption

Identity-based cryptography (IBC) was first introduced by Adi Shamir in 1984,

who implemented identity-based signature (IBS) and proposed identity-based en-

cryption (IBE) in [47]. However, IBE was not realized until 2001 by Boneh and

Franklin [9], and then by Cocks [15]. IBC is a type of public-key cryptography.

In IBC, a public identity is used as a public key string to simplify certificate man-

agement in public key infrastructure (PKI). The public identity could be an email

address, phone number, or a hierarchical identity within an organization. IBC is

different from traditional PKI, where an entity (e.g., a user or a host) generates its

public/private key pair and obtains public key certificate from a certificate authority

107

Bob

Level-1
PKG

Level-2
PKG

Root PKG

Level-1
PKG

Alice

Figure 4.1: HIBE system architecture.

(CA). In IBC, the private key is generated by a trusted third party called the private

key generator (PKG) with its corresponding identity and system parameters.

More specifically, in an identity-based system, a PKG generates a master secret

key (MSK) and public system parameters (SP). The MSK is kept as a secret and

used by the PKG only to generate corresponding private keys for individual users,

and the SP is published publicly. Any user can use the published SP and the publicly

known user identity to generate public keys for other users.

Based on IBE, hierarchical identity-based encryption (HIBE) [24, 10] was intro-

duced to create hierarchies of PKGs and allow higher-level PKG to control the keys

given to its subordinate lower-level PKGs. HIBE allows root PKG to distribute

private key computation workload to lower-level PKGs and ease the private key dis-

tribution problem and improve scalability. It also removes a single-point of failure

and the disclosure of a lower-level PKG’s secret will not compromise higher-level

PKGs’ secrets or other parts of the hierarchy. HIBE system architecture is shown in

Figure 4.1.

HIBE consists of five algorithms: Root Setup, Lower-level Setup, Extract,

Encrypt, and Decrypt.

• Root Setup: The root PKG runs this algorithm that takes in a security parame-

108

ter as input and generates the master secret (MS) and public system parameters

(SP). The MS is kept secret by the root PKG and SP is public.

• Lower-level Setup: The lower-level PKG runs this algorithm and picks a

random secret (S), which is kept secret by the PKG.

• Extract(PrK, S, ID): A PKG runs this algorithm that takes in as inputs its

private key PrK, secret S, and a subordinate user identity ID = (ID1, ID2, ..., IDl)

if the user is in level l. The algorithm generates a private key (PrK) for the

corresponding user ID.

• Encrypt(SP, ID,M): An encrypter runs this algorithm that takes in the sys-

tem parameters SP , the receiver’s ID, and a messageM as inputs and generates

a ciphertext C of M .

• Decrypt(PrK,C): A decrypter runs this algorithm that takes in its PrK and

the ciphertext C as inputs and returns the message M if M is encrypted with

its ID.

4.3.2 Attribute-Based Encryption

Attribute-based encryption (ABE) enables complete access control on encrypted

data by specifying the expressive access policies/rules in private keys and cipher-

texts [7, 25]. There are two categories of ABE, the ciphertext-policy ABE (CP-

ABE) [7] and key-policy ABE (KP-ABE) [25]. In CP-ABE [7], the private keys are

associated with a set of attributes, and messages are encrypted to access policies

which specifies what private keys with the desired attributes will be able to decrypt

the ciphertexts. Whereas in KP-ABE [25], it’s the ciphertexts that are associated

with sets of attributes and the private keys are associated with the access policies.

We use CP-ABE in TGIS for ensuring access control in data sharing. In CP-

ABE, a user will specify an access tree structure of access policy for the message to

109

be encrypted. Only if another user with a private key that is associated with the

desired attributes will be able to decrypt the ciphertext.

CP-ABE consists of four algorithms: Setup, Encrypt, KeyGen, Delegate, and

Decrypt.

• Setup: This algorithm takes in a security parameter as input and generates

the master key (MK) and public key (PK). The MK is kept secret by the

authority party and PK is made public.

• Encrypt(PK, T,M): An encrypter runs this algorithm that takes in the public

key PK, a tree access structure T that defines the access policy, and a message

M as inputs and generates a ciphertext C of M .

• KeyGen(MK,S): This algorithm takes in a set of attributes S and the master

key MK and generates a secret key SK that is associated with the correspond-

ing set of attributes S.

• Decrypt(SK,C): A decrypter runs this algorithm that takes in its SK and

the ciphertext C as inputs and returns the message M if the attributes of SK

satisfies the access tree T used for encryption.

4.4 Overview of TGIS

Trust relationship between entities indicates that an entity has certain assurance

that it can share data with another entity without releasing information to any other

entity. This is typically achieved by identity authentication, shared keys, and data

encryptions. To establish trust relationship among users, we first bootstrap trust in

dynamic groups for secure collaboration and communication, and then enforce access

control for data sharing. To bootstrap trust among group members, we leverage the

existing organization identity hierarchies to establish trust between group members

110

and let a group creator/leader generates the private keys for group members and

securely distributes the keys using HIBE [24]. Since group members have different

privileges, we use CP-ABE [7] for secure access control within a group and also among

different groups.

Below we present the system architecture and assumptions, the attack models,

and the design overview for TGIS.

4.4.1 System Architecture and Assumptions

Our system consists of users carrying mobile devices for communication and collab-

oration with other users in the network. Each user belongs to an existing hierarchical

domain organization. The identity of a user/device is a hierarchical domain structure

and is unique. For each user, the user’s hierarchical identity is the concatenation of

the identities from the root to the user. For example, Alice in the Surveillance Unit

in the Police Department will have ”Police/Surveillance/Alice” as her ID.

Here we use HIBE as described in Section 4.3.1 for the security basis. We assume

each domain/organization has a hierarchical architecture and each intermediate user

is a private key generator (PKG) that is responsible for assigning private keys for

its subordinate users. The intermediate users are different levels of managers or

authorizers in an organization. The top level is the root PKG that is responsible for

generating the public known system parameters (SP). Each user gets its private key

from their immediate upper level PKG. There is no private/public key pair for each

user and instead, user identity is used as the public key in HIBE. A nice property of

HIBE is only the domain SP and user ID is needed in order for others to generate

the user’s public key. It is very flexible and one does not need to know the user’s

intermediate PKG’s public key to generate the user public key.

The system architecture of our proposed TGIS protocol is shown in Figure 4.2.

And Figure 4.3 is an example of the system architecture using The University of

111

User 2

Level-1
PKG

Level-2
PKG

Root PKG

Level-1
PKG

User 1

User 4

Level-1
PKG

Root PKG

Level-1
PKG

User 3

Organization 1 Organization 2

Figure 4.2: TGIS System architecture.

(UM, Eng, EECS, Alice)

(UM, Info)(UM, Eng)

(UM)

(UM, Eng, ME)(UM, Eng, EECS)

(UM, Eng, ME, Bob)

(UM, Info, Carol)

Figure 4.3: TGIS System architecture using The University of Michigan as an exam-
ple of a hierarchical organization.

Michigan as the hierarchical organization.

We assume users create dynamic groups for different events and purposes. In a

dynamically formed group, the group creator (or leader) controls access to data and

user privileges in the group and generates corresponding group private keys for each

group member. Users can share information with other members in the same group or

even with users in other groups. Group members can be from different organizations

112

Figure 4.4: System architecture of users in different organizations forming a dynamic
group.

to form a dynamic group. Therefore, the group leader acts as the PKG of the group

to generate and distribute group private keys for other members.

We assume that when users communicate in a group, they can either use the

existing base stations or setup mobile routers when they are in the wilds and no

base stations are available. For example, femtocell, which is a small cellular base

station designed for use in a home or small business, can also be setup for group

communication. Figure 4.4 presents the system architecture of users in different

organizations forming a dynamic group using a mobile router.

4.4.2 Attack Model

In our attack model, attackers can eavesdrop on the communication channel be-

tween users and can also replay, spoof, or insert false data into the network. Also,

attackers can masquerade as legitimate users to join group collaboration. Further-

more, an attacker can be a group member such that it tries to access and propagate

data without proper privileges. The attacker can also launch Sybil [20] attack and

fake to be multiple identities in the network.

113

4.4.3 Design Overview

To establish a trust relationship between devices and let devices form dynamic

collaboration groups with proper privileges assigned to group members, we propose

to exploit hierarchical identity-based encryption (HIBE) [24] and ciphertext-policy

attribute-based encryption (CP-ABE) [7] in TGIS.

We use HIBE as the security basis, where users’ devices receive private keys from

their belonged domain PKGs, and their identities are used as public keys for commu-

nication. HIBE binds public keys with respective user identities and allows users to

bootstrap secure collaboration protocols. Also, the benefit from using identity-based

encryption (IBE) is the users can form secure channels with only user identities, and

there is no need to retrieve public key certifications before sending secret data to a

particular user. That is, a group leader only needs to know the SP of a domain and

a user’s identity in order to distribute group keys without verifying the user’s public

key certificate as in the traditional PKI scheme.

To allow users to form dynamic groups and share sensitive data, we use CP-ABE to

manage data access control within and between groups, where the group leader defines

group-wide attributes corresponding to individual users’ privileges. CP-ABE allows

users to apply fine-grained access control policies on data by assigning attributes to

secret keys and assigning an access tree, a logical expression over attributes, to the

data upon encryption.

4.5 TGIS Protocol

TGIS is a protocol used for users to establish trust relationship with other users

using their mobile devices. By establishing trust relationship with one another, users

can form dynamic collaborative groups and share information securely inside the

group with proper data access control.

114

The TGIS protocol consists of five phases, the offline domain setup, group setup,

user enrollment, intra-group communication, and inter-group communication. This

section explains the details of each. Listed below are the notations used in the rest

of the chapter.

• a, b, . . . are entities such as users/devices.

• IDa is the identity of user a.

• A,B, . . . are domains/organizations or dynamic groups.

• HSPA is the HIBE system parameters for domain A.

• HMSA is the HIBE master secret for domain A.

• A.HPKa is the HIBE public key for user a in domain A.

• A.HPrKa is the HIBE private key for user a in domain A.

• AMSKA is the ABE master secret key for group A.

• APKA is the ABE public key for group A.

• A.ASKa is the ABE secret key for user a in group A.

• SA is the attributes set of group A.

• A.attra is the attributes set assigned to user a in group A, and A.attra ⊂ SA.

• T is the access tree built with logical expression over attributes.

The system architecture is as described previously in Section 4.4.1, where each

user belongs to a pre-established hierarchical domain and has a unique identity that

is assigned from the domain. The TGIS protocol consists of five phases, the offline

domain setup phase, the group setup phase, the user enrollment phase, the group

communication phase, and the inter-group collaboration phase. Below we present

each phase in detail.

115

4.5.1 Domain Setup

Before deployment, the mobile devices are in the offline domain setup phase, and

all devices are assumed to be secured. In this phase, each user registers its device with

an identity in its own hierarchical domain and receives the domain HIBE private key.

Each domain root PKG generates the domain HSP and HMS. HSP is made public

and is used for generating HIBE public keys (HPK) together with user identities.

HMS is kept secret by the domain root PKG and is used for generating HIBE private

keys (HPrK) for users. Each user has a HPrK that is generated and assigned by its

parent PKG. The detailed protocol for domain setup with HIBE private and public

key generation and distribution is listed as the following.

DomainSetup(Root PKG r ∈ Domain D)

r: RootSetup(Domain D) → HSPD, HMSD

ut−1: ExtractHIBEKey(D.HPrKut−1 , D.Sut−1 , IDut) → D.HPrKut

for user ut ∈ Levelt that is ut−1’s child

ut−1 → ut: D.HPrKut

u1: CreateHIBEPubKey(HSPD, IDu2) → D.HPKu2

In this phase, a domain D root PKG r generates the domain HSP HSPD and

HMS HMSD. The root PKG and each lower-level PKG generates and distributes

HPrK for its child users with the users’ identities and the PKG’s own secret and

private key. User public key HPK can be generated by anyone using HSPD and the

user identity.

Example: The Michigan State Police Department PoliceStateMI is the root

PKG for the police departments in Michigan. PoliceStateMI generates HSPP and

HMSP for the entire Michigan State Police Department and its subordinate bureaus.

116

The city police departments in Michigan are the level-1 PKGs and receive private keys

from PoliceStateMI. Alice is a police officer in the Ann Arbor City Policy Depart-

ment PoliceCityAA. Therefore, Alice’s ID is PoliceStateMI/PoliceCityAA/Alice.

PoliceStateMI generates P.HPrKPoliceCityAA for the Ann Arbor City Police De-

partment using its private key P.HPrKPoliceStateMI , its secret HMSP , and the Ann

Arbor City Police Department ID PoliceStateMI/PoliceCityAA. PoliceCityAA

generates P.HPrKAlice for Alice using its private key P.HPrKPoliceCityAA, its secret

P.SPoliceCityAA, and Alice’s ID PoliceStateMI/PoliceCityAA/Alice. One needs to

know HSPP and Alice’s ID in order to generate Alice’s public key P.HPKAlice and

encrypt a message for Alice.

4.5.2 Group Setup

After the offline domain setup phase, users carry their devices with installed do-

main private keys. In an event that requires user collaboration and dynamic group

setup, the users enter the group setup phase. In this phase, a group leader creates a

group and generates group parameters and keys.

During group setup, the group leader generates the group APK, AMSK, and

defines the privileges/attributes set S of the group. APK and S are made public to

the network and AMSK is kept secret by the group leader. The detailed protocols

for group setup is listed as the following.

117

GroupSetup(Group Leader l ∈ Domain D)

l: CreatGroup(Group G) → APKG, AMSKG, Attributes set SG

l → u: DistributeGroupAPK(D.HPrKl, APKG, SG) → K

where K = {APKG, SG, sign(APKG, SG)D.HPrKl
}

u: CreateHIBEPubKey(HSPD, IDl) → D.HPKl

u: RetriveGroupAPK(D.HPKl, K) → APKG, SG

if sign(APKG, SG)D.HPrKl
is verified by D.HPKl

In this phase, when a group of users want to form dynamic trust collaboration, a

group leader l generates a group G and group keys APKG and AMSKG and a set

of group attributes SG. APKG and SG are made public in clear text, but l signs the

message using its HIBE private key D.HPrKl for authentication purpose. Group

members can use l’s HIBE public key D.HPKl to verify the message.

Example: When police officers are in a rescue mission and need to create a res-

cue team with other first responders, Alice in the police department becomes the

group leader and creates the rescue team A-team. Alice generates AMSKA−team,

APKA−team, and attributes set SA−team = {security level, profession} to represent

levels of information clearance. And attribute values are security level ={top secret,

secret, public} and profession ={general, medical, detective}. Alice signsAPKA−team

and SA−team with P.HPrKAlice and publishes the A-team public parameters to the

A-team.

4.5.3 User Enrollment

After the group setup phase, a group is created by the group leader and users

enter user enrollment phase to join a group. Upon accepting a user’s request to join

a group, the group leader decides what kind of privileges that the user can have, and

assigns the user some attributes attr that correspond to the privileges. The assigned

118

attributes attr are attributes in S. The group leader then assigns an ASK for the

user based on attr. The ASK is distributed to the user encrypted with its HPK,

which is generated from its identity as described in Section 4.5.1. Thus, only the

intended receiving user with the matching HPrK can decrypt the ciphertext and

receive its assigned ASK. The detailed protocol for user enrollment is listed as the

following.

UserEnrollment(Group Leader l ∈ Domain D)

u → l: RequestJoinGroup(G) where u ∈ Domain E

l: AssignAttrToMember(u) → G.attru where G.attru ⊂ SG

l: CreateMemberKey(u,AMSKG, G.attru) → G.ASKu

l: CreateHIBEPubKey(HSPE, IDu) → E.HPKu

l → u: DistributeMemberKey(E.HPKu, G.ASKu) → K = {G.ASKu}E.HPKu

u: RetrieveMemberKey(E.HPrKu, K) → G.ASKu

In this phase, for each group member u in group G, the group leader l assigns it the

corresponding attributes G.attru. Then l generates the group private key G.ASKu for

u which binds G.attru with AMSKG. Next l distributes G.ASKu to u by encrypting

it with u’s HIBE public key E.HPKu generated from u’s ID and sending it to u.

Only u can decrypt the ciphertext with its HIBE private key E.HPrKu and receive

G.ASKu sent by l. Note that l and u don’t need to belong to the same domain.

Example: When a fire fighter Bob wants to join the rescue team A-team cre-

ated by Alice, he sends RequestJoinGroup(A − team) to Alice. Alice then grants

Bob membership and decides he has a low-level clearance so she grants him A −

team.attrBob ={public, general} and generates A − team.ASKBob with Bob’s clear-

ance level. Alice distributes A − team.ASKBob to Bob by encrypting the key with

Bob’s HIBE public key F.HPKBob, which is generated by Bob’s ID and the fire de-

partment HSPF . Bob can retrieve the member key by decrypting the message with

119

his HIBE private key F.HPrKBob.

4.5.4 Intra-group Communication

After the user enrollment phase, group members can have secure group commu-

nication and collaboration using their ASK and APK. Group members can encrypt

data to be shared with flexible and expressive policies defined by access tree struc-

tures. Only users with the required attributes/privileges can decrypt the ciphertext

and access the shared data.

In the group communication phase, ABE construction ensures that only group

members with the corresponding attributes are able to decrypt data. ABE keys guard

access to user data and group member u that encrypts message M to ciphertext C

controls which attributes can decrypt C. Specifically, u uses the group APK and an

access trees T to encrypt M for members with matching attributes. Only members

with ASK that satisfies T can decrypt C and read M . The detailed protocol for

intra-group communication is listed as the following.

IntraGroupComm(user u1 ∈ Group G, u2 ∈ G, Message M)

u1 → u2: ABEEncrypt(APKG,M , Access Tree T) → Ciphertext C

u2: ABEDecrypt(C,G.ASKu2) → M only if G.Attru2 satisfies T

Example: When Alice wants to share her location with members of A-team,

she encrypts it with APKA−team and the access tree T ={public} since her location is

a low-level clearance information. Bob can decrypt Alice’s shared message and read

her location with his member key A−team.ASKBob since A−team.attrBob ={public,

general} satisfies T .

120

4.5.5 Inter-group Collaboration

For groups that want to collaborate and share information, secure communication

between groups can be done in a similar way as intra-group communication. The

users in one group request for the APK and attributes set S of the collaborating

group from its group leader for data encryption and access control.

As shown below, for group collaboration, members in Group B need to know

Group A’s APKA and attribute set SA. Members in B use APKA and an access tree

T created from SA to encrypt data for A’s group members. Members in A are able

to decrypt the shared data using their ASKs with matching privileges. The detailed

protocol for inter-group collaboration is listed as the following.

InterGroupComm(Group Leader la ∈ Group A and Domain D, ub ∈ Group B)

ub → la: GetGroupAPK(IDub
)

la → ub: DistributeGroupAPK(D.HPrKla , APKA, SA) → K

where K = {APKA, SA, sign(APKA, SA)D.HPrKla
}

ub: CreateHIBEPubKey(HSPD, IDla) → D.HPKla

ub: RetriveGroupAPK(D.HPKla , K) → APKA, SA

if sign(APKA, SA)D.HPrKla
is verified by D.HPKla

ub → ua: ABEEnrypt(APKA,M, T) → C for ua ∈ A

ua: ABEDecrypt(C,A.ASKua) → M only if A.Attrua satisfies T

Example: When the rescue team B − team members would like to share in-

formation with A − team members, they need to receive A − team’s APKA−team

and SA−team from its group leader Alice. Then the B − team members can encrypt

the missing people list with APKA−team and access tree T ={top secret} and send

the message to A − team. Bob in A − team can not decrypt the message since

A − team.attrBob ={public, general} does not satisfy T . But members in A − team

121

with high-level clearance can decrypt the message and read the missing people list.

4.5.6 Message Authentication

We would like to note that to achieve message authentication and integrity for

messages exchanged in intra-group and inter-group communications, we propose to

use identity-based signatures (IBS) [27]. IBS allows the users to sign messages with

their own identities and achieves message authenticity. IBS combined with HIBE can

be viewed as a complete package to provide authenticity, integrity, and confidentiality.

4.6 Decentralizing TGIS

We can further apply multi-authority attribute-based encryption [34] to TGIS so

group leaders are no longer necessary to assign attributes and create private keys for

group members. By applying multi-authority ABE, any user can assign attributes

and create private keys for other members after they have established mutual trust.

A user can create his own attributes and create a public key and issue private keys to

other group members, thus reducing the risk of a compromised group leader revealing

group secrets and member private keys to an attacker.

Multi-authority ciphertext-policy attribute-based encryption (CP-ABE) [34] con-

sists of five algorithms: Global Setup, Authority Setup, Encrypt, KeyGen, and

Decrypt.

• Global Setup(λ): This algorithm takes in the security parameter λ as input

and generates the global parameters GP for the system.

• Authority Setup(GP): Each authority runs this algorithm with GP as input

and generates its own secret key (SK) and public key (PK) pair.

• Encrypt(GP, (A, ρ), {PK},M): An encrypter runs this algorithm that takes

in the global parameters (GP), an access matrix (A, ρ), the set of public keys

122

for relevant authorities {PK}, and a message M as input and generates a

ciphertext C of M .

• KeyGen(ID,GP, i, SK): This algorithm takes in an identity ID, the global

parameters GP , an attribute i belonging to some authority, and the secret key

SK for this authority and generates a secret key Ki,ID for user ID associated

with the corresponding attribute i.

• Decrypt(GP, {Ki,ID}, C): A decrypter runs this algorithm that takes in the

global parameters (GP), a collection of keys corresponding to the attribute and

identity key pairs all with the same identity {Ki,ID}, and the ciphertext C as

input and returns the message M if the collection of attributes i satisfies the

access matrix (A, ρ) used for encryption.

When multi-authority CP-ABE [34] is used in TGIS, in the group setup phase,

a group leader only needs to generate and distribute the global parameters (GP).

In the user enrollment phase, when a user wants to join a group, no attributes or

private keys are assigned to the user from the group leader. Instead, attributes and

private keys are issued by individual group members. The group members that assign

attributes and private keys to others are called the authorities. Authorities will assign

attributes and distribute private keys for other members after they have established

mutual trust. No global coordination exists between authorities in a group, and

authorities might not even be aware of each other.

During the intra-group communication phase, a group member encrypts messages

with GP , an access matrix, and the set of public keys belonging to the relevant

authorities for the used attributes. Only a group member with the collection of

corresponding private keys that satisfies the access matrix can decrypt the message.

As for inter-group collaboration, users in other groups will need to know the attributes

a group uses in order to share access-controlled information with the group.

123

The multi-authority CP-ABE [34] is proved to be collusion resistant. The authors

use a hash function on the user’s identity to manage collusion resistance across multi-

ple key generations issued by different authorities. A user’s identity is bound with the

various attributes assigned to him so those attributes cannot be used with another

user’s attributes and collude in decryption.

4.7 Security Analysis

We first discuss the network survivability in the event of mobile device compro-

mises, and then analyze the security of TGIS against the attack models presented in

Section 4.4.2.

4.7.1 Network Survivability

After compromising a mobile device, an attacker can discover the keys in the

device, such as the domain HIBE keys and group ABE keys. If the compromise of

the devices is undetected, we need to analyze the survivability of the network, or the

ability of the network to maintain an acceptable level of performance under device

compromises. For this, we consider the general attacks an adversary can mount after

it compromises a device.

In TGIS, each mobile device is loaded with a domain HIBE private key in the

offline domain setup phase. If a device is compromised and its HIBE private key

revealed to the attacker, then the attacker can fake to be that device and join groups

as the identity of the compromised device. If the compromised device is a parent user

in the hierarchical domain, then the HIBE private keys of its children devices can

also be computed. However, the HIBE private keys of other devices that belong to

different parts of the hierarchy remains unknown to the attacker.

In HIBE, the private key of a user depends on the secret that is only known to

its parent user, so no ancestor other than the parent can compute the user’s private

124

key. However, the user’s ancestors can still decrypt the messages sent to the user.

Therefore, if an attacker compromised a device and have its HIBE private key, it can

also decrypt the messages sent to its descendants. Gentry and Silverberg presented

in [24] a mechanism to restrict key escrow using dual-HIDE which does not allow the

ancestors of a user to decrypt its messages.

When an attacker compromises a device and gets the group ABE key stored in the

device, it can successfully decrypt some of the group messages that the compromised

device belongs to. For the group ABE keys that are revealed to the attacker, since

each user has different attribute keys assigned even when they have the same set of

attributes, the revealed keys can only decrypt the messages that are encrypted with

the corresponding policies, and the attacker can only read the messages that belongs

to the compromised device’s privilege level.

4.7.2 Defense Against the Attack Model

We now describe how TGIS can defend against various attacks in group collabo-

ration and trust management.

4.7.2.1 Defense Against Passive Attacks

In TGIS, whenever a group leader wants to announce the group public key and

attributes set, it sends the message in plain text, along with its digital signature using

its HIBE private key. Even though an attacker can eavesdrop on the message, the

parameters are meant to be public to the network so the attacker cannot gain any

benefit from getting the message.

For group ABE key distribution, the group leader encrypts the keys with the

designated user’s identity, and only the user has the corresponding HIBE private key

can decrypt the message and receive the ABE key. As for group and inter-group

communication, all the messages are encrypted with the group public key and access

125

policies. Only users that have the corresponding group ABE keys that satisfy the

access policies can decrypt the messages.

4.7.2.2 Defense Against Active Attacks

To prevent an attacker from spoofing or inserting false data in the network, we

use identity-based signature (IBS) [27] as noted earlier in Section 4.5. IBS combined

with HIBE can achieve authenticity, integrity, and confidentiality. Replay attacks

and faulty devices that keeps sending non-verifiable signatures can be detected with

intrusion detection systems.

Sybil attack is a kind of attack where a Sybil node illegitimately fakes multiple

identities in the network. TGIS withstands Sybil attacks because each user needs to

have a HIBE private key corresponding to its identity in order to join a group and

receive the group ABE key. Since each user is preloaded with a HIBE private key in

the offline domain setup phase, no attacker can pretend to be another user and has

the corresponding HIBE private key unless compromising multiple devices. Thus, no

attacker can masquerade as legitimate users to join group collaboration if it didn’t

compromise a device and hold a HIBE private key corresponding to a user identity.

When an attacker compromises a device and successfully joins a group using the

device identity, it gets assigned some attributes that matches its privilege level by

the group leader. So even when the attacker belongs to a group and receives its

group ABE key, it still is not able to access all the data in the group without proper

privileges. And with an important property of CP-ABE, even when two users collude

with each other in a group and combine their group ABE keys, they still cannot

decrypt and get access to the data that should not be readable by their individual

attributes.

126

4.8 Implementation and Evaluation

4.8.1 Prototype Implementation

We have implemented a prototype of TGIS on Android over a local WiFi access

network. Our implementation includes a set of Nexus S devices running Android

2.3. We further run an OpenFire XMPP server 2 in the same network for message

broadcast. XMPP provides flexible one-to-one and one-to-many communication and

push services between online entities with XML format over HTTP.

We used the open source pairing-based cryptography (PBC) library 3 to implement

HIBE [24] and CP-ABE [7] algorithms. All system parameters, master secret keys,

and attributes keys are generated and stored as individual files in the mobile device

SD card, which can be shared with data sharing applications.

We implemented a data sharing application over TGIS. The application is a Google

Latitude-like 4 location-based application on Android to share a user’s location data to

others. Upon selecting to share his location, a user selects some pre-defined polices to

specify who can access his location data (concatenation of GPS coordinates).The data

is then encrypted with the policy and broadcasted to all online group members via the

XMPP server. Figure 4.5 shows the snapshots of the location-based application over

TGIS running on Android. The left snapshot shows when the application successfully

decrypts a location message, and the right snapshot shows when the application failed

to decrypt a location message.

4.8.2 Performance

The OpenFire XMPP server acts as both the root PKG and level-1 PKG in our

implementation. For the first time the user logins, the client application receives the

2http://www.igniterealtime.org/projects/openfire
3http://crypto.stanford.edu/pbc
4https://www.google.com/latitude

127

Figure 4.5: Snapshots of the location-based application over TGIS on Android.

private key for the user, which is a one-time operation. Similarly, the group creation

and group attribute key distribution are also one-time operations for a single group.

We implemented HIBE with Java Pairing Based Cryptography Library (jPBC) 5,

which is a Java porting of the PBC library written in C, and run the evaluation

on Nexus S devices running Android 2.3. We measure the processing time for HIBE

operations taking on Android. For HIBE encryption, it takes around 1.714 seconds to

encrypt a message. This value is the average time to encrypt 30 messages for the size

of 50 bytes to 5120 bytes. HIBE decryption averages 0.650 seconds, with IBS signature

generation taking an average of 2.034 seconds and IBS signature verification 2.072

seconds. We observed similar performance with CP-ABE. Although the performance

seems worse than traditional PKI approach such as RSA encryption and decryption,

we believe that mechanisms such as key encapsulation can improve the performance.

5http://gas.dia.unisa.it/projects/jpbc/index.html

128

4.9 TGIS Application User Interface

For TGIS applications to be implemented and used on mobile devices in the real

world, we must make the user interface straightforward and easy to use. This is es-

pecially important as first responders and soldiers are not trained technical personnel

and they need to perform information sharing with access control and data encryption

in a timely manner.

Designing such an interface can be a challenge as Clark et al. have raised some

usage problems and difficulties for the P25 radio system in [14]. In [14], Clark et al.

showed that for the Motorola XTS5000 handheld P25 radio, the outbound encryption

is simply controlled by a rotating switch. However, because the rotating switch

is located near the channel selector knob, it is easy for the users to accidentally

turn off the encryption function when switching channels. Moreover, the encryption

indication symbol on the screen, the flashing LED, and the audible warning are all

poorly designed and difficult to identify if a radio is in the encrypted mode. The

mentioned user interface ambiguities result in easy to transmit in the clear and leak

confidential information.

When designing the TGIS application user interface, one guideline would be to

allow the encryption function to be always on for all messages. We could employ a

default encryption policy to make sure if the users do not specify other access control

policies, the data is still encrypted in the default group sharing mode. We could also

create a list of possible access control policies for the users to choose from, instead of

letting them specify the access tree for their data to be encrypted. It’s also nice to

have a function to show the effect of the selected access control policies and see who

in the group will be able to decrypt the encrypted shared data.

129

4.10 Related Work

In this section, we review some related work that provides trust management

for bootstrapping security in mobile ad hoc networks (MANETs). We also discuss

the related work that exploits identity-based encryption (IBE) and attributed-based

encryption (ABE) for access and privacy control.

4.10.1 Trust Management

Trust management and security bootstrapping in MANETs is typically difficult

to achieve because of the lack of an online trusted entity. There are several papers

discussing about trust management and bootstrapping security for MANETs in a

distributed manner and without the need of a trusted entity. In [28], Hoeper and Gong

introduced two identity-based authentication and key exchange (IDAKE) schemes for

MANETS. IDAKE schemes allow two nodes in MANETS to compute a pre-shared

secret key for secure communication using their private keys. In [49], Shin et al. also

proposed solutions for session key establishment between two nodes exploiting pairing-

based cryptography. However, all the schemes proposed are geared more toward one-

to-one communication between nodes and TGIS allows nodes in the network to have

secure group communication.

4.10.2 Access Control

Hengartner and Steenkiste proposed a proof-based access-control architecture that

exploits HIBE in pervasive computing [26]. In their scheme, multiple hierarchies are

established as policies for access control, and multiple HIBE private keys are used for

different policies. Baden et al. proposed Persona, a protocol providing access control

for user data over online social networks [5]. Persona uses ABE to allow users to

apply access control policies over their data, and let them control who can view their

data. ABE are also widely used in cloud computing in providing access control to

130

the data stored in the cloud [53, 56, 58]. In [2], Akinyele et al. use ABE to protect

electronic medical records on mobile devices and implement a mobile application on

the iPhone for secure offline access of medical records. In TGIS, we use CP-ABE for

information sharing access control in group communication.

4.11 Conclusion

To bootstrap trust for dynamic group based information sharing and access con-

trol, we propose TGIS for dynamic group collaboration and information sharing with

mobile devices. TGIS is a distributed security protocol built upon existing trust

infrastructures in individual organizations to enable trust management for group col-

laborations. Specifically, we have shown how HIBE and CP-ABE can be combined

to provide trust management and flexible access control in dynamic group collabo-

rations on mobile devices. We have implemented and evaluated TGIS on Android

phones and demonstrated its use in different applications. The average time for TGIS

to perform a HIBE encryption is 1.714 seconds and decryption is 0.650 seconds on

an Android phone. The performance is acceptable since the HIBE operations are

invoked infrequently during group setup.

131

CHAPTER V

Conclusions

Mobile and sensor networks have significantly changed people’s lives around the

world. As mobile devices proliferate, we are exposed to more risks and attacks than

ever before. This dissertation aims to design security and collaboration protocols to

create a comprehensive trust framework to protect mobile and sensor networks, and to

achieve secure distributed authentication, authorization, and accounting by applying

cryptographic algorithms. Its major contribution is in the design of security and

collaboration protocols that enable resource-constrained mobile devices and sensors

to achieve security and realize information sharing. Our security and collaboration

protocols avoid traditional cryptographic approaches intended to be used for resource-

sufficient devices, but instead focus on distributed approaches that emphasize the

collaboration and cooperation among nodes and devices themselves. This dissertation

makes the following contributions.

In Chapter II, we proposed and implemented a distributed authentication proto-

col called DAPP in wireless sensor networks to allow sensors to authenticate servers

without requiring a commonly-used trusted authentication server (AS). Along with

DAPP, we also developed a server revocation mechanism for servers to revoke mali-

cious servers detected in the network. The main contribution of this chapter is the

development of DAPP to achieve the authentication of servers in a distributed man-

132

ner without requiring a dedicated and trusted AS. DAPP maintains the distributed

nature of sensor networks, and reduces the sensor communication traffic in the net-

work and the energy consumption on each sensor as compared to the case of using a

centralized trusted AS for authentication. We also showed that DAPP is robust and

secure against various attacks in sensor networks.

In Chapter III, in order to attain security for nodes in mobile ad hoc networks

(MANETs), we presented a distributed mobile agent (MA) based intrusion detection

system (IDS) architecture at the application layer to help identify malicious nodes in

MANETs. The IDS can utilize both anomaly and misuse detection to discover attacks

in MANETs. Also, the MAs augment each node’s intrusion detection capability in

the network by updating attack signatures and normal application profiles, patching

and installing programs, further analyzing and diagnosing each node, and verifying

the integrity of the IDS agents on each node. We have presented the design of

the IDS framework and the overall network structure, as well as the methods for

authenticating and dispatching MAs to augment each node’s IDS.

Finally, in Chapter IV, to bootstrap trust for dynamic group-based information

sharing and access control, we designed a trusted collaboration protocol called TGIS

for dynamic group collaboration and information sharing with mobile devices. TGIS

is a distributed security and collaboration protocol built upon existing trust infras-

tructures in individual organizations that enables trust management for group col-

laboration. We exploit existing organizational identity hierarchies of mobile users to

establish trust between group members and further leverage attribute-based encryp-

tion (ABE) for secure and flexible access control in dynamic group collaboration on

mobile devices. We have implemented and evaluated TGIS on Android phones and

demonstrated its use in different applications.

There are several open research problems that can be pursued following this dis-

sertation.

133

• Location-Based Information Sharing: Mobile devices now offer advanced

capabilities, often with PC-like functionality, and can run third-party applica-

tion software. Due to the convenience of mobile devices that provide many

different services and their all-in-one characteristic, users can deploy them in

meetings and office environments to share confidential information. Therefore,

having a location-based information sharing protocol for mobile devices in dif-

ferent scopes of information sharing is important. Moreover, a user should be

able to delegate his privileges to other users for accessing the shared infor-

mation. The protocol should include location-based encryption to ensure the

shared information can only be accessed in a certain area and access control to

allow information delegation between users. This problem is an effort to protect

the network with distributed authentication and authorization.

• Mobile Malware Detection System: As with the popularity and rapid evo-

lution of mobile devices such as smartphones and tablets, mobile malware has

become a serious threat. With the advanced functionality of mobile devices,

more and more users now use their mobile devices for financial and bank trans-

actions, and even for accessing confidential office data. Consequently, attackers

are motivated to develop new mobile malware to compromise sensitive user in-

formation and breach privacy by tracking individuals’ locations. Therefore, it

is important to have an efficient and effective mobile malware detection system

to classify the malware behavior and propagation vectors, detect the existing

and new-generation mobile malware, and respond in real time to deal with the

infection. The detection system should be lightweight and energy-efficient for

resource-constrained mobile devices.

134

BIBLIOGRAPHY

135

BIBLIOGRAPHY

[1] Alfarez Abdul-Rahman and Stephen Hailes. A distributed trust model. In Pro-
ceedings of the 1997 Workshop on New Security Paradigms, September 1997.

[2] Joseph A. Akinyele, Matthew W. Pagano, Matthew D. Green, Christoph U.
Lehmann, Zachary N.J. Peterson, and Aviel D. Rubin. Securing electronic med-
ical records using attribute-based encryption on mobile devices. In Proceedings
of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices (SPSM 2011), October 2011.

[3] Patrick Albers, Olivier Camp, Jean-Marc Parcher, Bernard Jouga, Ludovic Me,
and Ricardo Puttini. Security in Ad Hoc Networks: a General Intrusion De-
tection Architecture Enhancing Trust Based Approaches. In Proceedings of the
International 1st Workshop on Wireless Information Systems (Wis 2002), April
2002.

[4] Atmel. 8-bit AVR Microcontroller with 128 KBytes In-System Programmable
Flash — ATmega128, ATmega128L.
http://www.atmel.com/dyn/resources/prod documents/doc2467.pdf,
Atmel Co.

[5] Randy Baden, Adam Bender, Neil Spring, Bobby Bhattacharjee, and Daniel
Starin. Persona: an online social network with user-defined privacy. In Proceed-
ings of the ACM Conference of Special Interest Group on Data Communication
(SIGCOMM 2009), August 2009.

[6] Kevin Bauer and Hyunyoung Lee. A distributed authentication scheme for a
wireless sensing system. In Proceedings of the Second International Workshop on
Networked Sensing Systems (INSS 2005), June 2005.

[7] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-
based encryption. In Proceedings of IEEE Symposium Security and Privacy (S&P
2007), May 2007.

[8] Carlo Blundo, Alfredo De Santis, Amir Herzberg, Shay Kutten, Ugo Vaccaro,
and Moti Yung. Perfectly-secure key distribution for dynamic conferences. In
Proceedings on Advances in Cryptology (CRYPTO 1992), August 1992.

136

[9] Dan Boneh and Matthew Franklin. Identity-based encryption from the weil
pairing. In Proceedings of Advances in Cryptology (CRYPTO 2001), August
2001.

[10] Dan Boneh, Eu-Jin Goh, and Xavier Boyen. Hierarchical identity based encryp-
tion with constant size ciphertext. In Proceedings of the 24th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT 2005), May 2005.

[11] Matthew Burnside, Dwaine Clarke, Todd Mills, Srinivas Devadas, and Ronald
Rivest. Proxy-based security protocols in networked mobile devices. In Proceed-
ings of ACM Symposium on Applied Computing (SAC 2002), March 2002.

[12] David W. Carman, Peter S. Kruus, and Brian J. Matt. Constraints and Ap-
proaches for Distributed Sensor Security. Technical Report 00-010, NAI Labs,
Network Associates, Inc., September 2000.

[13] Claude Castelluccia, Nitesh Saxena, and Jeong Hyun Yi. Self-configurable key
pre-distribution in mobile ad-hoc networks. In The 4th International IFIP-TC6
Networking Conference, May 2005.

[14] Sandy Clark, Travis Goodspeed, Perry Metzger, Zachary Wasserman, Kevin Xu,
and Matt Blaze. Why (special agent) johnny (still) can’t encrypt: A security
analysis of the apco project 25 two-way radio system. In Proceedings of the 20th
USENIX Security Symposium (USENIX Security 2011), August 2011.

[15] Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In Proceedings of the 8th IMA International Conference on Cryptography and
Coding, December 2001.

[16] Crossbow. MICA2 - Wireless Measurement System.
http://www.xbow.com/Products/Product pdf files/Wireless pdf/
MICA2 Datasheet.pdf, Crossbow Co.

[17] Crypto++. http://www.eskimo.com/˜weidai/benchmarks.html,
Crypto++ 5.2.1 Benchmarks.

[18] Yvo G. Desmedt and Yair Frankel. Threshold cryptosystems. In Proceedings on
Advances in Cryptology (CRYPTO 1989), August 1989.

[19] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, November 1976.

[20] John R. Douceur. The sybil attack. In Proceedings of the First International
Workshop on Peer-to-Peer Systems (IPTPS 2002), March 2002.

[21] Donald Eastlake and Paul Jones. US Secure Hashing Algorithm 1 (SHA1). IETF
Network Working Group, RFC 3174, September 2001.

137

[22] Saurabh Ganeriwal, Srdjan Capkun, Chih-Chieh Han, and Mani B. Srivastava.
Secure time synchronization service for sensor networks. In Proceedings of the
4th ACM Workshop on Wireless Security (WiSe 2005), March 2005.

[23] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and
David Culler. The nesc language: A holistic approach to networked embedded
systems. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation 2003, June 2003.

[24] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Pro-
ceedings of the 8th International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT 2002), December 2002.

[25] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for ffine-grained access control of encrypted data. In Proceedings of
the 13th ACM Conference on Computer and Communications Security (CCS
2006), October 2006.

[26] Urs Hengartner and Peter Steenkiste. Exploiting hierarchical identity-based en-
cryption for access control to pervasive computing information. In Proceedings
of the 1st IEEE International Conference on Security and Privacy for Emerging
Areas in Communication Networks (SecureComm 2005), September 2005.

[27] Florian Hess. Efficient identity based signature schemes based on pairings. In
Proceedings of the 9th Annual International Workshop on Selected Areas in Cryp-
tography (SAC 2002), August 2002.

[28] Katrin Hoeper and Guang Gong. Bootstrapping security in mobile ad hoc net-
works using identity-based schemes with key revocation. Tech Report CACR
2006-04, Centre for Applied Cryptographic Research, Waterloo, Canada, 2006.

[29] Jean-Pierre Hubaux, Levente Buttyàn, and Srdan Capkun. The quest for secu-
rity in mobile ad hoc networks. In Proceedings of the Second ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2001), Oc-
tober 2001.

[30] Wayne Jansen, Peter Mell, Tom Karygiannis, and Don Marks. Applying Mobile
Agents to Intrusion Detection and Response. In NIST Interim Report (IR) 6416,
October 1999.

[31] Oleg Kachirski and Ratan Guha. Intrusion Detection Using Mobile Agents in
Wireless Ad Hoc Networks. In Proceedings of the IEEE Workshop on Knowledge
Media Networking (KMN 2002), July 2002.

[32] Chris Karlof and David Wagner. Secure routing in wireless sensor networks:
Attacks and countermeasures. In Proceedings of the First IEEE International
Workshop on Sensor Network Protocols and Applications, May 2003.

138

[33] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for
Message Authentication. IETF Network Working Group, RFC 2104, February
1997.

[34] Allison Lewko and Brent Waters. Decentralizing attribute-based encryption. In
Proceedings of the 30th Annual International Conference on Theory and Appli-
cations of Cryptographic Techniques (EUROCRYPT 2011), May 2011.

[35] Donggang Liu, Peng Ning, and Rongfang Li. Establishing pairwise keys in dis-
tributed sensor networks. ACM Transactions on Information and System Secu-
rity (TISSEC), 8(1):41–77, February 2005.

[36] Ling Luo, Rei Safavi-Naini, Joonsang Baek, and Willy Susilo. Self-organised
Group Key Management for Ad Hoc Networks. In Proceedings of the 2006 ACM
Symposium on Information, Computer and Communications Security (ASIACCS
2006), March 2006.

[37] Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigating Routing Misbe-
havior in Mobile Ad Hoc Networks. In Proceedings of the 6th International Con-
ference on Mobile Computing and Networking (MobiCom 2000), August 2000.

[38] Panagiotis Papadimitratos and Zygmunt J. Haas. Secure Routing for Mobile
Ad hoc Networks. In Proceedings of the SCS Communication Networks and
Distributed Systems Modeling and Simulation Conference (CNDS 2002), January
2002.

[39] Taejoon Park and Kang G. Shin. Soft tamper-proofing via program integrity ver-
ification in wireless sensor networks. IEEE Transactions on Mobile Computing,
4(3):297–309, May/June 2005.

[40] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J. D. Tygar.
Spins: Security protocols for sensor networks. In Proceedings of the 7th Inter-
national Conference on Mobile Computing and Networks (MobiCom 2001), July
2001.

[41] Ronald Rivest. The MD5 Message-Digest Algorithm. IETF Network Working
Group, RFC 1321, April 1992.

[42] Serdar Sancak, Erdal Cayirci, Vedat Coskun, and Albert Levi. Sensor wars:
Detecting and defending against spam attacks in tactical adhoc sensor networks.
In 2004 IEEE International Conference on Communications (ICC 2004), June
2004.

[43] Tomas Sander and Christian F. Tschudin. Towards Mobile Cryptography. In
Proceedings of the IEEE Symposium on Security and Privacy, May 1998.

[44] Nitesh Saxena, Gene Tsudik, and Jeong Hyun Yi. Efficient node admission for
short-lived mobile ad hoc networks. In Proceedings of the 13th IEEE Interna-
tional Conference on Network Protocols (ICNP 2005), November 2005.

139

[45] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and Pradeep
Khosla. Scuba: Secure code update by attestation in sensor networks. In Proceed-
ings of the 5th ACM Workshop on Wireless Security (WiSe 2006), September
2006.

[46] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla.
Swatt: Software-based attestation for embedded devices. In Proceedings of the
IEEE Symposium on Security and Privacy, May 2004.

[47] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings
of Advances in Cryptology (CRYPTO 1984), August 1984.

[48] Mark Shaneck, Karthik Mahadevan, Vishal Kher, and Yongdae Kim. Remote
software-based attestation for wireless sensors. In European Workshop on Secu-
rity and Privacy in Ad-hoc and Sensor Networks (ESAS 2005), July 2005.

[49] Wook Shin, Carl A. Gunter, Shinsaku Kiyomoto, Kazuhide Fukushima, and
Toshiaki Tanaka. How to bootstrap security for ad-hoc network: Revisited. In
Proceedings of IFIP International Information Security Conference (SEC 2009),
May 2009.

[50] Andrew B. Smith. An Examination of an Intrusion Detection Architecture for
Wireless Ad Hoc Networks. In Proceedings of the 5th National Colloqium for
Information System Security Education, May 2001.

[51] Kun Sun, Peng Ning, and Cliff Wang. Secure and resilient clock synchronization
in wireless sensor networks. IEEE Journal on Selected Areas in Communications,
24(2):395–408, February 2006.

[52] Arvinderpal S. Wander, Nils Gura, Hans Eberle, Vipul Gupta, and Sheuel-
ing Chang Shantz. Energy analysis of public-key cryptography for wireless sensor
networks. In Proceedings of the Third IEEE International Conference on Perva-
sive Computing and Communications (PERCOM 2005), March 2005.

[53] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for Hash
Functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive,
Report 2004/199, August 2004.

[54] Andre Weimerskirch and Gilles Thonet. A distributed light-weight authentica-
tion model for ad-hoc networks. In Proceedings of the 4th International Confer-
ence on Information Security and Cryptology (ICISC 2001), December 2001.

[55] Bing Wu, Jie Wu, and Yuhong Dongand. An Efficient Group Key Management
Scheme for Mobile Ad Hoc Networks. International Journal of Security and
Networks, 4(1/2):125–134, 2009.

[56] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Achieving secure, scal-
able, and fine-grained data access control in cloud computing. In Proceedings

140

of the 29th IEEE Conference on Information Communications (InfoCom 2010),
March 2010.

[57] Wensheng Zhang, Hui Song, Sencun Zhu, and Guohong Cao. Least privilege and
privilege deprivation: Towards tolerating mobile sink compromises in wireless
sensor networks. In Proceedings of the 6th ACM International Symposium on
Mobile Ad Hoc Networking and Computing, May 2005.

[58] Zhibin Zhou and Dijiang Huang. Efficient and secure data storage operations for
mobile cloud computing. In IACR Cryptology ePrint Archive, 2011.

[59] Sencun Zhu, Sanjeev Setia, and Sushil Jajodia. Leap: Efficient security mech-
anisms for large-scale distributed sensor networks. In Proceedings of the 10th
ACM Conference on Computer and Communications Security (CCS 2003), Oc-
tober 2003.

[60] Sencun Zhu, Sanjeev Setia, Sushil Jajodia, and Peng Ning. An interleaved hop-
by-hop authentication scheme for filtering false data injection in sensor networks.
In IEEE Symposium on Security and Privacy, May 2004.

141

