
QoS Support in Large-Scale Computer Networks based on
Aggregate Scheduling and BGP Routing Enhancement

by

Wei Sun

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Com puter Science and Engineering)

in The University of M ichigan

2007

Doctoral Committee:
Professor Kang G. Shin, Chair
Professor Fam am Jahanian
Professor A. Galip Ulsoy
Assistant Professor Z. Morley M ao

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3287639

Copyright 2007 by

Sun, Wei

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3287639

Copyright 2008 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Wei Sun 2007

All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my grandparents

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

This dissertation would have never been completed without the guidance, care and support of

many wonderful people.

First of all, I would like to thank my advisor, Prof. Kang G. Shin, for his guidance during the

course of my Ph.D. study. I have benefited tremendously from his vision, technical insights, and

strong pursuit of excellence. I would also like to thank him for his patience with me and for giving

me the freedom to select research topics that I was interested in.

During the last three years, I was fortunate to have the opportunity to work closely with Prof.

Z. M orley Mao. I thank her for her guidance and all the inspiring discussions that greatly refined

my research ideas. I learned a lot from her deep insights regarding BGP routing, creativity and

work ethic. I would also like to thank Prof. A. Galip Ulsoy and Prof. Fam am Jahanian for serving

on my thesis comm ittee and for their critical feedback and advice that helped me to improve the

overall quality of this dissertation.

My gratitude also goes to the staff members of CSE division, especially BJ M onaghan, Stephen

Reger, Karen Liska, and Dawn Freysinger for their excellent support.

I would like to thank my friends and current/form er fellow students o f RTCL. I thank Zhigang

Chen, Jian Wu, Daji Qiao, M ohamed El Gendy, Haining Wang, Zonghua (Sam) Gu, Kyu-Han

Kim, and Shige Wang for their friendship and help at various stages o f my study. I also thank the

members of networking group for their invaluable comments on my research work.

Last but not least, I would like to thank my family, especially my wife Haini, for their constant

love and support.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

D E D IC A T IO N .. ii

A C K N O W L E D G E M E N T S ... iii

L IS T O F F I G U R E S .. viii

L IS T O F T A B L E S ... x

L IS T O F A P PE N D IC E S ... xii

C H A PT E R S

1 Introduction .. 1

1.1 Aggregate S c h e d u lin g .. 1

1.2 BGP Routing E n h a n c em e n t... 4

1.3 M ain Contributions and Organization o f the D issertation 5

2 End-to-End Delay Bounds for Traffic Aggregates under Guaranteed-Rate Schedul­

ing A lg o r ith m s .. 7

2.1 Guaranteed-Rate Scheduling A lg o r ith m s ... 8

2.1.1 Guaranteed-Rate (GR) Scheduling A lg o rith m s.................................... 8

2.1.2 Latency-Rate (L ^ ,) S e r v e r ... 9

2.1.3 Relationship between GR Server and S e r v e r 10

2.1.4 End-to-End Delay Bound under Per-Flow S c h e d u lin g 12

2.2 W ork-Conserving A g g re g a to r ... 13

2.2.1 Fair A g g re g a to r .. 14

2.2.2 Delay Bound I: Stand-Alone A g g re g a to r ... 17

2.2.3 Delay Bound II: Hierarchical A ggregato r... 20

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.4 M ultiple Aggregations in a R e g io n ... 24

2.3 Non-W ork-Conserving A g g re g a to r ... 24

2.3.1 Delay Bound III: Non-W ork-Conserving A g g r e g a to r 25

2.3.2 M ultiple Aggregations ... 28

2.4 E v a lu a tio n .. 29

2.4.1 Simulation S e t u p .. 30

2.4.2 Simulation Results .. 31

2.5 Related Work and Discussions . .. 38

2.6 Concluding Remarks ... 39

3 Coordinated Aggregate Scheduling for Improving End-to-End Delay Performance 43

3.1 Coordinated Aggregate Scheduling with EDF inside an Aggregate 45

3.1.1 CAS A lg o r ith m .. 46

3.1.2 End-to-End Delay B o u n d .. 47

3.1.3 M ultiple Aggregations .. 49

3.2 Im p le m e n ta tio n .. 50

3.3 E v a lu a tio n .. 53

3.3.1 The Simulation S e t u p ... 53

3.3.2 Simulation Results ... 54
3.4 Com parison with Related W o r k .. 57

3.4.1 Delay bound of aggregate schedu ling ... 57

3.4.2 Core-stateless s c h e d u lin g .. 57

3.4.3 Coordinated sc h e d u lin g .. 61

3.5 Summary o f CA S’s Features .. 61

3.6 Concluding Remarks ... 62

4 Differentiated BGP Update Processing for Improved Routing Convergence 6 6

4.1 In tro d u c tio n ... 6 6

4.2 Related Work .. 69
4.2.1 BGP Processing O v e r h e a d ... 69

4.2.2 BGP Convergence T im e .. 70

4.3 General M e th o d o lo g y .. 72

4.3.1 Assumptions and N o ta tio n s ... 72

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.2 Per-prefix Forwarding-Path T r e e .. 72

4.3.3 Update C la ss if ic a tio n ... 74

4.3.4 Update P rocessing .. 74

4.3.5 Update Class I n f e r e n c e .. 75

4.4 Empirical Data A n a ly s is ... 76

4.4.1 Data sanitation .. 77
4.4.2 Analysis m ethod .. 78

4.4.3 Analysis r e s u l t s .. 78

4.5 DUP: Differentiated Update P ro cessin g .. 79

4.5.1 Simpler D U P ... 81

4.5.2 Priority m isc la ss if ic a tio n .. 81

4.6 DUP+: Enhanced D U P .. 83
4.6.1 Difference-Based Route S e l e c t io n ... 84

4.6.2 D U P + ... 87
4.7 E v a lu a tio n .. 89

4.7.1 Simulation D e s ig n .. 89

4.7.2 R e su lts ... 90

4.8 Concluding Remarks ... 93

5 Impact of BGP Routing Changes on Application T r a f f i c .. 95

5.1 In tro d u c tio n ... 95
5.2 AS-Level A n a ly s is .. 96

5.2.1 Analysis A lg o r ith m ... 97

5.2.2 AS Relationship I n f e r e n c e ... 101

5.2.3 Analysis R e su lts .. 102

5.2.4 Correlation of Events Collected from M ultiple Vantage Points . . 105

5.3 Traffic-Level A n a ly s is ..106

5.3.1 Analysis of Local ISP’s Traffic D a t a ..106

5.3.2 Analysis o f Top Internet S i te s ..108

5.3.3 Routing Stability o f I S P s ... I l l

5.3.4 Enhanced Routing-Decision P r o c e s s ..113

5.4 Related W o r k .. 114
5.5 Concluding Remarks ..115

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Conclusions and Future W o r k ... 117

6.1 M ain C o n tr ib u t io n s ...117

6.2 Future W o r k ...118

A P P E N D IC E S ...121

B IB L IO G R A PH Y 142

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

1.1 Aggregate s c h e d u lin g .. 3

2.1 Hierarchical sc h ed u lin g .. 21

2.2 Benefits of hierarchical s c h e d u lin g ... 22

2.3 Com parison of deterministic delay b o u n d s ... 29

2.4 Simulation to p o lo g y ... 30

2.5 End-to-end delay co m p ariso n .. 32

2.6 Com parison of aggregate and per-flow sc h e d u lin g ... 34

2.7 Aggregate heterogeneous f lo w s .. 36

2.8 Delay results for video t r a c e s .. 37

3.1 Coordinated aggregate s c h e d u l in g ... 44

3.2 The multi-queue s tru c tu re .. 51

3.3 End-to-end delay comparison: W F Q ... 55

3.4 End-to-end delay comparison: W F2Q ... 55

3.5 End-to-end delays under different con d itio n s... 56

3.6 The effectiveness of the adaptive algorithm ... 56

3.7 End-to-end delay comparison II: W F Q ... 57

3.8 Network topology of the example ... 59

4.1 Forwarding-path tree of an A S .. 71

4.2 BGP update c lassifica tion .. 73

4.3 Illustration o f Route Views peering s e s s io n s ... 77

4.4 Illustration of DUP a lg o rith m ... 82

4.5 Transition diagram between stable and transient s ta te s ... 83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 The global tim er s tru c tu re .. 8 6

4.7 Performance comparison between default BGP and DUP+: new route propagation . 91

4.8 Performance comparison between default BGP, DUP+, Ghost Flushing and Root

Cause: failure c a s e ... 92

5.1 BGP path s e g m e n ts ... 98

5.2 Relationship o f the local AS and various AS sets .. 99

5.3 An example of a routing update’s affected A Ses..100

5.4 Com parison o f local and global views: tier-1 AS has smaller discrepancy, but the

trend can be predicted accurately for both..105

5.5 Netflow record fo rm a t ..106

5.6 Relationship between traffic volume (bytes) and num ber of updates: external to

local, source-based com parison...I l l

5.7 AS stability com parison .. 113

A .l M ultiple recursive a g g re g a tio n .. 126

A.2 M ultiple sequential aggregation ...129

B .l Illustration of scheduling mechanisms of C A S .. 132

B.2 A reference s y s t e m ... 138

B.3 An example of isolating n o d e s .. 140

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

2.1 S y m b o ls .. 41

2.2 Parameters and their values in ANOVA t e s t ... 42

2.3 Default param eter v a l u e s .. 42

2.4 Parameters o f the video traces .. 42

3.1 Pseudocode o f the adaptive algorithm .. 64

3.2 Parameters and their default v a lu e s ... 65

4.1 Comparisons of BGP-enhancem ent s c h e m e s ... 69

4.2 BGP update classification r e s u l t s .. 76

4.3 Pseudocode o f DUP algorithm: D U P_Send()... 80

4.4 Pseudocode of Simpler DUP: D U P_Send()... 81

4.5 Pseudocode o f Diff a lg o rith m ... 85

4.6 Pseudocode o f D U P+algorithm : sender side . .. 8 8

4.7 Parameters and their default v a lu e s ... 89

5.1 AS relationship data c o m p a r is o n ... 101

5.2 Difference in AS relationship inference ...102

5.3 AS numbers and their t i e r s ... 103

5.4 Im pact based on tiers o f vantage p o in ts .. 104

5.5 Im pact based on neighbor t y p e .. 104

5.6 Im pact based on both tier and neighbor types ... 104

5.7 Top external prefixes: traffic source (bytes) ..107

5.8 Top external prefixes: traffic source (p a c k e t s) .. 108

5.9 Top external prefixes: traffic destination, b y te s .. 109

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.10 Top external prefixes: traffic destination, packets .. 110

5.11 Im pact on top Internet s i t e s .. 110

5.12 Tiers of vantage p o i n t s ... 113

5.13 The m ost and least stable ASes based on routing stabilities.. 116

5.14 Statistics of updates for top prefixes (ranked by traffic volume in bytes)116

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF APPENDICES

A End-to-End Delay Bounds for Traffic Aggregates under Guaranteed-Rate Schedul­

ing Algorithms 122

A .l Proof of Corollary 2 .2 .1 ...122

A .2 Proof of Theorem 2 . 2 . 3 ...123

A.3 Proof of Theorem 2 . 3 . 1 ...125

A.4 Proof of Theorem 2 . 3 . 2 ...126

B Coordinated Aggregate Scheduling for Improving End-to-End Delay Performance . 132

B .l Proof of Lem ma 3 .1 .1 ... 132

B.2 Proof of Theorem 3 . 1 . 1 ...135

B.3 General proof that CAS is superior to V A S ...141

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

Introduction

Today’s Internet has become an indispensable part o f people’s daily life. In addition to the

traditional web surfing and file downloading, it also provides new applications such as voice-

over-IP (VoIP), IPTV, video conferencing, and Internet gaming, which attract millions of users.

These real-time, m ultim edia applications require the network to provide better Quality-of-Service

(QoS) than the currently dom inant best-effort service, in terms of bandwidth, delay, jitter, and loss

rate. Packet scheduling and routing are two basic functions o f a data network. Packet scheduling

determines the order of packets that are transmitted from a network device to its neighbor; routing

is to choose a path between two network devices. To provide QoS in the current Internet to support

those emerging real-time, multim edia applications, it is important to have high-performance, low-

cost scheduling algorithms, as well as efficient routing algorithms that converge to new routes

quickly when network changes occur.

In this dissertation, we focus on QoS support in packet scheduling and routing. M ore specifi­

cally, we study the performance of aggregate scheduling by both analysis and simulation. Also, we

propose enhancem ents to the current BGP (Border Gateway Protocol) to reduce both its conver­

gence time and the amount of routing updates. We also analyze the impact o f BGP routing changes

on application traffic.

1.1 Aggregate Scheduling

To provide QoS support in a data network, the IntServ architecture [1] has been proposed,

which supports QoS via per-flow resource reservation (e.g., RSVP [2]) and packet scheduling.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Numerous scheduling algorithms (e.g., see [3] for an excellent survey) have been proposed to sup­

port IntServ-like QoS, such as fairness, bounded per-flow (per-node or e2e) delay and backlog

under a certain traffic model like the token bucket model. One class o f such scheduling algorithms

are called guaranteed rate (GR) scheduling algorithms [4], which include W FQ (Weighted Fair

Queueing), GPS (Generalized Process Sharing) [5], VC (Virtual Clock) [6], etc. Since both its

resource reservation and packet scheduling are per-flow-based, and hence, the routers in the net­

work must keep a large num ber of flow states, IntServ does not scale well for use in the core of the

Internet that carries millions o f flows.

To solve the IntServ’s scalability problem, the DiffServ architecture [7] has been proposed by

classifying traffic into a num ber o f predefined classes, such as Expedited Forwarding (EF), Assured

Forwarding (AF), and Best-Effort (BE) at the edge o f each DiffServ domain. The traffic class is

identified by the marking in the DiffServ field of each packet. Flow information is visible only at

edge routers o f a DiffServ domain, and sophisticated packet classification, marking, policing, and

shaping operations need only be im plem ented at edge routers. W ithin each DiffServ domain, pack­

ets receive a particular per-hop forwarding behavior at routers on their path based on the DiffServ

field in their IP headers. In other words, flows are invisible and packet scheduling is done based on

the traffic class, not based on individual flows. The EF class [8] receives priority over AF and BE

classes. The DiffServ architecture is more scalable than IntServ, but FIFO queueing— commonly

used to schedule packets in each traffic class— is not suitable for hard QoS guarantees [9, 10].

In this dissertation, we consider an extension of the IntServ architecture to support traffic ag­

gregation. This extension is made on the premise that there are aggregation regions in the network,

which “see” only aggregated (not individual) flows. Resource reservation and packet scheduling

in an aggregation region are done on a per-aggregate basis. An example o f this is the Virtual Paths

(VPs) in ATM networks. Traffic aggregation has been studied extensively: see [11, 12, 13, 14]

for resource reservation, [15, 16] for the admission control o f aggregates, and [17] for flow state

aggregation. This dissertation focuses on the scheduling issues associated with traffic aggregation,

and evaluates the deterministic e2 e delay bounds o f aggregate scheduling when guaranteed-rate

(GR) algorithms [18] are used.

Traffic aggregates discussed here is sim ilar to the traffic trunk— which is defined as an aggre­

gate of traffic flows that belong to the same class— in M ultiprotocol Label Switching (MPLS) [19,

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

flows
Deaggregator

Aggregator
aggregates

Aggregation Regionflows

flows ✓ Aggregator

flowsDeaggregator ^

flows

Figure 1.1: Aggregate scheduling

20]. As shown in Fig. 1.1, some flows enter an aggregation region from ingress router S \ , and share

the same path for a num ber of hops inside the region. W ithin the region they are treated as a single

aggregate at the routers on the path. S] aggregates or “bundles” the flows by using GR schedul­

ing algorithms. W hen the aggregate leaves S„, it is split back into individual flows. Similarly,

another aggregate can be set up between S\ and S*. In general, a traffic aggregate can be created

and terminated at any point in the network, and it can be created recursively. For example, at Sj

two aggregates are bundled again into another (higher level) aggregate, which is terminated later

at Si. The router (e.g., S \) that aggregates flows (using GR algorithms) is called an aggregator,

the router (e.g., Sk) that splits the aggregate is called a deaggregator. The term “flows” (“traffic

aggregates” or “aggregates”) means the entities before (after) aggregation. We specify the aggre­

gator and deaggregator as part of the aggregation region, although they can differentiate among the

constituent flows of each aggregate.

Similarly to the DiffServ architecture, this aggregate scheduling architecture pushes the over­

head to the edge of the network and keeps the core network simple. The admission control and

resource reservation o f aggregate scheduling can be implemented by the extension of RSVP that

supports traffic aggregation [11]. The idea is to use aggregate Path and Resv messages between

the aggregator and the deaggregator, and hide the e2e per-flow RSVP messages from the core

routers in the aggregation region. Aggregate Path messages are sent from the aggregator to the

deaggregator, and aggregate Resv messages are sent from the deaggregator to the aggregator, thus

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

establishing the aggregate reservation on behalf of the flows within the same aggregate. Per-flow

RSVP messages trigger the transmission of aggregate Path or Resv messages, but these messages

themselves are ignored inside the aggregation region. This results in a smaller num ber of (aggre­

gate) reservations inside the aggregation region. To reduce the num ber of changes to aggregate

reservations, advance reservation or “bulk” reservation is needed. For example, the authors o f [21]

examined the issue of “bulk” reservation for traffic aggregates.

Advantages and Disadvantages of Traffic Aggregation

With traffic aggregation, the core routers need to m aintain fewer states, m aking packet classifi­

cation and scheduling simpler. Flow aggregation is also beneficial to the flows with low bandwidth

requirements, because, under GR scheduling algorithms— which couples bandwidth and delay—

the flows with low bandwidth requirements will suffer long delay, but aggregation usually allevi­

ates this problem. M ore importantly, as shown earlier, aggregate-based GR scheduling can provide

guaranteed QoS, such as e2e delay bounds.

However, aggregation also comes with its own disadvantages: the flows in the same aggre­

gate cannot isolate from, and protect against, other flows. Therefore, the QoS guarantee of a flow

will be affected by others in the same aggregate, and all the flows within an aggregate will re­

ceive roughly the same service. Due to the lack o f isolation within an aggregate, bursty flows can

“steal” the bandwidth from well-behaving flows and unduly degrade their QoS. This problem can

become worse in multi-service networks [22], However, as pointed out in [23], the problem can

be controlled if flows are selectively aggregated, i.e., only those flows that have some common

characteristics are aggregated (which is similar to our conclusion; see the results in Chapter 2).

Moreover, “fair” aggregation can also alleviate this problem. In Chapter 2, we will show this

feature by using GR scheduling algorithms to aggregate flows.

1.2 BG P R outing E nhancem ent

Emerging delay- and jitter-sensitive applications not only demand more sophisticated schedul­

ing algorithms, but also impose more stringent requirements on the underlying Internet routing

system. As a global network, the Internet has a hierarchical structure. It is first divided into thou-

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sands of Autonomous Systems (AS). An AS is a group of networks that generally are under the

m anagement of the same entity (such as an ISP) and share the same routing policy. Each AS is as­

signed a unique AS number. Thus routing function in the Internet is also divided into intra-domain

and inter-domain routing. Intra-dom ain routing is the routing inside an AS; inter-domain routing

is the routing between ASes. BGP (Border Gateway Protocol) is the de facto inter-domain routing

protocol in the current Internet.

BGP routing issues have attracted significant attention from both the research and operator

communities. A key problem associated with BGP is the excessive num ber of BGP updates pos­

sibly triggered by routing changes, such as session resets, link failures, and policy changes. For

example, a recent study of a large tier-1 ISP shows that within just one minute, a “rich peering”

router can experience hundreds of routing updates all at once due partly to the interactions be­

tween intra- and inter-domain routing [24], A related issue is the long convergence time caused

by BG P path exploration. The authors of [25, 26, 27] have shown that the BGP convergence time

is surprisingly long and depends on the length of the longest backup path. The convergence time

is also shown to be proportional to the num ber of alternative routes to a given destination [28].

The prevalence of multi-homing in AS relationships (e.g., a custom er AS peering with multiple

providers ASes) [29, 30, 31] increases the num ber of backup routes in the Internet significantly,

which, in turn, prolongs BGP convergence.

To enhance the performance of BGP, we propose a novel m ethod of differentiated update pro­

cessing. BGP updates are classified into different classes based on whether their routes are used in

the forwarding tables o f the receiving routers for related destination prefixes. High-priority updates

will be processed sooner while low-priority ones will be delayed.

1.3 Main Contributions and Organization of the Dissertation

The main contributions of this research are summ arized as follows.

1. By using the GR algorithms to schedule traffic aggregates, we show not only the existence

of e2 e delay bounds, but also the fact that in many cases the bounds are sm aller than those

of per-flow scheduling [32].

2. Using in-depth simulation we not only confirm the analytical results, but also show the ad-

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vantages of aggregate scheduling [32].

3. We propose a differentiated BGP update processing algorithm to reduce both the BGP con­

vergence time and the amount of routing updates [33].

4. We also propose a difference-based route selection algorithm, which significantly reduces

the amount o f unnecessary exchange of routing information and speeds up BGP convergence

during network failures [34],

5. We study the impact o f BGP routing changes on application traffic at both AS level and

traffic level. We show that the top prefixes generating/receiving more traffic tend to have

fewer routing changes [35].

The rest of the dissertation is organized as follows: Chapters 2 and 3 focus on aggregate

scheduling. Chapter 2 derives three deterministic bounds of end-to-end delay for aggregate schedul­

ing. It also compares the performance of aggregate scheduling with that of per-flow scheduling.

Chapter 3 further enhances the performance of aggregate scheduling by using coordination among

multiple nodes along an end-to-end path. Chapter 4 deals with BGP enhancement, and proposes

the idea of differentiated BGP update processing. It also compares the performance of the new

algorithm with that of the default BGP. Chapter 5 studies the impact of BGP routing changes on

application traffic. Finally, Chapter 6 summarizes the main contributions of the dissertation and

discusses future directions.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

End-to-End Delay Bounds for Traffic Aggregates under
Guaranteed-Rate Scheduling Algorithms

This chapter evaluates, via both analysis and simulation, the end-to-end (e2e) delay perfor­

m ance of aggregate scheduling with guaranteed-rate (GR) algorithms. Deterministic e2e delay

bounds for a single aggregation are derived under the assumption that all incoming flows at an

aggregator conform to the token bucket model. An aggregator can use any of three types o f GR

scheduling algorithms: stand-alone GR, two-level hierarchical GR, and rate-controlled two-level

hierarchical GR. E2e delay bounds are also derived for the case of multiple aggregations within

an aggregation region when aggregators use the rate-controlled two-level hierarchical GR. By us­

ing the GR scheduling algorithms for traffic aggregates, we show not only the existence o f delay

bounds for each flow, but also the fact that under certain conditions {e.g., when the aggregate

traverses a long path after the aggregation point) the bounds are sm aller than that of per-flow

scheduling. We then compare the analytic delay bounds numerically, and conduct in-depth sim u­

lation to (i) confirm the analytic results, and (ii) compare the e2 e delays of aggregate and per-flow

scheduling. The simulation results have shown that aggregate scheduling is very robust and can

exploit statistical m ultiplexing gains. It performs better than per-flow scheduling in most of the

simulation scenarios we considered.

Overall, aggregate scheduling is shown theoretically to provide bounded e2e delays, and prac­

tically to provide excellent e2e delay performance. Moreover, it incurs lower scheduling and state-

m aintenance overheads at routers than per-flow scheduling. All of these salient features make

aggregate scheduling very attractive for use in Internet core networks.

The rest of the chapter is organized as follows. Section 2.1 explains the definitions of GR

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scheduling [4] and server [36], discusses their relationship, and reviews the delay bound re­

sults for per-flow scheduling in [4]. Section 2.2 introduces the concept of fair aggregator, and

derives the delay bound for aggregate scheduling under the token bucket traffic model. Two delay

bounds are derived: the first for stand-alone aggregator and the second for hierarchical aggrega­

tor, both o f which use work-conserving GR scheduling algorithms. The hierarchical aggregator is

shown to improve the delay bound. Section 2.3 improves the delay bound further by having the ag­

gregators use non-work-conserving scheduling algorithms. Section 2.4 presents numerical results,

comparing the above deterministic delay bounds with that of per-flow scheduling. Simulation is

also used to compare the delay performance o f both aggregate and per-flow scheduling, confirm­

ing the benefits o f aggregate scheduling derived from the analysis. Section 2.5 discusses some

related work on aggregate scheduling, putting our results in a comparative perspective. Finally,

Section 2.6 summarizes our contributions.

2.1 Guaranteed-Rate Scheduling Algorithms

Before deriving the delay bound under aggregate scheduling, in this section we introduce the

definitions of Guaranteed-Rate (GR) scheduling algorithm and Latency-Rate (L %) server, dis­

cuss their relationship, and review the e2e delay bound results for per-flow scheduling. For the

convenience o f discussion, we first give a list o f symbols in Table 2.1.

2.1.1 Guaranteed-Rate (GR) Scheduling Algorithms

The authors o f [4] defined a class of GR scheduling algorithms. The delay guarantees provided

by these algorithms are based on the Guaranteed Rate Clock (GRC) value associated with each

packet, which is defined as follows [4].

D efinition 2.1.1 (G R C lock Value). Consider a flow f associated with a guaranteed rate r f . Let

p Jj and t Jj. denote the j lh packet o f flow f and its length, respectively. Also, let G R C fp'j-) and

Al(pJj) denote the GRC value and arrival time o f packet p Jj at router Si, respectively. Then, the

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GRC values fo r packets offlow f are given by:

j = 0„i
GRC(plf) yrnax{Ai(p'fl,GRCi(p’f l f } + f̂ j, j > 1.' (2' °

Definition 2.1.2 (G R Scheduling A lgorithm). A scheduling algorithm at router 5, is sa id to be­

long to the GR class fo r flow f if it guarantees that packet p Jf is transmitted by time GRC1 (p Jj) + (3',

where (3' is a scheduling constant [37] that depends on the scheduling algorithm and the router.

We will henceforth call a router equipped with the GR scheduling algorithm a GR server.

M any scheduling algorithms are shown in [4] to belong to the GR class. For example, both Packet-

level Generalized Processor Sharing (PGPS) [5] and Virtual Clock (VC) [6] are GR scheduling
jJ

algorithms with (3' = - f f i , where Vmax is the maximum packet length seen by router S', and C1 the

output link capacity of S,.

2.1.2 Latency-Rate (LtRJ Server

The authors of [36] also defined a class of scheduling algorithms as Latency-Rate (L %) servers,

the definition o f which is repeated below for self containment, although some notations in the

definition are modified for consistency.

D efinition 2.1.3 { L T f Server). Let x be the starting time o f a busy period o f flow f in server S, and

x* the time at which the last bit o f traffic arrived during the busy period leaves the server. Then,

server Si is an server if and only if a nonnegative constant Cj- can be found such that, at every

instant t in the interval (x, X*],

W}(x,t) > m a x { 0 , r / (/ - x - C }) } , (2.2)

where Wj-(x. t) denotes the total service provided by the server Si to flow f during the busy period

until time t. The minimum nonnegative constant C'y satisfying the above inequality is defined as

the latency o f the server, denoted by 0y.

The definition of the server helps establish the relationship between the burst size of an

output flow and that of the corresponding input flow at a router. Before introducing Lem ma 2.1.1,

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we define the token bucket traffic model as follows: flow / conforms to the token bucket (Oy,py)

if for any time instant x and t satisfying 0 < x < /, its traffic volume arrived during (x,f], Ay(x ,f),

satisfies:

Af(T,t) < a / + p / - (/ - x) , (2.3)

where Oy and py are the burst size and average rate of flow / , respectively.

L em m a 2.1.1. Suppose an incoming flow f to router S j conforms to the token bucket model

(fry , p f) . I f Si is an server with param eters (Q'p rp) fo r flow f , where 9y is the latency at

Si and r f (r y > p f) the guaranteed rate fo r flow f , respectively, then the output traffic offlow f

conforms to the token bucket model with parameters (dy , p /) , where fry < C y + 0 ^ • py.

ffinax (
For example, both PGPS and VC are L'ffi servers with 0y = + -gf- [36], in which case we

have

6 / < g / + iy ” + P / ’J g g . (2.4)

The proof o f Lem ma 2.1.1 is similar to that of Theorem 3 in [36], which assumes p y = ry ; but

the result can be easily extended to the case of p y < rp.

2.1.3 Relationship between GR Server and Server

From the definition of the L % server, it is easy to show that an £% , server is also a GR server.

T heorem 2.1.1. For any flow f , an L l f server Sj with latency Q'j is also a GR server with schedul­

ing constant 0 y .

P roof W ithout loss of generality, we consider only one busy period of flow / . Suppose the re­

served rate for flow f is ry, and the busy period starts at time x and ends at x*. From the definition

of GRC value in Eq. (2.1), it is easy to see that the GRC values of the packets in this busy period
are:

GRC(p)) = + t , * > 1.

1 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Suppose tk is the time when the kth packet leaves the server, then

From the definition of server, we obtain

£ 1) > max{0, r f {tk — X — 0})} > rf {tk - x - 0}).
n= 1

Rearranging the terms, we obtain

yk pn
tk < 1 + x + 0 / = G R O jfy + 0}, V * > 1. (2.5)

The theorem is proven. □

Similarly, a GR server is also an server.

T heorem 2.1.2. For any flow f , an GR server with scheduling constant (3/ is also a server
gmax

with latency smaller than or equal to (3/ + - j~ .

Proof. Similarly, without loss o f generality, we consider only one busy period o f flow / . Suppose

the reserved rate for flow / is r / , and the busy period starts at time x and ends at x*. From the

definition of GRC value, it is easy to see that the GRC values of the packets in this busy period are:

y k pn

G R C (p j -) = n~^ / +T, k > 1.

First, consider the time instants when packets leave the server. Suppose the kth packet leaves

the server at time t k , k > 1, then from the definition of GR server, we obtain

tk < G R C (p kf) + $ f , k > 1,

y k pn

= » tk < f +T + P/-, k > 1,
rf

k
= > W } { ‘S,tk) = ' £ e nf > r f (t k - x - P/), k > 1. (2.6)

n— 1

l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Next, consider time instant t other than tk (i.e., < t < tk+\ for all k > 0, assuming to = x).

Since Wj-(x, t) only increases when the last bit of a packet leaves the server, for any k > 0,

W}(x,t) = W}(x,tk)

£k+\

> r f (‘k + \ - T - P / - - -I—)Vf

gmax

> r / (t - X - (P /+)), (2.7)

Combining Eqs. (2.6) and (2.7), we obtain

gmax

fV}(T,t) >rf (t - x - (P / + ^ r-)) , Vt < / < t*.

Since Wj-(x,t) > 0 for all x < t < x*, we have

gmax

WlAx,t) > m a x { 0 , r / (/ - 1 - (P / +)) } , V x < / < x * . (2 . 8)
j ' ' r f

Then the theorem is proven. □

2.1.4 End-to-End Delay Bound under Per-Flow Scheduling

We now review the e2e delay bound results for per-flow scheduling. Both Lem ma 2.1.2 and

Theorem 2.1.3 stated below were proven in [4],

L em m a 2.1.2. Suppose routers Sj and S;+ 1 are two neighboring GR servers on the path o f flow f .

I f both routers guarantee service rate r / fo r flow f , then

gmax

GRCi+] (p>f) < G R C i f A + ^ — + a!, (2.9)
J J r f

where is the maximum packet size in flow f , and a! = [3' + xM+1. Here xM+1 is the propagation

delay between Si and Si+ \ .

Lem ma 2.1.2 states the relationship between the GRC values o f a packet at two neighboring

GR servers. Based on this relationship, the authors of [4] derived an e2e delay bound.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T heorem 2.1.3. I f flow f conforms to the token bucket model (C f , P f) and all the routers on its

path are GR servers with guaranteed rate r p > py , then the e2e delay fo r p Jp d p is bounded as

follows:

. (k - \)rfm «
dJf < — + --------- 1— + Y a " , (2 .10)

' r f rf „=i

where a! — |3' + xM+1 and K is the number o f hops on the path offlow f .

From Theorem 2.1.3, one can see that the delay bound is inversely proportional to the flow’s

guaranteed rate, but is proportional to the num ber of hops (K), the size o f packets, and the burst

size of the flow. W ith a large num ber o f hops and large-size packets, the delay can be substantially

large. To understand the physical meaning o f Eq. (2.10), let us consider the fluid traffic model,

where packet size is infinitely small. Then, if we omit the propagation delay, the delay bound in

Eq. (2.10) can be simplified as:

< //< — . (2 .11)
rf

In other words, the delay is upper bounded by the burstiness of the flow. The larger the burst size,

the larger the delay bound. If we assume pf = rp, then the delay bound is decided by the burst

ratio (flf for flow f) of the flow.
P / J

In the next two sections, we derive e2e delay bounds under aggregate scheduling with GR

scheduling algorithms. We show that if the incoming flows at aggregators conform to the token

bucket model, the e2 e delay is bounded.

Note that by using GR scheduling algorithms, we always assume that the guaranteed rate for

a flow is greater than, or equal to, its average rate, i.e., rp > py. Also, in the rem ainder of this

chapter, we omit the propagation delay xM+1. Therefore, a ' = (3'.

2.2 Work-Conserving Aggregator

To derive the e2e delay bound under aggregate scheduling, an important step is to derive the

delay at the aggregator. We need to find the relationship between the GRC values at the aggregator

and its next hop. In this section, we use work-conserving GR scheduling algorithms at aggrega­

tors. Two types of GR scheduling algorithms are examined: stand-alone (or non-hierarchical) and

hierarchical algorithms.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.1 Fair Aggregator

Before deriving the delay at the aggregator, we first introduce an important concept, the fa ir

aggregator.

D efinition 2.2.1 (F a ir A ggregator). Let router Sj be an aggregator bundling flow f and others

into aggregate flow A, which, in turn, is an input to router S7+ 1. Then i f pj- = p ^ , i.e., the j ,h packet

offlow f corresponds to the j ' th packet o f aggregate flow A, Si is sa id to be a fair aggregator i f and

only if Sj is a GR server and

GRCi+'(j /a) < GRCip’f + y + a ' , Vy > 1, (2 . 1 2)

where f is a constant that depends on the scheduling algorithm, the router, and other flow s in the

same aggregate. We call it an aggregation constant.

The value f + oc' can be considered as the fairness index of the aggregator, e.g., an aggregator

is considered fairer than others if it has a sm aller value of f + a '. For a fair aggregator, both of

its aggregation constant (7 *) and scheduling constant (a ') should be small. Also, our definition of

fa ir aggregator is slightly different from that in [37, 38]. It is based on the relationship between a

packet’s GRC values at the aggregator and its next hop.

L em m a 2.2.1. Suppose Sj and Sj+ \ are two neighboring GR servers and Sj is an aggregator. Sj

aggregates flow f and other (N -l) flow s into aggregate flow A, which, in turn, is an input to Sj+\.

Suppose incoming flow k at Sj conforms to the token bucket model (<3k,pk) fl < k < N), and the

guaranteed rate fo r flow k at Si is r ̂ (I < k < N). Let p Jj- = p JA, i.e., the j th packet o f flow f

corresponds to the j nh packet o f aggregate flow A. I f the outgoing flow s at Si conform to the token

bucket model (G/(, p /j (\ < k < N), then fo r packet p Jj ,

t Ok+ £max
GRC '+ 1 (p {) < GRC'(pj-) + ■ -*£ /— ---- 1— + a', J > 1 , (2.13)

where R = rk, which is the guaranteed rate fo r aggregate flow A at Sj+ \.

P roof Similar to the definition o f busy period of a single flow [36], we define a busy period o f

aggregate flow A at router Sj+ \ as the maximum length of time period (Ti, X2], such that at any time

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t e (x i, T2], the total traffic of A arrived since the beginning o f the interval is A { z \ ,t) > R ■ (t — %\).

W ithout loss of generality, we consider only one busy period in the proof. Suppose the busy period

starts at time to when the first packet p \ arrives, and in that busy period, time tj is the instant when

packet pjj- arrives at Sj+ 1. Since p Jy = p JA, the total traffic arrival of aggregate A up to tim e tj is

f N
^ £ a = A (t o , t j) = ^ A k i t o P j)
£=1 k=1

= A f (t 0 , t j) + ' ^ i A k (t o , t j)
H f

< £ <? + I (»* + r* •(/,-/<)))
m=1 k^f

= ' Z r f + J j ak + (R - r f)(lj - l 0). (2.14)
m=1 k^f

Since all the packets arrive in the same busy period of aggregate A, from the definition o f GRC

value, we have

GRCi+)(pJA) =

< ---------:-------------- h/o- (2.13)

Next, we prove that the theorem holds for both j — 1 and j > 1.

Case 1: j = 1.

Gr c + \ ^) < tXf + ̂ f ^ + { R ~ r m - h)
R

_ ’Lk^ fVk + t f r f (t] - t 0)

„ I k ^ k + T x , .
< i r — + /..

Since Si is a GR server for flow / , we have t\ < GRC’(py) + a '. Therefore,

G R C i+] <j/A) < G R C { p }) + S * * /q* + </ .. + a /.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case 2: j > 1. From the definition o f GRC value, for flow / , we have

GRC'(pj) > GRC(p}) + A

£3
GRC{P}) > GRC‘(p}) + -f-,

Adding them up, we obtain

lJ
GRC‘(pif) > GRCi{pi/r ') + -£.

j J rf

y J gm
G R C ^) - GRC’(pf) > m=2J-

j

1m= 1
I rf < £'f + rr (GRCi(pJf) - GRC‘(pf)) . (2.16)

Then, from Eqs. (2.15) and (2.16), and the fact t j < GRCl(p j) - f a ' , we obtain

G R C * ' i d) < ^ rf { G R C ^ f) - G R C (p \)) | I w d , + (/?- r /)(0. - /o) ^
7? R

^ I r / (G«C' (^)-G/?C' (p})) (* - r /)(G *C '(^)+ oe '-/o)+ *-/o
~ R + R + R

’ R R

J K A

7 A

The lemma is proven. □

Next, we study the stand-alone aggregator, which uses stand-alone GR scheduling algorithm

to bundle flows into aggregates.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.2 Delay Bound I: Stand-Alone Aggregator

Com bining Lemmas 2.1.1 and 2.2.1, we obtain the following theorem on the relationship be­

tween the GRC values at a stand-alone aggregator and its next hop.

T heorem 2.2.1. Suppose Sj is an LR server, and both Si and Sj+ \ are GR servers. As a stand­

alone aggregator, Sj aggregates flow f and other (N -l) flow s into aggregate A, which, in turn, is

an input to router Sj+ \. Suppose incoming flow k at Sj conforms to the token bucket model (o^, pfl

(\ < k < N), and the guaranteed rate fo r flow k at router Sj is r̂ (\ < k < N). Let p Jj- = p^, i.e.,

the j th packet offlow f corresponds to the j ' th packet o f aggregate A. Then, Sj is a fa ir aggregator

with f = -f . In other words,

GRCi + 1 (p{) < G t f C ' V /) + <*' + \l k ^ ak + . j > 1. (2 .1 7)
■’ K K

The proof is trivial.

Now, we are ready to derive the e2e delay bound for aggregate scheduling under the token

bucket model and the stand-alone aggregator.

T heorem 2.2.2. Suppose N flow s share the same K hops o f GR servers inside an aggregation

region, and they are bundled into aggregate A at stand-alone aggregator S\ and split back at Sk-

Routers S2 , ■ ■ ■, Sk - 1 schedule packets o f aggregate A. I f flow k conforms to the token bucket model

(<5/(, p fl and has the guaranteed rate r ̂ with r/(> (1 < k < N) at S\ and Sk, and A has the

guaranteed rate R = 'flk= \ rk at S2 , . . . ,Sk-i> then fo r any flow f (\ < f < N), the e2e delay o f

packet jfp d p is bounded as follows:

4 s ° £ + f e p + S » - /e i^ 2 T] + {K_ 3)5 Z + T l + l a, ; 2 L (2J8)
’ r f R R R r/

Proof. Let p JA be the packet in the aggregate flow A corresponding to p^ in flow / . From Theo­

rem 2 .2 .1 , we have

GRC2(pJf l < GRC1 (PJf) + y ' + a 1,

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where y 1 = ̂ s ince S2 , ..., S k - 1 are all GR servers for aggregate flow A with

guaranteed rate R = rb from Lem ma 2.1.2, we have

, , //wax
G R C ^ t i) < GRC2(pJA) + -*L- + a 2,

, , max
GR<?{p>a) < G*C3(p ') + ^ - + a 3,

, , / /w a x

GAC*” 1̂) < GRCK~2{pJA) + + a*'-2
A

Adding them all up, we obtain

; / m a x K - 2

G A C ^ 1) < GRC' {pij) + (1C - 3) -4— + y 1 + £ <*'•
^ /=i

Since p^ = p*A, for packet p ’j , the departure time at Sk - 1 is

z y ^ V /) = r f i - ' tA)

< GRCK- ' { p iA) + v.K~'

emax K- 1
< GRC'(pif) + y ' + (K - 3) ^ - + ^ a i.

K /=i

From the definition of the GR server, the first (AM) servers for flow / can be viewed as a virtual
/ m a x ,

GR server with scheduling constant a* = y + (A — 3) - jp + / a ' . Since Sk is also a GR server

for flow / with guaranteed rate ry, from Lemma 2.1.2, we have

/ m a x

GRCK(pif) < GRC' {pif) + ^ — + oc*.
J J

Therefore, the departure time of packet p Jf from Sk is

D K{pif) < GRCK(pif) + a K

gmax
< GRC'{pJf) + -^— + a* + a KJ r f

. t g | + ^ - 3) g + g + i r f .

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Then, the e2e delay dj- satisfies

dJf = i f (p>f) - A\p>f)

<_ ^ + ^ + ^ + ^ i f ^ r l + i a, <2,9)
From [4], for flow / conforming to the token bucket model (o / , p/) and with reserved rate ry (/y >

p/) , GRCX (pj-) — A 1 (pj-) < Thus the theorem is proven. □

As in Section 2.1, to further understand the physical meaning of Eq. (2.18), we consider the

fluid traffic model, where packet size is infinitely small. Then, Eq. (2.18) can be simplified as

(since in general the term 0 ̂ also relies on packet size and will become infinitely small):

d f < g £ + ^ / 0 * , (2.20)
rf R

Note that Eq. (2.20) provides the lower limit of the e2e delay bound. Com paring Eqs. (2.11) and

(2 .2 0), we can see that with aggregate scheduling, the delay bound of a flow is not only decided by

the burstiness of the flow itself (term ^) , but also strongly related to the burstiness of other flows

that share the same aggregate with it (term ^ W ° A). Intuitively, this is easy to understand, since

a packet from flow / has to wait behind not only the earlier packets from the same flow, but also

those from other flows sharing the same aggregate. The result implies how aggregation should be

done— a flow should not be aggregated with other flows with substantially larger burst ratios. This

is similar to the conclusion in [23]. This issue will be explored further in Section 2.4.

From Eq. (2.18), we can see that the delay bound is affected by the latency of the scheduling

algorithm at the aggregator. To get a smaller bound, we should use a low-latency scheduling
gmax |

algorithm. For example, with PGPS and VC (0j- = + -gfO at the aggregator S i , the e2e delay

is bounded as follows:

df < - + [- * — + — t ~] + { k - 3)~t + ~ + T r + h (2-21)

Finally, comparing Eqs. (2.10) and (2.18), we note that, depending on the burst ratios of the

constituent flows and the maximum packet size in the aggregate, the delay bound under aggregate

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scheduling can be smaller than that under per-flow scheduling. We will compare the delay bounds

numerically later in Section 2.4.

In the next subsection, we further decrease the delay bound by using hierarchical GR schedul­

ing algorithms at aggregators.

2.2.3 Delay Bound II: Hierarchical Aggregator

So far, the stand-alone GR scheduling algorithms have been used at aggregators. Thus, when

computing the burstiness of an outgoing aggregate at aggregators, the burst size of each constituent

flow in the aggregate was computed separately and then summed up. In this subsection, we use

hierarchical GR algorithms at aggregators to improve the delay bound, as shown in Fig. 2.1. First,

the flows that end up in the same aggregate are grouped together at the lower-level schedulers.

Then, the aggregates are scheduled at the upper-level scheduler. This way, we can reduce the

burstiness of the outgoing aggregate and the aggregation constant at aggregators, thus reducing the

e2 e delay.

How does hierarchical scheduler reduce the burstiness of the outgoing aggregates? Fig. 2.2

shows the intuition behind it. Suppose there are 20 flows coming into one aggregator, and all of

them have the same reserved rate. The first 10 flows belong to one aggregate flow A i, and the

last 10 belong to another aggregate flow Ai . Suppose 20 packets o f identical size arrive at the idle

aggregator at exactly the same time, one from each flow. Then, with a stand-alone scheduler, the

20 packets will be scheduled in a random order. Thus, it is possible that all the 10 packets o f A \

are scheduled before all the packets of aggregate flow A 2 . Therefore, the output of the aggregator

will look like: 10 packets of aggregate A\ come out first, then 10 packets of aggregate Ai- For the

next router which is handling aggregates, the burstiness o f both A 1 and ^ 2 is very high. In contrast,

with hierarchical scheduler, the upper-level scheduler will make sure the packets from A\ and A 2

are scheduled alternately, making the traffic in both aggregate flows smoother.

The hierarchical scheduling algorithms under consideration are two-level hierarchical packet

fair queueing (H-PFQ) algorithms [39],

As defined in [39], flow / arriving at a H-PFQ of height H has H ancestors in the tree, with

p (/) as its imm ediate parent node, and p h(/) is the parent node o f p h~ x(J) (h = 1, . . . ,H). Here

P° (f) — /> P l (/) = p { f) i • • •> ar|d p H(f) = link capacity C. Since we only need two-level hierarchy,

H = 2.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Output L ink

Aggregate Ai / Aggregate A2 Aggregate A

Input Traffic

Figure 2.1: Hierarchical scheduling

Before deriving the delay bounds, we first repeat the definition o f Bit Worst-case Fair Index

(B-W FI) below. Note that some notations in the definition are modified for consistency.

Definition 2.2.2 (B it W orst-case F a ir Index (B -W FI)). A server node St is sa id to guarantee a

Bit Worst-case Fair Index (B-WFI) of r \Lf fo r flow f , iffo r any packet p Ĵ the follow ing holds

where d'j is the time pj- departs the server, t is any time instant such that t < d Jj- and session f is

continuously backlogged during [t , d£/, and ^ is the service share guaranteed to flow f by server

S ,

Next, we show that H-PFQ also belongs to the GR class.

F ac t 2.2.1. I f a stand-alone packet fa ir queueing (PFQ) algorithm belongs to the GR class with

the scheduling constant $‘PFq, then its corresponding H-PFQ o f height H also belongs to the GR

class with scheduling constant:

$'hpfq ^ $'pfq + X P ̂ (2.23)
h= l V (/)

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a
a
i
i

i

Flow 1

Flow 2

Flow 10

Flow 11

Flow 12

Flow 20

Stand-alone
scheduling

Hierarchical
scheduling

n n n n m i
n i n i n i n i n i n i

Figure 2.2: Benefits of hierarchical scheduling

where r\py /) j and rph ^ are the Bit W orst-case Fair Index (B-WFI) [39] o f the logical queue at

node p h{f) and the guaranteed rate at node p h{f) , respectively.

Proof. From Theorem 2 of [39], the delay bound for a flow / at H-PFQ is at most X^T] 1 ^ f <nj
F (/)

larger than that at the corresponding stand-alone PFQ server. Therefore, f i lH P F Q < f i lP F Q + X / , = i — h
H - 1 V w _

>(/)

□

Now, we derive the burstiness of the outgoing traffic at aggregators. For any flow / , we derive

— the total outgoing burst size of all the other flows sharing the same aggregate with / .

In the derivation, we make use of the corresponding fluid GPS (Generalized Processor Sharing)

server of a PFQ (Packet Fair Queueing) server Let Wk(x,t) (WkGPS(x,t)) be the service received

by flow k at the PFQ server Si (the corresponding GPS fluid server) during (x,/], and define X‘k and

as:

4 = m a . x { W i GPS(0 , t) - W ' (0 , t) } , (2.24)

84 = m a x { W ‘(0 , t) - W [GPS(0 , t) } . (2.25)

Intuitively, X‘k and 84 define the maximum difference between the amount o f services flow k gets

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from the corresponding GPS server and the PFQ server S) in any time interval: Vk (f>'k) defines how

much more (less) service flow k can get from the corresponding GPS server than the PFQ server.

T heorem 2.2.3. Suppose Sj is an aggregator with a two-level H-PFQ scheduler and S ,■ aggregates

flow f and other (N-l) flow s into aggregate A. Also, suppose flow k (1 < k < N) at S j conforms to

the token bucket model (o*, p fl and has guaranteed rate rk. Then, we have

+ + (2 .26)
w w

The proof is similar to the proof o f Theorem 3 in [36]. We first prove the total backlog size of

the (AM) flows is upper bounded, then derive the burst size from the backlog size. The details of

the proof can be found in Appendix A.2.

To get a small burst size, we should use PFQ with small Vk and 8 [, especially small h'k. From

Theorem 1 o f [40], W F2Q (W orst-case Fair W eighted Fair Queueing) yields X'k = L‘max and a very

small 8 ̂= (1 — ^i)i'kax for flow k at server Sj with capacity Cl. Therefore, if H-W F2Q is used at

the aggregator, the burst size becomes:

max i

kj=f W

< I a t + C + ̂ + 2 t r . (2.27)
W

C oro lla ry 2.2.1. Using the H-WF2Q algorithm at the aggregator, and under the same condition o f

Theorem 2.2.2, the e2e delay dj- is bounded as follows:

oL + x w o t + 2 + T + £ a , (Z2SI
1 r f R r f j t \

The proof is similar to that of Theorem 2.2.2. Refer to the Appendix A. 1 for details.

In general, the bound in Eq. (2.28) is smaller than that in Eq. (2.21), especially when the

num ber of flows (N) is large. However, as can be seen, the bound in Eq. (2.28) is still affected by

the average burst ratio of other flows in the same aggregate.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.4 Multiple Aggregations in a Region

The derivation of the two delay bounds (using work-conserving aggregators) in this section

relies on the fact that the incoming traffic conforms to the token-bucket model with known pa­

rameters. Inside an aggregation region, the traffic pattern (the burst size in particular) will be

distorted and become unpredictable. If further aggregations are done inside an aggregation region,

this change of traffic pattern makes the derivation of delay bounds very difficult, if not impossible.

In fact, we derived the two delay bounds assuming that aggregation is done only once in each

aggregation region. Thus, in the case of m ultiple aggregations in the region, they are not true e2e

delay bounds, but rather delay bounds between two nodes (between which the traffic of interest

experiences aggregation and split only once) along the e2e path. To use our m ethod to derive e2e

delay bounds in the case of m ultiple aggregations in a region, the traffic has to be reshaped before

every aggregator to make it follow the token-bucket model. The shaping incurs an extra delay,

which is not considered here, though.

2.3 Non-Work-Conserving Aggregator

In the previous section, work-conserving scheduling algorithms were used at aggregators, and

the derivation of the delay bounds required to know the incoming traffic pattern at the aggregator.

This requirement limits the ability of multiple aggregations within an aggregation region, since the

traffic pattern inside the region is difficult to predict. The authors of [41] proved that reshaping a

flow inside the network will not change its e2e delay bound. However, their proof was done for a

single flow, and it is not clear if reshaping an aggregate flow will change the e2 e delay bound of a

constituent flow o f the aggregate. We conjecture that the delay bound will be affected.

Cobb [37, 38] overcame this difficulty by using non-work-conserving scheduling algorithms at

aggregators. As stated in [42,43], non-work-conserving scheduling algorithms have the following

features: (i) the burstiness o f traffic can be controlled; (ii) the sum of the per-hop bounds can tightly

bound the e2 e delay and jitter; and (iii) since the non-work-conserving scheduler shapes the traffic

at each hop, it is easy to bound the performance of heterogeneous networks. Both the basic fa ir

aggregator and greedy fa ir aggregator in [38] use non-work-conserving scheduling algorithms

at aggregators to shape the outgoing traffic aggregate. This way, very few packets in the same

aggregate queue up at later hops, which, in turn, makes the queueing delays at those hops very

small. However, the implicit assumption in [38] is that there is only one output aggregate from

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each aggregator, which is not generally the case. In this section, we extend the result in [38] by

allowing m ultiple outgoing aggregates from an aggregator and derive the e2 e delay bound under

the token bucket traffic model.

2.3.1 Delay Bound III: Non-Work-Conserving Aggregator

First, we define a new type o f fair aggregator— rate-controlledfair aggregator.

D efinition 2.3.1 (R ate-C on tro lled F a ir A ggregato r). Server Si is sa id to be a rate-controlled

fair aggregator if (i) it is a two-level hierarchical GR scheduler; (ii) each lower-level scheduler

handles the flow s belonging to one aggregate with capacity R, which is the sum o f the guaranteed

rates fo r all the constituent flow s o f the aggregate; and (iii) the upper level is the scheduler fo r all

the aggregates.

Note that the hierarchical scheduling algorithm defined here is different from the one used in

Section 2.2.3: it is non-work-conserving, and the lower-level consists of constant-rate servers. A

packet at a lower-level scheduler will not be sent to the upper-level scheduler if the capacity of

that scheduler does not permit it, even when the upper-level scheduler is idle. In contrast, in the

ordinary H-PFQ, the lower-level schedulers are variable-rate servers [39]. Since the lower-level

schedulers are constant-rate servers, we will regard the lower-level schedulers and the upper-level

scheduler as two virtual hops.

L em m a 2.3.1. Suppose server Si is a rate-controlled fa ir aggregator, with one o f the lower-level

schedulers, Sjj, serving N incomingflows (flow f is one o f them). The output o f S jj is the aggregate

A. S, h is the upper-level scheduler dealing with all o f the aggregates. Suppose at Sjj, these N

flow s have guaranteed rates r ,̂ 1 < k < N, respectively, and at S;y the guaranteed rate fo r A is

R = rfr. Let the j th packet o f A correspond to the j nh packet offlow f (i.e., p JA = p Jj) . Then,

we have

GRCih (p>A) < GRCiJ ffl' f) + a iJ , (2 .29)

where a 1,1 is the scheduling constant at S jj (with capacity R = Xf=i rk)-

Proof. W ithout loss o f generality, we consider only one busy period of aggregate A at Sty. Since

the lower-level server Sjj is rate-controlled with capacity R, the start times of the transmission of

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two consecutive packets (p JA and p A+{) in the busy period are separate by a interval of Also,

since S,j and Sjj, are two virtual nodes, the virtual link capacity between them is infinite, i.e.,

C —> oo Thus the transmission time o f a packet is infinitely small. Therefore, we have

I a ,J(Pa)’ J =]
A (P a) = S -L i 1 /■>-' G-30)

Next, we prove that for all j > 1,

GRCi’h(pJA) = A i'h(pJA) + £-A . (2.31)

We prove this by induction on j .

Base Case: j = 1. Since it is the first packet of the busy period, we have

GRCi’h(p \) = A i’h(p \) + ^ -

Induction Hypothesis: Suppose Eq. (2.31) holds for 1 < j < m .

Induction Step: j = m + 1. From the definition of GRC value, we have

p m +1
GRC'h{p™+]) = max{Ai,h(pA +]) ,GRCi,h(pA)} +

R

However, from Eq. (2.30) and the Induction Hypothesis step, we know

p m
Ai,h(pA+]) =z At'h(pA) + - £ = GRCi,h (pA),

» m + 1
= > GRC‘'h(p™+]) = A‘'h(pA+]) +

Also, since Sjj is a GR server, by definition we have

A‘’h{piA) + ^ < G R C [p iA) + a ' ’7, V/ > 1.

Since p*A = Pj- and thus £JA = Cj-, from Eq. (2.31) we obtain

GRCi h {p’A) < G R C { p i 'f) + a 7’7, V / > 1.

□

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From Lem m a 2.3.1, one can easily see that the rate-controlled fair aggregator is a fair aggrega­

tor. Next, we derive the e2e delay bound and show that by using non-work-conserving scheduling

algorithms at the aggregator, the e2 e delay bound of aggregate scheduling can be decreased.

T heorem 2.3.1. Suppose flow f traverses K hops o f GR servers S \, S2, . . . , S k > and S\ is a rate-

controlledfair aggregator, which bundles f and other (N-l) flow s into aggregate flow A. Sk is the

deaggregator fo r A. Suppose flow k has a guaranteed rate rk (\ < k < N) at S\ and Sk , and the

guaranteed rate fo r aggregate A at Si, S3 , . . . , Sk - 1 is R = l r̂ . Then, fo r packet p Jj , the e2e

delay d j satisfies:

omax (m™ K
d l < [GRC]'l(plf) - A f p Jf)} + (K - 2) ^ — + a]’l + -t— + Y a i. (2.32)

R r f (=]

The proof is sim ilar to that o f Theorem 2.2.2. Refer to Appendix A .3 for a detailed proof.

C o ro lla ry 2.3.1. I f flow f conforms to the token bucket model (c / , p f) and p / < rf, the e2e delay

result o f Theorem 2.3.1 becomes:

a t f m a x i mf a x k
dJ < - l y (K - 2) i - + - ^ + a l’/ + T a ' (2.33)

r f ° r f i=\

Note that thanks to the rate-control mechanism at aggregators, the e2e bound does not depend

on the burstiness o f other flows in the same aggregate. Thus, the bound is sm aller than those of

the work-conserving cases. If scheduling algorithms, such as PGPS, VC, and W F 2Q, are used at
gmax

the rate-controlled fair aggregator S i, we have a 1’' = Then Eqs. (2.32) and (2.33) can be

simplified as

omax m a x k

d \ < [GRC] J U) - A 1M + (K - 1) ̂ - + ^ + £ a' (2.34)
J J J R r j "

and
n omax m a x K

dJf < ^ - + (K - + + (2.35)
7 rf R rf iti

respectively.

In addition, the derivation of the bound in Eq. (2.32) does not require the knowledge of the

traffic pattern of incoming flows. This enables us to derive the delay bound for the case of multiple

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aggregations. For simplicity, in the following discussion, we use the term GRCl(pJp) to represent

GRO'^p^). Also, we assume that scheduling algorithms such as PGPS, VC, and W F2Q are used

at the rate-controlled fair aggregators. Therefore, the delay bound for single aggregation is in the

form of Eq. (2.34).

2.3.2 Multiple Aggregations

T heorem 2.3.2. Suppose flow f traverses K hops o f GR servers. Any hop can be an aggrega­

tor and all the aggregators are rate-controlled fa ir aggregators. For each aggregator, there is a

corresponding deaggregator at a later hop. Then, the e2e delay fo r packet p Jp dj-, satisfies:

K l" Iax M (m ax k

4 < [GRC1 (4) - A' (p})] + + (2.36)
i—2 1 n ‘ n=\

where M is the number o f aggregators along the path; Aj is the aggregate flow that contains flow

f at Si, l r~ax is the maximum packet size in aggregate flow A/, and Rj is the guaranteed rate fo r A,-

at Sj; Ai is the ith aggregate along the path that contains flow f , and and Rj are the maximum

packet size in the aggregate and its guaranteed rate, respectively.

To prove the theorem, we first prove two lemmas that consider two basic cases of multiple

aggregations: pure recursive aggregation and pure sequential aggregation. Refer to Appendix A.4

for a detailed proof.

Note that there are a total of (K - 1) + M terms related to packet size in the delay bound above.
(wax

They can be understood as follows: the (AM) terms in X/L? ~e~ correspond to the delays at all the

hops (except the first hop). In addition, for each aggregation with guaranteed rate Ri, there is a term
ftnax

-jf- as overhead. Com pared to the delay bound for per-flow scheduling in Eq. (2.10), Eq. (2.36)

has M more terms due to aggregation. However, since the guaranteed rates for aggregate flows are

much higher at the routers in the aggregation region, the total delay bound in Eq. (2.36) can be

sm aller than that in Eq. (2.10). Moreover, if there is only one aggregate (M= 1), and Sj and Sk are

the aggregator and deaggregator, respectively, Eq. (2.36) becomes just Eq. (2.34).

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.3

_ 0.25
o '<D
Y 0.2Do
_Q

I ' 0.150)■o
TJ

0
3 4 5 6 7 8 9 10

number of hops

Figure 2.3: Com parison of deterministic delay bounds

2.4 Evaluation

In this section, we first use some sample data to numerically calculate the deterministic delay

bounds derived so far, and compare them with that of per-flow scheduling. Then, we perform

extensive simulations to compare the e2 e delays of aggregate and per-flow scheduling.

First, the deterministic bounds were compared using the data in Table 1 of [9]: C / = 100B,

r / = 32Kb/ s , C1 — 150Mb/s . All packets were of the same size, 100B, and 10 identical flows

made up an e2e aggregate. To see the effect of the num ber of hops, we varied K from 3 to 10. As

shown in Fig. 2.3, all the bounds increase linearly with the num ber of hops, but those for aggregate

scheduling increase much more slowly. W hen the num ber of hops is large, the delay bounds of

aggregate scheduling are smaller than that of per-flow scheduling. The per-flow bound is computed

from Eq. (2.10); the aggregate bound I, II and III are computed from Eqs. (2.21), (2.28) and (2.35),

respectively; and the limit I and II are computed from and j j + , respectively, which are

independent of the num ber o f hops.

From this example, one can see that if the degree of burstiness o f the flows is not very high, the

delay bounds of aggregate scheduling can be smaller than that of per-flow scheduling. In addition,

it shows that hierarchical aggregator and rate-controlled hierarchical aggregator can provide even

sm aller delay bounds. Moreover, packet size and hop count play a big role in the delay bound

under per-flow scheduling, which is much larger than y~ . In contrast, they make much less impact

29

— i— limit I
k limit II

per-flow bound
a aggregate bound I

aggregate bound II
— o— aggregate bound III

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tagged
traffic

Cross traffic

Figure 2.4: Simulation topology

on the delay bounds of aggregate scheduling. The result also shows that aggregation is more

advantageous if the num ber of hops is large, sim ilar to the conclusion in [2 2],

Next, extensive simulations were conducted to compare the actual delay performance of ag­

gregate and per-flow scheduling. The objective o f our simulation is twofold: (i) compare the

deterministic delay bounds with the worst-case delay from the simulation and see how tight/loose

the deterministic bounds are; and (ii) compare the worst-case delays of aggregate and per-flow

scheduling. We intended to find conditions under which aggregate scheduling outperforms per-

flow scheduling in terms o f e2 e delay.

2.4.1 Simulation Setup

In the simulation, we used the ns2 [44] sim ulator and the topology in Fig. 2.4 which is widely-

used elsewhere, e.g., [45,46]. In this topology, a num ber of “tagged” flows enter the network at the

ingress node S \ , and traverse all the other nodes until they reach the egress node S„. The “tagged”

flows are those of interest to our study; their e2e delays were checked at the egress node. In order

to simulate interference by cross-traffic, external traffic was injected at every node on the path. The

cross-traffic at each node shared the path with the tagged traffic for only one hop before exiting the

network at the next hop. For backbone links, we set the bandwidth to 160Mb/s and the propagation

delay to 2ms, respectively, while for incoming and outgoing links, we set the bandwidth to lOMb/s

and the propagation delay to 10ms. The total num ber of tagged flows was fixed at 128, which is

divided into multiple aggregates in the aggregate scheduling cases.

The tagged flows were generated by using a modified CBR model with varying packet and burst

sizes. Each incoming tagged flow was shaped by a token bucket. The cross traffic was generated

by using the Pareto On/Off distribution [47, 48], which can simulate long-range dependencies and

is known to be suitable for a large volume of traffic.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The ns2 version o f W FQ (W eighted Fair Queueing) was used as the GR scheduler at each

backbone node for both per-flow and aggregate scheduling. For aggregate scheduling, two versions

of aggregator were used: work-conserving stand-alone aggregator and non-work-conserving rate-

controlled (RC) aggregator. To support the non-work-conserving aggregator, a version of rate-

controlled fair queueing was implemented.

• Parameters

To run simulations under different scenarios, we varied several parameters, including:

- packet size of the tagged flows

- packet size of cross traffic

- flow rate o f the tagged flows

- the num ber o f hops the tagged flows travel

- the num ber of flows in each aggregate

- the link utilization

- the burstiness of the tagged flows

- the burstiness of the cross traffic

• Metrics

The main performance metric is the worst-case e2e delay. For each scenario, 36 independent

runs were conducted. All the results were plotted with the 95% confidence interval [49],

2.4.2 Simulation Results

A Typical R esult

Fig. 2.5 shows a typical result o f e2e delays under three different scheduling algorithms—

per-flow FQ, aggregate FQ (which uses the stand-alone work-conserving aggregator), and FIFO

queueing. As can be seen, the e2e delay under aggregate FQ is found to be m ost stable. Aggregate

FQ yields not only the smallest worst-case delay but also very small delay variation. In contrast,

per-flow FQ yields larger worst-case delays and delay variations; the delay under FIFO has the

largest fluctuation and the worst performance. The above results were obtained by using: burst size

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5
aggregate FQ
per-flow FQ
FIFO queueing

4

3

2

1

0
50 100 150 200 250 300 350 400 450 5000

packet number

Figure 2.5: End-to-end delay comparison

10000B; packet size 1000B; tagged flow rate 32Kb/s; hop c o u n ts = 15; the num ber of flows in the

aggregate N = \6; and link utilization 55%. W ith these values, we can compute the deterministic

bounds from Eqs. (2.10) and (2.21). The bounds turn out to be 6 s for per-flow FQ and 5.53s

for aggregate FQ. Both the bounds are much larger than the worst-case delay found from the

simulation, implying that they are rather pessimistic.

H om ogeneous C ase

To find the main factors that affect the delay performance of both aggregate and per-flow

scheduling, we first used hom ogeneous flows in each aggregate. We used the 2k ■ r factoria l design

m ethod [49] to evaluate the contribution of different parameters. Eight parameters (k = 8) were

used, each with two different values. Each scenario was run 36 times (r = 36). The parameters

and their values are summarized in Table 2.2.
After collecting data, we used statistical tool ANOVA (ANalysis O f VAriance) [49] to analyze

the significance of each parameter. Our focus was on the value d r = where da (d f) is the worst-

case delay under aggregate (per-flow) scheduling. The intention was to find which parameters

affect most the relative delay performance between aggregate and per-flow scheduling. The second

param eter— packet size o f cross traffic— turned out to have little effect on value d r. This is easy

to explain, since from the delay bounds in Eqs. (2.10), (2.21) and (2.35), the packet size of cross-

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

j i
traffic shows up only in the term - g f , which is usually negligible since Cl is very large. Therefore,

we fixed its value at 1500B in all of the following simulations.

To illustrate the effect of the factors on the e2e delay, we ran m ultiple sets of simulation. For

each set of simulation, we varied only one param eter with all the others fixed. All the default values

o f the parameters are summarized in Table 2.3; the simulation results are summarized in Fig. 2.6.

In Figs. 2.6 and 2.7, as well as in the following discussion, “aggregate FQ” stands for aggregate

scheduling using stand-alone fair queueing; “RC aggregate FQ ” stands for aggregate scheduling

using rate-controlled (RC) fair queueing.

Let us compare the performance of per-flow and aggregate FQ first. In Fig. 2.6 (a), as the burst

size o f the flows increases, the worst-case delay under per-flow FQ increases significantly faster

than that under aggregate FQ. Surprisingly, the delays o f aggregate FQ do not increase as fast as

expected. This behavior can be attributed to the m ultiplexing gain of aggregate scheduling. In

other words, although all flows become burstier, the probability that all flows reach their peaks (of

load) at the same time is very low. Instead, the peaks and valleys are more likely to be evened out.

In Fig. 2.6 (b), as the flow rate increases, the worst-case delay under per-flow FQ decreases

faster than that under aggregate FQ. Thus aggregate FQ is shown to be more advantageous for

lower-rate flows. In Figs. 2.6 (c) and (d), as the packet size (hop count) increases, the delay

under per-flow FQ increases faster than that under aggregate FQ. Therefore, aggregate FQ is more

advantageous when the packet size (hop count) is large. In Fig. 2.6 (e), as network link utilization

increases, the delay under per-flow FQ increases dramatically faster than that under aggregate FQ,

showing that when the network utilization is high, aggregate FQ becomes more advantageous. In

Fig. 2.6 (f), as the num ber of flows in an aggregate increases, the e2e delay under aggregate FQ

decreases, while that under per-flow FQ remains unchanged. Aggregate FQ is shown to be more

advantageous when the num ber of flows aggregated gets larger. However, as the num ber increases,

the pace o f increase becomes smaller since the margin of m ultiplexing gain decreases.

The effects of flow rate, packet size and hop count can be easily explained by the deterministic

bounds. Since GR scheduling algorithms are rate-based, the delay of a flow is coupled with its

reserved rate. A lthough aggregate scheduling has the same problem as per-flow scheduling, the

reserved rate for an aggregate (Ra) is much larger than that of a single flow {rf), thus the problem is

not as severe as in per-flow scheduling. As for packet size, according to Eqs. (2.10) and (2.21), the

delay bounds are proportional to the maximum packet size in a flow (aggregate). With aggregation,

however, Ra is much larger than rf. Thus the delay bound increases much faster under per-flow

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e2
e

de
la

y
(s

)
e2

e
de

la
y

(s
)

e2
e

de
la

y
(s

)

FQ
- R C a g g re g a
•• per-flow FQ

FQ

0,4

0.2

0 2 4 6 8 10 12 14 16
relative bu rs t size

(a) Burst size
0,4

- - RC a g g re g a
•• per-flow FQ

FQ
0,35

0.3

0.25

0.2

0.15

0.05

0 200 400 600 800 1000
p acket s ize (B)

(c) Packet size
0.8

— ag g re g a te FQ
RC ag g reg a te

>•••• per-flow FQ
FQ

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a g g re g a te FQ —
RC ag g reg a te FQ

per-flow FQ

w

ra
0)■o
o
0

0.4

0.2

0 5000 10000 15000 20000 25000 30000 35000
flow ra te (bis)

(b) Flow rate
0.4

ag g reg a te FQ — 1
ag g re g a te FQ — *

per-flow FQ *
RC

0.35

0.3

0.25

nj
0.2v

T3
0

0,15

0.05

8 102 4 6 12 14 16
hop count

(d) Hop count
0.3

a g g re g a te FQ — ►-
RC ag g re g a te FQ

per-flow FQ
0.25

0.2

0.15
■a
CN0

0.05

10 100
link utilization

(e) Link utilization
num ber of flows p e r ag g reg a te

(f) Number of flows in each aggregate

Figure 2.6: Comparison of aggregate and per-flow scheduling

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scheduling. The same holds true for hop count. The effect of link utilization is also related to the

coupling problem of GR scheduling. W hen the link utilization becomes higher, there is less spare

bandwidth left. Therefore, the rate for a flow (aggregate) is decreased to its reserved rate. Since

Ra is much larger than r / , aggregate scheduling has less increase in delay. Finally, since per-flow

scheduling is independent o f the num ber of flows in an aggregate (AO, its delay should not change

with N. For aggregate scheduling, from Eq. (2.21), two terms are related to N, the num ber of
y jV gmax gmax

flows: k=lR k -- and (K — 3) -^ - . Since only identical flows are considered, the first term does not

vary with the num ber of flows. However, R increases proportionally to N. Thus the second term

decreases slightly, and the total e2 e delay decreases.

Now, consider the results for RC aggregate FQ. In all the scenarios, the worst-case delays under

RC aggregate FQ follow the same trend as those under aggregate FQ. However, since the default

link utilization is only 25%, RC aggregate FQ performs worse than aggregate FQ; in m ost cases,

its performance is even worse than that of per-flow FQ. This is mainly because RC aggregate FQ

is non-work-conserving and does not take advantage of spare bandwidth. On the other hand, as

Fig. 2.6 (e) shows, when the link utilization becomes larger, RC aggregate FQ still performs better

than per-flow FQ, and the difference between RC aggregate FQ and aggregate FQ becomes smaller.

We also ran simulations by varying the burstiness o f cross-traffic. As the burstiness of cross

traffic increases, the worst-case delay for per-flow scheduling increases faster than those under the

two aggregate FQ cases, showing that aggregate scheduling is more robust to the burstiness of

cross traffic than per-flow scheduling.

H eterogeneous C ase

After studying the effects of different parameters by using hom ogeneous flows in a traffic

aggregate, we mixed heterogeneous flows (in terms of packet size, flow rate, and burst ratio) into

an aggregate to determine the type of flows suitable to be aggregated together. In our simulation,

16 flows were aggregated: 15 of them were identical flows; only one flow was different from the

rest. We measured the worst-case delay of this flow w hile varying the parameters of other flows.

Fig. 2.7 (a) shows the result when the small-burst flow (with relative burst size 1) is aggregated

with larger-burst flows. As the burst size of the other flows increases, the worst-case delay under

aggregate FQ increases quickly. As expected, m ixing a flow with other larger-burst flows will hurt

its delay performance. Note that the performance o f RC aggregate FQ is very stable since the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.3

0.25

0.2
</)
jo

0.15
Q)

0.05
a g g re g a te FQ — 1

RC ag g reg a te FQ —■■»

0 2 6 8 12 144 10 16

0.08

0.06
o
■o
0)
CNQ) 0.04

0.02
a g g re g a te FQ — ■

RC a g g re g a te FQ —
per-fiow FQ ■

0.1 1
relative flow ra te

(a) Larger burst size (b) Smaller flow rate

0.1

0,08

0.06

0.04

0.02
ggregate FQ —
ggregate FQ —
per-flow FQ

RC

0
0 2 4 6 8 10

relative p acket size

(c) Larger packet size

Figure 2.7: Aggregate heterogeneous flows

aggregator controls the burstiness o f the output aggregate.

Fig. 2.7 (b) plots the result when a high-rate flow (with rate 128Kbps) is aggregated with low-

rate flows. As the rate of other flows gets smaller, the delay under both aggregate FQ and RC

aggregate FQ increases, and the delay under aggregate FQ increases faster and eventually becomes

larger than that under per-flow FQ. From Eq. (2.21) one can see that as the rates of other flows

y cjt y N imax £max
decrease, R decreases, and thus, all three terms -, XR * ■ and (K - 3)-^ increase, so

the total delay increases. Due to the rate-control at the aggregator, the delay increase under RC

aggregate FQ is slower.

Fig. 2.7 (c) shows the result when a small-packet flow (with default size 100B) f s is aggregated

with large-packet flows. W hen the packet size of other flows becomes larger, the delay performance

of f s is shown to suffer— resulting in an even larger delay than that under per-flow FQ and RC

aggregate FQ. This is because when aggregated with large-packet flows, a small packet has to wait

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 .1 4

0.12

0.1

'5T
>; o .0 8 w ®
3 0 .0 6
®

0 .0 4

0.02

0
1 1 .2 1 .4 1 .6 1 .8 2

sh a p e o f c r o ss traffic

Figure 2.8: Delay results for video traces

behind other large packets in the same aggregate. This implies that flows o f similar packet size

should be aggregated together.

For the purpose of comparison, we also mixed a flow with other flows with smaller burst size,

larger flow rate, and sm aller packet size. The results show little or marginal change on the worst-

case delay of aggregate scheduling. Similarly, the results can be explained with the delay bound in

Eqs. (2.21) and (2.35).

A C ase S tudy w ith M P E G Traces

To further compare the delay performance o f aggregate FQ and per-flow FQ, we also used real

M PEG-4 traces [50] in the simulation. Two video traces were used— high rate “Soccer” and low

rate “Silence of the Lam bs” . The param eters of these two traces are shown in Table 2.4. They

have very different burstiness, packet rate, packet rate variation. With the same simulation setup as

before, we mixed 8 tagged flows driven by the “Soccer” trace and 8 other tagged flows driven by

the “Silence o f the Lam bs” trace into an aggregate. The results are summ arized in Fig. 2.8, which

shows that for flows driven by both traces, aggregate FQ provides smaller m aximum e2e delays;

also, the improvement is much larger for burstier flows driven by the “Silence of the Lam bs” trace.

a g g reg a te FQ: v id e o l
per-flow FQ: v id e o l

a g g reg a te FQ: v id eo2
per-flow FQ: v id eo2

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Related Work and Discussions

Aggregate scheduling has been studied extensively in the literature. In [51, 52], the authors pro­

posed some grouping techniques to optimize the implem entation o f fair queueing. Certain flows

(with similar throughput parameters) are grouped together. For example, the scheme in [52] is

confined to ATM networks, in which the routers support only a fixed num ber of rates, and all the

flows o f the same rate are placed into a single group. It takes advantage of the fact that all the cells

have the same size and all the flows in the same group have the same rate, thus simplifying the

sorting of flows. However, it still uses per-flow-based scheduling. Although these two algorithms

are sometimes called aggregate scheduling, they are different from the aggregate scheduling con­

sidered here, because the core routers still recognize each individual flow. They are just efficient

implementations of per-flow-based fair queueing. O ther work on implem entations of fair queueing

include [53, 54, 55].

The authors of [56] studied QoS guarantees under aggregation (e2e aggregation was called

grouping). Sim ilar to our study, fair queueing is used to handle aggregates at core routers (or in

aggregation regions). Based on some given e2e delay requirement, they derived the bandwidth

and buffer requirements by using the IETF Guaranteed Service (GS) traffic specification (TSpec),

and demonstrated the advantages of aggregating flows o f equal or sim ilar delay requirements. By

contrast, we derived the e2 e delay bound under a given bandwidth guarantee without considering

any buffer requirement.

Although the main focus o f [23] is QoS routing, it discussed flow aggregation by defining the

notion of “burst ratio.” For flows conforming to the token bucket model, the burst ratio r is the

ratio of the burst size to the average rate, or a /p . The authors suggested aggregation of flows

of same or similar burst ratio, since flows with the same burst ratio can be m erged and divided

without changing the burst ratio o f the resulting flows. This conclusion is the same as ours in the

work-conserving case in Section IV. The authors of [23] analyzed e2e delay for fluid traffic model,

without considering any non-fluid traffic model. In contrast, our delay bound analysis is based on

packet traffic model.

Cobb’s work [37, 38] is closest to ours. He studied the delay bound problem of aggregate

scheduling by using rate-based scheduling algorithms. The core routers treat each aggregate as a

single flow, and handle all the aggregates by using rate-based fair queueing. He defined a class

o f fair aggregator and showed that, by using such fair aggregator, the e2e delay is bounded. Such

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aggregator can be used to aggregate the traffic recursively, and the e2 e delay bound still exists.

He also proposed two types of fair aggregators, called the basic fa ir aggregator and greedy fa ir

aggregator. By using such aggregators, he showed that the e2e delay bound can be even smaller

than the per-flow e2 e delay bound.

We have several observations on the results in [37, 38]. First, the main idea of its fa ir aggre­

gator is to control the burst of an aggregate. Such an aggregator works in a non-work-conserving

way. Second, the implicit assumption of the basic fa ir aggregator and greedy fa ir aggregator is

that only one aggregate goes out o f an aggregator. In other words, all the flows going through

the same outgoing link belong to the same aggregate. In contrast, our work is more general. In

Section 2.2 we showed that the delay bounds exist even for work-conserving aggregators. In Sec­

tion 2.3, we extended the result in [38] by allowing m ultiple aggregates going out of the same link

o f an aggregator, and derived the e2 e delay bound under the token bucket traffic model.

2.6 Concluding Remarks

In this chapter, we first derived deterministic delay bounds for aggregates under the assumption

that the incoming traffic at each aggregator conforms to the token bucket model and guaranteed-

rate (GR) scheduling algorithms are used in each aggregation region. We considered three types of

GR scheduling algorithms at an aggregator: stand-alone, two-level hierarchical, and rate-controlled

two-level hierarchical GR algorithms. The delay bounds are shown to depend on several factors,

such as the scheduling constant at each hop and the latency at the aggregator. We should, therefore,

use the scheduling algorithms with a small scheduling constant at each hop, and those with small

latency at aggregators. Among all the rate-based scheduling algorithms, PGPS, VC, and W F2Q

v IT* vhave the smallest scheduling constant (- g f) and latency (-fj- + - for flow f) . The delay bounds

also indicate that it is beneficial to aggregate flows with sim ilar burst ratios. Aggregate scheduling

provides better e2 e delay bounds when a large num ber of hops use aggregate scheduling, because

the overhead at the aggregators will be offset by the larger guaranteed rate for an aggregate. If the

num ber of hops is small, the aggregation overhead becomes “relatively” significant.

We also showed by simulation that aggregate scheduling is robust. By exploiting multiplexing

gains, it can provide better worst-case delay performances than per-flow scheduling, as long as

those flows aggregated together are not very diverse in terms of packet size, flow rate, and burst

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ratio. In addition, the simulation results also showed that in most scenarios non-work-conserving

aggregator performs worse than work-conserving aggregator, since it does not take advantage of the

spare bandwidth in the network. Also, the deterministic bounds are shown to be rather pessimistic.

Although the simulation may not capture the worst-case e2e delay, it implies that the probability

for the worst-case e2 e delay to happen be very small.

Note that resource reservation and admission control were not covered in this chapter, but

techniques in the literature (e.g., [16]) can be used for this purpose. We also assumed that the e2e

path in an aggregation region can be set up by traffic engineering mechanisms similar to the way

the Label Switched Path (LSP) is set up in an MPLS network.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2.1: Symbols

Si the ith router/server along the path o f a flow or aggregate

p ’f the j th packet o f flow /

Pa the j th packet of aggregate flow A

t Jf packet length of ^

#A packet length of p JA
£max max. packet length in flow /
gmax max. packet length in aggregate flow A
f l^ max max. packet length at router Sj

c link capacity between Sj and Sj+ \

burst size of flow / under token bucket model

Pf average rate of flow / under token bucket model

rf guaranteed rate for flow f (r / > py)

R sum of the guaranteed rates of all the flows in the aggregate flow, i.e.,

* =
Af (x, t) traffic arrived from flow / during (x, t]

d { p Jf) arrival time of packet p Jf at router S,

G R C (p Jf) guaranteed rate clock for p Jf at Si

D i{pJf) departure time of p Jf at router Sj

a ' aJ = p ' + x'-/+1

P' scheduling constant at router Si
T/,«+i propagation delay between Si and Sj+\

i aggregation constant at router 5,

df e2e delay bound for p J

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2.2: Parameters and their values in ANOVA test

Parameters Values

Tagged flow packet size 100B,1000B

Cross traffic packet size 100B,1000B

Tagged flow rate 3.2Kbps, 32Kbps

Hop count 5 , 20

Burst size3 of tagged flows 2 , 1 0

Num ber of tagged flows in one aggregate 4, 128

Link utilization 5%, 50%

Shapebof cross traffic 1.1, 1.9

3 The burst size is a relative value: value k means the burst size is k times o f the

default packet size.

b The "shape ” parameter is used by the Pareto trajfi c model, which affects the

burstiness o f the traffi c. We use it to vary the burstiness o f the cross traffi c.

Table 2.3: Default param eter values

Parameters Values

Tagged flow packet size 400B

Tagged flow rate 32Kbps

Hop count 10

Burst size of tagged flows 2

Num ber of tagged flows in each aggregate 16

Link utilization 25%

Shape of cross traffic 1.5

Cross traffic packet size 1500B

Total num ber o f tagged flows 128

Table 2.4: Parameters of the video traces

Video Name Frame Size (KB) Bit Rate (Kbps) Burst Size (Kb)
Mean Peak Mean Peak

Soccer 5.53 17.93 1,106.6 3,585.4 140
Silence of the Lambs 0.53 11.29 105.6 2,258.4 70

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

Coordinated Aggregate Scheduling for Improving End-to-End
Delay Performance

In Chapter 2, using aggregate GR scheduling algorithms, we derived deterministic e2e delay

bounds under the assumption that all incoming flows at an aggregator conform to the token bucket

model. Each aggregator uses a GR scheduling algorithm which is either work-conserving or non-

work-conserving. We showed not only the existence of e2e delay bounds for each flow, but also

the fact that under certain conditions (e.g., when the aggregate traverses a long path after the

aggregation point) the bounds are tighter than that o f per-flow scheduling. The simulation results

have shown that aggregate scheduling is very robust and can exploit statistical m ultiplexing gains,

and that it performs better than per-flow scheduling in m ost cases.

However, when work-conserving scheduling algorithms are used at aggregators, the delay

bound of a flow is dictated by the burstiness of other flows in the same aggregate. Thus, if a

flow is aggregated with other bursty flows, it will suffer a long e2e delay. The main culprit o f this

long delay lies in the fact that packets within each aggregate are handled by the routers using FIFO

scheduling.

To remedy this problem, we propose a new aggregate scheduling algorithm, which improves

the e2e delay by reordering the packets in an aggregate using EDF scheduling based on their dead­

lines. The deadline of a packet at an intermediate node is related to its guaranteed rate clock (GRC)

value at the aggregator. This new algorithm makes the delay of a flow independent of the burstiness

of other flows in the same aggregate, yielding smaller e2e delays. Since the algorithm uses EDF

inside an aggregate and computation of the deadline of a packet at each intermediate node is coor­

dinated between the node itself and its upstream nodes, we call it coordinated aggregate scheduling

(CAS). For the purpose of differentiation, we call the aggregate scheduling algorithms discussed

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) packets arrive at the aggregator

(b) packet order under vanilla aggregate scheduling

(c) packet order under CAS

I Flow 1 packets D Flow 2 packets

Figure 3.1: Coordinated aggregate scheduling

in Chapter 2 that use FIFO queueing inside each aggregate "vanilla ” aggregate scheduling (VAS).

The rest of the chapter is organized as follows. Section 3.1 introduces the CAS algorithm,

and proves that under the token bucket traffic model CAS provides tighter e2e delay bound than

VAS. Section 3.2 discusses the implem entation issues o f CAS, and proposes a simple multi-queue

structure and an adaptive queue m anagement algorithm. Section 3.3 presents evaluation results.

Simulation is used to compare the delay performance of both coordinated and vanilla aggregate

scheduling, confirming the benefits of CAS derived from the analysis. Section 3.4 discusses related

work on CAS, putting our results in a comparative perspective. Finally, Section 3.6 summarizes

our contributions.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Coordinated Aggregate Scheduling with EDF inside an Ag­
gregate

As discussed above, the delay bound under aggregate scheduling depends on the burst sizes of

all the other flows in the same aggregate, mainly because at the downstream nodes of the aggrega­

tor, the packets in the same aggregate are handled with FIFO queueing, irrespective of which flows

they belong to. Thus, if a large burst of packets of a flow arrive at an idle aggregator, the burst can

traverse the aggregator very quickly. If packets from other flows in the same aggregate arrive im­

mediately after the burst, they m ust wait behind the burst in the FIFO queue at the remaining nodes

o f the aggregate’s path. Figs. 3.1 (a) and (b) illustrate this scenario. In Fig. 3.1 (a), a burst of flow

1 arrives at an aggregator S\ immediately before the arrival o f a packet from flow 2. Suppose S\ is

idle at that time, then the burst goes through the aggregator very quickly, as does the packet from

flow 2. Since both flows share the same aggregate, the burst o f flow 1 will be ahead of the flow-2

packet in the aggregate until the aggregate is split later on the path. Suppose the next node S2 is the

bottleneck, then the burst of flow 1 will be scheduled at a slower speed, and the flow - 2 packet has

to wait behind the burst of flow 1 in the FIFO queue, suffering a long delay. To solve this problem,

one may use a rate-controlled scheduler at the aggregator S i, thus controlling the output rate for

the aggregate, and there will be no large traffic burst waiting at the downstream nodes. However,

rate-controlled schedulers work in a non-work-conserving fashion, causing a longer average delay.

We propose another m ethod to solve the delay problem by changing the order of transmitting

packets in the queue of an aggregate, such that higher-priority packets can be scheduled earlier.

In essence, we change the FIFO queue for an aggregate used by vanilla aggregate scheduling

algorithms into an EDF queue. The rationale behind this is that, if the aggregator is relatively

lightly-loaded, a large burst of packets can get through it earlier than their expected finish times

according to their GRC values. If a downstream node becomes bottleneck, this burst will stay ahead

of some packets with sm aller GRC values in the queue of that node. By reordering the packets

in the queue based on their GRC values at the aggregator, if m ultiple packets of an aggregate

are waiting in the queue of a downstream node, a packet with the m inimum GRC value will be

scheduled first. In other words, the GRC value at the aggregator plays the role of a packet’s

deadline. Note that this algorithm only reorders the packets in the queue o f the same aggregate;

the scheduling of different aggregates remains the same— the GR scheduling algorithms. This new

algorithm is called the coordinated aggregate scheduling (CAS). As shown in Fig. 3.1 (c), after

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reordering the packets in the queue at S2, the packet from flow 2 will be scheduled earlier.

Next, we give the details of the CAS algorithm and prove that this algorithm improves the e2e

delay bound o f a flow. Note that when using GR scheduling algorithms, we always assume that

the guaranteed rate for a flow is greater than, or equal to, its average rate, i.e., r / > p / .

mation about their GRC values at the aggregator. The key idea of the CAS algorithm is to insert

a lag field in each packet, which contains information on how much the packet was behind its

“deadline” at the previous hop. Then, at the next hop the server can adjust the packet’s arrival time

by subtracting its lag value. The order of transmitting packets in the waiting queue of an aggregate

will be adjusted according to the new “virtual” arrival times.

Now, let us consider the scheduling algorithm at both the aggregator and the downstream nodes.

For simplicity, the propagation delay between neighboring nodes is omitted in the following dis­

cussion. At the aggregator (server Sf), per-flow scheduling is used. Thus, for flow / , GRC'(pĴ) is

defined based on its reserved rate r j according to Eq. (2.1). Let §l(p j) and D '(pJj-) be the lag value

and the departure time of packet p Jj- at 5), respectively. Then,

3.1.1 CAS Algorithm

For the downstream nodes to be able to reorder packets, the packets have to carry some infor-

bi{pif) = D i{pif) - G R C i{pif). (3.1)

At the downstream nodes Sj+k (k > 1), the lag value 8 ,+k(py) is defined differently:

8,+* ip1;) = Di+k {ptj.) - VAi+k {pjf), k> 1.

The virtual arrival (VA) time VAl+k(p j) is calculated recursively as:

(3.2)

VA^ip'j-) = Ai+k(pJf) - & +k- ' {pJf)

= Ai+k{p>f) - (ZJ/+*-1 (pJf) - VAiU~] {p>f))

= VAi+k~] (p^)

GRC{pjf), k > 1.

46

(3.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We assume A ,+k(p Ĵ) — D l+k l (Pf) since the propagation delay is omitted. From Eq. (3.3), the

virtual arrival time of a packet at downstream nodes is exactly the same as the packet’s GRC value

at the aggregator. Thus, at every node after the aggregator, the packets are ordered in their GRC

values at the aggregator. (A simple implem entation is to just store the GRC value in the packet

at the aggregator. However, to remove the need for clock synchronization, we store the lag value

and adjust the virtual arrival time at each downstream hop, as is done in the above algorithm.)

Moreover, the algorithm also preserves the order of packets in the same flow, since

VA,+k{p’f) = GRC{p'f) > GRC'(p' f]) + y-

i J
= VAi+k{pJf~l) + -1

. / f f

> VAl+k{p!f '). (3.4)

Also, the “deadline” of a packet is defined differently at different nodes: at the aggregator, the

packet’s deadline is its GRC value, while at the downstream nodes, the deadline is its virtual arrival

time, not its GRC value (or expected finish time) at those nodes. The reason for this is that we want

to re-adjust the order of packets in the same aggregate to keep them in the order of GRC values at

the aggregator. Using the virtual arrival time achieves this goal.

Intuitively, because of the packet reordering, the delay of the packets in a flow has the potential

to be independent o f the burst sizes o f other flows within the same aggregate, which leads to smaller

e2 e delay.

3.1.2 End-to-End Delay Bound

An important step in deriving the e2e delay bound under CAS is to derive the delay at the

aggregator. The following lemma is a stepping stone, which considers a special case: the busy

periods of all flows in the same aggregate coincide with one another at the aggregator.

L em m a 3.1.1. Let Sj and Sj+ \ be two neighboring GR servers using the CAS algorithm and Sj be

an aggregator. Sj aggregates flow f and other (N-l) flow s into an aggregate flow A, which is an

input to Sl+ \ . Suppose the guaranteed rate fo r flow k at Sj is r/c fl < k < N), and let p-'j = p JA, i.e.,

the j th packet offlow f corresponds to the j ' th packet o f aggregate flow A. I f the busy periods o f

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all flows in the same aggregate coincide with one another at the aggregator, then fo r packet p Jp

, t t N nmax

GRCi+] (p JA) < G R C i f f + k=' ~ — + a ‘, j > 1, (3-5)

where R = X&L i rk is the guaranteed rate fo r aggregate flow A at 5 (+1.

See Appendix B .l for a detailed proof of this lemma.

Using Lem m a 3.1.1, we can now derive the e2e delay bound for CAS.

T heorem 3.1.1. Suppose N flow s (i) share the same K hops o f GR servers (using CAS) inside an

aggregation region, and (ii) are bundled into aggregate flow A at aggregator S\ and split back into

the original individual flow s at Sk - Routers 5 2 , . . . , Sk - i schedule packets o f aggregate A. I f flow

k has the guaranteed rate rk with rk > p/< (1 < k < N) at S\ and Sk , and A has the guaranteed rate

R = X&Li rk at 5 2 , . . . ,Sk - i. then fo r any flow f (\ < f < N), the e2e delay o f packet p Jp dJp is

bounded as:

4 = DK(p'f) - A ' (p Jf)

Y <V nmax nmax gmax %

< [GRC] i f l f - A 1 (pi.)] + Lk=]R * - + [K - 3) + J — + £ a'. (3.6)

Then, if flow f conforms to the token bucket model (Gf, p f),

n y V pmax nmax K
dJf < — y — + (K - 3) - ^ - + j — + y > l . (3.7)

’ rp R R rp r j

See Appendix B.2 for the details o f the proof, which consists of the following two parts.

P a r t 1: The theorem holds for an extreme case when the busy periods o f all flows in the same

aggregate coincide with one another at the aggregator. In this case, no packet reordering is

needed since packets leave the aggregator in the order of their GRC values.

P a r t 2: The above extreme case is the worst case, and thus, the theorem holds for all other cases.

Com paring Eqs. (2.21) and (3.7), we can see that the delay bound under CAS is independent of

the burst sizes of other flows in the same aggregate, yielding a tighter bound than that in Eq. (2.21).

On the other hand, the bound in Eq. (3.7) is related to the summation of the m aximum packet sizes

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of all the flows in the aggregate. Therefore, if a flow of smaller-size packets are bundled with

other flows o f larger-size packets into the same aggregate, it will suffer a long delay. However,

in practice, the maximum packet size is upper-bounded by the underlying network protocol. For

example, the maximum Ethernet packet size is 1518 bytes, and in the case of ATM network, it is

only 53 bytes.

Note that when N = 1 (i.e., there is only one flow in the aggregate), Eq. (3.7) is simplified to

Eq. (2.10), the delay bound under per-flow scheduling. Also, comparing Eqs. (2.10) and (3.7), we

note that, depending on the maximum packet sizes and reserved rates of the constituent flows, the

delay bound under CAS can be tighter than that under per-flow scheduling.

3.1.3 Multiple Aggregations

Note that the derivation of the delay bound in Eq. (3.6) does not require the knowledge of the

incoming traffic pattern (such as token bucket). Therefore, we can derive the delay bound even

when flows are aggregated multiple times during their journey to their respective destinations. To

support multiple aggregations, the lag information has to be carried into aggregators. Therefore, at

aggregators in the middle of the network, the lag value of a packet is defined as in Eq. (3.2).

We prove that (i) the scheme still preserves the order of packets in the same flow, and (ii) the

e2e delay bound result still holds for the case o f m ultiple aggregations. To derive the e2e delay

bound for the case of m ultiple aggregations, we first prove that the extreme case considered in the

proof of Lem ma 3.1.1 is still the worst case for e2e delay irrespective of further aggregations at

downstream nodes.

L em m a 3.1.2. Suppose A is an aggregate that is bundled with other aggregates at node Sj, and f

is a constituent flow o f A. Then, the extreme case is still the worst case fo r the e2e delay offlow

f ’s packets, irrespective o f further aggregations or not.

Proof. Since further aggregations do not change the relative order of packets in each aggregate and

at downstream nodes, CAS still chooses first the packet with the smallest VA value, the relative

order of scheduling packets in each aggregate does not change. Thus, the worst case does not

change. □

W ith this lemma, we only need to derive the e2e delay bound using the extreme case. The

proof of the following theorem is similar to that of Theorem 8 in Chapter 2, thus it is omitted.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T heorem 3.1.2. Suppose (i) flow f traverses K hops o f GR servers that use the CAS algorithm; (ii)

any o f these K hops can be an aggregator; and (iii) fo r each aggregator there is a corresponding

deaggregator at a downstream node. Then, the e2e delay, d Jj , o f packet p Jj satisfies:

K P ? ax M y , . p m a x _ p m a x K

4 < [G t f C V ^ - A / ^ l + X ^ + X F ^ H — + (3.8)
i—2 K‘ /= 1 K> 1=1

where M is the number o f aggregators along the path; Aj is the aggregate flow that contains flow

f at Si, l™ax is the maximum packet size in aggregate flow Aj, and Rj is the guaranteed rate fo r

A/ at St; At is the ith aggregate along the path that contains flow f , and and Rj are the

maximum packet size in the aggregate and its guaranteed rate, respectively; A, represents the set

o f constituent flow s contained in aggregate A,.

Note that there are a total of (K - \) + M terms related to packet size in the above delay bound.
£max

They can be understood as follows: the (AM) terms in ^f=2 - j - correspond to the delays at all of

the hops (except the first hop). In addition, for each aggregation with guaranteed rate Rj, there is an
SagA £ m a x _ ^ m a x

overhead term —e ' kR,— Compared to the delay bound for per-flow scheduling in Eq. (2.10),

Eq. (2.36) has A /m ore terms due to aggregation. However, since the guaranteed rates for aggregate

flows are much higher at the routers in the aggregation region, the total delay bound in Eq. (2.36)

can be tighter than that in Eq. (2.10). Further, if there is only one aggregate (A/= 1), and Si and Sk

are the aggregator and the deaggregator, respectively, Eq. (2.36) can be simplified to Eq. (3.6).

3.2 Implementation

So far, we have shown that CAS has very good e2e delay performance. However, since CAS

converts fair queueing problem to an EDF problem at core nodes, its implementation overhead can

be a concern. Therefore, we need to find an efficient algorithm for packet sorting.

The calendar queue [57] has been widely used for packet sorting. It is shown to have 0 (1)

complexity. However, depending on the num ber o f packets in the queue, the calendar queue has

to do a lot of resizing and copying to maintain the “optim al” calendar structure, i.e., not many

packets in each bucket nor many empty buckets. Resizing and copying incur significant overhead.

Moreover, the calendar queue does not work well over “skewed” priority distribution.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Main Queue Accessory Queue 1 Accessory Queue K

Incoming packet

□
Figure 3.2: The multi-queue structure

Since in the CAS algorithm, fair queueing is used at each aggregator, the virtual arrival (VA)

tim e values of packets in each aggregate are likely to be m onotonically increasing. Thus, one FIFO

queue is alm ost enough to handle them. Only a few more queues are necessary to handle those

packets that have smaller VA values (higher priority) than their predecessors.

Based on the observations above, we propose a simple m ulti-queue structure that consists of a

main queue and multiple accessory queues. The num ber of accessory queues varies with the VA

values and actual arrival times of packets. A newly-arrived packet is put at the end of the main

queue as long as its VA value is larger than that of the last packet in the queue; otherwise, the VA

value of the packet is compared to that of the last packet in the first accessory queue. Similarly,

if its VA value is larger, the packet will be put at the end of the queue; otherwise, its VA value

is compared with that of the last packet at the next accessory queue. The process continues until

either the packet is put at the end o f an existing queue, or (when its VA value is sm aller than

that o f the last packet of the last accessory queue) a new accessory queue will be created where

the packet will be placed. It is easy to see that the VA values of the last packets in the queues

are monotonically decreasing— the one in the main queue is larger than that in the first accessory

queue; the one in the first accessory queue is larger than that in the second accessory queue, etc.

W hen a packet from the aggregate needs to be transmitted, the packet with the m inimum VA

value is chosen. It can be the first packet of any of the existing queues. W hen an accessory queue

becomes empty, it will be deleted; on the other hand, the main queue will always remain there,

even if it gets empty.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Com pared to the calendar queue, our simple m ulti-queue scheme has the following advan­

tages: (i) it is simpler, avoiding the “copy” and “resize” operations of the calendar queue when the

calendar structure is adjusted; (ii) the clustering problem (due to “skewed” distribution of packet

priority) of the calendar queue is avoided; and (iii) the num ber of queues is independent of the total

num ber of backlogged packets of an aggregate.

In addition, there are several interesting properties associated with the queue operations. First,

since packets are scheduled according to their VA values, the accessory queues will be deleted

in the reverse order of their creation. In other words, the most recently created queue will be

deleted first, since its last packet has higher priority (a sm aller VA value) than all the last packets

in other queues. In this sense the accessory queues works as a LIFO stack. Second, the packets of

a given flow will keep their order. In other words, packets in the same flow will never be reordered.

Therefore, the num ber of queues cannot be greater than the total num ber of flows in the aggregate.

Clearly, a new packet is put into a new queue only when it belongs to a different flow from the

last packets in all the existing queues; otherwise, it will have a larger VA value than at least one of

them. Third, the packets in the same queue are in increasing order of VA values.

To have small overhead, the num ber of accessory queues should be small. In fact, the num ber

of queues required is related to several factors, such as the burstiness of flows, network utilization,

etc. We expect the average num ber of queues to be small, since VA values of incoming packets

tend to be monotonically increasing.

To further reduce the num ber of accessory queues, the following optimizations can be incorpo­

rated into the basic multi-queue algorithm.

Optimization 1: if a queue is short (e.g., of length one/two or shorter than the num ber of

accessory queues), the new packet will be inserted into it.

Optimization 2: a small discrepancy is allowed, so that if a packet’s VA value is only a little bit

(8) sm aller than that of the last packet in the queue, it will be put behind that packet in the queue

without moving to the next accessory queue.

However, this optim ization can be recursively done so that the VA values o f the packets in a

queue may be in a reverse order. To solve this problem, the algorithm is revised by recording the

m aximum value of VA in each queue. A newly-arrived packet compares its VA with this maximum

value, not the VA value of the last packet.

Then, the question is what value to use for 8 . If it is large, the num ber of queues will be small,

but the delay perform ance will suffer; if it is too small, then the num ber o f queues will increase.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We design a simple adaptive algorithm, which uses the num ber of accessory queues as a param eter

in determining the 8 value. Suppose the current num ber o f accessory queues is Nq, then we set

5 = • Sc, where 8 C is a small constant. Thus, if the num ber of accessory queues is large, we use

a larger 8 to make the num ber of queues smaller; when it is small, we use a sm aller 8 to make the

ordering in each queue more accurate, improving the delay performance. The pseudocode of the

adaptive algorithm is presented in Table 3.1.

The Sc value is directly related to the delay. W hen it is 0.01, for instance, the actual delay

discrepancy would be in the range of 0 .0 1 - 0 .1 sec per hop, if the num ber of queues is less than

10. In our simulation, Sc is set to 0.01, 0.02, or 0.05.

With Optimization 2, the packets in a queue are no longer in increasing order of their VA

values. This fact leads to the following optim ization to reduce the overhead in choosing the next

packet to transmit.

Optimization 3: Suppose a packet from queue i is chosen when a packet is to be transmitted

from an aggregate, then the next time a packet is to be transmitted from the aggregate, another

packet from queue i will be chosen (without searching) as long as the VA value o f the first packet

in queue i is smaller than that of the previous packet. This is because the first packets in other

queues m ust have larger VA values. This can reduce the search effort during packet transmission

from an aggregate. This optimization has to be used together with Optimization 2.

3.3 Evaluation

To demonstrate the advantages of the CAS algorithm, we conducted extensive simulations

using the ns2 [44] simulator, especially comparing the e2e delays of CAS and VAS.

3.3.1 The Simulation Setup

In the simulation, we used the topology shown in Fig. 2.4 where a num ber of “tagged” flows

enter the network through the ingress node 5), and traverse all the other nodes until they reach the

egress node S„. The “tagged” flows are the ones of interest to our study, and their e2e delays are

checked by the egress node. In order to simulate interferences by cross-traffic, external traffic is

injected at every node on the path. The cross-traffic at each node shares the path with the tagged

traffic for only one hop before exiting the network at the next hop. For the backbone links, we set

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the bandwidth to 160Mbps and the propagation delay to 2ms, respectively, while for the incoming

and outgoing links, we set the bandwidth to 10Mbps and the propagation delay to 10ms.

The tagged flows are generated by using a modified CBR model with varying packet and burst

sizes. Each tagged incoming flow is shaped by a token bucket. The cross traffic is generated by

using the Pareto On/Off distribution [47, 48], which can simulate long-range dependencies and is

known to be suitable for a large volume of traffic.

To verify the performance of CAS, we used two fair queueing algorithms— W FQ (Weighted

Fair Queueing) and W F2Q (Worst-case Fair W eighted Fair Queueing) [40]. The ns2 versions of

W FQ and W F2Q were used as the GR scheduler at each backbone node. Both algorithms were

modified to support VAS and CAS. For each simulation scenario, we ran simulation to obtain two

independent results using W FQ and W F2Q. Each simulation run lasted 50 seconds.

In the simulation, the tagged flows were divided into multiple groups. In each group, one flow

(called red flow) has a fixed small burst size 1 2 , while all the other flows (called blue flows) have

variable burst sizes (with the default value 8). Each group of flows were bundled into an aggregate

flow at the aggregator. We focused on the e2e delay o f the red flows to see the delay performance

o f flows under different scheduling schemes and network conditions. All the parameters used in

the simulation and their default values are summarized in Table 3.2.

3.3.2 Simulation Results

First, we compared the e2e delay of the red flows under VAS and CAS. Fig. 3.3 shows the

result of one red flow when W FQ is used as the GR scheduling algorithm. As can be seen from the

figure, CAS yields not only a smaller worst-case delay but also a very small delay variation. This

confirms the analysis results in Section 3.1. The above results were obtained by using the default

values of parameters in Table 3.2. Using the same parameters, we repeated the simulation using

the W F2Q algorithm, the results of which are plotted in Fig. 3.4. As can be seen from this figure,

the performance of CAS is consistently superior.

N ex t, w e co m p a red the p erfo rm a n ce o f the red f lo w s u nd er d ifferen t lin k u tiliza tio n s and burst

sizes of the blue flows. The main performance metric is the worst-case e2e delay. For each sce­

nario, 36 independent runs were conducted. All the results are plotted with the 95% confidence

'Note that the burst size is a relative value: value k means that the burst size is k times of the default packet size

(e.g., if the packet size is 400B, then burst size 2 equals 800B).

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.25

0.2

w

ra
a>
T3
CD
CMQ)

0.05

0 100 200 300 400 500
p ack et num ber

(a) VAS

0.25

0.2

ra
TD
<u
CM

0.05

0 100 200 300 400 500
p ack et num ber

(b) CAS

Figure 3.3: End-to-end delay comparison: W FQ

0.25

0.2

CO 0.15
iso■o
CD
CMo

0.05

0 100 200 300 400 500

J2. 0.15

0.05

p acket num ber

(a) VAS

0 100 200 300 400 500
packet num ber

(b) CAS

Figure 3.4: End-to-end delay comparison: W F2Q

interval [49],

To see the robustness of the performance of CAS, we compared the performance of VAS and

CAS under different link utilizations. As shown in Fig. 3.5(a), as the link utilization of the network

links increases, the worst-case delay o f the red flow under VAS increases significantly faster than

that under CAS. This shows that CAS is more robust to high link utilization and congestion than

VAS.
To examine the performance o f CAS for large burst sizes o f other flows sharing the same

aggregate, we fixed the burst size of red flow at 2 , and increased the burst size of the blue flows

from 2 to 16. All the other parameters are set to the default values in Table 3.2. The e2e delay of

the red flow is shown in Fig. 3.5(b). As can be seen, with the burst size o f the blue flows increasing,

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.6
- — CAS+W FQ
*--- VAS+W FQ

CAS+W F2Q
•- VAS+W F2Q0.5

0.4
(A

J2
« 0.3•o
v
0)

0,2

0 0.2 0.4 0.6 0.8 1

0.5
CAS+W FQ
VAS+W FQ
CAS+W F2Q
VAS+W F2Q

0.45

0.4

0.35

0.3
re
® 0.25■o
oCN 0.20)

0.15

0.05

2 6 8 10 12 14 164
link utilization

(a) Varying link utilization

relative burst size

(b) Varying burst size

Figure 3.5: End-to-end delays under different conditions

0.1
- — delta = 0
■*— delta = 0.01
•»•••• delta = 0.02
♦ delta = 0.050 .08

re•o
0)CNQ)

0.04reE
0.02

100 1000

num ber of so u rc e s in an ag g reg a te

(a) maximum e2e delay

num ber of so u rc es in an ag g reg ate

(b) average number of queues

25
-•— delta = 0

delta = 0.01
•*•••• delta = 0.02
♦ delta = 0 .0520

15

10

5

0
100 1000

Figure 3.6: The effectiveness of the adaptive algorithm

the e2e delay of the red flow under VAS increases very fast. By contrast, the e2e delay under CAS

changes very little, confirming the delay analysis in Section 3.1. The results under both W FQ and

W F2Q algorithms are very similar and thus consistent.

To examine the effectiveness of the adaptive algorithm, we also ran simulations with hop count

set to 3 and total num ber of tagged flows set to 1024. Other parameters use the default values

in Table 3.2. We varied the num ber of flows in each aggregate and m onitored the maximum e2e

delay and the average num ber o f queues used by an aggregate at the second backbone router. The

results are shown in Fig. 3.6. As can be seen from this figure, the adaptive algorithm can reduce

the average num ber of queues significantly while almost maintaining the same maximum e2 e delay

(when 8 C = 0.01, 0.02, or 0.05).

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.5

0.45

0.4

0.35

& 0.3

i 0.25■o

0,2a
<u

0,15

0.05

200 300 400 5000 100

0.5

0,45

0.4

0,35

V) 0.3
«j

0.25o■D
<D

0.2

0.15

0.05

0 100 200 500300 400
p ack et num ber p ack et num ber

(a) Per-flow scheduling (b) Core-stateless (GRCore)

Figure 3.7: End-to-end delay comparison II: W FQ

3.4 Comparison with Related Work

3.4.1 Delay bound of aggregate scheduling

The delay bound problem of aggregate scheduling was also studied by Cobb [38]. By using

rate-based scheduling algorithms and fa ir aggregators, he showed that the e2 e delay of an aggre­

gate is bounded and the bound can be smaller than the per-flow e2e delay bound. Our CAS scheme

differs from the schemes in [38] mainly in how and where the burstiness of other flows in the

same aggregate is controlled. In [38], Cobb used non-work-conserving scheduling algorithms at

aggregators— both the basic fa ir aggregator and greedy fa ir aggregator use rate-controlled sched­

ulers. By contrast, our scheme is work-conserving, allowing any work-conserving GR scheduling

algorithm to be used at aggregators. Burstiness is controlled in a on-dem and fashion, by reorder­

ing packets in the same aggregate only at the congested downstream nodes of the aggregator. The

aggregator simply stores the lag information in the packets. Our scheme is general since any GR

scheduling algorithms can be modified to become CAS algorithms.

3.4.2 Core-stateless scheduling

Recently, in an effort to solve the scalability problem of per-flow scheduling, there have been

some work on core-stateless scheduling [58]. The key idea of core-stateless scheduling is to use

per-flow scheduling (rate-based or delay-based) only at edge routers. At the same time, edge

routers store some key per-flow information in the packets. Therefore, the core routers need not

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

keep per-flow information; all the needed information is carried in the packets themselves. Inside

the network, core routers can restore the per-flow information from the packets and schedule them

accordingly. By using this method, core-stateless scheduling can achieve the same delay bound

as per-flow scheduling. The idea was first proposed by Stoica [58], and was generalized later by

Kaur [59] and Zhang [60].

Our CAS scheme is similar to the core-stateless scheduling scheme in the sense that it also uses

packets to carry scheduling related information. However, it differs from core-stateless schemes in

the following aspects. First, core-stateless is totally stateless in the core network. All the needed

information is carried in the packets themselves, from which the states of flows can be restored.

By contrast, by keeping the states of traffic aggregates in core routers, CAS is still stateful, but

the num ber of states is significantly smaller than that o f per-flow fair queueing schemes (in orders

o f magnitude). Second, since CAS keeps states of traffic aggregates at core routers, it stores less

information in the packets, with lag time 8 only. In contrast, core-stateless scheduling generally

needs to insert more information into packets. For example, CJYC (Core-stateless Jitter Virtual

Clock) [58] needs to store four entries in each packet, with three o f them relevant to scheduling

(including the reserved rate for the flow). Since CAS stores less information in packets, the packet

processing overhead is also relatively lower. Also, since core-stateless scheduling does not m ain­

tain any flow state at core routers, the admission control at core routers has to be based on traffic

m easurem ent or rate estimation [58], which has considerable overhead. CAS can use R SV P’s ex­

tension for aggregation [11], which incurs smaller overhead at core routers. Third, core-stateless

scheduling generally achieves the same delay performance as its corresponding per-flow schedul­

ing. By taking advantage o f m ultiplexing gains, CAS achieves tighter delay bounds than per-flow

scheduling. Thus, CAS offers better delay performance. Finally, since CAS is not totally stateless

at core routers, it has the advantage of isolating different traffic aggregates at core routers and con­

fining the potential hazard problems (such as malicious traffic or denial-of-service attacks) within

each aggregate, unaffecting other traffic aggregates.

To compare the performance of core-stateless scheduling with that o f CAS, we repeated the

first simulation in Section 3.3 using per-flow W FQ and GRCore, a work-conserving, core-stateless

algorithm proposed in [59]. Under GRCore, edge routers perform per-flow scheduling (with such

algorithms as VC and W FQ), and mark each packet with some per-flow state information (such as

the flow’s reserved rate and the packet’s GRCore value). Core routers do not m aintain any flow-

related states. After receiving a packet, the core router first updates its GRCore value based on the

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.8: Network topology of the example

information carried in the packet. For packet p Jj at server Si+ \ , the GRCore value is recursively

defined as follows:

G R C ‘(p i) , i — 0,f '

GRCorei(Py l + V + ^ + $, > 1. (3'9>

Then, packets are scheduled using their GRCore values as deadlines/priorities. (Note that at

an edge router, the GRCore value of a packet equals its GRC value, which is computed using

Eq. (2 .1)).

The simulation was conducted using the same network setup and parameters as described in

Section 3.3. The results are plotted in Fig. 3.7. Com parison of Figs. 3.7 and 3.3 reveals a surprising

result: GRCore perform s worse than both per-flow and aggregate scheduling. We also ran the same

simulation using W F2Q and the results were similar. Interestingly, the delay results under GRCore

using W FQ and W F2Q are almost the same. This is because under GRCore, the deadlines of each

packet under W FQ and W F2Q are the same, and delays mainly occurred at the core routers. Thus,

the difference in delay between W FQ and W F2Q at the edge routers does not have much impact.

The reason why core-stateless does not perform well can be illustrated by the following exam ­

ple.

Example'. As shown in Fig. 3.8, traffic comes into the network through two edge routers ER\

and E R i before traversing core routers CR\ and CRi- Suppose 10 flows (/ i , • • • ,/ io) arrive through

ER\ , each with reserved rate r, and one additional flow (f \ \) arrives through ERj , with reserved

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rate 10r. All the packets are o f an identical size S, and all the links have identical capacity C

(C > > r) and propagation delay x.

Suppose all the routers are idle initially. Then, at time ?o, a burst of 20 packets (p j ,, p j l , ■ ■ ■, p f l)

from flow f \ \ start arriving at ERi . A tthe same time, lO packetsfrom the first 10 flows { p \ , p \ , ,p |o) ’

one packet from each flow, also arrive simultaneously at E R \ . The first packet from the two bursts

(p\ and p\ j) will both arrive at CR\ at time t = to + ^ + x.

We now examine the order of the outgoing packets at CR\ under three scheduling schemes:

per-flow, aggregate, and GRCore. W FQ is used as the scheduling algorithm in all three cases.

(i) Under per-flow scheduling, the 11 flows are scheduled by W FQ at CR i , and hence, the

output order is

_i _2 . . . _io _i _1 _1 _11 „20
P\ \ i P \ \ i iP\ \ iP\ iP2i iP\QiP\\i iPu-

That is, 10 packets from f \ \ are transmitted first, then the packets from the first 10 flows, and then

the next 1 0 packets from f \ \ .

(ii) Under aggregate scheduling, the first 10 flows are bundled into a single aggregate flow

at ER\ with reserved rate lOr. At CR\ this aggregate flow and f \ \ are then scheduled by W FQ.

Therefore, the output order is

n1 n* n1 n2 ... n1 n10 n U ... n20P\ i P \ \ i P l i P \ \ i , P \ 0 , P \ \ , P \ W ' , P \ \ -

The packets from these two flows alternate before all the packets in the aggregate flow are trans­

mitted.

(iii) Under GRCore, ER\ and E R i schedule packets using per-flow W FQ, while CR\ and CRi

schedule packets based the GRCore values o f the packets.

According to Eq. (3.9), the GRCore value for p \ at ER\ is GRCore1 (p \) = GRC1 (p \) = to + £,

so its GRCore value at CR\ is GRCore1 (p J) + ^ + 't + f = t + 2 j . Likewise, it can be shown

that the GRCore values at CR\ for p l2, ■ ■ ■ , p }0 are all t -I- 2 j , and the GRCore values at CR\ for

p \ i , P 2n > - " , P u * + 2 4 p , t + 3 TJTr’ - ■ ■ i* + 2 l Wr-
Therefore, the output order at CR\ is

n2 . . . 19 1 1 1 20
P\ \ i P \ \ i iP\ \^P\ iPl i ,P\Q,P\\-

The first 19 packets from f \ \ are transmitted before the packets from the first 10 flows, since they

have smaller GRCore values.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From the above example, we can see that for the flows with lower reserved rates, aggregate

scheduling has the best delay performance, while core-stateless scheduling performs the worst.

The main reason for this is that under core-stateless scheduling, the packet deadline (such as the

GRCore value) is computed rather conservatively, based on the flow’s reserved rate. The actual

arrival time of a packet at a core router is not considered in updating the deadline. At each core

router, if other flows have burst, packets from low-rate flows are pushed back in the queue and thus

have delay close to their deadlines. The fact that they may arrive earlier than other packets does

not help, as long as the core router is not idle (in the above example, p \ is transmitted after p \ \

although it arrives at CR\ much earlier). In this sense, core-stateless scheduling is biased against

low-rate flows.

3.4.3 Coordinated scheduling

The idea of coordinating the scheduling of a packet at multiple nodes has also been explored in

the literature. For example, the author of [61] proposed Coordinated ED F (CEDF) that coordinates

the deadlines of a packet at m ultiple hops and yields a very small e2e delay. However, CEDF

provides only statistical delay guarantees, and does not provide a natural way of assigning the

deadline at each hop (the deadline at the first hop is randomly assigned). CAS is sim ilar to CEDF in

the sense that the scheduling inside an aggregate is based on EDF, and that it requires coordination

among multiple nodes. However, by using the GRC value of a packet at the aggregator as its

deadline at later hops, CAS provides a natural way of assigning deadline values to packets. In

addition, CAS provides deterministic e2e delay guarantees.

In a related paper, the authors o f [62] defined a general framework of Coordinated Multi­

hop Scheduling (CM S), which covers many scheduling algorithms (including core-stateless algo­

rithms [61, 58, 59]) exploring the coordination among different nodes. C A S’s mechanism at the

intra-aggregate level is also an example of CMS.

3.5 Sum m ary o f C A S’s Features

The salient features of CAS are summarized as follows.

• Scalable architecture: by using traffic aggregation, CAS can support a large num ber of

flows in core networks. Since CAS supports m ultiple aggregations, and the scale of traffic

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aggregates (in terms of the num ber of flows in each aggregate) can be flexibly set. The

architecture of aggregate scheduling also fits the Internet administration architecture well.

• Superior perform ance: as our analysis and simulation results have shown, CAS provides

better performance than both per-flow fair queueing and VAS.

• Low overhead : first, since CAS belongs to aggregate scheduling, it has lower overhead than

per-flow fair queueing (e.g., lower state-m aintenance overhead, sim pler packet classification

and scheduling). Second, with the optim ization m ethods in Section 3.2, the extra overhead

it has beyond VAS is marginal. Com pared to VAS, CAS incurs a higher overhead at both the

aggregator (computing and inserting lag values into packet headers) and core routers (packet

sorting in each aggregate). For the former, the overhead is less than that in core-stateless

fair queueing. For the latter, our simple multi-queue structure and adaptive algorithm have

shown the extra overhead in packet scheduling to be marginal. Also, Stoica [58] has shown

experimentally that the overall overhead of core-stateless fair queueing is not high— it “adds

less than 5 ps overhead per enqueue operation, and about 2 ps per dequeue operation” on a

300M Hz Pentium II machine. CAS has even smaller overhead than this.

• Incremental deploym ent: CAS facilitates incremental deployment. If some core routers do

not implem ent CAS, then the queue at those nodes for each aggregate is FIFO. In other

words, the scheduling at these routers becomes VAS. The performance will suffer, but still

better than pure VAS. If the aggregator does not support CAS, as long as it supports fair

queueing, it is still an aggregator of VAS. Then, the whole scheduling degrades to VAS,

since the field to hold the lag value will have the default value for all packets, and the core

routers will work in a FIFO fashion for each aggregate.

In addition to the features m entioned above, CAS is work-conserving and provides isolation

between traffic aggregates.

3.6 Concluding Remarks

In this chapter, we proposed a novel coordinated aggregate scheduling (CAS) algorithm, which

uses ED F within each aggregate and GR scheduling algorithms among traffic aggregates. The EDF

scheduling within each aggregate is coordinated among multiple nodes. Under the assumption that

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the incoming traffic to each aggregator conforms to the token bucket model, we proved that CAS

provides tighter delay bounds for a flow than VAS. Moreover, CAS is shown to have many other

salient features: for example, it is work-conserving and has small packet processing overhead. We

have also shown by simulation that CAS is robust, performing better in terms of worst-case e2e

delay than VAS, per-flow scheduling and core-stateless scheduling algorithms.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.1: Pseudocode of the adaptive algorithm

Nq\ The current num ber o f queues used by the aggregate;

5C: The default constant;

length[i]: The length of queue i;

NAmax[\\. The maximum value of VA in queue i;

WA(pJA): The virtual arrival time of packet p JA,

1. //Upon arrival o f a new packet p JA:

i = 0 ;
W H IL E (VA(pJA) < VAwax[i] - 5 AND i < Nq)

i++;
IF (i > Nq) TH EN

Nq++',

5 += 5C;

Insert p*A at the end of queue z;

length[i]++;

IF (NA(pJA) > VAwax[i]) T H E N

VAmflx[i] = VA (/ /) ;

2. //Upon departure o f a packet p A:

//Suppose p A is from queue i;

Remove p A from queue i;

length[i]—;

IF (i = Nq- 1 AND l e n g t h ^ - 1] = 0) T H E N

Nq-',
5 -= 5C;
VAmax[Nq-l] = 0;

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.2: Parameters and their default values

Parameters Values

Tagged flow packet size 400B

Cross traffic packet size 1500B

Tagged flow rate 32Kbps

Hop count 1 0

Burst size of tagged flows (red / blue) 2 / 8

Total num ber of tagged flows 128

Num ber of tagged flows in one aggregate 16

Link utilization 55%

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

Differentiated BGP Update Processing for Improved Routing
Convergence

Internet routers today can be overwhelmed by a large num ber of BGP updates triggered by

events such as session resets, link failures, and policy changes. Such excessive updates can delay

routing convergence, which, in turn, degrades the performance of delay- and jitter-sensitive appli­

cations. This chapter proposes a simple and novel idea of differentiated processing of BGP updates

to reduce routers’ load and improve routing convergence without changing the protocol semantics.

Based on a set of criteria, BGP updates are grouped into different priority classes. Higher-priority

updates are processed and propagated sooner, while lower-priority ones, not affecting routing de­

cisions, can be delayed to both reduce routers’ load and improve routing convergence. We first

present a general m ethodology for update classification, update processing, and priority-state in­

ference. By analyzing real BGP data obtained from Route Views, we show that our update classi­

fication is feasible and beneficial. We further propose two differentiated update processing (DUP)

algorithms and evaluate them using the SSFNet BGP sim ulator on several realistic network topolo­

gies. The algorithms are shown to be very effective for large networks, yielding 30% fewer updates

and reducing convergence time by 80%. Our scheme is simple and light-weight with little added

processing overhead. It can be deployed incrementally, since BGP messages are not modified and

every BGP router makes routing decisions independently.

4.1 Introduction

Real-time, multim edia applications such as IPTV, VoIP and Internet gaming are becoming

popular. These delay- and jitter-sensitive applications impose more stringent requirements on the

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

underlying Internet routing system. In light of this trend, BGP (Border Gateway Protocol) routing

issues have attracted significant attention from both the research and operator communities. A

key problem associated with BGP is the excessive num ber of BGP updates possibly triggered by

routing changes, such as session resets, link failures, and policy changes. For example, a recent

study of a large tier-1 ISP shows that within just one minute, a “rich peering” router can experience

hundreds of routing updates all at once partly due to the interaction between intra- and inter-domain

routing [24].

There are several well-known schemes deployed to address this problem, including M inimum

Route Advertisement Interval (M RAI), flap damping [63], Sender Side Loop Detection (SSLD),

and W ithdrawal Rate Limiting (WRATE) [64], M RAI is a rate-limiting mechanism, enforcing a

minimum inter-update interval between two neighbors (and for a specific destination prefix), in

the hope that such a delay may help consolidate m ultiple related updates into fewer updates. Flap

damping targets longer-term unstable routes, blocking routes changing too frequently over a rela­

tively longer time period. Using a path-vector routing approach, BGP routers detect routing loops

by checking if its own AS num ber appears in the AS path upon receiving a new route. SSLD, on

the other hand, detects routing loops before sending the route to a neighbor BGP router. A rate-

limiting mechanism, such as M RAI, is usually applied only to announcements, but not to with­

drawals. However, some router vendors implement W RATE by applying M RAI to withdrawals as

well, even though this is not recom mended [64].

A related issue is the long convergence time caused by BGP path exploration. The authors

of [25, 26, 27] have shown that the BGP convergence time is surprisingly long and depends on

the length of the longest backup path. The convergence time is also shown to be proportional to

the num ber of alternative routes to a given destination [28]. The prevalence of multi-homing in

AS relationships (e.g., a custom er AS peering with multiple providers ASes) [29, 30, 31] increases

the num ber of backup routes in the Internet significantly, which, in turn, prolongs BGP conver­

gence. Our recent study shows that the convergence time for one BGP Beacon [65] prefix is still

surprisingly long— m ore than 30 minutes.

All the existing mechanisms, including M RAI and flap damping, are intended for all updates,

except that in general, withdrawals are not subject to the influence of MRAI. In this chapter, we

introduce the concept of differentiated BGP update processing, which classifies BGP updates and

treats them according to their importance, which determines the update sending order and delay.

We observe that BGP updates can be divided into two classes: the first class affects the routing

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decisions of the receiving routers, possibly triggering more updates, while the second class does

not affect the routing decisions of the receiving nodes, i.e., the best routes used are not changed.

We regard the first class more important; but it is non-trivial to determine which updates belong

to which class, since the routing decision and local policy of the receiving nodes are not directly

available. We first define a m ethod for classifying BGP updates. Updates in different classes will

then be processed with different priorities. We also explore ways to process updates differently

and propose two Differentiated Update Processing (DUP) algorithms.

In summary, we propose differentiation of updates depending on whether they are used in the

forwarding tables o f routers for related destination prefixes. If they are, they will more likely be

processed with higher priority. The key ideas of our DUP algorithms are: (i) Locally inferred rout­

ing preference: when sending updates to a neighbor, a BGP router checks if the neighbor has sent

updates for the same prefixes to itself. If so, it sends the updates with low priority, (ii) Difference-

based route selection: when failure occurs and the best route to a destination is withdrawn, instead

of selecting the next best available route, a BGP router first selects an interim route that shares the

shortest common sub-route with the withdrawn route. The intuition behind the first idea is that if

the neighbor also advertises a route, it must have an alternate route. The justification behind the

second idea is that usually routes dissim ilar to the withdrawn route are more likely valid during
convergence.

The proposed scheme reduces the num ber o f low-priority updates and the routing convergence

time, thus reducing router (message processing, bandwidth) overhead, especially at an overloaded

router in the core with rich peering. It reduces convergence time not only after a failure, but also

during a new route propagation. At the same time, the scheme does not require any change to BGP

protocol semantics (including the format of BGP messages and the final best route selection), thus

facilitating incremental deployment. Moreover, it does not compromise reachability.

The authors of [6 6] proposed a Routing Control Platform (RCP), which uses a centralized

routing control server to make route selection on behalf of each BGP router within a single AS,

and distributes the routing decision to it. This RCP is to replace IBGP (Internal BGP) and solve

many problems caused by its inefficiency. The authors showed that a prototype o f such a system

can be effectively implem ented on a software router. Our scheme is simple and light-weight, and

can be integrated into the RCP platform. Also, it can be easily implem ented on software routers

running XORP [67] or Zebra [6 8].

The rest of the chapter is organized as follows. Section 4.2 discusses related work on BGP

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.1: Comparisons of BGP-enhancement schemes

Consistency assertion Root-cause based schemes G host flushing O u r scheme

change format of BGP messages yes yes no no
introduce extra messages no no yes no
reduce convergence time of updates for new prefixes no no no yes

routing, putting our contributions in a comparative perspective. Section 4.3 presents the general

idea of DUP and updates classification. Section 4.4 presents potential benefits of DUP using

the Route Views data. Based on the general framework, Section 4.5 introduces the basic DUP

algorithm. In Section 4.6 the basic algorithm is combined with a new route selection algorithm

to further reduce the convergence time and the num ber of updates. Section 4.7 evaluates the DUP

algorithms using simulation and compares their performance with the current BGP protocol and

other BGP improvement schemes. Finally, Section 4.8 concludes.

4.2 Related Work

It is reported in [24, 69] that the current BGP may generate an excessive num ber of updates,

especially when the network is overloaded, and the convergence of BGP may take too long to meet

the requirements of real-time applications.

4.2.1 BGP Processing Overhead

The authors of [30] analyzed the rapid growth of BGP routing tables, as a result of several

factors, such as load-balancing, the prevalence of m ulti-homing of small networks, and address

fragmentation. The authors of [29] pointed out that not only is the Internet growing fast in size, it

also becomes densely m eshed at the inter-AS level. All these changes increase the BGP routing

table size, thus increasing routers’ processing overhead.

Studies have also shown that under certain (abnormal) conditions, there could be an excessive

num ber o f BGP updates. For instance, the authors of [70] studied the BGP behavior under the

Slamm er worm outbreak, and showed that during the attack, the num ber of BGP updates increased

ten-fold, compared to that under normal condition. For some prefixes, the increase was by about

100 times. The authors of [69] studied the BGP behavior under heavy load and observed several

weaknesses of the current BGP: its sensitivity to data congestion, global propagation of small local

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

changes, and slow convergence. The authors of [71] observed that in the time scale o f minutes,

BGP updates do not affect router’s CPU load significantly, but in a shorter time scale of seconds,

BGP can consume up to 100% of CPU cycles. The authors of [72] also showed that high update

rates from m ultiple peers are harmful, prolonging the transit times of packets.

In addition to M RAI and flap damping, BGP Graceful Restart [73] is another mechanism de­

ployed today that can reduce updates, but has lim ited applicability as it works only for short-lived

session resets.

4.2.2 BGP Convergence Time

Using simulation, the authors of [74] demonstrated the effectiveness of M RAI in reducing the

convergence time. They also observed that for a given topology, there exists an optimal MRAI

tim er value which minimizes the convergence time. However, the optimal value depends on the

topology, so there is no universal optimal setting for the M RAI tim er applicable for all routers and

all types of routing changes.

In practice, Cisco routers use 30 and 5 seconds as the default M RAI timers for EBGP and IBGP

sessions, respectively, while Juniper routers disable M RAI tim er by default [75]. The study above

showed that disabling M RAI tim er may lead to large num ber of updates and long convergence

time.
To reduce BGP update traffic and the associated overhead, and to decrease network conver­

gence time, the authors of [76] proposed to add some consistency assertion checks to BGP update

processing. From this checking, many updates are observed to contradict one another, and not all

of them are valid. A set of assertion rules are defined to check the validity of updates, and block

propagation of information on those routes that violate these rules, to other BGP peers. They have

shown that by employing these rules, the num ber of BGP updates can be significantly reduced, and

the route convergence time can be improved drastically.

The authors of [77, 78] extended the idea in [76] by embedding the root cause of a failure in

updates, so a receiving node knows which candidate routes in its routing table are invalidated by

the root cause, dramatically reducing the num ber of invalid routes and hence the convergence time.

However, this scheme requires modification of BGP updates to embed the root cause information

and slows deployment.

The authors o f [79] proposed a different algorithm called “Ghost Flushing.” The routes invali­

dated by a failure are called “Ghosts.” For speedy removal of such invalid routes from the network,

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Network topology

C B F G

A D

C D E

GF

(b) Forwarding-path tree for AS A (c) Forwarding-path tree for AS E

Figure 4.1: Forwarding-path tree of an AS

when a route is replaced by a less preferable one, if the route cannot be propagated because the

M RAI tim er has not expired, a withdrawal is sent immediately. By sending extra withdrawals, it is

shown that invalid routes are removed much sooner and the convergence tim e is greatly reduced,

especially when the original route is the only way to reach the destination— no valid alternative

routes exist after the failure.
Table 4.1 compares our scheme with three existing schemes m entioned above. Our scheme

does not require any modification to the BGP protocol semantics such as BGP message format,

nor does it send extra messages. Moreover, unlike the above schemes which mainly focus on

reducing convergence time after a failure, our scheme can also reduce convergence time during a

new route propagation.

The author of [80] discusses various schemes (at different layers of network hierarchy) to

achieve sub-second convergence and maintain high routes availability. The mechanisms capture

the same differentiated processing idea as ours, but work mainly at the intra-domain level. In

contrast, our scheme focuses on the inter-domain level.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 General Methodology

4.3.1 Assumptions and Notations

Before delving into the details of our proposed approach, we introduce the following widely-

used assumptions. Violation of these assumptions can be accommodated, especially in a single

network where the policy information is known.

A l. In a peer-peer AS relationship, if ASes A and B are peers, A only sends B updates pertaining

to itself and its customers; so does B. Routing updates learned from one peer will not be

forwarded to other peers.

A2. In a custom er-provider AS relationship, if A is a custom er o f B, A sends B only the updates

pertaining to itself and its customers; B sends A the updates learned from all neighboring

ASes.

A3. A BGP router prefers routes learned from custom er to those learned from peers; it also prefers

routes learned from peers to those learned from providers.

For simplicity, in addition to A3, we also assume that routing decisions are based on the AS

path length by preferring shorter paths.

The following notation is used throughout the chapter. For a given BGP update, the sending

router is called sender, and the receiving router receiver. If a router has m ultiple routes to reach

a given destination AS, the one currently used is called prim ary route', other alternative routes are

called backup routes. To avoid confusion, the term peers is used to indicate the two ASes with a

peer-peer relationship between them, while neighboring BGP routers/ASes are called neighbors.

4.3.2 Per-prefix Forwarding-Path Tree

Before discussing BGP update classification, we introduce the concept of per-prefix forwarding-

path tree1. W hen all the BGP routers in a network reach steady state, for a given destination prefix,

at router level there is a forwarding-path tree inside the network. The destination itself is the root

1 Here we assume that a router always send traffic for one prefix to the same neighbor. If this does not hold, the

resulted structure would be a forwarding-path DAG (Directional Acyclic Graph). But this does not affect the following

analysis.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o f the tree, and its imm ediate neighbors are the first-level children, and so on. Directional links

between different levels of nodes are trunks of the tree. Data packets heading for this destination

prefix flow from the leaves to the root, along the trunks; while routing updates flow in the opposite

direction, from the root to the leaves (Fig. 4.1). If updates are received through existing tree trunks,

then we call them “on-tree” updates; otherwise, they are called “off-tree” updates. For each tree

node, there is only one trunk reaching it from its parent node. Note that the tree structure is dictated

by the routing in the network; when routing changes, the tree stm cture changes accordingly.

The key observation is that a BGP router can have many neighbors, thus receiving many up­

dates regarding alternative routes to a given destination. However, for each destination prefix, there

is only one on-tree update (regarding its primary route) from its parent node. Other updates are

off-tree updates (regarding backup routes). For example, seven ASes are connected as shown in

Fig. 4.1(a), each node representing an AS and also a BGP router. The forwarding-path trees for

ASes A and E are illustrated in Figs. 4.1 (b) and (c), respectively. In both trees the D-G link is an

off-tree link.

— new high

— on-tree high

— withdrawal —
_ off-tree low

— old —
— on-tree high

announcement —
— better high

— off-tree —
worse low

Figure 4.2: BGP update classification

In the current BGP, children nodes on the forwarding-path tree always know their parents,

while parent nodes have no information about their children nodes (or no such information is used

even if it is known at all). Our scheme attempts to gather such information and use it for BGP

update processing.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.3 Update Classification

The BGP update classification m ethod is shown in Fig. 4.2. The updates are classified from

the receiver’s point o f view. If the updates are about new destinations, which the receiver did not

know before, they belong to a high-priority class. Otherwise, the updates are classified depending

on whether they are on-tree in the forwarding-path tree of the associated destination prefix. We

consider on-tree updates to be m ore important as they affect routing decisions.

As shown in Fig. 4.2, when an update is a withdrawal, then if it is on-tree, meaning that it

withdraws a primary route of the receiver, then the update has high priority; otherwise, it has low

priority since it withdraws a backup route which is not used by the receiver. W hen an update is an

on-tree announcement, it implicitly replaces the primary route with a new route. Thus the update

has high priority. If the update is off-tree, it has high priority only when it contains a better route

than the primary route; otherwise, the update has low priority— since the route is not better than

the primary route and will not be chosen.

4.3.4 Update Processing

Once updates are classified, the next question is how to differentiate their processing based on

their priority class.

Receiver side— priority queues

Since the update classification is done from a receiver’s perspective, the natural way is to

process BGP updates using a priority queue on the receiver side. The advantage is that the receiver

knows which class an update belongs to, by simply checking its forwarding table. However, to

classify the updates into different priority queues, a BGP router has to check the content o f the

updates and do some pre-screening. This checking and pre-screening in a large part is repeating

the default BGP update processing, thus incurring additional overhead. Also, this receiver-side

method alone does not directly reduce the num ber of updates, as all updates are still transmitted to

the receiver. Because of this, we focus on the sender-side scheme in the following discussion.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sender side— different delays

An alternative way is to differentiate updates at the sender, using different delay timers (such

as M RAI) for different classes of updates. There are two basic m ethods with different benefits.

The first m ethod is to process high-priority updates with default timers, while processing the low-

priority ones with longer timers. This m ethod can potentially reduce the num ber of low-priority

updates transmitted; the second m ethod is to process the low-priority updates with default timers,

while processing the high priority ones with shorter timers. This m ethod can potentially reduce the

convergence time, since the high-priority updates experience a shorter delay at each hop.

However, since update classification is done from the receiver’s perspective, the sender has no

direct way to tell whether an outgoing update will affect the receiving router’s forwarding table (or

whether the update is an on-tree update for the receiver). Thus, the sender has to infer the class of

updates. This class inference may incur some overhead on the sender side.

4.3.5 Update Class Inference

As m entioned above, when the sender side is involved in differentiated update processing, it

has to infer the class of each update for the receiver. Discussed below are possible ways to achieve

correct inference.
First, a router can infer the information externally: it can obtain the information from the data

it receives from other routers, either implicitly (e.g., monitoring the data traffic passing through to

determine if a neighbor is sending data packets to the related destination through it) or explicitly

(e.g., letting the receivers of its updates send some feedback messages saying if the updates are

being used as their primary routes). Note that inside a single AS, and hence for IBGP sessions,

this information can be trivially obtained since the routing policy is consistent inside an AS.

A router can also infer the information internally, e.g., by checking its configuration and/or

routing table. For example, when a router R has an update for a destination prefix, it can examine

if there is a route entry for the same prefix received from a neighbor in the routing table. If there

is, then the neighbor is using a different route; otherwise, it is using the route learned from R.

However, if routers filter out some outgoing updates based on local policies, then this m ethod will

overestimate the num ber of high priority updates. On the other hand, this scheme does not cause

any reachability problem.

Since the external inference methods in general incur more overhead and require extra memory

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.2: BGP update classification results

AS\ -* AS2 Total Duplicates Withdrawals (high) Withdrawals (low) Announcements (high) Announcements (low)
1239-*7018 45689 1709 (4%) 5679(12%) 8747 (19%) 3850 (8%) 25640 (56%)
7018 —* 1239 37298 15697 (42%) 2934 (8%) 4139(11%) 2363 (6%) 12127 (33%)
3561 ->3356 37718 4448(12%) 1748 (5%) 10733 (28%) 2617 (7%) 18123 (48%)
3356 —* 3561 47664 6811 (14%) 2663 (6%) 9087 (19%) 1526 (3%) 27551 (58%)
3549 —> 5511 38188 0 (0%) 3948 (10%) 10516(28%) 3234 (8%) 20365 (53%)
5511 —> 3549 26843 4979(19%) 1815(7%) 5309 (20%) 755 (3%) 13947 (52%)
2497 -> 1668 12983 3764 (29%) 1928(15%) 1817 (14%) 1939 (15%) 3462 (27%)
1668 -*2497 12276 183 (1%) 1323 (11%) 1128 (9%) 1898 (15%) 7354 (60%)

3303 -> 13237 15890 3189 (20%) 373 (2%) 3328 (21%) 395 (2%) 8565 (54%)
13237 —* 3303 34076 19051 (56%) 1217(4%) 1809(5%) 2620 (8%) 9025 (26%)
1668 —> 7018 12276 183(1%) 1676(14%) 762 (6%) 1700(14%) 7552 (62%)
7018 —* 1668 354110 176547 (50%) 11476 (3%) 21569 (6%) 17433 (5%) 126843 (36%)
3303 -♦ 1239 15890 3189 (20%) 1063 (7%) 2582(16%) 1241 (8%) 7719(49%)
1239 —> 3303 194716 8796 (5%) 10096 (5%) 5267 (3%) 67017(34%) 99715 (51%)

to store the inferred data, in the following discussion, we focus on internal (or local) inference.

4.4 Empirical Data Analysis

To examine empirically the amount of BGP updates that can be classified as low-priority, we

analyze the routing data collected by the Route Views project [81]. Each Route Views router peers

with BGP routers in many ASes to collect BGP routing data. The data are collected in two forms:

RIB files and update files. The RIB files contain the contents of the forwarding tables o f all the

BGP neighbors, and are collected every two hours; the update files contain new updates from the

BGP neighbors every 15 minutes. The peering sessions between a Route Views router and its

neighbors are different from the peering sessions between two Internet routers in two aspects: (i)

the Route Views router is a listener only, i.e., it does not propagate its own routing data to its

neighbors, (ii) in m ost cases, its neighbors send all updates to it, without any filtering. This implies

that the Route Views router receives more updates than an Internet router normally does.

We chose the routing data collected by router RouteViews2 spanning five days, from 05/01/2006

to 05/05/2006. For each day, we used all the available RIB files (maximum 12). For each RIB file,

we selected the update file collected right after the RIB file, such that the updates (route changes)

are based on the RIB file just collected. Each RIB file and its matching update file constitute a data

set.
Then, we chose seven AS pairs, all of which are peering with the router RouteViews2. For

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AS 1

RIB, updates

Route Views
Router

AS 2
R2

AS K

Figure 4.3: Illustration of Route Views peering sessions

each pair, we examined the updates between the two ASes and evaluated how many of the updates

can be classified as low priority, according to the classification criteria discussed in Section 4.3.

The chosen AS pairs cover both peer-peer and custom er-provider AS relationships. For the peer-

peer relationship, we study three tier-1 pairs (7018-1239, 3561-3356, and 3549-5511) and two

tier-2 pairs (2497-1668 and 3303-13237); for the custom er-provider relationship, we study two

pairs (1668-7018 and 3303-1239). The AS relationship and tier classification are based on the data

from [82].

4.4.1 Data sanitation

From the RIB files and the update files, we first inferred the updates exchanged between the

two ASes of each pair. W hile the RIB files collected by the Route Views router reflect the contents

o f forwarding tables of the related BGP routers correctly, the update files are not exactly what has

been exchanged between the two BGP routers— they contain more updates. Therefore, for each

pair of ASes we studied, we need to filter out those updates that are not exchanged between the

two ASes based on the assumptions stated in Section 4.3.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.2 Analysis method

For a given data set and a pair of ASes, AS] and AS2 , we performed the analysis in the following

four steps.

S I: From the RIB file, we extracted the forwarding table for ,4Si and AS2 routers, Rib\ and Rib2 -

Then, from the update file, we extracted the updates sent from AS\ and AS2 routers, U pd\

and U pd 2 .

S2: From the AS relationship data [82], we collect the sets of custom er ASes for AS] and AS2 ,

Cust1 and Cust2 -

S3: From U pd\ and Cust 1, we obtained all the updates learned through / fS i’s custom er ASes,

Upd"ew, which is the actual updates sent from AS\ to AS2 in the real-world. Likewise, we

obtained U pd ^ w .2

S4: From Rib\ and U p d xew, we know exactly how the forwarding table of the AS\ router evolves

during a 15-minute span. Then, from U pd£evv, we can compare whether an update from AS2

is necessary by checking if the related route is for a new destination prefix for the AS\ router,

or whether the route used by AfAi is through AS2 . If either of the two holds, the update is

classified as high-priority; otherwise, it is classified based on the AS relationship between

AS\ and AS2 and the AS relationship between AS\ and its current next-hop AS for the related

prefix (Assumption A3) and the AS-path lengths of / IS i’s current primary route and the route

in U pd 2 W. The new update has high priority if its route is better than /fS 'i’s current route;

otherwise it has low priority. The updates from AS\ to AS2 can be analyzed similarly.

4.4.3 Analysis results

As listed in Table 4.2, updates are classified into two categories: announcem ents and w ith­

drawals. We found that (i) excluding duplicates, a large proportion of announcem ents (about 50%

on average) can be classified as low priority, and thus processed separately. This confirms the

value of our DUP scheme; (ii) a significant percentage of updates are pure duplicates, meaning

2Here we assume that AS] and AS2 are peers, so that only customer routes are exchanged between them. If /15]

and AS2 are in the customer-provider relationship and /IS] is a customer AS2 , then Upd™™ = Upd2 (AS2 sends every

update to /4Si).

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that the updates are same as the previous ones regarding the same destinations. Also, the num ber

of duplicates varies: some senders (such as those in ASes 7018 and 13237) send a huge num ber of

duplicates, while others (such as those in ASes 1668 and 3549) send very few or no duplicates. We

conjecture that this behavior depends on the implementation of the routers being used by different

ASes and might be the result of routing changes associated with the non-transitive attributes, as

mentioned in [69]. Note that the duplicates are not counted as part of low-priority updates; (iii)

a significant portion of withdrawals are low priority as well, meaning that they are withdrawing

backup, not primary routes.

4.5 DUP: Differentiated Update Processing

Based on the general discussion in Section 4.3, we design a Differentiated Update Processing

(DUP) algorithm based on the sender-side scheme. To reduce overhead, a sender infers the priority

o f an update based on its local information. Also, since this inference is not always accurate, all

the withdrawals are still treated the same, without any differentiation .3 The algorithm takes the

following two steps.

Step 1: it checks the AS relationship between a local AS\ and a neighboring AS2 , and infers

whether AS2 is using AS \ ’s route to forward traffic. For example, if AS\ and AS2 have a peer-peer

relationship, then if has no route from AS2 (meaning that AS2 has no route at all or has a route

via its provider/peer AS), the route has high priority; else, the route has low priority. (AS2 's current

route must be via its own custom er AS, which is favored over A S \ ’s route since AS\ is a peer AS

of AS2.)

If the AS relationship alone can not decide the priority of AS 1 ’s new route, it goes to Step 2 to

compare the lengths of the two routes.

Step 2: the lengths of A S \ ’s new route and the route from AS2 are compared. If from ^ 6 2 ’s point

of view, the new route is shorter than AS2 ’s current route, then it has high priority; else, it has low

priority.

The details of the algorithm are listed in Table 4.3. Note that (i) in the algorithm we assumed

known AS relationship information between a BGP router and its neighbor, which can be easily

stored in a router as a configuration param eter or directly inferred from the configurations; (ii) the

AS paths’ length comparison is made from /ISVs point o f view: if at AS\ the two paths have length

3In practice, withdrawals generally are not subject to the control o f MRAI timer anyway.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.3: Pseudocode of DUP algorithm: DUPJSendQ

ASP?re- AS path of the previous route for D sent to AS2;
ASP”ew\ AS path of the newly-chosen route for D;

ASP2: AS path of the route for D received from AS2\
len (): length of an AS path;

01 //AS 1 sends an update for D to AS2:
02 If ASP2 = Null, Then
03 sends the update with shorter MRAI timer;
04 Else
05 If AS) is a peer or provider of AS2, Then
06 sends the update with longer MRAI timer;

07 Else //AS) is a customer of AS2
08 If ASPfre = NULL, Then
09 sends the update with shorter MRAI timer;

10 Else
11 If len (ASPP)re) f len (ASPfw) And
12 len {ASPn)ew) + 2 < len (ASP2), Then
13 sends the update with shorter MRAI timer;
14 Else
15 sends the update with longer MRAI timer;

len (ASP"ew) and len (ASP2), then at AS2 the lengths become len (ASF^ew)+ 1 and len (ASPi)-\\

(iii) two M RAI timers are used in the DUP algorithm (one more than the current BGP protocol

for each BGP neighbor), one for high-priority updates (MRAIsf,ort) and the other for low-priority

updates (MRAIiong). If tim er MRAIiong expires, the router will send low-priority updates and reset

the timer; if tim er MRAIshort expires, the router will send high-priority updates and reset the timer.

Depending on the purpose of the algorithm, two options can be implemented. The first option is to

use the default M RAI value for MRAIs ôrt, and a larger value for MRAI[ong. The goal is to reduce

the num ber of BGP updates exchanged between BGP routers, by holding low-priority updates

longer. The second option is to use the default M RAI value for MRAIiong, and a smaller value for

MRAIsh„rt- The goal is to shorten the convergence time of BGP in the network, by speeding up the

propagation of high-priority updates. In this chapter we focus on this second option.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.4: Pseudocode of Simpler DUP: DUP_Send()

AS Pi'. AS path of the route for D received from ASz\

01 / / /IS] sends an update for D to AS2:
02 If ASP2 = Null, Then
03 sends the update with shorter MRAI timer;
04 Else
05 sends the update with longer MRAI timer;

4.5.1 Simpler DUP

The DUP algorithm above takes advantage of the knowledge of AS relationship between a

BGP router and its neighbor when classifying the priority o f an update. The classification process

appears complex and may not be always accurate, as ASes do not always choose routes based on

the guideline of AS relationships.

To overcome this issue, we introduce a sim pler version o f DUP without relying on the knowl­

edge of AS relationships. It considers one thing only: whether a neighbor has already propagated

route for the same prefix to the local AS. If the neighbor has not already done so, the update has

high priority; otherwise, it has low priority. The details of the algorithm are listed in Table 4.4.

4.5.2 Priority misclassification

Since sender-side scheme is used, neither the DUP algorithm nor its simpler version matches

exactly the update classification m ethod in Fig 4.2. If a sending node has not received a route

from its neighbor, it means (i) the route is for a new prefix; or (ii) the neighbor is already using

the local A S’s route; or (iii) the neighbor is using another route without notifying the local AS.

W hile in the first two cases the outgoing update is on-tree, in the third case it is clearly off-tree.

Thus our algorithms may set an update’s priority higher and send it earlier than necessary. On the

other hand, if the sending node has already received a route from the neighbor, then the outgoing

update must be off-tree. The question is whether it is better than the neighbor’s current route from

the neighbor’s perspective. The sim pler version simply set the update as low priority, thus may

delay the update longer than the default BGP. The DUP algorithm is more accurate, classifying the

priority based on the AS relationship between the two neighbors and the AS path lengths o f the

new route and the route from the neighbor. However, if some ASes do not follow the guidelines of

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

route for A: 5
route for B: 16 Prefix A

AS 5AS 3,
route for A: 5
.route for B: 6

[a s 4.IAS 1

[AS 6,AS 2,

Routing changes at AS1 :
T: 5 - > 4 5 (for A)
T+5: 6 - > 4 6 (for B)
T+10: 4 5 -> 5 (for A)

route for A: 1 5 Prefix B
route for B: 6

(a) AS topology

AS 2 AS 1 AS 3 AS 2 AS 1 AS 3

Updl
Upd2T+5 -

Upd3T+15-

Upd3T+30-
T+35- Upd2

(c) Update sequence under DUP

UpdlUpdl

Upd2

Upd3

Upd2

Upd3
T+30-

(b) Update sequence under default BGP

Figure 4.4: Illustration of DUP algorithm

AS relationships discussed in Section 4.3, it may misclassify the priority also. On the other hand,

since in this case the neighbor already has a route, it does not affect the neighbor’s connectivity.

The only drawback is that the neighbor may use a less preferred route slightly longer. In addition,

since we focus on speeding up the high priority update while sending the low priority ones using

the default M RAI value, this is not an issue at all: low priority updates are not delayed longer than

the default MRAI.
This sim pler version does not consider AS relationships, nor does it compare AS path lengths.

Thus it incurs less overhead. From simulation studies, it works quite well. Therefore, in the

following discussion, we use the simpler version to represent the DUP algorithm.

The following example illustrates the advantages of our DUP algorithm. As shown in Fig. 4.4,

both AS2 and AS3 are connected to TSi. Prefix A is located in ^ ^ 5 ; prefix B is located in AS^.

Suppose to reach destination A, AS2 uses ^ S t ’s path, while AS3 does not; to reach destination B,

A S3 uses A S i’s path, while AS2 does not. Now suppose /ISi first changes its path to A at time T,

then changes its path to B at T+5, and changes its path to A again at T+10. Under the current BGP,

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Timer expires
The interim route is withdrawn
or replaced by a less preferred
route; Timer restarts x

Stable Stale; \

Default BGP /

The primary route is withdrawn or replaced
by a less preferred route; Timer starts

Figure 4.5: Transition diagram between stable and transient states

A S i uses one M RAI tim er for each neighbor. It sends update for the first change (U p d \) to both

AS2 and A S3 at T, and sends updates for the second and third changes (U pd 2 and U pd 3) to both

AS2 and AS3 at T+30 (after the M RAI timers expire). Under the DUP algorithm, in contrast, AS\

uses two M RAI timers for each neighbors. It sends U pd\ to only AS2 at T: since A S3 is not using

A S \ ’s route, the update to AS3 has low priority and thus is delayed; then for the same reason, at T+5

(not T+30: since AS\ does not send U pd\ to AS3 at T, the M RAI tim er for high-priority update is

not reset then) it sends U pd 2 to AS3 only. At T+10, U pds replaces U p d \ , so U pdi is sent to AS2 at

T+15 after the M RAI tim er for high-priority update expires. U pdz is sent to AS2 at T+30 after the

M RAI tim er for low-priority update expires, and U p d i is sent to AS3 at T+35 after the MRAI tim er

for low-priority update expires. Therefore, the DUP algorithm not only sends important updates

(U pd2 to AS3 and U pdz to AS2) sooner, it also reduces the num ber of updates: under DUP, only

five updates are sent. Since U p d i (U p d \) is not used by AS2 (AS3), its delay does not affect routing

decision.

4.6 DUP+: Enhanced DUP

Note that in the above discussion, we assumed that all the updates contain valid routes. W hile

this assumption holds during the propagation of new routes, it does not hold in case of a network

component failure which may invalidate some existing candidate routes, and these invalid routes

may propagate through the network during the transient period after the failure. This propagation

of invalid routes caused by BGP path exploration is the main culprit for the extraordinarily long

convergence time after a failure, unnecessarily triggering excessive routing changes at the same

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time.

Also, since invalid routes are propagated, the actual best route after a failure may not be shorter

than some invalid routes being sent/received earlier; picking shorter routes only as the high-priority

ones (as in the Step 2 of the DUP algorithm) is suboptimal. The update classification needs to be

improved. Ideally we can distinguish valid routes from invalid ones, so that valid routes can receive

higher priority than invalid routes, thus speeding up the convergence.

4.6.1 Difference-Based Route Selection

To reduce the convergence time and the num ber o f updates exchanged after a network fail­

ure, we propose a new route-selection algorithm that selects a new route based on the difference

between the candidate routes and the original (withdrawn) route: when the original route is with­

drawn or replaced by a less preferred route (e.g., due to a network failure), the selected route is the

shortest one with the maximum difference from the original route, which is not necessarily the best

of the remaining routes.

As shown in Fig. 4.5, we define transient and stable states for a prefix. After an original route

is withdrawn or replaced by a less preferred route (usually resulting from a network failure), the

router enters the transient state. In this state, the routing decision process for the prefix does not

select the best remaining route; instead, it selects an interim route with the minimum similarity

to the original route— the one that shares the shortest comm on AS path segment with the original

one. Then, the AS path of the original route is stored as susceptible AS path segment, since the

failure occurred to this path. At the same time, a tim er is started to indicate how long the router has

stayed in the transient state. W hen the tim er expires, the router switches from the transient state to

the stable state, and the best route is recom puted using the default BGP route-selection algorithm.

However, if the existing interim route is withdrawn or replaced again during the transient state, (i)

the tim er is restarted, and (ii) the existing interim route is used to update the susceptible AS path

segment. This new algorithm used during the transient state is called Diff.

The details of the Diff algorithm are given in Table 4.5. Currently, the length of the tim er

(tp in the code) is set to 1.5 times the M RAI tim er value. The idea is to set it long enough to

catch consecutive updates from a single BGP neighbor. Also, during the same transient state, if

the interim route is withdrawn or replaced by a less preferred route, the LCS (longest common

subsequence) of the interim route and the susceptible AS path segment is computed (recursively)

to get the new susceptible path segment, which has the effect of narrowing down the location of

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.5: Pseudocode of D iff algorithm

ASP: AS path of route R;
P: destination prefix of route R:
ASP,cs: susceptible AS path segment;
lcs (asp\, asp2): longest common subsequence of two AS paths;

01 / / Route R is withdrawn or replaced by a less preferred route :
02 If P is in default stable state, Then
03 ASPiCs — ASP:
04 start the timer tp\
05 Else

06 ASPics = lcs (ASPi^, ASP):
07 restart the timer tp:
08 select the shortest route sharing the minimum LCS with ASPics■

the failure. A variable ASPics is used to store the susceptible AS path segment.

The intuition behind Diff is that during the transient state, the routes are not stable and many

invalid routes are propagated. These invalid routes are closer and more similar to the original

routes; potential valid routes are more different from the original routes. Thus, during the transient

state, we select an interim route which is more likely to be valid. Although this route is not

necessarily the best remaining route, as long as it is valid, it guarantees the reachability of the

destination. The propagation of this valid route also helps other routers to converge to a valid

route faster. After the transient state is exited, m ost (if not all) of the invalid routes are removed

from the routing table, and a new best route can be selected. Therefore, the Diff algorithm skips

invalid backup routes and selects the shortest one with the largest difference from the original

route, which is more likely to be a valid route. This significantly shortens the path exploration

process and generates fewer routing updates.

Suppose the original route is {/IIS’] .. .ASi(AS/c+ \ . . . A S m}, and a failure occurs between ASk and

ASk+\. Then, all the invalid routes after the failure contain the path segment {ASk ASk+ \ . . .ASm}.

By using difference-based route selection, the new algorithm potentially chooses a valid route

faster, favoring routes that do not contain that path segment. On the other hand, a route containing

segment {ASk ASk+ 1 • • • ASm} is not necessarily an invalid route, since there could be m ultiple

peering sessions between ASk and ASk+1.

Note that the Diff algorithm uses two criteria to select an interim route: maximum difference

(which is equivalent to shortest LCS) and shortest AS path length: it chooses the route that shares

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Current Timer

Timer \ Prefixn Prefix a Prefix 13 Prefix] 4
Timeri ------^ N ull

Timers ---- Prefix?, 1 Prefixes Prefixes Pre fix 34

Timerk PrefiXk 1 Prefixk2 Prefixa Prefixk4

Figure 4.6: The global tim er structure

the shortest LCS with the original route first. If m ultiple routes share the same shortest LCS, then

the one with the shortest AS path will be chosen. In addition, the LCS algorithm here is different

from the classic LCS algorithm in that the resulting common subsequence must start from the

origin of the AS paths and m ust contain contiguous ASes. For example, given two routes, { ^ £ 4

4̂ ^3 AS2 ^ S i} and {AS3 AS4 AS2 ^ S i} , both originating from 4 S i, according to our algorithm,

their LCS is {AS2 ^ S i} , not {4 S3 AS2 or {AS4 AS2 ^ S i} . Our algorithm compares the AS

numbers at the corresponding locations only, starting from the original A S .4 Thus the computation

complexity is linear with respect to the lengths of the AS paths.

Since D iff only changes how a route is selected, all the other m echanism s of the default BGP

still remain, including loop detection. Therefore, the routers will converge under Diff if they do

under the default BGP.

Global timer scheme

In the discussion above, we assume that each prefix has a separate timer. We call it individual

timer scheme. Although each tim er is created on demand— only when a prefix is affected by

changes in the network, and it is deleted whenever the routes for the prefix converge, the scheme

may still incur significant overhead in practice when a failure affects a large num ber of prefixes.

To reduce the overhead incurred by the timers, we design a new global timer scheme that

deploys a fixed num ber of global timers for all the prefixes. As shown in Fig. 4.6, the scheme

4If prepending is used by the two routes, redundant AS numbers must be removed from their AS paths before the

comparison.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

works as follows: when a BGP router starts, it automatically starts K timers. The expiration time

of the timers are set as ^ , 2 ^ , 3 (AT — 1)£ , and T, respectively, where T is the full length of

an expiration period. The gap between two neighboring tim ers’ expiration time is There is a

pointer locating the current timer, which is always the one with the longest expiration time. For

each timer, there is also a queue associated with it. W henever a prefix is affected by a change in

the network, it is put in the queue associated with the current tim er until the tim er expires.

W hen a tim er expires, (i) if its queue is not empty, all prefixes in the queue go through the route

recomputation process to select the best routes, after which they are removed from the queue; (ii)

the tim er is reset with length T ; (iii) the current tim er pointer points to this newly reset timer.

Since the current tim er is updated whenever a tim er expires, its expiration time is always about

T time away (more accurately, the time value is between and T). Also, a prefix is always

put in the queue o f the current timer. Therefore, for each prefix, its tim er will expire in t, where

i*LjpL < i < T .

Instead of a tim er for each prefix, only a small num ber (K) o f timers are m aintained here, which

are shared by all the prefixes. The larger K is, the more closely the scheme simulates the individual

tim er scheme. Since T equals 1.5 times of the M RAI tim er value (as discussed above), we set K

as 9. Thus £ is one sixth o f the M RAI tim er value. From simulation tests, the two tim er schemes

work almost identically.

4.6.2 DUP+

Combining Diff with DUP, we can send potentially invalid routes using a longer M RAI tim er

while sending valid route using a shorter M RAI timer. This new algorithm is called DUP+, which

is an extension of DUP. Under DUP+, the algorithm determines whether a prefix is in stable or

transient state: if. it is in stable state, the DUP algorithm will be executed; if it is in transient

state, it will compare LCS values instead to determine the priority of an update. The details of the

sender-side DUP+ algorithm are given in Tables 4.6. Note that DUP+ is a superset of DUP. In line

3 of Table 4.6, the corresponding code for DUP is called.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.6: Pseudocode of DUP+ algorithm: sender side

ASP?ew: AS path of the newly-chosen route for prefix D;
ASPi\ AS path of the route for D received from AS2;
ASPics'. susceptible AS path segment;
lcs (asp\ , aspi)\ longest common subsequence of two AS paths;

01 / / AS 1 sends an update for D to AS2.
02 If the prefix is in stable state, Then
03 call DUPJSend();
04 Else
05 If ASPi = Null, Then
06 sends the update with shorter MRAI timer;
07 Else
08 If lcs (ASP"ew. ASP,cs) < lcs (ASP2, ASP/cs), Then
09 sends the update with shorter MRAI timer;
10 Else
11 sends the update with longer MRAI timer;

Overhead

DUP+ introduces some extra overhead in terms of state maintenance and processing load. In

D iff algorithm, once a prefix is in transient state, it needs to maintain its susceptible AS path

segment. This consumes 2L bytes of memory for each path segment, where L is the length of the

AS path segment and is generally a single digit. On the other hand, these states are required only

for the prefixes that are affected by failures, not for every prefix. By studying Route Views data, we

found that typically an AS makes routing changes for less than 1000 prefixes during a 15-minute

period. Thus the total required memory space is less than 2000Z. bytes. By using the global timer

scheme, Diff also needs to maintain an array o f global timers and their associated prefix queues;

but the num ber of timers and their queues is a small fixed number. In addition, DUP+ maintains

an extra M RAI tim er for each neighbor.

DUP+ also incurs extra processing overhead. The LCS computation in Diff only occurs during

failures, and its com plexity is O(n) , where n is the length o f the longest com mon subsequence

of the two AS paths. All the other functions are ju st simple modification of existing BGP, which

contain only a few dozen lines of code. Thus the extra overhead is small.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.7: Parameters and their default values

Parameters Values
Link delay 0.01-0.1 (sec)

MRAIhng (for low priority) 30 (sec)

MRAIshort (for high priority) 15 (sec)

MIN_PROC_TIME 0.01 (sec)
MAX_PROC_TIME 0.5,0.1 (sec)
Number of advertisers 3

Length of timer tp (used by Diff algorithm) 1.5 * MRAIiong
Number of global timers 9

4.7 Evaluation

To demonstrate the benefits of the DUP+ algorithm , 5 we evaluate it using SSFN et’s BGP sim­

ulator [83], a Java-based sim ulator widely used for studying BGP performance (e.g., [74, 76, 78]).

4.7.1 Simulation Design

We studied two scenarios: new route propagation and link failure. The performance metrics

used are valid network convergence time, average valid convergence time, and the num ber of

updates exchanged.

First, we define valid convergence time, based on which the other two definitions follow:

Definition 4.7.1 (Valid convergence time). The valid convergence time o f a router is the length

o f the time interval (te, tc], where te is the time when the origin router sends out the first update

messages, and tc is the time instant after which the router always has valid routes (through which

the destination is reachable).

Note that a router may switch from one valid route to another after its valid convergence time

being reached.

Definition 4.7.2 (Valid network convergence time). The valid network convergence time is the

length o f the time interval (te, tnc], where te is the time the origin router sends out the first update

messages, and tnc is the time instant after which all the routers in the network always have valid

routes.

5Since DUP+ is a superset o f DUP, we used only DUP+ in the evaluation.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The valid network convergence time is in fact the worst valid convergence time among all the

nodes.

Definition 4.7.3 (Average valid convergence time). The average valid convergence time is the

average over the valid convergence times o f all the nodes in the network.

Com pared to the comm only-used definition for convergence time [74], the valid (network) con­

vergence time more accurately captures the reachability of a node (the network) to the destination

and the impact of routing changes on application traffic. Similar definitions have also been pro­

posed, such as next-hop convergence time [79] and data-plane convergence time [84]. Com pared

to them, the valid convergence time is easier to measure.

Table 4.7 describes the simulation parameters and their default values. The link delay was

randomly set between 0.01s and 0.1s. In the SSFNet simulator, the CPU processing delay for

each packet is simulated to be a random value between two thresholds— M IN_PROC-TIM E and

M AXJPROC-TIM E. They were set to 0.01s and 0.5s, respectively. (We also used 0.1s for

MAX_PROC_TIME and found that the relative performance of DUP+ is very similar). For sim ­

plicity, we always set MRAIshort to be half o f MRAIiong.

To test some realistic network topologies, we used the multi-AS topology generating package

from SSFNet [85], which contains seven different topologies based on the Internet BGP routing

table. The num ber of nodes contained in the topologies ranges from 29 to 830. For each topology,

we chose N nodes as advertisers, which announce their own IP prefixes to the network. Among

all the nodes in each topology, we only chose those with a small num ber of neighboring nodes

(less than or equal to four) in the simulation, meaning that they are more likely to be at the edge

o f the network. The default value o f A is 3. For each simulation scenario, we randomly picked

six instances of advertisers; for each of them, we conducted six independent runs with different

random seeds. Therefore, there are 36 runs for each scenario. The results are summarized as the

average value of the 36 runs, and are presented using 95% confidence interval.

4 .7 .2 R e su lts

New route propagation

We first tested the case that new routes are propagated, and compared DUP+ with the default

BGP. To study the interactions among routing changes, the three advertisers started at different

times with a delay of a few seconds between them. We focused on the performance of the last

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100
Default BGP
Default B G P15
DUP+
DUP+60

10
vE
8
c
CD0
©
c
8

20

100 200 300 400 500 600 700 8000

netw ork size

(a) Valid network convergence time

— Default B G F ^
► Default B G P15
i DUP+
* - DUP+60

45

E

8
8□)
c
8
CD
CD2
2
CO

0 100 200 300 400 500 600 700 800

netw ork size

(b) Average valid convergence time

— Default BGP
Default BG P15
DUP+
pup+60

25000

20000

15000

10000

5000

0
100 200 300 4 00 5 00 600 70 0 8000

netw ork size

(c) Number of updates

Figure 4.7: Performance comparison between default BGP and DUP+: new route propagation

advertiser; the other two were considered as the generators o f cross traffic.

As shown in Fig. 4.7, the DUP+ algorithm yields very short valid network convergence time

and average valid convergence time— only 40% or less of those for default BGP. At the same

time, the num ber of updates is also smaller, saving about 30% of updates. This clearly shows

the benefits of DUP+. For comparison, we also ran default BGP with M RAI tim er of 15 seconds

(called “default BGP 15”), and DUP+ with M RAI tim er o f 30 (60) seconds for high (low) priority

updates (called “DUP+60”). As the results show, DUP+60 still outperform s default BGP, and its

average convergence time is even shorter than “default B G P15”. The clearly shows the benefits o f

differentiated processing.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140
D efau lt BGP
Default B G P15
DUP+
G host Flushing
RootTC a u se

120

1

0 100 200 300 400 500 600 700 800 900
netw ork size

(a) Valid network convergence time

D efau lt 6 6 ^
Default BG P15
DUP+
G host Flushing
Root C au se
Root C au se1 5

80000

70000

60000

50000

40000

30000

20000

10000

0
0 100 2 00 300 400 500 600 7 00 800

network size

(c) Number of updates

80
- Default BGP
- Default B G P15
- DUP+

• G host Flushing
Root C a u s e

- R oo t]C ause 15-

70

60

50

40

30

20

10

0
100 200 300 400 500 600 700 800 9000

network size

(b) Average valid convergence time

■- >■■■ Default BGP
Default B G P15

* DUP+
G host Flushing

* Root C au se
* R o o tC a u se 1 5

100 200 300 4 00 500
netw ork size

(d) Number of routing changes

Figure 4.8: Performance comparison between default BGP, DUP+, Ghost Flushing and Root

Cause: failure case

L in k failu re

We also evaluated the DUP+ algorithm under the link failure scenario, and compared it with

the default BGP, Ghost Flushing, and Root-Cause based scheme. In addition to the default M RAI

value o f 30 seconds, we also used the value of 15 seconds for the default BGP (called “default

BGP 15”) and Root Cause (called “Root Cause 15”) to see how well they perform with a shorter

MRAI. For each topology, we randomly picked a node with a small num ber of peers as a test

node. The test node first advertised some network prefixes to all its neighbors. For a given prefix,

it advertised different AS path lengths to different neighbors by prepending. After the network

initially converged, we broke the link between the test node and one of its neighbors, and observed

how the algorithms perform. As in the new route propagation case, two additional nodes started

advertising their prefixes shortly before the failure, injecting cross traffic.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As shown in Fig. 4.8, DUP+ has shorter valid network/average convergence time than not

only both Ghost Flushing and default BGP (as much as 80%), but also Root Cause, which is a

little surprising. The reason is that although Root Cause selects only valid route after failure by

removing invalid route very fast, it propagates valid route the same way the default BGP does; in

contrast, DUP+ propagates valid route with a shorter timer, which overcomes that fact that it is

slower in selecting valid route. By using a shorter M RAI value of 15 seconds, we can see that

“Root Cause 15” indeed performs the best, but DUP+ is very close to it.

Under DUP+ the num ber o f updates is very small as well. Again the num ber is very close to

that for Root Cause. Although Ghost Flushing has shorter convergence time than the default BGP,

the num ber o f updates under it is surprisingly large. By checking the simulation data, we found

that most of the updates are the extra withdrawals triggered by mechanisms o f the Ghost Flushing

algorithm.

In addition to the above three performance metrics, we also examined the num ber of routing

changes under each algorithm and found the DUP+ algorithm to incur 50% fewer routing changes

than the default BGP and Ghost Flushing, leading to more stable routes. In contrast, it is not as

good as Root Cause since it is not as efficient in selecting valid routes; but the difference is rather

small.

In summary, not only does DUP+ outperform the default BGP and Ghost Flushing, its perfor­

mance exceeds or comes close to that of the Root-Cause based scheme as well. This shows that the

performance o f the current BGP can be significantly improved using our scheme without changing

BGP message form at required by Root-Cause based approaches.

4.8 Concluding Remarks

In this chapter, we presented a simple and novel way of differentiating BGP updates based on

their impact on inferred routing decisions of the receiver. It is shown to make significant improve­

ments in both reducing the routers’ overhead of processing an excessive num ber of BGP updates,

as well as reducing routing convergence time. The proposed scheme is simple to implement, re­

quires no modification of BGP protocol semantics, and can be deployed incrementally.

So far, we have mainly focused on EBGP (External BGP) sessions (for BGP neighbors be­

longing to different ASes). Inside a large AS, there are also many IBGP (Internal BGP) sessions.

However, the default M RAI tim er for IBGP is only 5 seconds, much shorter than that for EBGP.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In addition, all the IBGP routers in the same AS are either directly peering with each other, or

peering through route-reflectors. Therefore, routing delay inside an AS is generally shorter than

that between ASes. Thus, our scheme does not modify the processing o f updates between IBGP

nodes.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

Impact of BGP Routing Changes on Application Traffic

5.1 Introduction

As discussed in the previous chapter, BGP has been shown to suffer from long convergence de­

lays and to generate many updates (some containing routes already invalidated by failures). Such

routing disruptions can have significant impact on emerging, popular real-time applications like

VoIP and IPTV. For example, recent work [8 6] showed that BGP routing changes degrade perfor­

m ance of VoIP applications. It is thus important to understand the general impact of BGP routing

changes on application traffic. Specifically, we would like to answer the following questions: (1)

how much impact do routing changes have on application traffic? (2) which routing changes cause

more impact? and (3) can we devise new metrics to m easure the impact, instead o f just using

update count, to improve routing decisions?

We take a two-step approach to this problem. First, we study it at the AS level, examining how

many ASes are affected by a given update. To do this, we first obtained AS relationship information

containing the structure o f the Internet hierarchy. Based on this hierarchy the num ber of ASes

affected is analyzed. We then collect BGP data from m ultiple vantage points. At each vantage

point, given an update, the current routing table o f that vantage point, and the underlying AS-level

hierarchy, we infer the num ber of ASes in the network affected by this routing change. Note that an

update may be a withdrawal or an announcement of an alternative route. A withdrawal has more

severe impact since the affected ASes may have no alternative routes, while an announcement

only forces the affected ASes to change their routes. We can also correlate the updates observed

at m ultiple vantage points and narrow down the source of a routing change, from which one can

obtain a more accurate set of affected ASes.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The second step is to study failure impact at the traffic level, examining how much application

traffic is affected by a given routing change. Ideally we need to m easure the interdomain traffic

matrices and map them onto the BGP routing hierarchy to determine the amount of traffic affected

by a BGP routing change. However, such Internet-wide traffic matrices are difficult to obtain [87],

because ISPs generally are unwilling to disclose traffic-volume statistics of their networks. For this

reason, we used case studies to focus on the other readily available traffic information including

a local ISP’s traffic statistics and the rankings of the top Internet sites. We therefore focus on the

impact of routing changes on a regional ISP in addition to popular Internet Web sites. Note that our

framework enables any ISP to perform intelligent route selection to reduce traffic impact caused

by routing disruptions based on local information.

In summary, our main contributions are the following, i) We present a novel algorithm to infer

the set of affected ASes from a single vantage point based on observed routing updates, ii) We

evaluate the algorithm using empirical BGP data and find that updates from top tiers affect more

ASes. iii) Using a local ISP Network’s traffic and routing data, we study the impact of routing

changes on user traffic and find that top prefixes with high traffic volume in general have few

routing changes, in particular much fewer routing withdrawals, iv) We propose a new algorithm of

delaying adoption of certain routing changes, so that the amount o f traffic shift will be minimized.

We test the idea by using the local ISP’s routing data and find that it can save as much as 30% of

routing changes for top prefixes with high traffic volume.

The rest of the chapter is organized as follows. Section 5.2 describes an analytical method

for studying the AS-level impact of BGP routing changes and presents the results of AS-level

analysis using the Route Views data [81]. Section 5.3 discusses the traffic-level impact of routing

changes using traffic data from the local ISP Network. We describe related work in Section 5.4

and conclude in Section 5.5.

5.2 AS-Level Analysis

The first step is to infer which A Ses are affected by a given routing change based on the A S-

relationship hierarchy among all the ASes. An AS is deemed affected if its forwarding decision

is changed because o f a routing update. The basic idea of the analysis algorithm is to identify all

ASes with alternative routes and thus, will not be affected by the routing change. Here we assume

that the alternative routes have priority over the changed route to provide a conservative estimate.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AS relationships are classified into three types: customer-provider, peer-peer, and sibling-

sibling. For simplicity, we ignore the sibling-sibling relationship, since two ASes with this re­

lationship can be m erged into a single AS.

We rely on the following widely-used assumptions [8 8].

A l . If ASes A and B are peers, A only sends B updates pertaining to itself and its customers; so

does B. Routing updates learned from one peer will not be forwarded to other peers.

A2. If A is a custom er of B, A sends B only updates pertaining to itself and its customers; B sends

A the updates learned from all neighboring ASes.

A3. A BGP router prefers routes learned from its customers to those learned from its peers, and it

prefers peer routes to provider routes.

5.2.1 Analysis Algorithm

The algorithm below is conservative and relies on two underlying assumptions: 1) an observed

failure occurs at a local A S ’s immediate link; 2) if an AS has an alternative path, that path is

preferred compared to the path through the local AS. With these two assumptions and the inferred

AS relationships, the algorithm underestimates the num ber of affected ASes and provides a lower

bound for it. M ore accurate estimate can be obtained by inferring the cause for the update, but our

simple algorithm serves our purpose o f identifying highly disruptive routing updates.

The analysis algorithm works as follows:

1. For an AS (we call local AS the AS that receives an update), it identifies the A S’s custom er

list, single-homed custom er list, and its current RIB from the AS relationship data and the

RIB or BGP table data.

2. Given an update UPD for prefix P, it checks the current route for P in the RIB, R 0/d- Suppose

Raid's AS path is { p u p i , • • Pk}-

3. It divides R0id$ AS path into two segments: the upward and downward segments. As shown

in Fig. 5.1, the path { p \ , p 2 , . . . , pk} can be in two forms: the first form is { p \ , p 2 , ■ . pu

■ ■ Pk}> where p j is a custom er of pj +\ for 1 < j < i — 1, and p j is a provider of p J+\ for

i < j < k - 1 ; the second form is { p \ , p 2 , . . . , pu Pi+\, ■. -, Pk}, where p j is a custom er of

p j + 1 for 1 < j < i — 1 , p j is a provider of p j + \ for i + 1 < j < k — 1 , and pi is a peer of

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pi

__ ^

PI Q , ' * ' '■NO Pk

I 1 I------------------ 1
Upward Downward

(a) Case 1: one top-tier AS

Pi Pi+1

__ , -sAD sO ' - „

P1 O r ' ' ' ' ' " ^ O pk

I------------------- 1 I------------------- 1
Upward Downward

(b) Case 2: two top-tier A Ses

Figure 5.1: BGP path segments

Pi+ \. In the first form, the downward segment contains {/?,-, . . pk}\ in the second form, it

contains { p i+t ,

4 . If UPD is a withdrawal, then it checks all the ASes on R 0/d’s downward segment (we call

it set So). First, obtain set S i, which contains all the providers of those ASes; then, obtain

set 1S2 , which contains all the peers of the ASes in sets So and Si; next, obtain set S3 , which

contains all the customers o f the ASes in sets So, S i , and S2 . Let set S = So U Si U S2 U S3 . In

essence, set S contains all the ASes that have alternative routes to reach the destination. ASes

in set S are not affected, but all the other single-homed customers of the local AS (if UPD

is from a peer or provider) or all the other ASes (if UPD is from a customer) are. Fig.5.2

illustrates the relationship of local AS, the update received, and the various AS sets.

Note that (i) sets So, Si, S2 , and S3 exclude the local AS itself; (ii) the affected AS set

includes the local AS, since routing changes are observed there; (iii) the algorithm uses only

the downward segment, because by checking all the providers, peers and the customers, the

upward segment will be covered automatically. Also, if the algorithm uses the ASes in the

upward segment, it can no longer check their providers and peers; otherwise, the resulting

AS path are not “valley-free” .

5. If UPD is an announcement, and its AS path is { q \ , q2 ,- ■ qi}- Sim ilar to steps 3 and 4,

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AS set SO

update

Local AS r y ''f ^ r ' ' ^ q / Pk (destination)

Upward Downward

(a) Relationship of local AS, received update and AS set So

peer set

provider set

peer set

customer set

(b) Relationship of various AS sets

Figure 5.2: Relationship of the local AS and various AS sets

we call the set of ASes in the downward segment of the path set £q, and eventually obtained

set o f ASes set S'. There are two cases here: 1) if R0id s AS path is NULL, then UPD is a

new route. All the ASes in set S' are not affected, but all the other single-homed customers

(if UPD is from peers or providers) or all the other ASes (if UPD is from customers) are

affected; 2) if /?0/ / s route is not NULL, we obtain two sets from the two AS paths: S and S'.

Then, ASes in set S or S' are not affected, but all the other single-hom ed customers (if both

UPD and R0u are from peers or providers) or all the other ASes (UPD and R0/d are from

customers) are. If UPD is from peers or providers and R0m is from customers, then all the

other ASes are affected; if UPD is from customers and Raid is from peers or providers, then

all the other single-hom ed customers are. So, R0id is the deciding factor; UPD is irrelevant.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Update

Updati

Customer-ProviderPeer-Peer

Figure 5.3: An example of a routing update’s affected ASes.

To better understand the algorithm, let’s consider the following example. Suppose we have an

AS hierarchy illustrated in Fig. 5.3: A and B are tier-1 ASes; C, D, E and F are tier-2 ASes; and

the rest are tier-3 ASes. For AS A, its single-homed customers are C and G; its customers are C,

D, G, H, and I. If A receives a withdrawal from B for a prefix located in L, then the original route

for the prefix is {B, F, L}. Next, we obtain So = {B, F, L}, S\ = {B, F}, S2 = NULL (since A is

the local AS, it is excluded from the set S2). Then, S3 - {D, E, H, I, J, K}, and S = {B, F, L, D,

E, H, I, J, K}. Since B is a peer o f A, only the single-hom ed customers of A that are not included

in set S are affected, which are C and G (A itself is also affected). Note that here the algorithm is

conservative and assumes the failure occurs between A and B, in which case all the ASes in set S

are not affected. If the failure occurs between B and F, for example, then ASes in set {B, D, E, H,

I, J} are affected as well. If the failure occurs between F and L, then F and K too are affected.

Using the same example, suppose A receives a withdrawal from C for a prefix located in G,

then the original route for the prefix is {C, G}. Next, we obtain So = {C, G}, S\ = {C} (since A is

the local AS, it is excluded from the set S\), S2 = NULL. Then, S3 = NULL, and S = {C}. Since C

is a custom er o f A, all the other ASes reachable by A but not included in set S are affected, which

are {A, B, D, E, F, H, I, J, K, L}. Similarly, the algorithm is conservative and assumes that the

failure occurs between A and C, in which case all the ASes in set S are not affected. If the failure

occurs, for example, between C and G, then C is affected as well.

1 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.1: AS relationship data comparison

Gao SARK CAIDA

Total num ber of relationship 56006 55863 47140

Customer-provider 47147 53029 42606

Peer-peer 8611 2834 4284

Sibling-sibling 247 - 250

5.2.2 AS Relationship Inference

For the above analysis, we first need to obtain the AS relationship data for the global Internet.

We were able to find the data from three sources: 1) data based on the new AS relationship infer­

ence (called G ao’s) algorithm in [89], which is an updated version of G ao’s original algorithm [8 8];

2) data based on SA RK ’s AS relationship inference algorithm [82] and 3) CAIDA’s data [90]. For

the first two data sources, we first collected routing tables from about three dozen public route

servers [91] and obtained a large num ber o f AS paths. Then, we applied the two inference algo­

rithms to the collected AS paths to obtain the AS relationship data. For the third data source, we

did not have the algorithm but obtained the AS relationship data directly from CAIDA.

As listed in Table 5.1, a m ajority of the relationships are the custom er-provider type, just as

expected. Sibling-sibling relationships are rather rare; SA RK ’s algorithm does not have this clas­

sification at all. Furthermore, these three data sets do not exactly agree with one another. Their

differences are captured in Table 5.2. As can be seen, between two data sets, less than 90% of

relationships are shown to match each other. Note that “Gao-extra” means the num ber of rela­

tionship entries appear in the data set obtained from G ao’s algorithm, but not the other data set in

comparison.

To resolve the discrepancy, we used only G ao’s algorithm and CAIDA’s data, since these two

are shown to be more accurate due to fewer inconsistent relationships. We first applied G ao’s algo­

rithm to obtain the AS relationship information. We then selected a subset o f the AS relationship

results that match CAIDA’s data. Next, we used the subset as an initial input for G ao’s algorithm

to improve accuracy. We used the output as our AS relationship data.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.2: Difference in AS relationship inference

Match Different Gao-extra SARK-extra CAIDA-extra

Gao
SARK

vs. 46372 (82.8%

/ 83%)

9263 (16.5%

/16 .6%)

370 (0.66%) 228 (0.4%) -

Gao
CAIDA

vs. 43903 (78.4%

/ 93.1%)

3102 (5.5% /

6 .6 %)

9000(16%) “ 135 (0.29%)

SARK
CAIDA

vs. 41507 (74.3%

/ 8 8 %)

5441 (9.7% /

11.5%)

" 8915(16%) 195 (0.41%)

5.2.3 Analysis Results

Using Route Views routing data from M ay 2006, we observed routing updates during a two

hour period at 36 vantage points and analyzed their impact in terms of the num ber of affected ASes.

These 36 ASes and their tiers are listed in Table 5.3. In summary, there are 6 tier-1 ASes, 26 tier-2

ASes, and 4 tier-5 ASes. The tier classification is based on the commonly used definition [82],

where tier 1 refers to ISPs without any providers and tier 5 corresponds to stub networks without

any customers.

Since multiple updates can be triggered by a single event, prior to analyzing the impact o f the

updates, we grouped the updates observed at a single vantage point into events in the following

two steps. Note that the goal of this grouping is not to accurately identify routing events, but to

m inimize the num ber o f updates that potentially have the same impact on ASes in the network. To

reduce the processing time, we choose a larger time value than those chosen in the literature [92,

65, 91] as grouping threshold. In practice, such time value can be adjusted based on need.

51. If two updates, upd\ and upd2 , are for the same prefix, and the timestamps of the two are

within a certain threshold (240 seconds), then we group them together by removing u p d \.

52. If two updates, upd\ and updj, are for different prefixes, but (i) they occur within a certain

time threshold (10 seconds), (ii) they share the same AS path, and (iii) their corresponding

AS paths in the routing table are also identical, then we group them into an event. The reason

we use a small num ber 1 0 is that we assume the updates for those prefixes are most likely

propagated in the same BGP message.

After the grouping, we analyzed the impact of updates by using the events obtained above,

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.3: AS numbers and their tiers

Tier Num ber o f ASes AS Numbers

1 6 1239, 2914, 3356, 3549, 701, 7018

2 26 1221, 1668, 2152, 2497, 286, 293,

2905, 3257, 3303, 3557, 5413,

5511, 6453, 6539, 6762, 6939,

7660, 852, 11537, 11608, 11686,

12956, 13237, 14107, 16150,

22388

5 4 3277,3130, 10876, 12682

and derived the affected AS set for each event. The analysis method was described in Section 5.2.

The impact is measured by the num ber o f ASes affected by each event. We used three measures:

average, maximum, and minimum num ber o f affected ASes.

The results are summ arized as follows. Table 5.4 presents the results based on the tier classi­

fication of the vantage points. The events observed at the top tiers are, in general, shown to have

larger impact on the network. This is expected, as top-tier ASes have a large num ber o f custom er

ASes and routing events are more likely to come from custom er ASes.

Table 5.5 presents the results based on the information of which type o f neighbor (a provider,

peer, customer, or sibling) an update is received from. In some cases an update is generated by the

local vantage point itself, which is labeled with “Local” in the table. Local updates are, in general,

shown to have the greatest impact, since they affect all the ASes reachable from the local AS. An

event received from a peer or provider affects only single-homed customers o f the local AS, thus

resulting in smaller impact. In contrast, an event received from a custom er or sibling has larger

impact, since it also affects ASes that are not customers of the local AS.

Table 5.6 combines the results o f the first two tables, and lists the results based on both AS tiers

and neighbor types. The results are more detailed, and confirm the observation from the first two

tables. For example, since tier-5 nodes have only providers and peers, any events received from

providers or peers only affect the AS itself.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.4: Impact based on tiers of vantage points

Tier Average Maximum Minimum

1 800 23355 46

2 2 0 0 23355 1

5 1 1 1

Table 5.5: Impact based on neighbor type

Neighbor Type Average M aximum M inimum

Local 23180 23355 22994

Peer 101 335 1

Provider 8 32 1

Custom er 3808 23355 1830

Sibling 3252 23355 1994

Table 5.6: Im pact based on both tier and neighbor types

Tier Neighbor Type Average Maximum M inimum

1 Local 23042 23275 22994

1 Peer 172 335 46

1 Provider 0 0 0

1 Custom er 3562 23355 1830

1 Sibling 6011 23355 3296

2 Local 23339 23355 23324

2 Peer 14 32 2

2 Provider 1 0 32 1

2 Customer 4481 23355 1987

2 Sibling 2606 23355 1994

5 Local 0 0 0

5 Peer 1 1 1

5 Provider 1 1 1

5 Customer 0 0 0

5 Sibling 0 0 0

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100000

10000

S 1000
13
£

100

10

local view global view

I
! hilJ \J

10 2 0 3 0 4 0 50

update sequence number
(a) stub AS

6 0 7 0

ts
£

100000

10000

1000

100

local view global view

10

I
» j

.1 i

10 2 0 3 0 4 0 50

update sequence number
(b) tier-1 AS

6 0 70

Figure 5.4: Com parison of local and global views: tier-1 AS has sm aller discrepancy, but the trend

can be predicted accurately for both.

5.2.4 Correlation of Events Collected from Multiple Vantage Points

To obtain a global view of the impact of a routing change, we aggregated the impact results

from all the vantage points available and correlated the events triggered by the same routing

change. For example, if two events observed at ASes A and B are triggered by the same rout­

ing change, and if the sets of impacted ASes at A and B are Sa and S b , respectively, then the

combined set o f impacted ASes should be Sa USb- If events at A and B are both received from

custom er ASes, or both from peer/provider ASes, then Sa and Sb should contain different ASes.

If A receives the update from a customer, while B receives the update from a peer/provider, then

potentially Sb could be a subset of Sa. If A receives an update from B, then Sa is definitely a subset

of Sb.

The results show that for lower-tier ASes or ASes near the edge of the Internet, the difference

between local and global views is significant, as shown in Fig. 5.4 (a). For tier-1 ASes, the dif­

ference is generally smaller, as shown in Fig. 5.4 (b). The large discrepancy for stub A Ses’ local

views and global views is largely accounted for by our conservative estimation. However, it is

im portant to note that the trend of larger impact in local views usually is accurately reflected in

similarly scaled-up larger impact in the global views as explained below. Such trend prediction is

useful to help guide BGP route selection to reduce impact on traffic.

We studied how the results from local views correlate with those from global views. We used

an estim ated average impact value to distinguish the updates with larger im pact from those with

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Source IP Destination IP Protocol Type Source AS Destination AS Octets Packets

Figure 5.5: Netflow record format

sm aller impact. This estim ated average is computed as the minimum of two values to help exclude

outliers: half of the maximum num ber of impact ASes, and 10 times the mininum num ber of

impact ASes. The results indicate that the correlation is very strong— when the impact of an

update is above the estimate from the local view, more than 85% of the cases the impact is above

estim ated average from the global view as well. Thus, impact prediction using local view alone

provides accurate estimation o f global impact without acquiring additional external data.

5.3 Traffic-Level Analysis

Previously, we have described a simple and accurate algorithm for predicting the impact of a

routing update in terms of the num ber o f affected ASes, whose forwarding decisions are impacted

by the routing update. To make the impact metric more complete, we now analyze another aspect

o f the impact based on limited local traffic information to infer the amount o f global traffic affected

due to the observed routing update.

5.3.1 Analysis of Local ISP’s Traffic Data

Com plem enting the AS-level analysis in the previous section, we also analyzed the impact of

BGP routing changes on traffic by using traffic data obtained from a regional ISP serving various

universities and organizations. Netflow [93] is a Cisco standard for collecting flow-based network

traffic statistics from network devices. A typical Netflow entry is presented in Fig. 5.5. It includes

the source and destination IPs, protocol type (e.g.TCP or UDP), source and destination AS num ­

bers, and traffic volume of the flow in terms of byte and packet counts. Using the local ISP’s

Netflow data collected in 2006, we first classified the prefixes into local or ISP’s own prefixes and

external prefixes. For this, w e identified a list o f A Ses that belong to local networks: the local ISP

itself and its custom er ASes. Then, from Route Views’ routing table data, we m apped prefixes to

ASes. Prefixes belonging to the local ASes are classified as local prefixes; the others are external

prefixes. Based on this classification, traffic is divided into three categories: external to local, local

to external, and local to local.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.7: Top external prefixes: traffic source (bytes)

Prefixes ASes D escrip tion

72.14.202.0/23 15169 Google

68.142.64.0/18 22822 Limelight Networks, Inc.

130.199.0.0/16 43 Brookhaven National Laboratory

192.76.177.0/24 12 New York University

128.223.0.0/16 3582 University of Oregon

209.73.188.0/23 36088 AltaVista Company/Yahoo

64.236.0.0/16 1668 AOL Transit Data Network

208.49.80.0/22 18607 UNS (UseNetServer)

64.233.162.0/23 15169 Google

128.91.0.0/16 55 University of Pennsylvania

Then, for each of the three categories, we aggregated the traffic based on source and destination

prefixes, respectively, to identify the top prefixes that generate and receive m ost traffic. We first

sorted the source or destination prefixes based on their traffic volume (in terms of both byte and

packet counts). Tables 5.7 and 5.8 list the top 10 external prefixes sending traffic to the local ASes,

in terms of the num ber of bytes and packets, respectively. As can be seen, 8 of the 10 prefixes

in the two tables are identical and m ost are university networks or Google, reflecting the type

o f the customers of the local ISP. Tables 5.9 and 5.10 list the top 10 external prefixes receiving

traffic from local ASes, in terms of the num ber o f bytes and packets, respectively. They are quite

different from the last two lists. For example, in Table 5.9, 7 out of the 10 prefixes belong to local

commercial ISPs. At the same time, the two lists are quite different, only 3 out of 10 overlap. Such

traffic analysis provides a basis for understanding the amount of traffic a given routing change to

an external destination may influence.

Next, from the local ISP’s routing update files (for the same time period as Netflow data), we

linked the num ber of updates to the traffic volume for each prefix to examine the correlation be­

tween the routing changes and traffic volume for various destination prefixes from the perspective

o f that local ISP network. The results depicted in Fig. 5.6 show that (i) the majority of traffic is

between local and external networks; (ii) the prefixes with a higher traffic volume tend to have

fewer routing changes confirming a previous study [94] performed more than five years ago.

Fig. 5.6(a) shows the traffic volume for the prefixes. To better illustrate the trend, we used

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.8: Top external prefixes: traffic source (packets)

Prefixes ASes D escrip tion

72.14.202.0/23 15169 Google

68.142.64.0/18 22822 Limelight Networks, Inc.

218.85.128.0/17 4134 XiaM en JiM ei Sweet Potato Netbar

130.199.0.0/16 43 Brookhaven National Laboratory

192.76.177.0/24 12 New York University

128.223.0.0/16 3582 University of Oregon

64.236.0.0/16 1668 AOL Transit Data Network

64.233.162.0/23 15169 Google

209.73.188.0/23 36088 AltaVista Company/Yahoo

69.25.156.0/23 32385 VoEx, Inc.

average values: we first sorted the prefixes according to their traffic volume (in num ber of bytes),

and then, from every 100 data points we computed their average value. Thus, each point in the

figure represents the average value of 100 data points. For Figs. 5.6(b)-(d), in addition to the

average values, we also computed the maximum and minimum values for each 1 0 0 data points.

In all four o f them, the prefixes are in the same order for ease of comparison. Fig. 5.6(b) shows

the trend for the num ber of updates. In Figs. 5.6(c) and (d), updates are further classified into

route announcements and withdrawals. The prefixes with a higher traffic volume tend to have

fewer routing changes. The trend for the num ber of withdrawals (in Fig. 5.6(d)) is more evident.

Since withdrawals have more impact on traffic than announcement, understanding its trend is more

important.

We also analyzed the correlation of routing updates with the num ber o f packets being sent and

received based on individual prefixes. The results follow the same trend as in Fig. 5.6 based on

byte count.

5.3.2 Analysis of Top Internet Sites

To examine the impact of routing changes on Internet traffic from the perspective of the global

Internet, we also analyzed the impact on the top Internet sites (ranked by traffic volume) in the US

and around the globe. We use the following methodology to accomplish the task. We (i) obtained

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.9: Top external prefixes: traffic destination, bytes

Prefixes ASes D escrip tion

69.208.0.0/12 7132 SBC Internet Services

68.40.0.0/18 33668 Com cast Cable Communications

68.40.192.0/18 33668 Com cast Cable Communications

68.42.64.0/18 33668 Com cast Cable Communications

66.249.64.0/19 15169 Google

68.40.128.0/18 33668 Com cast Cable Communications

129.79.0.0/16 87 Indiana University

70.224.0.0/11 7132 SBC Internet Services

131.225.0.0/16 3152 Fermi National Accelerator Lab

68.72.0.0/13 7132 SBC Internet Services

the top US 100 and top global 500 sites ranked by Alexa [95]; and (ii) by using the DNS server, we

translated dom ain names into IP addresses. To get more IP addresses, we also prepended common

dom ain name prefixes (such as “mail.” , “video.” , and “news.”) to the obtained dom ain names; (iii)

from the individual IP addresses, we obtained the matching IP prefixes from RouteViews’ routing

table data, which are the smallest subnets covering the IP addresses; (iv) we also translated the IP

prefixes to the corresponding AS numbers using the RouteViews RIB data. A route entry contains

the destination IP prefix and its AS path. The last AS num ber of an AS path is used as the AS

num ber for the corresponding prefix; (v) finally, we used a month (April 2007) of routing update

data from RouteViews, and checked how many of the updates are for the top prefixes and top ASes.

The results are presented in Table 5.11. Only about 0.045% of updates are shown to be for

the top global 100 prefixes, while about 1.70% are for the top global 100 ASes. This clearly

illustrates that from a global Internet perspective, popular destination prefixes usually experience

fewer routing changes. To put those numbers into perspective, in the table we also listed a group

of reference prefixes and reference ASes. The reference prefixes are obtained as follows: using the

same routing update data from RouteViews, we first ranked the prefixes according to the num ber

o f routing changes associated with them. We then picked the prefix that ranked in the middle and

chose a num ber o f consecutive prefixes starting from it. The num ber equals the corresponding top

prefix category. For example, to compare with the top 100 global sites that covers 585 prefixes,

we used 585 prefixes. Note that since the RouteViews data do not distinguish US prefixes from

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.10: Top external prefixes: traffic destination, packets

Prefixes ASes D escrip tion

161.53.0.0/16 2108 Croatian Academic and Research Network (CARNet)

72.14.202.0/23 15169 Google

68.142.64.0/18 22822 Lim elight Networks, Inc.

152.63.0.0/16 701 UUNET

69.25.156.0/23 32385 VoEx, Inc.

69.208.0.0/12 7132 SBC Internet Services

192.76.177.0/24 12 New York University

216.239.36.0/23 15169 Google

66.249.64.0/19 15169 Google

68.40.0.0/18 33668 Com cast Cable Communications

Table 5.11: Im pact on top Internet sites

Top Prefixes (%) Top ASes (%) R eference
Prefixes (%)

R eference
ASes (%)

Top US 100 0.051 1.08 - -

Top Global 100 0.045 1.70 0.086% 4.74%

Top Global 200 0.078 3.22 0.136% 6 .1 2 %

Top Global 300 0.129 5.29 0.169% 8.37%

Top Global 400 0.172 7.74 0.209% 9.61%

Top Global 500 0 .2 1 2 1 0 .2 1 0.241% 1 0 .2 2 %

foreign prefixes, we did not have a reference prefix and AS lists for top U.S. 100 sites. As can

be seen, the top prefixes or ASes have fewer routing changes than the reference lists. However, if

such routing changes occur, they will affect a significantly larger amount of traffic. As described

later, we devise an intelligent routing selection improvement to reduce such routing-induced traffic

disruptions.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

traffic volum e (bytes) for e a c h prefix num ber of u p d a te s for e a c h prefix

1e+10

1e+09

1e+08

1e+07

1e+06

100000

10000

1000

100

10

A verage

0 200 400 600 800 1000 1200 1400
prefixes

(a)
num ber of an n o u n cem en ts for e a c h prefix

Maximum100000

10000

1000

100

10

1

A verage
• Minimum

teiWSil

prefixes

1200 1400

Maximum100000

10000

A verage
Minimum

10000

1000

£5
100

200 400 600 800 1000 1200 1400
prefixes

(b)
num ber of w ithdraw als for e a ch prefix

Maximum
A verage
Minimum

1000 1200
prefixes

1400

(c) (d)

Figure 5.6: Relationship between traffic volume (bytes) and num ber of updates: external to local,

source-based comparison.

5.3.3 Routing Stability of ISPs

One metric to rate different ISPs is based on the stability o f routes carried by the ISP. If an ISP

continuously announce many routing changes, it means that the ISP does not have stable routes to

reach the corresponding destinations. To compare the routing stability of various ISPs, we used the

routing update files collected by both RouteViews and RIPE for the month of April in 2007. The

vantage points covers 71 ASes located in the US, Europe, and Asia. We describe below our simple

m ethod to compare routing stability of large ISPs based on observed routing changes. Note that if

a routing change is due to failure close to the origin prefix, all networks will be impacted. Thus,

counting updates is a simple and effective way to compare ISP’s routing stabilities.

(i) First, we checked the RIB files for those ASes and removed the ASes that have very small

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RIB files (implying that they contained default routes rather than a full BGP table). For the re­

maining 63 ASes, we divided each file into m ultiple sub-files, one for each AS.

(ii) Then, we removed the extraordinarily large sub-files, which may be triggered by the session

resets between the vantage points and the collecting routers o f Route Views and RIPE. For this, we

first checked how many routing updates the files contain. If a file contains too many routing

updates (more than half of a full BGP table size), we checked how many prefixes are affected by

those routing updates. If the num ber is greater than a threshold, a half of the routing table size

for that AS, then we checked the files collected immediately before and after the current file. We

combined one of the files with the current file, respectively. If for the combined file, the affected

prefixes is close to the corresponding routing table size, then there is a session reset between the AS

and RouteViews/RIPE router. We remove the num ber of routing changes that equals the routing

table size from the final count for that AS.

Note that unlike the previous work [96] on identifying BGP table transfers, we did not try to

infer exactly when the reset starts. We just needed to confirm that there exists a reset around the

time the current update file was collected and subtracted that amount o f routing changes from the

final calculation. We also assumed that a session reset occurs within 30 minutes, and it span over

at m ost two consecutive update files. This is verified from previous observations.

(iii) Next, all o f the files for the same AS will be combined together to count the total num ber of

updates for that AS. Note that some ASes have m ultiple peering sessions with RouteVeiws/RIPE

routers. We calculated the average num ber of updates for the ASes in this case.

(iv) We now compare the num ber of updates for different ASes, and plot them in Fig. 5.7. The

stability o f different ASes is found to vary significantly. M ost ASes have 4000K— 10,000K routing

changes, though. The m ost stable and least stable ASes are shown in Table 5.13.

For comparison, we also removed all large files identified in Step (ii) and plotted a second

curve. The goal was to see how much the results were affected by some large bursts o f routing

updates. The two curves are found to be similar. The results also show that for the ASes with

many routing changes, they are continuously unstable— the instability is not caused by those large

bursts o f routing changes. Such an analysis is useful for making provider ISP selection decisions,

as any network would prefer to obtain transit services from ISPs providing stable routing to most

destinations.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.12: Tiers o f vantage

points

T iers N u m b er o f ASes
1 8

2 44
3 5
5 6

cn
0 O)cTO
O)c

0
_Q
E

100000

10000

1000

without r ese ts
without large files

J

100

10

10 20 30
A S e s

40 50 60

Figure 5.7: AS stability comparison

5.3.4 Enhanced Routing-Decision Process

Based on the above analysis, some routing changes may significantly affect application per­

formance, so we designed an enhanced version of the BGP routing decision process to take into

account o f the impact of a routing change. The basic idea is that if the difference between the

existing route and a new route is not significant, and if the affected traffic volume is large, then the

routing change will not be adopted immediately. The key is that the existing route should still be

valid after the new route is received.
To evaluate the effectiveness of this idea, we examined the local IS P ’s data and analyzed the

updates for the top 500 prefixes with a high traffic volume. If the ISP receives a better route (either

with a higher local preference num ber or a shorter AS path length) that replaces the current route,

we assumed that the replaced route is still valid. Then the algorithm delays the adoption of the

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

new route for 12 hours (This is to simulate the case that the adoption is delayed until m idnight

when traffic volume tends to turn low, so that the impact on traffic is minimized). The results show

that most of the updates contain duplicate routes that are identical to the previous ones (or routes

with the same AS path but different attributes). For the updates that do contain different AS paths

than the previous routes, about 30% of routing changes for the top 10 prefixes can be saved if the

changes are not adopted immediately. For most of the time, within two hours those changes were

replaced by new changes. For top 500 prefixes, the average savings is 14%. The details are shown

in Table 5.14.

We also checked how many prefixes virtually have no routing changes (or all of the routing

changes are identical). As shown in Table 5.14, more than 30% of the top prefixes have no routing

changes, as their respective providers are usually well managed. The maximum num ber o f routing

changes for a prefix is also shown. The top prefixes tend to have few changes; however, when they

do experience changes, the impacted traffic is more significant and thus can benefit from a more

traffic disruption aware route selection scheme.

5.4 Related Work

Our work is motivated by several past m easurem ent studies on BGP dynamics [65, 97] and the

observation that m ost studies do not effectively quantify how BGP routing change affects traffic at

the global Internet scale.

A recent study [98] o f BGP dynamics has shown that as the Internet is becoming larger, BGP

routing changes also become more intense. Our work verifies and builds on a previous study by

Rexford et al. [94] which shows that m ost BGP routing changes stem from a small num ber of

unpopular destinations; for the popular destinations that generate large volume of traffic, their

routes are very stable. However, their observation is from a single (although large) A S’s point of

view, which limits the significance o f their results. M oreover their study focused on only the first

question m entioned in our introduction without further understanding how to reduce potentially

disruptive impact on traffic.

Kushman et al. [8 6] recently analyzed the performance of VoIP applications and found that

B G P’s slow convergence has significant negative impact on the quality of cross-domain VoIP calls.

Specifically, B G P’s slow convergence also prevents users from reestablishing the broken VoIP calls

quickly. This motivates our work on traffic disruption aware route selection schemes.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our work also relates to various recent proposals on improving B G P’s route decision process,

such as PGBGP [99] by more cautiously adopting anomalous routes. Our proposal on m odifying

routing decisions can be incrementally deployed using routing control platform such as RCP [6 6]

currently in use by large ISPs.

5.5 Concluding Remarks

In this chapter we performed the first comprehensive study on the impact of BGP routing

changes on network traffic at the global scale. We tackled the problem in two steps: first, we

analyzed how many ASes are affected by a given routing change observed at a vantage point. By

using Route Views routing data, we showed that routing changes observed at top-tier ASes tend

to have impact on more ASes. Also, routing changes received from custom er or local networks

tend to have impact on more ASes. We then analyzed the impact at traffic level. By using a local

regional IS P ’s traffic data, we were able to show that the top prefixes generating or receiving more

traffic tend to have fewer routing changes. We also examined the impact of routing changes on

some top Internet sites, and found that the num ber of routing changes for those sites is small.

Finally, we propose an improved route selection scheme to reduce routing induced disruption on

traffic.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.13: The most and least stable ASes based on routing stabilities.

AS Number AS degree Num of Cus­ Num of Num of Tier
tomers Providers Peers

M ost stable ASes

3303 (Swisscom) 599 155 15 432 2

6079 (RCN Cor­

poration)

142 53 13 76 2

15444 (Netser-

vices, UK)

251 5 21 225 2

7660 (APAN, JP) 37 2 2 5 1 0 2

2018 (TENET) 5 0 4 1 5

Least stable ASes

19151 (WV

FIBER LLC)

366 81 5 280 2

3549 (Global

Crossing, Ltd.)

798 742 0 56 1

3741 (Internet

Solutions, South

Africa)

75 26 9 40 2

6730 (SUNRISE,

Switzerland)

603 172 31 400 2

12956 (Telefon­

ica, Spain)

152 48 2 0 84 2

Table 5.14: Statistics of updates for top prefixes (ranked by traffic volume in bytes)

Number of
prefixes with

no changes

Max. number
of changes per

prefix

Total number
of routing

changes

Total num­
ber of saved
changes

Saving ratio

(%)

Top 10 8 (40%) 2 0 136 42 31

Top 20 14 (35%) 2 0 246 54 2 2

Top 100 70 (35%) 46 2046 256 12.5

Top 500 327 (32.7%) 3289 21857 3118 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

Conclusions and Future Work

6.1 Main Contributions

Emerging real-time, multim edia Internet applications such as voice-over-IP (VoIP), IPTV, and

video conferencing have attracted millions of users. Typical examples include Vonage and Skype’s

VoIP systems and C isco’s TelePresence. These applications require the network to provide better

QoS support. In this dissertation, we tackled the problem of providing QoS in the Internet by

exploring two main functions o f data networks: packet scheduling and routing. We studied the

performance o f aggregate scheduling by both analysis and simulation, and proposed enhancem ents

to the current BGP routing protocol to reduce both its convergence time and the num ber of routing

updates. We also analyzed the impact o f BGP routing changes on application traffic. The main

contributions o f our work are summ arized in the following paragraphs.

We first studied the performance o f aggregation scheduling in Chapters 2 and 3. Aggregate

scheduling combines the scalability of DiffServ and service guarantees o f IntServ. We first studied

a vanilla version o f aggregate scheduling in Chapter 2. By using the GR algorithms to schedule

traffic aggregates, we showed not only the existence of e2 e delay bounds, but also the fact that in

many cases the bounds are sm aller than those of per-flow scheduling. In addition, by using in-depth

simulation we not only confirmed the analytical results, but also dem onstrated the advantages of

aggregate scheduling. Aggregate scheduling is very robust and can exploit statistical multiplexing

gains. It performs better than per-flow scheduling in m ost cases.

In Chapter 3, we extended the previous work and proposed a coordinated version of aggregation

scheduling — Coordinated Aggregate Scheduling (CAS), where m ultiple scheduling nodes along

a path calculate the scheduling deadline at each node collectively. The computation o f the deadline

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of a packet at each intermediate node is coordinated between the node itself and its upstream nodes.

This new algorithm makes the delay o f a flow independent of the burstiness of other flows in the

same aggregate, yielding sm aller e2e delays. This performance improvement is also confirmed by

our simulation results.

To provide better QoS, intelligent packet scheduling alone is not sufficient. The routing system

has to be stable and be able to converge to a new path quickly when network changes occur. In

Chapters 4 and 5, we studied the routing aspect of data networks and proposed ways of enhancing

the performance of the BGP routing protocol. In Chapter 4, we proposed a novel m ethod of

differentiated update processing. BGP updates are classified based on whether their routes are

used in the forwarding tables of the receiving routers for related destination prefixes. High-priority

updates will be processed sooner while low-priority ones will be delayed. This new algorithm is

shown to be able to reduce both the BGP convergence time and the amount of routing updates.

We also proposed a difference-based route selection algorithm, which can significantly reduce the

am ount of unnecessary routing exchange and speed up BGP convergence during network failures.

In Chapter 5, we studied the impact o f BGP routing changes on application traffic at both AS

level and traffic level. At AS level, we showed that routing changes observed at top-tier ASes tend

to affect more ASes. Also, routing changes received from a custom er network or local network

tend to have impact on more ASes. At traffic level, we were able to show that the top prefixes

generating/receiving more traffic volume tend to have fewer routing changes. We also examined

the impact of routing changes on some top Internet sites. The results showed that the num ber of

routing changes for those sites is small.

6.2 Future Work

Despite the recent progress in understanding BGP routing dynamics, there still remain a num ­

ber of important issues that warrant further research. We discuss below a few o f them.

Further evaluation of the enhanced routing-decision process

In Chapter 5 we proposed a novel idea of delaying the selection of certain routes to minimize

the num ber o f routing changes and traffic shifts. The effectiveness o f this enhanced route-decision

process needs to be examined more thoroughly. For example, a more detailed algorithm is needed

to specify under what conditions the delaying mechanism takes action. Simulation and/or experi-

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ments are also needed to evaluate the performance of such a algorithm.

More intelligent AS relationship inference algorithm

Our work in Chapter 5 relies on the accuracy of the AS relationship data. Although many infer­

ence algorithms have been proposed in literature [89, 8 8 , 82, 90], the relationships inferred by them

are, in general, based on some simplistic heuristics such as “valley-free” rule and degree-based rule

(an AS with a larger degree of connectivity is more likely to be a provider o f its neighboring AS

with a smaller degree, not vice versa). Therefore, the inferred relationship does not accurately re­

flect the com plicated business relationship between ASes in the real world. To make matters worse,

the data sources for the inference algorithms are rather limited. Public BGP data repositories such

as Route Views and RIPE provide detailed BGP RIB and update information from dozens of BGP

vantage points. However, compared to the scale of the global Internet, their coverage is still very

limited. For this reason, a lot of backup routes and lower-tier peer-peer links are invisible. Later

algorithms such as those in [89, 90] tried to solve this problem by taking into account other infor­

mation sources such as the Internet registry data. However, (i) the registry data are often out-dated

and (ii) the form at of the data is not uniform, so it is difficult to extract useful information from

them automatically and efficiently. As a result, the relationships inferred by different algorithms

are not consistent with each other. Moreover, there is not any easy way to verify which result is

correct. Therefore, how to design an accurate AS relationship inference algorithm remains an open

question.

Automatic BGP route aggregation

Driven by the expansion o f the Internet and the prevalence of multi-homing, the size of the BGP

table in Internet core routers is increasing very fast, which, in turn, increases the processing time

and overhead of user traffic. At the same time, a larger routing table also demands more memory

in routers. The popularity o f Virtual Private Networks (VPNs), where routers need to maintain

a separate routing table for each supported VPN, further exacerbates the problem. To solve this

problem, the current BG P routers use CIDR (Classless Inter-Domain Routing), which aggregates

m ultiple BGP routes into a single route, but the aggregation requires manual configuration, which

is tedious and prone to error. Recently, several algorithms [100, 101, 102] have been proposed to

help reduce the BGP table size. However, they either require setting up and maintaining a new type

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of routing entity such as policy atom and virtual prefix, or temporarily discard (and later retrieve)

some alternative routes to save memory space. Therefore, these algorithms are complicated and

difficult to deploy. One idea that merits further exploration is to automatically aggregate multiple

related BGP routing entries into a single entry without any human intervention. This is compatible

with the current B G P’s CIDR and easy to deploy. Our preliminary test showed that more than 25%

of BGP routes can be easily aggregated by using this scheme.

1 2 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDICES

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

End-to-End Delay Bounds for Traffic Aggregates under
Guaranteed-Rate Scheduling Algorithms

A.l Proof of Corollary 2.2.1

Proof. Similar to Theorem 2.2.1, from Lem ma 2.2.1 we have

GRCi+i i d) < GRC'(pJf) + + +

Replacing 'Zk^f^k by (2.27), we obtain

GRCl+i (plA) < G R C ‘(p,f) + — --------- -----------L----------d---- |_a ', (A.l)

Thus for the two-level hierarchical H-W F2Q aggregator S), it is a fair aggregator with aggregation

. t .• l k¥. f o k + L ‘max+ 2 i ^ + 2 Y % *
constant j = — ^ ^ — 1-------— .

Then, sim ilar to the proof of Theorem 2.2.2, the e2e delay d Jj satisfies

. emax K
dJf < — + f + { K - ' S) - f — + — — h a j j + Y a ' . (A . 2)

rf ° rf (=2

A lso, since S\ is a hierarchical aggregator, from Fact 2.2.1 we know that its scheduling constant is

larger than that of the stand-alone server:

pm ax I (r 1 _ p m a x \ R r]

a lH < a l + [mmD A j ^ < a] + % L (A.3)
A A

Rearranging the terms in Eq. (A.2), we obtain Eq. (2.28). □

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A .l Proof of Theorem 2.2.3

Proof. For the convenience of description, we regard the other (AM) flows in aggregate flow A as

a virtual flow / , and prove the lem m a for any time t in flow / ’s backlogged period.

Consider the two-level hierarchical H-PFQ scheduler Sj . At the upper-level scheduler, ag­

gregate flow A is treated as a single flow conforming to the token bucket model (Ga,Pa)> where

Oa = and pa = Xf=i p*; at the lower-level variable-rate scheduler, N flows are aggregated

into A. As poin ted out in [52], by defining virtual times in unit o f bits instead o f in unit o f seconds,

many properties o f constant-rate packet schedulers still hold fo r variable-rate packet schedulers.

Consider any backlogged period (t, t] o f flow / at S). For any flow k and time /, from Eqs. (2.24)

and (2.25) we obtain:

K g p s (° A) ~ W f i Q , t) < 4 ,

W l (0 , t) - W [GPS(0, t) < 5i.

Thus, for flow / at the lower-level scheduler S j j ,

W}(x,t) = w}(o,t)-w}(o,x)

 ̂ [W] Gps(0,t) - W] GPS{0,%)\ + 4 + 5/

= Wfopsfi'A) + k'f + 8̂ -. (A.4)

Let W fix j) be the total service provided by S i j , a variable-rate scheduler, during (x,t)- Since flow

/ is backlogged during this period, / at most gets its reserved share at the corresponding GPS

server at S j j , and Wj{%,t) reaches *S)/s capacity during the period. Thus,

fr},GPS(z,0 < j -wfxf i

For t — tk, the time when kth (k > 1) packet in aggregate A is sent out, we have

W}(x,tk) = Wfix,tk), k > 1

= > t r } , Gp s M < k > l.

For tic < t < tk+ \ (k > 0 and assum e to = x), since Wj-Gps(x,t) = Wj-Qp${x,tk) a°d WlA{x,t) =

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W'A{x,tk), we obtain,

w } , g p s (^ 0 < tk < t < t k+], k > 0 .

Therefore,

< ~ ^ (V) , t > x. (A . 5)

Similarly, for aggregate A at the upper-level scheduler, we have

wfa,t) = wKo,t)-wj,(o,%)

^ W ,cra(0> 0 - W j iGPs (0 , t)} - V a - 8 ‘a

= K g p s M - X a - Va . (A . 6)

From Eqs. (A.4), (A.5), and (A.6) we obtain

W}(x,t) = W>(x , () - W} (x , l)

~ ^ ~~ ~R) [^ ' G/>'s'(t , /) ~ ^ ‘A ~ ~ +

Since / is backlogged during (x,f]> so must A during this period, and hence

W‘tGPS(x , t) > R - (t ~ x) . (A . 8)

Since x is the start time of the backlogged period, the backlog of / at x is 0. Thus the backlog of /

at time t, Q‘j (t) , is

6 /(0 = l 4 t (V) - ^ (V)
k H

< X + P*(T)0] — (1 5‘)*T4,C?ra('C>/) + 0 n) [^ - A + >̂'a \ + [ty + 8/]
k j i f K K

< [J , o k + (R - r f) (l - x) } - (\ - rA - R - (l - x) + (l - rA [K iA + &A} + [Kif + bif }
W

< X °k + (1 _ + + (A-9)

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that Eq. (A.9) holds for any time t. Similar to the proof of Theorem 3 in [36], we obtain

the total burstiness of the (AM) outgoing flows as:

□

A.3 Proof of Theorem 2.3.1

}' iProof. Let prA be the packet corresponding to packet p j o f flow / . From Lem ma 2.3.1 we have

GRC],h(pA) < GRC]J(plf) + u'J.

Also, since virtual server S\ ̂ and S2 , • • ■, S k - 1 are GR servers for aggregate flow A, from Lem ma 2.1.2

we have

, , pm ax

GRCV j < GRC''h(pJA) + ^ - + a]'h,

, , pm ax

GRC3(pjA) < GRC2{piA) + + a 2

. . pm ax

GRCK~ 1 (fA) < GRCK~2(pJA) + -A— + aK~2,
K

where a 1’̂ = a 1. Adding them up, and with p̂ A — pip we obtain

G R C ^ U) = GRCK-'iri)

pm ax K —2

< G R C '\p if) + { K - 2) ^ — +a}' , + X
K 1=1

= ^ D K- \ p i/) < GRCK~2(p ir) + c t K~ l

pm ax K — I
< GRC]'! (pL) + (K — 2) + oc1 ̂ +]T a''

K i= 1

Thus, from the definition of GR server, for flow / , the first (AM) servers can be viewed as a virtual
pmax . . V — \

GR server with scheduling constant a* = (K — 2) - ^ - + a ’ -F X,=i ot'.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure A. 1: Multiple recursive aggregation

Then for the last hop, since Sp is also a GR server for flow / , we have

pnax

GRCk {jff < GRC] 'l (pif) + a* + -J— .j j rj-

Thus we obtain

DK{pif) < GRCK(pif) + a K

pmax m a x K '

< GRC]J(pir) + (K - 2) ^ — + a]J + -!— + Y a '
R rf i= 1

pmax m ax K
< [G/fC1 J (p>f) - A1 {pif)\ + (K - 2) + a 1J + -J— + £ a ;.

R rf ;=1

□

A.4 Proof of Theorem 2.3.2

We first prove two lemmas, which consider two basic cases of multiple aggregations. One is

pure recursive aggregation, as shown in Fig. A .l , and the other is pure sequential aggregation as

shown in Fig. A .2.

L em m a A.4.1 (R ecursive A ggregation). Suppose flow f takes K hops o f GR servers, and there

are M aggregators along the path. Suppose all the aggregators are rate-controlled fa ir aggrega­

tors. For each aggregator Bh there is a corresponding deaggregator E, at a later hop, 1 < i < M .

Rj is the GR fo r aggregate flow A i which starts from Bj and ends at Ej. I f \ < B \ < Z?2 < ■ --Bn - i <

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bn < En < En- i • • • < E2 < E\ < K (i.e., aggregation is done recursively, as shown in Fig. A .l),

the e2 e delay fo r packet p Jj , d p satisfies:

djf < [G R C f f f i - A f p f i]

gmax

+ [* - ! - (£ , - 5 , - 1)]-* -
r f

M - 1 gmax

+ X HE, - B, - 1) - (£,+ , - B i + 1 — 1)] ~L
/ - I Ki

gmax M gmax K

+ (Em — Bm ~ + f £ a”■ (A.10)
R M , = 1 R i „ = l

Proof. First, consider aggregate flow A m- From Eq. (2.34) we know

gm ax gm ax g M

^ V , w_,) < GRC^{piAM ^)y{EM- B M) ^ L + - ^ L y £ a".
nM „ = B m

Thus, for aggregate flow A m - i , the set of nodes from B m to E m can be viewed as a virtual GR
gmax gmax

server with scheduling constant olBm = (Em — B m) an-

Then, recursively for aggregate flow A j (M — 1 > i > 1), we have

gm ax gm ax B i+]~] Ei

DE> ,) < GRCb>{p>A. ,) + [E, ~ B, - (E,+ \ - Bi + ,)] ■- f - + + £ a" + £ a " + a s '+'.
K i K i~ 1 „= Bj />=£,■+1 + 1

Thus for aggregate flow Aj - \ (M — 1 > i > 1), the set of nodes from 5 , to E\ can be viewed as a

virtual GR server with scheduling constant

gm ax gm ax Ei

= [£ j - 8 , - (£ i + , - i ; i + ,)] A + A i + ^ a » + £ a " + a B'+' .
K > K i ~ x n= B i n = E i+ , + 1

Here we define Aq = f and Rq = rj :

Since S\ and Sp are GR servers for flow / , from Theorem 2.1.3, we have

gm ax B] —] K

DK(pJf) < GRC](pJf) + [K - l - (E] - B])}— + X a" + £ a " + a S l .
n = l n=E\ + \

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus, by replacing a Bi (1 < i < M) recursively, we obtain

gm ax fl| -] K

DK(pJf) < GRC1 (pJj) + \K — \ — {E\ — B\)] —— H X « " + £ a"
rf n=1 n = £ | + 1

£ m a x gmax f i 2 - 1

+ [£ , - f i , - (£ 2- 5 2)] ^ l + ^ + £ a "+ £ a ”
rf n=B\ n = X + \

gm ax gm ax B M - \ E M_ |
+ [Em-\ ~Bm-\ — + X a"+ X a"

fw-1 “ M-2 n=£M_ | n = E M+ \

gm ax gm ax e m

+ lEu ~ B u) f L + ^ + I <x”.
«W-1

Rearranging the terms, we obtain

gm ax

DK {pif) < GR C] (pJf) + [K — 1 — (£] — 5) — 1)] ——
J J j y

M - 1 gm ax gm ax m gm ax K

i= 1 R i i=] K i n=\

gm ax

< [GRC] (p if) - A ' (p Jf)} + [K - \ - (E] - B] - \) } ^ -

M - \ gm ax gm ax M gm ax K

+ X m - B , - 1) - (Ei+] - Bj+ \ - 1)] ^ - + 1) - ^ - + £ + I a "'
/ = 1 / = l K i n= 1

□
Since 5 , and Et are, respectively, the aggregator and deaggregator for aggregate flow Aj, they

schedule packets of aggregate flow A i- \. Thus, the num ber of hops/servers that schedule packets

of Aj is (Ej — Bj — 1) — (Ej+1 —Bj+i — 1) for 1 < i < M , or E, — Bj — 1 for i = M. Thus, Eq. (A .10)

can be rewritten as Eq. (2.36).

L em m a A.4.2 (Sequen tial A ggregation). Suppose flow f takes K hops o f GR servers, and there

are M aggregators along the path. Suppose all the aggregators are rate-controlled fa ir aggrega­

tors. For each aggregator Bj, there is a corresponding deaggregator Ei a t a later hop, 1 < i < M.

Ri is the GR fo r aggregate A/, which starts from B, and ends at Ei. I f \ < B \ < E\ < B2 < £ 2 <

• • ■ < Bm < Em < K (i.e., aggregation is done sequentially, as shown in Fig. A .2), then the e2e

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure A .2: Multiple sequential aggregation

delay bound fo r p a ck e t p Jj- is:

/=! r f

M gm ax m gm ax K

+ + + (A.i i)
i=l K> /=! K‘ n= 1

Proof. For each aggregate flow A i (1 < i < M) , from Eq. (2.34), we have

gm ax gm ax Ej

De<(4) < GRCb-(p >a) + (£ , - * ,) J L + J - + £ a "
r . f n= Bi

Thus for flow / , the set of nodes from 5 , to Ei can be view as a virtual GR server with scheduling
gmax gmax

constant a 5' = (E t - # /) - $ - -F - j j - + S „ i 5 . a " .

From Theorem 2.1.3, we obtain

M gm ax B\ —1 K M-lA+l"1 M

DK(pJf) < G R C ' (p Jf) + [K - \ - % (E i - B i)}J — + ^ a n+ £ o c " + X £ +
i= \ n — 1 n — y = l n = £ y + l /— I

M gm ax K M gm ax M gm ax

= G / ? C 1 (p }) + [K - 1 - £ (£ , • - * ,)] - 2 - + £ a " + £ (£) - + £ - 2 -
/—I r f n= \ / —I i - 1 r f

M gm ax m gm ax M gm ax K

= G t f C 1 (4) + [(* - 1) - £ (£ , - 5 , - 1)] ^ + £ (£ , - 5 ; - l) - £ - + £ + £ a " .
1=1 r f i= 1 K ‘ / = l K '' « = l

□
Since 5 , and E, are, respectively, the aggregator and deaggregator for aggregate flow A j , they

schedule packets of flow / . Thus, the num ber of hops that schedule packets of A j is Ej — B j — 1 (1 <

i < M). Thus, Eq. (A .l 1) can be rewritten as Eq. (2.36).

W ith these two lemmas, we can now prove Theorem 2.3.2.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. The idea is to prove by induction on the levels of aggregation. Lemmas A.4.1 and A.4.2

have proved the basic cases for the theorem. We use them as two basic building blocks. We only

need to show that if all the component regions o f the e2 e path satisfy the theorem, the whole

aggregation region built based on these component regions satisfies the theorem as well. Again,

we consider two cases:

Case 1: Recursive aggregation

Suppose flow / takes K hops o f GR servers. Along the path, there is an aggregation region

from B i to E\ for aggregate flow A\ with guaranteed rate R \. This aggregation region contains

another one from £ 2 and £ 2 for aggregate flow A 2 , with guaranteed rate £ 2 - In other words,

1 < B\ < B j < £ 2 < E\ < K . If the region from £ 2 to £ 2 satisfies

Case 2: Sequential aggregation

Suppose flow / takes K hops of GR servers and there are M aggregation regions along the

path, each between Bj and £,• (1 < i < M). The guaranteed rate for aggregate flow Aj is R j , which

starts from router B j and ends at router £,-. If 1 < B \ < E\ < £ 2 < £ 2 < ■ • ■ < Bm < Em < K (i.e.,

the aggregation regions are sequentially placed), and each aggregation region between Bj and £ ,

satisfies

The proof of the two cases are similar to those of Lemmas A.4.1 and A.4.2, respectively. Note

that the aggregator and deaggregator for aggregate flow A j do not schedule packets on A j . They

DEl(Ai,) < GRC* (^ ,) + I - f- + Y
k = B 2+1

M pm ax
V A*

then the e2 e delay dj- satisfies

m ax

where M j and N, are the levels of aggregation in the ith aggregation region, then the e2e delay

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

schedule packets of the constituent flows of Aj instead. With these two cases, the theorem is

proven, since any kind o f multiple aggregations is built by combining the recursive and sequential

aggregations. □

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

Coordinated Aggregate Scheduling for Improving End-to-End
Delay Performance

B.l Proof of Lemma 3.1.1

Proof. Since the busy periods of all flows in aggregate A coincide with one another at S-„ packets

leave the aggregator in the correct order of their GRC values. Therefore, no packet reordering is

needed at S i + \ . W ithout loss of generality, we consider a busy period of aggregate A at S j+ \ . We

also assume that the first busy period of aggregated at Si starts at time 0. Note that the busy periods

o f aggregate A at 5/ and Sj+ \ may not coincide with each other. In other words, a busy period at

Sj may be split into m ultiple busy periods at S)+r, multiple busy periods (or m ultiple segments of

busy periods) at Si may be m erged into a single busy period at S/+1.

Let p JA be the j th packet of aggregate A in the busy period.

To ^ -------- T,
T ___________T

0 ' 0

■ Pattern 1 [T 1 Pattern 2iwwim

(a) No gaps between busy periods

Pattern 1 H f | f | Pattern 2 Jj G ap

(b) Gaps between busy periods

Figure B .l: Illustration of scheduling mechanisms of CAS

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case 1: j = 1. Let p A = p j . Since p \ is the first packet o f the busy period,

GRC‘+ 1 (pA) < A'+'(p'A) + ^ .

Also, since 5/ is a GR server,

Ai+\ p \) < GRC‘(pA) + a'

=► G*C/+1 (/>’) < + | + a ;

G/?Ci(p7) + ^ L ± _ + a /. (B. l)
A

Case 2: j > 1. Depending on the relationship between the busy periods of A at S j and S ,+ \, this

case can be further divided into two scenarios.
(i) In this scenario we consider the case when a busy period of A at 5/ is split into m ultiple busy

periods at S j + \ (a special case is that a busy period at S j corresponds to one at 5,+ i). Suppose p \ is

the first packet of a busy period at S j + \ , which is a segment o f a busy period at S j , and suppose p A

- jOg. Then for p JA,

fk
»A, - Ai+i(p\) + ^ f ^GRCi+1 (pJA) = Ai+](p]A) + -

< GRC(p]a) + ^ = j1 a + a ‘, (B.2)

At the same time, suppose p JA = p j , then

\ m ok

GRC'{p’A) =

y j ek y »> M
GRC,+\ p lA) - G R C i{plA) < GRC'(p\) + -̂ - 4 . + K< - *-) L , (B.3)

R r f

We now prove that

+ * . (B.4)
a fy a

Fig. B .l (a) illustrates the idea of the proof by using an aggregate containing three flows. Let

ILif r
rf

Tq = G R C (p \) and T = GRC'(pA) = / . Fig. B .l (a) shows the relationship among the GRC

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

values of the packets at the aggregator S j . Since p \ is the first packet in the busy period (which

consists o f packets in the shaded area), its GRC value at S j , G R C {p \) , must be the smallest among

all the packets in the same busy period. Also, let SP — i kA, the total shaded area (both patterns

1 and 2). We obtain

y m gk
GRC(p'A) - *=1 f = 7 o - r

rf

-T\

y j ok y m (k y j gk

SP ^
= * - r '

< SPl
R
?N pmax

< (B.5)

where S P \ is the pattern 1 ’s shaded area only. The last inequality holds since S P \ contains at most

one packet from each flow in the aggregate. Therefore, from Eqs. (B.3) and (B.4), we obtain

yiV pmax

GRCi+\p>A) < GRC'(pJA) + k + a ‘

pmax
- GRC{p'») : P k Y ■ ■+«''. (B.6)

(ii) In the previous scenario we assume that a busy period of A at S i + \ must belong to a single

busy period at S j . In other words, although a busy period at Sj can be split into m ultiple busy

period at S j + \ , the opposite is not true. In this scenario, we consider the case when a busy period

at 5,--|-i indeed consists of multiple busy periods at S j (or multiple segments o f busy periods at

S j) . As shown in Fig. B .l(b), there will be gaps between the busy periods at S j . Therefore, in the

calculation of GRC'(p^), there will be an extra delay corresponding to the gaps, and its value will

be larger than the sum o f the corresponding packet sizes.

We prove that the lem ma still holds even with the gaps. Similarly to the proof in scenario (i),

we obtain

GRC‘(t7>a) = GRC{pmf)

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(B.7)

where Tf is the total length of gaps between the busy periods of flow / before p j . As shown

ym pk

in Fig. B .l(b), T0 = G R C {p lA), and T = = * ± 1 + pf . Also, let SP = l /k = li kA + Tgap ■ R, the total

shaded area (both patterns 1 and 2), where Tgap is the total length of gaps in the shaded area. Then,

Proof. We prove the theorem in two steps: in the first step, we prove that the theorem holds for

an extreme case, in which the busy periods of all flows in the same aggregate coincide with one

another at the aggregator. In this case, no packet reordering is needed at downstream nodes since

packets leave the aggregator in the correct order of their GRC values. In the second step, we prove

that the extreme case is the worst-case scenario and thus, the theorem holds for all other cases.
j>

Step 1: In this step, no packet reordering is needed. Let p A be the packet in the aggregate flow

A corresponding to the packet p Jj in flow / . From Theorem 3.1.1, we have

Since S2 , . . . ,S k - 1 are all GR servers for aggregate flow A with guaranteed rate R = f ,k=\ rk, from

Lem m a 2.1.2, we have

y m jik

GRC(p'A) - (^ - J . + Tf) = -T\
rf

(B.8)

From Eqs. (B.7) and (B.8), the lemma still holds. □

B.2 Proof of Theorem 3.1.1

, , pm ax

GRC3) < G /? c V j + - ^ - + a 2,

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

max
GRC4 (p j) < GRC3(pJJ + ^ — + a \

, . pmax
GRCK- ' (p JA) < GRCK~2{piA) + ^ — + aK~2

R

Adding them up, we obtain

U J \ , w U Vf)T_ -------

Since ^ = p ’A , the departure time of packet from Sk - \ is

y N pmax pmax K - 2

GRC* - V j < GRC] {p>f) + Lk={ k + (K - 3)M - + £
1=1

l f -] (p>f) = D * - ' (d)

< GRCk ~ 1 (p j) + a K~1

y N pmax pmax K — 1

< G/fC1 (^) + ^ L * + (K - 3) ^ - + X «'•

From the definition of the GR server, the first (AM) servers for flow / can be viewed as a virtual
yN pmax pmax „ ,

GR server with scheduling constant a* = XR k— I- (AT — 3) -^ - 4- Z/Li ex'. Since Sk is also a GR

server for flow / with guaranteed rate rf , from Lem ma 2.1.2, we have

gmax

GRCK(pif) < GRC] (//) + -J— + a*.
./ ./ Y f

Therefore, the departure time of packet p j from Sr is

DK{pif) < GRCK{pif) + aK

gmax

< GRC] (p's) + —— I- a* +
Vf

y N pmax pmax gmax pp

= GRCX (pJf) + I. k + { K - 3) - ^ + — + I a ' . (B.9)
R R rj (.= 1

Then, the e2e delay satisfies

dJf = Df'ip’j - A ' i p * ,)

y N pmax pmax jW .™ K
< [GRC' (jd p -A ' [p>f)\ + U=iR k + (K - 3) + X «'• (B.10)

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From [4], for flow / conform ing to the token bucket model (a / , p/) and with reserved rate r f (r f >

p/) , GRCX (ptf) — A 1 {p ’j) < Thus, the theorem follows.

Step 2: Now, we prove that the extreme case discussed in the previous step is the worst case

for e2e delay. Suppose that among the N flows in aggregate A, all other flows’ busy periods start at

the same time at 5), while flow / remains idle. Then, the delay performances of all the other flows

are not negatively affected. In fact, when flow / is idle, the other flows can take advantage of the

extra bandwidth and thus have a sm aller e2 e delay.

However, for flow / , since its bandwidth may be used by other flows when it is idle, it may be

delayed by the packets from other flows when its busy period starts. We prove that even for flow

/ , the above case is indeed the worst case. We further consider two scenarios:

(i) W hen flow / is idle, the actual bandwidth used by other flows in aggregate A is not more

than the reserved rate R. For each scheduling system in which flow / is idle while other flows are

in busy period, we construct a corresponding reference system in which flow / is always in busy

period as long as other flows are in their busy periods. We prove that the e2e delay of flow / in the

original system is not worse than that in the new reference system.

The basic idea is shown in Fig. B.2. Suppose the busy period of flow / (the one with shaded

patterns) starts at to, while all the other flows in the same aggregate start at 0 , the beginning of

aggregate A ’s busy period. In the reference system, the idle period o f flow / between 0 and to

is filled with a sequence of packets o f flow / , which m eet the flow / ’s maximum packet size

requirement. The total packet size equals r j ■ to■ Thus, in both systems the packets of / after to

have identical GRC values. At the same time, the finishing time of packets o f other flows remain

the same, meaning that those packets get sm aller proportionally to the extra bandwidth they take

from / in the original system.

Now, let us examine the delay of f lo w -/ packets. On one hand, in both systems the packets

o f / have identical GRC values. On the other hand, in the original system, the packets of other

flows have GRC values greater than those in the reference system, since the packets arriving before

the first packet o f f are larger than those in the reference system. Therefore, the priorities o f flow

/ ’s packets in the original system are relatively higher than those in the reference system, so the

packets of flow / in the original system have delays no worse than those in the reference system.

Since the reference system belongs to the extreme case we considered in the previous step, this

proves that the extreme case is indeed the worst case.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

flow /

<

<

(a) Original System

<

<

i
i to

(b) Reference System

Figure B.2: A reference system

(ii) W hen flow / is idle, the actual bandwidth used by other flows in aggregate A is more than

the reserved rate R.

We proof that for any packet from flow / , its e2e delay is no worse than the delay bound in the

extreme case. Suppose p A is from flow / .

If at a downstream node Si, the packet get into its correct place (no packets ahead o f it has a

larger deadline value), then the delay experienced by p JA at the downstream nodes of S ,• will be

exactly the same as in Step 1. At the same time, the delay experienced by p JA up until 5, is also

the same, since the delay at 5, will make up the delay discrepancy in upstream nodes. In short, the

delay bound of p JA will be the same as in the extreme case.

Otherwise, the packet always lags behind its correct place all the way. Then at any give node

S i , if the queue for aggregate A is empty, from W F2Q we get D ' (p ^) — A l {pJA) < ^ + A'a , where

A^ Thus the delay bound o f p JA at node Sj is ^ If the

queue for the aggregate is not empty, and there is one packet p A ahead o f p JA with larger deadline

/ tnvalue, then the delay o f the p JA is -A longer, so the total delay is less than

PJ 1 1 T‘A i i * emax , ^m ax , ~a ^

^ + + — + ~ -
zA
C‘

ZA
R

nmax t i
. max

R C‘ '

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(A detailed proof is as follows: Suppose the remaining size of p A is i r . Consider a reference

system in which packet p JA arrives ^ later than in the original system, i.e., A ‘(pA) = Al{pP̂) +

a (f iThen in the reference system, p A will enter an empty queue, thus its delay will be d = —

A,)g™ax + Since in both the reference and original system p JA departs at the same time, but in

the original system it arrives ^ earlier, thus the delay in the original system is ^ longer,

d =

1 1 T* P^ A i f 1 \ m a x , ^ m a x ,
- ~r + [r ~ c ‘)1a + ~ c r + a

p j pm ax t i

< i + i r + c T ' (BJ2)

since l r < i nA < e%*.)

If a group o f packets from flow / are served consecutively at Si, then suppose the first packet

o f this group is p*A, for p̂ A k (k > 1), from the definition o f GRC value,

GRC1 (pif*) > GRC'{p^k~l) + R

4fJ\ i
■̂k oJ+m
2*m=] lf

■" + — R
> GRC'(jrA) H— n . (B.13)

Now consider a packet p Jj-. If at a node a packet from other flows is served between it and

■_1 p gmax j i
its predecessor p j , we consider it has a delay bound - f + at that node and disregard

the node from the following discussion. Then there are only those nodes that p Jj- is consecutively

served after its predecessor. This is illustrated in Fig.B.3. Note that this is done independent o f the

delay experienced by p^] at the disregarded nodes.

Then, for the remaining nodes, the delay can be proven similarly.

Let us redefine GRC value as follows:

GRC(pif) = | m&x{Ai{pi^G R C i{pi-1)} + !_ (B'14)

where /? | is the first packet of a sequence of consecutive packets from flow / .

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O rig in a l T ra v e rse d Path:

R2 R4

b h I' M hhB' l»ib' B-’ h M

F o r p a c k e t P2 , R 2 w ill b e de le te d :

F o r p a c k e t P 3 , R3 w ill b e de le te d :

Figure B.3: An example of isolating nodes

Then, we can prove that W F2Q is a GR server for flow / with a 1 = a
 ̂ gmax

R

u f) ~~ \ F f) "I ^

Next, we can prove that (Since

pmax
GRC{p>f) < Al(p'f) + - ^ -

pmax
GRCi+l (p>f) = GRC1 (pi) + - ^ - + (B. 15)

pmax \ k . £>+m
GRC‘{ p f) < A1 t y) + + m=' fR R

pmax V * (J + m
< GRCi~ \ p ’f) + + +

■’ K R

pmax
< GRC‘~l (//r) + a i_1 + (B.16)

J R

)

This completes the proof. □

Also, as a general discussion, the reordering makes the traditional GRC value at the node m ean­

ingless, because the departure time of a packet at an intermediate node is sort o f independent of its

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

actual arrival time at the node (due to the reordering). The performance of CAS is more dependent

of the fairness property of the scheduling algorithm. Thus different scheduling algorithms could

have (very) different performance. W F2Q is the best we know.

B.3 General proof that CAS is superior to VAS

The proof that CAS is no worse than VAS:

(i) If there is no reordering during the e2e transmission o f packet p Jp then the delays in both

cases are the same;

(ii) If reordering occurs, then the delay in CAS is no worse than the reference case in VAS.

Let us focus on two packets p g and at a node S j. W hen the reordering occurs at node S j,

it does not affect the delay o f the packets ahead and behind the two packets involved. Also, if p k

and exchange places from P g ,p Jf to P f , p ^ , it does not mean p g leaves the aggregator later than

it does in the original case. It is just that it meets p Jp which appears ahead of it in queue at node

Si. The delay of p k at upstream nodes S), • • • ,S/_i remains the same. Thus the GRC value o f p k at

nodes S \ , • • ■, i are sm aller than that in the reference system, which means it can potentially have

sm aller delay at those nodes. It actually has sm aller delay at the aggregator since it is scheduled

ahead of p Jp

Under token bucket traffic model, there are limits on how much traffic from other flows can be

ahead of a given flow. Thus the extra delay caused by those traffic is limited. Continue the above

example, other flows many have packets ahead of p k , but the amount o f traffic is limited; then,

moving p 1j ahead o f p k from behind it, it only adds one packet from flow / , which initially was not

disturbing flow g at all. In fact, the amount of disturbing traffic is far from its limit since flow / is

well below its potential.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[1] R. Braden, D. Clark, and S. Shenker, “Integrated services in the Internet architecture: an

overview,” RFC 1633, June 1994.

[2] B. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation Protocol

(RSVP) — version 1 functional specification,” RFC 2205, Sept. 1997.

[3] H. Zhang, “Service disciplines for guaranteed performance service in packet-switching net­

works,” Proc. IEEE, vol. 83, no. 10, pp. 1374-1396, Oct. 1995.

[4] P. Goyal, S. S. Lam, and H. M. Vin, “Determining end-to-end delay bounds in heterogeneous

networks,” in Proc. ofNOSSDAV’95, Apr. 1995, pp. 287-298.

[5] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow con­

trol in integrated services networks: The single node case,” IEEE/ACM Trans. Networking,

vol. 1, no. 3, pp. 344-357, June 1993.

[6] L. Zhang, “Virtual Clock: A new traffic control algorithm for packet-switched networks,”

ACM Trans. Computer Systems, vol. 9, no. 2, pp. 101-124, May 1991.

[7] S. Blake, D. L. Black, M. A. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture

for differentiated services,” RFC 2475, Dec. 1998.

[8] B. Davie, A. Chamy, J. C. R. Bennett, K. Benson, J.-Y. Le Boudec, B. Courtney, S. Davari,

V. Firoiu, and D. Stiliadis, “An expedited forwarding PHB (Per-Hop Behavior),” RFC 3246,

Mar. 2002.

[9] A. Cham y and J.-Y. Le Boudec, “Delay bounds in a network with aggregate scheduling,” in

Proc. o f QofIS’00, Oct. 2000, pp. 1-13.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[10] I. Stoica, “Stateless Core: A scalable approach for Quality of Service in the Internet,” Ph.D.

dissertation, CM U, CM U-CS-00-176, Dec. 2000.

[11] F. Baker, C. Iturralde, F. Le Faucheur, and B. Davie, “Aggregation of RSVP for IPv4 and

IPv6 reservation,” RFC 3175, Sept. 2001.

[12] J. Ehrensberger, “Resource demand of aggregated resource reservations,” in 1st European

Conf. on Universal Multiservice Networks (ECUMN), Oct. 2000, pp. 56-61.

[13] O. Schelen and S. Pink, “Aggregating resource reservation over multiple routing domains,”

in Proc. ofIE E E IW Q oS’98, May 1998, pp. 29-32.

[14] A. Terzis, L. Zhang, and E. L. Hahne, “Reservations for aggregate traffic: Experiences from

an RSVP tunnels implementation,” in Proc. o f IEEE IW Q oS’98, M ay 1998, pp. 23-25.

[15] B.-K. Choi, D. Xuan, R. Bettati, and W. Zhao, “Scalable QoS guaranteed communication

services for real-time applications,” in Proc. o f IEEE IC D C S’00, Apr. 2000, pp. 180-187.

[16] H. Fu and E. W. Knightly, “Aggregation and scalable QoS: A performance study,” in Proc.

o f IEEE IWQoS ’01, June 2001, pp. 39-50.

[17] S. Berson and S. Vincent, “Aggregation of Internet integrated services state,” in Proc. o f

IEEE IW Q oS’98, May 1998, pp. 26-28.

[18] H. Zhang and S. Keshav, “Comparison of rate-based service disciplines,” in Proc. o f ACM

SIGCOM M ’91, Aug. 1991, pp. 113-121.

[19] T. Li and Y. Rekhter, “A provider architecture for differentiated services and traffic engi­

neering (PASTE),” RFC 2430, Oct. 1998.

[20] D. Awduche, J. M alcolm, J. Agogbua, M. O ’Dell, and J. M cM anus, “Requirements for

traffic engineering over MPLS,” RFC 2702, Sept. 1999.

[21] H. Fu and E. W. Knightly, “A simple model of real-time flow aggregation,” IEEE/ACM

Trans. Networking, vol. 11, no. 3, pp. 422-435, June 2003.

[22] K. Dolzer, W. Payer, and M. Eberspacher, “A simulation study on traffic aggregation in

multi-service networks,” in Proc. o f IEEE Conf. on High Performance Switching and Rout­

ing, June 2000, pp. 157-165.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[23] S. Vutukury and J. Garcia-Luna-Aceves, “A scalable architecture for providing deterministic

guarantees,” in Proc. o f IEEE IC 3N ’99, Oct. 1999, pp. 534-539.

[24] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford, “Dynamics o f hot-potato routing in IP

networks,” in Proc. o f AC M SIGMETRICS ’04, June 2004, pp. 307-319.

[25] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,” in Proc. o f ACM

SIGCOM M ’97, Sept. 1997, pp. 115-126.

[26] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet routing convergence,”

in Proc. ofA C M SIG C O M M ’OO, Aug. 2000, pp. 175-187.

[27] C. Labovitz, A. Ahuja, R. Wattenhofer, and S. Venkatachary, “The impact of Internet policy

and topology on delayed routing convergence,” in Proc. o f IEEE INFOCOM ’Ol, Apr. 2001,

pp. 537-546.

[28] B. J. Premore, “An analysis of convergence properties of the Border Gateway Protocol using

discrete event simulation,” Ph.D. dissertation, Dartmouth College, Departm ent o f Com puter

Science, Technical Report TR2003-452, May 2003.

[29] G. Huston, “Analyzing the Internet BGP routing table,” The Internet Protocol Journal,

vol. 4, no. 1, pp. 2 -15 , Mar. 2001.

[30] T. Bu, L. Gao, and D. Towsley, “On characterizing BGP routing table growth,” in Proc. o f

IEEE Global Internet Symposium ’02, Nov. 2002.

[31] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitaraman, “A m easurem ent-based anal­

ysis o f m ultihom ing,” in Proc. o f A C M SIG C O M M ’03, Aug. 2003, pp. 353-364.

[32] W. Sun and K. G. Shin, “End-to-end delay bounds for traffic aggregates under guaranteed

rate scheduling algorithms,” IEEE/ACM Trans. Networking, vol. 13, no. 5, Oct. 2005.

[33] ------ , “Coordinated aggregate scheduling for improving end-to-end delay performance,” in

Proc. o f IEEE IWQoS ’04, M ontreal, CA, June 2004, pp. 77-86.

[34] W. Sun, Z. M. M ao, and K. G. Shin, “Differentiated BGP update processing for improved

routing convergence,” in Proc. o f IEEE IC N P ’06, Santa Barbara, CA, Nov. 2006, pp. 280-

289.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[35]----- --- , “On understanding impact o f BGP routing changes on application traffic,” under sub­

mission to IEEE INFOCOM 2008.

[36] D. Stiliadis and A. Varma, “Latency-rate servers: A general model for analysis o f traffic

scheduling algorithms,” IE EE/ACM Trans. Networking, vol. 6 , no. 5, pp. 611-624, Aug.

1998.

[37] J. A. Cobb, “Preserving quality of service guarantees in spite o f flow aggregation,” in Proc.

o f IEEE ICNP ’98, Oct. 1998, pp. 90-97.

[38] --- , “Preserving quality of service guarantees in spite of flow aggregation,” IEEE/ACM

Trans. Networking, vol. 10, no. 1, pp. 43-53 , Feb. 2002.

[39] J. C. R. Bennett and H. Zhang, “Hierarchical packet fair queueing algorithms,” in Proc. o f

ACM SIG CO M M ’96, Aug. 1996, pp. 143-156.

[40] --- , “W F2Q: W orst-case fair weighted fair queueing,” in Proc. o f IEEE INFOCOM ’96,

Mar. 1996, pp. 120-128.

[41] J.-Y. Le Boudec, “Application o f network calculus to guaranteed service networks,” IEEE

Trans. Inform. Theory, vol. 44, no. 3, pp. 1087-1096, May 1998.

[42] H. Zhang and D. Ferrari, “Rate-controlled service disciplines,” J. o f High Speed Networks,

vol. 3, no. 4, pp. 389^112, 1994.

[43] S. Keshav, An Engineering Approach to Computer Networking. Addison Wesley, 1997.

[44] “ns2 Simulator.” [Online]. Available: http://www.isi.edu/nsnam/ns/

[45] R. A. Guerin and V. Pla, “Aggregation and conform ance in differentiated service networks:

A case study,” AC M Computer Communication Review, vol. 31, no. 1, pp. 21-32 , Jan. 2001.

[46] J. Sahni, P. Goyal, and H. M. Vin, “Scheduling CBR flows: FIFO or per-flow queueing?” in

Proc. o f NOSSDAV’99, June 1999.

[47] W. E. Leland, M. S. Taqqu, W. W illinger, and D. V. W ilson, “On the self-sim ilar nature of

Ethernet traffic (extended version),” IEEE/ACM Trans. Networking, vol. 2, no. 1, pp. 1-15,

Feb. 1994.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.isi.edu/nsnam/ns/

[48] A. Popescu, “Traffic self-similarity (invited tutorial),” in Proc. o f IEEE Intl. Conf. on

Telecommunications (ICT2001), June 2001.

[49] R. Jain, The Art o f Computer Systems Performance Analysis. John Wiley & Sons, 1991.

[50] F. Fitzek and M. Reisslein, “M PEG-4 and H.263 video traces for network performance

evaluation,” IEEE Network , vol. 15, no. 6 , pp. 40-54 , Nov./Dec. 2001.

[51] J. L. Rexford, A. G. Greenberg, and F. G. Bonomi, “Hardware-efficient fair queueing archi­

tectures for high-speed networks,” in Proc. o f IEEE INFOCOM ’96, Mar. 1996, pp. 638-646.

[52] J. C. R. Bennett, D. C. Stephens, and H. Zhang, “High speed, scalable, and accurate im ple­

m entation of packet fair queueing algorithms in ATM networks,” in Proc. o f IEEE ICNP ’97,

Oct. 1997, pp. 7-14.

[53] D. C. Stephens and H. Zhang, “Implementing distributed packet fair queueing in a scalable

switch architecture,” in Proc. o f IEEE INFOCOM ’98, Mar. 1998, pp. 282-290.

[54] F. M. Chiussi and V. Sivaraman, “Implementing fair queueing in ATM switches. I. a practical

methodology for the analysis of delay bounds,” in GLOBECOM ’97 , Nov. 1997, pp. 50 9 -

518.

[55] F. M. Chiussi and A. Francini, “Implementing fair queueing in ATM switches: the discrete-

rate approach,” in Proc. o f IEEE INFOCOM ’98, Mar. 1998, pp. 272 -281 .

[56] J. Schmitt, M. Karsten, L. Wolf, and R. Steinmetz, “Aggregation of guaranteed service

flows,” in Proc. ofIE E E IW Q oS’99, June 1999, pp. 147-155.

[57] R. Brown, “Calendar queues: A fast 0 (1) priority queue implementation for the simulation

event set problem,” Communications o f the ACM, vol. 31, no. 10, pp. 1220-1227, Oct. 1988.

[58] I. Stoica and H. Zhang, “Providing guaranteed services without per flow m anagement,” in

Proc. o f ACM SIGCO M M ’99, Sept. 1999, pp. 81-94.

[59] J. Kaur and H. M. Vin, “Core-stateless guaranteed rate scheduling algorithms,” in Proc. o f

IEEE INFOCOM ’Ol, Apr. 2001, pp. 1484-1492.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[60] Z.-L. Zhang, Z. Duan, and Y. T. Hou, “Virtual time reference system: A unifying scheduling

framework for scalable support o f guaranteed services,” IEEE J. Select. Areas Commun.,

vol. 18, no. 12, pp. 2684-2695, Dec. 2000.

[61] M. Andrews and L. Zhang, “M inimizing end-to-end delay in high-speed networks with a

simple coordinated schedule,” in Proc. o f IEEE INFOCOM ’99, vol. 1, Mar. 1999, pp. 380-

388.

[62] C. Li and E. W. Knightly, “Coordinated multihop scheduling: A framework for end-to-end

services,” IEEE/ACM Trans. Networking, vol. 10, no. 6 , pp. 776-789, Dec. 2002.

[63] C. Villamizar, R. Chandra, and R. Govindan, “BGP Route Flap Damping,” RFC 2439, Nov.

1998.

[64] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” RFC 1771, Mar. 1995.

[65] Z. M. M ao, R. Bush, T. G. Griffin, and M. Roughan, “BGP beacons,” in Proc. o f Internet

Measurement Conference (IMC) ’03, Oct. 2003.

[6 6] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. S ha ikh ,, and J. van der M erwe, “Design

and implem entation of a routing control platform,” in Proc. ofUSENIXNSDI'05, M ay 2005.

[67] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov, “Designing extensible IP

router software,” in Proc. ofU SE N IX N SD I’05, M ay 2005.

[6 8] “GNU Zebra.” [Online], Available: http://www.zebra.org/

[69] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. F. Wu, and L. Zhang, “O b­

servation and analysis of BGP behavior under stress,” in Proc. o f Internet Measurement

Workshop’02, Nov. 2002, pp. 217-229.

[70] M. Lad, X. Zhao, B. Zhang, D. Massey, and L. Zhang, “Analysis of BGP update surge

during slam m er worm attack,” in IW DC'03, Dec. 2003.

[71] S. Agarwal, C.-N. Chuah, S. Bhattacharrya, and C. Diot, “The impact of BGP dynamics on

router CPU utilization,” in Proc. o f Passive & Active Measurement Workshop, Apr. 2004,

pp. 278-288.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.zebra.org/

[72] A. Feldmann, H. Kong, O. M aennel, and A. Tudor, “M easuring BGP pass-through times,”

in Proc. o f Passive & Active Measurement Workshop, Apr. 2004.

[73] S. R. Sangli, Y. Rekhter, R. Fernando, J. G. Scudder, and E. Chen, “Graceful restart m echa­

nism for BGP,” draft-ietf-idr-restart-10.txt, June 2004.

[74] T. G. Griffin and B. J. Premore, “An experimental analysis o f BGP convergence time,” in

Proc. o f IEEE ICNP ’01 , Nov. 2001, pp. 53-61.

[75] “Juniper M RAI.” [Online]. Available: https://www.juniper.net/techpubs/software/junos

/junos57/swconfig57-routing/htm l/bgp-sum mary32.htm l

[76] D. Pei, X. Zhao, L. Wang, D. Massey, A. M ankin, S. F. Wu, and L. Zhang, “Improving BGP

convergence through consistency assertions,” in Proc. o f IEEE INFOCOM ’02, June 2002,

pp. 902-911.

[77] D. Pei, M. Azuma, N. Nguyen, J. Chen, D. Massey, and L. Zhang, “BGP-RCN: Improving

BGP convergence through root cause notification,” Com puter Science Department, UCLA,

Tech. Rep. TR-030047, Oct. 2003.

[78] J. Chandrashekar, Z. Duan, Z.-L. Zhang, and J. Krasky, “Limiting path exploration in BGP,”

in Proc. ofIE E E IN F O C O M ’05, Mar. 2005.

[79] A. Bremler-Barr, Y. Afek, and S. Schwarz, “Improved BGP convergence via ghost flushing,”

in Proc. o f IEEE INFOCOM ’03, Apr. 2003, pp. 927-937.

[80] R. W hite, “High availability in routing,” The Internet Protocol Journal, vol. 7, no. 1, pp.

2 -14, Mar. 2004.

[81] “University of Oregon Route Views Project.” [Online]. Available:

http ://w w w. rou teviews. org/

[82] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz, “Characterizing the Internet hi­

erarchy from m ultiple vantage points,” in Proc. o f IEEE INFOCOM'02, June 2002, pp.

594-603.

[83] “Scalable Simulation Framework (SSF).” [Online]. Available: http://www.ssfnet.org/

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

https://www.juniper.net/techpubs/software/junos
http://www.ssfnet.org/

[84] F. Hao and P. Koppol, “An Internet scale simulation setup for BGP,” AC M Computer Com­

munication Review, vol. 33, no. 3, pp. 43-57 , July 2003.

[85] B. J. Premore, “M ulti-AS topologies from BGP routing tables.” [Online]. Available:

http://www.ssfnet.org/Exchange/gallery/asgraph/index.html

[8 6] N. Kushman, S. Kandula, and D. Katabi, “Can you hear me now?! It must be BGP,” ACM

Computer Communication Review, 2007.

[87] H. Chang, S. Jamin, Z. M. Mao, and W. W illinger, “An empirical approach to modeling

inter-AS traffic matrics,” in Proc. o f Internet Measurement Conference (IMC), Oct. 2005.

[8 8] L. Gao, “On inferring autonomous system relationships in the Internet,” IEEE/ACM Trans.

Networking, vol. 9, no. 6 , Dec. 2001.

[89] J. X ia and L. Gao, “On the evaluation of AS relationship inferences,” in Proc. o f IEEE

Globecom ’04, Nov. 2004.

[90] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun, and K. C. abd

George Wiley, “AS relationships: Inference and validation,” CAIDA, Tech. Rep., 2006.

[91] A. Feldmann, O. M aennel, Z. M. Mao, A. Berger, and B. Maggs, “Locating internet routing

instabilities,” in Proc. o f AC M SIG C O M M ’04, Aug. 2004.

[92] J. Wu, Z. M. M ao, J. Rexford, and J. Wang, “Finding a needle in a haystack: Pinpointing

significant BGP routing changes in an IP network,” in Proc. o f USENIX N SD I’05, May

2005.

[93] “Cisco Netflow.” [Online]. Available: http://www.cisco.com/en/US/products/ps6601/

products _ios_protocoLgroup_home.html

[94] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing stability o f popular destinations,”

in Proc. o f Internet Measurement Workshop (IMC), Nov. 2002.

[95] “Alexa Traffic Rankings.” [Online]. Available: http://www.alexa.com/

[96] B. Zhang, V. Kambhampati, M. Lad, D. Massey, and L. Zhang, “Identifying BGP routing

table transfer,” in Proceedings o f ACM SIGCOM M Workshop on Mining Network Data

(MineNet-05), 2005.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ssfnet.org/Exchange/gallery/asgraph/index.html
http://www.cisco.com/en/US/products/ps6601/
http://www.alexa.com/

[97] R. Oliveira, B. Zhang, D. Pei, Izhak-Ratzin, and L. Zhang, “Quantifying path exploration in

the Internet,” in Proc. o f Internet Measurement Conference '06, 2006.

[98] J. Li, M. Guidero, Z. Wu, E. Purpus, and T. Ehrenkranz, “BGP routing dynamics revisited,”

ACM Computer Communication Review, vol. 37, no. 2, pp. 7 -16 , Apr. 2007.

[99] J. Karlin, S. Forrest, and J. Rexford, “Pretty Good BGP: Improving BGP by cautiously

adopting routes,” in Proc. o f IEEE ICNP ’06, Nov. 2006.

[100] P. Verkaik, A. Broido, K. Claffy, R. Gao, Y. Hyun, and R. van der Pol,

“Complexity of global routing policies,” CAIDA, Tech. Rep., 2004. [Online]. Available:

http://www.caida.org/funding/routing/atoms/documents/atoms-widew0311 .pdf

[101] X. Zhang, P. Francis, J. Wang, and K. Yoshida, “Scaling IP routing with the core router-

integrated overlay,” in Proc. o f IEEE IC N P ’06, Nov. 2006, pp. 147-156.

[102] E. Karpilovsky and J. Rexford, “Using forgetful routing to control BGP table size,” in Proc.

o f CoNEXT’06, Dec. 2006.

[103] W. Sun and K. G. Shin, “TCP performance under aggregate fair queueing,” in Proc. o f IEEE

Globecom ’04, Dallas, TX, Dec. 2004, pp. 1308-1313.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.caida.org/funding/routing/atoms/documents/atoms-widew0311

