
Performance Modeling and Analysis Techniques for Integrated

Embedded Control Software Design

by

Shige Wang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2004

Doctoral Committee:
Professor Kang Geun Shin, Chair
Professor Toby Teorey
Associate Professor James S. Freudenberg
Research Scientist Daniel L. Kiskis

c
�

Shige Wang 2004
All Rights Reserved

ABSTRACT

Performance Modeling and Analysis Techniques for Integrated

Embedded Control Software Design

by
Shige Wang

Chair: Kang Geun Shin

Today’s software for embedded control systems has become large and complicated. Model-

based design and analysis methods are therefore crucial for fast and low-cost development of em-

bedded control software. In this dissertation, we developed techniques to support the performance

analysis of embedded control software at various design phases. These techniques include a per-

formance modeling framework and a set of modeling and analysis methods based on the frame-

work. The modeling framework defines the performance parameters that capture the performance

information required by performance analysis and performance-aware design. The values of these

parameters are first represented as platform-independent virtual resource demands, then converted

to the true resource demands after the software deployment is determined. Our modeling method

is based on annotations supporting performance reuse and performance model evolution during the

functional design of the software.

The performance analysis methods include methods for both early design performance estima-

tions and runtime model performance analysis. The performance estimation requires only a software

architecture model with performance annotations. The analysis results are bound estimations both

of end-to-end response delays and of system resource demands, which are derived from the best-

case and worst-case configurations in an ideal execution environment. Such estimations can be used

for performance analysis at an early design phase with software models containing no deployment

information. We further demonstrated how to use the analysis results for software architecture and

platform design. The analysis of a runtime model requires a complete software model, including

its execution environment and deployment. Our runtime model analysis methods adopt existing

real-time analysis algorithms, which we modify to fit our model. The results help identify the per-

formance issues and can be used for design refinement.

Another technique developed in this dissertation is a performance-aware method of transforming

design models. It takes the models of the software architecture and the platform as the inputs, and

transforms the software model into a runtime model with the software deployed on the platform

in such a way that both timing and resource constraints are met. Evaluations based on a set of

randomly-generated system models have shown this method to be scalable and effective.

In order to collect the performance characteristics of application components and system soft-

ware services, we developed a performance measurement method. It uses an end-to-end measure-

ment with a combination of synthetic workloads and micro-benchmarks. Results of performance

measured using this method can be reused in the performance analysis of a family of applications

and platforms of a designated domain.

Finally, all the techniques we developed have been implemented in an embedded control soft-

ware design toolkit, called the AIRES toolkit. The implementation has shown that these techniques

can be easily integrated with any generic software modeling tool to support performance analysis.

This is a significant advance in current software development tool support because it fills the gap in

integrating software modeling with performance analysis.

To my wife, my son, and my parents.

ii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my advisor, Professor Kang G. Shin, who brought

me to real-time and embedded research area and guided me to complete my degree. Besides knowl-

edge, I have also learned patience, hard work, and pursuit of excellence, which are essential for a

successful researcher, from him. I also thank Professor Toby Teorey, Professor James Freudenberg,

and Dr. Daniel Kiskis who kindly agreed to serve on my dissertation committee, reviewed the draft

of my dissertation, and provided valuable comments.

My appreciation also goes to the members in the MoBIES research group at the University of

Michigan, including Sharath Kodase, Zonghua Gu, Channy Kim, and Jeffrey R. Merrick, and many

other previous and current members in RTCL, including John Reumann, Padmanabhan Pillai, Daji

Qiao, Haining Wang, Mohamed Gandy, Wei Sun, Min-Gyu Cho, and Zhigang Chen. They made

my graduate student life fun and memorable.

I am also thankful to the DARPA MoBIES and NEST Programs for funding this research, and

the engineers at Boeing Company, General Motors Corp., and Ford Motor Company for evaluating

the research tool reported in this dissertation.

Finally, my deepest thanks go to my family. Through all these years, my wife, Chunzhi Bi, has

provided her full support on every aspect of my life and shared every moment of my frustration

and joy in this journey. My son, Boan, always brings me the best comfort with his lovely smile and

naive behaviors. I am also grateful to my parents, Dejun Wang and Rulan Fu, who always show their

unquestionable confidence in me and unconditional support, and to my little brother, Shili Wang,

who was selflessly doing my duty at home when I studied abroad.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xi

CHAPTERS

1 Introduction . 1

1.1 Models and Methods in Current ECSW Design 2

1.1.1 System models in ECSW design 3

1.1.2 Design methodologies . 5

1.2 Proposed Research and Contributions 7

1.2.1 Research problem and proposed solutions 7

1.2.2 Summary of contributions . 10

1.3 Organization of the Dissertation . 12

2 Performance Modeling Framework . 15

2.1 Modeling Process and Method . 15

iv

2.1.1 Refinement modeling method 17

2.1.2 Realization modeling method 18

2.1.3 Performance modeling method 19

2.1.4 Model relationships . 22

2.2 Software Component Model . 23

2.2.1 Component performance modeling 26

2.3 Structural Model . 29

2.3.1 Structural model performance modeling 31

2.3.2 Translation of models in UML 34

2.4 Platform Model . 35

2.5 Runtime Model . 39

2.5.1 Runtime model performance modeling 41

2.6 Related Work . 43

2.7 Summary . 47

3 Estimation of Structural Model Performance 49

3.1 Metrics of Performance Estimation . 50

3.2 Transformation of Transactions . 52

3.2.1 Cycle elimination . 53

3.2.2 Multiple inputs/outputs elimination 55

3.3 Performance Estimation of a Structural Model 56

3.3.1 End-to-end response delay . 57

3.3.2 Total resource demands . 68

3.4 Applications of Performance Estimation 71

3.4.1 Software architecture comparison 71

v

3.4.2 Platform design . 73

3.5 Related Work . 75

3.6 Summary . 77

4 Performance-Aware Runtime Model Generation 79

4.1 Problem Statement and Transformation Process 80

4.1.1 Problem statement . 80

4.1.2 Transformation process . 83

4.2 Rate Assignment . 88

4.2.1 Algorithm analysis . 90

4.3 Component Allocation . 91

4.3.1 Allocation algorithm . 93

4.3.2 Algorithm analysis . 99

4.4 Timing Assignment . 101

4.4.1 Timing assignment algorithm . 102

4.4.2 Algorithm analysis . 109

4.5 Task Formation . 115

4.5.1 Problem formulation . 115

4.5.2 Task formation algorithm . 118

4.5.3 Algorithm analysis . 124

4.6 Task Graph Generation . 132

4.6.1 Task graph generation algorithm 132

4.6.2 Algorithm analysis . 134

4.7 Evaluations . 135

4.7.1 Experiment setup . 136

vi

4.7.2 Evaluation results of component allocation 137

4.7.3 Evaluation results of task formation 141

4.8 Related Work . 145

4.9 Summary . 147

5 Performance Analysis with Runtime Models 148

5.1 Assignments of Scheduler Configuration Parameters 151

5.2 Timing and Schedulability Analysis . 155

5.2.1 Best-case response time . 156

5.2.2 Worst-case response time . 158

5.2.3 Resource utilization . 160

5.3 Reducing Analysis Complexity . 161

5.4 Related Work . 164

5.5 Summary . 165

6 Performance Measurement Methods . 167

6.1 Measurement Method . 167

6.2 Measuring RTOS service overheads . 169

6.2.1 Measurement environment . 171

6.2.2 Performance metrics . 172

6.2.3 Measurement tool and analysis strategy 174

6.2.4 Experiment design . 174

6.3 Measurement Results . 180

6.3.1 Results of clock overhead measurements 180

6.3.2 Results of interval jitter measurement 182

vii

6.3.3 Results of context switch measurement 186

6.4 Related Work . 187

6.5 Summary . 189

7 AIRES: A Software Toolkit for ECSW Design and Analysis 190

7.1 Graphic Modeling Environment . 191

7.2 AIRES Modeling Language . 193

7.3 Built-in Design Process . 196

7.4 Algorithm Implementation . 199

7.5 Model Transformation and Analysis of ETC 200

7.5.1 Software structural model and platform model 202

7.5.2 Component allocation and runtime model generation 204

7.5.3 Runtime analysis . 206

7.6 Summary . 209

8 Conclusions and Future Work . 210

8.1 Conclusions . 210

8.2 Future Directions . 214

BIBLIOGRAPHY . 216

viii

LIST OF FIGURES

1.1 Overall ECSW development process. 3

2.1 A machine control model constructed using the refinement modeling method. . . . 18

2.2 The modeling hierarchy used in the realization modeling method. 19

2.3 Relationships of the models in our framework. 22

2.4 Software component model. 24

3.1 Elimination of cycles in a transaction model. 54

3.2 Elimination of multiple inputs and outputs. 56

3.3 An example of transaction with concurrent paths. 58

4.1 Path ���������	��
 and ���
�����	��
 are both single sequential paths without any common com-

ponent. 109

4.2 The number of nodes visited for different model sizes. 139

4.3 The failure ratios of different algorithms. 140

4.4 The number of nodes visited with a different number of devices. 141

4.5 The failure ratios of different algorithms. 142

4.6 Number of steps taken to form tasks. 143

4.7 Number of resultant tasks under different configurations. 144

6.1 System performance layered model for measurements. 175

ix

6.2 Timing service overheads of QNX. 181

6.3 Timing service overheads of RTLinux. 181

6.4 Timing service overheads of OSEKWorks. 181

6.5 Interval jitters of QNX. 183

6.6 Interval jitters of RTLinux. 183

6.7 Interval jitters for harmonic intervals on QNX. 184

6.8 Interval jitters for non-harmonic intervals on QNX. 184

6.9 Interval jitters for harmonic intervals on RTLinux. 184

6.10 Interval jitters for non-harmonic intervals on RTLinux. 184

6.11 Interval jitters for harmonic intervals on OSEKWorks. 184

6.12 Interval jitters for non-harmonic intervals on OSEKWorks. 184

6.13 Measured context switch times for QNX. 187

6.14 Measured context switch times for RTLinux. 187

6.15 Measured context switch times for OSEKWorks. 187

7.1 GME architecture and components. 193

7.2 Meta-model for component modeling and structure modeling. 194

7.3 Meta-model for platform modeling. 196

7.4 Meta-model for runtime system modeling. 197

7.5 AIRES build-in design process. 198

7.6 Models in GME environment. 201

7.7 Models of manager, monitor, and servo transaction in ETC. 202

7.8 Platform configuration of ETC. 204

7.9 Allocation of the components of the ETC software. 204

x

7.10 Summary of allocation results. 205

7.11 Generated tasks. 205

7.12 Runtime model of the ETC software. 207

7.13 Runtime analysis results. 208

7.14 Runtime analysis plot for tasks on ��� . 208

xi

LIST OF TABLES

2.1 Performance parameters of OS services. 38

4.1 Parameters for random system model generation. 137

6.1 Hardware configurations for OS service measurements. 171

6.2 Testbed configuration for measurements. 172

6.3 Resolution setting methods and values for examined OS. 176

6.4 Factors and values for interval jitter measurements. 177

6.5 Attributes of experiment tasks. 177

6.6 Task combinations for the test cases. 178

6.7 Attributes of experiment tasks. 179

6.8 Task combinations for test cases. 179

6.9 Measured execution times with different clock resolutions. 180

7.1 Modeling parameters of ETC components. 203

7.2 Modeling parameters of ETC links. 203

xii

CHAPTER 1

Introduction

Today’s embedded control systems, such as automotive vehicle control, avionics mission con-

trol, manufacturing machine control, and nuclear plant control, have become large in size and com-

plex in interactions. The embedded control software (ECSW) for these systems usually contains

many drivers for various I/O devices, modules for control algorithms, and functions for system man-

agement (e.g., mode change and fault detection). Besides the functional and structural complexity,

the ECSW must meet stringent timing and performance constraints in order to respond to stimuli

from the external physical world. However, it requires a significant effort to design ECSW to meet

all the timing and performance constraints since the execution environment for an embedded control

system usually has limited resource for size and cost reasons. Recent research [23, 17, 52, 21, 84]

has shown that performance-aware system design and model-based analysis have great potential for

meeting combined functional and non-functional constraints, thus leading to low-cost and fast-to-

market embedded real-time control systems.

To support model-based performance analysis and performance-aware ECSW design, new fun-

damental theories that can lead to a correct and effective ECSW design are requisite. These theories

would also form a foundation for the new ECSW design methods (including design models and de-

sign processes) and development tool support. Developing such theories and demonstrating their us-

1

age and applications are therefore the objectives of this dissertation. In general, the design processes

and methods used in ECSW design must be domain-specific to be effective, as different application

domains encounter different design issues. For example, the design concerns of a sensor network

are drastically different from those of an automotive vehicle control, although both are embedded

systems. The design of the former must deal with a large number of very resource-limited (pro-

cessor speed, memory, and power) communication-intensive devices with simple software, while

the design of the latter must deal with complex software architecture but only a small number of

devices with a relatively large software workload on each device. For the purpose of this research,

we have limited our application domain to the latter, a complex software architecture running on a

relatively small number of devices (�
�����

). For such a domain, the software is complex due to the

large number of software components and interactions, so it requires scalable modeling and analysis

methods for constructing and analyzing design models.

1.1 Models and Methods in Current ECSW Design

To develop methods for performance-aware design and performance analysis, it is necessary to

understand the methodologies, models, and techniques used in current practices. Figure 1.1 shows

the current ECSW development process in the V-diagram [21].

In the V-diagram, the process on the left side focuses on the system design. Each step in this

process refines the design models generated at the previous step by filling in more design details.

The process on the right side focuses on the system validation, which is accomplished through

comparing obtained results with the requirements of the corresponding level of design. It is common

for different models and methods to be used by multiple design groups at each step in the V-diagram.

Some commonly-used design models and methods in current ECSW development are summarized

below.

2

Implementation

Requirement
Specification

System
Specification

Module
Design

Module
Test

System
Design

System
Test

System
Delivery

System
Integration

Figure 1.1: Overall ECSW development process.

1.1.1 System models in ECSW design

The system models used in current ECSW design can be generally classified into four cate-

gories [23]: state-oriented, activity-oriented, structure-oriented, and heterogeneous.

State-oriented models. A state-oriented model represents the system as a set of states, transi-

tions between states, and events that trigger the transitions. The designed ECSW can be modeled as

variables representing the system states, and functions generating events and implementing transi-

tions. Since the correctness of state-oriented models can be mathematically verified and visualized,

they are usually used to model and verify the dynamic behaviors of the ECSW. However, the imple-

mentation of the ECSW design in a state-oriented model is not straightforward due to the indirect

mapping between the state-oriented model and the implementation model.

Activity-oriented models. An activity-oriented model represents the system as activities, and

dependencies (including both data and execution dependencies) among the activities. Activity-

oriented models are composable, and are suitable for systems with multiple concurrent-sequential

operations. These models can be analyzed formally, using a formal method such as Concurrent

3

Sequential Process (CSP) [73], and can also be visualized. The ECSW design in an activity-oriented

model is easy to implement as the modeling elements can be directly mapped to an entity in a

programming language. This property is the reason why the activity-oriented models such as control

and/or data flow graphs are widely used in ECSW design.

Structure-oriented models. A structure-oriented model represents a system as interconnected

modules (called components). The designed system functionalities are implemented by composing

the components, each of which implements a portion of the functionality. Structure-oriented models

such as UML collaboration diagrams are also commonly used in ECSW design. As more software

modeling languages and design tools use the structure-oriented models in current practices, many

ECSW designs are now being modeled in structure-oriented models. Such a model is also easy to

implement with the support of an object-oriented programming language such as C++ and Java.

However, the system behaviors of a structure-oriented model are usually difficult to verify formally

due to the lack of mathematical support.

Heterogeneous models. A heterogeneous model combines some of the above models to de-

scribe different aspects of ECSW in a single model. Such a model is usually used to capture in-

terrelated properties of different system aspects simultaneously. For example, Real-Time Object-

Oriented Model (ROOM) [74] uses a structure-oriented model for the software structure, and a

state-oriented model for the software behaviors. Most of the current research models, including

ModeChart [36], *chart [27], Actor model [2], and Multi-graph model [42], belong to this category.

Because of the flexibility and power of such models, more of today’s ECSW design tends to use het-

erogeneous models. Consequently, methods of design and analysis, and development tool support

using heterogeneous models are still being actively researched.

4

1.1.2 Design methodologies

Commonly used design methodologies in current ECSW are based on the concept of separation

of concerns [8]. These methods allow the designer to focus on a small set of design issues at a time,

and to construct a complete design through a sequence of refinement steps. The correctness of the

resultant design is ensured by the process and rules of refinement. Some well-known ECSW design

methods include multi-view design [23, 21], software/hardware co-design [48], component-based

software architecture [83], and product-line architecture [7].

Multi-view design. With multi-view design, a designer constructs a set of views. Each view

models some aspect of the ECSW, and requires different modeling methods for construction and

analysis. The views in ECSW design include behavioral, structural, and physical. A behavioral

view specifies control of the system using state- and/or activity-oriented models. A structural

view specifies that ECSW architecture implement the behaviors in the behavioral view using the

structure-oriented model. A physical view specifies the runtime architecture and execution envi-

ronments of ECSW, including the platform and deployment configuration. Most of the current

performance analysis methodologies are applicable to the physical view only after the simulation or

prototype system is constructed. This creates an information dependency cycle between design and

analysis.

Software/hardware co-design. With this method, a designer first partitions system functions

into software and hardware to find an optimal solution (e.g., minimum system cost) for an appli-

cation. Given a system function, a hardware-implementation tends to run faster and more reliably,

while software implementation is cheaper, more flexible, and more portable. The partitioned hard-

ware and software functions are then designed separately as a set of hardware components (e.g.,

different chips, sensors, and actuators) and software components running on the designed hardware

components. The performance analysis in this method is usually conducted during the system inte-

5

gration phase when hardware and software are integrated. As cost and time become more critical in

ECSW development, current co-design methods are focusing on maximizing functions in software.

Models used in the software/hardware co-design include continuous models for control design, and

structure-oriented models once the functions have been partitioned into hardware and software.

Component-based software architecture. With component-based software architecture, ECSW

is designed by integrating software components that include both the application components and

the underlying system services. These components are implemented and reused for the construction

of a family of applications. The components’ structures and their allowed interactions are both de-

fined in the architecture. The architecture also defines the common services required to support the

components. Examples of component-based software architecture include CORBA, Java Bean and

RMI, Microsoft CE .NET, and OMAC. The models used in component-based software architecture,

such as UML, are usually heterogeneous, as the architecture needs to model many different aspects

of ECSW. The performance of the design is usually analyzed through prototyping systems. The

methods needed to verify and analyze the ECSW constructed using the component-based architec-

ture are still an active research area because of model heterogeneity [14, 42, 53].

Product-line architecture. Product-line architecture supports parallel development of a fam-

ily of applications that are functionally similar. The method used in such development is based

on model parameterization using refinements and compositions. Product-line architecture includes

both abstract components and concrete components in initial design. Both can be reused in soft-

ware construction. With the product-line architecture, a designer first composes layers using abstract

components, each of which implements a feature shared by multiple applications. The designer re-

fines the abstract components at each layer with concrete implementations. Such a process can also

be viewed as template parameterization. There is no effective analysis method for the performance

analysis of the product-line architecture due to the system abstraction in the design process. The

6

product-line architecture has been used successfully in avionics ECSW construction such as mis-

sion computing and navigation systems [20]. In these applications, the analysis is currently done

through prototyping after the design is completed.

1.2 Proposed Research and Contributions

The objective of this research is to develop techniques for model-based performance analysis

and performance-aware model transformation in ECSW design. These techniques should be inte-

grated with the models and methods for functional design in current ECSW design practices, and

should support the verification of non-functional properties of ECSW with a large number of com-

ponents. The techniques must also include methods for detecting design flaws that cause violation

of any performance constraint at various design phases, as well as methods to guide the design

on component selection, runtime system generation, and implementation according to the analysis

results.

1.2.1 Research problem and proposed solutions

The research problem addressed in this dissertation can be stated as follow.

Develop modeling and analysis methods that can be used with functional design mod-

els and processes to define the performance of the modeling constructs (components,

interactions, and environments), derive the effects of implications of design decisions

and policies on the system performance, and guide/automate the refinement of the de-

sign models to meet the resource and performance constraints on the given execution

platform.

7

The problem can be divided into a set of related subproblems, including the development of

methods for performance modeling, measurement, performance estimation and verification, and

performance-aware model transformation. These are delineated as follows:

Performance modeling framework: The modeling framework defines the modeling constructs and

their attributes used in performance modeling and analysis. This framework should integrate

performance modeling with the ECSW functional model. Such integration allows one to

build relations between the system performance and design choices, and hence supports the

performance-aware design. The framework should also define the performance associated

with the functional models at different design phases to support automatic evolution of per-

formance models along with the functional models as the design advances. As the ECSW

functional model is constructed through synthesis of software components, the performance

of the software components should be represented in a platform-independent form for reuse

and early design performance evaluation.

Performance parameter measurement method: Measurements are essential for quantitative perfor-

mance analysis. The measurement method must be able to measure the performance metrics

of individual components. These measured metrics are used as modeling parameters in per-

formance model construction and analysis. The measurement method should also support the

measurements and/or derivations of the performance variances for a measured object under

certain interferences derived from the interaction and usage patterns commonly used in an ap-

plication domain. This is especially useful for the measurement of the underlying supporting

software, whose performance depends on the co-existing components and their interactions.

To increase the accuracy of the analysis, the measurement method is necessary to minimize

disturbance to the measured parameters.

8

Performance analysis methods: Effective performance analysis methods are required to analyze

the performance of the design at various design phases. Given many analysis methods that

already have been developed, a major issue in this area is to find an effective analysis method

for each design phase, and to make the models fit the assumptions of the analysis. The

analysis methods should generate detailed results so the designer can identify the cause of a

performance failure, if detected. The methods should be scalable in order to handle a large

number of software components with complex interactions.

Performance-aware design methods: Performance-aware design methods use the analysis results

to guide the design to meet the performance constraints. The methods should explore the de-

sign space, rank different design choices, and indicate results and effects of each choice using

the given functional and performance models. The methods should also automatically trans-

form an earlier-stage design model to a later-stage design model without altering its perfor-

mance. During the transformation, the methods must consider multiple resource constraints

and minimize the resource consumption. Such methods must be scalable to be applicable to

the ECSW that has a large number of software components and interactions.

Our solution to the performance modeling framework is based on performance annotations. The

functional design models in our framework include the software components’ structures, the soft-

ware architecture, the platform configurations, and the runtime deployment model. These models

are constructed at different design phases, and their relationships are captured in the framework.

These design models are then annotated with a set of performance modeling parameters. To support

early analysis and reuse, we introduce the virtual resource concept, and model the performance in

terms of virtual resource demands before the execution environment of the ECSW is determined.

Our performance measurement method is sampling-based end-to-end measurements, which com-

bines synthetic workloads and microbenchmarks. The sampling-based end-to-end measurement

9

method collects measured information as an external observer, thus minimizing intrusiveness in the

measurements. Synthetic workloads allow one to measure the performance variances under different

configurations, while microbenchmarks allow one to measure individual metrics and components.

Our methods focus on the performance analysis of the software architecture at an early design phase

and the performance analysis of the runtime model. The solution to the performance analysis of the

software architecture is based on bound estimations and total system workloads. Bound estimations

allow analysis without having to know the platform configuration and software deployment. The

solution to runtime performance analysis is based on existing schedulability analysis methods. The

solution to the performance-aware design method is based on model transformation using graph

partitioning and merging, subject to the performance constraints. Such transformation follows the

relation between functional models at different design phases and their corresponding performance

defined in the modeling framework. To this end, the performance modeling and analysis framework

is the centerpiece of our solution. All design and analysis methods are built around this framework.

To show the effectiveness of the techniques developed, we further investigated how designs

using other modeling frameworks can be translated into ours. This will enable our methods to be

used with different modeling languages.

1.2.2 Summary of contributions

In this research, we developed a performance modeling and analysis framework and a set of

analysis and transformation methods. Our performance modeling framework integrates perfor-

mance models with functional design models at different design phases through annotating perfor-

mance parameters to software components, software architectures, platform models, and runtime

models. The innovations of the framework include both the relationship definitions of design and

performance models for different design phases, and the virtual resource for platform-independent

10

performance modeling. The model relationship definitions are the bases for multi-stage performance

model construction and analysis, and performance-aware design. Performance representations in

virtual resources are essential for reuse and early-design-stage performance analysis.

A major contribution to the performance analysis is the leverage of analysis to an early design

phase with an incomplete design model. The analysis method is based on bound estimations. Ex-

isting performance analysis methods require knowledge of the complete design, including software

execution environments and deployment. Our solution, on the other hand, requires only the software

architecture with demands in virtual resources. We showed the estimated performance is useful for

software architecture design comparisons and for the platform design. Another contribution to the

performance analysis is to have a set of scalable methods that determine runtime model parameters

and performance. These methods bring the performance analysis to the design model and archi-

tecture level, instead of performance tuning at the implementation level. At such a higher level of

abstraction, both design quality and optimality can be improved by exploring more design choices.

This set of methods further avoids costs resulting from belated performance error detection and

labor-intensive simulations-based evaluations.

Another contribution of this research is the development of an innovative method for runtime

model generation. The method consists of a multi-step process that transforms an early design

model to a runtime model in a way that both resource constraints and performance constraints are

met. We show the conditions leading to correct transformation at each step, and use them to guide

the model transformation process.

Our contribution to performance measurement is the method that can measure the metrics of

interest for individual components. The method uses the sampling-based end-to-end measurement

with a combination of synthetic workloads and microbenchmarks. It supports the measurements

of both application components and underlying supporting system services. In this work, we also

11

demonstrate how to use the method by measuring selected real-time operating systems. The results

obtained can be used directly in the analysis of the systems using these operating systems.

Finally, the software design toolkit implemented in this dissertation contributes to current ECSW

design and analysis. The toolkit provides a graphic interface and a modeling environment for the

designer to use the techniques developed in this research. The performance analysis and model

transformation results generated by our methods are also visualized in the tool.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 presents our performance model-

ing framework. The modeling methods support both the refinement and the realization hierarchies.

The software components are modeled as process-oriented port-based objects with a set of anno-

tated performance parameters, including both resource demands and performance constraints. With

this framework, the initial ECSW design is described in a structural model and consists of inter-

communicating software components. The performance constraints are specified in an end-to-end

form. The execution environment of the designed ECSW is described in a platform model con-

sisting of computation devices, communication links, and supporting software. Each device in the

platform is annotated with a set of resource characteristics such as overheads and capacities. The

final ECSW design that can be implemented on the given platform is modeled in a runtime model,

which contains a set of tasks and their inter-communications. Similar to the structural model, a set

of performance parameters are annotated to the tasks and their inter-communications in the runtime

model, which can be derived from the performance of the structural model.

Chapter 3 presents the performance analysis method for estimating early-design phase perfor-

mance based on the ECSW structural model. Such an analysis assumes that there is no knowledge

of the platform. The analysis is based on the bound estimations derived from the performance of

12

constituent components in the structural model. Methods of estimating end-to-end response time

bounds and system workload are developed. Since finding optimal performance bounds is NP-hard,

our estimation method uses a heuristic to improve its scalability. The analysis results can then be

used for the platform configuration design.

Chapter 4 presents the method for performance-aware model transformation from the structural

model to the runtime model. The transformation is done while meeting all resource and timing con-

straints at the same time. Our transformation method uses the graph partitioning technique. It first

allocates the components in the structural model to the computation devices in the platform accord-

ing to the designer-specified allocation strategy. The system-level end-to-end timing constraints are

then distributed over the components to be used for constructing a feasible schedule. Finally, the

components are merged into tasks while taking into consideration of both schedule flexibility and

resource consumption minimization.

Chapter 5 analyzes resource usage and performance of the runtime model. The analysis includes

both schedulability and end-to-end timing analyses. In this dissertation, we assume that the system

software on a platform supports only priority-based scheduling. The analysis, therefore, requires

priorities be assigned to tasks in the runtime model. These priorities are assigned using a heuristic

method. After the priorities are assigned, the timing and schedulability analyses of tasks are per-

formed for each device in the platform, while also considering the tasks’ runtime properties such

as dependencies, release offsets and deadlines, and invocation periods. In case some task fails the

above test, we apply a method of end-to-end timing to the task chain to obtain a tighter bound of the

end-to-end response time.

Chapter 6 presents a method for measuring performance characteristics. The method is appli-

cable to the measurements of both application components and system software services. It in-

troduces the end-to-end measurement, combining synthetic workloads and micro-benchmark tech-

13

niques. The collected data are then converted to a platform-independent format and stored along

with the application components and system software services. This method has been applied in the

measurements of some selected RTOS services, showing its effectiveness.

Chapter 7 shows an ECSW design toolkit with the developed techniques built into it. The toolkit,

called AIRES, consists of a graphic generic modeling environment as a user interface, a meta-model

implementing the modeling framework, and a set of interpreters implementing the analysis and

transformation algorithms. The usefulness and features of the toolkit are demonstrated in the design

and analysis of a simplified automotive electronic throttle control software.

Chapter 8 states the conclusions and potential future work of this research.

14

CHAPTER 2

Performance Modeling Framework

This chapter presents the performance modeling framework, based on which we develop model-

based ECSW design analysis techniques. The framework is defined by considering modeling and

analysis requirements for applications at various design phases, the availability of different underly-

ing system service support, and the information commonly required by existing analysis algorithms.

The models in our framework include software component models, software structural models, plat-

form models, and runtime models. For each model, the framework defines a set of performance

parameters annotated to the functional modeling constructs. The thus-defined framework not only

supports the performance modeling and analysis at various design phases, but also captures the

information flow among the tools used in ECSW design.

2.1 Modeling Process and Method

A modeling framework is generally closely-coupled with the modeling method in a design pro-

cess. As the ECSW design is a multi-discipline activity, the design process is strongly related to the

control design, and includes the following phases [21].

Control design. At this phase, the design focuses on continuous time.

15

Control discretization. At this phase, the continuous control is discretized with the models re-

stricted to discrete-time/discrete-event blocks. Control discretization also provides the names

and characterizations of the signals passed among blocks. The performance constraints are

defined in this phase.

Software design. At this phase, the software architecture is determined in order to implement the

control models. The design software architecture implements only the control functionalities.

No performance constraints are considered at this phase.

Platform design. At this phase, the execution environment for the software is constructed, includ-

ing hardware and support system software.

Deployment design. At this phase, the software architecture is augmented with execution loca-

tions, invocation properties, and scheduling policies.

System implementation. At this phase, the software is coded and loaded onto the target for exe-

cution.

In this process, the steps of software design, platform design, and deployment design have great

impacts on the final system performance, and thus require performance analysis. Specifically, the

software architecture determines the components and their inter-communications, which implement

the control blocks and the signals in the control model, respectively. The resource demands and

delays of the components and communications will affect the the control performance of the final

system. The platform design decides the capability of the platform and the available services for

runtime resource management. Whether the software can achieve the control performance or not

depends heavily on the platform. The deployment design describes how the software should be

organized on the platform if there exists a design to meet the performance constraints. As our

research focuses on the ECSW design under the assumption that a correct control design is given,

16

our performance modeling framework targets only the performance analysis at software design,

platform design, and deployment design phases.

To align it with the current ECSW design, our framework is defined to be used with two layered

modeling methods: the refinement modeling method for the software architecture design and the

realization modeling method for the deployment design. As both methods are used for functional

design, we use annotation as the method for performance modeling in this framework.

2.1.1 Refinement modeling method

The model constructed using the refinement modeling method describes the ECSW at different

levels of abstraction, called layers. The model at a higher layer is more abstract, and can be refined

with more implementation details to generate a lower-level model. Figure 2.1 shows an example

of the model construction for a machine control system using the refinement modeling method. In

this example, the machine controller software consists of two subsystems at the highest modeling

layer, machine control (MC) and process control (PC). The ��� subsystem communicates with the

��� subsystem to make decisions on how the axes of the machine should move. At a lower layer,

each subsystem is refined with several components. The ��� subsystem is refined with the axis co-

ordination control component (AxisGroup) and three independent axis control components (Axis),

while the ��� subsystem is refined with a force acquisition component (ForceAcq), a force supervi-

sory control component (ForceSup), and a tool broken detection component (ToolDet). Meanwhile,

the communication between ��� and ��� is also refined as two connections: one from ForceSup to

AxisGroup and the other from ToolDet to AxisGroup.

The refinement stops at a predetermined layer when the models are partitioned to the blocks in a

predefined granularity. These models can then be implemented using existing software components

17

Machine Process

ControlControl

AxisGroup

AxisAxis Axis Axis

ForceAcq

ForceSup

ToolDet

Abstract
Model

Model

Refined

Figure 2.1: A machine control model constructed using the refinement modeling method.

and a describe-and-synthesize methodology [23].1 The granularity and construction methods of

these software components are highly domain- and organization-dependent, and beyond the scope

of this research. Examples of such components include various device drivers, data processing

components, and control algorithms. The resultant model at the end of the refinement describes the

software architecture without runtime and deployment information. The component in the resultant

model can be implemented either by coding in a programming language or by reusing the code

from other applications/libraries. In this dissertation, we call the final refinement model a structural

model.

2.1.2 Realization modeling method

A model constructed using the realization modeling method describes the relationship between

the ECSW and its execution environment. It models the ECSW from the system perspective instead

of from only the software perspective. A realization model is also a hierarchical model. Different

from a refinement model where the model at a lower layer describes the same system as the model at

1The method was first developed for small-scale embedded systems. It combines the concepts of both component-
based design and software-hardware co-design. As our work deals only with software, it becomes a component-based
design method.

18

a higher layer but with more implementation details, the model at a lower layer in a realization model

defines an execution environment for the model at a higher layer. An example of the realization

hierarchy used in ECSW design is shown in Figure 2.2.

(e.g., Engine Control)
Application Application

(e.g., Trans Control)

Domain Middleware Services

Operating System Services

Common Middleware Services

Hardware

Figure 2.2: The modeling hierarchy used in the realization modeling method.

In a realization model, the executions of high-level components require the services of low-

level components. These low-level services in a realization model form a virtual machine for the

high-level components. Once the interactions between different layers are defined, the models of

different layers can be designed and implemented separately and in parallel. With the realization

modeling method, the models of software architecture and of the platform are designed separately

and integrated to generate the model of the system at the deployment design phase. The generation

of deployment can also be viewed as a refinement process, where the component in a structural

model is refined with the information of the execution location and the scheduling policy. In this

dissertation, the model generated at the deployment design — the one which models the software

allocated on the designed platform and describes the system runtime architecture — is called a

runtime model.

2.1.3 Performance modeling method

A key requirement of the performance modeling method in our framework is to relate the mod-

eling parameters of performance to the functional model. In our framework, we use performance

19

annotation as the modeling method. This method attaches a set of performance modeling parameters

to the modeling constructs in the framework. The annotation method is more efficient and scalable

for performance model construction of a large system than other methods, such as modeling per-

formance parameters as modeling constructs [4]. The annotation method allows the performance

model to evolve along with the functional design advances.

The performance modeling parameters annotated to the functional models are classified into two

disjoint categories: constraints and characteristics. Such classification is employed to suit the re-

finement and realization modeling methods for the functional model, and to support the performance

reuse. The constraint parameters define the performance that the system must meet to guarantee the

correctness of the control. Examples of the constraint parameters include the invocation rates and

deadlines of control flows, and the distance of consecutive outputs. The values of the constraint

parameters are application-dependent and are typically imposed by the designer according to the

results of control discretization. For example, the invocation rate of a component is a constraint

parameter. The invocation rate for the throttle controller is a constant for a given model of vehicle,

but it varies from one vehicle model to another.

The characteristics parameters define the performance of a modeled component. At the same

time, they are the properties of the component. The characteristics parameters considered in this

dissertation include various resource demands of the software components and the system, including

computation resource demands (typically in execution times), communication demands (in end-

to-end delay or message size), and memory demands (in code and data size). The values of the

characteristics parameters depend on the implementation of the component and, sometimes, its

execution environment. For example, the computation resource demand of a throttle controller

depends on how the controller is coded and the number of instructions in the final executables.

The annotations of performance parameters allow the performance model to evolve along with

20

the functional design model. With the software model constructed using the refinement modeling

method, a higher layer model is built first. Due to the abstraction of the higher layer model, only

constraints are known for the model. As the model is refined, the constraints are partitioned and

distributed over the lower layer models, thus reducing the overhead of regeneration of performance

modeling information. During the analysis, the derived constraints are used to compare with the

performance characteristics of the model at a refinement layer. Since the performance characteris-

tics can only be known after all components are determined at the end of refinement process, the

performance analysis can only be performed using the structural model.

The performance model of ECSW implementation can be constructed using the annotated per-

formance parameters of both application components and environment components. Specifically,

the values of the performance characteristics of a component can only be determined after its exe-

cution environment is decided. Thus, in the realization layer model, the performance characteristics

of a higher layer component can be derived from the resource demands of the component and the

performance characteristics of the lower layer services for the component’s execution.

With the above discussed performance annotation, performance-aware design and performance

reuse can also be achieved. When a performance failure is indicated in the analysis, a perfor-

mance model constructed with such a method allows the designer to pinpoint the cause in the soft-

ware structure, platform configuration, and/or runtime property assignments, and to suggest corre-

sponding design alternatives. Further, as the performance constraints are application- and product-

dependent, and the performance characteristics are platform- and implementation-dependent, these

parameters and their values can be reused with the components in different ECSW designs if these

designs have similar control requirements and component implementations (both environment and

code).

Note that the performance parameters are dedicated to the modeling constructs. In other words,

21

the components in structural models, runtime models, and platform models have different perfor-

mance modeling parameters annotated to them. In the following sections, we will discuss these

models and their annotated performance parameters in detail.

2.1.4 Model relationships

Our modeling framework defines the functional models used for different ECSW design phases

(after control discretization and before coding), their relationships, and their associated perfor-

mance. Figure 2.3 shows the relationships between these functional models and their performance

models.

Structural
Model

Runtime
Model

Platform
Model

Performance

ConstraintsCharacteristics

Performance
Model

Component

Figure 2.3: Relationships of the models in our framework.

In this framework, software components are basic building blocks with a common structure. The

software architecture of a designed ECSW is described in a structural model consisting of intercon-

22

necting components. The execution environment of the ECSW is described in a platform model that

includes both hardware and supporting software. The deployment and runtime organization of the

ECSW is described in a runtime model, which is derived from the structural model and the platform

model and contains the same set of components as the structural model. All these functional mod-

els are annotated with performance, including characteristics and constraints. Performance models

are derived using the corresponding functional models and the annotated performance. Because a

structural model is constructed using software components, its performance model depends on the

components’ performance. Similarly, because a runtime model is derived from a structural model

and a platform model, its performance model must contain the performance derived from the per-

formance of the structural and platform models.

Within the scope of this work, performance constraints are only required for the structural and

runtime models in performance modeling and analysis. This is different from performance charac-

teristics, which are needed for all models. In general, however, all models can have both perfor-

mance characteristics and constraints specified in the modeling and analysis. Also, for the purpose

of this work, we have constructed performance models for only the structural and the runtime mod-

els, as they are the most critical design models for an ECSW. Details of these models are given in

the following sections.

2.2 Software Component Model

A software component is a basic building block used to construct the ECSW, and is contained

in the lowest layer of a refinement model. In our modeling framework, a software component is

formally modeled as:

23

constraint
characteristics

performance

constraint
characteristics

performance

constraint
characteristics

performance

BEHAVIOR SPEC

ACTIONS

Figure 2.4: Software component model.

Definition 2.1. A software component � � is defined as a port-based object

� ��� � � ��� ��� ��� ���

where

	 � is a set of computations, called actions, which implement the component’s functionality;

	 � is a set of input ports through which the component receives its inputs;

	 � is a set of output ports through which a component exposes its computation results;

	 ��

������� ���
specifies a predefined behavior of the component, and � defines a set of

events; and

	 ��� � � ��� ��� defines a set of functions mapping each action to a set of positive rational

numbers � � , representing the values of its performance parameters;

	 ����� ��� .

The structure of the software component model defined in Definition 2.1 is shown in Figure 2.4.

In this model, a software component contains a set of actions, input and output ports, a behavior

specification, and a set of performance parameters. Each action performs some predefined com-

putation that implements some portion of the system behavior. Components communicate through

24

their input and output ports. An input port of a component may receive information from one or

more output ports of other components. Similarly, an output port of a component may send results

to multiple input ports of other different components. No port can be used for both inputs and out-

puts in our component model. Note that the ports in the component model are all logical ports. In

an implementation, the same communication object can be used for both input and output ports.

For example, a shared memory object can be used for both reading (input port) and writing (output

port) a data value. This constraint forces explicit modeling of the port types, and hence translates

the components to typed components to support type checking in the model construction. Type

checking support is essential for automatic system composition and formal analysis.

The behavior specification in the model defines the reaction of the component upon arrival of

an event. A behavior contains a sequence of actions of the component, and is triggered only when

some event arrives at the input ports. The behavior specification may define multiple behaviors

required under different system modes. Thus, a pair ��������� � ���	��

� �
���� �
 uniquely determines the

behavior that a component is required to perform. The ��������� � ������
�� �

��� �
 pairs of a component

can then be viewed as external interfaces, and other components can interact with it in an ECSW

construction to invoke a desired behavior.

The performance of a component is modeled as a set of function � annotated to the actions.

Given an action ���
�

, � ���
 derives the values of performance parameters of � , including both

constraints and characteristics. The constraint parameters are applicable only to the components

at the intermediate refinement layer. The component at the lowest refinement layer inherits the

constraints of its parent components. For example, a mode switch component may be used for both

the
�

Hz monitor process and the � � Hz manager process in a throttle controller. Its invocation

rate does not depend on the implementation of the mode switch component, but is determined by

the process that it participates in, that is, the mode switch component runs at
�

Hz in the monitor

25

process, and � � Hz in the manager process. On the other hand, the monitor component, when viewed

as a composite component, must have the constraint parameters of invocation rate and deadline

associated with it.

The software component model defined in this framework is process-oriented, meaning all be-

haviors of a component are designed to transform the inputs to the outputs. This implies that all be-

haviors of a component implement the same or similar functionality but with different input/output

parameters (in number and type) and internal algorithms. This differs from the object-oriented com-

ponent models used widely in current software development. As information encapsulation is the

goal of an object-oriented model, the core of the object-oriented model is the data/attributes in an

object. The behaviors of an object, called method, are mainly for data accesses, although the data

processing methods may also be implemented. Although process-oriented and object-oriented mod-

els are functionally equivalent, we argue that process-oriented models are more suitable for ECSW

design and performance analysis since they reflect the nature of the control process, and perfor-

mance is typically associated with the behavior of a system rather than the values of its attributes.

On the other hand, due to the popularity of object-oriented models in current practice, it is more

desirable to build the transformation method to map one to the other. In our work, this is achieved

by port-dependency graphs during the structural model construction. This will be discussed in detail

in the next section.

2.2.1 Component performance modeling

The modeled performance characteristics of software components include resource demands for

computation, output data sizes for communication, and code+data size for storage. For a software

component used in ECSW design, its storage resource demand can be determined immediately af-

ter the component is coded. As the code size of a component does not change during the execution

26

and the required data size can be bounded (with deterministic memory allocations), we treat the

storage resource demand of a component as a constant for any platform. On the other hand, the

resource demands of computation and communication, in execution times and communication de-

lays, usually depend on platform implementation. In order to support early design phase analysis

before the platform has been determined, we need techniques to represent these resource demands

in a platform-independent form, and yet reflect the relative amount of resources needed during ex-

ecutions to make the comparison and quantitative analysis meaningful. Such platform-independent

values should also be easy to transform to platform-specific values after the platform is designed.

To this end, we have introduced the virtual resource concept to represent the values of performance

characteristics of components. First, we must define the service rate of the resource.

Definition 2.2. Let � denote the maximum amount of work that can possibly be done within a time

duration � on a given resource � ��� . The service rate of � ��� , denoted as � � � ���

 , is then defined as a

uniform uninterrupted rate � � � ���

 computed by

� � � ���

 � � ��� (2.1)

The above-defined device service rate is platform-dependent. Given the same type of devices

(e.g., processor or network), the workloads completed by individual devices within the same dura-

tion can be different due to the difference in their capacities. Therefore, the service rates of different

devices can vary significantly. To remove the service rate differences among these devices, we ar-

tificially define a service rate shared by all devices, called a virtual service rate. A device running

at the virtual service rate is called a virtual resource. The resource demand of a component can

therefore be modeled as the time required to complete the workload on a dedicated virtual resource.

Such a resource demand is called a virtual resource demand. With the virtual resource concept, the

service rate differences of the devices are transformed to the capacity differences. In other words,

27

a device with a fast service rate can be viewed as containing a greater number of virtual resources

than a device with a slow service rate. For example, devices
�

and � have the service rate � � �
 ���

and � � �
 ��� . Assume a virtual service rate � � �
 � � . Then
�

contains � �
� virtual resources, and

� contains
�

�
� virtual resources. Suppose two components, � � and � � , both with a virtual resource

demand
�
. Then � � and � � can run together on

�
, but only one can run on � .

The virtual resource demand of a component can be derived from measurements or profiling.

Given a measured execution time � � �

 of component � on a device
 with service rate � �

 and

virtual service rate � � �
 , the virtual resource demand � ���
 of component � can be computed as:

� ���
 � � � �

�� � �

� � �
 � (2.2)

In Eq. (2.2), both the device service rate � �

 and the standalone execution time of � on
 , ��� �

 ,

can be measured. Particularly, � �

 can be measured statistically by running various representative

synthetic workloads on
 . Thus-derived � �

 includes all factors such as processor architecture and

clock speed, memory architecture and size, and resource management overheads. The method used

for such measurements is detailed in Chapter 6.

Similarly, we can define the virtual resource for communication links. The virtual resource

demand of a message over the communication link can also be represented independently of the

physical link, and can be derived using the measured message transmission time �
	 ���
 over a link

� , the service rate (link speed) � ���
 , and an artificially selected virtual service rate � � �
 . Since the

communication workloads of a message—the data size—are typically known, the resource demands

of a communication is commonly modeled as its message data size, which implies the � � �
 � �
.

The computation devices and communication links are different types of resources generally

running at different service rates. The virtual service rates for these resources should also be dif-

ferent to reflect the realistic scenarios. In this analysis, however, these resources need to be treated

28

uniformly to provide certain results; for example, to identify a bottleneck. To this end, we need to

build a relationship between the virtual service rates of computation resource and communication

resource. This is done through a computation-communication service ratio, � , which is defined as:

� � � ��� ���
��

� ��� ����� �

where � ��� ���
 �
 and � ��� ����� �
 are the virtual service rates of computation virtual resource and

communication virtual resource, respectively.

It is critical to obtain � close to the real target platform for accurate analysis. The closeness of �

to the target platform determines the accuracy of performance analysis results, and consequently, the

quality of the design model, if the design follows the guidance of the analysis results. By selecting

different values of � , a designer can test and evaluate many ”what-if” scenarios of both software

architecture and platform configuration.

In this dissertation, we assume the software components are basic building blocks whose per-

formance characteristics are known. The constraints of a component, on the other hand, can only

be derived after the software architecture is determined. Therefore, in our later discussion, � of a

software component will refer only to its performance characteristics.

2.3 Structural Model

The designed ECSW is first modeled as a set of inter-communicating software components

called a structural model. A structural model implements the control model generated at the con-

trol discretization phase. With the structural model, a designer can capture both functional and

performance design flaws at an early design stage through analysis, and therefore avoid expensive

redesign. Since software architecture has more impact on system performance than component-

29

level code optimization, a design can be further optimized at the system level using the structural

model. Because the behaviors of an ECSW are typically modeled as information processing flows

derived from the control design, a structural model of the designed ECSW can be viewed as an

aggregation of information processing flows, called transactions. Formally, a transaction can be

defined as a weighted directed graph as below.

Definition 2.3. A transaction is defined as a weighted directed component graph,

��� � � � � � ��� ���

where

	 � is a set of software components in � � , each of which is represented as a node in the model;

	 �
����
	�� � � �
����	�� � � � ��������
 is a set of directed links representing partial relationships

from the output ports of some component(s) to the input ports of some other component(s);

	 � � ��� � � ��� � defines a set of functions for performance characteristics.

	 � ����� ��� � defines a set of performance constraints.

In a transaction, the nodes are components defined in a software component model. Each com-

ponent performs some predefined behavior(s) that contributes to achieving the overall system be-

haviors defined in the control design model. A link in a transaction indicates the information depen-

dency between two components. A link is valid if it connects an output port of one component to

an input port of another component. No link between an input and an output port of the same com-

ponent is allowed. This implies that all communications among the ports of the same component

should be implemented internally. Since a transaction models an information processing flow, the

links in a transaction model must be synchronous, meaning the arrival of an event/data/message over

30

the input links of a component triggered the behavior of the component. Any component with mul-

tiple input links is triggered when all its inputs have arrived (an AND operation). Such a component

is also called a synchronization component in some literature [84]. In a system, it is possible to have

a component providing some common service. Such a component is called a shared component,

and its execution can be triggered upon arrival of any input. In our structural model, we duplicate

a shared component and its downstream successors in every transaction that involves the shared

component. Such duplication yields an equivalent model of one containing shared components with

OR links.

In the transaction model, a component without any input link is called an input component.

An input component models a start point of the transaction. Typical input components include the

drivers of input devices, such as sensor reading and/or status monitoring. The input components

can be triggered by signals from its environment, including interrupts or time-out signals from

underlying support system software. Similarly, a component without any output ink is called an

output component. An output component models an end point of the transaction. Typical output

components are the drivers for output devices, such as actuators. Other components with both input

link(s) and output link(s) are called processing components. The execution of a transaction starts

from its input component(s) and ends at its output component(s).

2.3.1 Structural model performance modeling

The performance parameters of a transaction include both constraints and characteristics. The

performance characteristics can be derived from the resource demands of the constituent compo-

nents. We consider three types of resources in the transaction performance characteristics function

� :

31

	 Computation: � � ��� � � � � � . This defines the computation resource demands of

the components under different behaviors. � is the set of all behaviors of the component

set � . � � is the set of non-negative rational numbers. The resource demand of a component

depends on the resource demand of its actions in a behavior. Suppose a component � performs

a behavior � � � implemented as a sequence of actions � � ��� � � � � � ����� , its resource demand

can be determined by

� � ��� � �
 �
��

��� �
���

	 Communication: ��� � � � � � defines the communication resource demands of the links.

	 Memory ��	 � � � � � defines the memory resource demands of the components.

The components’ resource demands of computation and memory are annotated to the corre-

sponding nodes as node weights, while the communication resource demands are annotated to the

links as link weights. The resource demands of a transaction can then be computed by traversing

the graph of the transaction model.

Since a transaction models the ECSW at a higher layer of the refinement model, the performance

constraints are applicable for the transaction. Such constraints are specified as a set of end-to-end

constraints, � , of each transaction, including:

	 Invocation rate � : defines the frequency at which the transaction is invoked. Since the com-

munications within a transaction are synchronous, the components of a transaction share the

same invocation rate. As a transaction starts from its input component(s), the invocation rate

is typically modeled as its input rate.

	 End-to-end deadline � : defines the time duration within which a transaction must be com-

pleted. The end-to-end deadline bounds the time duration between the earliest start input

component and the latest finished output component.

32

	 Input separations � : defines the bound of timing difference between a pair of inputs. The

input separations are typically defined as the release phases of different input components of

the transaction.

	 Output jitter constraint � : defines the bound of timing difference between two consecutive

generations of the same output.

Note that Definition 2.3 allows existence of cycles in a transaction. This is desired in order

to facilitate modeling control functions like closed-loop feedback control and multi-rate control.

These controls commonly exist in many embedded control systems. As many analysis methods can

only be applied to directed acyclic graphs, we have developed a method to eliminate the cycles and

transfer the transaction model to an acyclic one. This method is discussed in Chapter 3.

Given the transaction defined as a weighted directed graph, a structural model of an ECSW

design can be defined as a set of mode-dependent transactions.

Definition 2.4. A structural model is defined as a transaction set active under all system modes,

��� � � � ��� ���

where

	 � is a set of system execution modes;

	 � is a set of transactions modeled in the transaction model � � ;

	 � � � ��� � is a function mapping a system mode to a set of transactions. Given � � � � ,

� � � �
 � �	� �� � � � � ���
�� � lists the transactions that are active in mode � � .

It can be seen that the structural model contains a three-level hierarchy. The top level is the

system structure consisting of a set of transactions. The middle level is a set of transactions that

33

model the end-to-end system behaviors. The low level contains inter-communicating components

that form the transactions.

2.3.2 Translation of models in UML

The components used the structural model are process-oriented. In current practices, many soft-

ware systems are modeled using Unified Modeling Language (UML) [66], which is becoming a

standard modeling language for software design. Components in such models are typically data-

centric and object-oriented, and are not suitable for system-level analysis. With UML-like modeling

languages, the system behaviors are usually modeled as some interaction diagrams, such as collabo-

ration diagrams and use-scenario diagrams. These models must be converted to one compliant with

our structural model definition in order to use the developed model-based analysis and design model

transformation methods. We solve this by the construction of a port-dependency graph (PDG).

Definition 2.5. A port dependency graph is a directed graph ������� � � � ���
 where

	 � is a set of ports, which can be either data communication ports or method calls;

	 � is a set of directed links among the ports. A link can be either a dependency between the

ports of different objects, or a dependency between ports of the same object.

In a UML-like model, each port of an object is uniquely linked to an operation/method call.

Thus, the ports of a PDG can be treated as the process-oriented components. On the other hand, a

UML-like object contains links both to other objects and among its different ports. The process of

the PDG construction of a UML-like model is as follows:

1. For each method/function of a UML object in the model that is invoked by other object(s),

create a node in the PDG.

34

2. For each precondition a PDG node needs to satisfy for its execution, including both events

and data, create an input port for it.

3. For each result a PDG node generates, including both events and data, create an output port

for it.

4. For each invocation link in the original model, create a link between corresponding ports of

nodes in PDG.

5. If there exist multiple events and data links between a pair of nodes in PDG, merge them into

one.

6. Repeat the process for each mode.

A thus-obtained PDG is a model with process-centric components. The resource demands of

different methods of a component in the object-oriented model are generally different. The resource

demands of a method can be annotated to the port in the PDG after the conversion. It is easy to see

that the thus-obtained PDG model is a structural model defined in our framework.

2.4 Platform Model

A platform consists of components that support the execution of the designed ECSW. It models

the execution environment of the ECSW with the required resources. The components in a platform

model include hardware components such as processors, memory modules, and network links, and

system software such as operating systems, network protocol stacks, and middleware. In our frame-

work, a platform is modeled as a collection of communicating devices in a weighted undirected

graph.

35

Definition 2.6. A platform model is a weighted undirected graph,

��� � � � � ��� � � � ���

where

	 � � � � is a set of computation devices providing computation and storage resources;

	 � � is a set of communication links connecting the computation devices;

	 � is a set of “availability” functions of the modeled resources.

In the platform model, the nodes represent a computation device. A computation device consists

of a processor, memory, and the support system software (e.g., operating system) running on it. In

the analysis of a model at a higher realization layer, all models of lower layers are considered as a

whole forming the environment. This implies that we treat the hardware and the system software

on it as a whole in the application performance analysis. Each link in a platform model represents a

communication link shared by two or more computation devices. We assume that the computation

devices are fully connected, meaning that a message from one device can reach every other device.

The communication between any pair of devices may go through multiple links and other devices.

However, we assume the traffic forwarding by a device on a path does not introduce additional

computation overhead for the device. Note that this assumption is true for the communication links

with resource reservation and control mechanisms, such as real-time channel [99], CAN bus [98,

101], and RT-Ethernet [50]. Similar to the computation devices, a link and the protocol to manage

its transmissions are considered as a whole in the application performance analysis.

The performance of a platform is modeled in a set of characteristics, and they are annotated to

the nodes and links in a platform model as weights. According to the realization layer, the charac-

teristics of hardware components and system software components are different, and are considered

36

separately. For hardware components, the performance characteristics model the resource capacity

provided by the modeled devices/links, defined by the resource capacity functions, � . Here we

consider three type of resources with their capacity functions defined as follows.

	 Computation resource: � � � � � � � � � � defines the computation resource capacity of a

device in service rate.

	 Communication resource: � � � � � � � � defines the communication resource capacity of

the links in service rate.

	 Storage resource: � 	 � � � � � � � � defines the memory resource capacity of a device in

data size.

The resource capacity functions are annotated to platform components in the model. The func-

tions for computation resource capacity, � � , and for storage resource capacity, � 	 , are annotated

as weights to the nodes � � ��� in the model. The functions for communication resource capacity,

� � , are annotated as weights to the links
� � . The heterogeneity of the platform is reflected in

these resource capacity functions. Different � � and � 	 of different nodes indicate heterogeneous

computation devices, while different � � for different links indicate heterogeneous communication

links.

The resource capacity functions can be constructed through measurements. We can measure

a representative workload on a reference platform and derive the service rate of the device using

Eq. (2.1). The thus-obtained service rate is fundamentally different from the classic processor or

bus speed used in product descriptions since it includes the effects of all activities and interferences

during the execution. For example, the service rate of a computation device includes the effects

of pipeline, memory operation, and OS activities, and the service rate of a communication link

includes the overheads to establish a connection and synchronize the transmissions. The function

37

service parameter symbol
scheduling overhead � � �����
timing overhead ��� � 	����

jitter � � � 		��

IPC overhead � � � � �

delay � � � ���
synchronization overhead � ��
 �
� �

waiting time � ��
 � ���

Table 2.1: Performance parameters of OS services.

can be complex as the effects usually vary with the system status.

The system software performance characteristics are modeled as a set of overheads and vari-

ances introduced to the system execution. The components of the system software are basic ser-

vices needed for application execution. Examples of such basic services include timing service,

scheduling service, and communication service. The performance characteristics of these services

are modeled as functions that derive the performance values based on hardware characteristics and

workloads, and annotated to the system software. Table 2.1 lists the commonly required services

and their performance characteristics. In this dissertation, to simplify the investigation, we have

considered only timing and scheduling parameters, as they are of the most interest in the system

performance analysis and performance tuning.

According to previous research [90, 43, 12, 11], the resource functions of these services de-

pend both on the implementation strategies of the operating system, workloads of a service, and the

configuration of the services. For example, the scheduling service performance is a function of the

number of processes in the system, priority levels, and the invocation mechanisms of the scheduler.

The overhead of a timing service depends on the number of processes using the service, while its

jitter is a function of the timer resolution, and the processes using the services. As the performance

functions of these services are hardware-specific, to model system software and hardware compo-

nents as a whole is more convenient in the design and analysis. These functions can be obtained

38

using an end-to-end measurement presented in Chapter 6.

2.5 Runtime Model

A runtime model specifies the ECSW runtime architecture with all implementation details filled,

including both execution properties (such as execution locations of the software components and

execution timing properties) and scheduling policies. A runtime model is constructed at the deploy-

ment design phase by refining the structural model. Such a model is the final design model before

the software implementation. The building blocks in the runtime model must be objects schedulable

and manageable by the system software in the platform. Detailed and accurate ECSW performance

analysis, specifically timing and schedulability analysis, are applied to the runtime model.

Definition 2.7. A runtime model is defined as a weighted directed acyclic graph

��� � ��� � � � � � � � ��� � � � � �

where

	 � defines a set of tasks that are basic schedulable execution units in the system.

	 � ��� � � ��� � ������
 defines the precedent constraints between tasks.
�

is a partial ordering

relationship, indicating that either the execution of � � depends on the execution of � � , or � �

and � � have no dependency and can run concurrently.

	 � ��� � � � defines a set of invocation periods for � � �	� . The value of � ��� �
 can be

any positive rational number (� �). For a task � � whose period is unassigned, � ��� �
 ��
 .

Otherwise, � ��� �
 defines the duration between two consecutive invocations of �
� . If � � is

invoked periodically, � ��� �
 is a positive constant (denoted as � �). If � � is invoked sporadically

39

or aperiodically, � ��� �
 is a function for the intervals between consecutive invocations of ��� .2

	 � � � � � � � � defines a set of deadlines. Given a pair of tasks � � and ��� , the deadline can be

any positive rational value. If the deadline between � � and � � is unassigned, � ��� � � � �
 ��
 .

If the deadline is assigned, all tasks between � � and ��� in a dependency chain must complete

within � ��� � � ���
 , denoted as � � � .

	 � � � � � �� defines the released offset functions, which is a non-negative rational value. The

value of � ��� �
 indicates the time duration between the readiness of � � and the beginning of

� � ’s invocation period.

	 � � � � � � � � defines a set of resource demands of tasks � and links
�

, whose values are

positive rational numbers. The resource demands in a runtime model are in real execution

times instead of the virtual resource demands as the devices/links for the tasks/communications

have all been determined.

	 � � � � � � � � � � defines a function that maps each task to a proper computation device.

Since we assume only one link between a pair of devices, the links for task communications

are consequently determined after � � � function is decided.

A task in the runtime model contains a sequence of components in the structural model, and can

typically be implemented as a process or thread in the system software (e.g., OS) of the platform.

We formally define a task as follows:

Definition 2.8. A task � � is modeled as a tuple with

� � � ��� � � � ����� ��� � � � � ��� � � � ���
2As the analysis of real-time and embedded systems usually considers only the worst case, the minimum interval

between invocations can be used as � for sporadic and aperiodic tasks.

40

where
� � defines a sequence of components executed in a first-in-first-out (FIFO) fashion with run-

to-complete semantics, � � is � � ’s invocation period, �	� is � � ’s relative deadline, ��� is � � ’s release

offset, � � is � � ’s resource demands, and � � � � is � � ’s execution location.

The periodicity of a task depends on the invocation properties of the components in the task.

Some tasks can run as pseudo-periodic tasks, whose invocation depends on some periodic tasks.

The links in the runtime model specify the dependencies between the tasks. These dependencies

include both data and control dependencies. All dependencies are implemented as synchronous

messages.

Dependent tasks in a runtime model form an information processing flow, called task chain.

The task chains implement the transactions in the structural model. A runtime model contains a

4-level hierarchy. In the hierarchy, the top-level system model contains a set of task chains, which

consist of dependent tasks, which consequently consist of software components. The task chains

may communicate with each other asynchronously. The tasks in a task chain are dependent and

communicate synchronously. The components inside a task execute sequentially and share the same

scheduling parameters (e.g., scheduling policy and priority) of the task. In this work, we assume

statically constructed tasks, meaning that the components in each task are statically assigned and

do not change during task execution. The task execution location and scheduling properties are also

statically assigned.

2.5.1 Runtime model performance modeling

The performance parameters of the runtime model include both performance constraints and

characteristics of the tasks/links. The performance characteristics of tasks and their communications

are annotated as node weights and link weights in the runtime model. The characteristics parameters

include the resource demands of various resources. Similar to the structural model, we consider the

41

following three types of resources for the runtime model:

	 Computation resource � ��� � � � � ��� � � � specifies the tasks’ computation resource

demands. Typically, we use the service times (execution times) in wall-clock time for this

parameter.

	 Communication resource � � � � � � � � �� specifies the communication resource demands

for the links � � � . Typically, we use the message delays excluding contentions between two

nodes for this parameter. Such a delay includes the overheads for the channel establishment

and the disconnection.

	 Storage resource � 	 � � � � � ��� � � � specifies the tasks’ storage resource demands. We

assume the memory (both ROM and RAM) is the only storage on a computation device. The

resource demands are modeled as the total size of the code and data (including dynamic data).

The resource demands of a task depend on the total computation and communications of the

task’s constituent components. According to the Eq. (2.2), we can compute the resource demands

of a task, both computation and communication, as follows:

� � ��� � � � � ��� �
 �
���������	��

� ����� � � � �

� � ����� �����

� � ��� � � �
 �
������������� � ����� � � � �

� � � � �

(2.3)

The constraints parameters in the runtime model include invocation periods, deadlines, and

release offsets. The invocation periods are defined for the input task(s), which have no predecessor,

in a task chain. The invocation periods can be propagated to every pseudo-periodic task along the

synchronous communication links. The deadlines include both end-to-end deadlines and relative

task deadlines. The former constrains the execution duration between an input task and an output

task, which has no successor in the task chain. The latter constrains the execution of individual

42

tasks in the task chain. The release offsets constrain the start time of a chain as well as individual

tasks in the chain. Typically, these constraints are inherited from the end-to-end constraints in the

structural model. As many analysis methods require the constraints of every task, such end-to-end

constraints may need to be distributed over the tasks in a chain. For example, the tasks’ relative

deadlines and release offsets can be derived based on the end-to-end deadline � using techniques

such as deadline distribution [38]. Similarly, the period of pseudo-periodic tasks can be obtained

using the rate propagation.

In our runtime model, we allow for the invocation period of a task chain to be shorter than its

end-to-end deadline, i.e., � � � . This implies that multiple instances of a task chain can be active

in a system. The executions of these multiple instances must be pipelined on different computation

and communication devices in the designed platform with total resource capacities that are sufficient

to support such a pipeline execution.

2.6 Related Work

Many modeling frameworks have been proposed for modeling and analysis of software perfor-

mance. The one proposed by Kevin Bradley [11] is called the real-time modeling framework. The

framework contains modeling constructs for describing all aspects of the software design model,

partitioned into application model constructs and target-platform model constructs. The frame-

work contains a modeling hierarchy, from top to bottom, of domain, architecture, component, and

physical models. Although this framework is similar to our modeling framework, the modeling in-

formation and method used to derive them are fundamentally different. A model constructed using

the framework in [11] assumes the application and platform models are constructed independently,

and the analyses are only performed after the application model has been allocated to the target.

Therefore, there is no need to model the performance of the application model and components

43

before they are allocated to the target, and consequently no analysis can be performed before then.

Such a process significantly limits the scope of the performance modeling and analysis, making it

difficult to support early performance modeling and true performance-aware design.

The Ptolemy modeling environment [53] uses a different modeling framework consisting of

actor and actor frameworks. An actor is a reactive component and can perform a set of partially-

ordered computations and communications. An actor framework defines an environment for an

actor and controls its executions and interactions with other actors. An application can contains

multiple heterogeneous models consisting of different frameworks and actors organized hierarchi-

cally. The performance analysis of such a system model is based on design-level simulation without

the platform information. Such analysis is only useful for control design evaluation. The runtime

model in Ptolemy uses a timed multitask model, which is built with the assumption of a synchronous

data flow model, and restricts sending the output only at the end of each invocation cycle. Despite

the power of Ptolemy in control design modeling and simulation, the model does not contain suf-

ficient information for realistic performance analysis of ECSW. The timed multitasking model can

only be implemented on a specially-designed operating system or a time-triggered environment.

Ignoring the platform model and its resource capacities also limits the Ptolemy verification to only

such features as control stability, under the assumption that all activities can be completed within

the designed constraints, which may not be the case after the components are implemented and

allocated on a target.

Timewaver is another modeling environment that defines the modeling framework for both func-

tion and performance modeling [18]. The modeling framework consists of port-based software

components and couplers. The couplers are used to connect software components. The frame-

work allows performance to be annotated to the components and couplers. However, Timewaver

is only a modeling environment. The analysis is achieved using a different complementary tool,

44

TimeWiz [85], which is based on a different modeling framework.

Gerber, Hong, and Saksena developed a design verification process based on an asynchronous

task graph [26]. The modeling framework contains tasks, asynchronous buffered channels for the

communications. Each task has a set of performance parameters associated with it, including a

period, a deadline less than its period, an execution time, and a release offset. The modeling frame-

work also defines a set of system-level performance constraints, including data freshness, corre-

lation, and separation. The framework assumes either a homogeneous platform or that the tasks

and communications have been allocated to the target platform. The work is later extended to

include the task chain and the platform in the model, delay constraints in the system-level param-

eters, and probabilistic resource demands [40]. The framework has also been integrated with the

Real-Time Object-Oriented Modeling (ROOM) framework [74] for modeling and analysis system

performance [70].

A large number of performance analysis techniques have been developed based on the runtime

model framework which consists of tasks. Traditionally, the system is modeled in a simple task

model containing a set of independent tasks characterized by their execution times, periods, and

deadline [47, 6]. Harbour, Klein, and Lehoczky built a complex task model by allowing tasks to

contain subtasks with different priorities, deadlines, and release offsets [29]. The platform models

for both simple and complex task models are limited to uniprocessor. Both models also assume in-

dependent tasks. Such models are not applicable to current ECSW modeling as the system typically

involves multiple dependent tasks running on a multiprocessor environment. To address this issue,

modeling frameworks that include modeling elements for both task dependencies and multiproces-

sor platforms are required. Examples of such frameworks include the distributed task graph [81],

the task-module interaction graph [64], and the directed task graph [51].

Other modeling frameworks have also been proposed and evaluated for embedded and real-time

45

system design. These include many UML-based performance modeling frameworks [4, 92, 3, 33].

Such a framework usually extends the existing UML modeling language with performance and

platform modeling components. Although these frameworks have the advantage of compatibility

with existing models, as UML is widely accepted, the methods for accurate analysis are difficult

to develop due to the complicated interactions between UML components and their invocation

mechanisms. The frameworks based on queuing networks have also been developed and evalu-

ated [28, 95, 55]. The model constructed with these frameworks can be mathematically analyzed

using mature queuing theories. However, the results generated are less useful and accurate due to

the nature of the probabilistic model.

For platform modeling, Mok and Feng proposed a method of using a virtual resource [60].

The virtual resource concept allows one to design and analyze the system without knowing the

target platform. However, their work is limited to a single processor. Kettler, Katcher, and Stros-

nider modeled the operating system according to the operating system’s structure and measured

data [43]. Brown and Seltzer developed a micro-benchmark, hbench:OS, to measure the low-level

system calls, and built the performance model of the operating system hierarchically from bottom

up. Methods for modeling middleware systems have also been developed [39, 72, 65]. Although

the models constructed using these methods and frameworks reflect the platform performance at

certain levels, they are not adequate for use in application level performance model and derivation

since the modeling of this type of system software does not include the workload consideration of

the system.

Our objective in this work is to construct the modeling framework that integrates all aspects

of the ECSW development cycle, while still maintaining model independence so the designer can

focus only on the information in which he or she is interested. To this end, we have constructed our

modeling framework to contain a correlated system aspect for component, structure, runtime, and

46

platform with performance information annotated to modeling components.

2.7 Summary

ECSW performance analysis requires modeling the performance of individual components and

performance constraints at each design phase. In this chapter, we have presented a framework

for performance modeling and analysis at all different design phases, including software archi-

tecture development and evaluation, platform construction, and deployment design. The models

constructed at these design phases are the structural model, platform model, and runtime model.

The performance is annotated to these models as a set of design-phase-dependent performance pa-

rameters. The performance parameters are further classified into constraints and characteristics to

improve reusability of their values. With this framework, the ECSW is first modeled in a structural

model, consisting of a set of transactions. Each transaction is modeled as a component graph, which

is a weighted directed graph. The characteristics are annotated to nodes and links in the graph as

weights, while the constraints are annotated to transactions. The components in the structural model

are port-based objects with the ports being used for synchronous communications between compo-

nents. Since the component’s performance characteristics depend on its execution environments, a

virtual resource concept is introduced to model the component’s resource demands in a platform-

independent form.

The platform model specifies the ECSW execution environment and consists of hardware and

system software. It is modeled as a weighted undirected graph. The nodes in the model represent

computation devices. These contain both hardware components and system software essential for

the application executions. The weight functions of each node model the resource capacities of the

device and the overheads of the system software services. The links represent the physical connec-

tions between the computation devices and the protocol software managing the link. Similarly, the

47

weight function of a link defines its resource capacity and the overhead of the protocol.

The runtime model is a weighted directed acyclic graph, representing the same system as the

structural model. The nodes in a runtime model are tasks — the basic schedulable units on a

computation device. A task is composed of a sequence of components. The annotated weight

functions specify the resource demands of the tasks. The links model task dependencies, and the

annotated weight functions specify the communication resource demands between tasks. The tasks

with their inter-dependencies form a task chain, which models the same behavior of a transaction in

the structural model. As the tasks in the runtime model have been allocated to computation devices

on the platform, the resource demands are represented in a real wall-clock. A set of constraints,

including invocation periods, deadlines, and release offsets, are annotated to the task chains as well

as individual tasks.

Our performance modeling framework integrates the functional and performance modeling,

while allowing them to be analyzed separately. We consider the ECSW development process as

an iterative model transformation process that generates a new model by refining the model at a pre-

vious phase. The rest of the dissertation will detail the model transformation and the performance

analysis methods based on the modeling framework in this chapter.

48

CHAPTER 3

Estimation of Structural Model Performance

A structural model is the first software model constructed after the control discretization. The

performance of the structural model can then be estimated using the annotated performance of

the constituent software components and their interactions. Since the concrete performance has

to wait until the platform is decided and the software model is transformed to a runtime model,

the performance of the ECSW can only be estimated using the structural model. The performance

estimate can help evaluate the software architecture modeled in the structural model and assist the

platform design to provide sufficient resources.

The estimated performance of a structural model is in the form of virtual resource demands. In

this work, we use bound estimations to evaluate the performance of a structural model. The esti-

mations include both end-to-end resource demands of each transaction and total system resource

demands of all transactions. The end-to-end demand estimation requires identifying the longest ex-

ecution path and beneficial parallelism. The total system workload estimations require considering

the concurrency of the transactions. This chapter presents the techniques that address these analysis

issues.

49

3.1 Metrics of Performance Estimation

The performance metrics we will derive for the structural model includes the end-to-end re-

sponse delay of the transactions and the total resource demands of each type of resource required

by the structural model. The end-to-end response delay of a transaction is in virtual time, derived

from the resource demands of the components involved in the end-to-end execution. This end-to-

end response delay can be used for the comparison of different software architectures. It can also

be used to derive the minimum service rate (capacity) of the platform with which the end-to-end

timing constraints can be met. The total resource demands of each type of resource are useful for the

platform design and configuration with consideration of all required resources. Since the resource

demands of the software in the real-world time can only be determined after the platform design,

we use bound estimations to derive the values of these performance metrics of the structural model.

The bound estimations quantify the values of the performance metrics as a range from the best-

case estimate (lower bound) to the worst-case estimate (upper bound). To define the best- and worst-

case estimates, we need to first define the structural configuration because the values of estimates

vary along the configurations.

Definition 3.9. Given a structural model � , a structural configuration of � partitions the compo-

nents in � into groups with

	 each group executing a dedicated identical virtual resource;

	 different virtual resources for the links between groups and the links within a group; and

	 the components in the same group executed sequentially.

The structural configuration defines how the components and links in the structural model are

organized. Different group formation results in different parallel and sequential executions of com-

ponents and groups. Such parallel/sequential executions result in different end-to-end response

50

delays. With the structural configuration, we can now define the best-case estimate and worst-case

estimate.

Definition 3.10. Given a structural model � and a performance metrics of interest � , the best-case

estimate, � � � �
 , is defined as

� � � �
 � � �	� ��� ������� � �
 �

where � is the value of the metrics � resulting from a structural configuration of � , � � �
 .

This definition indicates that the best-case estimate � � � �
 is the minimum value among the

performance of all configurations � � �
 . We call the corresponding configuration the best-case

configuration, � � � �
 . Similarly, the worst-case estimate can be defined as follows.

Definition 3.11. Given a structural model � and a performance metrics of interest � , the worst-

case estimate of �	� � �
 is defined as

�
� � �
 � � ��� ��� ���
��� � �
 �

where � � � �
 is the value of the metrics � resulting from a structural configuration � � �
 .

According to the definition, the software performance depends on the configuration of the sys-

tem. As the design advances to the later phase with more implementation details filled in, the real

software configuration, called the system configuration, will be determined according to the plat-

form configuration and runtime management requirements. Given any system configuration � � �
 ,

the performance of � � �
 of an interested metric � must be bounded by the base-case and worst-

case estimates, i.e.,

� � � �
���� � �
����
� � �

51

Bound estimations are suitable for early design phase performance analysis since the results

are independent of the software execution environments and are robust under high model uncer-

tainty. This uncertainty of the structural model is caused mainly by the communications among the

components. In a given structural model, the resource demands of the components are fixed after

the selection of components.1 Later, the design concentrates on determining where and how each

component should be executed. The execution locations of the components determine the communi-

cation resource demands. The way a component is executed may introduce blocking and preemption

times to the component as mutually exclusive access resources may exist. These properties can only

be determined when a runtime model is constructed.

In this analysis, we estimate the bounds of the performance metrics with no assumption—such

as type and number of processors, support system software, and network protocols—on the plat-

form configuration. The performance bounds derived in this way are only sensitive to the software

architecture design, and therefore, can be used both for architecture comparison and for platform

design assistance.

3.2 Transformation of Transactions

In a structural model, the control behaviors of the ECSW are modeled as multiple concurrent

transactions under each system mode. From the performance analysis perspective, we are inter-

ested in the end-to-end delays of these transactions and the total resource demands (workloads) of

the ECSW. A simple and straightforward approach to obtaining the values of these metrics is to

traverse the transaction model, find the best-case and worst-case configurations, and compute the

metrics using the resource demands of the components and connections. This requires the tech-

1The method for selecting the components that both meet functional requirements and minimize the overall computa-
tion/storage resource consumptions requires determination of proper granularity of the system, formal model of compo-
nents, and consideration of system behaviors (e.g., mutual exclusive access of a component), and is therefore beyond the
scope of this work.

52

niques of graph search. Some effective graph search algorithms [15] are not directly applicable to

our structural model due to (1) the existence of cycles in our transaction models, and (2) the ex-

istence of multiple input/output components of a transaction. We have to convert our transaction

models to directed acyclic graphs (DAG) to apply the existing techniques. In this section, we present

the methods for eliminating the cycles and multiple inputs/outputs of a transaction.

3.2.1 Cycle elimination

Our approach to eliminating cycle in a transaction model is to separate the cycle as another

transaction and replace it with an aggregated node in the original model. The cycles in our structural

model represent the multi-rate and/or closed loop feedback control that commonly exists in control

systems. A cycle is modeled as an inner loop in a transaction in the structural model, which is

running at a higher frequency than the invocation rate of the transaction. The transaction’s rate

and its contained cycle’s rate must be harmonic with the cycle’s rate as an integral multiple of the

transaction’s rate. The components in the cycle must be invoked at least once in each execution of

the chain.

Due to different invocation rates of the cycle and the transaction, the executions of the cycle

must be triggered separately at runtime by a signal, for example, hardware or OS timer, or a control

event and signal, different from that of the transaction. Higher invocation frequency of the cycle

implies the component(s) in the transaction beyond the cycle cannot supply or consume every new

version of data required or produced during the execution of the cycle. It also implies that the

feedback data generated by a component in the cycle can only be used in the computation in the

consecutive invocation of the cycle. Based on these properties, we can then equivalently separate

the cycle from the transaction as follows.

1. Eliminate the feedback link;

53

2. Create a new transaction for the component subgraph of the cycle with the feedback link

connecting to an added dummy component;

3. Assign the invocation rate of the new transaction as the rate differences between the original

cycle and the transaction.

In the newly-created transaction, the components consuming data from the original transaction

are input components, and those producing data for the original transaction are output components.

To preserve the resource demands ��� of the feedback connection � , we add a dummy node at the

end of the new transaction with the computation resource demand � � � �
. The resource demand

of the link between the output component and the dummy node is assigned to be ��� . The newly-

created transaction is running at its own rate, which is the difference between original cycle rate and

the transaction rate. Figure 3.1 shows the elimination of cycles in a transaction.

......S EX Yr1
r2

......X Y

......S EX Yr1

r2−r1

T

T’

Figure 3.1: Elimination of cycles in a transaction model.

Although the two transactions are modeled as independent ones after the cycle elimination, their

invocations are mutually exclusive. In other words, the sequence � � � �
�

in � and the sequence of

��� in Figure 3.1 execute during different invocation periods. If � � � �
�

in � executes at a period

� � (� � � �	� � �), ��� does not execute in � � . This ensures the executions of � � � �
�

in � and ��� do

not interfere each other, while maintaining the total system workloads and causality of components’

executions.

54

It is also possible that the cycles are nested in a model. In such a case, the transformation

should be performed iteratively, starting from the innermost cycle until all cycles are eliminated in

a transaction model.

3.2.2 Multiple inputs/outputs elimination

After eliminating the cycles, the transaction models in a structural model become directed

acyclic graphs (DAG). The techniques for DAG manipulation can be applied to find the configu-

ration by exploring the parallelism in the model between one pair of input and output. We adopt

a single-source single-destination graph traversal algorithm, such as Dijkstra’s shortest path algo-

rithm, to do this. However, with the existence of multiple input components and multiple output

components in a transaction, it may be necessary to run the algorithm multiple times to find the

best/worst-case configuration. In the worst case, given a transaction model with � input compo-

nents and � output components, finding the configuration of interest requires executing the algo-

rithm � � � times. To resolve this issue, we insert a dummy node as a start/end of a transaction

with multiple input/output components. For multiple input components, a dummy node start is in-

serted before all input components, with a link from start to each input component. For multiple

output components, a dummy node end is inserted after all output components, with a link from

each output component to end. The resource demands for these dummy nodes and their links to

input/output components are assigned with � � � � � � � � � ��� � � � � �
.2 In this way, a transaction

with multiple input and output components can be converted to one with a single input and output.

Figure 3.2 is an example of a transaction graph after making such a transformation.

After the transaction models are converted to single-input single-output DAGs, the configuration

can be identified, and consequently the performance of the transactions and systems can be deter-

2Some constraints such as the correlations between inputs and outputs [26] can be built with this transformation by
assigning some connections with non-zero resource demands.

55

I2

I1
O2

O3

O1

......start end

Figure 3.2: Elimination of multiple inputs and outputs.

mined by running the estimation algorithm, which is developed based on a revision of techniques

for weighted graph manipulation. The algorithm is discussed in detail in the next section.

3.3 Performance Estimation of a Structural Model

Our bound estimations of structural model performance is based on the construction of the

structural configuration. The constructed configuration can be viewed as running the ECSW on a

virtual platform. This platform contains any required number of virtual devices with the resources

resulting in the best or the worst performance. All these devices are assumed to have the identical

service rate.

With the obtained configuration, the performance of the structural model can be computed using

the virtual resource demands of the constituent components and the connections. Depending on the

components sharing the same virtual device, the end-to-end response can be different for a compo-

nent sequence. Similarly, the end-to-end response also varies according to the virtual channel used

for the connections (intra-device or inter-device). Although the total computation resource demands

of the system are constant for a structural model, the computation workload at some peak time and

the communication resource demands typically vary with the configurations. In this section, we will

discuss how to determine these performance metrics by finding a corresponding configuration.

56

3.3.1 End-to-end response delay

The end-to-end response delay of a transaction is the time duration between the readiness of

the transaction’s input and the delivery of the transaction’s outputs. By the end of the end-to-

end response, the executions of all components in the transaction are completed. The end-to-end

response delay measures how quickly a transaction can react to the system. It usually affects the

control quality of the ECSW. A better design should minimize the end-to-end response delay of

every transaction in the presence of the interferences of other concurrent transactions and system

activities (such as OS and middleware operations).

To obtain the end-to-end response delay bound of each transaction, it is essential to know the

best-case and worst-case configurations. To ascertain this, we must explore the parallelism of the

concurrent transactions as well as the concurrent components within a transaction. As the concur-

rent transactions are modeled as isolated graphs, our study focuses on the components’ parallelism

within a transaction. Such parallelism of the concurrent components is modeled as concurrent paths

in a transaction model.

Definition 3.12. Given a transaction model in graph
�

containing multiple paths between nodes

� ��� �
 , the paths are called concurrent paths if no common node besides � and � is shared between

any two paths.

An example of a transaction with concurrent paths is shown in Figure 3.3.

This example contains the following concurrent paths:

	 Two concurrent paths between � � � �
 : � � � � � , and
� � � ;

	 Two concurrent paths between � � ���
 : � � � � � , and � � � � � ;

	 Three paths between � � ���
 : � � � � � � � ,
� � � � � , and

� � � � � .

57

A

B

C

D

E

F

Figure 3.3: An example of transaction with concurrent paths.

The total number of paths between � � ���
 is four.

In a transaction with concurrent paths, its end-to-end response delay depends on the time taken

to complete the components on the longest execution path if all paths are executed in parallel.

Theorem 3.1. Given multiple concurrent paths between nodes � ��� �
 in a transaction model, denoted

as � � � ��� �
 � � � � ��� �
 � � � � � ��� � ��� �
 �
���

�
 , which are executed in parallel, the end-to-end response

delay � � � � ��� �

 between � ��� �
 is determined by the path that takes the longest time to complete:

� � � � ��� �

 � � � � ��� ��� � � � � �
� � ��� �

Proof. The proof is straightforward. Since no node is shared by any two paths, the end-to-end

response delay of a path � � � ��� �
 can be computed as

� � � � � ��� �

 �
�

� � 	 �	� � ��
 � �
� � ��� �
	�

�

�
 	 �	� � ��
 � �
� � ��� �

Supposing the path � � � ��� �
 takes the longest time � � � � � ��� �

 to complete, we have

�� � � � � � � � � �� � � � � �
 � ��� �

 � � � � � � ��� �

Since there is no interference between the executions of different paths, by the time � � � � � ��� �

��

� � occurs, at which � � � ��� �
 execution reaches � , the executions of all other paths have also reached

58

� . This means that all components and communications on all paths before � have been completed.

Therefore, the end-to-end delay � � � � ��� �

 � � � � � � ��� �

 , which is the longest one.

According to Theorem 3.1, the end-to-end response delay of a transaction depends on the the

completion time of the longest path among all parallel paths, which consequently depends on the

structural configuration of the ECSW. In a structural configuration, we can consider each group as

a component in Theorem 3.1, and the links between groups as the component links. The worst-

case delay of each group is computed as the sum of the resource demands of the components and

communications in the group. Therefore, to estimate the end-to-end response delay, we need to

transform a transaction model to the structural configuration containing multiple concurrent paths,

and assume no path shares the same virtual resource. The rest of this section discusses the methods

used to construct the structural configurations for the bound estimations.

Best-case configuration

To determine the best-case configuration, we need to fully explore the parallelism of the graph

with the assumption of an ideal execution environment. We therefore assume an execution environ-

ment consisting of an unlimited number of virtual devices and links as a virtual platform. On such

a virtual platform, no resource contention is introduced to the components’ executions except those

caused by shared software (such as shared data or codes). All component groups and links in the

later-generated structural configuration will run on dedicated devices and channels with sufficient

resources. Only dependency constraints affect the invocation of the components, except for the start

component, which is triggered by an external signal like data arrival or timer firing. There is also no

interference between transactions as different transactions should run on different sets of dedicated

virtual devices, thus eliminating the physical resource sharing. The virtual devices can be mapped

to some physical devices later during platform design/evaluation and component allocation.

59

Given each transaction running on a set of dedicated virtual devices, the best-case response

delay of a transaction can be computed by finding an allocation with a component sequence that

fully explores the beneficial parallel executions of the components in the transaction. A parallel

execution is said to be beneficial if the end-to-end response delay of the concurrent components

is shorter when they are executed on different virtual devices than when sharing the same virtual

device with consideration of both computation and communication resource demands. The problem

of finding the best-case end-to-end response delay (BERD) is formally defined below.

Given a transaction
� � modeled as a component graph � � � � �
 , a model � � of virtual

platform with virtual device set � (� ��� ��� ���) and virtual links
�

, find a structural

configuration of � on � , � � � � �
 � with the execution sequence of the components in

each � � � �
 such that the end-to-end response delay is the minimum, i.e., � � � � �
 �

� ��� � � ��� ��� � ��� � � ��� � � �
 � .

The BERD problem is NP-complete, as proved in Theorem 3.2.

Theorem 3.2. The BERD problem is NP-complete for any platform model with � ��� � � .

Proof. The proof is similar to the one in [71], by reducing the 3-PARTITION problem to BERD.

We first show the problem is in � � � � �
� � . Given a structural configuration with sequenced

components of a transaction
� � , we can verify its end-to-end response delay to be less than a constant

� by finding the longest execution path between the start node � and the end node � . At each step,

the verification algorithm computes the completion times of all immediate successors of the current

components. Since the graph is a directed acyclic graph, the algorithm takes a polynomial-time to

generate the completion time for every component. We can then compare the completion time of

the � node with � .

We then construct a polynomial algorithm to transform an instance of the 3-PARTITION prob-

60

lem to an instance of BERD problem. Given an instance of the 3-PARTITION problem with

� � ��� � � � � � ����� 	
 , �������
 and a bound � � , we construct a graph
� � � � � � ��� � � � � � of BERD as

follows:

	 The components are constructed as � � � � � � � � � � � ,

where
� � � � � � � � � ����� 	 � is the set of 3-PARTITION, � � � � � � � � � � � 	

�
is a set of � ele-

ments, and
� � � � � � � � � � � �

� 	�� � � � � is a set of � � �
elements.

	 The links among components are constructed as

� � ��� � ��� �
 � � ��� � � � �
 � � ��� � � � ��
 � ����� � ��� � �
 � � ��� � ��� � � � ��
 � � ��� � � � � � � �
 � �

��������� �
 � ����� � 	 � �
 � � ��� � 	 � �
 �

for
� � � � � � �

.

	 The resource demands of the components are assigned as

� � ���
 �

�������� �������
�������
 if � � ���

� if � � � �
�

if � � � � or � or �
The resource demands of the links are assigned as

� � ���
 �

���� ���
�

if � � � � � � �
 or � � � � � �
 or � � 	 � �

� � otherwise

The completion time of the constructed BERD is � � � � . The construction of BERD is a

polynomial time process of mapping � � to BERD graph with addition ��� components, and creating

total ��� links (�� for � � ��� �
 and ��� � � �
 , � � for � � � � � �
 , � � � � � � � �
 and � � � � � � � �
), and assign the

� values for each component and link.

We now prove that a configuration is a solution to the 3-PARTITION problem if and only if

its corresponding configuration of
�

is a solution to the BERD problem. We first show the 3-

61

PARTITION solution is a BERD solution. Given a 3-PARTITION solution, we have � � � 	�� �������
 �

� . We can then assign � to one device ��� and assign
� � � to another device � � . The response

time on � � is

� ��� � � � �
 �
�

� 	��
� � � �
 � � �

Since the link resource demands between components on the same processor is 0, the end-to-end

response delay on � � is

� ��� � � � � � �
 �
�

� 	��
	��
� � ���

�
�

�
	��
�����
 � �

� � �

The communication delay over the link between � � and � � is 0. This is because the � � � � ��� � �
 �

� � � � ��� � � � �
 � �
. Therefore, the overall end-to-end response delay of the BERD graph is

� � � � � � � � � � � ���
 � � �

Then, we show that a BERD solution is a 3-PARTITION solution. To meet � � � � ,
�

and

�
must be running on the same device to eliminate all communication delays. Assigning any two

components � � � � � �
� � � to different devices will result in partition

�
in two disjoint segments,

which consequently results in � �
� � � � ��� � due to � � � � � for any link. Further, no

component � � � can be assigned � � if
� � � is assigned to � � , because assigning � � to � �

will result in the response delay on � � greater than � � . This is shown as follows. Suppose � �

is allocated to � � with
� � � . If � � is executed before some � � �

�
, then the computation time

of path
�

will be � � �
 � � � � � � � � . The � � � � � � � � � � � � � �
 � � � �

 � � � .

If � � is executed after all � 	 �
�

, it must complete before � , which is the last component of
�

.

Then � � �
 � � � � � � � � . Since � � �
 � � � in this case, and � � starts after
�

, � � �
 �

62

� � � � � � ��
 � � � � must be true. Again, this results in � � � ��� � � � � � � � � �
 � � � �

 � � � .

Therefore, no � � can be assigned to the same device of
� � � .

Given � and
� � � assigned to different devices, � � and � � respectively, we sequence com-

ponent ��� �
�

executed between � � � � � � � �
 for
� � � � � � �

. According to the execution

dependencies between � � and
� � , the start time of

� � , � � � �
 , can be computed as follows:

� � � �
 � � � � � � �
 � � ��� �
�
� � ��� �
 ��� � � � �

� � � � � � �
 � � ��� �
�

�������
 ���
 (3.1)

� � � � � � �
 � �
Given the execution starts at time

�
, � � �

 � �

, we can derive the following equation according

to Eq. (3.1).

� � � �
 � � � � � � �
	� �
� � � � � � �
 � � �

� � � � � �
� � � �

 � � � (3.2)

�
� �

To meet � � � � , we must have

� � � 	
�� � �

� � � 	 � �
 � � � � � � � � � �
 �

� � � � � �

� � � �
�� � �

� � � � � �

63

According to Eq. (3.2) and (3.3), we have

� � � �
 � � � (3.3)

Therefore,

� ��� � � �	��� �
 ���
 � � � � �
 ��� � � � � �
 � �
� �	��� �
 � �

This indicates that it is a solution of 3-PARTITION.

Since finding the best-case configuration with the minimum end-to-end response delay is NP-

complete, we develop a polynomial-time greedy algorithm to find a suboptimal solution for the

problem. The algorithm initially configures the system with each component assigned to a different

identical virtual device. All concurrent paths are executed in true parallel in this configuration.

It then tries to generate the configuration by merging the components to the same device. If the

new configuration results in a shorter end-to-end response delay of the longest execution path, the

algorithm continues using the new configuration until no new configuration can shorten the end-to-

end response delay of the longest execution path. The algorithm is shown in Algorithm 3.1.

The input of the algorithm is a directed acyclic graph with single input � and single output � , a set

of components in � , inter-component links in
�

, and resource demand functions � . The algorithm

finds a possible BERD through incrementally reducing the communication delay on a critical path

(Step 5 — 18). According to Theorem 3.1, � depends only on the longest execution path of a

transaction. Reducing the completion time of the longest path will shorten � of the system, which

leads to � � . So, the algorithm tries to reduce the completion time of the longest path by moving

the components with the largest communication cost at each step, after finding the longest path

resulting in current � � in the current configuration, in the hope of reducing the overall end-to-end

64

Algorithm 3.1 Finding BERD.
Input: a transaction graph as

���������
	��
���
���
���
,�

: single input node,�
: the single output node.

Output: best-case response time ��� between � ���
��� ,
configuration ��� containing partitioned

�
resulting in ���

Begin
/* each component is on a dedicated virtual device initially */

1 foreach ��� � do ����� �! #" ��$;
2

��%&
find critical path(

�
);

3 �'� ()��� � �*� ;
4 assign unchecked link set + 	, (

;
5 while + 	.-�0/ do
6 find link 1 2��43 �657� � ��%�8 + 	 with maximum

�:9
; /* 3 �
5 are the components at the ends of 142 */

7 merge ���;3 �=< ��� 57��> ���;3 5?� ;
8 sequence ���@�BADC according to +�E � ��� � ;
9 adjust link cost

� 9 �41 2 � ;
10

��%F
find critical path(

�
);

11 �G�H� ��%I�! (J��� � �*� ;
12 if �G� � �G�H� ��%I� then
13 � � < ���;3 57�'K ���43 �'K ��� 57� ;
14 �G� �G�D� ��%I� ;
15 else restore

� 9 �41 2 � ;
16 end-if-else
17 + 	, + 	LKM" 1N2I$;
18 end-while
19 return � , � � ;

End.

response delay. After the merge, the components in the same partition are sequenced according

to their earliest start times (EST). Note that such sequencing has a negative effect on shortening

the end-to-end response delay because sequencing components’ execution in the merged partition,

which have been executed in true parallel on different devices, may postpone the start of some

component, and consequently introduces a longer delay. To check whether the new configuration

yields a better � , the algorithm finds the new longest path of the updated graph with the updated link

cost and sequenced components. If the new longest path has a shorter response delay, it keeps the

new configuration with the adjusted communication link cost and the merged partition. Otherwise,

the link with the next highest cost on the critical path is eliminated. At each round, the checked link

is removed from the list no matter whether or not it results in a shorter response time. The process

is repeated until all links are examined.

65

Algorithm 3.1 calls a function ����� � � � � � � � � �
 � ��� �
 to determine the critical execution path and

its response time. The implementation of the ���	� � � � � � � � � �
 � ��� �
 function is similar to the Dijk-

stra’s shortest path algorithm [15] but chooses the longest path instead, as shown in Algorithm 3.2.

Algorithm 3.2 find critical path().
Input: a transaction graph as

���������
	��
���
���
���
,�

: single input node,�
: the single output node.

Output: the longest execution path
��%

,
the +�E � �4� � and

)��� ��� � for each component � .
Begin
1 foreach ��� � do ��� � � ��� �! /

;
2 +�E � � �D�G ��

;
3

)��� � �D�G +�E � � ���	�,��
 � �D� ;
4 ����
��=� ���� �

;
5 + � �

;
6 while + � -�0/

do
7 remove component ��� + � with all inputs visited;
8 foreach � � � � � � �4� � do
9 if +�E � ��� �	� � 9 ��1
�� ��� ��
 �4� ��� +�E � ��� � then
10 ��� � � ��� �! � ;
11 +�E � ��� �G +�E � �4� �	�,�:9 �41
�� ���,�
 ��� � ;
12

)��� ��� �G +�E � ��� �	� �
 ��� � ;
13 end-if
14 end-foreach
15 end-while
16 � �

;
17 while � -�0� do
18

��%F � ;
19 � ��� � � �4� � ;
20 end-while
21 return

��%�� +�E ���
)��� ;
End.

In Algorithm 3.2, each component records its immediate predecessor, in a variable
�� � � , from

which it is reached. It also records the corresponding earliest start time � � � and latest completion

time
� � � . Each component also maintains a list of its successors in � � � �����
 . The � � � �����
 contains

both the component(s) immediately depending on � and the concurrent component(s) scheduled

immediately after � . The algorithm starts from the � node, finding a component whose predecessors

have all been visited, and checking whether the component is on the longest execution path of its

successor. If so, its successor’s predecessor is recorded with � � � and
� � � updated in Step 9-13.

66

Otherwise, the successor keeps its current predecessor, � � � and
� � � . The process continues until

all components are processed. The longest execution path is then obtained by tracing back from �

to � following

� � � of the visited components.

We now verify that Algorithm 3.1 has a polynomial-time computation complexity. Suppose the

transaction graph contains
� � � � � components and � � � � � links. The initialization at Step 1 of

Algorithm 3.1 takes
�

. In each main loop (Step 6-15), the algorithm finds a link with the maximum

� � cost, which takes � for the first round, � � �
for the second round, and so on. Scheduling the

components after merging two partitions at Step 8 is a process of ordering components according to

� � � , which takes no more than
�

. The ���	� � � � � � � � � �
 � ��� �
 function is invoked in every loop.

In ���	� � � � � � � � � �
 � ��� �
 function, it takes at most
�

time to find a component with maximum

� � � at Step 7. Since the graph is a directed acyclic graph, the maximum number of successors

for each component are
� � �

,
� � � ,...,

�
. The foreach loop (Step 8-14) therefore takes at most

� � �
,...,

�
time for each component. Since the while loop visits every component exactly once,

the total time for the while loop is
� � � �

�

� � � � � � �
 . So the total time for ���	� � � � � � � � � �
 � ��� �

is � � � �
 . As the Algorithm 3.1 visits every link exactly once, the total time for the algorithm

is � � ��� � � � � � � � �
 � � �
 . Therefore, the computation complexity of Algorithm 3.1 is

� � � � � �
 .

The worst-case end-to-end response delay of a transaction can be estimated in a similar way to

Algorithm 3.1 and with consideration of other transactions’ interferences. Instead of adjusting the

configuration to reduce the delay of the longest path at each step, the algorithm for � � should adjust

the configuration to extend the delay of the longest path. As the worst-case interferences from other

transactions depend on both platform and scheduling policies, such a worst case is usually difficult

to obtain with only the structural model. On the other hand, knowing the worst case � � does not

have any valuable impact on the design, since any arbitrary design will yield a performance no

67

worse than �	� . To this end, we can model the estimated performance bounds of the end-to-end

response delay of a transaction as an open range with
�
� � �

 , and ignore the concrete value of

� � . In contrast, knowing the best-case performance is critical as it can be used for many design

aspects such as verifying the satisfiability of the performance specifications, comparing the design

alternatives, directing platform selections, and guiding the design model construction at the later

phase. The design objective should then focus on how to achieve the best-case response time.

3.3.2 Total resource demands

The total resource demands of designed ECSW consist of the resource demands of all con-

currently active transactions, including both computation resources, communication resources, and

storage resources. The system resource demands capture the workloads during the system execu-

tion. Different from the end-to-end response delay estimations, which focus on resource demands

of individual transactions, the total resource demands characterize the ECSW as a whole to the

supporting system, such as the platform. The system-level resource demand estimations also con-

sider the interferences among the transactions due to resource sharing and resource contentions.

These are useful for system capacity analysis and platform design, which determine the resources

provided for the ECSW execution. The derived system resource demands are in virtual resources

at this phase, and can be mapped to one or more physical devices in the platform, depending on

the resource demands of components and resource capacities of a device. Thus, knowing the total

resource demands of the system is essential for constructing a platform with sufficient resources.

We distinguish the system resource demands of computation from the resource demands of

communications because these workloads require different types of devices. As the functional com-

ponents must be executed whenever there is a transaction containing them, the computation resource

demands vary only with the system modes, which determine the active transaction set (assume the

68

resource demands for the components are constants). For a system mode � � � � defined in a

structural model � , the computation resource demands can be computed as:

� � � � � 	 � � � �
 �
�

� � 	�� � 	 � �
� � � �
 � �

�

� 	 � �
� � � �

where � � � � � 	 � � � �
 is the computation resource demand under mode � � , � � � �
 is the invoca-

tion rate of transaction � � , and � � � �
 is the performance characteristics of the computation resource

of component � .

The upper bound of the computation resource demand can be computed as the maximum de-

mand among all system modes:

� � � � � � 	 �
 � � � � 	 � 	 	 � � � � � � 	 � � � �
 �

If the ECSW design defines a degraded mode under which the system can function with less

resource, the lower bound of the computation resource demand is then the resource demand at the

degraded system mode.

On the other hand, the communication resource demands depend on the configuration of the

software, called the deployment model. Such a configuration is also a design decision, and depends

on the resource availability of the physical devices in the platform. In general, the communication

resource demands using a channel within a device (intra-device communication) are different from

the communication demands using a channel between two devices (inter-device communication) for

the same communication. The resource demands of these two types of channels are complementary

to each other. For any type of communication channel, the total communication resource demands

of all these types of channels can be computed as:

69

� � � � � 	 	
 �
 � � � � �
 �
�

� � 	�� � 	 � �
� � � �
��	�

�

 	 � �
� � � �

where � � � � � 	 	
 �
 � � � � �
 is the communication resource demand of the channel type
� �
�� under

mode � � , � is a link in � � , and � � � �
 is the performance characteristics of link
�

.

The bounds of the communication resource demands are determined by the execution locations

of the components. For the inter-device communication, the lower bound is zero when all com-

ponents are allocated on the same device. The upper bound occurs when every component in the

model is allocated on a physical device, implying all communications are via inter-device channels.

The maximum resource demands can then be computed as:

� � � � � � 	 	
 � � � � �
 � � � � 	 � 	 	 �
�

� � 	�� � 	 � �
� � � �
����

�

 	 � �
� � � �

 �

Similarly, the demands for intra-device communications can also be bounded by
� � � � � � � � 	 	
 � � � � �
 �

.

In current systems, the inter-device communications are typically much more expensive than

the intra-device communication. Therefore, minimizing the inter-device communications is one of

the main design objectives. To minimize the total system cost, the designer needs to make trade-offs

between the computation resource capacities and communication resource capacities. Given a plat-

form consisting of more powerful computation devices, more components can run on each device,

resulting in less communication. However, the cost of a powerful computation device is higher.

On the other hand, a platform with less powerful computation devices requires more communica-

tion capacity, which may also lead to increasing system costs due to more communication devices

needed. Such issues will be discussed later under platform design in this section and under runtime

model generation in Chapter 4.

70

3.4 Applications of Performance Estimation

The goals of the performance estimations of the structural model may include: (1) verifying

the satisfiability of the system performance constraints with a given software architecture, and (2)

guiding platform design to achieve the required performance. The performance constraint verifi-

cation is mainly accomplished using end-to-end response delays. Since response delay estimations

are represented in virtual resource demands, and cannot be compared directly with the specified

end-to-end timing constraints, we use an indirect approach. In this approach, we try to find a better

software architecture consisting of a different number of components and/or different component

communications which will result in shorter end-to-end response delays of the transactions. Such

software architecture will consequently yield shorter end-to-end delays on a real platform and will

more likely meet the constraints. On the other hand, the platform design can be guided by the total

system resource demands. This section presents methods of applying the performance estimations

to the software architecture and platform design.

3.4.1 Software architecture comparison

The purpose of the software architecture comparison is to evaluate different design alternatives.

A control design model can be implemented using different software architectures, with the same

or different sets of components. As the software architecture is modeled in the structural model,

the goal of the software architecture comparison is to compute the best-case response delays of the

transactions in the structural model, and find the one with the shortest end-to-end response delay.

Given two structural models of an ECSW,

� � � � � ��� � ��� �

� � � � � ��� � ��� �

we need to first determine the relative importance of each transaction. The transactions model the

71

control processes in the control design. There can be multiple concurrent transactions if a system

contains multiple control processes for a mode. The concurrent active transaction set for different

system modes can be different. A relatively important transaction should be given a higher weight

in the comparison because improving the performance of such a transaction will be more beneficial.

For each system mode � � , we define a combined response delay of a model � as

� � � � � � �
 �
�

� � 	�� � 	 � �
� � � ��� � �
���� � � � �

where � � � � � � �
 is the combined response delay of � under system mode � � , � � is the active

transaction under the system mode � � , � � � ��� � �
 is the weight of the transaction � � , and � � � � �
 is

the best-case response delay of the transaction � � .

The comparison is then based on the � � � �
 . We say � � is better than � � under system mode

� � if � � � � � � �
 � � � � � � � �
 . Otherwise, � � is better than � � if � � � � � � �
 ��� � � � � � �
 .

To consider the transactions under all system modes, we can use the same approach by con-

structing a combined delay function with assigned weights to different modes according to the

importance of system modes

� � � �
 �
�

	 � 	 	
� � � �
���� � � � � � �

where � � � �
 is the best-case combined delay for the model � , � � � �
 is the weight for mode � � ,

and � � � � � � �
 is the best-case combined delay of mode � � . The evaluation of the structural model

then depends on the of the combined delay of the model � � � �
 .

Besides the response performance, the system resource demands of the structural models should

also be considered in the comparison. A structural model demanding more resources implies more

cost on the platform to maintain the same performance as the one with less resource demand, or

worse performance than the one with less resource demand on the same platform. The resource

72

demands of the structural model can also be combined with the response delay performance in the

construction of an evaluation function.

3.4.2 Platform design

The platform design includes selecting physical platform components (processor with OS, net-

work with protocol, sensor with device drivers, etc.) and configuring them to form the physical

execution environment of the ECSW. It defines the resource availability and runtime resource man-

agement mechanisms, thus determining the satisfaction of the ECSW performance constraints at

runtime. The platform in an embedded system is usually subject to cost constraints, which limits

the physical platform component options. Thus, the goal of a platform design is to construct a

platform to meet both the performance and cost constraints. The performance estimations of the

structural model derived by using the methods presented in this chapter can help to achieve this

design goal.

We guide the platform design by deriving the minimum required resources that meet the perfor-

mance constraints. The minimum required resource is modeled in the minimum service rate of each

resource type. Given a structural model � with a set of transactions � , the minimum service rate

for each transaction � � � � can be computed as

�
	 � � �
 � � � � � �
�� � � �

� � � �
 � � � � �

where � 	 � � �
 is the minimum service rate required to meet � � ’s end-to-end timing constraint,

� � � � �
 is the best-case estimated response delay of � � , � � �
 is the virtual service rate for deriva-

tion of � � ’s virtual resource demands, and � � � �
 and � � � �
 are the deadline and release offset of

� � , respectively. As we use the best-case response delays for the transactions in the derivation of

�
	 � � �
 , �
	 � � �
 is the minimum resource requirement that will meet � � ’s performance constraints.

This implies that any platform with resource availability less than � 	 � � �
 will result in a violation

73

of � � ’s performance constraints. It is transaction-specific, as the timing constraints are specified to

individual transactions in � .

As the best-case structural configuration of � � is known, the minimum service rates for compu-

tation and communication can be separated in � 	 as

� 	 � � ��
 � � 	 �
 � � � 	���� � � � � � � � �
 � � � ��� � 	 �	

� � � �
 � � � � �

� 	 � � �
 � � 	 	
 � �
 	���� � � � � � � � �
 � � � ��� � 	 �

� � � �
 � � � � �

Knowing � 	 � � �
 for all � � � � , the minimum required resource of the ECSW, in minimum

service rate, can be computed as

� 	 � �
 � � � � 	 � 	 	 �
�

� � 	�� � 	 � �
� � � �
����
	 � � �
 �

where � 	 � �
 is the minimum service rate required to meet the system performance timing con-

straints, � � � �
 is the concurrently active transaction set under system mode � � , � � � �
 is � � ’s invo-

cation rate, and � 	 � � �
 is the minimum service rate necessary to meet � � ’s performance constraints.

The � � � operation is use to choose the peak workloads under all system modes. Similarly, we can

derive the minimum system service rates for computation and communication resources as

�
	 � � � ���

 � � � � 	 � 	 	 �
�

� � 	 � � 	 � �
� � � �
�� �
	 � � ��
 � � 	 �
 �

� 	 � � �������
 � � ��� 	 � 	 	 �
�

� � 	�� � 	 � �
� � � �
����
	 � � ��
 � � 	 	
 �

Providing sufficient resources to meet performance constraints under peak workload implies

meeting performance constraints at any time.

The platform can then be designed to provide resources more than � 	 � �
 . Given a platform

consisting of
�

processing units � � � � � � � � � and � connection links
� � � � � � �

� � , the following conditions

74

must be met for the platform to provide sufficient resources to guarantee the ECSW performance

constraints are satisfied:

� �� � � � � � �
 � �
	 � � � � 	 � �

� �� � � � � � �
 � � 	 � � � � 	 	

(3.4)

where � � � �
 and � � � �
 represent the service rates of device � � and link
� � respectively. With

Eq. (3.4), a designer can select the platform configuration that provides minimum resource to meet

the ECSW performance constraints.

Besides the platform components’ selections and capacity verification, the estimation results can

also be used for platform design comparisons. Given multiple platform alternatives that all meet the

minimum required resources, other design constraints, such as the system cost, energy consumption,

and/or size, can be further considered when finalizing the platform configuration. A designer can

also use these results to test some “what-if” scenarios by replacing some components in the platform

configuration or reorganizing them to remove the performance bottleneck and investigate the cost-

savings.

After the platform design with a platform model is constructed, the structural model can be

refined for implementation on the design platform model. The realization of the structural model

on a platform is modeled in a runtime model, to which many existing real-time analysis techniques

can be applied.

3.5 Related Work

In recent years, many approaches have been developed for and applied to the performance mod-

eling and analysis of software systems. Smith and Woodside [78] developed an engineering process

to model and analyze the performance of software starting from an early development stage. This

process contains a sequence of steps, including performance specification, abstract performance

75

model construction, model parameter determination, comparison of analysis and requirements, and

result interpretation. Their modeling method is based on a queuing network model constructed

using an execution graph. It is mainly used for soft real-time systems with a client-server archi-

tecture. Our work follows a similar engineering process, but uses different modeling methods and

assumptions. This is because the client-server architecture is inadequate for ECSW. Other design

models used in performance modeling and analysis at an early design phase include UML model

[92, 3, 28], software execution model [77], use case maps [96], and Real-Time Object-Oriented

Model (ROOM) [95, 70]. These models are powerful for modeling system structure and behaviors.

However, most of them are based on a data-centric functional model, and thus, the performance

modeling and analysis is complex due to the data contentions caused by the implicitly modeled data

sharing.

Another frequently-used method for performance modeling and analysis with abstract design

models is queuing network models. Smith [77] used such a model with a system execution model,

which contains details of hardware and software design, to evaluate the performance of the designed

system. Woodside et al. [94] applied a layered queuing network model (LQN) to evaluate the sys-

tem performance. In their work, the LQN model is constructed by tracing the execution scenarios,

and representing both software components and hardware devices as service centers with queues.

The method has been evaluated on various applications such as multimedia and telecommunica-

tions [76, 95]. Menasce and Gomma [28] simplified the LQN model by reducing it to a two-layer

LQN in which software queuing network forms one layer and the hardware queuing network forms

another. The model can be used to analyze software contentions in a design. Although the LQN

model supports simple and quantitative performance modeling and analysis, it is not suitable for

performance analysis of ECSW with hard real-time constraints since the LQN model provides only

statistical analysis results such as throughput and average utilization. To derive some of the LQN

76

model parameters, design details including component allocations and system runtime models are

required, but these are usually unknown during an early design phase. For the same reason, pow-

erful performance modeling and analysis techniques based on real-time scheduling theories, such

as [29, 81] are not applicable due to the incompleteness of the design at an early design phase when

the platform and its resource management policies have not been decided.

Our work is different from all of the above and other existing approaches. Our performance

modeling and analysis of a structural model does not assume the availability of information about

the platform and software deployment. This makes the model more abstract, and can therefore

be used during an early design phase before implementation details are determined. On the other

hand, our analysis based on bound estimations provides a rich set of information on individual

performance of transactions, and can be used to make quantitative evaluation of different design

choices.

3.6 Summary

In this chapter, we have presented a set of methods that can be used to analyze the performance

of designed ECSW at an early design phase before knowing its execution environment and de-

ployment. Such performance is modeled as bound estimations, which compute the best-case and

worst-case performance by exploring different structural configurations. The performance metrics

evaluated in this work include both end-to-end response delays of the transactions and system re-

source demands. The structural model is first transformed to a set of directed acyclic weighted

graphs of transactions with single-input and single-output. The cycle elimination is achieved by

separating the inner cycles for a transaction, relinking the feedback link to a dummy component,

and assigning a new invocation rate for it. A transaction with multi-input and multi-output can

be converted by creating a dummy component for start and a dummy component for end. The

77

end-to-end response delay bounds of the transactions are then derived by exploring best-case and

worst-case configurations with assumptions of ideal execution environments. As finding a best-case

configuration is NP-hard, we developed a heuristic algorithm to find the best-case configuration and

corresponding end-to-end response delay. Since the worst-case delay bound does not contribute

to the system design, we leave our end-to-end delay bound as an open range with only the lower

bound (best-case delay) derived. The bounds of total system resource demands are also derived with

consideration of all concurrent active transactions. We have also demonstrated the use of these esti-

mation bounds in the system design, especially in the software architecture design and comparison,

and in the platform design.

78

CHAPTER 4

Performance-Aware Runtime Model Generation

Given a proper software architecture and platform configuration obtained using the methods in

Chapter 3, we now present a method of runtime model generation. Runtime model generation is

a model transformation process that refines a structural model with more implementation details

to run on a given platform model. A runtime model, as defined in Definition 2.7 in Chapter 2,

contains the system detail for implementation, such as the structure of OS-level processes/threads,

their execution locations, and execution constraints. These details are further used to derive the

schedule of the ECSW at runtime. The runtime model is essential for detailed performance analysis

and system implementation.

The performance-aware runtime model generation is a necessity in the ECSW design. Taking

into consideration the other design factors, it is common that the designed platform provides re-

sources between the minimum and maximum resource demands. For example, the platform may

contain more communication resource but less computation resource due to the high cost of com-

putation devices. In such a case, the platform cannot provide an ideal execution environment, and

some configuration of the structural model may lead to violation of the constraints, either the re-

source constraints of the platform or the timing constraints of the system. Therefore, a method

that will find a runtime model meeting all constraints is needed. This is accomplished through a

79

performance-aware model transformation.

In this Chapter, we consider the generation problem as a constraint satisfaction problem instead

of an optimization problem, meaning all solutions that meet the specified constraints are considered

equivalent. Since the optimality of a solution is application-specific and varies dramatically with

different design constraints, it is more flexible to let the designer apply the method repeatedly with

refined constraints to find an optimal solution with his/her own objectives and constraints for an

application.

4.1 Problem Statement and Transformation Process

4.1.1 Problem statement

Given a structural model � � and a platform model � � , a large number of runtime models

can be generated by allocating the components and links in � � to the devices in � � , forming

the processes/threads using the components on the each device, and assigning the timing attributes

for the processes/threads. However, not all thus-generated runtime models will meet the resource

constraints in � of � � and performance constraints in � of � � . To this end, we define the valid

runtime models to refer to those that meet the constraints.

Definition 4.13. Given a platform model � � , a runtime model � � is valid on � � if ��� satisfies

the following:

	 For any task � � � � in � � , there exists one and only one device � � � � � � � � � � in the

platform model, such that � � ����� �
 � � � � � � . This ensures each and every task runs on one

and only one computation device.

	 For any platform component � � � � � ��� � � , the resource consumptions � � � of ac-

tivities (computation or communication or storage) of � � allocated on � does not exceed

80

the platform capacity ��� � �
 . This ensures the device has enough resource to execute the

software allocated on it.

	 For any � � � � in � � , all constraints of � and � must be met. Meeting the performance

constraints of all � � ensures ��� and its original structural model � � meet the same set of

end-to-end timing constraints.

In this definition, all tasks are assumed to be statically allocated on the platform devices, mean-

ing a task does not migrate from one device to another once it is allocated. The second and third

conditions guarantee the original specified performance constraints are met in the runtime model.

This can be achieved through properly assigning the other parameters of tasks in the runtime model,

including execution location � � � and release offset � .

Our problem of runtime model generation can be formally defined as a problem of finding a

valid runtime model through graph transformation.

Given a structural model in � � � � � ��� ���
 and a platform model in � � � � � � � � � � � ���
 ,

find a runtime model, � � � ��� � � � � � � � �	� � � � � �
 , such that:

C1 : For any component � � ��� � � 	 � � � � �
 (� � � �
 are the components in transaction

� �), there exists one and only one task � � � � such that � � � � � . This implies that

every component in � � is mapped to one and only one task in � � .

C2 : For any link ��� � � � �
 � � � � 	 � � � � �
 (
� � � �
 are the links in transaction � �), there

is a unique link � � � ���
 �
�

if and only if the two components, � � and � � , are

in different tasks with � � � � � , � � � ��� and � � �� ��� . This implies only those

connections between the components in different tasks are maintained in � � .

C3 : ��� is valid on � � . This implies � � meets the resource constraints � and perfor-

mance constraints � � � , thus consequently meets the constraints � in � � , i.e.,

81

� � ��� � .

In the problem statement, C1, C2 and C3 ensure the equivalence of the structural model � � and

generated runtime model � � . C1 and C2 guarantee � � performs the same functions and behaviors

as � � with the system workloads of � � no greater than those of � � , while C3 guarantees � � meets

all resource and performance constraints of � � and � � .

Theorem 4.3. Given a structural model � � and a platform model � � , the problem of finding a

valid runtime model of � � on ��� is NP-hard.

Proof. We use restriction in this proof, by showing an existing NP-complete problem is a special

case of our partition graph finding problem. The selected NP-complete problem is the Macro-

Dataflow Partition Problem (MDPP) [71]. The problem is defined as:

Given a directed acyclic weighted graph
�

with both node weights and link weights

standing for their costs, a multiprocessor system with � processors, and a cost bound

� � � � �� , find a partition of
�

, � � �
 � � � � ��� �
 , where � � are nodes, � � are

tasks, such that the sum of costs of � � on the longest path, � ���
 , is less than the cost

bound ��� , i.e., � ���
�� ��� .

We restrict our problem of finding a valid runtime model as follows:

1. let a transaction model � � in � � be
�

;

2. let the number of identical devices in the platform be � , � � � � � � � � ;

3. let the deadline � � of � � be the cost bound � � � ��� ;

4. let the � � and � � be node and link cost of
�

;

5. let the tasks in the runtime model be � � , � � � � ;

82

6. � � ��� 	 ��� � are infinity.

With the above mapping, the MDPP is a special case of our problem of finding a valid runtime

model. If there exists a solution to the MDPP, we have � ���
 � � � . Consequently, a runtime

model � � will meet its performance constraints of � and � � in � . As � � , � 	 , and � � are infinity,

the platform resource constraints are met. Thus � � is a valid runtime model. On the other hand,

if ��� is valid, the task chain must meet deadline � � . As � � � � with � ��� �
 � � � � � �
 , we

have � ���
 � � � � ��� . So we can conclude that a valid runtime model can be found for a given

� � and ��� if and only if the MDPP has a solution. Since the macro-dataflow partition problem is

NP-complete, our valid runtime model problem is also NP-complete.

Theorem 4.3 shows that the runtime model generation problem is computationally expensive

as the number of components, links, constraints, and types of resources increases. As the ECSW

usually contains a relatively large number of components and links, the method for the runtime

model generation must be scalable to be useful for practical problems. To this end, we will divide

the problem into a set of sub-problems that can be solved in sequence with effective heuristics.

4.1.2 Transformation process

The runtime model generation, as a model transformation process that converts a structural

model to a runtime model, can be achieved using graph theories since all models in our definition

are represented in graphs. Specifically, we can partition the structural model into a set of component

groups that fit in the platform devices. As the components are statically assigned, the component

groups can be further partitioned into tasks that can be individually scheduled. The properties, such

as execution locations, release offsets, and invocation rates, of these component groups are assigned

along with the partition. Corresponding dependencies and communications among the components

83

are transformed into dependencies and communications among the groups, and are mapped to the

communication links in the platform model. We therefore introduce a partition graph concept to

achieve the model transformation.

Definition 4.14. A partition graph � � � � � � � � � � ��� �
 of a structural model � � is a weighted

directed graph, where

	 � � is the set of partitions. For any component � � � � � � 	 � � � � �
 in � � , there exists one and

only one � � � such that � � � � � � ;

	 � ��� � � � � � is a set of directed links between the partitions. A link � � � ��� � � �
 � � �

exists if and only if for a link ��� � � � �
 � � of ��� , the components � � � � � � , � � � � � � , and

� � � �� � � � ;

	 � � � � � � � � � � �� is a set of functions for the resource demands of the partitions and

links.

In this work, the resources we consider include computation, communication, and memory

resources. The resource demands of a partition � � � can therefore be derived as follows:

	 Computation: � � � � � � �
 � � ��� 	 � �
� � � ��� �
 .

	 Communication: � � � � � � � � � � �
 � � � ��� 	�� � � � ��� � �
 .

	 Memory: � � 	 � � � �
 � � � � 	 � �
� � 	 ��� �
 .

Given an arbitrarily generated partition graph � � � , the following theorem shows the conditions

required for ��� � to be a valid runtime model.

Theorem 4.4. Given a partition graph � � � of a structural model � � , and a platform model � � , a

runtime model constructed using � � � , ��� � � � � � � � � � � � � �	��� � � � � �
 is a valid runtime model

if and only if

84

1.

� � � � � �

� � � � � � ��

� � � � � � ��

� � � � � � � � � � � � �
� for any �
� � � �

such that � of � � are met;

2. For any device � � ��� � and all partitions � � � on it,

�

� �
� 	 ��� � �

� � � � � � �
 � � � � � � ��� �

�

� �
� 	 ��� � �

� � 	 � � � �
�� � 	 � � � ��� �

and

�

� �
� 	 ���

� � � � � � �
�� � � � � � �

Proof. The proof is straightforward using the prove-by-construction method and following the run-

time model definition. First, a one-to-one mapping can be constructed between � � � � � ��� � of a

partition graph and � � � � � of a runtime model:

	 � ��� � ;

	 � ��� �
;

	 � ��� � .

Prove sufficiency. If there exist functions � � � , � , � , and � that meet the constraints � of � � ,

we can construct the runtime model as � � � � � � � � � � � � �	� � � �
 . Thus-generated � � satisfies the

definition of a valid runtime model since (i) � � � defines a unique � � ��� � for any � � � , (ii) � is

85

met with � , � , and � , and (iii) resource demands of � and
�

in � � are within the capacities of � �

according to condition 2. Therefore, all three conditions in Definition 4.13 are met. So � � is a valid

runtime model.

Prove necessity. If � � is a valid runtime model, according to Definition 2.7, we have

� � � � � �

� � � � � � ��

� � � � � � ��

� � � � � � � � � � ��� � for any �
� � � �

Since the � � is valid, the function � and � must be assigned with the � met. This results in the

condition 1 holds. The � � on each device must also be less than its capacity, which results in the

condition 2 holds.

Theorem 4.4 indicates that generating a valid runtime model from a structural model can be

divided into two parts: finding a proper partition graph and determining the functions for the par-

titions’ attributes. To this end, we develop a multi-step process to generate a partition graph with

the proper attributes to implement the model transformation. This process consists of interleaved

two partition steps and three assignment steps At each partition step, the model is transformed into

a partition graph with more smaller partitions to reduce resource consumptions and increase flex-

ibility in order to meet the resource constraints. At each assignment step, the execution attributes

such as timing and location properties are determined for each partition according to the end-to-end

performance constraints.

The steps of our transformation process are described below.

STEP 1: Rate assignment. This is an assignment step and the first step of the process. The

objective of this step is to determine the invocation rate of every component in the structural

86

model. The derived component’s rate is used to compute the workload introduced by each

component during the component allocation to meet the resource constraints of the devices in

the platform model.

STEP 2: Component allocation. This is a partition step. The objective of this step is to generate a

partition graph meeting the resource constraints of the platform. In this step, the components

in the structural model are partitioned into groups and allocated to the devices in the platform

model with consideration of resource consumption. The allocation is based on both the com-

ponent resource demands and the device resource capacity. The resultant model is a partition

graph with the component group on each device considered as a partition. After this step, we

can determine the true resource demands of the components and use them instead of virtual

resource demands in the later transformation and analysis.

STEP 3: Timing assignment. This is an assignment step. The objective of this step is to determine

the timing constraints for the components in each partition after the communication delays

among the partitions are known. The components’ timing constraints are determined ac-

cording to the system-level end-to-end timing constraints. Satisfying such components’ con-

straints results in meeting the end-to-end constraints of the original structural model. These

results can be used to determine the execution order of the components in different transac-

tions in the next step of task formation.

STEP 4: Task formation. Task formation is a partition step. The objective of this step is to

reduce the resource consumptions of the system software. In this step, each partition on a

computation device is further divided into smaller component groups that are schedulable by

the system software. The resultant model is a refined partition graph in which the components

in each partition are sequenced. In this work, we assume the application runs directly on the

87

operating system, so the tasks can be implemented directly as OS-level processes or threads.

STEP 5: Task graph generation. This is an assignment step, and the final step of the transforma-

tion process. In this step, the final runtime model is generated as a partition graph with the

partitions being the tasks. All corresponding attributes of the tasks, including the periods,

release offsets, deadlines, and inter-task communications and dependencies are specified in

the resultant model.

The transformation process with multiple steps helps separate design concerns. In each step,

only a small number of constraints are considered. The designer, therefore, can focus on a small

number of choices and criteria to optimize the design. However, since we separate the process

into multiple steps in which only part of the system properties are considered at each step, some

solutions leading to global optimization may be eliminated during the transformation. The resultant

runtime model is thus only sub-optimal. This is acceptable under our assumption that all runtime

models meeting the constraints are equivalent.

The algorithms used in each step in the transformation process are discussed in detail in the

following sections.

4.2 Rate Assignment

The rate assignment determines the invocation rate of every component in the structural model.

Knowing the invocation rate of a component is essential for computing the component’s resource

demands. Among the resources we consider in this work, only computation and communication

resource demands are affected by the invocation rates of the components. Memory resource, on the

other hand, is assumed to be pre-allocated for each component, and does not change dynamically

during the execution.

88

Our rate assignment is based on the rate propagation technique. The rate propagation traverses

the transactions by following the synchronous communications among the components from the in-

put component to the output component. As defined in Chapter 2, the invocation rates are specified

for the input of the transactions in the structural model. A transaction starts its execution from its

input components, and their outputs trigger a chain of executions of dependent components down-

stream until the control commands are generated and sent out by the output components. Therefore,

the invocation rate assigned to the input components of a transaction indicates the execution rate of

all components in the transaction. By tracing each transaction downstream from its input along its

synchronous communications, we can derive the rate of all components for each transaction.

An issue that needs to be solved in the rate propagation is the existence of synchronized com-

ponents, whose executions depend on multiple inputs arriving at different rates. Resolving the in-

vocation rate of a synchronized component requires a designer-specified policy, such as the lowest

rate or the � -th highest rate among all inputs. For simplicity of discussion without losing generality,

we have assumed that the invocation rate of such a synchronized component is the lowest rate of

its inputs in the algorithm presentation, which implies the synchronized component is invoked only

when all of its inputs arrive.

Algorithm 4.3 shows the rate assignment algorithm. It assigns the invocation rate to all com-

ponents by following the synchronous communication links in each transaction. It uses a coloring

mechanism to mark visited components in the model and finalize the assignments. To distinguish

the execution rate of a component under different modes, we use a � � � � � ���
� � � � pair to indicate

the rate assigned to each component.

In Algorithm 4.3, the components’ rates are assigned under different system modes. For each

active transaction under mode � � , the input components are sorted in an ascending order of their

invocation rates and are colored in WHITE, indicating they have not been visited. From the input

89

Algorithm 4.3 Rate assignment.

INPUT: structural model � � with the rates � � specified
for all input components � � �� ;

OUTPUT: � � with rate assigned for each mode.
BEGIN
1 foreach mode � � ��� do
2 foreach transaction � � � � � � �
 do color all � � � � � in � � � � � ;
3 sort input components � � �� in � � in ascending order of its � � ;
4 foreach input component � � �� � � � do
5 DFS ASSIGN(� � �� ��� ��� � �);
6 end-foreach
7 end-foreach
8 return � � ;

END.

DFS ASSIGN(� ��� � �)
1 BEGIN
2 color � in

� ��� � ;
3 assign � � ���
 as the rate of � ;
4 foreach � � is immediate successor of � do
5 if � � is � � � � � then
6 DFS ASSIGN(� � ��� � �);
7 end-foreach
8 color � in � � � � �

;
END.

component with the lowest rate, the algorithm traverses forward every component reachable from

the input component, assigns a component the same invocation rate as its predecessor, and colors

the component in GREY. During the traverse, if a visited component is already colored other than

WHITE, which indicates it has been assigned a rate, the algorithm then tracks backward, finalizes

the assignment, and colors component in BLACK. As the algorithm starts from the lowest rate and

returns when a component has been assigned a rate, the synchronized component with multiple input

rates is assigned the lowest rate. In a case where the component should be invoked upon arrivals of

the highest rate input, we can sort the input components in descending order of their rates.

4.2.1 Algorithm analysis

The correctness of the Algorithm 4.3 is proved in the following theorem.

90

Theorem 4.5. Every component in a structural model � � is assigned one and only one invocation

rate for each mode, which is consistent with the rate of the transaction in which it participates, upon

the completion of Algorithm 4.3.

Proof. The proof is straightforward. For each mode, a component in the active transactions is

visited once and only once in the DFS function. This is ensured by the coloring mechanism. Since

every component must be reachable from some input component, all components must be visited

in the algorithm due to the completeness of the DFS graph traversal function. Further, a successor

component inherits the same rate as its predecessor in the algorithm, resulting in the rate of any

component along the execution path being consistent with the rate of one of the input components

(with the lowest rate).

The computation complexity of Algorithm 4.3 is as follows. Given � modes with each mode

containing
�

transactions with � � components and � � links, the algorithm requires � � � � � steps

to assign the rate for all components in
�
. The total number of steps needed for all components

assigned for all modes can be computed as � 	 � � � � � ��� �
 . Suppose the structural model � �

contains � components and � links, the steps needed for assignment of each mode can be bounded as

� � � � � � � �
�� � � � �
 . Therefore, the complexity of the algorithm can be bounded by � � ��� � � � �

 .

Since � in a system is usually a small constant, the complexity of the algorithm is � � � � �
 .

4.3 Component Allocation

Component allocation generates an initial partition graph of a structural model by dividing the

components into groups according to the devices and their resource availabilities in the platform

model. The objective of the component allocation is to transform the structural model to a partition

graph meeting the platform resource constraints. Although the designed platform guided by the

91

performance estimations has sufficient resources, it does not specify how to deploy the components

so that the resource demand for each and every individual device is not exceeded. The results of

the component allocation are the location functions that determine the execution locations for the

components.

The inputs of the component allocation algorithm are the structural model and platform model,

as defined in Chapter 2. Cycles for closed-loop feedback and multi-rate control in the model are

assumed to be eliminated using the method in Chapter 3. The availability of each type of resource is

specified in the platform model. The devices in the platform model are allowed to be heterogeneous,

and the heterogeneity is modeled as different resource capacities, implying the devices are not

identical. The result of the algorithm is a partition graph, containing partitions that satisfy the

following:

	 each group runs on one and only one computation device with sufficient resources, and

	 the total amount of communication between any two groups is within the capacity of the link

between the two devices where the groups reside.

Note that the resultant partition model contains only one partition for each device. As before,

we consider only computation, communication and memory resources, although the method can

be extended to other resource types. During the allocation, we ignore the execution dependencies

among the components. This makes the thus-generated results pessimistic, meaning that a solution

may exist when our method fails to find one. On the other hand, if our method finds a solution,

it is guaranteed to meet all resource constraints. We also ignore other constraints such as end-to-

end deadlines and schedulability during the allocation, for they will be addressed in later steps. We

further assume that implementation at the later phase follows the component allocation results. This

ensures that if such an allocation meets all constraints, so does the subsequent implementation.

92

With the above assumptions, the component allocation subproblem can be defined as a model

transformation problem as follows:

Given a structural model � � and a platform model � � , find a partition graph � � � that satisfies

1. each partition � � � contains some components in � � � � � 	 � � � � �
 such that (i) for all �

partitions, � �� � � � � � � � , and (ii) for any ��� � ��� �� � , � � � �
� � � � � .

2. there exists a one-to-one mapping � � � � � � � � � � � such that (i) for any resource � of

device � � � � � , � � ��� � � �
 � � ��� � � � � �
 , and (ii) � � � � � � � �
�� � � � � � � �
 .

The problem can be viewed as a constraint satisfaction problem, which is NP-complete in gen-

eral. We thus develop an algorithm using a set of heuristic methods to improve its scalability.

4.3.1 Allocation algorithm

The allocation algorithm is based on informed branch-and-bound. Initially, the algorithm cre-

ates a set of partitions each of which is dedicated to a device in the platform model. The resource

capacities of the partition are assigned to be the resource capacities of the devices (for computation

and memory). At each step, an unallocated component is assigned to a partition (branch step). For

every unallocated component � � , we maintain a list of candidate partitions, called partition domain

� � ��� �
 , containing all partitions that � � can be allocated to, without violating any constraint. All

partitions � � � in � � ��� �
 are ranked according to a competence function � � ��� � � � � �
 . At each

branch step, the algorithm selects the best partition in � � ��� �
 for the allocation of the component

��� (informed). After each allocation, the algorithm adjusts the partition domains of every unal-

located component and eliminates the partitions that result in a constraint violation (bound step).

This is achieved by a forward checking [19] mechanism after a minimum constraint violation depth

(��� � �) is reached. The forward checking ensures that only those partitions meeting all con-

93

straints will be further explored in the allocation process. The process continues until either every

component is allocated to a partition without violating any constraint, or no allocation can be found

for a component subject to all constraints. The algorithm is shown in Algorithm 4.4, which subse-

quently invokes a recursive function in Algorithm 4.5, to allocate a component at each step.

Algorithm 4.4 Allocation subject to multiple constraints.

input: a structural model � � � � � ��� ���
 ;
a platform model � � � � � � � � � � � ���
 ;

output: a partition graph � � � � � � � � � � ��� �
 with resource constraints satisfied.
BEGIN
1 � � � � is initialized to be
 ;
2 create partition � � � � � for � � ��� � � � � � � ;
3 � � � � � � � � � � �
 ; 4 order � � � � in descending order of the combinational
5 resource consumption � ��� �
 ;
6 foreach component � � � � do
7 assign � � ��� �
 to be � � � with � ��� � � �
 � � ����� �
 ;

8 allocate � �
 ;

9 if (� is empty) then
10 foreach (� � � � � � and � � � � � � and � � � � ��� � � � �
 � � do
11

� � � � � � � � � � � � � � � �
 ;
12 return (��� � ����� � � � �);
13 else
14 return � � � � ;

END.

One of the key components in this algorithm is the competence function. It is designed and

used to estimate the combined effect of an allocation and to speed up the algorithm. The function

determines the quality of the choice made at each step, which affects the speed of the algorithm.

For a component � � and a partition �
� � � � ��� �
 , � � ��� ��� � � �
 can be computed as follows:

� � ��� � � � � �
 ��� � � � ��� � � �
 � � � � � �
� � � �
	� � � � ����� � � �
 (4.1)

where � � , � � , and ��� are the consumptions of computation, communication, and memory re-

sources, respectively, after allocating � � to partition � � � . Since the resource consumptions in

94

Algorithm 4.5 Allocate function.

allocate � �

BEGIN
1 if (� is empty) then return � � � � ����� � � � �
 ;
2 retrieve first � from � for allocation;
3 if (� � � �
 is �) then return � � � � ;

4 foreach (� � � � � � � �
) do
5 compute ��� � � � � � �
 ;
6 sort � � � �
 in ascending order of � � � � � � � �
 ;
7 while (� is unallocated) do
8 if (all � � � � � � � �
 have been tried) then
9 put � back to � ;
10 return � � � � ;
11 end-if
12 allocate � to �

� � with � ��� � ��� � � � � � �
 � that has not be tried;
13 if (no constraint is violated by this allocation) then
14 if (total allocated components = � � � �) then
15 forward checking � �
 ;
16 if (total allocated components � � � � �) then
17 minimized forward checking � �
 ;
18 if (any component � � � with � � � �
 is empty) then
19 return � � � � ;
20 allocate � �
 ;
21 if (function return with � � � ����� �) then
22 return � ��� � � � � � � � �
 ;
23 else if (allocated components less than � � � �) then
24 reset � � � � to the number of allocated components;
25 end-if-else
26 end-while

END.

� ��� � � �
 , � ��� � � �
 , and ��� � � � �
 are of different types and usually are not comparable to each

other, we normalize them as follows:

� ��� � � �
 �
� �
 � � �
 �� � ��� � � � � �
 � �

�

� �
� � � �
 � � �
� � � � � � ��
�
��� � � �
 �

���
� � � �
 �
� ��� � � �
 �
� �
���

� � � � �
 � �
�

�

(4.2)

� � � � � � � � � �
 is the ideal computation resource consumption of � � � , which can be computed

according to some pre-defined strategy such as the one proportional to, or even distribution of,

95

total workload over the computation devices. Allocating � � to a partition �
� � with the minimum

� ��� � � �
 complies with the pre-defined strategy. Similarly, we can determine the ideal memory

resource consumption � � � � � � � � � �
 of � � � . The communication resource consumption of � � �

depends on the total communication in and out of � � � . A smaller value of
� ��� � � �
 indicates less

communication resource consumed if allocating component � � to � � � .

Constants � � , � � and � � in Eq. (4.2) specify the weights of each resource in the competence

function. They make the competence function a generic form of allocation strategies. Different

strategies can be implemented by choosing the values of � � , � � , and � � . For example, choosing

� � � � � � � � � � � � �
 with � � � � � � � � � �
 derived from even distribution of the total workload imple-

ments the load-balancing allocation strategy. Similarly, choosing � � � � � ��� � � � � � �
 minimizes

the communication resource consumption. This is sometimes desired to optimize the response

time of a transaction involving a slow communication link because such an allocation can result in

the synchronously-communicating components of the same transaction being allocated to the same

computation devices.

The algorithm uses the competence function values to assist selection of the best possible allo-

cation of a component. After each allocation, the competence function values are computed for all

partitions in every unallocated component’s partition domain. Since a smaller competence function

value indicates less possibility of violating the constraints, the algorithm first chooses the partition

with the minimum competence value. If a future component allocation fails to meet any constraint,

the algorithm backtracks and chooses the partition with the next minimum competence value. The

process goes on until all partitions in � � ’s domain have been explored before declaring a failure of

allocating � � and backtracking other assignments of the components allocated prior to � � .

Another key component in Algorithm 4.4 is forward checking. Forward checking is a process

that evaluates the partition domain of every unallocated component and removes the partitions that

96

will result in any constraint violation. The goal of forward checking is to reduce the size of the

partition domains of unallocated components. Consequently, it accelerates the algorithm in finding

a solution. The effect of removing partitions from a component’s domain is local, meaning that

the partition domain of a component � � will be restored to its original one if the assignment of � �

or any component before � � is backtracked. This ensures the completeness of the algorithm, which

guarantees a solution will be found if one exists.

Forward checking incurs additional computation overhead as it must check and manipulate the

partition domains of all unallocated components after every assignment. The overhead increases

proportionally to the number of unallocated components in the system. Therefore, it is high at

early steps of the algorithm when most of the components are unallocated and each component’s

partition domain contains most of the partitions. This implies that forward checking is beneficial

only after a certain number of components have been allocated. Applying forward checking from

the beginning of the algorithm is also unnecessary if each component’s resource consumptions are

much smaller than the available resources of a device/link, which is commonly the case in large

embedded systems. So the resource constraints can be violated only after enough components are

allocated to a partition. Considering this, we have defined a minimum constraint violation depth

(MCVD), after which forward checking should be applied. The value of MCVD is assigned as the

minimum number of allocated components at which a resource constraint violation occurs. In our

algorithm implementation, we initially assign MCVD to infinity and update it when a constraint

violation is observed with a total number of components allocated smaller than the current MCVD.

We can further reduce the overhead of forward checking by examining only those partitions

whose components are changed. Since one and only one component is allocated at each step,

there is only one partition change at each step of the algorithm. Any future resource constraint

violation is the result of a partition change. For example, given a current allocating component �

97

with domain � � � � � � � ��� � � �
 and an unallocated component � with domain � � � � � � � � � �
� �
 ,

if � is chosen to be allocated to �
� � , we only need to check �

� � in � ’s domain for computation

resource and memory resource. Other partitions, � � � and � � � , in � ’s domain are maintained after

� is allocated on � � � . In case � � � in � ’s domain does not have enough computation or memory

resource for � , it should be removed from � ’s domain. On the other hand, the communication

resource constraint cannot be violated if � is allocated to the same partition � � � as we assume all

communications within a partition consume no communication resource. Therefore, the partitions

� � � and �
� � in � ’s domain need to be checked for communication resource constraints after �

is allocated to � � � , and should be removed from � ’s domain if allocating � to them violates the

constraint. This is implemented as a minimized forward checking function in our algorithm, as

shown in Algorithm 4.6.

Algorithm 4.6 Minimized forward checking.

input: unallocated components � with:
partition domains �

�
for each � � � ;

the most recently-assigned component � in � � � ;
constraints on � � and

� �
.

output: reduced partition domains �
�

for each � � � .
BEGIN
1 foreach � � � do
2 if � � � � � � � �
 and (� � � �
 � � � � � � � �
 ��� � � � � �
 or
3 ��	 � �
 � � � 	 � � � �
 � � 	 � � � �
) then
4 remove � � � from � � � �
 ;
5 if � �
 � � �
 � ��� � �
 � � � 	�� � � � � �
 � � � � � � �
 � � � then
6 remove all partitions but �

� � from � � � �
 ;
7 end-foreach

END.

It is shown in [49] that a properly-selected initial order of components can reduce, on average,

the number of steps required to find a solution. We, therefore, order the components according to

their combinational resource consumptions before allocating any of them. The combined resource

consumption is determined as follows:

98

� ��� �
 � �
� � � � ��� �

� � � � � � � � �
 �
�
� �

�
 � � � � � � � �

��� � � � � �
 � � � � ��	 ��� �

� � 	 � � � � � �
 (4.3)

where
�
� ,

�
� , and

� � are constants defining the weights of computation, communication, and mem-

ory resource; � � , � 	 , and � � are the component’s resource consumption function for computation,

memory, and communication resource, respectively; � � , � 	 , and � � are corresponding resource

constraints of a device;
� ��� �
 represents an incoming or outgoing communication link induced by

component � � . In our algorithm, the components are allocated in descending order of their combi-

national resource consumptions, implying that a component requiring more resources is allocated

first.

4.3.2 Algorithm analysis

The component allocation algorithm transforms the structural model to a partition graph satis-

fying condition 2 — resource constraints — of the valid runtime model definition. This is proved in

Theorem 4.6.

Theorem 4.6. The partition graph generated by Algorithm 4.4 satisfies

1. for all �
� � � � � , � ���� � � � � � � ;

2. for any two partitions � � � and � � � with � �� � , � � � �
� � � ��� ;

3. for any partition � � � , � � � � � � �
�� � � � � � � � �
 for any resource � .

Proof. In Algorithm 4.4, the partitions and the computation devices in the platform are one-to-one

mapping. At each step of the algorithm, one and only one of the existing partitions is chosen to

allocate a component. No new partition is created during the allocation. Therefore, at the end of the

algorithm, the number of partitions with one or more components on it, i.e., � � � � � �
 � � �
, must

99

satisfy

� � � � � � � � ��� �

According to the allocate() function in Algorithm 4.5, only unallocated components in � are

considered. Once a component � is allocated to a partition, it is removed from � . As � contains all

components in � � at the beginning of the algorithm, and is empty upon success when the algorithm

is completed, every component must be allocated to some partition; therefore,

�
� � � � �

So Property 1 is true.

Since an unallocated component � is removed from � after allocated, and the algorithm only

chooses a component from � for allocation, no component can be allocated twice on a successful

allocation. When an allocation fails and the algorithm backtracks to component � , it removes all

previous allocations after � . The following allocations are a new trial independent of previous

allocations. This results in no component being allocated twice upon a success. This implies

� � � � � � � � � �
�� � � �� � � �
 � � �� �

which proves Property 2.

At each step, the algorithm allocates a component � � to a partition � � � if and only if the con-

sumption � � of �
� � , after allocating � � to it, does not exceed the resource availability. Therefore,

upon the successful return of the algorithm, the resource consumptions of all types of resources of

the partition graph should be within the resource availability of the devices or links. This proves

Property 3.

Theorem 4.6 indicates that a partition graph generated by Algorithm 4.4 has the same workloads

as the structural model, and contains partitions that can be executed on the devices in the platform

100

model with the resource constraints met. Therefore, if a runtime model is derived from such a

partition graph without introducing additional workloads, the resultant runtime model will surely

satisfy the resource constraints. This satisfies condition 2 of the valid runtime model definition. Our

later transformation, therefore, only needs to manipulate the resultant partition model generated by

Algorithm 4.4 to obtain a valid runtime model.

The computation complexity of Algorithm 4.4 is as follows. The initial steps of creating parti-

tions and computing � ��� �
 takes time of � � � �

 for a structural model � � with � components

with
 partitions. The allocate() function works like a depth-first search in determining an alloca-

tion of one component at each step. For each component, there are at most
 possible allocations in

the worst-case. To allocate � components, the depth-first search algorithm would take worst-case

� � � �
 . However, with initial component order and forward checking, the solution space has been

reorganized at each step, with the solution moving to the front end of the design space tree. For one

extreme case with more solution nodes than non-solution nodes in the tree (� � ��� �
 � � � � � � � �

for any ��� �), the algorithm takes � � �
 steps to find a solution. For another extreme case with more

non-solution nodes than solution nodes in the tree (� � ��� �
 � � � � � � �
),
 is significantly reduced

at each step as a violation will be found and � � ��� �
 will contain a small number of partitions.

This is equivalent to reducing the branches of the design space tree. Thus
 can be considered as a

constant in any case. The complexity of our allocation algorithm is therefore � � � �
 , where � is a

constant.

4.4 Timing Assignment

The timing assignment distributes the end-to-end timing and performance constraints in � of

� � and assigns them to the components in the partition graph. The objective of such an assignment

is to derive the timing information for component schedules in task formation, which will further

101

divide the partitions in the partition graph. The assigned components’ timing attributes include the

earliest start time (� � �) and the latest completion time (
� � �). The � � � and

� � � define a time

window for the execution of a component that will result in meeting end-to-end system performance

constraints. They will also be used to generate the performance functions of � , � , and � in the

runtime model during the task formation.

4.4.1 Timing assignment algorithm

Our timing assignment algorithm is based on the forward and backward tracking of directed

acyclic graphs. It traverses the transaction models one-by-one to assign the timing constraints for

the components in a transaction. As the assignment determines only the bound of the the allowable

execution window for each component, it considers only the precedent constraints in a transaction,

and ignores the interferences of concurrent executions of the components in other active transactions

under the same system mode. Our timing assignment algorithm determines the execution windows

for each component in such a way that the end-to-end performance constraints can be met.

The input of the timing assignment algorithm is the partition graph obtained from component al-

location. Since the execution locations have been decided for all components, the resource demands

of both computation and communication can be converted from virtual ones to real values. Upon

the completion of the timing assignment, all components are assigned with an earliest start time,

� � � , and latest completion time,
� � � . Meeting these component timing constraints will satisfy

the end-to-end deadlines � of the transactions. The algorithm of the timing assignment is given in

Algorithm 4.7, which invokes Algorithm 4.8 and 4.9 to assign � � � and
� � � , respectively.

Algorithm 4.7 first invokes assign forward() function shown in Algorithm 4.8 to determine

� � � for all components in a transaction. Algorithm 4.8 traverses the transaction graph forward

from an input component, exploring every component whose predecessors have all been visited.

102

Algorithm 4.7 Timing assignment algorithm.

INPUT: partition graph � � � � � � � � � � ��� � � ;
end-to-end deadlines � in constraint set � of � � ;
rate � of each input component.

OUTPUT: assigned � � � ��� �
 and
� � � �����
 for each component �	� .

BEGIN
1 foreach transaction � � � � do
2 assign � � � ��� �
 � �

for all components � � ;
3 foreach input component � � � do
4 assign � � � ���	� �
 variation bound � � � � �

;
5 � � � � � ;
6 end-foreach
7 assign forward(�);
8 assign

� � � ���	��
 �
 for all components � � ;
9 foreach output component � � � � do � � � � � � ;
10 assign backward(�);
11 end-foreach
12 return ��� � � � � � ;

END.

The � � � �����
 of a component �	� can be determined iteratively as follows:

+�E � � ��� ���
���� ����� � 3
	 " +�E � ��� ����
�� 	 ���,��
 � � ����
�� 	 �	�,� 9 ��� ����
�� 	 � � � � $ if � � is not an input component

�
if � � is an input component

(4.4)

where �	� � ��
 � is the � th immediate predecessor of � � , � � � ��� �
 is the earliest start time of � � ,

� � � ��� � � ��
 �
 is the earliest start time of the � th immediate predecessor of � � , � � is the compu-

tation resource demand (execution time) of the component, and � � ��� � � ��
 � ��� �
 is the communication

cost (delay) of the link from the component’s � th predecessor � � � ��
 � to the component � � . Since � �

has be transformed to � � � with each partition dedicated to a computation device in � � , the real

resource demand in the form of time delays can be derived for � � and � � . To simplify our discussion

while still considering the practices in the current ECSW system, we assume � � satisfies:

� � ��� � ��� �
 �

���� ��� � � ��� � ��� �
 if ��� and �
� are in different partitions

�
if � � and � � are in the same partition

This implies that the communication resource demands between the components on the same device

103

Algorithm 4.8 assign forward() function.

INPUT: ready-to-explore components in � ;
OUTPUT: � � � and maximum � � � variation � � assigned for all components.
BEGIN
1 while � �� � do
2 �	� � � � � � � �
 ;
3 foreach ��� � � � � ��������
 do
4 if variation bound � � has not be assigned then
5 if ��� is a synchronized component then
6 compute maximum variation � � ;
7 else � � � � � ;
8 end-if
9 if � � � �����
 � � � � ���	��
 � � � ������
 � � � ���	� �����
 then
10 � � � �����
 � � � � ������
	� � � ���	�
	� � � ���	� ��� �
 ;
11 if all � � ’s incoming links visited then � � � � ;
12 end-if
13 end-foreach
14 end-while

END.

are negligible.

The � � � operation indicates that the � � � ��� �
 is the latest time of all its predecessors’ outputs.

This is because of the assumption that a synchronized component starts only after all its inputs are

available. Algorithm 4.8 achieves this by initializing the � � � to zero. All components whose

predecessors have all been visited are added to a queue. The component at the head of the queue

�	� is explored. If a component � � is ��� ’s successor and has been assigned with an � � � greater

than the new value from � � , it indicates that � � can be reached from another path with longer time.

The function then ignores the current path and explores another successor, if one exists. If � � � of

��� is smaller than the value through � � , indicating that it has been reached from a shorter path, the

� � � must be updated with the new value through � � . If all � � ’s predecessors have been visited, the

assigned � � � ���	�
 is the final one for �	� , and ��� is appended to the tail of � .

Algorithm 4.8 also computes the maximum variation of � � � ��� �
 of each component �	� , de-

noted as � � . Such � � � variations may be caused by different rates of multiple input components.

The multiple input rates result in the � � � of a synchronized component � � varying as the arrival

104

Algorithm 4.9 assign backward() function.

INPUT: ready-to-explore components in � ;
OUTPUT:

� � � for all components;
BEGIN
1 while � �� � do
2 �	� � � � � � � �
 ;
3 foreach ��� �
�� � �����	��
 do
4 if

� � � ��� �
 � � � � ��� �
 � � �
�� �
�� ��� � � �
 � � � � � � �
 � � � � ��� �

 � � � ��� �
 � � � ��� � ��� �
 then
5

� � � ��� �
 � � � � ��� �
 � � �
�� �
�� � � � � �
 � � � � � � �
 � � � � ��� �

 � � � ��� �
 � � � ��� � ��� �
 ;
6 if all ��� ’s outgoing link visited then � � � � ;
7 end-if
8 if

� � � �����
 � � � � �����
	� � � then return � � � � ;
9 end-foreach
10 end-while END.

times of all � � ’s inputs vary. The variation bound of any component � � can then be computed as

� ��� �
 � � � � ��� � � �
� � � � � � � � � � � �	� ����� � 	 � � � � � ��
�� � � � � � �

� � � � � � � � �
	�	�	�
 � � �
�
� � �

(4.5)

where
� � � � � � � � � � � ��	
 is the least common multiple of all invocation periods, and ��� , � � are the

release offsets of input � �� � and � � � � , respectively. Since � � ���
 depends only on rates and release

offsets of inputs, which are fixed parameters in a design, Algorithm 4.8 performs � � computation

for each component only once.

The
� � � ������
 of a component �	� is determined similarly by Algorithm 4.9 from the output

components of every transaction. The
� � � ��� �
 can be determined iteratively as follows:

� � � �����
 �

���������� ���������

�

�� 	 "�)��� � � ��

�� 	 � K�������������������� �"!���
 � �$# �'KL��
 ��� ��

�� 	 � K � 9 � � � � � ��

�� 	 � $

if � � is not an output component

%'&���(
if � � is an output component

(4.6)

where � � � ��
 � is the � th immediate successor of � � in � � , � ����� � � �
 are the concurrent components

which depend on �	� � � and reside on the same device with � � � � , and � � � � is the end-to-end deadline

defined in � of a transaction. Considering � � in the computation is due to the fact that all compo-

105

nents depending on �	� � � and allocated on the same device must be executed sequentially. The � �	�

operation indicates that the
� � � ��� �
 is the earliest time when all its predecessors are completed

and their outputs arrive at the component’s inputs because of the assumption of a synchronized

component. In our algorithm, the components’
� � � s are initialized to be the deadline � � � � of the

transaction. Algorithm 4.9 then traverses backward from the output components along the compo-

nent dependencies in the transaction model. It ignores the component that has been assigned
� � � s

smaller than the one from the current path, and updates those with greater
� � � s. The assigned

� � � s of all upstream components must be updated after a component
� � � is changed.

Algorithm 4.9 further validates the � � � and
� � � assignment after both are derived. The

validation is done through comparing
� � � ��� �
 � � � � ��� �
 and � � ��� �
 for ��� (as well as for

links between partitions) with consideration of the � � � variations resulting from different input

rates. Given the � � � , Algorithm 4.9 checks whether the execution time window is longer than

the component resource demand under the worst-case arrival. If any component � � is found with

� � � �����
 � � � � �����
 � � � �����
 ��� � , the algorithm returns � � � � , indicating no feasible assignment

can be found.

The timing assignment algorithm is different from the basic deadline distribution algorithm

in [38], although both of them can be used for the timing assignment. The deadline distribution

algorithm needs to first identify the critical path (the longest execution path) of each transaction, and

distribute the end-to-end deadline � � of the transaction over the components and links on the critical

path. Given � components and � links on the critical path � , each component/link introduces a

delay of � � ��� �
 / � � ��� � ��� � � �
 , the � � � ��� �
 and
� � � ��� �
 of the � components and � links can be

computed as follows:

106

� � ��� � �
 ����� � � � � �
� � 	

� � � ��� �
 � � � � ��� � � �

� � � ��� �
 � � � � ��� �
 � � ��� �
	� �

(4.7)

where � � can be either a component � � or a link ��� � ��� � � �
 between � � and its immediate successor.

� is � � or � � depending on whether its input is a component or a link. The � is the average

slack for each component/link. A component/link � � � � represents the immediate predecessor of the

link/component on � . After � � � s and
� � � s are assigned for all components and links on the

critical path, the � � � s and
� � � s of components/links on other paths can be assigned as follows:

� � � ��� �
 � � � � � � � � � ��� � � ��
 �
 �
� � � ��� �
 � � �	� � � � � � ��� � � ��
 �

 � (4.8)

It can be seen from Eq. (4.7) and (4.8) that the execution time windows (� � � ,
� � �) generated

by deadline distribution for any components with precedent constraints do not overlap. Such non-

overlap execution windows of sequential components may make it easy to determine the execution

order of components in a task. However, as the component sequencing with release times and

deadlines is NP-complete, such restriction do not help for large system as the concurrency exists

among components on parallel execution paths and in different concurrent transactions. On the

other hand, as the deadline distribution limits the execution window to non-overlap, the scheduling

overhead of a system with the assigned times is higher than the scheduling overhead of a system

with the assignments generated by our timing assignment algorithm.

Theorem 4.7. The timing assignment generated by Algorithm 4.7 results in a more feasible schedule

than the assignment generated by the deadline distribution.

Proof. We prove this by showing that any feasible schedule generated by a deadline distribution

assignment is valid with an assignment from Algorithm 4.7, but not vise versa.

107

We first show � � � � ��� �
 � � � � � �����
 for any component �	� where � � � � and � � � � are the

assignments generated by our algorithm and deadline distribution, respectively.

case 1: � � is an input component. � � � � ��� �
 � � � � � ��� �
 � �
.

case 2: � � is on the critical path.

� � � � ��� �
 � � � � � ��� � � �
 � � � ��� � � �
	� � � ����� � � ��� �

� � � � � ��� � � �
 � � � ��� � � �
	� � � � � ����� � � �����
	� �
� � � � � �����

case 3: ��� is not on the critical path.

� � � � �����
 � � � � � � � � � ����� � ��
 � � � � ��� � � ��
 �
	� � � ��� � � ��
 �
�����
 �
� � � � � ��� � � �

� � � � � ��� �

Similarly, we can show
� � � � �����
 � � � � � �����
 for the cases that (i) �	� is an output component

(
� � � � �����
 � � � � � �����
 � � �), (ii) ��� is on the critical path, and (iii) � � is not on the critical path.

According to the above discussion, we can conclude that for any component � � ,

� � � � ��� �
�� � � � � ��� �
 � � � � � ��� �
�� � � � � ��� �

This indicates that the execution window generated by the deadline distribution for a component is a

sub-interval of the execution window generated by the timing assignment algorithm. Therefore, if a

schedule with the deadline distribution assignment is feasible, so is one with the timing assignment

generated by Algorithm 4.7. On the other hand, a feasible schedule with the assignment generated

by Algorithm 4.7 may not be feasible for the deadline distribution assignment.

108

aj

ac

aiain,i

ain,j

Figure 4.1: Path ���	� �����
 and ���
� �����
 are both single sequential paths without any common compo-

nent.

4.4.2 Algorithm analysis

The timing assignment algorithm assigns the start times and completion times of the components

in the structural model. The correctness of the algorithm depends on whether a runtime model

meeting the derived constraints will satisfy all end-to-end timing constraints. We will prove this

by showing the � � � and
� � � generated by Algorithm 4.7 is a sufficient and necessary condition

for any valid feasible schedule. To do so, we need to prove the derived � � � is minimum and its

variation can be bounded.

Lemma 4.1. Suppose a synchronized component � � with two distinct input paths. If the release

phase of the two paths is bounded by � , the variation of � � � ��� ��
 is at most � .

Proof. Suppose there are two paths to � � , as shown in Figure r4.1.

Denote the time delays of the path ��� � ���	��
 as � ��
 � and ���
�����	��
 as � �
 � . Without losing gener-

ality, we assume � � � ��� �
 is � later than � � � �����
 . According to Eq. (4.4), the � � � � ���	��
 under

condition of �	� and �
� released at the same time is

� � � � ���	��
 � � � � � � � � �����
 � � ��
 � ��� � � ���
�
	� � �
 ��

�

���� ��� � � � ��� �
 � � ��
 � if � � � �����
 � � ��
 � � � � � ���
�
	� � �
 �

� � � ��� �
	� � �
 � otherwise

(4.9)

109

If � � � ���
�
 is with offset � � � , the � � � ��� ��
 then becomes

� � � �����
 � � � � � � � � ��� �
	� � ��
 � ��� � � ��� �
 � � �
 � � �

�

���� ��� � � � �����
	� � ��
 � if � � � �����
	� � �
 � � � � � ���
�
 � � �
 � � �

� � � ���
�
 � � �
 � � � otherwise

(4.10)

According to Eq. (4.9) and (4.10), we can conclude that

� � � ���	��
 � � � � � ���	��
 � �

Lemma 4.1 shows that the variation of � � � of a synchronized component is bounded by the

arrival time difference of any two inputs. Now we need to show that the minimum � � � of a

synchronized component occurs when all inputs have the same arrival time.

Lemma 4.2. The minimum � � � ��� �
 of a component � � occurs when all the input components that

can reach � � are released at the same time.

Proof. If � � is reachable from only one input component � � � , we have

� � � ��� �
 � � � � ��� � � �
	� � ��� � � �
 � � ��� � � � � � �
 � ����� � �

�
�

� � � � ����� � � � � ��� � � �
 � � ��� � � � � � �

 � �	��� � �

(4.11)

where � � � � is the immediate predecessor or � � in the transaction � , and �	��� � �
 is the input release

difference between � � � and the earliest released input.

Obviously, � � � ��� �
 is minimum because � � � is the only input component, �	��� � �
 � �
, which

implies � � � released at the same time as the earliest released input component.

110

If � � is reachable from � �
� input components � �� � � � � � � �

	� � , released at time point
� � � � � � �

� 	 ,

assume � starts at
� � , we have

����� �� �
 � �
� �

� � � � � � � � �

According to Eq. (4.4), we have

� � � ��� �
 � � � � ��� � � 	 � � � � ��� �� � �
	� � ��� �� � �
 � � ��� �� � � � � �
 � ����� �� �

� � � � ��� � � 	 � � � � ��� �� � � � � ��� �� � �
 � � ��� �� � � � � �

This indicates � � � ��� �
 is minimum when �	��� �� �
 � �
for all

� � � � � , i.e., when all input

components are released at the same time.

Therefore, we can conclude the minimum � � � ��� �
 for any � � occurs when all its inputs are

released at the same time.

We now prove the � � � variation of a synchronized component � � can be bounded, and the

bound can be derived from input rates and release offsets.

Lemma 4.3. Given a component � � whose invocation rate is the same as input � �� � (� � � �	� � ��� �� �
),

and is reachable from � � �
input components � �� � � � � � � �

	� � with different input period ��� � � � � � ��	

(� � �
�	� � � �

� � � � �), released offsets � � � � � � � � 	 . � � � ��� �
 variation is bounded by

� ��� �
 � � ��� ��� � � �
� � � � � � � � � � � �	� ����� � 	 � �

� � � �
� � � � � � � � �

� � �
� � � � � � � � � � � � 	

� � � �

where
� � � � � � � � � � � � 	
 is the least common multiple of all invocation periods.

Proof. Since a transaction is considered to start at the time of its earliest input, the release time of

transaction � � when the
�

-th invocation of � �� � is released is

� � � � �
 � � �	� ����� � 	 � �
� � � �
� � � � � � � � �

111

The release time of � �� � is

� � ��� �� �
 � � � � � � � �

The release phase for the
�

-th invocation of � �� � is

� � ��� �� �
 � � � ��� �� �
 � � � � � �

� � � � � � � � � � �	� ����� � 	 � �
� � � �
� � � � � � � � �

The variation is bounded by the maximum value among all
�

. Since the release phase will repeat

after
� � � � greater than

� � � � � � � � � � � � � � ��	
 , we only need to check � �� � invocations before

� � . Therefore, the � ��� �� �
 is bounded by

� ��� �� �
 � � � � ��� � � �
� � � ��� �� �

� � � � ��� � � �
� � � � � � � � ��� � ��� ����� � 	 � �

� � � �
� � � � � � � � �

Since the � � runs at the same rate as � �� � , and all communications between � �� � and � � are syn-

chronous, we can conclude:

� ��� �
 � � ��� �� �

� � ��� ��� � � �
� � � ��� �� �

� � ��� ��� � � �
� � � � � � � � � � � �	� ����� � 	 � �

� � � �
� � � � � � � � �

This proves the given equation defines the bound of � � � ��� �
 for any components in the trans-

action.

We can now prove the results of Algorithm 4.7 are a sufficient and necessary condition for any

feasible schedule.

112

Theorem 4.8. A schedule
�

of a set of components � � � � � � is feasible if only if the start and

completion times of component � � in
�

, denoted as �	��� �
 and � ��� �
 , falls in � � allowable execution

window � � � � ��� �
 � � � � ��� �

 , i.e.,

� �	��� �
 � ����� �

 � � � � � ��� �
 � � � � ��� �

Proof. Prove sufficiency. If � �	��� �
 � � ��� �

 � � � � � ��� �
 � � � � ��� �

 holds for a schedule � , � � � ��� �
 �

�	��� �
 and ����� �
 � � � � ��� �
 are satisfied for every component � � in � . � � � ��� �
 � �	��� �
 indicates

that � � ’s execution in � does not occur earlier than it can be released. For every output component

� � , we can conclude that � ��� �
�� � � � ��� �
 . Since
� � � ��� �
 � � � � ��
 , � ��� �
�� � � � ��� �
 for every

� � indicates all transactions meet their deadlines. Thus � is feasible.

Prove necessity. We prove by contradiction. If �	��� �
 � � � � ��� �
 , � � starts before � � � ��� �
 in � .

This implies that � � starts before some of its predecessors completes. This is because � � starts after

the input along the longest sequential path is ready, and the total resource demands of the longest

sequential path from an input component to � � cannot be less than the total of resource demands of

all components and links on the path. � � starting before its predecessor contradicts the fact that � is

valid as it alters the component’s precedence constraints. Thus, � � � ��� �
�� �	��� �
 must be true.

Similarly, if
� � � ��� �
 � � ��� �
 , the completion of � � in � must be after

� � � ��� �
 . According to

� � � ��� �
 computation in Eq. (4.6),
� � � ��� �
 � ����� �
 implies that all components on the critical path

after � � to the output component will complete their execution after their
� � � s. Then, the output

component will also have
� � � ��� �
 � � � � �
 � � ��� �
 , indicating the schedule � causes missing

the e2e deadline. This contradicts the fact that � is a feasible schedule. Thus, � ���
�
 � � � � ��� �

must be true.

Note that the schedule � in Theorem 4.8 can be any schedule, including a local schedule with

only a subset of the components in the application (for example, a component on one processor or

113

within one task), and the system schedule with all the components. This implies that the derived

component’s timing constraints must be met for every component in a feasible schedule, regard-

less of the interferences among the concurrent components. This allows the components in differ-

ent partitions to be organized independently and still meet the end-to-end performance constraints.

However, Theorem 4.8 only ensures the feasibility of the schedule with regard to the timing con-

straints, and does not guarantee the validity of the schedule from the perspective of the components’

dependencies. For example, given � ��� � � � � , it is possible for a schedule with � � � ��� �
 � �	��� �
 �

� ��� �
 � � � � ��� �
 , and � � � ��� � � �
 � �	��� � � �
 � � ��� � � �
 � � � � ��� � � ��
 , but �	��� � � �
�� �	��� �
 , which

violates the component dependencies and results in an invalid schedule. Such a schedule validity is

handled by the component sequencing and runtime scheduling algorithm, which will be discussed

later in task formation and runtime analysis.

Corollary 4.1. The timing constraints derived using Algorithm 4.7 form a sufficient and necessary

condition for any feasible schedule of a given transaction.

Proof. This is a direct conclusion of Lemma 4.1, 4.2, 4.3, and Theorem 4.8.

The complexity of the timing assignment algorithm is linear. For each transaction
�

with � �

components and � � links, the assign forward() function visits each component and link once to

assign � � � and � , taking � � � � � � �
 steps. Similarly, the assign backward() takes � � � � � � �
 to

assign
� � � for all components in

�
. For a system with � components and � links, we have � � � � �

� and � � � � � � . Therefore, the computation complexity of the timing assignment algorithm can be

bounded by � � � � �
 .

114

4.5 Task Formation

Task formation is a partition step to further divide the partitions in the partition graph generated

from the component allocation step. The result is a refined partition graph with a set of smaller

partitions to form the tasks as defined in Definition 2.8. This requires identifying the components in

each task, and sequencing their executions to meet their timing constraints. The sequencing needs

trade-offs between system overheads and schedule flexibility. The system overheads, introduced by

the OS for managing tasks, increase along with the number of tasks. These overheads include both

computation and storage (memory) resources. Conceptually, all components in the same partition

run on the same computation device, thus can be grouped into one task. Thus-formed tasks result

in the minimum system overhead. However, grouping all components in the same partition makes

component sequencing difficult if not impossible, resulting in an inflexible schedule, because the

components in the same partition may run with different timing properties including rates, release

offsets, and deadlines. In contrast, it is also possible to run each component as a dedicated task.

Such a policy can yield the most flexible schedule because the timing and scheduling parameters

of the task can be derived consistently with the timing constraints of the components. However,

as the number of components can be large in each partition, the system overheads can be high. In

this section, we will therefore present a method to minimize the system overheads by reducing the

number of tasks while still keeping the component sequencing easy and flexible, and meeting the

timing constraints.

4.5.1 Problem formulation

At the time of task formation, we transform the structural model � � into a partition graph � � �

with the timing constraints of the components assigned. To make this partition graph a valid runtime

model, we need to further determine the task structure, i.e., components contained in a task, their

115

execution sequences, and the task performance parameters. The derived task set should yield a valid

schedule defined as follows:

Definition 4.15. Given two components � � and � � with � � � � � in a model. A schedule � is called a

valid schedule if and only if � ��� �
�� �	�����
 in � .

A valid schedule maintains the specified dependencies among the components in the structural

model. It is essential to maintain the functional correctness of the ECSW after the task formation.

Since the semantics of a task requires sequential and run-to-complete execution of all its compo-

nents, we further restrict the tasks generated by using our method to contain no internal idle time,

which is defined as follows:

Definition 4.16. Given a component sequence � of a task, an internal idle time of a task, denoted

by � , is a time duration inside a task between the completion of a component � ��� �
 and the release

of its immediate successor �	��� � � �
 in � , i.e.,

� � ������� � �
 � � �����

The internal idle time should be eliminated in the task formation. If there exists an internal

idle time in a task, � � � ��� ���	�

 � �
. Otherwise, � ���	�
 � �

. Existence of internal idle time in a

task requires a mechanism to control the component release time inside a task, which complicates

the implementation and makes the scheduling difficult. The cause of the internal idle time includes

strictly sequential and non-preemptable executions of components inside a task and the possible

involvement of dependent components that run remotely.

Another requirement of task formation is to minimize the system overheads. The system over-

heads are associated with the OS service resource consumptions to manage the task executions. We

call such overheads service overheads. In this work, we consider the timing service overhead and

116

the scheduling service overhead. The timing service overhead is caused by generating and process-

ing timer signals. It depends on the timer resolution and the number of timers used in the system,

which consequently depend on the number of tasks in the system. The scheduling service overhead

includes both the overhead of selecting a ready task for execution, and the context switches, which

also depend on the number of tasks. Therefore, reducing the number of tasks can effectively reduce

the system overhead.

With these requirements, our task formation problem can be formally stated as

For every partition �
� � in the partition graph with the timing constraints of component

� � assigned, � � � ��� �
 ��� � � � ��� �
 � � � � � ��� �

 , divide � � � into new groups � � � � � � that

satisfy:

1. components � � � � � execute sequentially in a valid schedule � with their execu-

tions satisfying � � ��������
 ��� � � �����	��
 � � � � �����	��

 ;

2. � � � ��� � � ;

3. � � executes continuously with � ��� �
 � �
;

4. the total number of groups � � � is minimized.

To find a solution to this problem, we need to address two issues: (1) forming the groups in each

partition and (2) sequencing the components in each group with their timing constraints met. The

resultant groups then form the tasks.

Theorem 4.9. The task formation problem is NP-hard.

Proof. The proof is by reduction. The task formation problem contains a subproblem of sequenc-

ing the components with arbitrary execution times in a group so that all of their timing constraints

of release offsets and completion times are met. Suppose we have determined the groups with

117

their constituent components, determining their execution order with constraints met in problem

statement is equivalent to the problem of sequencing with release times and deadlines on one pro-

cessor [25]. Since the problem of sequencing with release times and deadlines is NP-complete, our

task formation problem is NP-hard.

Since the task formation problem is NP-hard, we need a heuristic algorithm to find a solution

that scales to large systems.

4.5.2 Task formation algorithm

Our task formation process works as follows. Given a partition � � � with components � � � � � � ��� � ,

we start with an initial task set of � tasks � � � � � � � � � � � �
�
, each of which contains one component,

modeled as � � � � � ��� �	� � ��� �
 � � � � ��� �
 ��� � � ��� �
 ��� ��� �
 � � � ����� �
 � . These tasks are then merged

iteratively to minimize the total number of tasks in the final system. The components are sequenced

as the tasks are merged. Their timing constraints derived in the timing assignment are used to verify

the validity of results during the sequencing. Two issues must be addressed in the task formation:

selecting tasks for a merge, and sequencing the components in the merged task.

Algorithm 4.10 shows our task formation algorithm.

Selecting tasks for a merge.

The algorithm merges the tasks with single components first according to their invocation rates

and belonged transactions. This is based on the fact that the dependent components in a transaction

run at the same rate and their executions are continuous. The components in such a group satisfy

� � � �����
 � � � � ��� �
 � � � � ������
 � � � � ��� �

Therefore, the components in the group can be sequenced according to their � � � s. The ties of

� � � for concurrent components in the same transaction are resolved by their
� � � . The algorithm

118

Algorithm 4.10 Task formation algorithm.
INPUT: partition graph ����� ;

timing assignment ��� � � +�E � � �
	J��� � � for every component � � ;
OUTPUT: task set � .
BEGIN
1 foreach partition

%�� � ���	�
� do
2 foreach rate � � do
3 foreach

� 	 ����� � # � of � �
do

4 create an ordered group � ��� ��
 /
;

5
� ��� ��� ��
 ��� � ��� ��� � � ��� �

;
6 � � �
 ��� ��� ��
 �!� �

;
7 end-foreach
8 end-foreach
9 sort �
 in

%�� � in ascending order of +�E � ���

� ;
10 for �
 with same +�E � ���

� do
11 sort �
 in ascending order of

	J��� ���

� ;
12 foreach �
 � %�� � with rate � � in transaction

� 	 do
13 append �
 to � �
 �
� 	 ;
14

� � �
 �! � ��3 � � ��� ��� �
 � +�E � � �

�6� ;
15

� � �
 �� � ���
 ��� �
 ;
16

� ��� ��� ��
 �! (� ���
 � :
17 end-foreach
18 foreach group � ��� ��
 do
19 foreach �
� � ����

���� ��� ��
 with

� ���
 �J��� ���

 � do
20 � ��� ��
�� � ���
 �
����� � �
 � ;
21 � ��� �
�� � � � � �

 �
����� � ��� � ;
22 update

� ��� ��� �
�� � �
� ��� ��� �
�� � � � � � �
 ��� ��� �
�� � � � � ��� ��� �
�� � � � � �
� ��� ��� �
�� � � � � � � � �
 ��� ��� �
�� � � � � ;
23 end-foreach
24 check groups in ascending order of

� ��� ! ;
25 while exist two group in order � ��� A , � ��� � with

� ��� ��� � ���M� ��� ��� A � do
26 comp sequence ��� ��� A � � ��� � � ;
27 if returned schedule is valid then
28 � ��� A returned schedule that merges � ��� A � � ��� � ;
29 update

� ��� ��� A � �
� ��� ��� A � � � � �
 ��� ��� A � ;
30 end-if
31 end-while
32 while exist � ��� A and � 	 � C with � � � ��! �!
#" � 	 do
33 if � ��� A and � 	 � C satisfy Eq. (4.12) and (4.13) then
34 duplicate component sequence in � ��� A � �$��! �!
 " times;

35 create � 	 � A with
�

instance with
� ��� #

��� A ���0� ��� #��� A ���&%#' � �
 and

� ��� #��� A ���0� ��� #��� A ��� � � �
 ��� ��� A ;
36 modify � 	 � A invocation rate to � 	 ;
37 comp sequence ����	 � A � ��	 � C � ;
38 if returned schedule is valid then
39 ��	 � C returned schedule that merges � 	 � A � ��	 � C ;
40 update

� ����	 � C � �
� ����	 � C � � � � �
 ����	 � C � ;
41 end-if
42 end-if
43 end-while
44 end-foreach;
45 return � ;

END.

119

then determines the start and completion time of each component in the sequence as:

�����	��
 � � � � ������� �
 ��� � � ���	�

� ���	�
 � �	������
	� � �

� ��� �
 � �������

where �	��� �
 and ����� �
 are the start and completion time of component � � in the task, and � ��� �

is the group execution time with up-to-date components. Each group after the first step contains

scheduled components from the same transaction with the invocation rate. Since the resources

are sufficient for the executions of these components, it is guaranteed the generated schedule of

components in each group is feasible, i.e., all their assigned timing constraints are met.

The algorithm then verifies that no � � � � contains internal idle time by comparing a compo-

nent’s completion time � ��� �
 and the start time of its immediate successor in the schedule ����� � � �
 .

If an internal idle time between � � and �	� � � is found, � � is split into two groups with one group

� ��
 �
��
 containing sequenced components before � � (including � �), and the other � �
 �
��
 � � contain-

ing sequenced components after � � � � �
. The completion time of � �
 �
��
 is therefore adjusted to be

� ���	��
 , while the start time of � �
 �
��
 � � is set to ����� � � �
 . The process repeats to the group � �
 �
��
 � �

recursively until all components are checked.

After the initial groups are constructed, our algorithm chooses two groups to merge at each iter-

ation. The two groups are selected according to the rate similarity and execution overlap. The rate

similarity constrains the selected tasks to have harmonic invocation rates. The execution overlap

requires the selected tasks with overlapped executions. We first find any two groups that satisfy the

following conditions for a merge:

1. � � � � � ;

2. �	��� �
�� �	��� �
�������� �
 ;

120

3. any component � � in the schedule of the new merged group has � � � ��� �
 � �	���	��
 and

�������
 � � � � ������
 .

The first condition guarantees the components in the merged group have a one-to-one invocation

relationship at runtime. The second condition ensures the groups contains overlapped execution so

the components in the merged group can form continuous execution. The last condition ensures

that every component in the merged group has its execution within its assigned execution window

to meet the end-to-end timing constraints.

After merging the groups with the same rate, the groups with harmonic rates are examined for a

merge. The selected tasks � � and � � must satisfy the following conditions in order to be merged:

1. � � is a divisor of � � (� � � � � � , where
�

is an integer);

2.

� ��� � � � � � �
 � � �	� � � � � � �
��

���� ��� � � if � � � � ���

� � otherwise.

(4.12)

3.

� � � � � � �
 � � �
���� ��� � � � �
 � � if � � ��� ���

� � � �
 � � � � � � � � otherwise.

(4.13)

(
� ��� �
� ���).

where � � � � � � � � and � � � � � � � � are the period, release offset, and computation resource demands

of group � � and ��� , respectively. The merge of two tasks meeting the above condition is done by

duplicating the short period group � � � times and merging them with the longer period group � � ,

considering each instance of � � as an independent task with different release offsets.

121

Component sequencing.

During the merging of two groups in Algorithm 4.10, the components in the two groups need to

be sequenced to maintain run-to-complete semantics of the task. Since the problem of sequencing

components with all their timing constraints met is NP-hard [25], we use the minimum- � � � -first

as a heuristic to sequence the components. The minimum- � � � -first heuristic ensures that the

generated component sequence obeys the component dependency. The algorithm is shown in Algo-

rithm 4.11

Algorithm 4.11 Component sequencing algorithm:comp sequence().

INPUT: � � with sequences � � � � � � � � � � ����� � and ��� with � � � � � � � � � � � � 	 � ;
OUTPUT: new execution sequence � � � on success.
BEGIN
1 initialize the search with start point
 � �

and end point � � � ;
2 for � � �

to � do
3 find � between

�

 ��� �

in � � with � � � ��� �
 � � � � � � �
�� � � � ��� � � �
 ;
4 if no such � then exit-loop;
5 find

�
between

�
����� �

in � � with � � ��� �
 �
� � � � � �
 � � � � �
 � � ����� � � �
 ;

6 if no such
�

then exit-loop;
7 find a position � between

�
��� � �

in � � to insert � � such that component timing constraints met;
8 if no such � can be found then return � � � � ;
9 else
10 insert � � to � � before � ;
11 update � � � � �
 for � � � � � � � � � � 	 ;
12 update � ����� �
 for � � � � � � � � ����� ;
13 if any � � � � � � � � ��� � with � ����� �
 � � � � ��� �
 or any � � � � � � � � � � 	 with � � � � �
 � � � � � � �

14 then return � � � � ;
15
 � � ;
16 end-if-else
17 end-for
18 if � � � then
19 add the rest components � � � � � to the end of � � ;
20 revise � � � � ���
 � � � � � ���
 for these components;
21 end-if
22 � � � � � � ; 23 return ��� � � , � � � ;

END.

The algorithm works as follows. Given � � � � � � � � � � ����� � and � � � � � � � � � � � � 	 � are the

component sequences of the two groups � � and ��� with �
� � � � , we insert � � � � � � � � 	 one-by-one to

122

the � � in their execution order in � � to form � � � . A eligible position in � � � for � � should satisfy: (i)

� � � ��� �
 � � � � � � �
�� � � � ��� � � �
 , (ii) � � � ��� � � �����
 � � � � � � � � �
 � � � � � � �
 , and (iii) not violating

any timing constraints of ��� � � � � � � � � 	 and � � � � � � � � ��� � after the insertion of ��� . The start time of

� � � � � � � � � � 	 in � � and ��� � � � � � � ����� in � � should then be updated using

� ������� � �
 � � � � � � �
 � � � ��� �
 � � � ��� � � �
 � � ��� �
 � � � � � � � �

� � � � � � �
 � � � � � � �
 � � ��� � �
 � � � � � � � �
	� � � � �
 � � � �
� � � �

In case the components cannot be sequenced with the condition satisfied, the algorithm gives up

with the assumption that no non-preemptive feasible schedule exists for the merged group, instead

of performing an exhaustive search. This prevents partially merged groups as such a merge does

not reduce the number of groups, hence does not reduce the system overhead, while sacrificing the

schedulability as it results in a long task execution time.

After each merge, the performance constraints of the merged groups �
� � � � � � ��� � � ��� � � � � � � � � � � ���

� � � � �
 can be determined as follows:

� � � � � � � � ���

� � � �

���� ��� � � � � � if � � � � �

� � � � � if � � � � �
� � � � � �	� � � ��� � �
 �

� � � � � � � � ���

� � � � � � � � � � � � � � �

123

Upon completion of Algorithm 4.10, each partition in the partition graph � � � has been further

divided into a set of groups with the sequentially executing components. Each group can then

be implemented as a task whose execution is managed by underlying supporting software on a

computation device. The final runtime model can then be constructed with these resultant tasks.

4.5.3 Algorithm analysis

The correctness of the algorithm relies on the rate similarity and execution overlap used for

selection of the merging task, and the earliest- � � � -first sequencing. These policies ensure the

generated groups with the properties defined in the task model. We first prove that the merged task

using rate similarity and execution overlap results in no internal idle time.

Lemma 4.4. Given two groups � � � ��� � � � ����� ��� � ��� � � � � � � � � and ��� � ��� ��� � ����� � � � ��� � ��� � � � � �

(� � � � �) with continuous component sequences � � � � � � ��� � � � � � ��� 	
�

and � � � � � � � � � � � � � � � �
�
,

merging � � and ��� into � � � without internal idle time in � � � can happen if and only if

1. � � is a divisor of � � (� � � � � � , where
�

is an integer);

2.

� ��� � � � � � �
 � � �	� � � � � � �
��

���� ��� � � if � � � � � �

� � otherwise.

3.

� � � � � � �
 � � �
���� ��� � � � �
 � � if � � � � � �

� � � �
 � � � � � � � � otherwise.

(
� ��� �
� � �).

Proof. We first prove sufficiency. We need to prove that if the two tasks satisfy conditions 1,2, and

3, then � ��� �
 � �
for all � � � � � � . Since � � � � � � , we only need to consider one period of � � .

We denote the start and completion times of component � � in � � as � � ��� �
 and � ����� �
 , those of

124

component � � in � � as � � � � �
 and � � � � �
 , and those of component � � (� � � � � or � �) in merged � � �

as � � � ��� �
 and � � � ��� �
 .

First, suppose � � � � � . We have

� � � � � � � � � � � � � � � � �
 � � � � � � ��� �

� � � � � �
 � � � ��� �
�� � �

� � � ��� �
 � � � � � �
�� � � ��� �
 � � � � � �����
	

This indicates that the execution of � � and � � overlaps. According to condition 3, we have

� � � � � � �
 � � � � � � �
 � �

� � � � � � � �
 � � � � � �

Since the maximum idle time for each � � period is � � � � � , the maximum idle time during � � � � �

is � � � �
 � � � � � �
 . So, � � � � � � �
 � � � � � �
 implies the idle time between the completion of

the current � � and the start of next � � during � � � � � can be filled by � � .

We can prove the case of ��� � � � in the same way. ��� � � � � � � ensures the overlapping

execution of � � and ��� , and � � is long enough to fill not only all � � � �
 � � � � � �
 , but also between

� � and � � .

So, for any component � � and � � � � in � � � , if � � � � � � � � � � � � � � � , then � ��� �
 � � ��� �
 �
�

since � � has no internal idle time. Similarly, if � � � � � � � � � � � � � � � , then � ��� �
 � � � � �
 � �
since

� � has no internal idle time. If � � � � � � � � � � � � � , according to conditions 2 and 3, �
� � ��� �
 �

� � � � �
 � � � � ��� �
 . This results in � � ��� � �
 � � � � ��� �
 . Thus � ��� �
 � �
. Similarly, we can prove

� ��� �
 � �
for � � � � � � � � � � � � � . Therefore, satisfying the three conditions can lead to � ��� �
 � �

for all components in the merged component sequence � � � .

We now prove necessity. First, we prove � ��� � � � (
�

is an integer) is necessary. Suppose � �

is for � � starting with � � and � � is for � � starting with � � (� � � � �), the release phase between � �

and � � , � � � �
 , can be computed as

125

� � � � �
 � � � � � � � �
 � � �	� � � � � � � � � �
�
� �
� � � � � � � �

� � � � � � �	� � � � �
� � � � � � � � �

� � � �

Suppose ��� in � � is the immediate predecessor of � � in � � � , then � � � � � �
 � � � � � � �
 � � � � �����
 �

� �	� � �
 . In order to make � � � � � �
 � �
for any case, � �	� � �
 � �

must be true for any
�

. It is obvious

that � � � � �
 � �
is true if and only if � � is a divisor of � � , i.e., � � � � � � . The case � � ��� � can be

proved the same way.

For condition 2, let’s assume � � � � � � (� � is the first component in � � �). This implies �
� � � � .

Since � � � ��� �
 � �
for any � � in � � � , � � must satisfy � � � � � �
 � �

. This implies that there exists � � in

� � such that � � ����� �
 � � � � � � �
 . Therefore,

� � ����� �
 � � � � � � �

� � � � �����
 � � � � � �
 � � � � �����

� � ����� �
 � � � � � �
 ��� � ��� 	

� � � � � �
�� �	��� �
 � � � � �	��� �
 � � � � �	� � �
 � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � ��� � �
 � � �	� � � ��� � �
 � � �

We can prove that condition 2 is true for the case � � � � � in the same way.

For condition 3, let’s assume ��� � � � � first. � � � has � ��� �
 � �
for any component � � . Given

126

� � � � � � , the completion time of � � � can be computed as

� � � � � � � � � � � � � ��� �
 � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �� � � � � �
 � � � � � � � ��

� � � � � � � � � � � � � � � � � �
 � � � � �

� � � � � � � �
 � � � � � � �
 � �

In the above derivation, � �� is the resource demands of the components in � � executed during

(� � � � � � �
 � � � � �), while � �� is the resource demands of the rest of the components in � � . Similarly,

for the case �
� � � � � , the above derivation will become

� � � � � � � � � � � � � ��� �
 � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
 � � � � �

� � � � � � � �
 � � � � � � � � � � � � �
 � �

Lemma 4.4 shows that selection and merging of tasks implemented in Algorithm 4.10 is correct.

Now we prove the component sequencing implemented in Algorithm 4.11 is correct in these terms:

(1) the original dependencies among components is maintained, (2) its execution is continuous, and

(3) no cycle is introduced.

Lemma 4.5. Given a group � �
 �
 consisting of components from the same transaction � � running

at the same rate � � , a schedule
�

generated by totally ordering the components using earliest � � �

first maintains the components’ dependencies in � � .

Proof. The proof is straightforward. For component � � and � � in the same transaction, the following

implication must hold:

��� � �
��� � � � �����
 � � � � ���
�

127

according to the timing assignment algorithm. For a group � ��
 �
 containing �	� and �
� , we have

��� � �
� � � since they are ordered according to � � � . Thus, we can conclude

��� � � � � � � � ��� � � � � �

Lemma 4.6. Given two tasks, � � and ��� , with the same rate,

1. if � � � � � in the schedule � � (or �
) of � � (or � �), then � � � � � in the schedule � � � of the

merged group � � � ;

2. if both � � and � � are with � �������
 � �
and � � � � �
 � �

, and � � � � � � � � � � � or � � � � � �

� � � � � , the merged sequence � � � has � � � ��� �
 � �
for every � � .

Proof. We prove these assertions by contradiction. To prove the first assertion, assume � � � � � in

one schedule before the merge, and � � � ��� in the schedule � � � after the merge. If �	� and �
� are in

� � , it is obvious that ��� � ��� in � � � must be the result of � � � ��� in � � since the relative positions of

all components in � � never change during the merge. If � � and � � are in � � , � � � � � in � � � implies

�
� � � � in � � . This is because of the fact that the components in � � must be inserted to � � in the

order of � � during the merge. Component � � is never inserted before � � if ��� � � � in � � . Therefore,

�
� � � � in � � � contradicts �	� � �
� in the schedule of a partition before the merge. So � � � � � in

� � � must be true for the merged groups if � � � � � exists in any original group.

To prove the second assertion, assume there exists a � � in � � � such that � � � ��� �
 � �
in � � � of the

merged task � � � , then

� � � ��� �
 � � � � ��� � � �
 � � � � ��� �
 � �

We examine two following cases:

128

case 1. � � � � � � � are from the same task � � . Since � � and � � � � are immediately next to each other

in � � � , � � � � � � � must be immediately next to each other in � � according to the algorithm.

� � ��� �
 � � � ��� � � �
 � � � ��� �
 � �
. This contradicts � � ��� �
 � �

for � � .

case 2. � � and � � � � are from different tasks. Without losing generality, assume � � � � � and � � � � �
� � . According to the algorithm, � � and � � � � are next to each other in � � � after the merge only

if there exists � � ��� � � � � � � between which � � � � is inserted. Suppose � �� � and � � � �� � are the

sequences before and after inserting � � � � , and there are
�

components in � � that have been

merged with � � .
� �� �

� � � �� � � � � � � � � � � � � � �
� � � � ��� � � � � � � � � � �

After inserting � � � � , we have � �� � �����
 � � �
� �� � ��� � � �
 and � �� � ��� �
 � � � � �� � ��� �
 . If � � � ��� �
 � �

,

then

� � � ��� � � �
 � � � � ��� �
 � �

� � � � �� � ��� � � �
 � � � � � ��� �
 � �

� � �� � ��� �

 � � �� � ��� �
 � �

� � � � � ��� �
 � � � � � ��� �
 � �

� � �� � ��� �

 � � �� � ��� �
 � �

� �� � is the sequence of � � without any component in � � inserted. So � �� � � � � . According

to the above derivation, we must have � � ��� �
 � � � ��� �
 � � � ��� �
 � �
. This contradicts the fact

that � � is continuous.

Since the above cases are the only possible cases for immediate adjacent components in the merged

sequence, we can conclude that ��� � ��� �
 � �
for � � � .

Lemma 4.6 gives the conditions for a correct task formation. The first assertion ensures the new

129

merged group maintains the components’ dependencies in the original group, which results in the

functional equivalence between the transformed group and its origins. The second assertion ensures

the merging process does not introduce any internal idle time to the execution, thus minimizing the

system overhead without sacrificing the end-to-end performance.

Theorem 4.10. The component sequence
�

of a group is a valid schedule if and only if the compo-

nents in
� � are sequenced using minimum- � � � -first.

Proof. Prove sufficiency. If the components in a group are sequenced using minimum- � � � -first,

according to Lemma 4.5 and the first assertion of Lemma 4.6, the components’ dependencies are

maintained in the schedule � � . Therefore, the component schedule of the group is valid.

Prove necessity. If � � is a valid component schedule of a group, given � � � � � in the orig-

inal model, there must be � ��� �
 � ����� �
 . This implies ����� �
 � �	�����
 , which is consistent with

� � � ��� �
 � � � � �����
 . Therefore, it is the same as being scheduled using minimum- � � � -first.

Theorem 4.10 implies that the component sequencing algorithm results in a valid schedule for

each group. Note such validity is limited to a group. In other words, the schedule only guarantees

that the dependencies of the components within a group are maintained, but not the dependencies

among the components in different groups.

Corollary 4.2. The component sequence generated in task formation is both valid and feasible for

each group.

Proof. This is a direct conclusion according to Theorem 4.8 and 4.10.

Lemma 4.7. There is no dependency cycle among the components in the schedule
� � � of the merged

group � � � if
� � of � � and

� � of ��� contain no cycle.

Proof. We prove this by contradiction. Suppose there exists a dependency cycle between � � and �
�
� � � , then ��� � � � and �
� � � � . If �������
� � � � (or ��� ���
� � ���), it implies the � � (or � �) contains

130

a cycle. This contradicts no cycles in � � (or � �). Therefore, a cycle in � � � can only be formed

while merging � � and ��� . Without losing generality, we assume � � � � � and �
� � ��� , and assume

�	��� �
 � �	��� �
 . Given both � � � � � and � � � � � , there must be at least two instances of either � � or

��� in � � � . This contradicts any component being in one and only one partition. Therefore, no cycle

can be generated during the merging of two initial groups.

Theorem 4.11. The groups generated by Algorithm 4.10 meet all properties of tasks.

Proof. This is a direct conclusion of Corollary 4.2, Lemma 4.4, 4.6, and 4.7.

Theorem 4.11 shows that the partitions generated by Algorithm 4.10 are tasks in which end-to-

end performance constraints can be met if those constraints for the tasks and components can be

met.

Algorithm 4.10 is a polynomial time algorithm. Creation of initial groups with components in

the same transaction and running at the same rate takes linear time � � �
 given � components in � � .

Sorting the components in each group and determining their initial schedule based on earliest � � �

take � � � ��� � � � �
 time. Given partition �
� � is divided into

�
groups, it takes � � � � � � �
 to sort

the groups and � � �
 time to find and merge the groups. Given each group contains � components,

each merging takes � � � ��� � � �
 to find a position to insert a component into the schedule, and

� � �
 to verify and adjust the start and end time for the rest of the components. Therefore, the

total time to merge the two groups takes � � � �
 . Merging all the groups takes � � � � �
 time. As

the groups are merged, the number of groups
�

decreases, while the number of components in

each group � increases. Since � 	� � � � � � � � where � � is the number of components in �
� � , the

time taken for merging groups can be bounded by � � � ��
 . Suppose there are
 devices, since �
� �

has a one-to-one relationship with � � ��� � in the platform model, we have � � � � � � � � � . As

� � � � � � �� � � � � � � � � �
 � � � � , the total time for merging all partitions is bound by � � � �
 . The

131

computation complexity of Algorithm 4.10 is therefore � � � �
 .

4.6 Task Graph Generation

The task graph generation is the final step of our model transformation. After the task forma-

tion, the partition graph is refined with each partition consisting of tasks, which are component

groups. The task graph generation then determines the communication and dependencies among

the formed tasks, assigning the resource demands and timing attributes for both the tasks and their

communications. The resultant model, in the form of a task graph, provides detailed information for

implementing the software on a target platform and supports formal timing and scheduling analysis

using real-time theories.

4.6.1 Task graph generation algorithm

The task graph generation algorithm constructs the graph by tracing the links in the transac-

tions and aggregating them to form task communications in the task graph. The transactions in a

structural model is therefore modeled as task chains in the task graph. The functions of the timing

constraints and locations of the tasks and communications are assigned after the task graph is gen-

erated according to the component sequence and the timing constraints of the components in each

task. The algorithm is shown in Algorithm 4.12.

The algorithm first constructs the task set using the groups obtained from the task formation,

and assigns the task attributes accordingly. The invocation period, release offset, workload and exe-

cution location of � � are assigned as the corresponding invocation period, start time, total workload

of all its components, and execution location of the group. The task communications and dependen-

cies can be derived according to the communications and dependencies among the components in

different tasks. Given a link � � � �
� exists in the original transaction, and � � ���
� belong to different

132

Algorithm 4.12 Task graph generation.

Input: the models � � for transactions;
the partition set � obtained from task formation.

Output: a task graph � � � � � � � � � � �	� � � � � � � .
BEGIN
1 foreach component group � � � � do
2 create a task for each � � ;
3 � ��� �
 � �	� � � ;
4 � ��� �
 � � � � 	�� � � � �����
 ;
5 � � �
��� �
 � � � � � � ;
6 � ��� �
 � �	��� �
 ;
7 � ��� �
 � � ��� �
 ;
8 end-foreach
9 foreach transaction � � do
10 foreach link � ���	� ���
�
 �	� � � do
11 if ��� � � � ���
� � ���
��� �� � then
12 add directed link � � � ��� to

�
;

13 adjust link weight � � ��� � � ���
 � � � ��� ��� ���
 � � � ����� ���
�
 ;
14 end-if
15 end-foreach
16 end-foreach
17 return � �

;
END.

tasks � � and ��� after the task formation, a directed link � ��� ��� is added to the task graph link set.

Note there can be multiple pairs of communicating components between two tasks. These links

are aggregated to one directed link in the task graph. The weight of the link is therefore the sum

of the resource demands of all communicated components in the two tasks. The thus-formed task

graph might contain cycles between some tasks. We can prove that such cycles are neither dead-

locks nor livelocks, hence will not affect the application of schedulability analysis. The resultant

task graph is a valid runtime model. The performance analysis of such a runtime model can be done

using the schedulability methods. Details of the runtime model analysis method will be presented

in Chapter 5.

133

4.6.2 Algorithm analysis

Since we merge the components from different transactions and with harmonic periods, the

constructed task graph may contain cyclic links among tasks. Such cycles among tasks are resolved

at the component level, as shown in the following theorem.

Theorem 4.12. A task graph generated by Algorithm 4.12 does not contain any cycle among the

components.

Proof. We prove this by contradiction. According to Lemma 4.7, there is no component cycle

within a task. We only need to prove that there is no component cycle between the components in

different tasks. Suppose there exists a component cycle between components in different tasks:

� � � � � ��� � � � � ��� � � � � � � � � � �

If the above equation is true, then

����� �
 � �	���
�
 � ����� �
 � �������

which must be false for any � � ��� � . Thus there is no component cycle between tasks.

Theorem 4.12 indicates that the task graph maintains the acyclic properties of the component

model at a level with finer granularity. In other words, the task graph at the component level is

an acyclic graph. This property satisfies the requirements of all existing schedulability and timing

analysis methods. Therefore any existing effective schedulability and timing analysis algorithm can

be used for analysis of the task graph.

Theorem 4.13. A task graph generated using Algorithm 4.12 is a runtime model.

Proof. The proof is straightforward. According to Definition 4.14, the resultant model is a partition

graph. According to Theorem 4.4, the resultant model is a valid runtime model.

134

The complexity of Algorithm 4.12 is linear. Given
�

tasks in the system, the algorithm takes

� � �
 time to assign the properties to each task. To create the links among tasks, the algorithm

needs to examine every link in the structural model, which takes � ���
 with � links in the structural

model. Given a structural model with � components and � links, there will be at most � tasks (one

component in each task). Hence, the computation complexity of Algorithm 4.12 is bounded by

� � � � �
 .

4.7 Evaluations

Our goal of model transformation is to provide a scalable method to generate a runtime model

given an ECSW structural model and platform with both performance and resource constraints

met. Hence, our evaluations focus on the method’s scalability and effectiveness. We are only

interested in the algorithms themselves, and do not evaluate the quality or optimality of the generated

results as the metrics for these properties are difficult to define. On the other hand, according

to the assumptions of our model transformation method, any generated system is assumed to be

equivalent to the optimal one, from an end-to-end control perspective, if it meets all timing and

resource constraints.

To justify the algorithms in our runtime model generation method, we need to choose a baseline

method for comparisons. Unfortunately, no method exists to automatically generate a runtime model

from the given structural and platform models in both current research and software tools. All

methods for the runtime generation in current practices depend heavily on manual error-and-trial

processes. To this end, we divided our method into two consecutive parts for evaluations. The

first consists of the rate assignment and component allocation, and the second consists of timing

assignment, task formation, and task graph generation. The scalability and effectiveness depends

mainly on the component allocation for the first part, and on the task formation for the second part.

135

So our evaluations are based on the performance of these two algorithms.

The metrics in the scalability evaluation include the number of nodes visited in the design space

for the component allocation, and the number of steps performed to generate the results for the task

formation. The number of nodes visited was obtained by counting every explored allocation the

algorithm tried, regardless of success or fail. The number of steps of task formation was obtained

by counting every component merge the algorithm tried, regardless of success or fail. A better

algorithm would explore fewer nodes in the design space or perform fewer steps to find a solution.

The metrics in the effectiveness evaluation included the failure ratios for the component allocation

and the number of tasks generated for the task formation. The failure ratio was computed as the

percentage of the number of experiments in which the algorithm fails to find a solution over the

total number of experiments conducted. The number of tasks was obtained directly from the result

of the algorithm. A better algorithm would cause a lower failure ratio and generate a fewer number

of tasks.

4.7.1 Experiment setup

All evaluations were conducted on a desktop machine with an Intel P3-based 500 MHz processor

and 256 MB memory. To ensure all experiments are completed within a reasonable time, we limit

the algorithm’s exploration to be one million nodes. This is equivalent to about 30 minutes of

wall-clock execution time on the desktop machine.

The experiments used a set of randomly-generated models. Using randomly-generated models

is essential as it is very difficult to manually construct software models with a large number of

components. We implemented a graph-generation tool to automatically generate both software and

platform models with user-defined characteristics, including the number of components, the node

degree of components, weight distributions for nodes and links, and the number of computation

136

devices with their resource availability. The parameters used to randomly generate the models for

the experiments are given in Table 4.1.

parameter value
component graph
component

��� �
�

��� � �

in/out links
�
� �

resource demands
computation/component

�

�
� � � �

�

�
� �

memory/component
�

�
� � � �

�

�
� �

communication/link
���

�
��� �

platform model
device � � � �

link 1 shared
resource bound
computation

�

� 	 �
�

link
��� �

�
��� � � �

memory
�

�
� �

�

Table 4.1: Parameters for random system model generation.

In each generated component graph, the number of components was selected from
��� �

�
��� � �

in increments of 100. Similarly, the platform models were also generated randomly with the number

of computation devices from � � � � in increments of 5.

To make fair comparisons, the algorithms for each evaluation took identical inputs. For compo-

nent allocation, both the developed algorithm and the baseline algorithm took the same randomly

generated graph. For task formation, both the developed algorithm and the baseline algorithm took

the same partition graph and timing assignments generated by our component allocation algorithm.

4.7.2 Evaluation results of component allocation

In the evaluation of component allocation, the standard branch-and-bound (BB) algorithm was

chosen as a baseline in the experiments since the algorithm has been widely used for component

allocation, and its performance has been well studied and understood. In each experiment, the com-

ponent graph was partitioned and allocated to the processors in the platform using the standard BB,

137

informed BB with component ordering (IBB+O), and informed BB with both ordering and forward

checking (IBB+O+FC). We chose the load-balancing strategy for � � � � � � � � � �
 and � � � � � � � � � �
 .

Performance with different model sizes

We first evaluated the scalability of the algorithm while varying the size of the structural model.

The number of components in the model is used to represent the size of a structural model. In

the experiments, we fixed the number of processors in the platform model to be five. Since the

comparison of the visited nodes under different algorithms is meaningful only when a solution

exists, we reduced the resource consumption by each component as the model size increases, to

ensure that the software can be fit in the five-processor platform. The generation was tuned so not

every allocation meets all resource constraints.

Figure 4.2 shows the number of nodes visited in the design space before a solution was found.

The algorithm IBB+O+FC is found to outperform IBB+O slightly, while both outperform the stan-

dard BB algorithm significantly. The figure shows that the BB algorithm has been explored an aver-

age of two nodes in a design space to find a proper allocation of each component, while IBB+O+FC

has been explored exactly one node in all experiments. This implies that IBB+O+FC has cho-

sen a proper allocation at its first trial, and hence, does not need to backtrack. Since IBB+O and

IBB+O+FC have both performed significantly better than BB but with minimal differences between

them, one can attribute the competence function to this. The small difference between IBB+O and

IBB+O+FC is due to the forward checking, which eliminates constraint-violating partitions from

the candidate list. Since the platform contains a small number of processors, the design choices

eliminated by the forward checking have only limited effects on the overall search space, and result

in a small difference between the two algorithms. Moreover, the difference between IBB+O+FC

and IBB+O decreases as the size of the structural model increases. The reason for this can be the

reduced resource consumption by each component that we set during the graph generation. As the

138

ratio of component resource consumption to the platform resource availability decreases, the num-

ber of solutions may increase, so it is more likely to take fewer steps in the design space to find a

solution.

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

number of components (× 102)

vi
si

te
d

 n
o

d
e

s

BB
IBB+O
IBB+O+FC

Figure 4.2: The number of nodes visited for different model sizes.

Figure 4.3 shows different algorithms’ failure ratios for different structural model sizes. We

changed the resource consumption parameters during system generation to make it more likely to

violate constraints.

Figure 4.3 shows that BB fails to find a solution in more cases than IBB+O. IBB+O is also

slightly more likely to fail to find a solution than IBB+O+FC. These results indicate that IBB+O+FC

can find a solution faster than IBB+O, which finds a solution faster than BB. Since we applied all

three algorithms to the same structural model in each experiment, the failure ratio with an unscalable

algorithm may encounter more false positives, meaning that a solution exists but the algorithm

cannot find it within a pre-defined number of steps. We also observed that the difference between

failure ratios of different algorithms increases as the number of components increases. This may

139

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of components (× 102)

fa
ilu

re
 r

a
tio

BB
IBB+O
IBB+O+FC

Figure 4.3: The failure ratios of different algorithms.

result from exploring only a fixed number of design nodes in an expanding design space. The swings

of the failure ratios for different graph sizes may also result from the randomness of the resource

consumptions generated for each experiment.

Performance with different partition numbers

The scalability of our algorithm is also affected by the number of devices in the platform. Since

the devices and the component partitions are one-to-one mappings, we used the number of partitions

to represent the number of devices in the platform. The principles of the experiment design are the

same as those used for the experiments of different model sizes. In this case, we fixed the num-

ber of components in the structural model to be 100. Similarly, we set different graph-generation

parameters for both visited-node and failure-ratio experiments so that a solution can be found be-

fore reaching the node-exploration limit for the former case and unlikely to be found within the

exploration limit for the latter. The results of these experiments are plotted in Figures 4.4 and 4.5

The results shown in Figures 4.4 and 4.5 are similar to those for different model sizes. IBB+O+FC

140

5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

number of partitions

vi
si

te
d
 n

o
d
e
s

BB
IBB+O
IBB+O+FC

Figure 4.4: The number of nodes visited with a different number of devices.

explored the fewest number of nodes to find a solution, while BB explored the most. There was a

significant difference between the visited nodes of IBB+O and IBB+O+FC. In this case, forward

checking improved the solution search by removing partitions from a component’s domain as the

number of partitions increases. Similarly, BB experienced the highest failure ratio, and IBB+O+FC

experienced the lowest. The results also show that different failure ratios appear only beyond a cer-

tain number of partitions (10 for BB, and 25 for IBB+O). This implies that the competence function

and forward checking become helpful only when there are a large number of partition domains.

4.7.3 Evaluation results of task formation

In the evaluation of task formation, the baseline algorithm was selected to group tasks based on

the synchronous dependencies, invocation rate, and execution overlap. With the baseline algorithm,

only components allocated in the same partition (on the same device), belonging to the same trans-

action, with the same invocation rate, and immediately next to each other in the transaction were

grouped. All concurrent paths were grouped in different tasks to avoid the component sequencing

141

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

number of partitions

fa
ilu

re
 r

a
tio

BB
IBB+O
IBB+O+FC

Figure 4.5: The failure ratios of different algorithms.

in a task. Such a method has been commonly used in practices, and is a key assumption for many

timing analysis and model transformation algorithms [70, 69, 26, 40, 11]. The input models used

in this evaluation were obtained from the above component allocation with the timing assignment

algorithm applied. Therefore, the input models contained both execution location information and

timing constraints.

In the task formation experiments, we fixed the number of partitions (devices in the platform)

to five to make the algorithm complete in a short amount of time. Figure 4.6 shows the number of

steps for the task formation of our algorithm (TFA) and the baseline algorithm (baseline). We also

plotted the � � with � being the number of components to show the trend of the algorithm. To make

the result fit in the diagram, we took � � � �
 for all results in the diagram presentation.

As can be seen from Figure 4.6, the baseline algorithm took the minimum steps for each case.

The results show it is linear, which is consistent with its implementation. For each case, the baseline

algorithm simply takes a component, either merges it with an existing group of the same rate, same

142

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

number of components (× 102)

st
ep

s
(ln

)

n3

TFA
baseline

Figure 4.6: Number of steps taken to form tasks.

transaction, and overlapped execution, or creates a new group for it. Therefore, the total number of

steps should be linear to the number of components. Our algorithm TFA shows a trend of some high

power function. However, the number of steps taken by TFA in this experiment is much smaller than

the bound of � � . This might result from the randomly-generated components’ resource demands

yielding fewer groups with overlapping executions. Thus less component sequencing is required,

resulting in fewer steps. In an extreme case in which very few components can be grouped, the

TFA algorithm becomes a linear algorithm too. On the other hand, if most of the components can

be grouped, the TFA algorithm may take the number of steps close to � � or higher. In any case,

the algorithm demonstrated a non-exponential complexity in the experiments, although it was not

as scalable as the baseline algorithm.

We further conducted the experiments to investigate the quality of the task formation algorithm

in terms of total number of tasks generated. As the baseline algorithm generates a task with compo-

nents with the same rate, transaction, and overlapping executions, the number of tasks generated by

the baseline algorithm varies along with the number of partitions, invocation rates, and transactions.

143

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

number of components (× 102)

ta
s
k
s

TFA
baseline

(a) Light workload.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

number of components (× 102)

ta
s
k
s

TFA
baseline

(b) Medium workload.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

number of components (× 102)

ta
s
k
s

TFA
baseline

(c) Heavy workload.

Figure 4.7: Number of resultant tasks under different configurations.

To simplify the experiments, we fixed the number of partitions to five the number of invocation

rates to five too. The number of transactions, on the other hand, was randomly generated between

� �
���

, which allowed for multiple transactions running at the same rate. Further, since the TFA

algorithm behaves differently with different components’ resource demands, we altered the system

utilization constraints so the components’ resource demands can cause different execution overlaps.

Specifically, we constrained the utilization to
�

� � as light workload, which possibly results in fewer

execution overlaps of the components,
�

�
� as medium workload, which possibly causes more exe-

cution overlaps, and
�

�
�

as heavy workload, which possibly causes execution overlaps for most of

the components. The results are shown in Figure 4.7.

As can be seen from Figure 4.7, the number of tasks generated by the TFA was smaller than

that generated by the baseline in every case. As the workload increased, the differences between

the tasks numbers generated by the TFA and baseline algorithm increased. This indicates that the

TFA is more effective on reducing system overhead when the system tends to be busy. In such a

case, more components’ executions overlap, therefore can be merged. Although the resultant task

numbers were close for a light workload, there were still differences because the TFA at least can

merge components from different transactions, even their invocation rates were the same. This

144

resulted in TFA generating fewer tasks for any cases in the experiments. This indicates our TFA

algorithm is more effective than the baseline algorithm in terms of reducing resource consumptions

of the system. The large inconsistent variances between different numbers of components were

probably caused by the randomness in the model generation, as different experiments were based

on different models.

Based on the above evaluations, we can conclude that our algorithms used in the runtime model

generation are both scalable and effective. This is justified by (1) our allocation algorithm outper-

forming the traditional branch-and-bound algorithm on both the visited design space and failure

ratios, and (2) our task formation algorithm producing fewer tasks than the commonly-used task

formation method while maintaining the scalability. Besides the performance gained with each al-

gorithm at each transformation step, the most significant contribution of our approach is that the

transformation can now be a fully automated process, and hence, it can both eliminate the errors

and model conversions introduced at different steps and it can accelerate the design.

4.8 Related Work

Several solutions based on the object-oriented modeling paradigm have been developed to ad-

dress the task construction problem in support of model-based real-time embedded application soft-

ware design. One of these is based on HRT-HOOD model [13, 16]. HRT-HOOD is an object-based

modeling paradigm. The task construction with the HRT-HOOD model is done through transaction

specification and timing assignments. Since the final implementation uses Ada programming lan-

guage, many model restrictions were imposed to suite Ada-specific features. Saksena, Karvelas and

Wang [69] developed a method for automatic task construction based on the software design mod-

els in ROOM [74], which is an object-oriented real-time modeling language. This task construction

method uses a block waiting thread architecture and models the computation as event streams with

145

each event triggering an object action. During the task construction, the priority of each event is de-

termined according to the schedulability analysis. Then, the actions of the components are assigned

to the threads using a branch-and-bound technique. The method is simplified in implementation

by imposing architectural restrictions, such as mapping all events for the same component (or in

the same transaction, or with the same priority) to the same thread. A similar scenario-based task

construction approach was developed in [44]. In this method, the thread is constructed based on

capsule instances. However, it is up to the designer to determine how many threads will be in the

system, and which capsule instances are merged with this method. Both of the above methods need

to deal with mutually exclusive data access in a shared object, which is difficult to automatically

detect. There are some task construction methods based on process-oriented component models,

such as timed multitasking system [58], Matlab/RTW, and ETAS ASCET. The tasks in timed mul-

titasking systems can be derived automatically but require all tasks deliver output only at the end

of the timing frames. The task constructions in RTW and ASCET are also based on the manual

process.

Other research tools, such as VEST (Virginia Embedded Systems Toolkit) [79], Cadena [30],

MetaH [10], and Time Weaver [18], have also been developed to assist embedded and real-time

software development and analysis. However, the model transformation still depends on the manual

process without systematic method support.

Our approach, on the other hand, uses a process-oriented model, and constructs tasks by as-

signing the timing constraints and grouping components. The process-oriented model naturally

fits many modeling environments for control design, including Simulink/Stateflow, ETAS ASCET,

Teja, and Synchronous Dataflow Diagram. Our timing assignment is different from traditional tim-

ing derivation [26] and deadline distribution [38] in that our derived constraints can be used to form

a sufficient necessary condition for a valid feasible schedule of a group of components, and thus, can

146

be used to construct the tasks in a runtime model. Our task construction can also be fully automated

with the number of final tasks minimized, thus fitting in a resource-limited target.

4.9 Summary

Generating the runtime model from a given structural model and a platform model is a key step

in the ECSW development. Both the timing and schedulability analysis results and the final system

implementation depend on such a runtime model. In this chapter, we presented a method to sup-

port performance-aware runtime model generation of ECSW. The generation is achieved through

a multi-step process of partitions and assignments. In this process, the invocation rates specified

for inputs of transactions are first propagated to the components along the synchronous links. Then

the components in a structural model are partitioned into groups according to computation devices

in the platform model. The allocation considers multiple resource constraints and uses the branch-

and-bound techniques with forward checking and component ordering to accelerate the allocation

algorithm. The resultant partition graph meets the resource constraints of the platform. The process

then distributes the end-to-end timing constraints over the components as components’ constraints.

These components’ timing constraints form a sufficient necessary condition for any feasible sched-

ule, and are used to build a valid component sequence in the task formation. The task formation

step takes the partition graph with the components’ timing constraints assigned, refining each par-

tition with a set of component groups. The groups are formed using the rate similarity and the

execution overlap so as to minimize the total number of partitions and avoid internal idle times. The

components in each group are sequenced according to their � � � s. Finally, the task graph is con-

structed in which the timing attributes for the tasks are derived. Our preliminary evaluation results

based on a set of randomly generated structural and platform models have shown the scalability and

effectiveness of our runtime model generation method.

147

CHAPTER 5

Performance Analysis with Runtime Models

The runtime model generated in Chapter 4 contains a set of communicating tasks with their

performance constraints and characteristics assigned. These constraints and characteristics include

invocation periods, release offsets, relative deadlines, and worst-case resource demands. These tasks

and communications have also been assigned to physical computation devices and communication

links in the platform model. Before the tasks are coded and deployed on the modeled target, it is

essential to analyze the ECSW performance using the runtime model to ensure the implementation

meets all the system-level performance and resource constraints of the original design. In this chap-

ter, we present the methods for such an analysis using our generated models and existing real-time

schedulability analysis techniques. Different from the performance analysis of the structural model,

which deals only with the software and analyzes the design based on estimations, the runtime model

performance analysis considers the effects of both the software and its execution environment.

The runtime model performance analysis is necessary for the following reasons. First, the gen-

erated runtime model only specifies the task constraints for meeting the system-level end-to-end

performance constraints. However, such task constraints do not directly indicate the schedule of

these tasks to meet these constraints, and consequently to meet the end-to-end constraints. During

the runtime model generation, we schedule only the components within each task. Such a schedule

is a partial schedule at the system level, meaning that it only specifies the execution order in each

148

task. As the ECSW contains multiple concurrent tasks, the components in different tasks need to be

scheduled to meet the end-to-end system performance constraints. To keep system flexibility, the

task schedule is usually left for the OS scheduler to determine dynamically at runtime. The runtime

model analysis is therefore needed to ensure that the selected scheduling policies and parameters

will yield a system-level valid feasible schedule. Second, the execution environment introduces

variances to the task execution, which are ignored during the runtime model generation. One type

of variance comes from the interference of other concurrent activities, such as concurrent compo-

nents in different transactions and tasks. These activities may introduce the system overhead for

managing the executions, such as context switch overhead for preemptions and scheduling over-

head for dynamic scheduling. Therefore, meeting the tasks’ constraints considering only tasks’

workloads may not naturally result in meeting the system-level performance constraints with given

resources. Another type of variance is from the invocation services, such as timer signal processing

and event processing. These services may introduce both resource consumptions and jitter into the

task executions. With different types and configurations of these underlying system services, the

performance of the runtime model can be dramatically different. Finally, we can achieve better

system performance through system-level performance tuning, which is only possible with runtime

model analysis. Such tuning can be done by selecting suitable scheduling and invocation mech-

anisms. This is particularly important for automatic design refinement when some performance

constraints are violated.

Our runtime model performance analysis is based on the timing and schedulability analysis

theories for real-time systems, which are specific to the scheduling algorithms. Using a different

scheduling algorithm for the execution of the same runtime model may result in a different per-

formance. To our knowledge, the timing information specified in our runtime model is sufficient

to generate a schedule for any existing analysis algorithm. For our analysis in this work, we have

149

adopted the fixed priority preemptive scheduling policy. This scheduling policy has been exten-

sively studied in the real-time research community and is implemented as a standard scheduling

mechanism in most commercial real-time and embedded operating systems. We focus on applying

and modifying existing methods for our runtime model performance analysis instead of develop-

ing a new analysis algorithm specifically for our runtime model. This will extend the usage of

our runtime model and relative modeling techniques to systems using various types of scheduling

algorithms. As a result, an analysis using other scheduling algorithms can be done in a similar way.

In this work, we assume that a unique fixed priority is assigned to each task. The tasks are sched-

uled according to their priorities at runtime and execute in a run-to-complete manner, meaning that a

new invocation of a tasks will not start its execution before the current invocation is completed. This

implies that there exists at most one instance of a task at any given time. Further, the components

in a task inherit the task’s priority, i.e., all components in a task share the same priority of the task.

Since the priority of a task is statically assigned, the priorities of the components will not change

during the execution. For simplicity, the mutually exclusive resource accesses are not considered

in this chapter, although they can be easily addressed combining this method with synchronization

techniques such as priority ceiling protocols. All tasks in the system are assumed using the same

scheduling policies. With these assumptions, we can treat the tasks as building blocks and ignore

their constituent components in the performance analysis. Finally, the platform is assumed to use an

event-triggered mechanism for the services including timing, scheduling, and IPC. This allows the

inclusion of a non-zero delay and variation in OS service performance characteristics in an analysis.

An OS with time-triggered services can be considered as a special case of event-triggered services

with a zero service delay/variation.

The specific performance analysis discussed in this chapter includes the schedulability of the

task set on each device, the end-to-end response times of the task chains, and the resource con-

150

sumptions of devices and communication links. In particular, our performance analysis of a runtime

model addresses the following issues:

	 Assignments of scheduler configuration parameters. These parameters are used to configure

the system scheduler, and include scheduling policy, task invocation mechanism, and the

priority for each task. The assignment should result in a feasible schedule of the system.

	 Verification of tasks’ timing constraints and devices’ resource constraints. These constraints

are verified based on the analysis of the task set on each device. The analysis reveals the

resource consumption of a single device and link, and the responsiveness of individual tasks.

The results help a designer to understand the performance of individual task and resource

consumptions for each resource; therefore, optimization of individual task and device usage

can be explored.

5.1 Assignments of Scheduler Configuration Parameters

Scheduler configuration parameters are used by the system software — OS in particular — to

schedule the task executions. They include both system scheduler parameters and task scheduling

parameters. System scheduler parameters are the policies shared by all tasks in the system, including

scheduling policies and invocation mechanisms. The scheduling policies are built as part of the OS.

Some examples of scheduling policies are first-in-first-out (FIFO), preemptive or non-preemptive,

and static or dynamic scheduler. The invocation mechanisms determine how to invoke a process

or thread. Typical invocation mechanisms are time-triggered or event-triggered. A time-triggered

mechanism invokes the tasks based on nothing but time. Time-triggered architecture [46] uses this

type of invocation mechanism. So does the Phase Modification (PM) in [9], where the dependencies

of tasks are translated into their relative release times. An event-triggered mechanism invokes tasks

based on nothing but events. Most of RTOS such as QNX, RTLinux, and VxWorks use this type

151

of invocation mechanism. An example is the direct synchronization (DS) [82], which triggers the

invocation of a task upon the completion of its predecessor. Other examples are combinational

mechanisms, such as release guard (RG) [81], which support automatic selection of one of them.

The task scheduling parameters, which are dedicated to each individual task, are used by the OS

to schedule the task with a combination of system parameters. In an OS using a priority-based

scheduler, the invocation period and release offset are used to determine the invocation of a task,

and the priority is used for scheduling.

Assignments of the system scheduler parameters are fairly easy since there are only a small

number of options in each OS. They are mainly determined by the simplicity of implementation,

overheads of the selected mechanism, and desired response time. For example, while preemptive

dynamic scheduling policy leads to simple implementation, it may introduce large system overheads

as the number of tasks in the system is large. Therefore, it is only suitable when the number of tasks

in the system is small. Similarly, the invocation mechanism of DS is simple, introduces low over-

head, but results in a longer worst-case end-to-end response time compared to other mechanisms

such as PM [81]. As the system scheduler parameters are shared and the task invocation rates are

known, we focus on the priority assignments of the tasks in this section.

Every task must be assigned a priority before the runtime model performance can be analyzed.

To guarantee the runtime model meets the system performance constraints, we must find a feasible

schedule for all tasks in the system. An assignment of these scheduling parameters is called feasible

if the task set meets all timing constraints under such assignment. A feasible priority assignment

should be based on the timing constraints of the tasks in order to satisfy them. Finding a feasible

task priority assignment for a system with multiple concurrent task chains is difficult. It has been

proved that finding a feasible priority assignment for a system with any scheduling parameters is NP-

hard [81]. Further, a feasible priority assignment for one scheduling policy may not be feasible for

152

another. For example, a feasible priority assignment with preemptive scheduling and DS invocation

mechanism may not be feasible for one with preemptive scheduling and PM invocation mechanism.

Our priority assignment in this work is thus with assumptions of some given system scheduling

parameters.

Our priority assignment is a heuristic assignment method. It works as follows. The priorities

(
�� ��� �) of the tasks (� �) in the task set are first assigned using a deadline-monotonic strategy. If the

assignment causes any constraint violation of a task, the method iteratively searches for a feasible

solution by altering the priority of one task at a time. Two issues should be addressed in this process:

which task should be chosen for priority adjustment, and what priority level it should adjust to. Since

every task contributes to the constraint violation, and we cannot condemn one or a group of tasks for

the violation, our algorithm chooses the tasks in the constraint-violated task chain for adjustment in

descending order of their resource demands. Given a priority of �
� ,
�� ��� � , the adjustment is done as

follows:

1. If
�� ��� � is not the highest priority, raise the priority
�� ����� of � � to a new level
�� ��� �� , such that

�� ��� � �

��� � �� �
�� ��� � � �

where
�� ���
� � � is the next higher-level used priority. If � � is the task with the highest used

priority, we raise � � to the next unused priority higher than
�� ��� � .

2. Otherwise, lower the priority
�� ��� � of � � to a new level,
�� ��� �� such that

�� ��� � � � �

��� � �� �
�� ��� �

where
�� ��� � � � is the next lower-level used priority. If � � is the task with the lowest priority,

we lower � � to the next unused priority lower than
�� ��� � .

The new assignment of
�� ��� �� is then evaluated using a technique based on the simulate anneal-

ing. This is done through an energy function, defined as:

153

� �
�� ��� �
 � �
� �

� �

� � � �
	� �
� � � � � � � � � � � � ��� �	� (5.1)

where � �
�� ��� �
 is the energy value of assigning
�� ��� � to � � ,
�

� � � �
 is the end-to-end timing effect

of assigning � � ’s priority to

��� � � for the task chain � � � , � � ��� � is the number of distinct priority

levels after introducing
�� ��� � , and � � � � � is the number of communicating components of different

priority levels with � � ’s priority being
�� ���
� . � � � � � , and
� � are constants, representing weights for

each term in the equation.

�

� � � �
 can be computed as

�

� � � �
 �

���� ��� � ���
 � � � �
 � � � � � �
 if � � ��
 � � � �
 � � � � � �

�

otherwise

where � � � � �
 is the end-to-end deadline associated with the task chain � � � , and � ���
 � � � ��
 is the

response time � � � under condition � � running at the priority
�� ��� � .

The energy function � �
�� �����
 evaluates the system-wide effect of the assignment of

��� � � to

� � .
�

represents the timing effects to each task chain. A small value of
�

indicates a beneficial

assignment. Different values of � � ��
 � � � ��
 have the same system timing effect when the task chain

meets its deadline (� � ��
 � � � �
 � � � � � �
). A system with no timing constraint violated should

have
�

� �
. � � ��� � � indicates the system overhead for managing the executions. The overhead

increases as the number of priority levels increases. Similarly, � � � � � affects the execution delays

because communicating tasks running at different priorities are more likely to be preempted by other

tasks. Values of
�
� and

�
� should be chosen such that the first two terms of � �
�� ��� �
 return similar

values. Constant
� � should be smaller than

�
� to minimize the number of priority levels used in the

system, and consequently to minimize the context switch overhead. Selection of these constants to

yield optimal solutions depends on the problem under consideration, and deserves further research.

154

The priority assignment iteratively adjusts priority assignment of a task to minimize the value

of � �

��� � �
 . If the new assignment
�� ��� �� results in a smaller value of � , it indicates the new

assignment is better. When a better assignment
�� ��� � is found, the algorithm starts from the new

assignment and continues searching until it cannot find an assignment with a lower energy function

value. The process repeats until (i) no task’s priority can be adjusted, or (ii) the change of � �
�� ��� �

value is within a small bound in consecutive adjustments.

The priority assignment needs the result of the schedulability analysis in the computation of

the energy function value. The schedulability analysis determines the end-to-end response time

� ���
 � � � �
 of the task chain � � � containing the task � � .

The tasks’ priorities assigned using this method are not sensitive to the invocation mechanism,

meaning they can be used along with any invocation mechanism in the final system implementa-

tion and performance analysis, although the end-to-end system performance will be different with

different invocation mechanisms under the same priority assignment.

5.2 Timing and Schedulability Analysis

We now perform the schedulability analysis to the task set on the same computation device. Any

two tasks, � � and ��� , on the same processor can have one of the following relationships:

1. � � and ��� are dependent. In this case, the invocation periods � � and � � must be harmonic,

and both � � and ��� must contain some components from the same transaction with precedent

constraints.

2. � � and ��� are independent but subject to release offset constraints. In this case, the invocation

periods � � and � � must be harmonic, and there exists a release offset constraint between the

concurrent components in � � and ��� . This implies that either � � and ��� contain the dependent

components from the same transaction but not immediately next to each other, or they contain

155

the independent components with release difference constraints.

3. � � and ��� are totally independent. In this case, the invocation periods of �
� and ��� , and � � and

� � , may be either non-harmonic or harmonic but will contain no component from the same

transaction.

The results of this analysis include the response time of each task, the resource consumption,

and the utilization of the processor. Since the response time of a task depends on the release phase

of all the tasks on the processor, we bound the response time of a task with its best-case response

time and worst-case response time under different release phases.

5.2.1 Best-case response time

To compute the best-case response time of a task, we need to first determine the best-case

phasing of the task set on a processor. According to [68], the best-case phasing for a set of tasks

with fixed priorities is when a task � � completes at exactly the same time when all tasks with higher

priorities are released. The best-case response time of a task �
� can then be computed as:

� � ��
 � ��� �
 � � ��� �
 �
�

� 	 � � � � �
� � � ��
 � ��� �
 � � �

� �
� � � �����

 (5.2)

where � ���
 � ��� �
 is the best-case response time of the task � � , � ��� �
 is the computation resource

demand of � � (in execution time), and � � is the invocation period of � � . �
 � ��
 defines a set of tasks

that run on the same processor and at higher priorities than � � ’s. The equation can be iteratively

solved by using the worst-case response time of � � as initial � � ��
 � ��� �
 . It is shown in [68] that any

initial value within the same busy period of � � will converge to the best-case response time using

Eq. (5.2). The iterative computation of the best-case response time of �
� is then:

156

� ���
 �
� �� ��� �
 � � ��� �
	� ��� �
 	 � � � � � � � � � ����

�
�

� � � � �
�

� � � ��� �

� ���
 �� ��� �
 � � � ��
 � ��� �

(5.3)

In Eq. (5.3), the initial best-case response time, � � ��
 �� ��� �
 is set to be � � ’s worst-case response

time � ���
 � ��� �
 , whose computation will be discussed later in this section. The iterative process

stops when two consecutive � � ��
 � ��� �
 values are the same, i.e., � � ��
 �
� �� ��� �
 � � ���
 � � ��� �
 .

Eq. (5.3) need to be modified to be used for the task set on the same processor in our runtime

model due to different system model assumptions. The system model used to derive Eq. (5.3)

assumes

1. for any task, its relative deadline must be less than its period;

2. all tasks are independent with zero release offset;

The first assumption ensures that there is only one instance of a task at any given time, thus no

self-interference exists. Such an assumption holds true in our runtime model. Although the end-to-

end deadline of a task chain can be longer than the task chain’s invocation period (multiple instances

of task chain), the execution window of a task is less than its period (� � � � � � � �). Therefore only

one instance of a task can be active at any given time.1 The second assumption, on the other hand,

does not hold. In our runtime model, precedent constraints exist among the tasks, and independent

tasks may also have non-zero release offsets, as Case 1 and 2 stated at the beginning of this section.

In this work, we modeled both in non-zero released offsets of the tasks, which limit the number

of tasks that can be invoked simultaneously. So the number of higher priority tasks that interfere

with � � ’s execution may be smaller. With such consideration, the best-case response time of � � can

be computed in the following way: Given � � with priority
�� ��� � , the high-priority task set
�
 � �

first consists of the tasks � � with priorities

��� � � �

��� � � whose executions can overlap. This

1This is the same as pipeline executions.

157

is equivalent to the assumption that the busy period of � � contains only tasks that can be invoked

simultaneously. Particularly, for a task � � with

��� � � �

��� � � , if there exists a different task � � with

�� ��� � �
�� ��� � and it satisfies:

	 � � � � � , and

	 � � � � � � � � or � � � � � � � � ,

we add both ��� and � � to
�
 � �
 . Otherwise, we add the one with minimum resource demands to

�
 � � �
 :

�
 � � �
 �

���� ���
�
 � � �
 � � � if � � � � � �
�
 � � �
 � ��� otherwise �

(5.4)

Thus-obtained
�
 � � �
 contains only tasks that can be invoked simultaneously. We then compute

� ���
 � ��� �
 using Eq. (5.3). If the computed � ���
 � ��� �
 � � � � � � � � � for some higher-priority task

� � that is not in
�
 � �
 , it indicates that � � is invoked at least once during � � ’s busy period. Thus, � �

should be included in
�
 � �
 in computation of � � ��
 � ��� �
 . The new

�
 � �
 is:

�
 � � � � �
 � �
 � � ��
 � � ��� � � � � � � � � � � ��� � ���
 � ��� �
 � (5.5)

The computation of � ���
 � ��� �
 is then repeated with the new
�
 � � � � �
 using Eq. (5.3). The

process continues until either
�
 � �
 does not change or � ���
 � ��� �
 does not change. Thus-obtained

� ���
 � ��� �
 is the best-case response time for the task � � .

5.2.2 Worst-case response time

The worst-case response time of � � is determined by finding the worst-case phasing of � � in

presence of interferences from other tasks with higher priorities. We apply the technique in [67].

For a given task � � , we first need to determine the interferences caused by the tasks with priorities

higher than
�� ��� � . During the
�

-th busy period of � � , the interference can be computed as follows:

158

� ��� � � �
 �
�

� �
 	 � � � � �
� � � ��
 � ��� � �

�
 � � � � � �

� �

� � � �����
 (5.6)

where � ��� ��� �
 is the interference caused by all higher priority tasks during
�

-th busy period of ��� ;
�
 � �
 is the task set containing the tasks with
�� ��� � �
�� ��� � ; � ���
 � ��� � � �
 is the worst-case response

time of � � during the
�

-th busy period; � � ��� �
 is the release phasing between � � and ��� during � � ’s
�

-th busy period; � � is the invocation period of � � ; and � �����
 is the resource demand of task � � in

computation time. The worst-case release phasing between � � and a higher priority task � � during

� � ’s � -th busy period can be computed as:

� � � � �
 ��� � �� � � �
� �

� � � � � ��� �� � � �
 (5.7)

where � �� is the arrival time of the
�

-th invocation of � � , which can be computed as:

� �� � � � � � � � �

With the inference computed using Eq. (5.6), the worst-case response time of the
�

-th invocation

of � � can be computed as:

� ���
 � ��� � � �
 � � ��� �
	� � ��� ��� �

� � ��� �
	� ��� �
 	 � � � � � � � ��� � �
�
�

�
 � � ��� �

 � � ��

� � � �����

(5.8)

Same as the best-case response time, � ���
 � ��� � � �
 can be computed iteratively.

As Eq. (5.8) determines the worst-case response time of the
�

-th invocation of ��� , the overall

worst-case response time of � � is the maximal one among all instances. Since the process repeats

for every duration of
� � � , we only need to check for

� � � � � � � �
� � � � � � . Thus, the worst-case

response time of � � can be computed as:

� ���
 � ��� �
 � � � � ��� � � � � ��� �
� � � ��
 ��� � � �
 (5.9)

159

5.2.3 Resource utilization

The computation of resource utilization is straightforward. The device utilization can be com-

puted as

�
����� ��� �

�

�

� 	 ����� ���
� ��� �

� � � � � (5.10)

where � ��� �
 is the resource demand of task � � allocated on device � � � � � , � � is � � ’s invocation

period, and � � is the resource consumptions of system services, typically including the timing

service and the scheduling service. The resource consumptions of the timing service depend on the

number of timer signals generated during the execution, which consequently depend the number of

timers (number of different invocation rates) and the timer resolution. The number of signals �

depends on the implementation strategy of OS [43]. If the implementation strategy is time-driven,

the overhead can be computed as

� � � � � � �
 � � �
� � �

where � ��� is the timer resolution. If the implementation strategy is event-driven, the overhead can

be computed as

� � � � � � �
 � � � � �
�
�
� � � �� � �

where
� � � is the least-common-multiple of all invocation periods on the examined device. The

scheduling overheads depend on the number of context switches during the worst-case busy period

execution. For the worst-case response time � ���
 � of the lowest priority task, the overhead can be

computed as

� � � � � � � �
 � ��� � � � � ��� � �� � � � � �
� ���
 �

where � � is the resource demand of each context switch.

Similarly, the utilization of the communication device can be computed as

160

�
� � � � �

�

	 ��� � 	�� � � �
� � � � � �

� � � ��
 �
 (5.11)

where � � � � � �
 is the resource demand of message � � � � passing over link
�
��
 � , which connects

device � � � � � and � � ��� � ; � � � ��
 �
 is the capacity of the link, usually represented in bandwidth.

� � � � � �
 reflects both the resource demand of the individual message in transferred data size and

the message generation frequency, i.e., � � � � � �
 � � � � � ��� ��� � � � �
 .

5.3 Reducing Analysis Complexity

As can be seen from the above discussion, deriving the response time of a task is computa-

tionally complex. It requires construction of the higher priority task set for all tasks on the same

processor, and identification of the tasks with mutually exclusive executions. Moreover, the com-

putation of the response times of a task, regardless of the best-case or worst-case, is expensive. A

major factor causing the complex analysis is the existence of task dependencies. If these dependent

tasks can be transformed into a set of independent tasks, the analysis can be significantly simpli-

fied using classic schedulability analysis algorithms. To this end, we propose a solution to reduce

analysis complexity by eliminating task dependencies.

Our elimination method is based on the introduction of shared buffers between the communi-

cated tasks. This in turn is based on the fact that the dependent tasks must communicate through data

and/or events. Given a task chain � � with dependent task set � , we transform � � to an equivalent

system � � � with task set � � , where

1. � � � � � � � � ;

2. for each � � � � , there exist a corresponding task � �� � � � ;

3. all tasks in � � are independent;

161

4. for each directed link � � � � � ��� ��� in � � , there is a buffer � � � between � �� and � �� , which � ��

writes its outputs to, and � �� reads its input from.

� �� periodically checks � � � for updates from � �� . The period at which � �� checks for buffer updates

is called the polling period of � �� . Such a transformation ensures that the function of � � is preserved

in � ��� .

The shared buffer approach is different from the release offsets used to solve task dependencies

in the current runtime model. In the release offset approach, the tasks after transformation are still

dependent, using the release offsets as the synchronization method instead of direct triggers. On the

other hand, the tasks with shared buffers are truly independent, meaning � �� and � �� execute without

knowing each other’s existence. Therefore, their release offsets can all be zero.

A key issue in using shared buffers to solve the task dependencies is how to generate outputs

using valid data with original timing constraints. The timing constraints of the original end-to-end

transaction can be considered the lifetimes of the input and all intermediate derived data. They

must be satisfied to ensure the outputs are generated using the valid unexpired data. This is im-

plemented by letting the tasks check the shared buffers for updates at some fixed intervals after

the transformation. Given a task � �� in � � � , which depends on � � in original � � , the worst-case

� �� detecting update of � � � occurs when � �� updates � � � immediately after � �� checks it. Since � ��

can only detect the updates in the next polling cycle in such cases, the delay can be at most one

polling period. Therefore, the condition under which every task in a transformed system meets the

end-to-end timing constraints � can be expressed as:

� ������� ��
	� � ���
 � ��� ��
 � � �����
 � � �����
 (5.12)

where
�� ��� ��� ��
 is � �� ’s polling period, � ���
 � ��� ��
 is � �� ’s response time, � �����
 is ��� ’s deadline in � � ,

and � �����
 is ��� ’s release offset time in � � . The term � ��� �
 � � �����
 defines the maximum allowable

162

processing time for � �� .

If some task in � � � does not satisfy Eq. (5.12), it indicates that the worst-case update-detection

delay for the task is longer than required, and may cause violation of end-to-end timing constraints.

To reduce the detection delay, we shorten the task polling period using Eq. (5.13):

� � ��� � �	��� ��
 � � ��� ��
 � � � ��
 � ��� ��
 � � �����
 � � �����

� ��� � ��� ��
 �

� ��� ��� ��
 � � � ����� ����� ��
 � � �
(5.13)

where

� ��� � ��� ��
 is the new polling period of � �� , and � � ����� ����� ��
 is defined as the amount of time

by which � �� exceeds its maximum allowable execution time. Since shortening the polling periods

increases the system workload in each iteration and will eventually lead to an unschedulable task

set, the method is guaranteed to terminate in a finite number of iterations.

After transformation, schedulability analysis is required to ensure the system-wide timing cor-

rectness. Because polling operation and data processing have different execution times, we replace

a polling task by two tasks in the analysis: one dedicated to the polling behavior and the other to

data processing. The one for data processing is only executed when the shared buffer is updated,

and is released with a fixed offset equal to the polling period to ensure the data availability. These

two tasks can then be considered as independent tasks and schedulability analysis can be performed

using classic techniques.

Note that the reduction method comes with a price of scheduling overheads, which result in

some systems becoming unschedulable after the transformation. This is because shortening the

polling period of a task makes the task run unnecessarily frequently, and hence consumes more

resources. One way to avoid the schedulability overheads is to use shared buffers with more-than-

one element entries. The size of the buffer can be derived according to the generation frequency,

consuming frequency, and data lifetime. Although increased shared buffer sizes solves the timing

issues, it can only achieve this by requiring more storage spaces. It is the designer’s responsibility

163

to make the trade-offs among accurate analysis, scheduling overheads, and storage overheads.

5.4 Related Work

Methods for schedulability and timing analysis have been studied extensively in real-time sys-

tem research. Many solutions have been developed and evaluated for various situations. Except

for systems using time-triggered mechanisms [46, 31], the runtime system analyses are all based on

priority-based scheduling. Traditional priority assignment methods include rate-based and deadline-

based assignments [81]. To find a feasible assignment more effectively, Tindell et al proposed a

solution based on simulated annealing [86]. Garcia and Harbour used another approach in HOPA

(Heuristic Optimized Priority Assignment) algorithm [24] based on computation of “excess” re-

sponse time or computing time to iteratively adjust the priority assignment.

After the priorities of the tasks are determined, many priority-based schedulability analysis

techniques can be applied. Some widely-used techniques include rate-monotonic analysis [57],

deadline-monotonic analysis [5], and HKL analysis [29]. These analytic methods usually solve

only the uniprocessor schedulability analysis problem, and only with assumptions such as periodic

independent task set and deadline less than or equal to tasks’ periods. These methods have been

extended in many ways to deal with dependent tasks, arbitrary timing attributes, multiple processors,

and various access and execution control mechanisms. Lehoczkey first introduced the analysis

method based on busy period [54]. The busy period analysis is used in [9] to analyze dependent

task sets in a distributed environment using phase modification mechanism for execution control.

Palencia et al developed techniques based on busy period analysis to derive the best-case and worst-

case of distributed task sets [62, 63]. Redell further improved the algorithms to analyze the tasks

with precedent constraints [68, 67]. Other analytical methods such as holistic analysis [87] and

end-to-end analysis with different execution controls [81] have also been developed.

164

5.5 Summary

Schedulability analysis of the runtime model is an essential step in ECSW design in order to ver-

ify that timing and resource constraints are all met at system-level. In this work, we have attempted

to apply existing schedulability and timing analysis techniques to our runtime model for the anal-

ysis instead of developing a new one dedicated to our model alone. This justifies the fact that our

runtime model contains sufficient information for such a runtime analysis, and hence, can be used

with other analysis algorithms to investigate different performance issues. Due to different model-

ing assumptions, applying existing analysis algorithms to our runtime model is not straightforward.

Specifically, the runtime model generated with our method contains dependent tasks with their de-

pendencies modeled in their release offsets. We must fit our runtime model to the assumptions of

selected analysis algorithms.

In this work, we have chosen fixed priority-based scheduling analysis techniques to analyze our

runtime model. Such analysis requires the priority assignment of all tasks. As finding feasible pri-

ority assignments is NP-hard, we use a heuristic priority assignment based on simulated annealing

to determine the priorities for the tasks in the runtime model. The analysis then focuses on de-

termining the tasks schedulability and resource consumptions on individual processors, including

best-case and worst-case response times of tasks using the method based on release phasing analysis

presented in [68, 67]. We modify the algorithms to take into account the task dependencies so we

can obtain tighter bounds. Since the tasks’ timing attributes in our runtime model are assigned in

such a way that meeting the deadlines of all tasks results in the end-to-end timing constraints being

met, passing a local schedulability analysis guarantees the system performance constraints will be

met. Other performance metrics such as output jitters and separations can also be determined using

the best-case and worst-case response times. The resource consumptions of computation devices

and communication links are computed as utilizations.

165

As the analysis based on the busy period analysis is computationally complex, we have devel-

oped a method using shared buffers to eliminate the task dependencies, and consequently reduce

the analysis complexity. With shared buffers, the dependent tasks in the system can be transformed

to independent tasks polling the shared buffers at predefined intervals. The polling intervals of the

tasks are derived with consideration of their timing constraints. The analysis of the task set after

the transformation is simplified because all the release offsets and task dependencies are eliminated.

Many classic schedulability and timing methods can then be applied with better scalability. How-

ever, the simplification of schedulability analysis comes at the cost of low resource utilization for

the application, which implies more resources are wasted. Other solutions such as increasing the

size of the shared buffers can also be developed to balance the scheduling overheads against storage

costs.

166

CHAPTER 6

Performance Measurement Methods

The performance measurement methods are essential for collecting required performance infor-

mation to support quantitative analysis. In our modeling framework, the performance characteris-

tics of both application components and system software services must be measured. This chapter

presents a measurement method that allows a user to measure the performance characteristics of

these components systematically. The method allows the measurements to be made without the

source code of the system software and with only small perturbations. The method is an end-to-end

measurement combining both synthetic workload and micro-benchmarking. As the measurement

of the application components is straightforward and easy, we will focus on the system service

measurements in this chapter. After a brief discussion of the measurement method itself, we will

present the application of our method to measure selected real-time operating systems (RTOS) and

will demonstrate effectiveness of the measurement method.

6.1 Measurement Method

Our measurement method is an end-to-end measurement. End-to-end (e2e) measurements ob-

tain performance information as an external observer, and therefore, minimize interference during

measurements. They also provide performance results very close to what the application will expe-

rience at runtime.

167

Almost all current measurement strategies [37, 56, 80] are based on monitoring events in a sys-

tem. Methods for event monitoring can be classified as event-driven methods, tracing methods,

sampling methods, and indirect measurement [56]. Event-driven methods record event occurrences.

Tracing methods are similar to event-driven but they record more system information that can be

used to uniquely identify the event occurrence. Sampling methods record the state of a system in a

fixed interval instead of recording every event. Indirect measurement methods are ad hoc designed

and used only when the metrics cannot be directly measured. Among these methods, event-driven

and tracing methods require to instrument the examined services and thus perturb the measurements.

Although such measurements can provide the details of the measured service, the nonlinear and non-

additive perturbations make the results inaccurate, while the performance details of activities inside

a measured service are normally unnecessary for the application performance analysis. Indirect

measurements are usually avoided whenever a direct measurement is possible. Sampling methods,

on the other hand, have the following advantages: (1) no kernel instrumentation is required; (2) the

measured information close to an application may experience; and (3) the least perturbations are

introduced (but can only provide statistical results). Further, the sampling method gathers informa-

tion based on external observations, which is suitable for reuse in application performance analysis

since applications are also external observers for RTOS services. Therefore, the method based on

sampling event occurrence is a suitable tool for our measurements.

Our e2e measurement method is combined with micro-benchmark and synthetic workloads to

obtain accurate performance measurements of a service. To measure performance of a service for

use in multiple application analysis, the measurement method should consider both the effects of

the underlying system software service and the interactions at the same functional level and above.

This is because the performance depends on both the execution environments and the system work-

loads. The system software services provide an execution environment for the measured service,

168

while other services at the same level or above introduce workloads to the system. Microbench-

marks [11, 12] are an effective method for measuring individual and independent services without

instrumenting the kernel. However, as typically used, they exercise the system in a limited way that

is not necessarily representative of an actual application workload. We can derive more realistic per-

formance metrics by coupling the micro-benchmarks with representative, domain-specific synthetic

workloads. Synthetic workloads [45] allow the measurements to be taken under conditions close to

the real applications with representative resource usage and interaction patterns. Through such syn-

thetic workloads, our measurements can cover the most frequently used application configurations

and the interaction patterns so the results can be reused to analyze a family of applications.

The limitation of this measurement method is that measured performance values will be ded-

icated to a platform configuration, including hardware and system software. This requires that

components and services should be measured on all possible combinations of hardware and system

software. Such an approach is possible for ECSW due to the fact that only a handful of hardware and

OS products are commonly used for a given family of applications. It is also possible to derive the

performance values of the system based on the low-level system service performance obtained using

other micro-benchmarks such as lmbench or hbench-OS. However, there is no algorithm in current

practices that can derive the performance values of high level services accurately using values of

low level services.

6.2 Measuring RTOS service overheads

As defined in the modeling and analysis framework, performance characteristics are service

demands, which are derived from the measured execution times. Measuring performance charac-

teristics of system software services are relatively complicated, as they depend on application-level

workloads, hardware architecture, and the interactions among services at the same level. Therefore,

169

we evaluate the effectiveness of our measurement method based on system software services mea-

surements. For simplification, we only apply the method to OS-level services. Other level services

such as middleware services can be measured in a similar way.

We measure two basic RTOS services: timing and scheduling services. Timing services include

various clock and timer management mechanisms implemented in an RTOS, and the performance

information for such services is critically important to time-based activities in ECSW, such as sam-

pling at a given rate and generating periodic outputs. Scheduling services, on the other hand, are

essential for software execution, and the performance of such services plays a critical role in assess-

ing the quality of the entire system. Timing and scheduling services are the basic services required

by all ECSW executions and supported in all RTOSs. Many other system services such as network

and disk management usually depend on them.

For application performance analysis, the overheads and unpredictability introduced by the sys-

tem software services are critical in meeting the system timing constraints and achieving stable

control [100, 97]. Since timing and scheduling services normally run as part of the RTOS kernel at

the highest priority in the system, applications can experience large overheads and unpredictability

due to these services. Our measurements should, therefore, reveal the variations of these over-

heads and unpredictability under different system and application configurations, and store them

with these services. When performance analysis needs to be done, such measured information can

then be used to construct an accurate performance model based on the given application usage and

system configuration.

To achieve such a measurement goal, we define a set of performance metrics for overheads

and unpredictability which are reusable for the analysis of a family of applications. We then con-

struct synthetic workloads to enumerate all possible ways of using timing and scheduling services in

ECSW applications, and measure the service performance using micro-benchmarks. Our measure-

170

ments were done on a set of selected hardware and RTOSs to demonstrate the general applicability

of our measurement methods. Note that the performance of different hardware and RTOSs is not

measured to compare and select targets. Instead, they are measured for constructing performance

analysis models for a family of applications that will be executed on these targets.

6.2.1 Measurement environment

Since the hardware provides an execution environment for RTOSs, the measured performance

of RTOS services is hardware-dependent. Here we do not assume the existence of methods for

deriving RTOS service performance from the hardware performance and configuration. Instead, we

have designed a set of experiments for each different combination of hardware and operating system

to obtain the performance of RTOS services directly. Since RTOSs have different implementation

strategies and provide different ways of using these services, it is important to learn the effects of

such differences on performance. Thus, a set of RTOSs was selected to run on different hardware

for our measurements. Table 6.1 lists the hardware we used in the measurements.

Hardware Processor Processor Memory Cache Bus speed
type speed (MHz) size (MB) (KB) (MHz)

P133 Pentium 133 32 128 66
P166 Pentium 166 32 128 66

ETAS2000 MPC 555 40 2 - 20

Table 6.1: Hardware configurations for OS service measurements.

The operating systems we measured include QNX 4.24, OSEKWorks 2.0, and RTLinux 3.0.

We assume that the source codes of these kernels are not available for measurement, although the

source code availability of RTLinux 3.0 will help us understand the relationships among the OS

services and verify our analysis results.

The versions of selected RTOSs we used, cannot run on all the hardware platforms. The config-

urations used for measurements are given in Table 6.2.

171

Hardware QNX RTLinux OSEKWorks
P133 QNX-P133 RTL-P133 -
P166 QNX-P166 RTL-P166 -

MPC555 - - OSEK-MPC

Table 6.2: Testbed configuration for measurements.

To minimize interference from non-essential services, the services such as drivers for disk,

network, and display were all turned off during the measurement. Collected data were temporarily

stored in the main memory and were dumped into the destination host for analysis after the services

used for storage were turned on at the end of the measurement.

6.2.2 Performance metrics

The measured performance metrics of OS services are expected to be minimum in number,

reusable for a family of applications, and independently measurable. A minimum set of metrics is

desired to save the amount of experimental effort and reduce the amount of performance information

to be stored. Finding a minimum set of performance metrics for a service requires an understanding

of the analysis requirements, dependencies among the OS services, and the relationships between

different metrics. For example, the timing service in many OS implementations depends on the

signal mechanism, which enables the values of the timing service performance metrics to be de-

rived from those of the signals and do not need to be measured. Reusability means that the metrics

are measured once and reused whenever the same environment is used, thus eliminating duplicate

measurements for the same environment for different applications with similar workloads and in-

teraction patterns. Finally, the independently measurable metrics simplify the experiments and data

analysis, and are more flexible when they are used in a performance model.

Our measured performance metrics in this work include clock overheads and interval jitters

for timing services, and context switch overhead for scheduling services. Clock overheads are the

CPU time to process each signal generated from the system clock, and are one of the overheads

172

for application performance analysis. Interval jitters are the variance of time intervals and are used

to represent the unpredictability in analysis. Context switch overheads are the time that a kernel

spends for terminating one task and putting another ready task into execution. They are another set

of overheads in analysis. Although the context switch is defined loosely as in [12], the measured

values are closer to what a task will really experience at runtime.

The metrics represent a minimum set of performance metrics for ECSW analysis of our tar-

get real-time control, such as avionic mission control or automotive engine control. The analysis

requirements of real-time controls include finding the response times and the used and/or spared

resources, which can usually be done by using real-time analytic algorithms, such as algorithms to

compute busy periods, time-demand functions, and processor utilizations. Among these metrics,

clock overheads and context switch overheads specify the resource requirements of the services

since they introduce additional computation workload into the system. Clock overheads also deter-

mine the completion time of an activity, therefore are necessary for computing the activity response

time and the system’s busy period. On the other hand, the interval jitter does not introduce addi-

tional workload, but is useful in determining the length of a busy period and completion time of an

activity. Therefore, these metrics, along with application component performance characteristics,

such as worst-case execution times, are sufficient for the analysis algorithms to generate the results

required by the application. Clock overheads, interval jitters, and context switch overheads repre-

sent basic performance characteristics of timing and scheduling services. All analysis algorithms

are either based directly on these metrics or on some measured information that can be derived from

these metrics. Therefore, the metrics can be reused for different analyses. Furthermore, RTOSs

usually provide interfaces to access timing and scheduling services, and the effects can be seen in

an application. So our metrics can be measured individually without kernel instrumentation.

173

6.2.3 Measurement tool and analysis strategy

Our measurement tool is based on sampling the processor clock cycles for each measured case.

Most modern processors are equipped with some registers dedicated to performance and timing

measurements. In our work, we use the hardware Time-Stamp Register on the Pentium proces-

sor [35] and the Time-Base Register on MPC 555 [61] as a means of measurement. Both of them

are 64-bit registers, initialized to
�

when the system powers up, and increased by
�

upon every

hardware clock tick.

A statistical analysis method is used to process the measured data. For each experiment,
��� � � � �

samples are collected during the normal execution. Besides computing the average and standard de-

viation of the measured parameters, we also find the maximum and minimum values as performance

bounds for a measured parameter on a given platform.

6.2.4 Experiment design

Measuring the performance of system services should consider the effects of both application

and hardware in the layered model. In this work, we assume the 3-level system realization layers

with the higher level performance depending on the service at the lower-level and the interferences

of the same level activities, as shown in Figure 6.1. The hardware layer provides the environment

that the measured services will be running in, and workloads at the application level can make

measured services behave with different performance. Since each of our measurements in this work

is dedicated to one combination of hardware and RTOS, the experiment design focuses only on

generating application-level workloads. Such workloads are designed to cover all possible scenarios

of the application usages so that the measured information can be reused for different analyses.

Experiments for timing service measurement. Measured metrics of timing services include

clock overheads and interval jitters. Clock overheads depend mainly on the clock resolution, there-

174

Application

Hardware Architecture

Composition, behaviors and services

Timer, scheduler and communication

System Software

CPU and memory architecture

Application
Response time
Execution rate
Message delay

Bus speed and width
Memory and cach speed and size

Hardware Architecture
Clock rate, CPI and pipeline stages

System Software
Timer overhead and jitter

Scheduling overhead and latency
Communication delays

Figure 6.1: System performance layered model for measurements.

fore can be measured by executing a test program under different resolutions. Specifically, given a

program � with execution time � , the overhead of each clock tick can be computed using Eq. (6.1).

� 	 � � � � � ��� � � � � � � � � � � � � � � � � (6.1)

where � 	 is the measured execution time of � , � is the real execution time of � , � 	 is the clock

resolution when the measurement is taken, and � is the overhead of processing each clock tick. Each

item of � � ��� represents the overhead of processing the clock ticks happening during the time ��� � � ��� .

� � is the coefficient of the � -th order overhead, and can be calculated recursively as follows:

� � � � �
� 	 � � � � � � � � ���

� 	 � � � � � � � � ���
� 	 � � � � � � � � � � �

� � � � � � �
� 	 � � � � � � � � (6.2)

It can be seen from Eq. (6.2) that � � decreases exponentially. Therefore, given any � , there exists

a positive integer � so that for any
� � � , � � � �

, as the overhead introduced by its previous

item will eventually be less than � 	 . In OS measurements, the order of � � seldom exceeds � as the

� is normally tens of millisecond and given OS overheads are around microseconds. Therefore, the

clock overhead can be computed as follows:

� 	 � � � � �
� 	 � ��� �

� �� � �
� 	 ���

�
(6.3)

175

� 	 � � � � �
� 	 � ���	� (6.4)

Eq. (6.3) is used when the clock resolution is fine (normally less than
�

�
� � �) and/or the execu-

tion time is long, while Eq. (6.4) is used for other cases.

It is essential to know the execution time � of � to compute clock overhead � . The measured

execution time � 	 is usually larger than � since the clock signal will be generated no matter whether

it is used or not, and its overheads are included in the measured � 	 . However, since � 	 only includes

the clock overheads that occur during the � 	 measurements, we can set the clock resolution far

larger than � to obtain a measurement ��� that is close to real � , as given in Eq. (6.5).

� � � ��� � ��� � 	�� � (6.5)

In our experiment, the test program � is designed with an execution time of
��� � � . The resolu-

tions used for the clock overhead measurements range from
��� ��� � to

��� � � � .1 The selected clock

resolutions and methods to set them are given in Table 6.3.

RTOS method to set resolution values (
� �)

QNX clock setres() 100, 200, 400, 500, 600,
800, 1000, 10000, 100000

RTLinux rtl setschedmode() 100, 200, 400, 500, 600,
800, 1000, 10000, 100000

OSEKWorks Rtcinit() 100, 200, 400, 500, 600,
800, 1000, 10000, 100000

Table 6.3: Resolution setting methods and values for examined OS.

Interval jitters, on the other hand, depend on the clock resolution and application configurations.

The dependency between interval jitters and clock resolutions is caused by the process of a timer

expiration signal has to be rounded up to a clock tick. The dependency between interval jitters and

application configuration results from the usage of the service, such as the number of independent

timers, the interval patterns of these timers, and the priorities of tasks using these timers. The

1The resolution range is chosen based on the capacity test of a platform and the usage in applications.

176

resolution values in our experiments are selected to be � � � � � and
� � � .2 The experiment workloads

are designed with different patterns of timer intervals and different numbers of timers. Table 6.4

lists the values we used in our jitter measurements.

Factor values
clock resolution 500

� � , 1 � �
timer patterns harmonic, non-harmonic
task priority highest, medium, lowest

number of timers 1, 2, 5, 10, 15, 20

Table 6.4: Factors and values for interval jitter measurements.

A set of test programs is designed to perform the jitter measurements with the listed system

attributes. Since only one timer can be associated with a process or thread in all examined RTOSs,

we need up to � � tasks in the experiments. Table 6.5 lists the attributes of every experiment task,3

while Table 6.6 shows the combinations of the tasks on measuring the performance with different

numbers of timers.

period period period period
task (harmonic) (non-harmonic) priority task (harmonic) (non-harmonic) priority
id (ms) (ms) id (ms) (ms)
1 1 2 1 11 80 83 11
2 5 5 2 12 90 89 12
3 10 9 3 13 100 103 13
4 15 17 4 14 150 145 14
5 20 19 5 15 200 211 15
6 30 31 6 16 250 239 16
7 40 43 7 17 300 217 17
8 50 49 8 18 400 395 18
9 60 61 9 19 500 513 19
10 70 71 10 20 600 613 20

Table 6.5: Attributes of experiment tasks.

Experiments for scheduling services measurements. The metrics for scheduling services is

context switch overheads. We define the context switch time loosely as in [12], which is the kernel

2The values are chosen with the consideration that the timer overheads introduced by these values should be close but
potentially have a significant impact on jitters.

3In this table, a smaller number is used for a higher priority. For the RTOS with a larger number for a higher priority,
the real priorities of these tasks should be converted.

177

test case 1 2 3 4 5 6
of
timers

1 2 5 10 15 20

task in set � 1 � or
� 10
�

or
� 20
�

� 1, 10
�

or
� 1, 20

� � 1, 5, 10,
15, 20

� � 1, 3, 5, 7,
10, 11, 13,
15, 17, 20

�
� 1, 3, 4, 5,
7, 9, 10, 11,
13, 14, 15,
17, 18, 19,
20
�

� 1, 2, 3, 4,
5, 6, 7, 8, 9,
10, 11, 12,
13, 14, 15,
16, 17, 18,
19, 20

�

Table 6.6: Task combinations for the test cases.

time spent between the termination of the current running task and the beginning of a new ready

task. The overheads actually include the termination time to suspend the current running task and

store its environment, the scheduling time to select a new ready task to run, and the activation time

to restore the execution environment of the new task and give the control to it. However, these times

are not individually measurable without kernel instrumentations, hence are usually not doable for

end users. But the total elapsed time from the termination of one task to the start of a new task

is measurable without a source code, and is closer to what applications will actually experience at

runtime. Therefore, such measurements are more suitable and reusable for application performance

analysis.

Context switch overheads depend on the scheduling algorithm, the number of tasks in the ready

queue, and the organization of the ready queue (for example, sorted queue or unsorted queue). The

priority-based preemptive scheduling algorithm is one supported by all current RTOSs and used

most frequently in ECSW applications. Our context switch overhead measurements are therefore

performed using this scheduling algorithm. The task set is with a range of � to � � tasks. The

measurements are taken between two specially designed tasks in the task set. All other tasks, called

interference tasks, are introduced only to change the length of the ready queue to learn the effect of

the queue length on context switch overheads. The task set is checked to be schedulable manually

before the measurements. Table 6.7 shows these tasks and their attributes used for scheduling

178

service performance measurements.

task id priority period (ms)
1 2 1
2 1 triggered by task 1

3-20 3 1

Table 6.7: Attributes of experiment tasks.

The measurement with the given task set is designed as follows: � � � � � runs periodically with

� � � period, and will trigger � � � � � when it is finished. The priority of � � � � � is lower than the

priority of � � � � � but higher than all interference tasks. The values of Time-Stamp register or Time-

Base register are logged at both the end of � � � � � and the beginning of � � � � � . Interference tasks

run at the same period as � � � � � . Therefore, at every
� � � , all tasks are ready except � � � � � and will

be moved to the ready queue. Since � � � � � has the highest priority in the ready queue, it executes

first. After it completes, � � � � � is triggered and will be in the ready queue. Similarly, � � � � � is the

highest priority task and will execute before any other task. Thus, � � � � � � � � only affect the ready

queue length during the measurement, and do not contribute any overhead to the context switch time

between � � � � � and � � � � � . The context switch overheads can then be obtained from the difference

between the pairs of sampled values of � � � � � completes and � � � � � starts. All interference tasks

are assigned the same priority since their priorities have no effect on the measurements. Table 6.8

shows the number of tasks used for each measurement to learn the effect of the ready queue length.

test case 1 2 3 4 5
of tasks 2 5 10 15 20
task in set � 1, 2

� � 1, 2, 3-5
� � 1, 2, 3-10

� � 1, 2, 3-15
� � 1, 2, 3-20

�

Table 6.8: Task combinations for test cases.

179

6.3 Measurement Results

Given the measurement goal and designed experiments, we performed the measurements of

timing and scheduling services, and now present the measured results in this section.

6.3.1 Results of clock overhead measurements

The measured execution times of the test program with different clock resolutions are presented

in Table 6.9. Note that the original measured execution times were represented as the number of

clock cycles, and we converted them to real wall clock times in Table 6.9.

platform statistics
resolutions (�

�
)

0.1 0.2 0.4 0.5 0.8 1 10 100

QNX-
P133

average 10.725 10.355 10.171 10.133 10.078 10.065 10.006 10.0005
maximum 13.871 11.845 10.875 10.674 10.261 10.154 10.015 10.012
minimum 10.702 10.339 10.157 10.119 10.069 10.057 10.005 10.0002

std 0.085 0.043 0.018 0.014 0.008 0.006 0.002 0.0002

RTL-
P133

average 12.732 11.287 10.676 10.548 10.353 10.301 10.099 10.078
maximum 20.912 13.589 11.613 11.222 10.754 10.638 10.132 10.092
minimum 12.714 11.298 10.671 10.544 10.359 10.298 10.098 10.078

std 0.249 0.012 0.061 0.025 0.015 0.013 0.0012 0.0005

QNX-
P166

average 10.876 10.397 10.188 10.144 10.082 10.063 10.006 10.004
maximum 12.738 11.207 10.483 10.348 10.188 10.121 10.011 10.009
minimum 10.755 10.362 10.177 10.139 10.077 10.061 10.005 10.0002

std 0.063 0.055 0.008 0.008 0.004 0.004 0.004 0.0002

RTL-
P166

average 12.695 11.223 10.544 10.408 10.251 10.197 10.032 10.018
maximum 18.523 13.685 11.779 11.373 11.766 10.588 10.061 10.046
minimum 11.901 10.889 10.443 10.337 10.212 10.169 10.030 10.015

std 0.249 0.012 0.061 0.025 0.015 0.013 0.0012 0.0005

OSEK-
MPC

average 23.755 14.156 11.782 11.398 10.871 10.705 10.149 10.097
maximum 23.804 14.166 11.812 11.411 10.895 10.723 10.150 10.129
minimum 23.689 14.108 11.754 11.353 10.836 10.664 10.146 10.090

std 0.0203 0.0217 0.0285 0.0236 0.0282 0.0261 0.0069 0.0173

Table 6.9: Measured execution times with different clock resolutions.

Given the measured execution times, the clock overhead at each resolution can be computed by

solving Eq. (6.3) and (6.4). In the clock overhead calculation, we used the minimum execution

time when the resolution was set to 100 ms as � � for each case. The computed clock overheads for

each test case are shown in Figure 6.2, 6.3 and 6.4.

The measurement results show that the clock overheads tend to decrease in general as the du-

180

0.1 0.2 0.4 0.5 0.8 1 10
0

5

10

15

20

25

30

35

clock resolution (ms)

m
ea

su
re

d
ov

er
he

ad
 (µ

s)

average,P133
maximum,P133
minimum,P133
average,P166
maximum,P166
minimum,P166

Figure 6.2: Timing service overheads of QNX.

0.1 0.2 0.4 0.5 0.8 1 10
0

10

20

30

40

50

60

70

80

clock resolutions (ms)

m
ea

su
re

d
ov

er
he

ad
 (µ

s)

average,P133
maximum,P133
minimum,P133
average,P166
maximum,P166
minimum,P166

Figure 6.3: Timing service overheads of RTLinux.

0.1 0.2 0.4 0.5 0.8 1 10
0

10

20

30

40

50

60

70

80

90

clock resolution (ms)

m
ea

su
re

d
ov

er
he

ad
 (µ

s)

average
maximum
minimum

Figure 6.4: Timing service overheads of OSEKWorks.

ration between clock ticks increases. This indicates that a fine-resolution clock will consume more

system resource and may cause schedulability problems although such a clock may make the system

react swiftly. The quantitative effects of clock resolutions are OS-dependent. For QNX, the normal

overheads are around � �
� � � . But the maximum can be around � ��� � . RTLinux overheads are

around � ��� � though the maximum can be around 	 ��� � . The overheads for OSEKWorks are around

	 ��� � except a higher overhead of
� ��� � is experienced when the clock resolution is set to

�

�
� � � .

We also experienced the system hang when setting the clock resolution smaller than � ��� � for QNX-

P133, QNX-P166,
� ��� � for RTLinux-P133 and RTLinux-P166, and

� ��� � for OSEKWorks-MPC,

although the measured overheads for corresponding systems are much less than values that would

make the system halt. This may be caused by some interrupt and timing related activities in the

181

kernel.

The measurement results also show that a faster processor can generally reduce the clock over-

heads. As can be seen in Figure 6.2, using a faster processor reduces the maximum overheads

although it does not improve the average and minimum cases. As for the results of RTLinux shown

in Figure 6.3, both average and minimum overheads were reduced on the P166 platform. Further,

comparing the overheads of QNX and RTLinux on both platforms with those of OSEKWorks-MPC,

the clock overheads of OSEKWorks were almost constant for any given resolution, while the max-

imum overheads for both QNX and RTLinux were significantly larger than average and minimum

for any given resolution. Less variant overheads for a given OSEKWorks can result from the sim-

ple functionality of OSEKWorks [93] flat memory structure of MPC555 [61]. Both help to reduce

unpredictability during the executions.

6.3.2 Results of interval jitter measurement

We then measured the effects of clock resolutions, as well as the number and patterns of timers,

and task priorities on interval jitters that a given task will experience. For clock resolutions, we

are interested in how different clock resolutions effect the jitters of different interval lengths. The

measured results of interval jitters for QNX and RTLinux under different clock resolutions are

shown in Figure 6.5 and 6.6. For OSEKWorks, we did not observe any jitter for examined clock

resolutions.

According to the measured results, interval jitters varied greatly from one OS to another. In

QNX, interval jitters increased as the clock resolution became lower, while the jitters for RTLinux

showed only slight change with different resolutions. The reason for this could be that QNX uses

a clock-based scheduler while RTLinux and OSEKWorks use event-based schedulers. Predictable

hardware architecture also contributed to the absence of jitters across all experiments in OSEK-

Works.

182

0.1ms/P133 0.5ms/P133 1ms/P133 0.1ms/P166 0.5ms/P166 1ms/P166
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

jit
te

rs
 (m

s)

max,interval=1ms
min,interval=1ms
max,interval=5ms
min,interval=5ms
max,interval=10ms
min,interval=10ms
max,interval=20ms
min,interval=20ms
max,interval=50ms
min,interval=50ms

Figure 6.5: Interval jitters of QNX.

0.1ms/P133 0.5ms/P133 1ms/P133 0.1ms/P166 0.5ms/P166 1ms/P166
−0.1

−0.05

0

0.05

0.1

0.15

0.2

jit
te

r (
m

s)

max,interval=1ms
min,interval=1ms
max,interval=5ms
min,interval=5ms
max,interval=10ms
min,interval=10ms
max,interval=20ms
min,interval=20ms
max,interval=50ms
max,interval=50ms

Figure 6.6: Interval jitters of RTLinux.

Moreover, the results showed that interval jitters are independent of the length of an interval.

This is different from the traditional understanding that the interval should be some relatively large

multiples of resolution to overcome jitters. Even for QNX with a clock-based scheduler, the interval

jitters of 1 ms interval with
� � � clock resolution were not different from jitters of

��� � � , � � � � ,

and � � � � intervals. The resolution further determined the size of interval jitters. As can be seen in

Figure 6.5, the jitters were always bounded with twice the clock resolution. Figure 6.5 and 6.6 also

indicate that a faster processor did not help to reduce jitters for an OS using a clock-based scheduler,

but did reduce jitters for an OS using event-based scheduler.

Next, we studied the effects of the number of timers and interval patterns on jitters. The mea-

surements also included the jitters experienced by tasks with different priorities. Figure 6.7 and

6.8 show the results of harmonic and non-harmonic intervals on QNX, respectively. Figure 6.9 and

6.10 show the results of the same experiments on RTLinux, and Figure 6.11 and 6.12 show the

results of OSEKWorks.

According to these results, we first observed that the interval jitters increased in proportion to

the number of timers in the system for all measured cases. Such dependencies should be an OS

property, independent of hardware. Both in the case of the same OS running on different hardware

and of different OSs running on the same hardware the same tendency of interval jitter changes

183

1 2 5 10 15 20
−5

−4

−3

−2

−1

0

1

2

3

4

5

number of tasks

in
te

rv
al

 ji
tte

rs
 (m

s)
max,P133,prio=H
min,P133,prio=H
max,P133,prio=M
min,P133,prio=M
max,P133,prio=L
min,P133,prio=L
max,P166,prio=H
min,P166,prio=H
max,P166,prio=M
min,P166,prio=M
max,P166,prio=L
min,P166,prio=L

Figure 6.7: Interval jitters for harmonic intervals on
QNX.

1 2 5 10 15 20
−5

−4

−3

−2

−1

0

1

2

3

4

5

number of tasks

in
te

rv
al

 ji
tte

rs
 (m

s)

max,P133,prio=H
min,P133,prio=H
max,P133,prio=M
min,P133,prio=M
max,P133,prio=L
min,P133,prio=L
max,P166,prio=H
min,P166,prio=H
max,P166,prio=M
min,P166,prio=M
max,P166,prio=L
min,P166,prio=L

Figure 6.8: Interval jitters for non-harmonic inter-
vals on QNX.

1 2 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

number of tasks

in
te

rv
al

 ji
tte

rs
 (m

s)

max,P133,prio=H
min,P133,prio=H
max,P133,prio=M
min,P133,prio=M
max,P133,prio=L
min,P133,prio=L
max,P166,prio=H
min,P166,prio=H
max,P166,prio=M
min,P166,prio=M
max,P166,prio=L
min,P166,prio=L

Figure 6.9: Interval jitters for harmonic intervals on
RTLinux.

1 2 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

number of tasks

in
te

rv
al

 ji
tte

rs
 (m

s)
max,P133,prio=H
min,P133,prio=H
max,P133,prio=M
min,P133,prio=M
max,P133,prio=L
min,P133,prio=L
max,P166,prio=H
min,P166,prio=H
max,P166,prio=M
min,P166,prio=M
max,P166,prio=L
min,P166,prio=L

Figure 6.10: Interval jitters for non-harmonic inter-
vals on RTLinux.

1 2 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

number of tasks

in
te

rv
al

 ji
tte

rs
 (m

s)

max,prio=H
min,prio=H
max,prio=M
min,prio=M
max,prio=L
min,prio=L

Figure 6.11: Interval jitters for harmonic intervals
on OSEKWorks.

1 2 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

number of tasks

in
te

rv
al

 ji
tte

rs
 (m

s)

max,prio=H
min,prio=H
max,prio=M
min,prio=M
max,prio=L
min,prio=L

Figure 6.12: Interval jitters for non-harmonic inter-
vals on OSEKWorks.

184

showed up, and using a faster processor did not reduce the jitter. These results suggest that reducing

the number of timers by combining tasks with the same intervals would reduce the interval jitters,

and consequently improve system performance.

Interval jitters experienced by tasks with different priorities were also significantly different. A

higher priority task experienced smaller jitters, while a lower priority task experienced larger ones

in all our measurements. Jitter differences for tasks with different priorities are independent of the

number of timers and interval patterns, but depend on the type of RTOS. Larger jitters experienced

by a lower priority task could be the cumulative effects of kernel activities that have a lesser effect

on higher priority tasks.

The interval patterns had significant impacts on interval jitters too. These impacts depended on

the implementation strategy of OS structure [43] and the number of timers in the system. Among the

measured cases, jitters were almost the same for both harmonic and non-harmonic intervals when

there were a relatively small number of timers (� �). When the number of timers became larger,

the jitters with non-harmonic intervals became larger than those with harmonic intervals for QNX,

but showed the reverse for RTLinux and OSEKWorks. This can be explained by the clock-based

and event-based OS implementation.

The “memory effects” of timer intervals found in our previous research [100] were also observed

in this measurement. However, the effects showed differently in the way that some longer intervals

were followed by a sequence of compensatory shorter intervals or vise versa instead of a longer

interval followed immediately by a compensatory shorter interval in our previous observations.

We also observed that larger jitters were present in experiments on the P166 board with a faster

processor for both QNX and RTLinux, which goes against the common view that a faster processor

should yield a better performance. Our guess is this could be either the hardware itself (e.g., different

manufacture of some chips and boards) or the implementation of RTOS (e.g., different rates of some

185

OS internal activities on different processors). The true reason may require further investigation.

6.3.3 Results of context switch measurement

The measurements of context switches were performed under system configurations with differ-

ent numbers of tasks. To learn the relationships between clock resolutions and context switch times,

we performed the measurements under different clock resolutions too, specifically
�

�
� � � and

� � � ,

as the OS scheduler can be either clock-based or event-based.

The measured context switch times of QNX, RTLinux, and OSEKWorks are shown in Fig-

ure 6.13, 6.14, and 6.15 respectively. For QNX, the average and minimum context switch times

were not sensitive to the number of tasks in the ready queue, but the maximum context switch time

increased when the number of tasks in the ready queue increased under a finer clock resolution.

Such a difference can be as high as 3 times between a system with � � interference tasks and a sys-

tem without any interference task. For RTLinux, both average and maximum context switch times

increased as the number of tasks in the ready queue increased under any clock resolution, while the

minimum times stayed the same. Both average and maximum context switch times of a system with

� � interference tasks can be twice as high as those for a system with no interface task. On the other

hand, the context switch times for OSEKWorks showed hardly any variance. Such results imply that

the context switch time heavily depends on the RTOS implementation, and at least will not increase

if the number of tasks is reduced.

We also noticed that the clock resolution had significant impacts on context switch times. The

context switch times (average, maximum and minimum) with a small clock resolution were higher

than those with a larger resolution for QNX, while it was the opposite for RTLinux and OSEKWorks.

This can be explained by the fact that the context switch times of a clock-based scheduler may be

more sensitive to clock overheads, while the event-based scheduler may be more sensitive to the the

resolution itself.

186

0 5 10 15 20
0

50

100

150

200

250

number of interference tasks

sw
itc

h
tim

e
(µ

s)

average,0.5ms,P133
maximum,0.5ms,P133
minimum,0.5ms,P133
average,1ms,P133
maximum,1ms,P133
minimum,1ms,P133
average,0.5ms,P166
maximum,0.5ms,P166
minimum,0.5ms,P166
average,1ms,P166
maximum,1ms,P166
minimum,1ms,P166

Figure 6.13: Measured context switch times for
QNX.

0 5 10 15 20
0

10

20

30

40

50

60

70

80

number of interference tasks

sw
itc

h
tim

e
(µ

s)

average,0.5ms,P133
maximum,0.5ms,P133
minimum,0.5ms,P133
average,1ms,P133
maximum,1ms,P133
minimum,1ms,P133
average,0.5ms,P166
maximum,0.5ms,P166
minimum,0.5ms,P166
average,1ms,P166
maximum,1ms,P166
minimum,1ms,P166

Figure 6.14: Measured context switch times for
RTLinux.

0 5 10 15 20
0

20

40

60

80

100

120

140

160

180

200

number of interference tasks

sw
itc

h
tim

e
(µ

s)

average,0.5ms
maximum,0.5ms
minimum,0.5ms
average,1ms
maximum,1ms
minimum,1ms

Figure 6.15: Measured context switch times for OSEKWorks.

6.4 Related Work

Recently, many models have been proposed for OS and integrated ECSW performance anal-

ysis, including hierarchical models of OS services [12] and performance models of the RTOS

scheduler based on both the OS structure and the measured performance of the scheduler com-

ponent [43]. Other performance models [11, 4] or integrated systems have also been developed,

including a generic performance analysis framework [11], compositional performance modeling

based on stochastic process algebra [32], model composition based on dependency graphs [1], and

UML-based models [33, 4]. All these models suggested a modeling hierarchy with the OS perfor-

mance model as a separate layer between hardware and the application, and required the measure-

187

ment of OS services for model construction and performance analysis.

There have also been numerous general techniques for measuring the different aspects of com-

puter systems [37, 56], and benchmarks for OS-level measurements, including workload design,

system monitoring, measurement strategies and tools, and result presentations. These techniques

must be carefully tailored to meet the need for measuring the OS service performance. Most cur-

rent OS-level measurements are based on benchmarks, such as Rhealstone [41], Hartstone [91],

lmbench [59], and hbench-OS [12]. Although these techniques are useful in measuring the perfor-

mance of individual operations and determining performance bottlenecks, the effects of application

structures and interactions—which may make significant performance differences of ECSW—are

ignored. The information measured with these benchmarks is limited and inaccurate for ECSW

performance analysis.

Measurements that include the effects of applications can be made with a synthetic workload.

Methods of generating synthetic workloads include Hartstone [91], a synthetic workload specifica-

tion language (SWSL) and generator [45], and DynBench [75]. All of these techniques consider

application properties but performance metrics and frameworks are not defined for RTOS service

measurements. Some ad hoc methods have also been used for performance measurements of OS

services [72, 22, 88] with domain-specific applications. These measurements have generated RTOS

performance information with domain-specific applications, although the measurements are usually

restricted to a specific configuration used for the purpose of comparing different products.

Our measurement method focuses on how to obtain information on the performance of various

RTOS services under representative application configurations that are necessary for the analysis of

ECSW design and integration. This differs from measurements targeted for product comparisons

in that (1) the measurements should be as non-intrusive as possible, (2) the measured information

should be reusable for a family of applications, and (3) the measurements should encompass all pos-

188

sible configurations of the service in which they can be used. Our previous research on performance

measurement [100] has shown that different measurement goals lead to different measured metrics

and workloads.

6.5 Summary

Performance analysis has become essential for ECSW construction with reusable components.

Such an analysis requires measuring and reusing the performance information of OS-level services.

Most existing performance measurement methods consider either a fixed configuration with applica-

tions, such as macrobenchmarks and simulations, or ignore how applications will use these services,

such as various microbenchmarks. Our proposed end-to-end measurement method is based on both

microbenchmarks and synthetic workloads. The measured performance information can be used to

construct the OS-level performance model given the application functional design. The measured

performance can therefore be stored with OS service components, and can be reused in performance

analysis of different applications along with reuse of the OS services and their execution environ-

ments. We have applied this method in measuring the timing and scheduling services of selected

RTOSs, and have presented several findings of the performance dependencies among the measured

services, the service performance metrics, and the application configurations. Such information can

be used in both timing analysis and schedulability analysis of integrated ECSW.

189

CHAPTER 7

AIRES: A Software Toolkit for ECSW Design and Analysis

The techniques of the performance modeling, design model transformation, and performance

analysis developed in this dissertation are to facilitate ECSW design and implementation. Since

ECSW development is a multi-stage multi-iteration process involving multiple design groups from

different disciplines, it is essential to have software design tool support for the designer to interact

with the design model construction to finalize the selection of model parameters. The software tool

supports the visualization of the modeling and analysis results, and guides the designer through

a correct design process. We have, therefore, implemented such a tool, called AIRES (Automatic

Integration of Real-time Embedded Software), with the performance modeling, estimation, trans-

formation, and analysis techniques built into it.

The significant difference between the AIRES toolkit and current existing ECSW design and

analysis tools is that the AIRES toolkit supports not only the performance analysis of the complete

runtime model, but also the performance estimation with abstract models and the design model

transformation. This fills the gap between the control design and software analysis. The current

design tools for control software focus on functional model construction, and leave performance as

an issue to be addressed at the implementation phase. Such an approach usually delays detection

of performance errors, and hence incurs high development costs and a long development cycle.

Furthermore, current analysis tools provide only the results of the given design, and cannot link the

190

results with design decisions made in a design tool. To address any performance errors detected by

the analysis tool, the designer must trace their causes in the models and correct them in the design

tool. The designer may have to move back and forth between design and analysis tools until all

performance constraints are met. Due to the large design space for a typical ECSW system, it is

extremely difficult for the designer to decide proper changes that correct the current performance

errors without introducing new errors. The AIRES toolkit is designed and implemented to integrate

modeling and analysis in the same environment, and to directly feed analysis results back to the

design models along with recommendations on how to correct errors. We have also embedded a

design process in the AIRES tool to force the designer to follow a correct model construction and

analysis procedure with the required modeling information provided at each step. With this built-

in design process, the design model can be transformed automatically from one stage to another

toward the final executable system.

The implementation of the AIRES tool consists of a graphic modeling environment, a modeling

language for ECSW design and performance model construction, and a set of loadable algorithms

implementing the performance analysis and performance-aware model transformation.

7.1 Graphic Modeling Environment

The AIRES toolkit uses the Generic Modeling Environment (GME) [34], developed by Van-

derbilt University, as its graphic modeling environment. The GME is a configurable modeling

tool supporting domain-specific modeling and synthesis. It can be configured with multiple meta-

models, each of which defines a modeling paradigm (modeling language) of an application domain.

The analysis and model transformation algorithms can be implemented as a loadable module based

on MS COM. The model visualization is customizable through decorator interfaces.

The selection of the GME is based on the following requirements of the AIRES tool implemen-

191

tation:

	 Modification of the modeling framework. Our developed performance modeling framework

requires the annotation of performance parameters to functional model constructs. Given any

modeling language used for an application domain, we may have to modify the language so

that an application model constructed using the modeling language contains the information

needed for the analysis. The customizable meta-model concept supported by the GME allows

us to define a modeling language with the desired features.

	 Integration of third-party algorithms. Our analysis and transformation algorithms need to

interact with the modeling environment to extract the required information. It is essential

to choose a modeling environment that provides hooks to allow the algorithms to access the

models. The GME provides a set of interfaces, including interpreters, plug-ins, and add-

ons, to integrate the analysis algorithms and their required meta-models into the modeling

environment.

	 Visualization of analysis results. It is essential for designers to visually verify the results

generated by the analysis algorithm. This requires the modeling environment to support visu-

alization of the analysis results. The analysis results, in particular, should be associated with

the design modeling parameters so the designer can quickly learn the effects of a modeling

parameter change. The GME provides interfaces for model manipulations so that the results

of the analysis algorithm can be fed back into the modeling environment.

The architecture of GME is shown in Figure 7.1. All domain-specific meta-models are derived

from the GME core meta-model. An application model is then constructed using the corresponding

domain-specific meta-model. The model construction and visualization are supported by the GME

editor, visualization mechanism (through decorator), and model browser. The analysis algorithms

192

can be integrated into the modeling environment as interpreters, plug-ins, and add-ons. These mech-

anisms provide interfaces for the algorithms to extract the models in the environment and feed back

the results to the modeling environment for visualization.

GME core modeling

GME

application

model

domainGME core

visualization Editor model browser

meta−modelmeta−model

add−on interpreterplug−in

Figure 7.1: GME architecture and components.

7.2 AIRES Modeling Language

All AIRES models and analysis require the AIRES meta-model. The AIRES meta-model im-

plements the modeling framework discussed in Chapter 2, which captures all required information

for ECSW modeling and analysis. It defines four types of models used in different design stages:

component model, platform model, structural model, and runtime model. Each type of models is

stored in a separate model repository, called a folder.

The component folder stores the software component models with the structure defined in Chap-

ter 2. They can be reused for application model construction in multiple applications designs. As

shown in Figure 7.2, each component contains a set of actions and ports. In the AIRES meta-model,

we distinguish component event ports from data ports to model different types of communications.

Only ports of the same type can be connected. Communications through event ports must be syn-

193

chronous, while the communications through data ports can be asynchronous. Knowing the commu-

nication types is necessary for performance estimation and analysis. Some performance parameters

are annotated to both the component and its constituent actions as shown in Figure 7.2.

Figure 7.2: Meta-model for component modeling and structure modeling.

Figure 7.2 also includes the meta-model of software structural models. A structural model is the

design model of a target application. It is stored in the software folder. The structural model contains

a 3-level hierarchy. The top-level is an application model that contains multiple transactions. Each

transaction contains a set of interconnected low-level components. A transaction is represented as

a directed graph consisting of components and event connections (SWEventConnection). An event

194

connection links an input event port (InEvent) and an output event port (OutEvent) of different com-

ponents. Using event connections implies the component communications in a transaction must be

synchronous. Because the message that arrives at an input port must be the same message generated

by the connected output port over an event connection, we only need to specify the message size for

one port—for example, the OutEvent—to avoid modeling inconsistency. A transaction starts from

some input component(s) and ends at some output component(s). In an application model, different

transactions can communicate through components’ data ports. These communications are assumed

to take place asynchronously. System-level constraints, such as end-to-end deadlines and invocation

rates, are imposed on the transactions.

To construct a runtime model from a structural model, one must know the target platform con-

figuration. As shown in Figure 7.3, the AIRES meta-model defines hardware components such as

processors and communication links, and supporting software such as operating systems for plat-

form design and modeling. The attributes of the hardware components are defined as resource

capacity bounds, which vary along with the hardware (for example, clock speed, instruction set,

and cache/memory size of a processor). The performance of the system software is defined as a

set of overheads varying along with the selection of service parameters (for example, OS type and

timer resolution). It is the platform designer’s responsibility to construct a platform that provides

sufficient resource for the design ECSW. The platform construction can be guided by the structural

model performance estimations in order to meet other system constraints. In the AIRES tool, the

constructed platform model is stored in the platform folder.

The AIRES tool models the runtime software as a task graph. Tasks are also modeled as port-

based objects with the performance parameters including execution locations, invocation periods,

priorities, release offsets, and deadlines. The transactions in the structural model are represented

as task chains in the runtime model. A runtime model is also a hierarchical model, in which the

195

Figure 7.3: Meta-model for platform modeling.

top-level consists of TaskChains, each of which contains a set of communicating Tasks. Each task

contains a set of sequentially executing Components. Figure 7.4 shows the AIRES meta-model for

the runtime model. The construction of a runtime model with a given structural and platform model

can be done either manually by the designer following the AIRES analysis results, or automatically

by the AIRES tool with some predefined transformation policies (such as workload distribution

policy). The constructed runtime model is stored in the runtime folder.

7.3 Built-in Design Process

The AIRES tool implements a built-in design process, as shown in Figure 7.5, which forces

the designer to follow when constructing and analyzing a model. The process aims to avoid design

errors caused by incomplete specifications in a model. It consists of a pre-defined sequence of design

196

Figure 7.4: Meta-model for runtime system modeling.

steps in constructing and refining software models. At each step, the AIRES tool ensures that the

information required for further modeling and analysis is provided by the designer or derived from

other modeling information before moving to the next design step.

Since the AIRES tool focuses on software design and implementation, the process starts from

component model construction and ends after runtime model analysis. Component model construc-

tion is performed after control discretization, which is the process of selecting and connecting soft-

ware component models to implement the designed functionalities. The previous steps focus only

on controllability and control performance, and are irrelevant to the software design. Similarly,

197

timing and resource
constraints

functional
constraints

Structural
Model
Construction

Runtime
Model
Construction

components
platform platform

configuration

task
graph

software
components

Timing
Schedulabiity
Analysis

analysis
results &
decisions

component
graph

Component
Model

refinement

refinement

Implementation

Construction

Figure 7.5: AIRES build-in design process.

the steps after runtime analysis deal with implementations, and can be done with the assistance of

automatic code generation tools.

The design process may require multiple iterations to obtain a correct system configuration that

meets both functional and performance constraints. To simplify the design process, our tool ad-

dresses the functional constraints, first by constructing a structural model. It then addresses the

timing and resource constraints by model transformation. The functional model construction can be

done either manually by the designer or automatically through synthesis using some design automa-

tion tool. The transformation that meets timing and resource constraints can be done automatically

in the AIRES tool, or interactively between the AIRES and the designer. The result of the AIRES

tool is a final implementable system with the specified functional, timing, and resource constraints

met.

The AIRES tool can also be used with other system design, analysis, and generation tools to

form an integrated design tool chain. The functionalities implemented in the AIRES can be used

individually as long as the modeling language used in the tool chain is compatible with the AIRES

meta-model. For example, the AIRES runtime model construction can be used as a model trans-

formation tool to generate a runtime model, while a commercial real-time analysis tool, such as

198

RapidRMA [89] or Timewiz [85], can be used to analyze the performance of the generated runtime

model.

7.4 Algorithm Implementation

The GME provides three interfaces to integrate customizable algorithms: add-ons, plug-ins,

and interpreters. The add-ons and plug-ins are based on the OCL (Object Constraint Language),

and are suitable for simple constraint checks. Our implementations use the interpreter mechanism.

The interpreters are built as dynamic link libraries (DLL) that can perform complex operations.

Specifically, our interpreters are built with the GME Builder Object Network (BON) interfaces.

Upon its invocation, the interpreter creates a BON structure that contains a mirror object for every

modeling element in the model. Other operations in the interpreter can then access the full model

through the BON structure and its methods.

The AIRES interpreters include the following algorithms:

	 Component allocation that assigns the components to the platform for execution;

	 Runtime model construction that determines the timing attributes for components, group the

components with the same execution location to form tasks, and assigns the execution at-

tributes of the tasks;

	 Schedulability analysis that performs schedulability, end-to-end timing, and resource con-

sumption analysis.

The component allocation algorithm assigns the components in the structural model to a com-

putation device in the platform. The corresponding communications across devices are assigned to

the links between the devices. The designer needs to specify the allocation strategy for this algo-

rithm. The implemented strategies include first-fit and load-balance for computation resources, and

199

minimal communication for communication resources. The tool also allows the designer to choose

certain combinations of these strategies. The algorithm is implemented with heuristics that take into

account the computation, communication, and memory resources, as described in Chapter 4. For

the purpose of comparison, we have implemented an exhaustive search algorithm that can explore

the whole design space for a small-scale design. This helps us understand the optimality of the

generated component allocation results.

The runtime generation algorithm described in Chapter 4 is also implemented. It forms a task

graph of the system and determines the timing attributes for all tasks. The generated model is stored

in the task folder for runtime schedulability analysis.

The schedulability analysis algorithm can provide results on task priority assignments, schedu-

lability and end-to-end response times, consumptions of resources and individual activities, and sys-

tem overheads. The schedulability analysis requires the designer’s input on the scheduling policy.

Specifically, for the priority assignment, we implemented the traditional rate-monotonic assignment,

the deadline-monotonic assignment, and the heuristic assignment as described in Chapter 5. The

heuristic assignment is also used for the automatic system refinement. To account for the system

overheads in the analysis, we built functions to derive the system overheads based on the platform

configuration. These functions are constructed using the RTOS measurement results.

7.5 Model Transformation and Analysis of ETC

We present the use of the AIRES tool for model transformation and analysis of an automo-

tive electronic throttle control (ETC) design. The example was provided by the PATH group at UC

Berkeley and Ford Motor Company in the MoBIES program, and was in the form of Simulink/Stateflow

block diagrams with only control-related parameters. Our design assumes that the discretization has

been done before the software design starts, including the system modeling granularity, sampling

200

periods, and control steps. The application of the AIRES tool starts from the structural model with

the end-to-end constraints.

Figure 7.6 shows the models in the GME environment. With AIRES, the system models, includ-

ing component models, platform configuration, and runtime models, can be constructed or generated

in the workspace. The right-hand browser lists the folders for modeling and analysis in AIRES. The

components’ icons on the right end of the tool bar are interpreters implementing the AIRES algo-

rithms.

Figure 7.6: Models in GME environment.

201

7.5.1 Software structural model and platform model

The ETC structural model contains three communicated transactions: manager, monitor, and

servo. Each of these transactions contains a sequence of components. Figure 7.7 shows the ETC

structural model with all its transactions. The performance parameters of the model are given in

Table 7.1 and 7.2. In this example, we assume the end-to-end deadline of each transaction equals

its invocation period.

(a) ETC structural model (b) Transaction: manager

(c) Transaction: monitor (d) Transaction: servo

Figure 7.7: Models of manager, monitor, and servo transaction in ETC.

The platform for the ETC software consists of two MPC 555-based micro-controllers, connected

by a CAN-bus, as shown in Figure 7.8. Both controllers are running with OSEKWorks (� � � and

� � �). The first controller � � is assigned with a resource bound
�

�
�

and � � � � � � �
, while the

second controller � � with a resource bound
�

�
�

and � � � � � � �
.

202

transaction component parameter type value (ms)
manager invocation period constraint 10

holder wcet resource demand 0.03
state detector wcet resource demand 0.5

monitor invocation period constraint 40
input proc wcet resource demand 0.3
tps proc wcet resource demand 0.5

actuator proc wcet resource demand 0.1
task proc wcet resource demand 0.3

merge wcet resource demand 0.1
servo invocation period constraint 3

control wcet resource demand 0.1
source proc wcet resource demand 0.3

driving wcet resource demand 0.2
cruise wcet resource demand 0.1
min wcet resource demand 0.1

post control wcet resource demand 0.4
cmd gen wcet resource demand 0.2

Table 7.1: Modeling parameters of ETC components.

source destination data size (byte)
manager.holder manager.state detector 4

manager.state detector monitor.input proc 8
monitor.input proc monitor.tps proc 5
monitor.input proc monitor.actuator proc 3
monitor.input proc monitor.task proc 3
monitor.tps proc monitor.merge 4

monitor.actuator proc monitor.merge 4
monitor.task proc monitor.merge 4

manager.state detector servo.control 8
monitor.merge servo.source proc 4
servo.control servo.driving 4
servo.control servo.cruise 4

servo.source proc servo.cruise 2
servo.source proc servo.min 2

servo.driving servo.post control 2
servo.cruise servo.post control 2
servo.min servo.post control 2

servo.post control servo.cmd gen 8

Table 7.2: Modeling parameters of ETC links.

203

Figure 7.8: Platform configuration of ETC.

Figure 7.9: Allocation of the components of the ETC software.

7.5.2 Component allocation and runtime model generation

The component allocation and runtime model generation was automatically done by the component-

to-task mapping interpreter. The interpreter first translated the structural model with the three trans-

actions into a partition graph that defines the component allocation. The interpreter had several

allocation policies built into it, including the first-fit, load-balance, communication minimization,

multiple constraints with any computation, communication, memory, and the combination of com-

putation and communication. In this example, we have chosen the combination of the communi-

cation minimization with the load-balance allocation strategy. The allocation of the ETC structural

model is given in Figure 7.9.

204

Figure 7.10: Summary of allocation results.

(a) Tasks on processor � � . (b) Tasks on processor � � .

Figure 7.11: Generated tasks.

In this allocation, the algorithm uses the minimum communication after the allocation as its

primary objective. Among multiple allocations with the same minimum communication, the algo-

rithm chooses the one leading to balanced workloads on the two processors. The algorithm also

gives the total communications of the resultant allocation, and the utilization difference between the

two processors as unbalanced utilization, as shown in Figure 7.10.

The tasks on each processor are generated in the way discussed in Chapter 4. The generated

tasks on each processor, with the components in each task, are shown in Figure 7.11.

As can be seen from Figure 7.11(a), ��� contains two tasks with one for the servo control trans-

action and the other for the monitor transaction:

205

� � � � � � ����� � � � � � �
� ��� � ��������� �

� �

� � ��� � � � � � ����� � � � � � �	� �	�
� � ����� � � � � � ��� ����� ����� ��� � � ���

� � � �

� � � � � � � ��� � � ��� � � ��� � ��� � ��� � � ��� � � �
� � � � ���
�� � �

Similarly, � � contains three tasks for the transaction of manager, monitor, and servo. The com-

ponents in these tasks are:

� � � � � � ����� � � � � �	� � ����� � � � �����
� � �

� � �

� � � � � � � � � � � ��� � �
� � � � � � � � � � ��� � � � � � � ��� �

� � � � ���

� � � � � � � ��� � � ��� �
�
 �
�� � � � � ��� � � ��� �

� � � �
�� � � � � ��� � � ��� � �	��

�
�
�� � �

Despite the harmonic rates of the components of transaction manager and monitor, the two tasks

on � � cannot be merged because the total execution time of the monitor’s components is not large

enough to fill the gaps after rolling out the execution of the manager task.

7.5.3 Runtime analysis

After the runtime model of the ETC software is generated (with the timing attributes of tasks

assigned), we can perform the performance analysis on the model stored in the runtime folder.

Figure 7.12 shows the generated runtime model.

The analysis is done by invoking the runtime analysis interpreter. It first assigns the priorities

to the tasks and the components in each task. The components’ priorities in a task inherit the task

priority level and are assigned according to their precedent constraints. Multiple priority assign-

ment methods are implemented in the runtime analysis interpreter. In addition to the one discussed

in Chapter 5, traditional priority assignment algorithms, including the rate-monotonic, deadline-

monotonic, and ad hoc assignment, are implemented.

The analysis results are shown in Figure 7.13. The results include the parameters derived from

the structural model such as invocation periods, deadlines, and worst-execution times, as well as

206

Figure 7.12: Runtime model of the ETC software.

the parameters derived by the analysis, such as priorities, worst-case response times (WCRT), uti-

lizations consumed by the components, and the number of context switches a component/task may

experience in the worst case. Note that the worst case for a component may not be experienced for

all its invocations due to the mutual exclusion occurrence of the worst-case scenarios for different

components. For example, each of ETC.Monitor.P1.actuator proc and ETC.Monitor.P1.merge may

experience one preemption in the worst case during the runtime. However, since they are both pre-

empted by the same set of servo components, this implies that only one of them may experience the

worst case at an invocation. This means the worst case for the ETC.Monitor task on � � includes

only one preemption instead of two, thus the WCRT of the ETC.Monitor.P1 is less than the sum of

the WCRTs of ETC.Monitor.P1.actuator proc and ETC.Monitor.P1.merge.

The AIRES tool can also visualize the analysis results using the Gantt Chart. Here we present

only the results for � � in Figure 7.14.

The ETC example shown here passes the schedulability analysis and test, and can then be im-

plemented on the defined target platform.

207

(a) Runtime analysis of tasks on processor � � . (b) Runtime analysis of tasks on processor � � .

Figure 7.13: Runtime analysis results.

Figure 7.14: Runtime analysis plot for tasks on � � .

208

7.6 Summary

The software design tool is essential to support performance analysis with design models and

automatic model transformation. In this chapter, we have presented an implementation of a software

design tool, called AIRES, under the sponsorship of the DARPA IXO MoBIES Program. AIRES

allows the designer to interact with the modeling and analysis process, and visualize the results.

The AIRES tool is based on a generic modeling environment (GME), and contains a modeling

language that implements the modeling framework discussed in Chapter 2. Along with the modeling

language, a software design process is built into AIRES to “force” the designer to complete the

model information before performing further analysis.

The model transformation and analysis algorithms are all implemented as interpreters, which

are loadable dynamic link libraries based on GME BON interface. These algorithms can be used

individually or integrally in a development tool chain to automate the design process and model

generation. The design techniques described in this dissertation are built into the AIRES tool along

with some traditional ECSW design and analysis policies.

Some preliminary evaluations conducted under the MoBIES Program showed that the AIRES

tool fills the gap between current design and modeling tools and analysis tools. The flexible imple-

mentation that allows the algorithms to be used together to form a tool chain or used as individual

tools to integrate with other tools makes it adaptable in customizable design environment with dif-

ferent design, modeling, and analysis requirements.

209

CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

In this dissertation, we have developed performance modeling techniques to support perfor-

mance analysis and performance-aware system design for ECSW. These techniques include a per-

formance modeling framework and a set of related methods for modeling, analysis, and transfor-

mation. Our framework can be used with functional design models and processes now common in

ECSW design. In our framework, we have modeled the software components and architecture, the

platform with hardware and system software, and the runtime system with tasks and their commu-

nications. Performance-related parameters, classified into constraints and characteristics, have been

annotated to the models to support system performance modeling and analysis. All the analysis

and transformation methods have been developed to operate using different models defined in the

framework. Specifically, we investigated three performance methods: early design performance es-

timation, performance-aware runtime model generation, and performance analysis of runtime mod-

els.

ECSW design begins with the construction of a structural model. This structural model consists

of a set of transactions that model the control information processing flows in the ECSW. For each

transaction, end-to-end timing constraints are defined. In addition, each transaction contains a set

of interconnected software components that are modeled as port-based objects. These software

210

components are annotated with both the performance characteristics (in resource demand) and the

performance constraints (in rate and deadline). The performance characteristics of the components

can be obtained through measurements. We developed a method based on the virtual service concept

to transfer the platform-dependent measurements to platform-independent resource demands for

early design analysis and reuse. With this components’ performance model, the workloads of the

transactions and the system can be computed. The platform where the designed ECSW runs is

modeled as a set of hardware components (including processors, network links, and storage devices)

and system software (including operating system and middleware services). The performance of the

platform is modeled as resource consumptions (for supporting software) and resource capacities (for

hardware components). As the design advances, the ECSW design in the structural model evolves

to that in a runtime model with more implementation details. We have modeled the ECSW runtime

model as a set of intercommunicating tasks, each of which can be implemented directly as a process

or a thread in an OS. In a runtime model, the tasks are modeled as a sequence of the components

in the structural model. Consequently, the transactions in a structural model are transformed into

task chains in a runtime model. The tasks and links in the runtime model have been assigned to the

devices and specified with the execution information (invocation rate, release offset, and deadline).

This runtime model can then be directly implemented on the given platform.

In current ECSW design practices, performance analysis and tuning is considered as an imple-

mentation issue and thus is postponed until the detailed design is complete. For a large ECSW

containing thousands of components with complex interactions among them, the software architec-

ture that is determined during the early design phase has a greater fundamental impact on meet-

ing the performance constraints. Early detection of architecture-level design flaws is usually more

beneficial. We have therefore developed an early design phase performance estimation method to

address this performance analysis issue. The method is based on bound estimations. All analyses

211

use the components’ resource demands based on the virtual service rate. To find the performance of

the best-case, our method explores the beneficial parallelism, and computes the performance under

such a best configuration. In Chapter 3, we have proved that finding the case with the maximum

parallelism is NP-hard. Thus, our algorithm uses a heuristic of iterative component grouping to find

a sub-optimal solution. The results from this can then be used to guide the platform design to ensure

the constructed platform providing sufficient resources to achieve better performance under given

costs.

We have further shown how the performance-aware design can be achieved using the perfor-

mance analysis. In Chapter 4, the methods supporting automatic transformation of a structural

model to a runtime model were discussed. The objective of the transformation was to obtain a

runtime model that meets the platform resource constraints and the structural model performance

constraints. Our transformation is a multi-step process. First, the invocation rates of the transac-

tions were propagated to the individual components. Then, the components in the structural model

are allocated to the devices that meet the resource constraints according to the design-specified

allocation strategies. To improve the scalability of component allocation, we combined the tech-

niques of branch-and-bound, component ordering with combinational resource consumptions, and

forward checking. The result of the allocation is a partition graph with each partition containing

components allocated on the same computation device. Then, we distributed the end-to-end sys-

tem timing constraints over the components as components’ timing constraints. These constraints

include invocation periods, earliest start time, and latest completion time. The distribution is based

on forward and backward tracking of the transaction, and accounts for both computation and com-

munication delays. With the components’ execution locations known, the resource consumptions

are now represented in real execution times instead of virtual resource demands. We then proved

that thus-derived components’ timing constraints are sufficient necessary for any feasible schedule.

212

According to this, the task in the runtime model can be constructed by merging and sequencing the

components on the same device. We proved that sequencing the components with all timing con-

straints met is NP-hard, and used a heuristics of rate similarity and earliest-start-time-first to merge

and sequence the components. We further proved that such an approach yields a valid and feasible

schedule of the components in a task, with only a minimum total number of tasks in the system,

while maintaining schedule flexibility.

In Chapter 5, we presented methods for analyzing the schedulability and performance of the

generated runtime model. Since the generated runtime model only specifies the constructs and

timing properties, and leaves the scheduling policies to system software, it is required to analyze

the generated runtime model under the given scheduling support. We assumed fixed preemptive

scheduling in this work. With such system scheduling services, we first need to assign priorities to

the tasks in the runtime model in a way such that the tasks could meet their constraints. The assign-

ment is adjusted iteratively until the constraints are met. Then our analysis checks the schedulability

of the task set and computes the best-case and worst-case response times of each task. If all tasks

meet their performance constraints, the end-to-end performance can surely be met according to the

construction of tasks. To reduce the computation complexity of the algorithm for distributed depen-

dent task set schedulability analysis, we introduced a technique based on shared buffers to eliminate

task dependencies so that a scalable analysis algorithm can be applied.

We also developed and evaluated a method to improve the systematic measurements of resource

consumptions of both application components and system services. The method uses an end-to-end

sampling-based technique with a combination of synthetic workloads and micro-benchmarks. This

allows the measurement results to be realistic and reusable without requiring the source code. This

is particularly effective for system service performance measurements. The evaluations of a set of

selected RTOS services validated the effectiveness of the method. The results obtained using this

213

method have also been built as functions in our software design tool to support better performance

analysis.

Finally, we have implemented the modeling framework and the related methods in an ECSW

design toolkit called AIRES. The AIRES tool uses a generic modeling environment (GME) as its

modeling environment, defining the framework in a meta-model with different design models or-

ganized in different folders, and implementing the analysis and transformation algorithms as inter-

preters. We have applied the AIRES tool to both automotive applications such as engine control

and vehicle-to-vehicle control, and avionics applications such as mission computing in the DARPA

MoBIES Program. The results showed that the AIRES tool filled the gap of integrating the perfor-

mance analysis in the design process and performance-aware model transformation. Our framework

and methods have also been shown to be effective and scalable.

8.2 Future Directions

The first area that deserves further research is to find methods of transforming the control design

to the software structural model. Embedded control system design usually starts from the control

design by control engineers in the form of control models, such as continuous models in differen-

tial equations. In the control design, the designer assumes the system will be working in an ideal

environment with sufficient resources. Such a control design must then be transformed into a dis-

crete model for software implementation. This discretization includes determining the granularity

for software implementation (component granularity) and assigning system-level end-to-end per-

formance constraints to each control flow. How the control is discretized has a great impact on

the construction of the structural model, and hence, is crucial for constructing low-cost platforms

and meeting system performance constraints. However, the current methods which are based on

engineers’ experiences are neither formally verifiable nor free of errors.

214

A second area needing further research is the effect on control performance of a design choice

or strategy. As can be seen throughout this dissertation, design strategies are used at every step

in the ECSW design process to help make design decisions. Examples include the strategies used

in allocating components (e.g., first-fit, communication minimization), in forming tasks (e.g., rate

similarity, earliest-start-time-first), and in assigning priorities. Understanding quantitatively the

effects of these strategies on final system resource consumption and control performance will be

very valuable. Such results can be used to guide ECSW design and optimization. They can also

be used to refine the design by switching automatically between design strategies to better meet

resource and performance constraints.

Further, research into methods that can track the causes of performance or resource constraint

failures is highly desirable. In current ECSW design practices, violation of performance and/or

resource constraints can be detected by simulations or analysis. However, finding the cause of such

a failure is difficult and usually depends on the designer’s experience and intuition. Methods that

link a performance failure with its causes in the design can help the designer find design errors

quickly. With such support, it would also be possible for the design tool to refine the design models

automatically and thus achieve the resource and performance goals. Such methods can be developed

by examining quantitatively the effects of each design parameter.

Finally, a further exploration is required to figure out how to use the techniques developed

to support final system generation. Final system generation involves generating a code both for

individual components and for system configuration (known as the “glue code”). This model com-

pilation problem is currently an active research area. The solution of such problem would enable

full automation of the ECSW design process, and support fast low-cost development of embedded

software.

215

BIBLIOGRAPHY

216

BIBLIOGRAPHY

[1] V. S. Adve, R. Bagrodia, J. C. Browne, E. Deelman, A. Dube, E. N. Houstis, J. R. Rice,
R. Sakellariou, D. J. Sundaram-Stukel, P. J. Teller, and M. K. Vernon. POEMS: end-to-end
performance design of large parallel adaptive computational systems. IEEE Transactions on
Software Engineering, 26(11):1027–1048, november 2000.

[2] G. A. Agha and W. Kim. Actors: A unifying model for parallel and distributed computing.
Journal of Systems Architecture, 45(15):1263–1277, 1999.

[3] F. Andolfi, F. Aquilani, S.Balsamo, and P. Inverardi. Deriving performance models of soft-
ware architecture from message sequence charts. In Proceedings of the 2nd International
Workshop on Software and Performance, pages 47–57, Ottawa, Ont, Canada., 2000.

[4] ARTiSAN Software Tools, Inc., I-Logix,Inc., Rational Software Corp., Telelogic AB,
TimeSys Corp., and Tri-Pacific Software Inc. Response to the OMG RFP for schedulability,
performance, and time. (revised submission). ftp://ftp.omg.org/pub/docs/ad/01-06-14.pdf,
June 2001.

[5] N. C. Audsley, A. Burns, M. F. Richard, and A. J. Wellings. Hard real-time scheduling:
The deadline monotonic approach. In Proceedings of the 8th IEEE Workshop on Real-Time
Operating Systems and Software, pages 133–137, Atalanta, GA., 1991.

[6] I. J. Bate. Scheduling and timing analysis for safety critical real-time systems. PhD thesis,
Department of and Computer Science, University of York, York, United Kingdom, November
1998.

[7] D. Batory, R. Cardone, and Y. Smaragdakis. Object-oriented frameworks and product-lines.
In Proceedings of the 1st Software Product-Line Conference, pages 227–247, Denver, Co.,
August 1999.

[8] D. Batory, J. Liu, and J. N. Sarvela. Refinements and multi-dimensional separation of con-
cerns. In Proceedings of the 10th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 48–57, Helsinki, Finland, September 2003.

[9] R. Bettati. End-to-end scheduling to meet deadlines in distributed systems. PhD thesis,
Department of and Computer Science, University of Illinois, Urbana-Champaign, IL, 1994.

[10] P. Binns, M. Englehart, M. Jackson, and S. Vestal. Domain-specific software architectures
for guidance, navigation and control. International Journal of Software Engineering and
Knowledge Engineering, 6(2):201–227, June 1996.

[11] K. Bradley. A framework for incorporating real-time analysis into system design processes.
PhD thesis, Department of Electrical and Computer Engineering, Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania, December 1998.

217

[12] A. B. Brown and M. I. Seltzer. Operating system benchmarking in the wake of lmbench: A
case study of the performance of netbsd on the intel x86 architecture. In Proceedings of the
1997 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
pages 214–224, June 1997.

[13] A. Burns and A. J. Wellings. A structured design method for hard real-time systems. Tech-
nical Report YCS-93-199, University of York, 1993.

[14] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-oriented soft-
ware architecture: a system of patterns. John Wiley & Sons, 1996.

[15] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press,
1989.

[16] P. Cornwell and A. Wellings. Transaction specification for object-oriented real-time systems
in HRT-HOOD. In Lecture Notes in Computer Science (LNCS 1031), pages 365–378, 1996.

[17] DARPA ITO. Model-based integration of embedded software.
http://www.darpa.mil/ito/Solicitations/CBD 00-19.html, 1999.

[18] D. de Niz and R. Rajkumar. Time weaver: a software-through-models framwork for embed-
ded real-tiem systems. In Proceedings of the 2003 ACM SIGPLAN Conference on Language,
Compiler, and Tool for Embedded Systems, pages 144–152, San Diego, CA., June 2003.

[19] M. J. Dent and R. E. Mercer. Minimal forward checking. In Proceedings of the 6th IEEE
International Conference on Tools with Artificial Intelligence, pages 306–311, 1994.

[20] B. S. Doerr and D. C. Sharp. Freeing product line architectures from execution dependencies.
In Proceedings of Software Technology Conference, May 1999.

[21] Ford Motor Company, General Motors Corporation, and Motorola Automo-
tive and Industrial Electronics Group. SmartVehicle challenge problems.
http://vehicle.me.berkeley.edu/mobies/, 2000.

[22] N. Frampton, J. Tsao, and J. Yen. Windows CE evaluation report: test plan and preliminary
results. General Motors PowerTrain Group, April 1998.

[23] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification and Design of Embedded
Systems. Prentice Hall, 1994.

[24] J. J. G. Garcia and M. G. Harbour. Optimized priority assignment for tasks and messages
in distributed hard real-time systems. In Proceedings of the 3rd Workshop on Parallel and
Distributed Real-Time Systems, pages 124–132, April 1995.

[25] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theorey of
NP-Completeness. W. H. Freeman and Company, New York, 1979.

[26] R. Gerber, S. Hong, and M. Saksena. Guaranteering real-time requirements with resource-
based calibration of periodic processes. IEEE Transactions on Software Engineering,
21(7):107–131, July 1995.

[27] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite state machines with multiple con-
currency models. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 18(6):742–760, 1999.

218

[28] H. Gomaa and D. A. Menasce. Design and performance modeling of component interaction
patterns for distributed software architecture. In Proceedings of the 2nd ACM International
Workshop on Software and Performance (WOSP’00), pages 117–126, Ottawa, Ont, Canada.,
2000.

[29] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Timing analysis for fixed-priority schedul-
ing of hard real-time systems. IEEE Transactions on Software Engineering, 20(1):13–28,
January 1994.

[30] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad. Cadena: an integrated develop-
ment, analysis, and verification environment for component-based systems. In Proceeding of
the 25th IEEE International Conference on Software Engineering, pages 160–172, Portland,
OR., May 2003.

[31] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-triggered language for
embedded programming. In Proceedings of the 1st International Workshop on (EMSOFT
2001), volume 2211, pages 166–184, Tahoe City, Ca., Octorber 2001.

[32] H. Hermanns, U. Herzog, U. Klehmer, V. Mertsiotakis, and M. Siegle. Computational per-
formance modeling with the TTIPPtool. In Computer Perforamnce Evaluation: Modeling
Techniques and Tools (LNCS 1469), pages 51–62. Springer-Verlag, 1998.

[33] F. Hoeben. Using UML models for performance calculation. In Proceedings of the second
international workshop on software and performance (WOPS), Ottwa, Canada, September
2000.

[34] Institute for Software Integrated Systems. The generic modeling environment.
http://www.isis.vanderbilt.edu/Projects/gme.

[35] Intel Corporation. Pentium processor family developer’s manual, 1997.

[36] F. Jahanian and A. K. Mok. Modechart: A specification language for real-time systems. IEEE
Transactions on Software Engineering, 20(12):933–947, December 1994.

[37] R. Jain. The art of computer systems performance analysis: Techniques for experimental
design, measurement, simulation, and modeling. John Wiley & Sons, 1991.

[38] J. Jonsson and K. G. Shin. Deadline assignments in distributed hard real-time systems with
relaxed locality constraints. In Proceedings of the IEEE International Conference on Dis-
tributed Computing Systems, pages 432–440, Baltimore, MD, May 27-30 1997.

[39] P. Kahkipuro. Performance modeling framework for CORBA based distributed systems.
Technical Report A-2000-3, Department of Computer Science, University of Helsinki, 2000.

[40] D.-I. Kang, R. Gerber, and M. Saksena. Performance-based design of distributed real-time
systems. In Proceedings of the 3rd IEEE Real-Time Technology and Application Symposium
RTAS’97, pages 2–13, Montreal, Canada, June 1997.

[41] R. Kar. Implementingthe rhealstone real-time benchmark. Dr Dobb’s Journal, April 1990.

[42] G. Karsa, et al. Model-integrated system development: models, architecture and process. In
Proceedings of the 21st Annual International Computer Software and Application Confer-
ence (COMPSAC’97), Bethesda, MD, August 1997.

219

[43] K. A. Kettler, D. I. Katcher, and J. K. Strosnider. A modeling methodology for real-
time/multimedia operating systems. In Proceedings of the Real-Time Technology and Ap-
plications Symposium, pages 15–26, May 1995.

[44] S. Kim, S. Cho, and S. Hong. Schedulability-aware mapping of real-time object-oriented
models to multi-threaded implementations. In Proceedings of the IEEE Real-Time Computing
Systems and Applications Symposium, pages 7–14, 2000.

[45] D. L. Kiskis and K. G. Shin. SWSL: A synthetic workload specification langauge for real
time systems. IEEE Transations on Software Engineering, 20(10):798–811, October 1994.

[46] H. Kopetz. The time-triggered model of computation. In Proceedings of the IEEE Real-Time
System Symposium, pages 168–177, Madrid, Spain, December 1998.

[47] C. M. Krishna and K. G. Shin. Real-Time Systems. The McGraw-Hill Companies, Inc, 1997.

[48] S. Kumar, J. H. Aylor, B. W. Johnson, and W. A. Wulf. The codesign of embedded systems:
A unified hardware/software representation. Kluwer Academic Publishers, 1996.

[49] V. Kumar. Algorithms for constraint satisfaction problems: a survey. A.I. Magazine,
13(1):32–44, 1992.

[50] S.-K. Kweon and K. G. Shin. Achieving real-time communication over Ethernet with adap-
tive traffic smoothing. In Proceedings of IEEE Real-Time Technology and Applications Sym-
posium (RTAS’2000), pages 90–100, June 2000.

[51] Y. K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs
to multiprocessors. ACM Computing Surveys, 31(4):406–471, December 1999.

[52] E. A. Lee. What ’s ahead for embedded software? IEEE Computer, 33(9):18–26, September
2000.

[53] E. A. Lee. Overview of the Ptolemy project. Technical Memorandum UCB/ERL M01/11,
March 6 2001.

[54] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitary deadlines. In Pro-
ceedings of the 11th IEEE Real-Time System Symposium, pages 201–209, December 1990.

[55] J. P. Lehoczky. Real-time queueing network theory. In Proceedings of the 18th IEEE Real-
Time System Symposium (RTSS’97), pages 58–67, San Francisco, Ca., December 1997.

[56] D. J. Lilja. Measuring computer performance: A practitioner’s guide. Cambridge University
Press, 2000.

[57] C. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard real-time
environment. Journal of ACM, 20(1):40–61, 1973.

[58] J. Liu and E. A. Lee. Timed multitasking for real-time embedded software. IEEE Control
Systems Magazine, 23(1):65–75, February 2003.

[59] L. McVoy and C. Staelin. lmbench: Protable tools for performance analysis. In Proceedings
of the USENIX 1996 Annual TEchnical Conference, San Diego, CA, January 1996.

220

[60] A. K. Mok and A. X. Feng. Real-time virtual resource: A timely abstraction for embedded
systems. In Proceedings of the 2nd International Workshop on Embedded Software (EM-
SOFT 2002), volume 2491, pages 182–196, Grenoble, France, Octorber 2002.

[61] Motorola. MPC555 user’s manual, revised 15, September 1999.

[62] J. C. Palencia, J. Garcia, and M. G. Harbour. Best-case analysis for improving the worst-
case schedulability test for distributed hard real-time systems. In Proceedings of the 10th
Euromicro Workshop on Real-Time Systems, pages 35–44, Berlin, Germany, June 1998.

[63] J. C. Palencia and M. G. Harbour. Schedulability analysis for task with static and dynamic
offsets. In Proceedings of the 19th IEEE Real-Time System Symposium, pages 26–37, Madrid,
Spain, December 1998.

[64] D. Peng, K. G. Shin, and T. F. Abdelzaher. Assignment and scheduling communicating
periodic tasks in distributed real-time systems. IEEE Transactions on Software Engineering,
23(12):745–757, December 1997.

[65] D. Petriu, H. Amer, S. Majumdar, and I. Abdull-Fatah. Using analytic models for predict-
ing middleware performance. In Proceedings of the 2nd ACM International Workshop on
Software and Performance (WOSP’00), pages 117–126, Ottawa, Ont, Canada., 2000.

[66] T. Quatrani. Visual Modeling with Rational Rose and UML. Addison-Wesley, 1998.

[67] O. Redell and M. Sanfridson. Calculating exact worst case response times for static fixed
priority scheduled tasks with offsets and jitters. In Proceedings of the 8th Real-Time and
Embedded Technology and Applications Symposium (RTAS’02), pages 164–172, San Jose,
CA., September 2002.

[68] O. Redell and M. Sanfridson. Exact best-case response time analysis of fixed priority sched-
uled tasks. In Proceedings of the 14th Euromicro Conference on Real-Time Systems, pages
165–172, Vienna, Austria, June 2002.

[69] M. Saksena, P. Karvelas, and Y. Wang. Automatic synthesis of multi-tasking implementations
from real-time object-oriented models. In Proceedings of the IEEE Symposium on Object-
Oriented Real-Time Distributed Computing, pages 360–367, Los Alamitos, CA, March 2000.

[70] M. Saksena, A. Ptak, P. Freedman, and pawel Rodziewicz. Schedulability analysis for au-
tomated implementations of real-time object-oriented models. In Proceedings of the IEEE
Real-Time System Symposium, pages 31–41, Madrid, Spain, December 1998.

[71] V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. The MIT
Press, Cambridge, Ma., 1989.

[72] D. C. Schmidt, M. Deshpande, and C. O’Ryan. Operating system performance in support of
real-time middleware. In Proceedings of the 7th IEEE Workshop on object-oriented real-time
dependable systems, San Diego, CA, January 2002.

[73] S. Schneider. Concurrent And Real-Time Systems: The CSP approach. John Wiley & Sons,
Ltd., 2000.

[74] B. Selic, G. Gullekson, and P. T. Ward. Real-Time Object-Oriented Modeling. John Wiley &
Sons, Inc., 1994.

221

[75] B. Shirazi, L. Welch, B. Ravindran, C. Cavanaugh, B. Yanamula, R. Brucks, and E. nam
Huh. DynBench: a dynamic benchmark suite for distributed real-time systems. In Parallel
and Distributed Processing: IPPS/SPDP Workshops, pages 1335–1349, Berlin, Germany,
April 1999.

[76] C. Shousha, D. Petriu, A. Jalnapurkar, and K. Ngo. Applying performance modeling to a
telecommunication system. In Proceedings of the 1st International Workshop on Software
and Performance, pages 1–6, Santa Fe, NM., Octorber 1998.

[77] C. U. Smith. Performance Engineering of Software Systems. Addison-Wesley Publishing
Company, 1990.

[78] C. U. Smith and M. Woodside. Chapter 26: Performance validation at early stages of software
development. In E. Gelenbe, editor, System Performance Evaluation: Methodologies and
Applications, pages 383–396. CRC Press LLC, Boca Raton, FL., 2000.

[79] J. Stankovic. VEST: a toolset for constructing and analyzing component based operating
systems for embedded and real-time systems. Technical report, University of Virginia, 2000.

[80] D. B. Stewart. Measuring execution time and real-time performance. In Embedded Systems
Conference, San Francisco, CA, April 2001.

[81] J. Sun. Fixed-priority end-to-end scheduling in distributed real-time systems. PhD thesis, De-
partment of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois,
1997.

[82] J. Sun and J. W. S. Liu. Synchronization protocols in distributed real-time systems. In
Proceedings of the 16th International Conference on Distributed Computing Systems, pages
38–45, May 1996.

[83] C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley Publishing Company, 1997.

[84] The Boeing Company. Challenge problems for model-based integration of embedded soft-
ware: Weapon system open experimental platform, 2001.

[85] Timesys Corp. Using timewiz to understand systemtiming — before you build or buy.
http://www.timesys.com.

[86] K. Tindell, A. Burns, and A. Wellings. Allocating real-time tasks: An NP-hard problem made
easy. Real-Time System Journal, 4(2), May 1992.

[87] K. Tindell and J. Clark. Holistic schedulability analysis for distributed hard real-time systems.
Microprocessing & Microprogramming, 50(2-3):117–134, April 1994.

[88] S. Toeppe and S. Ranville. RTOS evaluation and selection criteria for embedded automotive
powertrain applications, 1999.

[89] Tri-Pacific Software Inc. RapidRMA: the art of modeling real-time systems.
http://www.tripac.com/html/prod-fact-rrm.html.

222

[90] S. Wang, S. Kodas, K. G. Shin, and D. L. Kiskis. Measurement of OS services and its
application to performance modeling and analysis of integrated embedded software. In Pro-
ceedings of the 8th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’2002), pages 78–87, San Jose, California, September 2002.

[91] N. Welderman. Hartstone: synthetic benchmark requirements for hard real-time applica-
tions. Technical Report CMU/SEI-89-TR-23, Software Engineering Institute, Carnegie Mel-
lon University, 1989.

[92] L. G. Williams and C. U. Smith. Performance evaluation of software architecture. In Pro-
ceedings of the 1st International Workshop on Software and Performance, pages 164–177,
Santa Fe, NM., October 1998.

[93] Wind River System, Inc. Osekworks 4.0 calls references, 2000.

[94] C. Woodside, J. Neilson, D. Petriu, and S.Majumdar. The stochastic rendezvous network
model for performance of synchronous client-server-like distributed software. IEEE Trans-
actions on Computer, 1(44):20–34, January 1995.

[95] M. Woodside, C. Hrischuk, B. Selic, and S. Bayarov. A wideband approach to integrating
performance prediction into a software design environment. In Proceedings of the 1st Inter-
national Conference on Software Engineering, pages 31–41, Santa Fe, NM., October 2002.

[96] M. Woodside, D. Petriu, and K. Siddiqui. Performance-related completions for software
specifications. In Proceedings of the 2nd International Conference on Software Engineering,
pages 22–32, Orlando, FL., May 2002.

[97] J. Xu and D. Parnas. On satisfying timing constraints in hard real-time systems. IEEE
Transactions on Software Engineering, 19(1):70–86, January 1993.

[98] H. Zeltwanger. An inside look at teh fundamentals of CAN. Control Engineering, 42(1):81–
87, January 1995.

[99] Q. Zheng and K. G. Shin. On the ability of establishing real-time channels in point-to-
point packet-switched networks. IEEE Transactions on Communications, 42(234):1096–
1105, February-April 1994.

[100] L. Zhou. Real-time performance guarantees in manufacturing systems. PhD thesis, De-
partment of Electrical Engineering and Computer Science, The University of Michigan, Ann
Arbor, Michigan, May 1999.

[101] K. M. Zuberi and K. G. Shin. Scheduling messages on Controller Area Network for real-
time CIM applications. IEEE Transactions on Robotics and Automation, 13(2):310–314,
April 1997.

223

