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CHAPTER I

INTRODUCTION

1.1 Motivation

With a long history, security in computer systems is a major topic in computer sci-

ence. Recently, however, the Digital Revolution has brought significant challenges to the

domain of computer security. Fueled by the multitude of inexpensive high-performance

computing devices and ubiquity of high-speed networks, people have come to rely heavily

on computers for their needs for processing and communicating information.

Inevitable to this megatrend is the risk of using computers for handling sensitive infor-

mation. Computers are now heavily used not only for organizational classified information,

but also for privacy-sensitive information of individuals such as ID/password tokens, bank

account numbers, credit card numbers, or Web browsing history. As this trend is expected

to continue, the risk of exposure of such sensitive information is also increasing.

Exacerbating this situation is the unprecedented level of seriousness of a security breach:

due to the dramatic advancements on storage capacity and communication throughput, a

large amount of sensitive information can be stolen via an extremely small device such as a

high-capacity thumb drive, or can be leaked almost instantly through a broadband network.

Should such a breach occur, it is extremely hard to contain the damage.

In addition, we are now living in a world of hostile computing environments laden with

a plethora of malwares and various forms of online attacks [40, 74]. We have already en-
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tered into the world where one should always presume an unverified or unprotected system

to be hostile or possibly compromised. It is also fairly reasonable to imagine that an op-

erating system, which runs with privilege, had been subverted by malware at some point

in the past and became an agent of the intruder. Unfortunately, the task of detecting such

a breach, let alone fixing it, is a daunting task because the intruder can easily hide itself

using, for example, kernel rootkits.

The new challenges in computer security, however, seem not to be overcome, at least

significantly, by the current solutions on information protection in computer systems. At-

tacks and exploits have become sophisticated and scalable whereas defense against them

has been either a patchwork or an incremental improvement on existing solutions. As

computer systems are getting bigger and more complex, opportunities for new exploits are

increasing but existing defense tactics are mostly reactive. The consequence of a system

compromise is becoming serious but current systems do not provide further protection after

a compromise.

To be sure, there is no shortage of cryptographic algorithms, security policies, and soft-

ware verification tools, all of which are the fundamental building blocks for constructing

a secure system. Cryptography, using solid mathematical results, provides strong methods

for secure delivery and storage of information. Security policies deal with how to specify

rules regarding access control. Verification tools offer systematic solutions to finding soft-

ware defects. Nevertheless, we notice that many real world problems are actually caused

not by the immaturity or insecurity of those fundamentals, but by the way in which they

are put together.

Many real world problems arise because of the insecurity in the trust base assumed by

a given system. Trust base of a system is defined as a collection of hardware and software

that the security depends on and therefore must be trusted unconditionally. Trust base has

the property that its compromise leads to a total collapse of the security of the system.

Therefore, it is highly desirable to have a smaller, simpler trust base in order to minimize
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the chance of a compromise in the trust base.

In this respect, much trouble is caused by the current practice of taking the operating

system in its entirety as the trust base by most applications. This practice has been widely

accepted and rarely challenged because the operating system, which manages hardware re-

sources, has to run with privilege and thus has to be trusted. But today’s operating systems

have become difficult to secure because of their large size and wide interface. We can now

no longer accept the trustworthiness of operating systems unquestioned.

In addition, the privilege granted to the operating system seems excessive in that it is

capable of reading and writing any application data. If malware infects a system and the

operating system is compromised, the malware can essentially spy on everything in the

system. This is because the operating system is under the control of the malware, and the

operating system is given the privilege to access any data in the system.

This privilege is therefore at odds with security concerns for many applications. These

applications are not just the ones that handle highly classified information, but also the ones

that ordinary people use every day. For example, a bank customer making transactions

using a web browser should be concerned about the secrecy of banking information. Also,

a video game developer should be concerned about protecting the game content against

digital piracy. Unfortunately however, there is no way to protect both of the applications

against a malicious operating system determined to intrude and spy on the applications.

In this thesis, we posit a system architecture that separates information protection from

resource management. Information protection, as in data secrecy and integrity, is provided

by a new security protection layer. Resource management, as in making resources avail-

able, is provided by the operating system in the traditional sense. The new protection layer

is made more privileged than the operating system so that an untrusted operating system

cannot undermine the secrecy and integrity of information. This separation allows a user

application to selectively take its trust base according to its own security need. For its need

for secrecy and integrity, the user application only has to trust the new security layer, not
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the operating system.

This thesis demonstrates the feasibility and effectiveness of separating protection from

management by implementing our design in a real system. We explore the protection model

based on cryptography and extension on paged memory, an implementation of the protec-

tion model using a virtual machine monitor, and the impact of the protection on application

programming and operating system. This thesis concludes that the information secrecy

protection can be effectively separated out from the purview of traditional operating sys-

tems.

1.2 A case for separating information protection from management

Making a case for separating information protection from management starts with this

observation: user applications, not operating systems, are the ultimate consumer of infor-

mation. When we consider computing as information processing, user applications are the

ones that draw meanings from data, perform computations, and produce results. On the

other hand, operating systems, although managing resources that contain the information,

do not need the actual information in the resources.

However, current operating systems are capable of accessing any information because

of the way the privilege is given to the operating systems. Therefore, when it comes to

the secrecy or integrity of applications’ data, applications just have to trust the operating

systems.

Given the insecurity in today’s operating systems, we need a new protection paradigm

that reflects the abovementioned observation: instead of trusting the operating systems,

we remove the need to trust by making the operating systems unable to access application

information.

This can be made possible by placing a new security layer running with higher privi-

lege than the operating system. This layer protects user applications by cryptographically

securing the information contained in the resources. The operating system manages the re-
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Figure 1.1: A new layer of application protection system inserted between hardware and operating
system. The dark shade indicates the components that are not included in the trust
base of application B. In the conventional model, the whole operating system must be
trusted whereas the operating system does not need to be trusted anymore with the new
model. In the new model, the application B only has to trust the new protection system.

sources as usual, but applications do not have to trust the operating system for data secrecy

and integrity.

Figure 1.1 shows the computer system structure and its trust relationships. The figure

contrasts the traditional model, shown on the left, with the new model, on the right, in which

a new security layer - labeled as SP3– is inserted between operating system and hardware.

The dark shaded units are the components that are not part of the trust base of application

B. In the traditional model, application B has to trust the operating system. Due to the

isolation provided by the operating system, the other applications are excluded in the trust

base of application B. In the new model with the SP3 layer, the trust base of application

B now excludes the entire operating system. The dotted line wrapping the applications

signifies that these applications are protected directly by the SP3 layer. In this thesis work,

information secrecy protection is provided by a system called SP3, hence the name SP3 for

the layer.

It is important to note that the new layer only protects the secrecy and integrity of

5



the information and not the availability of the resource. This means that if availability

guarantee is part of the application’s security requirements, then the application still has to

trust the operating system.

It should be emphasized that providing availability to the applications is in fact the

raison d’etre of the operating system. We know that the original purpose of an operating

system is to manage hardware resources and make them available to user applications. The

operating system absorbs the differences in the underlying hardware and provides applica-

tion programs a consistent execution environment. The operating system also multiplexes

hardware resources, i.e., CPU time and memory, to multiple application programs.

Security properties Traditional model SP3

Information Secrecy Operating system SP3

Resource Availability Operating system Operating system

Table 1.1: Security properties of user applications and the system entities that should be trusted.

Table 1.1 summarizes the security properties sought by user applications and the corre-

sponding system entity that is responsible, hence must be trusted, for each of the properties.

In the traditional model, the operating system should always be trusted by user applications.

This means that if the operating system is compromised, the secrecy and integrity of an ap-

plication cannot be protected. With SP3, applications trust the operating system only for

resource availability. For information secrecy, applications trust SP3. This means that even

if the operating system is compromised, applications still have secrecy protection.

In this thesis, we show that the SP3 can be implemented as a small and efficient layer, af-

firming that the benefit of separating protection from management outweighs the overhead

of the new layer. We show that SP3 can be implemented either by hardware modification

or by extending a hypervisor, which is significantly smaller than conventional operating

systems, while incurring little overhead.

In a sense, the removal of the operating system from the trust base of user applications

can be likened to the removal of computer network from the trust base of end hosts. In
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Figure 1.2: The reduction in the trust base assumed by applications as the computing environment
evolves. In the past, when computers were connected with trusted medium, trust base
of applications A and B included the network and the hosts. In the present, A and B
trust their host computers, but not the network. In the future, A and B do not even trust
the host computers, which is made possible by SP3.

the old days before the advent of network security, it made sense to just assume comput-

ers were connected with a trusted medium. Therefore, under this assumption, programs

did not have to secure their communication. Programs such as telnet and rsh are such

examples. When we cannot trust the medium any more, as is our current computing en-

vironment, we have to secure the host-to-host communication by establishing connections

using cryptography-based solutions such as ssh. In effect, the use of cryptography removes

the computer network from the trust base of end hosts. However, the end applications in

each host still have to trust their operating systems. If we cannot trust the operating systems

any more, as is happening now, we have to secure the applications by removing the operat-

ing system from the trust base of applications. SP3 can be considered as a step-forward in

this direction.

To illustrate this point, Figure 1.2 shows the trust base that has to be assumed by appli-

cations A and B. In the past, shown on the left, the applications had to assume the network

and the hosts are trusted. This assumption was justified at that time given the size, complex-
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ity, and manageability of the network. In the present day, shown in the middle, the network

is removed from the trust base of the applications. This is made possible by the tools that

can establish secure connections. In the future, shown on the right, the applications do not

have to trust their operating systems with the help of SP3, which can remove the operating

system from the trust base of the applications.

1.3 Comparison with related systems

The phrase ‘separation of protection from management’ is already a familiar expres-

sion in the systems software literature. One of the uses of the phrase has to do with 90’s

microkernel research, which promoted modular and layered operating system kernel de-

sign [7, 37, 68]. In this design, a traditional monolithic kernel is replaced by a much leaner

microkernel, which only implements primitive abstractions such as address space and inter-

process communication. Higher-level constructs such as memory manager, file system, and

schedulers then form a layer that runs on top of the microkernel. One of the motivations

of microkernels was the potential benefits resulting from the fact that a microkernel en-

ables the use of specialized versions of operating systems. This is because the specifics of

management algorithms can be separated out from the core microkernel. For instance, the

Exokernel [37] is capable of running multiple custom ‘library operating systems’ on top of

the microkernel.

The meaning of ‘separation of protection from management’ in the context of micro-

kernels is therefore very different from the one argued for in this thesis. In the microkernel,

protection really means ensuring safety in allocating and reclaiming resources. Microker-

nel has to retain the power to always revoke and reclaim resources allocated to the library

operating systems. The general management policies are separated out and implemented

by library operating systems, whereas the ability to safely multiplex underlying resources

is retained and protected in the microkernel. On the other hand, our meaning of protection

is about ensuring information secrecy and integrity.
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There are two closely related systems that are in line with the theme of this thesis and

here we compare them with our SP3 system. One is Overshadow [28] of VMware [97,107]

and the other is Xom/Xomos [66, 67]. Overshadow is a hypervisor-based security solution

that can protect the secrecy and integrity of user applications without modifications. Xom

is a secure hardware architecture that can execute encrypted code in the memory. Xomos

is the untrusted operating system that runs on top of the Xom architecture. SP3 shares a

general objective with these systems, but differs in specific design choices thus resulting in

a different feature set.

Feature SP3 Overshadow Xomos
1 Secrecy protection against untrusted OS X X X
2 Integrity protection against untrusted OS X X
3 Feasibility of hypervisor-based solution X X
4 Feasibility of hardware-only solution X X
5 Integrated key management X X
6 API/ABI for applications X X
7 Support for unmodified OS/applications X
8 Support for unmodified compiler/linker X X

Table 1.2: Comparison of SP3 with related systems.

Table 1.2 summarizes the features and characteristics of the three systems. The differ-

ences between Overshadow and SP3 are caused by one differing design goal: Overshadow

targets unmodified operating systems and applications to retrofit security to existing appli-

cations, whereas SP3 provides a secure execution environment that applications can exploit

by programming explicitly. This results in the differences in lines 6 and 7. Xom/Xomos

is inherently hardware-oriented; thus it requires special hardware (3,4), a special operating

system (7), and a special compiler (8).

1.4 Thesis contributions

This thesis demonstrates the feasibility and effectiveness of creating a new secrecy

protection layer for applications .The contributions of the thesis are summarized as follows.
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• Design of a page-granular memory secrecy protection system: We proposed a new

notion of protection domain for information secrecy. User-level applications execut-

ing within their protection domains can conceal their memory contents on a per-page

basis against the host operating system. An entity more privileged than the operating

system implements and enforces the protection so that the conventional operating

system can be removed from the trusted base of the user applications regarding in-

formation secrecy.

• Efficient realization of the protection with a hypervisor: We realized the protection

system by modifying a hypervisor. The underlying hardware is abstractly extended

so that the hardware directly supports the protection system, and then the extended

hardware is emulated using a hypervisor. To enhance performance, we implemented

optimizations that reduce costly cryptographic operations.

• Thorough reexamination of system software constructs under the secrecy protection:

We investigated the implication of the new secrecy protection on the system software

and application programming environment. A wide range of software constructs has

been constructed under the implicit assumption of the trusted operating system, and

therefore must be revisited with the new secrecy protection system. We studied and

resolved issues with the application programming environment and the traditional

operating system implementation.

• Using the protection to guard multimedia contents and media player: We tackled the

problem of securing a trusted media player program that is to run on the computer

of an untrusted end-user. Using the application secrecy protection, our system can

secure the input multimedia file, decoded multimedia output, and the media player

program itself from reverse-engineering. Our system presents a practical and flexible

system solution for digital rights management that can satisfy both the copyright

holders and the end-users.
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1.5 Scope and limitations

In this section, we delineate the scope of the dissertation and clarify the limitations of

the thesis work.

1.5.1 Scope

First, this thesis primarily focuses on the architecture side of system software organi-

zation for information secrecy protection. This means that we do not delve heavily into

cryptography primitives or access control methodologies. Instead, we treat them as our

building blocks and we take the usual assumption that they are secure. Among the secu-

rity properties, providing protections for integrity and availability are left out of the scope.

There are already many integrity protection solutions and implementing a mechanism for

hard-integrity protection is rather straightforward. We consider that providing availability

is the purpose of the operating system, and separating availability part from the operating

system beats our original purpose. Therefore, the problem of providing availability, such

as guaranteed quality of system services, is out of the scope of the thesis.

Second, this thesis mainly engages in providing mechanisms for reducing trust base by

defining hardware or software interfaces. We do not study the subject of how to verify,

establish, and maintain trust relationships. In the same vein, we do not study policy-side

issues such as identifying the criteria by which the trust base can separated. Analyzing

and controlling information flow in software is an important but not a pertinent topic in the

thesis.

Third, this thesis concentrates on memory resources for information secrecy protec-

tion. We do not provide comprehensive secrecy protection to other resources such as file

storage or network. Although our system can provide transparent secrecy protection to the

user data of stored files, one should use separate secure file systems if he wants to secure

the file system metadata. For secure network communication, one has to rely on secure

communication protocols, which is easy to do.
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Last, this thesis only provides means to user application programs to protect themselves.

We do not attempt to provide an external mechanism to secure originally insecure user

applications. Finding bugs and vulnerabilities in software is important but irrelevant to the

theme of the thesis. This thesis is not about how to defend against specific types of threat

or to resolve specific security vulnerabilities.

1.5.2 Limitations

The limitations of the thesis work largely originate from our design decisions on con-

structing a new protection system that allows untrusted operating system. There are two

fairly independent design spectrums from which we have to make trade-off decisions that

can impact the size and complexity of the new protection system itself: one is the feature

set size of the new protection system, and the other one is the level of intrusion of the pro-

tection system to the existing system. We preferred and settled on the design choices that

can yield a small, neat, and simple system. For the former, we focus on memory secrecy

protection, reducing the size of the trust base. For the latter, we sacrifice a small degree of

transparency, simplifying the logic of the trust base. As a result of such design decisions,

the thesis work has the following limitations.

First, our current implementation lacks an active-form of information integrity pro-

tection. Active-form of integrity protection means that the protection system proactively

checks the hash-sum of the data before use and enforces rules that prevent unauthorized

modifications on the data. Implementing such a system is relatively easy and straightfor-

ward. We sketch a design of integrity protection in a section of Chapter VI. Note that a

passive-form of information integrity protection is provided as a side-effect of information

secrecy protection. In the current implementation, any corruption – even just one bit – on

a protected memory page results in the corruption of the entire page due to the avalanche

effect of block cipher, leading to a crash or failure of the program execution.

Second, our information secrecy protection is limited to the memory resources. Al-
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though securing memory has a far-reaching effect, such as transforming conventional file

system into encrypting file system, other system resources such as network I/O must be se-

cured using conventional secure communication protocols. Applications that require more

than a simple encrypting file system must use other secure file system implementations.

Third, largely unstudied is the potential security issues with malicious operating sys-

tems leveraging the fact that user applications fundamentally have to rely on the operating

system for core services such as timer, synchronization, or identifier management. By mis-

representing such services, protected applications can be coaxed to leak some information

to the untrusted operating system.

Last, we require source code modifications on traditional operating systems and appli-

cations written previously under the assumption of trusted operating system. Although we

consider that the exposure of the protection system is necessary and the intrusion to exist-

ing systems is minimal, there could be cases where source code modification is impossible.

For example, someone may want to execute a legacy application binary compiled from the

source code written with trusted operating system assumption, and he may not possess the

source code. However, we observe that the people who have interest in protecting their

application programs usually have access to the application source codes. Therefore, we

believe the sacrifice in transparency would not have great implication in the practicality of

our solution.

1.6 Literature survey on computer system security

Computer security is a very broad term, encompassing many domains of security re-

searches. To better illuminate where this thesis stands, this section is devoted to a literature

survey on relevant security research domains.
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1.6.1 Theory – building blocks of a secure system

Cryptography is the first and foremost building block of constructing a secure system.

Usually, programmers treat cryptography as a set of given functions from some standards

such as AES [76], and that approach is often sufficient. Aside from cryptography, computer

security theory includes the fields of protection model, access control, formal method, and

code obfuscation. For example, Harrison [48] defined a theoretical model of protection in

operating system and discussed the safety problem of protection systems. Role-Based Ac-

cess Control (RBAC) [38] is an example that represents the results on the theory of access

control. Spi Calculus [6] is a way to formally verify security protocols. Code obfuscation

refers to a systematic technique that intentionally makes it very hard for a reader to infer

the program logic from the source code. Theoreticians investigated on the limits on the ef-

fectiveness of obfuscation: Barak [11] showed the impossibility of obfuscating a program.

In [9], it is proved that de-obfuscation problem is in NP.

This thesis does not investigate any security theory listed above. Rather, like many

other systems work, we rely on the result of such theoretical works and use them to build a

secure system.

1.6.2 Classic – protection rings

The concept of protection rings has been the lynchpin of the fundamental facility for

enforcing protection in modern computer systems. For example, the usual division of ker-

nel and user relies on the protection rings of a processor with varying privileges. Lamp-

son [65] laid out the first framework for protection and access control in computer systems.

Saltzer’s study on the protection and sharing in Multics [86] introduces the principle of the

least privilege. Saltzer also helped to shape the modern structure of protection mechanisms

in computing systems [87]. Recently, attempts were made to provide fine-grained pro-

tection to the kernel by utilizing unused protection rings and segmentation facility of x86

architecture, which can be found in the works of Chiueh [29] and Witchel [109]. Another
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important use of protection ring other than user/kernel separation is to insert the layer of

hypervisor below the operating system.

This thesis utilizes the protection rings in order to construct the home layer of the new

protection system that must be more privileged than the operating system. However, the

secrecy protection implemented by the layer creates a protection domain that is orthogonal

to the existing protection ring concept.

1.6.3 Trust – root of belief

As reflected from Thompson’s Turing Award lecture [102], any software system may

just have to unconditionally trust some parts of hardware, software, compiler, and ulti-

mately the people who create them as prerequisite. The Root of Trust therefore refers to

the seminal trust base from which other trust relationships are established.

Yee’s work on implementation of a secure computing platform [111, 112] explored

the use of a secure coprocessor hardware, which serves as the Root of Trust, for realiz-

ing a trusted computing platform. Trusted Computing Group’s Trusted Platform Module

(TPM) [103] is a standardized Root of Trust developed by the computer industry. TPM is

capable of establishing and managing trust among computer hardware and software, and

is typically used for secure bootstrapping. Other industry efforts in this direction includes

Intel’s LaGrande [55] and Microsoft’s NGSCB [72]. For a notable example of using TPM

for secure bootstrapping, Kauer’s OSLO [60] implemented a practical secure boot loader

which improves security of Trusted Computing.

The trust base of our solution includes the hardware and the protection layer implem-

tation (the hypervisor). Therefore, they must be securely bootstrapped and we can utilize

TPM and OSLO to achieve this. However, we do not have to rely on TPM or Trusted

Computing-style integrity verification to enforce the information secrecy protection.

Reducing size and complexity of Trusted Computing Base (TCB) are the themes of

Hohmuth’s work [51] and Singaravelu’s AppCore [96]. Hohmuth precisely defines the no-
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tion of trust in system software with respect to different security properties that the trusted

system can guarantee, clarifying what it means by ‘trusted’ or ‘untrusted’ depending on

the security property. These works are done by the people of L4 research community in

Europe. Specifically, Hermann Härtig utilized his early L4Linux work [50] to realize his

design of reduced TCB, the Nizza [49] architecture. The Nizza architecture influenced

the Hohmuth and Singarevelu’s works. Singarevelu’s AppCore [96] takes one step further

from just reducing TCB of operating system to extracting security-sensitive portions of

applications, called AppCore.

IBM’s PERSEUS system architecture [79] is conceptually similar to Nizza security

architecture. The PERSEUS is strongly motivated by observing why direct applications and

using secure modules alone are bound to fail without properly coordinated system security

structure. It assesses practicality of the system in terms of the usability of the system, which

is directly related to the ability of having secure system without much modification on the

implementation or interface.

Compared to these works for reducing TCB, our system takes a fundamentally different

approach: instead of changing the internal structure of the kernel, we create a new protec-

tion layer that is orthogonal to the existing system constructs, therefore, inflicting minimal

changes to the internal structure.

Establishing a trusted path to an end-user is also important in order to guard against

Trojan horses. To secure the trusted path of monitor screen, a trusted window system [94]

is implemented on EROS operating system that reserves a portion of display for direct

communication with the end-user.

Although our system does not address the trusted path problem directly, our system can

easily create a trusted path to the end-user by means of an encryption-enabled I/O device,

which is demonstrated in Chapter V.
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1.6.4 Integrity – tamper-proofing software contents

It is important to protect the integrity of software from potential malicious modifica-

tion attempts, and to do so requires tamper-proofing techniques for software contents in

both hardware level and software level. In the hardware level integrity protection, Coll-

berg [30, 31] studied various strategies for providing hardware-based software integrity

protection. Secure processors – processors with cryptography-enhanced hardware - usually

have the functionality for checking the cryptographic hash of the main memory contents.

MIT’s Cerium [27] and Kgil’s ChipLock [61] are the instances of such secure processor

architecture. Lie’s XOM/XOMOS [66, 67] can also be considered as the first secure pro-

cessor architecture that can host a fully untrusted operating system, along with physical

tamper-proof and encryption of main memory contents. Suh’s AEGIS architecture [98,99]

details how to physically provide main memory integrity protection.

In the software-level integrity protection, privileged software in a computer system can

implement software-based integrity verification and enforcement mechanisms. For exam-

ple, Seshadri’s Pinoeer architecture [91] and Park’s PIV architecture [77] provide solutions

to remotely verify the software contents and to enforce integrity of software codes.

In this thesis, physical memory integrity protection is largely out of the scope. However,

physical tamper-proof techniques must be employed if we need to guard against physical

attacks on the main memory or processor hardware. Strict-form of software-level integrity

protection is also not in the scope of this thesis, and left as a future work.

1.6.5 Isolation – containing damages

A very effective security strategy is to put in place an isolation scheme that prevents a

failure or a compromise in a system from damaging others. For example, Goldberg [45]

demonstrates a way to confine untrusted helper applications such as plug-in modules. Inter-

posing on system calls, Mitchem’s kernel “hypervisor” [73] isolates and contains damages.

Sekar [89] proposed a software isolation scheme called “model-carrying code” that can
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safely execute untrusted applications.

Our system differs in several ways from the abovementioned isolation schemes. First,

our system solves different problem: our goal is to protect trusted applications against

untrusted operating system, which is basically the inversion of the goal of the traditional

isolation schemes. Second, our system does not restrict the functional capability of applica-

tions or operating systems whereas traditional isolation schemes try to confine applications.

Third, our system allows applications to run within the full context of the operating sys-

tem, but isolation schemes tend to put applications in a virtual environment that is limited

in many ways.

Partitioning a program in terms of importance is another effective way to isolate critical

and privileged code. For example, Brumley’s Privtran [23] is an automated tool that can

partition a program into sensitive or important parts and the rests. It uses annotations on

the source code specified by programmers.

User applications running in our system can potentially benefit from the techniques

for tracking down the use of sensitive information in a program because in our system,

applications have to identify and annotate the memory to share with the operating system.

Recently introduced late-launch feature in the commodity processor enables running a

completely isolated instance of a verified piece of code in parallel with an already executing

host operating system. For instance, McCune’s Flicker [71] presents an infrastructure for

executing security sensitive code in complete isolation while trusting very small code.

Our system significantly differs from Flicker since our system does not create a sepa-

rate, isolated machine instance. Instead, our system allows a protected application running

as a legitimate process of a host operating system.

1.6.6 Robustness – reducing vulnerability and promoting safety

Many bugs and defects affecting information security can be detected by analyzing

information flow. Myers [75] presented a decentralized model for controlling information
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flow in systems with mutual distrust and decentralized authority. Later, Zdancewic [114]

presented a technique, called secure program partitioning, for protecting confidential data

in distributed systems containing mutually untrusted hosts by annotating programs with

security types that constrain information flow.

Due to the importance of the code running in the kernel space, many efforts are devoted

to produce quality kernel code. For example, Petroni designed a system [78] that automati-

cally detect kernel control-flow attacks by dynamically monitoring operating system kernel

integrity, which based on a property called state-based control-flow integrity.

Many efforts are made to improve the performance and accuracy of bug-finding tools.

For recent instances, EXE [26] took advantages of both static and dynamic analysis. Kremenek’s

code analysis tool [64] infers specification in the code. Qui’s application level toolkit [83]

helps enhance robustness of application code against Denial-of-Service (DoS) attacks by

systematically injecting protection mechanisms into the code.

To reduce the chance of writing a defective code, safe programming languages and

practices are promoted. Cyclone project [58, 100], for example, enhances C language to

introduce strong type-safety in writing systems code. Microsoft’s open source Singularity

operating system [53] relies entirely on the safe language the operating system is written

in.

As a security extension to Dynamo [10] and RIO [20] dynamic translation and instru-

mentation framework, Kiriansky proposed a way to safeguard the path a program chooses

at runtime, called program shepherding [63].

Although finding bugs and vulnerabilities is not among the goals of this thesis research,

our system implementation can greatly benefit from the aforementioned techniques for

enhancing robustness, resulting in a more secure and trustworthy trust base.
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1.6.7 Tactic – defense against specific threats

Exploiting buffer overflow has been a major technique that allows intruder to run a for-

eign code in a system. By overflowing the buffer in the process’s stack – stack smashing –

attacker can override the return address of the function to alter the victim process’s execu-

tion path. Defense against stack smashing attack [12] has been proposed. Recent Intel’s NX

flag extension [56] prevents primitive forms of stack smashing attacks. An address random-

ization technique that lowers the success rate of buffer overflow attacks, called Address-

Space Layout Randomization (ASLR), further provides defense against buffer overflow

attacks, despite its own limitations [92].

Hiding information without help from higher-level constructs has both theoretical and

practical interests. Linn [69] proposed obfuscation of executable code to improve resistance

to static disassembly. Popov used signals to facilitate binary obfuscation [81]. Tsafrir [104]

discusses a particular exploit in which one can monopolize CPU share without super-user

privileges.

File systems draw particular attentions for security research due to the fact that the file

systems deal with massive amount of persistent data storages. There are many versions of

secure file system. For example, early classical encryption file systems include Zadok’s

Cryptfs [113] and Blaze’s crypto file system [18]. Zhao’s SVFS [115] uses hypervisor to

enable an untrusted file storage.

1.6.8 Makeover – new operating system designs

Because of the perceived insecurity of the major operating systems and the difficulties

of retrofitting current operating systems [57], many attempts have been made to overhaul

the operating system design and start from the scratch to build secure operating systems.

Although not directly motivated by the security concerns, microkernels gave us insights

on what is fundamental and what is incidental in operating systems. Mach microkernel is

introduced in Accetta’s 1986 paper [7]. Dividing the process abstraction into two orthog-
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onal abstractions of task and thread is among the novelties of Mach. Exokernel [37] is a

microkernel architecture that focuses on safe and secure multiplexing of resource among

application-level library operating systems. Liedke’s L4 [68] gives insights about what

operating system constructs are fundamental. In this work, Liedke derived a minimal and

complete set of functionalities that can be used to construct any operating system features.

Ford [39] discusses the construction of recursively structured microkernel.

Attempts to create a new operating system with fresh design have been made consis-

tently. Operating systems such as SPIN [17] and EROS [93, 95] were designed to support

high-degree of extensibility along with infrastructures for run-time verification. Asbestos

operating system [36] uses label for system calls to facilitate control of information across

system level. Microsoft Singularity project [53] is specifically designed with security and

safety in mind, heavily relying on safe language.

One use is to remove operating system from the trusted computing base. Litty’s Mani-

tou [70] modifies Xen to provide memory integrity protection to users.

1.6.9 Virtualization – one ring to bring them all

Recent resurgence of virtualization has tremendous impact on the system security re-

search because hypervisors serve as an efficient and non-intrusive implementation point for

many security ideas. For example, Ta-Min’s Proxos [101] allows applications to configure

their trust in the operating system by partitioning the system call interface into trusted and

untrusted components. Proxos uses hypervisor (Xen) to host two operating systems; one

is to run untrusted operating system and an application, and the other one is to run trusted

operating system to which the application request sensitive services. Customizing trusted

computing standards has been explored in Terra [43]. vTPM work [16] of IBM virtualizes

the TPM module in a virtual machine monitor.

In the Potemkin virtual honeyfarm system [106], Vrable and Savage considered that

the rapid evolution of large-scale worms, viruses and botnets have made Internet malware
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a pressing concern. Such infections are at the root of modern scourges including DDoS

extortion, on-line identity theft, SPAM, phishing, and piracy. They have built a honeyfarm

system based on virtual machines to emulate over 64,000 internet honeypots.

Chen’s Overshadow [28] uses a hypervisor to provide security to user-level applications

without trusting the operating system. Overshadow achieves this without modifications on

operating system and user-level applications. Ports [82] further discusses future direction

and outlook in the context of Overshadow project. It details the challenges and require-

ments for the application in the context of untrusted operating system.

Hypervisors have been used to implement fault-tolerance schemes. Bressound [19]

built a fault-tolerant system based on a hypervisor. Based on the Xen replication, Cully’s

Remus system [34] implements a high-availability system targeted for disaster recovery so-

lutions. Remus achieves high performance and low latency by using a speculative method.

1.7 Thesis outline

Chapter II proposes the Software-Privacy Preserving Platform (SP3 ) for secrecy pro-

tection. The SP3 protection model is defined as an extension made to the hardware archi-

tecture of an abstract CPU with a paging unit. This includes the core design rationales,

application execution scenarios, and implementation alternatives.

Chapter III presents a hypervisor-based implementation of the SP3 protection model.

The extended architecture is efficiently emulated by the modified hypervisor which is ex-

ecuting between operating system and hardware. We implement the system by modifying

the x86 architecture, Xen hypervisor, and the Linux kernel. Evaluation results show that

the hypervisor-based implementation incurs small performance overhead.

Chapter IV deals with the impact of SP3 on the programming environment of both

application and operating system. We detail the implications of the SP3 memory access

rules on the application programming, building and loading. We address these application-

level issues by code annotation, object file extension and binary loader modification. We
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then discuss operating system issues in memory manager and signal in an SP3 environment.

We address these issues by modifying the Linux kernel.

Chapter V presents an important use case of SP3: a multimedia player that enforces

copy protection. Utilizing SP3 protection, rights-enforced multimedia contents are secured.

We also demonstrate how SP3 can secure the codec and media player itself, the weakest

point of the rights-management infrastructure.

Chapter VI concludes this thesis.
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CHAPTER II

INFORMATION SECRECY AND SP3 ARCHITECTURE

2.1 Introduction

Privacy is perhaps the most important security concern for many user-level applica-

tions; users would prefer to crash their applications, rather than revealing their private data.

This is because exposing sensitive information is considered worse than failing to execute

applications. In fact, except for safety-critical real-time systems, most applications and

users can cope with execution failures with various recovery and backup strategies. For

instance, a crashed word processor program can recover from a backup copy, or a discon-

nected ssh client can simply reconnect. However, the exposure of sensitive information in

these applications is considered far worse than their execution failure. The word file may

contain classified or confidential information, and the exposure of the private key of the

ssh client amounts to a compromise of the entire communication.

Privacy1 protection for applications is traditionally provided by operating systems through

process isolation. Ironically, however, operating systems themselves can be the biggest

threat to the applications; a modern operating system is very difficult to secure because

of its extreme size and wide interface. Once compromised, the operating system becomes

a powerful weapon for thieves of applications’ sensitive information. We argue that this

1In this thesis, ‘privacy’, ‘secrecy’, and ‘confidentiality’ refer to the same security property and are thus
interchangeable.
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problem can be solved by devising a new application protection system that is not under

the operating system’s control and can thus directly secure the information of applications.

Even if the operating system were compromised, the protection system can prevent the

exposure of application information. The worst an attacker can do is to crash the system,

thus causing the applications to fail to execute, which is usually less harmful than exposing

privacy information.

Designing such a protection system, however, is a difficult task, especially if it is to

be practical. Any practical protection system must be simple, general and easy to use.

Moreover, to be practical, a protection system should require minimal or no changes to

the software environment so that it can be applied or deployed easily to existing systems.

We have designed a protection system that can directly secure the application information.

This protection system, which we call Software-Privacy Preserving Platform (SP3), pro-

vides a simple and general interface, requires only minimal changes to existing systems,

and creates an easy-to-deploy trust base. We introduce software-privacy as a new protec-

tion measure that SP3 guarantees to applications by encrypting the contents of memory.

SP3 guarantees that a correctly-written application can protect the secrecy of its memory

contents.

SP3 chooses the information contained in the memory, not the memory itself, as the

target of protection. In addition, it uses a memory page as the unit of protection, which is

also the unit of memory management. These design choices make it easy to separate pro-

tection from management without sacrificing flexibility and generality. SP3 ensures that

an operating system sees only encrypted images of the pages that are private to applica-

tions. The operating system, which is usually indifferent to the user’s memory content, is

not obstructed in managing memory with these encrypted images; that is, protection is “or-

thogonal” to management. SP3 achieves a high degree of protection orthogonality, which

also allows data secrecy to be an intrinsic property of operating system services. For exam-

ple, SP3 turns an unmodified regular file system into a secure one that can write encrypted
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data to disk.

SP3 extends the conventional paging system, so an application process sees different

memory contents in its virtual address space depending on its execution context. SP3 guar-

antees the correctness and safety of the protection mechanism by carefully controlling the

keys used to encrypt memory pages: the actual encryption keys are hidden from the op-

erating system. The operating system is only allowed to associate each page with a key.

Permissions to the keys are completely controlled by individual applications, not by the

operating system.

2.2 Motivation

We motivate this work by reviewing problems of current practice in protecting applica-

tion information (Section 2.2.1), and then discussing challenges in creating a new protec-

tion system for existing computing systems (Section 2.2.2).

2.2.1 Problem

The operating system is responsible for providing an execution environment for user ap-

plications. It also provides data privacy of applications through process isolation in which

each process is protected from other processes. This requires the applications to trust the

operating system, and therefore, the system security depends on how secure the operating

system is. The operating system is thus strongly secured and the operating system kernel

runs with privilege, wielding unlimited power.

Unfortunately, from the perspective of user applications, a large part of operating sys-

tem code must be trusted. Moreover, many parts of the trust base, such as core kernel and

device drivers, run with privilege. For these reasons, relying on the operating system for

application data secrecy has the following problems.

First, there is no effective second-line of defense that applications can resort to in case

the operating system is compromised. Many applications need to protect sensitive infor-
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mation, but once an attacker seizes control of the operating system, it is very easy for her to

steal information from the application. Any effort to protect the information will be futile

as the attacker can exploit the operating system’s omnipotence to subvert, reverse-engineer,

or simply disable the protection mechanism.

Second, it is very difficult to guarantee the operating system’s trustworthiness. Veri-

fying the correctness of an operating system has become intractable as its size and func-

tionality continuously grow to meet the increasing demand for more functionalities and

features. Furthermore, the operating system is increasingly built with components from

diverse sources.

Third, many negative social and technical side effects arise when someone forces this

type of protection by, for instance, using trusted computing. The biggest problem of the

current trusted computing approach is that it severely limits the users’ freedom to choose

and install operating systems or programs, regardless of whether they are certified or not.

These problems can be solved by a new protection system that is not under the op-

erating system’s control and that can directly secure the applications’ information. This

protection system can always guarantee the data privacy of applications even when the op-

erating system is compromised. Therefore, it serves as an effective second-line of defense

for applications. For the same reason, the trustworthiness of an operating system does

not have to be verified; a malicious or faulty operating system may fail the execution of

applications, but it cannot steal or divulge the applications’ information. Since the new

protection system runs independently, users can choose any operating system and program

to run without risking the exposure of sensitive information.

2.2.2 Challenge

In general, creating a practical protection system is a challenging task. A careful design

is required to create a protection system that is simple, general and easy to use. More-

over, to create a protection system that directly protects the information of applications, we
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must overcome the following two challenges. First, we must preserve the operating sys-

tem’s usual management power, incurring minimal changes to existing systems. The new

protection system may restrict the operating system by enforcing certain rules and hence

preventing the operating system from performing operations against the rules. However,

the restrictions should not obstruct the operating system from performing legitimate man-

agement jobs. Moreover, an existing operating system may not be compatible with the

new rules, thus requiring adaptation. The adaptation should entail minimal changes to the

operating system. Second, we must find an implementation that is small and simple to

verify. With the new protection, the operating system can be verified less stringently, since

applications can still be protected even when the operating system fails (as a result of its

compromise). However, the mechanism that implements the new protection should be fully

trusted, and hence, the correctness of the implemented protection is critical to the security

of the entire system.

2.3 Design objectives

Practicality is our primary concern in creating a new protection system. It is usually

difficult to design a protection system since its usability depends greatly on the simplicity

and generality of the protection. Many past and current protection systems with complex

interfaces failed to survive, or are simply not used. For instance, although it provides more

features and fine-grained control, segmentation has not been chosen for memory protection

over the simpler, easier-to-use paging system. A protection system must, therefore, be

simple and general so that its benefits can outweigh the accompanying inconvenience and

overhead.

We have another practicality-related goal: the protection system must be easy to apply

to existing systems. Any required modifications to an existing system must be ‘orthogonal’

extensions so that the system may preserve its original function and structure, and the

extensions should not restrict the users.
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Therefore, we take simplicity, generality and orthogonality as our design objectives,

which have led us to the following design principles:

• Choose a memory page as the unit of protection: Memory is the prime resource in

computing system. Many other resources are mapped to memory. The protection

can be generalized if we can provide protection for memory. In addition, memory

page is the fundamental unit of memory management. Many other operating system

constructs, such as file systems, treat the page as their internal or external unit of

resource abstraction. We can, therefore, achieve a simple and orthogonal interface

by using a memory page as the unit of protection.

• Protect information instead of resource: As the target of protection, we choose the

information stored in a page rather than the page itself, enhancing the generality and

orthogonality of protection. This is achieved by encrypting the content of the page.

By allowing an operating system full accesses (i.e., read/write/relocate) to the pages

in their encrypted form, the operating system is not obstructed in managing memory

and address space, yet the information stored in the pages is protected.

• Avoid using operating system abstractions: Operating system abstractions, such as

process and address space, are artificial. At first, it seems easy and simple to use the

process and address space as the principal and perimeter of the protection. However,

relying on them imposes limitations unwittingly and actually hurts the simplicity and

generality of protection. For instance, inside of the kernel, the notion of address space

becomes imprecise. The process abstraction is temporally imprecise especially when

it is created. Therefore, independent notions for protection principal and perimeter

help enhance the generality and simplicity of protection.
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2.4 SP3 protection model

This section first provides an abstract definition of the SP3 system in Subsection 2.4.1

and then illustrates with an example how it provides data privacy protection to user-level

applications in Subsection 2.4.2. In Subsection 2.4.3, the application distribution and key

management issues are presented. Subsection 2.4.4 discusses the security and safety of the

presented SP3 model.

2.4.1 Definition

As the principal of the SP3 protection, we use the concept of protection domain [65]:

access permission is determined based on the domain context. Each domain of a running

SP3 system is uniquely assigned and identified by an SID (SP3 Domain ID) value. To iden-

tify the currently executing domain, the SP3 system may keep a variable called current SID.

The operating system is assigned an SID of 0. Therefore, the current SID is automatically

switched to 0 when an interrupt or an exception occurs. In most cases, it is safe to consider

a domain as a process, but a domain is not exactly the same as a process; multiple processes

can share the same SP3 domain. The kernel is always executed with an SID of 0.

The definition of SP3 is divided into three parts. First, the secure paging extends the

interface of a general paging system to maintain the domain boundary. Second, the secure

domain switch is responsible for safe domain crossing upon interrupts. Last, the domain

operations handle the dynamics of domain creation and deletion as well as transferring ac-

cess permissions for sharing. In this section, we only outline the SP3 constituents, omitting

details relevant to actual implementation, which will be addressed in Chapter III.

Secure paging: The Page Table Entry (PTE) structure of the machine’s paging unit is

extended to include a new multi-bit field, called KID (Key ID), which is used to locate a

symmetric key. The SP3 system internally keeps a database that stores symmetric keys,

called the key database. The KID value of a PTE serves as an index to the key database.
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The SP3 system also maintains a permission bitmap that tells which domain (identified by

SID) can use which symmetric key (identified by KID). The operating system is prohibited

from directly accessing the key database and the permission bitmap, but it is allowed to

modify the KID field in a PTE. When a domain with SID s accesses memory, page tables

are traversed for virtual-to-physical address translation. During the page traversal, the KID

k of the matching PTE is checked against the permission bitmap to see if s can use k. If so,

the SP3 system renders the decrypted image of the physical page using the symmetric key

indexed by k. Otherwise, the SP3 system renders the verbatim image of the page. KID 0

is defined as the ‘null’ key, which always renders the verbatim image when it is used in a

PTE. SID 0 is reserved for the domain of the operating system.

Secure domain switch: The current SID changes to 0 when interrupts or exceptions oc-

cur, since these events cause traps into the operating system. However, before the operating

system takes over control, the execution context of an outgoing domain must be securely

stored to prevent information leakage and hijacking of domain context. Thus, the value

of the machine registers and the SID of the interrupted domain are encrypted, creating a

secure domain context, which is passed to the operating system and then safely stored as an

opaque data structure. The secure domain context is also tagged by an authentication hash

to prevent overriding the SID.

Domain operations: For creation and deletion of domains, we define two operations,

Alloc and Free. Alloc creates a domain by assigning an SID, loading symmetric keys

to the key database, and initializing KID permissions by setting appropriate bits in the

permission bitmap. Symmetric keys may be loaded via a key exchange protocol: a unique

public key pair (K+
P , K−P ) is assigned to an SP3 system. To deliver a symmetric key Ks to the

system, {Ks}K+
P

is passed as an argument to Alloc, which uses K−P to extract Ks and store

it in the key database. When a key is loaded, existing permissions are revoked for the KID

to which the new key is indexed. Free deletes a domain by revoking the key permission
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Figure 2.1: An example SP3 system showing a page table, permission bitmap, and memory con-
tents. SP3 renders different views of the virtual memory as the current SID changes.
Domain 2 has permission to KID 1 and 2; thus it sees decrypted images at virtual ad-
dresses 31 and 33. Domain 0 – the kernel – has no permission to any keys; thus the
memory contents are rendered as verbatim images. The current domain of the CPU
switches from 2 to 0 upon interrupt, and back to 2 upon return from the interrupt.

and releasing the SID.

2.4.2 Examples

Figure 2.1 illustrates how SP3 renders different views of the virtual memory as the cur-

rent SID changes. In the figure, there are two active domains in the system. One is domain

2 created by the Alloc operation, which also loaded symmetric keys along the operations.

The other domain is domain 0, which is predefined as the domain of the operating system

kernel. In this example, the two domains share the same page table. The figure also shows a

section of the page table with the KID values of PTEs. When domain 2 is executing, it sees

decrypted images of the pages at virtual addresses 31 and 33. The two pages are decrypted

by the symmetric keys referenced by KID 1 and 2. When an interrupt occurs, the current

SID is changed to 0. In the center column of Figure 2.1, the operating system is running,

but it cannot see the decrypted image at the virtual addresses 31 and 33, because it has
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Figure 2.2: An example scenario of an application being generated, delivered, and executed on an
SP3-capable host computer. From a trusted computer build, an encrypted executable
is generated (steps (a) and (b)) and then delivered (step (c)) to an SP3 capable computer
sp3host in which an untrusted operating system is running. Steps from (d) to (h)
illustrate what happens when the application is being executed and how the encrypted
executable image is ultimately viewed as a decrypted image by the application process.

permission to neither KID 1 nor 2. Instead, the operating system sees the pages’ verbatim

images, which are in their encrypted form. The current domain is switched again when the

operating system schedules domain 2 and returns from the interrupt. The operating system

uses the saved encrypted domain context for domain 2, which is executing after the domain

switch, as seen in the third column. Domain 2 sees the decrypted images at the virtual

addresses 31 and 33, according to the KID values of corresponding PTEs and permission

bitmap entries.

Figure 2.2 depicts how a user application is generated from source code, transferred to

an SP3-capable untrusted system, loaded onto memory, and finally, executed on the sys-

tem2. Shown on the left is a trusted computer build, where the encrypted executable is

generated from a program source code. On the right, the computer sp3host is an SP3 ca-

pable host computer on which an untrusted operating system is running. The untrusted

2Issues on this process are detailed in Chapter IV.
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operating system is a modern commodity operating system such as Linux. The SP3 layer

of sp3host is assigned a public key pair {K+
P , K−P }. K+

P is made known to build, but K−P

is kept secret and only known to the SP3 layer of sp3host.

In step (a) of the figure, an application source code is compiled on the host build in

the same way other programs are compiled. In the program linking phase, it is ensured

that the segments of the executable are aligned with page boundaries. Then, in step (b), the

executable undergoes encryption using Ks, and the encrypted executable is packaged with

a special header that contains {Ks}K+
P

. This encrypted executable package is ready to be

delivered to an SP3 capable computer, which is sp3host in our scenario. In step (c), using

a conventional file transfer method, the encrypted executable file is transferred to sp3host

and stored on the disk. Because K−P is kept secret and Ks is protected, nothing involved

in the transit of the file can steal the content of the executable. Now on sp3host, when

a user executes the application, the executable is loaded via the exec() system call. As

shown in step (d), the kernel’s exec handler then calls on a binary loader, which overlays

current virtual address space with the contents of the executable via memory file mapping

such as mmap(). The binary loader also detects the special header and executes the Alloc

operation. This Alloc creates domain s, loads Ks on KID k, and sets the permission bitmap

on (s,k) (not shown in the figure). Due to the use of demand paging, the actual pages for

the executable have not yet been allocated: the mmap() only reserves a range of virtual

address space for the mapped executable file. Therefore, the pages for the executable and

associated page table entries (PTEs) are marked as not-present, as shown in (e). The actual

allocation of physical page frames and updating PTEs is to be handled via the page fault

handler. When the application process starts to execute, it triggers first page-faults on these

non-present pages (step (f)), invoking the page fault handler. Note that because of SP3’s

secure domain switch rule, the current SP3 domain changes from s to 0 when the page

fault occurs. In step (g), the page fault handler loads the page by copying the executable

image stored in the disk to a physical page frame. The page frame is then mapped into the
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virtual address by fixing the PTE that caused the fault. At this point, the operating system,

running in domain 0, can only see the verbatim image of the program executable, which

is the encrypted image of the actual program. When the PTE is being fixed, the KID field

of the PTE is set to contain k. After this demand paging sequence, the application process

resumes via return-from-interrupt in step (h), which changes the current domain from 0 to

s. The resumed application process now sees the decrypted images in its virtual address

space that caused the initial non-present page fault. From this point, running within the

context of the SP3 protection domain s, the loaded application sees the decrypted contents

of the memory pages from its virtual address space.

Although this program loading example looks quite complicated, an application gener-

ally does not have to be concerned about this process. This is because the details involving

the demand paging scheme are hidden and done transparently from the perspective of the

application. Also, accessing the decrypted data in memory requires minimal effort from

the application: all the application requires is to have the operating system map the pages

with appropriate KIDs. The application does not have to call special functions nor does

it have to set up special barriers in its code. The SP3 has a flexible interface that allows

the application to set up different cryptographic keys to different virtual addresses. This is

achieved easily by using different KIDs. Also, for the memory regions that are not to be

encrypted, the application can just use a null (0) KID.

2.4.3 Key management

The public key pair {K+
P , K−P } assigned to the SP3 layer plays a central role in ensuring

secure delivery of symmetric cryptography keys that are being used to encrypt application

programs. In this case, the public key cryptography implements the key exchange protocol:

the symmetric keys are encrypted by the public key K+
P and then safely delivered to the

SP3 layer, which can retrieve the symmetric keys by decrypting them using the private key

K−P .
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As with any public key cryptography, the public key K+
P is made public, meaning the

public key is known to the program vendor, the end user of the program, and the operating

system. It is safe to do so as long as the private key K−P is kept secret. The private key is

embedded in the underlying SP3 layer and protected from the untrusted operating system.

The private key is never known to the program vendor, the end user of the program, nor the

operating system.

Symmetric keys to be delivered to a target SP3 system are selected by the application

vendor. The application vendor determines the value of the symmetric keys, and SP3 does

not impose any rules on the key selection. For example, the vendor can pick a unique key

value for each application instance. Or, the vendor can use the same key for encrypting a

set of application instances. If the program data is shared with another trusted party that is

using its own symmetric key, the vendor might use the key for the shared data. Which key

selection method to use is up to the discretion of the application vendor.

The application vendor encrypts the chosen symmetric keys with the public key K+
P of

the target SP3 system. The symmetric keys can then only be retrieved by the target system’s

underlying SP3 layer. The symmetric keys are safely stored in the SP3 layer, which is

more privileged than the operating system. This process achieves the goal of delivering the

symmetric keys securely from the vendor to the target SP3 layer without trusting end users

or any part of the operating system. The Alloc operation is the interface that triggers the

underlying SP3 to decrypt and load the keys.

The Alloc operation is atomic from the perspective of the software that initiates the

operation. It results in two possible outcomes: pass or fail. If Alloc passes, a new SP3 do-

main is created, the symmetric keys are decrypted and loaded into the key database, and the

corresponding permission bits are set or reset. The operation then returns to the caller the

new SID number, the KID numbers and a secure domain context that serves as the initial

entry into the program. If Alloc fails, the state of the underlying SP3 system does not

change. Alloc fails when the input is invalid or there are not enough resources to handle
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the request.

In the real world, the public key pair assigned to the SP3 system should be generated by

a trusted third party such as a Certificate Authority (CA). The CA authenticates and signs

the public key so that the vendors can verify the legitimacy and authenticity of the public

key. Otherwise, someone can generate a public key/private key pair and submit the public

key to the application vendor in an attempt to retrieve the symmetric keys as well as the

application contents. Further issues regarding key distribution and management, such as

key revocation or key escrow, are important but largely out of the scope of this thesis.

The question of whether end-users are adversary has multiple answers depending on

the context. For example, when we are using SP3 to protect a media player program from

reverse-engineering by an end-user, we can say that the end-user is the adversary. In this

case, we use SP3 to grant the end-user only the right to execute the program and no more.

On the other hand, when we are using SP3 to protect, for instance, an ssh client program

from being spied on by a malicious system administrator, the end-user of the ssh program is

not the adversary but the one we want to protect. In the case of donation-based distributed

computing where we use SP3 to secure the execution of the distributed worker programs

running in the untrusted remote hosts, there is no such end-user that interacts with the

program in the remote hosts. Instead, the end-user in this case can be more correctly

defined as the person who initiates and controls the whole distributed computation.

2.4.4 Security of SP3

Due to the use of the public key cryptography and the Alloc interface, the symmetric

keys and the application contents encrypted by the keys are never revealed to the operating

system, or any entities involved in the transit of the encrypted application. It should be em-

phasized that the program loader of the operating system does not have to be trusted. The

program loader invoked as a part of exec() is usually the place where the encrypted appli-

cation binary is mapped to the address space and the Alloc operation is called. However,
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the program loader is in no way allowed to obtain the decryption key or set the permission

bitmap arbitrarily. Note that this does not prevent the loader from performing the program

loading functions: to map the binary, the loader just treats the encrypted images as-is and

then sets the KID field of the PTEs accordingly.

An attempt to somehow deceive the system by incorrectly setting the KID field of the

PTEs cannot succeed because the permission bits are not set for the SID-KID combinations

other than the ones created by the Alloc operation. If the KID field is set incorrectly, the

page will be rendered encrypted because the permission bit is not set. Also prevented is

the scenario of creating the same SID-KID permission bitmap for two different programs

by repeatedly creating and deleting SP3 domains and using this to somehow compromise

a trusted program, because the corresponding KID entry in the key database will contain

different symmetric keys.

In addition, although the externally visible SID number can be small and possibly recy-

cled if many SP3 domains are created and deleted, SP3 internally uses extended and hashed

SID numbers to prevent overriding the SID number, as detailed in Section 3.4. This prevents

potential abuses of reusing secure domain contexts saved from a previous SP3 domain in-

stance with the same SID.

2.5 Implementation alternatives

The system that implements SP3 forms a trust base whose execution must be more priv-

ileged than the operating system. In today’s computing environment, SP3 can be realized

in three different ways: direct hardware modification, using a hypervisor (software), and a

software/hardware hybrid. Next we present these alternatives and discuss their advantages

and disadvantages.
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2.5.1 Modifying hardware

One can realize SP3 by directly modifying the hardware. Obviously, the hardware it-

self is more ‘privileged’ than the operating system, and thus, provides a safe and secure

implementation base for SP3. The implementation of the extended PTE field, access con-

trol logic, and domain operations is straightforward. For the actual encryption of memory

pages, one may utilize encryption hardware that can perform a two-way encryption on the

memory cache boundary [67, 98]: to render the content of a decrypted page, the encryp-

tion hardware is activated to fill the corresponding cache line with the decrypted memory

content.

The greatest advantage of this hardware-based implementation is its superior perfor-

mance: hardware can perform much faster cryptographic operations than software. Hard-

ware can also directly support the extended paging interface. Another advantage of this is

that hardware can provide a more secure trust base than the software approach.

However, this approach has the biggest practical disadvantage: it cannot be deployed to

existing systems due to its requirement of hardware (especially processor) modifications.

Another disadvantage of this is that specific machine details become highly relevant to

the viability of the actual construction of hardware. For instance, encryption based on the

cache line works only in a uniprocessor system.

2.5.2 Using a hypervisor

SP3 can be implemented using a hypervisor, also known as a virtual machine moni-

tor (VMM). A hypervisor, positioned between hardware and operating system, is system

software that can create multiple virtualized hardware instances to be multiplexed upon

a single physical machine, making it possible to run multiple operating systems concur-

rently. A hypervisor is also used to realize hardware extensions without actually changing

the real machine, or to implement system services below the operating system. For its

own protection, a hypervisor runs with more privilege than the operating system and has a
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safe perimeter. Therefore, SP3 can be safely implemented using a hypervisor. Chapter III

details a SP3 system that we built by modifying a full-fledged hypervisor.

Using a hypervisor has the following advantages. A hypervisor-based SP3 system is

readily deployable in existing systems as it does not require any hardware modification.

Compared to the hardware-based approach, it does not suffer from such machine specifics

as multiprocessing or cache consistency issues, since the hypervisor abstracts away such

details. The hypervisor can easily support multiprocessor or multi-core systems by sharing

the permission bitmap and key database among the processors and by having each proces-

sor have its own current SID variable.

The biggest disadvantage of this approach is its poorer performance compared to the

hardware-based counterpart, since software has to perform encryption and emulate the ex-

tended paging system. Another disadvantage is that the size of the trust base may not be

optimal because the hypervisor usually comes with other features. However, we do not

need the ability to run multiple operating systems since a hypervisor is used only for the

purpose of implementing a service below the operating system. Therefore, we may re-

duce the size of the trust base by implementing an SP3 system only with the virtualization

techniques required to achieve a safe perimeter.

2.5.3 Using a hardware/software hybrid

A hardware/software hybrid solution can exploit the advantages of both software- and

hardware-based approaches. There are many possible ways to decide which part should be

implemented in hardware, but we do not discuss this further since it is out of the scope of

this thesis. The disadvantage of this approach is that it still requires hardware modifications,

albeit to a much lesser extent than the pure hardware approach.
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2.6 Discussion

Many SP3 design choices might not seem too obvious when SP3 is introduced ab-

stractly. For example, one might wonder why SP3 allows the operating system to access

encrypted memory views; can it be much simpler if we just prevent the operating system

from accessing decrypted views, thus eliminating the whole encryption and decryption?

Or, why should each SP3 domain be associated with multiple symmetric keys? If we had

just used a single key for each domain, the KID field would not be necessary. In this section

we discuss and justify the choices we made in the design of SP3 by answering the following

questions.

• Why do we let the operating system see the encrypted views?

• Why should each SP3 domain be associated with multiple symmetric keys?

• Why does the page table entry have to be modified to include a KID field?

• Why should the SP3 domain be an independent notion separate from the concept of

process?

2.6.1 Encrypted view for the operating system

The reasons why we render encrypted views to the operating system are threefold.

First, operating systems do need to access user-space memory in order to perform memory

management. For example, upon memory pressure, operating systems can initiate disk

swap, and the swapper process has to access the contents of evicted pages. In most cases,

the actual disk transfer is done by a disk controller performing Direct Memory Access

(DMA), so an operating system does not technically have to read the memory content

itself, but the disk controller can always fall back to the Programmable I/O (PIO) mode of

operation where the operating system has to read memory content. In addition to swapping,

memory management algorithms can relocate the physical pages at runtime in order to
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increase performance or to save power [52]. The second reason is that we want application

programs to intentionally exploit the fact that the operating system can only see encrypted

images. For example, applications can save encrypted files using memory file maps. The

third reason is that the alternative — a solution that does not even render encrypted views

— can be more intrusive to operating systems because we need to physically block any

access attempt made from operating systems.

2.6.2 Multiple keys per domain

It is very useful to assign multiple symmetric keys to each SP3 domain. For example,

if an application needs to encrypt different files or memory buffers with different keys,

SP3 offers a very easy method for doing the encryptions. Later, in Chapter V, we implement

a secure media player that exploits this capability.

2.6.3 Extension on the page table entry

Since we allow multiple symmetric keys to be used in a single protection domain, we

have to find a way to specify which key to use for the memory regions of the protection

domain. We find that augmenting the page table entry structure is effective, comprehen-

sive, far-reaching, and less intrusive a way of specifying that information. For instance, by

introducing KID in the page table structure, we can orthogonally extend the kernel’s mem-

ory management routines and the mmap() interface. An alternative approach would be a

solution based on segmentation, which would be very difficult to deal with.

2.6.4 Protection domain separate from process

There are two reasons why we use an independent notion for protection domain. The

first reason, which is less important, is that we can share the protection domain for multiple

processes of the same application, thereby saving resources. The second reason, which

is more important, is that it is actually very difficult to use the concept of process as the
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security principal. Let us imagine what it would be like if we are using process as the

principal. Right from the beginning, we have a problem dealing with interrupt because

interrupt causes a transition to the untrusted operating system but the currently running

process is unchanged; the process has just started to execute in the kernel context. Let us

further imagine that we have solved this problem by introducing additional modes for pro-

cesses running in the kernel context. Then, a complexity arises when the kernel performs a

process context switch. Since we are relying on the process for security principal, we have

to change the underlying security context upon the process switch. But exactly when do we

change the underlying security context? Upon switching page table base register? Upon

replacing the kernel stack? Upon reloading the register file? Or some other place? Even if

we decide the exact point when the underlying security context changes, we have to verify

the decision by making sure there is no ‘loophole’ that can be exploited. All these issues

can be avoided if we use an independent notion for protection domain, as we do in SP3.

2.7 Conclusion

We conclude this chapter by highlighting the quality and soundness of SP3 with respect

to our design objectives. The observations and claims given in this qualitative analysis are

backed up by an actual implementation, which comprises the remaining chapters of this

thesis.

First, with a degree of elegance, SP3 resolves conflicts between the need for managerial

privileges and the restrictions mandated by the protection system. With SP3, the operat-

ing system can retain virtually all power of managing processes and memory. The only

exception is that it cannot obtain meaningful information from user memory, which is fine

most of the time because the operating system is usually indifferent to the content of user

memory. But there are issues with some operating system constructs because they were

implemented to directly refer to user memory. For example, using a user stack for passing

system-call parameters or saving processes’ contexts upon signals violates the rules of SP3.

43



Therefore, changes need to be made to these constructs (Chapter IV). However, compared

to the scale of the protection provided by SP3 , these changes are relatively minor.

Second, SP3 defines a simple and narrow interface, thus minimally affecting existing

software. For operating systems, adapting to the KID field only requires an orthogonal

extension to the memory-management routines. No compiler modification is needed to

create SP3-enabled applications. A standard set of binary utilities and a few compiler tricks

suffice for generating application executables. The protection is provided in terms of the

data’s position and the process’s context. For programmers, providing data privacy in their

program is simple and easy since they only have to place sensitive data in the protected

memory.

Third, SP3 provides far-reaching protection, without much restriction. For example,

applications can freely apply SP3 protection to any region of memory in its virtual address

space. At the same time, on-demand paging, memory-mapped files, disk swapping and

memory sharing work equally on the protected memory. Using memory-mapped files,

SP3 enables applications to write files to disk in encrypted form without trusting/requiring

a special secure file system.

Last, SP3 achieves a high degree of implementation freedom.The interface that SP3 de-

fines is platform-independent: changing the hardware in one platform to implement SP3 would

not be particularly easy or hard because of CPU flavor. In case the target system is virtu-

alizable, SP3 can be implemented without modifying the hardware, as detailed in the next

chapter.

44



CHAPTER III

HYPERVISOR-BASED SECRECY PROTECTION

3.1 Introduction

Hypervisor, a virtual machine monitor that directly runs on bare hardware, is becoming

popular and has already penetrated deeply into modern computing environments [13,107].

Hypervisor is not only attractive in consolidating servers and planning server resources, but

also advantageous in enhancing system security.

Hypervisor can provide a perfect implementation point for many security applications

because it can be inserted between hardware and operating system. For instance, many

intrusion-detection systems based on hypervisors have been proposed [44, 59, 62]. Hyper-

visors have also been utilized for providing security services to upper-layer software. For

example, hypervisors can provide virtual instances of Trusted Platform Module (TPM) of

the trusted computing architecture [16, 43]. Hypervisors used for enhancing security rely

on the property that they form a relatively small and easy-to-secure trusted computing base.

In this chapter, we propose a novel usage of the hypervisor for implementing a new

layer of protection. This protection layer directly secures the memory contents of user-level

applications, guaranteeing protection even from a malicious or faulty operating system.

This protection is achieved by encrypting the contents of the user memory pages; when

a program accesses a memory page, the hypervisor determines which image of the page

to provide to the program. Whether to use a decrypted image of the page or a verbatim
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(hence encrypted) image is determined by the access permission of the program accessing

the page.

Our protection system results in a very powerful secrecy protection infrastructure that

can secure the entire execution of a user-level application. The sensitive information of a

user application, including both code and data, is guaranteed to be protected against mali-

cious or faulty operating systems. Therefore, unless the hypervisor itself is compromised,

the secrecy of an application’s memory contents and relevant execution context is preserved

even when the operating system has been compromised.

The semantics and interface of this page-based encryption system are abstractly defined

in the previous chapter: the Software-Privacy Preserving Platform (SP3) is the model that

our hypervisor-based protection system is implementing. In SP3, a protection domain is

defined as the principal in which a set of access permissions associates domains with a set

of cryptographic keys. These access rights govern the ability to use the keys, which are to

encrypt/decrypt memory pages. If an application program is running inside an SP3 domain,

the application sees the decrypted memory contents through the virtual address space; pro-

grams outside the domain, including the operating system, may only see the encrypted

memory contents.

In this chapter, we describe modifications and extensions made to the hypervisor to

implement SP3. To encrypt pages and secure the SP3 domain boundary, SP3 extends the

semantics of the paging system and interrupt interface of a CPU. We make the hypervi-

sor emulate the extended paging and interrupt semantics. We also discuss and evaluate

techniques to improve the hypervisor’s emulation performance.

Page-frame replication is a way to reduce the overhead of encryption. In this tech-

nique, a hypervisor retains page frame copies containing decrypted images of an original

page. When a decrypted image of a page needs to be supplied to a program, the hypervisor

manipulates the page table entry (PTE) to redirect requests to the page frame copy contain-

ing the decrypted image. This reduces the number of costly cryptographic operations that
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would have to be performed on the entire page frame.

Lazy synchronization is also used to further reduce the number of page-wide encryp-

tions. Under page-frame replication, synchronization is needed when an update occurs to

one of the replicated images. This synchronization propagates the update to the other im-

ages by page-wide encryptions. However, with lazy synchronization, this costly synchro-

nization is deferred as long as possible: the synchronization happens not when an image is

modified, but when one of the other images is accessed. This technique turns out to be very

effective because no synchronization takes place unless two SP3 domains actively access

the two related images simultaneously.

We modified the Xen hypervisor and Linux kernel to implement a hypervisor-based

SP3 system. The modified Xen, serving as the trusted computing base for user-application

secrecy protection, implements the full semantics of the SP3 model. Linux, running on

top of the modified Xen, is thus removed from the trust base of user applications that are

running within SP3 domains. If Linux violates the protection rules, it will at worst crash

the system, but protection of the applications’ memory secrecy is guaranteed.

We evaluated the Xen-based implementation by measuring the runtime performance of

SP3 applications. Our evaluation results indicate that applications running in the modified

Xen experience 0-23% slowdown compared to the same applications running in the native

Xen environment. The result also confirms the efficacy of page-frame replication and lazy

synchronization schemes.

The rest of this chapter is organized as follows. Section 3.2 provides background on

Xen and Linux’s memory management and interrupt handling. Section 3.3 presents the

key ideas for realizing SP3 protection in a hypervisor. Section 3.4 details our SP3 imple-

mentation on Xen. Section 3.5 evaluates the implementation. Section 3.6 discusses related

work.

47



3.2 Background

This section provides background on the internal workings of hypervisor and operat-

ing systems. This background information is intended to help the reader understand the

description of our hypervisor-based implementation of SP3, which will be presented in

Section 3.4. In this section, we particularly focus on paging (Section 3.2.1) and interrupt

interface (Section 3.2.2), as they are closely related to the description of our implementa-

tion. We summarize with an example (Section 3.2.3) by walking through what happens

when we execute a program in a virtual machine environment.

In what follows, we assume Linux running on the x86 [54] architecture as the choice

of computing platform. We also use Xen as our choice of hypervisor. Despite this choice

of specific platforms, our discussion below can be equally applied to many other general

processor architectures, operating systems and hypervisors.

3.2.1 Paging

Paging is the fundamental facility for memory management in contemporary systems.

Supported by a hardware Memory Management Unit (MMU), a physical memory page is

mapped to a virtual address space via the page table entry (PTE) structure. The MMU

translates a virtual address to a physical address by page-table lookup using the virtual

address to find a PTE that contains the physical page frame number. Each PTE also contains

bit flags such as Present (P) bit (accessing a page with P bit cleared causes a non-present

page-fault), Writable (W) bit (writing a page with W bit cleared causes a read-only access-

violation page-fault), and Dirty (D) bit (the processor sets D bit when data has been written

to the mapped page).

Without a hypervisor, operating systems directly manipulate the MMU data structure

to implement the virtual address space and various paging tricks, such as demand-paging,

copy-on-write, virtual memory, and disk buffer cache.

With a hypervisor present, an operating system runs on a virtualized hardware platform
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where the operating system is given a “physical memory” of virtual machine that is an illu-

sion created by the hypervisor. Running between the bare hardware and operating systems,

the hypervisor adds another layer of address translation. One way to implement this trans-

lation layer is to use shadow page tables [107]. In this technique, a guest operating system’s

page tables are “shadowed” by real page tables to be directly used by the processor. The

hypervisor intercepts all references and updates to the guest operating systems’ page tables,

performing additional translation, which is called “physical-to-machine” translation.

In para-virtualized systems where operating systems are modified to run on a virtual

machine, part of the “physical-to-machine” translation is performed by the guest operating

system. This is to avoid complexity and overhead that would otherwise be incurred in a

fully-virtualized system. Although a para-virtualized system directly exposes MMU states

to the guest operating system, the hypervisor still enforces strict rules regarding MMU and

page table updates, thus guaranteeing safety to the hypervisor.

3.2.2 Interrupt

If the processor receives a hardware interrupt or generates an exception, it suspends its

execution of the current program in order to serve the interrupt or exception. The proces-

sor saves the context of the interrupted program for later use when the program is to be

resumed. In the x86 architecture, this context, called “exception frame,” is saved in the

kernel-mode stack upon interrupt. The interrupt is usually the point where the kernel is

entered; it causes the processor to vector to the kernel’s interrupt/exception handler and the

processor mode is switched from user mode to privileged mode.

Without the hypervisor, operating systems directly handle interrupts. An operating sys-

tem directly programs interrupt vector tables to cause the processor to jump to the appro-

priate handler code in the kernel. The handler then performs appropriate actions to handle

the source of the interrupt or exception. Upon completion of handling the interrupt event,

the kernel runs a scheduler to select the next program to run. To switch the context to the
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selected program, the kernel executes an instruction called “return from interrupt” with the

saved exception frame as the argument of this instruction. The processor switches back to

the user mode and resumes execution of the user program.

With the hypervisor present, however, the hypervisor intercepts every interrupt and ex-

ception. It examines the cause and nature of the interrupt and then decides whether to

handle the interrupt itself or to forward the interrupt to the guest operating system. When

it decides to forward the interrupt, it creates an exception frame on the guest operating sys-

tem’s kernel mode stack to emulate the processor’s behavior. The content of this exception

frame can be programmed by the hypervisor to suit its needs.

From an operating system’s perspective, the underlying hypervisor’s involvement is

completely hidden in the case of full virtualization. In the case of para-virtualization like

Xen, the operating system is required to be modified to use the para-virtualized interrupt

interface. Nevertheless, the para-virtualizing hypervisor is able to intercept every interrupt

and exception, and thus is fully protected from guest operating systems.

3.2.3 Example

Here we summarize paging and interrupt in a virtualized environment by using an ex-

ample where we walk through an application being executed. When a user application

program is first executed by the exec system call, the kernel routine handling exec loads

the binary (e.g., ELF executable) to read the program header information. Then, the kernel

maps code, data, and stack area to the process address space. At this time, the operating

system only assigns virtual memory regions and memory is not assigned; the correspond-

ing PTEs for the regions are cleared with their P bit. This is because of the demand-paging

scheme. The actual mapping occurs when non-present page-faults on these unmapped

pages are handled.

During these events of system call, PTE manipulation, and page-faults, the hypervisor

intervenes to virtualize hardware by page-table shadowing and forwarding interrupts: each
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non-present page-fault vectors first to the hypervisor’s handler. If the hypervisor determines

the fault should be handled by the guest operating system, it forwards the fault to the guest

operating system. Then the page-fault handler in the guest operating system allocates and

maps a physical page to the faulting address by updating the corresponding PTE. This PTE

update is also intercepted by (or submitted to) the hypervisor for its implementation of

shadow paging.

3.3 Realizing SP3 model in hypervisor

In this section, we describe how to realize the SP3 protection model using a hypervisor.

We first present how to efficiently emulate SP3 secure paging by introducing page-frame

replication and lazy synchronization. Then we discuss how to realize SP3 secure domain

switch by changing interrupt semantics. Finally, we provide information on how to emulate

SP3 domain operations.

3.3.1 SP3 secure paging

As defined in Section 2.4.1, the heart of the SP3 system is the SP3 secure paging, which

is capable of rendering different views of the same page frame. That is, the page frame

referenced by a PTE with non-zero KID should be rendered as decrypted if the page is

accessed when the current SID has the permission to use the KID. We now discuss how to

use a hypervisor to emulate such semantics of SP3 paging.

In the design of hypervisor-based emulation of SP3 paging, we should consider the

performance impact of encryption. To provide a decrypted view of a page, the hypervisor

should perform software decryption on the page, the size of which is typically 4KiB. Ob-

viously, a naive design would incur significant run-time performance overhead. Thus, we

would like to minimize the performance overhead by using two schemes that can minimize

the number of cryptographic operations as described below.

Page-frame replication is the primary vehicle for efficient emulation of SP3 paging. In

51



Hypervisor’s real 
page table

OS’s view of 
page table

(a) Physical memory 

(b) Page tables

Memory  

reserved 

by VMM

Memory 

for OS.

Page frames of 

machine memory

Page Frame

Number (PFN)

{P}K2
-1

{P}K1
-1

P

2 0

2 2

2 1

... ...

PFN KID Flag

2 0

7 0

5 0

... ...

PFN KID Flag

“Images” 

of page 

frame #2

0

1

2

3

4

5

6

7

8

0

1

2

K1

K2

KID Key value

(c) Key database

Figure 3.1: Hypervisor implements SP3 paging by page-frame replication. Shown in (a), the hy-
pervisor keeps decrypted copies of an original page frame (PFN 2) in different memory
locations (PFN 5 and 7). The hypervisor uses one of these page frames when the orig-
inal frame is mapped with a PTE with a KID value. The redirection of page frame is
performed transparently by manipulating page tables as shown in (b). Note that the KID

field does not contain actual key, but it contains a index to the symmetric key database
shown in (c).

this scheme, the hypervisor maintains copies of decrypted images of a page frame. Each of

the decrypted images contains the decryption result on the original page using a particular

symmetric key. The hypervisor keeps these images in its privately-maintained memory

area. Rendering a decrypted view of a page is thus realized by redirecting the page to one

of the decrypted images. The hypervisor can realize this redirection by virtualizing access

to the page tables; it intercepts modifications on page tables to realize the extended KID

field, and it induces page-faults to provide the hypervisor the opportunities to check the

permission and to perform actual redirection. These operations are directly handled by the

hypervisor and thus hidden to the operating system.

Figure 3.1 illustrates how a hypervisor implements the page-frame replication scheme.
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In Figure 3.1(a), physical page frame number (PFN) 2 has two decrypted images located on

PFN 5 and 7, each of which is the decryption of PFN 2 using the symmetric key selected by

KID 1 and 2, respectively.1 Note that the actual symmetric keys (K1 and K2) are selected

from the key database (Figure 3.1(c)), which resides inside of the hypervisor. Figure 3.1(b)

shows page tables virtualized by the hypervisor. On the right side is the virtualized page ta-

ble, which the operating system can modify. The virtualized page table is shadowed by the

real page table, which the MMU refers to. In the figure, the operating system programmed

the virtualized page table such that PFN 2 is mapped in three different PTEs with different

KID values of 0, 1, and 2. The corresponding PTEs in the real page table then contain PFN

2, 5, and 7, and thus, the hypervisor renders decrypted views on the same page, realizing

the SP3 paging semantic.

Although keeping decrypted images reduces the number of cryptographic operations,

those images must be synchronized if one of the images or the original page gets modified.

The synchronization is necessary for providing consistent views on all images; if a program

modifies a decrypted image, then the original page, although its content is encrypted, must

reflect the change when accessed later. Obviously, this involves cryptographic operations

and, unless properly handled, incurs high runtime overhead.

We solve this problem by employing lazy synchronization, which reduces the number of

synchronizations among the images by delaying update propagation until the last minute.

Synchronization is performed only to the pages that need to be updated and only when it is

necessary; the synchronization happens not when one image is modified, but when one of

the other images is accessed. This is realized by keeping track of the most-recently updated

image among the images, including the original. Tracking the most-recently updated image

is achieved by checking D (dirty) bit of PTE. The content of the most up-to-date copy is

propagated to one of the ‘stale’ pages by means of the hypervisor’s page-fault handler.

1Actual hypervisor adds another layer of address indirection by which a “physical address” (the virtualized
address local to a virtual machine) translates to a “machine address” (the physical address of the underlying
hardware). To simplify the discussion, we ignore this translation layer.
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The hypervisor clears P bit of those stale pages to induce a page-fault through which the

hypervisor can propagate updates behind the scenes.

The lazy synchronization scheme is highly effective because it exploits the fact that

there are limited occurrences of active sharing in application programs: if a page is not

accessed during the activation of the particular SP3 domain, it will not generate any page-

fault. Therefore, the images of a page frame are synchronized only when necessary, thereby

reducing the runtime overhead of re-encryption for synchronization. Note that this lazy

synchronization does not incur any encryption overhead for most of the normal application

execution scenarios because page frames are not shared among different SP3 domains.

3.3.2 SP3 secure domain switch

The SP3 secure domain switch extends the interface of interrupt and exception. To

recap, the current domain switches to the operating system’s domain, SID 0, when an in-

terrupt or exception occurs. Also, upon occurrence of these events, the execution context

of the outgoing domain must be securely stored in the ‘secure domain context’ to prevent

information leakage and hijacking of the domain context. We now discuss how to emulate

such SP3 interrupt semantics in a hypervisor.

We can realize the transition of current domain by intercepting every interrupt and

exception generated by hardware. Hypervisors are, by definition, capable of intercepting all

interrupts and exceptions. When the hypervisor forwards an interrupt to a guest operating

system, the hypervisor can change the current domain by setting current SID variable to 0.

The secure domain context, which contains register contexts and SID of the outgoing

domain, is realized by extending the exception frame structure. As briefly described in

Section 3.2.2, the processor generates an exception frame into the kernel mode stack upon

an interrupt, and the hypervisor already simulates this behavior to virtualize interrupts.

We extend this exception frame to contain a secure domain context. Thus, this extended

exception frame has a new field for general-purpose registers (GPRs) and for SID value of
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the outgoing domain. These fields are encrypted and hashed. When the hypervisor forwards

an interrupt to a guest operating system, it generates this extended exception frame instead

of the original one.

The GPRs are cleared when the hypervisor raises a virtual interrupt by generating a

secure exception frame. Upon receipt of this interrupt, the guest operating system will find

the GPRs to be zeroed out. This is to prevent information leakage upon domain switch,

because the operating system is untrusted.

After handling the virtual interrupt, the guest operating system requests the hypervisor

to perform a ‘return-from-interrupt’ operation using the extended exception frame that has

been saved from a previous interrupt. Upon receipt of this request, the hypervisor processes

the extended exception frame to restore GPRs and SID value.

3.3.3 SP3 domain operations

In the hypervisor-based realization, the domain operations are basically requests made

to the hypervisor. Therefore, the interface for the domain operations could be simply re-

alized by creating a new hypercall entry for each domain operation. However, we can

alternatively achieve this by creating virtual ‘instructions’ for the domain operations. Ex-

ecution of this instruction opcode will generate an ‘invalid-opcode’ fault, which should be

captured by the hypervisor. The hypervisor will then examine the opcode to perform the

matching SP3 domain operation.

We favor defining new instruction opcodes rather than extending hypercall entries, be-

cause by creating new opcodes, the entire SP3 interface looks as if the processor were

supporting SP3: from the perspective of an operating system, there is no functional dif-

ference between the hypervisor-based implementation and direct-hardware modification.

After all, using the ‘invalid-opcode’ fault has no performance disadvantage over extending

hypercall, because a hypercall is also implemented by generating a software interrupt.
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3.4 Implementation

We modified the Xen hypervisor [13], which runs on top of x86 (IA-32) architecture

[54]. Xen runs with higher privilege than the virtual machines it manages, and thus, it has a

safe perimeter against operating systems.2 Note that Xen’s administrative virtual machine,

known as dom0, cannot access the private area of Xen, therefore guaranteeing safety.

One unfortunate name collision needs to be resolved before we proceed. In Xen-

terminology, a “domain” refers to a virtual machine instance created by Xen. In this thesis,

this usage is avoided to eliminate confusion with our SP3 protection domain. Henceforth,

Xen’s “domain” is referred to as ‘virtual machine’, and we use ‘SP3 domain’ or simply

‘domain’ to refer to the SP3 domain.

In this section, we first describe the implementation of emulating the modified interface

of extended x86 architecture for SP3 support. Then, we detail the realization of our design

on the hypervisor, focusing on the mechanisms to efficiently emulate the SP3 secure paging.

3.4.1 Implementing modified x86 interface

It is straightforward to incorporate into Xen the data structures directly related to the

SP3 protection model. We modified Xen to keep variables for storing the permission bitmap

and cryptographic keys. To identify which SP3 domain is executing in the system, an inte-

ger variable called current sid is created to store the SID value of the currently executing

SP3 domain.

It becomes more complicated when we make Xen emulate the new extensions to the

CPU-level interface, specified in Figure 3.2. The extensions reflect the new KID field in

PTE structure, and generate a secure interrupt frame upon interrupt. Obviously, we did not

actually modify the hardware; the specification given here is used as the reference interface

2We can say that Xen and its SP3 extension, implemented within, can form a small and secure trust base,
provided Xen is securely bootstrapped and attested. Secure bootstrapping and providing integrity measures
are important for securing a trusted computing base, but description of this process is out of the scope of this
thesis. We refer the readers to secure bootstrapping [60,71] for safe and secure loading of the Xen hypervisor.
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Figure 3.2: Extensions made to x86 page table entry (PTE) and exception frame structures. The
extended PTEs include a new multi-bit field for KID value. The secure exception frame,
which is generated on the kernel stack upon interrupt, is larger than the original excep-
tion frame to contain fields for the GPRs and SID of the outgoing domain.

that Xen ultimately emulates.

Figure 3.2(a) shows the modified PTE structures into which the KID field is integrated.

In its ‘native’ paging mode, the original x86 has 3 bits available for the KID field.3 In its

Physical Address Extension (PAE) paging mode, which has an expanded PTE structure, 27

bits are available for the KID field. The actual number of bits required for the KID depends

on the size of the required KID space. For instance, when 10 bits from the PAE-enabled

PTE structure are selected as the KID field, as shown in the figure, it allows the KID space

to range from 0 to 1023.

We modified Xen to emulate this PTE extension by adding a code that can interpret

the KID field. This code is added to the Xen’s handler routine responsible for PTE up-

dates. This handler routine is always invoked when a guest operating system modifies a

PTE to map a page. Since MMU updates are sensitive, Xen makes sure it intercepts all

PTE updates. In the para-virtualized environment of Xen, operating systems can update a

PTE either by making a PTE-update hypercall, or by directly modifying the PTE. Either

3In fact, these bits are intended to be utilized by the operating system. But Linux, the operating system
we use, does not utilize them.
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way, Xen can always intercept the PTE update: a hypercall causes trap to Xen by defini-

tion; a modification to a PTE incurs a page-fault since the pages used as guest page tables

are always mapped with W bit cleared, meaning any attempt to write to the guest page ta-

bles causes an access-violation page-fault, trapping into Xen. Therefore, by modifying the

Xen’s handler for PTE updates, the safe and transparent implementation of the extended

KID field can be achieved. A guest operating system can update a PTE as if the hardware

supported the KID extension.

Another modification we made to CPU-level interface is the secure version of x86 ex-

ception frame as specified in Figure 3.2(b). This secure exception frame, instead of the

original x86 exception frame, is generated on the operating system’s kernel mode stack

when an application running in an SP3 domain gets interrupted. As shown in the figure,

the first top 128 bytes of the secure exception frame represent the secure domain context

, which is encrypted using a key private to the SP3 system. This encrypted part contains

the entire register context of the interrupted program. The SID value of the interrupted

SP3 domain is also saved at SID-0 to SID-3 field. SID value is stretched and then hashed to

avoid overriding SID. The secure domain context is followed by the plaintext part, which

is identical to the original x86 exception frame except for the zeroed EIP and ESP fields.

To generate this secure exception frame, we modified Xen’s interrupt bouncer code,

which handles forwarding of an interrupt to a guest operating system. Xen monitors ev-

ery interrupt by intercepting it. If Xen decides to forward an interrupt to a guest oper-

ating system, it “artificially” creates an exception frame by writing to the kernel mode

stack of the guest operating system, emulating the behavior of the CPU. This forwarding

is implemented by the interrupt bouncer code, which we modified in such a way that if

current sid is not 0, it generates a secure exception frame instead of the standard one. At

the moment Xen transfers control to the guest operating system, General-purpose registers

(GPRs) are cleared and current sid is set to 0.

To perform a return-from-interrupt on this secure exception frame, we defined a new
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instruction, called S IRET. Executing this instruction causes traps to Xen via the invalid-

opcode fault. We modified Xen’s invalid-opcode handler to unwind the secure exception

frame and resume the interrupted program. To restore the SP3 domain context, Xen reloads

GPRs and sets current sid back from the saved values of the secure exception frame. The

SP3 paging extension takes advantage of this to correctly prepare a data structure when the

operating system requests a page table update with a non-zero KID value.

A scheme is provided for the operating system and user applications to pass arguments

and return values via GPRs. In this scheme, GPRs are normally cleared unless the cause of

exception is a software interrupt; a user process can pass system call parameters via GPRs.

The Type field tells whether GPRs have been cleared or not, indicating that the secure ex-

ception frame was generated by a software interrupt or another type of exception. Upon

receipt of an interrupt–return request, Xen reloads GPRs from the saved register values

unless the Type indicates the the secure exception frame was generated by a software in-

terrupt, enabling a convenient channel for passing system call return values. Note that this

facility does not necessarily incur leakage of information through GPRs, because applica-

tions can always clear contents of registers unused in the system call before generating a

software interrupt.

3.4.2 Implementing SP3 secure paging

During initialization, Xen reserves a pool of physical page frames for storing decrypted

images. A page frame containing a decrypted image is mapped by PTEs with PFN value

of the original page frame and non-zero KID field. It is important to recognize this class of

PTEs with non-zero KID and the page frames mapped by them. Hence, we assign names for

them to facilitate description. In the following discussion, we will refer to a page mapped

with non-zero KID as an SP3 page and the PTE for an SP3 page as SP3 PTE.

We use the P (present) bit of SP3 PTE so that the processor can generate a non-present

page-fault. These extra page-faults are intended to provide traps into Xen when accessing
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a SP3 page needs attention of Xen, such as performing a check for PTE redirection. The

page-fault handler of Xen is modified to separate this type of page-fault from other normal

page-faults by examining the KID field of the PTE that caused the non-present page-fault.

Under the para-virtualizing architecture of Xen, this nontraditional usage of P can cause

problems, since page tables are directly exposed to the operating system. We clear the P

bit purposely even though the page is physically mapped by the operating system kernel.

However, the operating system may be confused because it is possible for the operating

system to see the P bit cleared when the bit was set before.

Without the hypervisor’s shadow page table support, we could have only resolved

this problem by modifying the operating system. However, Linux —our target operat-

ing system— already has a mechanism that can treat PTEs with P bit cleared as physically

present. This facility fortunately enables us to avoid excessive modifications. In the current

version of Linux, a page is considered non-present only if both P bit and PAT bit (bit 7)

are cleared.4 We exploit this by setting PAT bit for SP3 PTEs so that Linux can recognize

the page as present. Also, Linux does not experience any additional page-faults from this

because Xen filters page-faults generated by SP3 PTE.

When a page-fault is generated by SP3 PTE, Xen fixes the fault by setting P bit with

an appropriate value on PTE. Which page should be used is determined according to the

SP3 rule: if the current SID has access to the KID, Xen uses the decrypted image page.

In other cases, the original page is used. In this process, the D (dirty) bit of the PTE is

checked to synchronize between the two copies. The synchronization entails 4KiB AES

operation which is time-consuming. However, under our lazy synchronization scheme, it

happens only when it is needed. In practice, the synchronization is under full control of a

user program (e.g., the program explicitly shares an SP3 page with another SP3 domain),

or it occurs if the operating system wants to swap out the page to disk, which is rare in

4This facility is devised for memory regions mapped with PROT NONE type. Linux clears P bit but sets PAT
bit when loading a PTE for a page of that type. This way, the page is considered present by the kernel but the
CPU generates a non-present fault upon access. Therefore, the kernel can raise protection violation, realizing
PROT NONE semantic.
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modern platforms and already a very slow operation.

SP3 PTEs have to be invalidated by clearing P bit whenever the domain is changed. This

ensures the access permission of SP3 pages to be reevaluated when the other SP3 domain

accesses that SP3 pages. Once the SP3 page is made present, access on the page will

not generate any page-fault and the program can proceed. However, if the SP3 PTEs’ P

bits are not cleared when SID changes, the other domain will access the old page, which

can possibly contain a decrypted image. Therefore, this SP3 PTE invalidation ensures the

access permission of SP3 pages to be reevaluated.

To implement this invalidation logic, Xen maintains a list of SP3 PTEs that should be

made non-present upon change of SID. When Xen reevaluates an SP3 PTE by setting P bit,

it also adds the PTE to the list. Later when SID changes, Xen goes through this list to clear

the P bit, and the list is emptied. Exceptions and S IRET can only change SID; the SP3 PTE

invalidation is performed when Xen handles those operations.

3.5 Evaluation

In our evaluation, we want to answer the following questions:

• How much performance degradation do SP3 applications experience?

• How effective are the page-frame replication and the lazy synchronization?

• How does the performance overhead vary with applications’ memory access pat-

terns?

• What is the impact of SP3 secure interrupt on performance?

To evaluate the impact of using SP3 protection on performance, we first measured over-

all performance overhead with CPU- and memory-intensive workloads. Such a workload

is chosen since our modifications are made on the CPU and the memory management part.
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We then performed a micro-benchmark measuring the performance impact of the locality

of the applications’ page reference patterns.

3.5.1 Methodology

The machine used in our evaluation has a 3.2 GHZ Pentium 4 (HT) processor with 1

GiB of RAM. We used Xen version 2.0.4 and Linux kernel version 2.6.10, which is para-

virtualized for Xen. Only a single virtual machine instance, namely dom0, is used for all

experiments. Xen allocates 512 MiB of RAM for this guest virtual machine. For the Linux

kernel setting, we used the default configuration in the original Xen distribution, which

results in a uniprocessor kernel image without highmem support. We chose AES and RSA

for our cryptographic primitives, whose implementation was taken from OpenSSL version

0.9.7e as C code without additional optimization.

We measured the performance of the SP3 system by executing benchmark programs on

a system running our SP3 enabled Xen. This modified Xen is allocated an additional 256

MiB of RAM dedicated for storing decrypted images. For each benchmark program, two

executables are generated from the same source code: one is an encrypted executable that

can be executed only on the SP3 enabled system, and the other is a normal insecure exe-

cutable that can be used for performance comparison with a system without SP3 protection.

Both executables are statically linked with a modified version of dietlibc C library [35].

3.5.2 The price of protection measured in performance penalty

We wanted to know how much an application needs to pay for the SP3 protection in

terms of performance penalty. Since our SP3 implementation changed the paging inter-

face, we chose CPU- and memory-intensive workloads for measuring the impact on perfor-

mance. For the workloads, we used programs from SPEC CPU2000 integer benchmarks.5

5Benchmark programs 252.eon and 253.perlbmk were excluded due to technical reasons. 252.eon
is written in C++ which is not supported in SP3. 253.perlbmk, a benchmark program based on the perl
language interpreter, was very hard to port into SP3 because of the huge system interface of perl language.
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Figure 3.3: Results of SPEC CPU2000 benchmark measured on three different setups. The bars
and the numbers on top represent the runtime of benchmark programs normalized to
native Xen. Each value is the mean of 10 trials. Error bar represents one standard
deviation.

Measuring the time to complete each program, we compared the running time of the work-

loads in three different setups. In the first setup, labeled as ‘Native Linux’, normal insecure

executables were executed on native Linux without Xen. In the second setup, labeled as

‘Native Xen’, normal insecure executables were executed on Xen-Linux with the native,

unmodified Xen. In the last setup, labeled as ‘Xen with SP3’, the encrypted SP3 executa-

bles were executed on the modified Xen-Linux with the modified Xen.

Figure 3.3 shows the benchmark results. The performance overhead is presented as a

runtime increase normalized to native Xen. Overall, it takes 0-23% longer to finish the

same program with SP3 protection. While most benchmark programs suffer only 0-6%

slowdown, only gcc and vortex programs pay unusually higher performance penalty. We

found out that frequent system calls were the culprit of the anomaly of the two programs,

which is detailed in Section 3.5.4.

The graph is normalized to the runtime of ‘native Xen’, not ‘native Linux’ because
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‘native Xen’ shows the fastest result. This is counter-intuitive in that we expect native

Linux to perform better due to the absence of the Xen layer. However, our experiment

shows a slight (∼1%) improvement when programs were running with Xen. Although

we are not able to pinpoint the cause of this anomaly, this result is consistent with the

results from other works in a similar setting [90]. The use of para-virtualized Linux or the

inconsistent timer tick frequencies [105] could be contributing factors.

The performance result empirically confirms that both page-frame replication and lazy

synchronization are indeed effective in reducing costly cryptographic operations. Since

modified Xen keeps the copies of decrypted images, decryption is performed only when

the image is initially created from the page that contains the original verbatim image. Once

the decrypted image is created, it continues to be used without incurring any further de-

cryption until there is a need to synchronize among images. However, this synchronization

does not occur even after the application updates the decrypted image, thanks to the lazy

synchronization. The update in a decrypted image propagates to the original page only

when the operating system accesses the original page, which rarely happens because an

operating system does not usually access application memory under normal conditions.

Since the overhead of page-wide encryptions is negligible, we can assume that the

runtime penalty comes from the overhead of the PTE invalidation and subsequent page-

fault for reevaluation. This type of penalty is paid less by a program with a small runtime

footprint (i.e., accessing fewer pages during its activation between interrupts) than by one

with a large footprint. If we assume that a statically larger program also has a larger runtime

footprint, we can therefore expect that a statically larger program pays a higher penalty due

to PTE invalidation than a smaller one. In fact, it is found that there is a positive relationship

between the runtime footprint and the performance penalty. In Section 3.5.3, we present a

more clear relationship between them with a micro-benchmark varying the size of dynamic

memory footprint.

Securing interrupts can be another source of potential performance degradation. Al-
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though securing an interrupt involves cryptographic operations, in general it does not add

much overhead because the frequency of interrupt is very low relative to the processor

clock speed in modern computing systems, and also the overhead is overshadowed by the

greater overhead of interrupt service routines and the resulting I/O operations. However,

it is possible that secure interrupts can degrade performance of certain applications that

request many simple system calls that the kernel can quickly return.

Secure interrupts are the culprit of the anomaly of the vortex and gcc benchmark pro-

grams. vortex is an object-oriented database whereas gcc is the GNU C compiler proper

(i.e., cc1). By tracing system calls, we found that both programs generate a significant

amount of system calls for mapping anonymous memory. These anonymous mmap requests

are caused indirectly by dietlibc C library when it handles free allocation (i.e., malloc

and free). Both benchmark programs belong to the software categories that heavily use

free allocation: compilers and object-oriented databases. The overhead of system calls is

analyzed in Section 3.5.4.

We were curious how the disk buffer cache affects performance since loading an ex-

ecutable from the disk carries initial decryption overhead in addition to the disk access

overhead. We performed a comparison between ‘cold’ and ‘hot’ runs of the workloads. In

the ‘cold’ run, we execute a workload program in boot-clean state without prior execution

of the program, whereas in the ‘hot’ run, we execute the program right after executing the

same program. When we measured and compared the two, we failed to find any signifi-

cant difference. Although it is a non-trivial overhead to decrypt a page for creation of a

decrypted image copy, it is obvious that the encryption penalty is hidden under the heavier

overhead of disk I/O operation.

We also measured the performance of normal insecure executables running in the mod-

ified Xen. This was to find out the penalty on normal non-SP3 applications when they

are executed on an SP3 enabled system. However, we could not detect any performance

differences from the ‘native Xen’, and hence we do not report the result in the graph.
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Figure 3.4: Impact of memory access locality on performance. Performance of a test program
is shown as the size of working set of the test program increases. The y-axis shows
increased runtime in SP3 system normalized to the native Xen.

3.5.3 Impact of memory access locality

To obtain a clearer relationship between the runtime memory footprint and the PTE

invalidation penalty, we performed a micro-benchmark with a varying runtime memory

footprint size. The runtime memory footprint is defined as the number of pages – thus

memory size – accessed by the program between each interrupt. The benchmark program

varies its memory working set size and touches all of the memory pages continuously

through a loop. In this way, we can artificially control the dynamic memory footprint.

Figure 3.4 shows the result. As expected, runtime penalty increases as the dynamic

footprint – working set size between each interrupt – increases. If the dynamic footprint

is small enough (less than 4MiB), the performance degradation is less than 15%. The

performance penalty increase as the footprint increases, and when the footprint hits 14MiB,

it takes twice as long.

Since many applications exhibit strong locality in accessing main memory, as can be

seen in our SPEC benchmark, users of SP3 system should not generally be concerned with
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Platform null open

Native Linux 0.32 µs 2.07 µs
Native Xen 0.95 µs 3.27 µs

Xen with SP3 10.6 µs 22.9 µs

Table 3.1: System call latency measured in microsecond.

performance degradation. Also this result is obtained from the un-optimized implementa-

tion: we did not aggressively optimize the invalidation and reevaluation logic. It is probable

that we can further reduce the impact of invalidation on the performance by optimizing the

invalidation logic. For example, we are considering invalidating a page directory entry

instead of page table entry to reduce the number of entries in the invalidation list.

3.5.4 Impact of frequent system call

SP3 applications that frequently request system calls are expected to suffer from the

encryption overhead of SP3 secure interrupt. To assess the increased cost of system calls

in SP3, we first performed a micro-benchmark that measures the overhead of system calls.

We used the system call latency benchmark from lmbench, which was slightly modified to

fit the SP3 environment.

Table 3.1 shows the benchmark results. ‘null’ measures the round trip overhead be-

tween user and kernel mode with minimum work required inside the kernel. ‘open’ mea-

sures how long it takes to open and then close a file, thus more time is spent in the kernel.

As expected, the system call overhead is significantly higher in SP3 compared to both

native Xen and Linux. This increased latency is due to the increased round trip time for

user/kernel crossing, which is caused by the encryption of SP3 secure interrupt frame. This

result also confirms the slowdown of gcc and vortex benchmark programs in Section

3.5.2, both of which make system calls at the average rate of 2,300 requests per second.

To better understand the relationship between frequent system calls and performance,

we also measured the rate of system calls made by each of the SPEC CPU2000 benchmark
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Figure 3.5: Impact of frequent system calls in SPEC benchmark on performance. Sub-benchmarks
of gcc and vortex are individually labeled. Each value is the mean of 10 trials.

programs. We counted the total number of system calls of each program and the total

counts were divided with the runtime in the native Xen setting. The total counts rarely

varied because the benchmark programs are strictly deterministic.

Figure 3.5 shows the relationship between the average rate of system calls and the in-

creased runtime of each benchmark program. To provide a finer-grained result, we broke

down gcc and vortex benchmarks into their sub-benchmarks, which are individually la-

beled with a number suffix.

As can be seen, there is a positive relationship between the rate of system calls and

the runtime penalty. The figure shows that every benchmark program with more than 10%

penalty makes more than 1,000 system calls per second. On the other hand, the programs

with low system call rate are clustered at the very low end of performance overhead range.

Given that 1,000 syscall/sec is considered unusual for real production applications6, we can

6The high rate of system calls is caused by handling of free allocation of dietlibc, which is optimized not
on performance but on its size.
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expect less than 10% performance penalty for typical applications.

3.6 Related work

Virtual machine research has a long history. In his thesis [46], Goldberg in 1972 laid

the theoretical groundwork on virtual machine monitors, including the definition of virtual

machine and the conditions that hardware must meet in order to be virtualized. Following

this work, requirements for virtualizable architecture were formally analyzed by Popek and

Goldberg [80]. Virtualization was a commercially successful technology in the ’70s [47],

with IBM VM/370 [88] being the prominent system.

It is safe to say that recent resurgence of virtualization is largely initiated by the com-

mercial success of VMware, whose origin can be traced back to Stanford SimOS [85] and

Disco project [24, 25]. VMware ESX server [107] runs directly on top of the hardware

without the need for a host operating system. This architecture is also called bare-metal ar-

chitecture. On the other hand, VMware Workstation [97] requires a host operating system.

Waldspurger [107] details optimization algorithms and strategies for memory management

implemented in the VMware’s hypervisor. Sugarman [97] presented I/O architecture of

VMware Workstation. Later, the open-source Xen hypervisor from Cambridge [13] stim-

ulated both academia and industry for virtual machine research. Fraser [41, 42] detailed

Xen’s second generation I/O architecture.

Robin [84] analyzed the Pentium’s ability to safely support a virtual machine moni-

tor and found that the general x86 system architecture does not meet the virtualizability

conditions. With respect to the lack of virtualizability, the initial commercial success of

the VMware can be attributed to the dynamic binary translation, which can detect and trap

offending instructions. Bruening has refined the dynamic optimization work addressing

adaptation [21] and code cache management [22]. QEMU [15] is an open-source ma-

chine emulator based on dynamic translation techniques. Later, Intel and AMD extended

their hardware to support virtualization, largely eliminating the need for dynamic transla-
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tion or para-virtualization. Adams published a comparison work on software-based versus

hardware-based support for x86 virtualization [8].

With this background, virtual machine monitors are being utilized to solve many system

security problems. IntroVirt [59] used virtualization to log/replay system events, achieving

a perturbation-free intrusion detection system that can also detect past intrusions. Garfinkel

and Rosenblum [44] designed an intrusion detection system based on virtual machine intro-

spection. The proposal of using hypervisor in commodity mobile systems [32] is motivated

by the advantage of using hypervisor for implementing security services. King’s backtrack-

ing intrusion [62] uses logging and replaying of operating system events to track down the

vulnerability and entry point of attacks. Denali isolation kernel [108] uses a heavily mod-

ified guest operating system to facilitate performance and scalability of virtual machine

monitors.

Ta-Min’s Proxos [101] is a hypervisor-based trust-partitioning system in which users

can configure the trust on the operating system. A trusted application runs in a private

trusted operating system created by the underlying hypervisor. A set of system calls, which

the user can specify, is dynamically forwarded into another operating system instance,

which is a full-fledged operating system but untrusted. In contrast, our system provides

protection to user memory on a per-page basis, and does not require any private operating

system instance.

3.7 Summary

This chapter detailed the major implementation of this thesis: implementing the SP3 model

in the x86 architecture by modifying the Xen hypervisor. The extension to the x86 system

architecture was first specified to apply the SP3 protection model defined in the previous

chapter. Then the Xen hypervisor is modified to emulate the extended x86 architecture. The

modified Xen serves as the new trust base for the user applications. The user applications

do not have to trust or rely on the operating system for the secrecy of the user information.
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We use page-frame replication to reduce the number of cryptographic operations by

keeping decrypted versions of a page frame. We also employ lazy synchronization to mini-

mize overhead due to an update to one of the replicated page frames. Our evaluation result

of the modified Xen shows that it increases the application execution time by 0-23% for

CPU and memory-intensive workloads.
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CHAPTER IV

PROGRAMMING ENVIRONMENT IN SP3

4.1 Introduction

In this chapter, we explore the impact of introducing SP3 to the programming environ-

ment and the problems in application construction and operating system constructs. We

present solutions to the specific problems in operating system components and application

programming environments such as Application Binary Interface (ABI), C runtime library,

program compilation and linkage, program loader, memory manager, and signal delivery

mechanism.

These problems originate from the fact that SP3 changes the underlying memory man-

agement semantics in a number of ways. These changes result in a new programming en-

vironment, in which applications and the operating system must beware of the constraints

imposed by SP3. In this environment, an application programmer must specify rules by

which data should be shared with the operating system. The operating system is no longer

capable of obtaining meaningful information from protected memory pages.

This chapter starts with an example program in Section 4.2. Section 4.3 presents the

process of generating an encrypted executable and loading the executable into the memory.

Section 4.4 details how an operating system can be made to support SP3 memory and inter-

rupt semantics. Section 4.5 considers the application programming in the SP3 environment

by discussing how application developers can easily take advantage of SP3 protection.
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#include <stdio.h>

int main()

{

printf(“Hello, world!\n”);

return 0;

}

helloworld.c

sp3host$ scp build:~/helloworld.spa .

helloworld.spa 100%   61KB  60.9KB/s   00:00

sp3host$

sp3host$ ./helloworld.spa

-Nx=@5!:$3Vci)sp3host$

Figure 4.1: The first, but incorrect, hello-world SP3 program. Shown on the left is the C source
code, and on the right is the result of the program. The program prints out a garbled
string instead of the hello-world string. This is caused by the fact that the operating
system is accessing the string constant in the user space, which is rendered as encrypted
when it is viewed by the operating system.

4.2 Hello world program in SP3

Programming issues in SP3 can be best illustrated by the familiar “Hello world” C

program and a discussion of why this simple program fails to deliver the expected result. In

this section, we examine what happened, what went wrong, and how to solve this problem

to get the correct result. Throughout the examination, we gain some insights into what it

would be like to write a program in the SP3 environment. It should be remembered that a

programmer can no longer assume the operating system is capable of reading meaningful

information from user space: the programmer has to explicitly put the information to be

shared in the unencrypted region of memory.

Figure 4.1 shows on the left a typical C code that prints out Hello, world! to the stan-

dard output, and on the right is the result of the program’s execution in an SP3 capable

host running Linux. The code is compiled, linked, and post-processed to generate a valid

SP3 executable, which contains encrypted code and data segments1. Encrypted versions of

the executables are given the filename extension of .spa to distinguish them from unen-

crypted, hence insecure, versions of executables. Shown on the right of the figure is the

screen output of sp3host on which the hello-world SP3 executable is executed.

1The details of generating encrypted executable are discussed in Section 4.5
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main:  ...
call printf(0x8054000)
...

printf: ...
call __write(1,0x8054000,14)
...

__write:
mov $4, %eax  /* syscall number */
...
int $0x80

0x8054000:
.asciz “Hello, World!\n”

system_call:
...
call *sys_call_table(%eax)
...

sys_write:          /* called when %eax == 4 */
...
call __copy_user(to,from,len)
...

__copy_user:           /* user memory access */
...
mov 0x4(%ebp),%esi /* esi = 0x8054000 */
mov 0x8(%ebp),%edi
rep; movsl      
...

user kernel 

code section - encrypted

data section - encrypted

encrypted 
view

Figure 4.2: Control flow of the first hello-world program when printf is executed. printf calls
write system call, which makes transition to the kernel space. The kernel service
routine of write system call eventually copies from the user space data for its terminal
I/O.

The result is surprising because this simple example does not seem to produce the

correct result: it prints out random characters to the standard output. In fact, it turns out

that the random characters are actually an encrypted text of the Hello, world! string.

We can easily realize that the operating system is reading from the user memory that

contains the string, and the memory appears as encrypted from the viewpoint of the oper-

ating system. This is actually the exact behavior that is expected in the SP3 system: the

operating system should see the verbatim – hence encrypted – image whenever it accesses

protected user memory. Since the operating system is indifferent to the content of what it

reads, it uses the encrypted text for the actual terminal I/O operation.

It is more revealing to investigate what is going on under the hood. In Figure 4.2, the

code and data of the program is shown in the form of a binary image loaded into memory.

Labeled are the entry points of relevant functions and the location of the Hello, world!

string. The figure also illustrates the switch to the kernel space as the result of calling

printf function. The printf C library function consists of two parts: creating a human-

readable formatted character string and writing the result to the standard output. The second
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part is essentially equal to making a UNIX write system call. The write system call

takes three arguments: a file descriptor that references the file to be written to, a pointer

to a buffer that contains data, and the number of bytes to write. The user code section

in Figure 4.2 shows that the printf eventually invokes write on the the standard output

(file descriptor 1) with the pointer to the string (0x8054000) and the length of the string

(14). The actual transition to the Linux kernel is triggered by the software interrupt (int

$0x80) with syscall number 4 in the eax register. Note that in SP3, the current SP3 domain

changes to 0 by this software interrupt. The right of the figure shows the kernel service

routine for handling write system call. At the system call entry point, the syscall dispatch

table is looked up and sys write is called. To obtain the data to write, sys write has to

read from the user memory at the location 0x8054000 (via copy user), but it reads an

encrypted version of the hello-world string since the current domain is 0. This encrypted

string is then used for terminal I/O, hence the garbled output that appears in the terminal.

The actual problem with this program is that the specification – the code – does not

match the programmer’s intention: the programmer wants the plaintext to appear in the

output, but the program is one that writes encrypted text to output. Note that this pro-

gram is working correctly in the sense that it does what it is specified to do, and also is

legitimate in the sense that its specification does not violate any explicit or implicit rules.

If the programmer had wanted to write the encrypted text (e.g., $ ./helloworld.spa >

secret message.txt), then the current hello-world program would be a correct program.

Figure 4.3 shows an improved version of the hello-world program that reflects the pro-

grammer’s intention of writing plaintext to the screen. Noticeable in this program are the

non-standard C constructs: the inclusion of header spa.h, and the spa unenc ro mod-

ifier. spa unenc ro is defined in spa.h to actually expand to a GCC C extension2 that

allows specifying the name of the object file section in which the annotated variable will

be allocated. Although this is a non-standard C extension, Microsoft Visual C compiler

2Defined as attribute ((section(".rodata.unenc")))

75



#include <stdio.h>
#include <spa.h>

const char str[] __spa_unenc_ro
= “Hello, world!\n”;

int main()
{

printf(str);
return 0;

}

helloworld2.c

main:  ...
call printf(0x8050060)
...

printf: ...
call __write(1,0x8050060,14)
...

0x8050060:
.asciz “Hello, World!\n”

code section - encrypted

data section - unencrypted

data section - encrypted

Figure 4.3: The second version of our hello-world program. The spa unenc ro modifier places
the string in the unencrypted region of data section.

– another major production compiler – also supports a form of compiler extension that

performs an equivalent function.

By specifying with the spa unenc ro modifier, the C string constant is now defined

to be placed in a special data section that is not to be encrypted. When the program is being

linked from object files, the linker makes sure the data from the special section are not

encrypted. When the program is being executed, the binary loader of the operating system

maps the unencrypted section in the virtual address space with null KID, so that the pages

are viewed as unencrypted images both by the operating system and the application. The

result of the program loading is shown on the right of the figure, illustrating the memory

layout of the program with the hello-world string being placed in the unencrypted data

section.

Although this program seems to be working, this program only works correctly because

of the way the printf C library function is implemented, which is one subtle yet important

problem. Since printf creates a formatted character string, some C library implementa-

tions might use an internal buffer to temporarily store the formatted string, and then use

this buffer for the subsequent write system call. If the C library of this program uses this

internal buffer, and the buffer is located in the encrypted data section, the program would
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#include <string.h>
#include <unistd.h>
#include <spa.h>

const char str[] __spa_unenc_ro
= “Hello, world!\n”;

int main()
{

int len = strlen(str);
write(1, str, len);
return 0;

}

helloworld3.c

main:  ...
call write(1,0x8050060,14)
...

write: ...
call __write(1,0x8050060,14)
...

0x8050060:
.asciz “Hello, World!\n”

code section - encrypted

data section - unencrypted

data section - encrypted

libc_iobuf:
.fill BUF_SIZE, 1, 0

Figure 4.4: The final, and safe, version of hello-world program. The call to the printf is replaced
with direct call to write system call. This is to eliminate the uncertainty coming from
the implementation specifics of the C library.

fail again. Fortunately, the C library of this program happens not to use the internal buffer

for the I/O operation.

Still, however, we cannot be sure whether the behavior of this C library is predictable

and consistent: our program might just hit a lucky case in which printf is using the user

string directly because the string requires no formatting. The printf might be imple-

mented to optimize on the no-formatting case, which can be detected by examining the

number of arguments. If this is what is happening, relying on this behavior would be an

unsafe practice.

Therefore, unless a C library with well-defined behavior is being used, we should avoid

using printf. Figure 4.4 shows the final and safe version of our hello-world program,

which replaces printf with a direct invocation of write system call. This version is safe

because we know for sure that the string will be directly accessed by the operating system.

Shown on the right is the memory layout of the program, indicating both the C library

buffer and the hello-world string to highlight the difference in the data location.

From these examples, it becomes clear that finding out the correct location of each data

element is the unique activity that determines the correct outcome of SP3 programs. If
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a programmer intends for a data element to be seen as plaintext from outside, he should

place it in public, meaning the data element should be located in the unencrypted section.

If he wants the data element to appear as encrypted from the outside, he should place it in

private, meaning the data element should be located in the encrypted section.

It is fundamentally the programmer’s job to determine which data to put in public and

which data to keep in private. As can be seen in the hello-world examples, the correctness

of the program ultimately depends on the programmer’s intention, and the true intention

is impossible to infer from the program. Therefore, SP3 only provides tools and interfaces

for writing SP3 programs easily, and does not attempt to solve the problem of how to auto-

matically “transform” an insecure application into a secure SP3 application. In this respect,

the approach of SP3 differs from that of Overshadow [28], since Overshadow implicity as-

sumes that someone other than the application writer can somehow figure out the intention

and then secure unmodified, insecure applications.

In summary, the failure of the original hello-world program is caused by the positional

semantic dependency of the user space pointer passed to the kernel during a system call.

Therefore, applications have to be careful when making system calls or invoking C library

functions that can potentially let the operating system refer to user space memory. In

addition, as much as the application and C library have to be concerned about having the

operating system access user space, the operating system itself must take great care in

accessing user memory.

We conclude this section with a list of observations made from analysis of the hello-

world programs. The conclusion given here applies to general SP3 applications, and serves

as the motivation of the work presented in this chapter.

• The programmer must decide which data to put in public and which data to keep in

private.

• Programs must be able to specify the location of each data element.
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• Linker and loader must be able to differentiate encrypted and unencrypted sections.

• Some C library functions must be either avoided or made SP3-safe.

• When making system calls, applications must beware of the consequences of passing

user pointers.

• The operating system must take great care in accessing user space memory.

4.3 SP3 executable

In many cases, little attention is given to the subjects of the internal structure of pro-

gram binaries and the procedure of constructing them. This is because application pro-

grammers usually do not have to know the underlying details about program linking and

executable formats. Besides, these subjects already have mature solutions that are also

well-standardized, so there is little merit in changing the established procedures.

However, SP3 requires a non-trivial investigation into the build procedure in order to

address SP3 specific requirements. In SP3, program data should be separated into either

one group of data that should be encrypted or the other group that should not be encrypted.

Accommodating this requirement entails a form of support from the program building pro-

cedure and the executable format.

In this section, we present our solution to this problem of creating encrypted SP3 exe-

cutables and loading them into the system. To attain maximum compatibility, our solution

utilizes existing standards and techniques. An encrypted SP3 executable can be generated

using a standard suite of compiler and linker without modification. The executable can be

loaded by the ELF binary loader of Linux, which is slightly modified to take care of the

encrypted segments of the executable.
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char var;

int foo() 

{

...

}

file1.c file1.o

Compile

gcc -o file1.o -c file1.c

ELF sections

sp3 specific 

sections

.text

.data

.rodata

.symtab

.data.unenc

.rodata.unenc

Figure 4.5: Various sections of an object file. A conventional ELF object file consists of several
sections that contain program code, writable data, read-only data, and a symbol table.
To support SP3 programs, two additional sections are defined.

4.3.1 Creating an SP3 executable

The direct outcome of compiling a source code file is an object file. An object file

contains the compiled code – usually in the machine language of the target system – and

the data defined in the source code. Later, in a phase called program linking, multiple

object files are then collected and packaged into an executable file that is loadable by an

operating system for execution.

An object file typically consists of multiple sections. In an object file section, data

elements with the same attribute are grouped together and made into a block of binary data.

Each section is identified by a section name, and later in the linking phase, a linker uses

section names to collect and merge sections from multiple object files. The final, loadable

unit of combined sections is known as a segment3. For example, the section name .text

identifies the section that contains compiled program code. To create an executable, the

linker finds all .text sections from object files and then merges them into a segment of

binary code, which can be easily mapped into process’s address space by a program loader.

3This is a linker terminology and should not be confused with x86 segmentation.
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#include <spa.h>

/* global vars */
int var = 200;
const int zip = 48109
int foo __spa_unenc = 7;
const char str[] __spa_unenc_ro

= “Hello, world!\n”;

void func() 
{

int fd;
fd = open(S_S(“myfile”,O_RDWR);
...

}

func:  ...
call open(_S_0,O_RDWR)
...

str:
.asciz “Hello, World!\n”

_S_0:
.asciz “myfile”

.text

.rodata.unenc

var:
.long 200

.data

zip:
.long 48109

.rodata

foo:
.long 7

.data.unenc

Figure 4.6: An example SP3 object file made from an annotated C source code. The compiled
code and variables without annotation are placed in the conventional ELF sections.
The annotated variables are placed in .data.unenc and .rodata.unenc, which are
SP3 specific.

Figure 4.5 illustrates various sections that can be found in a typical ELF object file, as

well as sections that are specific to SP3 applications. Typically, a compiler treats writable

data and read-only data separately, and places them into the .data section or .rodata

section. This separation is necessary in order to facilitate memory protection, memory

sharing and the copy-on-write scheme found in most operating systems. The .symtab

section contains a table of symbols that are exported/imported by the object file. The linker

uses this symbol table to calculate relocated addresses when sections are merged.

The two SP3 specific sections, .data.unenc and .rodata.unenc, are similar to .data

and .rodata, but they are different in that these sections contain data elements designated

as public in an SP3 application. Therefore, the content of these sections will not be en-

crypted when the final SP3 executable is generated.

To place a data element in one of the two special sections, we utilized a C compiler

extension that allows specifying the section name in which the variable is defined. This

way the programmer can easily annotate public data elements in the source code, as already

demonstrated in our second hello-world program in the previous section.

An example of annotated source code and the resulting object file is illustrated in Figure
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4.6. The first two global variables var and zip are defined without annotation; therefore

they are placed in the .data and .rodata sections respectively. The next two variables are

annotated with spa unenc and spa unenc ro, indicating they are to be rendered unen-

crypted even when viewed from outside. The annotations instruct the compiler to place the

variables foo and str in .data.unenc and .rodata.unenc sections, respectively. In the

function, the string constant used as the argument for the open system call is enclosed with

S S(). Note that we want the operating system to read the file name as unencrypted string.

This expression is a convenient way of placing a string constant in the .rodata.unenc

section.

Except for the annotated static variables, all other data elements are to be encrypted.

This is also true for the variables created in the runtime. In SP3, the program stack is

mapped with SP3 protected pages; therefore automatic variables created in the program

stack are encrypted when accessed by the operating system. The program heap – free-

allocated memory – is also mapped with SP3 protected pages. In a nutshell, everything in

the process address space will be protected except for the annotated static variables and the

memory allocated at runtime with anonymous mmap with null KID, which is the topic of

Section 4.4.

Having described how to differentiate encrypted and unencrypted sections in an object

file, we turn our attention to the whole procedure of generating an encrypted SP3 exe-

cutable. Depicted in Figure 4.7 is an example case of building an SP3 executable using our

build system implemented on Linux. Our build system utilizes the standard GNU linker

and a couple of perl scripts. At the center, the linker produces an intermediate executable

file (prog) from object files and a C library4. Using a special linker script (spa lds.ld),

the linker collects and merges sections from object files including the SP3 specific sections.

The linker script also makes sure that all mappable segments are page-aligned. The in-

termediate executable file then undergoes a post-processing phase with the help of a perl

4The C library is modified to adapt to SP3 environment
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prog

prog.c

module.c

prog.o

module.o

prog.spa.o

spalibc.a

prog.cfg
linker

spa_lds.ld

pop ..
mov ..
add ..

AxFL76
Igz9UD
cMICuN

prog.spa

gcc -c

gcc -c

contains {Ks}Kp+

perl

perl

Figure 4.7: A procedure for building an SP3 executable. With the help of a special linker script, the
linker is able to collect and merge SP3 specific sections from the source object files.
The resulting executable is then post-processed to produce the final SP3 executable,
which contains encrypted segments.

script (spa mkbin.pl). This post-processing phase is where the actual encryption with Ks

takes place. The .text, .rodata, and .data segments are encrypted in the final SP3 ex-

ecutable (prog.spa). The perl script finds the value of the key Ks from a configuration

file (prog.cfg). This configuration file serves as the central place that specifies all the

cryptographic variables such as Ks and KP+ . The configuration file is also used to gen-

erate a special object file (prog.spa.o) that contains SP3 specific metadata information

containing {Ks}KP+ .

In the above build procedure, two valid executables are produced: prog in the exam-

ple is the executable without encrypted segments, and prog.spa is the executable with

encrypted segments. Certainly, a system without SP3– vanilla Linux, for example, – is ca-

pable of running prog but not prog.spa. In a system with SP3, both prog and prog.spa

can be executed correctly, provided that the public key of the SP3 matches with the one

used in the prog.spa. Note that the two binaries are functionally equivalent with the only

difference being the capability of running on an SP3 system. This is useful in debugging

and performance comparison, and these executable pairs were used in the performance
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evaluation of the Xen-based SP3 system in Chapter III.

4.3.2 Loading an SP3 executable

When an executable file is being executed, the operating system invokes a binary loader

module that interprets the specific executable format. The binary loader then maps the

executable segments into the process’s address space, and sets up program arguments and

environment variables. Finally, the loader prepares for the initial entry into the program by

reconfiguring the in-kernel data structure associated with the process, making the process

scheduled just like any other processes.

To run SP3 executables, the binary loader must be changed to support for the SP3 ex-

ecutables. The binary loader must be able to understand the format, identify encrypted

segments, and construct an initial condition in a way that is not intrusive to the user space

memory.

We implemented our SP3 binary loader by modifying the ELF binary loader of Linux

as well as the kernel handler for exec system call. The modified binary loader detects an

SP3 executable by examining a flag in the ELF file header. This informs the loader of the

need to create an SP3 domain and the presence of encrypted segments in the executable. A

new SP3 domain is created by executing Alloc instruction, which invokes the underlying

SP3 system that extracts Ks directly from {Ks}KP+ , and sets up permissions accordingly. To

map the segments into the address space, Linux utilizes the memory file map by invoking

mmap on each of the segments of the executable file. We modified the loader in such a way

that we call mmap with a special parameter specifying the KID value for the address range of

the encrypted segments. Then the loader allocates memory for the program stack and then

copies command line parameters and environment variables. The loader maps the stack

with null KID only for the region of memory that contains kernel-supplied information.

The rest of the the stack is mapped with a valid KID.

The changes in the program loading also affect the Application Binary Interface (ABI)
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regarding the initial program state presented to the application at the entry point. For in-

stance, the System V ABI [5] strictly defines the initial contents of the registers including

the stack pointer. However, in SP3, the operating system cannot arbitrarily set the stack

pointer, which must be set to the top of the stack, whose address might vary every time the

program is executed. We solved this problem by delivering the stack address in a general

purpose register. This change requires the program to load the stack pointer from a general

purpose register at the point of program entry.

The C library that is supplied as a part of the SP3 application development package

provides an entry point function that handles all the changes in the ABI. The entry point

function also implements the user level dispatcher for the signal, which is discussed in

Section 4.4. The entry point function is listed in Appendix B.1.

In our implementation, a new SP3 domain is created when exec is called. Therefore,

in a system with explicit separation between creating a process (i.e., fork) and overlaying

memory with executable (i.e., exec), SP3 domains kept in the underlying SP3 system do

not correspond to the processes of the operating system. Rather, the domains are associated

more with particular instances of SP3 executable files.

Although it seems more easy and natural to design a protection system built around the

concept of process, applying that approach would produce a system that is very complex

and hardly practical. This is because there is a logical and temporal gap between fork

and exec: if a protection domain is created upon fork when the actual secured content is

loaded upon exec, a complex scheme has to be constructed to secure the domain in between

against an untrusted operating system. For example, the Xom/Xomos architecture [66] suf-

fers from this because Xom equates its concept of protection domain (Xom compartment)

with the process of operating system. As a result, many of the artifacts in Xom architecture

are dedicated to solving corner case problems in creating and maintaining Xom compart-

ment. In addition, Xom needs to deal with how to securely set individual memory bytes or

registers at runtime after the compartment/process is created.
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SP3 defines its protection domain to be a completely independent notion, which is a

conscious design decision that we discussed in Chapter II. The independence from any

operating system abstractions not only promotes a clean and simple interface, but also per-

mits flexible use of the SP3 domains. For example, a single SP3 domain can be created for

a group of processes executing the same SP3 executable. With this approach, we can save

underlying SP3 resources. But in our current implementation, we create a new SP3 domain

each time exec is called even if there is another process instance of the same executable,

which is also a valid approach.

4.4 Operating system

SP3 introduces a number of changes to the underlying interface that operating systems

are built upon. To adapt to these changes, a conventional operating system must be modified

in order to correctly load user applications, to support the extension of the paging interface,

and to make the operating system function correctly. In the previous section, we already

showed how Linux’s ELF binary loader has to be changed to support SP3 executables. In

this section, we discuss the changes made in other areas of the operating system.

Before we move on to the detailed discussion, it should be emphasize that these modi-

fications are never necessary conditions for the security of SP3 protection. In other words,

these modifications are just to achieve correct functionality of the operating system; a mal-

functioning operating system can crash the system, but nevertheless, it cannot break the

privacy of applications.

4.4.1 Memory management with SP3 paging

An operating system must take into account the new KID field of the page table entry

(PTE) structure of SP3 enabled hardware. Obviously, this affects memory management

routines that handle pages and address-spaces. Kernel routines that directly interface with

the hardware paging unit, such as the page-fault handler, have to recognize the KID field.
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Kernel routines that manage the virtual address space of each process also have to dif-

ferentiate regions of virtual addresses mapped with different KID values. In addition, the

operating system must provide a KID-aware memory mapping facility, such as mmap system

call, to user applications.

It is helpful to know a bit on Linux’s memory management internals. In Linux, the

internal harness for memory management consists of a low-level paging subsystem and a

high-level address-space management subsystem. The paging subsystem deals primarily

with page allocations and subsequent updates to PTEs on a per-page basis, whereas the

address-space management subsystem keeps track of the usage of each process’s virtual

address space on the basis of a region of virtual address.

The paging subsystem of Linux is mostly implemented as part of page-fault handling

routines. This is because of the use of demand paging and the copy-on-write scheme,

which makes it necessary to update PTEs during the handling of page-faults. This means

that a physical page for a virtual address is mapped later when a page-fault occurs on that

virtual address, not earlier when the virtual address is prescribed for a particular use by

the address-space management subsystem. When the page-fault handler tries to map the

faulting page, the handler consults the address-space management subsystem to find out

the memory attribute associated with the fault address, and specifies PTE’s Writable (W),

Executable (X), Dirty (D), and Present (P) bits accordingly.

The address-space management subsystem maintains the memory attribute information

using the in-kernel structure called vm area struct. Each vm area struct descriptor

represents a consecutive, non-overlapping region of virtual address of an address space.

The descriptor includes a great deal of information: start and end addresses of the region,

the memory attributes such as read/write/executable flags, the file descriptor if the address

region is file-mapped, and so on. Linux organizes vm area struct descriptors in such a

way that each address region shares the same memory attributes. Therefore, Linux imple-

ments a merge/split logic on address regions: multiple adjacent regions are merged when
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the regions share the same attributes, and a region is split when a part of the region has

its attribute changed. The address-space management subsystem is consulted by the pag-

ing subsystem when a page-fault occurs, and the page-fault address is used to search for

the matching vm area struct descriptor. To facilitate a fast search, Linux maintains a

balanced tree of vm area struct descriptors for each address-space.

The mmap system call of Linux serves as the most important facility that allows a user

process to allocate memory in its virtual address space. mmap has a very versatile interface:

the mmapped memory can be a free memory with no strings attached (i.e., anonymous map),

or associated with a file (i.e., file map or named map) so that the file can be accessed

through virtual address space; the mmapped memory can be either private or sharable; the

attributes of the mapped memory can also be specified. This versatility makes mmap capable

of satisfying almost every address-space related demand. In fact, the Linux kernel itself

uses mmap internally when it creates a new address space, as we saw in Section 4.3.2.

When a user process or the kernel makes an mmap request, Linux calls upon the address-

space management subsystem to create a new vm area struct descriptor for the requested

memory region.

With this knowledge on Linux’s memory management, it is fairly straightforward to

take the KID field into consideration. First, the low-level paging subsystem is modified to

recognize the KID field for PTE when an SP3 page is being mapped. Thus, page-fault han-

dlers for no-page and copy-on-write faults are modified to include a few lines of code that

properly handles the KID field. The KID value to be used in the PTE is obtained from the

vm area struct descriptor for the fault address. Therefore, the vm area struct structure

is extended to include the KID value as an additional attribute. The merge/split logic of the

address-space managing subsystem is also modified to take this KID value into account.

The top-level mmap system call is modified to accept an additional argument, whose value

is essentially a handle to the KID value to be used in the extended vm area struct de-

scriptor. To achieve a consistent user-level interface, we added another layer of indirection

88



when KID is referred to in the user space, hence the use of a handle in the mmap system call

instead of using the actual KID value.

4.4.2 Modifications on signal and program entry

For the operating system to function correctly, it must understand the constraints im-

plicitly imposed by SP3. One is that the operating system cannot freely read from, or write

to, the memory designated to the applications; it can do so, but the data it reads may be en-

crypted and thus unintelligible. Writing to the application’s memory may corrupt the data

since the memory may contain unintelligible ‘random’ data when the application reads the

memory back. Another restriction is that the operating system cannot arbitrarily modify

saved application contexts such as the program counter or the stack pointer (i.e, EIP and

ESP in x86), because they are encrypted and stored in the secure domain context by means

of the x86 extended exception frame.

With these constraints, the current implementation of the signal mechanism of Linux

needs close attention. This is because the original Linux signal dispatcher intrusively writes

into the user-space memory and also modifies the exception frame of the process. With SP3,

these activities will crash the application.

The original signal handler modifies the EIP value of a saved exception frame in order

to deliver the signal: the new EIP value is the callback address of the signal handler function

of the user process. However, in SP3, the operating system should not directly specify the

callback address by directly modifying the EIP of the saved exception frame. Thus, for

the implementation of a user callback mechanism of signal (or other cases that require an

overriding return-to-user address such as fork), the operating system must find ways other

than directly overriding EIP.

We solved this problem by a scheme that utilizes a user-level dispatcher. When the

user process first requests installation of a signal handler, the operating system saves the

modified exception frame (Figure 3.2(b)) caused by the system call for later use. The
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operating system saves the signal handler’s address and then returns to the user process

with return value 0. When the operating system wants to signal the process later, it uses

the saved exception frame but at this time, the return value contains the handler’s address.

Then, the user-level dispatcher, located between the system call interface and the C library,

will test the return value and take appropriate actions.

Even with the user-level dispatcher, there still is a problem with the original signal

implementation of Linux. When a signal is delivered, the operating system needs to save

the current execution state so that it can resume the process after handling the signal. In

Linux, this state information is saved on the user stack of the process, which is problematic

in SP3 since the user-level stack is encrypted. Also, the stack pointer is advanced to account

for the saved state information, and this requires directly modifying the ESP field of the

saved exception frame.

We solved this problem by allocating a special kernel memory designated for saving

the state information. Also, we made the user-level signal handler use a separate memory

for the stack. This way, the address of the signal handler’s stack can be predefined, and

therefore the ESP field need not be overridden by the kernel.

Linux’s signal system is one of the few places where its programming interface is sig-

nificantly changed: the user program is now responsible for signal dispatch, and signals

cannot be nested due to the use of a separate stack for signals. However, these differences

are not a problem for typical user applications since the user-level dispatcher and all of the

start setup requirements can be handled by the C library. Also, few programs rely on nested

execution of the signal handler.

4.5 Application programming

From the perspective of application programmers, SP3 introduces a new programming

environment. Using the protection interface of SP3, privacy protection can be guaranteed.

Application programming in SP3 raises interesting issues, several of which are discussed

90



next.

4.5.1 Application programming with SP3

Although it is technically trivial to create an SP3 executable as demonstrated in Section

4.3.1, transforming a non-SP3 program to an SP3 program usually requires a programmer to

take a hard look at the information flow of the program. This is because what SP3 provides

is the programming environment and tools for securing selected segments of an applica-

tion’s code and data. In other words, SP3 does not magically prevent incorrectly written

programs with security holes from leaking secret information. In this context, summarized

below are the things a programmer must consider when he writes an application program

with SP3.

First, it is the application programmer’s responsibility to logically classify which data

should be kept private and which data should be made public. For example, strings used

as the printf argument are mostly public data, whereas variables holding sensitive infor-

mation are private. Systematic solutions for information-flow analysis [114] can help the

programmer detect potential problems. Also, this logical data classification should be real-

ized by physical classification in the executable: private data should reside in the memory

region mapped with KID, and public data should be located in the memory region with KID

0. SP3 provides a C language extension based on annotation to facilitate this. Some data

elements can be located statically at compile time, but in other cases, the program may need

to move data elements around, depending on the runtime classification of the sensitivity of

the data elements.

Second, although SP3 provides an interface for a user application to protect its own code

and data, it is entirely the application programmer’s responsibility to write correct code

that does not reveal sensitive information. Programmers can benefit from static/dynamic

checker utilities [26] and integrity verification schemes [77,91] to further enhance security.

Last, programmers must be aware that the initial configuration at the program entry
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is very different from the traditional Application Binary Interface specification. Also, the

semantics of the signal-delivery mechanism differ significantly. However, in most cases,

a C library customized for SP3 applications, such as our modified dietlibc [35], can mask

most of these singularities. For example, the C entry code shown in Appendix B.1 is

currently a part of the modified C library. This entry code, along with helper C functions,

interprets the modified ABIs and implements the user-level signal dispatcher on behalf of

user applications. To facilitate application development and packaging, we have developed

a toolchain for creating an SP3 application. The toolchain consists of encryption utilities,

script files for compiling and linking, and the customized C library.

4.6 Summary and discussion

In Section 4.2, a close examination of the hello-world program in an SP3 environment

brought out the fundamental issues in both application programming and operating sys-

tem construction. One fundamental aspect of programming in SP3 is that a programmer

must specify the information security category of each data item and write the application

according to the specification.

This situation is analogous to multi-thread programming: running a single-thread pro-

gram in a multi-threaded operating system does not make the program multi-threaded. The

program has to be changed in order to fully utilize the multi-threaded environment. In

the same respect, what SP3 offers is the programming environment and APIs for building

a secure application capable of running in an untrusted operating system. SP3 does not

magically protect an application that is insecure in itself.

In Section 4.3, we tackled the important subject of constructing an SP3 executable from

the source code. For the generation of executable SP3 programs, we defined special object

file sections in ELF standard to separate encrypted and unencrypted data, as depicted in

Figure 4.5. By annotating the C source code, programmers can specify the object section to

which data should belong, thus avoiding use of a special compiler. We avoided modification
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of compiler and linker by utilizing features of existing tools. This section also detailed how

the SP3 executable is loaded in a real untrusted operating system.

A new domain is created when exec is performed on an SP3 executable, which contains

encrypted sections. Thus, the ELF loader is modified to correctly load the encrypted sec-

tions of the executable file. The Alloc operation is performed at this point. The loader then

performs mmap with appropriate KID values for the text, data, and stack memory regions.

Program arguments, environment variables and ABI specific data are stored in the separate

region instead of the default stack, since these data are not sensitive information.

In Section 4.4, we modified Linux, making it run correctly in the SP3 environment. The

KID integration in memory management routines only required an orthogonal extension of

the virtual memory routines of Linux. At the lowest level of the virtual memory routines

is the page-fault hander. We modified the page-fault hander to recognize and differentiate

KID field of PTE structure. At the next level, Linux manages the virtual memory regions

allocated to the user address space by means of a data structure known as vm area struct.

Each vm area struct describes a memory region with the same property in the user’s

virtual address. We extended this structure to include KID for the region property. At the

top of the virtual memory routines, Linux utilizes mmap for the general handling of mapping

of memory to virtual address spaces. We modified the interface of mmap to accept KID value

as an additional parameter.

Adapting Linux to the constraints imposed by SP3 was a relatively easy task because

Linux, like other operating systems, is indifferent to the contents of the user memory most

of the time. Only a few parts, such as the signal delivery mechanism and program binary

loader, meddle with user stack memory, and thus need to be modified. Considering the

depth of changes made by SP3 — we modified the semantics of paged memory and inter-

rupt — the impact to the operating system can be considered very small. This is because

of the orthogonality of the SP3 paging semantics: the existing operating system’s memory

management routines only have to add the KID field into their internal structure and treat
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the field as another attribute of the memory.

In Section 4.5, we discussed the issues in application design and programming from

the standpoint of an application developer who wants to benefit from SP3 protection. The

bottom line is that the application is ultimately responsible for writing correct code accord-

ing to the program’s own secrecy requirements because SP3 does not protect privacy of an

application that is written incorrectly.
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CHAPTER V

MULTIMEDIA CONTENT PROTECTION

In the previous two chapters, we confined our discussion to the SP3 system itself; in

Chapter III, we detailed the hypervisor-based implementation of SP3 protection model,

followed by Chapter IV, in which we discussed the impact of the underlying SP3 on the

operating system and application programming. Since we covered the required details of

the SP3 system, a discussion on actual use cases of SP3 seems to be in order.

In this chapter, we turn our attention to the topic of how to utilize the SP3 protection

to solve real world problems. As SP3 is capable of removing the operating system from

the trust base of the end user applications, SP3 can solve many practical cases in which

difficulties have been encountered because of an untrusted operating system or a malicious

user who has a system privilege.

Among many problems that can be effectively solved by SP3, here we choose the most

compelling use case of SP3: the protection of copyrighted media contents. Aside from the

revenue lost from piracy, the many previous failed attempts to enforce copyrights, and the

public perception that piracy is ineradicable, there are also technical merits for taking con-

tents protection as an example; we show how SP3 can secure the codec and media player,

the exact vulnerability point from which many previous attempts for contents protection

have suffered; we show how SP3 can easily secure the media contents in both encoded and

decoded forms; we show how SP3 can guarantee complete secrecy of media contents from
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a contents provider to a playback hardware device equipped with a decryption circuitry.

5.1 Introduction

Enforcing protection against creating pirated copies from copyrighted media contents

in a digital computer is a hard problem. History seems to suggest that copy-protection in

computers is inherently futile, especially in systems where end-users can be entitled to be

super users. In such systems, users with system privilege are allowed to replace kernel, load

arbitrary kernel modules, and debug arbitrary processes. This allows a modestly skilled

user with the malicious intent of making a pirated copy to disable, dismantle, bypass, or

reverse-engineer any copy-protection measures relatively easily. Unfortunately, consumer

PCs, which comprise the major target platforms of media contents playback, allow end-

users to be super users and therefore vulnerable to digital piracy.

Making this situation hard to resolve is the fact that digital media contents, such as

music and movies, are usually delivered in compressed and encoded form, thereby necessi-

tating a software component for decoding the contents to produce raw digital signal. Since

this decoder software deals with the media content (it produces the final decoded output at

least), and is relatively easy to break if you have the super user privilege, this software be-

comes the single weakest point that can be easily exploited to subvert or bypass any copy-

right protection measures. In fact, many current and past copy-protection schemes have

been subverted by exploiting this phase of multimedia processing. For a notable instance,

the reported leakage of encryption keys for Advanced Access Content System (AACS) [1]

used for Blu-ray and HD-DVD is believed to be obtained from reverse-engineering licensed

media player software for PC [14].

Throughout the chain of procedures protected media contents have to go through to be

finally played in an output device, the media player software presents itself as the security

“hole” that is hard to secure. In contrast, storing and delivering protected contents seems

relatively safe and secure: a protected content, in its encoded form, is usually encrypted
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so that it cannot be decoded properly without the right encryption key; a decoded raw

digital content can be encrypted and then transmitted to a secure output device capable

of decrypting the stream. For instance, the High-bandwidth Digital Content Protection

(HDCP) standard [4] secures the digital contents transmitted between the display output

port and the end display device. However, the media player software, which has to decrypt

and decode the source media, and then to encrypt the raw data to deliver to a secure output

device, must know all the relevant keys as well as the decrypted media content itself.

In this chapter, we demonstrate how to utilize SP3 to secure the media player soft-

ware, the most vulnerable point in the enforcement of media contents protection. Due

to the SP3 protection, an operating system and end users are prohibited from accessing

the plaintext versions of both encoded and decoded media contents. Also prohibited is to

reverse-engineer the media player itself because SP3 essentially encrypts the media player

instance all the time, including the code and data while it is being executed.

We also demonstrate the flexibility of the secure memory mapping facility introduced

by the SP3 user-level programming interface, which enables performing encryption and

decryption without actually making calls to cryptography libraries. The encryption and

decryption is done transparently by the underlying SP3 system, which is just fulfilling the

secure paging semantics of SP3. The capability of loading multiple different symmetric

keys is also confirmed to be useful in our media player because separate encryption keys

are used for encoded source content and decoded raw content.

We designed and implemented a media player that can decode and playback a rights-

protected digital audio file on a secure audio device that has an encryption-based secure

channel. We chose the Advance Audio Coding (AAC) format — a digital audio compres-

sion standard — as the base codec for our audio player implementation. As an input, our

audio player accepts an encrypted AAC audio file. The player decodes the AAC file and

then sends out the raw output - in the Pulse-Code Modulation (PCM) format - to an audio

device that understands the encrypted PCM audio stream. Even though a device driver for
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the audio device is necessary in order to manage the device, the device driver is outside

of the trust base because the driver does not have the decryption key to decrypt the PCM

audio stream.

The following sections are organized as follows. In Section 5.2, we present background

information in the fields of digital media and copy-protection measures. In Section 5.3, our

goals and assumptions are stated. In Section 5.4, we illustrate our design and implementa-

tion of a secure media player using SP3 protection. In Section 5.5, we evaluate our media

player implementation. We conclude in Section 5.6.

5.2 Background

In this section, we first introduce how multimedia contents, such as video and audio,

are created, delivered and played in the digital computer system. Then we discuss method-

ologies for enforcing copyrights for such media contents.

5.2.1 Multimedia codec, container format, and media player

Digital multimedia data is usually stored and delivered in compressed form, due to

the sheer volume of original raw digitized samples obtained from a source analog in-

put. Exploiting the insensitivity of human perception to minute details, lossy-compression

schemes, which intentionally discard insignificant information, are typically employed for

multimedia compression as opposed to lossless compression schemes, which preserve ev-

ery bit. This can produce highly compressed encoded media contents, the quality of which

is sufficiently good when reproduced.

A media codec is a collection of software components that implements the algorithm

for media compression and decompression. Codecs usually vary depending on the type of

media (e.g., sound, still image, or video) and the industry standards the algorithms have to

conform to. The component that implements a compression algorithm is called coder or en-

coder, and encoding refers to the action of applying the compression algorithm against raw
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media samples to produce compressed, encoded media contents. Conversely, the decoder

decompresses media contents encoded by the matching encoder. The actual algorithms em-

ploy various digital signal processing methods, such as Discrete Cosine Transform (DCT),

but most of the time what matters to end users is not the underlying algorithms but the

standards that a media codec suite supports.

A media container format refers to a file specification by which a compilation of en-

coded media contents is collected. For example, a movie file consists of at least one en-

coded video stream plus multiple channels of audio streams. The container format binds

these streams together and contains metadata that specifies the type of codec used, timing

and compression parameters, etc.

A media player is a software frontend that is responsible for actually transferring de-

coded raw samples to output devices. When a multimedia file is opened, the media player

interprets metadata from the container and selects appropriate decoders for the file. The

media player then performs actual I/O operations for the decoded raw media samples to

the output devices such as display device and sound card. In most cases, the media player

simply makes system calls for I/O operations, and device drivers of the operating system

perform the final step of transferring the raw media samples to output devices.

It should be noted that output devices can only accept raw media samples. Although

the format of raw samples varies among devices, most of the devices work in the same

way. For instance, to display a video frame, it is required to update the frame buffer of

the display device pixel by pixel. For a sound device, a buffer containing raw Pulse-Coded

Modulation (PCM) sound samples is required to play a sound.

5.2.2 Media copyright protection

Digital Rights Management (DRM) refers to the measures for preventing unauthorized

copies of copyrighted digital contents from being made as well as ensuring the contents to

be used only by the licensed persons or devices. DRM is usually applied to protect copy-
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righted media contents such as music and movies, and many DRM standards have been

developed and accepted by the media and computer industry. For example, the DVD speci-

fication contains provisions for DRM called Content Scramble System (CSS), whose cryp-

tography was broken [2], as well as Content Protection for Prerecorded Media (CPPM),

which is not broken cryptographically, but can be easily circumvented. For Blu-ray and

HD-DVD discs, a specification called Advanced Access Content System (AACS) [1] is

used for DRM and content distribution. The High-bandwidth Digital Content Protection

(HDCP) standard [4] enforces copyright across display port and display device by prevent-

ing an unlicensed display device from properly rendering the delivered contents. DRM

may include digital-watermarks to trace the source medium of a pirated copy.

Clearly, cryptography plays a critical role in implementing DRM. For performance,

symmetric-key block cipher or stream cipher is used to encrypt the media contents. The

encryption key is then secured by a higher level of key management scheme, which varies

platform by platform, depending on application specific requirements such as content dis-

tribution, device authentication, and key revocation scenarios. Sometimes, a media player

also encrypts the decoded output stream — the raw samples — with the key of a licensed

output device, so that only the licensed device can produce output correctly.

Figure 5.1 illustrates the steps taken when multimedia contents are generated and then

played in the machine of an end-user. Figure 5.1 (a) shows how a content provider generates

distributable media contents from the raw samples by encoding, packaging and encrypting

the contents. In the figure, H.264 refers to the video encoding standard of MPEG-4, and

AAC refers to one of the audio encoding standards. M2TS is a container file format stan-

dard. The end result of the content generation is the copy-protected contents encrypted with

the symmetric key Km. Figure 5.1 (b) shows how the delivered contents are reproduced in

the machine of an end-user. A media player in the machine first decrypts and interprets the

container file. The media player then calls upon the appropriate decoder to obtain raw sam-

ples acceptable for output devices. Then, the media player makes system calls to deliver
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Figure 5.1: Steps for multimedia contents generation and playback. Shown in (a) is the sequence
of sampling, encoding, packaging and encrypting of the source media from a con-
tent provider. The deliverable is therefore encoded and copy-protected. The playback
sequence of the delivered contents is shown in (b). As can be seen, a media player
running in the user mode performs the task of decryption and decoding.
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the raw samples to device drivers, which run in the kernel mode. Note that there could be

optional encryptions performed on the raw samples: this is intended to prevent raw data

from being stolen and to allow playback only to the licensed devices. In the figure, sym-

metric keys Kdv and Kda are used for the secure graphics card and the secure sound card

respectively.

Possible attacks against DRM measures can be classified into two categories: one

category is direct cryptanalysis against cryptography and key management protocol, and

the other one is the exploitation of vulnerable points in actual system implementations.

Whereas the first category of attacks can indeed break a DRM measure [33], as in the case

of DVD’s CSS [2], most common and serious breaches occur due to the second category of

attacks. For instance, it is extremely easy for an attacker to capture and copy the decoded

output by intercepting system calls made from the media player, which amounts to effec-

tively bypassing the entire copy-protection scheme. With some effort, reverse-engineering

media players can even extract important keying materials whose leakage has a significant

impact. In the much publicized instance of the leakage of encryption keys for Blu-ray’s

AACS, the keys are believed to be extracted from one of the licensed media player soft-

ware.

Known as the ‘trusted client’ problem, the requirement of a trusted client program that

performs the sensitive task of decryption and decoding is responsible for a great deal of

previous breaches of DRM measures. This is because in many situations the trusted client

program can be easily hacked and analyzed by an attacker who has a system privilege.

Unfortunately, this is the situation for most of the consumer PC environments where end-

users are capable of doing whatever they want to do.

In this chapter, we directly address this trusted client problem by utilizing the protection

provided by SP3. A media player, including a decoder, is protected by SP3 in such a

way that the internal workings of the media player can never be revealed to the outside,

including the operating system. The media player takes encoded media in encrypted form,

102



and produces decoded raw samples also in encrypted form.

5.3 System goals and assumptions

Our first goal is to secure the media contents and media player from untrusted end-users

by means of the secrecy protection and the secure-memory mapping facility provided by

SP3. We say the security is broken when the attacker can obtain plaintext of either encoded

or decoded media contents. Obviously, any leakage of the keying materials constitutes a

security compromise.

Our second goal is to allow correct playback of media contents only to the licensed

device. To this end, we assume each device has its own cryptography key which is unique

and whose value is never known to the end user. The key is only known to the device

manufacturer and the media content provider who licenses the device. The device may

have a unique device identifier for the end user to use, who may supply the identifier to the

content provider for a device authorization.

We assume the following parties/components to be trusted from the perspective of

media content providers: hardware (i.e., computer, graphics/sound cards, and end dis-

play/sound device), client programs (i.e., media codecs and media player), and underlying

SP3 system.

We assume the following to be untrusted and potentially malicious from the perspective

of media content providers: operating system, end users, operating system administrators,

and device drivers.

Note that the above assumptions are by far the most realistic assumptions that suitably

reflect the concerns of media content providers, except for the SP3 system, which we intro-

duce in this work. In fact, without SP3, the assumptions lead us exactly to the trusted client

problem from which many breaches have originated. In this respect, SP3 is the price that

has to be paid to solve the problem.

The above assumptions mostly follow the situation of consumer PC platforms, which
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are relatively ‘open’ as opposed to ‘closed’ platforms such as stand-alone DVD or Blu-ray

players, digital set-top boxes, or digital TVs. For closed platforms, it can be reasonable to

assume that the software installed within the hardware boxes — such as operating system

and device drivers — is trusted, since it is hard for end-users to gain access to the pre-

installed software. However, the situation for the majority of consumer PCs and handheld

devices does not resemble that of closed platforms. It should be also emphasized that our

assumptions make the problem harder, not easier.

Promoting practicality, we also restrict ourselves to the ‘generic’ versions of media

codec and cryptography primitives; we use standard-conforming generic codecs such as

H.264, AAC, or MP3, as well as standard cryptography such as AES. By this, we mean we

do not attempt to achieve security by obscurity of our tools. Note that this is a restricting

assumption that makes the problem harder to solve, but makes a solution more practical.

Finally, we only deal with symmetric key cryptography in this work by assuming that

key-management issues are fairly orthogonal problems that can be dealt with separately.

This assumption is reasonable because most existing DRM schemes exhibit this separation.

5.4 Design and implementation

In this section, we present the design and implementation of a media player that is

protected by SP3, thereby achieving the stated goals of securing the copyrighted media

contents from untrusted end users and limiting the contents playback only to the licensed

device. In the following discussion, we only focus on audio media contents. However, the

generality of our approach is not lost because video contents can be protected in the same

way.

5.4.1 Design

We secure the media player and codec by making them an SP3 program encrypted

with a symmetric key Kp (subscript ‘p’ denotes ‘player’) chosen by the content provider.
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This implies that the content provider, or a trusted partner of the content provider, needs to

supply the media player in SP3 executable format. This is an obvious requirement since our

trust assumption prevents the use of a media player from an untrusted third party. When

executed in the SP3 environment, the complete running instance of the media player is

protected, thereby preventing spying or reverse-engineering.

We deliver the end-user a copy-protected audio file encrypted with a symmetric key

Km (‘m’ denotes ‘media’), which is also chosen by the content provider. When the media

player opens the audio file, the media player has to decrypt the file with Km. The media

player could just call decryption functions, and to do so is safe because the media player

is protected, and therefore embedding Km in the media player itself is safe. However, the

SP3 programming interface provides a convenient way of accessing a file with its extended

mmap() semantics in which a program can specify a KID value to be used for the memory

mapping. We choose mmap() for accessing the media player file.

As stated in the previous section, the sound device of the end-user is a licensed device

and therefore associated with a device-unique symmetric key Kda (‘da’ denotes ‘device-

audio’). This key is only known to the device manufacture and the content provider. The

kernel driver for this device does not know the key. This sound device is capable of generat-

ing sound from both normal Pulse-Code Modulation (PCM) samples and encrypted PCM

samples. The former ability allows the sound device to work for normal, copyright-free

sounds, and the latter allows it to work for rights-enforced sounds. Since only the device

manufacturer and the content provider know the encryption key Kda, which is unique to the

device, capturing encrypted PCM samples from one machine and playing them on another

machine is prohibited.

The media player has to encrypt the decoded PCM samples using the symmetric key

Kda, and we can use the same mmap()-based strategy for encryption. When we create a

memory buffer for storing decoded PCM samples, we can allocate the buffer by calling

the mmap() system call with MAP ANONYMOUS, specifying a KID value at the same time.
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Figure 5.2: Memory contents of a hypervisor-based SP3 system when a secure media player is
being executed. Each encrypted memory page from the operating system side (left)
has its decrypted counterpart in the private area for the SP3 domain of the media player
(right). These page pairs are associated with symmetric keys. Steps (a) to (g) indicate
the system events caused by the execution of the media player.

This way, the decoder just places plaintext PCM samples in the buffer, and then the media

player passes the buffer pointer to the audio device driver. When the device driver, running

in the kernel mode, accesses the buffer, the buffer contains encrypted PCM samples due to

the SP3 secure paging semantics. Even if the device is using DMA, the device sees PCM

samples encrypted with Kda.

The SP3 metadata section of the media player executable securely carries all the sym-

metric keys, namely Kp, Km, and Kda, as detailed in the previous chapters. Using SP3’s PKI,

these keys are securely delivered to the underlying SP3 system when the Alloc instruction

is called. This instruction is executed when the SP3 media player program is initially

launched. This instruction, as defined in the previous chapters, creates a new SP3 domain

for the media player, loads all three symmetric keys to the SP3’s key database, and ini-

tializes the corresponding bits in the permission bitmap. After the Alloc instruction, the

media player runs within the newly-allocated context of the SP3 domain.
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Figure 5.2 illustrates the memory pages and the interactions among them as the media

player is being executed in an SP3 system. Here we assume the hypervisor-based SP3 im-

plementation, which is detailed in Chapter III. Hence, the hypervisor keeps the decrypted

copy of a sp3-protected page in the private memory region. On the left, the figure shows

the memory pages and their contents as seen by the operating system. On the right are

the memory pages accessible only to the hypervisor and the media player running within

its SP3 domain context. On top, the figure shows the connections between encrypted and

decrypted images, along with associated symmetric keys. As can be seen, the operating

system is allowed to see only the encrypted images.

Figure 5.2 also shows a sequence of system events caused by the execution of the media

player. First, when the sp3 executable is executed in step (a), the operating system’s loader

maps the encrypted executable binary to the memory. The operating system then schedules

the media player process: by executing sec iret in step (b), the current SP3 domain of

the system switches to the SP3 domain of the process, enabling the process to execute the

decrypted media player code. Later, in step (c), the media player opens the source audio file

using mmap(), which causes the operating system to load the verbatim — thus encrypted

— image of the source audio file. In step (d), the media player allocates a buffer by calling

anonymous mmap(), which causes the operating system to allocate memory pages. When

the media player process addresses the mapped regions, the process accesses the pages for

decrypted images. This is because the underlying hypervisor redirects page tables when

the SP3 domain is entered. The media player decodes the source audio and put the result

in the buffer, as shown in step (e). In step (f), the media player performs an I/O by making

a write() system call, passing the PCM buffer pointer to the kernel driver. In step (g),

the device driver of the kernel handles the write() system call, ultimately accessing the

PCM buffer, but the buffer contains encrypted PCM data because the driver is running in

the kernel mode.
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5.4.2 Implementation

Since SP3 currently supports only Linux and an SP3 C library based on dietlibc, we

implemented our secure media player in Linux with the SP3 programming facilities detailed

in Chapter IV.

For our audio codec, we used the Advance Audio Coding (AAC) implementation of

Freeware Advanced Audio Code codec suite [3], known as faac and faad2, version 1.28

and 2.7 respectively. The decoder, faad2, is compiled and linked statically with the front-

end media player program. To link with the SP3 C library, which lacks floating-point math

functions, the use of the math library is avoided by replacing the floating point opera-

tions with fixed point operation, which the faad2 decoder already supports. The decoder

library went through the required process of verification and modification for adapting to

the SP3 programming environment.

For our media player implementation, we modified and extended a decoder frontend

program included in the faad2 codec suite. The original frontend program only decodes an

input file and drops a file as the output. We therefore added the function of actually playing

the sound by writing to our secure sound device, which will be described shortly.

The file I/O of the media player frontend also went through significant changes, in-

cluding an implementation of C file I/O based on the mmap() interface. The buffer for

the decoded PCM samples is also implemented using the mmap() interface. These mmap()

calls enabled us to completely avoid calling any of the cryptography routines at all. All

that was necessary was to specify an SP3-specific parameter in one of the parameters of the

mmap() system call in order to identify which KID is used for the memory mapping.

Although we do not have an actual secure sound card that can accept encrypted PCM

samples and produce sound, we developed a device driver for an imaginary secure sound

device. Our Linux device driver is a character device implementing the write() device

callback. The driver’s write() is invoked when a user program performs write() system

call on a device file associated with the device driver. This is the standard way in Linux a
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user program plays sound. The analogous read() device callback is left unimplemented

because we do not record sound in this work. A device file for our sound driver is created

at /dev/secsound, to which our media player writes decoded PCM samples. Our device

driver only accepts a PCM buffer aligned on 4KiB boundary. This is due to the granularity

of the block encryption scheme used to implement SP3 secure paging.

It should be emphasized that this device driver does not require Kda, meaning that the

content provider does not have to trust the device driver. Our device driver implementa-

tion, however, does include Kda and AES decryption routines because we want to test and

verify the whole scenario in the absence of the actual secure sound device. The decryption

routines in the current driver implementation should be discarded with a real secure device.

5.5 Evaluation

Due to the nature of this work, our evaluation questions are mostly qualitative:

• Does our implementation achieve the stated security goals?

• How difficult is it to develop a media player as an SP3 application?

• What are the sources of overhead other than those directly caused by SP3?

• What are the limitations of our media player implementation?

5.5.1 Security

Our implementation achieves the stated security goals for the following reasons. First,

the entire execution of the media player and codec is cryptographically shielded by SP3.

This means that unless an attacker breaks the cryptography, it is impossible for the attacker

to reverse-engineer the program in an attempt to extract intermediate media contents. Sec-

ond, the source media contents are delivered to the media player as encrypted, and the

decrypted contents are only visible to the media player. In our implementation, the actual
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decryption is done transparently by the underlying SP3, which we trust. Therefore, at no

point are the decrypted source media contents left vulnerable to potential spying from the

untrusted parties such as end user and operating system. Third, the decoded output samples

are also encrypted before leaving the media player. As with the source contents case, the

underlying SP3 performs the actual encryption. Therefore, the decoded output samples are

also prevented from being stolen. Last, the three encrypted entities —the media player,

source media contents, and output samples — are secured by encryption keys known only

to the content provider and to the licensed hardware. This implies that even if a user unlaw-

fully acquires all three encrypted entities, it is impossible for him to correctly reproduce

the contents unless he owns the device that the media player and contents are licensed to.

5.5.2 Ease of development

Although it took several days for the author to understand the Linux sound device and

the faac/faad2 source code sufficiently enough to perform modifications, it took about 45

minutes to actually scramble sources and make required changes to the faad2 core codec.

The required changes were mostly for adapting to the SP3 C library and cleaning up unnec-

essary code that caused compilation and linkage errors. However, the modifications made

to the frontend took two days to finish. This is because of the time spent implementing the

playback function and the mmap()-based file I/O, as well as testing and debugging in the

SP3 environment. For a person who is already familiar with the source code of a codec and

a media player, it is reasonable to say that converting the program to the SP3 environment

is an easy task that can be done in a short amount of time.

5.5.3 Overhead

The use of the fixed-point operations instead of the floating-point operations can impact

decoder performance. We measured the difference in decoder performance in the native

Linux environment, since the SP3 version of C library does not support floating point math
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routines. This is the reason why fixed-point operation was used in our implementation.

We prepared two versions of decoder: one uses fixed-point operation and the other uses

floating point operation. We measured the time taken for each version to decode the same

input file. We performed the experiment on a machine with Intel Core 2 2.13 GHZ dual

core processor, using only single thread, measuring wall-clock time.

The result shows that it took 90% more time for the fixed-point decoder to finish than

for the floating-point decoder. However, the fixed point decoder is still efficient enough to

handle AAC files in real-time. For the fixed-point decoder, it took an average of 9.7 seconds

to decode a 619-second-long, AAC-encoded piece of classical music. Given that the reason

for adopting fixed-point operation is a technical incompatibility that can be easily fixed by

providing an SP3 version of the C math library, we can say that the 90% performance

overhead is not inherent.

5.5.4 Limitations

Our current secure media player implementation has limitations. One is that our defi-

nition of the secure output device is too simplistic. Only one symmetric key is associated

with the secure sound device. It cannot handle the situation, for example, where the device

has to be licensed by multiple content providers who mutually distrust, and therefore can-

not simply share the symmetric key. Although our assumption of a single symmetric key

simplified our discussion, a sophisticated device key management scheme will be neces-

sary to reflect complex trust relationships of real world scenarios. For example, we can use

a PKI scheme that can dynamically load/revoke multiple symmetric keys in the device.

Another limitation is that the encryptions performed against encoded media contents

and output raw samples must follow the same block-cipher parameters used by the under-

lying SP3 system. This is because the media player has chosen the option to utilize mmap()

for transparent encryptions. Therefore, should there be any need to avoid the use of SP3’s

block-cipher, the media player always has the option to just use their own cryptography
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library. Alternatively, it is also possible for the SP3 to support different cipher modes that

an application can choose.

Finally, end-users may be wary of the SP3 layer. Obviously, the SP3 is a system layer

that is off-limits to end-users who might physically own the machine, and users might

not like the idea. However, we argue that SP3 is the minimal price to pay to circumvent

the trusted client problem. Other solutions to this problem tend to limit the rights of the

end users much more severely, since these solutions try to make the end-users’ system a

‘closed’ system that is effectively owned by rights holders, rather than the end users. In this

respect, we also argue that SP3 provides the most flexible and reasonable solution that can

sufficiently satisfy the needs of both end-users and rights-holders. This is because SP3 pre-

serves the right of an end user to perform as a super user, including the power to replace

operating system kernel components. At the same time, rights-holders can distribute their

copyrighted contents safely and securely.

5.6 Conclusion

In this chapter, we demonstrated the strength and effectiveness of SP3 protection by

illustrating an important use case of SP3: the protection of copyrighted media contents. We

showed how SP3 can secure the codec and media player, the exact vulnerability point from

which many previous attempts for contents protection have suffered. It is demonstrated

that SP3 can easily secure the media contents in both encoded and decoded forms. The

end result is the complete secrecy of media contents from a contents provider to a playback

hardware device.

To demonstrate the concept, we designed, implemented and evaluated a secure media

player that can decode and play a rights-protected digital audio file on a secure audio device

that has an encryption-based secure channel. We chose the Advance Audio Coding (AAC)

format as the base codec for our audio player implementation. As an input, our audio player

accepts an encrypted AAC audio file. The player decodes the AAC file and then sends out
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the raw output — in the Pulse-Code Modulation (PCM) format — to an audio device that

understands the encrypted PCM audio stream. Even though a device driver for the audio

device is necessary in order to manage the device, the device driver is outside of the trust

base because the driver does not have the decryption key to decrypt the PCM audio stream.

We conclude this chapter by emphasizing that SP3 can serve as a very attractive DRM

infrastructure element in which end-users’ rights are preserved. With SP3, users can still

install any software of their choice, perform any administrative jobs, and even replace

operating system kernels.
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CHAPTER VI

CONCLUSION

This thesis demonstrates the feasibility of separating information protection from re-

source management in systems software. Among the common security properties of se-

crecy, integrity, and availability, protection for secrecy and integrity can be efficiently sepa-

rated out from the responsibilities of the traditional operating system. The operating system

is then only responsible for availability, which is the raison d’etre for an operating system.

This separation greatly reduces the size and complexity of the trusted part for informa-

tion protection, resulting in a more secure system that can tolerate a compromise in the

operating system.

To this end, I designed and implemented a system architecture called Software-Privacy

Preserving Platform (SP3) that can efficiently separate the roles of protection and man-

agement. Defined in Chapter II, SP3 realizes the separation by augmenting the way that

software accesses memory by including a mechanism for cryptography-based information

protection. SP3 effectively provides information protection directly to user-level applica-

tions. As the unit of protection, we chose a memory page, which is also the unit of resource

management by the operating system. This choice enables a minimally intrusive introduc-

tion of a security layer at the deepest level of the software stack.

The practicality of the SP3 system is demonstrated in Chapter III by implementing

SP3 using a hypervisor. The new memory access semantics were emulated efficiently by
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utilizing the capability of a hypervisor. The SP3 system was implemented on the Xen

hypervisor and the Linux operating system.

Further explored in Chapter IV are challenges and solutions in the new programming

environment that SP3 introduces. In this environment, the operating system must be aware

of the limited capability imposed by SP3; the operating system is no longer capable of

obtaining meaningful information from protected memory pages. Also, an application pro-

grammer must decide on a rule governing which data should be shared with the operating

system. We provide application programming support for users to adapt to this new pro-

gramming environment.

In Chapter V, we turned our attention to how to utilize SP3 to solve real world problems.

We chose a compelling use case of SP3: the protection of copyrighted media contents.

We designed and implemented a media player that can protect rights-enforced multimedia

contents. We showed how SP3 can secure the codec and media player, the weakest points

of rights management infrastructure.

This thesis studied a system construct that has a potential to solve many system se-

curity problems. This system construct can be considered as a security framework upon

which many practical solutions can be constructed. In the following sections, we explore

the unique potential of the construct introduced in this thesis and review opportunities for

further investigation. In Section 6.1, we highlight the advantages of our solution in com-

parison with related systems. In Section 6.2, we outline the integrity protection support in

the SP3 system. In Section 6.3, we conclude with future work.

6.1 Advantages of SP3

The advantages can be demonstrated by comparing our solution with three related ap-

proaches: trust-decoupling based on virtual machine isolation, platform integrity protec-

tion based on the trusted computing, and other untrusted operating system solutions such

as Overshadow.
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First, let us consider the isolation based approach. Using a hypervisor, one can eas-

ily obtain a virtualized hardware instance completely isolated from other virtual machines

running in parallel. In the isolated virtual machine, one can install ‘trusted’ software sep-

arated and protected from an untrusted operating system. Flicker [71], for example, is a

system that aims to provide complete isolation. Proxos [101] goes a step further and allows

applications to choose a different operating system for different system calls so that the

applications can selectively use the trusted operating system for ‘sensitive’ services.

However, although isolation-based solutions can technically sidestep untrusted operat-

ing systems, the usefulness of these solutions is still substantially small. This is because

these solutions fail to recognize the fact that many practical end applications actually need

to run within the full context of an untrusted operating system. For instance, the secure

media player in Chapter V requires a full-fledged operating system complete with virtual

memory, file systems, process scheduler, driver model, etc. But, in order to implement

the secure media player with isolation-based solutions, one has to either supply his own

‘trusted’ copy of a full-fledged operating system, or develop a stand-alone media player

that can execute without an operating system. The former approach is contradicting the

original reason why we need to remove the operating system from the trust base in the first

place. The latter approach requires extensive source code modification and probably results

in a very inflexible application that does not coexist well with others because we are forgo-

ing the benefits of using an operating system. Selectively choosing operating systems for

different system calls does not help because the desire for a full-fledged operating system

does not go away, let alone the difficulty of figuring out how to divide the trust base using

the irregular, coarse, whimsically designed system call interface.

On the other hand, the solution presented in this thesis differs from isolation-based

solutions, benefitting a large number of practical applications. This is because our approach

allows applications to execute within the full context of the untrusted operating system,

meaning that the applications can fully utilize the operating system’s services without the
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fear of losing sensitive data. The secure media player presented in Chapter V highlights the

seamless integration with an untrusted operating system while fulfilling the security goals.

Second, let us compare our solution with trusted computing. The trusted computing

standard uses a trusted piece of hardware called the Trusted Platform Module (TPM), which

can securely calculate integrity hashes — called measurement — on hardware and software

during the boot process. If the measured values are different from the values expected from

a trust authority, the system is presumed to be altered in an unauthorized way and the

system is deemed to be unsuitable for executing sensitive operations from the perspective

of the trust authority. This way, one can guarantee the genuineness of the system before

taking the next step. It should be noted that TPM does not actually prevent unauthorized

alterations; if the system is altered, only the components that depend on the genuineness of

the system will not proceed.

However, although it is technically allowed to alter the software in a system with a TPM,

the price of doing so by end-users would be their incapability of executing any software

from the trust authority. In order to use the software, one must not violate the genuine-

ness requirement. This is a serious problem because the genuineness requirement can be

very stringent and restrictive to end-users in most practical situations, usually depriving

the end-users of any privilege and limiting what end-users can do to the mere action of

just executing a set of programs. For example, the trusted computing version of the secure

media player can be implemented in such a way that the hardware, BIOS, operating system

kernel, device drivers, and other dependent components are measured and verified, and the

system should also be configured in such a way that nobody can become super users, per-

form debugging, redirect output of the media player, etc. Only then, the trusted computing

version of the secure media player will execute.

On the other hand, our system does not limit end-users’ capabilities: end-users are

allowed to do practically anything, including kernel replacement. As demonstrated by our

secure media player implementation, we can please both end-users and content providers by
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giving a high degree of freedom to end-users and protecting the copyrighted media contents

at the same time. We believe that our system is by far the most reasonable solution that

resolves the conflicting interests between end-users and content providers.

Last, let us consider Overshadow [28]. Since Overshadow shares its motivations and

goals with us, it can be said that the above advantages of our approach over virtual machine

isolation and trusted computing also apply to Overshadow. Overshadow also attempts to

provide protection in an unmodified1 guest operating system to unmodified user applica-

tions. Therefore, Overshadow does not have in-guest support for user applications explic-

itly written under the assumption of an untrusted operating system.

On the other hand, our system is designed to provide explicit support for applications

written under the untrusted operating system assumption. Instead of hiding the underlying

protection mechanism, we try to expose it so that applications can make the most of it.

The extension of mmap() system call and its use in the secure media player implementation

proves the advantages of our system.

6.2 Integrity protection implementation outline

In this section, we outline an implementation of integrity protection system with a

hypervisor-based SP3 system.

6.2.1 Background

The Keyed-Hash Message Authentication Code (HMAC) is used to authenticate and

verify the contents of a page. HMAC is a standard for generating a Message Authentica-

tion Code (MAC) using a cryptographic hash function in combination with a secret key.

A MAC is a small piece of information attached with a message. The recipient of the

message calculates his own MAC from the message and compare his own MAC with the

1Although whether patching a binary constitutes a modification or not is a matter of opinion, the use of
the term ‘unmodified’ in Overshadow is understood to mean that source code is not modified.
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one attached with the message. If it is different, the recipient of the message knows that

the message is not authentic. HMAC uses a secret key for calculating a MAC. Therefore,

HMAC has the property that without knowing the secret key, a valid MAC cannot be gen-

erated from the message. It also has the property that prevents an attacker from retrieving

the secret key by analyzing a valid pair of a message and a MAC.

We assume that the vendor of trusted application programs and the vendor of hypervisor

trust each other; hence they know and share the secret key that is used to generate valid

MAC code. The other parties, such as operating system, end users, and operating system

administrator, are not trusted. Therefore, the end users or system operator who installs

the trusted application program do not have access to the secret key. This implies that

an end user cannot create a valid message/MAC pair that is acceptable by the underlying

hypervisor.

Our integrity protection system is classified into two categories: protection registration

and integrity enforcement. Protection registration is the activity initiated by an application

program requesting the hypervisor for protection of one of its pages. Integrity enforcement

is the activity taken by the hypervisor to actually impose write-prevention to the registered

pages.

Figure 6.1 illustrates the design of the system architecture for the protection registra-

tion and integrity enforcement procedures. Shown on the left is the protection registration

procedure. In this procedure, the trusted application program makes the initial request by

invoking a hypercall for registration requests. The hypervisor then verifies the request by

computing HMAC code. Then the hypervisor updates its internal registry that keeps track

of all the integrity protected pages, and then returns to the user.

Shown on the right of Figure 6.1 is the integrity enforcement procedure. In this pro-

cedure, the entry to the hypervisor is caused by the page fault induced by a write attempt

made in the guest. The page fault handler of the hypervisor consults the registry to de-

termine whether the fault is generated by the actual integrity protection violation. If so,
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Figure 6.1: System architecture for protection registration and integrity enforcement. Shown on
the left is the protection registration procedure and on the right the integrity enforce-
ment procedure.

the hypervisor handles the violation and takes countermeasure. If not, the page fault is

forwarded to guest virtual machine for the guest operating system to handle.

6.2.2 Protection registration

During the protection registration phase, the authentication between the hypervisor and

the application takes place. This authentication is required to verify that the application is

the real one that we trust. There are many alternatives in doing this, but we chose keyed-

Hash Message Authentication Code (HMAC), whose characteristics are discussed in the

previous section.

In our design, the hypervisor and the developer of the trusted application program share

the secret key. Using the secret key, the developer generates the valid MAC for a page that

he wants to protect using the integrity protection of the hypervisor. When the page is

being registered, the MAC is also supplied to the hypervisor along with the page. The

hypervisor then performs its own HMAC on the page to verify the validity of the MAC that

was supplied. If the MAC is valid, hypervisor then proceeds and registers the page to the
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SP3 internal registry. Note that the secret key is never revealed: the program carries not the

secret key but just a valid MAC generated by the key.

The registration request should be a direct request to the hypervisor. Therefore, regis-

tration is a hypercall made by the application. This hypercall takes the address to a page,

the MAC code, and the type of protection as parameters.

6.2.3 Integrity enforcement

The hypervisor enforces the security rules on the registered pages to protect them. Once

registered, the page is protected by the hypervisor. The security rules are associated with

the protection type that was specified when the page was registered.

The enforcement of security rules consists of violation detection and countermeasure.

The hypervisor detects violation by manipulating the page table entries that maps the reg-

istered page, which is to trigger an event when there is a violation to the security rule.

When an event is triggered due to a violation, the hypervisor perform countermeasure to

handle this violation. The types of countermeasures can also be specified when the page is

registered.

To provide maximum flexibility to the operating system, the policies are enforced as

advisory rather than mandatory: the operating system is free to violate the policy, but

should there be any violation, the operating system will get an unexpected result from

the operation that violated the policy. For example, writing to an integrity-protected page

will not prevent the operating system from proceeding, but the write operation will not be

reflected on the page. Also, the hypervisor is always informed of any violation.

Allowing hypervisor to take actions on misbehaving guest can lead to nasty behavior

in the guest. This is because it amounts to breaking the system rule assumed by the guest

operating system. Although our threat model does not include protecting guest operating

system, we need to try to minimize potential negative impact on the guest world, even if it

is violating the protection rules.
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There are two types of countermeasure that can be specified. They are report-only and

fault-inject. With report-only, the violation will only be notified to the hypervisor, and the

write operation is reflected on the page. This actually does not prevent write operating

from happening, but it is the least intrusive countermeasure which is not breaking guest

operating system rules. With fault-inject, the violation will be treated like a page fault

caused by writing on read-only page, producing a page fault in the guest. Note that it might

confuse guest operating system because the guest operating system will get a page fault

from a perfectly good condition.

Note that we could also introduce a third type of countermeasure: for the write-squash

type, write operation will be silently ignored. The semantics of write-squash is that the pro-

gram that caused the violation will proceed, without the expected result of previous write

operation. However, the actual technical method to achieve this countermeasure could be

quite involved, requiring disassemble of the current instruction that caused the violation.

This could be technically challenging, especially x86 systems. Therefore, we do not con-

sider the write-squash type.

6.3 Future work

Future work can be further pursued in the following directions.

• Standalone SP3 implementation: The size and complexity of the trust base can be

substantially lowered if SP3 is implemented as a standalone system layer. Running

only one guest operating system, the layer can also utilize the hardware virtualization

features introduced in recent processors to further reduce the size.

• Untrusted network stack: End-to-end network communication can be secured trans-

parently by utilizing underlying SP3 encryption. However, implementing this would

require non-trivial network stack modification because the network packets vary in

size and headers are prepended frequently, which makes it hard to work with the
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page-granular SP3 encryptions.

• More SP3 use case scenarios: SP3 can help solve many security problems when the

operating system or system administrators cannot be trusted. For example, SP3 can

secure a web browser and its private data in a public shared computer. Distributed

computing projects based on donated computing resources over the Internet can uti-

lize SP3 to ensure the integrity of the computation results.

• Performance improvement: The performance of the hypervisor-based SP3 imple-

mentation can be improved by better algorithms such as using page directory entries

in addition to page table entries for invalidation of pages.
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APPENDIX A

Extension to x86 System Architecture

A.1 New instructions

Alloc, Free, and secure iret instruction as defined in Section 2.4.1 are embodied

in the form of new instructions added to the x86 instruction set. The encoding of these

instructions makes use of the reserved area of instruction encoding space. Given below

serves as the definition of these instructions in the form of GNU C in-line assembly code,

which can be used to generate the instruction encoding.

/* p [Ed]: pointer to {Ks}Kp+ (via EAX as REG field)
* kids[Gd]: pointer to array of kids (via EBX as R/M field)
* returns new sid via [Gd] */

static inline unsigned sec_alloc(void* p, unsigned* kids) {
unsigned sid;
asm volatile (

".word 0x3e0f \n" /* op code */
".byte 0xd8 \n" /* modRM */
"nop \n"
"mov %%ebx, %0 \n"
: "=r"(sid)
: "a"(p), "b"(kids)

);
return sid;

}
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static inline void sec_free(unsigned sid) {
asm volatile (

".word 0x3f0f \n" /* op code */
".byte 0xc3 \n" /* modRM */
"nop"
:
: "b"(sid)

);
}

/* 2 byte opcode.. */
static inline void sec_iret(void) {

asm volatile (
".word 0x3a0f \n" /* op code */
".align 16, 0x90 \n"
: : :"memory"

);
}

A.2 Secure exception frame

If an SP3 domain is running when a processor gets interrupted, a special 128-byte mem-

ory block is written to the kernel stack, followed by the standard x86 exception frame. The

memory block contains the state of the interrupted program in an encrypted form. When it

is decrypted, each field of the block is defined as follows.

/* spa-x86 loader header definition */
typedef struct spa_secframe {

unsigned xsid[4]; /* 128-bit extended sid */
unsigned blk_gs_lo; /* reserved */
unsigned blk_gs_hi; /* reserved */
unsigned blk_fs_lo; /* reserved */
unsigned blk_fs_hi; /* reserved */
unsigned blk_es_lo; /* reserved */
unsigned blk_es_hi; /* reserved */
unsigned blk_ds_lo; /* reserved */
unsigned blk_ds_hi; /* reserved */
unsigned blk_ss_lo; /* reserved */
unsigned blk_ss_hi; /* reserved */
unsigned blk_cs_lo; /* reserved */
unsigned blk_cs_hi; /* reserved (byte offset 64) */
unsigned etype; /* exception type */
unsigned extrainfo; /* reserved */
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unsigned __st0_offset72; /* unallocated */
unsigned edi; /* saved edi register */
unsigned esi; /* saved esi register */
unsigned ebp; /* saved ebp register */
unsigned __st0_offset88; /* unallocated */
unsigned ebx; /* saved ebx register */
unsigned edx; /* saved edx register */
unsigned ecx; /* saved ecx register */
unsigned eax; /* saved eax register */
unsigned eip; /* saved eip register */
unsigned cs; /* saved cs register */
unsigned eflags; /* saved eflags register */
unsigned esp; /* saved esp register */
unsigned ss; /* saved ss register */

} spa_secframe_t;

xsid stores an hashed SID value of the interrupted program. The hashing algorithm

uses a pseudo-random seed unique to the current SID instance in order to avoid forgery.

The etype field is set to SYSCALL when the source of the interrupt is software-

generated. In this case, the registers contain system call arguments, therefore they are not

cleared to zero upon interrupt. When returning from the interrupt, if the field is SYSCALL,

then SP3 does not recover the registers from the saved registers with the exception of esp,

eip, eflags cs, and ss.

For all other interrupt/exceptions, the etype field is set to a different value other than

SYSCALL. In this case, the registers are cleared. When returning from the interrupt, then

SP3 recovers the registers from the saved registers.
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APPENDIX B

Modified System V ABI

B.1 CRT main entry point

Shown below is the SP3 counterpart of the C’s start program entry. The initial entry

point is shared by all signal handler callbacks in our modified ABI. The code thus shows

how to invoke user-level signal dispatcher.

/* for initial entry, %ebx is 0 and %ebp is addr to stack
for signal, %ebx is signal number, %esi is handler */

_sp3_start:
cmpl $0x0, %esp
jnz 1f /* not an sp3 program */
movl %ebp, %esp
xorl %ebp, %ebp
cmpl $0x0, %ebx
jnz 3f /* signal dispatcher */
push %esi /* arguments */
jmp 2f

1: xorl %ebp, %ebp
push %esp

2: call __sp3__clear_bss /* extern C function */
call __sp3__cstart /* extern C function */
push %eax
call _exit

3: push %eax /* signal parameter */
push %ebx /* signal number */
push %esi /* handler address */
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call __sp3__dispatch_signal /* extern C fn */
popl %eax /* sigreturn sequence */
movl $119, %eax /* __NR_sigreturn */
int $0x80

B.2 GNU linker script

GNU linker (ld) supports Linker Command Language, which is a script language de-

scribing how to collect sections from object files, how to specify address offsets for seg-

ments, and how to package the binary into an executable file. Shown below is the ld script

for generating an SP3 application, which conforms to the ELF executable format. The

script arranges ELF segments in such a way that each segment always has page-aligned

start and end addresses. The resulting executable file is post-processed to encrypt segments

that has to be encrypted.

OUTPUT_FORMAT("elf32-i386", "elf32-i386", "elf32-i386")
OUTPUT_ARCH(i386)
ENTRY(_spa_start)
SEARCH_DIR("/usr/local/lib");
SEARCH_DIR("/lib");
SEARCH_DIR("/usr/lib");
PHDRS
{

headers PT_PHDR FILEHDR PHDRS;
elfmetaro PT_LOAD FILEHDR PHDRS;/* elf metadata, plaintext */
spameta PT_LOAD FLAGS (6); /* spa metadata, plaintext */
spaunsecro PT_LOAD FLAGS (4); /* readonly sections, plaintext */
spaunsecrw PT_LOAD; /* writable sections, plaintext */
spasecro PT_LOAD; /* text/rodata sections, encrypted*/
spasecrw PT_LOAD; /* data/bss sections, encrypted */
gnustack 0x6474E551 FLAGS (6);

}
SECTIONS
{

/* Read-only sections, merged into text segment: */
PROVIDE (__executable_start = 0x08048000); . = 0x08048000 + SIZEOF_HEADERS;
.interp : { *(.interp) } :elfmetaro
.hash : { *(.hash) } :elfmetaro
. = ALIGN(0x1000);
.spa.allocinfo : { *(.spa.allocinfo) } :spameta
.spa.pages :
{
*(.spa.page.0)

129



*(.spa.page.1)
*(.spa.page.2)
*(.spa.page.3)
*(.spa.page.4)
*(.spa.page.5)

} :spameta
. = ALIGN(0x1000);
.spa.rodata.unsec : { *(.spa.rodata.unsec) } :spaunsecro
. = ALIGN(0x1000);
.spa.data.unsec : { *(.spa.data.unsec) } :spaunsecrw
. = ALIGN(0x1000);
.init : { KEEP (*(.init)) } :spasecro =0x90909090
.text :
{

*(.text .stub .text.* .gnu.linkonce.t.*)
KEEP (*(.text.*personality*))
*(.gnu.warning)

} :spasecro =0x90909090
PROVIDE (__etext = .);
PROVIDE (_etext = .);
PROVIDE (etext = .);
.rodata : { *(.rodata .rodata.* .gnu.linkonce.r.*) } :spasecro
.rodata1 : { *(.rodata1) } :spasecro
.eh_frame_hdr : { *(.eh_frame_hdr) } :spasecro
.eh_frame : ONLY_IF_RO { KEEP (*(.eh_frame)) } :spasecro
. = ALIGN(0x1000);
. = DATA_SEGMENT_ALIGN (0x1000, 0x1000);
.eh_frame : ONLY_IF_RW { KEEP (*(.eh_frame)) } :spasecrw
.got : { *(.got) } :spasecrw
. = DATA_SEGMENT_RELRO_END (12, .);
.got.plt : { *(.got.plt) }
.data :
{

*(.data .data.* .gnu.linkonce.d.*)
KEEP (*(.gnu.linkonce.d.*personality*))
SORT(CONSTRUCTORS)

} :spasecrw
.data1 : { *(.data1) } :spasecrw
_edata = .;
PROVIDE (edata = .);
.data_filler :
{

__spa__data_filler_start = .;
. = (ALIGN(0x1000) - .) ? ( . + ( ALIGN(0x1000)- .) - 4 ) : (. + 0xffc );
LONG(0xDA7AF111);

} :spasecrw
__spa__data_filler_end = .;
. = ALIGN(0x1000);
__bss_start = .;
.bss :
{
*(.dynbss)
*(.bss .bss.* .gnu.linkonce.b.*)
*(COMMON)
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. = ALIGN(32 / 8);
} :spasecrw
. = ALIGN(32 / 8);
_end = .;
PROVIDE (end = .);
. = DATA_SEGMENT_END (.);

}
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ABSTRACT

Separating Information Protection from Resource Management

by

Jisoo Yang

Chair: Kang G. Shin

Securing information in a computer system is becoming an intractable problem. Ex-

acerbating the situation is the current paradigm of trusting an operating system for both

security and resource management. One solution to this problem is to separate the role of

protecting information from managing resources.

This thesis studies the design and implementation of a system architecture called Software-

Privacy Preserving Platform (SP3). SP3 creates a new layer that is more privileged than the

operating system and responsible for providing information secrecy to user applications.

SP3 provides page-granular memory secrecy protection by augmenting memory paging

and interrupt mechanisms of a computer system in such a way that physical memory pages

for user applications are rendered encrypted to the operating system. The resulting SP3

system therefore provides secrecy protection for the information contained in the mem-

ory of user applications. SP3 is implemented by modifying a hypervisor, which efficiently

emulates the augmented semantics of paging and interrupt mechanism introduced by SP3.

The modified hypervisor employs a couple of optimization techniques to reduce the num-

ber of costly page-wide block cipher operations. In the page-frame replication technique,

the hypervisor internally keeps both encrypted and decrypted images of a page and relies

on shadow page table redirection to map the correct page. In the lazy synchronization tech-



nique, the needed synchronization between the replicated images of the page is deferred

as long as possible so that the synchronization happens not when an image is modified,

but when the other image is actually accessed. This thesis further explores the challenges

and solutions in the new programming environment introduced by SP3. This thesis also

presents an SP3-based digital rights-management solution that can protect both the copy-

protected multimedia contents and a trusted multimedia player program without limiting

the end-users’ freedom.

In conclusion, this thesis demonstrates the feasibility of separating information pro-

tection from resource management in systems software. This separation greatly reduces

the size and complexity of the trusted part for information protection, resulting in a more

resilient system that can tolerate a compromise in the operating system.
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SP3 provides page-granular memory secrecy protection by augmenting memory paging

and interrupt mechanisms of a computer system in such a way that physical memory pages

for user applications are rendered encrypted to the operating system. The resulting SP3

system therefore provides secrecy protection for the information contained in the mem-

ory of user applications. SP3 is implemented by modifying a hypervisor, which efficiently

emulates the augmented semantics of paging and interrupt mechanism introduced by SP3.

The modified hypervisor employs a couple of optimization techniques to reduce the num-

ber of costly page-wide block cipher operations. In the page-frame replication technique,

the hypervisor internally keeps both encrypted and decrypted images of a page and relies

on shadow page table redirection to map the correct page. In the lazy synchronization tech-



nique, the needed synchronization between the replicated images of the page is deferred

as long as possible so that the synchronization happens not when an image is modified,

but when the other image is actually accessed. This thesis further explores the challenges

and solutions in the new programming environment introduced by SP3. This thesis also

presents an SP3-based digital rights-management solution that can protect both the copy-

protected multimedia contents and a trusted multimedia player program without limiting

the end-users’ freedom.

In conclusion, this thesis demonstrates the feasibility of separating information pro-

tection from resource management in systems software. This separation greatly reduces

the size and complexity of the trusted part for information protection, resulting in a more

resilient system that can tolerate a compromise in the operating system.


