
ABSTRACT
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Real-Time Software

by

Zonghua Gu

Chair: Kang G. Shin

As Embedded Real-Time (ERT) systems become more complex and safety-critical,

there is a trend to raise software development level of abstraction from programming lan-

guages to models. We have developed a suite of techniques and tools to improve industry

acceptance of model-driven development of ERT software.

As a result of collaboration among multiple institutions, an end-to-end tool-chain has

been developed for the design and analysis of ERT software, with Avionics Mission Com-

puting (AMC) as the main target application. As part of the tool-chain, we have developed

a tool called AIRES for model-level static analysis. Compared to traditional static analy-

sis techniques that work at the level of programming languages, AIRES works at a higher

level of abstraction, and provides valuable dependency and timing information to the en-

gineer at an early stage of the design cycle.

AIRES mainly focuses on the static structural aspects while largely ignoring the dy-

namic behavior of component interactions. We use model-checking to formalize the

natural language description of the dynamic behavior of the AMC software, and verify



safety and liveness properties. We also present several techniques to improve scalability

of model-checking by exploiting application-level domain semantics.

To bridge the gap between logical models and implementation on the physical execu-

tion platform, many UML tools come with automatic code generators that translate models

into code in a programming language. However, current code generation technology gen-

erates functional code without considering non-functional and real-time issues. We have

adapted the schedulability analysis algorithm by Harbour, Klein and Lehoczky to fit the

native runtime model of UML-RT, a UML profile widely used in the telecom domain. This

algorithm can be used during state-space exploration to synthesize an implementation ar-

chitecture for a logical UML-RT model that satisfies timing constraints.

In summary, the techniques and tools developed in this thesis address multiple aspects

of model-driven development of ERT software, in order to shift the focus of the software

development process from programming language-level to the model-level, and reduce the

overall system development cost.
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CHAPTER I

Introduction

1.1 Embedded Real-Time Systems

What is anembedded system? Here is a definition from an online encyclopedia[103]:

A specialized computer system that is part of a larger system or machine. Typ-

ically, an embedded system is housed on a single microprocessor board with

the programs stored in ROM. Virtually all appliances that have a digital inter-

face – watches, microwaves, VCRs, cars – utilize embedded systems. Some

embedded systems include an operating system, but many are so specialized

that the entire logic can be implemented as a single program.

Generally speaking, an embedded system is a device that you buynot for the reason

that it has a computer chip in it. Instead, you buy it for other purposes, but it just happens to

contain a micro-processor that controls its operation. Examples are cars, microwave ovens,

medical devices, etc. Moore’s law, dictating that processor speed doubles every 1.5 years,

has held true for the past twenty years or so, and has resulted in faster processors at lower

prices. As a result, micro-processors are put in more systems that were not traditionally

considered computers, and are taking over more aspects of our daily lives.Embedded

softwareis the software running on the computer that performs the core functions of the

1
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device. For example, the engine control software running in the car controls the air-fuel

ratio into the combustion engine by accurately timing the duration that the fuel intake valve

is open, which is in turn controlled by the user by pressing on the gas pedal. Embedded

systems typically have the following characteristics:

• They are computational systems that are not first-and-foremost a computer.

• They are integral with physical processes, interacting with them through sensors and

actuators.

• They are reactive, i.e., they have to react to the physical environment at its speed in

real-time.

• They are heterogeneous, often with a mixture of software and hardware architec-

tures.

• They are networked, so network delays must be considered in system analysis.

Embedded software development is a highly multi-disciplinary process. Depending on

the application domain, it may involve control engineers, mechanical engineers, aerospace

engineers, system engineers, as well as software engineers. Due to the ubiquity and safety-

critical nature of embedded systems, it is crucial to have assurance on the correctness of

software, bothfunctional correctness(the software computes the right result), andtiming

correctness(the software computes the result at the right time). Areal-time systemis a

system whose correctness depends not only on logical correctness, but also on the timeli-

ness of its actions. It must produce a correct result within a deadline. Results produced too

late (or sometimes too early) are considered useless or even harmful, even if it is logically

correct. There are two types of real-time systems. Inhard real-timesystems, no dead-

line can be missed; otherwise catastrophe may occur. Hard real-time systems are often
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safety-critical, which means that failure may result in serious injury to human life or prop-

erty. Examples are avionics control systems, automotive drive-by-wire systems, industrial

automation systems, etc. Insoft real-timesystems, deadlines can be occasionally missed

without serious consequences. Examples are multimedia transmission and reception sys-

tems, where deadline misses result in degraded user-perceived quality, but not more serious

consequences. Innon-real-timesystems, only logical correctness matters while timing

correctness does not. Examples are database systems, or a word processing application

running on a desktop computer. Almost all systems have at least some kind of soft real-

time constraints, or sometimes calledQuality of Service(QoS) orperformanceconstraints.

A database that takes five minutes to process each query is obviously not useful. A typical

QoS constraint may be defined as: 95% of all database queries must be processed within

1 second, and the maximum response time is less than 10 seconds. Embedded systems are

often also real-time systems. Some are hard real-time, as with the engine control example,

where it is imperative that the controller performs its function before a deadline in order

for the car to be responsive to the driver’s commands for safety reasons. Some are soft

real-time, for example Personal Digital Assistants (PDA) and cell phones, where missed

deadlines may result in user-perceived QoS degradation. We are mainly concerned with

hard real-time systems in this thesis, e.g., Avionics Mission Computing (AMC) [80] and

automotive control systems such as engine control and vehicle-to-vehicle adaptive cruise

control [98].

A real-time system does not have to have a computer chip in it. It may be a pure

mechanical system with timeliness constraints. It is a relatively recent phenomenon that

computer chips are getting embedded into everyday products surrounding us. For exam-

ple, a mechanical automotive brake system is a real-time system. When the user presses on

the brakes, he expects immediate braking action. But no micro-controllers are involved.
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A recent trend in automotive control isx-by-wiresystems, where x stands forbrake, drive,

etc., where micro-controllers are used to control safety-critical functions without mechan-

ical backup. The control algorithms can be implemented in hardware or software. We

are mainly concerned with embedded systems implemented in software, often involving a

real-time operating system and/or real-time networks.

1.2 Model-Driven Development of Embedded Software

It is more difficult to develop embedded software than desktop software, due mainly

to resource constraints of the embedded micro-processor, which often lags a few gener-

ations behind and is much slower than state-of-the-art desktop processors for reasons of

cost, energy consumption and reliability. Older, slower chips cost less, consume less en-

ergy (because they run at a slower clock speed), and are more reliable than newer, faster

chips (because they have been tested more extensively in the field). Twenty years ago,

embedded software engineers were preoccupied with optimization and fine-tuning of ev-

ery line of code to achieve the highest running speed while fitting the software into the

available memory space of the resource-constrained embedded processor. Typically, but

not always, there is an inverse relationship between execution speed and code size, and

it is up to the engineer to make design tradeoff decisions between them. Embedded soft-

ware development was viewed as a niche area of software engineering, where many good

software engineering principles and practices, such as object-orientation, modularity and

layers of abstraction, were sacrificed in pursuit of the best performance possible. Em-

bedded software engineers were viewed as hackers who were experts in writing arcane

assembly language programs that are next to impossible to understand and maintain by

anyone other than the author of the code.

However, there have been major changes in the way embedded systems are developed
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in recent years. As processors are becoming faster and cheaper every year as dictated by

Moore’s law, it becomes more affordable to use micro-processors with relatively high-

performance within embedded systems. For example, the CPU contained within a modern

cellular phone has more computation power than the first ENIAC computer built in 1946.

Costs of computer memory has also been dropping fast. As a result, the major concern of

embedded systems engineers has shifted from optimizing for performance to coping with

complexity. Figure 1.1 shows the Volvo S-80, as an example to illustrate the degree of

complexity reached in modern automobiles.

Figure 1.1: The Volvo S-80, with two CAN bus segments connected through gateways.
There are 18 control units on the buses, and the CAN bus loads are around
60%. This figure is taken from [96].

As Embedded Real-Time (ERT) systems become more complex and mission- or safety-

critical, the traditional development process of manual coding followed by extensive and

lengthy testing is becoming inadequate. The overarching concern for an embedded system

developer is no longer to optimize software at very low levels in order to squeeze every

ounce of performance out of it,1 but to ensure high-level system correctness, modular-

ity and maintainability at the expense of some performance loss. Engineers are willing

1This may still be true for certain domains such as digital signal processing for mass-produced consumer
products, where performance optimizations can result in large savings in hardware costs.
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to adopt good software engineering principles in exchange for some performance loss as

long as it is within an acceptable range. Embedded software engineering has moved from

a niche area to a vibrant research area, with several international conferences and journals

devoted to it.

In order to increase developer productivity, the abstraction level for software devel-

opment has been raised from assembly language to modern programming languages such

as C/C++ and Java. There is a recent trend to raise the level of abstraction further to the

model-level, and rely on automatic or semi-automatic code generators to produce code in a

traditional programming language. Examples of this approach include Unified Modeling

Language (UML) [91], Model-Driven Architecture (MDA) [90], and Model-Integrated

Computing (MIC) [88]. In particular, the MIC approach advocates usingdomain-specific

models throughout the engineering process that allow both system analysis (to determine

the overall characteristics of the system) and synthesis (to generate configuration or func-

tional code for the system). The termModel-Driven Development(MDD) is commonly

used as a general term for relying on models in the software development process. The

benefits of adopting MDD are:

• Models are at a higher level of abstraction than programming languages, and there-

fore engineer productivity is typically higher when developing models as compared

to developing code,

• Formal models can be analyzed and validated to prove their correctness,

• Real-time implementations can be synthesized from models.

In order to illustrate the MDD approach to embedded software development, let’s first

visit the definition of models. The Marriam-Webster dictionary provides several defini-

tions, the most relevant of which is:
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A usually miniature representation of something; also, a pattern of something

to be made.

We can find a lot of models in the toy store, such as model trains, fire-trucks, houses,

action figures, dolls, etc. They fit the dictionary definition perfectly: miniature represen-

tation of the real thing. Models do not have to be three-dimensional; they can be purely

conceptual, and visualized on a computer, or drawn on a napkin. In fact the most common

form of models in software engineering are box-and-arrow diagrams describing software

architectures such as client-server, three-tier, peer-to-peer, etc. The purpose of developing

a model is to use it as a blueprint to build the real thing. An architect draws on paper the

structure of a building, i.e., a model, and hands it off to the building contractor, who then

uses bricks and concrete to build it. A civil engineer develops a mathematical model of a

bridge in the form of differential equations, and analyzes it to make sure that it satisfies

certain requirements such as stability, durability, etc., before handing it off to the bridge

contractor to build it.

Models for software have a distinct advantage over models for other domains like civil

engineering. If models are formal enough, we can directly transform from models into the

final product (executable code), since both are fundamentally bit pattern representations in

the computer. This changes the job of a software engineer from writing code to building

models.

Figure 1.2 shows the typical waterfall system development life-cycle. We discuss it in

the context of automotive embedded control systems. First, the control engineers identify

system requirements, e.g., the cruise control system must maintain the car speed within

a certain range of deviation from the set-point chosen by the driver, and design a control

law that fulfills the requirements using tools such as Matlab/Simulink [65]. They then

hand over the control law to the software engineers, who then choose a target embedded
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Figure 1.2: System development life-cycle and analysis costs.

platform, and write code to implement the control algorithms. After a series of stages,

from system design, to module design, to implementation, to module test, to system in-

tegration, the software engineers hand over a running system to the test and calibration

engineers, who then perform extensive testing and calibration of the entire system to see if

the vehicle performs as expected. The final stage is maintenance after the system delivery.

Current industry practice relies heavily on the testing stage at the code-level to verify tim-

ing constraints. Timing problems are identified by detecting deadline misses on the target

micro-controller. Unfortunately, problems detected at such late stages typically result in

system redesigns and are very costly both in terms of time and money. What we would

like to do, is to move the analysis to an earlier design stage, and perform model-based

analysis. This will reduce the efforts required at the testing stage, and reduce the overcall

cost of software development

Model-Driven Development (MDD) has met with great success in the enterprise soft-

ware domain, but has been accepted less in the embedded systems domain. Even though

many MDD tools have been created or customized for real-time embedded software, the
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current state-of-the-practice in industry still largely relies on low-level programming using

C or even assembly. Even object-oriented programming languages such as C++ and Java

have not been widely adopted except in larger embedded systems where per-unit hard-

ware cost is of less concern than software development cost. The DARPA Model-Based

Integration of Embedded Software (MoBIES) program, started in 2000, has been explor-

ing model-based approaches for embedded software composition and analysis, especially

emphasizing non-functional issues such as timing, synchronization, dependability and re-

source constraints. The goal of the MoBIES program is to develop mathematical models

and interface standards to integrate physical descriptions of application domains, high-

level specifications of program functionality and process models for software tools. With

the MoBIES technology, the embedded software engineer can construct a domain-specific

embedded software design framework by assembling different tools. These tools can be

developed using different modeling languages specialized for different design concerns

and different modeling aspects of the target embedded software. Therefore, various cross-

cutting issues in embedded software design and analysis, including real-time scheduling,

size/weight/power limitations, fault-tolerance, safety and security, can be addressed by

tools in the integrated tool-chain.

As part of the MoBIES program, in addition toTechnology Developers(TD) from

various universities, several industrial partners have been involved to provideOpen Ex-

perimental Platforms(OEP), application examples used for demonstration and validation

of technology developed by the technology developers. Throughout this thesis, we have

attempted to use such OEPs whenever possible, in particular, theAvionics Mission Com-

puting (AMC) [80] software provided by our industrial partner Boeing. However, other

application examples are also used, such as the Train-Gate-Controller [41] example and

the Elevator Control [28] example, in order to better illustrate certain concepts.



10

Implementation

Techniques
Modeling

Models

Target 
Executable Results

Analysis 

Analysis
TechniquesSynthesis

Figure 1.3: The Model-Driven Development process.

There are three main steps to the Model-Driven Development (MDD) process, as

shown in Figure 1.3: first, we need modeling techniques to build models, which serve

as the central artifact of the development process. Once the models are built, we need

model analysis techniques to prove or disprove correctness of the models. If analysis

results reveal any problems, e.g., the system does not satisfy certain functional or real-

time correctness criteria, it is necessary to use feedback from analysis results to redesign

the models. After we are certain that the models are correct, we need implementation

techniques to generate runtime executable that can be downloaded and run on the target

platform.

Current industry practice is still quite far from the visions of MDD. Models such as

the Unified Modeling Language (UML) [91] often serve in a documentation role that the

engineer can refer to while performing manual coding. Therefore, the link between model

and code is weak and easily broken in the process of system maintenance and evolution,

when code is modified or enhanced without the corresponding change at the model-level,

or vice versa. Engineers almost never do any model analysis at an early design stage.

Instead, they heavily rely on the testing stage for verification, which often incurs a high

cost, as shown in Figure 1.2. We need a more automated and integrated development

process than the current industry practice. In this thesis, we present a suite of techniques
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and tools that aim to ease industry adoption of MDD by addressing the issues of model

analysis and implementation synthesis.

It is important to have tools that are both usable by average engineers and scalable

to larger, realistically sized systems. Some formal languages, such as Z and VDM, were

designed to makes software specifications mathematically-precise and instill rigor into the

software development process. But they have largely fallen into oblivion except in some

highly specialized areas, e.g., systems with very high safety and confidence requirements,

because they are based on mathematical logic, and carry a steep learning curve before they

can be used effectively. Therefore, we have placed a lot of emphasis on building user-

friendly and scalable tools that encapsulate technical details and are usable by average

engineers.

1.3 Main Contributions

This thesis makes contributions in three related topics of model-driven development,

namely,model-level static analysis, applications of model-checking, andimplementation

synthesis from UML-RT. In the context of Figure 1.3, the first two topics fall into the

general category ofanalysis techniques, and the last area falls into the category ofimple-

mentation synthesistechniques.

1.3.1 Model-Level Static Analysis

Traditional static analysis techniques work at the level of programming languages,

and study control and data dependency relationships associated with functions and vari-

ables. Control dependency refers to flow of control through a sequential program, and

data dependency refers to the locations of definitions and uses of the program variables.

When the level of abstraction is raised from programming languages to models, it is nec-

essary to performmodel-levelstatic analysis; that is, to study dependency relationships
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associated with components and ports, which often involve real-time, concurrency and

distribution. In Chapter III, we describe our tool called AIRES for model-level static

analysis, developed as part of the MoBIES tool-chain2, which is an end-to-end tool-chain

for model-based design, analysis and code generation for Avionics Mission Computing

(AMC) software. The main functionalities of AIRES include model-level dependency

visualization and anomaly detection, forward/backward slicing of dependency graphs, ex-

ecution rate assignment, timing analysis and component allocation. All the algorithms

implemented in AIRES are of polynomial complexity and scalable to large, realistically-

sized systems. AIRES provides valuable dependency and timing information at the model

and architectural-level to the engineer at an early design stage, which used to be buried in

the source code underneath layers of abstraction and not readily accessible to the engineer.

For example, the engineer had to use a debugger to trace through hundreds of thousands

of lines of code to track down a cyclic dependency bug. AIRES has been evaluated by our

industrial partner with the Goal-Quality-Metric [77] methodology, and received positive

feedback.

1.3.2 Applications of Model-Checking

Formal verificationtechniques are often employed to verify safety-critical applications

for correctness assurance.Model-checking[3] is one of the formal verification techniques

that has gained tremendous popularity in recent years, especially for hardware and protocol

verification. In simple terms, model-checking works by exhaustively searching through the

system state space to look for “bad” states that cause violation of any system correctness

specifications. There are two types of model-checkers. Untimed model-checkers focus on

verification offunctional correctness, with examples such as SMV [66], Spin [43] and La-

2The MoBIES tool-chain was developed collaboratively by the University of Michigan, Vanderbilt Uni-
versity and Southwest Research Institute, as well as engineers from Boeing.
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belled Transition Systems Analyzer (LTSA) [61]. Real-time and hybrid model-checkers

focus on verification of real-time and hybrid systems for theirtiming correctness, with

examples such as UPPAAL [8] and HyTech [42]. We discuss applications of both types

of model-checkers, using an untimed model-checker to verify functional properties of em-

beddedsoftware, and a timed model-checker to verify properties of embeddedsystem,

which typically consists of embedded software interacting with embedding physical envi-

ronment.

AIRES mainly focuses on the static structural aspects while largely ignoring the dy-

namics of component interaction. In Chapter IV, we use the untimed model-checker

LTSA [61] to construct a formal model of the AMC software and check for safety and

liveness properties. The AMC software is component-based with many different types

of components, each with its unique functionality and interfaces, acting as basic building

blocks of a complete system. The documentation from our industrial partner provides de-

scriptions of the dynamic behavior of various component types in natural language, which

is not formal and subject to misinterpretation and misunderstanding. Formalization with

Labelled Transition Systems Analyzer (LTSA) gives a formal and unambiguous descrip-

tion of system behavior, and enables application of model-checking to prove or disprove

certain properties related to system behavioral dynamics, which are not possible with static

analysis alone. One of the major impediments to industry adoption of model-checking

is lack of scalability, since it involves exhaustive exploration of the system state space,

which grows exponentially to an unmanageable size for realistically-sized systems. This

is commonly called “state-space explosion”. We discuss several techniques to alleviate

the state-space explosion problem and improve scalability by exploiting application-level

domain semantics.

An ERT system typically consists of embedded software and embedding physical en-
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vironment with tight coupling and interaction in between. Current work on real-time ver-

ification typically focuses on either one or the other, but not both. To extend the scope of

modeling and analysis fromsoftwareto systemlevel, we propose an integrated approach

in Chapter V to modeling and analysis of ERT systems where the embedded software and

the embedding physical environment are modeled and analyzed within the same modeling

formalism. By adopting this approach, the engineer can have an integrated view of the

entire system when making design decisions, and perform optimization operations such

as maximizing total system utility given resource constraints, or minimizing total system

cost given application requirements.

For this purpose, the modeling languages of the untimed model-checkers such as

LTSA are not adequate, since they are only capable of modeling the software part, not

the physical environment, which is inherently continuous and real-time. Therefore, we

need real-time or hybrid modeling formalisms and model-checkers to construct a system-

level model. We use Time Petri-Nets (TPN) [67] as the modeling formalism to illustrate

this methodology. We also describe an automated translation procedure from TPN models

into semantically-equivalent Timed Automata (TA) [8] models, thus enabling the use of

mature model checkers for TA such as UPPAAL [8] for analysis of TPN models. Even

though TPN is used for illustration purposes, the concept of integrated modeling and anal-

ysis is general and applies to other real-time and hybrid modeling formalisms such as

Hybrid Automata [42].

1.3.3 Implementation Synthesis from UML-RT

In Chapter VI, we consider the problem of generating a real-time multi-threaded im-

plementation from UML-RT models. UML-RT [78] is a UML profile that describes the

system architecture in terms of components, ports and connectors. Despite the word “real-
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time” in its name, UML-RT does not have explicit constructs for expressing timing and

schedulability constraints. Commercial code generators for UML-RT generate functional

code in programming language code, but largely ignore real-time issues, resulting in a

gap between model and real-time implementation. The native runtime model of UML-RT

assigns one or more active objects to each OS thread running at a fixed priority. This run-

time model does not fit the task model of the classic Rate Monotonic Analysis (RMA) [53]

technique. We have developed schedulability analysis algorithms for this runtime model

based on the Harbour, Klein, Lehoczky (HKL) algorithm [38] with added blocking time

caused by the Run-To-Completion (RTC) semantics of UML-RT. This algorithm can be

used during state-space exploration to find a suitable implementation architecture for a

logical UML-RT model.

In summary, the techniques and tools developed in this thesis address multiple aspects

of the model-driven development process for ERT software in order to shift the focus of

the software development process from programming language-level to the model-level,

and reduce the overall system development cost.

1.4 Related Work

There has been a lot of work in the programming languages and compilers area on

static analysis techniques, such as control and data dependency analysis and program slic-

ing [44], used for program optimization, program understanding and reverse engineering.

This reflects the fact that most of the software development activities have centered at the

programming languages level. As the MDD approach gains more ground, we should de-

velop similar static analysis techniques that work at the abstraction level of models and

architecture. This is actually a simpler job than analyzing programming languages, which

are highly expressive with complicated control-flow structures usingwhile andfor loops,



16

or evengotostatements. Dependency relationships at the model-level are typically much

simpler and more intuitive, due to the graphical nature of models, and (generally) simpler

control flow constructs. However, static analysis at model-level potentially has a much

larger impact than static analysis at the programming language level, since it happens at

an earlier design stage.

Previous work on software timing analysis has centered around analyzing a sequen-

tial software program to find out its Worst-Case Execution Time (WCET) using control

and data flow dependency information extracted from static analysis at the programming

language level. Once we acquire the WCET information for software components, there

are many important system-level issues to be addressed, such as multi-threading, con-

currency, component and task allocation, and execution platform selection, in order to

achieve system-level performance objectives such as schedulability, load-balancing, fault-

tolerance, etc. These issues are visible at the model and architecture level, and necessitates

techniques and tools that work at a higher level of abstraction than WCET tools for pro-

gramming languages.

A number of CASE tools for model-driven development of embedded software have

been developed in recent years. Examples include Virginia Embedded Systems Toolkit

(VEST) [85] from University of Virginia, TimeWeaver [17] from Carnegie Mellon Univer-

sity, Cadena [40] from Kansas State University, MetaH [9] from Honeywell Technologies,

Ptolemy [12] and Giotto [52] from University of California, Berkeley, etc. Each of these

tools has a different focus on the various aspects of embedded software development. For

example, VEST’s focus is onprescriptive aspects, which differ from Aspect-Oriented Pro-

gramming by being prescriptive instead of descriptive, and are applied at the early design

stage instead of the programming stage. MetaH is an Architectural Description Language

and toolset for developing real-time, fault-tolerant, securely-partitioned, multi-processor
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software in the avionics domain. It is based on the programming language Ada, and uses

a custom-generated runtime executive instead of Commercial Off-The-Shelf (COTS) mid-

dleware like CORBA in AMC. The focus of the MoBIES tool-chain is on providing an

integrated toolset with open architecture and standard interfaces to facilitate easy plug-in

of third-party tools, and the focus of AIRES is on model-level dependency and timing

analysis to provide the engineer insight into dependency and real-time information at an

early design stage.

The publish/subscribe model of computation, as implemented in Real-Time CORBA [76]

and used in AMC, has been widely adopted in a variety of application domains, includ-

ing both ERT and enterprise distributed systems. Garlan [25] describes a model-checking

framework for publish/subscribe systems. The key feature of this framework is a reusable,

parameterized state machine model that captures runtime event management and dispatch

policy. Generation of models for specific systems is then handled by a translation tool that

accepts as input a set of component descriptions together with a set of properties, and maps

them into the framework where they can be checked using the model-checker SMV [66].

Our modeling approach works at a higher level of abstraction and ignores details related

to the internals of the CORBA middleware such as queuing and dispatch policies. For

example, we use a single synchronization primitive to represent the flow of an event from

the publisher component to the subscriber component. Even though it is a coarse approxi-

mation of the actual behavior, it is adequate for our purpose of verifying application-level

logical properties, given the assumption that the middleware behaves correctly. This sig-

nificantly reduces system state space and allows us to check for much larger models than

the case of modeling the system at a more detailed level.

Research in real-time and hybrid systems initially focused on modeling of physical

systems, and was later extended to deal with software dynamics such as CPU and network
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scheduling, e.g., the TIMES tool [5] is designed to model and analyze real-time task sets

that do not conform to the assumptions of traditional schedulability analysis techniques,

e.g., a task set with data-dependent triggering patterns. However, it does not have the con-

cept of integrated modeling and analysis. Some authors have recognized the significance

of tight integration of embedded software with its physical environment, and the need for

an integrated analysis framework. For example, Seto [79] proposed an integrated approach

to controller design and task scheduling, where task frequencies are allowed to vary within

a certain range as long as such a change does not affect critical control functions such as

maintenance of system stability. An algorithm was developed to optimize the overall sys-

tem control performance while maintaining schedulability by adjusting task frequencies.

Our work is complementary to Seto’s since we focus on the model-checking technique

instead of analytical derivation.

Most commercial UML tools have the capability to generate code in programming lan-

guages such as C/C++ or Java. However, they focus on functional issues, and largely ig-

nore non-functional and real-time issues such as multi-threading, concurrency and schedu-

lability. A number of implementation alternatives for UML-RT have been proposed, for

example, by Saksena [75] and Kim [64], for mapping a logical UML-RT model into a

multi-threaded real-time executable. Their approaches associate priorities with end-to-end

application scenarios instead of capsules, and treat each scenario as a task, so that classic

RMA [53] techniques can be applied to analyze schedulability. However, they both have

some shortcomings. Saksena’s approach requires the engineer to stick to a programming

discipline of dynamically adjusting capsule priorities to reflect the priority of the currently

executing end-to-end transaction. This approach hurts the encapsulation of capsules by

mixing system-level concerns (scenarios) with component-level concerns (capsules). It

also involves runtime system-call overheads that may or may not be acceptable to certain
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resource-constrained embedded systems. Certain small RTOSes may not even provide

APIs for dynamic priority change. Kim’s approach creates shared data when multiple sce-

narios cut through the same capsule, and breaks a key advantage of UML-RT, which elimi-

nates the need for error-prone concurrency control mechanisms (mutexes, semaphores and

monitors) by using asynchronous message passing as the main communication mechanism

among capsules instead of shared data.

Both Saksena’s and Kim’s approaches require modifications to the native runtime

model of UML-RT as implemented in the RoseRT CASE tool [46]. Even if Saksena’s

or Kim’s approaches were widely adopted, there would still be a lot of legacy applications

that will never be changed. Therefore, instead of modifying the computational model of

design tools to fit scheduling algorithms, we modified scheduling algorithms to fit the na-

tive runtime model of design tools. This should make our approach more easily acceptable

to industry.

The thesis is structured as follows: in Chapter II, we provide some background knowl-

edge and related work that are necessary to understand the rest of the thesis. Chapter III

describes model-level static analysis techniques and the AIRES tool, using Avionics Mis-

sion Computing (AMC) as the example application domain. In Chapter IV, we discuss the

application of model-checking techniques to verify functional properties of the AMC soft-

ware, and several techniques for improving scalability of model-checking. In Chapter V,

we describe an integrated approach for modeling and analysis of ERT systems with tight

coupling between embedded software and embedding physical environment. Chapter VI

considers the problem of synthesizing a real-time implementation from logical UML-RT

models. Finally, in Chapter VII, we draw some conclusions and discuss possible future

work.



CHAPTER II

Background Knowledge and Related Work

In this chapter, we describe background knowledge and related work in order to set the

stage for the rest of the thesis. This chapter is structured as follows. Section 2.1 discusses

the MIC approach to building domain-specific modeling environments and generators.

Section 2.2 provides an introduction to formal verification techniques, focusing on the

model-checking approach and two model-checkers used in later chapters: the untimed

model-checker LTSA, and the real-time model-checker UPPAAL. Section 2.3 introduces

UML and its extensions for embedded real-time systems. Finally, Section 2.4 introduces

real-time scheduling theory.

2.1 Model-Integrated Computing

Model-Integrated Computing (MIC) [88] is developed at Vanderbilt University, and

embodies the model-based design paradigm: models are used not only to design and rep-

resent, but also to synthesize, analyze, integrate, test, and operate embedded systems.

Models capture not only what the dynamics and expected properties of the system are,

but also what is assumed about the system’s environment. Based on the MIC approach,

the Generic Modeling Environment (GME) [57] is developed as a configurable toolset for

creating domain-specific modeling and program synthesis environments through ameta-

20
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modelthat specifies the modeling paradigm of the application domain. Themeta-model

captures all the syntactic, semantic and presentation information regarding the application

domain, and defines the family of models that can be created using the resulting model-

ing environment. It contains descriptions of the entities, attributes, and relationships that

are available in the modeling environment, and the constraints that define what modeling

constructs are legal. As an example, Figure 2.1 shows the meta-model for hierarchical

finite state machines (HFSM), and Figure 2.2 shows a HFSM model conforming to the

meta-model.

As an example of the MIC approach, a chemical engineer trying to design a chemical

reaction experiment should ideally have a modeling environment within which he can di-

rectly express concepts such as reactants, catalyzers, flow pipes, vessels, cooling liquids,

etc., possibly with intuitive graphical icons for each entity. This involves developing a

meta-model for the domain at hand, and associating intuitive bitmap images to the domain

concepts. This should be more user-friendly than requiring the user to write programs in

C++ and build the domain abstractions manually. We can draw another analogy with an

example from computer science. Turing Machines are general-purpose and can be used

to express and simulate any sequential computer algorithm, but no one uses it as a pro-

gramming language, because it is very inefficient and verbose to encode an algorithm with

Turing Machines. Instead, engineers use programming languages such as C, with its built-

in constructs for expressing iterative loops and numerical computation, to write complex

algorithms succinctly. Just as a programming language like C makes it easier for program-

mers to implement computer algorithms, a domain-specific modeling environment makes

it easier for engineers to build models in their respective domains.

Model transformationis defined as transforming a model conforming to meta-model

A to another model conforming to a different meta-modelB. It is often termedsemantic
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<<Model>>

dst

src
<<Connection>>

Event: field

Transition State

StartState : bool

Figure 2.1: The meta-model for hierarchical finite state machines (HFSM). The source
state can be connected to the destination state with a transition, and each state
can contain other states or transitions to form a hierarchy.

Active

Passive

done2

done1

deactivate

activate

Running

Warmup

Init

Figure 2.2: An example HFSM conforming to the meta-model in Figure 2.1. Each transi-
tion is labeled with the event that triggers it.

translationsince it changes model semantics in the process of transformation, which is

generally a more difficult problem thansyntactic translationsuch as file format conver-

sion from postscript to PDF, where document syntax is changed while semantics remains

unchanged. One example transformation is flattening the hierarchy of a HFSM and gener-

ate an equivalent flat FSM, possibly with a much larger number of states than the original

HFSM. Another example is the classic problem of generating a deterministic finite au-

tomaton from a non-deterministic finite automaton.

Figure 2.3 shows the relationship between meta-modeling and domain modeling in the

MIC approach. Themeta-modelerfirst uses a meta-modeling environment to construct a

meta-model for the application domain under consideration, e.g., high-performance em-

bedded signal processing. He then synthesizes a domain-specific modeling environment

(DSME) based on the meta-model, and hands it off to thedomain modeler, who then uses

the DSME to develop a model instance of application domain under consideration, for ex-
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Figure 2.3: Relationship between meta-modeling and domain-modeling in the MIC ap-
proach. This figure is taken from [57].

ample, a particular high-performance signal processing system. Both the meta-models and

models are stored in the form of XML files to facilitate easy interchange of models with

third-party tools. The DSME encodes the syntactical rules specified in the meta-model,

and ensures that only legal models conforming to the meta-model are generated. The do-

main modeler is able to directly use familiar domain abstractions to model the system

instead of manually imposing the domain abstractions onto a general purpose modeling

language such as UML.

The key factor that distinguishes the model-based approach from other techniques is

that models are used as input togenerators, also calledmodel interpretors, that translate

them into other artifacts used for analysis or at runtime in the application. The two major

applications of generators are:

• To translate models into the input language of analysis tools and to translate the
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analysis results back into the modeling language, e.g., to generate models used for

schedulability analysis from application models.

• To translate models into executable code that can then be compiled and run on a

target execution platform.

There are three techniques for developing generators:

• Direct implementation:using a set of C++ APIs provided by GME, the designer

can write code to manually traverse the data structures contained within the source

model, and write out the corresponding portions in the target model, which can be in

the form of a model useful for performing analysis, or in the form of a programming

language to be compiled and run. This technique is simple and works well for

situations where the transformations are easy to capture in a procedural form.

• Pattern-Based Approach:use the design patternVisitor [19] to traverse the input

model in the form of an abstract syntax tree, and take actions at specific points

during the traversal. This approach allows concise and maintainable implementation

of generators compared to the direct implementation approach.

• Metagenerators:use Graph Grammarsand Graph Rewriting[48] to develop a

mathematically precise mapping from input metamodel to output metamodel. This

is the most sophisticated approach to developing translators. One drawback is that

both the source meta-model and target meta-model must be captured within GME,

which is often not the case. For example, the meta-model of a programming lan-

guage like C++ or Java is very complicated and not easily captured cleanly within

GME. In that case it is necessary to resort to the direct implementation approach.
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2.2 Formal Verification

As the complexity of safety-critical systems grows, it becomes increasingly important

to ensure the correctness of these systems and embedded software controlling them. Build-

ing models is the necessary first-step towards higher levels of of assurance, but it is also

very important to have effective analysis techniques that can be applied to the models in

order to derive useful properties. Some example analysis techniques are real-time schedu-

lability analysis, dependency analysis with graph theoretical methods, etc. If the model

is executable, then simulation can be used for verification. In fact simulation is the most

widely-used technique in industry today. However, simulation only explores part of the

system state space. It is useful for finding bugs and proving that a system’s incorrectness,

but cannot be used to prove that a system is 100% correct.

There are another family of analysis techniques that are characterized asformal meth-

ods[27], defined as using mathematical techniques to prove system correctness. There are

mainly two types of formal methods:

• Theorem-proving: the system is specified in a logical system and deductive verifi-

cation techniques are applied to prove properties. Examples are the PVS and Larch

theorem provers. This approach is mostly manual even with state-of-the-art theorem

provers that provide help in proof-checking.

• Model-checking:instead of manual deduction like in theorem-proving, the model-

checking technique uses exhaustive state-space exploration to prove properties.

2.2.1 Model-Checking

We are mainly concerned with the model-checking technique in this thesis. As shown

in Figure 2.4, an automated tool called amodel-checkeris used to check a modelM against



26

Model−Checker
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Property Spec
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Figure 2.4: The model-checking process.

its expected propertyφ, i.e., to prove or disprove the formulaM ` φ. The outcome is

either a correctness confirmation that propertyφ holds, or a counter example showing the

execution trace leading to the property violation ifφ is not true. For example, a modelM

of a missile launch system is checked against the expected propertyφ that the missile will

not be launched (engines ignited) unless all the release latches are disengaged. Ifφ is true

for M , the model checker will confirm its validity. Ifφ is not true, it will show what states

or portions ofM (a counter example) that will result in the premature launch.

Typically, the system modelM is specified in some type of state machine notation, and

the model-checker explores the full state-space ofM to determine the validity of desired

propertyφ. There are two approaches to model-checking:

• Temporal logic based:this involves a finite state mechine model ofM with a tem-

poral logic representation ofφ. One representative example of this approach is SMV

(Symbolic Model Verifier) [66] from Carnegie Mellon University.

• Automata based:this involves automata models for bothM andφ. One representa-

tive example is the model-checker Spin [43].

Model-checking has gained tremendous popularity in recent years, especially in the

hardware design and verification area. In simple terms, model-checking works by exhaus-

tively searching through the system state space to look for “bad” states that cause violation

of any system correctness specifications. There are two types of model-checkers. One

type focuses on verification offunctional correctness, with examples such as Symbolic
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Model Verifier [66] (SMV) from Carnegie Mellon University, Spin [43] from Lucent Bell

Labs, and those based on process algebra such as the Labelled Transition Systems Ana-

lyzer [61] from Imperial College London. The other type focuses on verification of real-

time and hybrid systems for theirtiming correctness, with examples such as UPPAAL [8]

and HyTech [42].

2.2.2 The Untimed Model-Checker LTSA

Modeling Language

Finite State Processes (FSP) [61] is a light-weight process algebra developed by Jeff

and Magee Kramer, with formal semantics defined with Labelled Transition Systems

(LTS). Labelled Transition System Analyzer (LTSA) is a model-checker that performs

reachability analysis on FSP models in order to check for safety and liveness properties.

Figure 2.5: A simple FSP model for a light switch.

Primitive componentsare defined as finite-state processes using action prefix-> , choice

| and recursion. Ifx is an action andP a process, then(x->P) describes a process that

initially engages in the actionx and then behaves exactly as processP. Figure 2.5 shows a

simple FSP model for a light switch, which toggles between the off and on states:

SWITCH = (on->off->SWITCH).

We can write an equivalent specification using recursion:

SWITCH = OFF, OFF = (on->ON), ON = (off->OFF).

If x andy are actions, then(x->P|y->Q) describes a process which initially en-

gages in either of the actionsx or y , and the subsequent behavior is described byP or Q,

respectively. A model for a drinks machine is:
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DRINKS = (red->coffee->DRINKS|blue->tea->DRINKS).

If the red button is pressed, it dispenses a cup of coffee; if the blue button is pressed, it

dispenses a cup of tea.

The alphabet of a process is the set of actions it can engage in. The interface operator @

is used to specify the set of action labels which are visible at the interface of the component

and thus may be shared with other components. The alphabetic extension operator + is

used to specify extension of process alphabet to include a set of action labels.

Primitive processes can be composed with the parallel composition operator —— to

form a composite process. Processes interact via synchronization on common message

labels in the traditional style of process algebra. That is, if processes in a composition

have a common shared action, all processes must execute the shared action at the same

step. For example:

MAKER = (make->ready->MAKER).
USER = (ready->use->USER).
||MAKER_USER = (MAKER||USER).

The MAKER process and USER process share a common actionready , so they must

execute that action synchronously while the other actions can be interleaved.

Property Specification

Figure 2.6: The property specification that eventknockmust happen before evententer.
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A property is an attribute of a program that is true for every execution of that program.

Properties of interest for concurrent programs fall into two categories:safetyand live-

ness. A safety property asserts that nothing bad happens during execution, and a liveness

property asserts that something good eventually happens. Example safety properties are

mutual exclusion and absence of deadlock; example liveness property is that a process is

eventually granted a resource if it makes a request for it.

LTSA does not support property specification in the form of temporal logics such as

LTL in Spin and CTL in SMV. Rather, properties are specified using property automata.

A safetyproperty P defines a deterministic process that asserts that any trace includ-

ing actions in the alphabet ofP , is accepted byP . Figure 2.6 shows the LTSA process

generated from the safety specification:

property POLITE = (knock->enter->POLITE).

An evententer without a precedingknock , or two adjacentknock events will

result in reaching the error state denoted -1. Another common safety property isdeadlock

freedom, which is built into the LTSA model checker and need not be explicitly specified.

Instead, there is an explicit menu option for checking deadlocks.

A liveness propertyprogressP = a1, a2, . . . , an defines a progress propertyP , which

asserts that in an infinite execution of a target system, at least one of the actionsa1, a2, . . . , an

will be executed infinitely often. For example, for a coin toss process

COIN = (toss->heads->COIN|toss->tails->COIN)

We can specify progress properties

progress HEADS = {heads}.
progress TAILS = {tails}.

which states that if we toss the coin infinite number of times, we can expect to see

both headsand tails infinitely often. This is verified to be correct given thefair choice
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scheduling policy assumption built into the LTSA tool, which states thatif a choice over a

set of transitions is executed infinitely often, then every transition in the set will be executed

infinitely often.

2.2.3 Timed Automata and UPPAAL

The Real-Time Model-Checker UPPAAL [8] is based on Timed Automata [4]. A

timed automaton is a standard finite-state automaton extended with a finite collection of

real-valued clocks, which proceed at the same rate and measure the amount of time that

has elapsed since they were last reset. The UPPAAL definition of TA has added a few ex-

tensions to the standard definition of [4], such as integer variables, CCS-style synchronous

communication, urgent channels, etc.

A transitionl
g,α,φ−→ l′ means that the automaton in statel will perform theα transition

instantaneously when the guardg is true and reach statel′ while resetting the variables in

φ to zero. In UPPAAL, both the guardg and the variables to be resetφ can contain clock

as well as data variables. We useC to denote the finite set of clock variables ranges over

by x, y, z, . . ., and useV to denote the set of data variables ranged over byi, j, k, . . ..

Guards Over Clock and Data Variables

We useG(C, V ) to stand for the set ofguards, i.e., the set of formulas ranged over by

g, generated by the following syntaxg ::= a|g ∧ g, wherea is a constraint in the form:

x ∼ n or i ∼ n for x ∈ C, i ∈ V , ∼∈ ≥,≤, =, andn being a natural number. Each

control locationl may also contain an invariant condition in the form ofx ≤ n, meaning

that the clockx must not increase beyond valuen before the locationl is exited.
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Reset Operations

To manipulate clock and data variables, we useR to denote the set of possible reset

operations in the form ofw := e, wherew is a clock or data variable, ande is an expression.

A reset operation on a clock variable should be in the formx := n, wheren is a natural

number; a reset operation on a data variable should be in the formi = c ∗ i + c′, wherec

andc′ are integer constants.

Channels, Urgent Channels, and Synchronization

We assume that processes synchronize with each other via channels. LetA denote the

set of channels, andU denote a subset ofA that are urgent channels on which processes

must synchronize whenever possible. We useA = α?|α ∈ A ∪ α!|α ∈ A to denote the

set of actions that processes can perform to synchronize with each other. Conceptually

α? means that the process receives an input from channelα, and must synchronize with

another process that performs an output to channelα, denoted byα!. This is CCS-style

pair-wise synchronization, as opposed to the CSP-style broadcast synchronization, where

all processes with the same action labelα must synchronize together with no distinction

between input and output.

Automata with Clocks and Data Variables

An automatonA over actionsA, clock variablesC, and data variablesV is a tuple

(N, l0, E), whereN is a finite set of nodes calledcontrol nodes, l0 is the initial node, and

E ⊆ N ×G(C, V )×A× 2R ×N corresponds to the set of edges.

Concurrency and Synchronization

To model networks of processes, we introduce a parallel composition operator. As-

sume thatA1, . . . , An are automata with clocks and data variables. We use
−
A to denote
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parallel composition(A1| . . . |An).

Figure 2.7: Two example Timed Automata modeled with UPPAAL. This figure is taken
from [99].

Figure 2.7 shows two automataA andB composed together in UPPAAL. There are

two global clocksx andy, a global variablen, and a global channela. Initially both clocks

x andy are set to 0. In automatonA, the invarianty ≤ 6 in control locationA0 means

thatA0 must be left within 6 time units, while the guardy ≥ 3 on the transition edge from

A0 to A1 means that this transition can only be taken wheny ≥ 3. The combined effect

of the invariant and guard means thatA must make a transition fromA0 to A1 between

time 3 and time 6. The shared channela forces automataA andB to synchronize on their

respective transitionsA0 −→ A1 andB0 −→ B1. Upon making the transitions, clocks

x andy are both reset to 0. The guard can involve data variables such asn == 5; the

assignment operation can also involve data variables such asn := n + 1.

Property Specification

The UPPAAL model-checker can be used to check for invariant and reachability prop-

erties in the form ofall reachable states must satisfyβ, or some reachable states must

satisfyβ, where

β = a|β1 ∧ β2|¬β

a is an atomic formula being an atomic clock or data constraint, or a component lo-
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cation. Atomic clock or data constraints are either integer bounds on individual clock or

data variables (e.g.,1 ≤ x ≤ 5), or integer bounds on differences between clock or data

variables (e.g.,1 ≤ x− y ≤ 5).

We can also specify and checkbounded livenessproperties, not directly, but using

testing automata. For example:

ψ = φUntil<ta

states that propertya must become true beforet time units, andφ must hold true before

then.

2.2.4 Timed Petri-Nets

A TPN is characterized by a 7-tupleN = (P, T, B, F, I, M0, D), where

• P is a finite set ofplacespi.

• T is a finite set oftransitionsti.

• B is the backward incidencefunction B : T × P → N , whereN is the set of

nonnegative integers.

• F is theforward incidencefunctionF : T × P → N .

• I is theinhibitor edge incidencefunctionI : T ×P → {0, 1}. The input place to an

inhibitor edge is called aninhibitor input place.

• M0 is theinitial marking functionM0 : P → N .

• D is a mappingD : T → Q∗ × (Q∗ ∪ ∞), which associates adelay interval

τ = [lb, ub] with each transitiont ∈ T , whereQ∗ is the set of rational numbers.

A transition t is said to beenabledwhen each input placepi has at leastB(t, pi)

tokens, and each of inhibitor input placepj is empty. A transitionT with delay interval
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τ = [lb, ub] is fired as soon as it is enabled, unless disabled by the firing of a conflicting

transition that removes tokens from some ofT ’s input places. The firing takes at leastlb

time units, but no more thanub time units. During the firing, the tokens at the input places

have been consumed, but the tokens at the output places have not been produced. If a

transition with delay intervalτ = [lb, ub] becomes enabled at timeθ0, it fires immediately

and consumes its input tokens, then finishes and produces its output tokens at sometime

during the interval[θ0 + lb, θ0 + ub].

Note that our definition of TPN requires each transition to beurgent, that is, fired

as soon as enabled, unless disabled by a conflicting transition at that instant, while in

the original definition[74], no bound is imposed on when a transition may fire after it is

enabled. Also, note the distinction between Timed Petri Net andTime Petri Net[67]. In

a Time Petri Net, transitionT has to be enabled continuously for[lb, ub] time units before

it can fire, and the firing is instantaneous: input tokens are consumed and output tokens

are produced at the same time. During the time interval[lb, ub], T may be disabled by the

firing of a conflicting transition.

2.3 Unified Modeling Language

Object-Oriented (OO) design methodologies have become the mainstream in enter-

prise software development. Unified Modeling Language (UML) [91] is thede facto

standard for OO design and development. It is a result of merging several OO design

methodologies proposed in the 1980s such as Booch, OMT and OOSE.

2.3.1 Diagram Types in the UML Standard

UML consists of the following main types of diagrams: Use Case Diagram, Class

Diagram, State Transition Diagram, Collaboration Diagram, Sequence Diagram, Activity

Diagram and Deployment Diagram.
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Figure 2.8: An example UML Use Case Diagram.

0..5

Animal

weight
size

makeNoise()

Dog

bark()meow()

Cat

height

Pet Owner

weight

buyPetFood()

Figure 2.9: An example UML Class Diagram.

Use Case Diagram A Use Case Diagram describes interaction scenarios between the

external users of the system, also called actors, and the system itself. For example, Fig-

ure 2.8 shows an example Use Case Diagram for a banking system, where actorscustomer

andbank cashierparticipate in use caseswithdraw cashandmake deposit, and actorser-

vice technicianparticipates in use caserepair system. Use Case Diagrams are a good way

to express basic functionalities of the system at early design stages due to its informal

nature.

Class Diagram The Class Diagram is central to the OO methodology, used to express

the concepts ofencapsulation, polymorphismandinheritance. Encapsulation means that

a class hides its private data members and methods from the external view. This facilitates

reuse of the class in different contexts. Polymorphism means that sometimes the type of
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Figure 2.10: An example UML Statechart Diagram.

an object cannot be determined statically, but can only be determined dynamically at run-

time. Inheritance means that classes may form specialization/generalization hierarchies.

Figure 2.9 shows an example Class Diagram, which specifiesinheritancerelationships be-

tween theanimalclass and thecat/dogclasses, and anassociationrelationship between a

pet-owner and 0-5 animals.

Figure 2.11: An example UML Collaboration Diagram.

State Transition Diagrams A State Transition Diagram is associated with a class, and

describes its dynamic behavior. Most UML tools implement a variant of state transition

diagram calledStatechart[39] by David Harel. It is similar to the concept of Finite State

Automata (FSA) in theoretical computer science, but with added concepts of hierarchy and

other attributes on transitions such as action, guard, etc. Figure 2.10 shows an example

statechart describing the steps needed to take a college course. The initial state is denoted
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For each digit

:CelularRadioSend:Button :Button :Dialer :Speaker:Display

2.1.1: InUse()

2.1: Send(pno)
2:Send()

1.2:EmitTone(code)
1.1:DisplayDigit(code)

1*:Digit(code)

Figure 2.12: An example UML Sequence Diagram.

by a filled circle, and final state is denoted by a filled circle contained within an empty

circle. The stateTaking Classcontains 3 concurrently-executing parallel state machines

separated by dotted lines calledswim lanes. In order to take a class, the student must

complete two projects sequentially and receive grades for both. He also needs to complete

a lab session, as well as taking a final test and receive grades for both. If he fails the final

test, or he misses any deadlines for his projects, labs or tests, thefail state is reached;

otherwise thepassedstate is reached. The statechart always ends up on the final state.

Collaboration Diagram A Collaboration Diagram describes the collaboration among

a group of objects. It is similar to the Use Case Diagram in the sense that it describes an

interaction scenario, but at a much more fine-grained level. Figure 2.11 shows an example

Collaboration Diagram for a cell phone making a call. Note that the rectangles denote

objects, not classes, as indicated by the underlined class names. The syntax of an object

name is “Object Name: Class Name”, for example “Send : Button” means that the object

namedSendis an instance of the class namedButton. The other objects are anonymous
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Figure 2.13: An example UML Activity Diagram.

Component3

ClientServer

Component4Component2

Component1

Figure 2.14: An example UML Deployment Diagram.

with no object names specified in front of the colon. Objects communicate with each

other using messages, which may be an asynchronous message or a synchronous method

call. Messages are tagged with sequence numbers, and may or may not have parameters.

For example, the sequence of interaction is: theButtonobject sends adigit with a code

parameter to theDialer object, which in turn sends aDisplayDigit message to theDisplay

object, and anEmitTonemessage to theSpeakerobject, with the same parametercode.

After all digits have been input, theSendobject sends aSend() message with no parameters

to theDialer object, which in turn sends aConnectmessage with parameterpno (phone

number) to theCellularRadioobject.

Sequence Diagram The Sequence Diagram is just another way to represent a collabo-

ration diagram. Figure 2.12 shows the Sequence Diagram corresponding to the Collabora-
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tion Diagram in Figure 2.11. They represent exactly the same information, but have differ-

ent emphasis. It is easy to see the event sequence on the timeline in the sequence diagram,

while the user has to manually trace through the sequence numbers in the collaboration di-

agram. On the other hand, it is easier to see the interaction patterns and inter-relationships

between objects in the collaboration diagram. Note the informal notation “For each digit”

for the first scenario. A more formal variant of sequence diagram isMessage Sequence

Charts (MSC), commonly associated with theSpecification and Description Language

(SDL) [83] widely used in the telecommunications domain.

Activity Diagram The Activity Diagram describes the behavior of a set of objects. It

has a formal semantics basis defined by Petri-Nets. Figure 2.13 shows an Activity Diagram

for the order processing business process.

Deployment Diagram The Deployment Diagram is usually used at the later stages

of system design to show allocation of software components on the execution platform.

Figure 2.14 shows thatComponent1andComponent2are allocated on the machine called

Server; Component3andComponent4are allocated on the machine calledClient.

2.3.2 Adapting UML for Embedded Real-Time Systems

UML is a large and complex standard developed by a consortium of dozens of com-

panies, each demanding the addition of their own features to the UML standard. In order

to make UML more suitable for particular application domains, several extension and

customization mechanisms have been provided, includingstereotypes, tagged valuesand

constraints. For example, a stereotypeActive Objectcan be defined to denote that an

object contains its own conceptual thread of execution. A UMLProfile is a collection

of stereotypes, tagged values and constraints that together provide a modeling environ-
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ment customized to an application domain. Each UML tool vendor is free to define its

own profile for its own tool. In order to promote inter-operability among different UML

tools, several standard profiles have been defined, e.g., the UML Profile for Schedulability,

Performance and Time [71] for analysis tasks related to schedulability and performance.

Despite the emergence of several tool vendors that specialize in real-time UML tools,

such as ILogix [47], Artisan Software [6], IBM Rational [46], and Telelogic [89], UML

has not met with as wide acceptance in the embedded software domain as it has in the en-

terprise software domain. Part of the reason for UML’s failure in the embedded software

domain lies in its generality, even though the profiling mechanism offers limited power of

extensibility within the UML standard. As an alternative to UML, we have discussed the

Model-Integrated Computing[88] (MIC) approach in Section 2.1, which advocates build-

ing domain-specificgraphical modeling environments with built-in domain abstractions.

Engineers can then use these customized modeling environments to express domain con-

cepts directly, instead of encoding domain concepts in a general purpose language. The

equivalent approach with UML would be to modify the UML meta-model, which will

result in the model no longer conforming to the UML standard.

The UML+SDL Approach of Telelogic The CASE tool Telelogic Tau [89] advo-

cates using UML in the early object-oriented analysis and design stages, and Specification

and Description Language (SDL) [83], an International Telecommunications Union (ITU)

standard typically used to describe communication protocols, in the latter stages of imple-

mentation. The approach is based on a translation technique that maps key concepts of

UML into concepts of SDL. Some example mappings are:

• A UML active objectis mapped into a SDLprocess.

• A UML passive objectis mapped into a SDLabstract data type.
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• A communication channelbetween active objects in UML is mapped into a SDL

channel for signal exchange.

• A UML statechartis mapped into a SDLstate machine.

Telelogic claims that SDL is more formal than UML, offering benefits such as exe-

cutable models, functional simulation, automatic code generation and test generation with

TTCN. However UML-RT [78] from IBM Rational seems to offer most of these benefits

and obviates most of the need for using SDL.

Approach of Artisan Software

The Real-Time Studio CASE tool developed by Artisan Software [6] adds two new di-

agram types calledContext DiagramandSystem Hardware Diagram. They are then used

together with Class and Object Diagrams to model mapping of logical software compo-

nents onto the architectural platform. By adding the two new diagram types, the tool is no

longer 100% conformant to the UML standard.

Action Semantics

Action semantics is an OMG standard that aims to formally specify actions, for ex-

ample at state transitions in Statecharts, to enable formal analysis and code generation. It

applies to all UML-based modeling approaches, and is orthogonal to real-time modeling

approaches. It is intended to replace the typical approach of using a programming lan-

guage such as C++/Java to specify actions. The OMG Request For Proposal (RFP) [69]

for action semantics says:

UML currently uses uninterpreted strings to capture much of the description of

the behavior of actions and operations. To provide for sharing of semantics of

action and operation behavior between UML modelers and UML tools, there
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needs to be a way to define this behavior in a well-defined, inter-operable

form. As such time as the Action Semantics requested in this proposal are

mapped to a syntax, and are combined with UML, UML shall constitute a

computationally complete language. This language is targeted at system anal-

ysis and behavior description, and is not envisioned to be a language suitable

for system deployment.

Action semantics is not a new programming language. Rather, it provides

for the specification of systems in sufficient detail that they can be executed,

and the it should provide just enough semantics to enable the specification of

computation.

Embedded UML for Hardware/Software Codesign

Embedded UML [63] is a research project carried out by Cadence and University of

California at Berkeley to define a UML profile suitable for hardware/software codesign. It

represents synthesis of various ideas in the real-time UML community and concepts drawn

from the codesign community. The following concepts from real-time UML are adopted:

• Specification of embedded systems as a collection of reusable communicating blocks

using a functional decomposition.

• Class Diagrams for object type definition.

• Encapsulation of functions within ablock, an extension of thecapsuleconcept in

UML-RT.

• Communications explicitly defined via ports, protocols and connectors.

• Use Cases and Sequence Diagrams to specify test-benches and test scenarios.
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• Carefully defined state diagram semantics, combined with specified action seman-

tics which can be used to drive code generation, optimization and synthesis.

• The concept of a refinement continuum, from non-executable specifications, to for-

mal executable specifications, to implementation.

The following concepts are taken from the codesign world:

• A rigorously defined platform model in both hardware and software for the im-

plementation architecture. This can be conceptually thought of as a collection of

resources offering services, as in UML real-time extension profiles. The collection

of platform services can be thought of as a system platform “API”.

• Using mappingas the platform-dependent refinement paradigm for performance

analysis, communication synthesis and optimized code synthesis/generation.

• A concept ofreactive objectsrather thanactive objects.

UML Profile for Schedulability, Performance and Time

As shown in Figure 2.15, the UML Profile for Schedulability, Performance, and Time

(UML-SPT) [71] is partitioned into a number ofsub-profiles, profile packages dedicated

to specific aspects and model analysis techniques. At the core of the profile is the set

of sub-profiles that represent the general resource modeling framework. These provide a

common base for all the analysis sub-profiles in this specification. However, it is antici-

pated that future profiles dealing with other types of QoS (e.g., availability, fault-tolerance,

security) may need to reuse only a portion of this core. Hence, the general resource model

is itself partitioned into three separate parts. The innermost part is the resource modeling

sub-profile, which introduces the basic concepts of resources and QoS. These are general
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Figure 2.15: The structure of UML Profile for Schedulability, Performance and Time. This
figure is taken from [71].

enough and independent of any concurrency and time-specific concepts. Since concur-

rency and time are at the core of the requirements behind this specification, they each have

a separate sub-profile.

The three different model analysis profiles are all based on the general resource mod-

eling framework. One sub-profile is dedicated toperformance analysisand another is

dedicated toschedulability analysis. In addition, there is a model library that contains

a high-level UML model of Real-Time CORBA [76]. The modular structure shown in

Figure 2.15 allows users to use only the subset of the profile that they need. This means

choosing the particular profile package and the transitive closure of any profiles that it im-

ports. For example, a user interested in performance analysis, would need thePAProfile,
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RTTimeModeling, andRTResourceModelingpackages.

2.4 Real-Time Scheduling Theory

In this section, I provide a brief introduction to real-time scheduling theory. Some of

the material here is excerpted from [96].

The problem ofschedulingarises whenever multiple active entities, be it processes,

threads or human beings, compete for shared resources. In an ERT system, the most fre-

quently encountered scheduling problems are CPU scheduling and network packet schedul-

ing in order to meet system-level timing constraints. There are generally two techniques

for dealing with real-time problems today:

1. Keep the system lightly loaded so that it has a high safety margin.

2. Use real-time scheduling algorithm to analyze system schedulability before deploy-

ment in order to achieve high processor utilization.

The second approach is almost always better, since higher processor utilization trans-

lates into use of less powerful CPUs and networks, and savings on hardware costs.

Figure 2.16: An example cyclic executive schedule.

An early approach to real-time scheduling iscyclic executive scheduling, where a

static, time-driven schedule is created. Figure 2.16 shows an example cyclic executive
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Figure 2.17: An example rate monotonic schedule.

schedule, containing 5 tasks with periods 1ms, 2ms, 2ms, 4ms and 8ms. The timeline

consists of amajor cycleof 8ms, and 8minor cyclesof 1ms each. The 1ms task has the

highest rate, and executes within every minor cycle, and other slower tasks execute only

in some of the minor cycles. The major cycle is typically the smallest common multiplier

of all task periods.

Cyclic executive scheduling has been widely adopted in smaller embedded systems

with tight resource constraints. It has a number of advantages such as high predictability,

low runtime overhead both in terms of memory (only needs one execution stack) and

in terms of time (scheduler is a simple table-lookup operation). However there are also

drawbacks:

• When task periods are relatively prime, the major cycle can get very long, and stor-

age of the static schedule can take up a lot of memory space.

• Aperiodic tasks must be handled with polling and cause waste of execution re-

sources. For example, an infrequently occurring interrupt handler with a tight dead-

line of 2ms must be handled by polling the task occurrence every 1ms.

• It is difficult to maintain and evolve the system. Some activities do not fit within

a single minor cycle and have to be broken up into pieces manually at the source
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code level. An example is the 8ms task in Figure 2.16, which has to be broken into

several pieces that communicate via global variables. Even small changes can result

in major rework of the real-time schedule.

An alternative is to use a Real-Time Operating System (RTOS) and schedule the tasks

based on priorities. Figure 2.17 shows the same taskset scheduled withrate monotonic

priority assignment, that is, the task with smaller period is assigned higher priority. Us-

ing a RTOS remedies a lot of the problems with cyclic executive scheduling. There is no

need to store a table of static schedules in memory; aperiodic tasks do not need to be han-

dled with polling, hence no more wasted resources due to high polling rates; the system

is much easier to maintain, since there is no need to manually split up a large task into

smaller pieces in order to fit into a static schedule. However there are also drawbacks. In-

troduction of concurrency brings with it all the complexities such as semaphores, monitors

and mailboxes. Everyone who has taken an introductory operating systems course knows

the pain and perils of concurrency programming.

Task priority assignments can be static in the case of Figure 2.17, or dynamic, i.e.,

the priorities of tasks are dynamically adjusted during runtime. One example dynamic

priority scheduling technique is Earliest Deadline First (EDF), where the task with the

closest deadline is given the highest priority.

D

T T

r2C d1r1d0r0

Figure 2.18: The task model showing attributes used for real-time scheduling analysis.

In order to introduce schedulability analysis techniques, first we need some notation.

A task has the following attributes, as shown in :
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• r: release time: the trigger time of the task execution request.

• C: worst-case execution time(WCET): the longest time that the process takes to

finish when the process is fully allocated to it.

• D: relative deadline: the maximum acceptable delay for its processing.

• T : period(only for periodic tasks).

• d: absolute deadline: d = r + D.

• p: priority : larger number denotes higher priority.

Each time a task is ready, it releases a periodic request. The successive release times

are atrk = r0 + kT , wherer0 is the first release, andrk the(k + 1)th release.

For a set of independently executing periodic tasks with rate monotonic priority assignment[59],

there are two approaches to performing schedulability analysis of a priority scheduled sys-

tem:

• Utilization bound test. A sufficient schedulability condition is

U =
n∑

i=1

Ci

Ti

≤ n · (2 1
n − 1)

wheren is the number of periodic tasks. The upper bound converges to 0.69 for

high value ofn. When the total utilization is less than this bound, the system is

guaranteed to be schedulable. However, this is only a sufficient condition, not a

necessary condition. For a taskset with higher utilization than this bound, we need to

calculate the Worst-Case Response Time for each task and compare it to the deadline

of the task to determine schedulability, as discussed below.
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• Response time calculation based on busy period analysis. Taski’s Worst-Case Re-

sponse Time (WCRT)Ri:

Ri = Ci + Bi +
∑

j,pj>pi

dRi

Tj

e · Cj

where the sum is over all tasks with higher priorities than taski. Bi stands for block-

ing time experienced by taski, caused by shared resources with lower priority tasks.

This term can be bounded by priority inheritance or priority ceiling protocols [73].

After Ri is calculated, the task is schedulable ifRi ≤ Di. A taskset is schedulable

If all tasks in the taskset are schedulable.



CHAPTER III

Model-Level Static Analysis

In this chapter, we discuss model-level static analysis techniques as implemented in the

AIRES (Automatic Integration of Reusable Embedded Software) tool within the MoBIES

tool-chain for the AMC Open Experimental Platform (OEP). Traditional static analysis

techniques work at the level of programming languages, and study control and data flow

relationships associated with functions and variables. Control dependency refers to flow

of control through a sequential program, and data dependency refers to the locations of

definitions and uses of the program variables. When we raise the level of abstraction to

models, it is necessary to performmodel-levelstatic analysis; that is, dependency relation-

ships between software components and ports at the level of system architecture, which

often involve concurrency and distribution. This work is reported in [36, 29].

This chapter is structured as follows: Section 3.1 provides an introduction to the AMC

software. Section 3.2 provides a general overview of the MoBIES tool-chain. Section 3.3

describes the AIRES tool for dependency and real-time analysis of the Embedded Systems

Modeling Language (ESML) models. Section 3.4 demonstrates the usage of the tool-chain

with an application example, and the chapter concludes with Section 3.7.

50
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3.1 Avionics Mission Computing

In this section, we provide an introduction to the Avionics Mission Computing (AMC)

software. Some of the material here is excerpted from Boeing documentation [81].

The AMC software is the embedded software aboard a military aircraft for control-

ling mission-critical functions, such as navigation, target tracking and identification, and

weapon firing. It is modeled in Unified Modeling Language (UML), manually coded in

C++, and runs on top of Real-Time CORBA Event Service [76]. Even though there exist

UML models for the AMC software, they mainly serve in a documentation role that the

engineer refers to while writing code manually. Therefore, the link between model and

code is weak and easily broken in the process of system maintenance and evolution, where

code is modified or enhanced without the corresponding changes at the model-level, or

vice versa. Furthermore, UML has little support for analysis that is relevant for embedded

systems, such as real-time properties like schedulability, safety properties like deadlock

freedom, etc. The motivation for the MoBIES tool-chain is to have a more automated and

integrated development process than the current one. The MoBIES tool-chain is a suite of

tools for model-based design, static analysis and code generation for AMC software, and

is a result of collaboration between the University of Michigan, Vanderbilt University and

Southwest Research Institute, as well as engineers from Boeing.

The AMC software architecture is commonly referred to as theBoldStrokearchi-

tecture. It is based on the publish/subscribe paradigm with Real-Time CORBA Event

Service [76] as its underlying communications substrate. Event publishers push events

through the event channel to event consumers, whose execution is triggered by the arrival

of events.

Figure 3.1 shows a typical system architecture for an AMC System. Multiple CPUs are
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Vehicle Mgmt

Data Links

Radar
(20Hz)

Weapon Mgmt

(20Hz, 10Hz, 1Hz)

Navigation Sensors

Pilot Display

(20Hz,10Hz,1Hz)

Mission Computer

(20Hz,10Hz,1Hz)

(10Hz)

Weapons

Fibre Channel Bus

(20Hz, 5Hz)

Figure 3.1: Typical system architecture of AMC system.

connected via a fibre channel bus. Our research focuses on the mission computer, where

the main mission algorithms are located.

Computation

Frame Period

IdleOutputsInputs

Figure 3.2: The four phases of an execution frame.

AMC systems are largely periodic. On each CPU, there are typically 5-6 execution

rates such as 40Hz, 20Hz, 10Hz, 5Hz, and 1Hz. Rate monotonic scheduling (RMS) [53]

is used to make real-time guarantees, i.e., the thread with higher execution rate has higher

priority. Network communication is governed by predefined update intervals. Weapons

control needs minimum update frequencies to meet release and accuracy constraints. The

pilot interface requires a minimum update frequency for clear display. Pilot input com-

mands requires a minimum sampling frequency to achieve responsiveness.

CPU time is partitioned into periodic frames. Figure 3.2 shows the four distinct phases

of a frame:

• Polling inputs from remote devices through the network. That is, collect snapshot

of overall system state.
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Figure 3.3: The execution frames within a 1 second time interval. Note that the frame start
times are staggered to reduce peak load of the network.

• Execute the core algorithms to process data.

• Sending outputs to output devices through the network.

• Idle time. This time can be used for future enhancements and upgrades to the system.

The periods of frames are typically harmonic. An I/O frame manager executes at

the highest rate interval timeout to control the start of frame for all threads. The frame

manager is responsible for sending start-of-frame events to all rate groups, such that there

is a full coherency of rate boundaries (i.e. - a single 1 Hz timeout = 20 20Hz timeouts).

Additionally, because the avionics I/O bus is an atomic shared resource, executing I/O

operations cannot be preempted like regular action processing. It is the frame manager’s

responsibility to interleave frames for optimal use of the I/O bus and CPU resources. In

order to reduce bus contention, frames are scheduled such that no more than two frames

are initiated on any given interval timeout of highest frequency , as shown in Figure 3.3.
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3.2 Overview of the MoBIES Tool-Chain

The central repository of information in the MoBIES tool-chain is ESML [51], a

domain-specific language for modeling the AMC software using Generic Modeling En-

vironment (GME) [57]. The ESML meta-model defines a comprehensive modeling lan-

guage that captures essential aspects of the embedded system, including software architec-

ture, timing and resource constraints, execution threads, execution platform information

(processors and network), allocation of components to threads/processors, etc. ESML is

based on Real-Time Event Channel implemented in the TAO CORBA [76]. Components

are composite objects with ports, which interact with one another, either through event

triggers or procedure invocations. We adopt the CORBA Component Model (CCM) ter-

minology, where each component can have the following types of ports.

• Publish Portto publish events.

• Subscribe Portto subscribe to events.

• Receptacleto issue method invocations.

• Facetto accept method invocations.

Subscriber

Event

Publisher 

Component

ReceptacleFacet

Subscribe PortPublish Port

Invocation

Component

Figure 3.4: The control-push/data-pull style of interaction.

Component interactions typically (but not always) follow thecontrol-push data-pull

style as shown in Figure 3.4. First, the data producer component publishes aDataAvail-

ableevent from its publish port, indicating that it has fresh data; when the data consumer
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component receives the event from its subscribe port, it issues aGetData()call from its

receptacle to the producer’s facet to retrieve the data.

Each input port (subscribe port or facet) has an associatedaction that, in turn, triggers

one or more output ports (publish port or receptacle) of the same component. This allows

us to determine the intra-component trigger pathways used in the subsequent dependency

analysis. Eachaction also has a WCET attribute used for real-time analysis. Each sub-

scribe port can subscribe to multiple events, and has acorrelationattribute, eitherANDor

OR. For AND correlation, an input portinp is triggered, i.e., the action associated with

inp is executed, only whenall of the input events arrive atinp; for OR correlation, the

port is triggered whenanyof the input events arrives.

Models described in ESML serve as the central repository of information for all anal-

ysis and code generation purposes. Several standardized interface formats such as Anal-

ysis Interface Format (AIF), Configuration Interface Format (CIF) and Instrumentation

Interface Format (IIF) have been defined for use in conjunction with ESML to facilitate

integration with third-party tools. They are described with UML-based meta-models, and

translators between them can be written using APIs generated from the meta-models.

The workflow of the MoBIES tool-chain has the following steps, as shown in Fig-

ure 3.5.

1. Theinput translationstep imports existing UML models in Rational Rose [46] into

GME as component types in ESML. The designer then manually constructs ESML

models of system architecture by instantiating and inter-connecting the components,

and enhances the models with attributes specific to embedded systems such as timing

and resource information.

2. Theanalysis translationstep extracts information from the ESML models for anal-
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Figure 3.5: The MoBIES tool-chain for Avionics Mission Computing. Tools within the
tool-chain inter-operate via standardized interface file formats in XML such as
AIF, CIF and IIF. Translators, such as ESML2AIF, ESML2CIF and IIF2AIF,
are command-line utility programs that transform between file formats.

ysis purposes in the form ofAnalysis Interface Format(AIF) XML files, which is

essentially a subset of the ESML language that contains dependency and real-time

information needed by the analysis tools. The analysis tool called AIRES performs

various types of static analysis tasks on the AIF models and updates them with anal-

ysis results, which can be imported back into the ESML models, as shown by the

bi-directional arrow between ESML and AIF models.

3. Theconfiguration translationstep generates system configuration file in the form

of Configuration Interface Format(CIF), which is used to generate C++ header

files used for initializing the component inter-connection topology at system startup.

Together with the component library, the target application can then be built using

the Tornado environment from WindRiver [104].

4. Once we have a running system on the target platform, we can collect information
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from runtime instrumentation of the system in the form ofInstrumentation Interface

Format (IIF) and import it into the AIF model as timing annotations, or use the tool

WindView from WindRiver to visualize the execution timeline. Instrumentation can

also be used to reverse-engineer an existing application to create CIF models.

The MoBIES tool-chain contains a number of novel ideas:

• It uses domain-specific models specialized to the Avionics Mission Computing do-

main, which allow us to precisely capture domain concepts with domain-specific

modeling constructs, as opposed to general purpose UML modeling tools that pro-

vides a fixed set of modeling constructs with limited extensibility.

• It covers the entire systems development life-cycle including modeling, analysis,

code generation and runtime instrumentation, as opposed topoint solutionsthat tar-

gets limited points in the system life-cycle.

• It is an integrated environment of multiple tools collaborating via standardized in-

terface file format definitions in XML and the Open Tool Integration Framework

(OTIF) [50], which allows easy plug-in of other third-party tools by adding a few

lines of code that calls the OTIF API. This represents a significant advantage over

closed, proprietary, monolithic tool architectures that offer limited or no extensibil-

ity.

3.3 Model-Level Static Analysis and the AIRES Tool

AIF is essentially a subset of the ESML language that contains the dependency and

real-time information needed by the analysis tools. Given an AIF file, AIRES extracts

system-level dependency information, including event- and invocation-dependencies, and

constructs port- and component dependency graphs. Various analysis tasks are supported
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based on these graphs, such as checking for anomalies like dependency cycles, visual dis-

play of dependency graphs, as well as forward/backward slicing to isolate relevant com-

ponents. It then assigns execution rates to component ports, and uses real-time scheduling

theory to analyze the resulting system of real-time task-set. If the task set is not schedula-

ble, the designer can add more processors and allocate components to them with the help

of the automated allocation algorithm. AIRES can be viewed as a semantic translator from

a logical, object-based to a runtime, task-based modeling paradigm. It traverses the model

elements in the logical view, performs various analysis tasks, and feeds back results into

the runtime view.

3.3.1 System-Level Dependency Analysis

Traditional software dependency analysis works at the code-level, and studies control

and data flow relationships associated with functions and variables. Control dependency

refers to flow of control through a sequential program, and data dependency refers to

the locations of definitions and uses of the program variables. When we raise the level

of abstraction from code to models, it is necessary to performmodel-leveldependency

analysis; that is, structural relationships between software components and ports at the

level of system architecture, which often involve concurrency and distribution.

We extract system dependency information from AIF models and construct a directed

graph calledPort Dependency Graph(PDG), where each node is aport, and each edge

denotes dependencies between ports. Note that we use ports to refer to both event pub-

lish/subscribe ports, and invocation facet/receptacles.

Definition. A Port Dependency Graph(PDG) is a graph(Vp, Ep), where

• Vp is a set ofports, {pi, 1 ≤ i ≤ Np}. Eachpi can be one of 4 types: publish port

ppub, subscribe portpsub, receptacleprecep or facetpfacet.
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• Ep is a set of directed, weightedport connections, {conni, i ≤ i ≤ Nconn}, and each

conni can be one of 2 types:

Inter-component dependency: is either event-trigger dependency from the output

port of the publisher component to the input port of the subscriber component,

or invocation dependency from receptacle of the invoking component to facet

of the invoked component.

Intra-component dependency: describes the intra-component trigger pathways from

input ports to output ports of the same component.

The weight of an edge is equal to the execution rate of the ports that it connects

multiplied by the size of data transferred at each execution cycle.

The PDG captures all the relevant dependency information in the ESML model, and

serves as the backbone data structure for all subsequent analysis tasks. However, we define

component dependency graphs (CDG) for purposes of convenient visual display as well

as easy manipulation in certain analysis tasks. CDG captures dependency information at

a higher level of abstraction — component-level instead of port-level — hiding all the

intra-component dependencies. It can be derived directly from PDG.

We can use graph algorithms to analyze the dependency graphs, and identify such

anomalies as:

• Dependency cycles. A cycle of event or invocation dependencies indicates a design

error if it becomes an infinite loop at runtime. However, in the case of feedback

loops, it is possible to have a legitimate dependency cycle if the component receiving

the feedback hasANDcorrelation for its inputs.

• Events published with no subscribers, or events subscribed to with no publishers.



60

• Component ports unreachable from any timers, hence unable to be assigned rates.

This is elaborated on in Section 3.3.2.

In all cases AIRES provides warnings to the designer, but it is up to the designer to

decide if it is an error or not.

We can also performforward/backward slicingof the dependency graphs. Given a

component or a port, we can answer user queries such as

• What downstream components/ports can this component or port potentially affect

via event or invocation dependencies?

• What upstream components/ports can potentially affect this component or port?

This is achieved by traversing the dependency graphs forward or backward starting

from a component (for CDG) or a port (for PDG). These queries are useful in software

evolution, where a designer can assess the impact of changing or replacing a certain com-

ponent, as well as for other purposes such as localizing faults, minimizing regression tests,

reusing components, and system re-engineering.

Even though the current avionics software does not allow dynamic creation or de-

struction of components, both the inter- and intra-component dependencies can change

at runtime due tomodalbehavior, that is, components can change mode to publish new

events, stop publishing old events, or change its internal trigger pathways. For example,

a modal component can have both active and inactive modes. When in the active mode,

an input event triggers an output event; when in the inactive mode, an incoming event is

simply ignored and dropped. Instead of a single PDG, we can view the system as hav-

ing multiple pre-defined system-level modes, obtained by all combinations of component

modes. Besides component modes, it is also possible for the system to have a system-wide

normal mode and afault mode. In the fault mode, one or more processors can fail, and
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certainbackup componentson the working processors are activated to replace components

on the failed processors. We can construct a PDG for each system-level mode, and apply

the analysis techniques to each mode separately.

3.3.2 Real-Time Analysis

action

5Hz
Timer

action

action

action1

action2

outp

outp
20Hz
Timer

timeout data available

C1

timeout

C3data available

C2

inp outp

outpinp

inp1

inp2
outp

C4

data available

inp outp

Figure 3.6: An example for rate assignment to ports.inp stands forinput port, andoutp
stands foroutput port.

The runtime execution framework for Bold Stroke uses RT-CORBA Event Service [76]

running on VxWorks [104], which supports a single address-space process on each pro-

cessor with multiple threads. The mission computer interacts with sensors and actuators

through periodic messages on one or more communication buses. Messages are triggered

at harmonically-related execution rates such as 1Hz, 5Hz, and 10Hz. As a result, each pro-

cessor has a number ofsystem threads, also calledrate groups, running at harmonically-

related rates. This periodicity forces processing within a rate group to be divided into

execution frames, where each frame represents the fixed execution period. For example,

the execution frame for a 20Hz rate group has a period of 50ms. Triggered by theTimeout

events generated by a periodic timer, the frame begins by polling input messages from

the communications buses. After inputs are complete, aDataAvailableevent is pushed to

initiate a chain of actions along the dependency graph. When all actions within a given

rate group complete (frame processing completes), an output message is sent to external

devices on the communications bus. A frame failing to complete outputs prior to the start
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of the next frame is said to be in aframe overruncondition, meaning that it has missed its

(relative) deadline which is equal to its period.

Each component/port pair is assigned an execution rate. All the ports assigned the same

execution rate run within the context of the system thread with that rate. For example, all

ports assigned a rate of 20Hz run within the context of the 20Hz thread. The WCET of the

thread is thus the sum of WCETs of all the actions associated with input ports assigned

to the thread. Note that rates are assigned to ports, not components, and therefore, a

component may bemulti-rate if it has multiple ports with different rates assigned.

The rate-assignment algorithm performs recursive depth-first search (DFS) [15] on the

PDG starting from each timer’s publish port, which publishes theTimeoutevent.1 We

consider both inter- and intra-component dependencies as port dependencies. All the ports

reachable from a timer port is assigned the rate of the timer. If multiple input ports of a

component are assigned different rates, and trigger the same output port, the output port

is assigned the highest rate, i.e., the highest rate takes precedence and propagates through.

If an input port of a component subscribes to multiple events with different rates, it is

assigned the highest rate if its correlation attribute isOR, or the lowest rate if its correlation

attribute isAND. For the latter case, the componentunder-samplesthe higher-rate inputs.

Figure 3.6 shows an example scenario to illustrate this algorithm. First, we traverse

the dependency graph starting at the 20Hz timer, which is the highest-frequency timer. We

assign 20Hz to all ports reachable from the 20Hz timer, which includesC1.inp, C1.outp,

C3.inp1, C3.outp, C4.inp, C4.outp. All these ports are markedvisited in the algorithm.

The WCET of the 20Hz thread is the sum of all the WCETs of the chain of triggered

actions, that is,C1.action.wcet + C3.action1.wcet + C4.action.wcet. Next, we start from

1Besides periodic threads, it is also possible to have aperiodic threads triggered by external hardware
interrupts. The same algorithm can be used to traverse the PDG starting from a hardware interrupt source
instead of from a timer, and assign execution rates as the maximum arrival rate of the interrupt.
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the 10Hz timer, and assign 10Hz toC2.inp, C2.outp, C3.inp2. When the DFS algorithm

encountersC3.outp, it backtracks sinceC3.outphas already been marked asvisitedby the

previous traversal starting from the 20Hz timer. The WCET of the 10Hz thread is thus

C2.action.wcet + C3.action2.wcet. If C3 contains encapsulated data that are accessed by

both threads, then we need to make the data access operation acritical section, and adopt

synchronization protocols such as priority inheritance [73]. If this is the case, we need to

addblocking timeto the higher-priority thread, equal to the longest critical section of the

lower-priority thread spent in the shared component.

After executing the rate assignment algorithm, we obtain a set of system threads or

tasks (we use threads and tasks interchangeably). The Bold Stroke framework adopts a

fixed-priority, rate monotonic, preemptive scheduling discipline, that is, the higher rate

thread has a higher execution priority and can preempt lower-priority threads. This allows

us to use mature Rate Monotonic Analysis (RMA) techniques [53] to calculate thread

response times. If the hardware platform is composed of multiple processors, and a

system-level thread crosses processor boundary, it becomes a distributed and precedence-

constrained task chain. The end-to-end response time analysis technique [87] can be ap-

plied for schedulability analysis of such task chains.

Since the network utilization for a typical avionics system is low (10-20%), we assume

network delays add a constant factor to the overall response time of a distributed task

chain. This may not be a realistic assumption, especially since the avionics bus is a non-

preemptively scheduled resource. It is part of our future work to incorporate detailed

analysis of message scheduling delays on the avionics bus into the end-to-end analysis.
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3.3.3 Automated Component Allocation

Given a component/port dependency graph and a multiple-processor hardware plat-

form, we would like to allocate the components to processors in order to achieve certain

objectives such as schedulability, load balancing, and minimized network communication.

The typical allocation process works as follows: the designer manually allocates compo-

nents to processors by modifying the ESML models in GME, and then invokes AIRES

to assess system real-time properties. If the system is not schedulable, he goes back to

the models, redoes the allocation or adds more processors, and iterates the process un-

til schedulability is achieved. As a typical system contains thousands of components and

complex interactions, it is highly desirable to provide tool support to automate this process.

At the most basic level, the designer can visually examine the dependency graphs to

identify components with high or low-cohesion between them while making allocation

decisions. We have also implemented simple allocation heuristics such asfirst-fit (to mini-

mize the number of processors) andbest-fit(to achieve load-balancing). Here we describe

a heuristic algorithm based on [1] that attempts to minimize inter-processor communica-

tion costs while maintaining schedulability. No claims of optimality can be made due to its

heuristic nature, and the designer can only view the allocation results as suggestions that

help him make the final decisions. The current real-time analysis functionality is limited

to static priority, rate monotonic analysis. We plan to support more dynamic scheduling

disciplines such as EDF (earliest deadline first), MUF (maximum urgency first).

The algorithm is performed on CDG. First, we assign autil (utilization) attribute to

each component, calculated from WCET and execution rate of its associated input ports.

For example, an input port triggered at 20Hz and has an associated action with WCET of

5ms will contribute a utilization value of 5ms*20Hz/1000ms = 0.1. A component with two

such input ports has utilization 0.2. The sum of utilizations of all components allocated
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to a processor must not exceed a certain upper boundutil bound, which is a customizable

parameter. According to the classic scheduling theory [53], any processor with utilization

under 0.69 is schedulable. Settingutil boundto a lower value puts more constraints on the

allocation algorithm, and has the effect of balancing the workload across processors; set-

ting it to a higher value makes it easier to find a feasible solution.2 We perform a heuristic

k-way min-cutalgorithm [1] on the CDG, wherek is the number of processors. That is,

we cut the CDG intok clusters and allocate each component cluster to a processor, while

minimizing the total weight of edges that are cut, subject to the constraint that the total

utilization on each processor does not exceedutil bound. It is possible that the algorithm

may fail to find a feasible allocation. In that case, the designer must redesign the system

either by adding more processors, or increaseutil boundfor each processor.

This algorithm works quite fast in practice, and produces reasonable partitions of the

CDG that serve as valuable first-cut suggestions in the early design stages. But it also has

its limitations. This algorithm works under the assumption that the underlying platform is

homogeneous, that is, all processors have the same processing power, and communication

costs between processors are all the same. This is realistic for the tightly coupled avionics

hardware architecture, which is PowerPC processors plugged into a VME backplane, but

may not be applicable in the general case. More sophisticated optimization algorithms

such as branch-and-bound or simulated annealing are needed to obtain accurate results,

which have exponential complexity in the worst case, while the graph min-cut algorithm

has polynomial complexity at the expense of optimality.

2In order to obtain more accurate results, real-time scheduling theory [53, 87] needs to be used as a
subroutine in the allocation algorithm to assess system schedulability in place of theutil boundparame-
ter. Since the allocation algorithm is heuristic in nature, we did not use more sophisticated schedulability
checks during component allocation. However, the designer should use the tool capabilities described in
Section 3.3.2 to access system schedulability after allocation.
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Figure 3.7: UML model for the 1Hz thread of medium single-processor scenario. This
figure is taken from Boeing documentation [82].

3.4 An Example Application Scenario

We consider one of the application scenarios provided by our industrial partners, with

UML Collaboration Diagrams shown in Figure 3.7 and Figure 3.8. Functionally, the sce-

nario represents steering calculations needed to support various displays on the aircraft.

There are two rate groups/system threads in the system: a 1Hz thread and a 20Hz thread.

In the 1Hz thread, information from variouswaypoints— certain signposts along the des-

ignated route — is merged into route-based steering information, and is shown either in

the navigation or flight plan display, depending on the pilot steering mode. In the 20Hz

thread, inputs from track sensors are merged and fed into the tactical steering and HUD
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Figure 3.8: UML model for the 20Hz thread of medium single-processor scenario. This
figure is taken from Boeing documentation [82].

(Heads-Up) display. This scenario is relatively simple from an analysis perspective since

the dependency graphs for the two threads are disjunct from each other, but it serves as

a good illustrating example. In order to demonstrate the end-to-end distributed real-time

analysis functionality, we modify the original scenario, which runs on a single processor,

to run on a 2-processor platform. Both threads crosses processor boundaries to become

distributed tasks.

First, UML models are imported into GME as component types. Then, the engineer

constructs a system model by instantiating component instances and connecting them to-

gether to form a system model in ESML. The CIF file is generated from ESML model,
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Figure 3.9: A screenshot of AIRES.

which can be used for building the system.

In Figure 3.9, thenormal modesystem configuration is analyzed and displayed. This

scenario does not have a fault mode. TheWarnings Dialogdisplays dependency anomalies

such as event dependency cycles, events published with no subscribers, component/port

unreachable from timers, hence unable to be assigned rates, etc. Shown on the lower

right is the CDG, and the upper right is the task graph. The left pane tree view displays

the processors, tasks and components organized hierarchically; the right pane list view

displays different analysis results depending on the item selected on the left pane. In this

figure, aprocessornode is selected in the tree view, and the list view displays tasks running

on the processor, with attributes such as WCET, period, utilization, WCRT (worst-case

response time), BCRT (best-case response time), system slacks (the maximum scale-up
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Figure 3.10: The end-to-end timeline of distributed system threads of 20Hz (left) and
1Hz (right). The numbers in square brackets denote response time interval
[BCRT, WCRT] of the task starting from the timer trigger. The dark portion
of the horizontal bar denotes BCRT, and the dark portion combined with light
portion denotes WCRT.

factor while maintaining system schedulability), etc.

Figure 3.4 shows the end-to-end timeline for the two distributed system threads in

the task graph. In this application scenario, the two system threads do not intersect at a

component, so there is no blocking time due to contention for shared resources. On the

left is the timeline for the 20Hz thread with period 50ms.P1 50 is the timer-triggered task

segment on processorP1, andP2 50 is the subsequent task segment onP2 triggered by the

completion event ofP1 50. The 20Hz thread is the highest priority thread in the system,

and suffers neither preemption nor blocking delays. Therefore, its WCRT and BCRT are

the same as its WCET. On the right is the timeline for the 1Hz thread with period 1000ms.

It suffers preemption delays caused by the 20Hz thread. The first task segmentP1 1000

on P1 has response time interval [26, 46]ms, and the next task segmentP2 1000on P2

has response time interval [33, 66]ms, both calculated relative to the 1Hz timer trigger on
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P1. Both system threads are schedulable since they finish before their deadlines.

3.5 Experimental Evaluation

Here we discuss experimental evaluation of the MoBIES tool-chain. It is important to

emphasize that theentire MoBIES tool-chainis being evaluated, not just our work. Some

of the following discussions are excerpted from internal documents from Boeing.

Figure 3.11: The Goal-Quality-Metric methodology. This figure is taken from Boeing
documentation [77].

The evaluation process is based on theGoal-Quality-Metric(GQM) methodology [62],

which is a framework for defining and evaluating a set of operational goals using measure-

ments. It was developed to provide a goal-oriented evaluation approach that would support

the measurement of processes and products in the software engineering domain. GQM uti-

lizes a three-level measurement model as shown in Figure 3.11.

• Conceptual Level (goals): A goal is defined for an object for a variety of reasons,

with respect to various models of quality, from various points of view, and relative

to a particular environment.

• Operational Level (questions): A set of questions is used to define models of the ob-

ject of study and then focus on that object to characterize the assessment of achieve-

ment of a specific goal.

• Quantitative Level (metrics): A set of metrics, based on the models is associated

with every question in order to answer it in a measurable way.
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GQM goals follow a structured format to define essential characteristics. The follow-

ing GQM template will be used for specifying MoBIES experimentation goals:

Analyzeobject under investigation

for the purpose ofhypothesis being tested

from the point of view ofexperimentation perspective

in the context ofexperimentation context

To support evaluation of MoBIES technologies, two goals are defined. The first and

primary goal is associated with the central MoBIES goal of improving embedded system

development capabilities, and drives the MoBIES experimental evaluation:

G1: Analyze the MoBIES-enabled software component integration process

for the purpose of identifying improvements as compared to current devel-

opment processes from the point of view of the Product Specific Component

Integrator in the context of production military distributed real-time embedded

systems.

Some example questions related to the primary goal regarding the analysis capabilities

of AIRES are:

• G1.ANAL.Q1How easy is it to obtain timing analysis results for different scheduling

algorithms?

• G1.ANAL.Q2How accurate are timing predictions when compared to actual run-

time measurements?

• G1.ANAL.Q3Does the addition of model-based analysis accurately identify situa-

tions which would otherwise require additional reconfigurations, including frame

overruns, event dependency cycles and similarly unsatisfactory configurations?
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• G1.ANAL.Q4Do the analysis algorithms for assigning rates and processors to com-

ponents improve the slack time (across the whole system as well as in individual

tasks)?

The secondary goal is associated with assessing the quality of MoBIES products them-

selves.

G2: Analyze the MoBIES-developed toolset for the purpose of assessing the

usability of the tools from the point of view of the Product Specific Com-

ponent Integrator in the context of applying the MoBIES-enabled software

component integration process to the experiments.

Some example questions related to the secondary goal regarding the analysis capabili-

ties of AIRES are:

• G2.ANAL.Q1 How easy is it to update the model via the AIF with different analysis

tools?

• G2.ANAL.Q2 Can you generate output from the model compatible with the AIF?

• G2.ANAL.Q3 Can the AIF be updated with runtime data via the Instrumentation

Interface?

A product scenariois a fragment of the runtime execution scenario. For example, a

BasicSPproduct scenario contains 3 software components running on a single processor

within the same thread/rate group; aMediumMPscenario contains a dozen or so software

components running on 2 processors with 2 different execution rates. Product scenarios

vary in terms of size and complexity. The largest one provided by Boeing contains sev-

eral hundreds of components on multiple processors, and serves as a good test for tool

scalability.
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Figure 3.12: An example development scenario for GQM-based evaluation. This figure
is taken from Principal Investigator (PI) meeting presentation by Boeing in
2002.

A development scenariodefines a sequence of steps that a software engineer takes to

construct and analyze a product scenario. Figure 3.12 shows an example development

scenario. A set of different development scenarios are defined, differing in terms of steps

taken. Some basic development scenarios do not perform timing and event dependency

analysis, or feedback of instrumentation data to models, while other scenarios may include

every conceivable step.

A software engineer conducts the experiments by first going through a particular devel-

opment scenario with conventional development methods in order to establish a baseline

for comparison, then using the MoBIES tool-chain to perform the same set of scenarios

and measures the time savings as well as quality of development products. In the first-stage

experiments, Boeing engineers performed the experiments and quantitative measurements

regarding the software engineer metrics. In the second-stage experiments, we performed

the experiments due to lack of human resources from Boeing. The Avionics OEP defined
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11 product scenarios and 10 development scenarios. We participated in 8 of them related

to event dependency and timing analysis, and received apassgrade for almost all of the

metrics considered. Using the MoBIES tool-chain resulted in significant savings in over-

all time of software development compared to the baseline of conventional development

methods.

3.6 Related Work

Ptolemy [12] is a modeling and simulation tool for embedded systems developed at

University of California, Berkeley. Its main focus is on hierarchical modeling and simula-

tion of differentModels of Computation(MoC), also calleddomains, including communi-

cating sequential processes (CSP), continuous time (CT), discrete events (DE), distributed

discrete events (DDE), discrete time (DT), process networks (PN), synchronous dataflow

(SDF), synchronous reactive (SR), etc. Different domains are composed hierarchically

in order to enforce a uniform model of computation at a particular level of hierarchy.

HyVisual [45] is a hybrid systems modeling tool built on top of Ptolemy, which further

restricts the modeling semantics in order to target the domain of hybrid systems. Ptolemy

advocatesactor-oriented designas a natural extension of the concepts ofobject-oriented

design, where actors are conceptually autonomous entities interacting through message

passing, with the interaction dynamics defined through models of computation that gov-

erns the actors. The actor concept was first proposed by Gul Agha in the object-oriented

programming languages community, and is embodied in many block-diagram-based mod-

eling tools such as Simulink/Stateflow [65] and UML-RT [46]. The Ptolemy group for-

malized the notion of actors and made themdomain polymorphic, that is, an actor can

be embedded into different domains and function according to the MoC of the domains

without modification of the actor itself. In order to facilitate actor-oriented programming,
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a domain-specific language called CAL [21] has been defined to replace low-level manual

coding of actors in Ptolemy.

Giotto [52] is a time-triggered and platform independent programming language aimed

at hard real-time applications. It consists of tasks interacting through ports, and modes that

denote system-wide modal behavior. It defines atime-triggeredmodel of computation as

opposed to the common practice of priority-based scheduling in most commercial RTOSs.

It adopts fixed-logical execution time (FLET) assumption in order to eliminate jitter caused

by fluctuations in the actual execution time and scheduling algorithm. That is, the output

of a task is always produced at the FLET time regardless of how long the task itself takes

to complete its execution, provided it finishes within its FLET, which also serves as its

deadline. This approach requires accurate estimation of WCET of tasks. If deadline viola-

tions occur at runtime, it is treated as a design error, and either the algorithmic part of the

task must be redesigned to fit into its FLET, or the FLET must be prolonged to accommo-

date the task. A translation procedure has been defined to map from Simulink models into

Giotto models, so that a seamless design process can be achieved starting from Simulink

modeling tool down to Giotto-based runtime. This approach achieves a clean separation

between functional aspects defined with Simulink and timing aspects defined with Giotto.

Rapide [60] is an Architecture Description Language (ADL) that uses partially ordered

event sets (posets) as the formalism for component behavior description. The Rapide

toolset includes a simulator used to simulate a Rapide specification, a visualizer used to

visualize the resulting poset, and an animation viewer used to animate the poset. ESML

can be viewed as another ADL that is specialized for the model of computation of the Bold

Stroke framework, while Rapide is a more general ADL that is capable of modeling a wide

variety of systems from enterprise transaction systems to communication protocols. Some

concepts in ESML are missing in Rapide and vice versa. For example, Rapide does not
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have concepts of hardware platform or allocation of components to platforms. The main

functionality of the Rapide toolset is dynamic simulation, while AIRES focuses on static

dependency and real-time analysis.

Aladdin [84] is a tool for architecture-level dependency analysis of Rapide specifica-

tions. It introduced the concept of three types ofchains– affected-by, affectsandrelated

chains – which is similar to our concepts of slicing of the dependency graphs. Similarly,

Zhao [106] described a slicing-based approach to extracting reusable software architec-

tures, which takes Wright [2] specifications as input. Their work does not focus on em-

bedded real-time systems, and hence does not support any timing analysis.

MetaH [9] is an ADL and toolset for development of real-time, fault-tolerant, securely-

partitioned, multi-processor software in the avionics domain. The toolset supports runtime

executive code generation in Ada, real-time schedulability analysis, as well as reliability

and security analysis. The AMC software framework differs from the MetaH framework

in many ways. For example, Bold Stroke uses RT-CORBA Event Service as its underlying

communication and execution substrate, which can be viewed as the counterpart of the

MetaH runtime executive. The use of COTS (commercial off-the-shelf) software like TAO

CORBA eliminates the need for generation of a customized executive for each application.

Code generation from ESML models has a different meaning, and refers to generation of

component configuration code in XML used at system initialization, instead of the runtime

executive for MetaH.

TimeWeaver [17] is a real-time software composition framework and toolset, also de-

veloped within the MoBIES program. It enables a clean separation of functional and non-

functional concerns in development of component-based real-time systems. Components

are connected via couplers, designed to capture three types of interactions of couplings

among components: data, control and timing. After designing a logical architecture from
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reusable software components, the designer can easily experiment with different physical

design/deployment decisions from components to the physical platform by applying dif-

ferent couplers. The toolset supports code generation in Java or configuration generation

in XML, as well as timing analysis by exporting information into the TimeWiz [94] tool.

VEST (Virginia Embedded Systems Toolkit) [85] is an integrated environment for con-

structing and analyzing component-based embedded systems. Designers can select or cre-

ate passive components, compose them into a system, map them onto runtime structures

such as processes or threads, map them onto hardware platform, and perform dependency

checks and non-functional analysis along many dimensions such as real-time, performance

and reliability.

3.7 Summary

In this chapter, we have discussed model-level static analysis techniques for object-

oriented real-time software, using Avionics Mission Computing (AMC) as the main target

application domain. Even though the AMC software is considered in this thesis as a major

target application domain, our work has more general applicability to component-based

embedded software, e.g., theCORBA Component Model(CCM) [70], a widely adopted

industry standard from the Object Management Group [69]. In fact, the AMC software is

currently being migrated to the CCM platform for its next generation.

The entire MoBIES tool-chain is a result of collaboration among multiple institu-

tions, but we have mainly focused on the system-level dependency and real-time analysis

techniques implemented in the AIRES tool, which include dependency anomaly detec-

tion, visual displays of dependency graphs, assignment of execution rates to component

ports, timing and schedulability analysis, automated component allocation, etc. All the

algorithms implemented in the tool are of polynomial complexity and scalable to large,
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realistically-sized systems. The analysis capabilities bring significant benefits to the com-

ponent integrator, who is responsible for assembling together software components re-

trieved from the component repository, by providing valuable dependency and real-time

information at the model-level. This information used to be buried in the source code

underneath layers of abstraction and not readily accessible to the development engineer.

For example, the engineer used to have to use a debugger to trace through hundreds of

thousands of lines of code to track down a cyclic event dependency bug.

AIRES represents a significant improvement over the current software development

practice, which relies heavily on time-consuming and expensive testing on the target plat-

form, as it provides insight into non-functional aspects of models at design-level, and helps

the engineer make high-level design decisions that have a large impact on the embedded

software. It is complementary to tools in a typical Integrated Development Environment

(IDE) such as Tornado that work at the code level, such as compilers, debuggers, runtime

tracers and automated testers. As the model-based approach is becoming more main-

stream, as evidenced by the Model-Driven Architecture [90] initiative, and the number

of tool vendors in the embedded real-time domain that support it, tools that work at the

model-level will become more prevalent.



CHAPTER IV

Application of Model-Checking to Avionics Mission
Computing Software

AIRES mainly focuses on thestatic structuralaspects while largely ignoring thedy-

namic behavioralaspects of embedded software. The dynamic behavior of software com-

ponents is described in natural language documents, so it is not possible to perform au-

tomated analysis. In order to perform deeper semantic analysis, it would be valuable to

constructexecutable models, which enables the use ofsimulationor model-checkingto

verify system correctness. One prominent example of executable models is Harel’s State-

chart [39]. Model-checking can be viewed as exhaustive simulation, which works by ex-

haustively exploring the system state space to prove certain correctness properties. In this

chapter, we use a model-checker LTSA [61] to provide formal specification of dynamic

behavioral of the AMC software, and prove properties such as safety and liveness. We also

discuss several techniques to reduce state space ad improve scalability of model-checking

by exploiting application-level domain semantics. This work is reported in [33].

This chapter is structured as follows: section 2.2.2 provides a brief introduction to the

modeling formalism FSP and model-checker LTSA; section 4.1 discusses modeling of dif-

ferent component types; section 4.2 discusses modeling of component interactions result-

ing from instantiating and inter-connecting components from component types; section 4.3

79
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discusses property specification for verification; section 4.4 describes two techniques for

improving scalability of model-checking, and section 4.6 concludes the chapter.

4.1 Modeling of Component Types

The AMC software is component-based, with many different types of components,

each with its unique functionality and interfaces, acting as basic building blocks of a com-

plete system. The documentation provided by Boeing [82] describes the various com-

ponent types in detail. However, these descriptions in prose are not formal and subject

to misinterpretation or misunderstanding. We use FSP to provide an unambiguous, for-

mal description for each componenttypebased on the natural language descriptions, and

instantiate each componentinstanceto form a system architecture. In what follows, we

describe each component by excerpting the corresponding descriptions from the Boeing

documentation, and then presenting the FSP specification. Here are the naming conven-

tions we use:

• inEvt denotes action of the subscriber component to receive an input event.

• outEvt denotes action of the publisher component to issue an output event.

• issueGDCall denotes action of the caller component to “issue GetData() call”.

• receiveGDCall denotes action of the callee component to “receive GetData()

call”.

• issueGDReply denotes action of the callee component to “issue GetData() reply”

• receiveGDReply denotes action of the caller component to “receive GetData()

reply”.
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Similar naming conventions hold for the “SetData()” calls such asissueSDCall ,

receiveSDCall , issueSDReply andreceiveSDReply .

DeviceComponent The DeviceComponent is used to simulate a device that generates

its own data (as in sensor reports). Upon receiving a Push(), this component does a Push()

if it is specified as an event supplier. In a typical scenario, this component is specified as an

event consumer of interval timeouts, so as to simulate the device generating information

on a periodic basis.

DeviceComp = (inEvt->outEvt->DeviceComp
|receiveGDCall->issueGDReply->DeviceComp).

DisplayComponent The DisplayComponent is used to display information to the con-

sole window. It is used to simulate any output device in a system. Upon receiving a

Push(), this component does a Get() on each component specified in its receptacles. This

component then displays the results on the console.

DisplayComp = (inEvt->issueGDCall->receiveGDReply
->display->DisplayComp).

ClosedEDComponent The ClosedEDComponent is closed in the sense that other com-

ponents cannot alter its data via Set() operations. “ED” stands forevent driven. Upon

receiving a Push(), this component does a Get() on each component specified in its recep-

tacles. This component then generates a Push() if it is specified as an event supplier

ClosedEDComp = (inEvt->issueGDCall->receiveGDReply->outEvt
->ClosedEDComp
|receiveGDCall->issueGDReply->ClosedEDComp).

OpenEDComponent The OpenEDComponent is open in the sense that other com-

ponents can set its data. Upon receiving a Set(), this component does a Get() on each
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component specified in its receptacles. This component then generates a Push() if it is

specified as an event supplier.

OpenEDComp = (inEvt->issueGDCall->receiveGDReply
->outEvt->OpenEDComp
|receiveGDCall->issueGDReply->OpenEDComp
|receiveSDCall->issueGDCall->receiveGDReply
->issueSDReply->outEvt->OpenEDComp).

LazyActiveComponent The LazyActiveComponent is used to simulate delayed re-

sponse to acquiring data. As an optimization strategy, if a component is updated more

than it is read, the Lazy Active pattern may be used to only update the data is a request

is made. Upon receiving a Push(), this component flags its data as invalid. When this

component’s Get() is called this triggers a the LazyActiveComponent to call Get() on the

components attached to the receptacles of the LazyActiveComponent.

LazyActiveComp = (inEvt->outEvt->DataStale
|receiveGDCall->issueGDReply->LazyActiveComp),

DataStale= (receiveGDCall->issueGDCall->receiveGDReply
->issueGDReply->LazyActiveComp).

ModalComponent The ModalComponent is used to alter the flow of events. The

component can be enabled and disabled via the facet method ChangeMode(). When it is

enabled, it will update and generate an event when it receives an event. When it is disabled,

it will not update or generate an event.

ModalComp = Enabled,

Disabled = (enable->Enabled|disable->Disabled |inEvt->Disabled),

Enabled = (enable->Enabled|disable->Disabled
|inEvt->issueGDCall->receiveGDReply->outEvt->Enabled
|receiveGDCall->issueGDReply->Enabled).
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PassiveComponent The PassiveComponent does not have an event consumer. When a

Set() operation is called on the PassiveComponent, it updates and issues an event if it has

a configured event supplier.

PassiveComp = (receiveSDCall->issueSDReply->outEvt->PassiveComp).

PushDataSourceComponent Upon receiving a Push(), the PushDataSourceCompo-

nent calls Set() on all of the components in the receptacles of the PushDataSourceCompo-

nent.

PushDataSrcComp =
(inEvt->issueSDCall->receiveSDReply->PushDataSrcComp).

4.2 Modeling of Component Interactions

4.2.1 Control-Push/Data-Pull

For the convenience of the reader, we duplicate discussion of the control-push/data-

pull interaction style in Section 3.2.

ESML is based on Real-Time Event Channel implemented in the TAO CORBA [76].

Components are composite objects with ports, which interact with one another, either

through event triggers or procedure invocations. The CORBA Component Model (CCM)

terminology is adopted, where each component can have the following types of ports:

• Publish Portto publish events.

• Subscribe Portto subscribe to events.

• Receptacleto issue method invocations.

• Facetto accept method invocations.
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Figure 4.1: The control-push/data-pull style of interaction.

Component interaction typically (but not always) follows thecontrol-push data-pull

style as shown in Figure 4.1. First, the data producer component publishes aDataAvail-

ableevent from its publish port indicating that it has fresh data; when the data consumer

component receives the event from its subscribe port, it issues aGetData()call from its re-

ceptacle to the producer’s facet to retrieve the data. Below is FSP model for this interaction

style:

Publisher = (outEvt->Publisher |
receiveCall->issueReply->Publisher).

Subscriber = (inEvt->issueCall->receiveReply ->Subscriber).

||ControlPushDataPull = (pub:Publisher||sub:Subscriber)
/{pub.outEvt/sub.inEvt, sub.issueCall/pub.receiveCall,
sub.receiveReply/pub.issueReply).

This approach treats the interaction between an event publisher and an event subscriber

assynchronous, that is, theoutEvt of the publisher synchronizes with theinEvt of the

subscriber directly. Note that this is an abstraction of what actually happens in the real

system, since we are hiding a lot of details such as message queuing and thread scheduling.

We have to make a tradeoff between the level of abstraction and scalability. If we model

everything in detail, then its not possible to achieve reasonable level of scalability. This

level of abstraction turns out to be adequate for our purposes.
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Figure 4.2: The correlator for two input events with AND synchronization.

Figure 4.3: The correlator for two input events with OR synchronization.

4.2.2 Input Event Correlation

When a component subscribes to multiple events, there may be two types of synchro-

nization patterns:ANDsynchronization means that the component must receive all input

events to be triggered;ORsynchronization means that the component only needs to receive

one of the input events to be triggered. In order to modelANDsynchronization, we add a

new process type calledInputANDCorrelator , as shown below and in Figure 4.2:

Event(ID=1) = (inEvt[ID]->matched->Event).

||InputANDCorrelator(NumInputs=1) = (if(NumInputs>0) then (forall
[i:1..NumInputs] Event(i))).

It models parallel composition ofNumInputs number of processesEvent , which

all synchronize on the same eventmatched . This ensures that thematched event is

emitted only when all input eventsinEvt[i..NumInputs] occur. Thematched

event is in turn used to trigger the input event of the subscriber component.

ORsynchronization can be modeled similarly, only replacing the shared actionmatched

with different actions for each processEvent ,as shown below and in Figure 4.3.

Event(ID=1) = (inEvt[ID]->matched[ID]->Event).

||InputORCorrelator(NumInputs=1) = (if(NumInputs>0) then (forall
[i:1..NumInputs] Event(i))).
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4.2.3 Real-Time Issues

The typical way to model real-time systems in FSP is to use an actiontick that is

shared among all the processes in the system to provide a system-wide heartbeat. This

means that time needs to be discretized into uniform segments such as 1 millisecond or 1

second. The typical execution time of components in AMC is fairly small, in the range of

microseconds, while the typical period of execution is fairly large, in the range of millisec-

onds or even seconds. If we model the timing aspects accurately by using a fine-grained

partitioning of time on the microsecond scale, the system state space will quickly explode

even for trivially small examples. Therefore we do not aim to model the timing aspects

in a fully accurate way. Instead, we only ensure that the relative execution frequencies

of different rate groups are correct, e.g., the 20Hz thread should execute 20 times more

frequently than the 1Hz thread. Below is the way we model a system consisting of both

a 20Hz timer and a 1Hz timer. We assume the eventtimeout20Hz is emitted at every

clock tick, that is, there is a 50ms time interval in between every two clock ticks. Then the

eventtimeout1Hz is emitted every 20 clock ticks.

Timer20Hz = (timeout20Hz->tick->Timer20Hz).
Timer1Hz = (timeout1Hz->Delay20[1]),
Delay20[t:1..20] = (when(t==20) tick->Timer1Hz
|when (t < 20) tick->Delay20[t+1]).

Since we do not model detailed timing information such as component execution times

or scheduling policies, we cannot check for quantitative timing properties such as the

worst-case response times and frame overruns. We assume these properties can be checked

via other methods such as real-time scheduling theory or a real-time model-checker. In-

stead, we focus on the functional properties such as deadlock freedom or reachability. We

assume that frame overruns do not occur, that is, all threads finish within their frame time,

and encode this assumption in the model by adding an explicit synchronization event be-
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tween the timer and the end of thread processing, typically adisplay event, as shown

below:

Timer20Hz = (timeout20Hz->timer20HzDone->tick->Timer20Hz).

Thread20Hz = (...||tacDisplay:displayComp)
/{tacDisplay.display/timer20HzDone}.

This ensures that the next timeout event will not occur until all events belonging to the

current frame have all been processed.

4.2.4 An Example Application Scenario

Figure 4.4: The MultirateSP (Multi-Rate Single-Processor) scenario. This figure is taken
from Boeing documentation [82].

As an illustrating example, we consider the application scenario in Figure 4.4, called

MultirateSP, which stands for themulti-rate single-processorscenario. There are two ex-

ecution rates in the system. With rate 40Hz, the system must update navigation displays
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with timely airframe position information using inputs from navigation sensors. Con-

currently executing with rate 20Hz, there is also a device that captures the pilot’s cursor

position that is a point of interest for weapon release. When the position of the cursor

updates, the position on the tactical display must be updated. In the 40Hz thread, the

gps component pushes aDataAvailable event to theairframe component, which

updates its state by getting data fromgps . The airframe component then pushes a

DataAvailable event to thenavDisplay component, which then updates the dis-

play by getting data fromairframe . A similar chain of three components runs in se-

quence in the 20Hz thread. Below is the complete FSP specification for this scenario:

Timer40Hz = (timeout40Hz->timer40HzDone->tick ->Timer40Hz).

Timer20Hz = (timeout20Hz->timer20HzDone->tick ->tick->Timer20Hz).

ClosedEDComp = (inEvt->issueGDCall->receiveGDReply->outEvt
->ClosedEDComp |receiveGDCall->issueGDReply->ClosedEDComp).

DisplayComp = (inEvt->issueGDCall->receiveGDReply->display
->DisplayComp).

DeviceComp = (inEvt->outEvt->DeviceComp |
receiveGDCall->issueGDReply->DeviceComp).

||Thread40Hz = (Timer40Hz||gps:DeviceComp
||airframe:ClosedEDComp||navDisplay:DisplayComp)
/{timeout40Hz/gps.inEvt, gps.outEvt/airframe.inEvt,
airframe.issueGDCall/gps.receiveGDCall,
airframe.receiveGDReply/gps.issueGDReply,
airframe.outEvt/navDisplay.inEvt,
navDisplay.issueGDCall/airframe.receiveGDCall,
navDisplay.receiveGDReply/airframe.issueGDReply,
navDisplay.display/timer40HzDone }.

||Thread20Hz = (Timer20Hz||cursorDevice:DeviceComp
||selPoint:ClosedEDComp ||tacDisplay:DisplayComp)
/{timeout20Hz/cursorDevice.inEvt,
cursorDevice.outEvt/selPoint.inEvt,
selPoint.issueGDCall/cursorDevice.receiveGDCall,
selPoint.receiveGDReply/cursorDevice.issueGDReply,
selPoint.outEvt/tacDisplay.inEvt,
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tacDisplay.issueGDCall/selPoint.receiveGDCall,
tacDisplay.receiveGDReply/selPoint.issueGDReply,
tacDisplay.display/timer20HzDone}.

||SYSTEM = (Thread40Hz || Thread20Hz).

4.3 Specification of System Properties

There are two types of properties that can be checked within LTSA:safetyandliveness.

A safety property asserts that nothing bad happens, and a liveness property asserts that

something good eventually happens. Example safety properties are mutual exclusion and

deadlock freedom. An example liveness property is: if a process requests a resource, it

must eventually get it, i.e., there is no starvation.

4.3.1 Deadlock Freedom

push()

navDisplaynavSteeringgroundPointsroute

push()

push()

push()

Figure 4.5: A deadlock situation caused by a dependency cycle.

The most obvious property to check is that the system is free of deadlocks. LTSA has

a built-in capability to check for deadlocks. For illustration purposes, we artificially intro-

duce a deadlock situation into a good application scenario by adding an extra event push

from navDisplay to route , as shown in Figure 4.5, where all events aresynchronous.

Typically, events delivered by the CORBA Event Service areasynchronous, that is, the

publisher hands off the event to Event Service and continues its own execution. The Event

Service delivers the event to the subscriber later. When components execute locally on
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the same processor, it is possible to perform an optimization to bypass the Event Service

and make eventssynchronous. That is, the sender waits for the event to be delivered to

the receiver before resuming execution, just like a synchronous method call. Deadlock

occurs whennavDisplay pushes an event toroute , which is still blocked waiting for

the return of its previous push event togroundPoints . LTSA detects this situation and

prints out an error trace, which allows us to construct the scenario in more user-friendly

notations such as the UML Sequence Diagram. Note that there is no deadlock if we do not

make the events synchronous, even when there is an event dependency cycle.

AND
:ClosedEDComp

tacSteeringtrackSensor1
:DeviceComp

:ClosedEDComp
track1

track2
:ClosedEDComp

:DisplayComp
tacDisplay

Timeout

Figure 4.6: A fragment of the 20Hz thread in the MediumSP application Scenario.

Another possible cause of deadlock is when a component subscribes to multiple in-

put events withANDsynchronization, but for certain reasons not all of the input events are

available. Figure 4.6 shows a hypothetical application scenario. ComponenttrackSensor

is triggered periodically by the 20Hz timeout, and issues an output event that is sub-

scribed to by bothtrack1 and track2 . ComponenttacSteering subscribes to

output events of bothtrack1 and track2 with ANDsynchronization, and issues an

event to triggertacDisplay . LTSA reveals no deadlocks in this scenario. Here is the

FSP specification:

Timer1Hz = (timeout1Hz->timer1HzDone->Timer1Hz).

DeviceComp = (inEvt->outEvt->DeviceComp
|receiveGDCall->DeviceComp).

ClosedEDComp = (inEvt->issueGDCall->outEvt
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->ClosedEDComp|receiveGDCall->ClosedEDComp).

DisplayComp = (inEvt->issueGDCall->display->DisplayComp).

Event(ID=1) = (inEvt[ID]->matched->Event).
||InputCorrelator(NumInputs=1)= (if(NumInputs>0) then
(forall[i:1..NumInputs] Event(i))).

||System = (Timer1Hz||trackSensor1:DeviceComp
||track1:ClosedEDComp||track2:ClosedEDComp
||correlatorTS:InputCorrelator(2) ||tacSteering:ClosedEDComp
||tacDisplay:DisplayComp) /{timeout1Hz/trackSensor1.inEvt,
trackSensor1.outEvt/track1.inEvt,
trackSensor1.outEvt/track2.inEvt,
track1.issueGDCall/trackSensor1.receiveGDCall,
track2.issueGDCall/trackSensor1.receiveGDCall,
track1.outEvt/correlatorTS.inEvt[1],
track2.outEvt/correlatorTS.inEvt[2],
correlatorTS.matched/tacSteering.inEvt,
tacSteering.issueGDCall/track1.receiveGDCall,
tacSteering.issueGDCall/track2.receiveGDCall,
tacSteering.outEvt/tacDisplay.inEvt,
tacDisplay.issueGDCall/tacSteering.receiveGDCall,
tacDisplay.display/timer1HzDone}.

For illustration purposes, let’s make a change to the system by lettingtrackSensor1

be a modal component that publish two types of eventsoutEvt1 andoutEvt2 , choos-

ing non-deterministically which event to output at runtime depending on its mode. This

could be used to model a modal component which outputs different events depending on

its active mode, i.e.,OutEvt1 triggerstrack1 andoutEvt2 triggerstrack2 . This

change results in a deadlock situation sincetacSteering can only receive one of its

two input events:

DeviceComp = (inEvt->outEvt1->DeviceComp|
inEvt->outEvt2->DeviceComp |receiveGDCall->DeviceComp).
...
||System = (Timer20Hz||trackSensor1:DeviceComp
||track1:ClosedEDComp||track2:ClosedEDComp
||correlatorTS:InputCorrelator(2) ||tacSteering:ClosedEDComp
||tacDisplay:DisplayComp)
/{timeout20Hz/trackSensor1.inEvt,
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trackSensor1.outEvt1/track1.inEvt,
trackSensor1.outEvt2/track2.inEvt,
...}.

LTSA outputs this trace to deadlock:

Trace to DEADLOCK:
timeout20Hz
trackSensor1.outEvt1
track1.issueGDCall
track1.outEvt

4.3.2 Reachability

Each component should be triggered/invoked at least once during each execution cy-

cle. Otherwise the component is redundant, which could signal a design error or inef-

ficiency that wastes system resources. In order to check that a componentC is indeed

triggered, we introduce a propertyNotReachable stating that the evente that signi-

fies the triggering or execution of componentC never occurs. If this property holds, then

indeede is not reachable; otherwise, LTSA returns a counter example showing the path

of execution leading to the evente. For example, we would like to check that the action

navDisplay.display is executed/reachable:

property NotReachable = STOP+{reachable}.

||CheckReachability = (System || NotReachable)
/{navDisplay.display/reachable}.

Checking this property for the MultirateSP scenario yields this result:

Trace to property violation in NotReachable:
timeout40Hz
gps.outEvt
airFrame.issueGDCall
airFrame.receiveGDReply
airFrame.outEvt
navDisplay.issueGDCall
navDisplay.receiveGDReply
navDisplay.display
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4.3.3 Sequencing Constraints

Certain events should happen in sequence. For example, the events in a linear chain

of event triggers should happen in the order of precedence relation from the head to the

tail of the chain. Below is the property specification used to check the correct ordering of

events in the 40Hz thread:

property SeqConstraint = (evt1->evt2->evt3->evt4->SeqConstraint).
||CheckSeqConstraint = (SYSTEM||SeqConstraint)
/{timeout40Hz/evt1,
gps.outEvt/evt2, airframe.outEvt/evt3, navDisplay.display/evt4}.

LTSA reports no violations for this property. However if we change the property to:

property SeqConstraint = (evt1->evt2->evt3->evt4->SeqConstraint).
||CheckSeqConstraint=(SYSTEM||SeqConstraint)
/{timeout40Hz/evt1,
airframe.outEvt/evt2, gps.outEvt/evt3, navDisplay.display/evt4}.

Then LTSA reports a trace to property violation:

Trace to property violation in SeqConstraint:
timeout40Hz
gps.outEvt

If some events may happen in parallel, that is, the events form a general graph in-

stead of a linear chain, then we can only specify those events that do form a linear chain,

since LTSA does not allow non-determinism in property specifications. For demonstration

purposes, assume that there is no precedence relation betweenairframe.outEvt and

gps.outEvt , but both must followtimeout40Hz and precedenavDisplay.display ,

then we should write the sequencing constraint as follows:

property SeqConstraint = (evt1->evt2->evt4->SeqConstraint).
||CheckSeqConstraint = (SYSTEM||SeqConstraint)
/{timeout40Hz/evt1, gps.outEvt/evt2, navDisplay.display/evt4}.

property SeqConstraint2 = (evt1->evt3->evt4->SeqConstraint2).
||CheckSeqConstraint2 = (SYSTEM||SeqConstraint2)
/{timeout40Hz/evt1, airframe.outEvt/evt3, navDisplay.display/evt4}.

LTSA reveals no violations of these constraint specifications.
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4.3.4 Progress Property

The properties discussed so far are allsafety properties, that is, they can be veri-

fied by detecting if a bad state is reached given afinite execution sequence. On the

other hand,liveness propertiescan only be verified for an infinite execution sequence.

A general treatment of liveness involves using a temporal logic to specify liveness prop-

erties. A restricted class of liveness properties is theprogressproperty in the form of

progress P = (a1, a2, ..., an} , which asserts that in an infinite execution

of a system, at least one of the actionsa1, a2, ..., an will be executed infinitely

often. It is useful for verifying that a system does not contain starvation of certain ac-

tions. It is a stronger assertion than reachability, which only requires that certain actions

are executedat least onceduring the system’s lifetime.

For example, in order to check thatnavDisplay.display is executed infinitely

often in any infinite execution of the MultirateSP scenario, we can add one line to the FSP

model:

progress P1 = {navDisplay.display}.

LTSA reports that no progress violations are detected.

4.4 Scalability Improvements

Perhaps the single biggest impediment to adoption of model-checking in industry

practice is state space explosion. We have constructed the FSP model for the Medi-

umSP scenario, but checking any properties on the model results in an out-of-memory

error in the model-checker. Since there is no synchronization betweenThread20Hz and

Thread1Hz , we focus onThread1Hz . We have applied some techniques to improve

scalability, as explained in the following sections. After applying these techniques, we
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were able to check the properties of this scenario, such as deadlock freedom, component

sequencing and reachability, etc.

4.4.1 Exploiting Domain-Specific Constraints

We can take advantage of certain domain-specific constraints, such sa the control-push,

data-pull interaction style, to simplify the model. Normally method calls are modeled with

a two-way synchronization between thecaller component and thecalleecomponent, as

shown below in the FSP model:

Publisher = (outEvt->Publisher
|receiveGDCall->issueGDReply->Publisher).

Subscriber = (inEvt->issueGDCall->receiveGDReply->Subscriber).

||CtrlPushDataPull = (pub:Publisher||sub:Subscriber)
/{pub.outEvt/sub.inEvt, sub.issueGDCall/pub.receiveGDCall,
sub.receiveGDReply/pub.issueGDReply).

However, for all practical purposes we can treat the GetData() call and reply as an

atomic operation, and omit the synchronization action on the method call reply:

Publisher = (outEvt->Publisher |receiveGDCall->Publisher).

Subscriber = (inEvt->issueGDCall->Subscriber).

||CtrlPushDataPull = (pub:Publisher||sub:Subscriber)
/{pub.outEvt/sub.inEvt, sub.issueGDCall/pub.receiveGDCall).

Note that this optimization may not be generally applicable to all method calls, only

to the particular control-push, data-pull interaction style of the Avionics OEP, where there

is no action in between the GetData() call and reply. This involves modifying definition

of each component type. For example, the specification ofClosedEDComp is changed

from

ClosedEDComp = (inEvt->issueGDCall->receiveGDReply->outEvt
->ClosedEDComp
|receiveGDCall->issueGDReply->ClosedEDComp).
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to:

ClosedEDComp = (inEvt->issueGDCall->outEvt->ClosedEDComp
|receiveGDCall->ClosedEDComp).

After applying this optimization, the state space of MediumSP has been reduced sig-

nificantly. However, this is still too large for LTSA to handle, even on a state-of-the-art

UNIX workstation.

4.4.2 Compositional Analysis

Construction of the global state space of an application usually causes state space ex-

plosion. We can take advantage of inherent modularity within the application to compose

and check the system hierarchically, instead of composing the entire system state space

all at once. This is the typical divide-and-conquer approach. This approach is especially

suitable for distributed systems, which are generally designed and constructed by decom-

position into a hierarchy of simpler components.

LTSA has built-in capability ofCompositional Reachability Analysis(CRA) [61]. Af-

ter a set of components have been checked to be correct, we can abstract and reuse them

in other contexts by hiding irrelevant events and only exposing those events that may be

of interest to other surrounding components. For example, for the 20Hz rate group of the

MultirateSP scenario, we can specify:

minimal ||AbstractSystem = (SYSTEM)
@{timeout40Hz, airframe.outEvt, gps.outEvt, navDisplay.display}.

After abstraction and minimization, the end result is the automaton in Figure 4.7. We

can then reuse this automaton as a module in other contexts.

Looking at the 1HZ thread in Figure 3.7, we can see that there is a natural separation

into three groups of components:



97

Figure 4.7: The abstracted system of the 40Hz rate group, hiding all other events except
timeout40Hz, airframe.outEvt, gps.outEvt and navDisplay.display.

1. earthModel , wayPoint1 , wayPoint2 , wayPoint3 , wayPoint4 , wayPoint5 ,
wayPoint6 , wayPoint7 , wayPoint8 , wayPoint9 , wayPoint10 , leg1 , leg2 ,
leg3 , leg4 , leg5 .

2. groundPoint , fltPlan , navSteering , waypointSteering , pilotPref , fltPlanDisplay ,
navDisplay , pilotControls .

3. timer1Hz .

We can composeGroup1 andGroup2 individually while minimizing each group by

hiding events that are not relevant to the surrounding components, and finally composing

them together with the 1Hz timer. For example, forGroup1 , we have:

minimal || Group1 = (Timer1Hz||earthModel:PushDataSourceComp
||wayPoint1:PassiveComp||wayPoint2:PassiveComp
||wayPoint3:PassiveComp||wayPoint4:PassiveComp
||wayPoint5:PassiveComp||wayPoint6:PassiveComp
||wayPoint7:PassiveComp||wayPoint8:PassiveComp
||wayPoint9:PassiveComp||wayPoint10:PassiveComp
||leg1:LazyActiveComp||leg2:LazyActiveComp
||leg3:LazyActiveComp||leg4:LazyActiveComp ||leg5:LazyActiveComp
||correlatorLeg1:InputCorrelator(3)
||correlatorLeg2:InputCorrelator(3)
||correlatorLeg3:InputCorrelator(3)
||correlatorLeg4:InputCorrelator(3)
||correlatorLeg5:InputCorrelator(2) ||route:OpenEDComp
||correlatorRoute:InputCorrelator(5))

/{...event equivalence specifications omitted}

//Only three interface events are exposed
@{earthModel.inEvt, route.outEvt, route.receiveGDCall}.

The minimized state machine is quite simple, consisting of only three states. Intu-

itively, the whole group of components behaves like a single component that accepts a
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timeout trigger that synchronizes withearthModel.inEvt , does some internal pro-

cessing that is hidden from outside view, issuesroute.outEvt , and finally receives

a GetData() call from its downstream component. The FSP specification forGroup2 is

similar and is omitted here. The overall system specification is:

||Thread1Hz = (Timer1Hz||Group1||Group2)
/{timeout1Hz/earthModel.inEvt, timeout1Hz/pilotControl.inEvt,
route.outEvt/groundPoint.inEvt,
groundPoint.issueGDCall/route.receiveGDCall,
route.outEvt/fltPlan.inEvt,
fltPlan.issueGDCall/route.receiveGDCall,
navDisplay.display/timer1HzDone,
fltPlanDisplay.display/timer1HzDone }.

Given the system specification, we can check properties such as deadlock freedom,

reachability, sequencing constraints, etc. For example, to check thattacDisplay1.display

is indeed executed, that is, thedisplay() method of thetacDisplay component is

invoked, we can check for reachability constraint:

property NotReachable = STOP+{reachable}.

||CheckReachability = (System||NotReachable)
/{tacDisplay1.display/reachable}.

However, there is one drawback to the compositional analysis approach. Since internal

events are hidden inside of each group of components, we cannot check for end-to-end

sequencing constraints that span multiple groups and involves internal events from these

groups. We can only check constraints that involve interface events that are exposed by

the component group, or those that involve internal events of a single group. For example

we can check sequencing constraints such as

property SeqConstraint = (evt1->evt2->evt3->SeqConstraint).
||CheckSeqConstraint=(Thread1Hz||SeqConstraint)
/{timeout1Hz/evt1, route.outEvt/evt2, tacDisplay1/evt3).

or:
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property SeqConstraint =
(evt1->evt2->evt3->evt4->evt5->SeqConstraint).
||CheckSeqConstraint=(Group1||SeqConstraint)
/{timeout1Hz/evt1, earthModel.issueSDCall/evt2,
wayPoint1.outEvt/evt3, leg1.outEvt/evt4, route.issueGDCall/evt5).

but we cannot check for:

property SeqConstraint =
(evt1->evt2->evt3->evt4->evt5->evt6->SeqConstraint).
||CheckSeqConstraint=(Thread1Hz||SeqConstraint)
/{timeout1Hz/evt1, earthModel.issueSDCall/evt2,
wayPoint1.outEvt/evt3, leg1.outEvt/evt4, route.issueGDCall/evt5,
tacDisplay1/evt6).

The reason is that eventsearthModel.issueSDCall , wayPoint1.outEvt ,

leg1.outEvt , route.issueGDCall are not visible at the level ofThread1Hz .

4.5 Related Work

The publish/subscribe model of computation, as implemented in Real-Time CORBA

Event Service [76], has been widely adopted in a variety of application domains, includ-

ing both real-time embedded systems and enterprise distributed systems. Garlan [25] de-

scribes a model-checking framework for publish/subscribe systems. The key feature of

this framework is a reusable, parameterized state machine model that captures runtime

event management and dispatch policy. Generation of models for specific systems is then

handled by a translation tool that accepts as input a set of component descriptions together

with a set of properties, and maps them into the framework where they can be checked

using the model-checker SMV [66]. Our modeling approach works at a higher level of ab-

straction and ignores a large amount of detail related to the internals of middleware such

as queuing and dispatch policies. For example, we use a single synchronization primitive

to represent the flow of an event from the publisher component to the subscriber compo-

nent, which is a coarse approximation of the actual behavior. This is adequate for our
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purpose of verifying application-level logical constraints assuming that the middleware

behaves correctly, and significantly reduces state space and allows us to check for much

larger models. However, a direct comparison of scalability between our work and [25] is

not practical since they use different model-checkers.

Karamanolis [49] uses LTSA to model and verify workflow schemas by mapping the

Workflow Definition Language into FSP models. There are some similarities between the

computational models of workflow schemas and AMC software. Both consist of (possibly

hierarchical) components interacting with events sent and received from output and input

ports. However, there are also important differences due to the vastly different application

domains. For example, AMC software typically contains several rate groups executing

periodically, while the life-cycle of a workflow schema only consists of one execution

from start to finish. The relative execution frequencies of different rate groups cause the

state space of an AMC application to be much larger than a workflow schema specification

with similar complexity.

4.6 Summary

In this chapter, we have discussed application of model-checking to modeling and anal-

ysis of the AMC software. The documentation provided by our industrial partner describes

the application components and scenarios with English prose, which is subject to misun-

derstanding and misinterpretation. Using the Finite State Processes (FSP) modeling lan-

guage, we were able to formally model the application, and use the LTSA model-checker

to verify properties such as deadlock freedom, component reachability and sequencing

constraints. We have also discussed several techniques for coping with the state-space

explosion problem. First, we exploit domain-specific properties to reduce the call-return

two-way synchronization into a one-way synchronization, thus reducing the number of
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states of each component. Second, we take advantage of inherent modularity within the

application scenario, and use the divide-and-conquer approach to compose the system hi-

erarchically. These techniques showed significant effects in reducing system state space,

and allowed us to check a relatively complex application scenario that used to be out of

the reach of the model-checker.

Currently the FSP models discussed in this chapter are written manually. In order to

integrate model-checking into the MoBIES tool-chain [36], we have done some prelimi-

nary work on developing an interpreter that translates an ESML model into its equivalent

FSP specification, which consists of two parts. The first part is the fixedpreamblewith

FSP specifications for all possible component types, as discussed in Section 4.1. The

second part contains composition of components, which are instantiated from compo-

nent types contained in the preamble. Interactions among components are represented

with event equivalence, as discussed in Section 4.2. The interpreter is written in C++

using a set of APIs provided by GME. This corresponds to thedirect implementationap-

proach [57], where the designer writes C++ code to manually traverse the data structures

contained within the source model, and write out the corresponding portions in the target

model. As possible future work, it is conceivable to use the more recentmeta-generator

approach [48], which usesGraph GrammarsandGraph Rewritingto develop a mathemat-

ically precise mapping from input meta-model to output meta-model.



CHAPTER V

Integrated Approach to Modeling and Analysis of
Embedded Real-Time Systems

Embedded software is the software controlling everything around us from telephones

and pagers to cars and airplanes. Its main task is to take over what mechanical and ded-

icated electronic systems used to do, that is, to engage and control the physical world,

interacting directly with sensors and actuators. Therefore, embedded real-time systems

typically perform information processing tightly coupled with physical processes. The

boundary between physical and software processes are often blurred. However, model-

ing tools tend to focus on either one or the other. The Model-Integrated Computing [88]

approach advocates integrated modeling:

“Computers now control many critical systems in out lives...Such computers

wed physical systems to software, tightly integrating the two and generating

complex component interactions unknown in earlier systems. Thus, it is im-

perative that we construct software and its associated physical system so they

can evolve together.”

Traditionally, the control engineer designs the control algorithms without consider-

ation of controller platform issues, and then hand them over to the software engineer,

who implements them on a minimum cost controller platform while guaranteeing system

102
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schedulability for a set of task execution frequency requirements. The authors in [79, 20]

propose to break the rigid wall between controller design and software implementation,

and adopt an integrated approach, thus opening up the possibility of applying a range of

offline optimization and online adaptation techniques. For example, instead of treating

each task as having a rigid minimum execution frequency requirement of 40Hz, we can

relax it to an interval of [35Hz, 40Hz]. The controller suffers performance degradation

with slower execution frequencies as long as it still maintains critical control objectives

such as system stability. This enables the designer to perform cost-performance tradeoff

analysis.

In this chapter, we propose an integrated approach for modeling and analysis of em-

bedded real-time systems with tight coupling betweenembeddedsoftware andembedding

physical environment, and analyze the real-time scheduling behavior of the software to-

gether with the physical system that the software is controlling within the same formal

framework ofTimed Petri-Nets[74]. By adopting this approach, we enable the designer

to have an integrated view of the entire system when making design decisions, so she can

clearly see the effect of making a change in embedded software on the rest of the system,

or a change in the physical system on embedded software design. She can also perform

optimization analysis such as maximizing total system utility given resource constraints,

or minimizing total system cost given safety and liveness requirements.

We use TPN as the modeling language. We also describe an automated translation pro-

cedure from TPN models into TA models, thus enabling the use of mature model checkers

for TA such as UPPAAL [8] for TPN analysis. Our approach allows the designer to model

and analyze the embedded system in an integrated manner, including the physical system

and the software controlling it, and use model-checking to determine schedulability of the

software together with system-level timing constraints. We use the well-known Rail-Road
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Crossing [41] problem as an application example. Using the model checker UPPAAL, we

were able to check the system safety and liveness properties, as well as schedulability of

controller software within the same framework. In case a system timing property is vio-

lated, UPPAAL provides an error trace leading to the violation state and allows us to gain

more insight into the cause of the violation.

In order to gain wider acceptance in industry, it is important to provide highly-automated

tool support instead of just algorithms described on paper. We use the Generic Modeling

Environment (GME) [57] to provide the capabilities for modeling TPN and TA, as well as

for implementation of translators from TPN to TA.

This work is reported in [31, 30]. This chapter is structured as follows: Section 5.1

provides a brief introduction to the two real-time formalisms used, TPN and TA. Sec-

tion 5.2 presents TPN modeling of real-time scheduling, both non-preemptive and pre-

emptive. Section 5.3 describes a simple algorithm for mapping TPN models into TA.

Section 5.4 considers modeling and analysis of the railroad crossing problem. Section 5.6

describes related work. Section 5.5 provides further discussions on the integrated model-

ing approach, and the chapter concludes with Section 5.7.

5.1 Timed Petri-Nets and Timed Automata

Various timed extensions to Petri Nets (PN) has been proposed, including Ramchan-

dani’sTimed Petri Net[74], Merlin and Faber’sTime Petri Net[67], Little and Ghafoor’s

Timed Petri Net[58] and Juanet al.’s Delay Time Petri Net, etc. We use the termPN with

Timeto refer to the various timed extensions to PN. Even though analysis techniques [86]

exist that can perform certain types of timing analysis on certain variants of PN with Time,

tool support is generally either not available, or only offers limited analysis capabilities,

despite an abundance of tools for analysis of variousuntimedPetri-Nets. On the other
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hand, there are mature and scalable model checkers for Timed Automata (TA) [4], such as

UPPAAL [8] and Kronos [105], that offer sophisticated analysis capabilities for temporal

logic specifications of system property. We describe a simple translation algorithm from

different variants of PN with Time to semantically equivalent TA models, so that we can

leverage the TA model checkers as a universal analysis back-end, instead of having to con-

struct separate tools for each different variant of PN with Time. In this section we describe

translation algorithms for two most popular types of PN with time, Ramchandani’sTimed

PN , and Merlin and Faber’sTime PN[67]. In our opinion, PN has certain advantages

over TA in terms of usability, since it has constructs for modeling system structure as well

as behavior. It is easy to add in structural and behavioral hierarchy [18, 102], which are

absent in TA. However we can still map hierarchical PN models into TA models by flatten-

ing the hierarchy, at the expense of losing some clarity and understandability. Hence we

propose to use Timed PN as front-end interface for the designer and TA model checkers

as back-end analysis engine.

In this chapter, we use Ramchandani’sTimed Petri-Nets [74](hence referred to as

TPN) as the unified modeling framework, and translate it into TA. TPN is well-suited for

modeling distributed event-triggered systems, since it is intuitive to map events to tokens,

and execution of software components to transition firings. The translation procedure also

gives a formal semantics for TPN in terms of TA, and clarifies a number of semantic am-

biguities in the original TPN definition. In particular, the original definition does not force

a transition to fire when it is enabled, while the semantics given by our TA-mapping forces

a transition to fire as soon as it is enabled. This turns out to be convenient for modeling

real-time scheduling. We also clearly define the semantics ofmultiple-enablednessof a

transition as

• Freshly enabling a transition after each firing, which is intuitively the behavior of a
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task serving multiple queued execution requests.

• Threshold-basedinstead ofage-based. See Section 5.6 for details.

We refer the reader to Sections 2.2.3 and 2.2.4 for more detailed discussions on TPN

and TA.

5.2 Modeling of Real-Time Scheduling with TPN

This section focuses on CPU scheduling of a single-processor system. CPU is an

inherently sequential resource; that is, only one task can execute on the CPU at one time.

This leads to an interleaving notion of concurrency, and priorities are used for arbitration of

competing requests for the shared resource. TPN hasmaximum parallelismsemantics, that

is, independent transition firings can take place concurrently as if the number of processors

available is unlimited. In order to model CPU scheduling, it is necessary to introduce

shared places in order to sequentialize the execution of concurrent transitions.

Pstart Pstart1

Pfin1

Pfin2

Pstart2

CPU
Timer1

T1[bcet1, wcet1]

Timer2
T2[bcet2, wcet2]

[phase]

[period]

Pperiodic Tperiodic

Tinit

Tstart

Pinit Pfin Tfin

Figure 5.1: A periodic timer in TPN withperiod and initial phase. The notation
[phase]([period]) denotes a delay interval of equal lower and upper bounds
[phase, phase]([period, period]). A timer with jitter can be easily modeled by
using different lower and upper delay bounds for phase and/or period. Note
that the name of a place is used to also denote the number of tokens contained
in the place.

Figure 5.1 shows the TPN model for a periodic timer. At time 0,Tinit fires, and puts one

token in each ofPperiodic, Pstart andPfin afterphase time units, denoting the initial timer

event at timephase. Tstart fires at timephase, denoting initial task execution.Tperiodic
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fires and consumes tokens inPperiodic andPfin at time phase, and produces tokens in

Pperiodic andPstart at timephase + period, signalling the start of another period of task

execution. When task execution is finished, a token is deposited inPfin. A frame overrun

occurs if the task response time is greater than its period. In order to avoid frame overrun,

the configuration(Pperiodic = 1, Pfin = 0) must not be reachable.

T2[bcet2, wcet2]

Timer2

Timer1

[period, period]

[period, period]

CPU

T1[bcet1, wcet1]

Figure 5.2: Static prioritynon-preemptivescheduling of two periodic tasks. The blocks
markedTimer1 andTimer2 are a syntactical shorthand for the TPN model in
Figure 5.1. The upper part represents high-priority taskTask1; the lower part
represents low-priority taskTask2.

Timer2

Pfin2

Pstart2

Pfin1

Pstart1

P4P3

P2P1

T6[0,0]T5[1,1]T4[0,0]

T3[0,0]T2[1,1]T1[0,0]

wcet1 wcet1

wcet2 wcet2

CPUTimer1

Figure 5.3: Static prioritypreemptivescheduling of two periodic tasks. The upper part
represents high-priority taskTask1; the lower part represents low-priority task
Task2.

Figure 5.2 shows a TPN model for static priority,non-preemptivescheduling of two

periodic tasks. The placeCPU denotes the shared resource of a single CPU. A triggered

task executes if CPU is available, i.e., placeCPU contains a token; otherwise it waits until

the CPU becomes idle. The inhibitor edge fromPstart1 to T2 models the fact thatTask1
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has priority overTask2, since a non-emptyPstart1 preventsT2 from firing.

Figure 5.3 shows a TPN model for static priority,preemptivescheduling of two peri-

odic tasks. The edge connectingT1 to P1 has weightwcet1, hence firing ofT1 putswcet1

tokens inP1. If the CPU is idle, i.e., the placeCPU contains a token, thenT2 fires im-

mediately and puts a token inP2 1 time unites later, meaning thatTask1 executes for 1

time unit. As long asP1 is not empty,Task1 has not finished execution, and continues

competing for the CPU. WhenP1 becomes empty andP2 containswcet1 tokens, tran-

sition T3 becomes enabled and fires immediately, denoting the end ofTask1’s execution.

Again, the inhibitor edge fromP1 toT5 models the fact thatTask1 has priority overTask2.

Note that this approach does not allow us to model execution time intervals for preemptive

scheduling. That is, we can only model a singlewcet instead of a[bcet, wcet] pair.

5.3 TPN to TA Translation

We formally define a translation algorithm for mapping a TPN model into a semanti-

cally equivalent TA model.

1. Declare a global urgent channelgo. A transition with an urgent channel as its syn-

chronization label is an urgent transition, and has to be taken as soon as it is enabled

without delay.

2. Create an automaton namedDummy with a single location, and a transition with

synchronization labelgo! starting and ending at that location, as in Figure 5.4.

3. For each TPN placep ∈ P , declare an integer global variable with the same name

in the TA model.

4. Suppose a TPN transitiont ∈ T has an associated delay interval[lb, ub], a pre-set of

k input placespin
1 , . . . , pin

k , a post-set ofm output placespout
1 , . . . , pout

m , and a set of
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n inhibitor input placespinh
1 , . . . , pinh

n . Classify eacht ∈ T according to its number

of input, output and inhibitor places. For example, all transitions with 1 input place,

2 output places, and 1 inhibitor place are put into the same class. For each transition

class:

(a) Define a timed automaton template with two locationsdisabled andfiring,

one local clockc, and k + m + n integer parameters namedpin
1 , . . . , pin

k ,

pout
1 , . . . , pout

m , pinh
1 , . . . , pinh

n .

(b) Add an invariant conditionc ≤ ub at the locationfiring.

(c) Add an edge fromdisabled to firing with guard conditionpin
1 ≥ B(pin

1 , t),

. . ., pin
k ≥ B(pin

k , t), pinh
1 == 0, . . . , pinh

n == 0, synchronization labelgo?,

and assignment labelc := 0, pin
1 := pin

1 −B(pin
1 , t), . . . , pin

k := pin
k −B(pin

k , t).

(d) Add an edge fromfiring to disabled with guard conditionc ≥ lb, and assign-

ment labelpout
1 := pout

1 + F (pout
1 , t), . . . , pout

m := pout
m + F (pout

m , t).

5. In the system configuration section, instantiate one automaton template for each

TPN transition, with the appropriate global variables as parameters, representing

the input, output and inhibitor places of that transition.

go!

Figure 5.4: AutomatonDummywith an urgent transitiongo.

Figure 5.5 shows the mapping for a TPN transitiont with 1 input placein and 1 out-

put placeout. The urgent channelgo ensures that the automaton changes its state from
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[lb, ub]

in

out_wgt

in_wgt

out

disabled firing

c <= ub

in >= in_wgt
go?
c := 0,
in := in - in_wgt

out := out + out_wgt
c >= lb

Figure 5.5: TA model of a TPN [74] transitiont with 1 input placein, 1 output placeout,
and time bounds[lb, ub]. The process template has argument list (intin, out;
constin wgt, out wgt; constlb, ub), and a local clockc.

disabledto enabledas soon asin ≥ in wgt, that is, the input placein containsin wgt or

more tokens. The number of tokensin is reduced byin wgt representing the consumption

of tokens in the input place. The TPN transition’s firing duration[lb, ub] is modeled by the

statefiring in the TA model, which has an invariant conditionc ≤ ub, and a guard condi-

tion c ≥ lb on the state change fromfiring to disabledthat represents the end of transition

firing. The resulting semantics is that the automaton has to change its state fromfiring to

disabledif it has been staying in statefiring continuously for at leastlb time units, and at

mostub time units. If the input placein contains more than2 ∗ in wgt tokens, and the

TPN transition is still enabled after one firing, then the urgent channelgowill immediately

force a state change back tofiring from disabled, and the clock is reset to start counting the

delay interval[lb, ub] all over again. That is, a new transition is freshly enabled after each

firing. Note that this is one of several possible semantics for firing of multiple-enabled

TPN transitions [10], which is convenient for modeling a task serving multiple queued

execution requests, as well as for modeling preemptive scheduling in Figure 5.3.

Figure 5.6 shows mapping from a TPN transition with 2 input places and 1 output

place, and Figure 5.7 shows the mapping for a TPN transition with 1 input place, 1 output

place and 1 inhibitor input place. Whenever the placeinh is not empty, the transition is
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out_wgt

in2_wgt

in2in1

in1_wgt
[lb, ub]

out

disabled firing

c <= ub

in1 >= in1_wgt, 
in2 >= in2_wgt

go?
c := 0,
in1 := in1 - in1_wgt,
in2 := in2 - in2_wgt

c >= lb
out := out + out_wgt

Figure 5.6: TA model of a TPN transitiont with 2 input placesin1, in2, 1 output place
out, and time bounds[lb, ub]. The process template has argument list (intin1,
in2, out; constin1 wgt, in2 wgt, out wgt; constlb, ub), and a local clockc.

inh

[lb, ub]

out

in_wgt

out_wgt

in

disabled firing

c <= ub

in >= in_wgt, 
inh == 0

go?
c := 0,
in := in - in_wgt

c >= lb
out := out + out_wgt

Figure 5.7: TA model of a TPN transitiont with 1 input placein1, 1 inhibitor input place
inh, 1 output placeout, and time bounds[lb, ub]. The process template has
argument list (intin, inh, out; constin wgt, out wgt; constlb, ub), and a
local clockc.

disabled. Inhibitor arcs can be used to model priorities in resource arbitration, as shown in

Figures 5.2 and 5.3.

Figure 5.8 shows mapping from aTime PNmodel, instead of aTimed PNmodel, to

a TA model. This enables us to analyze different variants of PN with time in a unified

framework by applying different translation rules into TA.

Figure 5.9 shows a simple example taken from [101]1. In order to translate this TPN

model into a TA model, it is simply a matter of instantiating the TA templates for TPN

transitions with 1 input/1 output, and 2 input/1 output, which happen to be the only two

types of transitions present, as shown in Figure 5.10.

1Note that the original example isTime Petri Net, while we model aTimed Petri Net, so the end-to-end
timing properties are different from the original example.
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[lb, ub]

in

out_wgt

in_wgt

out

disabled firing

c <= ub

in >= in_wgt
go?
c := 0

in := in - in_wgt,
out := out + out_wgt

in >= in_wgt,
c >= lb

in < in_wgt
go?

Figure 5.8: TA model of aTime PN[67] transition. Compare it to Figure 5.5 to see the
difference in semantics between Merlin and Faber’sTime PN[67] and Ram-
chandani’sTimed PN[74]. See the end of Section 5.1 for details.

T3:[40,90]

T2:[10,70]

T4:[20,40]

P3

P1

P2

P6

T5:[10,30]

P5

P4

T1:[30,50]

Figure 5.9: Simple TPN modeling concurrency, competition and synchronization.

int P1:=1, P2:=1, P3:=0, P4:=0, P5:=0, P6:=0;
urgent chan go;
T1 := T1in_1out(P2, P4, 1, 1, 30, 50);
T2 := T1in_1out(P1, P5, 1, 1, 10, 70);
T3 := T1in_1out(P1, P3, 1, 1, 40, 90);
T4 := T1in_1out(P3, P5, 1, 1, 20, 40);
T5 := T2in_1out(P4, P5, P6, 1, 1, 1, 10, 30);
System T1, T2, T3, T4, T5, Dummy;

Figure 5.10: The UPPAAL system definition section that instantiates the templates for the
TA model that is translated from the TPN model in Figure 5.9.

UPPAAL does not directly support temporal logic queries for bounded liveness such

as ψ = φU<ta, i.e., propertya must hold beforet time units, andφ must hold until

then. In order to check such properties, it is necessary to write anobserver automaton[8].

This is similar to the approach in the model checker Spin [43], where LTL formulas are

transformed intonever claimsthat act as system observers that go into error state on de-

tecting violation of the specified property. Figure 5.11 shows the observer automaton
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initial goal end

p1 == 0,
p2 == 0,
p3 == 0,
p4 == 0,
p5 == 0,
p6 == 1
go?

Figure 5.11: An observer automaton that keeps track of the time taken to reach the goal
state. It has a local clockc that is set to 0 initially. Thegoalstate is acommit-
tedlocation, meaning that it must be exited within 0 time, and no interleaving
of other actions is allowed. Combined with the urgent transition frominitial
to goal, this allows us to record the moment when the TPN configuration
(0, 0, 0, 0, 0, 1) is first marked as the moment thegoal state is reached and
exited.

that records the timet it takes to reach the goal state(0, 0, 0, 0, 0, 1) from the initial state

(1, 1, 0, 0, 0, 0), where the 6-tuple denotes the Petri Net marking(P1, P2, P3, P4, P5, P6).

Using the model checker UPPAAL we can prove thatt falls within a time interval[40, 160].

In order to verify that this is a tight bound, it is necessary to perform three queries due to

UPPAAL’s lack ofparametric analysiscapability [42]:

1. A[] Observer.goal imply Observer.c≥ 40 and Observer.c≤ 160. This is checked to

be true.

2. A[] Observer.goal imply Observer.c≥ 41. This is checked to be false.

3. A[] Observer.goal imply Observer.c≤ 159. This is checked to be false.

The properties that can be verified through transformation from TPN to TA can also

be directly verified through state space exploration of the TPN model itself, so we do not

claim to add any analytical power by the TPN-to-TA mapping. We are merely proposing

to take advantage of mature tools for TA such as UPPAAL for analysis of TPN, as well

as other variants of timed extensions of Petri-Nets. Also note that reachability analysis

for TA with variables is in general undecidable, so the model-checking procedure is not
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guaranteed to terminate. This corresponds to the fact that reachability analysis for TPN is

in general undecidable.

src

<<Model>>

TPNModel

weight : int

<<Connection>>

OutputArc

InputArc

<<Connection>>

weight : int

<<Atom>>

numTokens : int
invariant: String

0..*

0..*0..*

0..*

src

dst

ub: int
lb: int

<<Atom>>

Transition

Place

dst

Figure 5.12: The UML-based meta-model for TPN.

0..*
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<<Atom>>

<<Atom>>

GlobalClockVar

GlobalIntVar

<<Atom>> <<Model>>

TAModel

Invariant: string

<<Atom>>

State

LocalClockVar

<<Atom>>

<<Atom>>

LocalIntVarAutomaton

<<Model>>0..*
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0..*
0..*

0..*

Assignment: string

Sync: string

Guard: string

Transition

<<Connection>>

dst

src

0..*

0..*

Figure 5.13: The UML-based meta-model for TA.

In order to implement automated tool support for the translation, we take advantage

of the Generic Modeling Environment (GME) [57]. Figure 5.12 and 5.13 show the UML-

based meta-models for TPN and TA, respectively. GME can generate domain-specific

modeling environments for TPN and TA based on the meta-models. We have implemented

an interpreter that performs TPN-to-TA translation by syntax-directed mapping of corre-

sponding constructs in the two meta-models. For example, for each transition in the TPN

model, anAutomatonis generated for the TA model; for each place in the TPN model,

a GlobalIntVar is generated for the TA model, etc. The input file format to UPPAAL is

based on XML. Even though GME can export XML files, the DTD (Data Type Definition)
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files between GME-exported and UPPAAL-input XML files are obviously very different,

so it is necessary to write another translator between these two file formats.

5.4 Railroad Crossing Problem

Although the Railroad Crossing (RC) problem is a standard textbook problem in real-

time specification and verification, there has been little discussion about the real-time

scheduling behavior of the controller computer. That is, it is generally assumed that the

controller is dedicated to a single task with no interference from higher-priority tasks or

operating systems activity, so there is no need for real-time scheduling theory. This may

well be true for the simple controller we are considering here, but in general designers

have been putting more and more functionality on a single micro-controller in order to

reduce costs. Furthermore, there is also a tendency to take advantage of distributed, multi-

processor platforms. In these kinds of complex embedded systems, the real-time schedul-

ing problem is non-trivial to solve, and it is desirable to model the scheduling and runtime

platform issues explicitly.

5.4.1 RC without Scheduling

Controller CPU

Exit SensorEntry Sensor Gate

Figure 5.14: Railroad Crossing with a single controller CPU placed near the gate.

The RC problem describes a railroad crossing, whose physical layout is shown in Fig-

ure 5.14, and whose behavior is given by the TPN in Figure 5.15. Here we assume that the

trains only travel from left to right. The system has to satisfy two properties:

• safety: Whenever the train is in the crossing, the gate has to be lowered.
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Train

Controller CPU

T8

T5

T4
T7

P12

P11

T6

P10

P9

P8

P7

P6

P5

P4

T3

P3

T2

P2

T1

P1

Gate

Up

Down

Approach

Before
Crossing

Within

Past

Transition T1 T2 T3 T4

[lb, ub] [1,1] [4,5] [1,1] [1,1]
Transition T5 T6 T7 T8

[lb, ub] [1,1] [1,2] [1,2] [1,1]

Figure 5.15: TPN model of the RC system without consideration of real-time scheduling
issues.

Controller T4 T5

9

T7

81 2

T1T8T1

T6

0 3 4 5 6 7

Gate

T3T2Train

Figure 5.16: Execution trace of the TPN model in Figure 5.15.

Controller T4 T5

9

T7

81 2

T1

T6

T2 T2T1T8T3 T3

T4

T7

Illegal States
P3 = 1 & P12 = 0

0 3 4 5 6 7

Gate

Train

Figure 5.17: Execution trace of the TPN model in Figure 5.15, exceptT2’s delay interval
is changed from [4,5] to [1,2]. That is, it takes shorter for the train to reach
the crossing from entry sensor position.

• bounded liveness: Within a certain time limitδt after the train leaves the crossing,

the gate has to be raised.

An entry sensor is placed some distance before the train reaches the crossing, and an
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exit sensor is placed a short distance after the train leaves the crossing. When the train

crosses the position of the entry sensor (T1 fires), a signal is sent from the sensor to the

controller, which is typically placed near the gate. Upon receiving the signal, the controller

sends alower-gatecommand to the gate (T4 fires). Upon receiving this command, the gate

takes some time to lower itself (T7 fires). Meanwhile, the train keeps going and enters the

crossing (T2 fires). In order to satisfy the safety requirement, the illegal state (P3 = 1 &

P12 = 0) should never be reached. That is, it should never be the case that the train is in

the crossing and the gate is not lowered. After the train leaves the crossing (T3 fires), the

exit sensor sends a signal to the controller, which, in turn, sends araise-gatecommand to

the gate (T5 fires). Upon receiving this command, the gate raises itself (T6 fires). Note that

we are not dealing with theGeneralized Railroad Crossing[41] problem where multiple

trains may be in the crossing at the same time. The TPN model in Figure 5.15 forces the

gate to be raised and lowered once for each train going through the crossing.

Given the TPN specification of the RC system in Figure 5.15, we can map the TPN

system into a TA model and use UPPAAL to check the system safety and liveness proper-

ties. For the safety property, it amounts to checking that (E<> P3 = 1 andP12 = 0) is false.

For the bounded liveness property, it is necessary to add an observer automaton similar

to the one in Figure 5.11. The system specified in Figure 5.15 satisfies both properties

if δt = 3, that is, the gate has to be raised within 3 time units after the train leaves the

crossing. Figure 5.16 shows a possible execution trace. However, if we changeT2’s delay

interval from [4,5] to [2,3], then the safety property no longer holds. UPPAAL can provide

us with an execution trace leading to the safety property violation, as shown in Figure 5.17.

In this simple example it is trivial to construct the execution trace manually, but it may not

be the case for more complex situations, and a model checker can be invaluable in aiding

the designer in finding the execution scenario leading to an error.
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5.4.2 RC with Single-Processor Scheduling
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Transition T6 T7 T8 T9
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Figure 5.18: TPN model of the RC system with single CPU controller platform. A high-
priority periodic task with period 10, execution time interval [2,3] and arbi-
trary release phase has been added. The timer block is a syntactical shorthand
for the TPN model for a timer in Figure 5.1.
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0 3 4 5 6 7
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Figure 5.19: Execution trace of the TPN model in Figure 5.18.

In order to make the problem more interesting, we add a high-priority periodic task to

the controller CPU. One can think of this task as a timer interrupt handler that demands

immediate CPU processing. Figure 5.18 depicts the TPN model of the RC system for

the single processor case. Note that we model non-preemptive scheduling for the sake of

simplicity. Figure 5.19 shows that addition of the high-priority task results in the violation

of safety property.
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5.4.3 RC with Multi-Processor Scheduling

Exit SensorGate

Controller CPU1 Controller CPU2

Entry Sensor

Figure 5.20: Railroad Crossing with a distributed multi-processor controller platform.
CPU1 is placed near the entry sensor, and CPU2 is placed near the gate and
exit sensor.
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Figure 5.21: TPN model of the RC system with a multi-processor execution platform. Two
high-priority periodic tasks with period 10, execution time interval [1,2] and
arbitrary release phase are added, one on each of the two CPUs. The place
Network models the shared network connectingCPU1 to CPU2 and the
gate. Here all the message transmission tasks on the network happen to have
the same priority.

Figure 5.20 shows the layout for a multi-processor execution platform, where a con-

troller is placed near the entry sensor that controls lowering of the gate, and another con-
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Figure 5.22: Execution trace of the TPN model in Figure 5.21.

troller placed near the gate that controls raising of the gate. Of course this example is

only intended to illustrate our modeling techniques, not to model a realistic system de-

sign. Figure 5.21 depicts TPN model of the RC system for the multi-processor case with

two high-priority periodic tasks added, as well as explicit modeling of the shared network

resource. Model-checking reveals that the safety property is again violated. Figure 5.22

shows an execution trace leading to the violation.

The designer has a number of options to remove the safety violation:

• Switch to preemptive scheduling, and assign lower priorities to the two interfering

periodic tasksT9,T10 on the controllers, as well as the network taskT12.

• Switch to a faster execution platform, including the CPUs and network. For exam-

ple, reduce the WCET ofT4 to be below 0.5, and the network message transmission

latencyT11 to be below 0.5.

• Impose a reduced speed limit on incoming trains once they reach the entry sensor

position, so that the minimum time the train takes to reach the crossing from the

entry sensor position is above 6.

• Switch to a more responsive gate so that the time it takes to raise or lower the gate

is below 1.
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Of course we can adopt a combination of any subset of the above options. In general,

model-checking can be used to derive certain timing parameters, whether those of the soft-

ware or the physical environment, given timing specification for the rest of the system, in

order to satisfy system-level requirements. Ideally this requires parametric analysis capa-

bility such as that provided by Hytech [42], which is not present in UPPAAL. Still, we can

use a trial and error approach, and perform a binary search on the possible intervals of vari-

able values to find out the answer. The RC example is simple enough so that this analysis

can be carried out manually, but it may not be the case for more complex situations.

5.5 Further Discussions

One may argue that the proposed integrated modeling approach is unnecessary, since

we can use real-time scheduling theory such as Rate Monotonic Analysis (RMA) [53] to

find out the worst-case response time (WCRT) of the software processes, and then use it

for formal verification of system-level safety and liveness properties. Indeed this is the

preferred approach for most embedded systems where software executes periodically with

occasional interrupt-driven behavior. We can assume a worst-case minimum inter-arrival

time (MIT) for the interrupts and apply rate monotonic analysis [53] to determine the

WCRT.

There are a number of reasons for adopting the integrated approach:

• We can draw an analogy between the integrated approach and related work on inte-

grated analysis of real-time scheduling and control system design [79, 20].

• In order to deal with external interrupts, RMA usually assumes a worst-case min-

imum inter-arrival time (MIT) for the interrupts. However, it may be pessimistic

to perform analysis based on assumptions of MIT, since it may not be possible for

the worst-case arrival behaviors of different interrupts to happen at the same time
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due to certain constraints of the physical environment. By explicitly modeling the

environment, we can have a more accurate model of interrupt arrivals and reduce or

eliminate the above-mentioned pessimism.

• Even though RMA is a mature technology that can deal with complex task systems,

it has certain limitations compared to model-checking:

– RMA requires severe assumptions that cause it either to yield pessimistic re-

sults, or not to be applicable to certain scheduling problems, e.g., ADA tasking

models with rendezvous-style synchronization [14].

– RMA analysis focuses almost exclusively on WCRT analysis, while sometimes

it is also desirable to analyze the system’s best-case response time(BCRT)

when task jitter is important. For example, when analyzing an end-to-end

distributed transaction, the upstream task’s jitter is often a large contributing

factor to the downstream task’s response times. Due to lack of BCRT analysis

techniques, RMA yields overly pessimistic results for these types of distributed

systems, causing low system utilization and wastes system resources [11].

– The parametric analysis capability of model-checkers like HyTech [42] or

ACSR-VP [56, 55] enables us to perform reverse queries on the system, for

example, how should we modify certain timing parameters in order to sat-

isfy certain system-level timing requirements? This is not straightforward to

achieve with RMA.

However, there are also some valid objections to adopting an integrated approach:

• By cleanly separating the control aspect from the software implementation aspect,

we achieve separation of concerns and allow control engineers and software engi-

neers to each focus on their area of expertise. This is an instance of the well-known
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divide-and-conquer approach. In fact this is the current industry practice, and is

justified in most situations. The rationale is to achieve simplicity by sacrificing op-

timality to a certain degree.

• By explicitly modeling the scheduling behavior at the model level, we may further

exacerbate the state-space explosion problem that plagues the model-checking ap-

proach.

In view of valid arguments on both sides, we believe it is up to the system designer to

make informed and intelligent decisions on a case-to-case basis as to which approach to

adopt based on various factors, including human resources, tool availability, project time

budgets, system physical constraints, etc.

5.6 Related Work

Cortes [16] proposed a mapping algorithm fromPRES+model, a variant ofTime Petri

Netswith additional data handling capabilities, into HyTech [42] models. Our mapping

is simpler and more compositional because we take advantage of UPPAAL’s capability

of having guard conditions on urgent transitions, which is not present in Hytech. Cortes’

mapping algorithm can only deal with 1-safe nets, where each place can contain at most

one token, while our algorithm can deal with non-1-safe nets (each place can contain more

than one token) andmultiple-enablednessof transitions. Instead of assuming that the PN

is 1-bounded, we can write temporal logic queries in UPPAAL to check for n-boundedness

of any place or the entire PN. The ability to model non-1-safe PNs is required to model task

queuing and preemptive scheduling, as shown in Figure 5.3. There are also other situations

where it may be useful, e.g., Figure 5.23 shows a model used to detect server overload,

taken from [10]. Note that our TA-defined semantics for a multiple-enabled transition

is threshold-basedinstead ofage-based, as defined in [10]. That is, in calculating the
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length of time that the transition has been enabled, we do not keep track of the age of

each individual token; instead, we only require the total number of tokens to be above the

enabling threshold in order for the transition to be enabled. It has been shown [10] that

both semantics are useful in different situations, but the important point is that we have

given a clear semantics to an otherwise semantically ambiguous modeling construct by

our translation algorithm.

Request Server[2,3]

[30,30]

4040
Loaded

Running

Figure 5.23: A model fragment used to detect server overload. The number of tokens in
placerunningrepresents the number of outstanding requests to be processed
at the server. If this number has been greater than 40 for more than 30 time
units, anoverloadsignal is generated by putting a token in the placeoverload.
Note that this is aTime PNmodel [67] instead of aTimed PNmodel [74].

Naedele [68] presented an approachdelegated execution, which allows modeling and

simulation of both functional and scheduling aspects of real-time systems with High-Level

Petri Nets (HLPN). The mine-drainage system [13] is used as an application example,

which was conducted in CodeSign [22], a tool based on object-oriented real-time HLPN.

Due to high expressive power of HLPN, his approach is scalable to larger models, and can

model preemptive scheduling more elegantly than our approach. However the analysis

technique is limited to simulation; formal analysis via model-checking is not supported.

Gannod [24] described a translation algorithm from untimed PN into PROMELA, the

input language of the Spin Model Checker [43] in order to check for liveness and bounded-

ness properties. They used the Domain Modeling Environment (DOME) from Honeywell

Technologies to implement the translation algorithms. Our work deals with PN with Time,
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translates into the input language of UPPAAL instead of Spin, and use Generic Modeling

Environment (GME) instead of DOME.

PARAGON [7] is a toolset for visual specification and formal verification of distributed

real-time systems. Distinguishing features include the ability to specify resources and

their usage by system components, and prioritized execution that allows to express dif-

ferent preemptive and non-preemptive scheduling policies. Unlike the real-time process

algebra ACSR [26] underlying PARAGON, TPN lacks inherent notions of priority and

preemption, so we have to use a number ofad hoctechniques to work around these limi-

tations. First, we use inhibitor arcs to simulate priorities. This approach prevents us from

modeling dynamic priority assignments such as Earliest Deadline First (EDF);it also be-

comes unwieldy when modeling a large number of tasks with distinct priorities. Second,

although TPN is a dense-time formalism, unlike ACSR, which is discrete-time, we have

to discretize the delay time of a TPN transition in order to model preemption, due to lack

of a built-in notion of preemption like that in ACSR, or a stopwatch mechanism like that

in Hybrid Automata [42]. Note that our focus is not on formal modeling of real-times

scheduling; rather, we are proposing a general approach for integrated modeling and anal-

ysis of software and physical processes, which is independent of the underlying modeling

formalism.

There are a number of other approaches to formal modeling and analysis of real-time

scheduling. In the TIMES tool [5], a discrete transition in an extended TA denotes an

event releasing a task, and the guard on the transition specifies all the possible arriving

times of the event. The schedulability problem can be then transformed into a reachability

problem for TA. Other work includes Corbett’s work on timing analysis of Ada tasking

programs [14], and Lee’s work on real-time process algebra ACSR-VP [56]. None of

them has the concept of integrated modeling and analysis.
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Wang [101] described a reachability analysis algorithm for TPN that enables com-

putation of end-to-end system timing properties. Our TPN-to-TA translation algorithm

can perform verification of more complex system properties in the form of temporal logic

specifications, not just reachability. Furthermore, tool support for the algorithms described

in [101] is not available.

Many authors have recognized the significance of tight integration of embedded soft-

ware with its physical environment, and the need for an integrated analysis framework.

Seto [79] proposed an integrated approach to controller design and task scheduling, where

task frequencies are allowed to vary within a certain range as long as such a change does

not affect critical control functions such as maintenance of system stability. An algorithm

was proposed that optimizes the overall system control performance while maintaining

schedulability by adjusting task frequencies. Similarly, Eker [20] presented a Matlab tool-

box for simulation of a real-time kernel in parallel with continuous plant dynamics. The

toolbox allows the user to study the interactions between the control tasks and the sched-

uler, making it possible to experiment with more flexible approaches to real-time control

systems, such as feedback scheduling. This body of work deals with controller perfor-

mance with traditional metrics in control theory such as signal rise time, stability, etc.,

while our focus is on modeling of system real-time behavior, and static, offline verifica-

tion through model-checking, although it is possible to take advantage of existing TPN

tools or UPPAAL for integrated simulation.

5.7 Summary

In this chapter, we have discussed an integrated approach to modeling and analysis

of embedded real-time systems with tight coupling betweenembeddedsoftware andem-

beddingphysical environment, where the physical system and the software artifacts are
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modeled within the same formal framework. We have also described a translation proce-

dure from TPN models into TA models, thus enabling the use of mature model checkers

for TA such as UPPAAL for TPN analysis. We describe implementation of automated

tool support within the GME environment. Our approach allows the designer to model

and analyze the embedded system in an integrated manner, including the physical system

and the software controlling it, and use model-checking to determine schedulability of the

software together with system-level timing constraints.

Although we have used a specific modeling formalism (TPN), this approach is general

and can be applied together with other real-time and hybrid modeling formalisms that

are capable of modeling both the embedded software and the physical environment. For

example, we discuss in [32] the application of Hybrid Automata and its associated model-

checker HyTech [42] to the Railroad-Crossing problem.

Just like using model-checking for functional verification in Chapter IV, lack of scal-

ability is the most important limiting factor in using model-checking for real-time verifi-

cation. Even though real-time and hybrid model-checkers such as UPPAAL and HyTech

have been in existence a long time ago, their adoption in industry has been slow due to the

scalability problem. In order to circumvent this problem, we have done some preliminary

investigations [35] into usingsimulationwith the widely-used hybrid systems modeling

tool Matlab/Simulink [65] for verification, as an alternative to using model-checking with

UPPAAL. Simulation is much more scalable than model-checking, and is already widely

used in current industry practice. More details are discussed in Chapter VII as part of the

future work.



CHAPTER VI

Implementation Synthesis from UML-RT Models

A UML profile is a set of notations that extend or specialize standard UML with mech-

anisms such asstereotypes, tagged values, andconstraints. UML-RT is a UML profile

widely used to develop embedded software in the telecommunications industry. It is es-

sentially an ADL with concepts of components, ports and connectors, embodied in the

CASE tool Rational Rose Real-Time (RoseRT) [46]. Despite its name, UML-RT itself

does not provide any support for schedulability analysis in order to generate a real-time

implementation that meets timing constraints. The commercial code generator provided by

RoseRT generates functional code in C++ or Java, but largely ignores real-time issues. It

is the job of the engineer to manually map the logical model to RTOS threads and choose a

scheduling discipline to satisfy timing constraints. In this chapter, we summarize existing

approaches for implementation synthesis of UML-RT models, and describe customized

schedulability analysis techniques for the native runtime model of UML-RT, in order to

facilitate design-space exploration in finding the most appropriate runtime model for any

particular application. This work is reported in [34].

This chapter is structured as follows: Section 6.1 provides a brief introduction to UML-

RT and issues related to implementation synthesis. Section 6.2 describes different al-

ternatives for mapping a UML-RT model into a multi-threaded executable. Section 6.3

128
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describes schedulability analysis techniques for the native runtime model of RoseRT. Sec-

tion 6.4 uses the elevator control system as an application example to illustrate the analysis

techniques, and Section 6.5 concludes this chapter.

6.1 Introduction to UML-RT

UML-RT can be characterized as an Architectural Description Language based on

UML. It adds architectural concepts to UML such as components, ports, connections,

but not quantitative timing information useful for schedulability analysis. As shown in

Figure 6.1, UML-RT has the following key concepts:

Figure 6.1: The key concepts of UML-RT.

• A capsuleis an active object with its own logical thread of control, representing an

active unit of computation. A capsule typically has a behavior description in the

form of an object-oriented version of Statechart calledROOMChart, which differs

from conventional Statechart as defined by Harel [39] by removing certain features,

like instantaneous broadcast of data among parallel state machines, that are difficult

to implement in an distributed, asynchronous framework. Instead, parallel state ma-

chines are modeled as separate capsules communicating with buffered asynchronous

message passing. A capsule may contain other capsules to form a structural hierar-

chy.
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• Explicit representation ofports, protocolsandconnectorsenables construction of

architectural models from a collection of capsules.

• A target runtime framework calledTargetRTS(Target Run-Time System) that serves

as a virtual machine to support the UML-RT runtime model. It runs on top of a

RTOS to hide the vendor-specific details of execution platform and present a uniform

set of APIs to the engineer.

Initialize

msg.target_capsule−>BehaviorFSM();

msg.target_capsule−>mutex−>enter();

Terminate

Wait for Msg

not done
done

take highest−priority msg

Msg−Triggered

Action

msg.target_capsule−>mutex−>leave();

Figure 6.2: The runtime behavior of an OS thread that acts as a dispatcher of incoming
messages to their destination capsules assigned to this thread.

The model of computation of UML-RT follows the Run-To-Completion (RTC) se-

mantics for each capsule. Once triggered by a message at its input port, the capsule must

execute the triggered action to completion before processing the next message. Messages

can be assigned priorities and queued in priority order instead of FIFO order. This means

that each capsule is a mutually exclusive shared resource, and scheduled withpriority-

based non-preemptivescheduling discipline. Therefore, we have to take intoblocking

time while doing schedulability analysis. One or more capsules can be grouped together

and assigned to an operating system thread. As can be seen from Figure 6.2, an OS thread

processes incoming messages in a non-preemptive manner, consistent with the RTC se-

mantics of capsules assigned to it. However, there can be preemptions between different
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threads/tasks in a multi-threaded system. (We use the wordsthreadandtaskinterchange-

ably.) A capsule executing in the context of a higher-priority thread can preempt another

capsule executing in a lower-priority thread.

Besides capsules, there are alsopassive objectsused to encapsulate shared data that

do not have their own thread of control, but rather execute in the context of the thread

of capsules that invoke methods on them. Ideally we should try to minimize use of pas-

sive objects since they introduce concurrency problems associated with shared data, and

maximize use of capsules that communicate with other capsules through message passing.

The main target application domain of UML-RT is telecommunication systems, which

are generally soft real-time in nature. Perhaps due to this reason, the designers of UML-

RT have not put much emphasis on real-time issues when implementing a UML-RT model

on the target platform. The default execution model is single-threaded, that is, all capsules

are mapped into the same thread of execution. Messages are queued and scheduled non-

preemptively in priority-order. It is desirable to introduce more parallelism and concur-

rency into the system to improve predictability by adopting a multi-threaded execution ar-

chitecture. It is important to distinguish between the concepts of design-level concurrency

and implementation-level concurrency [75]. At the design level, each capsule conceptu-

ally contains its own thread of execution, but it does not necessarily have to be mapped

into an OS thread at the implementation level. Although it is possible for each capsule

to have its own OS thread, it may incur too much context-switching overhead if there are

a large number of capsules. A number of alternatives have been proposed for mapping

a UML-RT design model into a multi-threaded executable. In this chapter, we discuss

these alternatives, and our own approach to schedulability analysis of the native runtime

model of UML-RT. The interaction style of active objects communicating through asyn-

chronous message passing is very prevalent in real-time software, for example, the Quan-
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tum Framework [93] advocates this programming style without using expensive CASE

tools. It simply makes a lot of sense in terms of good software engineering principles

such as modularity, encapsulation, decoupling of interactions, etc. Therefore, the issues

discussed in this chapter has much wider applicability than just UML-RT and the RoseRT

CASE tool.

6.2 Implementation Alternatives for UML-RT Models

Figure 6.3: An example application scenario in UML-RT.

Figure 6.4: Scenario-Based Multi-Threading, Scenario-Based Priority-Assignment
(SMSP) for implementation of UML-RT models.

Suppose we have a logical UML-RT model as shown in Figure 6.3, consisting of three
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Figure 6.5: Capsule-Based Multi-threading, Scenario-Based Priority-Assignment (CMSP)
for implementation of UML-RT models.

capsulesO1, O2, O3 and two application scenariost1, t2. Scenariot1 is initially triggered

by a periodic timeout message with period 10m that triggers an actiont11 in capsuleO1,

which in turn sends a message to capsuleO2 and triggers actiont12 in O2. Finally,O2 sends

a message toO3 and triggers actiont13. We can view this scenario as a logical end-to-end

taskt1 consisting of three precedence-constrained subtaskst11, t12 andt13. Similarly, the

scenariot2 is an end-to-end task consisting of two subtaskst21 and t23 triggered by a

100ms periodic timeout message. There are multiple ways of implementing this model on

a multi-tasking RTOS:

6.2.1 Scenario-Based Multi-Threading, Scenario-Based Priority-Assignment

This is proposed by Saehwa Kim in [64]. As shown in Figure 6.4, each application

scenario is mapped into a separate thread with uniform priority. Priorities are associ-

ated with the end-to-end threads, with statically-assigned priorities. This eliminates the

need for dynamic priority adjustments, but creates problems with shared data and necessi-

tates error-prone concurrency control mechanisms. We call this approachScenario-based

Multi-threading, Scenario-based Priority-assignment(SMSP).
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Figure 6.6: Capsule-Based Multi-threading, Capsule-Based Priority-Assignment (CMCP)
for implementation of UML-RT models.

6.2.2 Capsule-Based Multi-threading, Scenario-Based Priority-Assignment

This is proposed by Saksena in [75]. As shown in Figure 6.5, one or more capsules are

grouped into the same thread. Fixed priorities are associated with the end-to-end scenarios,

and thread priority is adjusted dynamically to maintain a uniform priority across each

application scenario. We call this approachCapsule-based Multi-threading, Scenario-

based Priority-assignment(CMSP).

6.2.3 Capsule-Based Multi-threading, Capsule-Based Priority-Assignment

This is the default runtime model of UML-RT as implemented in the RoseRT CASE

tool [46]. As shown in Figure 6.6, one or more capsules are grouped into a thread with

uniform priority. The figure only shows one of many possibilities for grouping capsules

into threads. Two extreme cases are mapping all capsules into a single thread, or mapping

each capsule into its own thread. We call this approachCapsule-based Multi-threading,

Capsule-based Priority-assignment(CMCP). 1 Since each end-to-end periodic scenario

does not have uniform priority, the classic rate monotonic analysis technique [53] is not

1In addition to application threads, additionalsystem threadsmay be used to implement framework
services such as a periodic timer. We do not consider system threads here.
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applicable, and the modified HKL algorithm described in this chapter is needed to perform

schedulability analysis.

6.2.4 Discussions

Depending on application characteristics, it may be appropriate to adopt different im-

plementation alternatives. The objective is to form threads in such a way to minimize

inter-thread interactions and multi-threading overhead.

Scenario-Based Multi-Threading is more appropriate if

• there is little interaction among different application scenarios, or,

• the capsules are fine-grained, so assigning a thread to each capsule may incur too

much overhead.

This is the case for Avionics Mission Computing software discussed in Chapter III,

which adopts the runtime model of Scenario-Based Multi-Threading and Scenario-Based

Priority Assignment.

Capsule-Based Multi-Threading is more appropriate if

• there is intensive interaction and sharing of capsules among different application

scenarios, in order to avoid excessive locking and unlocking of shared capsules, or,

• the capsules are coarse-grained, so the overhead associated with assigning a thread

to each capsule is acceptable.

Both the CMSP approach, shown in Figure 6.5, and the SMSP approach, shown in

Figure 6.4, associate static priorities with end-to-end application scenarios instead of cap-

sules, so that classic RMA techniques can be applied to analyze schedulability. However,

they both have some shortcomings:
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• The CMSP approach requires the engineer to stick to a programming discipline

of dynamically adjusting capsule priorities to reflect the priority of the end-to-end

application scenario that is currently executing. This hurts the encapsulation of cap-

sules by mixing system-level concerns (scenarios) with component-level concerns

(capsules). It also involves runtime system-call overheads that may not be accept-

able to certain resource-constrained embedded systems. Certain small RTOSes may

not even provide APIs to dynamically change thread priorities.

• The SMSP approach creates shared data when multiple scenarios cut through the

same capsule, and necessitates the use of error-prone concurrency control mech-

anisms to protect shared data, such as mutexes, semaphores and monitors. This

breaks a key advantage of UML-RT, which eliminates the need for such concurrency

control mechanisms, by using asynchronous message passing as the main communi-

cation mechanism among capsules instead of shared data. It also involves modifying

the UML-RT runtime kernel as implemented in RoseRT. Unless the modifications

are incorporated into RoseRT, it is unlikely to be acceptable to the average engineers.

In comparison, the CMCP approach has a number of advantages from a software engi-

neering perspective. There is no need for dynamic priority change, or error-prone mutual

exclusion mechanisms due to Run-To-Completion semantics of capsules. This makes pro-

gramming considerably easier. It is also the native runtime model implemented in the

RoseRT CASE tool, so a lot of legacy applications are already using this approach. How-

ever, classic RMA techniques do not apply, since each end-to-end scenario consists of

multiple segments with varying priorities.

The decision to choose a runtime model should be based upon multiple factors, in-

cluding application characteristics, software engineering benefits, and schedulability. The
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design space for an application consists of choice of a runtime model, as well as priority

assignments to threads. In order to fully explore the design-space, we have adapted the

scheduling algorithm developed by Harbour, Klein, Lehoczky, commonly called the HKL

algorithm [38], to fit the CMCP runtime model as shown in Figure 6.6. This allows the en-

gineer to determine schedulability of UML-RT models conforming to the CMCP runtime

model, and make informed decisions when choosing an appropriate runtime model for his

application.

For the CMCP approach, we need to carefully manage the number of threads in order to

strike a balance between context-switching overheads due to a large number of threads and

blocking time due to insufficient parallelism. We do not deal with the issue of grouping

capsules into threads or assigning priorities to threads in this chapter; rather, we focus

on the problem of schedulability analysis given a set of capsule-to-thread groupings and

priority assignments.

6.3 Schedulability Analysis Technique for CMCP

Consider a UML-RT model consisting ofm capsules or active objectsO1, O2, . . . , Om,

andn end-to-end scenarios or transactions, where each scenario is mapped into an end-

to-endvirtual thread, forming the task setτ1, τ2, . . . , τn. Each end-to-end virtual thread

τi, i = 1, . . . , n cuts through one or more capsules, and triggers an action within each

capsule, forming a chain of subtasksτi1, . . . , τim(i). We useO(τij) to denote the capsule

that the subtaskτij belongs to, andPO(τij) to denote the set of passive objects thatτij

accesses. Each subtaskτij is actually an event-triggered action within a capsuleO(τij).

We use the wordvirtual thread because each transaction actually consists of multiple

segments of event/action pairs distributed over different operating system threads. Due

to run-to-completion semantics, a subtask may suffer a blocking time equal to the largest
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execution time of other subtasks sharing the same capsule. A capsule may also be involved

in multiple sub-tasks within one end-to-end virtual thread. We do not explicitly model

passive objects, since they execute within the context of the capsules that invoke methods

on them, but we do take into account blocking time introduced by them.

Each subtaskτij is characterized by a set of parameters(Cij, Dij, Pij), where

• Cij is the worst-case execution time.

• Dij is deadline ofτij relative to the arrival time of taskτi, taking 0 to be its arrival

time.

• Pij is the fixed priority level ofτij, equal to the priority level of the capsule thatτij

belongs to.

Each end-to-end threadτi is characterized by a set of parameters(Ci, Di, Pi), where

Ci is the sum of all the execution times for its subtasks; the deadlines satisfy0 ≤ Di1 ≤

. . . ≤ Dim(i) = Di. In most cases subtasks do not have separate deadlines assigned, and

there is only one end-to-end deadline. The following assumptions are made:

• Subtasks executing at a given priority level can be preempted by any subtask of

higher priority, except when they access the same capsule.

• Threads do not suspend themselves at any instant between their activation and their

completion.

• The(k + 1)th job of τi will not execute until thekth job of τi has been completed.

Furthermore, any subtaskτij is not ready for execution until subtasksτir, 1 ≤ r < j

have been completed.

The task model is very similar to the end-to-end tasks with subtasks with varying

priority as described by Harbour, Klein, Lehoczky in [38]. We call the schedulability
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analysis algorithm introduced in [38] the HKL algorithm. But we have to take into account

extra blocking time caused by RTC semantics and shared data objects. We first briefly

describe the HKL algorithm. Some of the materials here are excerpted from [38].

The canonical formof a taskτi is a new taskτ ′i with the same sequence of subtasks

asτi, but with strictly increasing priorities.τ ′i is obtained by applying the following algo-

rithm, whereP ′
ij denotes the priority of subtaskτ ′ij.

P ′
im(i) = Pim(i);

for l = m(i) downto2

if P ′
il < Pil−1 thenPil−1 = P ′

il

elseP ′
il−1 = Pil−1

end;

One example transformation is a task-chain consisting of subtasks with priority se-

quence (8, 2, 5, 4, 3). The canonical form of this task-chain consists of priority sequence

(2, 2, 3, 3, 3). It was proven in [38] that transforming a task into its canonical form does

not affect its schedulability. This result allows one to check whether the canonical form of

τi is schedulable instead ofτi itself, which simplifies the analysis considerably.

Now definePmini to be the minimum priority of all subtasks ofτi. The next step is to

classify all tasksτj, j 6= i according to their relative priority levels with respect toPmini.

For example, if the canonical form ofτi consists of a single segment of priority 18, and

τj consists of priority sequence (19, 10, 19, 10, 25, 10), or,(H,L, H,L, H, L), whereH

stands for “higher or equal”, andL stands for “strictly lower”. There are three types of

tasks [97]:

• Type 1, orH+, tasks, with all subtask priorities higher or equal to 18. These tasks

can preempt taskτi multiple times.
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• Type 2, or(H+L+)+, tasks. The first subtask has higher priority thanτi, but it can

only preemptτi once, since it is followed by subtasks of lower priority. Multiple

tasks of this type may preemptτi, but only for the first segment. The non-first

priority segments cause ablockingeffect as with type 4 tasks.

• Type 3, or((HL)+H), tasks. They differ from type 2 since they end with a high

priority segment. We omit the discussion of type 3 tasks, which is quite involved,

since they do not appear in the example we consider in this chapter.

• Type 4, or(L+H+)+L+, tasks. The first subtask has lower priority thanτi. Any

one of the following subtask segments can have ablockingeffect onτi, but only one

such segment among all tasks of type 4 can have such a blocking effect.

• Type 5, orL+, tasks. They have no effect on completion time ofτi, and can be

ignored.

Suppose we are calculating response time of taskti. To simplify discussions, let’s

assume the canonical form ofti consists of subtasks of uniform priorityPi. If this as-

sumption does not hold, the general principles discussed here still apply to each individual

subtask segment. DefineH1(i), H2(i), H4(i) to be the indices of all tasks of type 1, 2, 4,

respectively.

For eachj ∈ H2(i), let B2(i, j) be the execution time of thefirst H+ segment of task

τj. B2(i, j) denotes thepreemptiontime caused byτj to τi. Then the total preemption time

suffered byτi is:

B2(i) =
∑

j∈H2(i)

B2(i, j)

For eachj ∈ H2(i)∪H4(i), let B4(i, j) be theblockingtime suffered byτi, caused by

all H+ segments of taskτj of type 4, and allnon-firstH+ segments of taskτj of type 2.
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Then the total blocking time suffered byτi is:

B4(i) = max(B4(i, j)|j ∈ H4(i) ∪H2(i))

For a Type 2 task, only the first higher priority segment should be counted inB2(i),

while the remaining segments should be counted inB4(i). Since multiple tasks of Type 2

can use theirfirst segments to preemptti, thereforeB2(i) is asumof them; while only one

task of Type 2 or 3 can use itsnon-firstsegment to preemptti, thereforeB4(i) is amaxof

them.

In order to adapt the HKL algorithm to the UML-RT model, we need to take into

account additional blocking timeB(i) caused by the RTC semantics of capsules and mu-

tually exclusive access to passive objects.

B(i) =
∑

k,l,j,k!=i,Pkl<Pij ,O(τkl)=O(τij)

Ckl +
∑

m,n,j,m!=i,Pmn<Pij ,PO(τmn)∩PO(τij)6=φ

Cmn

The first blocking term is due to lower priority application scenarios sharing the same

capsule and the RTC semantics. The second term is due to sharing of passive objects.

The equation for calculating the Worst-Case Response Time (WCRT) of taskτi is:

WCRT(i) = WCET(i) + B2(i) + B4(i) + B(i) +
∑

j∈H1(i)

dWCRT(i)

Period(j)
e ·WCET(j) (6.1)

where WCET(j) is the total Worst-Case Execution Time ofτj, and Period(j) is the exe-

cution period ofτj, if it is a periodic task, or the minimum inter-arrival time of execution

triggers forτj, if it is a sporadic task.

This is the classic RMA equation [53] with added blocking time termsB2(i) B4(i) and

B(i). If WCRT(i) is less than deadline ofτi, thenτi is schedulable.
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6.4 The Elevator Control Application Example

We use the elevator control system as an application example, taken from [28]2. Fig-

ure 6.7 shows the 8 capsules and 1 data object involved in a single-processor imple-

mentation. According to theCapsule-based Multi-threading, Capsule-based Priority-

assignmentapproach, each capsule is assigned a fixed priority. There are three end-to-end

scenarios consisting of subtasks of varying priorities:

1. Stop Elevator at Floor. The elevator is equipped with arrival sensors that trigger

an interrupt to the capsulearrival sensors interfacewhen the elevator approaches

a floor, which in turn sends a messageapproaching floorto the capsuleelevator

controller. Theelevator controllerinvokes a synchronous method call on the passive

data objectelevator status and planobject to determine whether the elevator should

stop or not. We do not model method invocations to passive data objects as separate

subtasks, since the passive object inherits the thread and priority from the invoking

capsule, and can be viewed as an extension of the invoking capsule. But we do need

to take into account blocking time caused by sharing of passive objects by multiple

threads.

2. Select Destination. The user presses a button in the elevator to choose his/her desti-

nation, which triggers an interrupt to the capsuleelevator buttons interface, which in

turn sends a messageelevator requestto the capsuleelevator manager. Theelevator

managerreceives the message and records destination in the passive objectelevator

status and plan, which is a shared object protected by the priority ceiling protocol,

and causes blocking time to the higher priority subtask.

2The analysis technique described in [28] is not entirely accurate, since it makes the pessimistic assump-
tion on the number of preemptions caused by the higher priority task on the lower priority task. Also the
original example is not based on UML-RT, but the concepts are similar enough to be viewed as a UML-RT
model.
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3. Request Elevator. The user presses the up or down button at a floor, which triggers

an interrupt to the capsulefloor buttons interface, which in turn sends a message

service requestto the capsulescheduler. The capsuleschedulerreceives message

and interrogates the passive objectelevator status and planto determine if an ele-

vator is on its way to this floor. If not, theschedulerselects an elevator and sends a

messageelevator requestto the capsuleelevator manager. The rest of the sequence

is identical to theselect destinationscenario.

t5

DirectionLamps
Monitor

Monitor
FloorLamps

Interface
FloorButtons

Manager
ElevatorElevatorButtons

Interface

Elevator
ControllerInterface

ArrivalSensors

Scheduler

t1:Stop Elevator at Floor

t11 t12

t2:Select Destination

t21 t22

t3:Request Elevator

t31t32

t41

t51

ElevatorStatusPlan

t33

t4

Figure 6.7: The event sequence diagram for the single-processor elevator control system.

Task Period WCET Priority WCRT
t1: Stop elevator at floor
t11: Arrival Sensors Interface 50 2 9 -
t12: Elevator Controller 50 5 6 34
t2: Select Destination
t21: Elevator Buttons Interface 100 3 8 -
t22: Elevator Manager 100 6 5 40
t3: Request Elevator
t31: Floor Buttons Interface 200 4 7 -
t32: Scheduler 200 20 4 -
t33: Elevator Manager 200 6 5 46
t4, t5: Other Tasks
t41: Floor Lamps Monitor 500 5 3 58
t51: Direction Lamps Monitor 500 5 2 63

Table 6.1: The task set of the single-processor elevator control system. Note that it is a
common practice to assign a higher priority to the interrupt handler tasks [53],
i.e., theInterfacesubtasks here, in order to avoid losing any interrupts.
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Consider a building with 10 floors and 3 elevators. All end-to-end tasks are interrupt

driven, not periodic. In order to perform schedulability analysis, we estimate the worst-

case arrival rate of the interrupts and use them as approximations for periods assigned to

each task. For example, theRequest Elevatorscenario is assigned a period of 200 ms by

assuming that all 18 floor buttons (up and down buttons for each floor, except the top and

bottom floors) are pressed within 3.6 seconds, which is likely to be the worst-case arrival

rate.

Let’s consider the end-to-end taskt1 Stop Elevator at Floor, which consists of two

subtasks with execution time 2 and 5, priorities 9 and 6, respectively. Its canonical form is

a single task with execution time 7 and priority 6. Other tasks can be classified as follows:

• t2 andt3 are type 2 tasks, with a higher-priority segment followed by a lower-priority

segment.

• t4 andt5 are type 5 tasks, with all segments having priorities lower than 6. They

have no effect on the WCRT oft1.

Preemption timeB2(1) caused by type 2 taskst2 and t3 is t21 + t31 = 3 + 4 = 7;

blocking timeB4(i) caused by type 2 and 4 tasks is 0, since there are no non-first higher-

priority segments of type 2 tasks, and no type 4 tasks at all; blocking timeBi caused by

theschedulerobject accessing its critical section is 20ms. Therefore,

WCRT(1) = WCET(1) + B2(1) + B4(i) + B(i) = (2 + 5) + (3 + 4) + 20 = 34

which is less than the period 50, thereforet1 is schedulable.

Next, let’s consider the end-to-end taskt2 Select Destination, which consists of two

subtasks with execution time 3 and 6, priorities 8 and 5, respectively. Its canonical form

is a single task with execution time 11 and priority 5. Other tasks can be classified as

follows:
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• t1 is a type 1 task, with a single higher-priority segment with WCET 7.

• t3 is a type 2 task, with a higher-priority segmentt31 followed by lower-priority

segmentst32 andt33.

• t4 andt5 are type 5 tasks, with all segments having priorities lower than 5.

Preemption timeB2(2) caused by type 2 tasks ist31 = 4. There are no type 4 tasks.

Again, blocking timeBi caused by theschedulerobject accessing its critical section is

20ms. We use Equation 6.1 to get:

WCRT(2) = 9 + 4 + 20 + dWCRT(2)

50
e · 7 = 40

We can calculate WCRT for the other end-to-end tasks, as shown in the WCRT column

of Table 6.1. Note that we associate the WCRT of the end-to-end task with the last segment

of the task in the table. No deadlines are missed, and the system is schedulable.

In this example, the native runtime model of UML-RT, i.e., SMSP, actually performs

worse than CMCP and CMSP in terms of task response times. However, since all three

approaches result in a schedulable system, the engineer may choose SMSP due to its soft-

ware engineering benefits, as discussed in Section 6.2.4.
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Figure 6.8: The event sequence diagram for the distributed elevator control system.
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Task Period WCET Priority Processor
t1: Stop elevator at floor
t11: Arrival Sensors Interface 50 2 9 ElevatorCPU
t12: Elevator Controller 50 5 6 ElevatorCPU
t13: Send Messagearrived 50 2 6 CAN bus
t14: Elevator Status Plan Server 50 3 9 SchedulerCPU
t2: Select Destination
t21: Elevator Buttons Interface 100 3 8 ElevatorCPU
t22: Elevator Manager 100 6 5 ElevatorCPU
t23: Send Messageelevator commitment 100 2 5 CAN bus
t24: Elevator Status Plan Server 100 3 9 SchedulerCPU
t3: Request Elevator
t31: Floor Buttons Interface 200 5 7 FloorCPU
t32: Send Messageservice request 200 2 4 CAN bus
t33: Elevator Scheduler 200 20 8 SchedulerCPU
t34: Send Messagescheduler request 200 2 4 CAN bus
t35: Elevator Manager 200 6 4 ElevatorCPU
t36: Send Messageelevator commitment 200 2 4 CAN bus
t37: Elevator Status Plan Server 200 3 9 SchedulerCPU
t4, t5: Other Tasks
t41: Floor Lamps Monitor 500 5 3 FloorCPU
t51: Direction Lamps Monitor 500 5 2 FloorCPU

Table 6.2: The task set of the multi-processor elevator control system.

The single-processor system may become overloaded when more floors and more el-

evators are involved. In order to be scalable to a large number of floors and elevators,

the system needs to be redesigned to take advantage of multiple processors connected via

a network, possibly the Controller Area Network (CAN bus). Figure 6.8 shows the sys-

tem architecture. There is oneElevatorCPUfor each elevator, and oneFloorCPU for each

floor. There is only oneSchedulerCPUthat is a central decision point for scheduling eleva-

tor requests, consisting of the capsulescheduleras well as another capsuleelevator status

and plan serverfor handling updates and queries from the capsules from theElevatorCPU

andFloorCPU. Table 6.2 shows the task set of the multi-processor elevator control system

for a system consisting of 12 elevators and 40 floors. Each scenario spans multiple pro-

cessors, and we need to take into account delays caused by scheduling of network packets.
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We can use the holistic schedulability analysis technique [95], with our enhanced HKL

algorithm as a subroutine, to calculate the end-to-end WCRT of distributed tasks. We omit

the details of this calculation due to space limitations, but the analysis results show that all

tasks meet their deadlines.

6.5 Summary

Most UML CASE tools provide code generators for generating functional code in pro-

gramming languages such as C/C++ or Java, but they generally ignore timing and schedu-

lability issues. For example, the CASE tool RoseRT [46] maps all capsules into a single

thread by default. Messages targeted to this thread is queued and processed in priority

order non-preemptively. We describe a technique for analyzing schedulability of the na-

tive runtime model of UML-RT, Capsule-based Multi-threading, Capsule-based Priority

Assignment(CMCP), by modifying the HKL algorithm [38] to add blocking time caused

by the Run-To-Completion semantics of UML-RT. This technique can be used as the inner

loop subroutine for determining system schedulability during design-space exploration to

synthesize a real-time implementation from a logical UML-RT model. We believe this

work bridges the gap between a logical UML-RT model and its real-time implementation

on the target platform by giving the engineer powerful analysis techniques for assessing

real-time properties of different ways of mapping capsules into threads. It focuses on the

nonfunctional and real-time aspects of implementation synthesis, and is complementary to

the existing code generators, which focuses on the functional aspects. The logical next step

is to implement the schedulability analysis algorithms discussed in this chapter, perhaps

as a plug-in to RoseRT that exchanges data with RoseRT through the XMI interface.

In this chapter, we have considered schedulability analysis techniques given a system

configuration of capsule-to-thread grouping and thread priority assignment, but it is an



148

open issue as to how to arrive at such a configuration. Exhaustive search is not feasible in

general because the size of design space grows exponentially with the number of capsules

or priorities. There may be some guidelines to follow, such as “assign higher priority to

interrupt service routines to avoid losing interrupts”, but not for the system in general.

We plan to investigate applicability of optimization techniques such as branch-and-bound,

simulated annealing and genetic algorithms to design space exploration in order to achieve

a close-to-optimal design in terms of objectives such as minimized number of threads or

minimized response time for critical application scenarios.



CHAPTER VII

Conclusions and Future Work

In this thesis, we have developed a set of techniques and tools for model-based design

and analysis of Embedded Real-Time (ERT) software, mainly focusing on issues related

to analysis and implementation synthesis.

First, we have developed model-level static analysis techniques and implemented them

in a software tool Automatic Integration of Reusable Embedded Software (AIRES), as

part of the MoBIES tool-chain. Traditional static analysis techniques works at level of

programming languages, with abstractions such as statements, variables and procedures,

while AIRES works at the level of models, with abstractions such as components, ports and

connectors. It has been evaluated with the Goal-Quality-Metric methodology and received

positive feedback from our industrial partner. This work is discussed in Chapter III.

AIRES mainly focuses on the static structural aspects of the AMC software while ig-

noring the dynamics of component interactions. The AMC software is component-based

with many different types of components, each with its unique functionality and inter-

faces, acting as basic building blocks of a complete system. The documentation provided

by our industrial partner describes the dynamic behavior of various component types in

detail. However, descriptions in natural language are not formal and subject to misinter-

pretation or misunderstanding. In order to perform deeper semantic analysis, we use the

149
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model-checker LTSA to provide a formal model of the AMC software in order to check for

dynamic behavioral properties such as safety and liveness. We also describe several tech-

niques to improve scalability of model-checking by exploiting application-level domain-

semantics. This work is discussed in Chapter IV.

ERT systems typically consist of embedded software and embedding physical environ-

ment with tight coupling and interaction in-between. To extend the scope of modeling and

analysis fromsoftwareto systemlevel, we describe an integrated approach to modeling

and analysis of ERT systems, where the embedded software and the embedding physical

environment are modeled and analyzed within the same modeling formalism. This enables

the engineer to have a holistic view of the entire system and perform integrated tradeoff

analysis. We use Timed Petri-Nets (TPN) [74] as the modeling formalism to illustrate this

methodology, but the general concept is not restricted to TPN. We also describe a syntax-

directed, automated transformation technique from TPN to Timed Automata (TA) in order

to take advantage of the TA model-checker UPPAAL for verification purposes. This work

is discussed in Chapter V.

To bridge the gap between models and implementation on the target platform, many

modeling tools come with automatic code generators to translate models into code in a pro-

gramming language. However, current code generation technology focuses on functional

issues while largely ignoring non-functional and real-time issues. In order to facilitate

synthesis of real-time implementations from models, we have developed schedulability

analysis algorithms for the native implementation model of UML-RT [78], suitable for ap-

plications with tight interaction between different rate groups. This algorithm can be used

in the inner loop of state-space exploration to find a suitable implementation architecture

for a logical UML-RT model that satisfies timing constraints. This work is discussed in

Chapter VI.
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How would an embedded software engineer benefit from my thesis? Even though

we have used AMC as a main target application domain, our work has more general ap-

plicability to component-based embedded software, e.g., theCORBA Component Model

(CCM) [70], a widely adopted industry standard from Object Management Group (OMG) [69].

In fact the AMC software is currently being migrated to the CCM platform for its next gen-

eration. For more general large-scale embedded software, the event-based publish/subscribe

architectural style of AMC is fairly common, due to its nice property of decoupling be-

tween publishers and subscribers. The concepts of static analysis and model-checking are

applicable to most such applications, with some adaptation of the tools themselves, since

the current tools have a lot of AMC-specific details.

It used to be the case that embedded software engineers cannot afford to use Object-

Oriented (OO) concepts due to concerns with their overhead. But as CPUs become faster

and cheaper, OO is becoming more and more popular for real-time embedded software

development, with UML as the most representative example. In this case, implementation

synthesis techniques discussed in Chapter VI are useful for helping the engineer make de-

sign decisions when generating a real-time implementation from logical models in UML.

This thesis mainly focuses on the aspects of algorithms and tools, but has largely ig-

nored other important methodological and organizational issues involved in adopting a

model-driven approach in embedded real-time software development, which may well

prove to be the real hurdle to industry adoption of MDD. The Rational Unified Process

(RUP) [72] is a popular methodology for design and analysis of object-oriented enterprise

applications, but there is not a corresponding dominant methodology in the embedded

software domain. We plan to develop a RUP-like software development process and a

workflow tool supporting it, customized to specific domains such as automotive embedded

systems. However, it may be difficult to explore these issues in a university environment,
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hence calling for close collaboration between industry and academia.

The model-based approach has been gaining acceptance in the development of auto-

motive embedded control systems, as evidenced by the popularity of modeling and sim-

ulation tools such as Matlab/Simulink from Mathworks [65], Statemate Magnum from

ILogix [47], ASCET-SD from ETAS [23]. As part of the MoBIES program and in collab-

oration with our industrial and academic partners, we have developed a set of techniques

and tools for modeling and analysis of automotive applications [54], conceptually similar

to the AIRES tool for Avionics Mission Computing [36]. In this section I briefly touch

upon the possibilities for our future work in model-based approaches for embedded sys-

tems in the automotive domain.

Integrated Modeling and Simulation of Networked Control Systems The design

and analysis techniques discussed in this thesis have generally ignored the issues related

to distributed systems such as scheduling of network packets. CAN bus is the most popular

network protocol used in distributed embedded control systems in the car today. It specifies

the datalink and physical layers of the OSI network stack, and is characterized as Carrier

Sense Multiple Access/Collision Aviodance (CSMA/CA) with Non-Destructive Priority

Arbitration. Unlike other popular networking protocols such as Ethernet, the CAN proto-

col is deterministic, and can be analyzed with the Rate Monotonic Analysis (RMA) [53]

technique. There are also tools on the market today for simulation of CAN networks, such

as those from Vector CANTech [100].

Control performance of a distributed control system deteriorates with longer network

delay and delay jitter. When the delay or jitter gets large enough, the control system may

become unstable. It is desirable to explicitly quantify and model network-induced delays

and their effects on control performance such as rise time, overshoot and steady-state error.
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One way of doing this is to perform response time analysis of the taskset, and insert delay

blocks into the Simulink model with delay equal to the Worst-Case Response Times of

the particular tasks [35]. This approach does not take into account the effects of delay

jitters on control performance. A better approach is to implement a simulator for CAN

bus within Simulink using S-functions, and simulate the network packet delays together

with the control algorithm and plant dynamics. This would allow us to observe the effects

of packet transmission delay, jitter or loss on control performance. This idea is a natural

extension of Chapter V, where the emphasis is on integrated modeling and analysis of the

embedded software together with the embedding physical environment. In Chapter V, we

discussed the state space explosion problem that plagues the model-checking approach.

Here we plan to take an alternative approach of using simulation for verification, which is

much more scalable than model-checking, and is already widely used in industry practice.

Code Generation from UML-SPT to OSEK API In Chapter VI, we discussed imple-

mentation synthesis from UML-RT models to a multi-threaded implementation, focusing

on timing and scheduling issues. However, there is another aspect to implementation syn-

thesis, that is, generation of functional code in a programming language such as C. Most

commercial UML tools come with code generators to generate functional code, e.g., from

Class Diagrams or State Transition Diagrams. UML has not been widely accepted in the

automotive embedded software domain, partly due to lack of support by UML tool ven-

dors for automotive-specific features. Here I discuss mapping rules from a UML real-time

profile into a popular Real-Time Operating System (RTOS) standard in the automotive

domain, in the hope that it will improve acceptance of UML by the automotive industry.

The UML Profile for Schedulability, Performance and Time (UML-SPT) [71], intro-

duced in Section 2.3.2, is a UML profile designed to enhance UML with real-time model-
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ing notations and facilitate development and integration of schedulability and performance

analysis tools that work on the UML models. OSEK [92] is a popular RTOS standard used

in automotive embedded systems, defined with stringent timing and resource constraints

in mind. It consists of three parts:OSEK-OSspecifies the operating system,OSEK-COM

specifies the communications mechanism, andOSEK-NMspecifies the network manage-

ment system. We mainly focus on OSEK-OS here. It describes a static RTOS where all

kernel objects such as tasks, counters, alarms, events, messages and resources are created

at compile time. The OSEK Implementation Language (OIL) file is used to describe the

kernel objects, and construct a customized kernel for the application, ensuring that only

the necessary kernel objects and mechanisms are included in the kernel build. This min-

imizes the size and overhead of the RTOS as compared to the approach where all RTOS

mechanisms are included regardless of whether the application needs them.

We have done some preliminary investigations [37] into generation of C code that

conform to the OSEK API from UML-SPT. Table 7.1 shows some mapping rules, and

Appendix B shows an example application scenario and OSEK code generated from it

based on the mapping rules. The logical next step is to implement the code generator

within an open-source UML tool.
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RT-UML OSEK
¿SAResourceÀ Resource
¿SAResourceÀ.
SAAccessControl

Priority Ceiling Protocol. OSEK
does not implement other proto-
cols specified in RT-UML such
as Priority Inheritance

¿GRMAquireÀ
¿GRMReleaseÀ

API calls GetResource() and Re-
leaseResource()

¿SASchedulableÀ Basic Task. The OSEK concept
of an extended task is not present
in RT-UML

¿SATriggerÀ Alarm. Declared in the OIL file,
and set with API calls SetRe-
lAlarm() and SetAbsAlarm(), to
set an alarm with either relative
or absolute expiration time.

¿SAResponseÀ.
SAAbsDeadline
¿SAActionÀ.
SARelDeadline
¿SAResponseÀ.
RTduration

No direct mapping. OSEK does
not support specifying absolute
deadlines for aperiodic tasks, or
relative deadlines for intermedi-
ate tasks, or task’s worst-case ex-
ecution time. However, we can
always usead hocannotations to
specify these attributes.

Table 7.1:Mapping rules from UML-SPT entities to OSEK entities. This is intended to be
a small sample rather than a comprehensive definition.
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APPENDIX A

FSP Model for the MediumSP Scenario

This is the FSP model for the MediumSP (Medium Single-Processor) scenario as shown

in Figures 3.7 and 3.8.

Timer20hz = (timeout20hz->timer20hzDone->tick->Timer20hz).
Timer1hz = (timeout1hz->timer1hzDone->Delay20[1]),
Delay20[t:1..20] = (when (t==20) tick->Timer1hz
|when (t < 20) tick->Delay20[t+1]).

ClosedEDComp =
(inEvt->issueGDCall->receiveGDReply->outEvt->ClosedEDComp
|receiveGDCall->issueGDReply->ClosedEDComp).

OpenEDComp =
(inEvt->issueGDCall->receiveGDReply->outEvt->OpenEDComp
|receiveGDCall->issueGDReply->OpenEDComp
|receiveSDCall->issueSDReply->outEvt->OpenEDComp).

DisplayComp =
(inEvt->issueGDCall->receiveGDReply->display->DisplayComp).

DeviceComp = (inEvt->outEvt->DeviceComp
|receiveGDCall->issueGDReply->DeviceComp).

LazyActiveComp = (inEvt->outEvt->DataStale
|receiveGDCall->issueGDReply->LazyActiveComp),
DataStale = (receiveGDCall->issueGDCall->receiveGDReply
->issueGDReply->LazyActiveComp).

ModeSourceComp = (inEvt->ModeSourceComp
|inEvt->enable1->ModeSourceComp
|inEvt->disable1->ModeSourceComp
|inEvt->enable2->ModeSourceComp
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|inEvt->disable2->ModeSourceComp).

ModalComp = Enabled,
Disabled = (enable->Enabled|disable->Disabled
|inEvt->Disabled), Enabled = (enable->Enabled
|disable->Disabled
|inEvt->issueGDCall->receiveGDReply->outEvt->Enabled
|receiveGDCall->issueGDReply->Enabled).

PushDataSourceComp =
(inEvt->issueSDCall->receiveSDReply->PushDataSourceComp).

PassiveComp =
(receiveSDCall->issueSDReply->outEvt->PassiveComp).

Event(ID=1)=(inEvt[ID]->matched->Event).
||InputCorrelator(NumInputs=1)= ( if(NumInputs>0) then
(forall[i:1..NumInputs] Event(i)) ).

||Thread1hz = (Timer1hz ||earthModel:PushDataSourceComp
||wayPoint1:PassiveComp ||wayPoint2:PassiveComp
||wayPoint3:PassiveComp ||wayPoint4:PassiveComp
||wayPoint5:PassiveComp ||wayPoint6:PassiveComp
||wayPoint7:PassiveComp ||wayPoint8:PassiveComp
||wayPoint9:PassiveComp ||wayPoint10:PassiveComp
||leg1:LazyActiveComp ||leg2:LazyActiveComp ||leg3:LazyActiveComp
||leg4:LazyActiveComp ||leg5:LazyActiveComp
||correlatorLeg1:InputCorrelator(3)
||correlatorLeg2:InputCorrelator(3)
||correlatorLeg3:InputCorrelator(3)
||correlatorLeg4:InputCorrelator(3)
||correlatorLeg5:InputCorrelator(2) ||route::OpenEDComp
||correlatorRoute:InputCorrelator(5) ||groundPoint:ClosedEDComp
||flightPlan:ClosedEDComp ||navSteering:ModalComp
||waypointSteering:ModalComp ||pilotPref:OpenEDComp
||flightPlanDisplay:DisplayComp ||navDisplay:DisplayComp
||pilotControls:ModeSourceComp)
/{timeout1hz/earthModel.inEvt,
earthModel.issueSDCall/wayPoint1.receiveSDCall,
earthModel.issueSDCall/wayPoint2.receiveSDCall,
earthModel.issueSDCall/wayPoint3.receiveSDCall,
earthModel.issueSDCall/wayPoint4.receiveSDCall,
earthModel.issueSDCall/wayPoint5.receiveSDCall,
earthModel.issueSDCall/wayPoint6.receiveSDCall,
earthModel.issueSDCall/wayPoint7.receiveSDCall,
earthModel.issueSDCall/wayPoint8.receiveSDCall,
earthModel.issueSDCall/wayPoint9.receiveSDCall,
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earthModel.issueSDCall/wayPoint10.receiveSDCall,

earthModel.receiveSDReply/wayPoint1.issueSDReply,
earthModel.receiveSDReply/wayPoint2.issueSDReply,
earthModel.receiveSDReply/wayPoint3.issueSDReply,
earthModel.receiveSDReply/wayPoint4.issueSDReply,
earthModel.receiveSDReply/wayPoint5.issueSDReply,
earthModel.receiveSDReply/wayPoint6.issueSDReply,
earthModel.receiveSDReply/wayPoint7.issueSDReply,
earthModel.receiveSDReply/wayPoint8.issueSDReply,
earthModel.receiveSDReply/wayPoint9.issueSDReply,
earthModel.receiveSDReply/wayPoint10.issueSDReply,

wayPoint1.outEvt/correlatorLeg1.inEvt[1],
wayPoint2.outEvt/correlatorLeg1.inEvt[2],
wayPoint3.outEvt/correlatorLeg1.inEvt[3],
correlatorLeg1.matched/leg1.inEvt,

wayPoint3.outEvt/correlatorLeg2.inEvt[1],
wayPoint4.outEvt/correlatorLeg2.inEvt[2],
wayPoint5.outEvt/correlatorLeg2.inEvt[3],
correlatorLeg2.matched/leg2.inEvt,

wayPoint5.outEvt/correlatorLeg3.inEvt[1],
wayPoint6.outEvt/correlatorLeg3.inEvt[2],
wayPoint7.outEvt/correlatorLeg3.inEvt[3],
correlatorLeg3.matched/leg3.inEvt,

wayPoint7.outEvt/correlatorLeg4.inEvt[1],
wayPoint8.outEvt/correlatorLeg4.inEvt[2],
wayPoint9.outEvt/correlatorLeg4.inEvt[3],
correlatorLeg4.matched/leg4.inEvt,

wayPoint9.outEvt/correlatorLeg5.inEvt[1],
wayPoint10.outEvt/correlatorLeg5.inEvt[2],
correlatorLeg5.matched/leg5.inEvt,

leg1.issueGDCall/wayPoint1.receiveGDCall,
leg1.issueGDCall/wayPoint2.receiveGDCall,
leg1.issueGDCall/wayPoint3.receiveGDCall,
leg1.receiveGDReply/wayPoint1.issueGDReply,
leg1.receiveGDReply/wayPoint2.issueGDReply,
leg1.receiveGDReply/wayPoint3.issueGDReply,

leg2.issueGDCall/wayPoint3.receiveGDCall,
leg2.issueGDCall/wayPoint4.receiveGDCall,
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leg2.issueGDCall/wayPoint5.receiveGDCall,
leg2.receiveGDReply/wayPoint3.issueGDReply,
leg2.receiveGDReply/wayPoint4.issueGDReply,
leg2.receiveGDReply/wayPoint5.issueGDReply,

leg3.issueGDCall/wayPoint5.receiveGDCall,
leg3.issueGDCall/wayPoint6.receiveGDCall,
leg3.issueGDCall/wayPoint7.receiveGDCall,
leg3.receiveGDReply/wayPoint5.issueGDReply,
leg3.receiveGDReply/wayPoint6.issueGDReply,
leg3.receiveGDReply/wayPoint7.issueGDReply,

leg4.issueGDCall/wayPoint7.receiveGDCall,
leg4.issueGDCall/wayPoint8.receiveGDCall,
leg4.issueGDCall/wayPoint9.receiveGDCall,
leg4.receiveGDReply/wayPoint7.issueGDReply,
leg4.receiveGDReply/wayPoint8.issueGDReply,
leg4.receiveGDReply/wayPoint9.issueGDReply,

leg5.issueGDCall/wayPoint9.receiveGDCall,
leg5.issueGDCall/wayPoint10.receiveGDCall,
leg5.receiveGDReply/wayPoint9.issueGDReply,
leg5.receiveGDReply/wayPoint10.issueGDReply,

leg1.outEvt/correlatorRoute.inEvt[1],
leg2.outEvt/correlatorRoute.inEvt[2],
leg3.outEvt/correlatorRoute.inEvt[3],
leg4.outEvt/correlatorRoute.inEvt[4],
leg5.outEvt/correlatorRoute.inEvt[5],
correlatorRoute.matched/route.inEvt,

route.issueGDCall/leg1.receiveGDCall,
route.issueGDCall/leg2.receiveGDCall,
route.issueGDCall/leg3.receiveGDCall,
route.issueGDCall/leg4.receiveGDCall,
route.issueGDCall/leg5.receiveGDCall,
route.receiveGDReply/leg1.issueGDReply,
route.receiveGDReply/leg2.issueGDReply,
route.receiveGDReply/leg3.issueGDReply,
route.receiveGDReply/leg4.issueGDReply,
route.receiveGDReply/leg5.issueGDReply,

route.outEvt/groundPoint.inEvt,
groundPoint.issueGDCall/route.receiveGDCall,
groundPoint.receiveGDReply/route.issueGDReply,

route.outEvt/flightPlan.inEvt,
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flightPlan.issueGDCall/route.receiveGDCall,
flightPlan.receiveGDReply/route.issueGDReply,

groundPoint.outEvt/navSteering.inEvt,
navSteering.issueGDCall/groundPoint.receiveGDCall,
navSteering.receiveGDReply/groundPoint.issueGDReply,

navSteering.outEvt/navDisplay.inEvt,
navDisplay.issueGDCall/navSteering.receiveGDCall,
navDisplay.receiveGDReply/navSteering.issueGDReply,

flightPlan.outEvt/waypointSteering.inEvt,
waypointSteering.issueGDCall/flightPlan.receiveGDCall,
waypointSteering.receiveGDReply/flightPlan.issueGDReply,

waypointSteering.outEvt/flightPlanDisplay.inEvt,
flightPlanDisplay.issueGDCall/waypointSteering.receiveGDCall,
flightPlanDisplay.receiveGDReply/waypointSteering.issueGDReply,

flightPlan.outEvt/pilotPref.inEvt,
pilotPref.issueGDCall/flightPlan.receiveGDCall,
pilotPref.receiveGDReply/flightPlan.issueGDReply,

timeout1hz/pilotControls.inEvt,
pilotControls.enable1/navSteering.enable,
pilotControls.enable2/waypointSteering.enable,
pilotControls.disable1/navSteering.disable,
pilotControls.disable2/waypointSteering.disable,

navDisplay.display/timer1hzDone,
flightPlanDisplay.display/timer1hzDone }.

||Thread20hz = (Timer20hz ||gps:DeviceComp ||ins:DeviceComp
||adc:DeviceComp ||airframe:LazyActiveComp
||correlatorAirframe:InputCorrelator(4) ||navDisplay:DisplayComp
||radar1:DeviceComp ||radar2:DeviceComp ||trackSensor1:DeviceComp
||trackSensor2:DeviceComp ||trackSensor3:DeviceComp
||trackSensor4:DeviceComp ||track1:ClosedEDComp
||track2:ClosedEDComp ||track3:ClosedEDComp ||track4:ClosedEDComp
||track5:ClosedEDComp ||track6:ClosedEDComp ||track7:ClosedEDComp
||track8:ClosedEDComp ||track9:ClosedEDComp ||track10:ClosedEDComp
||tacticalSteering:OpenEDComp
||correlatorTacticalSteering:InputCorrelator(12)
||correlatorTrack1:InputCorrelator(3)
||correlatorTrack2:InputCorrelator(2)
||correlatorTrack5:InputCorrelator(2)
||correlatorTrack7:InputCorrelator(2)
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||correlatorTrack8:InputCorrelator(2)
||correlatorTrack10:InputCorrelator(2)
||tacticalDisplay1:DisplayComp ||tacticalDisplay2:DisplayComp
||hudDisplay:DisplayComp)
/{timeout20hz/gps.inEvt,
timeout20hz/ins.inEvt, timeout20hz/adc.inEvt,
timeout20hz/radar1.inEvt, timeout20hz/radar2.inEvt,
timeout20hz/trackSensor1.inEvt, timeout20hz/trackSensor2.inEvt,
timeout20hz/trackSensor3.inEvt, timeout20hz/trackSensor4.inEvt,

gps.outEvt/correlatorAirframe.inEvt[1],
ins.outEvt/correlatorAirframe.inEvt[2],
adc.outEvt/correlatorAirframe.inEvt[3],
radar1.outEvt/correlatorAirframe.inEvt[4],
correlatorAirframe.matched/airframe.inEvt,

airframe.issueGDCall/gps.receiveGDCall,
airframe.receiveGDReply/gps.issueGDReply,
airframe.issueGDCall/ins.receiveGDCall,
airframe.receiveGDReply/ins.issueGDReply,
airframe.issueGDCall/adc.receiveGDCall,
airframe.receiveGDReply/adc.issueGDReply,
airframe.issueGDCall/radar1.receiveGDCall,
airframe.receiveGDReply/radar1.issueGDReply,

airframe.outEvt/navDisplay.inEvt,
navDisplay.issueGDCall/airframe.receiveGDCall,
navDisplay.receiveGDReply/airframe.issueGDReply,

trackSensor1.outEvt/correlatorTrack1.inEvt[1],
trackSensor2.outEvt/correlatorTrack1.inEvt[2],
trackSensor3.outEvt/correlatorTrack1.inEvt[3],
correlatorTrack1.matched/track1.inEvt,
track1.issueGDCall/trackSensor1.receiveGDCall,
track1.receiveGDReply/trackSensor1.issueGDReply,
track1.issueGDCall/trackSensor2.receiveGDCall,
track1.receiveGDReply/trackSensor2.issueGDReply,
track1.issueGDCall/trackSensor3.receiveGDCall,
track1.receiveGDReply/trackSensor3.issueGDReply,

trackSensor1.outEvt/correlatorTrack2.inEvt[1],
trackSensor2.outEvt/correlatorTrack2.inEvt[2],
correlatorTrack2.matched/track2.inEvt,
track2.issueGDCall/trackSensor1.receiveGDCall,
track2.receiveGDReply/trackSensor1.issueGDReply,
track2.issueGDCall/trackSensor2.receiveGDCall,
track2.receiveGDReply/trackSensor2.issueGDReply,
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trackSensor1.outEvt/track3.inEvt,
track3.issueGDCall/trackSensor1.receiveGDCall,
track3.receiveGDReply/trackSensor1.issueGDReply,

trackSensor2.outEvt/track4.inEvt,
track4.issueGDCall/trackSensor2.receiveGDCall,
track4.receiveGDReply/trackSensor2.issueGDReply,

trackSensor3.outEvt/correlatorTrack5.inEvt[1],
trackSensor4.outEvt/correlatorTrack5.inEvt[2],
correlatorTrack5.matched/track5.inEvt,
track5.issueGDCall/trackSensor3.receiveGDCall,
track5.receiveGDReply/trackSensor3.issueGDReply,
track5.issueGDCall/trackSensor4.receiveGDCall,
track5.receiveGDReply/trackSensor4.issueGDReply,

trackSensor4.outEvt/track6.inEvt,
track6.issueGDCall/trackSensor4.receiveGDCall,
track6.receiveGDReply/trackSensor4.issueGDReply,

trackSensor1.outEvt/correlatorTrack7.inEvt[1],
trackSensor2.outEvt/correlatorTrack7.inEvt[2],
correlatorTrack7.matched/track7.inEvt,
track7.issueGDCall/trackSensor1.receiveGDCall,
track7.receiveGDReply/trackSensor1.issueGDReply,
track7.issueGDCall/trackSensor2.receiveGDCall,
track7.receiveGDReply/trackSensor2.issueGDReply,

trackSensor3.outEvt/correlatorTrack8.inEvt[1],
trackSensor4.outEvt/correlatorTrack8.inEvt[2],
correlatorTrack8.matched/track8.inEvt,
track8.issueGDCall/trackSensor3.receiveGDCall,
track8.receiveGDReply/trackSensor3.issueGDReply,
track8.issueGDCall/trackSensor4.receiveGDCall,
track8.receiveGDReply/trackSensor4.issueGDReply,

trackSensor4.outEvt/track9.inEvt,
track9.issueGDCall/trackSensor4.receiveGDCall,
track9.receiveGDReply/trackSensor4.issueGDReply,

trackSensor3.outEvt/correlatorTrack10.inEvt[1],
trackSensor4.outEvt/correlatorTrack10.inEvt[2],
correlatorTrack10.matched/track10.inEvt,
track10.issueGDCall/trackSensor3.receiveGDCall,
track10.receiveGDReply/trackSensor3.issueGDReply,
track10.issueGDCall/trackSensor4.receiveGDCall,
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track10.receiveGDReply/trackSensor4.issueGDReply,

airframe.outEvt/correlatorTacticalSteering.inEvt[1],
radar2.outEvt/correlatorTacticalSteering.inEvt[2],
track1.outEvt/correlatorTacticalSteering.inEvt[3],
track2.outEvt/correlatorTacticalSteering.inEvt[4],
track3.outEvt/correlatorTacticalSteering.inEvt[5],
track4.outEvt/correlatorTacticalSteering.inEvt[6],
track5.outEvt/correlatorTacticalSteering.inEvt[7],
track6.outEvt/correlatorTacticalSteering.inEvt[8],
track7.outEvt/correlatorTacticalSteering.inEvt[9],
track8.outEvt/correlatorTacticalSteering.inEvt[10],
track9.outEvt/correlatorTacticalSteering.inEvt[11],
track10.outEvt/correlatorTacticalSteering.inEvt[12],
correlatorTacticalSteering.matched/tacticalSteering.inEvt,

tacticalSteering.issueGDCall/airframe.receiveGDCall,
tacticalSteering.receiveGDReply/airframe.issueGDReply,
tacticalSteering.issueGDCall/radar2.receiveGDCall,
tacticalSteering.receiveGDReply/radar2.issueGDReply,
tacticalSteering.issueGDCall/track1.receiveGDCall,
tacticalSteering.receiveGDReply/track1.issueGDReply,
tacticalSteering.issueGDCall/track2.receiveGDCall,
tacticalSteering.receiveGDReply/track2.issueGDReply,
tacticalSteering.issueGDCall/track3.receiveGDCall,
tacticalSteering.receiveGDReply/track3.issueGDReply,

tacticalSteering.outEvt/hudDisplay.inEvt,
hudDisplay.issueGDCall/tacticalSteering.receiveGDCall,
hudDisplay.receiveGDReply/tacticalSteering.issueGDReply,

tacticalSteering.outEvt/tacticalDisplay1.inEvt,
tacticalDisplay1.issueGDCall/tacticalSteering.receiveGDCall,
tacticalDisplay1.receiveGDReply/tacticalSteering.issueGDReply,

tacticalSteering.outEvt/tacticalDisplay2.inEvt,
tacticalDisplay2.issueGDCall/tacticalSteering.receiveGDCall,
tacticalDisplay2.receiveGDReply/tacticalSteering.issueGDReply,

navDisplay.display/timer20hzDone,
hudDisplay.display/timer20hzDone,
tacticalDisplay1.display/timer20hzDone,
tacticalDisplay2.display/timer20hzDone}.

||SYSTEM = (Thread1hz || Thread20hz).
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APPENDIX B

An Application Scenario in UML-SPT and Corresponding
OSEK Code

<<SASchedulable>>

{SAPriority=8,

<<SAAction>>

{SAAbsDeadline=(100,’ms’)}

<<SATrigger>>

{SASchedulable=$R4,

RTat={’periodic’}

<<SAResponse>>

Clock_100ms:Clock

<<SAResource>>

SharedData:Data

SAAccessControl=

PriorityCeiling}

{SACapacity=1,

Clock_10ms:Clock

Clock_1ms:Clock

:CrankCam Signal: Signal

<<SAResponse>>

RTat={’non−periodic’}

{SASchedulable=$R1,

<<SATrigger>>

{SAAbsDeadline=(1,’ms’)}

SAWorstCase=(2.0,’ms’),

{SAPriority=5,

<<SAAction>>

<<SASchedulable>>

ETCControl:Control

<<SAAction>>

{SAPriority=1,

SAWorstCase=(20.0,’ms’),

SysManager:Manager

<<SASchedulable>>ReadSFPData()

ReadSFPData()

ReadSFPData()

{SAAbsDeadline=(10,’ms’)}

<<SATrigger>>

{SASchedulable=$R3,

RTat={’periodic’,10,’ms’}

<<SAResponse>>

<<SASchedulable>>

AFRControl:Control

<<SAAction>>

<<SAAction>>

<<SAAction>>

<<SAAction>>
WriteSFPData()

<<SAResponse>>

RTat={’periodic’,1,’ms’}

{SASchedulable=$R2,

<<SATrigger>>

{SAAbsDeadline=(1,’ms’)}

SAWorstCase=(0.5,’ms’),

{SAPriority=10,

<<SAAction>>

SPFCalc:Calculation

SAWorstCase=(0.3,’ms’),

Figure B.1: An application scenario in automotive engine control modeled with UML-
SPT.

Figure B.1 shows an application scenario in automotive engine control provided by the

MoBIES project [98]. The system consists of 3 periodic tasks and 1 interrupt-triggered

task accessing a shared data area protected by Priority Ceiling Protocol. It consists of

both Electronic Throttle Control (ETC) and Air-Fuel Ratio (AFR) Control. With ETC, the

usual mechanical linkage between the gas pedal and the throttle plate is eliminated, and the

throttle is actuated by a DC motor. AFR controls the fuel injector timing so that the ratio of

fuel to air must not deviate more that 0.1 from the stoichiometric air-to-fuel ratio of 14.64.
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Fuel is injected into the intake port area of the engine cylinders once every thermodynamic

cycle (once every two engine revolutions). The injectors are set up to deliver a pulse of

fuel whose duration corresponds to a fuel amount (mass) which achieves a desired air to

fuel ratio of the charge in the cylinder. The timing of the pulse with respect to the cylinder

intake valve opening is also important for reasons of proper mixing of fuel and air so that

ignition of the charge is reliable.

Both ETC and AFR are triggered periodically, with different periods dictated by appli-

cation characteristics. Both tasks read from a shared data area calledscaled fuel parame-

tersthat gets updated by an SFPCalculation task, which is triggered by the crankshaft and

camshaft pulse signals aperiodically. The task calculates the appropriate duration of each

injector pulse as well as the engine angle to start each injector pulse.

The corresponding OSEK OIL file is shown as follows. For space limitations, we do

not show the detailed C code for each task. The OIL file defines the alarms used to trigger

tasks, but does not specify the period for a periodic alarm. The way to have a task triggered

periodically is to explicitly set alarms by using theSetRelAlarmAPI call in the C code.

For example, in order to set theRunAFRControlAlarmto triggerAFRControltask every 1

ms, we need to call

SetRelAlarm(RunAFRControlAlarm /*AlarmID*/,
0/*Offset*/,1000/*Period*/);

When the system starts up, theInitAlarmsTASK is first invoked which sets up alarms

for all the periodic tasks. At runtime, the interrupt service routineCrankCamSignalISR

gets triggered by external interrupts from crankshaft and samshaft, and sets the alarm

RunSPFCalcAlarm, which in turn triggers the aperiodic taskSFPCalcTask.

CPU ETCAFR {
/*************************************/
/* Tasks */
/*************************************/



167

TASK SFPCalcTask {
TYPE = BASIC;
SCHEDULE = NON;
PRIORITY = 10;
ACTIVATION = 1;
AUTOSTART = FALSE;
STACKSIZE = 4096;
SCHEDULE_CALL = FALSE;

};

TASK AFRControlTask {
TYPE = BASIC;
SCHEDULE = NON;
PRIORITY = 8;
ACTIVATION = 1;
AUTOSTART = FALSE;
STACKSIZE = 4096;
SCHEDULE_CALL = FALSE;

};

TASK ETCControlTask {
TYPE = BASIC;
SCHEDULE = NON;
PRIORITY = 5;
ACTIVATION = 1;
AUTOSTART = FALSE;
STACKSIZE = 4096;
SCHEDULE_CALL = FALSE;

};

TASK SysManagerTask {
TYPE = BASIC;
SCHEDULE = NON;
PRIORITY = 1;
ACTIVATION = 1;
AUTOSTART = FALSE;
STACKSIZE = 4096;
SCHEDULE_CALL = FALSE;

};

/*************************************/
/* Must be highest priority in the system.*/
/*************************************/
TASK InitAlarms {

TYPE = BASIC;
SCHEDULE = FULL;
PRIORITY = 16;
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ACTIVATION = 1;
AUTOSTART = TRUE;
STACKSIZE = 128;
SCHEDULE_CALL = FALSE;

};

/*************************************/
/* Alarms */
/*************************************/
ALARM RunSPFCalcAlarm {

COUNTER = SYSTEM_COUNTER;
TASK = SFPCalcTask;
ACTION = ACTIVATETASK;

};

ALARM RunAFRControlAlarm {
COUNTER = SYSTEM_COUNTER;
TASK = AFRControlTask;
ACTION = ACTIVATETASK;

};

ALARM RunETCControlAlarm {
COUNTER = SYSTEM_COUNTER;
TASK = ETCControlTask;
ACTION = ACTIVATETASK;

};

ALARM RunSysManagerAlarm {
COUNTER = SYSTEM_COUNTER;
TASK = SysManagerTask;
ACTION = ACTIVATETASK;

};

/*************************************/
/* Resources */
/*************************************/
RESOURCE SharedData {

/*Put application-specific attributes here. */
}

/*************************************/
/* Counters */
/*************************************/
COUNTER SYSTEM_COUNTER {

MAXALLOWEDVALUE = 65535;
TICKSPERBASE = 1;
MINCYCLE = 1;
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};

/*************************************/
/* ISRs */
/*************************************/
ISR CrankCamSignalISR {

CATEGORY = 2;
}

/*************************************/
/* O/S */
/*************************************/
OS OSEK_OS {

CC = AUTO;
STATUS = STANDARD;
SCHEDULE = AUTO;
SYSTEMSTACKSIZE = 16000;
StartupHook = TRUE;
ErrorHook = FALSE;
ShutdownHook = FALSE;
PreTaskHook = FALSE;
PostTaskHook = FALSE;
WINDVIEW_SUPPORT = FALSE;
RTA_SUPPORT = FALSE;
STACK_FILL_DIAGNOSTIC = FALSE;

};
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APPENDIX C

Acronyms

ADL Architecture Description Language

AFR Air-Fuel Ratio

AIRES Automatic Integration of Reusable Embedded Software

AIF Analysis Interface Format

AMC Avionics Mission Computing

BCET Best-Case Execution Time

BCRT Best-Case Response Time

CASE Computer-Aided Software Engineering

CDG Component-Dependency Graph

CIF Configuration Interface Format

CMCP Capsule-based Multi-threading, Capsule-based Priority Assignment

CMSP Capsule-based Multi-threading, Scenario-based Priority Assignment
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CORBA Common Object Request Broker

COTS Commercial Off-The-Shelf

DARPA Defense Advanced Research Projects Agency

ERT Embedded Real-Time

ESML Embedded Systems Modeling Language

ETC Electronic Throttle Control

FSP Finite State Processes

GME Generic Modeling Environment

GPS Global Positioning System

GQM Goal-Quality-Metric

HKL Harbour, Klein, Lehoczky

IIF Instrumentation Interface Format

LTSA Labelled Transition Systems Analyzer

MDA Model-Driven Architecture

MDD Model-Driven Development

MIC Model-Integrated Computing

MoBIES Model-Based Integration of Embedded Software

OEP Open Experimental Platform
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OIL OSEK Implementation Language

OSEK Open Systems and the Corresponding Interfaces for Automotive Electronics (Ger-

man Acronym)

OO Object-Oriented

OMG Object Management Group

OTIF Open Tool Integration Platform

PDG Port-Dependency Graph

QoS Quality of Service

RC Railroad Crossing

RMA Rate Monotonic Analysis

RMS Rate Monotonic Scheduling

ROOM Real-Time Object-Oriented Modeling

RTC Run-To-Completion

RTOS Real-Time Operating System

SFP Scaled-Fuel Parameters

SMSP Scenario-based Multi-threading, Scenario-based Priority Assignment

SMV Symbolic Model Verifier

TA Timed Automata

TPN Time Petri-Nets
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TargetRTS Target Runtime System

UML Unified Modeling Language

UML-RT UML Real-Time

UML-SPT UML Profile for Schedulability, Performance and Time

WCET Worst-Case Execution Time

WCRT Worst-Case Response Time
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