
LiSP: Lightweight Security Protocols for Wireless Sensor Networks

by

Taejoon Park

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
2005

Doctoral Committee:

Professor Kang G. Shin, Chair
Professor Stephane Lafortune
Associate Professor Brian D. Noble
Assistant Professor Mingyan Liu

c© Taejoon Park 2005
All Rights Reserved

To my family, with love and thanks

ii

ACKNOWLEDGMENTS

First of all, I would like to respectfully express my sincere gratitude to my advisor,

Professor Kang G. Shin, for his guidance, insightful suggestions, invaluable comments,

and constant encouragement and optimism that not only helped me overcome frustrations

and difficulties throughout my thesis research, but also will influence my future career in

pursuit of excellence. I was really fortunate to complete my thesis under his supervision

as well as to be part of his talented research group. I’m also indebted to the other members

of my thesis committee, Professors Stephane Lafortune, Brian Noble and Mingyan Liu,

for their advice and comments.

I’m grateful to all of the members of Real-Time Computing Laboratory for their so-

cial and technical assistance, including Dr. Dan Kiskis, Abhijit Bose, Katharine Chang,

Zhigang Chen, Min-Gyu Cho, Mohamed El Gendy, Hyoil Kim, Kyu-Han Kim, Songkuk

Kim, Matt Knysz, Jai-Jin Lim, Daji Qiao, Saurabh Tyagi, Haining Wang, Jian Wu, and

Jisoo Yang. I also would like to extend my thanks to my colleagues in the Department

of EECS, especially, Sangtae Ahn, Hyunseok Chang, Junho Choi, Suhan Choi, Dongsook

Kim, Nam Sung Kim, Hyunseok Lee, Jinsol Lee, Ilju Na, and Hosung Song, for their

friendship and help. Special thanks should go to my family who always showed me their

unconditional love, faith and support.

Finally, I would like to thankfully acknowledge the financial support of the US Office

of Naval Research and the US Naval Research Laboratory under Grant No. N00014-04-

10726, of the US National Science Foundation under Grant CCR-0329629, of the US

iii

Defense Advanced Research Projects Agency under contract F33615-02-C-4031 adminis-

tered by the Air Force Research Laboratory, and of Cisco Corporation.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

CHAPTER

I. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Overview of Sensor Networks 3

1.2.1 Network Architecture 3
1.2.2 Communication Models 4
1.2.3 Localization Algorithms 5

1.3 Security Attacks . 7
1.4 Related Work . 9

1.4.1 Cryptography for Sensor Networks 9
1.4.2 Key Management/Sharing Schemes 11
1.4.3 Countermeasures against Attacks on Localization . . . 12
1.4.4 Tamper-Proofing Techniques 13

1.5 Main Contributions . 16
1.6 Thesis Outline . 19

II. GROUP-BASED KEY MANAGEMENT 21

2.1 Introduction . 21
2.2 System Architecture . 24

2.2.1 The Network Model 24
2.2.2 The Threat Model 26

2.3 The Proposed Protocol . 27
2.3.1 Overview . 27
2.3.2 The GKMP Architecture 28
2.3.3 TK Management . 31

v

2.3.4 Message Encryption/Decryption 40
2.3.5 Inter-Group Communication 42
2.3.6 Realization of GKMP 43

2.4 Performance Analysis . 45
2.4.1 Steady-State Distributions 45
2.4.2 Computational Overhead 47
2.4.3 Communication Overhead 48

2.5 Performance Evaluation . 48
2.5.1 Computational Overhead 49
2.5.2 Communication Overhead 51
2.5.3 Efficiency of TK Management 53
2.5.4 Security Analysis . 54

2.6 Conclusion . 56

III. SECURE ROUTING BASED ON DISTRIBUTED KEY SHARING . 57

3.1 Introduction . 57
3.2 The Proposed Secure Routing 60

3.2.1 Overview . 60
3.2.2 Distributed Key Sharing 63
3.2.3 Secure Geographic Forwarding 69
3.2.4 Temporal-Key Establishment 72
3.2.5 Steady-State Operations 75

3.3 Performance Analysis . 77
3.3.1 Preliminaries . 77
3.3.2 Eavesdropping Probabilities 78
3.3.3 Expected Transcoding Attempts 80

3.4 Security Analysis . 80
3.4.1 Prevention of Sybil Attacks 80
3.4.2 Attacks on DKS Setup 82
3.4.3 Attacks on TKEP/SGFP 83
3.4.4 Tolerance to Physical Attacks 83

3.5 Performance Evaluation . 85
3.5.1 Simulation Environment 85
3.5.2 Overhead of DKS Setup 86
3.5.3 Energy Consumption 87
3.5.4 Security/Energy Tradeoffs 88

3.6 Conclusion . 89

IV. ATTACK-TOLERANT LOCALIZATION 91

4.1 Introduction . 91
4.2 The Proposed Protocol . 93

4.2.1 The Network Model 93

vi

4.2.2 The Threat Model 94
4.2.3 The Proposed Approach 94
4.2.4 The Underlying Localization Algorithm 96
4.2.5 Construction of Normal Profiles 97
4.2.6 Detection of Attacks 102
4.2.7 Protocol Description 104

4.3 Security Analysis . 106
4.3.1 Defense against Location-Targeted Attacks 106
4.3.2 Defense against Distance-Targeted Attacks 107
4.3.3 Defense against Anchor-Targeted Attacks 108

4.4 Performance Evaluation . 109
4.4.1 The Simulation Environment 110
4.4.2 Metrics for Evaluation 111
4.4.3 Performance of the Profile Manager 112
4.4.4 Performance of the Attack Detector 113

4.5 Conclusion . 116

V. PROGRAM INTEGRITY VERIFICATION 117

5.1 Introduction . 117
5.2 Program-Integrity Verification 122

5.2.1 The Attack Model and the PIV Objective 123
5.2.2 How to Secure PIV? 124
5.2.3 The Randomized Hash Function 127
5.2.4 Realization of PIV 131
5.2.5 Security Analysis . 141
5.2.6 Performance Analysis 143

5.3 Implementation and Evaluation 145
5.3.1 Overview of Implementation 145
5.3.2 Communication Overhead 146
5.3.3 Processing Overhead 146
5.3.4 Tradeoffs . 149

5.4 Conclusion . 150

VI. CONCLUSIONS AND FUTURE DIRECTIONS 151

6.1 Conclusions . 151
6.2 Future Directions . 153

BIBLIOGRAPHY . 155

vii

LIST OF FIGURES

Figure

1.1 The LiSP architecture. 18

2.1 The two-tier architecture for heterogeneous sensor networks. 25

2.2 The key hierarchy for GKMP . 29

2.3 The GKMP architecture . 30

2.4 TK Management: initial setup and re-keying 35

2.5 TK Management: authentication and recovery of lost TKs 37

2.6 TK Management (t = 1): robustness to clock skews 38

2.7 Message transmission and reception in GKMP 41

2.8 The pseudocode for the key-server . 43

2.9 The pseudocode for the client . 44

2.10 The state transition diagram for GKMP 46

2.11 The expected number of hash computations per TK-disclosure at the
client node vs.pL: pF = 0.1∼ 0.4,t = 10 50

2.12 The expected number of hash computations per TK-disclosure at the
client node vs.pF : pL = 0.1∼ 0.3,t = 10 51

2.13 The normalized communication cost at the client node vs.t: pF = 0.1 –
0.4,α = 10, pL = 0.05, n = 1, 000 . 52

3.1 The proposed secure network-layer . 62

3.2 The map of DKSs for a DKS-sensor (located at the center) whenK = 2. 64

viii

3.3 The routing table ofs, having8K DKS entries 69

3.4 SGFP froms to d . 71

3.5 TKEP betweens andd . 74

3.6 The average number of packets relayed per sensor 87

3.7 PTKEPµ vs. energy consumption . 89

4.1 Example plot ofcs,i(k) for 1 ≤ i ≤ 12 andk = 30 98

4.2 The VeIL architecture . 100

4.3 Pseudocode for VeIL at sensors . 105

4.4 The simulation environment consisting of 4 anchors and 45 sensors . . . 110

4.5 Attack-free normalized prediction error 112

4.6 Attack-detection capability: a single false location announcement at it-
eration 14 . 114

4.7 Individual prediction errors with varying attack strengths 115

5.1 Hash andVrfy algorithms . 129

5.2 The security framework for sensor networks based on PIV 132

5.3 Interactions among AS, PIVS and the sensor during PIV 135

5.4 State-transition diagram for sensors . 136

5.5 The verification protocol between the PIVS and the sensor 138

5.6 Realization of PIVS and PIVC . 140

5.7 The communication overhead vs.m 147

5.8 The processing overhead of PIVC vs.m 147

ix

LIST OF TABLES

Table

2.1 Computational overhead . 49

2.2 Transmission costs . 53

3.1 PSGFP andPTKEPµ vs. pc . 84

3.2 The energy costs of TinySec and DH protocols 88

3.3 Comparison of energy costs for TKEP and DH 88

5.1 Sizes ofHash components . 146

5.2 The latency ofHash computation per 128 KB 148

5.3 The PIV Parameters . 149

x

CHAPTER I

INTRODUCTION

1.1 Motivation

An increasing number of safety- and security-critical applications, such as situation

monitoring and facility surveillance, rely on a network of small, inexpensive, battery-

powered sensor devices that have limited energy supplies, storage, computation, and com-

munication capacities. These sensor networks can be used for various applications such

as safeguarding of, and early warning systems for, the physical infrastructure that includes

buildings, transportation systems, water supply systems, waste treatment systems, power

generation and transmission, and communication systems. The success of these appli-

cations hinges on their ownsecurity; they must protect themselves by preventing and/or

tolerating critical attacks from malicious adversaries. However, despite its importance, it

is challenging to achieve high-level security throughout the lifetime of sensor networks

due mainly to the operational issues and requirements unique to sensor networks, such as

energy-efficiency in terms of prolonging the lifetime of sensor devices as much as possi-

ble, scalability to a large number (thousands to millions) of nodes, and survivability even

in a harsh, unattended environment.

With rapid advances in device technology, the processing capability of embedded sys-

tems has been improving at an exponential rate. However, this improvement in com-

1

puting performance comes with a rapid increase in complexity and power consumption.

By contrast, the battery and energy storage technologies have been improving at a much

slower pace, failing to meet the increasing energy demands of emerging embedded sys-

tems.Energy-efficiencyis, therefore, critical to all portable, embedded computing devices.

Specifically, in sensor networks where it is often very difficult, and sometimes impossible,

to change or recharge batteries for devices after their deployment, energy-efficiency is one

of the most important requirements.

To address the challenges of both security and energy-efficiency, this thesis presents

LightweightSecurity Protocols(LiSP) for a network of resource-limited embedded sen-

sors. We have taken an approach to building LiSP as a set of closely-coupled security

protocols to meet the following design objectives: the protocols must be

• lightweightso as to prolong the network lifetime significantly, which requires the use

of computationally-efficient ciphers such as symmetric-key algorithms and crypto-

graphic hash functions;

• cooperativein the sense of achieving high-level security via mutual collaboration &

cooperation among sensor nodes as well as with other protocols, thereby disfavoring

resource-demanding ciphers;

• attack-tolerantto enable the network to gracefully tolerate attacks and device com-

promises as well as heal itself by detecting, identifying, and removing the sources

of attacks;

• flexibleenough to make a tradeoff between security and energy consumption;

• compatiblewith existing security mechanisms and services; and

• scalableto the rapidly growing network size.

2

1.2 Overview of Sensor Networks

1.2.1 Network Architecture

For cost and size reasons, sensor devices are designed to minimize resource require-

ments, e.g., Motes [33, 46] feature an 8-bit CPU running at 4 MHz, 128 KB of program

memory, 4 KB of RAM and 512 KB of serial flash memory powered by two AA batteries

(2850 mAh each). That is, sensors are usually built with limited processing, communi-

cation and memory capabilities in order to prolong their lifetime with the limited energy

budget. This disfavors use of advanced (thus resource-demanding) cryptography, such as

public-key algorithms.

Sensor networks are deployed for data acquisition for various applications including:

(1) pursuit-evasion game (PEG) [45, 109], in which a group of pursuers track and capture

moving evaders based on the information collected and processed by the sensor network;

(2) common reference grids, in which the sensor network collects and maintains informa-

tion for a positioning service or a distributed directory service to locate critical services;

(3) shooter localization [35], in which sensors detect the acoustic shock wave of a bullet as

it travels through the air; and (4) habitat and environmental monitoring [67], in which sen-

sors are deployed to collect data without incurring disturbance effects (e.g., by humans).

A sensor network is usually built with a large number (thousands or even millions)

of sensor nodes, each capable of, for example, reading temperature or detecting (part of)

an object moving nearby. Moreover, the sensor network is usually deployed in a hos-

tile/harsh environment, and removal (due to device failures or depletion of battery energy)

and addition of sensor nodes are not uncommon. Sensors collaborate and coordinate with

one another to achieve a higher-level sensing task, e.g., measuring and reporting, with

accuracy, the characteristics of a moving object, such as the speed and direction of its

movement.

3

1.2.2 Communication Models

The communication models for sensor networks arecluster-basedor peer-to-peer. The

cluster-based model typically appears in a tiered architecture [21, 115], where multiple

clusters are formed statically and/or dynamically, and a cluster-head—that is more capa-

ble than the usual member devices—manages and controls operations inside each cluster.

Cluster-heads aggregate sensed data within their own cluster (intra-cluster communica-

tion) as well as disseminating/relaying aggregated data among themselves (inter-cluster

communication).

Many emerging applications and services rely more on the peer-to-peer model: each

sensor communicates directly with any of the other sensors without relying on dedicated

devices. The main challenge associated with a sensor network is the large volume of

data to be collected and processed over the entire network. To address this challenge,

researchers have proposed efficient ways of storing and extracting relevant data from the

network based on the peer-to-peer model. The authors of [44] proposed data to be named

and communication abstractions to refer to these names rather than sensor IDs. In a data-

centric storage [90], the sensor network stores and looks up relevant data by name, i.e., it

hashes the data into geographic coordinates (name) using a Geographic Hash Table (GHT)

and stores data at the sensor geographically closest to the hashed coordinates. The two-tier

data dissemination in [126] provides, based on a grid structure, a data-delivery mechanism

to mobile data-sinks. The locations of mobile data-sinks can be looked up through the

application of location management schemes [62, 80, 124], in which each mobile node

chooses a small subset of sensor nodes and periodically updates them with its location

information, thus allowing data sources to query these sensors for the locations of data-

sinks.

4

Both communication models call for transactions between remote nodes because data

sinks can be far away from the data source, and in such a case, the data delivery should

be done via inter-cluster communications or data storage/lookup/dissemination services.

The need for long-distance communications will continue to increase as new applica-

tions/services are expected to aggressively exploit the large-scale, distributed nature of

sensor networks; otherwise, the deployment of, and internetworking among, a large num-

ber of sensors wouldn’t be necessary.

1.2.3 Localization Algorithms

There exist many applications that require each sensor node to be location-aware; for

example, each sensor node must be uniquely identified by its location estimate for ge-

ographic routing [52, 55] in which a source or an intermediate sensor node forwards a

packet to one of its neighbors closest to the packet’s destination. As such,localization—

assigning locations to sensors consistently with measured or estimated distances — is one

of the core services of sensor networks.

Techniques for estimating the distance between a pair of communicating nodes are

typically based on: (1) received signal strength (RSS) that can be translated into a dis-

tance estimate; (2) time of arrival (TOA) and time difference of arrival (TDOA) that use

the signal propagation time, and (3) angle of arrival (AOA) that estimates the relative an-

gle between nodes. These techniques are then combined with various signalling methods,

e.g., based on RF, ultrasound or infrared signals [14, 128]. Direct RSS-to-distance conver-

sion, currently supported by Motes [33], becomes inaccurate as the distance increases due

mainly to nonuniform signal propagation characteristics and fading/interference effects.

To mitigate this estimation error, one may apply averaging or smoothing as in [97, 118].

Besides these ranging techniques, range-free schemes have also been proposed to pro-

5

vide cost-effective, coarse-grained localization. In [16], the location of a sensor is deter-

mined as the center of all the anchors it hears. In [43], each sensor forms virtual triangular

regions among the anchors of interest, determines in which regions it resides based on its

neighbors’ measurements, and finally calculates the overlapping area between these re-

gions. These schemes typically require very high anchor density and long anchors’ radio

ranges as each sensor has to hear from as many anchors as possible.

It is preferable to provide the localization capability even when there are only a very

small number of anchors in the network. In the hop-count-based localization [76], each

sensor determines the minimum hop-counts to anchors by running a distance vector al-

gorithm, and computes physical distances by multiplying them to the average per-hop

distance. This scheme, unfortunately, yields poor localization accuracy. Approaches like

[49, 83, 88] employ mobile anchors to meet the requirements of both low anchor density

and high accuracy of distance estimation, but suffers a large latency.

The highest localization accuracy (in terms of minimizing the difference between as-

signed and real locations) can be achieved by utilizingmultidimensional scaling(MDS),

widely used in mathematical psychology, economics, sociology and machine learning

communities for modeling proximity relations. MDS-MAP [100] constructs network-

wide connectivity information in the form of a matrix of all possible distance estimates

(in hop-counts), and then applies MDS to derive sensors’ locations that fit well those es-

timated distances. However, it must rely on a central processing node that collects all

distance estimates and computes location assignments, significantly degrading scalability

due mainly to the resulting high communication overhead.

The MDS technique is flexible enough to find consistent location assignments even

when a limited set of distance estimates are available. In such a case, one may apply

variousiterative MDStechniques, e.g., those reported in [8]. Ji and Zha [53] took this

6

approach to develop a distributed localization scheme by applying MDS iteratively to build

a local map of locations for each group of adjacent sensors and then combining these

maps together to obtain a global location map. This scheme requires the computation of

eigendecomposition per iteration that takesO(n3) time for a group ofn sensors. Costa

et al. [29, 28] also developed a distributed, iterative MDS scheme that (i) relies solely

on distance measurements between neighboring sensors and (ii) is computationally less

demanding than that in [53].

1.3 Security Attacks

Sensor networks are vulnerable to various security attacks, especially because they

are deployed in an unattended, hostile environment. For instance, an adversary with a

compatible radio receiver/transmitter can easily eavesdrop ongoing communication ses-

sions, inject or modify packets, jam the surrounding area, and even locate specific sensors

or hot spots. Possible types of adversaries can be classified, in the order of increasing

strength, as: (1) passive attackers, only eavesdropping conversations in the network; (2)

active attackers, possessing no cryptographic keys but capable of injecting packets into the

network; and (3) active attackers, having all keys of multiple compromised sensors. The

last type of attacks is considered asinsiderattacks, while the first two asoutsiderattacks.

Attacks on the sensor network can be classified as:

• physical attackson sensor devices, e.g., destroying, analyzing, reprogramming and/or

cloning sensors;

• service disruption attackson routing, localization and clock synchronization;

• data attacks, e.g., traffic capture, replaying and spoofing;

7

• resource-consumption and denial-of-service (DoS) attacksthat diminish or exhaust

the sensors’ capacity/energy to perform its normal function; and

• sybil attacks[34] by which a single malicious sensor device claims/presents multiple

sensor IDs (locations) to control a substantial fraction of the ID space which, in turn,

makes it easier to mount other attacks, such as disruption of routing services [54].

An adversary’s attempt to disrupt, subvert or destroy the sensor network belongs to

a broad category of the denial-of-service (DoS) attack that diminishes or eliminates the

network’s capacity to perform its normal function. The authors of [122] summarized plau-

sible tools for DoS attacks as: (i) jamming that interferes with the operating radio fre-

quencies; (ii) collisions that are induced on ongoing packet transmissions; (iii) exhaustion

that forces the link layer to repeat the same packet transmission; and (iv) vulnerability of

existing protocols.

The adversary may also disrupt the integrity/availability of localization service. Possi-

ble attacks [18, 49, 64] on the localization service include:

• sensor displacement or removal;

• distance enlargement/reduction via jamming, adjustment of transmission power, or

placement of obstacles interfering with direct paths;

• announcement of false locations, distances or hop-counts;

• message modification or replaying;

• wormhole attacks that create hidden links between remote (compromised) sensors

to be used for replaying messages or altering distance measurements or hop-counts;

and

8

• deployment of bogus anchors that propagate false reference location information.

These localization-specific attacks try to propagate wrong information about locations of,

or distances to, the sensors (or anchors) under the adversary’s control in an attempt to

disrupt the localization service.

One of the serious attacks to the sensor networks deployed in an unattended environ-

ment is physical tampering with sensors. An adversary can easily (i) capture one or more

sensors, (ii) scrutinize/reverse-engineer/alter the program and/or master-secret in the sen-

sor, and (iii) create/deploy (multiple clones of) manipulated sensors. A small number of

sensors compromised by physical attacks may serve as zombies for many serious attacks,

such as initiating DoS or sybil attacks and sabotaging certain services of the sensor net-

work, which will, in turn, facilitate the subversion of the entire network. The hardware

tamper-resistance techniques [3, 19] can be used as a device-level countermeasure against

this type of attacks.

1.4 Related Work

1.4.1 Cryptography for Sensor Networks

Public-key algorithms like the Diffie-Hellman (DH) protocol have been widely used

for the development of various key establishment protocols [4, 20] that derive a common

key among nodes. However, they are unsuitable for sensor networks, because of their large

energy demands, let alone the requirement of exchanging public-key certificates. In partic-

ular, existing implementations of the DH protocol on sensor nodes [68, 106] consume 1.19

∼ 12.64 [J] per operation, which is too much to be usable in devices with a limited energy

budget, e.g., 61,560 [J] in Motes powered by two AA batteries. By contrast, symmetric-

key ciphers and cryptographic hash functions use significantly less energy, e.g., 0.115 [mJ]

in TinySec. It is, therefore, desirable to set up keys based solely on symmetric-key ciphers.

9

A sensor device, therefore, cannot use public-key algorithms due mainly to its severe

resource constraints. The symmetric-key ciphers and cryptographic hash functions, which

are orders-of-magnitude cheaper and faster, would be a better choice for sensor nodes.

Moreover, data packets in sensor networks are generally small. A desirable property in this

environment is that the size of the ciphertext should be the same as that of the plaintext.

These requirements suggest the use of a stream cipher as the underlying encryption engine.

For example, SPINS [86] realizes the stream cipher by running the RC5 block cipher in

the counter (CTR) mode, the authors of [17] use RC5 in the output feedback (OFB) mode,

and the IEEE 802.11 Wired Equivalent Privacy (WEP) [50] uses the RC4 stream cipher.

However, it is well-known that stream ciphers are vulnerable to keystream reuse.1 This

weakness allows attacks against stream ciphers that succeed irrespective of the symmetric-

key size. For example, WEP prefixes each encrypted packet with a per-packet initialization

vector (IV), but, due to the limited IV space (24 bits), it is vulnerable to a number of

practical attacks as reported in [13, 69, 111]. To remove the keystream-reuse problem,

SPINS forces both communicating parties to maintain IV separately, instead of including

IV in data packets, while updating the key after IV wraps around. Unfortunately, this

design choice creates the following new problems.

• Lossy wireless links may cause IVs loss of synchronization, and in such a case,

communication will remain disabled until IVs are resynchronized.

• It cannot protect the network against replay attacks and incurs an additional over-

head of maintaining IV states of the other sensor devices.

• The re-keying overhead increases rapidly as the network size grows.

1The keystream is generated as a function of the symmetric key and the initialization vector (IV), and is
XORed with the plaintext to produce the ciphertext.

10

Problems with the schemes in WEP and SPINS emanate from the fact that they solely

control IVs without refreshing the key, or use implicit IVs and triggered re-keying. It is,

therefore, important to refresh the symmetric key as often as needed while keeping small-

length IVs, not only to remove keystream collisions but also to improve performance.

1.4.2 Key Management/Sharing Schemes

The cluster-based key management [7, 19] is concerned with (periodic) distribution

and refreshment of a shared cluster key by the cluster-head acting as a key server within

the cluster. Although this scheme performs well for local transactions, it still has prob-

lems; for example, each cluster-head (even though better-equipped and better-protected

than normal sensor nodes) is a single point of failure, implying that if compromised, it

may break the cluster’s security. Moreover, an efficient mechanism for securing inter-

cluster communications must be provided to deal with transactions between remote nodes

residing in different clusters. Note that using a globally-shared key for all clusters makes

the entire network vulnerable to a single sensor compromise.

Key pre-deployment schemes [19, 22, 37] statically set up pairwise shared keys based

on keys loaded into sensor devices prior to their deployment. In the probabilistic key

sharing [37], each sensor is preloaded with multiple (a couple of hundreds) keys randomly

chosen from a large pool of keys, and hence, a pairwise key is established between a

pair of neighboring sensors if a key happens to be common to both sensors. However,

the pairwise keying performs poorly for communications over multiple-hop paths, since

it requires transcoding (decryption followed by re-encryption) for each and every hop,

thereby significantly risking the security as any malicious sensor node on the path may take

control of the communication as well as increasing sensors’ workloads (as routers) and the

packet-delivery latency. Hence, it is preferable to minimize the number of transcodings

11

per communication for both security and performance reasons.

Attempts were also made to combine several key sharing schemes. For example, in

[133], each node simultaneously maintains an individual key, a pairwise key and a cluster

key to support in-network processing. However, it still lacks support for long-distance

communications.

1.4.3 Countermeasures against Attacks on Localization

Determining sensors’ locations in an untrusted environment is a challenging, but im-

portant, problem that has not yet been fully studied. Like other security applications, one

may want to authenticate all the messages to protect the network against attacks (targeting

at data traffic). For this purpose, as discussed in [49], one may attempt to use digital sig-

natures orµTesla [86] together with key pre-deployment schemes [37, 22]. However, the

former suffers high computational overhead while the latter suffers a large authentication

latency, and, more importantly, many of the above-mentioned localization-targeted attacks

are non-cryptographic in nature, making these authentication-based solutions highly un-

likely to succeed.

The method proposed by Lazos and Poovendran [61] is conceptually similar to that in

[43] in that each sensor hears directly from multiple anchors, identifies a region it resides

in, and determines its location as the center of the region. In this scheme, the security

against chosen attacks is preserved if the anchors are trusted and cannot be compromised

by the adversary. However, its main drawback is the requirement of a large number ofspe-

cializedanchors equipped with directional/sectored antennae and capable of high power

transmission.

Recently, statistical approaches have been proposed [64, 65]. In [64], the authors pre-

sented an attack-tolerance mechanism for triangulation-based localization, in which each

12

sensor applies the least median squares algorithm on the distance estimates to anchors in

order to mitigate the effect of attacks. The authors of [65] also use a collection of an-

chors’ reference locations associated with estimated distances, and apply the mean square

error criterion to identify and discard malicious location references. Unfortunately, these

methods invite attacks from relaying sensors and require a significant amount of redun-

dant location/distance information from anchors, incurring a high network overhead to

achieve a reasonable degree of robustness against attacks. These drawbacks mainly come

from the fact that they do not fully extract/utilize the available information and ignore the

relationship/correlation among sensors’ locations.

Although not directly applicable to localization, the authors of [96, 117] developed

algorithms to verify the distance or location claims of a node, e.g., to make sure the node

to be within a certain region. They rely on a challenge-response protocol that measures

the round-trip time between a verifier and the node, and then translate the elapsed time

into distance. Another way [18] is to check if the node’s location falls within a triangular

region formed by three trusted verifiers. These algorithms use centralized trusted servers,

and hence, can be used as local defense mechanisms against distance-reduction attacks,

but not as global, general-purpose solutions.

1.4.4 Tamper-Proofing Techniques

A number of approaches have been proposed to generate tamper-resistant programs

without any hardware support. Most of them are intended for environments equipped with

sufficient computation power. Code obfuscation [26, 113, 114, 123] converts the exe-

cutable code into an unintelligible form that makes analysis/modification difficult. How-

ever, the level of difficulty to tamper with gets substantially lower as the program becomes

smaller, and hence, it cannot protect against determined attackers. Furthermore, as Barak

13

et al. [6] showed, obfuscating programs while preserving its functionality is theoretically

impossible. Result checking [10, 36, 116] examines the validity of intermediate results

produced by the program, but it is inappropriate for use in battery-powered devices because

it continuously incurs verification overhead. Aucsmith [5] proposed to store the encrypted

executable and decrypt it before execution. However, this scheme suffers from a very high

decryption/re-encryption overhead, and the security of self-decrypting programs can be

easily broken unless the decryption routines are protected from reverse-engineering, e.g.,

by hardware. Self-checking techniques [5, 23, 48] aim to detect changes in the program

and take appropriate actions against those changes, as the program is running. To this

end, they use embedded codes (e.g., testers [48] or guards [23]) to compute a hash value

on the program and compare it with the correct value. However, similarly to the self-

decryption techniques, they become defenseless once the hash computation code and/or

the hash value has been identified/analyzed. In summary, all of these approaches are not

suitable for resource-limited devices with small programs and slow CPUs.

Besides protection of “stationary” software, a number of researchers studied the tamper-

proofing of mobile software agents. Wilhelmet al. [119] proposed a technique based on

the tamper-resistant hardware, but the severe resource constraints in each sensor device

preclude the use of hardware-based protection. Execution tracing [110] attempts to detect

unauthorized modifications of a mobile agent through the faithful recording of the agent’s

behavior during its execution. However, this approach is inappropriate for resource-limited

sensor devices due to the size and number of logs that need to be retained. Blackbox se-

curity [47] scrambles the code in such a way that no one can gain complete understanding

of its function for a certain time interval, but it cannot protect against active attacks, e.g.,

denying the execution or returning incorrect results. Sander and Tschudin [95] proposed

the concept of computing with encrypted functions, by which mobile agents can safely

14

compute cryptographic primitives in an untrusted computing environment. However, they

did not provide a general scheme for creating mobile agents that encode arbitrary func-

tions. Kotzanikolaouet al. [58] realized the idea in [95] by applying the RSA public-key

algorithm to the mobile agents dealing with a small amount of data. Unfortunately, this

scheme becomes very inefficient as the size of data to be processed increases. Also, sen-

sors do not have enough resources to support public-key algorithms.

While most existing tamper-proofing solutions attempted to realize tamper-resistance

within the program itself, our approach differs from them in that it relies on external servers

to examine the program and check if it is identical to the original one. Our approach is well

suited to sensor networks, because examination of a small sensor program will be fast and

occurs only infrequently, and it relies on computationally-efficient hashing algorithms.

Kennell and Jamieson [56] presented a software-based scheme to verify the genuin-

ity of a remote computer system. They send the checksum code to the remote system,

compute a hash via randomized memory access, and use timing to determine the system’s

genuinity. The key to their scheme is the randomized memory access that triggers more

page faults and cache misses on a virtual memory system of the compromised machine,

leading to a severe slowdown in hash computation. However, their approach is not suitable

for sensor devices that do not have virtual memory support. Seshadriet al.[98] proposed a

software-based attestation technique that verifies memory contents of embedded devices.

They also used randomized memory traversal to force an attacker (who altered the mem-

ory) to check if the current memory access is made to a modified location, causing a

detectable increase in the hash calculation time. However, this scheme is inefficient as

it incurs much more memory accesses than sequential scanning of the program, without

guaranteeing 100 % detection of memory modifications. Moreover, the (random) commu-

nication latency in a networked environment may significantly reduce the detectability of

15

this scheme. Our approach is different from that of [98] in that it accesses each memory lo-

cation exactly once and allows for byte-oriented processing of program contents, resulting

in much faster and accurate verification.

1.5 Main Contributions

The focus of this thesis is “energy-aware security” based on cooperative interactions

among individually-proposed, mutually-complementary security solutions. The main con-

tributions of this thesis are as follows.

Group-based key management:we make a tradeoff between security and resource con-

sumption via the novel re-keying mechanism that offers (1) efficient key broad-

casting without requiring retransmission/ACKs, (2) authentication for each key-

disclosure without incurring additional overhead, (3) the ability to detect/recover

lost keys, (4) seamless key refreshment without disrupting ongoing data encryp-

tion/decryption, and (5) robustness to inter-node clock skews. Furthermore, these

benefits are preserved in conventional contention-based medium access control pro-

tocols that do not support reliable broadcast.

Secure routing based on distributed key sharing:we propose a noveldistributed key

sharing scheme, in which each participating sensor node shares its unique keys

with a small number of other sensor nodes—calleddistributed key servers(DKSs)—

chosen according to their geographic distance and communication direction. Using

DKSs, we develop two secure routing protocols: (1)secure geographic forwarding

that delivers packets via a chain of DKS lookups, each secured with its own key and

forwarded geographically; and (2)key establishmentthat creates a secure session

between two remote sensor nodes based solely on symmetric-ciphers.

16

Attack-tolerant localization: we present an attack-tolerant localization protocol, under

which sensors cooperatively safeguard the localization service. By exploiting the

high spatio-temporal correlationexisting between adjacent nodes, we realize (1)

adaptive management of a profile for normal localization behavior, and (2) dis-

tributed detection of false locations advertised by attackers by comparing them

against the profile of normal behavior.

Program-integrity verification: as a countermeasure against physical attacks, we de-

velop a soft tamper-proofing technique that verifies integrity of the program resid-

ing in each sensor device, whenever the device joins the network or has experi-

enced a long service blockage. The verification is based on the novelrandomized

hash functiontailored to low-cost CPUs, by which the algorithm for hash com-

putation on the program can be randomly generated whenever the program needs

to be verified. By realizing this randomized hash function, we successfully (1)

prevent manipulation/reverse-engineering/reprogramming of sensors unless the at-

tacker modifies the sensor hardware (e.g., attaching more memory); (2) provide

purely software-based protection; and (3) achieve infrequent triggering of verifi-

cation, thus incurring minimal intrusiveness into normal sensor functions.

As shown in Figure 1.1, a complete LiSP framework is built on top of the above-

mentioned security solutions that closely interact with one another. The core building

blocks of LiSP are described below.

• Two key management/sharing schemesdeal with efficient distribution/sharing/renewal

of cryptographic keys. They are mutually complementary: the group-based scheme

(in Chapter II) is tailored to localized, cluster-based communications, while the dis-

tributed key sharing (in Chapter III) achieves extremely lightweight protection for

17

Key
Management

& Sharing

Intrusion
Detection

Program
Integrity

Verification

Attack-Tolerant Core Services

probe monitor

access
control

crypto
key

services

Chapters II, III Chapter V

Chapter IV

Routing

Chapters III, IV

Localization Clock Synch

Security / Energy Tradeoffs

Figure 1.1: The LiSP architecture.

18

communications between distant sensor nodes.

• Attack-tolerance mechanismsmake it possible for the sensors’ core services, such

as routing, localization, and clock synchronization, to gracefully tolerate attacks

from compromised/malicious nodes. The two secure routing protocols based on

distributed key sharing (in Chapter III) constitute an attack-tolerant routing service,

while the statistical method exploiting spatio-temporal correlation (in Chapter IV)

realizes ananomaly-based intrusion detection systemtailored to the service of in-

terest. The latter monitors (or probes) network activities to uncover misbehaving or

compromised nodes.

• The program-integrity verification(in Chapter V) serves as a strongaccess control

mechanism against compromised sensors (with malicious program codes), under

which a sensor joining the network or suspected of having been compromised must

register itself to the server via verification of its program.

Finally, the tradeoff between security and energy consumption is supported by all the

building blocks of LiSP.

1.6 Thesis Outline

The rest of this thesis describes the components of LiSP in detail. Chapter II presents

a Group-based Key Management Protocol(GKMP) for heterogeneous sensor networks.

This chapter describes the procedures for initial setup, re-keying and authentication/recovery

of lost keys, message encryption/decryption, and inter-group communications. It then

evaluates and discusses the performance of the proposed protocol using the Markov chain

analysis as well as in-depth simulation.

Chapter III proposes adistributedway of sharing keys in large-scale sensor networks,

19

and, based on the thus-shared keys, develops two protocols for secure routing: asecure ge-

ographic forwarding protocol(SGFP) and atemporal-key establishment protocol(TKEP).

After describing these proposed protocols in detail, this chapter analyzes, evaluates, and

discusses their security and energy-efficiency.

Chapter IV deals with the problem of attack-tolerance in the design of localization ser-

vice, and presents an attack-tolerant localization protocol, calledVerification for Iterative

Localization(VeIL), that is essentially an anomaly-based intrusion detection system. This

chapter first describes the two building blocks of VeIL, the profile manager and the attack

detector, then analyzes how VeIL defends itself against many critical attacks, and finally,

evaluates its attack-detection capability through simulation.

Chapter V proposes a soft tamper-proofing technique, calledProgram-Integrity Veri-

fication (PIV), that verifies the integrity of the program residing in each sensor device. It

first presents the randomized hash function, and then discusses all aspects of PIV includ-

ing the security framework, the PIV architecture, the pre-deployment phase of sensors, the

state transition diagram for sensors, and the verification protocol. It finally analyzes and

evaluates the security and efficiency of PIV.

Conclusions are drawn in Chapter VI. This chapter also discusses possible future

research directions.

20

CHAPTER II

GROUP-BASED KEY MANAGEMENT

2.1 Introduction

Sensor networks must meet several operational challenges, such as energy-efficiency

in terms of maximizing the lifetime of sensor networks; scalability to a large number of

nodes; survivability in certain environments where sensors are subject to compromise,

capture and manipulation by adversaries; support for dynamic addition/removal of sensors

(to expand the network coverage area or replace faulty/subverted nodes); and robustness

to spontaneous interferences, collisions and packet losses. Moreover, they are vulnerable

to many serious security attacks as described in Section 1.3. These challenges, along with

the severe resource constraints in each sensor node, limit both the security and the perfor-

mance of a sensor network. Confidentiality, data integrity and authentication services must

be supported to prevent adversaries from compromising the sensor network, but advanced

cryptography cannot be used by resource-poor sensor nodes. It is, therefore, important to

make a good tradeoff between the levels of security and resource consumption.

The security for sensor networks hinges on agroup communication model: autho-

rized sensors in the network share a symmetric key that is used to encrypt communi-

cation messages; new sensorsjoin the network after their deployment; and the com-

promised sensors are forced toleave the network. In this model, forward and back-

21

ward confidentiality1 [112] should be provided via re-keying, in which the shared key

is changed/redistributed whenever a sensor joins or leaves the network. For its proper

operation, re-keying must be protected by the following mechanisms. First, the master se-

cret, used for securing the shared-key updates, must be pre-deployed to each sensor using

tamper-proofing techniques (Chapter V) or a ring of keys [37]. Second, intrusion detection

systems [9, 51, 60, 73, 129, 130] must be used as sensors are likely to be compromised

because (i) use of tamper-proofing techniques is limited by the low-cost requirement for

sensor devices, and (ii) only computationally-inexpensive cryptography can be employed.

For scalability, the entire network is typically divided into multiple groups, each with

its own symmetric key [74] or with a key shared among all groups [99]. Carmanet al.[19]

conducted a broad survey of group-determination algorithms and the associated group

re-keying protocols. Group re-keying protocols can be eitherreactiveor periodic. The

reactive protocol [24, 41, 112, 120] renews the key upon a member’s join/leave. This

approach, however, does not attempt to reduce the frequency of re-keying that causes

high re-keying overhead in large and/or dynamic groups. By contrast, the periodic proto-

col [63, 94, 99] refreshes keys periodically to decouple the frequency of re-keying from

the group size and dynamics, and hence, scales well to large groups. Yanget al.[125] have

shown that periodic re-keying reduces both processing and communication overheads of

the key-server2 and improves the scalability and performance over the reactive re-keying.

Moreover, severe resource constraints in each sensor node and the requirement for a large

number of sensors in the network make it necessary to limit the frequency of re-keying so

as to reduce its overhead. In such a case, periodic re-keying might be preferable to reactive

protocols [7, 99].

1New members joining the network should not be able to access the packets transmitted before their
joining and those having left the network should not be able to access the packets communicated after their
departure.

2The key-server is responsible for distributing a new key within its group.

22

The re-keying must ensure reliable distribution of keys. The Time Division Multi-

ple Access (TDMA) protocol can provide a reliability service to the key-management

layer. However, Yeet al. [127] argued that TDMA is unsuitable for sensor networks

as it is difficult to manage dynamic groups and control inter-group communications and

interferences. Most protocols used/proposed for sensor networks [101, 121, 127] are es-

sentially the Carrier Sense Multiple Access (CSMA) protocol. To achieve reliable key

distribution in the CSMA protocol, one may perform multiple unicasts with handshakes

(RTS/CTS/Data/ACK), but this suffers from high latency and excessive control traffic.

Broadcasting keys eliminates these problems, but, since the CSMA protocol does not pro-

vide any means of recovering lost frames, the broadcast reliability is degraded due to

the increased probability of frame losses as a result of frame collisions. Several proto-

cols [77, 104, 105, 108] have been proposed to improve the CSMA’s broadcast reliability.

Unfortunately, they still introduce significant control traffic, without guaranteeing 100%

reliability. We, therefore, need a key-management protocol that reliably coordinates the

key-distribution service.

In this chapter, we propose aGroup-based Key Management Protocol(GKMP) that is

equipped with key renewability and makes a tradeoff between security and resource con-

sumption. The heart of GKMP is a novel re-keying protocol that (1) periodically renews

the shared key to solve the keystream-reuse problem and maximize scalability/energy-

efficiency. and (2) supports reliable key-distribution. The re-keying protocol has the fol-

lowing salient features:

• Efficient key broadcasting without retransmission/ACKs;

• Implicit authentication for new keys without incurring additional overhead;

• Ability of detecting/recovering lost keys;

23

• Seamless key refreshment without disrupting ongoing data transmission; and

• Robustness to clock skews among nodes.

These features make GKMP very flexible in that it only requires very loose time synchro-

nization, and does not stress the underlying network/link layers, i.e., not requiring reliable

broadcast at the link-layer. GKMP is also energy-efficient and robust to DoS attacks, since

it does not require any retransmissions or other control packets. To our best knowledge,

there is no previous work that effectively handles all of these issues.

We propose a joint authentication and recovery algorithm for re-keying, in which the

key-server periodically broadcasts a new key well before its use for encryption/decryption,

and a client node first authenticates the received key and then recovers all previously-

missed keys, if any. The proposed algorithm relies on the unique properties of the crypto-

graphic one-way function. It is efficient in that each node buffers keys only, as compared

to TESLA [85] which buffers all the received data packets until the node receives an error-

free key. GKMP also uses double-buffering of keys for their seamless, robust refreshment:

while the key in one slot is being used for data encryption/decryption, the next key will be

written to the other slot.

The rest of the chapter is organized as follows. Section 2.2 presents the network and

threat models. Section 2.3 describes the details of GKMP. Section 2.4 analyzes the the-

oretic performance of GKMP while Section 2.5 presents the results of our performance

evaluation. Finally, the chapter concludes with Section 2.6.

2.2 System Architecture

2.2.1 The Network Model

PEG-like applications are realized on two wireless networks, one for connecting sen-

sors and the other for connecting pursuers, as shown in Figure 2.1. The sensor network

24

clustercontrol nodes

sensing-group

Coordination
among

Pursuers

data-collection node

Sensor
Network

pursuer

Figure 2.1: The two-tier architecture for heterogeneous sensor networks.

typically covers a wide area, requiring thousands or even millions of sensors, each of which

is capable of detecting (part of) an object moving nearby. On top of the sensor network, a

separate wireless network of pursuers is formed, for example, to build a terrain map and

cooperate with one another to capture/kill evaders based on the information collected from

sensors.

Usually, there exists significant heterogeneity between sensors and pursuers. Sensors

typically have limited battery energy, computation, memory and communication capabil-

ities. In contrast, pursuers, such as Unmanned Aerial Vehicles (UAV) and Unmanned

Ground Vehicles (UGV), do not have such resource limitations. Each pursuer is equipped

with the same radio receiver/transmitter as sensors, as well as a more powerful RF inter-

face to communicate with other pursuers.

The sensor network includes (i)data-collectionnodes, which collect/store sensed data,

and process and make it available to pursuers, and/or (ii)control nodes, which coordinate

(multi-hop) routing among sensors and broadcast commands to sensors. Clusters in this

two-tier routing system rely on control nodes, calledcluster-heads, for managing cluster

topology, routing information, pursuers’ locations, etc. Clusters may be statically formed

25

according to geographic grids. Sensing groups, which are formed around evaders to ag-

gregate/disseminate sensor data about evaders, dynamically elect data-collection nodes, as

in [12, 38, 66, 126]. In light of the group communication model, we will henceforth refer

to each cluster or sensing group as agroup, and each control or data-collection node as a

group-head(GH).

Figure 2.1 illustrates the role of GHs in the sensor network: (i) each GH collects

data about evaders, and (ii) all GHs cooperate in sending/receiving data to/from the pur-

suer (inter-group communication) as well as communicating with sensors within their own

group (intra-group communication). So, the communication between a sensor and the pur-

suer is made in three steps: (1) a sources sends data to its GHh1; (2) h1 relays the data

to another GHh2 that knows the location of the receiverd; and finally, (3)h2 forwards the

data tod.

There exist two types of intra-group communication, one from GH to sensors and the

other from a sensor to GH. GH either unicasts specific commands to a sensor or broad-

casts control packets, such as beacons, queries and requests, to all of its sensors, while

each sensor unicasts data to its GH. Since sensors are assumed immobile, it suffices for

them to use a table-driven routing protocol, under which each GH acts as a coordinator,

maintaining the routing topology, and each sensor within a cluster stores only one entry,

the next-hop information, in its routing table to reach its GH.

2.2.2 The Threat Model

Possible security attacks we assume are very general: an attacker can eavesdrop, forge,

modify, and delete any information. It can also mount off-line dictionary attacks for fu-

ture break-ins, man-in-the-middle attacks, replay attacks, resource-consumption (or DoS)

attacks, sybil attacks, wormhole attacks, and so on. We also assume that an attacker can

26

take over any sensor node within the network, because perfect tamper-proofing is too ex-

pensive to be built into low-cost sensor devices. It is, therefore, reasonable to assume that

any secret can be securely preserved from attackers only for a certain period of time.

Compromising a single node means that all nodes within its communication range can

be blocked/denied from receiving and/or sending/relaying any information. So, we must

minimize the effects of a compromised node on the rest of the network, i.e., the single

compromised node should not be allowed to enable subversion of the entire network.

2.3 The Proposed Protocol

2.3.1 Overview

GKMP aims to offer a lightweight security solution for a large-scale network of resource-

limited sensor devices. For scalability to a large number of sensors, GKMP decomposes

the entire network into clusters and/or sensing groups and selects a GH for each of them, as

described in Section 2.2.3 GKMP addresses the following two main questions associated

with the device’s resource constraints:

Q1. How to combine security with other services, such as routing, sensor data aggrega-

tion/dissemination, and location services?

Q2. How to make a tradeoff between security and resource consumption?

To address the first question, GKMP introduces the notion ofkey-server(KS), which

controls the security of a group. For a sensor network that consists of multiple groups,

GKMP designates GHs as KSs. The wireless networks for connecting pursuers would also

be partitioned into groups, each of which elects the KS among its members. So, without

loss of generality, we can assume the existence of one KS per group. GKMP also uses

3Each group (cluster) will be reasonably sized. Accordingly, the larger the network gets, the more groups
(clusters) GKMP creates.

27

a Key-Server for the Network (KSN) that coordinates KSs in re-keying for inter-group

communications.

For the security tradeoff, GKMP (i) uses a stream cipher for its cheap and fast process-

ing, and (ii) supports periodic renewal of keys with inexpensive cryptographic hash algo-

rithms. It is reliable, and works well with the conventional CSMA protocols that do not

support reliable broadcast. Moreover, GKMP requires only very loose time-synchronization

among group members.

GKMP achieves the following goals in protecting security-critical information from

attackers.

• Confidentiality: keeps data from being eavesdropped, and ensures that an attacker

will not acquire any information about the plaintext, even if it sees multiple en-

crypted versions of the same plaintext.

• Data integrity: prevents tampering with the transmitted data.

• Access control: protects and controls access to the network.

• Availability: protects the network from interruptions in service.

• Key renewability and revocability: protects the network from compromised nodes,

if any.

2.3.2 The GKMP Architecture

For key renewability, GKMP implements a key hierarchy as shown in Figure 2.2. This

hierarchy defines two keys: (i) atemporal key(TK) for encrypting/decrypting data packets;

and (ii) a sensor-specificmaster key(MK) that is used by KS to unicast TK to an individual

sensor. Under the symmetric-key cryptography, a TK should be shared by all group mem-

bers (for intra-group communications) and refreshed periodically to ensure forward and

28

Temporal-Key Management

In
tr

u
si

o
n

 D
et

ec
ti

o
n Master-Key

Temporal-Key Encryption

revocation

Figure 2.2: The key hierarchy for GKMP

backward confidentiality as well as elimination of keystream collisions. Using its group-

based architecture, GKMP achieves scalable and distributed re-keying, since membership

changes4 in a group do not affect the other groups in the network.

The KS executesentity authentication5 with a new sensor joining the group, and if

successful, grants a membership to the sensor by storing the sensor’s MK in its database

and then transmitting the current TK. MKs for sensors will be stored in tamper-resistant

hardware, but we assume limited tamper-resistance built in low-cost sensor devices. This

means that an attacker may access MKs of the subverted sensors.

As shown in Figures 2.2 and 2.3, there are two main components associated with the

key hierarchy: intrusion detection which probes/monitors network activities to uncover

compromised nodes, and TK management which protects network traffic from attacks by

re-keying TK periodically. Since it is almost impossible to safeguard the network against

all possible attacks, it is important to introduce a second line of defense, i.e., GKMP

uses an intrusion detection system (IDS) [9, 51, 60, 73, 129, 130] to probe/monitor for

anomalies in the network. Since each GH that serves as KS, is a traffic concentration

point of the corresponding group, it will be equipped with an IDS to monitor the ongoing

4The group membership changes if a new sensor joins the group or if an existing member leaves the
group. The latter event occurs when the member is compromised.

5The entity authentication between two nodes verifies each other’s identity/authenticity. It typically relies
on trusted third parties such as distributed certificate authorities [57, 131, 132].

29

TEMPORAL-KEY

MANAGAMENT

INTRUSION

DETECTION

Authenticationcompromised
nodes

Probing,
Monitoring

Master
Key

Probing,
Monitoring Master

Key

Authentication

Temporal-Key

Temporal-Key

Figure 2.3: The GKMP architecture

traffic. However, in sensor networks, all useful information is local at some point of time,

to the group(s) near the evader. Due to this distinct feature, a single point of failure at

the KS might cripple the entire network. To avoid this problem, the IDS is organized

hierarchically: each KS is in charge of monitoring sensors within a group, while a more

powerful IDS running, for example, on pursuers, watch out for possible KS compromises.

In our framework depicted in Figure 2.1, both KSs and pursuers are more capable and have

more resources than usual sensors, and hence, the IDS’s resource consumption, unless it

is excessive, should not be an issue.

Once a compromised sensor is identified by the KS, the TK manager disables the

sensor and renews the TK in the next update cycle. If a KS is found to have been compro-

mised, GKMP either (i) elects a new KS for the group, or (ii) redistributes member sensors

to the neighboring groups.

The TK manager, running on the KS, renews TK for the group. Due to the severe

30

resource limitation in each sensor device, TK re-keying should be lightweight and con-

serve resources as much as possible. Our approach to meeting this requirement is to renew

TK periodically using (not necessarily reliable) broadcast, instead of using triggered and

unicast/retransmission-based renewal. Periodic re-keying of the TK is crucial to counter

keystream-reuse attacks and improve scalability/energy-efficiency of group re-keying. The

proposed TK management has the following salient properties.

• Efficient TK broadcasting without relying on retransmissions/ACKs;

• Implicit authentication of TKs;

• Fault-tolerance by recovering lost TKs;

• Seamless TK re-keying without disrupting ongoing data transmissions; and

• Robustness to inter-node clock skews.

These properties of GKMP have yielded high-performance TK re-keying: it minimizes the

number of control packets generated in the network and reduces the size of each control

packet. The TK management will be detailed next.

2.3.3 TK Management

The challenges in TK management are how to enable all nodes to (i) acquire a new

TK efficiently, securely and reliably, and (ii) switch to the new TK without disrupting the

ongoing data transmission. Note that, with the symmetric-key ciphers, it is difficult to

refresh TK seamlessly, as it requires the same key to be possessed by both communicating

parties. To address the first challenge, TK distribution must be secure and fault-tolerant:

the “secure” part relates to confidentiality and authenticity of TKs, and the “fault-tolerant”

part means the ability to restore lost TKs. The second challenge requires seamlessness and

weak internode time-synchronization.

31

The proposed TK management meets the above challenges/requirements while incur-

ring low overhead. The main ideas of the proposed protocol are to: (1) generate a sequence

of TKs by utilizing the cryptographic one-way function, similarly to that of S/KEY [40];

(2) distribute each TK well before it is used for encryption/decryption; (3) perform TK

buffering in all sensors in the group; and (iv) verify the authenticity of the received TK

and detect/recover missing TKs using the other stored TKs.

To ensure secure TK distribution, the KS initiates TK management by encrypting,

authenticating and transmitting a control packet that includes the lengtht of the key-buffer

(for TKs), an initial TK, and the TK-refreshment interval,Trefresh.6 Then, once every

Trefresh, the KS encrypts and broadcasts a control packet that contains a future TK. Note

that the latter does not include a message authentication code (MAC) for TK. Thanks to

the cryptographic one-way property of TK sequence, receivers can determine whether or

not the received TK belongs to the same key sequence as those stored in the buffer, thus

verifying the TK’s authenticity. This procedure, calledimplicit authentication, reduces the

size of control packet significantly, because the size of MAC (e.g., 128-bit in MD4) is as

large as that of fields to be protected.

TK refreshment must tolerate TK losses caused by a noisy channel. A retransmission–

based reliability mechanism cannot be used because it will generate too many control

packets and/or result in very high latencies. It would be more efficient and more desirable

if nodes could automatically restore TKs, rather than asking the KS for retransmission

of the lost TKs. Thus, we need a lightweight mechanism to detect the loss of TKs and

restore up tot lost TKs in a cryptographically-secure way. GKMP achieves this based on

a one-way key sequence.

6The largert, the more fault-tolerant GKMP becomes at the expense of larger key-buffer space.Trefresh

is a design parameter for making a tradeoff: the shorterTrefresh, the higher overhead and the smaller re-
keying latency.Trefresh should be shorter than the interval that ensures collision-free keystreams at sensors’
maximum packet-generation rate.

32

The last two requirements — seamlessness and weak/loose time-synchronization —

are met by equipping each node with two key-slots to be used concurrently. While the

TK in one key-slot is being used for data encryption, the next TK is written into the other

key-slot. Then, at the midpoint of the refresh interval, the node switches the active key-slot

to the one with the new TK. In summary, TK management stores/utilizest + 2 TKs, i.e.,

t TKs in the key-buffer are for authentication and recovery of lost TKs and 2 TKs in the

key-slots for encryption/decryption.

Control Packets

GKMP uses three different control packets:InitKey , UpdateKey , andRequestKey .

InitKey is used by the KS to initiate TK refreshment, and contains,t, the number of lost

TKs that can be recovered; an initial TK;Trefresh, TK refreshment interval; and MAC. The

KS unicasts this packet to each group member whenever it wishes to (re)configure TK

management with a given set of parameters.UpdateKey is used by the KS to periodi-

cally broadcast the next TK in the key-sequence, and contains a new TK.RequestKey

is used by individual nodes to explicitly request the current TK in the key-sequence. This

packet is generated when a node failed to receive TKs overt key-refresh intervals.

UpdateKey is broadcast to all group members, whileInitKey andRequestKey

are unicast between KS and an individual member. Therefore, we use notationInitKey (m)

and RequestKey (m) to specify the unicast between KS and nodem. InitKey (m)

uses nodem’s master secret,MKm, for encryption and message authentication, where

MKm is shared only between the KS and nodem via entity authentication. By contrast,

UpdateKey uses currently active TK for encryption.

33

Initial Setup

The KS pre-computes a one-way sequence of keys,{TKi | i = 1, · · · , n }, where

n is chosen to be reasonably large, e.g., 100. It picks the last key,TKn, randomly and

computes the entire key sequence using the cryptographic one-way functionH, where

eachTKi is derived asTKi = H(TKi+1), i < n, or equivalently,TKi = Hn−i(TKn),

Hj(x) = Hj−1(H(x)) andH0(x) = x. Then, at timetstart, the KS starts TK management

by unicasting to every nodem in its group,InitKey along witht, TKt+2, Trefresh and

MAC:7

KS → m : EMKm(t |TKt+2 |Trefresh) | MAC(t |TKt+2 |Trefresh),

whereEK(x) is the encryption ofx with keyK, andMAC(y) generates a message digest

for y using the cryptographic hash function.

On receiving theInitKey (k) packet, nodek (i) clears all previous TKs; (ii) allo-

cates a key-buffer of lengtht (kb[t] ,· · · ,kb[1]), and two key-slots; (iii) computes keys,

TKt+1, · · · , TK1, from TKt+2; (iv) stores{TKt+2, · · · , TK3 } and{TK2, TK1 } in the

key-buffer and key-slots, respectively; (v) activatesTK1 for data encryption; and finally

(vi) setsReKeyingTimer that expires afterTrefresh/2. When the timer expires, the node

(1) switches the active key toTK2, thus making the key-slot (used to storeTK1) available

for the next encryption keyTK3, and (2) setsReKeyingTimer to expire afterTrefresh

for future key switching. Figure 2.4 shows how the node copies TKs into the key-buffer

and key-slots, and switches the active-key after receivingTKt+2.

7The initial TK is not TK1 but TKt+2. t and Trefresh are network-wide parameters shared by all
groups. Since receivers cannot recover fromInitKey loss, the KS should use external reliability services
like retransmissions and handshakes (RTS/CTS/Data/ACK).

34

…

Encryption

…

…

…

E

E

E

E

key-buffer of length t

time

re
fr

es
hm

en
t i

nt
er

va
l

key-slots

Authentication & key-recovery

…

2+tTK

3+tTK

2+tTK 1+tTK 3TK

2+tTK 1+tTK 3TK

3+tTK 2+tTK 4TK

3+tTK 2+tTK 4TK

2TK

1TK

2TK

1TK

2TK

3TK

2TK

3TK

(InitKey)

(UpdateKey)

kb[t] kb[t-1] kb[1]…

Figure 2.4: TK Management: initial setup and re-keying

Re-keying

After the initial setup, the KS periodically discloses TKs, starting withTKt+3 to all

nodes in the group. That is, at timetstart + i · Trefresh, the KS broadcastsUpdateKey

packets containingTKi+t+2, i = 1, · · · , n− t− 2:

KS⇒ group: ETKi+1
(TKi+t+2),

whereTKi+1 is the active encryption key at the time whenUpdateKey is broadcast.8

Upon receiving theUpdateKey packet, a node processes it as follows. If it had

received the same packet previously or the packet is not from its own KS, the packet is

discarded. Otherwise, it re-broadcasts the packet to all of its neighbors and

1. shifts the stored TKs, i.e.,kb[1] to the inactive key-slot andkb[i] to kb[i-1] ,

for 2 ≤ i ≤ t;

8The group members may reserve an IV value forUpdateKey packets to protect theUpdateKey
packet from keystream collisions.

35

2. executes TK authentication and recovery on the received TK, as described in Sec-

tion 2.3.3; and

3. if successful, copies the received TK tokb[t] else discards TK.

WheneverReKeyingTimer expires, the node (i) switches the active-key to the TK in

the other key-slot, and (ii) setsReKeyingTimer to expire afterTrefresh elapses. Fig-

ure 2.4 illustrates how the key-buffer and key-slots are updated after reception ofTKt+3

and expiration ofReKeyingTimer .

Authentication and Recovery of Lost TKs

After receiving theUpdateKey packet, each node verifies if the received TK is au-

thentic, and, if so, recovers lost TKs, if any, using the received TK. To recover from TK

losses, the key-buffer stores≤ t TKs. LetTK†
r , · · · , TK†

1 denoter (≤ t) TKs in the key-

bufferkb[r], · · · , kb[1], respectively, andTKk is the received TK. Then, there aree = t−r

empty slots in the key-buffer. It follows from the property of the one-way key sequence

thatH(TK†
r) = TK†

r−1, · · · , H(TK†
2) = TK†

1. SinceTKk belongs to the same one-way

key sequence, it should meet the following two conditions.

• Authenticity condition : TKk is authentic ifHe+1(TKk) = TK†
r , wherer = t− e.

• Fault-tolerance condition: if 1 ≤ e ≤ t, there aree lost TKs, {TK†
t−i+1 =

H i(TKk) | 1 ≤ i ≤ e}.

TK authentication and recovery uses these two conditions, and works as follows:

• Computee and{H i(TKk) | i = 1, · · · , e + 1 }.

• If He+1(TKk) 6= TK†
r , discardTKk.

• Otherwise, ife ≥ 1 then copy{H i(TKk) | i = 1, · · · , e} to the key-buffer.

36

…

…

E

E

E

E

… E

E

1)(−= kk TKTKH

kTK 1−kTK 1+−tkTKkTK tkTK −

1−−tkTK

…
kTK 1−kTK 1+−tkTK tkTK −

1−−tkTK

*
1+kTK

kk TKTKH ≠+)(*
1

kTK 2+−tkTK tkTK −

1+−tkTK

…

…
kTK 2+−tkTK tkTK −

1+−tkTK

2+kTK

…

3+−tkTK
1+−tkTK
2+−tkTK

kk TKTKH =+)(2
2

)(2+kTKH2+kTK

…
3+−tkTK)(2+kTKH2+kTK

1+−tkTK
2+−tkTK

time

kt

1+kt

2+kt

Figure 2.5: TK Management: authentication and recovery of lost TKs

Figure 2.5 illustrates how authentication and key-recovery works. On receivingTKk,

the receiver computese = 0 andH(TKk) = TKk−1, and hence,TKk is authentic and

there are no TK losses. At timetk+1, the node receivesTK∗
k+1(6= TKk+1), verifies that

H(TK∗
k+1) 6= TKk (e = 0), and dropsTK∗

k+1. The key-buffer thus stores(t− 1) TKs (or

e = 1). At a later timetk+2, the node receivesTKk+2 and verifies that the received TK

is the correct key by computingH2(TKk+2) = TKk, and recoversTKk+1 = H(TKk+2).

Likewise, other TK arrivals will be processed.

GKMP can also detect and correct the situation where a receiver misses TK-disclosures.

Consider the case when the node failed to receive TK at timetk+1 in Figure 2.5. This can be

handled by theReKeyingTimer event triggered at timetk+1+Trefresh/2: the event han-

dler checks if TKs in the key-buffer has been right-shifted since the lastReKeyingTimer

event, and, if not, shiftskb[1] to the inactive key-slot andkb[i] to kb[i-1] , for

2 ≤ i ≤ t.

37

MK4

MK4

MK3

MK2

TK3 TK4 TK6

TK5

TK2

TK3 TK5 = H(TK6)

TK6TK4 TK5 TK7
HHHH

TK3
…H

TK1 TK3

TK4

TK4

MK4

MK3

MK2

TK5

TK2

TK1 TK3

TK4

clock skew
< Trefresh

Decryption: TK2 and TK3

Trefresh Encryption: TK3

Encryption: TK2

time

InitKey UpdateKey UpdateKey UpdateKey

TK2 = H(TK3)
TK1 = H(TK2)

node A

node B

Figure 2.6: TK Management (t = 1): robustness to clock skews

Use of the one-way key sequence for recovery of the lost keys in GKMP is similar to

that of TESLA. However, the two protocols differ significantly in the way the one-way key

sequence is applied. TESLA buffers all of the received packets until it receives an error-

free key, and hence, if it misses several key disclosures, TESLA suffers from high latency

and large buffer size. In contrast, GKMP buffers onlyt+2 TKs, so the buffer size is small

and fixed. Moreover, the KS distributes TKs well before its use for data encryption, and

thus, the missed TKs will not disrupt the ongoing data transmission.

Robustness to Clock Skews

The proposed TK management is robust to clock skews among group members. As

an example, Figure 2.6 illustrates, in the time domain, key-slots of two nodes,A and

B, when there exists a clock skew between the two nodes. Thanks to the authentication

38

and key-recovery, loss of up tot TK losses will not affect the key-slot activation. Let

cj be the mapping from clock time to real time at nodej, wherecj(T) = t means that

at clock timeT , the real time ist. Then, the clock skew betweenA and B is given

by δ = |cA(T) − cB(T)|. The figure shows that seamless TK re-keying is preserved, if

δ < Trefresh/2. During the marked period in Figure 2.6,A usesTK3 for encryption, while

B still usesTK2 due to the clock skew betweenA andB. However, since bothA andB

have the same decryption key pair,{TK2, TK3 }, they can communicate with each other

during this period. In general, GKMP can sustain the worst-case clock skew ofTrefresh/2,

i.e.,max{ |cA(T)− cB(T)| : ∀A,B } < Trefresh/2.

Moreover, TK distribution from KS to group members also tolerates clock skews of up

to Trefresh/2. That is,TKk will be processed correctly if it arrives at the node during the

time interval[tk − Trefresh/4, tk + Trefresh/4], wheretk is the scheduled time whenTKk

is disclosed.

Reconfiguration

The KS will reconfigure the TK management at the time of next re-keying, if (1) ex-

isting group members have been compromised; (2) alln TKs have been disclosed; (3) a

new node has joined the group; or (4) a member has explicitly requested TK, because it

missed more thant TK-disclosures. The first two events force all group members to be

reconfigured, whereas the third and fourth events allow reconfiguration of the requesting

node only. The required actions for each event are summarized as follows.

1. The KS revokes compromised nodes, and ifTKk−1 has been disclosed previously,

disclosesTKk+t+2, instead ofTKk, usingInitKey . This makes all previous TK-

disclosures (up toTKk−1) futile.

2. KS computes a new key-sequence{TK ′
i | i = 1, · · · , n }, and unicastsInitKey

39

with TK ′
t+2 to all members.

3. The KS performs entity authentication with the new node, and if successful, sends

the current configuration via anInitKey packet.

4. The KS sends the requesting node anInitKey packet containing the current con-

figuration.

Tradeoffs

The performance of the proposed re-keying scheme in terms of communication over-

head, depends on the size of the group. As the group size increases, each group will have

more chances of getting compromised per TK-disclosure, hence increasing the rate of

reconfigurations. Since GKMP achieves significant performance gain over conventional

re-keying by broadcasting TK-disclosures with no retransmissions, more frequent recon-

figurations effectively mean poorer performance. In contrast, larger groups will have more

efficient broadcasting of a single TK-disclosure, improving the performance. Therefore,

we can make a tradeoff between these two, and there exists an optimal group size that

maximizes the overall performance.

2.3.4 Message Encryption/Decryption

For intra-group communications, GKMP encrypts messages with the stream cipher

and the currently-active TK. Since each node has two (even and odd) key-slots, GKMP

uses a 1-bitkeyID to tell which of the two TKs to use. GKMP also includes an ID of the

sender and a per-packet IV to counter the keystream-reuse problem.

Figure 2.7 shows the encryption/decryption and authentication of messages from the

sender,s, to the destination,d. The message transmission at the sender side proceeds as

follows. First, based on the TK referenced bykeyID, nodeID of the senders, and the

40

nodeID

IV

TK
TKID

Stream
Cipher

keystream

message
MAC MAC

nodeID

TKID

IV

TK

Stream
Cipher

message

keystream

Figure 2.7: Message transmission and reception in GKMP

current IV,s generates a keystream,keystream(TK, nodeID, IV), and then XORs the

keystream with plaintext,P , to build a ciphertext,C. Second,s computes a MAC,mac,

to protectkeyID, nodeID, IV and P , wheremac = MAC(keyID|nodeID|IV |P).

Finally, s transmits tod the following information over the wireless link:

s → d : keyID |nodeID | IV |C |mac.

The data message/packet reception at the destination simply reverses the above process.

First, the keystream,keystream(TK, nodeID, IV), is re-generated using the TK pointed

to by keyID, and then XORed withC to recover the plaintextP ′. Second,d checks

the integrity ofP ′ by computingmac′ = MAC(keyID|nodeID|IV |P ′) and comparing

mac′ with the receivedmac. Only a match will lead to the acceptance ofP ′.

GKMP ensures that keystreams will never be reused, with the following operations.

First, a sender blends its ownnodeID into the generation of the keystream to ensure that

the various parties sharing TK use different keystreams. Second, a sender increments its

own IV by 1 for each message it transmits to avoid any repetition of the keystream. Finally,

the KS updates TK at an appropriately-chosen interval,Trefresh, guaranteeing that none

of its members (including itself) starts to reuse IV. The length of the IV field can be made

small, thanks to TK re-keying.

41

The way GKMP manages TK and IVs differs significantly from that of SPINS. In

SPINS, IVs are not included in messages/packets, but maintained internally by two com-

municating peers. SPINS also updates TK whenever IV wraps around. As a result, SPINS

has shorter packets than GKMP by the length of the IV field (pluskeyID). However,

SPINS performs poorer than GKMP in the network of a large number of sensors for the

following reasons. First, SPINS incurs overheads of (triggered) TK re-keying and IV

resynchronization, which increases rapidly as the network size grows. Second, SPINS re-

quires each sensor to allocate memory for maintaining IV states of all other sensors, which

also increases with the network size. By contrast, GKMP can control the overhead of TK

re-keying regardless of the network size, and reduces the generation of control packets,

improving the performance in contention-based networks.

2.3.5 Inter-Group Communication

Under GKMP, the entire network is divided into multiple groups, each with a KS. This

architecture is scalable in that compromises in one group do not affect the other groups. It

also retains high-performance re-keying, since each reconfiguration is confined to a single

group, while groups without any compromised node keep broadcasting TKs. This means

that TKs for intra-group communications are independently managed by KSs.

For inter-group communications, KSs should coordinate with one another under the

control of KSN as follows. First, all KSs agree in advance onn, t andTrefresh, by receiving

them from KSN. Also, the time to initiate TK management is loosely synchronized with a

clock skew of less thanTrefresh/2. Second, KSs and KSN use a key-agreement algorithm

such as those in [102] and [99] to agree on the initial seedTKn for the key-sequence, thus

ensuring all KSs to have the same key-sequence. Third, for inter-group traffic, the KS

prefixes to the encrypted payload the position of the encryption key in the key-sequence.

42

constants : n, t, Trefresh;

initial setup :
compute {TKi | i = 1, · · · , n};
k = t + 2;
for all m,

unicast InitKey(m) to node m;

for every Trefresh:
k ++;
broadcast UpdateKey containing ETKk−t−1

(TKk);

if member(s) compromised:
k += t + 2;
for all m,

unicast InitKey(m) to node m;

if k == n:
do initial setup;

if a new node m joins the group or RequestKey(m) received:
if m is a new node,

do entity authentication with m;
unicast InitKey(m) to node m;

Figure 2.8: The pseudocode for the key-server

2.3.6 Realization of GKMP

We now describe how to realize the proposed TK management protocol. Its implemen-

tation is comprised of the server-side and client-side programs. Both programs require ex-

ternal modules, such as the intrusion detection system, the entity authentication protocol,

and the cryptographic one-way function.

The pseudocode for KS is given in Figure 2.8. After initialization, the KS periodically

broadcasts a new TK to all members. It also reconfigures the group security in case of ad-

dition/compromise of a node, exhaustion of all TKs, or an explicit request from a member

node.

43

if InitKey received:
Decrypt InitKey to get TKt+2;
Compute TKt+1, · · · , TK1 from TKt+2;
Copy TKt+2, · · · , TK1 to key-buffer/key-slots;
Activate TK1 for encryption;
Set e = 0 and TK† = TKt+2;
Set ReKeyingTimer to Trefresh/2;

if UpdateKey received and if not seen before:
Decrypt UpdateKey to get TKk;
Right-shift the key-buffer/key-slot;
if He+1(TKk) != TK†,

e++;
else ,

if e ≥ 1,
Copy H(TKk), · · · , He(TKk) to key-buffer;
e = 0;

Copy TKk to key-buffer, TK† = TKk;

if ReKeyingTimer triggered:
if key-buffer not right-shifted,

Right-shift the key-buffer/key-slot;
e++;

Swap active & inactive TKs in key-slots;
Set ReKeyingTimer to Trefresh;

if e == t:
Unicast RequestKey to KS;

Figure 2.9: The pseudocode for the client

44

Figure 2.9 gives the pseudocode for client nodes.9 The client nodes arestatelessso

that the client-side TK re-keying can be done at a very low cost. Each client maintains

two internal variables,e andTK†. e keeps track of the number of TK-disclosures that the

node failed to receive correctly, andTK† points to the most recent TK in the key-buffer.

The right-shift operation is done as illustrated in Figures 2.4 and 2.5.

2.4 Performance Analysis

We derive, through the Markov chain analysis, the computation overhead of client

nodes and the communication overhead between the KS and the client. We assume that

each occurrence of TK loss or failure is random and mutually independent. We also as-

sume that if the key-buffer of a node becomes empty, it finishes the operation, the re-

quest/reception of a current TK (viaRequestKey), within Trefresh. These are reasonable

assumptions in thatTrefresh is typically large enough to uncorrelate them. In this section,

we first derive a closed-form expression for steady-state distributions for key-buffer states,

and then derive computation and communication overheads.

2.4.1 Steady-State Distributions

We model the state of each node with a 2-dimensional Markov chain, as shown in

Figure 2.10. Each state(i, j) represents that there werei TK losses andj TK failures, and

hence, there are(i + j) empty slots in the key-buffer. The state transition is triggered by

three events: a TK loss, a TK authentication failure, and a successful TK reception. As the

node misses a TK, the state will be transitioned horizontally, whereas the authentication

failure of the received TK will cause a vertical state transition. LetpL = Pr{TK is lost},

pF = Pr{TK authentication fails| TK is received} andpS = 1−pL−pF . Also, letp(i, j)

denote the steady-state probability of state(i, j), andpe(k) the probability that there were

9The KS should also perform these tasks for proper communication with other clients.

45

…

…
……

Fp

Lp

Fp Fp

Lp

Lp

Lp

Fp

Fp Fp

Lp

Lp

Fp Fp

��� � ��� � � � ��� � � � �

� � ��� ���� � ��� �

��� � � � ��� � � �

��� �

1

Sp

Sp

Sp

1

1

Lp

Lp

Sp

Sp
Sp

1

Figure 2.10: The state transition diagram for GKMP

exactlyk empty slots. Then, we have

pe(k) =
∑

i+j=k

p(i, j), k = 0, · · · , t, (2.1)

and

t∑

k=0

pe(k) = 1. (2.2)

We derive steady-state distributions,p(i, j) andpe(k), ∀i, j, k, as follows. From the global

balance equations, we get

p(i, j) =





pF · p(i, j − 1) i = 0, j > 0,

pL · p(i− 1, j) i > 0, j = 0,

pF · p(i, j − 1) + pL · p(i− 1, j) i > 0, j > 0,

p∗/(pF + pL) i = j = 0,

(2.3)

46

where

p∗ =
∑

i′+j′<t,(i′,j′)6=(0,0)

pS · p(i′, j′) +
∑

i′+j′=t

p(i′, j′). (2.4)

Representingp(i, j) with respect top(0, 0) yields

p(i, j) =

(
i + j

i

)
· pi

Lpj
F · p(0, 0), (i, j) 6= (0, 0). (2.5)

From Eqs. (2.1) and (2.5), we have

pe(k) = (pL + pF)k · p(0, 0), k = 0, · · · , t. (2.6)

Then, from Eqs. (2.2) and (2.6),p(0, 0) is given by

p(0, 0) =
1− (pL + pF)

1− (pL + pF)t+1
. (2.7)

2.4.2 Computational Overhead

We derive the expected number of hash computations per TK-disclosure. LetNclient

denote the number of hash computations per TK-disclosure. If there is exactlyk (< t)

empty slots,Nclient is given by

Nclient =





0 TK is lost,

k + 1 TK authentication fails,

k + 1 TK authentication succeeds.

(2.8)

When allt slots are empty, if the node encounters a TK loss or failure, it must explicitly

request the next TK viaRequestKey , and then do(t + 1) additional hash computations

using the received TK. Therefore,

Nclient =





t + 1 TK is lost,

2t + 2 TK authentication fails,

t + 1 TK authentication succeeds.

(2.9)

47

The expectedNclient when there arek empty slots,E[Nclient | k empty], is thus derived as

E[Nclient | k empty] =





(k + 1) · (1− pL) k < t

(t + 1) · (1− pL) + (t + 1) · (pL + pF) k = t

(2.10)

Finally, E[Nclient] is given by

E[Nclient] =
t∑

k=0

E[Nclient | k empty] · pe(k) (2.11)

=
t∑

k=0

(k + 1)(1− pL)(pL + pF)kp(0, 0) + (t + 1)(pL + pF)t+1p(0, 0).

2.4.3 Communication Overhead

We finally derive the communication cost of a client per TK-disclosure. LetCinit and

Cupdate denote communication costs for transmittingInitKey andUpdateKey packets,

respectively. Also, letα = Cinit/Cupdate. Then,α > 1, because theInitKey packet

consumes more bandwidth/resources. The KS will transmit theInitKey packet (1) once

everyn TK-disclosures; and (2) if allt slots in the key-buffer become empty, else the

UpdateKey packet is broadcast. Therefore, the expected communication cost of a client

is

Cinit ·
[

1

n
+ pe(t)

]
+ Cupdate ·

t−1∑

k=0

pe(k).

The communication cost normalized byCupdate is given by

Ccomm = α ·
[

1

n
+ pe(t)

]
+

t−1∑

k=0

pe(k) (2.12)

= α ·
[

1

n
+ (pL + pF)tp(0, 0)

]
+

t−1∑

k=0

(pL + pF)kp(0, 0). (2.13)

2.5 Performance Evaluation

We are interested in evaluating the resource consumption of the proposed TK manage-

ment and demonstrating its applicability to the resource-constrained sensor devices. As

48

Table 2.1: Computational overhead

Key-Server Client

Initial setup n · CH (t + 1) · CH

Re-keying – (e + 1) · CH

mentioned earlier, the IDS’s resource consumption is not a concern, as it runs on a platform

with enough resources. To evaluate the performance of TK management, we first quantify

(1) the overheads (in both computation and communication) a node pays to renew TKs,

and (2) the performance gain the node makes by adding reliability within GKMP. Then,

based on the evaluation results, we analyze how GKMP defends itself against various at-

tacks. In this section, we present computation and communication overheads, efficiency

of the built-in reliability mechanism, and analyze the security achieved with GKMP.

2.5.1 Computational Overhead

We evaluate the computational overhead of GKMP per group, demonstrating its ro-

bustness to losses of, and attacks on, TKs. Since hash computation is the most resource-

consuming operation (as compared to data copying/moving), we only consider the cost

of computing the cryptographic hash function,H. Let CH denote the cost of computing

a single hash function. Then, computational costs for the KS and the client are given in

Table 2.1.

We want to evaluate the average number of hash computations per TK-disclosure.

First, the KS, on average, computesNKS = n
n−t−1

< 1. SinceNKS ≈ 1, if n À t,

the KS performs approximately one hash computation per TK-disclosure. Second, the

expected number of hash computations per TK-disclosure,E[Nclient], of a client is de-

rived in Section 2.4, under the assumption that each occurrence of TK loss or failure

49

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

 p
L
 = Pr [TK is lost]

E
xp

ec
te

d
N

um
be

r
of

 H
as

h
C

om
pu

ta
tio

ns
 /

 T
K

 p
F
 = 0.4

 p
F
 = 0.3

 p
F
 = 0.2

 p
F
 = 0.1

Figure 2.11:The expected number of hash computations per TK-disclosure at the client
node vs.pL: pF = 0.1∼ 0.4,t = 10

is random and mutually independent. Given fixedpL (= Pr{TK is lost}) and pF (=

Pr{TK authentication fails|TK is received}), from Eq. (2.11), we have

E[Nclient] =
t∑

k=0

(k + 1)(1− pL)(pL + pF)kp(0, 0) + (t + 1)(pL + pF)t+1p(0, 0), (2.14)

where

p(0, 0) =
1− (pL + pF)

1− (pL + pF)t+1
. (2.15)

pL reflects the channel condition: a higherpL represents a highly-lossy wireless channel.

By contrast,pF is mostly affected by the adversary’s attempts to manipulate TKs, leading

to a DoS attack. So,E[Nclient] must be small even in case of a highpF .

Figure 2.11 plotsE[Nclient] as a function ofpL, while varyingpF from 0.1 to 0.4.

Similarly, Figure 2.12 plotsE[Nclient] as a function ofpF , while varyingpL from 0.1 to

0.3. The key-buffer length,t, is set to 10. The points marked with ‘4’ in the figures are

the simulated numbers of the average hash computations for 100,000 TK-disclosures. The

50

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

 p
F
 = Pr [TK authentication fails | TK is received]

E
xp

ec
te

d
N

um
be

r
of

 H
as

h
C

om
pu

ta
tio

ns
 /

 T
K

 p
L
 = 0.3

 p
L
 = 0.2

 p
L
 = 0.1

Figure 2.12:The expected number of hash computations per TK-disclosure at the client
node vs.pF : pL = 0.1∼ 0.3,t = 10

simulation results closely match those obtained from the above equation, verifying the

accuracy of the equation.

Figures 2.11 and 2.12 show thatpF has greater influence on the expected hash com-

putations thanpL. For instance, ifpF = 0, each node incurs one hash computation, while

if pF = 0.5, it computes 2.5∼ 3 hash functions, because all incoming TKs must be au-

thenticated via hash computations. Each client computes less than three hash functions

per TK-disclosure even in the worst case, i.e., when a half of TK broadcasts get corrupted

by the attacker (pF = 0.5).

2.5.2 Communication Overhead

We evaluate the overhead of communication between the KS and a client, and show

that the key-buffer length determines the communication overhead. The expected commu-

nication cost,Ccomm, normalized by the communication cost ofUpdateKey transmission

51

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

 t = length of the key-buffer

N
or

m
al

iz
ed

 C
om

m
un

ic
at

io
n

C
os

t

 p
F
 = 0.4

 p
F
 = 0.3

 p
F
 = 0.2

 p
F
 = 0.1

Figure 2.13:The normalized communication cost at the client node vs.t: pF = 0.1 – 0.4,
α = 10, pL = 0.05, n = 1, 000

is:

Ccomm = α

[
1

n
+ (pL + pF)tp(0, 0)

]
+

t−1∑

k=0

(pL + pF)kp(0, 0). (2.16)

whereα is the ratio of the communication cost ofInitKey to that ofUpdateKey . The

value ofCcomm close to 1 means that most TK-disclosures are made throughUpdateKey ,

and hence, GKMP is efficient in terms of communication overhead. By contrast, GKMP

gets less efficient asCcomm approachesα.

Figure 2.13 plotsCcomm as a function oft whenα = 10, pL = 0.05 andn = 1, 000.

This choice ofα implies that the cost ofInitKey transmission is 10 times higher than

that ofUpdateKey broadcasting, due to the larger packet size ofInitKey and require-

ments for reliability and authentication services. The results show that, regardless ofpF ,

a smallert incurs a higher communication overhead. Thus, it is better for the KS to con-

figure GKMP with a larget, as far as clients can allocate the required key-buffer space. A

desirable value oft is 5 or 6, with which the normalized communication cost approaches

52

Table 2.2: Transmission costs

Num. of packets Total cost in bytes

GKMP 0.7N 12.6N

Unicast 4N 58N

1, even under serious attacks.

2.5.3 Efficiency of TK Management

We would like to evaluate the performance of GKMP, and show its effectiveness in

reducing energy consumption. Since a significant portion of energy is spent on packet

transmission, we measure transmission costs (both the number of control packets and the

total cost in number of bytes) per TK-disclosure. We consider a group consisting of a KS

andN group members. It is reasonable to assume that the spanning tree for the group has

been established, and hence, each node in the group knows its child nodes.

We compare the proposed TK distribution with the scheme based on unicasts plus

explicit message authentication. Other link-layer broadcasting schemes [105, 108] are

excluded because they do not ensure 100% reliability. In GKMP, the KS broadcasts

UpdateKey and, upon receiving the packet, intermediate nodes rebroadcast it if they

have at least one child node. Therefore, each TK distribution incurs strictly less thanN

broadcasts. On the other hand, in the unicast scheme, each node in the group must receive

a packet from its parent node via handshake (RTS/CTS/Data/ACK), requiring exactlyN

unicasts. Also, the unicast packet must include a message authentication code in it.

For the purpose of evaluation, we chose parameter values based on settings in [127],

i.e., the sizes of the link-layer header, CRC, RTS, CTS and ACK are 6, 2, 8, 8 and 8 bytes,

respectively. Each TK is set to be 10 bytes long and the message authentication code

53

(MD4) is 16 bytes long. Then, the size of broadcast (UpdateKey) and unicast packets

are 18 and 34 bytes, respectively. To determine the number of broadcast packets gener-

ated in GKMP, we conducted simulation, in which locations ofN nodes were randomly

generated, a spanning tree among them was built, and the total number of broadcast pack-

ets were counted. The result is that a group ofN nodes (excluding the KS), on average,

generated0.7N broadcast packets per TK-disclosure. From these results, we can calculate

the transmission costs of GKMP and the unicast scheme, as given in Table 2.2.10 Clearly,

GKMP outperforms the unicast scheme in that the transmission cost of GKMP is only

18% (in number of packets) and 22% (in number of bytes) of the unicast case.

2.5.4 Security Analysis

We now discuss how GKMP defends against various attacks. As described in Sec-

tion 1.3, an adversary either passively eavesdrops ongoing packet transmissions or actively

inject packets into the network to disrupt network functions. In particular, the adversary

will likely mount active attacks against TK management, i.e., modifying/injecting false

TKs, jamming the channel to disrupt TK reception, inducing collisions on packets con-

veying TK, forcing nodes to repeat TK retransmission, etc. These attacks may, in turn,

result in DoS, replay and man-in-the-middle attacks.

GKMP is effective in defeating attacks on TK management as follows. First, any

modification to the TK will be rejected by the authentication test at the receiver. Simi-

larly, any dropped TK due to collision will be recovered before its activation. Second, the

expected computational overhead is bounded: (i) as shown in Section 2.5.1, each node

incurs, on average, less than 3 hash computations, even when about 65% of TKs are ma-

nipulated/compromised by the attacker; (ii) the KS can easily detect the presence of at-

tacks and disable the associated nodes, if more than a half of TKs fail authentication tests.

10In the unicast scheme, we ignored possible collisions on RTS packets.

54

Therefore, GKMP is robust to DoS attacks (attempting to interfere with TK distribution

via high-power jamming and forced collisions or retransmissions) in that each client is

expected to compute up to 3 hash computations per TK-disclosure and lost/corrupted TKs

can be recovered without retransmissions. Third, replay attacks will not succeed; since the

TK manager expects a unique TK in the given refreshment interval that cannot be inferred

from the past TKs, replayed TKs will not pass authentication tests. Fourth, GKMP defeats

main-in-the-middle attacks, in which the attacker fools the group as if s/he were the KS,

because each client is capable of rejecting a false KS in the mutual authentication stage

with the KS. Finally, from the fact that TK is transmitted everyTrefresh, the adversary can

predict when to launch an attack. We can prevent this by introducing randomization: the

KS adds∆, chosen from the interval[−Trefresh/8, Trefresh/8], to the scheduled broad-

cast time. However, this scheme will reduce the timing margin against clock skews to

Trefresh/4.

The attacker may subvert a node and acquire all key information. In such a case, s/he

can eavesdrop communications and immediately inject bogus messages within the group.

However, GKMP preserves the security of the whole network as follows. First, this attack

will be valid only until an IDS, running on KS, detects/disables the node. Note that it is

crucial to have a good IDS, which can uncover any compromise on keys or the node itself

with minimal latency. Second, the scope of this attack will be limited to a single group.

GKMP also prevents attacks on data packets. It does not allow the attacker to mount

keystream reuse-based attacks by periodically renewing TK, and mixingnodeID and per-

packet IV in the generation of keystreams, as explained in Section 2.3.4. Moreover, s/he

can neither decipher nor inject/modify data packets, without the knowledge of TK.

A sybil attack is not possible in our two-tier architecture because each KS can act as

the authority (or an IDS) within each group that monitors the ongoing traffic to verify the

55

1-to-1 correspondence between IDs and locations of the group members. Although the

KS can be a single point of failure of the group, it is much better protected from attacks

as it is more capable than usual sensors, and moreover, a powerful IDS is running on

the KSN to uncover/remove compromised KSs, as described in Section 2.3.2. Finally,

wormhole attacks are ineffective because a wormhole link between two different groups

doesn’t increase the attack strength thanks to the independent management of GKs.

2.6 Conclusion

In this chapter, we proposed a Group-based Key Management Protocol (GKMP) that

makes security & energy-efficiency tradeoffs via efficient refreshment of keys. In GKMP,

a key-server independently maintains the security of a group using two main components:

intrusion detection and TK management. By employing the cryptographic one-way func-

tion and TK double-buffering, the TK management offers (i) efficient TK broadcasting

without relying on retransmissions/ACKs; (ii) authentication and TK recovery without in-

curring additional overhead; (iii) seamless TK re-keying without disrupting ongoing data

traffic. Moreover, it withstands very loose time-synchronization and does not require reli-

ability support at the link layer.

We evaluated the performance of GKMP using its overhead measurements and security

analysis. The measurement results have shown that (1) each node computes, on average,

less than 3 hash functions per TK-disclosure, even in the presence of severe attacks on

TKs, and (2) with the storage of≥ 8 TKs (t ≥ 6), GKMP distributes most TKs via

broadcasting, and hence, it is very efficient compared to other reliability mechanisms. Our

security analysis has demonstrated GKMP’s effectiveness in defeating various security

attacks. GKMP’s strength lies in meeting conflicting goals of providing high-level security

and maximizing energy-efficiency.

56

CHAPTER III

SECURE ROUTING BASED ON DISTRIBUTED KEY
SHARING

3.1 Introduction

The critical role of sensor networks in their intended applications requires high-level

security throughout their lifetime. TinySec [107] realizes a link-layer security mecha-

nism for message encryption and authentication based on symmetric-key ciphers. In this

scheme, keys can be established and renewed with conventional public-key algorithms

[4, 20], such as the well-known Diffie-Hellman (DH) protocol. However, they are not

suitable for sensor networks, as they usually require complicated processing, extensive us-

age of memory, and large key length, causing faster depletion of battery if they were used

in sensor devices. Attempts [68, 106] have been made to realize public-key algorithms

on a well-known Motes platform [33], to show the feasibility of public-key algorithms

on sensor devices. Their implementations are, however, still too “heavy” to be employed

in sensor devices: each public-key operation consumed 1.19∼ 12.64 [J], allowing just

51,731∼ 4,870 operations even when a sensor’s total energy budget of 61,560 [J] was de-

voted solely to this task. Obviously, this result is not acceptable as sensor nodes must also

perform other tasks and are required to be operational for at least several months without

replacing/recharging their batteries.

57

We, therefore, need alightweightsecurity protocol whose primary design objective is

energy-efficiency. To this end, we have taken an approach to building a secure network

layer via ‘cooperation’ among sensor nodes themselves, instead of relying on a trusted cen-

tral server. This approach is motivated by the fact that a sensor network inherently relies

on collective assurance among multiple low-cost sensor nodes to execute high-precision

applications/missions, and hence, it is important to use mutual cooperation in developing

energy-efficient security protocols that achieve high-level security without using resource-

demanding public-key ciphers, thus extending the network lifetime significantly.

It is essential to share keys among sensors for their proper operations in the link-layer

security mechanism. Clearly, the degree of key sharing is inversely proportional to the

level of security the sensor network can achieve. The highest level of security would be

achieved if every pair of sensors share their own keys independently of others, in that in-

dividual subversions do not compromise the rest of the network. But, this scheme is not

realistic due mainly to the large (O(N2) per sensor) storage requirement whereN is the

total number of sensors. Sharing an identical key among all sensors offers the least security

because a single compromised sensor completely reveals the secret of the entire network.

Localized key sharing—either cluster-based [7, 19] or pairwise [19, 22, 37]—schemes

may mitigate the risk of sensor subversions, but cannot effectively meet the requirements

of both security and performance, especially in a large-scale network where it is not un-

common for a sensor node to communicate with a remote peer. Hence, the degree (and the

way) of key sharing must be chosen (designed) so as to make a tradeoff between security

and performance.

In this chapter, we propose a noveldistributedway of sharing keys that optimizes

the tradeoff between (1)security, in terms of reducing the effects of a compromised sen-

sor node on the rest of the network; and (2)performance, in terms of achieving high

58

energy-efficiency and low-degree key sharing. The heart of the proposed key sharing is

the concept ofdistributed key servers(DKSs): a sensor node serves as DKSs for a small

subset of other sensor nodes (chosen according to their geographic distance and routing

direction throughout the entire network) by sharing unique keys. Using DKSs, we present

the following secure routing protocols:

• secure geographic forwarding that reinforces the conventional geographic for-

warding protocol [52, 55] with asecure distributed lookup servicethat delivers

packets based on limited (and distributed) knowledge of shared keys; and

• key establishmentbetween any pair of sensor nodes, in which two sensorsequally

contribute to the value of the key while achievingforward secrecyto others, without

relying on the resource-demanding DH protocol.

To our best knowledge, this is the first ‘distributed’ approach to (i) systematically building

a secure network-layer; (ii) realizing a purely symmetric-cipher-based key setup protocol

that is flexible enough to trade security for residual energy; and (iii) gracefully tolerating

device compromises in that the network security is gracefully degraded with the number

of undetected compromised sensors. We finally show, via analysis and simulation, that the

proposed protocols are indeed energy-efficient, scalable, flexible, and robust to subversion

of individual sensors.

The rest of the chapter is organized as follows. Section 3.2 describes the proposed

protocols. Section 3.3 presents the analytical results. Section 3.4 analyzes the security

of the proposed protocols while Section 3.5 evaluates their performance via simulation.

Finally, the chapter concludes with Section 3.6.

59

3.2 The Proposed Secure Routing

We first give an overview of the proposed approach, and then describe details of its

components.

3.2.1 Overview

We propose lightweight, secure routing protocols for a network of resource-constrained

sensor devices. The proposed protocols:

• are tailored to secure communications betweendistantsensor nodes;

• areflexibleenough to make a tradeoff between security and energy consumption;

• augment the existing localized key sharing with aglobal distributed key sharing

infrastructure;

• preservecompatibilitywith existing link-layer security mechanisms; and

• support

1. confidentialitythat protects data from unauthorized disclosures,

2. data integritythat does not allow unauthorized creation or modification of data,

3. authenticitythat correctly associates the sensors’ IDs with data/services/keys,

and

4. availability that prevents the disruption of network services.

These salient features will enable the proposed protocols to play a crucial role in securing

many critical applications/services, such as data storage based on GHT, data dissemina-

tion, location management, and inter-cluster communications for cluster-based networks.

We use the following widely-accepted assumptions.

60

A1. Each sensor is uniquely identified by its location estimate obtained from the localiza-

tion service executed during bootstrapping (Section 3.2.2).

A2. Used as an underlying routing protocol is a well-known geographic forwarding pro-

tocol (GFP), in which a source or an intermediate sensor sends each packet to one

of its neighbors closest to the packet’s destination.

A3. For the proper operation of GFP, each sensor keeps a list of its neighbors’ locations

based on BEACON packets exchanged.

For compatibility, each sensor maintains its own key, as well as the cluster key (shared

within its cluster) and/or pairwise keys (shared with its neighbors). The cluster and pair-

wise keys are created during the initial bootstrapping of the network, via the cluster-based

key management and key pre-deployment schemes, respectively. The challenge in this en-

vironment is that each sensor doesn’t have keying relationships with most of other sensors

located outside the local cluster and/or its neighborhood. To address this challenge, we

present a distributed key sharing scheme in which a chosen sensor elects, from the entire

network, a small number of other sensors to serve as distributed key servers (DKSs) by

creating/sharing unique keys. The proposed scheme builds an efficient, global key-sharing

framework that covers the entire network throughout its lifetime.

Built on top of this framework, we propose two protocols for secure routing: ase-

cure geographic forwarding protocol(SGFP) and atemporal-key establishment protocol

(TKEP). SGFP provides a secure distributed lookup service that executes recursive DKS

queries, each secured with its shared key, until a neighbor of the destination node is found.

This can be viewed as a secure extension of the Distributed Hash Table (DHT) routing

[62, 89, 93, 103] for peer-to-peer and ad hoc networks. TKEP then relies on SGFP to

realize the purely symmetric-cipher-based key setup. As shown in Figure 3.1, these se-

61

Secure
Network-Layer

DKS

Geographic Forwarding Protocol

SGFP

TKEP

Application / Service

Figure 3.1: The proposed secure network-layer

curity building blocks interact with each other to form a secure network-layer between

applications/services and GFP. Accordingly, applications/services invoke either SGFP (for

packet-by-packet protection) or TKEP (for secure session establishment) which will then

ask GFP to deliver the security-added packets. Note that we use GFP simply as a mech-

anism to forward packets created/processed securely by SGFP and TKEP, and that the

security depends on how the packet’s payload is handled, but not on how the packet gets

to its destination.

We define and use three types of unique symmetric keys: (1) asensor key(SK) indi-

vidually generated by each sensor, (2) amission key(MK) shared by a sensor and its DKS

(or each of its direct neighbors), and (3) atemporal key(TK) for encrypting/authenticating

a session of data traffic. We use notation,SKs, MKi,j andTKi,j, to refer to the SK of

sensors, MK and TK shared between sensorsi andj, respectively. During initialization,

sensorsi andj agree on a uniqueMKi,j. TKi,j will be established, whenever needed,

betweeni andj using TKEP.

62

3.2.2 Distributed Key Sharing

The distributed key sharing is proposed to address the challenges in dealing with a

large number of battery-powered sensors. It differs from the dedicated key-server solution

in that (chosen) sensors act both askey-servers(i.e., DKSs) storing a small number of MKs

shared with other sensors chosen in the network coverage area, and askey-clientsquery-

ing DKSs for secure routing. It is essentially a distributed database that is cooperatively

maintained and accessed.

DKS Architecture

To control the overhead of initially setting up DKSs, we enforce that a sensor, called

a DKS-sensor, builds the DKS map only if it has no DKS-sensor within its neighborhood

(just like Bluetooth’s piconet). Otherwise, a sensor establishes a pairwise key shared with

one of its neighbors that acts as a DKS-sensor, thereby relying on that sensor for secure

routing. That is, if a sensor has not heard from the DKS-sensor (e.g., via a BEACON

packet), it declares itself as a DKS-sensor by broadcasting this decision to all its neighbors.

This way, only a small portion (≤ 10%) of sensors will execute the DKS setup process.

Figure 3.2 shows how a DKS-sensor constructs its map of DKSs associated with its

geographic location. It partitions the network into squares of various levels and elects

DKS(s) in each square. A sensor elects its DKSs based on the facts that (1) distribution of

its DKSs should be denser in its proximity but sparser farther away from it, and (2) DKSs

are direction-aware, i.e., one DKS for each of 8 directions at the same level.1 Here we

allow up to level-K squares and DKSs.

The DKS map of a DKS-sensors is built as follows. First, a level-0 square,L0(s),

with a pre-defined areaλ2, is formed arounds. s then establishes pairwise keys shared

1The 8 directions—NW, N, NE, E, SE, S, SW and W—are assign numbers1, . . . , 8, respectively.

63

L1,1 L1,2 L1,3

L1,5L1,7

L1,8

L2,1 L2,2 L2,3

L2,8 L2,4

L2,5L2,6L2,7

L1,4

L1,6

: DKSs for

Figure 3.2: The map of DKSs for a DKS-sensor (located at the center) whenK = 2.

64

with each of the sensors inL0(s), as well as the shared cluster key. Second, 8 level-1

squares,L1,m(s),m = 1, . . . , 8, each of the same size asL0(s), is located aroundL0(s).

Then, the DKS-sensor closest to the center of eachL1,m(s) is selected as a level-1 DKS,

denoted asDKS1,m(s). Third, 8 level-2 squares,L2,m(s)’s, are formed to surround the

cumulative area of level-0 and all level-1 squares, each of area9λ2, i.e., 9 times the area

of L0(s). Again, the DKS-sensors closest to the center of each level-2 square are elected

as level-2 DKSs, i.e.,DKS2,m(s),m = 1, · · · , 8. Likewise, higher-level squares (up to

level-K) are constructed and DKSs elected. All DKS-sensors in the network construct

their own map of DKSs by using the above procedure.

Each DKS-sensor elects no more than8K DKSs when the network has been config-

ured to have up to level-K squares. For instance, whenK = 2, it elects up to 16 DKSs

regardless of the total number of sensors in the network. The average value (over the entire

network) is slightly less than8K, since sensors near the border of the network area would

elect less than 8 DKSs for outer-levels.

Initial Bootstrapping

Each and every sensor, right after its deployment, executes the conventional bootstrap-

ping process that consists of the following sequential steps:

B1. determine its location estimate by running the (attack-tolerant) localization algorithm

with other sensors;

B2. generate its own SK;

B3. set up pairwise keys (and a cluster key) with its neighbors (and a cluster) according

to the existing key pre-deployment schemes such as [37]; and

B4. elect a DKS-sensor (either itself or a neighbor) with all its neighbors.

65

In step B1, we may apply the existing localization protocols that can defeat and/or re-

sist localization-targeted attacks. One of such protocols is VeIL (Chapter IV), under which

sensors cooperatively safeguard the localization services by exploiting the high spatio-

temporal correlation between adjacent nodes, hence requiring no cryptographic bindings

among sensors at this stage.

After step B3, any sensors establishes cryptographic bindings between the pairwise

keys and the neighbors’ IDs leading to the construction of secure links with each of its

neighbors, e.g., it agrees on a uniqueMKs,g with its neighborg. The key pre-deployment

method, albeit communication-intensive, has been widely used in, and is known to be a

feasible solution for, resource-constrained sensor devices. The communication overhead

wouldn’t be an issue as long as the bootstrapping is executed only once per sensor.

DKS Setup

After bootstrapping, a sensors, if elected as a DKS-sensor, executes the DKS setup

procedure to build key sharing relationships with other DKS-sensors. This is to construct,

for each of the DKS-sensors, a cryptographic binding between MK and the IDs of the two

remote DKS-sensors based on already-established pairwise keys.

During the DKS setup,s sequentially contacts each of its candidate DKSs and estab-

lishes a shared MK. That is,for 1 ≤ k ≤ K and1 ≤ m ≤ 8, sensors:

1. identifies the location of the center ofLk,m(s), based on its own location and DKS

map;

2. discoversfk,m = DKSk,m(s) that is closest to this desired location; and

3. sets up a sharedMKs,fk,m
with fk,m.

Here,fk,m can be found easily as follows. First, anfk,m-discovery packet is relayed us-

66

ing GFP until it arrives at the first sensor that has the center ofLk,m(s) within its trans-

mission range. Note that GFP is guaranteed to find such a sensor, if exists, even in the

presence of hole(s) along the path. If the sensor has a neighbor closer to the center of

Lk,m(s), it forwards the packet to that neighbor; otherwise, the sensor determines itself or

its DKS-sensor asfk,m of s. If the sensor fails to findfk,m (possibly due to a hole near

the desired location), it may flood the received packet within its proximity (neighborhood)

to find a DKS-sensor eligible to befk,m. Also note that the use of insecure GFP in the

fk,m-discovery causes no security vulnerabilities because GFP is just an underlying rout-

ing protocol used to deliver the security-added packets that will be processed by external

mechanisms like the DH protocol, as described next.

There are several ways to set upMKs,fk,m
. First, the DH protocol can be applied

to establish a unique MK betweens andfk,m. The use of DH protocol at this stage is

acceptable because it is executed only during the DKS setup while future transactions will

be secured by our proposed protocols. Second,s andfk,m can use the key pre-deployment

scheme (over a multi-hop path) to find if they have a common preloaded key. If so, they

can come up with their ownMKs,fk,m
using this common key. Third, we may simplify the

MK establishment under the assumption that each sensor is safe against physical attacks

for a certain period of time after its initial deployment, during which it can complete the

DKS setup.2 Then, relaying sensors would not harm the DKS setup process, and hence,s

andfk,m exchange their SKs and random numbers,n1 andn2, and then computeMKs,fk,m

using these values. The delivery of{SKs, n1} from s to fk,m is protected by pairwise keys

of intermediate sensors:s uses its pairwise key to get to one of its neighbors, which

will then forward it to the next sensor closer tofk,m after re-encrypting it with its own

pairwise key; the subsequent forwarding is processed in the same way until it arrives at

2The rationale behind this assumption is that it would take time for an adversary to locate/capture the
victims.

67

fk,m. Likewise,{SKfk,m
, n2}will be delivered fromfk,m to s via hop-by-hop transcoding.

Finally,s andfk,m computesMKs,fk,m
= F (SKs, SKfk,m

, n1, n2) whereF is a fixed hash

function. Again, the hop-by-hop transcoding is used only once during this stage while

SGFP will be applied to protect the future communications from attacks and compromised

sensors.

A complete DKS setup protocol is summarized as follows. For eachk ≤ K and

m ≤ 8,

D1. s generates a packet containing the location ofLk,m(s)’s center and the security con-

text (necessary to set up MK), and geographically forwards the packet towards the

center ofLk,m(s);

D2. a sensor receiving the packet:

D2.1. if it (or its neighboring DKS-sensor) is closest to the location marked in the

packet, declares itself (or its neighbor) asfk,m who will then reply back tos

with its own location and security context;

D2.2. else, relays the received packet to the next hop towards the center ofLk,m(s);

D3. boths andfk,m compute (or agree on) a uniqueMKs,fk,m
and store it in their routing

table.

Figure 3.3 shows the structure of the routing table of DKS-sensors built according to

the above procedure. It consists of three fields—the DKS level, the location and a shared

MK—for all 8K DKS-sensors chosen during the DKS setup. Hence, each DKS-sensor

stores at most8K additional MKs (e.g., 16 MKs whenK = 2), which is significantly

fewer than the requirement ofN2 MKs (whereN is the total number of sensors in the

network) needed for maximum security. This indicates that our distributed key sharing

68

Level Location Key

1

��� �� � ���� ���

��	
��	
���
�� … …

��� ��������

��� �������

… … …

K

!"	 �!#	 � ��
��

$"% &$#% &('')*+ … …

,#� �������

-#. /01324�5

Figure 3.3: The routing table ofs, having8K DKS entries

is very efficient in terms of the key storage requirement, incurs a very low degree of key

sharing, and scales well with the network size.

WhenK = 2, the DKS setup incurs 8 medium-distance (level-1) and 8 long-distance

(level-2) handshaking processes to less than 10% of sensors in the network. This overhead

of initially setting up DKSs shouldn’t be an issue, as it takes place onlyoncein the begin-

ning (thus incremental reconfiguration of DKSs afterwards as described in Section 3.2.5)

and only those chosen sensors participate in computing/sharing MKs. Moreover, this over-

head is not significant at all, compared to the overhead of localization (that must be exe-

cuted for other applications/services). Both SGFP and TKEP, regardless of this overhead,

will extend the lifetime of the network significantly by consuming much less energy than

existing schemes, especially for the long-distance traffic. Finally, the time duration of

DKS setup is small because it cansimultaneouslyset up individual DKSs.

3.2.3 Secure Geographic Forwarding

The SGFP is a multi-hop routing protocol that establishes a secure, unidirectional path

between two arbitrary sensors based on the limited and distributed knowledge of DKS-

sensors’ locations/MKs. SGFP achieves a high level of tolerance/robustness to sensor

69

compromises by minimizing the number of transcodings per route discovery.3

We use the term “link” to refer to GFP between two sensors in the DKS relationship.

Eachfi → fj is said to be a level-k link if fj = DKSk,m(fi). The security is preserved

over each link by using the shared MK, e.g.,MKfi,fj
for thefi → fj link. Since each link

uses a unique MK, the edge sensor relaying the packet from one link to another should

transcode the packet, e.g., fromMKs,fi
to MKfi,fj

.

The heart of SGFP is the DKS selection rule that determines a DKS to establish a

link to: each non-DKS-sensor chooses a neighbor DKS-sensor; else, chooses a DKS that

considerably reduces the distance to the destination. Using this simple DKS selection

rule, SGFP constructs the path as a concatenation of multiple GFP links, each of which is

secured by a distinct MK. Below is a description of SGFP:

S1. if a sensors is a DKS-sensor,

S1.1. it forwards the packet to an intermediate sensorfk,m (k ≤ K)—instead of the

destinationd—that is closest tod among DKSs listed in its routing table;

S1.2. fk,m, upon receiving the packet, forwards the packet to one of its own DKSs

closer tod;

S1.3. the subsequent forwarding is handled in the same way until the packet reaches

f1,m′ for whichd ∈ L0(f1,m′); and finally,

S1.4. f1,m′ uses a pairwise/cluster key to deliver the packet tod;

S2. else, it asks its nearby DKS-sensor to deliver the packet tod (through steps S1.1∼

S1.4).

3The transcoding of a packet consists of (1) decrypting and verifying the authenticity of the packet using
the previous MK, then (2) re-encrypting and re-computing the message authentication code with the next
MK.

70

: DKSs for s: DKSs for f2,1

L2,1(s) d L1,3(f2,1)

s

f2,1

� � ���� �
�	�

f1,3
 � �
 �
 � ��
���

Figure 3.4: SGFP froms to d

SGFP takes a “divide-and-conquer” approach: whend belongs to a level-k square of

s where1 ≤ k ≤ K, SGFP typically forms at mostk links, s → fk,∗ → · · · → f1,∗, until

a DKS-sensor belonging toL0(d) is found. Figure 3.4 illustrates how SGFP forwards

the packet froms to d whend resides inL2,1(s). s (being a DKS-sensor) selectsf2,1 =

DKS2,1(s) according to the DKS selection rule, encodes the packet withMKs,f2,1, then

geographically forwards it tof2,1. Sincef2,1 6= d, f2,1 repeats the same procedure.d now

belongs toL1,3(f2,1), and hence,f2,1 getsf1,3 = DKS1,3(f2,1), transcodes the packet with

MKf2,1,f1,3, and geographically forwards it tof1,3. Note thatf2,1 suffices to search up to

level-1 DKSs. Finally,f1,3 finds thatd is its neighbor, thus forwarding the received packet

to d using the pairwise (cluster) key.

Whend is outside of all level-K squares,s chooses and forwards the packet to its

level-K DKS, f ′K,∗ closest tod. If d belongs to one off ′K,∗’s squares, the packet is routed

via f ′K,∗ → fK,∗ → · · · → f1,∗; otherwise,f ′K,∗ again forwards the packet to one of its

71

level-K DKS. Therefore, it incurs one or more level-K links in the beginning.

It is possible thatd is not directly reachable fromf1,∗ due mainly to the errors in the

location estimates, irregular deployment of sensors, absence of the shared key, and so on.

In such a case,f1,∗ selects, and forwards the packet to, its neighborg which is closer tod.

Then,g will likely have a pairwise key,MKg,d, shared withd, thus successfully delivering

the packet. Otherwise,g will repeat the same procedure. So, SGFP incurs additional (hop-

by-hop) transcoding to reachd.

3.2.4 Temporal-Key Establishment

When two sensors need to maintain a persistent session for a certain period of time, it

is preferable to establish a shared TK dedicated to that session if they do not yet have a

shared key. To address this need, we present TKEP that enables any two sensors to agree

on a common TK, meeting the following two requirements:

• contributory establishment—none of the two sensors can dictate the value of TK,

and

• forward secrecy—the rest of the network should not be able to duplicate the estab-

lished TK.

TKEP is a purely symmetric-cipher-based key setup protocol, and hence, serves as a

lightweight alternative to the resource-demanding DH protocol in a large-scale network

of sensors.

Basic TKEP

Built on top of SGFP, TKEP realizes the concept of spatial diversity by exploiting the

novel DKS infrastructure. Supposes initiates TKEP between itself andd where boths and

d are DKS-sensors (for ease of description). If forward and backward SGFP paths (s-to-d

72

andd-to-s, respectively) were run via different sets of DKSs, both sensors could contribute

to TK via each of the two paths, while no other sensors could duplicate the complete TK.

In practice, they exchange random seeds,Rs andRd (generated bys andd, respectively)

using SGFP, and then, individually computeTKs,d = F (Rs, Rd) whereF is a fixed hash

function. TKEP consists of the following steps:

T1. In the forward path,s:

T1.1. randomly generatesRs;

T1.2. transmitsRs to d using SGFP.

T2. In the backward path,d:

T2.1. randomly generatesRd;

T2.2. transmitsRd to s using SGFP.

T3. s andd individually computeTKs,d = F (Rs, Rd).

Figure 3.5 illustrates how TKEP works betweens andd. Let fk,∗’s andrk,∗’s refer to

DKSs on the forward and backward paths, respectively. Then, the forward and backward

SGFP paths are routed via{f2,1, f1,3} and{r2,5, r1,7}, respectively. As shown in this exam-

ple, TKEP satisfies the contributory establishment condition in that boths andd equally

contributes to the value of TK. The forward secrecy is preserved if no sensors other than

s andd can get the plaintexts of bothRs andRd. This condition is automatically met by

using SGFP, as justified next.

Thanks to the way DKSs are constructed, allfk,∗’s andrk,∗’s must be distinct sensors.

For example, in Figure 3.5,f2,1 andf1,3 reside inL1,7(d) (one of level-1 squares ofd)

andL0(d) (level-0 square ofd), respectively, whiler2,5 andr1,7 must belong to the level-2

square ofd (= L2,5(d)), and trivially, DKSs in each of the two paths must be distinct.

73

s

d
L2,1(s)

L2,5(d)
f2,1

r2,5

L1,3(f2,1)

L1,7(r2,5)

f1,3� � �� � � � ��
���

	
 ���
 �
���

r1,7

� � �����
���

� � �� � �����
���

Figure 3.5: TKEP betweens andd

Accordingly, no sensor can serve as DKS for both forward and backward paths. (It is

clear that these properties hold for generalK.) Moreover, all MKs involved in TKEP are

unique. Each link is thus secured using MK known only to the edge sensors, implying that

no intermediate sensors on that link can decipher it. As a result, sensors other thans andd

may decrypt at most one ofRs andRd, but cannot reproduce both of them. For example,

even if the linkd → r2,5 usesf1,3 as a relaying node (in Figure 3.5),f1,3 does not know

MKd,r2,5, and hence, it can neither decryptRd nor constructTKs,d.

TKEP with Randomization

To withstand attacks from compromised DKSs,4 we may apply “randomization” in

which s (andd) randomly picks the next DKSfk,∗ (andrk,∗) to form an SGFP path tod

(ands). Because intermediate DKSs are randomly picked, the odds that two compromised

nodes (sharing information) are on each of the two paths are very small. Thus, it is very

4See Section 3.4.3 for details of the attack scenario.

74

difficult for the adversary to invent ageneralpolicy to choose victims to be compromised.

For example, he has to compromise 14 sensors to figure out TK of a single (s,d) pair. But,

this would be too much of an effort for the attacker to make because there are no hot spots

or dedicated devices (like cluster-heads) in our distributed environment,5 and hence, he

has no other way but to compromise as many sensors as possible to take control of the

network.

µ-Split TKEP

We may achieve the highest-level forward secrecy in the presence of compromised

nodes by splitting each random seed intoµ pieces and then forwarding each of them over

a randomly-chosen SGFP path. Note that there may be as many as8K distinct routes

because it may choose one of 8 DKSs per level. As a result, boths andd collect all the

pieces and computeTKs,d = F (Rs,1, · · · , Rs,µ, Rd,1, · · · , Rd,µ). This scheme is capable

of trading security for computation (and energy consumption) via the choice ofµ.

3.2.5 Steady-State Operations

We now describe DKS reconfiguration that adds/removes DKS-sensors to/from the

DKS infrastructure and renews shared MKs.

DKS Reconfiguration

The DKS reconfiguration refers to the on-demand operation that sets up a new DKS-

sensor to replace the old one within the proximity. It is triggered by (1) the detection of

compromised and/or malfunctioning sensors and (2) the power-saving mode operations

[25, 72], allowing sensors to sleep to conserve energy.

5As described in Section 1.2.2, many emerging applications and services rely more on the peer-to-peer
model in which each sensor communicates directly with the other sensors without relying on dedicated
devices.

75

We use a network intrusion detection system (NIDS) [73, 130] that probes and mon-

itors network activities to uncover compromised sensors, and initiates reconfiguration of

DKSs if a sensor is found suspicious of having been compromised. It also does bookkeep-

ing of the thus-removed/blacklisted sensors to block them from re-entering the network.

Possible NIDS deployment/usage scenarios are discussed in Chapters II and V.

To balance the energy consumption among sensors, nearby sensors may take turns

to serve as a DKS-sensor by executing DKS reconfiguration (while keeping the rest in a

low power state). This makes our proposed protocols compatible with existing energy-

saving solutions like [25]. The frequency of re-electing DKSs is a configurable network

parameter that makes a tradeoff between security and energy consumption. It is either

pre-configured upon deployment or adaptively chosen based on local traffic patterns and

the characteristics of applications.

The DKS reconfiguration that replacesc with s (a neighbor ofc) consists of the fol-

lowing two operations: (1)s discovers8K DKS candidates according to the DKS setup

procedure; and (2) those who have been sharing MK withc, replacec with s. In the DKS

architecture, these operations can be done efficiently via the following steps. For each

k ≤ K andm ≤ 8:

1. s contactsgk,m that is closest to the center ofLk,m(s) by executing the discovery

protocol of DKS setup;

2. gk,m broadcasts locally to findfk,m that has a shared MK withc; then

3. fk,m deletes (or deactivates) the entry corresponding toc from its routing table, elects

a new DKSs, and establishes a sharedMKfk,m,s.

This protocol ensures that each and every DKS-sensor maintains at most one DKS per

76

square, i.e., the number of DKSs per DKS-sensor is bounded by8K, regardless of addi-

tion/removal of DKS-sensors.

Renewal of MKs

It is required to renew keys in stream ciphers such as that of TinySec due to the lim-

itation in the maximum number of packets that can be transmitted using the same key.

In our proposed key sharing, two DKS-sensors can set up a new MK from two random

seeds, each (1) generated independently and individually, (2) encrypted with the current

shared MK, and then (3) exchanged via GFP links. The MK can be renewed periodically

to simplify the implementation on sensor devices.

3.3 Performance Analysis

We derive the probability that the adversary eavesdrops SGFP and TKEP when a por-

tion of the network had been compromised, and the expected number of transcodings for

both SGFP and TKEP.

3.3.1 Preliminaries

We make the following assumptions: (i) sensors are uniformly distributed in the en-

tire network; (ii) each sensor has up to level-K DKSs; (iii) a level-0 square contains, on

average,N0 sensors in aλ × λ square area; and (iv) the network covers a square area of

(3Kλ)× (3Kλ). Then, the expected total number of sensors in the network,Nnet, is9KN0.

The adversary randomly selects and manipulates sensors to acquire all MKs stored in the

compromised sensors.

Let s andd denote source and destination sensors establishing an SGFP path. The

number of compromised sensors is denoted byNc. We define a set of all compromised

sensors asC = {ci, i = 1, · · · , Nc}. The set of all uncompromised sensors is thenU =

77

Cc. The probability that a randomly-selected sensorf has already been compromised is

defined as

pc = Pr{f ∈ C} =
Nc

9KN0

. (3.1)

We define the level-k cumulative area ofs as:

Ak(s) =





L0(s) k = 0

∑8
m=1 Lk,m(s) 1 ≤ k ≤ K

(3.2)

Then, the probability thatd lies withinAk(s) is given by:

pAk
= Pr{d ∈ Ak(s)} =





1
9K k = 0

8·9k−1

9K 1 ≤ k ≤ K

(3.3)

We also define the conditional probability associated withAk(s) as:

pLk,m|Ak
= Pr{ d ∈ Lk,m(s) | d ∈ Ak(s) } =

1

8
(3.4)

where1 ≤ k ≤ K and1 ≤ m ≤ 8.

3.3.2 Eavesdropping Probabilities

The sample space is a setΩ = { (s, d), s 6= d, d ∈ ∑K
k=0 Ak(s)}, and the event spaceE

consists of(s, d) pairs for which the adversary successfully decrypts an SGFP packet. Let

PSGFP (= Pr{ E}) andPTKEPµ denote the probabilities of eavesdropping SGFP andµ-

split TKEP, respectively. We then define the following conditional probabilities associated

with E :

Pk = Pr{ E | s ∈ U , d ∈ Ak(s) }, 0 ≤ k ≤ K, (3.5)

and

Qk,m = Pr{ E | s ∈ U , d ∈ Lk,m(s) } (3.6)

where1 ≤ k ≤ K, 1 ≤ m ≤ 8.

78

We derivePSGFP andPTKEPµ by considering the following two cases. First, when

s ∈ U andd is located insideA0(s), the adversary can decrypt the packet ifd and/or

intermediate sensors have been compromised. Hence,P0 = α · pc whereα is the average

number of hops taken inside the level-0 square. Second, whens ∈ U andd lies within

Ak(s), k ≥ 1, Pk is derived by consideringd ∈ Lk,m(s), m = 1, . . . , 8, for each of which

the adversary decrypts the SGFP packet with the success probabilityQk,m. Therefore, the

following relationship holds:

Pk =
8∑

m=1

pLk,m|Ak
·Qk,m (3.7)

If d ∈ Lk,m(s), s asksfk,m = DKSk,m(s) to search, on behalf of itself, a reduced area

Ak−1(fk,m) for d. In this case, the adversary succeeds in eavesdropping iffk,m ∈ C or

fk,m ∈ U , but the subsequent forwarding insideAk−1(fk) is routed via compromised

DKSs. Therefore,

Qk,m = pc · 1 + (1− pc) · Pk−1 (3.8)

Consequently,

Pk =





αpc k = 0

pc + (1− pc)Pk−1 1 ≤ k ≤ K

(3.9)

From Eqs. (3.3) and (3.9),PSGFP is derived as:

PSGFP =
K∑

k=0

pAk
Pk (3.10)

PTKEP1 of the basic TKEP (with no randomization) is then derived from the event that the

attacker eavesdrops bothRs andRd as:

PTKEP1 = P 2
SGFP . (3.11)

Finally, each SGFP path of theµ-split TKEP is bounded by[pc+(1−pc)PK]µ, and hence,

PTKEPµ ≤ [pc + (1− pc)PK]2µ (3.12)

79

3.3.3 Expected Transcoding Attempts

Let TSGFP andTTKEPµ denote random variables that count the transcoding attempts

of SGFP and TKEP, respectively, andpn the ratio of the number of non-DKS sensors to

the total number of sensors. We first derive the conditional expectation,EAk
[TSGFP] =

E[TSGFP |d ∈ Ak(s)], as:

EAk
[TSGFP] = k + α + pn, 0 ≤ k ≤ K (3.13)

E[TSGFP] is then derived as:

E[TSGFP] =
K∑

k=0

pAk
EAk

[TSGFP] (3.14)

= K + α + pn − 1

8

(
1− 1

9K

)
(3.15)

Finally, E[TTKEPµ] is approximated as:

E[TTKEPµ] '





2(K + α + pn − 1
8
) µ = 1

2µ(K + α + pn + 7
8
) µ ≥ 1

(3.16)

3.4 Security Analysis

This section discusses how our proposed protocols defend against possible attacks.

3.4.1 Prevention of Sybil Attacks

It is possible that a compromised sensor joins the network and creates/uses many dif-

ferent IDs/locations to mount a sybil attack. However, we detect/prevent sybil attacks by

providing countermeasures in all our protocols as described below.

First, the DKS setup and reconfiguration mechanisms can defeat sybil attacks as fol-

lows. It is impossible for a DKS-sensor to claim multiple locations because the eligibility

for DKS, as well as the underlying packet delivery, depend on “locations.” That is, a

80

malicious DKS-sensor cannot make its (multiple) fake locations inserted into the others’

routing tables during the DKS setup. Moreover, the sybil attack is not an issue for non-

DKS-sensors because they should ask, for secure routing, their own DKS-sensors, each

of which may act as a central entity for checking 1-to-1 correspondence between IDs and

locations of sensors in its neighborhood.

Second, a malicious sensor node cannot claim arbitrary locations due mainly to the

correlation among locations of neighboring sensors. That is, if the malicious device an-

nounces a new location without changing the ID, its neighbors, if more than 2/3 of them

are well-behaving, would easily detect this discrepancy via cooperative location valida-

tion among themselves to blacklist/block the misbehaving sensor from the network. So,

the malicious node must risk being detected if the false location is too far away from its

true location because its unusual distances to its neighbors make it conspicuous in their

neighbors’ routing tables. Otherwise, the bogus locations wouldn’t impose more threat

than a compromised node which does not lie about its location. This is one of the charac-

teristics that NIDS can exploit to tell misbehaving nodes.

Third, the malicious node may claim a new sensor node by creating the binding of ID

and falsified location. In this case, however, it must go through the bootstrapping and DKS

setup phases to be qualified as a legitimate sensor as well as establishing shared keys. If

no new sensors are allowed after network-wide bootstrapping, the neighbors can simply

ignore the new ID from the network; otherwise, we may easily capture the misbehaving

device by applying a strong access control mechanism, such as PIV (in Chapter V), during

initial setup.

In summary, the sybil attack takes place in a decentralized virtual network, the ID space

of which iscompletelydecoupled from physical network connectivity [34]. However, this

is clearly not the case in our proposed protocols and environments thanks to the spatial

81

correlation. A systematic, distributed way of detecting invalid locations, i.e., far from the

majority of others’ locations in the neighborhood, will be investigated in Chapter IV for

the development of attack-tolerant localization service (and an online guard mechanism

against sybil attacks).

3.4.2 Attacks on DKS Setup

The key management protocols would become susceptible to masquerading and man-

in-the-middle attacks if they don’t properly address key authentication that establishes a

cryptographic binding between the key and the communicants’ IDs. However, this se-

curity risk doesn’t exist in our distributed scheme because we first establish the “local”

cryptographic bindings using a well-known method and then build our proposed “remote”

bindings using the thus-established local bindings. This means that if the former resists

the above-mentioned attacks, so does our distributed scheme. In addition, the DKS setup

is safe against man-in-the-middle attacks if using the DH protocol in establishing MKs.

A malicious device can appoint itself as a DKS-sensor to intercept messages to be

transcoded by itself. However, our proposed protocols successfully tolerate this threat

via DKS reconfiguration (Section 3.2.5), under which all sensors in the neighborhood

take turns to serve as a DKS-sensor. This means the malicious device cannot always

eavesdrop messages. Moreover, as described in Section 3.2.4, the attacker owning multiple

compromised slaves can only decipher a small portion of network traffic thanks to our

distributed environment that uses neither hot spots nor dedicated devices. To further thwart

attacks from compromised nodes disguised as DKS sensors, we may apply a soft tamper-

proofing protocol (Chapter V) that does a deep inspection of the program code of the node

chosen as a DKS-sensor to make sure it is genuine.

Finally, one may argue a malicious device can establish MKs with a large number of

82

other DKSs by replying, to the packet destined for some remote location, as though it

were the correct destination. But, this belongs to the category of sybil attacks, and hence,

a cooperative defense mechanism like VeIL (Chapter IV) can be applied to defeat this

attack.

3.4.3 Attacks on TKEP/SGFP

To establish TK betweens andd, s sendsRs through the first SGFP path, andd replies

with Rd through the second SGFP path. With a collusion attack, if the two malicious

nodes,m1 andm2 are on each of the two paths, they may share information to reconstruct

TK. However, this collusion attack is quite opportunistic in that the secrecy of TK is broken

only if the attacker happens to own DKSs on both paths. As analyzed in Section 3.3, this

probability is very small unless he compromises a large number of sensors throughout

the entire network. Moreover, the application of randomization andµ-split schemes in

selecting DKSs, as well as DKS reconfiguration, make TK eavesdropping very unlikely.

Therefore, TKEP “tolerates” collusion attacks by degrading its security gracefully as the

number of undetected compromised sensors increases.

We do not consider DoS attacks on SGFP (precisely speaking, on GFP) assuming an

external countermeasure to the DoS attacks.

3.4.4 Tolerance to Physical Attacks

Both SGFP and TKEP tolerate physical attacks very well since they are robust to com-

promises of individual sensors, thanks to the distributed key sharing that allows each

DKS-sensor to share only a small number of MKs. By compromising/owning a sensor

c, an attacker can only take over the data traffic passing through and transcoded byc.

Therefore, the only way to take control of a significant portion of network traffic is to

capture/compromise as many sensors as possible (without getting caught by the NIDS).

83

Table 3.1:PSGFP andPTKEPµ vs. pc

pc PSGFP PTKEP1 PTKEP3

0.001 0.0041 0.000017 1.95× 10−14

0.005 0.0202 0.000409 2.90× 10−10

0.010 0.0401 0.0016 1.75× 10−8

0.020 0.0791 0.0062 0.99× 10−6

0.050 0.1887 0.0356 1.66× 10−4

Moreover, there is no difference between random and ‘planned’ selection of victims. For

instance, the adversary can capture a ‘cut’ through the network to monitor all traffic over

the cut. But, he can decode only a small portion of the traffic that happens to have been

encoded with the key he knows of. Consequently, the security will be degraded grace-

fully as the number of undetected compromised sensors increases. This is important as it

constrains the adversary’s attempts to subvert the entire network.

To quantify the tolerance/robustness of SGFP and TKEP to sensor compromises, we

use the following probabilities: (1)PSGFP of eavesdropping SGFP packets, and (2)PTKEPµ

of breakingµ-split TKEP. Both probabilities provide a useful basis for evaluating robust-

ness to sensor compromises in very large-scale sensor networks. Table 3.1 shows the

numbers obtained from Eqs. (3.10)∼(3.12) while varying the ratio of the number of com-

promised sensors to the total number of sensors (fully captured inpc) whenK = 3 and

α = 1.2.6 PSGFP is shown to be proportional topc, i.e., approximately 4 timespc. This

means that the required number of sensors to be compromised will be very large, demon-

strating the robustness of SGFP.PTKEPµ is shown to be almost negligible when there are

6Please see Section 3.3 for the definition ofpc, K andα.

84

a small number of compromised sensors, and to increase gradually withpc. Moreover,

whenµ = 3, it is very unlikely for an adversary to be able to eavesdrop even after com-

promising 5% (e.g., 500 out of 10,000) of sensors, indicating TKEP’s robustness to sensor

compromises.

3.5 Performance Evaluation

Using simulation, we evaluate the performance of proposed protocols in terms of the

overhead and energy consumption. We first quantify the initial DKS setup overhead, then

compare the energy consumption of TKEP and the DH key setup protocol, and finally

evaluate the security/energy tradeoffs.

3.5.1 Simulation Environment

Althoughns-2is widely used to simulate network protocols, it cannot be used to eval-

uate our proposed protocols for the following reasons. First, the ns-2 simulation is limited

to network sizes in the order of a couple of hundreds of sensors [90], and hence, it is very

difficult, albeit not impossible, to simulate very large-scale networks. Since SGFP and

TKEP are tailored to very large-scale networks of thousands to millions of sensors,ns-2

is not suitable for the evaluation of these protocols. Second, we do not need a detailed

simulation of link-layer behavior, packet losses, sensor dynamics, and the effects of en-

ergy depletion, because we are only interested in network-layer behaviors. We, therefore,

developed a customized simulator with a simple radio transmission model: at any time,

each sensor can directly communicate with all the sensors within its transmission range,

and the packet delivery to neighbors is instantaneous and error-free. It is reasonable to use

this simplified model as sensors are stable and stationary, and hence, the neighbors of each

sensor do not vary with time [90].

85

Our simulation environment is based on a network of 10,000 sensors, placed in a square

area of200 × 200 [m2] and electing up to level-3 DKSs (K = 3). Each sensor has a

radio transmission range of radius 5∼ 6 [m].7 The location (estimate) of each sensor is

generated randomly within the network coverage area.8 That is, we do not simulate the

localization service because it is not our intended contribution in this chapter. The GFP is

implemented/simulated as follows: either the source or the relaying sensor determines its

next-hop sensor as the one closest in the direction towards the destination. The distance to

a neighbor is not considered, as the selection of next-hop based on specific distance-based

policies (e.g., either minimum- or maximum-distance policies) has its own merits and

demerits. We, therefore, only use the direction-based policy, assuming that each sensor

can adjust the transmission power according to the distance to the next-hop sensor so as to

minimize interferences.

3.5.2 Overhead of DKS Setup

We measured the total number of packets generated and sent/relayed during the DKS

setup (counting each hop as a distinct packet) while varying the size of level-0 square

and the transmission range. We also counted the number of DKS-sensors chosen during

this setup; it elected 6.8∼9.7% of sensors as DKS-sensors depending on the transmission

range (i.e., the larger the transmission range, the smaller the number of DKS-sensors). We

then divided these values by the total number of sensors to compute the average number

of packets relayed per sensor. This average behavior is important because all sensors take

turns to serve as DKS-sensors throughout their lifetime. Figure 3.6 plots the results: each

sensor received/relayed less than 20 packets during the DKS setup. Moreover, whenK is

7Note that this choice is just for the purpose of simulation. The realistic values for transmission range
and network coverage area would depend on other factors, such as the accuracy of localization service.

8We assign sensors’ locations according to the 2-D uniform distribution used in Section 3.3. The uniform
distribution may not represent all possible deployment scenarios, but still captures irregularities caused by
(local) holes or clusters of sensors.

86

5 6 7
0

5

10

15

20

25

Length of the Level-0 Square [m]

A
ve

ra
g

e

P
ac

ke
ts

 R
el

ay
ed

 p
er

 S
en

so
r

Tx radius: 5 [m]
Tx radius: 6 [m]

Figure 3.6: The average number of packets relayed per sensor

set to 2, this overhead gets even smaller. This initial DKS setup overhead is reasonable

(and low) considering the localization overhead that takes place prior to the DKS setup.

3.5.3 Energy Consumption

Experimental results [19, 68] have shown public-key algorithms to consume a signifi-

cant amount of energy. To compare the energy consumption of TKEP and DH protocols,9

we use the measurement results of [68] for the energy costs of relevant ciphers (summa-

rized in Table 3.2).

As derived in Section 3.3, the average number of transcoding attempts per TK setup

for both basic andµ-split TKEP are2(K + α + pn − 1
8
) and 2µ(K + α + pn + 7

8
),

respectively. Using the fact that each transcoding requires two TinySec encryptions and

MAC computations, we can compute the energy consumption of TKEP given the protocol

parameters such asµ, K, α andpn. WhenK = 3, α = 1.25, andpn = 0.9, Table 3.3

9We compare TKEP against the DH protocol because, to our best knowledge, it is the only secure key-
setup protocol currently available on sensor devices.

87

Table 3.2: The energy costs of TinySec and DH protocols

TinySec DH

encryption MAC protocol

Energy [mJ] 0.04796 0.06677 1185

Table 3.3: Comparison of energy costs for TKEP and DH

Energy [mJ] TKEP/DH

µ TKEP DH [%]

1 2.2603 0.19

2 5.4382 1185 0.46

3 8.1573 0.69

presents, as a function ofµ, the energy costs for TKEP and the DH protocol, and the

amount of energy savings by TKEP. The result shows that TKEP consumes energy far less

than 1% of the DH protocol, confirming its high energy-efficiency.

3.5.4 Security/Energy Tradeoffs

Tables 3.1 and 3.3 demonstrate how TKEP can make a tradeoff between security and

energy consumption of cryptographic operations. Figure 3.7 plots the probability,PTKEPµ,

of eavesdropping TKEP as a function of energy consumption in [mJ], while varying the

percentage of compromised sensors. The result confirmsPTKEPµ to be inversely propor-

88

2 5 8 11 14
10e-18

10e-12

10e-06

1

Energy Consum ption [m J]

P
ro

b
ab

ili
ty

 o
f

E
av

es
d

ro
p

p
in

g
 T

K
E

P K = 3

 5 % compromised
 2 % compromised
 1 % compromised
0.5% compromised

Figure 3.7:PTKEPµ vs. energy consumption

tional to the energy consumption. Thus, TKEP is very “flexible” in that any sensor, either

as source or destination, can reconfigure TKEP according to its residual energy.

We also measured the number of transcodings for both SGFP and GFP to evaluate

SGFP’s capability to withstand compromised sensors. GFP incurred 24.7∼27.8 transcod-

ings (hops) per path, while SGFP required about 5.5 transcodings per path. That is, the

risk of compromised sensors to SGFP is just about one fifth of the hop-by-hop transcoding

scheme.

3.6 Conclusion

In this chapter, we proposed two protocols for secure routing—a secure geographic

forwarding protocol (SGFP) and a temporal-key establishment protocol (TKEP)—as cost-

effective security solutions for large-scale sensor networks. The distributed key sharing

played a crucial role in our proposed protocols: by having a sensor share keys only with a

small number of other sensors chosen based on their geographic location, we successfully

(1) constructed a lightweight, secure network layer and (2) replaced the resource-expensive

89

Diffie-Hellman key-setup protocol with a purely symmetric-cipher-based (hence energy-

efficient) alternative.

Our security analysis and performance evaluation have shown that the distributed key

sharing is practically useful and effective in defeating and/or tolerating many critical at-

tacks, such as sybil, physical, man-in-the-middle and collusion attacks, while incurring

(consuming) only a small amount of overhead (energy) in the packet forwarding and key

setup. This, in turn, enabled the realization of lightweight, secure routing protocols at the

expense of initial setup overhead in constructing DKS relationships.

90

CHAPTER IV

ATTACK-TOLERANT LOCALIZATION

4.1 Introduction

Various localization schemes [16, 29, 43, 49, 53, 76, 83, 88, 100] have been devel-

oped for sensors to determine, with reasonable accuracy, their relative locations within the

network coverage area. All these schemes employ location-information-equippedanchors

that provide reference locations, and sensor nodes determine their relative locations with

respect to the anchors’ reference locations. Accordingly, they can successfully accom-

plish their application/mission only if all participants are benign and strictly follow the

localization protocol.

However, sensor networks are usually deployed in a hostile, unattended, and untrusted

environment, and hence, they face various critical security attacks from (malicious) com-

promised nodes. Specifically, an adversary may attempt to fail the localization service by

advertising false locations, causing errors in distance measurements, or introducing bogus

anchors. Despite its importance, the problem of determining sensor nodes’ locations in the

presence of attacks has not yet been addressed effectively. Existing solutions either rely

on traditional authentication mechanisms [49] or simply use anchor-provided information

[61, 64, 65], but they fail to completely safeguard the location service due mainly to the

non-cryptographic nature of attacks, the requirement of unrealistically-powerful anchors,

91

and/or ignorance of the relationship/correlation among sensors’ locations, as described in

Section 1.4.3.

In this chapter, we address the problem of “attack-tolerance” in the design of a localiza-

tion protocol. We consider alarge-scalesensor network equipped with only a very small

number of less-capable anchors than assumed in the existing schemes, which makes the

problem more realistic but challenging. We take an approach to building an attack-tolerant

localization protocol, calledVerification for Iterative Localization(VeIL). This approach is

motivated by the fact that a sensor network inherently relies on collective assurance among

multiple low-cost sensors to execute high-precision missions, where attack-tolerance is

one of such missions.

The heart of VeIL is the use ofspatio-temporal correlationamong adjacent nodes in

the development of anomaly-based attack detection. In essence, VeIL is a cooperative

intrusion detection system tailored to localization, and consists of

• a profile manager that captures and adaptively tracks the profile of normal localiza-

tion behavior; and

• an attack detector that detects and locates attacks by iteratively verifying location

announcements via their comparison against the profiled normal profile.

These two building blocks together achieve a high-level tolerance to attacks by reject-

ing any information that exhibits a noticeable deviation from the normal profile, thereby

forcing the attacker to weaken the attack strength so as not to be caught, which, in turn,

makes it very unlikely for the attacker to fail the localization service. Moreover, our secu-

rity analysis and simulation results demonstrate the effectiveness and robustness of VeIL

that defeats many critical attacks while incurring the processing overhead amenable to

resource-poor sensor nodes, and no additional communication overhead.

92

The rest of the chapter is organized as follows. Section 4.2 describes the proposed

protocol. Section 4.3 analyzes the security of the proposed protocol while Section 4.4

evaluates its performance via simulation. Finally, the chapter concludes with Section 4.5.

4.2 The Proposed Protocol

We propose an attack-tolerant localization protocol, calledVerification for Iterative

Localization(VeIL), that

1. tolerates attacks (and faults) by malicious (misbehaving) devices,

2. incurs a small processing overhead without any communication overhead,

3. preserves compatibility with other services like the authentication framework, and

4. achieves high localization accuracy and efficiency.

In what follows, we describe the network and threat models, the proposed countermea-

sures, the underlying localization algorithm, and the details of VeIL.

4.2.1 The Network Model

The sensor network under consideration consists ofsparsely-deployed, less-capable,

static anchor nodes and a large number of sensor devices. This is a realistic deployment

scenario in that the sensor network is inherently an infrastructure-less network in which

sensors autonomously organize themselves into a connected structure, and hence, it is

desirable to minimize the dependency of localization on infrastructure nodes, such as an-

chors. In this environment, it is not uncommon that a sensor cannot directly hear from any

of the anchors, necessitating collective assurances among sensors to reach network-wide

consistent location assignments.

93

We choose the MDS-based iterative localization algorithm [29, 53] as our underlying

localization scheme, in which each and every sensor keeps refining its location estimates

based on location announcements from, and distance measurements with, its direct neigh-

bors. To this end, two nodes within each other’s transmission range establish amutual

neighborhood relationship. Any of the ranging techniques (RSS, TOA, TDOA, and AOA)

described earlier can be used to estimate distances betweendirectneighbors. Sensors may

optionally use location verification protocols [96, 117] to ensure their neighbors are really

within their communication range.

4.2.2 The Threat Model

Anchors are assumed to betrustedentities, i.e., the reference locations provided by

them are trustworthy and cannot be spoofed by the adversary.1 Accordingly, each sen-

sor can authenticate the reference locations to confirm that they are indeed from genuine

anchors. By contrast, sensors can be physically compromised or tampered with by the

adversary at any time. Therefore, the localization takes place in the presence of mali-

cious/compromised devices (the number of which is less than one-third of that of entire

network nodes) disguised as normal participants who will do their best to disrupt the lo-

calization service by mounting the attacks described in Section 1.3.

4.2.3 The Proposed Approach

To maximize both attack-tolerance and localization-accuracy, we exploit thespatio-

temporal correlationamong neighboring nodes’ locations to determine if a malicious node

claims/announces false locations. Basically, the adversary must beaggressiveenough to

disrupt the localization service. However, if a malicious device advertises arbitrary loca-

tions that deviate significantly from what the protocol expects, its neighbors, if a majority2

1The effects of malicious anchors will be discussed in Section 4.3.
2simple or two-thirds majority in case of Byzantine faults

94

of them are well-behaving, would easily detect the discrepancy via cooperative location

validation to blacklist/block the misbehaving sensor from participating in the localization

service. So, the malicious sensor must risk getting caught if its falsification deviates too

much from its normal location because its unusual distances to its neighbors make it con-

spicuous during the localization process. On the other hand, the false locations with small

perturbations wouldn’t do any harm, since the effects of small perturbations would easily

be canceled out.

We take ananomaly detectionapproach [73, 130] to realize this idea. That is, each

sensor maintains, and adaptively updates, a baseline profile of the normal localization

behavior based on past announcements of all its neighbors. Then, upon reception of new

announcements, it compares them with this normal profile, and if a noticeable deviation

is found, decides on the presence of a possibly adversarial behavior and takes an action to

locate the malicious or misbehaving sensor. Consequently, VeIL consists of the following

two building blocks that closely interact with each other:

• a profile manager (described in Section 4.2.5) that constructs and maintains the

compact profile of normal localization behavior; and

• an attack detector(described in Section 4.2.6) that detects, locates, and rejects false

location announcements, as well as updates the normal profile.

VeIL is essentially acooperativeintrusion detection mechanism tailored to localiza-

tion, in which each and every sensor checks if the location/distance announcement from

each of its neighbors is “abnormal,” and, if so, removes the sensor from the rest of the

localization process. Unlike the other schemes that rely solely on anchors, VeIL uses peer

sensors as active information sources that provide distances information and incremental

location updates, thereby maximizing the attack-detection capability.

95

4.2.4 The Underlying Localization Algorithm

Let the indexs refer to the sensor performing localization, andns denote the number

of s’s direct (one-hop) neighbors. The (local) indices,i = 1, · · · , ns, are assigned to

s’s neighbors, each of which may or may not be an anchor node. There exists 1-to-1

correspondence between the index and ID of a sensor. The distance estimate betweens

andi is denoted byδs,i. Also, letws,i denote a weight assigned betweens andi, the value

of which is either binary (1 ifδs,i is known; 0 otherwise) [53] or adaptively chosen [28].

We define theindividual costbetweens andi in thekth iteration as

cs,i(k) = ws,i [δs,i − ‖xs(k)− xi(k)‖]2 (4.1)

wherexs(k) andxi(k) arep×1 coordinate vectors (p = 2 or 3 for two- or three-dimensional

coordinates, respectively) representing estimated locations ofs andi at iterationk (≥ 0),

respectively, and‖x‖ denotes the Euclidean norm of the vectorx. Then, thelocal costof

sensors, cs,0(k), at iterationk is computed by summing up all individual costs:

cs,0(k) =
ns∑
i=1

cs,i(k). (4.2)

The localization algorithm searchess’s true location by iteratively minimizingcs,0(k).

The entire localization process works as follows.

• Initially, all sensors in the network randomly choose their initial location estimates

while the anchors use their own fixed reference locations, i.e.,xs(0) andxi(0) are

the initial locations ofs andi.

• At iterationk (≥ 0), s refines its location estimate,xs(k+1), by processing{δs,i,xi(k)}ns
i=1

with the update formula in [16, 28, 53], then exchanges the new locations with all

its neighbors.

96

• s terminates the algorithm if the location estimate gets stabilized (i.e.,cs,0(k) −

cs,0(k + 1) < ε); otherwise, repeat the process at the next iteration.

The communication overhead incurred by exchanging location estimates is small be-

cause each sensor may simply broadcast this information as part of the beaconing process

(that periodically exchanges BEACON packets to refresh sensors’ neighbor-lists). Also,

note that beaconing is one of the basic operations a sensor must execute throughout its

lifetime. Therefore,s may keep on fine-tuning its location estimate after terminating the

above algorithm based on the BEACON packets exchanged. Our proposed protocol can

be used to verify BEACON packets, thus serving as an online guard mechanism against

attacks targeting at sensors’ locations, such as sybil attacks.

As mentioned in Section 4.2.1, we use existing iterative localization algorithms as

the underlying localization layer. Our contribution/goal is to reinforce this localization

layer with attack-tolerance by providing two mechanisms: (1) construction/management

of the normal profile based on intermediate results of the iterative localization, and (2)

detection/identification of attacks. As long as the underlying localization layer ensures

convergence in an attack-free environment, the entire localization process will converge

in the presence of attacks because VeIL will detect and reject any falsified information as

early as possible, thus feeding the localization layer with attack-free information only.

4.2.5 Construction of Normal Profiles

We want to construct a profile ofs for the normal localization behavior, based solely

on the information collected bys during the localization. That is, in thekth iteration,s has

been processing{xi(t)}k
t=1 using Eq. (4.1) to computek × 1 vectors,

cs,i(k) = [cs,i(k), · · · , cs,i(1)]T , 1 ≤ i ≤ ns. (4.3)

97

1

5

10

15

20

25

30
1 2 3 4 5 6 7 8 9 10 11 12

neighbor index

iteration

Figure 4.1: Example plot ofcs,i(k) for 1 ≤ i ≤ 12 andk = 30

Then, ak × 1 local cost vector ofs, cs,0(k), is given by

cs,0(k) = [cs,0(k), · · · , cs,0(1)]T =
ns∑
i=1

cs,i(k) (4.4)

Figure 4.1 plots typicalcs,i(k) values wheni = 1, · · · , 12 andk = 30. From this figure,

we observe the following two facts:

• eachcs,i(k) exhibits strong temporal correlation; and

• cs,0(k) is strictly decreasing as the iteration progresses, due to the spatial correlation

among neighbors.

We can, therefore, derive as compact a description of the normal profile as possible by

removing this redundancy. Below, we describe how we exploit this propertyoptimally(in

the sense of achieving the highest attack-resolution, i.e., if any other scheme can resolve

an attack, so can VeIL).

98

Problem Formulation

Our problem is cast into the design of anadaptivetransversal filter bank that consists

of ns filters, each withM taps. We first formulate aleast squares predictionproblem as

follows:

ĉs,1(t) = hT
s,1(k) cs,1(t− 1; M)

· · ·

ĉs,ns(t) = hT
s,ns

(k) cs,ns(t− 1; M)

, M < t ≤ k (4.5)

wherek ≥ M + 1 andhs,i(k) is theM × 1 filter-weight vector for neighbori at iteration

k defined by

hs,i(k) = [hs,i1(k), · · · , hs,iM(k)]T (4.6)

andcs,i(t− 1; M) is theM × 1 past individual cost vector fori given by

cs,i(t− 1; M) = [cs,i(t− 1), · · · , cs,i(t−M)]T . (4.7)

Our objective is to find estimators{ ĥs,i(k)}ns
i=1, each of which minimizes the sum of

squared errors (SSE):

SSEs,i(k) =
k∑

t=M+1

λk−t| cs,i(t)− hT
s,i(k)cs,i(t− 1; M) |2 (4.8)

whereλ (≤ 1) is an exponential forgetting factor.

Recursive Least Squares Algorithm

We apply the method of recursive least squares (RLS) [42] to develop a recursive al-

gorithm that updates the filter-weight vectors{ ĥs,i(k)}ns
i=1 upon reception of{xi(k)}ns

i=1

(translated into{ cs,i(k)}ns
i=1), given{ ĥs,i(k − 1)}ns

i=1, wherek ≥ M + 1. The RLS al-

gorithm first calculates, for eachi, a priori prediction error based on old filter-weight

estimates at iterationk, as follows:

αs,i(k) = cs,i(k)− ĥT
s,i(k − 1)cs,i(k − 1; M). (4.9)

99

Attack Detection

activate / lock filters

)1k(ˆ
i,s −h

)k(ˆ
i,sh

)1k(ˆ
i,s −h

)k(i,sα

)k(c i,s

delay)k(i,sg

)1k(c i,s −

�

)Mk(c i,s −

Figure 4.2: The VeIL architecture

The filter-weight vector is then updated as

ĥs,i(k) = ĥs,i(k − 1) + αs,i(k)gs,i(k) (4.10)

whereĥs,i(M) = 0 and anM × 1 gain vectorgs,i(k) is computed by

gs,i(k) =
Ps,i(k − 1)cs,i(k − 1; M)

λ + cT
s,i(k − 1; M)Ps,i(k − 1)cs,i(k − 1; M)

(4.11)

Ps,i(k) is anM ×M inverse correlation matrix, initialized to

Ps,i(M) = ρ−1I (4.12)

with a small positiveρ, and recursively updated by

Ps,i(k) = λ−1Ps,i(k − 1)− λ−1gs,i(k)cT
s,i(k − 1; M)Ps,i(k − 1). (4.13)

For details of the RLS algorithm, see [42].

Discussion

With the above RLS algorithm, theentire localization history ofs, up to thekth iter-

ation, is fully captured inns × M filter-weights,{hs,ij(k) | 1 ≤ i ≤ ns, 1 ≤ j ≤ M },

100

that constitute a normal profile at iterationk. This normal profile must be built only from

attack-freedata, and hence,{ ĥs,i(k)}ns
i=1 will be updated after making sure{xi(k)}ns

i=1

not to be adversarial according to the procedure described in Section 4.2.6.

As shown in Figure 4.2, the profile manager ofs includesns RLS filters, each storing

M past individual costs,cs,i(k − 1; M), andM filter-weights,ĥs,i(k), that are adaptively

and recursively updated using Eqs. (4.9) – (4.13) starting atk = M + 1. Possible attacks

during the firstM iterations are not an issue, as the localization starts with high individual

costs even in an attack-free environment due to the randomly-assigned initial locations,

effectively paying no attention to identification of attacks during the initial period. That

is, the malicious neighbors will soon get caught if they keep misbehaving after this initial

period;3 they wouldn’t otherwise be able to confuse/disrupt the localization process.

The computational requirement at each iteration isO(ns ·M2). This overhead is rea-

sonable even for resource-constrained sensors, since it suffices to choose a small (like 3 –

5) value ofM , thanks to the high temporal correlation. To determine an optimal value of

M , one may use either the information-theoretic criterion (AIC) or the minimum descrip-

tion length (MDL) criterion [42].

Finally, it is possible to use the Kalman filter instead of RLS, in the sense that the above

RLS algorithm (which is a tailored solution to our prediction problem) is indeed a special

case (i.e., sharing the same mathematical structure) of the Kalman filter. The application

of Kalman filtering to our prediction problem given by Eq. (4.5) will yield Eqs. (4.9) –

(4.13) to be replaced with the Kalman filter recursions. The computational complexity in

using this general-purpose filter is acceptable for smallM values.

3This is because a majority of neighbors are adjusting their locations towards their true locations, thus
steadily reducing their individual costs, while the individual cost of a malicious neighbor remains high due
mainly to the discrepancy of locations between itself and others.

101

4.2.6 Detection of Attacks

A malicious sensori may attempt to have a falsifiedxi(k) accepted bys so thatcs,i(k)

can be boosted to a large value. This will causexs(k + 1) to have a large deviation from

its desired value, making it impossible, or at least take a very long time, fors to determine

its true location. We describe below how VeIL defends a network against this threat, and

then qualitatively analyze its attack-detection capability.

Proposed Detection Scheme

Every sensor must verify the trustworthiness of incremental location updates,{xi(k)}ns
i=1,

from its neighbors by comparing them with the normal profile built in the(k − 1)st itera-

tion. VeIL achieves this easily by evaluating Eq. (4.9) fori = 1, · · · , ns. Clearly,αs,i(k),

1 ≤ i ≤ ns, quantifies the difference ofi’s new announcement from its value predicted

from the most-recent profile, and hence,s should suspecti to be malicious ifαs,i(k) ex-

ceeds a certain threshold. Accordingly, for eachi, s decidesxi(k) to be disruptive/harmful

to the location service if

|αs,i(k)| ≥ ηt ·max { cs,i(k), cmin } (4.14)

whereηt (≤ 1) is a pre-configured network-wide threshold for detecting anomalies, and

cmin is the minimum individual cost, below which the prediction error becomes negligible

because‖xs(k) − xi(k)‖ falls well within δs,i. Moreover,cs,0(k) must decrease with the

iteration count. Hence, every sensor should monitor if this condition is violated, i.e., in the

kth iteration,s checks if

cs,0(k) ≥ η0(k) · cs,0(k − 1) (4.15)

whereη0(k) (≤ 1) is a threshold to verify the acceptability of local cost whose value is

determined by the choice of the underlying localization algorithm. Eq. (4.15) will be met if

cs,0(k) is dominated by a few anomalous individual costs (possibly from malicious nodes).

102

Using Eqs. (4.14) and (4.15),s can detect, for each iteration, if there exist anomalies

in its neighbors’ location announcements, and if so, can identify which of the neighbors

caused the anomalies.s then blacklists a neighbor if it has been caught more thanNB

times out ofB iterations. The ratioNB/B (≤ 1) is a design parameter; the choice of

NB/B close to 0 implies an overly-conservative mode of operation, while the opposite

(NB/B → 1) means lenience against attacks. For the purpose of blacklisting,s keeps

track of the number of anomalous location announcements fromi in blacklist counter(i).

Neighbor sensors may also exchange their detection results to speed up blacklistingi.

Figure 4.2 shows how the VeIL’s attack detector interacts with its profile manager.

First, both the profile manager and the attack detector are triggered byαs,i(k)’s computed

at iterationk. The attack detector then processesαs,i(k)’s using Eqs. (4.14) and (4.15)

to determine if there exist anomalies in the location announcements, and if so, identifies

which of the neighbors caused the anomalies. Finally, this information is fed to the profile

manager to reject (announcements from) those neighbors.

Attack-Detection Capability

VeIL must be able toamplify the prediction errors caused by false location announce-

ments forM consecutive iterations, thus detecting anomalies with high accuracy (each of

which presents multiple chances to be caught). In other words, sensori’s multiple false

announcements withinM consecutive iterations will cause VeIL to continuously produce

highαs,i(·) values, making it highly likely to detect the misbehaving sensori. On the other

hand, sporadic attacks will be detected by theNB/B scheme mentioned earlier. Weaken-

ing the attack frequency further than this imposes no threat to the localization service.

Let us consider the case where a malicious sensori mounted an attack to forces to

computecs,i(k) that differs from the expected costc∗s,i(k) by ∆, i.e.,cs,i(k) = c∗s,i(k) + ∆.

103

This will increaseαs,i(k) by ∆, becauseαs,i(k) = α∗s,i(k) + ∆ from Eq. (4.9). Hence,

the deviation of the prediction error at iterationk is proportional to the attack strength∆.

By contrast, the prediction error gets amplified rapidly at iterationk + 1 for the following

reason. From Eq. (4.10), the filter-weights are updated asĥs,i(k) = ĥ∗s,i(k) + ∆ · gs,i(k).

Then,αs,i(k + 1) can be rewritten as a function of∆:

αs,i(k + 1) = α∗s,i(k + 1)−∆2 · gs,i1(k)−∆ ·
[
ĥs,i1(k) + gT

s,i(k)cs,i(k; M)
]

(4.16)

wheregs,i1(k) is the first element ofgs,i(k). Therefore, the perturbation∆ introduced at

iterationk results in a very large amount of prediction error in the next iteration. More-

over, this magnification of prediction errors will persist for the period ofM consecutive

iterations, during which the false costcs,i(k) remains cached inside the profile manager,

thus making it very difficult for the attacker to evade VeIL. This qualitatively illustrates

the highest level of VeIL’s attack-detection capability.

4.2.7 Protocol Description

Figure 4.3 provides the pseudocode of our proposed localization protocol executed

at sensors. (For simplicity,B is set to be unbounded in the pseudocode.) It integrates

the operations for the attack detector, the profile manager, and the underlying localization

algorithm. The localization at sensors starts by initializing the profile manager and ran-

domly choosingxs(0) followed by announcement of the initial location to its neighbors.

Then,s executes up toM iterations with VeIL disabled, activates VeIL at iterationM + 1,

and finally, performs the rest of localization until its convergence.

There are two response mechanisms to false location announcements. First, the false

locations (at iterationk) must be excluded from (i) the computation ofs’s next location

estimatexs(k + 1), and (ii) the recursion for the profile manager by lettingcs,i(k) =

ĥT
s,i(k − 1)cs,i(k − 1; M). Second, malicious neighbori must be removed from the future

104

Initialization : ĥs,i(M) = 0;
Ps,i(M) = ρ−1I;
randomly choose and announcexs(0);

Iteration :

// Execute localization until its convergence
for (k = 0; cs,0(k − 1)− cs,0(k) < ε; k++)

receivexi(k) from all i;
computecs,i(k), ∀i, andcs,0(k) using Eqs. (4.1) and (4.2);

// Activate VeIL at iterationM + 1
if k ≥ M + 1,

for i = 1 to ns,
computeαs,i(k) using Eq. (4.9);
if cs,0(k) ≥ η0(k) · cs,0(k − 1) and
|αs,i(k)| ≥ ηt ·max {cs,i(k), cmin},
cs,i(k) = ĥT

s,i(k − 1) cs,i(k − 1;M);
if ++ blacklist counter(i) ≥ NB,

blacklist i;
if i blacklisted,

deactivatêhs,i(k);
else,

updateĥs,i(k), gs,i(k) andPs,i(k);

// Execute the location-update algorithm
update and announcexs(k + 1);

Figure 4.3: Pseudocode for VeIL at sensors

105

localization process (e.g., by deactivatingĥs,i(k)) if it had been caught more thanNB

times. To do this, theblacklist counter(i) is incremented wheneveri’s announcement is

found to be “false.”

4.3 Security Analysis

We classified the localization-specific attacks in Section 1.3 into three types: (1) location-

targeted attacks, (2) distance-targeted attacks, and (3) anchor-targeted attacks. We now

describe how VeIL counters each of these attacks.

4.3.1 Defense against Location-Targeted Attacks

The attacker may influence, and cause a significant bias in, the localization process by

providing false location information. This threat can be caused by (i) physical attacks that

compromise sensors and then deploy them, and (ii) wormhole attacks that create hidden

links between malicious devices, both of which will then be used to replay/modify/create

messages that carry location information. Traditional authentication-based countermea-

sures will likely fail since it is difficult to keep cryptographic keys secret under these

attacks. Likewise, any protocol (including the one based on hop-counts) that uses sensors

as relays, is vulnerable to these attacks.

By contrast, VeIL is very robust to these location-targeted attacks as it hinges on

highly-correlated localization behaviors of sensors that update location estimates toward

their true locations. Since every sensor keeps refining its location estimate such that the

aggregate differences in location information received from its neighbors fit better with

measured distances, the next location estimate of a sensor can be predicted, for the most

part, from its past localization history. Actually, VeIL makes “optimal” prediction using

the least squares formulation and the RLS method. Under this prediction framework, any

location announcements that deviate significantly from the corresponding prediction are

106

highly likely from attackers.

An attacker may attempt to break VeIL in several ways. First, he may judiciously ad-

just the strength of perturbation to make the cost just below the detection thresholdηt.

Since the location differences converge to the distance measurements during the localiza-

tion, such an attempt will place great stress on the attacker into steadily lowering the attack

strength not to be caught by VeIL. However, by doing so, the attacker cannot succeed in

his mission to fail the localization process. Second, the attacker may try to inject false

location information from the beginning, to “train” the profile manager to always predict

high individual costs. However, such an act will soon be caught because the individual cost

from the malicious node will become conspicuous among the costs of all the neighbors.

Moreover, it is extremely difficult for the attacker to fool all the neighbors without physi-

cally compromising them. Third, the attacker may mount sybil attacks. But sybil attacks

are ineffective under VeIL, because fictitious locations can only take values agreeing with

the corresponding distance measurements to evade VeIL, forcing all the falsified locations

to be close to one another. As a result, the only effective way to evade VeIL “locally” is

to compromise at least one-third of the sensors within the local region. This proves the

highest attack-tolerance of VeIL on location-targeted attacks.

4.3.2 Defense against Distance-Targeted Attacks

The distance measurements/estimates can be altered by distance enlargement/reduction

attacks (e.g., via jamming, physical obstacles and the transmission power control), worm-

hole attacks on distance or hop-count information, etc. In general, any attempt by a ma-

licious sensori to modify the distance to its neighbors makes only a onens-th contri-

bution tos’s location estimate, sinces determines its location with respect to the loca-

tions/distances of allns neighbors.s’s decision is then fed back to the others, canceling

107

the errors fromi. So, the impact of the distance-targeted attacks of a single malicious node

on sensors in its proximity is small, and smaller on farther-away sensors. Thus, in spite of

its possible undesirable local effects, VeIL will not distort the network-wide connectivity,

making it robust to distance-targeted attacks.

Specifically, jamming a local area (or placing obstacles) blocks sensors inside (or

nearby) the area from participating in the localization. But, the unaffected sensors can

still maintain consistent network connectivity among themselves, although their location

estimates may differ from real locations (i.e., the closer to the jammed area, the larger

the deviation). Moreover, as soon as the jamming is over, the sensors will start adjusting

their locations in the course of neighborhood management via BEACON packets. Note

that VeIL also plays a role of verifying BEACON packets. Besides, a malicious sensori

may amplify its transmission power in order to proliferate bogus information as well as to

cause smaller-distance measurements, buti is more likely to be caught by VeIL because in

such a case there will be more neighbors watching on it.

4.3.3 Defense against Anchor-Targeted Attacks

This type of attacks can be considered as a special case of location-targeted attacks in

that malicious/bogus anchors will provide false information on location references. Typi-

cally, the effects of location-targeted attacks on anchors become much more serious than

those on non-anchor nodes because they will eventually corrupt the entire network. For

this reason, anchors are assumed to be trusted entities. However, in reality, anchors can be

compromised (by determined attackers) no matter how well protected they are, and, if that

happens, it is impossible for sensors to determine their true locations. Also, compromising

all (or two-thirds of) the neighbors of an anchor would have the same effect as compro-

mising the anchor. VeIL is capable of gracefully resisting this type of attacks as explained

108

below.

There exist two attack scenarios from a malicious anchor: (i) persisting the same falsi-

fied reference location, or (ii) spoofing as many false locations as possible (sybil attacks).

The former applies to the network with static anchors only, while the latter applies to the

network of mobile anchors. Under the first attack scenario, VeIL still maintains network-

wide connectivity since the malicious anchor itself is just one of the neighbors. There-

fore, VeIL can achieve ‘coarse-grained’ localization even when several (static) anchors are

compromised. Moreover, VeIL inherently doesn’t require any mobile anchor, and hence,

disallows the use of mobile devices for security reasons, violation of which can be easily

checked as follows. Each VeIL-enabled sensor builds a static neighbor list before starting

localization (as in Section 4.2.1), and then binds the reference location with an anchor ID,

if it is a neighbor, via the anchor authentication (described in Section 4.2.2). Hence, any

reference location that differs from the initial, authenticated value will be rejected. As

a result, the second attack scenario cannot happen in VeIL. By contrast, those protocols

relying on mobile anchors become defenseless once the anchor has been compromised or

successfully spoofed. Therefore, mobile anchors, if used, must have higher-level protec-

tion than immobile sensors; this may be acceptable since mobile devices (e.g., iPaqs or

laptops) are usually equipped with more and better resources (e.g., faster CPUs and more

powerful antennae) than static sensors (e.g., Motes). VeIL can also be configured to allow

mobile anchors although the benefit of using them is marginal in VeIL.

4.4 Performance Evaluation

We evaluate the performance of VeIL using simulation. We will first describe our

simulation environment and the metrics used. Then, we present our simulation results that

consist of two parts: (1) quantification of the prediction error of profile management, and

109

ASW ASE

ANW ANE

s

(0,100)

(0,0)

(100,100)

(100,0)

Figure 4.4: The simulation environment consisting of 4 anchors and 45 sensors

(2) evaluation of the attack/anomaly detection capability to mask the effects of malicious

neighbors.

4.4.1 The Simulation Environment

As shown in Figure 4.4, our simulation environment consists of a network of 49 sen-

sor nodes deployed on a uniform,7 × 7 grid covering an area of100 × 100 [m2]. The

four corner nodes are location-information-equipped anchors, transmitting their (fixed)

geographic coordinates. The rest of the network nodes are normal sensors whose loca-

tions are unknown, and hence, must be determined. Sensors guess their initial locations

completely randomly. Lets be the sensor at the grid center for convenience.

We use the RSS-based ranging technique because it has been widely used by real

sensor platforms like Motes [33]. The radio model implemented for our simulation is the

one in [84] based on real measurements that models the RSS as a log-normal-distributed

random variable with its mean power decaying according to the pass loss model. This

model captures the characteristics of RSS-based ranging that incurs high estimation errors

110

if two communicating parties are farther away from each other. To deal with these errors,

we average 20 RSS measurements before deriving a distance estimate.

The maximum communication range is set to 40 [m] for both anchors and sensors, i.e.,

s acceptsi as a neighbor if the distance estimate derived from RSS is smaller than 40 [m].

This effectively limits the number of neighbors for each anchor to be around 7 sensors, and

hence, about a half of sensors cannot directly hear from any of the anchors, while the rest

can directly hear from at least one anchor. Sensors determine their own list of neighbors

based on RSS measurements before starting the localization process.

During the localization process, each sensor executes VeIL (Figure 4.3) that verifies,

computes, and exchanges incremental location updates with its direct neighbors. Through-

out the simulation, VeIL is configured withλ = 0.95 andρ = 0.1. The iterative method of

[28] is used to update the location estimates at each iteration, but other iterative schemes

can be used as well. The choice of location-update method determines how fast it con-

verges and how computationally-efficient it is, without affecting the detection capability

of VeIL.

4.4.2 Metrics for Evaluation

We define and use the normalized prediction error (NPE) ofs at iterationk as

NPEs(k) =

∑ns

i=1 |αs,i(k)|
cs,0(k)

, k ≥ M + 1. (4.17)

That is,NPEs(k) is the sum of absolute values ofαs,i(k)’s, normalized tocs,0(k). It

follows from Eq. (4.9) thatαs,i(M + 1) = cs,i(M + 1), ∀i, becausêhs,i(M) = 0, and

hence,NPEs(M + 1) always equals 1.

We also introduce an individual prediction error (IPE) betweens andi at iterationk to

quantify the attack-detection capability. Based on Eq. (4.14), we define

ipes,i(k) =
|αs,i(k)|

max {cs,i(k), cmin} , k ≥ M + 1. (4.18)

111

4 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k (iteration)

N
P

E
s(k

)

M = 3

Figure 4.5: Attack-free normalized prediction error

4.4.3 Performance of the Profile Manager

We evaluate the performance of the profile manager in terms of its prediction accuracy

by executing VeIL in an attack-free environment. To quantify this, we collected NPE

values ofs from 200 independent simulation runs of the localization process. Figure 4.5

plots the averageNPEs(k), as well as the(−σk, +σk) interval, as a function ofk, where

M = 3 andσk is the standard deviation of NPE measurements at iterationk. The results for

M = 4 and 5 were similar to this. From this figure, we make the following observations.

First, NPEs were mostly less than 0.1, demonstrating high accuracy of the profile manager.

Second, NPE was around 0.2 at the(M + 2)nd iteration, meaning that it constructed a

ready-to-use profile pretty quickly, i.e., right after the filter gets activated. Finally, the

profile manager incurred small processing and storage overheads thanks to the small order

(=3) of the filters. As mentioned in Section 4.2.5, the processing overhead ofs for updating

112

the profile isO(M2) per neighbor, which is acceptable even for resource-limited sensors

whenM = 3.

In summary, our proposed profile manager based on adaptive filtering captures the

localization behavior in as compact a form as possible, thus achieving both accuracy and

computational efficiency.

4.4.4 Performance of the Attack Detector

To evaluate the attack detector’s performance, we simulate VeIL under the attack sce-

narios of (i) a single attack source and (ii) multiple simultaneous attack sources. Described

below are the simulation results and their analyses for each of the two scenarios.

Defense against a Single Attack Source

In this simulation, a malicious neighbor (say, sensor 5) ofs injects at iteration 14 false

location information that deviates from the expected location by 40 [m], where the direc-

tion of deviation is determined randomly. This attack scenario is suitable for evaluating

the VeIL’s ability to handle false location announcements. We carried out 200 simulation

runs under this attack scenario, and measured/computedNPEs(k), ipes,i(k) andcs,0(k).

Figure 4.6(a) plots bothNPEs(k) and ipes,i(k). The former quantifies the attack

strength, while the latter identifies the source of the false information. We observe that the

attack occurred at iteration 14 increasedαs,5(14) in proportion to the attack strength, and

boostedαs,5(15) by orders of magnitude. Moreover, the next two iterations also exhib-

ited unusually large prediction errors. This implies that the adversarial cost disrupted the

prediction mechanism while it resided in the profile manager. Clearly, these results agree

with our analysis in Section 4.2.6. In Figure 4.6(b), we also plotcs,0(k) as a function of

k. The figure shows the local cost created a spike at iteration 14, thus causing the test of

Eq. (4.15) to fail. This is an evidence that the increase inαs,5(14) is due to an attack.

113

4 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9

10

k (iteration)

N
P

E
s(k

)

M = 3

5
0

40

80

120

160

i (neighbor index)

ip
e

s
,i
(1

5)

4 10 15 20 25 30 35 40 45
0

20000

40000

60000

k (iteration)

c s,
0(k

)

(a) Normalized and individual prediction errors

(b) Local cost

Figure 4.6:Attack-detection capability: a single false location announcement at iteration
14

114

5 10 13 18
0.1

1

10

100

1000

10000

100000

i (neighbor index)

ip
e s,

i(1
5)

80 [m]
50 [m]
20 [m]

Figure 4.7: Individual prediction errors with varying attack strengths

Based on these results, we constructed multiple layers of defense mechanisms against

attacks as follows. First, the tests based on Eqs. (4.14) and (4.15) serve as the first line

of defense that diagnoses and combats attacks as early as possible. Second, VeIL checks

and monitors the strength ofαs,5(·) for the nextM iterations to uncover the attacks that

somehow evaded the first line of defense.

Defense against Multiple Attack Sources

We now evaluate the VeIL’s capability to detect multiple malicious nodes that have

simultaneously announced false locations. Figure 4.7 presents the IPE ofs at iteration 15

when 4 malicious neighbors (whose indices are 5, 10, 13 and 18) simultaneously mounted

attacks of varying strengths that deviate from the desired values by 20, 50 and 80 [m].

We make the following observations from the figure. First,ipes,i(15) increased very

rapidly with the attack strength, demonstrating VeIL’s effectiveness in countering location-

115

targeted attacks. Second, VeIL successfully detected attacks incurring small perturbations,

e.g., a half of the communication range. This demonstrates the VeIL’s very high resolution

in detecting attacks. Finally, VeIL preserved its attack-detection capability regardless of

the number of attack sources as far as they are less than one-third of the total number of

neighbors, which is obvious from the fact that VeIL separately maintains an adaptive filter

for each neighbor.

4.5 Conclusion

In this chapter, we proposed a novel attack-tolerant localization scheme, called VeIL,

for a large-scale sensor network deployed with only a small number of less-capable an-

chors. The use of spatio-temporal correlation among adjacent nodes played a key role in

developing VeIL as a cooperative intrusion/anomaly detection system tailored to localiza-

tion that consists of (1) adaptive management of the profile for normal localization behav-

ior, and (2) distributed detection of false locations via comparison with the thus-managed

profile. Our security analysis and performance evaluation demonstrated the high-level

attack-tolerance and the feasibility of VeIL on resource-limited sensors, in that VeIL suc-

cessfully defeats many critical attacks while incurring only small overheads.

116

CHAPTER V

PROGRAM INTEGRITY VERIFICATION

5.1 Introduction

Sensor networks are vulnerable to various security attacks, especially because they are

deployed in a hostile and/or harsh environment. In such an environment, a captured sensor

may be reverse-engineered, modified and abused by the adversary. That is, the adversary

can (i) acquire (via analysis of the sensor memory) detailed knowledge of what the sensor’s

program is supposed to do and what the master secret is; (ii) modify the program with a

malicious code; and (iii) produce and deploy multiple copies of the manipulated sensor

device in the network. This is a serious problem, as sensor devices, once compromised,

can subvert the entire network, e.g., blocking nodes within its communication range from

receiving and/or sending/relaying any information. Consequently, it is essential to make a

sensor devicetamper-proofing.

Traditionally, the tamper-proofing of programs or master secret relies on tamper-resistant

hardware [3, 19]. However, this hardware-based protection will likely fail to provide ac-

ceptable security and efficiency, because (i) strong tamper-resistance is too expensive to

be implemented in resource-limited sensor devices, and (ii) the tamper-resistant hardware

itself is not always absolutely safe due to various tampering techniques [3, 2, 11] such

as reverse-engineering on chips, micro-probing, glitch and power analysis, and cipher

117

instruction search attacks. Existing approaches to generating tamper-resistant programs

without hardware support can be classified as:

code obfuscation [26, 113, 114, 123] that transforms the executable code to make analy-

sis/modification difficult;

result checking [10, 36, 116] that examines the validity of intermediate results produced

by the program;

self-decrypting programs [5, 27] that store the encrypted executables and decrypt them

before execution; and

self-checking [5, 23, 48] that embeds, in programs, codes for hash computation as well

as correct hash values to be invoked to verify the integrity of the program under

execution.

However, for the following reasons these approaches are unsuitable for sensor networks

where a program runs on a slow, less-capable CPU in each sensor device. First, in the case

of code obfuscation, it becomes easier to tamper with the program code as the code size

in low-cost sensor devices shrinks, let alone the theoretical difficulty of obfuscation [6].

Moreover, just making it difficult to tamper with program code is not sufficient, as it can-

not protect against “determined” attackers. Second, techniques based on result-checking

or self-decryption are too expensive to be employed in resource-limited sensor devices

because it repetitively incurs the overhead of verification or decryption, shortening the

sensor’s battery lifetime and degrading the network throughput. Third, the security of

self-decrypting programs can be easily broken unless the decryption routines are protected

from reverse-engineering, for example, by means of hardware. Likewise, self-checking

techniques become defenseless once the hash computation code and/or the hash values

have been identified/analyzed by the adversary.

118

In spite of these threats, little has been done on tamper-proofing tailored to resource-

limited sensor devices. To defend the sensor network against the above-mentioned attacks,

the following security conditions should be met: (i) the program residing in a sensor is not

modified (integrity), and optionally, (ii) the sensor identifier (ID) is unique in a network

(uniqueness). The second condition is needed only if certain services rely on unique IDs

for their proper operation as the adversary may deploy the cloned sensors to sabotage the

services. However, these conditions are difficult to meet due mainly to the usually hostile

operational environment, as well as the very large size of sensor networks, under which

it is easy for an adversary to capture and compromise sensors. We, therefore, need an

approach that creates a network of mutually trusted sensors, i.e., each sensor can trust that

the rest of the network has not been tampered with. To achieve this, we require each sensor

to register itself with a dedicated server after verification of its program.

In this chapter, we propose a protocol, calledProgram-Integrity Verification(PIV),

that verifies the integrity of the program residing in each sensor device, when it (1) joins

the network or (2) has experienced a long service blockage. The latter is based on the

fact that an adversary may have to disrupt the sensor’s normal function for an extended

period in order to capture/reverse-engineer/reprogram a sensor device and deploy the ma-

nipulated sensor in the network. Examining and verifying the program itself is easy to do

for small, low-cost devices: the verification of a small program is fast and necessary only

infrequently. The PIV protocol is very attractive because it

• prevents manipulation/reverse-engineering/reprogramming of sensors;

• does not degrade normal sensor functions since PIV is triggered infrequently and

relies on neither self-decryption nor result checking;

• is purely software-based (and thus, can be used with/without tamper-resistant hard-

119

ware); and

• is tailored to the sensor devices with severe resource limitation (e.g., Motes with an

8-bit CPU and 4 KB RAM each [33]).

Moreover, the verification of each program incurs a very small overhead, as it only de-

fines/uses cryptographic hash functions, which are orders-of-magnitude cheaper and faster

than non-trivial cryptography like public-key algorithms.

A naive way of ensuring program integrity is to use digital signatures [15, 39, 70,

71, 87] as follows. During the pre-deployment stage, the digest of the original program

is computed using an agreed-on hash function and then a signature is derived from the

digest. The verifier (i.e., a server in charge of verification) processes the signature with a

trapdoor one-way function (OWF) and compares the result with the digest for the current

program. However, this digital signature-based scheme will likely fail regardless of the

cryptographic strength of the OWF, since (part of) the verification procedure should be

executed on a remote, untrusted sensor. For instance, the malicious sensor can deceive the

verifier either by tampering with the digest or by faking/replaying messages (conveying

the digest and/or verification results) to the verifier. One cannot avoid this type of attacks

due mainly to (i) fixed and agreed-on algorithms for hashing and signature verification,

and (ii) short lengths of the digest/signature. Applying public-key algorithms on the entire

program (similarly to that in [58]) may solve these attacks, but it is too costly to employ

public-key algorithms in severely resource-constrained sensor devices.

We, therefore, need an efficient way of protecting the verification process from be-

ing replayed/forged, in which the verifier randomly generates the hash computation algo-

rithm for each verification. Keyed hash functions (e.g., [59, 92]) with randomly-chosen

keys [98] could compute random hash values. Unfortunately, they are not feasible for

120

sensor networks because they stress both the sensor (into computing 32-bit operations)

and the verifier (into storing/processing the entire programs). The scheme in [98] also

randomly “traverses” program contents in order to slow down the hash calculation by a

malicious device. However, this scheme guarantees detection of malicious programs only

probabilistically, thus requiring a large number of memory accesses to achieve a high de-

tection probability. Thus, we need a random hash computation algorithm that meets the

following requirements:

• the hash computation optimized for embedded CPUs (e.g., 8- or 16-bit CPUs);

• examination of every location in both volatile and non-volatile memory; and

• incurring low processing/storage overheads to the verifier.

To meet these requirements, we propose the concept of arandomized hash function(RHF)

which provides (i) random encoding of the hashing algorithm over a finite fieldGF (2n)

wheren is typically equal to 8, and (ii) two ways of computing the hash value, i.e., from

the program (for sensors) and the digest (for the verifier). We also enforce PIV to process

both code (in the non-volatile memory) and data (in RAM or EEPROM) initialized to

uncompressible values, ensuring no room left for the attacker to copy the malicious code

in. Based on RHFs, we realize PIV by constructing the security framework, the sensor

pre-deployment scheme, and the verification protocol. We finally analyze the security and

performance of the PIV protocol, and evaluate the RHF on Motes.

The remainder of the chapter is organized as follows. Section 5.2 describes the pro-

posed protocol. Section 5.3 evaluates the performance for the PIV protocol. Finally, the

chapter concludes with Section 5.4.

121

5.2 Program-Integrity Verification

We propose a protocol for program-integrity verification (PIV) in sensor networks,

which prevents the compromised sensors from joining the network, without relying on

tamper-resistance of hardware. The PIV protocol aims to form a closed network among

those sensor devices that have correct (uncompromised) program. To achieve this, we re-

quire each sensor device to prove integrity (authenticity) of its program via a verification

server, before gaining access to the network resources. In other words, each sensor must

register itself with a verification server by having its program checked by the server. Oth-

erwise, it cannot acquire any meaningful information from the network. This approach

is particularly suitable for use in sensor networks for both security and performance rea-

sons. For security, the network becomes more robust to physical-level attacks, in that it

attempts to proactively prevent attacks rather than just detecting them afterwards. Accord-

ingly, existing services are free from the fault-tolerance (Byzantine generals) problem in

the presence of faulty/misbehaving devices. For performance, the latency to examine the

entire program will be reasonably low, because the program in a sensor is relatively small

as compared to the software for PCs/workstations. Moreover, it does not degrade nor-

mal sensor functions since PIV is triggered only infrequently and the program will remain

unencrypted.

In this section, we present an attack model and the PIV goal, the rationale behind the

PIV protocol and the randomized hash function, and describe the components for PIV and

security and performance analyses.

122

5.2.1 The Attack Model and the PIV Objective

The Attack Model

Evaluating the degree of tamper-proofing is an important problem. Abrahamet al. [1]

discussed this issue in the design of tamper-resistant hardware, and classified attackers as

clever outsiders, knowledgeable insiders, and funded organizations. However, the degree

of tamper-proofing in the networked sensor devices should be defined differently, i.e.,

in terms of preserving the availability of the network. We claim that the strength of a

given tamper-proofing solution be evaluated by the cost (e.g., time and effort) that the

adversary should pay to acquire an adequate number of compromised sensors necessary to

subvert the network. The degree of tamper-proofing is, therefore, categorized according to

the complexity of (re)producing malicious sensors (in the order of increasing strength) as

follows.

Level 1: the attacker may convert a sensor to a malicious slave by simply reprogramming

the sensor without modifying its hardware. After securing the first slave, the attacker

can subvert others very easily, for example, by cloning the compromised sensor.

Level 2: the attacker should pay a similar amount of time and effort each time (but without

augmenting the sensor hardware) for an individual compromise, i.e., the attacker

does not exploit the knowledge gained from previous subversions.

Level 3: the attacker subverts a sensor by modifying the sensor hardware, for example, at-

taching more memory, a more powerful CPU, and/or another device via a secondary

RF interface.

Clearly, if the captured sensor is modified with more memory that can store both the origi-

nal and malicious code (an attack of Level 3), it can deceive any defense mechanism, e.g.,

123

by feeding the original program to the verifier. No software-only schemes can defeat such

an attack, because they cannot tell if the sensor hardware is modified or not.

The PIV Objective

We would like to support the tamper-proofing of sensors as strong as Level 2, making

it extremely difficult for the adversary to modify the program without changing the sensor

hardware. Here we do not consider Level-3 attacks for the following reasons. First, it is

too costly to manipulate an adequate number of sensors for the intended attack due mainly

to the large network size. Second, the PIV serves as a first line of defense even in the

presence of Level-3 attacks, because it stresses the adversary into either manually modify-

ing individual sensors or designing/manufacturing sensors of increased storage capacity.

To completely protect the network against the above-mentioned attacks, one may use the

PIV protocol together with network intrusion detection systems [9, 51, 60, 129, 130] that

uncover suspicious sensors by monitoring network activities.

5.2.2 How to Secure PIV?

The proposed protocol usesPIV Servers(PIVSs), distributed over the entire network,

so as to examine each sensor’s program and check if it is the same as the original one.

PIVSs are equipped with more computation and storage capacities than sensors. We also

employ a special-purpose mobile agent, called aPIV Code(PIVC), which is generated by

a PIVS and executed on a sensor being verified to read/process the program. We need the

following two types of security on each verification:

• sensor securitythat protects the sensor from a malicious server/code disguised as a

PIVS/PIVC, and

• code securitythat protects the PIVC from a malicious sensor.

124

The sensor security is achieved by using a conventional authentication server (AS) that

acts as a trusted third party, by which the sensor can make sure that the PIVS is authentic,

and hence, it is safe to execute the PIVC. Ensuring code security is more complicated than

sensor security, mainly because the PIVC is almost defenseless when it is running on a

remote sensor. Hence, we will develop a protocol that does not require the guarantee of

code security.

Conventionally, data integrity is ensured by using digital signatures. Digital signatures

can be applied to verify program integrity as follows. Each sensor has been programmed

with a programx and a signaturesp, wheresp has been computed fromx by compressingx

into a digestdp with an agreed-on hash function, and then processingdp with a signature

function. Then, the PIVS restoresdp by applying a trapdoor one-way function tosp,

computes another digestdv for the program to be verified, and checks if the two digests

match. However, this digital signature-based scheme will likely fail, as the computation

of dv and the transmission ofsp anddv to the PIVS should be done on a remote, untrusted

sensor device that has not yet been verified. In particular, a malicious sensor can (1)

reverse-engineer and modify the code fordv computation (PIVC); (2) read/change data of

dv computation; and (3) fake messages (containingsp anddv) from the PIVC to the PIVS.

We should, therefore, assume that adversaries can arbitrarily modifyx, sp, anddv. In

particular, the adversary who attempts to re-program the sensor with a malicious program

x̃ (a program with malicious codes appended to, or inserted in, the original program) may

mount the following attacks.

A1. Tampering with the digest computation into calculatingdv, instead of̃dv, on x̃: since

d̃v is computed via a well-known cryptographic hash function and the length ofd̃v

is very short (e.g., 16 bytes in case of MD5), the adversary can easily deceive the

PIVS without knowledge of the underlying signature function.

125

A2. Intercepting the message exchanged between PIVC and PIVS to replaced̃v with dv:

the adversary can experiment with the PIVS and an unaltered sensor to get the value

of dv; oncedv has been identified, it can be repeatedly replayed.

Clearly, these attacks are difficult to defend against when the algorithm for hash com-

putation is fixed and the length of the digest is short. Creating a secure channel between

PIVC and PIVS does not help because key materials and encryption/decryption routines

can also be reverse-engineered. Making it just difficult to reverse-engineer them (e.g., via

conventional code obfuscation techniques) is not enough, because, once they are compro-

mised, the same method can be applied for subsequent break-ins (Level-1 attack). Ap-

plying public-key algorithms directly on the program, instead of the digest, may solve

these attacks. However, it is very costly for severely resource-constrained sensor devices

to process the entire program with the public-key algorithm.

We, therefore, propose an efficient way of protecting the verification process from be-

ing replayed or tampered with. To meet this need, we enforce that the PIVS randomly

generate a hash calculation algorithm for each PIVC creation. Keyed hash functions with

randomly-chosen keys could produce random hash values. However, they are not suitable

for low-cost embedded devices like sensors, because (1) they are based on 32-bit opera-

tions, thus performing poorly in 8-bit CPUs which are currently the most commonly-used

CPUs in low-cost sensor devices, and (2) the PIVS is required to store/process the pro-

grams, instead of digests, incurring high processing and memory overheads; although

PIVSs are more capable than sensors, it still severely limits scalability. What is needed is

a special class of cryptographic hash functions, calledrandomized hash functions(RHFs)

which, in addition to random hash computation, provide two ways of computingdv, i.e.,

(i) from x and (ii) fromdp. By using RHFs, the PIVS can randomly encode the hash com-

putation algorithm for each PIVC it creates. That is, while keepingdp internally, the PIVS

126

randomly chooses an RHF to generate the PIVC and allows the PIVC executed on the

sensor to computedv. Then, it is possible for the PIVS to check ifdv agrees withdp via

the same RHF. Using this idea, we can successfully defend against the above-mentioned

attacks, thus achieving highly secure tamper-proofing on sensor-resident programs, i.e.,

sensors with modified programs cannot pass the PIV test.

Although we propose RHF as a hash function tailored to the resource-limited sensor

devices, the entire PIV framework (in Section 5.2.4) doesn’t depend on the choice of a

specific hash function. That is, the PIVS can use, and dynamically switch to, any of the

existing hash functions (such as RHF and HMAC) with no additional cost, because the

hash computation algorithm itself is transmitted via PIVC uponeachverification. For

example, if the currently-active hash function is found to be insecure, the PIVS will use

another hash function for new verifications.

Most of the successful attacks/cryptanalyses on cryptographic algorithms reduce the

effective key lengths, which, in turn, facilitates exhaustive-search attacks. However, it

still takes a significantly longer time than a single execution of the algorithm to compute

a plaintext for a given ciphertext. To exploit this fact, PIV strictly enforces a time-limit

on each verification (as described in Section 5.2.4), thereby tolerating attacks on hash

algorithms as well as allowing the use of less secure algorithms.

5.2.3 The Randomized Hash Function

To design RHFs, we applymultivariate quadratic(MQ) polynomials overF = GF (2n),

wheren is typically 8 to allow for byte-oriented processing. The use of small finite fields

does not degrade the level of security and, if designed properly, it can achieve both strong

security and fast processing. In fact, public-key signature schemes [30, 31, 32, 75] that be-

long to the category of multivariate cryptography, rely on small finite fields (e.g.,GF (27)

127

or GF (28)) for their faster and shorter signatures. MQ polynomials have been used suc-

cessfully to realize trapdoor one-way functions in the above-mentioned multivariate signa-

ture schemes, and hence, it is reasonable to characterize them as a one-way hash function.

We partition the program into multiple program blocks. LetΛ denote the size of the en-

tire program in bytes andη the length (in bytes) of an element inF, i.e.,η = dn
8
e. We build,

from the original programx, B program blocks,x1, . . . ,xB, wherexl = [xl,1 . . . xl,m]T

is anm × 1 vector andxl,i ∈ F.1 Likewise, the program̃x to be verified consists of

x̃1, . . . , x̃B, wherex̃l = [x̃l,1 . . . x̃l,m]T andx̃l,i ∈ F. We define a digest forxl as anm×m

matrixXl, which consists of all quadratic terms,xl,i xl,j. That is,Xl = xlx
T
l = (xl,i xl,j).

The PIVS will process and storeXl’s in its database. The size of this database will be

much smaller than that of storing all sensor programs, since there exist program blocks

common to all, or at least a group, of sensors (for the homogeneity of their missions) and

multiple digests can be combined into one. That is, the more common program blocks or

combined digests they have, the smaller the database gets.

The RHF computes the same hash value from both (i) the program blockxl (for hash

computation in PIVC) and (ii) the digestXl (for hash verification in PIVS), and possesses

the following algebraic structure. The RHF is specified over spaces of program blocks

P = Fm, digestsD = Fm×m, random keysG = FB andH = Fk×m, and hash values

Y = Fk×k (k2 ¿ m), and consists of

• a hash computation algorithm,Hash : G ×H × PB → Y, and

• a verification algorithm,Vrfy : G ×H ×DB × Y → { pass, fail },

such thatVrfy(G,H, {Xl}, Hash(G,H, {x̃l})) = pass, if xl = x̃l for all l = 1, . . . , B.

Note thatk is a parameter determining the complexity ofHash and the size ofHash output

1xT (AT) is the transpose of a vectorx (a matrixA).

128

HG,

)(xHash

B1sensor X,,XID ��

[]
pass/fail?

)(X, x

=
HashVrfy

sensorID
sensorID

PIVCPIVS

Hash

HashH,G,
x1

x2

…

xB

Program

pass/fail

Figure 5.1:Hash andVrfy algorithms

accordingly. LetG = (gl) ∈ G andH = (hij) ∈ H, wheregl, hij ∈ F, denote randomly-

chosen keys for each verification. The two ways to compute a hash valueY = (yij) ∈ Y,

yij ∈ F are as follows. First, the algorithmHash computesY from x1, . . . ,xB as:

Y =
B∑

l=1

gl (H xl) (H xl)
T . (5.1)

Second, the algorithmVrfy hashesXl, . . . , XB into Y as:

Y = H

[
B∑

l=1

glXl

]
HT . (5.2)

Clearly,Y can be represented as a set of MQ polynomials. Rewriting Eqs. (5.1) and (5.2)

yields

yij =
B∑

l=1

m∑

i′=1

m∑

j′=1

glhii′hjj′xl,i′xl,j′ , (5.3)

where1 ≤ l ≤ B and1 ≤ i, j ≤ k. So, the RHF evaluatesk2 MQ equations inm × B

variables.

Figure 5.1 shows how PIVS and the sensor interact with each other to cooperatively

executeHash andVrfy. The PIVS and the sensor exchange the following messages.

129

M1. Sensor→ PIVS: IDsensor

M2. PIVS→ Sensor: G, H

M3. Sensor→ PIVS: Hash(G,H, {x̃l})

M4. PIVS→ Sensor: passor fail

Accordingly, PIVC and PIVS proceed as follows.

PIVC initializes Ỹ to 0 then computes̃Y from x̃1, · · · , x̃B, i.e., for each1 ≤ l ≤ B, it

calculates

1. z̃l = H x̃l,

2. Ỹl = z̃l z̃
T
l ,

3. Ỹ = Ỹ + glỸl.

PIVS retrievesXl, . . . , XB corresponding to the target sensor, generates a PIVC withG,

H and theHash algorithm, lets the PIVC to be executed on the sensor, and receives

Ỹ . It then executesVrfy as follows:

1. X =
∑B

l=1 glXl for 1 ≤ l ≤ B,

2. Y = HXHT .

Finally, it checks ifY = Ỹ .

As will be described in Section 5.2.4,Xl’s can be combined into a few digest values,

reducing the PIVS’s processing and memory requirements.

130

5.2.4 Realization of PIV

In what follows, we describe how to realize the PIV protocol based on RHFs. We dis-

cuss all aspects of the protocol including the security framework, the PIV architecture, the

pre-deployment phase of sensors, the state transition diagram for sensors, the verification

protocol, and the realization of PIVS and PIVC.

The Security Framework

Figure 5.2 shows how to construct, based on PIV, the security framework of a sensor

network. The three core building blocks of this framework are detailed below.

• PIV consists of PIVSs that interact with PIV-compliant sensors to verify programs

in the sensors. PIV is triggered only (i) when a new sensor joins the network, or

(ii) when an existing sensor is removed from the network, and optionally, (iii) if a

sensor is suspected to have been compromised. Upon verifying the sensor, the PIVS

either activates or locks the sensor.

• Key management(Chapter II) typically hinges on a cluster-based architecture,2 in

which a cluster-head distributes/renews a cluster-specific key periodically or when-

ever a sensor within its cluster is found (via PIV) to have been compromised.

• Intrusion detection, running on each cluster-head, continuously monitors/probes

network activities (e.g., BEACON packets between neighbors) to detect malfunc-

tioning devices (activities of which deviate significantly from those of agreed-on

services/protocols) and, upon finding a suspicious device, requests its re-verification.

It is crucial to deny network access from those sensors blacklisted or unverified. To

achieve this (as well as checking uniqueness of the ID in the sensor being verified),

2The entire network is divided into multiple clusters, each of which is controlled by a better-equipped
cluster-head. Each sensor is associated with the cluster-head closest to itself.

131

PROGRAM

INTEGRITY

VERIFICATION

INTRUSION

DETECTION

KEY

MANAGEMENT

probe monitor

re-keying

activate / lock
new / dead
sensors

suspicious
sensors

compromised sensors

Sensor Network

Figure 5.2: The security framework for sensor networks based on PIV

PIV maintains a database, calledPIV DB, of all successfully-verified IDs; it inserts into

(deletes from) thePIV DB, the ID upon activation (removal) of the sensor. Moreover,

each ID in thePIV DB is associated with certain attributes like the sensor’s location. This

is to make it impossible for a malicious sensor to spoof the IDs of the verified sensors,

as those IDs will be easily traced back to inconsistent attributes. Hence, the only feasible

way to gain access to the network is to execute and pass the PIV test. We also offer ways

of actuallylockinga sensor, sayf, that failed to register itself in thePIV DB: (1) the PIVS

asks all neighbors off not to relay packets fromf; (2) the key manager of a cluster for

f refreshes the cluster key, thus disallowingf to access/eavesdrop packets; and (3) other

services like routing may look upPIV DB (via PIV) to ensure that the sensors are indeed

genuine. The overheads of these operations are fairly small because they incur local traffic

only.

The program within a sensor should be inspected as infrequently as possible (to reduce

the overhead), inasmuch as it safeguards network resources (to maintain the required level

of security). We meet this requirement by having each registered sensor monitor others

132

in its neighborhood to detect if they ceased normal operation (e.g., sending out BEACON

packets) for an extended period of time and, if they did, request the PIV to delete their

IDs from PIV DB. The PIV does so if sensors in the proximity of the dead sensor had

reported the same information. As a result, any non-member sensor must register with

the PIV by verifying its program with the PIV protocol. Note that it is impossible for an

attacker to remove a valid sensor from the network (by falsely reporting its death) unless

he compromises most of its neighbors. This cooperative monitoring among sensors is

important to prevention of attacks because the adversary may turn off a sensor for a certain

period of time, during which it captures, reverse-engineers and reprograms the victim.

The PIV Architecture

The sensor network contains two types of dedicated servers — PIVSs and ASs. The

roles of these servers are as follows.

• The PIVS performs the PIV protocol on a sensor, and cooperates with other PIVSs

in the network to update/managePIV DB. For scalability, we let cluster-heads in

a cluster-based hierarchical architecture serve as PIVSs. This allows each PIVS to

maintain a localPIV DB that stores IDs of the sensors belonging to its own clus-

ter. Clearly, the more PIVSs (cluster-heads) a network has, the smaller the distance

between PIVS and the sensor, and the more compact the localPIV DB. PIVSs are

deployed as uniformly as possible to balance the workloads among themselves.

• The AS acts as a trusted third party for the sensor in testing the PIVS. It, therefore,

maintains a list of all legitimate PIVSs in the network and updates the list whenever

a PIVS is added or removed. It is undesirable to equip only one AS in a network,

as the AS becomes a single point of failure and the performance bottleneck, and in

such a case, we must use multiple ASs deployed over the entire network. Each AS

133

authenticates a PIVS using either public-key cryptography or a secret authentication

key shared with each sensor.

We assume that there exists a mechanism for a sensor to learn how to discover, and

reach, a PIVS/AS. One possible realization of such a mechanism is as follows. The

PIVS/AS periodically floods its whereabouts (within a limited scope), and hence, those

sensors that have already been verified, can update how to reach the closest (and active)

PIVS/AS. The newly-deployed sensor will then ask nearby sensors for the location of

PIVS/AS to contact. This mechanism can easily tolerate occasional failures of PIVS/AS.

When a sensor did not receive any packet from its chosen PIVS/AS for a certain period

of time, it switches to an alternative PIVS/AS as follows: if it had recently heard from

other PIVSs/ASs, it chooses the closest one among them; else floods its PIVS/AS search

request, waits for responses from PIVSs/ASs, and then selects an alternative. Besides, the

above mechanism works seamlessly withmobilePIVSs/ASs/sensors by simply increas-

ing the frequency of periodic broadcasting, which allows PIV to be applicable to mobile

environments.

Figure 5.3 shows the interactions among AS, PIVS and the sensor during PIV. It con-

sists of the following three tasks: (1) authentication of PIVS via AS; (2) transmission and

execution of PIVC; and (3) program verification by PIVS/PIVC. That is, the sensor first

asks one of the ASs for authentication of a PIVS (probably the one closest to itself) and,

if authentication succeeds, requests the PIVS to verify its program. Then, the PIVS sends

the PIVC to the sensor, receives a hash value for the current program (computed by the

PIVC with the algorithmHash), runsVrfy, and finally, determines whether the program

is compromised or not. If the sensor passes the verification test, then the PIVS registers it

in thePIV DB.

134

AUTHENTICATION

SERVER

PROGRAM

INTEGRITY

VERIFICATION

SERVER

Request

authentic
atio

n

of P
IVS

Requestverification
PIVC

SENSOR

success/
fail

Hash

��� �����	�

Figure 5.3: Interactions among AS, PIVS and the sensor during PIV

Pre-deployment of Sensors

A sensor device contains a unique master secret and ID. Each sensor also has two dis-

tinct programs: aboot code(executed for bootstrapping and initiation of the verification)

and amain code(executed after the sensor has been successfully verified). Then, it is

possible to take a snapshot of sensors’ data space (excluding the area where the PIVC

will be copied to) just before the execution of PIVC. The data space must be initialized to

random values that can neither be predicted (e.g., all 0s or all 1s) nor compressed into a

more compact form by an adversary. This is to prevent an attack where a tampered sen-

sor abuses the free data space obtained by prediction/compression, for example, to keep a

copy of the original program or the PIVC. An alternative (and more secure) way is to let

the PIVC initialize the data space upon its execution, thus erasing hidden data, if any. We

will henceforth use the terms “program” and “malicious program,” as defined below.

DEFINITION 1. A (pre-deployed) program,x, is a collection of boot and main codes, the

master secret and ID, and the snapshot of the data space.

DEFINITION 2. A malicious program,̃x, is the program containing one or more malicious

code blocks that have been inserted in, or appended to, the pre-deployed program.

135

LOCKED

VERIFYING

ACTIVATED

Verification
failure

Verification
success

Wait for PIVC

Restart
verification

Execute PIVC

Carry out tasks

Figure 5.4: State-transition diagram for sensors

Pre-deployment of a sensor device consists of four off-line steps.

P1. Generation of a programx, i.e., compilation of boot and main codes, selection of the

master secret and ID, and construction of a data snapshot.

P2. Population of the sensor memory withx.

P3. Computation of per-block digestsXl’s from x.

P4. Insertion ofXl’s into PIV DB.

State-Transition Diagram for Sensors

Figure 5.4 shows the state-transition diagram of each sensor. Each sensor device is as-

sociated with one of three states, namely “LOCKED”, “ VERIFYING” and “ACTIVATED”

states, throughout its lifetime. When a sensor is executing the boot code, it is said to

be in LOCKEDstate. Similarly, executions of the PIVC and the main code are bound to

VERIFYING andACTIVATEDstates, respectively.

136

Upon deploying a sensor device, it is started with the boot code and will remain in

LOCKEDstate until it receives the PIVC from the PIVS. Since it is not yet a member of the

network, it can perform no other tasks but wait for the PIVC. After receiving the PIVC, it

makes a transition toVERIFYING state by executing the PIVC. The PIVC then verifies

the program cooperatively with the PIVS and, based on the verification result, executes

either the boot code or the main code: if the verification fails, it returns toLOCKEDstate,

causing the network to deny this sensor’s access to the network. Otherwise, it transitions

to ACTIVATEDstate, in which the main code performs normal sensor functions. Finally,

the main code responds to an explicit request for re-verification from the PIVS. If this is

the case, it will restart the boot code and make a transition toLOCKEDstate. As PIVSs

bookkeep successfully-verified sensors, directly executing the main code or ignoring a re-

quest (possibly by the adversary) will result in denial of the sensor’s access to the network

resources (see below for details).

The Verification Protocol

Figure 5.5 describes the verification protocol between the PIVS and the sensor. The

verification protocol is initiated by either the boot code of the sensor device that wants to

join the network or the PIVS that wants to re-verify the sensor device. The PIVS located

closest to the sensor will be in charge of the verification. The verification procedure will

proceed as follows.

V1. Initialize : this step starts the verification protocol between the PIVS and the

sensor by exchanging their IDs. The sensor, after receiving the ID of PIVS, asks

an AS for authentication of the PIVS, and if the authentication fails, terminates the

protocol.

137

SENSOR

PIV SERVER

Initialize

SendPIVC

AckPIVC

RequestVerification

NotifyVerification

Activate
or Lock

Boot Code

PIV Code

StartPIVC

PIV Code

Boot Code

Figure 5.5: The verification protocol between the PIVS and the sensor

V2. SendPIVC : the PIVS generates a PIVC and then sends it to the sensor. It also records

the time when PIV starts.

V3. AckPIVC : the sensor sends an acknowledgement back to the PIVS.

V4. StartPIVC : the sensor executes the received PIVC.

V5. RequestVerification : the PIVC computes a hash value on the program by

executingHash, and sends it back to the PIVS.

V6. NotifyVerification : the PIVS, if it received the hash result within a cer-

tain timeout period, examines the received hash value to check if the program has

not been tampered with. If it passes the test, the PIVS registers the sensor in the

PIV DB. Then, the PIVS notifies the PIVC of the verification result.

V7. Activate/lock sensor: the PIVC, based on the verification result, either activates or

locks the sensor. The sensor state will be changed to eitherACTIVATEDorLOCKED,

accordingly.

138

The PIVS checks the latency between steps V2 and V5 and, if it exceeds a certain

threshold, terminate the protocol. This time-limitation will place a great stress on the

adversary’s attempt to deceive the PIVS, e.g., emulating the PIVC’s memory access or

relaying the PIVC to an external machine that holds the original program. It is possible

that an uncompromised sensor fails to verify itself due to transmission errors. Therefore,

each sensor is allowed to retry the verification up toN times.

The first step, V1 ensures sensor security, i.e., a malicious device can neither pass the

authentication procedure nor have its own code executed on the sensor, as far as the AS’s

authentication key is kept secret from the attacker. Thus, the attacker cannot abuse PIV

to lock the other sensors. Finally, activating the sensor even when the PIVS indicates

a verification failure (by the adversary), will result in denial of access to the network

resources, as described in Section 5.2.4.

Realization of PIVS and PIVC

Figure 5.6 shows how to realize PIVS/PIVC based onHash andVrfy algorithms. In

the pre-deployment stage, each sensor is programmed with a program{xl}. For all the sen-

sors that have been successfully programmed, the PIVS computes and stores inPIV DB

the digests for{xl}. Thanks to the property that sensors share a portion of programs,

the total number of distinct digests to be stored in thePIV DB can be greatly reduced

as discussed below. Each program block (digest) is classified as being (i) common to

all sensors in the network; (ii) common to a group of sensors with the same missions;

or (iii) unique to a specific sensor. We, therefore, reduce the size ofPIV DB by com-

bining all digests belonging to the same class with a fixed combining factors, i.e., com-

puteXc,i =
∑

ithcommon glxlx
T
l , i = 1, · · · , Nc, andXu =

∑
unique glxlx

T
l , whereNc

(¿ B) is the number of common digests. This pre-processing also relieves theVrfy

139

…

Program x

…

H

H

H

=?

Verification
success / failure

xc1 xc1
t

xu xu
t

PIVC PIVS

G

xc2 xc2
t

common digests

unique digests

H

G

Database

x xt

Y

1x~

2x~

Bx~

1Y
~

2Y
~

BY
~

Y
~

Figure 5.6: Realization of PIVS and PIVC

algorithm from the processing load, since the combining functionG simply computes

X =
∑

i gc,iXc,i + guXu.

In the verification stage, the PIVS and PIVC cooperatively check the integrity of the

program{x̃l}, of the sensor under verification, according to the protocol shown in Fig-

ures 5.1 and 5.5. Each message in Figure 5.1 triggers the following operations.

M1. The PIVS, usingIDsensor, retrieves, fromPIV DB, Xc,i’s andXu that correspond to

the program blocks of the sensor under verification. It also creates a PIVC with the

Hash algorithm and randomG andH.

M2. The PIVC computes̃Y = Hash(G,H, {x̃l}) by executing theHash algorithm.

M3. The PIVS executes theVrfy algorithm to computeY from Xc,i’s andXu and check

if Y = Ỹ .

140

M4. The PIVC either activates or locks the sensor.

5.2.5 Security Analysis

We would like to show that (1) the proposed RHF can successfully defend itself against

possible attacks, and (2) the only plausible attack requires modification of individual sen-

sor hardware.

Replay attacks on messages M1 – M4 (i.e., intercepting a message and replacing it

with an old message) cannot succeed as the proposed hash computation and verification

are keyed operations, and random keys are mixed with the program blocks. Specifically,

attacks on individual messages are defeated as follows. First, reporting a differentIDsensor

(in M1) will be caught by the PIVS when its uniqueness is checked, and, moreover, the

malicious sensor cannot pass the rest of the PIV test unless it has the matching program

which must be free of malicious codes. Second, modifyingG, H or theHash algorithm

will cause inconsistency between two hash outputs, and hence, the verification will fail.

Third, replaying M3 does not work, because each verification will produce a distinct hash

value even for the uncompromised sensor, and hence, old parameters (G andH) cannot be

reused. Finally, intercepting M4 to always report “pass” may execute the main code. How-

ever, the subsequent requests to access the network resources will be denied, as explained

in Section 5.2.4.

We then show that it is impossible for the adversary to forge the hash value with-

out the knowledge of the original program. Consider the situation where the adversary

re-programs the sensor with a malicious program{xl +δl}, and attempts to fake the verifi-

cation process by nullifying the effect of{δl} from the output of theHash algorithm. This

is impossible because theHash algorithm is inherently a nonlinear function of program

141

blocks. By Eq. (5.1), the hash outputY yields

Y = H

[
B∑

l=1

gl

{
xl x

T
l + 2xl δ

T
l + δl δ

T
l

}
]

HT , (5.4)

which means

Hash(G,H, {xl + δl}) 6= Hash(G,H, {xl}) + Hash(G,H, {δl}).

Therefore, to forge the hash output, the adversary must computexl δ
T
l for all non-zeroδl’s

as well asHash(G,H, {δl}).

The only feasible attack is to store and feed eitherxl’s or Xl’s to the PIVC. However,

this type of attacks requires an excessively large amount of memory space, as opposed to

that of conventional hashing schemes. First, the malicious sensor may disable the execu-

tion of PIVC and, instead, evaluate Eq. (5.2) using the originalXl’s. But, since it cannot

predict values of bothG andH in advance, it must keepXc,i’s andXu to mimic the behav-

ior of PIVC. The extra memory for storing them amounts to(Nc + 1)m2η bytes, e.g., 36

KB if Nc = 3, m = 96 andη = 1. Second, the malicious sensor may keep track ofxl’s that

differ from x̃l’s. If the malicious code is small and contiguous, it may suffice to save only

a few program blocks. However, this attack can be defeated by applying “interleaving” on

the program to construct program blocks, e.g.,Bimη-byte program space is interleaved

into Bi (e.g.,Bi = B
Nc+1

) program blocks. A desirable property of interleaving is that the

injection of a small malicious code affects no less thanBi blocks. Hence, the minimum

requirement for the extra memory isBimη bytes, e.g., 36 KB ifBi = 384, m = 96 and

η = 1.

The replay attack onxl’s can be mounted if the malicious sensor has enough memory

to maintain the original program blocks. However, as defined in Section 5.2.4, a program

includes both code and data spaces, and a snapshot of data area (taken after initialization)

is also inspected. Therefore, there is no room left in the sensor for the adversary to save

142

the originalxl’s. The adversary may attach more memory to each sensor, but it will incur a

considerable amount of hardware modification for each subversion. As mentioned in Sec-

tion 5.2.1, we do not consider this kind of hardware-modifying attack, as it is unrealistic

to mount such an attack in a large-scale network: the adversary must compromise multiple

sensors (chosen from the entire network) with hardware modification to take control of the

PIV-enabled network, but it is too costly to do so. Note that it does not increase the attack

strength for the attacker to create one sensor with additional hardware (along with many

reprogrammed slaves), then use it as a gateway/leader for the rest.

5.2.6 Performance Analysis

We analyze the performance of the proposed protocol by deriving the communication

overhead between the PIVS and a sensor, and the computation and memory overheads of

PIVC and PIVS. As defined earlier,k is the parameter that determines the length of the

hash value.Λ, m andη refer to the size of the program, the size of the input block, and

the size of a single word, all in bytes, respectively. Then, the number of input blocks,B,

is derived as

B =

⌈
Λ

mη

⌉
' Λ

mη
. (5.5)

Communication Overhead

We define the communication overhead as the total amount of the information ex-

changed between the PIVS and the sensor (normalized with respect to a per-hop value).

The messages M2 and M3 dominate the communication overhead, and their lengths de-

pend on the choice of protocol parameters. We, therefore, consider only these two mes-

sages. The sizes (in bytes) ofG, H, theHash code, andY are(Nc +1)η, kmη, LHash, and

143

k2η, respectively. Hence, the communication overhead,C, is given by

C = (km + k2)η + LHash + (Nc + 1)η. (5.6)

The communication overhead depends on bothm andk. Sincem À k, we can control the

communication overhead by the choice ofm.

Processing Overhead of PIVC

The Hash algorithm relies onGF (2n) arithmetic. In finite fields, addition and sub-

traction are essentially “bitwise modulo 2”, i.e., exclusive-OR of the corresponding bits of

two operands, and hence very fast. In contrast, multiplication and division operations re-

quire lookup of two tables, each with2n elements. Obviously, multiplication and division

are much more computationally expensive than addition and subtraction. We thus define

the processing overhead of the PIVC as the average number of multiplications inGF (2n)

per (η-byte) input word. TheHash algorithm iteratively evaluates (i)̃zl = H x̃l, (ii) Ỹl =

z̃l z̃
t
l , and (iii) Ỹ += glỸl, for 1 ≤ l ≤ B. Each step incurskm, k2 andk2 multiplications,

respectively. Hence, the algorithm computesk(m + 2k)B multiplications overGF (2n)

for processing the entire program. As a result, the processing overheadPPIVC is

PPIVC =
η

Λ
k(m + 2k)B ' k +

2k2

m
. (5.7)

For its proper operation,Hash stores̃zl, Ỹl, andỸ , the sizes of which arekη, k2η, andk2η

bytes, respectively. Therefore, the PIVC allocates a buffer space ofMPIVC = k(1 + 2k)η

bytes.

Processing Overhead of PIVS

TheVrfy algorithm also performs addition and multiplication overGF (2n). Vrfy first

computesX from Xc,i’s andXu, then determinesY . Since each step incurs(Nc + 1)m2

144

andkm2 + k2m multiplications, respectively, the processing overheadPPIVS (per input

word) is

PPIVS =
1

B
[(Nc + 1)m + k(m + k)] . (5.8)

Note thatPPIVS is much smaller thanPPIVC becausem ¿ B. For scalability, it is desirable

to have a smallerPPIVS so that the server can handle as many concurrent verifications

as possible.Vrfy reservesk2η bytes for storingY . In addition, the PIVS maintains (i)

Nc common digests, and (ii) digests (or program blocks) unique to individual sensors.

If there areN sensors, the total amount of memory required by the PIVS isMPIVC =

Ncm
2η + Nmη + k2η ' Nmη, becauseN À Nc.

5.3 Implementation and Evaluation

To evaluate the performance of our proposed approach, we first quantify the per-hop

communication overhead between a sensor and the PIVS,3 and the processing overhead

that a sensor pays for each verification. Then, we demonstrate the strength of the proposed

approach for typical choices of the parameters.

5.3.1 Overview of Implementation

We implementedHash andVrfy algorithms, with a sensor network of Motes and a

laptop (acting as the PIVS). Because theHash algorithm is downloaded to each sensor via

the air medium and its execution is subject to severe resource constraints, it is important to

make the algorithm as small as possible. In addition, for faster (byte-oriented) processing,

we fix F = GF (28) (andη = 1, accordingly). TheHash algorithm is comprised of two

parts: arithmetic operations overGF (28) and the evaluation of Eq. (5.1). The code sizes

and static data areas for these two modules are given in Table 5.1. TheGF (28) arithmetic

3Since we built PIV on top of the cluster-based architecture that uses a cluster-head as PIVS in each
cluster, sensors can usually reach their PIVS in a small number of hops regardless of the network size.
Hence, it suffices to consider the communication overhead normalized with respect to a per-hop value.

145

Table 5.1: Sizes ofHash components

Code Data

GF (28) arithmetic 234 512

Hash computation 483 km + Nc + 1

uses two 256-byte tables for multiplication and division, while the module for hashing

includes tables forG (Nc + 1 bytes) andH (km bytes).

To reduce the size of PIVC without loss of security, we can put theGF (28)-related

routine in the boot code, and construct the PIVC using the hash computation routine only.

Then,LHash becomes 483 bytes.

5.3.2 Communication Overhead

Using Eq. (5.6), Figure 5.7 plots the communication overheadC as a function ofm,

while varyingk from 3 to 5. The figure shows thatC is very small (e.g.,C = 886 bytes

whenm = 96 andk = 4) and depends on the choice ofm andk. A considerable portion of

C is due to the transmission of PIVC. If the effective data transmission rate (i.e., excluding

headers, CRCs, error correction codes and control packets) of each Mote is 7 Kbps (out

of the 40 Kbps raw data rate), the latency to transmit a PIVC is about 1 second per hop

(whenm = 96 andk = 4).

5.3.3 Processing Overhead

Figure 5.8 plots, using Eq. (5.7),PPIVC (the number of multiplications overGF (28)

per byte) of theHash algorithm as a function ofm, while varyingk from 3 to 5.PPIVC is

insensitive to the variations ofm, while directly affected by the choice ofk, e.g.,PPIVC is

around 4.33 multiplications per input byte whenk = 4.

146

32 64 96 128 160

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Size of the Program Block [bytes]

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
[b

yt
es

] k = 5

 k = 4

 k = 3

Figure 5.7: The communication overhead vs.m

32 64 96 128 160

2

4

6

8

Size of the Program Block [bytes]

P
ro

ce
ss

in
g

O
ve

rh
ea

d
of

 P
IV

C
 [m

ul
tip

lic
at

io
ns

/b
yt

e]

 k = 5

 k = 4

 k = 3

Figure 5.8: The processing overhead of PIVC vs.m

147

Table 5.2: The latency ofHash computation per 128 KB

m

64 128

5 9.48 9.10

k 4 7.51 7.29

3 5.61 5.52

Table 5.2 shows the time (in seconds) for various values ofm andk that theHash

algorithm spends to process the 128 KB program memory. Clearly, this time is propor-

tional to the processing overhead. Moreover, since theHash computation is executed very

infrequently, the time in the order of tens of seconds at each sensor device is insignificant.

We also compare the processing overhead of theHash algorithm against that of HMAC-

MD5 by counting the number of CPU cycles per input-byte on an 8-bit CPU, called AT-

Mega128L, of Motes. The HMAC-MD5 algorithm [59] performs two MD5 operations

[91] on the input data (excluding key-related operations). Since MD5 consumes at least

55 cycles per input-byte, HMAC-MD5 incurs more than 110 cycles per input-byte. By

contrast, theHash algorithm uses about 38 cycles per input-byte whenk = 4, making its

processing overhead less than 35 % of that of HMAC-MD5 (whenk = 4). Therefore, our

proposed RHF is more computationally-efficient than HMAC-MD5. This computational

efficiency is important because our PIV framework combats attacks on hash algorithms

via time-limited verification, and hence, it is desirable to reduce the execution time as well

as energy consumption.

148

Table 5.3: The PIV Parameters

Key length (km + Nc + 1) 392 B

Block length m 96 B

Hash length k2 16 B

Replay on digests (Nc + 1)m2η 72 KB

Protection prog. blocks Λ/(Nc + 1) 81 KB

PIVC transmission ∼ 1 second (per hop)

Latency processing ∼ 40 seconds

5.3.4 Tradeoffs

The communication and processing overheads of PIV depends on the choice ofk and

m. Thek value should be so chosen as to make the following tradeoff: a largerk yields

higher security, but incurs more computation and processing delay. Oncek is selected,m

can be determined to reduce the communication overhead while maintaining an acceptable

level of protection from replay attacks. That is, a smallerm yields less communication

overhead, but the amount of data for the adversary to replay becomes smaller accordingly.

Table 5.3 lists typical values of the various parameters for verifying the program of

length 648 KB (the total memory size of a Mote), whenk, m andNc are 4, 96 and 7,

respectively. This PIV setup meets the requirement of both strong security and high per-

formance as follows. First, it is secure in the sense that the adversary must modify sensor

hardware (i.e., adding memory> 72 KB) to evade PIV. Second, it takes less than 1 minute

for the PIVS to verify each Mote. Moreover, thanks to its small processing overhead, the

PIVS can verify multiple Motes in parallel, instead of sequentially, and hence, the initial

network setup can be done very quickly.

149

5.4 Conclusion

In this chapter, we have proposed a soft tamper-proofing scheme based on Program-

Integrity Verification (PIV), which offers (1) protection from manipulation, reverse-engineering,

and re-programming of sensors; (2) purely software-based protection with/without tamper-

resistant hardware; and (3) infrequent triggering of the verification. The PIVS plays a key

role in our proposed scheme, i.e., verifying the integrity of the program of each sensor

device and maintaining a database of digests for the original programs and sensor registry.

For verification, it remotely calculates, via PIVC, a random hash value for the program

being verified, computes another hash value from the digest for the original program, and

checks if the two hash values match.

Our security analysis has shown that PIV effectively protects the network from possi-

ble attacks like replay attacks and the only plausible attack requires modification of sensor

hardware. Our performance analysis/evaluation has demonstrated that the communica-

tion and processing overheads are very small (less than 1 KB and 4.5 multiplications over

GF (28) per byte, respectively), and the hash computation algorithm has a small time over-

head (5∼ 9 seconds per 128 KB) in 8-bit CPUs thanks to its byte-aligned operations.

150

CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

This thesis aims to advance the secure networking technology for resource-limited

embedded sensors by addressing the requirements of both high-level security and energy-

efficiency. Its primary contribution lies in the development of unified, energy-efficient

security framework, calledLiSP, that enables low-cost, low-power sensors to provide

high-level security at a very low cost. To this end, LiSP avoided using the traditional

cryptography-based approaches intended for environments equipped with sufficient com-

putation power & energy, and instead, focused on building security protocols via collab-

oration/cooperation among sensor nodes as well as among the protocols themselves. Our

contributions are rehashed as follows.

We proposed two key mangement/sharing schemes that are complementary to each

other. The first scheme, called GKMP, is designed specifically for group- or cluster-based

network architectures that rely heavily on local transactions inside the group/cluster. By

using the cryptographic one-way function and double-buffering of keys, it provides highly

efficient re-keying without reliability support at the link layer, tolerates very loose syn-

chronization of clocks on sensor devices, and offers the capability of trading security for

residual energy. The results of performance evaluation and security analysis demonstrated

151

GKMP’s effectiveness and efficiency in defeating various security attacks while incurring

very small overheads.

Contrary to GKMP, distributed key sharing is tailored to securing communications be-

tween remote sensor nodes in existing/emerging applications for large-scale, distributed

sensor networks. This scheme played a crucial role in the construction of attack-tolerant

routing service that consists of two routing protocols, SGFP and TKEP. These proto-

cols gracefully tolerated attacks from compromised sensors and successfully replaced the

resource-expensive Diffie-Hellman key-setup protocol with a purely symmetric-cipher-

based alternative. Our security analysis and performance evaluation showed that they are

practically useful and effective in defeating/tolerating many critical attacks while consum-

ing a moderate amount of energy.

We then investigated the problem of designing attack-tolerant protocols in the con-

text of localization service. The proposed localization protocol, VeIL, exploited spatio-

temporal correlation among adjacent nodes to characterize the normal localization behav-

ior, detect/resist attacks, and accurately locate the attackers. This, in turn, led to the de-

velopment of anomaly-based intrusion detection tailored to the localization service. The

highest-level attack-detection capability and the feasibility of VeIL on resource-limited

sensors were demonstrated via security analysis and performance evaluation.

Finally, we presented a soft tamper-proofing technique based on PIV (Program-Integrity

Verification). While existing techniques were not suitable for low-cost (thus hardware

resource-limited) sensor devices, the PIV protocol augmented such sensor devices to be

usable for applications that require high-level security. In particular, it achieved purely

software-based prevention of manipulation/reverse-engineering/re-programming/cloning

of sensors based on a randomized hash function and mobile agent technology. As demon-

strated with our security analysis, the proposed technique effectively defeated such attacks

152

as replay, impersonation, and masquerading, and hence, the only plausible attack required

modification of sensor hardware. The performance analysis/evaluation showed verifica-

tion to incur a very small overhead.

6.2 Future Directions

As described above, LiSP augments the emerging sensor networks to play key roles

in safety-critical security applications like surveillance of the physical infrastructure that

includes buildings, transportation systems, water supply systems, etc. However, to broaden

the applicability of LiSP, there remains several open research problems associated with

the attack-tolerant protocol design and the generalization of tamper-proofing technology,

as described next.

Attack-tolerant protocol design: it is almost impossible to completely thwart all possi-

ble attacks in any form of systems including networked sensor systems, and hence,

it is critical to make a system “attack-tolerant.” To meet this need, we proposed a

novel statistical approach to achieving attack-tolerance via the use of adaptive filter-

ing to accurately track the normal behavior of the given service. In this thesis, this

approach has been applied to the localization service, but it can also be extended to

the other services. Hence, it is important to develop a generalized attack-tolerance

framework that protects most of the core services from attacks. Also, it will be

interesting to develop fault-tolerance and/or validation mechanisms for determin-

ing/maintaining the locations (IDs) of sensor nodes.

Generalized tamper-proofing: to completely safeguard the sensor network from physi-

cal attacks, the tamper-proofing will have to rely on a combination of both software-

and hardware-based schemes. Towards this goal, we devised a software-based PIV

153

solution. Based on our analysis of, and experience with, PIV, we find it preferable to

develop a complete tamper-proofing solution that extends PIV with low-cost hard-

ware tamper-resistance techniques. Another possible research direction will be to

apply our proposed tamper-proofing solution to the other embedded systems like cel-

lular phones, for example, to diagnose if they’ve been infected with viruses/worms,

and if so, to quarantine any malicious code.

154

BIBLIOGRAPHY

155

BIBLIOGRAPHY

[1] D. G. Abraham, G. M. Dolan, G. P. Double, and J. V. Stevens. Transaction Security
System.IBM Systems Journal, 30(2):206–229, 1991.

[2] R. Anderson. Why Cryptosystems Fail.Communications of ACM, 37(11), Novem-
ber 1994.

[3] R. Anderson and M. Kuhn. Tamper Resistance — A Cautionary Note. InPro-
ceedings of 2nd Usenix Workshop Electronic Commerce, Oakland, CA, November
1996.

[4] N. Asokan and P. Ginzboorg. Key Agreement in Ad Hoc Networks.Computer
Communications, pages 1627–1637, 2000.

[5] D. Aucsmith. Tamper Resistant Software: An Implementation.Information Hid-
ing, LNCS 1174, pages 317–333, 1996.

[6] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (Im)possibility of Obfuscating Programs.CRYPTO’01, LNCS
2139, 2001.

[7] S. Basagni, K. Herrin, D. Bruschi, and E. Rosti. Secure Pebblenets. InProceedings
of ACM MobiHoc ’01, Long Beach, CA, October 2001.

[8] W. Basalaj. Proximity Visualization of Abstract Data, January 2001.
Available: http://www.pavis.org/essay/pavis.pdf.

[9] T. Bass. Intrusion Detection Systems and Multisensor Data Fusion.Communica-
tions of the ACM, April 2000.

[10] M. Blum and S. Kannan. Designing Programs that Check Their Work.Journal of
the ACM, 42(1), 1995.

[11] S. Blythe, B. Fraboni, S. Lall, H. Ahmed, and U. Riu. Layout Reconstruction of
Complex Silicon Chips.IEEE J. Solid-State Circuits, 28(2), February 1993.

[12] P. Bonnet, J. Gehrke, and P. Seshadri. Towards Sensor Database Systems. InMobile
Data Management (MDM ’01), Hong Kong, China, January 2001.

156

[13] N. Borisov, I. Goldberg, and D. Wagner. Intercepting Mobile Communications:
The Insecurity of 802.11. InProceedings of ACM/IEEE MobiCom ’01, Rome, Italy,
July 2001.

[14] G. Borriello, A. Liu, T. Offer, C. Palistrant, and R. Sharp. Wireless Acoustic Loca-
tion with Room-Level Resolution using Ultrasound. InProceedings of ACM Mo-
biSys ’05, Seattly, WA, June 2005.

[15] M. Brown, D. Cheung, D. Hankerson, J. L. Hernandez, M Kirkup, and A. Menezes.
PGP in Constrained Wireless Devices. InProceedings of USENIX Security Sympo-
sium, August 2000.

[16] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less Low Cost Outdoor Localization
for Very Small Devices.IEEE Personal Communications Magazine, 7(5), October
2000.

[17] M. Burnside, D. Clarke, T. Mills, S. Devadas, and R. Rivest. Proxy-based Security
Protocols in Networked Mobile Devices. InProceedings of SAC ’02, March 2002.

[18] S. Capkun and J.-P. Hubaux. Secure Positioning in Sensor Networks, May 2004.
Technical Report EPFL/IC/200444,
Available: http://www.terminodes.org/micsPublications.php?action=tr.

[19] D. W. Carman, P. S. Kruus, and B. J. Matt. Constraints and Approaches for Dis-
tributed Sensor Network Security, September 2000. NAI Labs Technical Report
#00-010.

[20] D. W. Carman, B. J. Matt, and G. H. Cirincione. Energy-efficient and Low-latency
Key Management for Sensor Networks. InProceedings of 23rd Army Science Con-
ference, December 2002.

[21] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat Monitor-
ing: Application Driver for Wireless Communications Technology. InProceedings
of ACM Workshop on Data Communications in Latin America and Caribbean, April
2001.

[22] H. Chan, A. Perrig, and D. Song. Random Key Predistribution Schemes for Sensor
Networks. InProceedings of IEEE Symposium on Security and Privacy ’03, May
2003.

[23] H. Chang and M. J. Atallah. Protecting Software Code by Guards.DRM’01, LNCS
2320, pages 160–175, 2002.

[24] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha. Key Management for
Secure Internet Multicast Using Boolean Function Minimization Techniques. In
Proceedings of IEEE INFOCOM ’99, March 1999.

157

[25] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. SPAN: An Energy-Efficient
Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks.
In Proceedings of ACM/IEEE MobiCom ’01, Rome, Italy, July 2001.

[26] C. Collberg, C. Thomborson, and D. Low. Breaking Abstractions and Unstructuring
Data Structures. InProceedings of IEEE ICCL ’98, May 1998.

[27] C. S. Collberg and C. Thomborson. Watermarking, Tamper-Proofing, and Obfusca-
tion – Tools for Software Protection.IEEE Transactions on Software Engineering,
28(8), August 2002.

[28] J. Costa, N. Patwari, and A. O. Hero III. Distributed Multidimensional Scaling with
Adaptive Weighting for Node Localization in Sensor Networks.submitted to ACM
Transactions on Sensor Networks.

[29] J. Costa, N. Patwari, and A. O. Hero III. Achieving High-Accuracy Distributed Lo-
calization in Sensor Networks. InProceedings of IEEE ICASSP ’05, Philadelphia,
PA, March 2005.

[30] N. Courtois, L. Goubin, and J. Patarin. SFLASH, a fast asymmetric signature
scheme for low-cost smartcards. Available: http://www.minrank.org/sflash-b.pdf.

[31] N. Courtois, L. Goubin, and J. Patarin. Flash, A Fast Multivariate Signature Algo-
rithm. In Cryptographers’ Track RSA’01, 2001.

[32] N. Courtois, L. Goubin, and J. Patarin. Quartz, 128-bit Long Digital Signatures. In
Cryptographers’ Track RSA’01, 2001.

[33] Crossbow. MICA, MICA2 Motes & Sensors. Available: http://www.xbow.com/.

[34] J. Douceur. The Sybil Attack. InProceedings of 1st International Workshop on
Peer-to-Peer Systems, 2002.

[35] G. L. Duckworth, D. C. Gilbert, and J. E. Barger. Acoustic Counter-Sniper System.
In International Symposium on Enabling Technologies for Law Enforcement and
Security, Boston, MA, November 1996. SPIE.

[36] F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Vishwanathan. Spot-
Checkers. InProceedings of ACM Symp. Theory of Computing (STOC’98), May
1998.

[37] L. Eschenauer and V. D. Gligor. A Key-Management Scheme for Distributed Sen-
sor Networks. InProceedings of ACM CCS ’02, Washington, DC, November 2002.

[38] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next Century Challenges:
Scalable Coordination in Sensor Networks. InProceedings of ACM/IEEE Mobi-
Com ’99, Seattle, Washington, August 1999.

[39] S. Even, O. Goldreich, and S. Micali. On-line/Off-line Digital Signatures.Ad-
vances in Cryptology – Crypto’89, LNCS 435, 1989.

158

[40] N. Haller. The S/KEY One-Time Password System. InRFC 1760. IETF, February
1995.

[41] H. Harney and C. Muchenhirn. Group Key Management Protocol (GKMP) Archi-
tecture. InRFC 2094. IETF, 1997.

[42] S. Haykin.Adaptive Filter Theory. Prentice-Hall, 2 edition, 1991.

[43] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher. Range-Free Lo-
calization Schemes for Large Scale Sensor Networks. InProceedings of ACM/IEEE
MobiCom ’03, September 2003.

[44] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Gane-
san. Building Efficient Wireless Sensor Networks with Low-Level Naming. In
Proceedings of ACM SOSP ’01, October 2001.

[45] J. P. Hespanha, H. J. Kim, and S. Sastry. Multiple-Agent Probabilistic Pursuit-
Evasion Games. InProceedings of the 38th Conf. on Decision and Control,
Phoenix, AZ, December 1999. IEEE.

[46] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System Archi-
tecture Directions for Networked Sensors. InProceedings of ACM ASPLOS ’00,
Cambridge, MA, November 2000.

[47] F. Hohl. Time Limited Blackbox Security: Protecting Mobile Agents from Mali-
cious Hosts.Mobile Agents and Security, LNCS 1419, 1998.

[48] B. Horne, L. Matheson, C. Sheehan, and R. E. Tarjan. Dynamic Self-Checking
Techniques for Improved Tamper Resistance.DRM’01, LNCS 2320, pages 141–
159, 2002.

[49] L. Hu and D. Evans. Localization for Mobile Sensor Networks. InProceedings of
ACM/IEEE MobiCom ’04, October 2004.

[50] IEEE Std 802.11-1997.Part 11: wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications. IEEE, 1997.

[51] K. Ilgun, R. A. Kemmerer, and P. A. Porras. State Transition Analysis: A Rule-
based Intrusion Detection Approach.IEEE Transactions on Software Engineering,
21(3), 1995.

[52] R. Jain, A. Puri, and R. Sengupta. Geographical Routing using Partial Information
for Wireless Ad Hoc Networks.IEEE Personal Communications, February 2001.

[53] X. Ji and H. Zha. Sensor Positioning in Wireless Ad-hoc Sensor Networks Using
Multidimensional Scaling. InProceedings of IEEE INFOCOM ’04, Hong Kong,
March 2004.

[54] C. Karlof and D. Wagner. Secure Routing in Wireless Sensor Networks: Attacks
and Countermeasures.Ad Hoc Networks, 2003.

159

[55] B. Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks. InProceedings of ACM/IEEE MobiCom ’00, Boston, MA, August 2000.

[56] R. Kennell and L. H. Jamieson. Establishing the Genuinity of Remote Computer
Systems. InProceedings of USENIX Security Symposium, August 2003.

[57] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Providing Robust and Ubiqui-
tous Security Support for Mobile Ad-Hoc Networks. InProceedings of ICNP ’01,
Riverside, CA, October 2001.

[58] P. Kotzanikolaou, M. Burmester, and V. Chrissikopoulos. Secure Transactions with
Mobile Agents in Hostile Environments.Proceedings of the ACISP’00, LNCS 1841,
2000.

[59] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message
Authentication. InRFC 2104. IETF, February 1997.

[60] S. Kumar and E. H. Spafford. A Software Architecture to Support Misuse Intrusion
Detection. InProceedings of the 18th National Information Security Conference,
October 1995.

[61] L. Lazos and R. Poovendran. SeRLoc: Secure Range-Independent Localization for
Wireless Sensor Networks. InProceedings of ACM WiSe ’04, October 2004.

[62] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris. A Scalable
Location Service for Geographic Ad Hoc Routing. InProceedings of ACM/IEEE
MobiCom ’00, Boston, MA, August 2000.

[63] X. S. Li, Y. R. Yang, M. G. Gouda, and S. S. Lam. Batch Rekeying for Secure
Group Communications. InProceedings of 10th International World Wide Web
Conference, May 2001.

[64] Z. Li, W. Trappe, Y. Zhang, and B. Nath. Robust Statistical Methods for Securing
Wireless Localization in Sensor Networks. InProceedings of IPSN ’05, April 2005.

[65] D. Liu, P. Ning, and W. Du. Attack-Resistant Location Estimation in Sensor Net-
works. InProceedings of IPSN ’05, April 2005.

[66] S. Madden, R. Szewczyk, M. J. Franklin, and D. Culler. Supporting Aggregate
Queries over Ad-Hoc Wireless Sensor Networks. InProceedings of IEEE WMCSA
’02, New York, June 2002.

[67] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless Sen-
sor Networks for Habitat Monitoring. InProceedings of ACM WSNA ’02, Atlanta,
GA, September 2002.

[68] D. Malan. Crypto for Tiny Objects, 2004. Technical Reprot TR-04-04, Harvard
University.

160

[69] D. A. McGrew and S. R. Fluhrer. The Stream Cipher Encapsulating Security Pay-
load, July 2000. IETF, draft-mcgrew-ipsec-scesp-01.txt.

[70] R. C. Merkle. A Digital Signature Based on Conventional Encryption Function.
Advances in Cryptology – Crypto’87, LNCS 293, 1987.

[71] R. C. Merkle. A Certified Digital Signature.Advances in Cryptology – Crypto’89,
LNCS 435, 1989.

[72] M. J. Miller and N. H. Vaidya. A MAC Protocol to Reduce Sensor Network Energy
Consumption Using a Wakeup Radio.IEEE Transactions on Mobile Computing,
4(3), May/June 2005.

[73] A. Mishra, K. Nadkarni, and A. Patcha. Intrusion Detection in Wireless Ad Hoc
Networks.IEEE Wireless Communications, February 2004.

[74] S. Mittra. Iolus: A Framework for Scalable Secure Multicasting. InProceedings of
ACM SIGCOMM ’97, Cannes, France, September 1997.

[75] T. Moh. A Public Key System with Signature and Master Key Functions.Commu-
nications in Algebra, 27(5), 1999.

[76] D. Nicolescu and B. Nath. Ad-Hoc Positioning Systems (APS). InProceedings of
IEEE GLOBECOM ’01, November 2001.

[77] E. Pagani and G. P. Rossi. Reliable Broadcast in Mobile Multihop Packet Networks.
In Proceedings of ACM/IEEE MobiCom ’97, Budapest, Hungary, September 1997.

[78] T. Park and K. G. Shin. LiSP: A Lightweight Security Protocol for Wireless Sen-
sor Networks.ACM Transactions on Embedded Computing Systems, 3(3), August
2004.

[79] T. Park and K. G. Shin. Attack-Tolerant Localization via Iterative Verification of
Locations in Sensor Networks.submitted for publication, 2005.

[80] T. Park and K. G. Shin. Optimal Tradeoffs for Location-Based Routing in Large-
scale Ad Hoc Networks.IEEE/ACM Transactions on Networking, 13(2), April
2005.

[81] T. Park and K. G. Shin. Secure Routing Based on Distributed Key Sharing in Large-
scale Sensor Networks.submitted for publication, 2005.

[82] T. Park and K. G. Shin. Soft Tamper-Proofing via Program Integrity Verification
in Wireless Sensor Networks.IEEE Transactions on Mobile Computing, 4(3),
May/June 2005.

[83] P. N. Pathirana, N. Bulusu, A. V. Savkin, and S. Jha. Node Localization Using
Mobile Robots in Delay-Tolerant Sensor Networks.IEEE Transactions on Mobile
Computing, 4(3), May/June 2005.

161

[84] N. Patwari, A. O. Hero III, M. Perkins, N. S. Correal, and R. J. O’Dea. Relative
Location Estimation in Wireless Sensor Networks.IEEE Transactions on Signal
Processing, 51(8), August 2003.

[85] A. Perrig, R. Canetti, D. Song, and J. D. Tygar. Efficient and Secure Source Au-
thentication for Multicast. InProceedings of NDSS ’01, San Diego, CA, February
2001.

[86] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar. SPINS: Security Proto-
col for Sensor Networks. InProceedings of ACM/IEEE MobiCom ’01, Rome, Italy,
July 2001.

[87] G. Poupard and J. Stern. On the Fly Signatures Based on Factoring. InProceedings
of ACM CCS ’99, November 1999.

[88] N. B. Priyantha, H. Balakrishnan, E. D. Demaine, and S. Teller. Mobile-Assisted
Localization in Wireless Sensor Networks. InProceedings of IEEE INFOCOM ’05,
Miami, FL, March 2005.

[89] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable
Content-Addressable Network. InProceedings of ACM SIGCOMM ’01, San Diego,
CA, August 2001.

[90] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and F. Yu.
Data-Centric Storage in Sensornets with GHT, a Geographic Hash Table.Mobile
Networks and Applications (MONET) Special Issue on Algorithmic Solutions for
Wireless, Mobile, Ad Hoc and Sensor Networks, 2003.

[91] R. Rivest. The MD5 Message-Digest Algorithm. InRFC 1321. IETF, April 1992.

[92] P. Rogaway. OCB Mode: Parallelizable Authenticated Encryption.
Available: http://csrc.nist.gov/encryp-tion/aes/.

[93] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location
and Routing for Large-Scale Peer-to-Peer Systems. InIFIP/ACM International
Conference on Distributed Systems Platforms, November 2001.

[94] S. Setia and S. Zhu and S. Jajodia. A Comparative Performance Analysis of Re-
liable Group Rekey Transport Protocols for Secure Multicast. InProceedings of
Performance ’02, September 2002.

[95] T. Sander and C. Tschudin. Towards Mobile Cryptography. InProceedings of the
IEEE Symposium on Research in Security and Privacy, 1998.

[96] N. Sastry, U. Shankar, and D. Wagner. Secure Verification of Location Claims. In
Proceedings of ACM WiSe ’03, September 2003.

[97] C. Savarese, J. Rabay, and K. Langendoen. Robust Positioning Algorithms for
Distributed Ad-Hoc Wireless Sensor Networks. InUSENIX Technical Annual Con-
ference, Monterey, CA, June 2002.

162

[98] A. Seshadri, A. Perrig, L. Doorn, and P. Khosla. SWATT: SoftWare-based ATTes-
tation for Embedded Devices. InProceedings of IEEE Symposium on Security and
Privacy, May 2004.

[99] S. Setia, S. Koussih, S. Jajodia, and E. Harder. Kronos: A Scalable Group Re-
keying Approach for Secure Multicast. InProceedings of IEEE Symposium on
Security and Privacy ’00, May 2000.

[100] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz. Localization for Mere Con-
nectivity. InProceedings of ACM MobiHoc ’03, June 2003.

[101] S. Singh and C. S. Raghavendra. PAMAS: Power Aware Multi-Access Protocol
with Signalling for Ad Hoc Networks.ACM Computer Communication Review,
28(3), July 1998.

[102] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A New Approach to Group
Key Agreement. InProceedings of IEEE ICDCS ’98, May 1998.

[103] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A Scal-
able Peer-to-peer Lookup Service for Internet Applications. InProceedings of ACM
SIGCOMM ’01, San Diego, CA, August 2001.

[104] M. Sun, L. Huang, A. Arora, and T. H. Lai. Reliable MAC Layer Multicast in IEEE
802.11 Wireless Networks. InProceedings of IEEE ICPP ’02, August 2002.

[105] K. Tang and M. Gerla. MAC Layer Broadcast Support in 802.11 Wireless Net-
works. InProceedings of MILCOM ’00, Los Angeles, CA, October 2000.

[106] BBN Technologies. TinyPK. Available: http://www.is.bbn.com/projects/lws-nest/.

[107] TinySec. Link Layer Security for Tiny Devices.
Available: http://www.cs.berkeley.edu/ nks/tinysec/.

[108] J. Tourrilhes. Robust Broadcast: Improving the Reliability of Broadcast Transmis-
sions on CSMA/CA. InProceedings of IEEE PIMRC ’98, Boston, MA, September
1998.

[109] R. Vidal, O. Shakernia, H. J. Kim, H. Shim, and S. Sastry. Probabilistic Pursuit-
Evasion Games: Theory, Implementation and Experimental Evaluation.IEEE
Transactions on Robotics and Automation, 18(5), October 2002.

[110] G. Vigna. Cryptographic Traces for Mobile Agents.Mobile Agents and Security,
LNCS 1419, 1998.

[111] J. R. Walker. Unsafe at Any Key Size; an Analysis of the WEP Encapsulation.
IETF, October 2000.

[112] D. M. Wallner, E. G. Harder, and R. C. Agee. Key Management for Multicast:
Issues and Architecture. InRFC 2627. IETF, June 1999.

163

[113] C. Wang, J. Hill, J. Knight, and J. Davidson. Software Tamper Resistance: Ob-
structing Static Analysis of Programs, 2000. Technical Report, Dept. of Computer
Science, Univ. of Virginia.

[114] C. Wang, J. Hill, J. Knight, and J. Davidson. Protection of Software-based Surviv-
ability Mechanisms. InProceedings of DSN ’01, July 2001.

[115] H. Wang, D. Estrin, and L. Girod. Preprocessing in a Tiered Sensor Network for
Habitat Monitoring.EURASIP JASP Special Issue of Sensor Networks, 2003.

[116] H. Wasserman and M. Blum. Software Reliability via Run-Time Result-Checking.
Journal of the ACM, 44(6), 1997.

[117] B. R. Waters and E. W. Felten. Secure, Private Proofs of Location, January 2003.
Technical Report TR-667-03, Princeton University,
Available: http://www.cs.princeton.edu/research/techreps/TR-667-03.

[118] K. Whitehouse and D. Culler. Calibration as Parameter Estimation in Sensor Net-
works. InProceedings of ACM WSNA ’02, Atlanta, GA, September 2002.

[119] U. G. Wilhelm, S. Staamann, and L. Buttyan. Introducing Trusted Third Parties
to the Mobile Agent Paradigm.Secure Internet Programming: Security Issues for
Mobile and Distributed Objects, LNCS 1603, 1999.

[120] C. K. Wong, M. G. Gouda, and S. S. Lam. Secure Group Communications Using
Key Graphs. InProceedings of ACM SIGCOMM ’98, September 1998.

[121] A. Woo and D. Culler. A Transmission Control Scheme for Media Access in Sensor
Networks. InProceedings of ACM/IEEE MobiCom ’01, Rome, Italy, July 2001.

[122] A. D. Wood and J. A. Stankovic. Denial of Service in Sensor Networks.IEEE
Computer, 35(10), October 2002.

[123] G. Wroblewski. General Method of Program Code Obfuscation. InProceedings of
SERP ’02, June 2002.

[124] Y. Xue, B. Li, and K. Nahrstedt. A Scalable Location Management Scheme in Mo-
bile Ad Hoc Networks. InProceedings of IEEE Conf. on Local Computer Networks
(LCN), 2001.

[125] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam. Reliable Group Rekeying:
Design and Performance Analysis. InProceedings of ACM SIGCOMM ’01, San
Diego, CA, August 2001.

[126] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A Two-Tier Data Dissemination
Model for Large-scale Wireless Sensor Networks. InProceedings of ACM/IEEE
MobiCom ’02, Atlanta, GA, September 2002.

[127] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC Protocol for Wire-
less Sensor Networks. InProceedings of IEEE INFOCOM ’02, June 2002.

164

[128] M. Youssef and A. Agrawala. The Horus WLAN Location Determination System.
In Proceedings of ACM MobiSys ’05, Seattly, WA, June 2005.

[129] R. Zhang, D. Qian, C. Ba, W. Wu, and X. Guo. Multi-Agent Based Intrusion Detec-
tion Architecture. InProceedings of Int. Conf. on Computer Networks and Mobile
Computing, Beijing, China, October 2001. IEEE.

[130] Y. Zhang and W. Lee. Intrusion Detection in Wireless Ad Hoc Networks. InPro-
ceedings of ACM/IEEE MobiCom ’00, Boston, MA, August 2000.

[131] L. Zhou and Z. J. Haas. Securing Ad Hoc Networks.IEEE Network Magazine,
13(6), November 1998.

[132] L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A Secure Distributed On-line
Certification Authority.ACM Transactions on Computer Systems, 20(4), November
2002.

[133] S. Zhu, S. Setia, and S. Jajodia. LEAP: Efficient Security Mechanisms for Large-
Scale Distributed Sensor Networks. InProceedings of ACM CCS ’03, October
2003.

165

ABSTRACT

LiSP: Lightweight Security Protocols for Wireless Sensor Networks

by

Taejoon Park

Chair: Kang G. Shin

Sensor networks, usually built with a large number of small, low-cost sensor de-

vices, are characterized by their large-scale and unattended deployment that invites many

critical attacks, thereby necessitating high-level security support for their intended ap-

plications and services. However, making sensor networks secure is challenging due

mainly to the fact that sensors are battery-powered and it is often very difficult to change

or recharge their batteries. To address this challenge, we design, develop and evaluate

LightweightSecurityProtocols(LiSP) that cooperatively build a unified, energy-efficient

security framework for sensor networks.

We present two (group-based and distributed) key management/sharing schemes that

are tailored to local and remote transactions, respectively. While the group-based scheme

achieves efficient and robust re-keying via key broadcasting/authentication/recovery, dis-

tributed key sharing enables the development of attack-tolerant routing protocols capa-

ble of gracefully resisting device compromises as well as replacing resource-expensive,

public-key-cipher-based protocols with a purely symmetric-cipher-based alternative.

The problem of attack-tolerance is further investigated for the development of a secure

localization protocol. The proposed protocol uses mutual collaboration among sensors to

achieve high-level attack-tolerance in terms of detecting/identifying/rejecting sources of

attacks, if present. Accordingly, it plays the role of an anomaly-based intrusion detec-

tion system tailored to localization that safeguards the network from localization-targeted

attacks.

As a countermeasure against physically tampering with sensors, we develop a novel

soft tamper-proofing technique that verifies integrity of the program residing in each sensor

device whenever it joins the network, or is suspected to have been compromised. Unlike

other techniques unsuitable for low-cost, resource-limited sensors, our technique augments

such sensors to be usable for applications that require high-level security.

Finally, the benefits of our protocols are demonstrated via analysis and evaluation of

their capability to defeat known security attacks, and their performance in terms of pro-

cessing, communication and memory overheads.

