
Energy-Aware Operating System Design

by

Padmanabhan Pillai

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

D octor of Philosophy 
(Computer Science and Engineering) 

in The University of Michigan .
2004

Doctoral Committee:
Professor Kang G. Shin, Chair 
Assistant Professor Brian Noble 
Associate Professor Steven Reinhardt 
Associate Professor Dawn Tilbury

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 3122025

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3122025 

Copyright 2004 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To my wife and my parents.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

This thesis was possible only with the support and encouragement o f many people, to 

whom I am deeply grateful.

I am most indebted to my wife, Deepa, who was there to support me when I needed it 

the most. She had to tolerate my long hours during the actual writing phase of my thesis 

work, and selflessly took this without complaint. She never let me lose sight of my goal, 

encouraging me to persevere.

I am  thankful to my parents and my brother, Kamal, who supported me from the start. 

From an early age, my parents instilled in me the desire to pursue my education to the 

fullest and to strive for success. They supported and accepted my decision to enter and 

stick with a Ph.D. program.

My advisor, Professor Kang Shin, has been instrumental in the success of this work. He 

gave me full freedom to pursue any interesting avenue of research, but directed me always 

toward high quality research directions.

I would like to thank the other members of my thesis committee, Professors Brian 

Noble, Steven Reinhardt, and Dawn Tilbury, for their comments and insights that helped 

shape and clarify the early direction of this thesis.

Finally, I would like to thank Cheng Jin, Sung-Whan Moon, Hai Huang, Hani Jamjoom, 

and John Reumann for their roles as collaborators, technical sounding boards, and, mostly, 

for ju st being good friends.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

D E D IC A T IO N .....................................................................................................................   ii

A C K N O W L E D G E M E N T S ........................................................................    iii

L IST  O F  T A B L E S .......................................................................................................................... vii

L IST  O F  F I G U R E S ......................................................................................................................viii

C H A PTER S

1 Introduction ..............................................................      1
1.1 Software Approach to Energy Reduction  ...................  4
1.2 Improving OS Service E ff ic ie n c y ............................................................  5
1.3 Exploiting Hardware Energy-Conservation M echan ism s................... 7

1.3.1 Software-Controlled P o w e r-D o w n ...........................................  8
1.3.2 Voltage and Frequency S c a l in g ..................................................  10

1.4 Energy-Aware Adaptation of W o rk lo ad .................................................. 12
1.5 Thesis Overview and O rg a n iz a tio n ......................................................... 15

2 Improving Energy Efficiency of OS S e r v ic e s ....................................   17
2.1 Service Optimizations in E M E R A L D S ................................................. 18

2.1.1 Exploiting Static C h a ra c te r is tic s ............................................... 19
2.1.2 Improved Real-Time S c h e d u lin g ............................................... 19
2.1.3 Synchronization I s s u e s .....................................................   20
2.1.4 Layer-Bypassing in Internet P r o to c o ls ....................................  22

2.2 Protocol Processing in Embedded Internet D ev ice s ............................. 23
2.2.1 Network Interface A rc h ite c tu re s ..............................................  25
2.2.2 Packet receive operation .  .....................................................  25
2.2.3 Modified packet receive o p e r a t io n ...........................................  27
2.2.4 Layer-bypass Performance  .........................  28
2.2.5 Zero-Copy E x te n s io n ...................................................................  33
2.2.6 Zero-copy P e rfo rm an ce .........................    35

2.3 C o n c lu s io n s ...........................................................     36

3 Sprint-and-Halt Scheduling for Energy Reduction in Real-Time Systems
with Software P o w e r-D o w n ...................................................................................  38

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.1 In tro d u c tio n ................................................................................................  38
3.2 Background  ..................................................................................  40
3.3 System M o d e l .....................................    42
3.4 Sprint-and-Halt Algorithms .  ........................................   43

3.4.1 Real-Time Schedulers with P o w er-dow n ......................................44
3.4.2 Work-Idle-Conserving S c h e d u le r s ................................................ 46
3.4.3 Slack-Stealing Schedulers for Pow er-dow n.................................. 47
3.4.4 Improved Slack-Stealing E D F ................................................... 53
3.4.5 Handling M ultiple Power-down S ta t e s ......................................... 55

3.5 E v a lu a tio n .................................................................................................... 56
3.5.1 Simulation M e th o d o lo g y .............................................................  56
3.5.2 R esu lts ................................................................................................ 57

3.6 Related W o r k ........................................    61
3.7 C o n c lu s io n s ................................................................................................  63

4 Exploiting Hardware Energy-Conservation Mechanisms through Real-Time 
Dynamic Voltage Scaling (R T-D V S)............................................   65

4.1 In tro d u c tio n ................................................................................................  66
4.2 R T -D V S .......................................................................................................  67

4.2.1 Why DVS? .....................................................................................  67
4.2.2 Real-time is s u e s ..............................................................................  69
4.2.3 Static voltage s c a l in g ....................................    71
4.2.4 Cycle-conserving R T -D V S .......................................................... 74
4.2.5 Look-Ahead R T -D V S ....................................................................  80
4.2.6 Summary of RT-DVS algorithms  ..............................  83

4.3 S im u la t io n s ................................................................    84
4.3.1 Simulation M e th o d o lo g y .............................................................  84
4.3.2 Simulation R e s u l t s .......................................................................  86

4.4 Im p le m e n ta tio n .........................................................................................  94
4.4.1 Hardware Platform  ............................................................. 94
4.4.2 Software A rch itec tu re    . 96
4.4.3 Measurements and O b se rv a tio n s ................................................... 97

4.5 Related W o r k .............................   100
4.6 Conclusions .  ................................................................................... 102

5 Energy-aware Quality of Service ( E Q o S ) .........................................  104
5.1 In tro d u c tio n .................................................................................................. 105
5.2 Energy-Aware Quality of S e rv ic e ............................................................ 107

5.2.1 Energy-Conserving Mechanisms  ................................ 108
5.2.2 Varying QoS for Real-Time T a s k s ..............................................109
5.2.3 Specifying Task U t i l i t y    . 112
5.2.4 M aximizing System U t i l i ty .........................................................114

5.3 Adaptation Goals, Problems, and A lgorithm s....................................... 114
5.3.1 Adaptive System Description  .....................................................115
5.3.2 Known Time-to-Charge P ro b le m ................................................. 116

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3.3 Solving M C K P .................................................................................117
5.3.4 Effects of DVS .................................................................................121
5.3.5 Applicability to Other Adaptation Problems . . . . . . . .  125
5.3.6 Dealing with Dynamic Systems .  ......................... 126

5.4 Im p le m e n ta tio n ..............................................................................................127
5.5 E v a lu a tio n ....................................................   128

5.5.1 Simulation Methodology  .............................   129
5.5.2 Simulation Results ..........................................................................132
5.5.3 Experimental M e a su re m e n ts ........................................................ 136

5.6 Related W o r k .....................  140
5.7 C o n c lu s io n s .....................................................................................................142

6 Self-Monitoring and Modeling of Task Energy Consumption for Power- 
Aware Operating S y s te m s ......................................................................................... 143

6.1 In tro d u c tio n .................................................................................................... 144
6.2 M easuring Task E n e r g y ...........................................     146

6.2.1 Energy M easurement M e th o d s .....................................................146
6.2.2 Charge-Flow M e te r in g ...................................................................149
6.2.3 A  Self-Measurement A rc h ite c tu re ..............................................153

6.3 M odeling Task E nergy ................................................................................... 155
6.3.1 Constant Power M o d e ls ...................................................................155
6.3.2 Bimodal Power Model ...................................................................156
6.3.3 M odeling DVS E f f e c t s ...................................................................158
6.3.4 Instruction Mix Power M o d e l........................................................ 161
6.3.5 Applying Models to New Platforms .......................................... 163

6.4 E v a lu a tio n .............................................   164
6.4.1 Platform C haracteristics...................................................................164
6.4.2 Application C h arac te ris tic s ............................................................165
6.4.3 Experimental R e s u l t s ......................................................................166

6.5 Related Work .................................................  168
6.6 C o n c lu s io n s .........................................   170

7 Conclusions ..................................................................................................................171
7.1 Contributions .................................................................................................172
7.2 Future D ir e c t io n s .................................................  174

B IB L IO G R A P H Y ........................................................................................................................ 176

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

Table
4.1 Power consumption measured on Hewlett-Packard N3350 laptop computer 68
4.2 Example task set, where computing times are specified at the maximum

processor freq u en cy ....................................................................................................  73
4.3 Actual computation requirements of the example task set (assuming execu­

tion at max. frequency)  ............................................................................  75
4.4 Normalized energy consumption for the example t r a c e s ..................................  84
5.1 Power dissipation of laptop (HP N3350) com ponents........................................... 106
5.2 Normalized frequency and voltage settings for DVS..............................................123
5.3 DVS settings for 1GHz Mobile Athlon [3]............................................................... 137
5.4 r t  -  la m e  task characteristics at various QoS levels. Note that WCET and

power are specified for 1.0 GHz, 1.4 V operation....................................................137
6.1 Power measurements for various instruction types................................................. 162
6.2 Platform measurements o f model constants on two test machines......................164
6.3 Instruction mix for test applications........................................................................... 165

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figure
1.1 Illustration of energy savings with algorithms taking advantage o f power

conserving hardware. Shaded area is wasted energy that is not spent on
useful computation........................................................................................................  11

2.1 Normal datagram re c e p tio n ........................................................................................  26
2.2 API for new system c a l l s ............................................................................................ 28
2.3 Normal datagram re c e p tio n ........................................................................................  29
2.4 T e s tb e d ...........................................................................................................................  29
2.5 Receive-side processing latency .............................   30
2.6 Receive-side processing latency, nonblocking calls ...........................................  32
2.7 Receive-side processing latency with slow processor ........................................ 33
2.8 Receive-side processing latency, zero-copy............................................................  35
2.9 Receive-side processing latency, zero-copy, slow processor  ....................... 35
3.1 Parameters of system power model.................................................................................42
3.2 Periodic real-time task model param eters..................................................................... 43
3.3 Real-time scheduling with power-down .................................................................... 45
3.4 Example of deferral of task execution in work-idle-conserving scheduler.

(a) Original execution schedule; (b) After deferral.................................................... 46
3.5 Work-idle-conserving s c h e d u le r .............................................................................. 48
3.6 Slack-stealing scheduler example scenario. t now is current time, where sys­

tem enters idle, (a) Execution schedule for work-conserving scheduler in­
dicates execution resumes at time D \ when task 1 is released; (b) Canonical 
schedule assuming tasks always use exactly their W CETs indicates next in­
vocation of task 1 would start after time j92; (c) Slack-stealing power-down 
schedulers defer task 1 until the time indicated by the W CET schedule .. . . 50

3.7 Slack-stealing scheduler for pow er-dow n.................................................................... 52
3.8 Improved slack-stealing EDF scheduler for power-down  ....................54
3.9 Effects of varying power-down hardware specifications: (a) Phigh/Plow —

4; (b) Phigh/Plow =  10; (c) Phigh/Plow =  1 0 0 ........................  59
3.10 Effects of varying workload parameters ................................................................ 60
3.11 Relative performance of sprint-and-halt algorithms: (a) t up +  fdo«,„=10 ms;

(b) Worst case u tiliza tio n = 0 .9 5 ................................................................................  62
4.1 Static voltage scaling algorithm for EDF and RM s c h e d u le r s ........   72

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Static voltage scaling e x a m p le .................
4.3 Example of cycle-conserving EDF . . . .
4.4 Cycle-conserving DVS for EDF schedulers

73
75
76

4.5 Example o f cycle-conserving RM: (a) Initially use statically-scaled, worst-
case RM schedule as target; (b) Determine minimum frequency so as to 
complete the same work by D l; rounding up to the closest discrete setting 
requires frequency 1.0; (c) After T1 completes (early), recompute the re­
quired frequency as 0.75; (d) Once T2 completes, a very low frequency 
(0.5) suffices to complete the remaining work by D l; (e) T1 is re-released, 
and now, try to match the work that should be done by D2; (f) Execution 
trace through time 16 m s.............................................................................................  77

4.6 Cycle-conserving DVS for RM sch ed u le rs ...........................................................  79
4.7 Example of look-ahead EDF: (a) At time 0, plan to defer T 3’s execution 

until after D l (but by its deadline D3, and likewise, try to fit T2 between D l 
and D2; (b) T 1 and the portion of T2 that did not fit must execute before D 1, 
requiring use o f frequency 0.75; (c) After T1 completes, repeat calculations 
to find the new frequency setting, 0.5; (d) Repeating the calculation after 
T2 completes indicates that we do not need to execute anything by D l, 
but EDF is work-conserving, so T3 executes at the minimum frequency;
(e) This occurs again when T l ’s next invocation is released; (f) Execution 
trace through time 16 m s.............................................................................................. 81

4.8 Look-Ahead DVS for EDF sc h e d u le rs ..................................................................  82
4.9 Energy consumption with 5, 10, and 15 tasks ....................................................  87
4.10 Normalized energy consumption with idle level factors 0.01, 0.1, and 1.0 . . 89
4.11 Normalized energy consumption with machine 0, 1, and 2   91
4.12 Normalized energy consumption with computation set to fixed fraction of 

worst-case a l lo c a t io n .................................................................................................  93
4.13 Normalized energy consumption with uniform distribution for computation 94
4.14 Software architecture for RT-DVS im plem entation.............................................  96
4.15 Power measurement on laptop im plem entation....................................................  98
4.16 Power consumption on actual p la tfo rm .......................................................................99
4.17 Power consumption on simulated p la tfo rm ................................................. 99
5.1 EQoS framework overview............................................................................................ 108
5.2 Example showing effects of adaptation on runtime, normalized to t run. . . . 120
5.3 Example task set total utility gain comparison using adaptation.......................... 121
5.4 Example showing effects of DVS on runtim e........................................................... 122
5.5 Relationship between utilization and power for ideal DVS......................  . . . 1 2 3
5.6 Example showing effects of DVS on runtime, normalized to t run, when

compensation is used.......................................................................................................124
5.7 Software architecture of EQoS implementation for Linux.....................................127
5.8 Probability distributions for actual execution time of tasks expressed as a

fraction of W CET used in the s im u la to r .................................................................. 129
5.9 Utility with adaptation, normalized to optim al..........................   131

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.10 System runtime with adaptation, normalized to t run.............................................. 132
5.11 Execution overheads of adaptation algorithm s........................................................ 133
5.12 System runtime with adaptation, RT-DVS, normalized to t run............................ 134
5.13 System runtime resulting from adaptation with compensation for RT-DVS, 

normalized to t run..................   135
5.14 Utility with RT-DVS compensation normalized with respect to utility value 

without RT-DVS compensation.................................................................................... 136
5.15 Power measurement on laptop im plementation....................................................... 137
5.16 Measured power dissipation and the resulting system runtime after adapta­

tion, no DVS......................................................................................................................138
5.17 M easured power dissipation and the resulting system runtime after adapta­

tion, with DVS and com pensation................................................................................139
5.18 Resulting total utility until 1000s, with adaptation, with and without DVS. . 140
6.1 Power measurement using a multimeter.................................................................... 147
6.2 Power measurement with an oscilloscope.................................................................148
6.3 Charge flow measurement hardware...........................................................................151
6.4 Self-measurement software architecture....................................................................154
6.5 Energy measurements on HP N3350 laptop. Linear regression lines are

also plotted.........................................................................................................................157
6.6 Energy measurements with display backlight turned off.......................................158
6.7 Energy measurements when frequency and voltage scaling are employed:

(a) 350 MHz, 2.0 V; (b) 200 MHz, 2.0 V; (c) 200 MHz, 1.4 V. ....................... 159
6.8 Measurements of task energy, compared to model estim ates...............................167

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1

Introduction

Computer use has been evolving continuously as new technologies develop and as 

computers both integrate into and change society as a whole. During the earliest days 

of commercial computing, computer use was very restricted, primarily consisting of batch 

processing tasks and accounting on large, off-site mainframe machines. Later, the advent 

of mini-computers permitted computer use to become more widespread and interactive 

through timesharing systems. This trend of smaller, cheaper, more-widely deployed com ­

puter systems continued through the 80’s and 90’s with the introduction and subsequent 

spread of personal computer technology to businesses and homes. This general trend, 

pushed by the industry’s fixation on M oore’s Law and exponentially-improving technol­

ogy, shows no sign of slowing. In this decade, we are seeing the results of this —  a further 

spread o f computer use as mobile computing devices of all sorts become ubiquitous.

Many technologies are enabling this explosion of mobile and hand-held com puting 

devices. Wireless networks are improving and becoming more widespread in use, both 

as local-area networks (LANs), such as WaveLAN, and in wide-area networks (WANs), 

particularly through digital cellular networks. Ever-improving integration technology is 

providing low-cost system-on-a-chip solutions for mass-produced consumer com puting 

devices. Improved, miniaturized storage systems, both solid state (Flash memory), and 

magnetic (1-inch hard drives), are providing mass-storage solutions for mobile devices in 

very small physical form factors.

Furthermore, these technologies enable new applications and shifts in usage patterns, 

increasing the demand for mobile computing devices. Low-cost CCD sensors and Flash

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



memory devices have enabled mass-market digital cameras that are now rapidly displacing 

traditional f i l m  cameras as the preferred photographic medium. These incorporate sophisti­

cated embedded computers to acquire, process, compress, store, and manage digital images 

through a user-friendly interface. M obile computing platforms, including laptops and hand­

held devices, are important productivity enhancers for business travelers. PDAs and similar 

devices with wireless communication are now indispensable to many businesses that rely 

on continuous e-mail connectivity. M obile phones had been primarily limited to voice 

communications, but with integration into wireless digital data networks, are now capable 

of instant person-to-person messaging, e-mail, and photo messaging. As wireless networks 

improve in availability, bandwidth, and Internet connectivity, these networks may be able 

to leverage upon existing service infrastructure to provide a wide array of information and 

entertainment content to mobile clients. Entertainment services, in particular, could be 

popular on hand-held devices, as online gaming, music and photo sharing, and m ultim edia 

streaming applications available to PCs trickle down to smaller platforms as the devices 

become more powerful and wireless networking improves.

Despite these motivators for mobile systems usage, there are a few potential stumbling 

blocks on the way toward widespread deployment. Chief among these is the issue of pro­

viding the energy needed for high-performance mobile computation. As applications and 

platforms become more complex and require greater computational capacity, it becomes 

increasingly difficult to provide sufficient energy to perform such computation in a mobile 

environment. As the performance o f mobile processors increase, so do their energy re­

quirements, quickly dominating system energy requirements. Even in notebook computer 

systems that have significant external components to the processor, such as large, backlit 

displays and spinning mechanical hard drives, peak power is dominated by the proces­

sor. In smaller mobile devices, such as PDAs that have fewer external components, energy 

consumption is even more dependent on the processor characteristics. W hen the size and 

weight of a device are constrained, increasing computational capacity increases total energy 

consumption and reduces battery life. A lthough battery technologies have been improving, 

the exponential increase in processor and software complexity has far out-paced the rela­

tively slow improvements in energy storage technology.

As a result, there is a great need for technologies that can reduce energy consumption

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in mobile devices while maintaining high peak performance for the increasingly complex 

and computationally intensive applications demanded in next-generation products. Much 

research and development is now focused on reducing energy consumption, particularly 

through low-power hardware development. Improved semiconductor process technologies, 

greater integration of parts, reduced voltage circuits, and gated clock drivers are all con­

tributing to improved energy efficiency in handheld devices. Other hardware approaches 

involve low-power states and components that trade speed for reduced energy consumption 

and corresponding improvement in battery life. Although such techniques can conserve 

considerable amounts of energy, in general, they cause some degradation in performance 

and affect task execution timings. Particularly in embedded mobile devices that must pro­

vide robust user interaction or perform computations with real-time constraints, any per­

formance degradation or timing change may result in poor or even incorrect application 

behavior.

This thesis takes a complementary, software-centric approach to designing systems for 

low energy consumption. In particular, mechanisms of improving the efficiency of system 

services and better control o f hardware-based power conservation mechanisms in the op­

erating system are considered. As the processor tends to be the largest single consumer of 

energy in computational devices, the approaches in this thesis tend to focus on processing 

related energy consumption. The software approach taken here ensures that any perfor­

mance impacts of energy-conserving mechanisms are mitigated, avoiding timing violations 

in real-time embedded systems. Furthermore, the software approach to energy-efficient 

systems permits intelligent allocation of limited energy resources to different applications 

based on high-level knowledge of the system and application goals, in order to make the 

best use of the available energy. Such differentiation between tasks and distribution o f en­

ergy resources cannot be achieved through hardware mechanisms alone. The remainder 

of this chapter outlines the various aspects of a software-centric approach to low-power 

system design.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.1 Software Approach to Energy Reduction

Energy availability is a primary limitation in most mobile and portable devices. To han­

dle the increasingly complex applications that are rapidly emerging in a highly competitive 

consumer marketplace, devices are being developed with faster, higher-power processors 

and larger memories, increasing the power burden in such systems. Unfortunately, with 

the available battery technologies, the size and weight constraints limit systems either to to 

low-performance components that dissipate low power, or to shortened battery life. In or­

der to maintain acceptable battery life as handheld devices evolve into higher performance 

platforms, mechanisms to improve the energy efficiency of systems are required. In this 

work, a software-centric approach to improving energy efficiency in handheld devices is 

explored.

O f course, energy is not the only constraint that software must contend with in mobile 

devices. As the applications become increasingly feature-rich, managing system resources 

and dealing with the interactions between multiple, sophisticated application tasks execut­

ing in parallel becomes a complex task. To deal with this complexity, mobile and portable 

devices often need full operating systems rather than ad-hoc, in-application mechanisms 

used in simpler systems. In addition, these systems often have strict timing constraints, 

requiring real-time operating systems to ensure deadlines are met for all application tasks. 

For example, a digital voice communication application would need to acquire, compress, 

and packetize each frame of audio within a fixed deadline in order to ensure no gaps or 

jitter in the transmitted audio. A digital cam era may have very strict timing requirements 

for the task that actually controls the picture taking operation to ensure correct exposures 

and proper acquisition of CCD data, while im age compression and user interface tasks do 

not need such strict constraints, and only need to be sufficiently responsive to a human 

user. Hence, software techniques for power reduction must ensure that performance and 

real-time constraints are maintained.

This work seeks to develop techniques of improving energy consumption in embedded 

system through the development of energy-aware operating systems. The primary focus is 

on the system software, i.e., the operating system, as this is responsible for managing all 

resources in the system, and energy should be no exception. Improving the OS and making

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



it energy-aware will allow benefits to be spread to all applications running on the system, 

and not limited to a particular single task.

To this end, this thesis takes a 3 pronged approach to software-centric energy conser­

vation. First, improving the processing efficiency of OS itself is considered. Reducing the 

energy overheads of OS services will improve the energy efficiency of all applications that 

use these services. Such improvements may preserve the semantics of the original service, 

or can take advantage of characteristics unique to the embedded or real-time system to gain 

in terms of energy reductions.

Hardware techniques that slow or power down system components can conserve signif­

icantly more power than these software optimizations alone can achieve. However, these 

techniques all incur some form o f performance penalty, and may cause timing failures in 

real-time systems. The second aspect o f an energy-aware OS is to effectively control and 

maximally exploit hardware power-reduction technology such that it does not interfere with 

the system performance, particularly any real-time or execution time constraints. As the 

different hardware techniques employ varying mechanisms to conserve energy, the algo­

rithms and software techniques to control and maximize the energy benefits will vary with 

the type of hardware involved.

Finally, the system software needs to manage and allocate energy resources to the most 

beneficial tasks in order to make best use of the limited resource. In order to achieve 

this, a system of adapting the working task set to the available energy is proposed. By 

selectively varying the level of service quality provided to each task, the OS can weigh 

the benefits gained from an application against the energy consumption of the tasks in a 

general, energy-aware framework.

1.2 Improving OS Service Efficiency

From a high-level perspective, each unit of computation time on a processor incurs 

some energy cost, regardless of the purpose o f the computations. The less that a function 

does, the lower the energy consumed in executing that function. If an OS service can 

provide its functionality with lower overheads, or provide a reduced service with lower 

computational requirements, this will free energy and computation resources that can be

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



used for other computations. By reducing the overheads in an OS service, all tasks using 

the service will consume less energy, allowing more total useful work to be accomplished 

with the same amount o f energy.

The most direct approach is to cut the excess overheads from a service while maintain­

ing all service semantics. This will allow applications to remain unmodified and ensure no 

degradation occurs within the applications to make up for the missing or changed service 

behaviors. In general, most performance enhancing techniques will also result in reductions 

in energy, since the reduction in the number of computation cycles used directly lowers the 

energy consumed. Hence, almost any technique that can reduce the processing time of a 

service call can be applied to also reduce the energy consumed in the service. The excep­

tion to this is the case where performance is improved through speculative prefetching or by 

working ahead. Here, extra computation is done in the hope that the results will be needed 

later. If so, this improves performance as the computations are completed early. However, 

there is also the chance that the work is unnecessary, or based on incorrectly speculated 

data, in which case the results must be discarded, wasting the energy resources consumed 

in the speculative execution.

In general, this direct approach of reducing overheads to improve energy consum p­

tion is fairly limited, as performance improvements in OS services is a well-investigated 

topic, and many commercial operating systems already provide low-overhead services. A 

second approach is to modify the semantics of the services to take advantage of known 

characteristics of the embedded or real-time system to reduce service overheads and im­

prove energy conservation. As the operation of the OS services is changed, from handling 

a broad general-case scenario, to the specific cases likely on a small, handheld device, 

there is a potential for significant overhead reductions. Certain aspects of small embedded 

devices can be used to revamp OS services for reduced processing overheads and energy 

consumption. For example, the various tasks executing on embedded platforms tend to 

be static or change infrequently, and also tend to be well-specified, rather than arbitrary 

applications. In such a situation, eliminating naming services, extra layers of indirection, 

and table lookups needed in more dynamic environments, and instead relying on statically- 

specified resources can reduce the overheads of many services, particularly those dealing 

with shared memory or semaphores. With real-time scheduling, timing constraints of dif-

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ferent tasks can be used to reduce the need for strict synchronization in some services, such 

as interprocess communication, which can use the guaranteed temporal characteristics of 

the tasks to ensure correct behavior. Revising the OS service semantics to take advantage of 

the unique characteristics of embedded, mobile systems can result in services with greatly 

reduced processing and energy overheads.

These general approaches can conserve energy only if the time gained from reduced 

service overheads is used for some valuable computation. If the excess time is spent on 

idle loops, then the energy saved in OS services would be wasted in executing the idle 

loops, and total energy consumption not significantly improved. On the other hand, if 

the cycles are spent in useful work, then although the total energy expenditure may not 

be affected, the energy efficiency, in terms of energy per unit of application computation, 

is still improved, and more valuable work is achieved from a given starting energy level. 

Finally, if the platform can be powered off or switched to a low-power state earlier, or for 

a longer duration, due to the reduced OS service overheads, then both the efficiency of 

application computation and total energy expenditure can be improved. This last feature 

can only be used if the system software appropriately uses hardware mechanisms to power­

down the system in a way that preserves timeliness and responsiveness of the system.

1.3 Exploiting Hardware Energy-Conservation Mechanisms

The software optimizations discussed so far reduce energy costs for tasks by reducing 

the total number of instructions executed by OS calls and services. These, in turn, reduce 

the energy costs and execution time for the tasks using the OS services, resulting in a 

surplus of energy and processor time. W hen this surplus is used to perform other useful 

work, the energy cost per unit of useful computation is reduced, thus improving energy 

cost-effectiveness of computation.

There are two drawbacks with a software-only approach. First, although cost per unit 

computation is reduced, the total energy-consumption rate (i.e., pow er in Watts) of the 

device remains constant, so the total duration of operation with a given amount of energy 

is not improved. Second, if the surplus energy and processor cycles are not spent for useful 

work, then they will be wasted on idle loops. With some hardware support, however, both

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the energy cost per unit computation and the total energy consumption can be reduced.

Hardware energy-conservation techniques generally take one of two forms: they allow 

the system to turn off or put into low-power states the processor and other system com ­

ponents; or, they modify the operating characteristics of the device in order to reduce the 

energy dissipated. Both o f these have some impact on performance —  the former due 

to time and energy overheads of switching to and from low-power states, while in the 

latter, this is because the low-power operation generally comes with a cost in terms of pro­

cessing speed. Due to the performance impacts, the system software needs to carefully 

manage the hardware to ensure applications continue to perform correctly, particularly in 

real-time embedded systems, where execution deadlines are must be met. The methods and 

algorithms needed to properly control and maximize the energy gains from the hardware 

mechanisms, while preserving real-time performance depends greatly on the nature o f the 

hardware energy-conservation mechanisms.

There are two basic approaches to hardware energy conservation considered in this 

dissertation:

•  Software-controlled power-down: the processing core and/or various system com po­

nents can be switched to a low-power, inactive state by system software;

•  Processor frequency and voltage scaling: the operating clock frequency and voltage 

of the processor are dynamically changed to reduce energy consumption.

Both mechanisms can save considerable amount of processing energy, but must be properly 

controlled by the operating system to ensure real-time tasks continue to receive guaranteed 

execution before their deadlines and performance of the system is not hampered by the 

energy conserving mechanisms.

1.3.1 Software-Controlled Power-Down

The basic idea behind software-controlled power-down is to deactivate the system when 

not performing useful work. During the execution of application tasks, there are often idle 

periods for various reasons. In interactive or networked devices, these occur commonly 

due to waiting for user input or some remote communication. Extra idle times are also

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



inserted into schedules of real-time systems to keep some processor capacity in reserve to 

handle sporadic and aperiodic tasks triggered by external events. Furthermore, real-time 

tasks are scheduled assuming maximum, worst-case execution times (W CETs) to guarantee 

deadlines in all situations, but tasks typically take much less than the WCETs, resulting in 

idle time. Finally, surplus processing capacity is created as a result of the OS optimizations 

discussed earlier. During these idle times, the system should be powered down instead of 

wasting energy on idle loops.

In the simplest form of software-controlled power-down, the microprocessor has sup­

port for some form of a h a l t  instruction. W hen executed, this causes the processor to stop 

the core, leaving it in an inactive state that reduces energy consumption. During any gap be­

tween useful computations, the h a l t  instmction can be executed, conserving the energy 

that would otherwise be squandered in idle loops. The processor remains inactive until 

some form o f interrupt, through some external event or a periodic timer tick, reactivates 

it, resuming normal processing. Ideally, the processor halt requires very little overhead —■ 

the processor halts and resumes nearly instantaneously (just a few cycles), so real-time task 

timings will not be affected. Because of the low overheads, it is trivial to employ processor 

halts at any detected idle period to conserve energy without affecting execution timings of 

real-time applications.

More generally, the system may have some mechanism o f powering down the processor 

as well as external components under software control. Timers, video displays, and com ­

munication ports may be powered down to save considerable energy when not in active 

use. In particular, turning off the system clock-generation circuitry will essentially shut off 

the processor and memory, and often any video and communication subsystems as well. 

As a much larger piece of the system than just the processor is put into a low-power state, 

the potential savings may be much higher than with the processor halt alone. However, 

unlike the simple processor halt, powering down these subsystems incurs substantial over­

heads. Switching power-states may require several milliseconds, such as in waiting for the 

clock circuitry to stabilize on power-up. During the switch, neither useful work nor en­

ergy savings is realized. As a result, power-down of subsystems should be done only when 

the duration of power-down state is long enough to compensate for power-state switching 

overheads.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In order to make best use of such high-overhead, low-power mechanisms, the operating 

system scheduling policies must be modified to maximize the energy savings, while m in­

imizing the total switching overheads incurred. In particular, a sprint-and-halt scheduling 

policy, where tasks are executed together, as fast as possible in a sprint mode, followed by 

a long halt period, formed by coalescing the normally occurring idle periods into longer 

segments, can maximize the power-down time and reduce the total overheads by incur­

ring fewer power-state switches. Figure 1.1 (a-c) illustrates task scheduling and power 

consumption with simple processor halts and sprint-and-halt scheduling. The main con­

straint on sprint-and-halt techniques is that the actual task timings are affected. A part of 

this dissertation seeks to develop scheduling techniques that maintain real-time scheduling 

and execution guarantees while simultaneously implementing sprint-and-halt algorithms to 

conserve energy and maximally exploit software-controlled power-down mechanisms.

1.3.2 Voltage and Frequency Scaling

The power-down approach has just two states of operation for the processor: full speed 

and halted. With appropriate hardware support, it is possible to vary the processor speed 

to achieve energy savings. Frequency scaling involves changing the frequency of the clock 

that drives the processor under software control. Since the energy consumed is propor­

tional to the number of cycles executed, the OS can reduce power dissipation by throttling 

the clock rate. The speed of the processor should be set such that there is just enough com ­

puting capacity to complete the current tasks with no surplus, eliminating any wasteful idle 

loops. As the energy used in actual computation is unchanged, frequency scaling, at most, 

can only eliminate the processor energy consumed in idle loops, and cannot be expected to 

perform any better than processor halts. Alone, therefore, it is not very useful, but when 

used in conjunction with voltage scaling, it can reduce energy costs considerably.

Voltage scaling techniques use a software-controlled voltage regulator to adjust the 

operating voltage of the processor. Processor voltage greatly affects power dissipation, 

because static CMOS logic, the technology used in almost all contemporary microproces­

sors, behaves electrically like a switched capacitor. Each cycling o f a gate input effectively 

charges and discharges a capacitor, consuming the stored energy which is proportional 

to voltage squared (E  =  C V 2 / 2) [6], Hence, energy per machine cycle (and therefore

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i.oa% 0 .75.

o 0.5aCu
0 .2 i
o.a

1.0a

i.oa
0 . 75.

0.5a
0.21

0 .OL

(a) None

Task A TaskB Task C Task D

' / / / / ' / / / / / / / / / V / / /

(b) Processor Halts

Task A TaskB Task C Task D kn
(c) Sprint-and-Halt

0 .5a
0.25. Task A Task B Task C Task D

0 0
(d) Frequency Scaling

Task A Task B Task C Task D

(e) DVS

Figure 1.1: Illustration of energy savings with algorithms taking advantage of power con­

serving hardware. Shaded area is wasted energy that is not spent on useful computation.

per instruction) decreases with the square of the reduction in voltage, so, by employing 

a software-controllable voltage regulator to reduce the processor supply voltage, a large 

savings in energy consumption for any particular computational task may be realized.

Unfortunately, this does not come for free. As voltage is decreased, gate delay -  the 

time it takes the output of a logic gate to reflect changes to the inputs -  increases, with a 

relationship approximated by D  oc V / ( V  — C),  for some constant C  [61]. Gate delays 

directly affect the propagation times of signals through the layers of logic in a processor, 

which, in turn, determines the maximum operating frequency of the processor. Therefore, 

when lowering the operating voltage of a processor, one also limits its maximum reliable 

operating frequency. Over some useful range, which varies with processor, the maximum 

operating frequency will scale roughly linearly with voltage [90], By employing frequency

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and voltage scaling, the system can reduce energy costs significantly by trading off total 

computational throughput.

With software-controlled clock and voltage regulator circuits, the system can permit 

Dynamic Voltage Scaling (DVS) [61], where the operating system sets the frequency and 

voltage of the processor to meet changing task needs. The basic idea behind DVS algo­

rithms is to set the processor to the slowest speed necessary to complete all tasks, eliminat­

ing idle time, and then use the lowest voltage setting that permits this speed. The energy 

per cycle / operation will be dramatically reduced (oc V 2). Assuming a nearly linear re­

lationship between voltage and frequency, the combined effects o f voltage and frequency 

scaling will reduce power dissipation nearly oc V 3 (Figure 1.1 (d,e)).

Once again, the main limitation in implementing DVS techniques in embedded and 

mobile platforms is that changing the processor frequency will affect task timings and dis­

rupt any timeliness guarantees provided to the running applications. In this dissertation, 

real-time DVS (RT-DVS) algorithms are developed that can simultaneously reduce volt­

age to conserve energy and maintain deadline guarantees in a real-time system environ­

ment. The philosophy behind DVS -  execute tasks as slowly as possible -  runs counter to 

that o f sprint-and-halt used with software-controlled power-down hardware, so completely 

different approaches and algorithms are developed to ensure real-time performance while 

exploiting these hardware energy-conserving mechanisms.

1.4 Energy-Aware Adaptation of Workload

The two broad approaches outlined so far ultimately improve the system ’s energy effi­

ciency and allow a greater total amount of useful computation to be performed for a given 

amount of energy. However, there is no differentiation among the tasks in the system. In 

particular, these techniques cannot allocate lim ited energy resources to the most valuable 

or useful tasks. Furthermore, the DVS and sprint-and-halt mechanisms work best when 

there is a surplus of computing capacity. W hen there is no extra computing capacity, there 

is little room for reducing energy expenditure, which can be a serious concern if batter­

ies are nearly depleted. In such a situation, something must be sacrificed —  either the 

energy-conserving mechanisms are activated anyway, reducing computational throughput

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and causing all tasks to miss execution deadlines, or system runtime is forfeited.

The third major software-centric approach to energy conservation addresses this issue 

by adapting the system workload to better utilize the available energy. Here, mechanisms 

address how to best use and allocate limited stored energy among the computational tasks 

in the system. These will try to vary the service quality (in terms of processing capacity 

and energy) provided to each task in order to degrade system performance in a controlled 

manner, and to maximize the total value of computation performed with the limited en­

ergy budget. To implement this, the concept of Energy-aware Quality-of-Service (EQoS) 

adaptation of real-time workloads is introduced in this dissertation. The EQoS framework 

allows the system to automatically adjust the workload by varying service quality levels of 

tasks to meet system runtime goals. The service changes are applied independently to the 

different system tasks in order to provide better service and allocate more energy to those 

tasks that provide greatest returns or value from this energy consumption.

The adaptation of the workload to the available energy by varying service quality is 

a very open-ended problem. The EQoS framework seeks to formulate the problem and 

restrict it such that the adaptation is a tractable problem that can be efficiently solved. The 

problem is limited to the class of known time-to-charge problems. Here, one is given or 

estimates the amount of time the system must run on batteries before recharge occurs or 

primary sources of energy become available. The limited stored energy is allocated to the 

tasks such that:

1. the system runs for at least the time until recharge,

2. energy and computational resources are assigned independently to each of the tasks,

3. real-time performance is maintained or degraded in a known, predictable manner,

4. the total value of the computations performed by the tasks over the duration until 

recharge is maximized.

The EQoS framework requires each task to be assigned a simple scalar metric indicating 

the value or utility of the computational task. This abstract notion can cover any notion of 

importance, economic value, or user preference, for each task in the system. Furthermore, 

the degraded levels of service for each task are enumerated, and also assigned utility values. 

As embedded and real-time systems tend to have well-specified tasks, enumerating the

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



degraded service levels does not present a large burden. Given energy estimates for each 

task, EQoS algorithms will select the appropriate service level for each task to achieve the 

needed runtime and maximize total utility over this runtime. The real-time requirements 

for the tasks at the selected degraded service level will be guaranteed, ensuring predictable, 

graceful degradation o f the system.

The EQoS framework does not specify any particular mechanisms of executing real­

time tasks at decreased service and resource levels. As this is a very application-specific 

issue, EQoS is meant to work with any RT degradation mechanism, and supports varying all 

real-time parameters. A control task may be executed at reduced service level by decreasing 

the frequency of execution (e.g., lowering sampling rate), while a audio task may switch to 

a low quality, low overhead CODEC (e.g., shorter average and worst-case execution times). 

For noncritical tasks, one possible degradation mechanism may be to simply not execute 

the task at all. EQoS adaptation algorithms need to handle all of these possible mechanisms 

of task execution with reduced service quality and still maintain schedulability of the real­

time system.

In order to select the set of per task-service levels optimally, the algorithms need to 

be provided with some notion of the value or benefits gained from executing a particular 

task at various QoS levels. In addition to a quantification of task value / utility, the energy 

consumption of the tasks at reduced QoS levels needs to be provided. Energy measurement 

techniques for determining task energy requirements are developed in this dissertation. U s­

ing the characteristics o f the tasks, available stored energy, and required system runtime, 

the algorithms select task service levels to maximize total system utility over the required 

runtime. One major hurdle in the design of these algorithms is that the actual task energy 

consumption is affected by RT-DVS and other mechanisms that conserve energy. In par­

ticular, as workload is reduced, RT-DVS reduces the processor operating frequency and 

voltage, improving its efficiency and reducing per-task energy requirements. Adaptation 

algorithms will need to consider this non-linear effect on energy consumption in order to 

truly optimize system utility for a given energy budget.

The adaptation of workload to energy does not improve the energy efficiency of a sys­

tem. Rather, it seeks to automatically allocate limited energy to the various tasks in order 

maximize the value of running the tasks over a desired runtime and given energy budget.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Additionally, it will enable efficiency-improving mechanisms, such as RT-DVS, to work 

more effectively by scaling back the total workload when deemed necessary to meet run­

time requirements.

1.5 Thesis Overview and Organization

This dissertation focuses on techniques to make operating systems energy-aware and 

improve energy consumption in embedded and mobile devices. Software-centric energy 

conservation is subdivided into three major approaches: improving service efficiency, con­

trolling and exploiting hardware mechanisms, and energy-aware task adaptation. Although 

all three approaches receive some treatment here, software techniques of exploiting hard­

ware power-reduction mechansims and energy-aware task adaptation are the primary foci 

of this work.

The following chapter considers methods of improving OS service efficiency to im ­

prove both performance and energy consumption. A part of this chapter is a survey of 

techniques proposed by the author and others in the context of the EMERALDS real-time 

microkernel, but some new work in regards to energy-conservation with reduced protocol 

processing for small Internet multimedia devices is also presented.

The third chapter presents methods o f maximizing the benefits of software-controlled 

power-down hardware in a real-time system. In particular, sprint-and-halt algorithms [66] 

for scheduling power-down epochs are developed, with an emphasis on maintaining real­

time execution guarantees. The algorithms introduced here can aggressively power-down 

a real-time system even when time overheads of switching power states are large.

Chapter 4 also investigates software control of hardware energy conservation m echa­

nisms. Here, DVS techniques are considered. The impacts of these on real-time scheduled 

tasks are discussed, and a class of real-time DVS (RT-DVS) algorithms is introduced. Sev­

eral novel RT-DVS algorithms are developed that ensure timeliness guarantees to real-tim e 

tasks while simultaneously exploiting voltage and frequency scaling hardware to greatly 

reduce energy consumption. In addition, an actual implementation of RT-DVS on top of 

Linux is presented and evaluated.

The third main approach to improving energy consumption is explored in Chapter 5.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Here, the EQoS framework for the energy-aware adaptation of quality-of-service provided 

to real-time tasks is presented. Key benefits of this framework are that it formulates and 

restricts the adaptation problem into a tractable problem, automates selecting between extra 

runtime and greater value through higher quality execution, introduces a clever method of 

accounting for improved efficiencies due to DVS techniques, and permits per-task adapta­

tion while maintaining real-time service guarantees. A  Linux-based implementation is also 

presented.

The EQoS framework is intended to work for embedded systems with tasks that are 

well-specified in terms of energy consumption. However, obtaining task energy character­

istics may not be a trivial task. Chapter 6 explores methods of measuring energy at a time 

granularity corresponding to task execution, and develops a low-cost hardware measure­

ment device that can provide accurate energy measures without requiring intrusive system 

modifications or complex statistical analysis. If even this is considered too costly, some 

simple models of predicting task energy requirements are investigated and evaluated against 

actual measurements.

Each of the technical chapters includes a discussion of related work, covering relevant 

research on OS optimizations, DVS techniques, and task adaptation methods. The final 

chapter presents some concluding remarks and comments on some potential future direc­

tions.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2

Improving Energy Efficiency of OS Services

Improving software performance has always been a goal of software developers. Op­

erating system performance is in particular well studied, as reducing OS overheads im ­

proves performance for all applications that use OS services. OS developers already use 

handcrafted code in critical sections and employ profiling and com plier tricks to reduce 

service overheads and improve performance. From an energy consumption perspective, 

the reduced overheads translate into fewer processing cycles spent on a particular service 

routine, which directly translates into less energy consumed for the service. The saved en­

ergy and computing cycles are available to applications to perform useful work, reducing 

the energy cost per unit of useful work. Therefore, by optimizing an OS for performance, 

one also gains in terms of energy efficiency.

There are two philosophically-opposed approaches to improving OS service energy 

efficiency. The first approach maintains all service semantics and interfaces unmodified, 

ensuring all existing software work correctly as initially intended. With this approach, 

any improvements in energy and performance come from well-studied techniques such as 

compiler tricks (peephole optimizers, loop unrolling, etc.) and hand crafted inner loops 

or critical sections. These techniques are already used extensively in general operating 

systems, and there is limited scope for significant additional improvements.

The opposing approach is to identify characteristics of the type o f platform and ex­

pected applications, and modify the standard service interface to best suit this expected 

use. By changing the behavior of the service, the system can be better optimized to the 

expected common-case scenario, rather than be saddled with a generic, general-purpose

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



implementation. In particular, for handheld, embedded platforms, characteristics such as a 

generally static set of applications, or real-time scheduling, can be exploited to simplify or 

reduce the execution overheads of various OS services.

This chapter first surveys some of the techniques developed by the author and others 

for the EMERALDS operating system [95], EMERALDS is a small, real-time microkernel 

intended for embedded systems. In the development of EMERALDS, OS services and 

interfaces have been modified to optimize for the expected use in small, embedded systems. 

These modifications can boost both performance and energy-efficiency of the services.

The second half of this chapter explores protocol processing and layer bypassing for 

Internet-enabled multimedia devices. Although originally proposed for EMERALDS [94], 

early work was based on archaic hardware assumptions. This chapter revisits protocol-layer 

bypass techniques under FreeBSD using modern network interface adapters, and evaluates 

the potential for energy savings.

2.1 Service Optimizations in EMERALDS

The EMERALDS (Extensible Microkernel for Embedded, ReAL-time Distributed Sys­

tems) is a small research operating system that has been under development at the Univer­

sity of M ichigan. The goals of this OS are to provide an OS designed particularly for 

small-memory, embedded systems, with only the components necessary for such systems. 

Services in EMERALDS include hard real-time scheduling, synchronization and priority- 

inversion control, multithreading, and interprocess communications. Networking support 

(CAN control bus and IP protocol stacks) can be optionally included with the core OS ser­

vices. As large non-volatile storage is not typical in most embedded systems, filesystem 

support is not included in EMERALDS.

The optimizations incorporated into EMERALDS focus on exploiting unique charac­

teristics of embedded software on small platforms to modify OS service semantics to re­

duce processing overheads. By modifying service interfaces and behaviors, the system is 

optimized for the common-case scenario expected with embedded systems, reducing over­

heads and processing energy costs when compared to the unmodified, general-case service 

semantics.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1.1 Exploiting Static Characteristics

In most embedded and handheld devices, the actual application set is either static, or 

changes very rarely. Often, the entire set o f application tasks is known and fixed when the 

system is built. In such systems, the shared resources among the tasks can be analyzed 

offline, and resource locators can be statically compiled into the tasks or inserted at a fi­

nal link /  load stage when the system is burned to ROM. EMERALDS uses this approach 

to eliminate naming and resource discovery services for application task using shared re­

sources, such as shared memory segments, semaphores, etc. The overheads of accessing 

these resources is reduced by eliminating one layer of indirection, since the fixed locators 

are linked into the tasks.

Indirection is also reduced in OS system calls. The original EMERALDS system call 

mechanism uses direct addressing of the kernel service routines, with only an additional 

overhead of switching to protected kernel mode. This eliminates service call lookups and 

redirection, as well as the need for a generic interface to handle an arbitrary number of 

parameters. This requires that the tasks be compiled with, or finally linked against the 

symbol table of the kernel so the correct addresses of functions are used. Furthermore, 

when using virtual memory, the kernel address space must be mapped into each task’s page 

table. As embedded systems tend to have small physical memory compared to very large 

virtual address spaces, this presents no real restrictions on applications.

Both of these mechanisms also work when tasks are dynamic. In this case, the final 

task loader/linker needs to perform the additional step of fixing the resource locator values 

or kernel function addresses into the task binary image. These mechanisms trade off in­

creased complexity at system generation or application task load time, for reduced service 

overheads. As the task set is static or changes very infrequently in embedded systems, this 

one time or infrequently incurred additional cost is outweighed by the overhead reduction 

in every single system call performed.

2.1.2 Improved Real-Time Scheduling

Priority-based real-time schedulers assign priority levels to tasks, executing the highest 

priority task that is ready to run at any given time. The priority assignments may be fixed

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



or dynamic, depending on the scheduling algorithm used. Fixed-priority (FP) scheduling 

is generally simpler, but, due to limitations inherent to the approach, may not be able to 

schedule task sets that fully utilize the available computational capacity. Depending on the 

frequency and execution times of the tasks, up to around 22% of processing capacity may 

need to be left idle to ensure all deadlines are met when using an optimal fixed priority 

scheduler [45],

With dynamic-priority (DP) scheduling, particularly earliest-deadline-first (EDF) schedul­

ing, task priorities are changed continuously based on the current deadlines for the running 

tasks in the system. Ideally, this paradigm can schedule task sets that fully utilize the pro­

cessor, assuming scheduling and preemption costs are negligible. However, the scheduling 

here incurs greater overheads than with an FP scheduler, since this requires dynamically 

sorting tasks by priority or scanning for the highest priority task at each scheduling point. 

Particularly in a system with a slow processor, or a large number of high-frequency periodic 

tasks, this scheduling overhead can be substantial.

To alleviate this, EMERALDS introduces the combined-static-dynamic (CSD) sched­

uler. With CSD, a carefully selected subset of the tasks are scheduled with DP techniques, 

while the rest are assigned fixed priorities. Fewer tasks in the DP subset means that the 

DP scheduling overheads are incurred less frequently, and as the dynamic task queues are 

shorter, each occurrence is reduced when compared to a purely DP scheduling approach. 

The remaining tasks incur only the lower FP scheduling overheads. The net effect is that 

CSD can schedule any task set that a DP scheduler can, but will incur lower (or, in the 

worst case, no greater) total scheduling overheads. On a 25 M Hz 68040 platform with 

10-20 real-time tasks, CSD techniques can reduce total scheduling overheads by 50-66% , 

recovering up to 3-5%  of total processing capacity and energy consumption for use in ap­

plication tasks [95]. Although the total processing capacity recovered will be smaller with 

faster processors, the relative improvement in scheduling overheads will remain.

2.1.3 Synchronization Issues

A very critical service in all operating systems is a mechanism of synchronizing access 

to shared resources by parallelly executing tasks in in order to prevent data corruption. 

Generally this will involve a semaphore or a simple mutual exclusion lock (mutex). W hen

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



there is no immediate contention, the mechanisms are fairly efficient. However, when one 

task tries to access a resource that is already being used, the system will suffer significant 

overheads. In particular, a very common concurrent access situation is as follows:

1. System switches to Task A (starts / resumes from blocking call)

2. Task A tries to lock a mutex held by lower-priority Task B

3. Switch to Task B, due to priority inheritence [76]

4. Task B relinquishes lock

5. Switch back to Task A

This sequence entails 3 very costly context switches. EMERALDS addresses this by noting 

that if it is known at the start that Task A is going to access a lock held by Task B, the OS 

should directly switch to Task B until the lock is relinquished, and then switch to Task 

A, eliminating one context switch. This is implemented by modifying the interface to 

blocking system calls to provide a hint to the OS indicating the lock, if any, the application 

will try to access on resumption. As context switches dominate the service time, the new 

mechanism may eliminate up to 33% of the energy and processing overheads associated 

with concurrent access attempts to shared resources. Other work has also tried to reduce 

the overhead of semaphore operations by either relaxing the semaphore semantics [84] or 

devising vastly different synchronization policies [86],

One other method of reducing synchronization overheads is to try to eliminate the syn­

chronization altogether. Interprocess-communication (IPC) requires either a heavy-weight 

mailbox-type approach, or a shared data area protected by a mutex. Various research 

projects [9 ,38,63] have devised techniques of IPC that involve no synchronization of data 

access, particularly for situations where there is a single writer and multiple readers. This is 

very common in embedded systems, such as in a task that samples and processes a sensor 

input, and publishes this information to all other tasks. However, such synchronization- 

free IPC mechanisms generally incur substantial processing overheads of their own. State 

messages and non-blocking write [34,95] exploit the periodic real-time nature o f many 

embedded systems, using the guaranteed execution timings and a set of cyclical buffers to 

ensure uncorrupted access, while reducing overheads to that of accessing unprotected glob­

ally shared data. Unfortunately, this may require a very large number of buffers, or the need

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to fall back to synchronization to keep memory use in check. More recent work, also in­

corporated into EMERALDS, extends existing wait-free IPC mechanisms to use temporal 

isolation [25], reducing processing and energy requirements 17-66%, while simultaneously 

reducing memory requirements.

2.1.4 Layer-Bypassing in Internet Protocols

In order to minimize energy expenditure in embedded network communication, one can 

devise custom energy-conserving communication protocols that incur very low processing 

overheads and minimize energy expenditures on handshaking, retransmissions, or other 

protocol control transmissions. However, embedded systems often need to communicate 

with external computers through standard wide-area networks. In such a case, support is 

needed for standard Internet protocols (TCP & UDP/IP). Unfortunately, these protocols 

were not developed with low-power, small embedded systems in mind, so they tend to be 

fairly processing- and energy- intensive.

In particular, significant processing overheads occur in the protocol stacks checking for 

error conditions. Extensive error checking is not needed in many embedded applications. 

In some applications, such as in video streaming to a handheld device, or audio-video con­

ferencing, very little protocol-level error detection is needed, since any errors will only 

cause loss of some quality or transient “static” in the output. As these applications are soft 

real-time in nature, TCP’s error-correction mechanism through retransmission is likely to 

provide stale data that must be discarded. Furthermore, some encoding techniques, partic­

ularly for audio, incorporate forward error correction (FEC) that allows the application to 

fix corrupted data. In such a case, quality of the output may actually be hurt by the error 

detection and drop at the protocol layers.

In this context, EMERALDS provides the option to bypass network protocol processing 

and, instead, allow application-level processing suited to the needs of the specific task. 

This is, in essence, a form of lazy-receiver processing (LRP) [14]. The novelty in the 

EM ERALDS implementation comes from  com bining LRP with a single-copy architecture 

that performs any protocol processing within the buffers on the network interface, and 

copies data directly to user space, eliminating the intermediate copy to kernel memory 

before processing [96]. The single-copy mechanism does not require specialized hardware

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



on the network interface as in some other approaches [12,55], The elimination of the copy 

step, applicable to all incoming packets, and the elimination / bypassing of general-purpose 

protocol processing can significantly reduce networking energy costs.

Unfortunately, the EMERALDS implementation is tied to an archaic network interface 

architecture that has multiple on-board receive buffers, and depends on the CPU to trans­

fer packets to main memory. The rest of this chapter revisits layer-bypassing of Internet 

protocols and extends the work to support zero-copy techniques with a modern network 

interface architecture and stream lined network stack.

2.2 Protocol Processing in Embedded Internet Devices

Internet-enabled devices are becoming increasingly common and are evolving to handle 

a wide array of multimedia content available through on-line services, particularly through 

multimedia streams. In portable Internet devices, based on cellular phones or PDAs with 

wireless networking, energy consumption and battery life are major issues, so these devices 

will greatly benefit from any improvements to the energy overheads o f Internet protocols.

In the design of an energy-efficient embedded system, one can readily devise a com ­

munication protocol that is very efficient in terms of computation overheads and energy 

consumption for handshaking, retransmissions, and other control-related protocol trans­

missions. Unfortunately, in the domain of handheld and mobile Internet devices, these 

small, embedded systems must be able to communicate with computers world-wide using 

standard Internet protocols (TCP and UDP). These protocols were designed primarily with 

the goals of decentralized control, robust communications, and an end-to-end paradigm, 

and were not designed with low-power embedded systems in mind. As a result, TCP and 

UDP require substantial resources at the end hosts, and tend to be fairly processing- and 

energy-intensive.

However, in the domain of m ultim edia on hand-held devices, there are some optim iza­

tions that can be made to reduce the computation and energy loads incurred with IP. In 

particular, a significant part of the network protocol processing is spent on two main activ­

ities: testing for error conditions, and computing checksums. The error checking detects 

relatively rare events, such as lost packets or out-of-order packets, as well as handling

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



easily-avoided issues such as fragmentation and reassembly. These services are needed 

in general-purpose Internet protocols to ensure robustness on a wide variety of underlying 

network technologies and to adhere to the end-to-end ideal. For multimedia on hand-held 

devices, particularly for streaming audio and video, however, much of this will not be 

used. Fragmentation can be avoided by performing a simple M aximum Transmission Unit 

(MTU) discovery protocol prior to streaming the data to ensure packets are not broken 

up by the network. Since audio and video are soft real-time applications, late data is not 

useful past a certain time, dictated by the frame rate or sampling interval. Therefore, re­

transmission of dropped or corrupted packets is not useful for these applications unless a 

fairly long duration of data is buffered ahead of time. The use of forward error correction 

in streamed multimedia can better recover from corruption without incurring any delays 

due to retransmissions, and can be negatively impacted by protocol-level error detection 

through checksumming. Furthermore, streamed audio and video are meant to be viewed 

by human users, so unlike other kinds of data communication, they are fairly tolerant of 

errors. Any lost or corrupted packets of data are not catastrophic, and merely result in de­

graded quality, often perceived as static or transient skips. The computationally-intensive, 

and therefore energy-intensive, task of error detection through checksum computation in 

the UDP and TCP protocols is unnecessary in these applications.

As a result, most of the Internet Protocol stack processing for received multimedia 

streams may be entirely bypassed, saving considerable computation time and energy. A 

modified networking stack on Internet multimedia stream player devices can employ a 

packet filter [19,54] in the lowest software device driver level to quickly sort the multi- 

media packets from other data packets. W hile the latter will traverse the ordinary proto­

col stacks to benefit from the robust, end-to-end communications provided by the Internet 

protocols, the majority of the packets (audio and video) will be diverted to an energy- 

conserving alternate stack. This will bypass the costly checksumming and error correction 

steps, or deliver the packets directly to the application, allowing for application-level pro­

tocol processing or LRP[14], By combining this with a single-copy architecture, as im ­

plemented in EMERALDS, significant energy and processing overhead reductions can be 

realized.

Unfortunately, the EMERALDS implementation is strongly tied to a particular network

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



interface architecture not commonly used today. Therefore, we extend this work to im ple­

ment protocol layer-bypassing and zero-copy mechanisms using modern network interface 

card (NIC) architectures. In particular, UDP packet reception on a FreeBSD kernel is m od­

ified to to reduce energy and processing overheads in streamed multimedia applications.

2.2.1 Network Interface Architectures

The EMERALDS layer-bypassing and single-copy mechanism provides low-overhead 

networking for embedded applications, without requiring significant support or specialized 

features on the NIC hardware. It assumes a NIC architecture similar to the LANCE chipset, 

an unassuming architecture that provides a basic Ethernet interface. The NIC uses on-board 

buffers to store received packets, and depends on the processor to transfer them to main 

memory, typically a kernel buffer where protocol processing occurs. After this, data is 

copied a second time to the user task’s buffers. The novelty in the EMERALDS approach 

is that the kernel preforms any processing directly in the NIC receive buffers, requiring 

only a single data copy to the application buffer.

M ost current NICs do not have this type of architecture. In particular, they do not 

use on-board buffers that are exposed to the host processor. Instead, to alleviate process­

ing overheads, they employ direct memory access (DMA) or busmastering techniques to 

directly write received packets into kernel buffers. Hence, they are not amenable to the 

EMERALDS approach. How layer-bypassing may work in a system that uses a DM A- 

based NIC is considered next.

2.2.2 Packet receive operation

Normal operation of a datagram packet receive is shown in Figure 2.1. The application 

first sets up a socket to accept packets on some UDP port. It then creates a buffer to receive 

the packet and makes a receive call that causes it to block until a packet is available. On the 

system side, nothing occurs until a packet arrives at the Ethernet interface. The card uses 

DMA to write the incoming packet to a preassigned kernel buffer, called an m buf[91]. All 

of this occurs entirely in hardware. Once the packet has been buffered, the hardware signals 

an interrupt to the processor, which then jum ps to the device driver interrupt handler in the

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Application
create buffer 

open socket

Icall recvf rom ()

(blocks)

 System
packet receive on link

j
DMA to kernel buffer 

|  (interrupt) 

low-level driver

generalized ethernet

I
IP processing

I
UDP processing

I
sockets processing ;

 L

in hardware

(unblock)

copy to user buffer 

|  (return to application)

Figure 2.1: Normal datagram reception

kernel. After a quick check to see if  a packet arrived (since the card may signal interrupts 

on events other than packet arrival) and some hardware state clean-up code (which includes 

assigning a free mbuf for a future packet), the low-level device driver passes the packet up to 

the generalized Ethernet driver, the lowest software level of the protocol stack. The packet 

is processed and passed up through the IP and UDP layers to the application interface 

(sockets) level.

A  few optimizations are already incorporated in BSD to reduce the overheads of pro­

tocol processing. The packet is “passed” between protocol layers by simply passing the 

pointer to its mbuf, and as much as possible, the packet is processed in situ, thus avoid­

ing costly memory-to-memory copying. As a further optimization, the interrupt handler 

relinquishes control of the processor in the generalized Ethernet level, limiting the dura­

tion of preemption due to the hardware interrupt. A separate kernel routine, triggered as a 

“software interrupt,” continues packet processing for the higher protocol layers.

When processing is complete, the receiving task unblocks and the receive system call 

continues. The system call copies the packet into the application’s buffer, checking for 

buffer length, segmentation problems, and other errors that may occur with application-

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



specified pointers. Finally, the receive call completes, returning control to the application.

With effective use of in-situ processing, this receive operation essentially implements 

a single-copy architecture, since the processor needs to perform only the final memory- 

to-memory copy into the application receive buffer. However, this still entails two major 

data-touching operations: performing the UDP checksum and copying data to the task 

buffer. Layer-bypassing will avoid the former, while a zero-copy extension will eliminate 

the latter’s overheads.

2.2.3 Modified packet receive operation

This work implements a version of IP layer bypassing on the FreeBSD 2.2.8 kernel. 

The approach taken involves bypassing the entire receive-side protocol stack above the 

device driver, and directly delivering received packets to the applications. To do this, a new 

system call is introduced that applications can use to request layer-bypassing and retrieve 

received packets. This call provides semantics similar to the standard receive from socket 

call for UDP, but internally sets up packet filtering and performs layer-bypassing to avoid 

the computational and energy overheads of UDP/IP.

In order to evaluate the overhead reductions of the layer-bypass mechanism, protocol 

timing support is also implemented in the kernel as well. A very low-overhead mechanism 

(just a few machine instructions long) records a timestamp for any packet that contains a 

“magic number” as it is received or sent out at the lowest software driver level. This uses a 

64-bit hardware cycle counter found on all Pentium-class and higher Intel microprocessors, 

and can easily provide sub-microsecond precision. A second system call is introduced 

that returns this timestamp to the benchmarking application to determine total protocol 

processing times. Figure 2.2 summarizes the API for these two new system calls.

The UDP packet recieve operation in the modified kernel is outlined in Figure 2.3. 

From the view of the application, everything looks the same, except that the new d i -  

r e c t _ d e l  i v e r  () call is used. In contrast, on the system side, differences occur as soon 

as the interrupt handler begins execution. After the usual checks and state clean-up, the de­

vice driver performs some minimal packet filtering, quickly scanning for particular packets 

with little incurred overhead. In this case, packets are checked to see if they contain a par­

ticular “magic number” in the header; if so, these are assumed to be packets used for timing

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



int direct_deliver ( int sockfd, char* buf, int buflen )
Receive packet on UDP socket s o c k f d ,  return it in buffer b u f  of length b u f l e n .

int proto_time ( int svc )
Retrieve receive time ( s v c  = 1) or transmit time ( s v c  = 0) at the device level 
for the most recent protocol timing packet (contains magic number). Returns the 
lower 32 bits of the CPU cycle counter at time of packet arrival.

Figure 2.2: API for new system calls

the protocol stack, and the arrival time (64-bit processor cycle counter) is saved. This can 

be done very quickly, since the test is a simple read and compare, and the timestamp is 

obtained through a single machine instruction. A second test compares the destination port 

o f UDP packets with the receiving application’s port; if it matches, then layer-bypassing 

occurs, the packet m buf is added to a receive queue, and the task is unblocked before the 

interrupt handler exits. The fail-through path of this filtering step follows the normal pro­

tocol processing steps. Once the task has unblocked, the system call will copy the packet 

into the application’s buffer and return control as in the normal processing case.

This implementation ensures that certain aspects remain completely compatible with 

unmodified code. In particular, the application socket setup mechanism is identical to the 

normal networking case, so the only apparent difference to application is the system call 

used to retrieve the packet. The new system call takes care of any state manipulation setting 

up and removing bypassing transparently. On the other hand, in the low-level packet re­

ception code, elimination of overhead is the goal. Instead of extending the general-purpose 

Berkeley Packet Filter (BPF) to support the layer bypass, a very small, custom filter is used 

in this design, sacrificing widespread applicability for smaller, faster code.

2.2.4 Layer-bypass Performance

Several experiments have been performed to test the improved efficiency obtained from 

this layer-bypass mechanism. These experiments are run on the FreeBSD testbed illustrated 

in Figure 2.4. It consists of four HP Kayak XA computers, with 450 M Hz Intel Pentium II 

processors, connected by switched 100 Mbps Ethernet. Since the layer-bypassing begins 

at the lowest software level and requires modifications to the network interface driver, all 

o f the machines use the same type of Ethernet card (SMC EtherPower II, 100 Mbps). All

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Application System
create buffer 

+
open socket 

call d i r e c t  d e l i v e r  ()

(blocks)

packet receive on link

I
DMA to kernel buffer 

|  (interrupt) 

low-lev|l driver

packet filter ------

I
generalized ethemet

I
IP processing

I
UDP processing

I
sockets processing 

 1
copy to user buffer

|  (return to application)

in hardware

(bypass)

(unblock)

Figure 2.3: Normal datagram reception

To
Network bsd5

I ; t

rmTxrrrnTH m m  
100 Mhz Pentium

100 Mbps Switched Ethemet

Plb n C:rD r— .rr::

L-Jh . . Ld __ -------
-----   ̂  ̂ = o

450 MHz Pentium II 

Figure 2.4: Testbed

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



normal 
“layer bypass

-X

16 bytes packet slze 1024 bytes

Figure 2.5: Receive-side processing latency

are running FreeBSD 2.2.8, with modifications introduced on machines bsd2 and bsd3. A  

fifth computer, bsd5, also running the modified kernel, is an older generation platform and 

has a Pentium 100 Mhz processor. This last machine is intended to be much closer in per­

formance to Internet appliances and representative o f the processing power to be available 

on hand-held and embedded devices today, while the former are more representative of the 

embedded, mobile processing power expected in the near future.

UDP Receive Processing Overheads The first set of experiments compares total packet 

receive protocol processing overheads with and without the normal layer-bypassing mech­

anism. Machine b sd l runs an UDP echo server application that simply receives any packet 

on its listening port and sends it back to the source. Bsd3  performs the actual protocol 

processing time measurements. The measurement application creates a datagram packet 

containing the magic number to ensure that the kernel records the transmit and receive 

times at the device driver. The application records the transmit and receive times seen at 

the user level just prior to the send system call and just after returning from the receive sys­

tem call. The difference between the device driver and application level numbers indicates 

the duration that the packet spends in the kernel for protocol processing, data copying, and 

other related kernel overheads.

The total latency between packet arrival at the low-level device driver code and receive 

completion at the application level is measured for both small (16-byte UDP) and large 

packets (1024 byte UDP). Figure 2.5 shows the average times measured and indicates the 

range of values observed. Overall, the layer-bypass mechanism is able to significantly 

reduce the processing overheads, cutting processing between 36% and 62%, depending on

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



packet length. Interestingly, the longer packet actually exhibits a lower percentage savings 

than the shorter one. One would expect that due to fixed overheads (such as from blocking 

or system call mechanism), there would be diminishing returns for the small packet size 

and that the improvement would be lower than for the long packet.

This counter-intuitive behavior can be explained by looking closely at the processing 

steps in Figures 2.1 and 2.3. There are normally two main data touching steps: the UDP 

processing (due to checksums) and the final copying to application memory. These oper­

ations are not independent. Specifically, by performing the UDP checksum, the processor 

reads the entire packet into the data cache. As a result, the memory copying is greatly accel­

erated, since data reads are served from the cache rather than from the relatively slow main 

memory. The layer-bypassing mechanism eliminates the extra processing of the checksum, 

but also eliminates most of the beneficial prefetching to cache. As a small, fixed part of the 

packet is cached anyway as a side effect o f the header examination, the memory copying 

for short packets suffers less than for the long ones, resulting in better percentage gain for 

short packets with layer-bypassing.

Elimination of blocking effects

The total receive side latency includes protocol processing, task blocking, and memory 

copying overheads. To determine how much of this is due to blocking and context switch­

ing overheads, a second series of experiments uses nonblocking receive mechanisms to 

eliminate blocking from  the measured latency. In general, this does not involve changes to 

the kernel, as support for nonblocking socket calls are already built-in. However, the new 

layer-bypassing receive mechanism does need minor modifications to support nonblocking 

calls.

The experimental setup is identical to those before, except that the measuring task now 

uses nonblocking calls. The task enters a polling spin-loop, continuously making the non- 

blocking receive call until it succeeds. Because of the nonblocking call, the task is never 

switched out, avoiding one context switch and the overheads of updating the kernel task 

structures on each receive, resulting in a shorter receive-side processing latency.

The results of these experiments are shown in Figure 2.6. Overall, blocking effects seem 

to incur a fixed overhead of approximately 2/rs regardless of packet size or whether layer-

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.6: Receive-side processing latency, nonblocking calls

bypassing is used. As a result, the absolute latency reductions from layer-bypassing are 

not significantly changed. The percentage improvement is somewhat greater (40% to 65% 

depending on packet length) because o f the smaller values used as the basis of comparison.

Although these numbers show a shorter latency, using nonblocking will not be very 

useful in the context of conserving energy. Any savings from the eliminated context switch 

and reduced kernel structures updates are overshadowed by the wasteful polling and spin- 

loop in the application that performs no additional useful work. However, in an application 

where latency is the most critical factor, this nonblocking, polling can shave an additional 

couple o f microseconds from the receive latency.

Effects of slow processors

The experiments above were all performed on machines with processors that are faster 

than those in handheld devices today, but comparable in performance to high-performance 

handhelds expected in the near future. To evaluate benefits for platforms with lower- 

performance processors, as can be expected in today’s hand-held multimedia devices and 

PDAs, these experiments are repeated using a computer with a 100 MHz Pentium proces­

sor. The latest PDAs, with 400 M Hz XScale processors, may already be faster than this 

machine when peak processor throughput alone is considered.

In this series of experiments, the echo server continues to run on bsd2, but the tim ­

ing task is now executed on bsd5, the slower computer. Nonblocking calls are still used 

here. The results are summarized in Figure 2.7. Clearly, the total processing time is much 

greater on the slower machine, but not the 4.5x that the processor frequencies may imply.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100
normal

layer bypass -----
p B -80

60 -
- i n

-

'40 - _ -
1 i

20 -

1 >

! ! “

16 bytes packet size1^24 bytes

Figure 2.7: Receive-side processing latency with slow processor

This is because not all of the system scales up with processor speeds. In particular, the 

main memory on the faster machines is only clocked only 50% higher than on the slow 

machine (100 M Hz vs. 66 MHz). Despite this, the relative savings due to layer-bypassing 

(55% to 74% depending on packet length) are greater than for the fast machines. This is a 

consequence of the improved architecture in the newer processors, which can perform the 

computations such as the UDP checksum in fewer cycles, so they do not benefit as greatly 

(in terms of latency) as the older-generation processor from  layer-bypassing. Regardless, 

the total processing overhead reductions are very large in both the slow and fast processor 

configurations.

2.2.5 Zero-Copy Extension

In the previous section, layer bypassing is used to eliminate processing overheads of 

protocol processing for multimedia applications. In particular, data-touching operations for 

checksumming the received packet is removed. However, there still remains one expensive 

memory-copying step to transfer the data to user buffers. Here, a zero-copy extension is 

used to eliminate this overhead as well.

The approach taken in this extension uses the virtual memory system to remap buffers 

between the kernel and application memory spaces, avoiding the need to copy data for the 

final step of a packet receive operation. In particular, the new receive system calls are 

modified to swap the application-specified buffer’s physical memory page with that of the 

kernel mbuf cluster containing the packet. Page remapping has been used to reduce copying 

in [11] and [88], but the particular physical page swapping implemented here requires

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



much less modification of the VM system, as page allocation is unaffected and there is no 

net change in the number o f pages held by either the kernel or the application task when 

remapping is performed. The approach taken in fbufs[\5]  also provides buffer remapping, 

with potentially lower overheads than the approach here, but it also requires extensive VM 

and OS modification to use fbufs rather than the existing buffer mechanisms.

In order to use the simple physical page-swapping mechanism to remap the kernel and 

application buffers, several key criteria must be enforced. M ost importantly:

1. There must be no other data sharing the physical memory page with the buffers.

2. The buffers must fit completely within the page, and not span two or more memory 

pages.

As the page size on Intel processors is 4096 bytes, and the Ethernet M TU is 1500 bytes, 

buffer length is not an issue. Since the kernel always allocates new m buf clusters aligned 

to page boundaries, the latter issue is not of concern. To fix the first issue, the mbuf cluster 

size is increased from the default 2048 bytes to 4096 bytes, thus ensuring no other data 

shares the page. This does increase memory usage, but since the number o f outstanding 

mbufs is typically low (a few dozen), this does not present a very heavy burden. On the 

application side, the only sure approach to having a clean memory page for the buffer, 

without modifying the memory allocator, is to allocate twice the needed memory (8096 

bytes) contiguously, and use a page aligned block within this as the buffer.

The receive calls now swap the application buffer and mbuf physical pages by changing 

the entries in the hardware page table. In addition, they must change a variety of data struc­

tures in the kernel to ensure that the view of memory page allocation remains consistent. 

Finally, the translation look-aside buffer (TLB) of the processor, which caches page table 

information to accelerate memory access, is flushed of the relevant entries.

All of this complexity is to provide the zero-copy approach on systems with memory 

protection. On an embedded platform that does not have or does not use memory protec­

tion, this becomes trivial. The application can access any memory, so the receive calls need 

to only return the pointer to the kernel buffer containing the received packet.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



normal
2b zero copy

20 _ _T

15 “ -

10 - _

5 " j ; ~

16 bytes packet size 1024 bytes

Figure 2.8: Receive-side processing latency, zero-copy

normal • 
zero copy •

16 bytes packet size^®^ bytes

Figure 2.9: Receive-side processing latency, zero-copy, slow processor

2.2.6 Zero-copy Performance

The combined layer-bypassing and zero-copy mechanism is re-evaluated on the same 

testbed. In these experiments, once again, bsd2 is the echo server, and bsd3 or bsd5 host 

the measurement application. Blocking calls are used in this series of experiments. The re­

sults of the combined layer-bypassing and zero-copy mechanisms are shown in Figures 2.8 

and 2.9.

The first thing that stands out is that with the combined layer-bypass and zero-copy 

architecture, the receive side latency is constant for both short and long packets. This is a 

direct consequence o f eliminating all data-touching overheads in software. The only data- 

touching step is in transferring the packet from the network interface to kernel memory, but 

this is all done by DMA in hardware, and does not incur processing overheads. As a result, 

the improvement is much greater for long packets than for short ones (approx. 52% to 65% 

on both the slow and fast processors).

Secondly, when compared to the results from layer-bypassing alone (Figure 2.5), laten-

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cies are increased for short packets when the zero-copy mechanism is introduced. This is 

a direct result of the overheads introduced by changing the page table entries. Although 

modifying the hardware page tables is straightforward and fast, the page structures in the 

kernel require wading through a variety of complex structures and lists. Moreover, it is 

necessary to flush the entries from the processor TLB, which causes further slow-down as 

the entries are fetched on subsequent memory access. These overheads are quite large in 

relation to the few cycles needed to copy a 16 byte packet. However, for long packets, a 

substantial savings is realized by avoiding the memory copying step.

2.3 Conclusions

One critical aspect of a software-centric approach to improving the energy efficiency of 

embedded and mobile devices is to improve the energy efficiency of the operating system 

services. This entails reducing the processing overheads and the corresponding energy con­

sumption of the services. A survey of some of the techniques implemented in the EM ER­

ALDS operating system shows that reductions in service overheads can be achieved when 

service semantics are changed and optimized for the intended embedded applications. M ost 

show modest, but measurable reductions in processing overheads.

The more in-depth study of protocol layer-bypassing and zero-copy buffering shows 

significant reductions in processing overheads can be achieved for multimedia streaming 

applications that do not need much of UDP/IP error handling mechanisms. Significant 

improvements of up to 65% of the OS service overheads in a packet receive operation 

may be eliminated for such applications. Based in the power consumption of the Intel 

Pentium  and Pentium II processors used in the experiments [30,31], up to 0.7mJ may be 

saved per packet received. Of course, if layer-bypassing is used to simply im plem ent LRP 

techniques, then most of the protocol overheads will simply be deferred, and the saved 

energy and processing cycles consumed later.

The various techniques of reducing service overhead can impact the energy im pact o f an 

operating system, freeing processing and energy resources for more useful computations. 

W hen this surplus capacity is used by applications on useful work the energy efficiency of 

the system in terms of energy cost per unit of useful computation, is increased. However,

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the main drawback of relying solely on overhead reduction to improve energy-efficiency, 

is that if the system cannot make use of the extra time gained, energy will be squandered 

in idle loops. Hence, these techniques will work best in conjunction with other techniques, 

such as software-controlled hardware power-down, that can reclaim energy that would oth­

erwise be wasted in an idle system.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3

Sprint-and-Halt Scheduling for Energy Reduction in

Real-Time Systems with Software Power-Down

The previous chapter introduced various techniques to optimize OS services for small, 

embedded systems and thereby improve the energy-efficiency of computational tasks. This 

chapter investigates a second aspect o f software-centric techniques of improving embed­

ded system energy efficiency —  algorithms for maximally exploiting hardware energy- 

conserving in a real-time system context.

This chapter introduces a class of sprint-and-halt schedulers that attempts to maximize 

the energy savings of software-controlled power-down mechanisms, while simultaneously 

maintaining hard real-time deadline guarantees. Several different algorithms are proposed 

to reclaim unused processing time, defer processing, and extend power-down intervals 

while respecting task deadlines. Sprint-and-halt schedulers are shown to reduce energy 

consumption by 40-70%  over typical operating parameters. For very large or small state 

transition latencies, simple approaches work very close to theoretical limits, but over a crit­

ical range of latencies, advanced schedulers show an additional 10-20%  energy reduction 

over simpler methods.

3.1 Introduction

In recent years, there has been a significant shift toward mobile computation and com ­

munication platforms and devices. This shift has occurred in both the realm of general-

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



purpose computing with an increase in the use of laptop computers and PDAs, and in 

the embedded computing realm with the increasing popularity of digital cameras, cellular 

phones, and portable medical devices running complex applications and operating systems 

on embedded microprocessors. Critically constraining these systems is the limited stored 

energy available in a portable form factor, as there is a fundamental trade-off between the 

weight and size of the device, the processing speed of the processor, and the useful battery 

life o f device.

Unrelenting market pressures have created increasingly-sophisticated applications in 

increasingly-compact devices, such as multimedia and web capabilities on cell phones and 

gaming on PDAs. These demanding applications require the use of more powerful proces­

sors to provide the user a responsive experience. Attempting to use simpler, less-capable 

processors to improve battery-life in consumer devices is not a very marketable option. 

This has made the need for power management to minimize energy waste in such systems 

critical.

There has been recent interest and significant research on Dynamic Voltage Scaling  

(DVS) techniques [6 ,23,90] that attempt to trade off performance and battery life by ad­

justing the operating frequency and voltage of the processor to match the computational 

load on the system. As processors are composed mostly of CMOS logic gates, the en­

ergy expended is proportional to the charge on the gate capacitances, and thus, a quadratic 

improvement in energy is attained when voltage is reduced. However, DVS requires soft­

ware adjustable voltage regulators and clock generators that may not be available on many 

platforms.

M ore generally available is the much simpler concept of a software-controlled pow er­

down  mechanism. This may take a variety o f forms. One simple form is a processor h a l t  

instruction that will effectively stop the CPU core, and keep it in a low-power, standby 

state until a subsequent interrupt. This is a low-overhead, fast operation that can simply be 

invoked in place of an idle-loop to reduce wasted energy by the processor. More generally, 

there may be some mechanism to place various system components into a standby state, 

incurring a finite time overhead to power down and up the system.

This time overhead of switching hardware power states adds complexity to managing 

power in embedded devices. In particular, these devices often require strict timeliness

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



guarantees for executing their resident tasks. In such systems, any adjustment of hardware 

power states must ensure task deadlines are not violated while maximizing energy savings.

In this chapter, we propose and evaluate a class of sprint-and-halt scheduling algo­

rithms that provide real-time task scheduling, while maximizing the benefits of software- 

controlled power-down mechanisms. The rest of this chapter is organized as follows. We 

will first present our general model of software-controlled power-down hardware, which 

is followed by a detailed description of several algorithms for sprint-and-halt scheduling 

of real-time systems. We then evaluate these algorithms with respect to energy savings, 

before ending with conclusions and a discussion of future work.

3.2 Background

As power dissipation becomes an increasingly critical limitation in mobile systems, 

various mechanisms have been introduced to help conserve and reduce wasted energy. The 

most general type of power conservation mechanism is based on changing the power state 

of hardware components, placing them in a low-power or standby state when not actively 

used. For general-purpose systems, mechanisms such as APM and ACPI [1] provide in­

terfaces for software-controlled power-down of the system when not actively used. W hen 

explicitly notified by the user, such as when closing the lid on a laptop computer, or after 

some timeout interval without user input, the system enters a low-power state, and com pu­

tation is halted until a subsequent wake-up event occurs. This works well in laptops and 

PDAs, which are usually idle when a user is not directly interacting with the system. H ow ­

ever, most real-time applications are not considered interactive, and generally need to run 

continuously over extended periods of time. Battery-operated embedded systems cannot 

take advantage of simple timeout-based power-down to conserve energy.

Instead, for such systems, we need to take advantage of power-down mechanisms at 

much finer time-scales, halting operations between executions of periodic tasks. One hard­

ware power-down mechanism that works well here is a processor halt operation. Here, 

a special h a l t  instruction puts the processor to a sleep mode, turning off the execution 

pipeline and disabling further computation. A lthough power is still supplied to the proces­

sor, along with a clock signal, much of the CPU core is deactivated and power dissipation

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is very low. A subsequent event, generally a hardware interrupt, will resume the processor 

core. Using the halt instruction in place of a more traditional idle-loop can greatly re­

duce the wasted energy executing empty spin loops. As the overhead of executing the halt 

operation and resuming on interrupt is very low, on the order of a few processor cycles, 

this mechanism may be safely employed without significantly affecting execution times or 

deadlines.

The halt instruction, if available on the processor, is effective for conserving energy, 

but only within the processing core. The rest of the system, including buses, memory, 

and communication devices, will continue to draw energy at normal rates even when the 

processor is halted. With more sophisticated hardware, a system can provide an interface 

that allows a larger subset of system components to be deactivated under the control of 

software. Timers, memory controllers, and communication ports may be powered down 

to save considerable energy when not in active use. In particular, turning off the main 

system clock-generation circuitry will essentially shut off the processor and memory, and 

often any communications and I/O subsystems as well, saving considerably more energy 

than with processor halts alone. Taking this to an extreme, APM  and ACPI suspend modes 

essentially turn off the entire system after saving all dynamic processor and system state to 

persistent storage, dropping power dissipation to zero.

These lower-power modes do not come for free. Unlike the simple processor halt, 

powering down external subsystems can incur substantial time and processing overheads 

for entering and leaving the low-power modes. In the extreme case of the ACPI suspend 

operation, the operating system must iterate through every system device driver, saving the 

current state, and then copy all memory to disk before powering down the system. Upon 

resume, this process is reversed to restore the system to the exact state it was previously 

in. The overheads for such operations is very high, and will typically require on the order 

of tens of seconds to complete. Although this can greatly reduce power consumption, it 

cannot be used in the short intervals between task invocations in a real-time system. A t 

the opposite extreme, the halt operation incurs negligible to very low overheads, on the 

order of a microsecond, but may not provide significant energy savings in a system whose 

energy consumption is dominated by components other than the processor. Trading off 

power reduction level for improved switching latencies, a moderately aggressive approach

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Power

power-down idle

Rlow — t i me

tdown

Figure 3.1: Parameters of system power model.

may require only a few milliseconds of overhead, such as in waiting for the clock circuitry 

to stabilize on power-up. Various other software-controlled power-down mechanisms can 

vary anywhere between these extremes, trading off power reduction for time overheads.

Regardless o f the actual software-controlled power-down mechanism available in a par­

ticular hardware platform, its use in a real-time system is prim arily affected by the time 

overheads the mechanism incurs and how this would affect the timeliness of task exe­

cution. Therefore, we can generalize software-controlled power-down mechanisms and 

model them as follows. First, for simplicity, we assume that the platform dissipates power 

in a bimodal manner, consuming a constant Pugh when in the active state, and Piow when in 

the power-down state. The transition from active to power-down state takes a constant time, 

tdown• We assume that there exists some time trigger, such as an external real-time alarm, 

that can be programmed to reactivate the system at a specific future time. Once triggered, 

the transition to the active state takes t up time. The average power dissipation during the 

transitions is P tra n s ,  which can be anywhere between P iow  and P h ig h ,  but we will assume 

the worst case of Ptrans =  Phigh unless noted otherwise. These parameters are illustrated 

in Figure 3.1.

We assume that the system follows the canonical periodic real-time task model. Each 

task i is released periodically, becoming ready to execute every t* time units. The task is 

also characterized by a worst-case execution time (WCET) Ci, which indicates the maxi­

mum processing time it needs on each release/invocation. The relative deadline is equal to

3.3 System Model

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



release j =». i task
completion

deadline and
re-release
time

ta sk  i

t ime
t.

Figure 3.2: Periodic real-time task model parameters.

the period, so each task must complete execution within U of its release, i.e., must complete 

by the time it is re-released for its next invocation. These parameters are illustrated in Fig­

ure 3.2. The tasks are scheduled according to either the rate-monotonic (RM) or the earliest 

deadline first (EDF) priority scheduler. These are the most extensively-studied real-time 

scheduling mechanisms and cover a broad range of actual OS implementations. RM  is a 

preemptive scheduler that assigns fixed priorities among tasks, giving the highest priority 

to the most-frequently executed task. EDF, on the other hand, assigns dynamic priority 

based on which task has the most imminent deadline, which varies over time. Assuming 

preemption and scheduler overheads to be negligible, the latter has a nice schedulability 

property that allows one to ensure a set of tasks is schedulable and all deadlines m et by 

simply keeping the total worst-case processor utilization of the task set below one, i.e.,

Using the system models described above, we will in the next section design real-time 

scheduling algorithms that attempt to maximize energy savings from powering down the 

system, while ensuring real-time deadlines are met.

Existing real-time scheduling algorithms were not designed with energy-savings in 

mind. In particular, they do not consider how to incorporate software-controlled power­

down mechanisms in the task schedule, and how to deal with the latencies incurred when 

switching between power states. In this section, we develop several novel algorithm s to 

take advantage of power-down techniques while ensuring the schedulability of the real-

E Ci/U  < 1 [45].

3.4 Sprint-and-Halt Algorithms

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



time task set. These algorithms attempt to rapidly complete all work in the system (thus the 

term “sprint”), and then power down the system as long as possible (thus the term “halt”) 

to maximize the reduction in energy consumption and amortizing the transition latencies 

over long power-down intervals.

3.4.1 Real-Time Schedulers with Power-down

We first consider the standard RM and EDF schedulers and extend them as minimally 

as possible to incorporate power-down control in the task schedule. The goal of this first de­

sign is to ensure schedulability and task deadlines by leaving the actual execution schedule 

unaltered. Rather, this algorithm incorporates power-down such that all execution timings 

are left identical to that of plain vanilla EDF or RM scheduling.

This algorithm tries to replace any idle time in the schedule with a power-down event 

while preserving task timing. However, due to the latency of power-state change, power­

down must be applied only when idle periods in the schedule are sufficiently long to cover 

the transition latencies. Based on the model parameters specified earlier, power-down is 

triggered only when t i(iie >  tdown +  tup, where t i(Uf> is the contiguous idle period in the 

schedule. When power-down is invoked, the system is set to resume execution in t idie — t up 

time, ensuring that the system is in the active state by the time the idle period expires.

Given the real-time assumptions of a task’s relative deadline equal to its period, and a 

work-conserving RM or EDF scheduler, one can very easily com pute t i(ue online. When 

some task completes execution and no other tasks have any computation time remaining, an 

idle period in the schedule begins. This idle ends upon release of the next task, which, since 

the relative deadlines equal the task periods, will coincide with the earliest deadline among 

the tasks within the system. Hence, t idie = D i — t now, where D r is the earliest deadline in 

the system, and t now is the current time when idle would normally start. Figure 3.3 shows 

a pseudocode implementation o f this algorithm. For EDF scheduling, the set of tasks is 

already sorted by deadlines, so adding power-down is trivial. For RM  scheduling, one 

needs to add structures to keep track of the deadlines. In practice, it is not necessary to 

actually sort the task set by the deadlines, as a simple scan to find the earliest deadline is 

sufficient.

This algorithm is very conservative, avoiding altering any timing from the normal EDF

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Assume n  tasks, sorted by deadline:

D \ <  D ‘2 <  ■ • • <  D n

/* this is already needed for EDF */

upon task_release(task i): 

set donei to 0; 

update Di to Di + U; 

resort task list by new deadlines;

/* schedule by RM/EDF priority */

upon task_completion(task i): 

set donei to 1; 

if (for all j ,  donej= l)  then:

tnow = get_current_time(); 

if ( tnow) ^  (tdown tUp) )  then,

set wakeup timer to D x — tnow — tup; 

start power-down; 

else idle;

else:

/* schedule by RM /EDF priority */

Figure 3.3: Real-time scheduling with power-down

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



c k

(a)

Lnow

Task k

a D„
t ime

(b)

:

Task k

; I
t.now D„

time

Figure 3.4: Example of deferral of task execution in work-idle-conserving scheduler,

(a) Original execution schedule; (b) After deferral.

or RM schedule. However, as a result, it can only reduce power consumption under fortu­

nate circumstances when a sufficiently long idle interval occurs in the normal execution of 

the tasks.

3.4.2 Work-Idle-Conserving Schedulers

To improve the energy savings of the previous scheduler, one can try to increase the du­

ration o f idle periods to allow longer intervals in low-power mode and amortize switching­

time costs over longer periods. However, care must be taken to ensure that no task will be 

delayed and miss its deadline.

A class of work-idle-conserving schedulers can help increase such idle durations. W hile 

there are tasks to execute, these schedulers follow the standard work-conserving RM  or 

EDF scheduling policy. However, once all tasks have completed and the system enters 

idle, these schedulers become “idle-conserving” —  they attempt to lengthen the idle period 

by deferring the next arriving task. This must be done conservatively to ensure future 

deadlines are not violated.

To this end, a simple algorithm for execution deferral looks ahead to the next arriving 

task, k, and will limit its effects to just this one task. Task k  will arrive at time D \,  the 

earliest deadline in the system. Between time D x and time Z)2, the next deadline in the 

system, task k  will execute exclusively. If the W CET of task k, Ck, is less than D 2 —

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D i, then we can defer the starting time of task k by D 2 — Dy — Ck without affecting its 

deadline or the execution of any other task. This is illustrated in Figure 3.4. Since C k 

time is available before D 2 , task k  still completes all execution by D 2 as with the unaltered 

schedule. Furthermore, the effects of this deferral are local to the interval (Dy , D 2 ) ,  so no 

other task’s execution is affected by the deferral of task k.

There are two caveats when implementing this algorithm. First, it is possible that two 

tasks have coinciding deadlines at time D y .  In this case, two tasks are released sim ulta­

neously, and we should not attempt to defer execution based on an algorithm that assumes 

just one task executes exclusively after D y .  This case is handled by simply using D 2 =  D y  

in case of coinciding deadlines. Since Ck >  0 for either task, no deferral is performed. The 

second issue is that the second deadline, D 2, may actually be for the invocation of task k 

released at time Dy. At the time idle begins (before time D y ) ,  this invocation of task k  has 

not yet been released, and its deadline has not yet been added to the system, so this case 

must be checked when computing D 2 — D y .  Figure 3.5 presents the power-down algorithm 

for the simple work-idle-conserving RM /EDF scheduler. As before, in the case of RM, it 

may be necessary to add structures to keep track of task deadlines.

Essentially, this algorithm conservatively extends the previous algorithm to allow the 

deferral of execution for a single task in an attempt to extend idle intervals. Although this 

will improve performance over the simple RM /EDF scheduling with power-down described 

earlier, there is no guarantee that the deferral of the next task alone will provide greatly 

improved power-down time, particularly if tasks use significantly less than their WCETs.

3.4.3 Slack-Stealing Schedulers for Power-down

W hen tasks consume less than their W CETs, one would like to use the surplus time, 

or slack, as effectively as possible for power-down. However, with the simple approach 

of task deferral shown above, the slack is not directly taken into account, so a somewhat 

conservative mechanism is used to ensure that future deadlines are not violated. If  one 

could accurately track the slack gained due to tasks completing early, then more aggressive 

deferral of task execution can be employed, while still ensuring that future deadlines are 

met.

In this next approach, called slack-stealing scheduling fo r  power-down, the goal is to

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Assume n  tasks, sorted by deadline: 

D 1 < D 2 < - - - < D n

/* this is already needed for EDF */

upon task_release(task i): 

set d o n ei to 0; 

update Di  to D; +  fg 

resort task list by new deadlines;

/* schedule by RM /EDF priority */

upon task_completion(task i): 

set donei to 1; 

if (for all j ,  d o n e j= \)  then:

t , i ow  -  get_current_time();

t d e f e r  = max{ 0, min{ D 2 -  D ± -  Ci, t x -  Cx } }

if ( ( D \  +  t d e f e r  t n o w )  ^  ( t d o w n  “F /up) ) then.

set wakeup timer to D x +  t d e f e r  -  t now -  t u p ; 

start power-down; 

else idle;

else:

/* schedule by RM /EDF priority */

Figure 3.5: Work-idle-conserving scheduler

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



maintain an accurate count of the extra computing time (i.e., slack), and use this to generate 

longer idle intervals in the execution schedule. Existing slack-stealing techniques [42] use 

slack to provide time to real-time aperiodic tasks, increased execution time to variable 

runtime tasks, e.g., increasing rewards for increasing service (IRIS) [13], or to execute 

best-effort, non-real-time tasks. In this case, the computed slack time is used to determine 

the maximum period over which one can delay the execution of tasks (i.e., stay in an idle- 

coserving mode) to ensure the execution starting time is not delayed beyond that in the 

EDF or RM execution schedule assuming WCETs for all tasks. As long as the starting time 

for any part o f a task occurs no later than in the EDF or RM  W CET schedule, then task 

completion no later than in the W CET schedule is guaranteed, and, therefore, all deadlines 

are ensured to be met. There is only one exception to the policy of executing tasks no later 

than in the W CET schedule: as in the previous work-idle-conserving schedulers, single 

task deferral is also applied, when possible, which, as discussed earlier, will not cause any 

task to violate its deadlines.

As in the previous approach, the scheduling first proceeds in a work-conserving fashion. 

When an idle period is reached, the mode is switched to idle-conserving, and tasks that 

arrive in the future are deferred in a non-work-conserving manner. Once execution of a 

delayed task begins, the scheduler resumes work-conserving operation. W hile tasks are 

executing, the execution schedule, assuming W CETs for all tasks, is computed, so when 

idle occurs, the actual slack relative to the W CET schedule can be computed. This is 

used to determine the maximum duration over which the system may be powered down to 

ensure arriving tasks will begin no later than they would have in the WCET schedule. This 

is illustrated in the example in Figure 3.6.

The actual algorithm for slack-stealing EDF and RM  scheduling is outlined in Fig­

ure 3.7. There are two general functions performed in the algorithm. First, a set o f data 

structures is maintained that simulate the execution timing under the EDF or RM scheduler 

assuming W CETs for all tasks. These structures are updated while tasks are. executed in 

a work-conserving manner. One should note that the release times of tasks in the actual 

execution and the simulated schedule are identical, but in the actual execution, tasks will 

complete earlier than in the W CET schedule. The second function is triggered when some 

task completes and no further work is immediately available. Then, the algorithm simu-

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a)

(b)

(c)

now

now

t im e

time

time

l now

Figure 3.6: Slack-stealing scheduler example scenario. tnow is current time, where sys­

tem enters idle, (a) Execution schedule for work-conserving scheduler indicates execution 

resumes at time D x when task 1 is released; (b) Canonical schedule assuming tasks al­

ways use exactly their WCETs indicates next invocation of task 1 would start after time 

D 2; (c) Slack-stealing power-down schedulers defer task 1 until the time indicated by the 

W CET schedule.

lates the continued execution of the WCET schedule forward in time, including the future 

releases of tasks, and determines the earliest time at which the WCET schedule indicates 

that a currently unreleased task commences execution. The difference between this time 

and the current time essentially constitutes the available slack due to tasks using less than 

their WCETs. The power-down interval is selected to terminate at this future time, or at 

the deferred start time computed by the previously-described work-idle-conserving m echa­

nism, whichever is later. The system will then resume work-conserving execution until the 

next idle interval.

With this deferral technique, the system can guarantee timely execution of tasks (i.e., 

all tasks complete by their deadlines) by ensuring that execution occurs no later than in 

the W CET schedule, and that any greater deferral is limited to a single task with local ef­

fects that do not extend beyond any deadline (i.e., the work-idle-conserving mechanism

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Assume n  tasks, sorted by deadline:

Di  <  D 2 < ■ ■ ■ <  D n

upon task_completion(task i):

simulate _execution(); 

set donei to 1; 

if (for all j ,  donej= 1) then: 

tnow -  get_current_time(); 

simulate _forward();

t r e s u m e  =  m aX -{  t s im , m i n {  D 2 C \, D \  -\~ t \  Cl  } }

if ( { t r e s u m e  t now) ■ ' (tdown “b t Up) ) then.

set wakeup tim er to t r e s u m e t now t Up , 

start power-down; 

else idle;

else: /* schedule by RM /EDF priority */

simulate_release(task i ): 

set donei to 0; 

set cci to Ci, 

update D i to D i +  ti ,  

resort task list by new deadlines;

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



simulate-execution ():

tnow = get_current_time(); 

repeat while t s i m  <  t n o w :

find task k  such that cck ^  0 and for all j ,  D j  <  D k implies ccj =  0 

/* for RM, replace D j  <  D k with t j  <  t k in line above */ 

if k exists, then:

trun ~  rnin{ cck , t n o w - t Sim , D i - t s i m  } , 

set cck to cck — t r u n ', 

else t r u n  — min{ t n o w - t S{m , D] - t Si m  j . 

set t si m  to t sim -(- t r u n ,

for all j  such that D j < t s i m , simulate j-elease( task j  );

simulate _forward(): 

loop:

find task k such that cck ^  0 and for all j ,  D j  <  D k implies c.Cj =  0 

/* for RM, replace D j <  D k with tj  <  t k in line above */ 

if k  exists, then:

if donek =  0 jum p out of loop;

^run — min{ cck , D \ - t sim j-, 

set cck to cck t r u n ,

else t run = D i~tsim,

Set faim ft) tsim ~f" trun >

for all j  such that D j <  t s i m , simulate_release( task j  ); 

end of loop;

Figure 3.7: Slack-stealing scheduler for power-down

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



described in previous section). Hence, the schedulability of the system and deadline guar­

antees are identical to the system with ordinary RM or EDF scheduling. This algorithm, 

although still an example of a bimodal work-idle-conserving scheduler, is more aggressive 

and has greater time scope than the previous schedulers, as it does permit deferral beyond 

multiple deadlines, allowing the deferral of multiple ready tasks.

3.4.4 Improved Slack-Stealing EDF

The slack-stealing EDF scheduler works well when the W CET schedule indicates a 

greatly deferred start time for tasks released in the future due to continued worst-case ex­

ecution of currently released tasks. W hen the system is heavily-loaded (i.e., very little 

idle tim e in W CET schedule), this method can help greatly. However, when the system is 

lightly-loaded, there will be idle periods in the WCET schedule, which, as the simulated 

schedule is work-conserving, may greatly limit the deferral time and, consequently, the 

power-down intervals.

This next approach modifies the slack-stealing EDF scheduler slightly to improve the 

deferral time and power-down intervals when the system is under-utilized. The goal is to 

defer task execution more than the W CET EDF schedule would indicate, but still ensure 

deadlines of the tasks. This is accomplished by creating a specification of an alternate task 

set that fully utilizes the system, and using this for the simulation of the W CET schedule. 

For each actual task i, there is a task i' in the alternate set with an identical period, tj. The 

W CET of task i', C[ is such that C\ >  Cj. Since the period, and therefore deadlines, of 

task i' are identical to those of the real task i, and since the W CET is at least as long as for 

i, any schedule that can guarantee the timely execution of task i' will also suffice for i. As 

this is true for all tasks, as long as the alternate task set is schedulable, so is the real task 

set using the same execution schedule.

To create a schedulable alternate task set for an EDF scheduler, assuming negligible 

preemption and scheduler overheads, one needs to simply ensure that the total utilization 

does not exceed 1, i.e., Y*i C i/ti  <  1 [45]. Figure 3.8 shows the algorithm to generate a 

schedulable alternate task set that fully utilizes the system. First, the worst-case utilization 

of the given task set is computed as U. For an under-utilized system, this value is strictly 

bounded, 0 <  U < 1. For a fully-utilized system, U  =  1, so the alternate task set is con-

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Assume n  tasks

Each task i has period tj and WCET C\

At startup:

Compute U = Yji Q /P i  

For each task i:

create alternate task i! 

set t\ to ti 

set Cl to C i/U

Proceed with slack-stealing EDF scheduling

but use alternate task set for simulated WCET schedule

Figure 3.8: Improved slack-stealing EDF scheduler for power-down

structed to ensure this. Each alternate task is given the same period as its real counterpart, 

but its WCET is multiplied by a factor of 1/U.  Now, this alternate task set is used for the 

simulated WCET schedule in the slack-stealing EDF scheduler. As this alternate schedule 

has the same deadlines and greater execution time available for each task than needed for 

the given task set, ensuring all tasks execute no later than in this alternate W CET schedule 

suffices to guarantee task deadlines. Again, the one exception to starting a task no later 

than in the WCET schedule is when the work-idle-conserving EDF scheduler’s single task 

deferral is applied, but its effects are localized to the single task and do not cross deadlines, 

so task deadline guarantees are maintained.

By using an alternate task set that fully utilizes the system, has the same deadlines, and 

has greater execution time required for each task than the given task set as the reference 

for task start times, greater deferral times, longer power-down intervals, and lower energy 

consumption can be achieved by the improved slack-stealing EDF algorithm.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4.5 Handling Multiple Power-down States

The sprint-and-halt algorithms as discussed support hardware with two power states: 

active and power-down. However, often, there may be multiple power-down states available 

on a platform. These states will have varying power-consumption rates, as well as latencies 

to resume active-state operation. For example, a system may have a low-latency processor 

halt mechanism that moderately reduces power consumption, as well as a system power­

down mode that greatly reduces power, at the expense of a longer resume latency.

It is possible to modify all of the algorithms introduced here to support more than one 

power-down state. First, one needs to determine the power model o f the system with two 

or more power-down states. To keep everything consistent, assume simply that each power 

state x  has its own constant power-consumption rate, Pi0WtX. Furthermore, only transitions 

between each low-power state and the active state are considered, i.e., do not transition 

from one power-down mode to another directly. Each state x  has transition latencies tup>x 

and tdowri,x to switch to and from active state. During the transitions, an average power of 

Ptrans,x is dissipated.

Given this model, the algorithms need to choose the power state that requires the lowest 

energy cost for any power-down interval tpd. The energy consumed by state x, E x, can be 

expressed as a function of the power-down interval, tpd:

Pxitpd) (tdown,x T" tup,x) Ptrans,x T" (tpd tdown,x t up>x) Plow,x

Assuming two states, x  and y, where i t (j0Wn,x t up)_x) ' (tdou:n.y T tUjKy j and Pi0w,x • > Piow,y> 

i.e., y  is a lower-power, longer-latency state than x, it is better to switch to state y  when 

E x (tpd) >  Ey( t pd). Solving this for tpd, it is better to use state y  when:

, (tdown,y +  tup,y) (Ptrans,y P\ow,y) (tdown,x tup,x) (Ptrans,x Plow,x)
V  >  p  ~e~p  ' •^loWjX r low,y

The right-hand side of the inequality depends only on system parameters, so it can be 

computed ahead of time and used as a constant, called t Ex=Ey. So, to support two power­

down states, the algorithms simply decide based on the power-down interval:

idle . tpd (tdown,x ~l~ tup,x)

sta te  y  . tpd >  m ax { (tdown,y T- tup^y), t Ex=Ey }

s ta te  x  : otherw ise

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



With a larger number of low-power states, one can similarly use the energy computation 

above and solve the inequality for tpd to determine the range of tpd for which one state is 

better than another. Using all such boundary values of tpd for all possible pairs of states, 

and the minimum tpd that allows the use of each state, one can find a simple static mapping 

from tpd to the power state that results in the lowest energy dissipation.

3.5 Evaluation

To evaluate the potential energy savings provided by the various sprint-and-halt schedul­

ing algorithms described above, one can use a system simulation to predict energy dissipa­

tion across a broad range o f scenarios. The following subsection describes the simulator 

developed to evaluate the power-down scheduling techniques and the assumptions made in 

its design. Following this, some simulation results are presented to provide insight into the 

system parameters affecting energy savings in a real-time system with software-controlled 

power-down capabilities.

3.5.1 Simulation Methodology

The sprint-and-halt algorithms are evaluated using a simulator developed using C++ 

that models the operation of hardware capable of software-controlled power-down under a 

wide range of system characteristics. The simulator takes as input a task set, specified with 

the period and computation requirements of each task, as well as several system parameters, 

and provides the energy consumption of the system for each o f the algorithms presented 

earlier. Real-time schedulers without any power-down support are also simulated for com ­

parison. Parameters supplied to the simulator include the hardware specification, i.e., Phigh, 

Plow, Ptrans, tdown. and t up, and a specification of the fraction o f the W CET that the tasks 

should actually consume. This latter parameter can be a constant (e.g., 0.9 indicates that 

each task will use 90% of its specified worst-case computation cycles during each invoca­

tion), or can be a random function (e.g., uniformly-distributed random multiplier for each 

invocation).

The simulation assumes the bimodal system power model described in Section 3.3. 

Each simulated cycle used for task execution or idle consumes a constant energy quantum,

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



derived from Phigh, while each cycle in the power-down state consumes energy based on 

P l o w  Although the simulator can use arbitrary P tra n s  values, the evaluations presented 

here assume the worst-case situation where Ptrans — Phigh• With this model, variations due 

to different types of instructions executed are not taken into account. This simplification 

eliminates the need for actual execution traces, and a simpler cycle counting approach can 

be used to determine energy consumption. The simulator only considers the time/energy 

overheads of switching into and out of the power-down state. In particular, it does not con­

sider preemption and task-switch overheads, or the overheads of executing scheduler code. 

However, these are small relative to the range of power-state switching latencies consid­

ered, so there is no loss of generality from these assumptions. Besides, the relative energy 

performance of different scheduling algorithms will not be affected by this assumption.

The real-time task sets are specified using a pair of numbers for each task, indicating 

its period and worst-case execution time. The task sets are generated randomly as follows. 

Each task has an equal probability o f having a short (1-10  ms), medium (10-100 ms), 

or long (100-1000 ms) period. Within each range, task periods are uniformly distributed. 

This simulates the varied mix of short- and long- period tasks commonly found in real-time 

systems. The computation requirements of the tasks are assigned randomly using a similar 

3-range uniform distribution. Finally, the task computation requirements are scaled by a 

constant chosen such that the sum of the utilizations of the tasks in the task set reaches a 

desired value. This method of generating real-time task sets has been used previously in the 

development and evaluation of a real-time embedded microkernel [95]. Averaged across 

hundreds of distinct task sets generated for several different total worst-case utilization 

values, the simulations provide a relationship of energy consumption to the worst-case 

utilization o f the task sets, or to the power-down-power-up latencies.

3.5.2 Results

The simulator described above permits the energy consumption comparison o f the 

sprint-and-halt schedulers to each other as well as against real-time scheduling w ithout 

power-down support. In addition, the schedulers are also compared to a theoretical lower 

bound on energy. This lower bound is com puted based on the observation that the h igh­

est frequency task in the system limits the maximum duration of the power-down state.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Considering just this one task, and assuming actual execution times are known, then it is 

possible to execute this task as late as possible so it completes exactly at its deadline, and 

then its next invocation is released and executed immediately. The system can power down 

until sufficiently before the following invocation’s deadline to execute the task. As a result, 

at best, one power-down interval can span at most 2 periods of the highest frequency task. 

The lower bound energy is computed assuming all of the idle time is lumped together and 

divided into power-down intervals exactly 2 times the length of the period of the highest 

frequency task. All of the execution time is likewise lumped together at the start of the 

lower-bound simulation. This lower bound is in practice unachievable, but does give some 

insight into limitations on further energy improvements. We limit the experiments to the 

EDF versions of the sprint-and-halt algorithms.

Effects of pow er-down specifications: The first set of experiments determines the effects 

o f varying the specifications of the power-down hardware. Figure 3.9 shows the energy 

dissipation for each sprint-and-halt EDF-based algorithm, normalized with respect to EDF 

scheduling without power-down support. Here, the task sets all contain 8 random tasks 

as described earlier, such that the total worst-case processor utilization is 0.95. The tasks’ 

actual execution times are fixed to WCET/3. The average energy for the task sets is plotted 

for varying values of power-down latency, i.e., tdown +  tup, which are shown on a log scale. 

The three separate plots correspond to different Phigh/Plow ratios.

One should immediately note that all of the algorithms can potentially save signifi­

cant amounts of energy, particularly when the power-state transition latencies are small. In 

addition, the actual ratio of Phigh to Piow does not affect the relative performance of the 

schedulers or the general trend o f the curves significantly. Only the maximal achievable 

savings is affected. Finally, at the extreme range of power-state transistion latencies, the 

algorithms perfrom very close to the computed lower bound on energy. Between these ex­

tremes, the improved slack-stealing EDF (SS EDF+) scheduler performs the best, followed 

by slack-stealing EDF (SS EDF) and work-idle-conserving EDF (W IC EDF) schedulers. 

Even the simple EDF with power-down (EDF+PD) scheduler performs much better than 

plain vanilla EDF scheduling.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a)

(b)

(c)

T3 0 .8O
N

CO

EV_ 0.6o  iz
>.05 0.4 EDF — i—  

EDF+PD -~-a -  
WIC EDF — x—

S S  EDF 0 ....
S S  EDF+ —  * -  

bound  ---------

©cLU
0.2

0.1 1001 10 1000

ûp’Hlown (ms)

co
E 0.6oc
>,O) 0.4 EDF — i—  

EDF+PD -  a  -  
WIC EDF — x—

S S  EDF  a ....
S S  EDF+ — *-■- 

bound  ---------

©cLU
0.2

0.1 1 10 100 1000
bp̂ down (^s)

©.N
To
E
oc
o5
©cLU

1

0.8

0.6

0.4 EDF — i—  
ED F+PD  - - a -  

WIC EDF x
S S  EDF  a ....

S S  EDF+ — in ­
b ound  ---------

0.2

0
0.1 1 10 100 1000

ûp+̂ down

Figure 3.9: Effects of varying power-down hardware specifications: (a) Phigh/Plow 

(b) P h ig h /P lo w  =  10; (C ) P h ig h /P lo w  =  100

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



— !—  EDF 
- a -  EDF+PD 
—x—  WIC EDF

  SS  EDF
SSE D F+ 

  bound

T3©N
CO

0.6oc
0.4<D

C
LU

0.2

10 0.2 0.4 0.6 0.8
W orst ca se  utilization

actual=0.3 3 * WCET

h—  EDF
EDF+PD 

-x—  WIC EDF
-3  SS EDF
■*- S S E D F +  
  bound0.6oc

>C> 0.4©c:
LU

0.2

0.8 10 0.2 0.4 0.6
Worst ca se  utilization

actual=0.66*WCET

EDF 
EDF+PD 

WIC EDF — x 
SS EDF - - a  

SS  EDF+ —  
bound

0.2 0.4 0.6 0.8
W orst ca se  utilization

t
-  EDF
-  EDF+PD
-  WIC EDF
- SS  EDF
-  S SE D F +
-  bound

0.8

0.6

0.4

0.2

0
0.6 0.8 10 0.2 0.4

Worst c a se  utilization

actual=uniform(0,WCET)actual=1.00*WCET

Figure 3.10: Effects of varying workload parameters

Effects of workload parameters: The next set of experiments fix the harware specifi­

cation and vary instead the task set parameters. In Figure 3.10, Phigh/Plow is set to 20, 

and t down -I- tup set to 10 ms. There are still 8 tasks in each random  task set, but now the 

worst-case utilization of the task sets is varied, and resulting average energy across the task 

sets plotted. The actual execution times for the task is also varied, set to 0.33, 0.66, and 

1.0 times the WCET for the first three subplots. The fourth plot uses a unform random  

distribution for the actual execution times of each task invocation.

Overall, the average energy profiles of the schedulers across multiple random task sets 

seem to vary fairly linearly with the worst-case utilization of the task sets. The one interest­

ing exception is the simple slack-stealing EDF (SS EDF) scheduler. For most of the range 

of utilization, it performs nearly identically to the work-idle-conserving (WIC EDF) sched­

uler. However, at very high worst-case utilizations, it performs better than WIC EDF. This 

is due to the fact that at high utilizations, W CET EDF schedules have very little idle time,

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



so the algorithm, attempting to pace execution to the W CET schedule, is capable of much 

longer deferrals. It is this very effect that motivates the improved slack-stealing approach 

(SS EDF+).

The change in actual execution times affects the slope of the average energy response 

as worst-case utilization is varied. Using uniformly-distributed random execution times 

(between 0 and WCET for each task invocation) does not significantly change the average 

energy curves. As the average execution times are generally much smaller than the W CETs 

for m ost real-time task sets, the first plot is closest to what one can deem as typical. Here, 

with the reasonable assumption of 20:1 Phigh to Piow ratio and 10 ms power-down latency, 

the sprint-and-halt schedulers achieve 40-70%  energy reduction over EDF without power­

down support.

Relative performance of p o w e r - d o w n  schedulers: Although all of the power-down

schedulers perform much better than ordinary EDF without power-down support, it is in­

teresting to see how well the more complex techniques perform relative to the simple EDF 

with power-down added. Figure 3.11 shows this relationship, assuming actual task exe­

cution times are 0.33*WCET. The first plot indicates that with a power-down latency of 

10 ms, the improved slack-stealing approach reduces average energy by approximately 

10-20%  over EDF+PD as the task set worst case processor utilizations vary. In the second 

plot, the worst-case utilization is fixed to 0.95, and the power-down latency is varied across 

the log scale. At the extremes, there is very little improvement over EDP+PD. However, 

in the middle of the range, where the power-down latency is comparable to the task peri­

ods, the more advanced techniques show up to 10% energy reduction relative to the simple 

EDF+PD scheduler.

3.6 Related Work

Reducing power consumption in mobile devices is a very active area of research. The 

authors of [5,49] enumerate and survey a wide variety of approaches to energy reduction 

on mobile platforms from a high-level perspective. A  variety of techniques for powering 

down subsystems, including display backlight, disk drives, and communication channels,

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a)

1.1

J  0.9
cC
£
o 0.8

cn
a> 0.7cill

- A-- A- -A --A--A--A- -A- --A--A--A- A- -A--A— A- A- -A-A— A -  A-

(b)

0.6

0.5

1.1

|  0.9
to
E
g 0.8
>.
cs
& 0.7c
LU

0.6

EDF+PD '> 
WIC EDF — x -

S S  EDF  0-
S S E D F +  —

0.2 0.4 0.6
W orst c a s e  utilization

0.8

0.5

^  - -A.- - a  - --

EDF+PD 
WIC EDF — x~

S S  EDF  e
S S  EDF+ —

0.1 1 10
k p + klown (m s )

100 1000

Figure 3.11: Relative performance of sprint-and-halt algorithms: (a) t up +  tdown=10 ms; 

(b) Worst case utilization=0.95

and applying circuit tricks to reduce power are cited. However, little work has been done in 

the context of powering down systems (including the processor) when real-time constraints 

are present.

Although not intended for real-time systems, the authors o f [27] developed techniques 

for powering down systems that execute event-driven (i.e., user-interactive) applications. 

Using idle history, future idle durations are predicted. This, unfortunately, cannot provide 

the timing guarantees needed for real-time systems. This work also proposes a pre-wake 

technique that reactivates the system early to compensate for wake-up latencies and im ­

prove responsiveness. A similar mechanism is used in all of the sprint-and-halt algorithms, 

as this is necessary in order to ensure deadline guarantees.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Focusing on powering down I/O subsystems, the authors o f [50] attempted to maximize 

the effectiveness of power-down by increasing the duration and amortizing switching over­

heads. This is similar in concept to the sprint-and-halt algorithms, but is meant for I/O, 

not the processor. Furthermore, it involves reordering tasks to coalesce common device 

accesses, which would affect timings of tasks and preclude its use in real-time systems.

Extending this to real-time systems, the authors of [83] presented a device power- 

scheduling algorithm that preserves real-time guarantees. Deadlines are preserved by keep­

ing the task execution schedule unaltered and fitting power-down events for I/O devices 

whenever possible. In contrast, sprint-and-halt scheduling does alter the task execution 

schedule, while preserving deadlines, and can power down the processor.

Finally, there has been much research on dynamic voltage scaling of the CPU to con­

serve energy since the earliest papers on this topic appeared [6,23,90]. These mechanisms 

have also been extended to work in real-time systems [24,59,65], DVS algorithms try 

to execute tasks as slowly as possible to spread out work and eliminate idle time, while in 

contrast, sprint-and-halt techniques try to coalesce work and execute it as fast as possible to 

allow longer power-down intervals. Hence, these real-time scheduling algorithms approach 

energy conservation with directly opposite philosophies.

3.7 Conclusions

This chapter has presented a class of sprint-and-halt scheduling algorithms that attempt 

to make best use of software-controlled power-down to reduce energy expenditure, while 

meeting hard, real-time constraints. Several algorithms o f increasing complexity have been 

developed to better amortize energy costs due to the transition latencies to and from low- 

power states. Extensive simulations show that with some typical system parameters, the 

power-down techniques can save 40-70%  of the energy dissipated in an unmodified sys­

tem, while preserving all real-time deadline guarantees. Sensitivity experiments show that 

for very large (100’s of ms) and very small (100’s of //s) power-down latencies, the sim ­

plest power-down scheduling techniques suffice, as all of the methods approach a theoret­

ical lower bound. However, for moderate power-down latencies, the advanced techniques 

provide 10-20%  lower energy consumption relative to the simplest sprint-and-halt sched-

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ulers.

Future research directions related to this work include extending sprint-and-halt schedul­

ing to less restrictive real-time paradigms. A probabilistic real-time approach may provide 

greater flexibility in using power-down techniques and allow greater energy savings. Inte­

gration of sprint-and-halt with other power-reduction techniques, such as dynamic voltage 

scaling, may also be possible in a hybrid solution that switches between the two depending 

on workload characteristics and available idle time.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4

Exploiting Hardware Energy-Conservation Mechanisms 

through Real-Time Dynamic Voltage Scaling (RT-DVS)

This chapter, as did the previous chapter, considers how system software can maximally 

exploit energy-conserving features of the underlying hardware platform, while adhering to 

timeliness and real-time application constraints. In particular, Dynamic Voltage Scaling 

(DVS) has been a key technique in exploiting the hardware characteristics o f processors to 

reduce energy dissipation by lowering the supply voltage and operating frequency. DVS 

algorithms have demonstrated dramatic energy savings while providing the necessary peak 

computation power in general-purpose systems, but for a large class of applications in em ­

bedded real-time systems like cellular phones and camcorders, the variable operating fre­

quency interferes with real-time deadline guarantee mechanisms, and DVS in this context, 

despite its growing importance, is largely overlooked/under-developed. To provide real­

time guarantees, DVS must consider deadlines and periodicity of real-time tasks, requiring 

integration with the real-time scheduler. This chapter presents a class of novel algorithms, 

called real-time DVS (RT-DVS), that modifies the OS’s real-time scheduler and task m an­

agement service to provide significant energy savings while maintaining real-time deadline 

guarantees. Through simulations and a working prototype implementation, these RT-DVS 

algorithms are shown to closely approach the theoretical lower bound on energy consum p­

tion, and can easily reduce energy consumption 20% to 40% in an embedded real-time 

system.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.1 Introduction

Computation and communication have been steadily moving toward mobile and portable 

platforms/devices. This is very evident in the growth of laptop computers and PDAs, but 

is also occurring in the embedded world. With continued miniaturization and increasing 

computation power, we see ever growing use of powerful microprocessors running sophis­

ticated, intelligent control software in a vast array of devices including digital camcorders, 

cellular phones, and portable medical devices.

Unfortunately, there is an inherent conflict in the design goals behind these devices: 

as mobile systems, they should be designed to maximize battery life, but as intelligent 

devices, they need powerful processors, which consume more energy than those in simpler 

devices, thus reducing battery life. In spite of continuous advances in semiconductor and 

battery technologies that allow microprocessors to provide much greater computation per 

unit o f energy and longer total battery life, the fundamental tradeoff between performance 

and battery life remains critically important.

Recently, significant research and development efforts have been made on Dynamic 

Voltage Scaling (DVS) [6 ,2 0 ,2 3 ,2 4 ,3 6 ,4 7 ,5 6 ,5 9 ,6 0 ,6 2 ,6 8 ,6 9 , 82,90], DVS tries to ad­

dress the tradeoff between performance and battery life by taking into account two im por­

tant characteristics of most current computer systems: (1) the peak computing rate needed 

is much higher than the average throughput that must be sustained; and (2) the proces­

sors are based on CMOS logic. The first characteristic effectively means that high per­

formance is needed only for a small fraction of the time, while for the rest o f the time, a 

low-performance, low-power processor would suffice. We can achieve the low perform­

ance by simply lowering the operating frequency of the processor when full speed is not 

needed. DVS goes beyond this and scales the operating voltage of the processor along with 

the frequency. This is possible because static CMOS logic, used in the vast majority of 

microprocessors today, has a voltage-dependent maximum operating frequency, so when 

used at a reduced frequency, the processor can operate at a lower supply voltage. Since the 

energy dissipated per cycle with CMOS circuitry scales quadratically to the supply volt­

age (E  oc V 2) [6], DVS can potentially provide a very large net energy savings through 

frequency and voltage scaling.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In time-constrained applications, often found in embedded systems like cellular phones 

and digital video cameras, DVS presents a serious problem. In these real-time embedded 

systems, one cannot directly apply most DVS algorithms known to date, since changing 

the operating frequency of the processor will affect the execution time of the tasks and 

may cause the violation of timeliness guarantees. In this chapter, we present several novel 

algorithms that incorporate DVS into the OS scheduler and task management services of a 

real-time embedded system, providing the energy savings of DVS while preserving dead­

line guarantees. This is in sharp contrast with the average throughput-based mechanisms 

typical of many current DVS algorithms. In addition to detailed simulations that show the 

energy-conserving benefits of our algorithms, we also present an actual implementation of 

our mechanisms, demonstrating them with measurements on a working system. To the best 

of our knowledge, this is one of the first working implementations of DVS, and the first 

implementation o f Real-Time DVS (RT-DVS).

In the next section, we present details of DVS, real-time scheduling, and our new RT- 

DVS algorithms. Section 3 presents the simulation results and provides insight into the 

system parameters that most influence the energy-savings potential of RT-DVS. Section 

4 describes our implementation of RT-DVS mechanisms in a working system and some 

measurements obtained. Section 5 presents related work and puts our work in a larger 

perspective before we close with our conclusions and future directions in Section 6.

4.2 RT-DVS

To provide energy-saving DVS capability in a system requiring real-time deadline guar­

antees, we have developed a class of RT-DVS algorithms. In this section, we first consider 

DVS in general, and then discuss the restrictions imposed in embedded real-time systems. 

We then present RT-DVS algorithms that we have developed for this time-constrained en­

vironment.

4.2.1 Why DVS?

Power requirements are one of the most critical constraints in mobile computing ap­

plications, limiting devices through restricted power dissipation, shortened battery life, or

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Screen CPU subsystem Disk Power
On Idle Spinning 13.5 W
On Idle Standby 13.0 W
Off Idle Standby 7.1 W
Off Max. Load Standby 27.3 W

Table 4.1: Power consumption measured on Hewlett-Packard N3350 laptop computer

increased size and weight. The design o f portable or mobile computing devices involves 

a tradeoff between these characteristics. For example, given a fixed size or weight for a 

handheld computation device/platform, one could design a system using a low-speed, low- 

power processor that provides long battery life, but poor performance, or a system w ith a 

(literally) more powerful processor that can handle all computational loads, but requires 

frequent battery recharging. This simply reflects the cost of increasing performance —  for 

a given technology, the faster the processor, the higher the energy costs (both overall and  

per unit o f computation).

The discussion in this chapter will generally focus on the energy consumption of the 

processor in a portable computation device for two main reasons. First, the practical size 

and weight o f the device are generally fixed, so for a given battery technology, the available 

energy is also fixed. This means that only power consumption affects the battery life o f the 

device. Secondly, we focus particularly on the processor because in most applications, 

the processor is the most energy-consuming component of the system. This is definitely 

true on small handheld devices like PDAs [18], which have very few components, but also 

on large laptop computers [48] that have many components including large displays with 

backlighting. Table 4.1 shows measured power consumption of a typical laptop computer. 

When it is idle, the display backlighting accounts for a large fraction of dissipated power, 

but at maximum computational load, the processor subsystem dominates, accounting for 

nearly 60% of the energy consumed. As a result, the design problem generally boils down 

to a tradeoff between the computational power of the processor and the system’s battery 

life.

One can avoid this problem by taking advantage of a feature very common in most 

computing applications: the average computational throughput is often much lower than 

the peak computational capacity needed for adequate performance. Ideally, the processor

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



would be “sized” to meet the average computational demands, and would have low energy 

costs per unit of computation, thus providing good battery life. During the (relatively rare) 

times when peak computational load is imposed, the higher computational throughput of a 

more sophisticated processor would somehow be “configured” to m eet the high perform­

ance requirement, but at a higher energy cost per unit of computation. Since the high-cost 

cycles are applied for only some, rather than all, of the computation, the energy consump­

tion will be lower than if the more powerful processor were used all of the time, but the 

performance requirements are still met.

One promising mechanism that provides the best of both low-power and high-performance 

processors in the same system is DVS [90]. DVS relies on special hardware, in particular, 

a programmable DC-DC switching voltage regulator, a programmable clock generator, and 

a high-performance processor with wide operating ranges, to provide this best-of-both- 

worlds capability. In order to meet peak computational loads, the processor is operated 

at its normal voltage and frequency (which is also its maximum frequency). When the 

load is lower, the operating frequency is reduced to meet the computational requirements.

In CMOS technology, used in virtually all microprocessors today, the maximum operat­

ing frequency increases (within certain limits) with increased operating voltage, so when 

the processor is run slower, a reduced operating voltage suffices [6], A second important 

characteristic is that the energy consumed by the processor per clock cycle scales quadrat- 

ically with the operating voltage (E  oc V 2) [6], so even a small change in voltage can 

have a significant impact on energy consumption. By dynamically scaling both voltage 

and frequency of the processor based on computation load, DVS can provide the perform ­

ance to meet peak computational demands, while on average, providing the reduced power 

consumption (including energy per unit computation) benefits typically available on low- 

performance processors.

4.2.2 Real-time issues

For time-critical applications, however, the scaling of processor frequency is often detri­

mental. Particularly in real-time embedded systems like portable medical devices and cel­

lular phones, where tasks must be completed by some specified deadlines, most algorithms 

for DVS known to date cannot be applied. These DVS algorithms do not consider real-time

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



constraints and are based on solely average computational throughput [23,60,90], Typi­

cally, they use a simple feedback mechanism, such as detecting the amount of idle time on 

the processor over a period of time, and then adjust the frequency and voltage to just handle 

the computational load. This is very simple and follows the load characteristics closely, but 

cannot provide any timeliness guarantees and tasks may miss their execution deadlines. As 

an example, in an embedded camcorder controller, suppose there is a program that must 

react to a change in a sensor reading within a 5 ms deadline, and that it requires up to 3 ms 

of computation time with the processor running at the maximum operating frequency. With 

a DVS algorithm that reacts only to average throughput, if the total load on the system is 

low, the processor would be set to operate at a low frequency, say half of the maximum, 

and the task, now requiring up to 6 ms of processor time, cannot meet its 5 ms deadline. 

In general, none o f the average throughput-based DVS algorithms found in literature can 

provide real-time deadline guarantees.

In order to realize the reduced energy-consumption benefits of DVS in a real-time em ­

bedded system, we need new DVS algorithms that are tightly-coupled with the actual real­

time scheduler o f the operating system. In the classic model of a real-time system, there is 

a set of tasks that need to be executed periodically. Each task, Tj, has an associated period, 

Pi, and a worst-case computation time, C j.1 The task is released  (put in a runnable state) 

periodically once every P* time units, at which point it can begin execution. The task needs 

to complete its execution by its deadline, typically defined as the end of the period [45], 

i.e., by the next release of the task. As long as each task T, uses no more than C) cycles 

in each invocation, a real-time scheduler can guarantee that the tasks will always receive 

enough processor cycles to complete each invocation on time. Of course, to provide such 

guarantees, there are some conditions placed on allowed task sets, often expressed in the 

form of schedulability tests. A real-time scheduler guarantees that tasks will meet their 

deadlines given that:

Cl. the task set is schedulable (passes schedulability test), and 

C2. no task exceeds its specified worst-case computation bound.

DVS, when applied in a real-time system, must ensure that both of these conditions hold.

Although not explicit in the model, aperiodic and sporadic tasks can be handled by a periodic or deferred 
server [43] For non-real-time tasks, too, we can provision processor time using a similar periodic server 
approach.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In this chapter, we develop algorithms to integrate DVS mechanisms into the two most- 

studied real-time schedulers, Rate M onotonic (RM) and Earliest-Deadline-First (EDF) 

schedulers [37 ,41 ,44 ,45 ,80]. RM is a static priority scheduler, and assigns task prior­

ity according to period —  from the tasks that are ready to run (released for execution), 

it always selects the task with the shortest period to run first. EDF is a dynamic priority 

scheduler that sorts tasks by deadlines and always gives the highest priority to the released 

task with the most imminent deadline. In the classical treatments of these schedulers [45], 

both assume that the task deadline equals the period (i.e., the task must complete before 

its next invocation), that scheduling and preemption overheads are negligible,2 and that 

the tasks are independent (no task will block waiting for another task). In our design of 

DVS for real-time systems, we maintain the same assumptions, since our primary goal is 

to reduce energy consumption, rather than to derive general scheduling mechanisms.

In the rest of this section, we present our algorithms that perform DVS in time-constrained 

systems without compromising deadline guarantees of real-time schedulers.

4.2.3 Static voltage scaling

We first propose a very simple mechanism for providing voltage scaling while m ain­

taining real-time schedulability. In this mechanism we select the lowest possible operating 

frequency that will allow the RM  or EDF scheduler to meet all the deadlines for a given 

task set. This frequency is set statically, and will not be changed unless the task set is 

changed.

To select the appropriate frequency, we first observe that scaling the operating fre­

quency by a factor a  (0 <  a  <  1) effectively results in the worst-case computation time 

needed by a task to be scaled by a factor 1/ a ,  while the desired period (and deadline) 

remains unaffected. We can take the well-known schedulability tests for EDF and RM 

schedulers from the real-time systems literature, and by using the scaled values for worst- 

case computation needs of the tasks, can test for schedulability at a particular frequency. 

The necessary and sufficient schedulability test for a task set under ideal EDF scheduling 

requires that the sum of the worst-case utilizations (computation time divided by period)

2We note that one could account for preemption overheads by computing the worst-case preemption 
sequences for each task and adding this overhead to its worst-case computation time.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



EDF _test (a):

if (C i/P i  +  • • • +  Cn/P n < a )  return true; 

else return false;

RM_test (a):

i f  (V 7 )  €  { T i , . . .  , T n \ P i  <  • • • <  P n }

\P i/ P l 1 * C x +  • • • +  \P l/P i] * C i < a * P i ) 

return true; 

else return false;

select_frequency:

use lowest frequency /* e  { / i , . . . ,  f m \f i  < ■ • ■ <  f m}  

such that R M _ test(/i//m) or E D F Jest( f i j f m) is true.

Figure 4.1: Static voltage scaling algorithm for EDF and RM schedulers

be less than one, i.e., C \jP \  +  • • • +  C n/P n < 1 [45]. Using the scaled computation time 

values, we obtain the EDF schedulability test with frequency scaling factor a:

C i/P i  +  • • • +  Cn/P n <  a

Similarly, we start with the sufficient (but not necessary) condition for schedulability under 

RM  scheduling [37] and obtain the test for a scaled frequency (see Figure 4.1). The oper­

ating frequency selected is the lowest one for which the modified schedulability test suc­

ceeds. The voltage, of course, is changed to match the operating frequency. Assume that 

the operating frequencies and the corresponding voltage settings available on the particular 

hardware platform are specified in a table provided to the software. Figure 4.1 sum m a­

rizes the static voltage scaling for EDF and RM  scheduling, where there are m  operating 

frequencies f i , . . . , f m such that f i  < f 2 < • • • <  / m.

Figure 4.2 illustrates these mechanisms, showing sample worst-case execution traces 

under statically-scaled EDF and RM  scheduling. The example uses the task set in Table 4.2, 

which indicates each task’s period and worst-case computation time, and assumes that three

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Static EDF 
uses 0.75

> ,1.00
o
§ 0.75
3

p 0.50 T1
■fliMB T1

-----------------------------
, -T2, '

10 15 ms

Static RM 
uses 1.0 > ,1.00o

0 0.75
13

0.50

15 ms0 5 10

Static RM 
fails at 0.75

> ,1.00 o
ffi 0.753
© 0.50

T3 misses
deadline !

a

T1 M H M l t i  i
------------ 1-------------------------------- r— ►

10 15 ms

Figure 4.2: Static voltage scaling example

Task Computing Time Period
1 3 ms 8 ms
2 3 ms 10 ms
3 1 ms 14 ms

Table 4.2: Example task set, where computing times are specified at the maximum proces­

sor frequency

normalized, discrete frequencies are available (0.5, 0.75, and 1.0). The figure also illus­

trates the difference between EDF and RM (i.e., deadline vs. rate for priority), and shows 

that statically-scaled RM cannot reduce frequency (and therefore reduce voltage and con­

serve energy) as aggressively as the EDF version.

As long as for some available frequency, the task set passes the schedulability test, and 

as long as the tasks use no more than their scaled computation time, this simple mechanism 

will ensure that frequency and voltage scaling will not compromise the timely execution of 

tasks by their deadlines. The frequency and voltage setting selected are static with respect 

to a particular task set, and are changed only when the task set itself changes. As a result, 

this mechanism need not be tightly-coupled with the task management functions of the 

real-time operating system, simplifying implementation. On the other hand, this algorithm

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



may not realize the full potential of energy savings through frequency and voltage scaling. 

In particular, the static voltage scaling algorithm does not deal with the most common 

situations where a task uses less than its worst-case requirement of processor cycles. To 

deal with this common situation, we need more sophisticated RT-DVS mechanisms.

4.2.4 Cycle-conserving RT-DVS

Although real-time tasks are specified with worst-case computation requirements, they 

generally use much less than the worst case on most invocations. To take best advantage of 

this, a DVS mechanism could reduce the operating frequency and voltage when tasks use 

less than their worst-case time allotment, and increase frequency to meet the worst-case 

needs. When a task is released for its next invocation, we cannot know how much com ­

putation it will actually require, so we must make the conservative assumption that it will 

need its specified worst-case processor time. When the task completes, we can compare the 

actual processor cycles used to the worst-case specification. Any unused cycles that were 

allotted to the task would normally (or eventually) be wasted, idling the processor. Instead 

of idling for extra processor cycles, we can devise DVS algorithms that avoid wasting cy­

cles (hence “cycle-conserving”) by reducing the operating frequency. This is somewhat 

similar to slack time stealing [42], except surplus time is used to run other remaining tasks 

at a lower CPU frequency rather than accomplish more work. These algorithms are tightly- 

coupled with the operating system’s task management services, since they may need to 

reduce frequency on each task completion, and increase frequency on each task release. 

The main challenge in designing such algorithms is to ensure that deadline guarantees are 

not violated when the operating frequencies are reduced.

For EDF scheduling, as mentioned earlier, we have a very simple schedulability test: as 

long as the sum of the worst-case task utilizations is less than a , the task set is schedulable 

when operating at the maximum frequency scaled by factor a . If a task completes earlier 

than its worst-case computation time, we can reclaim the excess time by recomputing uti­

lization using the actual computing time consumed by the task. This reduced value is used 

until the task is released again for its next invocation. We illustrate this in Figure 4.3, using 

the same task set and available frequencies as before. However, here, each invocation of 

the tasks may use less than the specified worst-case times, and follows the actual execution

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



X U  i = 0 .7 4 6
> ,1.00 0.621 

\
0.421

55 0 .75

® 0 .5 0

0.5^6 0 .2 9 6
/

0.421
T1

0.496 0.296 0.^96

a ®

10 15 ms

Figure 4.3: Example of cycle-conserving EDF

Task Invocation 1 Invocation 2
1 2 ms 1 ms
2 1 ms 1 ms
3 1 ms 1 ms

Table 4.3: Actual computation requirements of the example task set (assuming execution 

at max. frequency)

times given in Table 4.3. As the actual execution requirements cannot be known to the 

system until after the task completes execution, at each scheduling point (task release or 

completion), the utilization is recomputed using the actual time for completed tasks and the 

specified worst case for the others, and is used to set the frequency appropriately. The nu­

merical values in the figure show the total task utilizations computed using the information 

available at each point.

The algorithm itself (Figure 4.4) is simple and works as follows. Suppose a task T) 

completes its current invocation after using cry cycles which are usually much smaller than 

its worst-case computation time C{. Since task 2) uses no more than cry cycles in its cur­

rent invocation, we treat the task as if its worst-case computation bound were c q . With 

the reduced utilization specified for this task, we can now potentially find a smaller scal­

ing factor a  (i.e., lower operating frequency) for which the task set remains schedulable. 

Trivially, given that the task set prior to this change was schedulable, the EDF schedul­

ability test will continue to hold, and T) (which has completed execution) will not violate 

its lowered maximum computing bound for the remaining time until its deadline. There­

fore, the task set continues to meet both conditions C l and C2 im posed by the real-time 

scheduler to guarantee timely execution, and as a result, deadline guarantees provided by 

EDF scheduling will continue to hold at least until 7) is released for its next invocation.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



select _frequency():

use lowest freq. f \  G {A, • ■ - , / m|/ i  <  ••• <  f m } 

such that Ui +  b Un < f i / f m

upon task_release(Ti):

set Ui to C i / P i ,  

select_frequency();

upon taskxom pletion(Tj): 

set Ui to cc i /P i ,

/* cci is the actual cycles used this invocation */ 

select JxequencyO;

Figure 4.4: Cycle-conserving DVS for ED F schedulers

At this point, we must restore its computation bound to Q  to ensure that it will not violate 

the temporarily-lowered bound and compromise the deadline guarantees. At this time, it 

may be necessary to increase the operating frequency. A t first glance, this algorithm does 

not appear to significantly reduce frequencies, voltages, and energy expenditure. However, 

since multiple tasks may be simultaneously in the reduced-utilization state, the total savings 

can be significant.

We could use the same schedulability-test-based approach to designing a cycle-conserving 

DVS algorithm for RM scheduling, but as the RM  schedulability test is significantly more 

complex ( 0 ( n 2), where n  is the number of tasks to be scheduled), we will take a different 

approach here. We observe that even assuming tasks always require their worst-case com ­

putation times, the statically-scaled RM mechanism discussed earlier can maintain real­

time deadline guarantees. We assert that as long as equal or better progress for all tasks is 

made here than in the worst case under the statically-scaled RM algorithm, deadlines can 

be met here as well, regardless of the actual operating frequencies. We will also try to avoid 

getting ahead of the worst-case execution pattern; this way, any reduction in the execution

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



> ,1.00o
§  0 . 7 53
S’ 0 . 5 0

tim e = 0 D 1 D2

(a)

7 / JUS 77.

i
5

> ,1.00o
S 0 . 7 5=5
S' 0 .5 0

(b )

t im e = 0 D 1

10
D 2

7/ 77

—f
5

—i—
10

. 1.00

o> 0 . 7 5rj

> , 1.00o
S 0 . 7 5  

S ’ 0 . 5 0

(f)

tim e = 1 6

T 1

- r a

T 1 J 1'

o 10

15 ms

D 3

n

1 5  m s

1 5  m s

tim e=2

1.00 t im e = 3 .3 3
55 0 .7 5

CD 0 .5 0

1 5  m s

D 2 D 3
> 1.00o
S 0 . 7 53
S’ 0 . 5 0

tim e= 8

T1 7/ >
T 3

10

1 5  m s

Figure 4.5: Exam ple of cycle-conserving RM: (a) Initially use statically-scaled, worst-case 

RM  schedule as target; (b) Determine m inim um  frequency so as to complete the same 

work by D l; rounding up to the closest discrete setting requires frequency 1.0; (c) After 

T1 completes (early), recompute the required frequency as 0.75; (d) Once T2 completes, 

a very low frequency (0.5) suffices to complete the remaining work by D l; (e) T1 is re- 

released, and now, try to match the work that should be done by D2; (f) Execution trace 

through time 16 ms.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cycles used by the tasks can be applied to reducing operating frequency and voltage. Us­

ing the same example as before, Figure 4.5 illustrates how this can be accomplished. We 

initially start with worst-case schedule based on static-scaling (a), which for this example, 

uses the maximum CPU frequency. To keep things simple, we do not look beyond the next 

deadline in the system. We then try to spread out the work that should be accomplished 

before this deadline over the entire interval from the current time to the deadline (b). This 

provides a minimum operating frequency value, but since the frequency settings are dis­

crete, we round up to the closest available setting, frequency=1.0. After executing T x, we 

repeat the exercise of spreading out the remaining work over the remaining time until the 

next deadline (c), which results in a lower operating frequency since 2 j com pleted ear­

lier than its worst-case specified computing time. Repeating this at each scheduling point 

results in the final execution trace (f).

Although conceptually simple, the actual algorithm (Figure 4.6) for this is somewhat 

complex due to a number of counters that must be maintained. In this algorithm, we need 

to keep track of the worst-case remaining cycles of computation, cJe ftit for each task 2). 

W hen task 1) is released, cJeft.t is set to C*. We then determine the progress that the static 

voltage scaling RM mechanism would make in the worst case by the earliest deadline for 

any task in the system. We obtain Sj and s m, the number of cycles to this next deadline, 

assuming operation at the statically-scaled and the maximum frequencies, respectively. 

The Sj cycles are allocated to the tasks according to RM priority order, with each task 7) 

receiving an allocation di <  cJq /q  corresponding to the number o f cycles that it would 

execute under the statically-scaled RM scenario over this interval. As long as we execute at 

least di cycles for each task T t (or if  T) completes) by the next task deadline, we are keeping 

pace with the worst-case scenario, so we set execution speed using the sum of the d values. 

As tasks execute, their cJe ft and d values are decremented. W hen a task completes, 

clef,ti and di are both set to 0, and the frequency and voltage are changed. Because we use 

this pacing criteria to select the operating frequency, this algorithm guarantees that at any 

task deadline, all tasks that would have completed execution in the worst-case, statically- 

scaled RM schedule would also have completed here, hence meeting all deadlines.

These algorithms dynamically adjust frequency and voltage, reacting to the actual com ­

putational requirements of the real-tim e tasks. At most, they require 2 frequency/voltage

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



assume fj is frequency set by static scaling algorithm

select_frequency():

set sm = max_cycles_until_next_deadline(); 

use lowest freq. f t  € { / i , . . . ,  f m \fi <■■■ < fm}  

such that (di H (- dn) / sm < f i / f m

upon task_release(Tj): 

set cJefti = Ci\

set sm = max_cyclesmntil_next_deadline();

set Sj = sm * fj  j f m', 

allocate_cycles (sj); 

select_frequency();

upon task_completion(Ti): 

set cJefti = 0; 

set di = 0; 

select_frequency ();

during task_execution(Ti):

decrement cJefti and di,

allocate_cycles(k):

for i = 1 to n, Ti € { T i,. . . ,  Tn\Pi < ■ ■ ■ < Pn}

/* tasks sorted by period */ 

if ( cJefti < k )

set d{ = cJefti '■> 

set k = k - cJefti,

else

set di = k; 

set k = 0;

Figure 4.6: Cycle-conserving DVS for RM  schedulers

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



switches per task per invocation (once each at release and completion), so any overheads 

for hardware voltage change can be accounted in the worst-case computation time allo­

cations of the tasks. As we will see later, the algorithms can achieve significant energy 

savings without affecting real-time guarantees.

4.2.5 Look-Ahead RT-DVS

The final (and most aggressive) RT-DVS algorithm that we introduce in this chapter 

attempts to achieve even better energy savings using a look-ahead technique to determine 

future computation need and defer task execution. The cycle-conserving approaches dis­

cussed above assume the worst case initially, execute tasks at a high frequency until some 

o f them complete, and only then reduce operating frequency and voltage. In contrast, the 

look-ahead scheme tries to defer as much work as possible, and sets the operating frequency 

to complete the minimum work that must be done now to ensure all future deadlines are 

met. Of course, a result of this may be that we are required to run at high frequencies later 

in order to complete all of the deferred work in time. On the other hand, if tasks use much 

less than their worst-case computing time allocations, the peak execution rates for deferred 

work may never be needed, and this heuristic will allow the system to continue operating 

at a low frequency and voltage while completing all tasks by their deadlines.

Continuing with the example used earlier, we illustrate how a look-ahead RT-DVS EDF 

algorithm works in Figure 4.7. The goal is to defer work beyond the earliest deadline in 

the system (D x) so that we can operate at a low frequency between the current time and 

D i . We allocate time in the schedule for the worst-case execution o f each task, starting 

with the task with the latest deadline, T3. We spread out T3’s work between D x and its own 

deadline, D3, subject to a constraint reserving capacity for future invocations of the other 

tasks (a). After allocating T3 and reserving capacity for future invocations of T x, we repeat 

this step for T2, which cannot entirely fit between D x and D2. Additional work for T2 and 

all of T x are allotted before D x (b). We note that more of T2 could be deferred beyond D x 

if we moved all of T3 after D 2, but for simplicity, this is not considered. We use the work 

allocated before D x to determine the operating frequency. Once T x has completed, using 

less than its specified worst-case execution cycles, we repeat this and find a lower operating 

frequency (c). Continuing this method of trying to defer work beyond the next deadline in

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a)

> , 1.00 

<5 0 .7 5
ZD

S' 0 .5 0

(b)

> ,1.00o
§  0 .7 5

0
s
5

(c)

. 1.00

& 0 .7 5  
S’ 0 .5 0

o '  1 '0 0
§  0 .7 5
ZD

§T 0 .5 0

(f)

tim e= 0

77

T1

t im e = 2 .6 7

-i
5

tim e = 16

T 1 s T1

15  m s

15 ms

15  m s

15 m s

tim e = 4 .6 7

1.00O
S 0 .7 5

tim e=8

c d  0 .5 0

15 m s

10 15 m s

Figure 4.7: Example of look-ahead EDF: (a) At time 0, plan to defer T 3’s execution until 

after D l (but by its deadline D3, and likewise, try to fit T2 between D l and D2; (b) T I 

and the portion of T2 that did not fit m ust execute before D l, requiring use of frequency 

0.75; (c) After TI completes, repeat calculations to find the new frequency setting, 0.5;

(d) Repeating the calculation after T2 completes indicates that we do not need to execute 

anything by D l, but EDF is work-conserving, so T3 executes at the minimum frequency;

(e) This occurs again when T l ’s next invocation is released; (f) Execution trace through 

time 16 ms.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



select_frequency(x):

use lowest freq. f  £  {j\ , . . . ,  f m \f \  < ■ ■ ■ < f m} 

such that x  <  f i / f m

upon task_release(Tj): 

set cJe/tj = Ci, 

defer();

upon taskxom pletion(Tj): 

set cJefti = 0; 

defer();

during task_execution(T;): 

decrement cJe ft

defer ():

set U  = C 1/ P 1 +  ••• +  Cn/P n- 

set s = 0;

for i = 1 to n, T* <E { A  . . . ,  Tn \D i >■■■> D n}

/* Note: reverse EDF order of tasks */ 

se tU  = U -  C i/P i,

set x  = max(0, cJefti — (1 — A) ( A  — D n)); 

set U  = U  + (cJefti ~  x ) / ( A  — A i) ;  

set s = s + x\ 

selectifequency ( s / ( D n— current_time));

Figure 4.8: Look-Ahead DVS for EDF schedulers

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the system ultimately results in the execution trace shown in (f).

The actual algorithm for look-ahead RT-DVS with EDF scheduling is shown in Fig­

ure 4.8. As in the cycle-conserving RT-DVS algorithm for RM, we keep track of the worst- 

case remaining computation cJefti for the current invocation of task %. This is set to C{ 

on task release, decremented as the task executes, and set to 0 on completion. The major 

step in this algorithm is the deferral function. Here, we look at the interval until the next 

task deadline, try to push as much work as we can beyond the deadline, and compute the 

minimum number of cycles, s, that we must execute during this interval in order to meet 

all future deadlines. The operating frequency is set just fast enough to execute s cycles 

over this interval. To calculate s, we look at the tasks in reverse EDF order (i.e., latest 

deadline first). Assuming worst-case utilization by tasks with earlier deadlines (effectively 

reserving time for their future invocations), we calculate the minimum number of cycles, 

x , that the task must execute before the closest deadline, D n, in order for it to complete 

by its own deadline. A cumulative utilization U  is adjusted to reflect the actual utilization 

of the task for the time after D n. This calculation is repeated for all of the tasks, using 

assumed worst-case utilization values for earlier-deadline tasks and the computed values 

for the later-deadline ones, s is simply the sum of the x  values calculated for all of the 

tasks, and therefore reflects the total number of cycles that must execute by D n in order for 

all tasks to meet their deadlines. Although this algorithm very aggressively reduces pro­

cessor frequency and voltage, it ensures that there are sufficient cycles available for each 

task to meet its deadline after reserving worst-case requirements for higher-priority (earlier 

deadline) tasks.

4.2.6 Summary of RT-DVS algorithms

All o f the RT-DVS algorithms we presented thus far should be fairly easy to incorporate 

into a real-time operating system, and do not require significant processing costs. The 

dynamic schemes all require 0 ( n ) computation (assuming the scheduler provides an EDF 

sorted task list), and should not require significant processing beyond what is needed for the 

scheduler. The most significant overheads may come from the hardware voltage switching 

times. However, in all of our algorithms, no more than two switches can occur per task 

per invocation period, so these overheads can easily be accounted for, and added to, the

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



RT-DVS method energy used
none (plain EDF) 1.0
statically-scaled RM 1.0
statically-scaled EDF 0.64
cycle-conserving EDF 0.52
cycle-conserving RM 0.71
look-ahead EDF 0.44

Table 4.4: Normalized energy consumption for the example traces

worst-case task computation times.

To conclude our series of examples, Table 4.4 shows the normalized energy dissipated 

in the example task (Table 4.2) set for the first 16 ms, using the actual execution times 

from Table 4.3. We assume that the 0.5, 0.75 and 1.0 frequency settings need 3, 4, and 5 

volts, respectively, and that idle cycles consume no energy. More general evaluation o f our 

algorithms will be done in the next section.

4.3 Simulations

We have developed a simulator to evaluate the potential energy savings from voltage 

scaling in a real-time scheduled system. The following subsection describes our simulator 

and the assumptions made in its design. Later, we show some simulation results and provide 

insight into the most significant system parameters affecting RT-DVS energy savings.

4.3.1 Simulation Methodology

Using C++, we developed a simulator for the operation of hardware capable of voltage 

and frequency scaling with real-time scheduling. The simulator takes as input a task set, 

specified with the period and computation requirements of each task, as well as several 

system parameters, and provides the energy consumption of the system for each of the al­

gorithms we have developed. EDF and RM  schedulers without any DVS support are also 

simulated for comparison.3 Parameters supplied to the simulator include the machine spec­

3 Without DVS, energy consumption is the same for both EDF and RM, so EDF numbers alone would 
suffice. However, since some task sets are schedulable under EDF, but not under RM, we simulate both to 
verify that all task sets that are schedulable under RM are also schedulable when using the RM-based RT-DVS 
mechanisms.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ification (a list of the frequencies and corresponding voltages available on the simulated 

platform) and a specification for the actual fraction of the worst-case execution cycles that 

the tasks will require for each invocation. This latter parameter can be a constant (e.g., 

0.9 indicates that each task will use 90% of its specified worst-case computation cycles 

during each invocation), or can be a random function (e.g., uniformly-distributed random 

multiplier for each invocation).

The simulation assumes that a constant amount of energy is required for each cycle 

o f operation at a given voltage. This quantum is scaled by the square of the operating 

voltage, consistent with energy dissipation in CMOS circuits (E  oc V 2). Only the energy 

consumed by the processor is computed, and variations due to different types o f instructions 

executed are not taken into account. With this simplification, the task execution modeling 

can be reduced to counting cycles of execution, and execution traces are not needed. The 

software-controlled halt feature, available on some processors and used for reducing energy 

expenditure during idle, is simulated by specifying an idle level parameter. This value gives 

the ratio between energy consumed during a cycle while halted and that during a cycle of 

normal operation (e.g., a value of 0.5 indicates a cycle spent idling dissipates one half 

the energy of a cycle of computation). For simplicity, only task execution and idle (halt) 

cycles are considered. In particular, this does not consider preemption and task switch 

overheads or the time required to switch operating frequency or voltages. There is no loss 

of generality from these simplifications. The preemption and task switch overheads are 

the same with or without DVS, so they have no effect on relative power dissipation. The 

voltage switching overheads incur a time penalty, which may affect the schedulability of 

some task sets, but incur almost no energy costs, as the processor does not operate during 

the switching interval.

The real-time task sets are specified using a pair of numbers for each task, indicating 

its period and worst-case computation time. The task sets are generated randomly as fol­

lows. Each task has an equal probability o f having a short (l-1 0 m s), medium (10-100ms), 

or long (lOO-lOOOms) period. W ithin each range, task periods are uniformly distributed. 

This simulates the varied mix of short and long period tasks commonly found in real-time 

systems. The computation requirements of the tasks are assigned randomly using a similar 

3 range uniform distribution. Finally, the task computation requirements are scaled by a

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



constant chosen such that the sum of the utilizations of the tasks in the task set reaches a 

desired value. This method of generating real-time task sets has been used previously in the 

development and evaluation of a real-time embedded microkernel [95], Averaged across 

hundreds of distinct task sets generated for several different total worst-case utilization val­

ues, the simulations provide a relationship of energy consumption to worst-case utilization 

of a task set.

4.3.2 Simulation Results

We have performed extensive simulations of the RT-DVS algorithms to determine the 

most important and interesting system parameters that affect energy consumption. Unless 

specified otherwise, we assume a DVS-capable platform that provides 3 relative operating 

frequencies (0.5, 0.75, and 1.0) and corresponding voltages (3, 4, and 5, respectively).

In the following simulations, we compare our RT-DVS algorithms to each other and to 

a non-DVS system. We also include a theoretical lower bound for energy dissipation. This 

lower bound reflects execution throughput only, and does not consider any timing issues 

(e.g., whether any task is active or not). It is computed by taking the total number of task 

computation cycles in the simulation, and determining the absolute minimum energy with 

which these can be executed over the simulation time duration with the given platform 

frequency and voltage specification. No real algorithms can do better than this theoretical 

lower bound, since id does not even consider task release times or deadlines, but it is 

interesting to see how close our mechanisms approach this bound.

Number of tasks: In our first set of simulations, we determine the effects of varying the

number of tasks in the task sets. Figure 4.9 shows the energy consumption for task sets with 

5, 10, and 15 tasks for all of our RT-DVS algorithms as well as unmodified EDF. All of these 

simulations assume that the processor provides a perfect software-controlled halt function 

(so idling the processor will consume no energy), thus showing scheduling without any 

energy conserving features in the most favorable light. In addition, we assume that tasks 

do consume their worst-case computation requirements during each invocation. With these 

extremes, there is no difference between the statically-scaled and cycle-conserving EDF 

algorithms.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25
5 tasks

EDF
StaticRM
StaticED F
ccED F
ccRM
laEDF
bound

0 0 .2  0 .4  0 .6  0.8 1

Utilization

10 ta sk s

25
— i—  EDF 
— -a  ... StaticRM  
— x—  StaticED F
 □  ccED F
— * — ccRM 
— e — laEDF 
  bound

20

E?
CDC
LU

0.6 0.8 10 0.2 0.4

Utilization 

15 ta sk s

— i—  EDF 
— StaticRM  
— x—  StaticED F
 □  ccE D F

ccRM 
laEDF 

  bound

20

CDC
LU

0.4 0.6 0.8 10 0.2
Utilization

Figure 4.9: Energy consumption with 5, 10, and 15 tasks

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



We notice immediately that the RT-DVS algorithms show potential for large energy 

savings, particularly for task sets with mid-range worst-case processor utilization values. 

The look-ahead RT-DVS mechanism, in particular, seems able to follow the theoretical 

lower bound very closely. Although the total utilization greatly affects energy consumption, 

the number of tasks has very little effect. Neither the relative nor the absolute positions of 

the curves for the different algorithms shift significantly when the number of tasks is varied. 

Since varying the number of tasks has little effect, for all further simulations, we will use a 

single value.

Varying idle level: The preceding simulations assumed that a perfect software-controlled

halt feature is provided by the processor, so idle time consumes no energy. To see how 

an imperfect halt feature affects power consumption, we performed several simulations 

varying the idle level factor, which is the ratio of energy consumed in a cycle while the 

processor is halted, to the energy consumed in a normal execution cycle. Figure 4.10 shows 

the results for idle level factors 0.01, 0.1, and 1.0. Since the absolute energy consumed will 

obviously increase as the idle state energy consumption increases, it is more insightful to 

look at the relative energy consumption by plotting the values normalized with respect to 

the unmodified EDF energy consumption.

The most significant result is that even with a perfect halt feature (i.e., idle level is 0), 

where the non-energy conserving schedulers are shown in the best light, there is still a very 

large percentage improvement with the RT-DVS algorithms. Obviously, as the idle level 

increases to 1 (same energy consumption as in normal operation), the percentage savings 

with voltage scaling improves. The relative performance among the energy-aware sched­

ulers is not significantly affected by changing the idle power consumption level, although 

the dynamic algorithms benefit more than the statically-scaled ones. This is evident as the 

cycle-conserving EDF mechanism results diverge from the statically-scaled EDF results. 

This is easily explained by the fact that the dynamic algorithms switch to the lowest fre­

quency and voltage during idle, while the static ones do not; with perfect idle, this makes 

no difference, but as idle cycle energy consumption approaches that of execution cycles, 

the dynamic algorithms perform relatively better. For the remainder of the simulations, we 

assume an idle level of 0.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8 tasks, idle level 0.01

■oa>N
"to
E
o
>.ai
oa.
LU

1

0.8

0.6

0 .4

0.2

0

H H

f—  EDF 
StaticRM  

-x—  StaticED F 
ccE D F 
ccRM 

-e — laEDF 
  bound

_L_

0.2 0 .4  0.6

Utilization

8 ta sk s , idle level 0.1

0.8

~a0)
N
ro
E

>.O)
®c
LU

1

0.8

0.6

0.4

0.2

0

+-
h—  EDF

StaticRM  
-x—  StaticED F 
a  ccE D F 

ccRM  
-o --  laEDF 
  bound

_L_

0 .2  0 .4  0.6

Utilization

8  task s, idle level 1

T

0.8

~o
N
OT
E
o_c_
>,
C D»—
c

LU

— i— EDF
0.8

... .A --- StaticRM
— x — StaticED F
....a .... ccED F

0.6 _ ccRM
--- G— laEDF

bound
0 .4 -

0.2

0
0.2 0 .4  0.6

Utilization

0.8

Figure 4.10: Normalized energy consumption with idle level factors 0.01, 0.1, and 1.0

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Varying machine specifications: All of the previous simulations used only one set of

available frequency and voltage scaling settings. We now investigate the effects of varying 

the simulated machine specifications. The following summarizes the hardware voltage and 

frequency settings, where each tuple consists of the relative frequency and the correspond­

ing processor voltage:

machine 0: { (0.5, 3), (0.75, 4), (1.0, 5) } 

machine 1: { (0.5, 3), (0.75, 4), (0.83, 4.5), (1.0, 5) } 

machine 2: { (0.36, 1.4), (0.55, 1.5), (0.64, 1.6),

(0.73, 1.7), (0.82, 1.8), (0.91, 1.9), (1.0, 2.0) }

Figure 4.11 shows the simulation results for machines 0, 1, and 2. Machine 0, used in 

all of the previous simulations, has frequency settings that can be expected on a standard 

PC motherboard, although the corresponding voltage levels were arbitrarily selected. M a­

chine 1 differs from this in that it has the additional frequency setting, 0.83. With this small 

change, we expect only slight differences in the simulation results with these specifications. 

The most significant change is seen with cycle-conserving ED F (and statically-scaled ED E 

since the two are identical here). With the extra operating point in the region near the cross­

over point between ccEDF and ccRM, the ccEDF algorithm benefits, shifting the cross-over 

point closer to full utilization.

Machine 2 is very different from the other two, and reflects the settings that may be 

available on a platform incorporating an AMD K6 processor with AM D’s PowerNow! 

mechanism [2], Again, the voltage levels are only speculated here. As it has many more 

settings to select from, the plotted curves tend to be smoother. Also, since the relative volt­

age range is smaller with this specification, the m aximum savings is not as good as with 

the other two machine specifications. M ore significant is the fact that the cycle-conserving 

EDF outperforms the look-ahead EDF algorithm. ccEDF and staticEDF benefit from the 

large number of settings, since this allows them  to more closely match the task set and re­

duce energy expenditure. In fact, they very closely approximate the theoretical lower bound 

over the entire range of utilizations. On the other hand, laEDF sets the frequency trying 

to defer processing (which, in the worst case, would require running at full speed later). 

With more settings, the low frequency setting is closely matched, requiring high-voltage, 

high-frequency processing later, hurting performance. W ith fewer settings, the frequency

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8 tasks, machine 0

~o<D
CO
E
o

o>
<dcLU

StaticRM  — 
StaticED F —-x—

ccE D F  e -
ccRM —  
laEDF
bound ------

0.4 0.6
Utiiization

~o03
N
To£i—oc

oc
LU

8  task s , m achine 1

1

0.8

0.6
EDF — 

StaticRM  — 
StaticED F -

.4 —x—
ccE D F  e ....

ccRM - ■  
laEDF — e — 
bound ---------

0.2

0
0.2 0.4 0.6

Utilization

0.8

8 task s, m achine 2

■g 0.8
N
CO
E 0.6oc EDF — i—  

StaticRM  — a  — 
StaticED F -

D) —X—
ccE D F  s ....

ccRM  -  
laE D F — e —
b ound  ---------

oc
LU

0.2

0.2 0.4 0.6
Utilization

0.8

Figure 4.11: Normalized energy consumption with machine 0, 1, and 2

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



selected would be somewhat higher, so less processing is deferred, lessening the likelihood 

o f needing higher voltage and frequency settings later, thus improving performance. In 

a sense, the error due to a limited number of frequency steps is detrimental in the ccEDF 

scheme, but beneficial with laEDF. These results, therefore, indicate that the energy savings 

from the various RT-DVS algorithms depend greatly on the available voltage and frequency 

settings of the platform.

Varying computation time: In this set of experiments, we vary the distribution of the ac­

tual computation required by the tasks during each invocation to see how well the RT-DVS 

mechanisms take advantage of task sets that do not consume their worst-case computation 

times. In the preceding simulations, we assumed that the tasks always require their worst- 

case computation allocation. Figure 4.12 shows simulation results for tasks that require a 

constant 90%, 70%, and 50% of their worst-case execution cycles for each invocation. We 

observe that the statically-scaled mechanisms are not affected, since they scale voltage and 

frequency based solely on the worst-case computation times specified for the tasks. The re­

sults for the cycle-conserving RM  algorithm do not show significant change, indicating that 

it does not do a very good job  of adapting to tasks that use less than their specified worst- 

case computation times. On the other hand, both the cycle-conserving and look-ahead EDF 

schemes show great reductions in relative energy consumption as the actual computation 

performed decreases.

Figure 4.13 shows the simulation results using tasks with a uniform distribution be­

tween 0 and their worst-case computation. Despite the randomness introduced, the results 

appear identical to setting computation to a constant one half o f the specified value for 

each invocation of a task. This makes sense, since the average execution with the uniform 

distribution is 0.5 times the worst-case for each task. From this, it seems that the actual 

distribution of computation per invocation is not the critical factor for energy conservation 

performance. Instead, for the dynamic mechanisms, it is the average utilization that de­

termines relative energy consumption, while for the static scaling methods, the worst-case 

utilization is the determining factor. The exception is the ccRM algorithm, which, albeit 

dynamic, has results that primarily reflect the worst-case utilization of the task set.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8 ta sk s , c=0.9

"g 0.8
as

0.6

e> 0.4asc111
0.2

0

!—  EDF 
StaticRM 

-x—  StaticED F
0   ccEDF

ccRM 
laEDF 

  bound

- as

0.2 0.4 0.6

Utilization

8 task s, c=0.7

0.8

CO
E 0.6

§> 0.4 
as c 

LU
0.2

0
0.2 0.4 0.6

Utilization

8 ta sk s , c=0.5

0.8

— i—  EDF 
*a  StaticRM 

— x—  StaticED F
 0   ccEDF
— ■ ccRM 
— o— laEDF a
  bound / jm

s x— x

Utilization

........... .. 1 .................1....... ..............I .............. f...............
1 ■ 1 Ell

— 1— EDF .L-m—... .A --- StaticRM
----x— StaticED F /
....H.... ccED F / ....a
--- ccRM s ' ... £>

laEDF a '' sm s'
bound / x ' s 'X

n ''' •Y*” ....Q . -pC^ ”m

-

i i 1

-

Figure 4.12: Normalized energy consumption with computation set to fixed fraction of 

worst-case allocation

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8 tasks, uniform c

1

IT 0.8
.N
15

>> « g> 0.4
0> c

LU
0.2

0
0 0.2 0.4 0.6 0.8 1

Utilization

Figure 4.13: Normalized energy consumption with uniform distribution for computation

4.4 Implementation

This section describes our implementation of a real-time scheduled system incorpo­

rating the proposed DVS algorithms. We will discuss the architecture of the system and 

present measurements of the actual energy savings with our RT-DVS algorithms.

4.4.1 Hardware Platform

Although we developed the RT-DVS mechanisms primarily for embedded real-time 

devices, our prototype system is implemented on the PC architecture. The platform is a 

Hewlett-Packard N3350 notebook computer, which has an AMD K6-2+ [2] processor with 

a maximum operating frequency of 550 MHz. Some of the power consumption numbers 

measured on this laptop were shown earlier in Table 4.1. This processor features Pow- 

erNow!, A M D ’s extensions that allow the processor’s clock frequency and voltage to be 

adjusted dynamically under software control. We have also looked into a similar offering 

from Intel called SpeedStep [29], but this controls voltage and frequency through hard­

ware external to the processor. Although it is possible to adjust the settings under software 

control, we were not able to determine the proper output sequences needed to control the 

external hardware. We do not have experience with the Transmeta Crusoe processor [87]

94

i—  EDF 
- A ~ StaticRM 
—x—  StaticEDF
-Q  ccEDF

~ ccRM 
■ -© laEDF 
  bound

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



or with various embedded processors (such as Intel XScale [28]) that are now supporting 

DVS.

The K6-2+ processor specification allows system software to select one o f eight dif­

ferent frequencies from its built-in PLL clock generator (200 to 600 MHz in 50 M Hz in­

crements, skipping 250), limited by the maximum processor clock rate (550 M Hz here). 

The processor has 5 control pins that can be used to set the voltage through an external 

regulator. Although 32 settings are possible, there is only one that is explicitly specified 

(the default 2.0V setting); the rest are left up to the individual manufacturers. HP chose to 

incorporate only 2 voltage settings: 1.4V and 2.0V. The voltage and frequency selectors are 

independently set, so we need a function to map each frequency to the appropriate avail­

able voltage level. As there are no such specifications publicly available, we determined 

this experimentally. The processor was stable up to 450 MHz at 1.4 V, and needed the 2.0 

V setting for higher frequencies. Stability was checked using a set of CPU-intensive bench­

marks (m pg l2  3 in a loop and Linux kernel compile), and verifying proper behavior. We 

note that this empirical study used a sample size of one, so the actual frequency to voltage 

mappings may vary for other machines, even of the same model.

The processor has a mandatory stop interval associated with every change o f the voltage 

or frequency transition, during which the processor halts execution. This mandatory halt 

duration is meant to ensure that the voltage supply and clock have time to stabilize before 

the processor continues execution. As the characteristics of different hardware im plem enta­

tions of the external voltage regulators can vary greatly, this stop duration is programmable 

in multiples of 41 n s (4096 cycles of the 100 M Hz system bus clock). According to our 

experience, it takes negligible time for frequency changes to occur. Using the CPU tim e­

stamp register (basically a cycle counter), which continues to increment during the halt 

duration, we observed that around 8200 cycles occur during any transition to 200 MHz, 

and around 22500 cycles for a transition to 550 MHz, both with the minimum interval 

o f 41 fis. This indicates that the frequency of the CPU clock changes quickly and that 

most of the halt time is spent at the target frequency. We do not know the actual time re­

quired for voltage transition to occur, but our experiments using a halt duration value of 10 

(approximately 0.4 ms) resulted in no observable instability. The switching overheads in 

our system, therefore, are 0.4 ms when voltage changes, and 41 fis when only frequency

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



RT Task SetUser
Level

Kernel
Level

Linux Kernel 1 Scheduler Hook i

PowerNow
Module

N on-R T
DVS

Periodic RT 
Task Module

RT Scheduler 
w / RT-D VS

Figure 4.14: Software architecture for RT-DVS implementation

changes. As mentioned earlier, we can account for this switching overhead in the compu­

tation requirements of the tasks, since at most only two transitions are attributable to each 

task in each invocation.

4.4.2 Software Architecture

We implemented our algorithms as extension modules to the Linux 2.2.16 kernel. A l­

though it is not a real-time operating system, Linux is easily extended through modules 

and provides a robust development environment familiar to us. The high-level view of our 

software architecture is shown in Figure 4.14. The approach taken for this implementation 

was to maximize flexibility and ease of use, rather than optimize for performance. As such, 

this implementation serves as a good proof-of-concept, rather than the ideal model. By im ­

plementing our kernel-level code as Linux kernel modules, we avoided any code changes to 

the Linux kernel, and these modules should be able to plug into unmodified 2.2.x kernels.

The central module in our implementation provides support for periodic real-time tasks 

in Linux. This is done by attaching call-back functions to hooks inside the Linux scheduler 

and timer tick handlers. This mechanism allows our modules to provide tight timing control 

as well as override the default Unix scheduling policy for our real-tim e tasks. Note that this 

module does not actually define the real-time scheduling policy or the DVS algorithm. 

Instead, we use separate modules that provide the real-time scheduling policy and the RT- 

DVS algorithms. One such RT scheduler/DVS module can be loaded on the system at 

a time. By separating the underlying periodic RT support from the scheduling and DVS

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



policies, this architecture allows dynamic switching o f these latter policies without shutting 

down the system or the running RT tasks. (Of course, during the switch-over time between 

these policy modules, a real-time scheduler is not defined, and the timeliness constraints 

of any running RT tasks may not be met). The last kernel module in our implementation 

handles the access to the PowerNow! mechanism to adjust clock speed and voltage. This 

provides a clean, high-level interface for setting the appropriate bits of the processor’s 

special feature register for any desired frequency and voltage level.

The modules provide an interface to user-level programs through the Linux / p r o o f s  

filesystem. Tasks can use ordinary file read and write operations to interact with our m od­

ules. In particular, a task can write its required period and maximum computing bound to 

our module, and it will be made into a periodic real-time task that will be released period­

ically, scheduled according to the currently-loaded policy module, and will receive static 

priority over non-RT tasks on the system. The task also uses writes to indicate the com ­

pletion of each invocation, at which time it will be blocked until the next release time. As 

long as the task keeps the file handle open, it will be registered as a real-time task with 

our kernel extensions. Although this high-level, filesystem interface is not as efficient as 

direct system calls, it is convenient in this prototype implementation, since we can simply 

use c a t  to read from our modules and obtain status information in a human readable form. 

The PowerNow! module also provides a / p r o c f  s  interface. This will allow for a user- 

level, non-RT DVS demon, implementing algorithms found in other DVS literature, or to 

manually deal with operating frequency and voltage through simple shell commands.

4.4.3 Measurements and Observations

We performed several experiments with our RT-DVS implementation and measured 

the actual energy consumption of the system. Figure 4.15 shows the setup used to measure 

energy consumption. The laptop battery is removed and the system is run using the external 

DC power adapter. Using a special current probe, a digital oscilloscope measures the power 

consumed by the laptop as the product of the current and voltage supplied. This basic 

methodology is very similar to the one used in the PowerScope [22], but instead of a slow 

digital multimeter, we use an oscilloscope that can show the transient behavior and also 

provide the true average power consumption over long intervals. Using the long duration

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



O scillo sco p e

Current Probe

a d a p te r  M obile D evice
(battery  rem oved)

Figure 4.15: Power measurement on laptop implementation

acquisition capability of the digital oscilloscope, our power measurements are averaged 

over 15 to 30 second intervals.

Figure 4.16 shows the actual power consumption measured for our RT-DVS algorithms 

while varying worst-case CPU utilization for a set of 5 tasks which always consume 90% 

of their worst-case computation allocated for each invocation. The measurements reflect 

the total system power, not just the CPU energy dissipation. As a result, there is a constant, 

irreducible power drain from the system board consumption (the display backlighting was 

turned off for these measurements; with this on, there would have been an additional con­

stant 6 W  to each measurement). Even with this overhead, our RT-DVS mechanisms show a 

significant 20% to 40% reduction in power consumption, while still providing the deadline 

guarantees of a real-time system.

Figure 4.17 shows a simulation with identical parameters (including the 2 voltage-level 

machine specification) to these measurements. The simulation only reflects the processor’s 

energy consumption, so does not include any energy overheads from the rest of the system. 

It is clear that, except for the addition o f constant overheads in the actual measurements, the 

results are nearly identical. This validates our simulation results, showing that the results 

we have seen earlier really hold in real systems, despite the simplifying assumptions in the 

simulator. The simulations are accurate and may be useful for predicting the performance 

of RT-DVS implementations.

We also note two interesting phenom ena that should be considered when implement-

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

25

'm 2 0S3
CO

r  15
Cl)

a. 10

5

0
0 0.2 0.4 0.6 0.8 1

Utilization

Figure 4.16: Power consumption on actual platform

5 tasks, real platform, c=0.9

EDF
StaticRM -A

ccEDF —  x -  
laEDF - - 0--

5 tasks, simulated platform, c=0.9
5

4

3

2

EDF — i—  
StaticRM — -a — 

ccEDF — x—- 
laEDF ©

1

0
0 0.2 0.4 0.6 0.8 1

Utilization

Figure 4.17: Power consumption on simulated platform

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ing a system with RT-DVS. First, we noticed that the very first invocation of a task may 

overrun its specified computing time bound. This occurs only on the first invocation, and is 

caused by “cold” processor and operating system state. In particular, when the task begins 

execution, many cache misses, translation-look-aside buffer (TLB) misses, and page faults 

occur in the system (the last may be due to the copy-on-write page allocation mechanism 

used by Linux). These processing overheads count against the task’s execution time, and 

may cause it to exceed its bound. On subsequent invocations, the state is “warm,” and this 

problem disappears. This is due to the large difference between worst-case and average- 

case performance on general-purpose platforms, and explains why real-time systems tend 

to use specialized platforms to decrease or eliminate such variations in performance.

The second important observation is that the dynamic addition of a task to the task set 

may cause transient missed deadlines unless one is very careful. Particularly with the more 

aggressive RT-DVS schemes, the system may be so closely matched to the current task set 

load that there may not be sufficient processor cycles remaining before the task deadlines to 

also handle the new task. One solution to this problem is to immediately insert the task into 

task set, so DVS decisions are based on the new system characteristics, but defer the initial 

release of the new task until the current invocations of all existing tasks have completed. 

This ensures that the effects of past DVS decisions, based on the old task set, will have 

expired by the tim e the new task is actually begins execution.

4.5 Related Work

Recently, there have been a large number of publications describing DVS techniques. 

M ost of them present algorithms that are very loosely-coupled with the underlying OS 

scheduling and task management systems, relying on average processor utilization to per­

form voltage and frequency scaling [23,60,90], They basically match the operating fre­

quency to some weighted average of the current processor load (or conversely, idle time) 

using a simple feedback mechanism. Although these mechanisms result in close adapta­

tion to the workload and large energy savings, they are unsuitable for real-time systems. 

More recent DVS research [20,47] have shown methods of maintaining good interactive 

performance for general-purpose applications with voltage and frequency scaling. This

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is done through prediction of episodic interaction [20] or by applying soft deadlines and 

estimating task work distributions [47]. These methods show good results for maintaining 

short response times in human-interactive and multimedia applications, but are not intended 

for the stricter timeliness constraints of real-tim e systems.

Some DVS work has produced algorithms closely tied to the scheduler [59,62,69], 

with some claiming real-time capability. These, however, take a very simplistic view of 

real-time tasks —  only taking into account a single execution and deadline for a task. As 

such, they can only handle sporadic tasks that execute just once. They cannot handle the 

most important, canonical model of real-time systems, which uses periodic real-time tasks. 

Furthermore, it is not clear how new tasks entering the system can be handled in a timely 

manner, especially since all of the tasks are single-shot, and since the system may not have 

sufficient computing resources after having adapted so closely to the current task set.

When RT-DVS was originally proposed [65], there were only four papers [24,36,56, 

82] that dealt with DVS in a true real-time system ’s perspective. The first paper [36] uses a 

combined offline and online scheduling technique. A worst-case execution time (WCET) 

schedule, which provides the ideal operating frequency and voltage schedule assuming that 

tasks require their worst-case computation time, is calculated offline. The online scheduler 

further reduces frequency and voltage when tasks use less than their requested computing 

quota, but can still provide deadline guarantees by ensuring all invocations complete no 

later than in the WCET schedule. This is much more complicated than the algorithms we 

have presented, yet cannot deal effectively with dynamic task sets.

The second, a work-in-progress paper [82], presents two mechanisms for RT-DVS. 

One mechanism attempts to calculate the best feasible schedule; this is a computationally- 

expensive process and can only be done offline. The other is a heuristic based around EDF 

that tests schedulability at each scheduling point. The details of this online mechanism 

were not presented in [82], Moreover, the assumption of a common period for all of the 

tasks is somewhat unrealistic —  even if a polynomial transformation is used to produce 

common periods, they may need to schedule over an arbitrarily long planning cycle in their 

algorithm.

The third paper [56] looks at DVS from the application side. It presents a mechanism 

by which the application monitors the progress o f its own execution, compares it to the

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



profiled worst-case execution, and adjusts the processor frequency and voltage accordingly. 

The com piler inserts this monitoring mechanism at various points in the application. It is 

not clear how to determine the locations of these points in a task/application, nor how this 

mechanism will scale to systems with multiple concurrent tasks/applications.

The fourth RT-DVS paper [24] combines offline analysis with online slack-time stealing 

[42] and dynamic, probability-based voltage scaling. Offline analysis provides minimum 

operating rates for each task based on worst-case execution time. This is used in conjunc­

tion with a probability distribution for actual computation time to change frequency and 

voltage without violating deadlines. Excess time is used to run remaining tasks at lower 

CPU frequencies.

These papers, and indeed almost all papers dealing with DVS, only present simulations 

o f algorithms. In contrast, we present fairly simple, online mechanisms for RT-DVS that 

work within the common models, assumptions, and contexts of real-time systems. We 

implemented and demonstrated RT-DVS in a real, working system. A recent paper [68] 

also describes a working DVS implementation, using a modified StrongARM  embedded 

system board, which is used to evaluate a DVS scheduler in [69],

Research on RT-DVS techniques continues to be an active research area, and many pa­

pers now extend prior pioneering approaches or develop, new, more aggressive mechanisms 

o f employing DVS in real-time systems [16,33,70]. Techniques have also been extended 

to support multiprocessor real-time systems [93],

In addition to DVS, there has been much research regarding other energy-conserving 

issues, including work on application adaptation [21] and communication-oriented energy 

conservation [35]. These issues are orthogonal to DVS and complementary to our RT-DVS 

mechanisms.

4.6 Conclusions

In this chapter, we have presented several novel algorithms for real-time dynamic volt­

age scaling that, when coupled with the underlying OS task management mechanisms 

and real-time scheduler, can achieve significant energy savings, while simultaneously pre­

serving timeliness guarantees made by real-time scheduling. We first presented extensive

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



simulation results, showing the most significant parameters affecting energy conservation 

through RT-DVS mechanisms, and the extent to which CPU power dissipation can be re­

duced. In particular, we have shown that the number of tasks and the energy efficiency 

of idle cycles do not greatly affect the relative savings of the RT-DVS mechanisms, while 

the voltage and frequency settings available on the underlying hardware and the task set 

CPU utilizations profoundly affect the performance of our algorithms. Furthermore, our 

look-ahead and cycle-conserving RT-DVS mechanisms can achieve close to the theoretical 

lower bound on energy. We have also implemented our algorithms and, using actual mea­

surements, have validated that significant energy savings can be realized through RT-DVS 

in real systems. Additionally, our simulations do predict accurately the energy consump­

tion characteristics of real systems. Our measurements indicate that 20% to 40% energy 

savings can be achieved, even including irreducible system energy overheads and using 

task sets with high values for both worst- and average- case utilizations.

Additionally, although developed for portable devices, RT-DVS is applicable widely 

in general real-time systems. The energy savings works well for extending battery life 

in portable applications, but can also reduce the heat generated by the real-time em bed­

ded controllers in various factory or home automation products, or even reduce cooling 

requirements and costs in large-scale, multiprocessor supercomputers.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5

Energy-aware Quality of Service (EQoS)

The preceding chapters have considered two aspects of a software-centric approach 

to improving the energy efficiency of operating systems: directly improving the process­

ing time and energy overheads of services, and scheduling algorithms to exploit hardware 

techniques such as power-down and voltage-scaling, while maintaining strict timeliness 

guarantees needed in a real-time embedded platform. These techniques together can effec­

tively extend the battery-life of a device. However, they do not address whether the limited 

available energy is used in the most beneficial manner, or squandered on useless tasks. A 

third approach to software-centric power-management, a comprehensive mechanisms of 

task adaptation, is needed in order to make the best use of the available energy resources in 

an embedded, mobile device.

This chapter develops a new framework called Energy-aware Quality o f Service (EQoS) 

that can manage real-time tasks and adapt their execution to maximize the benefits of their 

computation for a limited energy budget. The concept of an adaptive real-time task and 

the notion of utility, a measure of the benefit or value gained from their execution, are in­

troduced. Optimal algorithms and heuristics are developed to maximize the utility of the 

system for a desired system runtime and a given energy budget, and then extended to op­

timize utility without regard to runtime. We demonstrate the effects of Dynamic Voltage 

Scaling (DVS) on this system and how EQoS in conjunction with DVS can provide signif­

icant gains in utility for fixed energy budgets. Finally, we evaluate this framework through 

both simulations and experimentation on a working implementation.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.1 Introduction

With ever-improving semiconductor and architectural technologies, microprocessors 

have been improving in performance at an exponential rate. This rapid improvement in 

performance comes at a cost, in terms of system complexity and power dissipation. A l­

though the move to finer-width fabrication technology and lower voltage devices allows 

lower-power circuits, the rate of increase in complexity, speed, and size of microprocessors 

has resulted in increasingly power-hungry devices. In contrast, battery and energy storage 

technologies have been improving at a much slower pace, and as a result, are falling further 

behind in relation to the energy demands of newer processors.

Energy management has, therefore, become a critical issue in all portable and mobile 

computing platforms. In embedded systems used for control or communications, this is 

o f even greater importance, as it is often impossible to increase energy storage capacity 

in such systems, and the consequence of running out of energy can be catastrophic, rather 

than merely inconvenient as in consumer devices.

Several approaches to energy management have been proposed and attempted. M ost 

consumer computing platforms implement either Advanced Power M anagement (APM ) or 

Advanced Configuration and Power Interface (ACPI) [1] to manage the energy consumed 

by the system. Although implemented very differently, both of these are used in general- 

purpose platforms to power down certain hardware devices, or place them in low-power 

modes when not used for some period of time. These techniques work well in office com ­

puters that are powered on all night, or laptops that can shut off their modems or network 

interface cards when not used, and suspend the session to disk when battery is low.

Although the ability to put idle devices into low-power, standby modes is undoubtedly 

useful, there are limits to such techniques in embedded control applications, where the sys­

tem is essentially always in an active state. In such cases, we need techniques that can 

operate at fine granularities to conserve energy while the system and devices operate. As 

the processor is often the single largest consumer o f energy in most small systems (e.g., 

PDAs and palmtops), these mechanisms tend to focus on reducing the power of a run­

ning microprocessor. Table 5.1 shows measured energy consumption on a modem  laptop, 

illustrating the dominance of CPU on power dissipation. One very simple and effective

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Screen CPU subsystem Disk Power
On Idle Spinning 13.5 W
On Idle Standby 13.0 W
Off Idle Standby 7.1 W
O f f Peak Load Standby 27.3 W

Table 5.1: Power dissipation o f laptop (HP N3350) components.

mechanism requires a halt instruction on the processor that stops the execution core un­

til some interrupt triggers resumption. W hen this instruction is encountered, the CPU is 

effectively shut off (from an energy standpoint). Using this in an idle task can conserve 

almost all of the energy that would otherwise be dissipated executing idle loops. Ideally, 

with this mechanism, only cycles spent performing useful work will consume energy on 

the processor.

M ore advanced techniques can further reduce energy consumed even for the non-idle 

cycles. Dynamic Voltage Scaling (DVS) [90] reduces the frequency of the processor until 

it is just fast enough to complete all useful work, eliminating idle cycles. Since the speed 

at which the circuits operate is directly related to the voltage applied, it is possible to 

reduce the voltage when the frequency is reduced. As energy dissipated per cycle varies 

quadratically with voltage, DVS can potentially conserve significant amounts of energy, 

provided the appropriate voltage- and frequency- varying hardware is available. Such DVS 

hardware is now incorporated in the latest microprocessors [3 ,28 ,29 ,87], Assuming that 

timing guarantees can be preserved, embedded real-time systems can particularly benefit 

from both CPU-halt and DVS. As these systems are designed around worst-case execution 

times (WCETs) of tasks, which are often much larger than the average case, a significant 

amount of energy would otherwise be wasted in executing idle loops.

All of these process, battery, and DVS technologies, together, can be seen as simply 

increasing the total number of cycles o f computation a particular-sized battery-operated 

device can perform. However, these provide no guidelines as to how the scarce energy may 

be best allocated to perform useful computation. The goal of this chapter is to introduce 

the new concept of Energy-aware Quality o f  Service (EQoS), a framework that can be used 

to maximize the total value gained from performing computation in an energy-restricted 

environment. In particular, we formulate energy adaptation of task sets into a tractable,

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



optimal-selection problem, and develop solutions that, in conjunction with CPU-halt and 

DVS mechanisms, meet system mntime goals while maximizing the value gained from the 

execution of tasks.

In the next section, we describe the overall EQoS framework, and then introduce var­

ious optimal algorithms and heuristics for energy and task adaptation. Following this, we 

describe our implementation of EQoS, and present results from detailed simulations and 

actual (experimental) measurements. After relating this work with existing literature, we 

conclude and highlight some future research directions.

5.2 Energy-Aware Quality of Service

In order to improve energy usage and maximize the benefits of computation, we in­

troduce a comprehensive Energy-Aware Quality of Service (EQoS) framework to regulate 

the consumption of scarce energy resources. In particular, the EQoS framework will allow 

the dynamic allocation and reclamation of energy resources from the various applications 

running on an embedded device. The key novel aspects o f the EQoS framework are that it:

1. Brings together various technologies and techniques (including some not intended 

for energy conservation) to make best use of limited stored energy;

2. Varies the service level provided to each task to meet system runtime goals and m ax­

imize the total value of computation; and,

3. Formulates this comprehensive energy adaptation into a tractable, optimal-selection 

problem.

This entails adapting tasks to the energy available and executing them  at various service 

quality levels, which in turn incur varying power dissipation rates. The framework to im ­

plement this comprehensive adaptation consists of components spanning from the hardware 

level up to the application level, as summarized in Figure 5.1. The most important technol­

ogy components integrated into the EQoS framework are:

1. Low-level mechanisms to reclaim energy and reduce idle-time waste.

2. M ethods of executing real-time tasks at varying quality of service and energy levels.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Application
Level

RTOS

Embedded
Hardware

Figure 5.1: EQoS framework overview.

3. Methods of specifying task energy requirements and adaptation limits.

4. Algorithms to maximize benefits of system execution for limited energy.

The individual components of our EQoS framework are detailed below, with discussions 

on constraints and restrictions necessary to keep the adaptation of the real-time task set to 

maximize benefits of computation a tractable optimization problem.

5.2.1 Energy-Conserving Mechanisms

When employed aggressively, low-level mechanisms to conserve energy in the hard­

ware can significantly reduce CPU power dissipation. The techniques mentioned earlier 

work well and are incorporated in our EQoS framework. Both the processor halt and the 

DVS mechanisms eliminate processor energy costs associated with idle time. DVS goes 

further and reduces the energy overheads o f over-engineered computation capacity, by re­

ducing per-cycle energy costs when frequency and voltage are reduced to match the actual 

processing load. Hence, when computational resources are not fully utilized, these m ech­

anisms can reclaim the energy that would otherwise be wasted on idle processor cycles. 

One goal of EQoS adaptation is to reduce the computational load of the system to allow the 

low-level mechanisms to kick in, provide large energy savings, and m eet system runtime 

requirements.

However, there are several critical problems in implementing such schemes in a real­

time embedded system. In particular, varying frequency influences the execution tim e of

108

Adaptable 
RT Tasks

Quantified 
Utility A/alue

Energy-Adaptation
Algorithms

Energy-Conserving 
Mechanisms 

e.g., DVS, halt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the tasks in the system. As real-time systems must provide strict timeliness guarantees, 

changes in CPU frequency can result in timing constraint violations and deadline misses 

if not carefully implemented. A lthough many DVS mechanisms exist for general-purpose 

systems, very few are available for real-time systems. Recent research [24,65] has pro­

duced some practical real-time DVS (RT-DVS) mechanisms. The EQoS framework uses 

RT-DVS techniques that defer task execution, reclaim unused processing cycles online, and 

aggressively reduce processor frequency and voltage. Assuming the task set is schedulable, 

the algorithms take real-time characteristics into account and ensure all deadlines are met 

while reducing energy expenditure.

However, the actual energy benefits of DVS algorithms depend entirely on the actual 

execution times of the tasks in the system, which in general are not predictable. This can 

cause a significant error in any adaptation that tries to achieve a system runtime require­

ment. Our EQoS framework deals with this problem by introducing the concept of an 

idealized DVS response, and using this to account for the effects of DVS. This is discussed 

in detail in Section 5.3.4.

5.2.2 Varying QoS for Real-Time Tasks

The low-level energy-conserving mechanisms are effective at converting any surplus 

computing capacity into significant energy savings. The goal of our EQoS mechanism is to 

maximize their effectiveness through selectively reducing load in the system by adapting 

the real-time task set to the available energy. W hen the system is energy-constrained, if 

we can reduce the load on the system, then RT-DVS mechanisms can kick in to extend 

system runtime and improve per-cycle energy consumption. However, this reduction in 

load must be done in a controlled manner, and cannot be arbitrarily applied when real-time 

and mission constraints are involved.

We could improve system runtime and make better use o f scarce energy if we could 

limit the energy consumed by less important auxiliary tasks, and instead divert it to the 

execution of the more critical ones. This is, in a sense, a method of adapting the task set 

to the available energy resources and providing varying QoS to the tasks to maximize the 

return on the energy used for their execution. In order to use such a QoS mechanism, we 

need tasks that are amenable to adaptation and can be executed and different QoS levels

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with varying energy consumption rates. Application-level energy adaptation for multime­

dia has been well researched in the literature [21], but as applied to real-time tasks, it is 

under-explored.

However, in the field of fault-tolerant computing, one commonly deals with real-time 

tasks that have multiple operating modes. Particularly for large, multiprocessor and dis­

tributed real-time systems, methods of executing tasks at reduced service levels requiring 

less computational resources have been well studied. The idea behind this is that in case of 

failure, when parts of the system stop working and less resources are available, the system 

can continue to operate, using alternate task execution modes to ensure that all tasks are 

still able to run, although at a degraded quality level. This “graceful degradation” is greatly 

preferred over a system that simply stops working. Of course, any degraded task that re­

quires less computation time also requires less energy to perform those computations. An 

important component in our EQoS framework, therefore, is to use real-time task adaptation 

developed for fault-tolerance in the context of energy savings.

To understand how real-time task adaptation is implemented, it is helpful to look at the 

characteristics of typical real-time (RT) tasks and systems. The canonical model of a RT 

system includes multiple tasks that are executed periodically with a strict guarantee of their 

completion by a certain deadline. More specifically, each task i has an associated period, t,. 

Every t* time units, the task is started or released (or invoked). The task also has an associ­

ated worst-case execution time (WCET), C), and a relative deadline, di, measured relative 

to its release time. As these parameters are necessary for proper real-time scheduling, they 

are generally explicitly specified for RT tasks. The real-time scheduler guarantees that the 

task will receive up to C) units of execution time within di time units of each release of 

this task. The actual execution time for each invocation of a task can vary greatly from the 

specified WCET, but as long as the tasks use less than their W CETs for each invocation, 

a provable guarantee of completion within deadlines is provided. Note that in many RT 

systems, including the classical RT scheduling algorithms [45], it is often assumed that 

the relative deadline equals the period (d* =  U, i.e., a task is guaranteed to complete its 

execution by the time its next invocation is released). Furthermore, this periodic model is 

used extensively in practice for a wide range of real-time applications, including various 

embedded control tasks, but is also quite general and has been used to accommodate other

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



types of tasks, including sporadic and aperiodic event handlers [43].

The precise mechanisms employed in executing real-time tasks at degraded service 

levels depend on the nature of the applications. For control systems, one simple technique 

employed is to stretch the period o f the real-time control task so the frequency of execution 

is reduced. The control task normally runs at a rate that has been deemed optimal for 

the system being controlled, providing the desired tradeoff between response time and 

overshoot limitation, while guaranteeing stability. When processing capacity is reduced 

due to failures, or we need to restrict computation to conserve dwindling energy resources, 

the process can be run at a lower periodic frequency, resulting in suboptimal, degraded 

control. Although performance becomes suboptimal, this may be desirable in order to keep 

the system operating longer to avoid catastrophes. Of course, this approach has its own 

limits, as stretching period too much may result in instability, but this is very dependent on 

the nature of the control system and can be usually determined at the the time the system is 

constructed.

For other applications, different types of degradation techniques also exist. Imprecise 

computation [46] models trade off execution time for precision. An example of this is iter­

ative computations —  the more iterations performed, the greater the resulting precision. In 

such tasks, it is possible to reduce the precision and the computational load, and therefore 

conserve energy resources. Yet other systems may use several completely different algo­

rithms to perform similar tasks. For example, in the case of voice compression, two differ­

ent CODECs employing different algorithms may produce the same level of compression, 

but at differing levels of loss or noise, and inversely correlated differences in computing 

time. In other cases, for a non-critical task, the m ost degraded service level may simply 

be not running it at all. Stopping/deleting the unimportant tasks can allow mission-critical 

tasks to run for a longer period of time when energy is low.

Our intention is not to devise new methods of providing degraded service-levels to 

real-time tasks, nor enumerate the existing techniques. Rather, we want to take the existing 

techniques that provide graceful degradation in the case of failures, and apply them  to 

reduce energy consumption within a real-time EQoS framework.

However, we do need to restrict the set o f tasks and their service levels to a certain 

extent. For any set of real-time tasks, one must test whether the particular com bination of

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



task requirements is schedulable, i.e., all deadlines can be met under a particular scheduling 

paradigm. In the EQoS framework, each task has multiple service levels, and each service 

level may have vastly differing real-time requirements, particularly if algorithmic change is 

involved in the service degradation. Hence, each combination of task service levels needs 

to be checked and only the schedulable combinations are valid outputs of any adaptation 

algorithm. This, in the worst case, requires an exponential search through all combinations 

of task service levels.

To simplify the schedulability problem, we first restrict scheduling to use the earliest- 

deadline-first (EDF) dynamic priority scheduler. This scheduler has the nice property that, 

assuming negligible scheduling /  preemption overheads and independent tasks, all tasks are 

guaranteed to meet their deadlines as long as the total processor utilization, Y .C i/U  over all 

tasks i, is no greater than one [45]. In the EQoS framework, where each task has multiple 

service levels, we define wfiax as the largest C / t  among all of the service levels of task i. 

Using this, we state a sufficient condition for schedulability:

n

<  1, (5.1)
i=1

where there are n  tasks in the system. By restricting task sets to only those that meet this 

sufficiency condition, we can guarantee that regardless of which service level is selected 

for each task, the system will always meet the EDF scheduling requirements. W ith these 

restrictions, the additional complexity of testing for schedulability is removed, eliminating 

a potential obstacle to efficient adaptation solutions. On most systems, these restrictions are 

met by default as schedulability conditions are usually satisfied when all tasks are executing 

in their highest service level.

5.2.3 Specifying Task Utility

Given a set of real-time tasks that can be executed at degraded QoS levels, it is fairly 

straightforward to enumerate a valid set of degraded operating modes for each task that 

will ensure mission-critical goals (e.g., maintaining stability) are met. When determining 

other characteristics, such as execution times, it is easy to measure energy consumption 

corresponding to these reduced QoS levels, which can be used in QoS level selection. As 

real-tim e tasks are already well-specified with respect to WCET, period, and deadlines,

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



we simply need to specify one additional parameter, the average power dissipation for 

executing this task, for each QoS level defined for the task. However, to determine the best 

tradeoff between these task QoS levels, one critical input is needed —  a quantification of 

the value or benefit gained, called utility, from running a task at a particular QoS level.

In general, utility is an abstract notion of value or gain, and need not be based on real 

units. This leaves the actual specification flexible to the type of applications or systems 

that are designed. Each QoS level for a task is assigned a utility value, reflecting the rel­

ative benefits executing different tasks at the various QoS levels defined. Similar notions 

of a generic utility metric have been successfully used elsewhere [39] for QoS-related op­

timizations.

With some forms of task QoS degradation, it is relatively simple to assign utility values. 

With the class of imprecise computation methods that provides “increasing rewards for 

increasing service” (IRIS) [13], a simple monotonically-increasing function of maximum 

computation time suffices for utility. Depending on the application, this may be a linear 

function or a fractional power relationship reflecting decreasing marginal returns.

For real-time control tasks that allow period extension as a graceful degradation method, 

a mechanism exists for quantifying the effects on the controlled system. Using a control- 

theoretic measure of performance index (PI), one can derive a reward function for various 

task-periods [78]. In this context, we can generally just use this reward function, scaled by 

some constant, to find the utility for the various task QoS levels.

For tasks that deal with multimedia, or voice compression, the utility assignment is 

somewhat trickier. In particular, the output of these applications can only be evaluated in 

terms of human-perceived quality, which is difficult to quantify. Running a task with re­

duced computation and energy resources may produce results indistinguishable from the 

original service level to one user, but seem to incur severe quality loss to a different user. 

Much research has focused on modeling average human perception of quality in the con­

text of compression, and although such metrics may be used to assign utility, the utility 

assignment for multimedia tasks remains a difficult and somewhat arbitrary process.

Although in utility assignment there are no particular units of utility or ranges o f ac­

ceptable values, the assigned utility values need to be consistent among the different tasks. 

This utility method allows for a wide range of possible task set adaptations when utility is

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



maximized. It is possible to have some tasks ran at their maximal (i.e., maximum compu­

tational and energy demand) QoS levels, while simultaneously others are at their minimum 

specified levels. On the other hand, the utility-based specification does have its limits. In 

particular, in this approach, the utility o f running a task is independent of the tasks in the 

system, so it is not possible to specify constraints such as task A has utility x  only if task B 

is running, or at least two of three tasks A, B, and C m ust ran. However, for most systems, 

the notion o f utility provides sufficient flexibility to define a wide range of preferences or 

relative benefits o f task adaptation.

5.2.4 Maximizing System Utility

The final component of the EQoS framework is the algorithm used to actually select the 

QoS levels of tasks to be ran. In order to obtain the greatest benefits from  the limited energy 

sources, we need to select the QoS levels such that the utility is maximized. Even though 

all of the task QoS levels, their power requirements, and the utility gained through their 

executions are specified, there still remains a question of whether it is better to ran tasks at 

minimal levels for a long duration, or execute for a shorter duration at high-utility, high QoS 

levels, or even a mixture of service levels so the system can ran for a specified amount of 

time. The problem of energy adaptation is somewhat ambiguous, and the optimal solution 

depends on both the task set and the actual constraints on the system. In the following 

section, we present in detail the problem of energy-adaptive task QoS-level selection and 

describe algorithms to maximize utility in an energy-constrained adaptive system.

5.3 Adaptation Goals, Problems, and Algorithms

The goal of EQoS adaptation is to maximize the system utility or value for the given, 

limited energy resources, subject to mission constraints. By selectively reducing the QoS 

level provided to individual tasks, the total system load can be reduced, allowing low-level 

mechanisms to reclaim energy that can be used to ran other tasks at high QoS levels, or 

keep the system functioning for a longer duration. The selection of task QoS levels can be 

expressed as a constrained utility maximization problem, but the actual algorithms to solve 

such problems depend on the constraints of the system. In this section, we first formally

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



describe an adaptive system and formulate the selection of adaptation levels as a tractable, 

utility maximization problem. We then present several algorithms to optimally select QoS 

levels, as well as some simple heuristics, and then extend these to solve related problems 

with different mission constraints.

5.3.1 Adaptive System Description

An adaptive task set is formally described as follows. We are given a set of n  tasks, 

7 1 , . . . ,  Tn, of which each task 7) has m* different QoS levels defined as 7 Q , . . . ,  Tijmi. 

For each level TQ, we specify its canonical real-time parameters, period t i j  and W CET 

C ij ,  and we also specify a utility value U ij and an average energy expenditure E ^ .  Both 

of these are expressed as per-invocation values. The energy parameter can be measured 

easily by running the task on the target hardware platform and using standard electronic 

instruments (e.g., DVM or oscilloscope with current probe).

Given a particular selection of QoS levels, j  i , . . . ,  j n, for tasks T x, . . .  ,T n, respectively, 

the number of iterations executed for task i over a time interval t is in the range, J |^ J  , [ |r] j • 

Assume further that the system dissipates P fixed. power when idle, and that the values 

indicate the average additional energy consumed for each invocation of task i at service 

level j ,  beyond what would have been used for idle. Now, by multiplying the num ber of 

iterations by the average energy per invocation for each task and adding these to the fixed 

energy consumed, we can determine the energy consumed over interval t. Dividing this by 

t, we obtain a range for the average power, Psys over the interval t:

1 It - 4- > '
U i.

As system runtimes are in the range o f minutes to hours, while task periods are on the 

order of tens of milliseconds, we can safely assume long observation intervals relative to 

task periods. For large values of t/U , Psys converges to:

n rp
PSy s = P ^ e d  + Y , T ^ -  (5-2)

i- 1 P ji

Similarly, we can determine the rate of utility gain as:

n 
£

 ̂ ^  ' P f ix e d .  +  5 3  j.. P i , j j  — P s y s  <   ̂ \ t  • P f i x e d  +  5 3 Pi,j

n U fA
i=l

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Assuming that we have E sys energy units initially available, the total expected system run­

time is expressed as E sys/P sys. M ultiplying this runtime by the utility gain rate, we can 

determine the total system utility, Usys, as:

n  I J -  - 
T ?  V  x '3 i  ■LJsys  Z s  +. .* • - Lt,ji

U s y s  =  --------- ^ V , . .....• (5-3)
- J  , X— r  E / i .

f i x e dP f i x e d  +  E

The goal of any EQoS adaptation algorithm is to select the per-task QoS levels, indicated by 

j i , . . .  , j n, to maximize Usys subject to system mntime constraints. The actual algorithm 

depends heavily on these other constraints, so we need to consider each specific type of 

problem separately in the following sections. In addition, we note that the E iyj  values 

indicate average energy consumption assuming that the processor operates at its maximum 

frequency and voltage. Employing DVS will reduce the actual power dissipated, and we 

will explore ways of accounting for its effects in Section 5.3.4.

5.3.2 Known Time-to-Charge Problem

We first look at task adaptation for cases where the system will need to operate on 

stored energy for a finite time, or the system runtime is bounded by a known value. This is 

a common scenario, where one knows when primary energy sources will become available 

to power the system and recharge batteries. An example of this is a solar-powered satellite 

that has entered the shadow of the planet —■ given the orbital mechanics, the required time 

until it emerges out of the shadow can be computed very accurately. Stored energy must 

be used during this interval, and we would like to adapt the task set to maximize the utility 

o f the system during this interval. We note that in such a system, due to size and weight 

restrictions, the gradual deterioration o f the batteries, software upgrades that change task 

sets, variations in shadow transition times, and physical inaccessibility, a dynamic system 

of adaptation is preferable to static techniques or the over-engineering/replacement of the 

batteries.

In this scenario, we are given the system energy, E sys, and a time, t run. This time can be 

thought of as the required system runtime or the time until the next recharge for the system. 

We want to maximize the utility gained during t run, but do not care about execution beyond 

this time. The reason is that after this time, primary energy sources are available, so there

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



are no longer energy constraints and the system can simply operate using the maximal task 

QoS levels. Since we are concerned only with utility during this time interval, total system 

utility simplifies to:
n

U Sys t r u n  ' 'y ; U i j i / t i j i ,

assuming that the actual system runtime is at least t r

E E■^sys   J-J sys  ^

^  P f ix e d  + i— 1

n  tp — ° ru n

n fp fp

E i-ji ^  -^sys  p _  p
, , r  f i x e d  ~~ r budget

i ~  1 U j i  l ru n

The right side o f the inequality can be considered a power budget for task execution that en­

sures a system runtime of t run. With these derivations, we now need to select per-task QoS 

levels j i , , j n to maximize the total utility by maximizing the utility rate, YPi=\ 

while ensuring that the system runs for the desired time t run by constraining the total power 

for task execution, E L i  E t , j i /Uj i  <  Pbudget-

Expressed in this way, the optimization problem reduces to the multiple-choice knap­

sack problem  (MCKP) [52], a lesser-known variant of the famous 0-1 knapsack problem. 

In MCKP, we have a set of categories, each with a number o f non-overlapping items, each 

of which, in turn, has an associated value and weight/size/cost. Given a knapsack limit, 

the goal is to select exactly one item from each category to maximize value subject to the 

knapsack size limit.

Our problem is expressed as an M CKP by treating each task as a category and its set of 

defined QoS levels as the items within the category. The knapsack size is set to the power 

budget, K  =  E sys/ t run — Pfixed- The item values and weights are the utility rates and 

power dissipation o f the tasks, respectively, at each quality level, i.e., ty j =  U i j / E j  and 

=  E i j / t i j .  It now suffices to solve this M CKP to determine the optimal set of taskw.

QoS levels, j i , . . .  , j n, that maximizes the total expected utility of the system with E sys 

energy units during the time t run until the next recharge. ■

5.3.3 Solving MCKP

The naive approach to solving this M CKP optimally is a simple state-space search. We 

systematically iterate through every combination of task QoS level assignment, checking

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the total power against the power budget, and keeping track of the selection that results in 

the largest total utility rate. Unfortunately, the search space grows exponentially —  if the 

n  tasks have m  quality levels each, the search takes 0 ( m n) time. Therefore, this approach 

is generally not practical.

There is, however, no known general solution to M CKP that can be performed in poly­

nomial time, since M CKP is an NP-hard problem for the following reason. We can express 

any 0-1 knapsack problem as an MCKP: for each item a, in the former, we create an ad­

ditional item o!i with weight and value equal to zero. Then, each category consists of the 

item and its zero value counterpart, i.e., {ai: a '} . The knapsack size is the same for both 

problems. If cq is included in the M CKP solution, it is also in the 0-1 knapsack solution; if 

a ' is included, then a* is not in the 0-1 knapsack solution. With this mapping, any polyno­

mial solution to M CKP can be used to get a polynom ial-tim e solution to the NP-hard 0-1 

knapsack problem. Hence, M CKP is NP-hard as well.

However, if we assume that the weights (i.e., power) can be expressed as integers, then 

we can obtain a pseudo-polynomial-time optimal solution using dynamic programming 

(DP) techniques. We first solve trivially the M CKP containing just one category (task) 

for all possible knapsack sizes (power budgets), which are also integers. Using the opti­

mal solutions to this subproblem, we can find the solution to M CKP for the first two tasks 

in linear time for each possible power budget. Repeating this process of building on the 

previous partial solutions, we obtain the solution to M CKP with all n  tasks, for all power 

budgets. This has a pseudo-polynomial-time complexity of 0 ( n m k ) ,  assuming there are n  

tasks with m  QoS levels each, and a maximum power budget (knapsack size) of k. Unfor­

tunately, as k  can be large, the time required may be significant. Furthermore, DP requires 

significant amounts o f memory as well —  the space complexity is 0 {n k ) .  This latter may 

make it impractical for small embedded controllers, which are typically memory- as well 

as processing- and energy-constrained.

One final approach to the optimal solution is to use a branch-and-bound (BB) algorithm. 

This involves a depth-first traversal of the decision tree, but only promising branches are 

visited, greatly reducing the time relative to simple exponential search. Each level o f the 

decision tree is associated with a task, and each node at level i has branches, correspond­

ing to the rrii QoS levels defined for 7). A fast bounding algorithm is used to compute an

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



upper bound to the total value that is possible if a particular branch is taken. Only branches 

with an upper bound on value greater than any seen so far are visited.

This technique requires a fast algorithm to compute a good upper bound on the value 

o f MCKP. We use the linear relaxation of M CKP called linear M CKP (LMCKP) [67,92], 

which can be solved quickly. LM CKP allows making fractional selections, which permits 

interpolation between two defined QoS levels of a task, e.g., 0.75 T2>3 and 0.25 T2)4, pro­

viding weighted average values for the power and utility rates. To solve LMCKP, we start 

with all tasks at minimal service levels. We enumerate all of the possible “upgrades,” or 

changes in selection from a lower QoS level to a higher one, for each task, and then sort 

these for all tasks by the utility-change to power-change ratios. We apply the upgrades in 

order, the one with the highest ratio first. If applying an upgrade exceeds the power budget, 

we apply it proportionally to the available power, resulting in a fractional selection for one 

task, a fully-used budget, and task selections providing the greatest marginal utility. This 

LM CKP solution is optimal, and is guaranteed to always give a value no lower than the 

optimal discrete M CKP solution, so it can be used as a fast upper bound on MCKP.

The BB algorithm produces an optimal solution and is not affected by large knapsack 

size and is not limited to integers as with DP. The drawback is that there is no guarantee 

of effective pruning of the search space, so this may, in the worst case, require very long 

execution time as with an exponential search.

To overcome this drawback, we also consider a couple of simple heuristics that have 

very short execution times. The first heuristic uses the solution to LMCKP, which was used 

as the upper bound in the BB algorithm. We simply drop any fractional selection, replacing 

it with the lower of the fractionally-selected QoS levels, to produce a valid, though not 

optimal, discrete solution.

A slightly better solution is achieved through a greedy algorithm. This starts out just 

like the linear approach, “upgrading” selections in order of the largest utility-change to 

power-change ratios. Rather than using a fractional selection to fill out the knapsack, the 

greedy heuristic continues to look through the sorted list, performing any possible QoS- 

level upgrade. This should result in a total utility no lower than the linear heuristic.

The execution times for these are very low, both incurring a linear complexity, in addi­

tion to any overhead of sorting the QoS-level upgrades. This sorting is needed only when

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



x>

0.5

linear — I—  
greedy  — X --  

opti
min —•B ....

m ax - - - - - -
OiF

0 2e+09 4e+09 6e+09 8e+09
Initial Energy Level (uJ)

Figure 5.2: Example showing effects of adaptation on runtime, normalized to t run.

the actual task set changes, so this overhead is not always incurred. Unfortunately, there is 

no guarantee on how close to optimal the resulting solutions are with these heuristics. It is 

possible to construct task sets, for which these heuristics produce arbitrarily poor solutions 

relative to the optimal algorithms. However, for most realistic task sets, the heuristics will 

produce reasonable solutions, albeit with some deviation from optimality.

To illustrate the effects of these different adaptation algorithms, we show in Figure 5.2 

the resulting system runtime normalized to the desired runtime for a sample task set while 

varying initial energy, where “opti” refers to the optimal solution obtained from  the DP and 

BB approaches, and “linear” and “greedy” refer to the heuristic solutions. For comparison, 

we also include a non-adaptive use o f the minimal and maximal QoS levels for the tasks, 

labeled as “min” and “max”, respectively. Adaptation produces selections between these 

extremes and maintains system runtime near the desired value of t run. A t the extremes of 

the initial energy range, however, we cannot adapt any further, and therefore overlap the 

minimal or maximal curve as initial energy is varied. The total utility until the known time- 

to-charge, trun, for this example task set is plotted in Figure 5.3. We present the specifics

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9e+13
linear — I—  

greedy — X - -  
opti

8e+13

7e+13

X'
6e+13

5e+13

£  4e+13

3e+13

2e+13

1e+13

0 4e+09 6e+09 8e+092e+09
Initial Energy Level (uJ)

Figure 5.3: Example task set total utility gain com parison using adaptation, 

of our simulations and detailed evaluations of these algorithms in Section 5.5.

5.3.4 Effects of DVS

Thus far, we have not considered the effects of DVS on adaptation. In particular, DVS 

techniques allow for greatly reduced per-cycle energy costs when the processor is lightly- 

loaded. This translates into a greatly-increased runtime for the system. Figure 5.4 shows 

the system runtime normalized to desired runtime after adaptation of the example task 

set used in the previous figures, but in addition, an aggressive real-time DVS algorithm 

is employed. The system in this example has 3 voltage-frequency combinations shown 

in Table 5.2. Compared to the previous results, we see much longer system runtimes, 

particularly when the system has very low utilization.

O f course, the problem  we are dealing with —  maximizing utility until a known recharge 

time —  does not directly benefit from the extended runtime. Instead, We would rather use 

the benefits of DVS to run tasks at higher-power, greater-utility QoS levels. Unfortunately,

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.5

v X-
-~w'~ ■at- - *

|  2 .5

c
cc

n3
£
o2

linear — I—  
greedy — X— ■ -  

opti - 
min 

max

0.5

2e+09 6e+094e+09 8e+09
Initial Energy Level (uJ)

Figure 5.4: Example showing effects of DVS on runtime.

the exact effects of DVS depend on the actual execution times for each invocation of all 

tasks, which is a random component and cannot be predicted a priori. As a result, we can­

not take DVS directly into account in the adaptation algorithms. Instead, we would like to 

compensate for the effects of DVS and make the system run to the desired time with higher 

utility by providing higher QoS to the tasks.

To do this, we introduce the concept o f the idealized DVS response. Based on our prior 

work in DVS algorithms [65], we note that advanced DVS algorithms that aggressively 

reclaim unused slack time achieve energy performance close to an easily-computed lower 

bound. Figure 5.5 shows the relationship between average power and processor-capacity 

utilization for idealized DVS for the particular settings in Table 5.2. The idealized response 

reflects energy-per-cycle proportional to the voltage squared when the utilization equals the 

normalized frequency settings that are available. For utilization values between these, the 

average energy-per-cycle is a linear interpolation of these. Idle cycles are assumed to con­

sume no energy (i.e., a perfect processor halt mechanisms), so the solid line in Figure 5.5 

is obtained by multiplying the average (normalized) energy-per-cycle by the processor uti-

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1
idealized DVS response 

approximation

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Utilization

Figure 5.5: Relationship between utilization and power for ideal DVS.

Normalized Normalized
frequency voltage

1.0 1.0
0.75 0.8
0.35 0.6

Table 5.2: Normalized frequency and voltage settings for DVS.

lization, which equals the normalized number of non-idle cycles per second.

We can use the inverse relationship to determine the processor utilization that results 

in a particular normalized power budget. Call this inverse relationship the compensation 

function, or F comp(). As the previously-discussed adaptation algorithms do not use utiliza­

tion directly, we can convert the utilization value to a power value by multiplying it by 

(P -m ax  — P f i x e d ) ,  the maximum additional power dissipation at maximum system utiliza­

tion, thus obtaining the power dissipation expected for the target processor utilization if 

DVS were not employed:

p    ( p  _  p  \ P  (  P b u d g e t  \
* comp \ r m a x  r f i x e d ) 1 comp  j p  p  1 •

\-* m a x  1 f i x e d  /

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•o

0.5

linear — I—  
greedy — X -- ' 

opti
min - B ....

max
0«F

0 2e+09 4e+09 6e+09 8e+09
Initial Energy Level (uJ)

Figure 5.6: Example showing effects of DVS on runtime, normalized to t run, when com ­

pensation is used.

We now feed PCOmp as the power budget parameter to the adaptation algorithms. In other 

words, we use Fcomp to adjust the power budget to compensate for the effects of DVS. In 

fact, we simplify this a little bit by using a piecewise-linear approximation of Fcomp, the 

inverse of the dotted line in Figure 5.5. By accounting for DVS in this way, we implicitly 

make the assumption that all power dissipated for executing a task is scaled when DVS is 

employed. This, of course, is not entirely accurate, since the energy for task execution, 

the E ij  terms, include consumption in buses, main memory, and I/O devices, in addition 

to the voltage-scaled CPU. However, since processor power generally dominates non-idle 

time energy expenditure, this approximation is generally acceptable, especially since Fcomp 

is based on an approximation to an idealized response anyway. Figure 5.6 shows the same 

task set as above under adaptation and DVS, but with a com pensated power budget. The 

system runtimes are now close to the desired runtime.

In practice, DVS mechanisms cannot actually provide the idealized response, as actual 

task execution times are random and cannot be expected to hold perfectly to their averages

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



over short runs. Furthermore, some distributions and combinations of tasks simply do not 

work as well with DVS as others (e.g., due to on-off distribution of computation time). Due 

to this, combined with the fact we approximate all task energy as scaled by DVS, it is very 

likely that this method of adjusting the power budget for adaptation may over-compensate 

for the true effects of DVS. This is apparent in Figure 5.6, where the normalized runtimes 

dip slightly below 1.0 for the adaptation curves just before they merge with the maximum 

service curve. It is therefore best to use this compensation mechanism as a first approxi­

mation, then adapt the task set again at later times. We note that if the adaptation algorithm 

uses the DP approach, no additional work is really needed for subsequent adaptations, since 

DP computes optimal solutions for all possible power budgets with the given task set.

5.3.5 Applicability to Other Adaptation Problems

So far, we have considered the optimization of utility when we know the time until the 

primary power source becomes available. In addition to this scenario, we can also look at 

several other types of optimization problems.

First, one can consider maximizing system runtime. This is a very trivial problem  —  

one simply needs to run each task at its minimal QoS level to maximize the runtime. As 

this is not a very interesting problem, we will not consider it any further.

A more interesting problem is the unconstrained maximization of utility, i.e., regardless 

o f runtime. In this case, we need to deal with the unconstrained complex formulation of 

system utility presented in Equation 5.3. Despite this complexity, this adaptation problem  is 

still tractable. In particular, we can solve this using the solution to the known time-to-charge 

problem discussed earlier. We use the adaptation algorithms to find optimal solutions for 

all possible power budgets, and then compute the resulting runtime and total utility for each 

power budget. We now simply select the power budget that gives the maximum expected 

utility. We note that with the DP approach, there is little additional work here, since the DP 

algorithm already finds optimal solutions for all possible power budgets (knapsack sizes) 

anyway. We simply have to determine the runtime and total utility for these. In addition, 

we can obtain a suboptimal approximation, possibly at a lower computational overhead, by 

evaluating the greedy heuristic for all possible power budgets.

A  third variant is the maximization of utility subject to a required minimum runtime.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Unlike the known time-to-charge problem, additional runtime beyond the requirement does 

contribute to the total benefits gained. The simplest, most direct solution to this problem 

is to implement the algorithm to solve the unconstrained utility maximization problem, 

but limit the final selection to the power budgets that provide at least the required system 

runtime.

5.3.6 Dealing with Dynamic Systems

Thus far, we have basically treated the task set as static. In general, real-time systems, 

especially in embedded systems, tend to have static or very infrequently changing task sets, 

so dealing with dynamic tasks is not a core concern of our adaptation. With the assumption 

o f infrequent changes to the task set, the simplest method o f dealing with dynamic tasks 

is to simply redo the energy adaptation on each task set change. As there are usually 

additional overheads associated with adding or deleting tasks (particularly when admission 

control is employed), this simply adds one additional computation during these changes.

With the branch-and-bound algorithm, we need to redo the entire search, incurring the 

full computational overhead on each task set change. In case of the DP approach, adding 

a task is relatively simple, since the existing solutions for n  tasks are simply reused as the 

partial solutions for n  + 1  tasks, and we incur only an 0 (mk)  overhead, where the new task 

has m  QoS levels defined, and the maximum power budget is k.  However, when deleting 

a task, all partial solutions may be invalidated, so the complete computation with 0 (nmk)  

overhead may be needed. If the heuristics discussed earlier are used, the runtime overhead 

is too small to worry about, as long as an efficient sorted queue structure is used to keep 

the sorted QoS “upgrade” lists.

We note that in addition to performing adaptation when the task set changes, it is best 

to perform these adaptations periodically. This will ensure that the errors introduced by 

inaccurate or imprecise task energy values, or the overcompensation for DYS effects are 

fixed and we can achieve close to the desired runtime with maximal utility.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 RT Task SetUser
Level

Kernel
Level

Linux Kernel 1 Scheduler Hook

PowerNow
Module

Non-RT
DVS

Periodic RT 
Task Module

RT Scheduler 
w/ RT-DVS

Figure 5.7: Software architecture of EQoS implementation for Linux.

5.4 Implementation

We have developed a working implementation of the proposed EQoS framework. It 

is built on top of an existing RT-DVS system [65], which provides a periodic real-time 

task model and support for DVS on top of the Linux operating system. DVS requires 

hardware support, and our implementation currently works on notebook computers with 

AMD Mobile Athlon, Duron, and K6-2 processors that implement A M D ’s PowerNow! 

voltage and frequency scaling support. Due to the changes introduced in Linux 2.4 kernels, 

the current implementation only works on the 2.2 kernels.

Figure 5.7 depicts the overall software architecture of the EQoS implementation. The 

proposed EQoS is implemented as modules that extend the Linux kernel. The core o f 

the system is a module that provides the periodic real-time task model on top of Linux, 

interacts with tasks, and provides connection points to “plug in” various extensions. Vari­

ous scheduler modules can plug in to this module, and im plement one o f several real-time 

scheduling policies, both with and without DVS support. The actual hardware control of 

frequency and voltage is done through a third module, the Pow erN ow  module, which ab­

stracts the specifics of the hardware.

Our EQoS adaptation algorithms extend this core RT-DVS through the A d a p t a t i o n  

module. Although these adaptation mechanisms are ideally implemented as middleware, it 

was simplest for us to create another kernel module to perform this functionality. A fifth 

module, b a tm o n , is intended to measure the available energy in the battery. It can be 

interfaced with energy monitoring mechanisms such as SmartBattery API [74]. For our

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



implementation, we instead use it as a user interface to specify initial energy values. It also 

allows us to simulate controlled partial system power failures to see how the system adapts.

All task interactions are performed through the Linux / p r o c  file system. A new RT 

task will open a special file and write its parameters. These include the number of valid 

QoS levels, and for each level, the real-time parameters (i.e., period and WCET), average 

energy, and utility. Once registered, a real-time task will be blocked by our module and 

invoked periodically, according to the specifications. A task indicates it has completed the 

current invocation by writing to the special file, and the task is immediately blocked until 

its next execution period. When the task is re-invoked, the return value from this write 

operation will indicate the QoS level selected so the appropriate degradation mechanisms 

can be employed.

The adaptation algorithms select QoS levels for all of the tasks in the system. These 

algorithms are executed whenever a new task is added to the system, or when a task is 

removed. In addition, they are also run when the b a tm o n  module indicates a new m ea­

sure of energy capacity. In our current implementation, we use a dummy battery capacity 

measure, so the algorithms are run when the user supplies a new power budget through the 

/ p r o c  interface to the b a tm o n  module.

Our prototype EQoS implementation for Linux 2.2.x kernels is publicly available for 

those interested [64].

5.5 Evaluation

In order to evaluate the benefits of EQoS and the relative performance of the adaptation 

algorithms for a wide range of task sets, we have developed a parametric simulator that 

models various aspects of energy-adaptive real-time systems. This allows us to explore a 

large space of multidimensional task set properties very quickly and determine the expected 

range of behavior for our adaptation mechanisms. In addition, we also perform actual 

measurements on our implemented system, and validate some simulation results on a more 

limited set of tasks.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LLQ
CL

0  0.5 1

Execution tim e a s  a  fraction of W CET

LLQ
CL

0.5

0.5 10
Execution tim e a s  a  fraction of W CET

LLQ
CL

0.5

0 0.5 1

LL
Q
CL

0.5

0.5 10
E xecution tim e a s  a  fraction of W CET E xecution tim e a s  a  fraction of W CET

LLQ
CL

0.5

0 0.5 1

E xecution tim e a s  a  fraction of W CET

Figure 5.8: Probability distributions for actual execution time of tasks expressed as a frac­

tion of WCET used in the simulator.

5.5.1 Simulation Methodology

Our simulator can model the energy consumption of a processor with voltage and fre­

quency scaling hardware. This simulator can use a variety of real-time scheduling policies, 

as well as several different real-time DVS mechanisms. The simulator takes an input of var­

ious parameters describing the simulated hardware, scheduling policies, and a task set with 

multiple QoS levels defined. In addition, the total available energy as well as the desired 

system runtime is supplied. The simulator applies one of our EQoS adaptation algorithms, 

and then simulates the execution of the task set on the modeled processor to determine the 

total system runtime and the utility gained. The simulation is repeated for each o f our other

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



adaptation algorithms.

The simulator assumes that the energy-per-cycle of computation is constant for a given 

operating voltage. This value is chosen to be the average energy-per-cycle and is scaled 

by a normalized voltage squared term to account for the reduced power dissipation from 

reduced voltage operation when DVS is employed. This simplifies the simulation, since the 

type of instruction executed is not taken into account, so instruction traces are not needed. 

Instead, it suffices to count the number of execution cycles between scheduling events to 

determine energy consumed, allowing for an event-driven simulation rather than a much 

slower cycle-by-cycle trace simulator. Furthermore, we assume that idle cycles dissipate 

negligible energy, i.e., the system employs an efficient h a l t  instruction instead of idle 

loops. Only the processor energy dissipation is considered here. W hen DVS is used, we 

assume the normalized voltage and frequency combinations described earlier in Table 5.2. 

Finally, since we are not interested in comparing real-time schedulers or DVS mechanisms, 

we restrict the system to earliest-deadline-first (EDF) scheduling and the laEDF  RT-DVS 

mechanism [65], although one can also trivially apply other scheduling and DVS policies.

We use random real-time task sets to simulate a wide variety o f tasks and evaluate 

adaptation across a wide range of initial energy states. When creating these random task 

sets, we first consider only the characteristics at maximum quality o f service. To reflect the 

wide range of task periods found in real-time systems, each task has an equal probability 

of having a short (1-10  ms), medium (10-100 ms), or long (100-1000 ms) period. Within 

each range, the task periods are selected according to a uniform distribution. W CET for the 

tasks are assigned according to a similar three-range uniform distribution, and then scaled 

by a constant to maximize worst-case processor utilization while ensuring the task set is 

EDF-schedulable (i.e., Y1 C i/U  <  1) [45]. Each task is also assigned one of five execution 

time distributions for its actual execution times to be used in the simulation. Figure 5.8 

shows the five possible probability distributions of task execution time, expressed as a frac­

tion of WCET. Assigned is a random utility value, as well as an average power dissipation 

value, computed from the average execution time and task period.

Next, we generate the task characteristics for degraded service quality. For each task we 

define a random number of QoS levels, up to a user-specified maximum. We model three 

different mechanisms o f degraded execution: period extension, imprecise computation,

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.2

1

0.8
>,
5
I 0.6

oZ
0.4

0.2 

0

Iinear5 — I—  Iinear95 greedy50 min5 -- ■ * - min95 —  a - - -

Iinear50 — X -— greedy5 - -{ 3   g reedy95 min50 ---A -  -

Figure 5.9: Utility with adaptation, normalized to optimal.

and algorithmic change. To model period extension, W CET and execution-time distribu­

tion are kept the same, while the period and average power are elongated and scaled down, 

respectively, by a uniform  random variable within the range (1.0, 2.0), and the utility scaled 

down by a random number for each degradation of QoS levels. For imprecise computation, 

WCET, average power, and utility are similarly changed. An algorithmic change reflects 

a change in all o f the terms including execution-time distribution, so all are randomly se­

lected such that the worst-case utilization (C j/fj), average power, and utility decrease for 

each additional QoS level defined. Finally, approximately half of the tasks are assigned an 

additional QoS level, in which they incur zero power and produce zero utility, reflecting 

that the tasks are non-critical and may be stopped/dropped altogether if the energy budget 

warrants it.

We create 1000 task sets, each with 10 tasks, and each of which, in turn, has up to 5 QoS 

levels. We run each o f the adaptation algorithms on all o f these task sets to generate the 

following results. The simulations use a desired runtime (trun) of 10 minutes, and vary the 

initial energy, which is specified in //J. The processor is assumed to dissipate a maximum

131

- -  0  .

'A
' A .

■ 'A  --- A- --A -- -A - - -  A t - - - A  A  A  - - - A  A

3 - I A- - . A > - A -  --“A t t I A ■.
2e+09 4e+09 6e+09

Initial Energy Level (uJ)
8e+09

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0
0  2e+09 4e+ 09  6e+09 8e+09

Initial Energy Level (uJ)

Iinear95 — I—  greedy95  E3  opti95 min95 — v —  m ax95..... ♦ .....
Iinear50 — X—  greedy50 opti50 -~ A -  - min50 — t — • m ax50

Iinear5 greedy5 -■ €)-■  opti5 - - - a - - -  min5 max5

Figure 5.10: System runtime with adaptation, normalized to t run.

of 25 W, which is comparable to most current laptop processors. Note that the adaptation 

is performed only once at the beginning o f each run.

5.5.2 Simulation Results

We have performed extensive simulations to evaluate the benefits and relative perform ­

ance o f EQoS adaptation algorithms. We first compare the algorithms to see how well they 

adapt task sets to maximize utility, and compare their overheads. We then evaluate the 

effects o f DVS and our accounting mechanism.

Comparison of Adaptation Algorithms

Figure 5.9 shows the relative total system utility provided under various adaptation 

algorithms. In this figure, we normalize the results for the algorithms relative to the optimal 

solutions (produced by the DP or BB algorithm). To show the range o f results, we plot the 

5th, 50th (i.e., median), and 95th percentile normalized utility values from the 1000 different

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100000

10000

(/)zs
1000<D

E
cDcc
Esz

100oO)
<

-o - o._ .
\ 7 ~ -

— -r —- - - o
1 ^  v  V ~ ~ V  V  ^  V
! - -  - 8 -------8 — - 8  —  B -  - » - - ■ *

r -

14000 160002000 4000 6000 8000 10000 120000
Initial Energy Level (uj)

Iinear95 1—  greedy95 ■—-0   dynprog95 bb95 — v —
Iinear50 — X -— greedy50 — - B - -  dynprog50 - bb50

linearS greedy5 dynprog5 - - - a - -  bb5 ---O --

Figure 5.11: Execution overheads of adaptation algorithms.

task sets run for each of the initial energy values. Also for comparison, we show the utility 

o f simply running all tasks at the minimum QoS levels. The greedy heuristic, in particular, 

performs very close to the optimal solutions, being within 0.9 of the optimal for at least 

95% of the task sets for all initial energy values.

The suboptimal adaptations result in runtimes longer than the desired t run, but recall 

that for the known time-to-recharge scenario, only the utility until tim e t run is o f value. 

The actual runtimes achieved for this set of experiments is shown, normalized to t run (in 

this case 600 seconds), in Figure 5.10. Again, we use percentile plots to indicate the range 

of results. Plots for running tasks at the minimal and maximal QoS levels are shown for 

comparison. Here, the optimal and greedy methods always result in close to the desired 

runtime, but the linear heuristic may vary quite considerably.

Figure 5.11 shows the execution time overheads for the different adaptation methods 

measured while mnning our experiments. Note that this is plotted on a log scale. All o f 

these were measured on an AMD Athlon XP1500 machine. DP has very consistent, very 

long execution times, on the order of a few milliseconds. This is due to the large range

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

3.5

3

2.5

2

1.5

1

0.5

0
0 8e+092e+09 4e+09 6e+09

Initial Energy Level (uJ)

Iinear95 — I—  greedy95  - - -E   opti95 -- min95 — v —  m ax95  ♦ ......
Iinear50 — X --  g reedy50 - - - - - -  opti50 - --A -  - min50 — ma x50

Iinear5 greedy5  -■€>-- opti5 - mi n5 m ax5

Figure 5.12: System runtime with adaptation, RT-DVS, normalized to t run.

in power values in our task sets, resulting in a large table of partial solutions. The two 

heuristics, greedy and linear, are very fast, typically requiring under 10 /xs. M ost of this 

time is spent sorting the possible task QoS upgrades, so the actual selection heuristics take 

only about 2 /xs. For these task sets, with 10 tasks and up to 5 QoS levels per task, BB 

incurs fairly low overheads, a few hundred /xs. However, its execution overhead varies 

greatly, and there is no guaranteed time bound, so in the worst case it may degenerate to an 

exponential search that can take on the order of tens of minutes with these parameters.

Compensating for the Effects of DVS

We repeat the experiments with the same 1000 task sets, but now also employ an 

RT-DVS scheduler using the voltage and frequency settings in Table 5.2. The energy- 

conserving DVS greatly reduces the average per-cycle-energy consumption o f the adapted 

task sets. The results are plotted in Figure 5.12. Again, we plot the 5th, 50th, and 95th 

percentile system runtimes that are normalized with respect to the target runtime among

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0 2e+09 4e+09 6e+09 8e+09
Initial Energy Level (uJ)

Iinear95 — I—  
Iinear50 — K- — 

Iinear5

g reedy95  B  
greedy50 

greedy5 - -€>-■

opti95 -- 
opti50 - - A -  - 

opti5 - - - a - - -

min95 — v —  
min50 — ▼—  

min5

m ax95 .....♦ ....
m ax50 —-£>-■■ 

m ax5

Figure 5.13: System runtime resulting from adaptation with compensation for RT-DVS, 

normalized to t run.

the 1000 task sets for each initial energy value. In general, we see a significant increase in 

total runtime, often close to 3 times the desired t run. However, since only the utility of task 

execution until t run is counted, this does not directly benefit the system.

We repeat the experiment again, and this time employing the compensation mechanism 

discussed in Section 5.3.4. By selecting higher-energy tasks, we now reduce the runtime to 

be closer to t run and increase the utility gained. Figure 5.13 shows the resulting runtimes. 

For the most part, the resulting runtimes for our adaptation algorithms straddle close to 

1.0, indicating that a runtime close to t run is achieved. Figure 5.14 shows the change in 

utility due to compensation. The utility with compensation mechanism enabled is shown 

normalized to the utility when compensation is disabled. Although the utility gain will 

depend heavily on the utilities assigned to tasks at degraded QoS levels, there is a very 

large and consistent change with our randomized task sets. It is interesting to see that we 

can achieve largest benefits when the energy in the system is relatively low, which is exactly 

when the energy per computation is most precious. Furthermore, the distribution of utility

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

£  15
3u(D
N

«j
E
5 10 
2

5

0

Iinear5 — I—  Iinear95 g reedy50  optiS opti95 - a - —

Iinear50 — X --  greedy5 —-{3  g reedy95  - • © - ■  opti50 - ~ A -  -

Figure 5.14: Utility with RT-DVS compensation normalized with respect to utility value 

without RT-DVS compensation.

gain is fairly independent of the adaptation mechanism used, as indicated by the nearly 

overlapping percentile curves.

One important observation about DVS compensation from Figure 5.13 is that, although 

on average it achieves very close to the desired runtime, there is a high probability that it 

will over-compensate and have runtime less than t run. It is, therefore, particularly important 

that, when DVS and compensation are used, the adaptation is not simply computed once. 

Rather, the system should be re-adapted periodically to ensure that over-compensation is 

corrected and the desired runtime, t run, is achieved.

5.5.3 Experimental Measurements

In addition to the extensive simulations, we also evaluate the EQoS framework through 

measurements of power dissipation using our working implementation on top o f Linux 

OS. The platform for our experiments is a Compaq Presario 1200Z laptop (AMD M obile

136

8e+090 2e+09 4e+09 6e+09
Initial energy  level

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Oscilloscope

Curren t  Probe

adapter Mobile Device
(battery removed)

Figure 5.15: Power measurement on laptop implementation.

MHz <  500 600 700 800 1000
Volts 1.20 1.25 1.30 1.35 1.40

Table 5.3: DVS settings for 1GHz M obile Athlon [3],

Athlon, 1 GHz). By removing the battery and connecting the AC adapter through a current 

probe attached to a digital oscilloscope, as shown in Figure 5.15, we are able to accurately 

measure power dissipation of the system. The machine draws 16-18 W  while idle (screen 

and disk on, no active processes), and peaks at approximately 41 W  with full processor 

load.

This processor incorporates DVS support in the form of A M D ’s PowerNow! [3] tech­

nology. The recommended voltage and frequency settings are shown in Table 5.3. Note 

that, based on this and the quadratic relationship between voltage and energy, at most 27% 

reduction in per-cycle energy cost can be expected.

QoS
level

Period
(ms)

WCET
(ms)

Avg. CPU 
Power (W)

Utility

0 22.0 0 0 0
1 22.0 1.45 0.77 100
2 22.0 2.5 1.78 150
3 22.0 3.7 2.72 190
4 22.0 4.3 3.35 220

Table 5.4: r t  - l a m e  task characteristics at various QoS levels. Note that W CET and power 

are specified for 1.0 GHz, 1.4 V operation.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60 1300

1200
50

-® - 5 ta sk s  pow er consum ption 
— 2  task s  pow er consum ption 600

10 1 task  pow er consum ption  
5 ta sk s  run tim e 500- * - 2  ta sk s  run time
1 ta sk  run tim e

0 400
19.37 21 .62  23 .87  26 .12  28.37 30 .62  32.87 35 .12  37 .37

Initial Energy Level (kJ)

Figure 5.16: M easured power dissipation and the resulting system runtime after adaptation, 

no DVS.

As we do not have access to actual real-time control applications (for proprietary rea­

sons), we create a set of real-time tasks by modifying la m e  [85], an open-source M PEG 

Layer-3 (MP3) audio encoder to operate as a periodic real-time task on top of our EQoS 

framework. Adaptation is performed by varying the “quality” parameter, which selects 

psychoacoustic models of varying complexity, resulting in a tradeoff between output qual­

ity and processing time/energy. The real-time and power characteristics of this task for 

various QoS levels are shown in Table 5.4. Note that at the lowest service level, the task is 

simply not run, and that the utility values were selected such that they provide decreasing 

marginal returns for each higher QoS level.

We ran the system using the greedy adaptation heuristic, with a target runtime, t run, 

o f 1000 seconds. The task sets consist of multiple instances o f our adaptive r t - l a m e  

task. We vary the total energy parameter, set the pow er budget assuming 17 W  fixed draw, 

perform adaptation, and measure the power dissipation of the laptop. Figure 5.16 shows the 

power dissipation after adaptation for task sets with 1, 2, and 5 instances of r t  - l a m e  and 

DVS disabled. A lso shown is the resulting runtime based on the input energy parameter. As

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1300

1  1200

1100

1000g 40 -
s

-  900 £
,9 30  -

-  800

- 700

5 ta sk s  pow er consum ption - 
2 ta sk s  pow er consum ption
1 ta sk  pow er consum ption 
5 ta sk s  run time
2 ta s k s  run tim e 
1 ta s k  run tim e

- 600
10

500

400
16.68 18.93 21 .18  23 .43  25 .68  27 .93  30 .18  32 .43  34.68

Initial E nergy Level (kJ)

Figure 5.17: M easured power dissipation and the resulting system runtime after adaptation, 

with DVS and compensation.

we can see, when energy is constrained, all three cases closely achieve the desired runtime 

of 1000 s. Once there is sufficient energy, of course, all tasks are run at the maximum 

service level and the system runtime increases linearly beyond the target time.

Repeating these experiments with DVS and compensation enabled for additional energy 

conservation, we obtain the results plotted in Figure 5.17. Here, task are executed at higher 

QoS levels in an attempt to keep the same power dissipation to meet the target runtime. 

However, in spite of the compensation, the DVS results in 5-10%  lower power dissipation 

and reciprocal increase in runtimes. With a known time-to-charge scenario, the energy 

providing this extra runtime could have been better spent running tasks at higher QoS levels 

to provide greater utility over the target runtime. This again shows that, especially when 

DVS is used, it is best to adapt task sets periodically, rather than just once, to minimize 

deviation from the target runtime.

Finally, in Figure 5.18, we show the utility gained from the completed computation of 

the system over the target 1000 seconds of runtime. The task set is adapted with avail­

able energy, and total utility increases stepwise, indicating the transition between particular

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.2E+06

5 tasks w/o RTDVS 
-® -2  tasks w/o RTDVS 
- * - 1  task  w/o RTDVS 
- a -  5 tasks w/ RTDVS 
- o - 2  tasks w/ RTDVS 
- * - 1  task  w/RTDVS

1.0E+06

l.OE+05

a  6.0E+05

4.0E+05

2.0E+05 -

O.OE+OO
32.87 35.12 37.3719.37 21.62 23.87 26.12 28.37 30.62

Initial Energy Level (kJ)

Figure 5.18: Resulting total utility until 1000s, with adaptation, with and without DVS.

combinations of QoS levels, until all tasks are at their maximum service levels. In these 

particular task sets, with this laptop’s voltage-scaling capability, using DVS provides up to 

15% improvement in utility. Of course, this depends on the utilities assigned (e.g., w hether 

marginal utility gains are decreasing or increasing when running tasks at higher QoS levels) 

and the actual voltage scaling improvements possible on the specific hardware.

5.6 Related Work

Energy is becoming an increasingly common objective in system optimization. M uch 

of recent research has focused on energy-conserving techniques, especially on the use of 

DVS. Since the earliest work by Weiser et al. [90] on voltage scaling, several papers [23,59, 

60 ,62 ,69] have dealt with DVS for energy savings in general-purpose machines by scaling 

frequency and voltage to the detected processor load/idle time, or by stretching execution to 

some target time. More recently, some have used prediction of episodic interaction [20] or 

soft deadlines and task workload estimation [47] to maintain good human-interaction and 

multimedia performance with DVS. Although some of the earlier works claim real-tim e

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



capability, they are not sufficiently rigorous to work with the canonical model of periodic 

real-time tasks, and, therefore, are not directly applicable to our real-time EQoS framework.

In the domain of real-time applications, it is more difficult to apply DVS, as it is not 

easy to provide scheduling guarantees in the presence of changing frequencies and worst- 

case execution times. A  few recent works [24 ,36 ,56 ,65 ,82] have managed to provide 

DVS in a tm e real-time context. Generally, they combine offline analysis with some form 

o f online reclamation or slack-stealing [42] mechanism to ensure deadline guarantees while 

minimizing energy consumption. Practical heuristics, such as those implemented in [65], 

are an important element in our EQoS framework.

Various approaches to application adaptation [39,58] in resource-constrained environ­

ments exist in the current literature. A few projects are targeted more specifically to energy 

adaptation. The M illy Watt project [18] explores application involvement in energy and 

power management in PDA-class devices. Flinn and Satyanarayanan [21] adapt m ultim e­

dia applications to ensure a user-specified runtime on battery-powered laptops. Our work 

extends to real-time systems, where we are restricted by timeliness guarantees and worst- 

case execution limitations, but have the advantage of generally well-specified task sets.

In real-time systems, adaptation has mostly been restricted to the fault-tolerance do­

main. Generally, adaptation results in graceful degradation through period extension [75] 

or by eliminating occasional invocations of tasks [71]. Other works provide reduced service 

using imprecise computation models [13,46,77], and primarily focus on avoiding over­

load in fault-tolerant, multiprocessor systems [10]. Our EQoS framework leverages these 

fault-tolerant service degradation techniques and applies them  to reduce computational and 

energy requirements in single processor embedded systems.

In a real-time context, one recent paper [73] addresses value maximization subject to 

energy constraints. However, the model assumed is much more restricted, using tasks 

with a common deadline and selecting a subset of the tasks to maximize value, rather than 

the more general problem of varying QoS to an unrestricted set of real-time tasks. One 

advantage of the restricted model is that voltage scaling decisions are directly accounted 

for, rather than compensated later, though the paper does not address random effects o f task 

execution time or optimizing for actual system runtime.

We have formulated the basic energy adaptation problem as a selection of QoS levels.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This is reducible to a 0-1 multiple-choice knapsack problem [52], a lesser-known variant of 

the 0-1 knapsack problem. A few optimal solutions [17 ,52 ,57 ,79] exist for this problem, 

as well as for its linear relaxation [67,92], We use simple optimal algorithms [52] and 

approximation heuristics for solving M CKP in our EQoS framework.

5.7 Conclusions

In this chapter, we have developed an EQoS framework that provides adaptation of task 

sets in energy-constrained embedded real-time systems. By leveraging existing methods of 

real-time adaptation for fault-tolerance and graceful degradation, we have proposed a gen­

eral adaptive task model and formulated the energy-adaptation problem in a tractable and 

solvable form. We have shown a couple of optimal solutions as well as simple heuristics 

to provide m aximum benefits or utility with a limited energy budget and a known time-to- 

recharge. This solution may, in turn, be used to achieve other energy-adaptation goals, such 

as maximizing benefits irrespective of system runtime.

We first presented detailed simulations showing the relative performance of different 

adaptation algorithms in maximizing utility for a wide range of task sets. Overall, the 

optimal solutions outperformed the heuristics, but incurred significantly higher execution 

overheads. The greedy heuristic turned out to be a good compromise, achieving 0.9 of 

the optimal value for at least 95% of the task sets we examined. Although the inclusion 

of energy-conserving DVS mechanisms can greatly increase runtimes and variability, we 

were able to effectively account for these effects and achieve the desired runtime with much 

improved utility gain.

This EQoS framework has been implemented as an adaptive real-time extension to 

the Linux operating system. Through measurements on a laptop running a set of audio 

encoding applications, we have demonstrated the efficacy o f energy adaptation in a real­

time environment. The measured power consumption after adaptation closely matches the 

power budget specified, resulting in the desired runtimes and providing maximal utility.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6

Self-Monitoring and Modeling of Task Energy 

Consumption for Power-Aware Operating Systems

A  key component of an energy-aware operating system is the ability to allocate scarce 

energy resources to tasks in order to make the best use of the limited available energy. The 

previous chapter described an Energy-Aware Quality-of-Service framework that allows the 

operating system to perform adaptation o f the work set to maximize returns on computation 

and energy expended. However, in order to apply such mechanisms, an accurate measure 

or estimate of the energy needs o f each task is needed on the mobile target platform.

Due to the short time intervals (on the order of a few milliseconds) involved, and a 

fluctuating power draw, it is difficult to measure the energy consumed by a single task in 

a running system. In this chapter, we explore various measurement techniques and de­

velop a low-cost hardware solution that addresses the drawbacks of existing techniques. 

Using measurements of task energy, we develop several models to characterize task en­

ergy consumption, requiring only a few platform parameters and execution characteristics 

to predict task energy consumption. Comparing these predictions against measurements of 

real applications running on laptops, we verify the accuracy of our models and show that 

they typically estimate task energy consumption to within 5% of actual values, and should 

suffice for use in energy-based task adaptation systems.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.1 Introduction

As computer technology progresses making smaller, lighter, and faster computing de­

vices available at inexpensive prices, we are experiencing a proliferation of handheld and 

mobile devices that are capable of high computational performance and sophisticated func­

tions. The exponential improvements in processing speed and similar gains in large-scale 

integration allow processing power and memory capacity that a few years ago were reserved 

exclusively for workstation-class machines to be incorporated into handheld PDAs. How­

ever, this performance and functionality has not come for free. In particular, despite the 

gains in low-voltage technologies and improvements in semiconductor fabrication, energy 

consumption o f high-performance and multi-function devices has continued to increase. 

To make matters worse, these increases have far outstripped any improvements in battery 

technology, increasing the gap between energy consumption and available storage in a rea­

sonable size and weight mobile device. As the demand for high-performance applications, 

such as multimedia and gaming on PDAs, or video and web browsing on cellular phones, 

is likely to continue growing at a rapid pace, the market pressures to build increasingly 

high-performance, mobile and hand-held platforms will remain unabated. This results in a 

serious engineering issue to bridge the energy supply-demand gap, and provide both high 

performance and reasonable battery-life into a lightweight, compact form factor.

Because o f these issues, power management is becoming a highly critical issue in the 

design and implementation o f mobile computing platforms. The simplest methods of re­

ducing energy consumption involve hardware designed to be able to shut off, or remain 

in a low-power standby state when not actively used. More sophisticated approaches use 

dynamic voltage scaling (DVS) [90] techniques that reduce the operating frequency and 

voltage of a processor in order to lower per-cycle energy costs when the system is under­

utilized. Even for embedded systems that have time-critical code, where latencies for 

switching out of low-power states, or increased execution times due to reduced operat­

ing frequency, can cause real-time applications to miss deadlines, such techniques can be 

used very effectively for reducing energy consumption, as shown in Chapters 3 and 4, and 

in several recent papers [24 ,33 ,36 ,56 ,65].

All such methods effectively stretch how much computation a finite battery capacity

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



can allow, but do not address whether the energy is being well-utilized on valuable com­

putations. To address this issue, adaptation techniques have been developed that try to 

allocate energy to more valuable or higher utility tasks by changing the task set or varying 

the quality o f service provided by each task [72,73]. The EQoS framework (Chapter 5), in 

particular, executes tasks at degraded quality of service levels to reduce the computational 

and energy demands on the system. For a given amount of stored energy, adaptation algo­

rithms optimize the total value provided by the system by differentiating QoS of each task 

and selecting the highest service levels such that runtime requirements are met. The energy- 

aware adaptation mechansisms try to ensure maximal returns on scarce energy resources in 

portable devices.

However, for these techniques to be effective, detailed information about the running 

system is necessary. In particular, for each task in the system, one needs to specify all 

runtime energy-consumption characteristics for all possible service quality levels. For real­

time and embedded control systems, generally task sets are already well-defined with re­

spect to execution times of tasks and various timing constraints, so it is not a great stretch to 

also provide energy information in the task-set specifications. However, in more general- 

purpose systems, providing energy information, particularly for all possible degraded qual­

ity levels of each application, can be a significant burden.

In order to utilize advanced power management and adaptation techniques, we need 

comprehensive methods of providing task energy requirements on mobile platforms. In 

this chapter, we first look at methods that directly measure energy of tasks running on a 

system and evaluate cost-effective methods of obtaining energy measurements for adapta­

tion feedback. Based on such measurements, we further propose several models to predict 

and estimate energy dissipation of task execution. Using ju s t a few measured parameters 

on a particular hardware platform, we show that task-execution energy can be predicted 

with a high degree o f accuracy based solely on runtime and execution characteristics.

In the following section, we will look at methods of measuring execution energy, and 

then design a low-cost hardware tool to measure task energy o f running systems. We then 

develop several parametric models to predict energy consumption of tasks and discuss their 

applicability to various systems. After evaluating our energy models, we finish this chapter 

with some concluding remarks.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.2 Measuring Task Energy

Aggressive power management strategies rely on adapting the working task set to the 

current energy resource and runtime constraints through quality-of-service and other degra­

dation schemes to maximize the benefits of computation with the limited energy available. 

However, in order to use service adaptation algorithms, one needs well-defined task sets 

for which energy consumption metrics are known. In this section, we will discuss some 

existing methods of measuring task energy. We will then propose a cost-effective measure­

ment device that can provide accurate task-granular energy measures at runtime for both 

adaptation and performance feedback.

6.2.1 Energy Measurement Methods

To take advantage o f advanced adaptation algorithms that can improve the utility gained 

from  execution with limited battery capacities, we need to provide accurate energy con­

sumption profiles for all of the applications in the system. Typically, the task energy is 

expressed as the average energy per invocation or per scheduling time slice, depending on 

the type of scheduling used in the system. The most direct method of determining task 

energy is to actually measure the power consumption of the target platform when exe­

cuting these tasks. However, as the actual execution patterns and corresponding energy 

consumption can vary, and as the measurement intervals are very short when com pared to 

human-perceivable time scales, measuring task energy involves some difficult issues and 

obstacles.

The simplest method of measuring power consumption is to measure the current flow­

ing into the device while executing a particular task. Figure 6.1 illustrates this setup, using 

a digital multimeter to measure the current and supply voltage. The energy dissipated is 

simply a product of the supply current, supply voltage, and execution time of the task. 

This assumes that the power dissipation over the entire execution time is constant. U n­

fortunately, this is not the case, as the true power consumption can vary based on various 

factors, including the types of instructions currently executing, pipeline stalls or flushes, 

and memory access on cache misses, so the power consumption will vary continuously 

while executing a task. In addition, the sampling time on multimeters is generally very

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Multimeter

Mobile Device
(battery removed)

Figure 6.1: Power measurement using a multimeter.

long compared to the millisecond-range execution times typical of a single time slice of 

execution, so we cannot hope to get more than one current measure for a particular invoca­

tion of a task. Furthermore, it is not always clear whether these are instantaneous measures 

taken with sample-and-hold circuits, or if some sort of averaging is occurring over the sam ­

pling interval. For the former, the point measures may not reflect the actual consumption 

over the entire time slice, while for the latter, due to long sampling intervals, averaging 

will include time well beyond the time slice in which the task executes. Finally, there is 

also a  problem in ensuring that the measurements are made synchronously with the actual 

execution of the task in which we are interested, rather than at some arbitrary point in time 

when something else may be executing.

To address some of these issues, Flinn, et. al, [22] have developed the PowerScope tool. 

Basically, this uses a multim eter that takes point measures of current, but also generates a 

trigger output when samples are taken. By connecting this trigger as an interrupt source to 

the target platform, they can determine and log the exact point within the task execution 

to which each measurement corresponds. Over many repeated invocations of the task, 

they can statistically build up a profile of the execution energy o f the task by analyzing 

the logged measurements. Although this does work in measuring task energy, it is quite 

intrusive, needing additional interrupts, and is not easy to actually perform, requiring a

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



c> u Oscilloscope

Current Probe

AC-DC
adapter Mobile Device 

(battery removed)

Figure 6.2: Power measurement with an oscilloscope.

fair amount of technical expertise just to take a few measurements. It may be possible 

for application developers to measure and provide such energy measures, but this method 

requires a significant time investment for each task energy measurement, and it does not 

lend itself to automatic self-measurement in the actual mobile platform.

An alternative approach overcomes the slow sampling rate of multimeters by using an 

oscilloscope. When equipped with current probes, as shown in Figure 6.2, an oscilloscope 

can show detailed, high frequency power consumption information. With the high sam­

pling rate, it is no longer necessary to continuously repeat the task and take multiple point 

measurements to statistically generate a profile —  a straightforward measurement provides 

the energy profile for a single invocation of the task. Synchronizing the measurements with 

the task execution is fairly simple —  one can make the target platform toggle some I/O  

pin when starting the time-slice for the task, and use this as a trigger for the oscilloscope. 

This is far less intrusive than generating an interrupt on the device and logging information 

there. Even electrically, this method may be less intrusive, as oscilloscope current probes 

often use Hall-effect sensors, and do not need to be connected in-line with the power sup­

ply. The energy consumed by the task is simply computed by integrating over the measured 

current profile and multiplying by the source voltage. Some digital oscilloscopes can per­

form these computations themselves, and also interface to a monitoring computer, making

148
■3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the measurement process even simpler. However, this approach requires a substantia] in­

vestment in equipment that may not be available to end users, and cannot be implemented 

within the mobile device for self-monitoring.

The only alternative is to use custom hardware to make the task energy measurements. 

The major drawback o f custom hardware is that it is often expensive to implement and test. 

In the following section, we present our design for a low-cost task energy measurement 

device that can readily interface to mobile platforms for self monitoring and adaptation 

feedback.

6.2.2 Charge-Flow Metering

In order to use advanced quality-of-service adaptation algorithms to best utilize the en­

ergy on mobile platforms, we need a low-cost, simple method of measuring and specifying 

task energy consumption. We would like to develop a small hardware device that fulfills 

the following requirements:

1. it is very inexpensive to implement,

2. it measures energy consumption over time intervals comparable to a scheduling time- 

slice, and

3. it can readily interface with mobile and handheld platforms.

The ability to interface with the platform being measured is needed to synchronize m ea­

surements with the actual execution of tasks. Additionally, by using some form of digital 

output, we can automate measurements and allow the mobile platform to perform self­

monitoring o f energy expenditures. The simplest interface likely to be available on such 

platforms is an RS-232 serial port, although these are rapidly being replaced with sm aller 

form factor, higher speed USB ports on newer consumer devices. The serial interface is 

ideal for high level control and transferring measurement data, but as it requires on the 

order o f 1 ms to transfer a byte, it is too slow to use as a trigger to synchronize the start of 

measurements to the execution of a task. For this purpose, we will use a dedicated output 

pin from  the measured platform, such as the DTR or RTS control pins on the serial port, 

which can be toggled very quickly, on the order of 1 ps.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To provide digital measurements, some form of analog-to-digital conversion needs to 

be performed. The cost of an A/D converter can vary greatly, depending on the precision, 

expressed as the bit-width of each sample, as well as the speed, which defines the maxi­

mum sampling rate. A converter that can provide measurements comparable to an oscillo­

scope will require a very fast, very expensive device with a large bit width. On the other 

hand, a similarly precise converter that operates at much lower speeds (few hundred to few 

thousand samples per second) are fairly inexpensive and should suffice for our purposes. 

However, we need to be careful to avoid measuring current at such low sampling rates, or 

else we will run into the same issues as with multimeter-based task energy measurements 

discussed in Section 6.2.1.

Instead of directly measuring the current flowing into the computing device, we propose 

measuring the total charge that has passed through the device over the interval that the 

task executes. Our design for this is based around the M axim M A X 471 [53], a low-cost 

integrated circuit that implements a supply-side sense amplifier. W hen connected in series 

with the power supply, this device produces current on an output pin proportional to the 

supply current draw, at an approximately 1:2000 ratio. The output of this device is intended 

to be connected to a resistive load, so the resulting voltage will be be directly proportional 

to the current. Instead, we use the output to charge a capacitor, as shown in Figure 6.3. 

The capacitor acts as an analog integrator, summing the current on the output pin o f the 

MAX471 over time. As the voltage across the capacitor is proportional to the total charge 

stored (V  =  CQ ), which, in turn, is directly proportional to the total charge that has flowed 

from the power supply, the measured voltage across the capacitor indicates the total charge 

that has been consumed by the com puting device.

To measure the energy used in executing a particular task, we first ensure the capacitor 

is discharged using a transistor to short it to ground. A t the beginning of a time-slice 

for the task, we turn off the transistor to allow the capacitor to charge. W hen the task 

completes its invocation, we measure the instantaneous voltage on the capacitor. As the 

M A X 471 and the charging capacitor both exhibit simple linear behavior, we can multiply 

this measured voltage by a calibration constant to determine the total charge consumed 

during the execution of the task. M ultiplying this by the supply voltage gives us the energy 

consumed executing this task.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Power MAX471 Power out to
Input Mobile Device

Clear

Microcontrollerurn
JBx_
J x _ _

A/D

la'a-aiTJ'ira~ti'.tJ"iT[j~p-n-oi3“a~D-criroTJ

Figure 6.3: Charge flow measurement hardware.

Due to the fast response time of the sense amplifier (less than 1 ps), even high frequency 

changes in current consumption are accounted for in the final charge on the capacitor, so we 

do not need a very fast A/D converter when this method of measuring charge is used. A low- 

cost converter, such as those that are integrated with microcontrollers, suffices. Since there 

are some specific control functions that need to be done (e.g., sensing trigger, discharging 

the capacitor), as well as some data path functions (e.g., adjust for calibration, forward on 

serial port), we can make good use of a small, m icrocontroller with built-in A/D converter. 

We based our design on the Atmel AVR series 8-bit system-on-chip type microcontroller 

[4]. These have internal clock generators, flash/RAM/EEPROM memories, multichannel 

10-bit A/D converters with internal reference, and serial ports on a single IC. The only 

external parts needed are the M A X 471 sense amplifier, the capacitor and transistor for 

charge accumulation, a serial driver to match RS-232 voltage levels, and some method of 

providing a 5 V power supply.

To maximize the accuracy of measurement over our desired time granularity, an ap­

propriate value for the charge accumulating capacitor m ust be selected. The internal A/D 

reference voltage is nominally 2.56 V, so we need to ensure the capacitor stays below this 

voltage over the task execution intervals. We designed this circuit to measure the energy 

consumption in a PC laptop computer, that draws up to approximately 2 A from an exter-

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



nal 19.5 V power supply when not charging a battery. As the M AX 471 produces an output 

current approximately 1/2000th of the supply draw, by using a 22 /xF capacitor, we can 

expect precise measurements over a range of 1-50 ms, corresponding nicely to the typical 

scheduling time-slice for task execution.

All of the values specified for the parts are nominal values, so the actual characteristics 

may be significantly different. In particular, up to 20% error may be expected for the 

capacitor. So we must calibrate our device against some other form of energy measurement. 

We note that all o f the relevant circuitry, in particular the M AX471, the capacitor, and the 

A/D hardware, are highly linear in response, so only a single multiplicative constant is 

needed to convert the measured values to absolute energy units. Using a constant resistive 

load and a fixed time interval for measurement, we can calibrate the device measurement 

against the power computed using an ammeter current reading. This calibration value is 

then stored in the internal EEPROM of the microcontroller for future use. This single 

calibration should be effective for all future measurements as long as the temperature is not 

significantly different from that at calibration.

This implementation is effective at measuring the total energy consumed over a time 

interval corresponding to a task invocation or scheduling time-slice. The device reacts very 

quickly to the trigger pin, starting the measurement within 20 /xs of the trigger edge. It has 

similar reaction time to the trigger to stop measurement, but due to the sample-and-hold 

timing, requires an additional 6 /xs. This error in the measurement window should account 

for less than one percent error in the final energy values. In addition, by investing in a fast 

external clock circuit, these latencies can be reduced 8-fold. The actual A/D conversion, 

adjustment for calibration, and subsequent transfer of data over the serial port incur the 

greatest latencies, on the order of 15 ms, so it is this time that limits the maximum rate of 

energy measurements that can be taken with our design. Since we use only about one quar­

ter of the RAM available on the microcontroller, and since we have already parallelized the 

actual measurement phase with the computations and serial output in the microcontroller 

software, a slight upgrade to this software to buffer measurements on-chip and send them 

out later will allow bursts of up to a few hundred consecutive measurements that are spaced 

only 100 /xs apart.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



With this low-cost hardware design, we have a very easy-to-use method of determining 

task energy consumption, requiring only a trigger output from the measured platform to 

synchronize the measurements with the task execution, and a serial interface on either 

the target platform or on some logging machine to record the energy measures. As the 

interfacing and measurement methodology is very simple, it is not difficult to automate the 

process and use this hardware to allow the measured platform to perform self-monitoring 

of energy consumption and provide feedback to energy-based task adaptation mechanisms.

6.2.3 A Self-Measurement Architecture

Using the type of energy measurement device designed above, it is a fairly straightfor­

ward process to create a self-monitoring platform that continuously updates energy con­

sumption profiles of applications, improving the accuracy of energy adaptation algorithms. 

A  simple software architecture for performing self-monitoring, built on top of Linux, is 

described below and illustrated in Figure 6.4.

We assume that some form o f energy-based task-adaptation system has been im ple­

mented in the kernel or as a middleware layer. This system adjusts the quality of service 

provided to several computation-intensive tasks that run in user mode. There is also either 

a user-level daemon or a kernel interface to provide descriptions of the tasks, in particular, 

the amount of energy these require for each invocation or time-slice. The self-measurement 

system consists of a user-level daemon that performs most of the functions, and a small ker­

nel module that triggers measurements.

Our self-measurement daemon interacts with the task description interface of the adap­

tation subsystem. We iterate through the list o f tasks, selecting one at a time for measure­

ment. The small kernel module is attached to a hook inside the scheduler and sets an output 

pin (e.g., DTR signal on the serial port) to high when the target process is scheduled for 

execution. Similarly, when some other task is scheduled, the pin is set to low to trigger the 

end of the measurement. The only tricky issue is that when stopping a measurement, the 

module keeps a time stamp to ensure that a subsequent measurement is not started too soon 

(see latency discussion at the end of Section 6.2.2).

The user-level daemon receives the measurements over the serial interface, and then 

updates the target task’s energy consumption value for the current level of service provided

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



serial

power

f  f  trigger
rS b u  --------

Charge
Flow
Meter

Scheduler Hook ) Linux Kernel

Measurement
Daemon

M easurement
Module

Mobile Computing Platform

Adaptation

Subsystem

Figure 6.4: Self-measurement software architecture.

by the adaptation subsystem. This update should be a form of time-average filter, but the 

design of such filter will require a trade-off between agility and stability [32]. By cycling 

through the tasks of interest, all task energy consumption values will gradually be updated 

to reflect any changes dynamically.

O f course, the tasks will receive updates only for the service levels that are actually 

executed. For the service levels that are not selected by the adaptation system, the task en­

ergy metrics will not be updated. To ensure that all tasks do receive updates for all possible 

service levels, we would need a method by which the adaptation module can be bypassed, 

so tasks can occasionally be executed at service levels deemed non-optimal, and the corre­

sponding energy consumption specifications can be updated. The actual mechanism used to 

do this will depend heavily on the implementation of the adaptation system. As this bypass 

mechanism will be invoked very infrequently, it will not significantly affect the functioning 

of the adaptation system.

This architecture, combined with the low-cost charge flow meter discussed earlier, can 

allow a mobile or handheld device to monitor and adjust the parameters o f QoS adaptation 

to the actual energy consumption of the executing tasks. The overhead for this measurement 

is very low, since the additional hook in the scheduler requires only a few instructions, and 

the module can be set to make infrequent measurements. The user-level daemon stays 

blocked between measurements, while the external hardware described above, stays in a

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



low-power sleep mode, mitigating any additional computational or energy overheads.

6.3 Modeling Task Energy

In order to use advanced task-adaptation techniques on mobile platforms, it is necessary 

to provide an estim ate of task energy consumption. We have so far seen how one can 

measure the energy consumed in executing a task on a particular platform, and how to 

automate the acquisition of task energy information on the target device itself. However, 

this does require additional hardware and, despite the low-cost, it may not be desirable 

to add this to a consumer device. As it is generally unreasonable to expect the end users 

to perform energy measurements to optimize the battery-life of the system, the onus of 

measuring task energy would fall to the application developers. Unfortunately, the sheer 

number of different platforms on which an application needs to run may make measurement 

impractical. Even when restricting the class of machine by OS, such as PocketPC, and 

further restricting by processor, such as ARM, there are still multiple platform vendors, 

supplying several different models, each of which is unique from  an energy perspective, 

due to differences in the actual hardware components used.

In this context, directly measuring task energy consumption may not be practical. In­

stead, we would like to find some method of estimating the energy consumption of the 

tasks. In particular, it would be more practical to distill characteristics of a task’s execu­

tion, and using this along with some parameters describing a given platform, predict the 

execution energy of this task on this platform. To do this, we will identify useful traits and 

develop models that estimate task execution energy.

6.3.1 Constant Power Models

We first simplify the problem of estimating task energy consumption by eliminating 

all of the possible variables that can affect the energy requirements, and rather focus on 

only the most significant trait. We believe that the single m ost significant characteristic 

determining the platform  energy consumption is the total execution time. Furthermore, the 

longer this execution time, the greater the energy consumption. Intuitively, this seems to 

be a simple linear relationship, so we can model platform energy consumption as simply

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E  =  C  * t,  where t  is the execution time, and C  is a platform-specific constant determined 

empirically. This model, therefore, assumes a constant power dissipation by the platform 

hardware.

Unfortunately, this simple model does not capture the variability observed in measure­

ments o f energy dissipation. This model predicts behavior similar to a resistive load, while 

in practice, we see continuous variation in the power dissipated. Furthermore, this model 

is not particularly useful for any form of power management, let alone task adaptation, as 

it assumes constant power regardless o f the computational workload, and will therefore 

predict a constant battery runtime for a given starting energy regardless of any adaptation.

6.3.2 Bimodal Power Model

We can slightly extend the constant power model to be both more accurate and more 

useful for adaptation. We note that when idle, the processor dissipates very little power, due 

to aggressive halting o f the core in place o f wasteful idle loops, but it is a major consumer 

o f energy when tasks are actively running. Therefore, we can construct a better model of 

platform power dissipation as a bimodal constant power system. We assume two states for 

the system, active and idle. When the processor is idle, the model assumes a constant power 

dissipation, P*. Similarly, when executing a task, a larger constant power, Pa, is assumed. 

As before, a task that executes for time t will expend energy E  = Pa * t .  With n  tasks, the 

total system energy consumption is E  — Pa ]F"=0 U +  Pikdie, where f* is the total execution 

time for task i, and t i<ae is the total idle time. Therefore, this simple bimodal constant-power 

model is useful for adaptation —  although task energy is solely determined by execution 

time, system energy consumption depends on the processor utilization. Decreasing the 

workload and increasing idle time will reduce the system energy consumption.

Using a simple loop that executes a stream of integer operations, we can determine the 

constants for a given platform. We use a PC notebook computer, HP N3350 based on the 

AM D-K6 processor [2], and our task energy measurement hardware described earlier. By 

measuring the energy dissipation over random time intervals both while running this loop 

and while the processor is halted, we obtain the results plotted in Figure 6.5. The plotted 

points show a very linear relationship between execution time and energy, as we expected. 

Plotting the best-fit lines, we can obtain the power constants that correspond to the slopes

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 8 0 0
active
halt1600

1 4 0 0

1200

1000

800

600

400

200
0  ________I________!________I________I________I________I________ I________

1 0 0 0 0  1 5 0 0 0  2 0 0 0 0  2 5 0 0 0  3 0 0 0 0  3 5 0 0 0  4 0 0 0 0  4 5 0 0 0  5 0 0 0 0

Execution Time (|is)

Figure 6.5: Energy measurements on HP N3350 laptop. Linear regression lines are also 

plotted.

of the lines. Here, we find Pa =  28.4 W, while Pi =  13.1 W.

An alternative way of viewing this model is to separate power into static and dynamic 

components. The system always dissipates at least the static or fixed power, Psys. W hen 

tasks are executing, an additional constant power, Pcpu, is also dissipated, reflecting the 

additional energy consumed when the CPU is active. These values are simply obtained 

from the above: Psys =  Pi and Pcpu =  Pa — Pi. We can now specify the additional energy 

E  =  Pcpu * tj that each task i consumes beyond the system dissipation over time U. This 

way o f specifying task energy may be more useful than the total energy, since adaptation 

algorithms are concerned prim arily with the additional energy required to execute a task, 

above and beyond what the idle system consumes.

In addition, this second way of specifying the power constants separates out the dy­

namic component of processing energy, so any simple power management mechanisms, 

such as turning off a peripheral, should only affect Psys, leaving the task energy specified 

by Pcpu untouched. We can see this in our measurements of the laptop. Based on the

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1800
active
halt1600

1 4 0 0

1200
—5 
£ 1000

800<D
C
UJ 600

400

200

10000 15000 20000 25000 30000 35000 40000 45000 50000
Execution Time ((is)

Figure 6.6: Energy measurements with display backlight turned off.

measurements in Figure 6.5, Psys =  13.1 W and Pcpu =  15.3 W. Figure 6.6 shows energy 

measurements for the same conditions as before, but this time with the laptop screen back­

light turned off. Based on the linear regression, we have Psys = Pi — 7.6 W, and Pa =

22.6 W, so PcpU =  15.0 W. Hence, the effects of turning off the backlight are essentially 

entirely confined to Psys, and adaptation based on Pcpu task energy specifications will not 

need new energy measures if this type of simple power management of a peripheral device 

is employed.

6.3.3 Modeling DVS Effects

We have described a simple model to estimate task energy consumption, breaking 

power into a static system component and a dynamic execution-dependent component. We 

have seen that simple management of external devices will affect the system component, 

without affecting the processing power component. However, this execution energy will be 

affected by any power management that directly apply to the processor itself. In particular, 

dynamic voltage scaling (DVS) techniques will profoundly affect the processing energy.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a)

(b)

(c)

—>
JE
>,
E?
CDc

LU

1800
active
h a lt1 6 0 0

1 4 0 0

1200

1000

8 0 0

6 0 0

4 0 0

200

0  _______i______ i_______i_______i_______i_______ i_______i_______
1 0 0 0 0  1 5 0 0 0  2 0 0 0 0  2 5 0 0 0  3 0 0 0 0  3 5 0 0 0  4 0 0 0 0  4 5 0 0 0  5 0 0 0 0

E x ec u tio n  T im e (p s)

O)
Q)
C
LU

1 8 0 0
a c tiv e
h a lt1 6 0 0

1 4 0 0

1200

1000

8 0 0

6 0 0

4 0 0

200
0  ________ i________ i________ i________ i________ i________ i________ i________

1 0 0 0 0  1 5 0 0 0  2 0 0 0 0  2 5 0 0 0  3 0 0 0 0  3 5 0 0 0  4 0 0 0 0  4 5 0 0 0  5 0 0 0 0

E x ec u tio n  T im e  (p s)

—>
E
>.
e>
<D
C

LU

18 0 0
a c tiv e
h a lt1 6 0 0

1 4 0 0

1200

1000

8 0 0

6 0 0

4 0 0

200

0  ________ i________ i________ i________ i________ i________ i________ i________

1 0 0 0 0  1 5 0 0 0  2 0 0 0 0  2 5 0 0 0  3 0 0 0 0  3 5 0 0 0  4 0 0 0 0  4 5 0 0 0  5 0 0 0 0

E x ec u tio n  T im e  (p s)

Figure 6.7: Energy measurements when frequency and voltage scaling are employed: 

(a) 350 MHz, 2.0 V; (b) 200 MHz, 2.0 V; (c) 200 MHz, 1.4 V.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



When employing DVS, we note that there are actually two concurrent power-conserving 

techniques in operation. First, the frequency of the processor is changed. This directly af­

fects the rate o f instruction execution, which we would expect to reduce linearly with the 

frequency. This is actually an approximation, since in most systems the processor runs at 

much higher frequencies than the main memory, so if memory is limiting performance, 

the processing rate will decrease sub-linearly compared to frequency. As most processors 

are composed primarily of static CMOS logic, we would expect the power dissipation to 

reduce linearly with the processing rate.

Assuming that the dynamic component o f energy primarily consists of CPU consum p­

tion, we can model P c p u  as directly proportional to frequency. P s y s  should not be affected 

at all. Based on this we should see P c p u  =  P c p u - m a x  * ( f  / f m a x ) -  We can validate this on 

our laptop, which supports both voltage and frequency scaling. We note that in the earlier 

measurements, the processor was running at 550 MHz, with a 2.0 V supply. In the first 

two plots in Figure 6.7, we show measurements taken with processor running at 350 and 

200 MHz. Based on the best-fit lines, the P c p u  values are 9.6 W  and 5.5 W, respectively. 

Using the frequency scaling model, we would expect P c p u  to be 15.3 * (350/550) = 9.7 W  

and 15.3 * (200/550) = 5.56 W, corresponding very closely to the measurements. Also, 

P sys, measured to be 12.8 W  and 12.9 W, respectively, are not significantly changed, just 

as expected.

The second technique applied in DVS involves changing the voltage supplied to the 

processor. Again, based on the fact that the processor is primarily made of static CMOS 

logic, its primary power dissipation is due to charging and discharging of the input gates, 

which act as capacitors. As the energy stored in a capacitor is proportional to the voltage 

squared (E  = C V 2 j 2), we expect a quadratic relationship between the voltage reduction 

and energy reduction.

Again, assuming the dynamic component o f power is dominated by the CPU energy 

consumption, we can model P c p u  =  P c p u - m a x  * (V / V m a x )2, while Psys should remain 

unaffected. The last plot in Figure 6.7 shows measurements at 200 MHz, but with the 

processor voltage reduced from 2.0 V to 1.4 V. The measurements indicate a P c p u  value of

2.6 W, which compares favorably with the models prediction of 5.5 * (1 .4 /2 .0 )2 = 2.7 W  

based on the power at 200 MHz, 2.0 V. The measured P s y s  is somewhat lower, however,

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



at 12.2 W. This may be attributed to reduced fixed dissipation in the switching voltage 

regulators when producing the lower voltage output.

We can combine both effects, to produce a DVS model that predicts Pcpu = PCpu-max * 

{ f  I fmax) * (y/Vmax)2. Based on this relationship and the measurements at 550 MHz, we 

predict P cpu =  15.3 * (200/550) * (1.4/2.G)2 = 2.7 W, close to the observed 2.6 W  for 

200 MHz, 1.4 V operation.

6.3.4 Instruction Mix Power Model

Thus far, we have only used a simple loop consisting of a long chain o f integer oper­

ations as the “task” whose execution energy is measured. However, the energy of a real 

task will differ somewhat, depending on the actual computations performed. To account 

for this, we extend our task energy model by determining how energy consumption varies 

with different instruction types.

In order to evaluate the energy consumption for individual instruction types, we need 

to create test tasks that are composed almost entirely o f the single instruction type. For 

example to measure the add instruction, we can create an infinite loop that consists of a 

large number, say 100, of register to register additions and a single branch instruction. The 

power dissipation measured when executing this loop will then primarily be dictated by the 

instruction that we wish to test.

O f course, it is not practical to test all possible processor instructions. This is further 

complicated by the large number of addressing modes on architectures such as x86 or 

680x0, which may allow address computation, load, and store operations within a single 

instruction. Instead, we need to categorize the most common types of instructions and 

determine a representative measure of power for each category, simplifying further by not 

including addressing modes. O f course, the choice of categories depends on the actual 

instructions available on an architecture.

For our x86-based laptop, we categorize the instructions into integer, floating point, 

memory load/store, and branch operations. We measure addition as representative of inte­

ger operations, but also show results for multiplication. For memory operations, we m ea­

sure the energy of a loop of load instructions for which we guarantee a cache hit. For 

comparison, we also use a loop of memory loads and address computations that ensure

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Category Instructions pJ cpu

Integer add 15.3 W
multiply 16.3 W

Floating Point mixed 17.2 W
M emory cached load 17.3 W

non-cached load 15.6 W
Branch jum p 15.5 W

spin loop 14.6 W
Misc. nop 15.1 W

Table 6.1: Power measurements for various instruction types.

each load incurs a cache miss. The branch is tested using a sequence of jum p instructions 

that simply branch to the next consecutive instruction, as well as a tight, empty spin loop. 

For comparison, we also measure a loop of nop instructions that do nothing other than 

fetch instructions from the cache. The results of measuring these instructions is presented 

in Table 6.1.

Overall, for this platform, power varies over a range o f more than 2 W depending on 

instruction type. We note that the spin loop results are abnormally low compared to the 

other results. This is due to the fact that it is the only test case that does not involve a long 

sequence of instructions inside a loop, and instead, has a single instruction that branches 

to itself. As this is the only instruction that is executed, the lower power may be primarily 

due to reduced activity on the processor’s instruction cache. Cached data loads, similarly, 

increase power dissipation over non-cached loads, due to data cache activity. However, 

non-cached loads still incur energy consumption similar to integer code, indicating that 

power is not reduced during processor stalls during fetches from  slow main memory.

To account for these differences when modeling task energy, we hypothesize that the 

Pcpu value when running a particular task will be the weighted average of these platform 

measurements, where the weights are based on the actual mix of instructions used by the 

task. Again, this is a great simplification since we categorize the instructions, disregard ad­

dressing modes, and do not really consider processor pipeline stalls due to memory fetches 

or branch mispredictions. However, this should be sufficient to produce more accurate 

estimates than with the simple bimodal model discussed earlier. O f course, we can still 

apply the DVS estimation techniques on top of the instruction mix model of Pcpu. We will 

evaluate how well this model works in Section 6.4.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.3.5 Applying Models to New Platforms

So far, we have developed several models for platform power dissipation. In order to 

use the models to predict task energy consumption, we need to determine a few platform- 

specific parameters. Here, we outline the steps to measure these parameters.

First, a measure of power dissipation with the processor halted is needed. We can 

simply apply our task-energy measurement hardware to find this power constant, Psys. If 

the system is not running anything else, one can use other methods of measuring energy as 

well, as the complexities of synchronizing measurements to a task are not relevant.

Next, to obtain Pcpu for the bimodal model, we construct a long sequence of simple 

integer operations, such as register to register additions, and run this in an infinite loop. 

Subtracting Psys from the power measured when executing this loop will provide Pcpu for 

the bimodal model.

If the instruction mix extension is to be used, one needs to identify categories of com ­

mon instructions and repeat this measurement for each, using a similarly-constructed loop. 

Our categorization of instructions into integer, floating point, load/store, and branch should 

suffice for most architectures, but one may need additional processor-dependent categories, 

such as for vector operations.

To account for DVS in the models, we do not need additional measurements. Instead, 

specifications of the available frequency and voltage settings suffice. To use the model 

as stated, the above measurements should be performed with the processor running at the 

highest frequency and voltage settings available on the platform.

These measurements need to be performed only once on the platform. Using these, an 

application developer can apply our models to predict task execution energy w ithout further 

energy measurement. The application task needs to be profiled to determine the execution 

time and the mix of processor instructions used. Then, using the platform parameters, the 

developer can estimate P c p u  as the weighted average of the instruction-specific measures, 

and applying the bimodal model, determine the execution energy on the platform. For other 

platforms using the same instruction set (i.e., that do not need recompiling), simply plug-in 

the new platform parameters. If recompiling is necessary, then the profiling step needs to 

be repeated to find the appropriate weights for each instruction type.

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



K6 laptop Athlon laptop
p1 sys 13.1 W 17.6 W
P1 cpu—max *

integer 15.3 W 15.6 W
floats 17.2 W 14.9 W
load/store 17.3 W 18.2 W
branch 15.5 W 15.8 W

Table 6.2: Platform measurements of model constants on two test machines.

6.4 Evaluation

To maximize the benefits of com putation for a given energy budget using task-adaptation 

techniques, one needs to specify accurate measures of task energy consumption on the ex­

ecution platform. The most accurate values for task energy are obtained through direct 

measurements at a time-slice granularity, as with the hardware we have proposed. Because 

it is not always practical to measure all applications on all possible hardware configurations, 

we have proposed some simple models to predict energy consumption. In this section, we 

evaluate the accuracy o f energy models on real hardware, using real applications.

6.4.1 Platform Characteristics

We use two different laptops as the platforms to evaluate the task energy models. The 

first is the HP N3350, an AMD K-6 based laptop used earlier in the development o f the 

models. The second is a Compaq Presario 1200Z that uses the mobile Athlon proces­

sor. These particular processors were chosen because they are capable of dynamic voltage 

scaling [2,3], and can, therefore, be used to test our model of DVS effects on energy con­

sumption.

To use our models with these platforms, we need to perform a few measurements to 

determine P sys and Pcpu values, as outlined in Section 6.3.5. We make the energy measure­

ments when running the processors at the maximum frequency and voltage on each laptop: 

550 M Hz at 2.0V for the K6 laptop, and 1 GHz at 1.4V for the Athlon laptop. The results 

of these measurements are summarized in Table 6.2, indicating power dissipation when the 

processor is halted, as well as the additional power dissipation when executing the four 

categories of instmctions we identified earlier.

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Instructions GCC GNUplot M pgl23
integer 
floating point 
load/store 
branch

35.5%
0.0%

45.0%
19.6%

33.9%
4.8%

44.6%
16.7%

47.7%
1.9%

46.2%
4.2%

Table 6.3: Instruction mix for test applications.

6.4.2 Application Characteristics

To best evaluate our models, we run real applications on the chosen hardware platforms. 

We picked three common desktop applications: the GCC compiler, the GNUplot graphing 

application, and the M pgl23 audio player. Although these are not necessarily the types of 

applications that are commonly executed on mobile platforms, we use these because they 

are readily available and provide different types of computationally-intensive workloads.

The GCC test involves compiling a C program, with optimizations enabled. Compila­

tion is very CPU intensive, limited by processing speed, and not by file access. To eliminate 

completely any disk interference, we use a ramdisk to hold source, destination, and tempo­

rary files. The computational load due to compilation primarily involves string processing, 

i.e., integer operations, and is generally characterized as branch intensive.

For the second task, we use the GNUplot application’s regression analysis feature to fit 

a quadratic polynomial to a set of test points. Unlike the GCC test case, we expect this task 

to use floating point operations in significant proportions. Here, too, we keep the data files 

in a ramdisk to avoid disk activity.

Finally, the third test task uses M pgl23, an open-source M PEG 1, Layer 3 audio player, 

to uncompress an audio file kept in a ramdisk. We pipe the output to the null device, so the 

program executes continuously, as fast as possible, rather than run intermittently to keep 

pace with audio output during normal playback.

In order to use our instruction mix power model to predict the energy consumed in ex­

ecuting these tasks, we need to determine the fraction of executed operations falling into 

each of the instruction categories described earlier. This cannot be done statically, as the ra­

tios of executed operations can be greatly different from the ratios in the binary images, due 

to looping and OS service calls. To determine the mix of instructions dynamically, we exe­

cute these tasks using the SIMICS simulator [51,89], and dump several traces of the actual

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



operations executed. Parsing these multi-million-instructions-long traces, we determine the 

instruction ratios shown in Table 6.3. Note that the load/store entry includes integer oper­

ations for which the addressing mode involves a memory operand. With this information, 

we can now apply our models and compare the estimates to actual measurements of task 

energy.

6.4.3 Experimental Results

We execute the three different test tasks on the two platforms described above, and 

use our charge flow measurement hardware to measure the energy consumed executing the 

tasks. For the GCC and M pgl23 test cases, the tasks execute for significantly longer than 

one scheduling time-slice and beyond the direct measurement capability o f our hardware, 

so we take energy measurements over random intervals ranging from 10 to 50 ms during the 

execution of the tasks. For the GNUplot case, the execution of the polynomial regression 

fit function is fast enough that we simply measure the energy consumed over its entire 

execution.

This measurement is performed on both laptops, in two configurations for each at the 

extremes of the available frequency and voltage settings. By taking and averaging over 50- 

100 measurements for each task for each hardware configuration, we obtain the measured 

energy plotted in Figure 6.8. In addition, using the time intervals of the measurements, 

the task instruction mix data, and the platform characteristics, we also compute and plot 

the energy consumption predicted by the bimodal and instruction mix power models, when 

used in conjunction with our model of DVS effects.

On initial inspection, these results show that the models can predict execution energy 

very closely. The instruction mix model is within 5% of the actual measurements for both 

the GCC and GNUplot tests, except for the Athlon platform at reduced voltage. But even 

here, it is only 5.9% and 6.4% off for the two tests, respectively. This may be explained due 

to the fact that the Athlon laptop seems to deviate slightly from our DVS energy model —  

when the voltage is reduced, the measured Psys when the processor is halted reduces as 

well, considerably more so than the K6 laptop, while our model assumes this stays con­

stant. As a result, although the models generally underestimate the energy needed, they 

overestimate for the A thlon laptop when CPU voltage is reduced. Although not as effective

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



GCC

GNUplot

1200.00 t

1000.00

800.00 -

3
600.00

cm
400.00 -

200.00

0.00

B measured 
■  bimodal 
O instr. model

K6, 550 Mhz, K6, 200 MHz, Athlon, 1 GHz, Athlon, 
2.0V 1.4V 1.4V 300MHz, 1.2V

1200.00

1000.00

800.00

600.00

400.00

200.00

0.00

measured
B bimodal
□  instr. model

K6, 550 Mhz, K6,200 MHz, Athlon, 1 Athlon, 300 
2.0V 1.4V GHz, 1.4V MHz, 1.2V

M p g l 2 3

1400.00

1200.00

1000.00

measured
bimodal

□  instr. model600.00

400.00

200.00

K6, 550 Mhz, K6, 200 MHz, Athlon, 1 Athlon, 300 
2.0V 1.4 V GHz, 1,4V MHz, 1.2 V

Figure 6.8: Measurements of task energy, compared to model estimates.

1 6 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



as the instruction mix model, the bimodal model is within approximately 8% for the GCC 

and GNUplot tests.

The M pgl 23 test, however, presents more of a problem, and both models exhibit greater 

error in estimating energy. The instruction mix model is up to 12% off here. This may be 

due to the fact that this task uses highly optimized decoding algorithms that, though effec­

tive use of the instruction set, increase execution parallelism, instruction thoughput, and, 

therefore, power consumption. Our simplified models cannot take this increased paral­

lelism into account, and underestimate the power consumption. This optimization may 

also explain why there are so few branch instructions executed in this task, at only 4% of 

the executed operations, when compared to the other two tasks that have a 4-5 times higher 

frequency of branches. Note that in the low-voltage Athlon case, the DVS model error 

offsets this underestimation, reducing the total estimation error.

Overall, the models seem to perform very well, predicting most o f our test cases within 

5% of the measured values, and even in the worst of these cases, within a 15% error.

6.5 Related Work

There have been numerous efforts dealing with energy consumption in mobile and 

handheld devices. M ost are related to hardware energy management. Less work has been 

done in terms of OS support and management for energy reduction, although there have 

been some calls to action on energy management in software systems [18]. Recently, many 

researchers have focused on high level control of dynamic voltage scaling (DVS) to re­

duce energy, both for general purpose [20 ,47 ,68 ,69] and real-time system s[24,36,56,65], 

although the first DVS related work appeared some time ago [90].

The adaptation of task sets to available resources has been studied by various researchers, 

and Noble, et. al [58], have produced a general adaptation framework for mobile platforms. 

This has later been extended [21] to perform energy adaptation o f workloads and meet run­

time requirements on limited energy supplies. More recently, algorithms have been devised 

to adapt task sets based on the trade-off between task energy consumption and utility or 

rewards of task execution [72,73], as in the EQoS framework presented in Chapter 5. Par­

ticularly for this last type of adaptation, it is necessary to know the energy requirements of

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



all tasks in the system.

More directly related to this work, Lorch, et. al [48], were among the first to measure 

system energy consumption on a laptop, using built-in power monitoring devices. These 

techniques cannot provide the time granularity of measurements needed to determine task 

energy consumption. Flinn, et. al developed the PowerScope methodology, which allows 

one to statistically determine the energy profile of a task after repeated executions, but it 

does require some invasive modifications to the running system to synchronize measure­

ments to task execution.

The closest measurement scheme to our charge flow meter is presented in [7,8]. These 

works use a custom  board and a set of switched capacitors to supply power to an on­

board processor or microcntroller that is measured. Their system is tailored for high- 

frequency measurements of energy during each individual processor cycle, and not for 

the measurements over time intervals corresponding to task execution as we desire. This 

also requires expensive hardware to perform the high-speed data acquisition, requires the 

processor to be on-board rather than in the target platform, and suffers from the same prob­

lems as oscilloscope-based measurements —  the time granularity is too fine, requiring huge 

amounts of data to be collected and integrated to do a single measurement of a task’s energy 

consumption.

Based on these works, a model for predicting execution energy on RISC processors 

has been developed [40]. This requires intensive cycle-accurate measurements o f the tar­

get processor and require very detailed information regarding the executed instructions, 

such as the fetch address and opcode bits, to predict the processor energy for relatively 

short sequences of instructions with a 2.5% error on average. As with the previous works, 

this model is at too fine a time granularity to be practical when applied to the millions 

of instructions executed in just a single execution time-slice. In contrast, our models of 

task energy are easily applied to arbitrarily long instruction sequences, and even with great 

simplification, can on average provide energy estimates with only a 5% error.

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.6 Conclusions

In this chapter, we have addressed how to determine task energy consumption, an im­

portant issue in any low-power system design, and critical to any systems that employ 

energy-aware task adaptation. We have proposed and implemented a low-cost, microcontroller- 

based energy-consumption measurement device that addresses the problems of measuring 

energy over the millisecond-range execution times of tasks and synchronizing measure­

ments with task execution. This is accomplished without relying on invasive modifications 

of the target systems or expensive external hardware, and we propose methods of automat­

ing measurements to create a self-monitoring platform.

In addition to directly measuring energy consumption, we have developed simple m od­

els to predict task execution energy based on platform and task characteristics. We have 

shown these to be accurate, particularly our instruction mix model, which comes within 5% 

of actual measurements in most of the test applications. Overall, these estimates should be 

sufficient for use in task adaptation systems, which only require the average execution en­

ergy specifications of each task.

Although they work very well, the models are not perfect due to the simplifying as­

sumptions we have made. In the future, we would like to investigate how the models can 

be improved, particularly in regard to predicting increases in energy consumption due to 

improved instruction-level parallelism when executing optimized code on superscalar pro­

cessors. In addition, we currently model only the processor energy consumption, which is 

appropriate for computationally intensive tasks on platforms where CPU power dominates, 

but not effective for systems where non-CPU components, such as wireless transmitters or 

mechanical actuators, dominate power consumption. We plan to further develop models 

that can also incorporate I/O and communication hardware energy consumption.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7

Conclusions

As computer technology progresses making smaller, lighter, and faster com puting de­

vices available at inexpensive prices, we are experiencing a proliferation o f small, non- 

traditional computing platforms that are capable of high computational performance and 

sophisticated functions. The exponential improvements in processing speed and similar 

gains in large-scale integration allow handheld and embedded systems today to be as com­

putationally powerful as workstation-class machines of just a few years ago. However, 

despite improving battery and semiconductor technologies, providing the energy needed 

for high-performance computing in a small package is a significant challenge. To alleviate 

the problem, we must consider methods and technologies to reduce energy consumption 

and improve the energy efficiency of systems.

This thesis has taken a software-centric approach to energy conservation in embedded 

and mobile systems, where the system may face both energy and timeliness o f execution 

constraints for a real-time task set. The general approach to energy conservation has been 

divided into three major aspects: improve efficiency of OS services by targeting and opti­

mizing them specifically for small embedded systems; develop and im plement algorithms 

to best utilize and exploit hardware energy-conserving mechanisms while maintaining RT 

deadline guarantees; and adaptation o f the real-time workload to maximize the returns on 

limited stored energy available in a system. The major focus of this thesis is on the latter 

two aspects, particularly in the context of reducing energy consumed by the processor.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.1 Contributions

In this thesis, we have explored various methods of making an embedded, real-time 

operating system more energy-aware and efficient. The major contributions of this thesis 

are summarized as follows:

•  After dividing the software centric approach to energy conservation into three as­

pects, this thesis first surveys various techniques through which system services may 

be modified to more closely match the needs of embedded real-time systems, making 

the general-case operation lower in processing overheads and energy consumed. New 

experiments extending one particular mechanism —  protocol layer bypassing with a 

zero-copy architecture ■—  to modern architectures are shown to save up to 65% of the 

processing energy costs of receiving a packet in multim edia streaming applications 

that need the connectivity of the Internet Protocol, but none o f its fragmentation and 

error correction / detection services.

•  Software-controlled power-down of the processor core and external components can 

significantly reduce energy consumption. However, due to potentially large power- 

state switching latencies, using such mechanisms in a real-time system can cause 

task deadline violations. Sprint-and-halt scheduling techniques are developed to ex­

ploit hardware power-down mechanisms and take these latencies into account to con­

serve energy, while maintaining real-time execution guarantees. Several algorithms 

o f increasing complexity are described and evaluated, showing 40-70%  reduction in 

energy over a broad range of system parameters, while maintaining real-time per­

formance.

•  Hardware techniques of dynamically lowering the operating voltage of the processor 

can greatly reduce processing energy costs, but will affect execution timing as the 

operating clock frequency must be reduced in tandem. This thesis develops novel 

real-time dynamic voltage scaling (RT-DVS) algorithms that can provide deadline 

guarantees while adjusting processor frequency and voltage to save energy. Several 

algorithms are developed, for both static and dynamic priority real-time scheduling, 

and are shown to conserve 20-40%  of processing energy in addition to any savings 

from an ideal processor halt mechanism.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•  A working implementation of these RT-DVS algorithms has been developed on top 

of the Linux 2.2 kernel, using AMD K6 and Athlon mobile Athlon processors. This 

is one of the first implementations of DVS published, and uses a readily available 

and modifiable OS and hardware platform, so is a good base for future DVS (real­

time, or otherwise) experimentation. It is used in this thesis to verify and validate the 

simulation methodology and results, showing a comparable measured energy savings 

due to RT-DVS.

•  The third aspect of software-centric energy conservation is explored in this thesis 

through the development of the Energy-Aware Quality-of-Service (EQoS) fram e­

work. This framework allows the system to provide differentiated service, in terms 

of energy and processing resources, to each real-time application in a system, in 

order to maximize the total value or utility gained from a limited supply of stored 

energy. It frames the adaptation of the working task set to the available energy into 

a tractable multiple-choice knapsack problem (MCKP) with straightforward optimal 

solutions, and very efficient heuristics. EQoS provides the maximum benefits on a 

limited energy budget, while meeting real-time constraints and runtime goals. The 

RT-DVS implementation has been extended to support EQoS.

•  DVS can greatly increase the processing energy efficiency of a system that is under­

loaded, so using it when adapting the workload on a system can significantly skew 

the intended results of adaptation. The concept of an idealized DVS response is in­

troduced to model the effects that DVS techniques have on system runtime when 

workload is reduced. Using this relation, EQoS techniques can account for DVS ef­

fects on the task set as a whole, and can continue the independent treatment o f tasks 

in a tractable M CKP problem.

•  In order to use the EQoS framework for task adaptation, one must know the energy 

requirements of each task. This thesis also looks at support technology that addresses 

measuring and modeling task energy requirements. A small, low-cost device is de­

veloped that can provide direct energy measurements of individual tasks, w ithout the 

shortcomings or expense of most current approaches. A self-monitoring architec­

ture is described that allows a system to m onitor and update energy profiles o f tasks

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for online adaptation. Finally, simple models of task energy are proposed that can 

predict average energy consumption within 5% of actual requirements.

7.2 Future Directions

Together, the techniques developed in this thesis can be used to significantly improve 

the power dissipation and energy efficiency of a mobile, embedded system. There are some 

caveats in the integration of these that can provide opportunities for future research. In 

particular, the philosophies behind sprint-and-halt and RT-DVS scheduling are mutually 

opposed —  one tries to get all work done as quickly as possible, while the other tries to 

spread it out maximally. One future direction is to devise a hybrid scheduler that autom at­

ically switches between these modes of scheduling based on the expected surplus process­

ing capacity and energy savings possible through voltage scaling and powering-down of 

the system.

Furthermore, the work in this thesis is primarily concerned with the energy consumed 

through the microprocessor, and focuses on reducing computational overheads, or im prov­

ing the energy-efficiency of computation. Future research can direct attention to com po­

nents external to the processor. In particular, although it does not draw as high a peak 

power as the processor, the memory subsystem generally draws a continuous, low, but sig­

nificant amount of power in small em bedded systems. Mechanisms to dynamically reduce 

the power consumption of memory while maintaining performance (particularly real-tim e 

aspects) should be investigated [26].

One key influence on handheld device battery life is the energy costs associated with 

communications, particularly through wireless LANs or cellular networks. A lthough re­

ducing energy consumption of wireless networking in well studied [35,81], how such tech­

niques can be incorporated into real-time scheduling, and sprint-and-halt mechanisms is an 

open problem. Furthermore, in applications such as streamed multimedia, there is often 

a tradeoff between the size of the data stream and the processing necessary to decode / 

uncompress it, so reducing communication bandwidth and energy costs may require in­

creases in processing energy. Handling this tradeoff may be a future extension to the EQoS 

framework.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Currently, the EQoS framework requires that the tasks in the system be independent 

of each other with respect to the value gained from execution at particular service levels. 

A future avenue of research is to extend the system to permit dependencies, such as “task 

B has value only if task A  and task C are executing.” Handle such expressive dependen­

cies requires significant additional research. In particular, the optimization problem will 

no longer reduce to a multiple-choice knapsack problem, so further investigation into algo­

rithms is necessary in order to avoid exponential search of the entire solution space for the 

workload adaptation.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY

1 7 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY

[1] Advanced Configuration and Power Interface, http://www.acpi.info/.

[2] Advanced M icro Devices Corporation. M obile AMD-K6-2+ Processor Data Sheet, 
June 2000. Publication # 23446.

[3] Advanced M icro Devices Corporation. M obile AM D Athlon 4 Processor M odel 6 
CPGA Data Sheet, Nov. 2001. Publication # 24319E.

[4] Atmel Corporation, http://www.atmel.com/products/avr/.

[5] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of design techniques for system- 
level dynamic power management. IEEE Transactions on VSLI, pages 299-316, June 
2000.

[6] T. D. Burd and R. W. Brodersen. Energy efficient CMOS microprocessor design. 
In T. N. M udge and B. D. Shriver, editors, Proceedings o f  the 28th Annual Hawaii 
International Conference on System Sciences. Volume 1: Architecture, pages 288 - 
297, Los Alamitos, CA, USA, January 1995. IEEE Computer Society Press.

[7] N. Chang and K. Kim. Real-time per-cycle energy consumption measurement of 
digital systems. IEE Electronics Letters, 36(13): 1169—1171, June 2000.

[8] N. Chang, K. Kim, and H. G. Lee. Cycle-accurate energy consumption measurement 
and analysis: Case study of arm7tdmi. IEEE Transactions on VLSI Systems, 10:146- 
154, April 2002.

[9] J. Chen and A. Burns. A  fully asynchronous reader/writer mechanism for m ulti­
processor real-time systems. Technical Report YCS-288, Department o f Computer 
Science, University of York, 1997.

[10] V. Cherkassky and M. Malek. Graceful degradation of multiprocessor systems. In 
International Conference on Parallel Processing, pages 885-888, Pennsylvania, Pa, 
USA, August 1987. Pennsylvania State Univ. Press.

[11] H. K. J. Chu. Zero-copy TCP in Solaris. In USENIX Annual Technical Conference, 
pages 253-264, 1996.

[12] C. Dalton, G. Watson, D. Banks, C. Calamvokis, A. Edwards, and J. Lumley. After­
burner. IEEE Networks, 7(4):36-43, July 1993.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.acpi.info/
http://www.atmel.com/products/avr/


[13] I. K. Dey, D. F. Towsley, C. M. Krishna, and M. Girkar. Efficient on-line processor 
scheduling for a class of iris real-time tasks. In SIGMETRICS, pages 217-228, 1993.

[14] P. Druschel and G. Banga. Lazy receiver processing (LRP): A network subsystem 
architecture for server systems. In Proc. Operating Systems Design and Implementa­
tion, October 1996.

[15] P. Druschel and L. L. Peterson. Fbufs: A high-bandwidth cross-domain transfer fa­
cility. In Proceedings o f the 14th AC M  Symposium on Operating System Principles, 
pages 189-202. ACM Press, Decem ber 1993.

[16] A. Dudani, F. Mueller, and Y. Zhu. Energy-conserving feedback EDF scheduling for 
embedded systems with real-time constraints. In ACM  SIGPLAN Joint Conference 
Languages, Compilers, and Tools fo r  Embedded Systems (LC TES’02) and Software 
and Compilers fo r  Embedded Systems (SCO PES’02), June 2002.

[17] K. Dudzinski and S. Walukiewicz. Exact methods for the knapsack problem and its 
genralizations. European Journal o f  Operational Research, 28:3-21, 1987.

[18] C. S. Ellis. The case for higher-level power management. In Proceedings o f  the 7th 
IEEE Workshop on H ot Topics in Operating Systems (HotOS-VIII), pages 162-167, 
Rio Rico, AZ, March 1999.

[19] D. Engler and M. F. Kaashoek. DPF: Fast, flexible message demultiplexing using 
dynamic code generation. In SIGCOMM, pages 53-59, August 1996.

[20] K. Flautner, S. Reinhardt, and T. Mudge. Automatic performance-setting for dynamic 
voltage scaling. In Proceedings o f  the 7th Conference on M obile Computing and  
Networking M O BICO M ’Ol, Rome, Italy, July 2001.

[21] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications. 
In Proceedings o f the 17th AC M  Symposium on Operating System Principles, pages 
48-63, Kiawah Island, SC, December 1999. ACM Press.

[22] J. Flinn and M. Satyanarayanan. PowerScope: a tool for profiling the energy usage 
o f mobile applications. In Proceedings o f  the Second IEEE Workshop on M obile 
Computing Systems and Applications, pages 2-10, New Orleans, LA, February 1999.

[23] K. Govil, E. Chan, and H. Wassermann. Comparing algorithms for dynamic speed- 
setting of a low-power CPU. In Proceedings o f  the 1st Conference on M obile Com­
puting and Networking M O BIC O M ’95, March 1995.

[24] F. Gruian. Hard real-time scheduling for low energy using stochastic data and DVS 
processors. In Proceedings o f  the International Symposium on Low-Power Electronics 
and Design ISLPED ’01, Huntington Beach, CA, August 2001.

[25] H. Huang, P. Pillai, and K. G. Shin. Imroving wait-free algoritms for interprocess 
communication in embedded real-time systems. In USENIX Annual Technical Con­
ference, June 2002.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[26] H. Huang, P. Pillai, and K. G. Shin. Design and implementation of power-aware 
virtual memory. In Proc. o f  USENIX Annual Technical Conference (USENIX’03),
San Antonio, TX, June 2003.

[27] C. Hwang and A. C.-H. Wu. A predictive system shut-down method for energy saving 
of event-driven computation. In Proc. Intl. Conf. on Computer-Aided Design, pages 
28-32, 1997.

[28] Intel Corporation, http://developer.intel.com/design/intelxscal/.

[29] Intel Corporation. M obile Intel Pentium III Processor in BGA2 and M icroPG Al Pack­
ages, 2000. Order Number 245483-003.

[30] Intel, Inc. Pentium processor, ftp://download.intel.com/design/pentium/datashts/24199710.pdf, 
June 1997.

[31] Intel, Inc. Pentium II processor at 350 MHz, 400 MHz, and 450 MHz. 
ftp://download.intel.com/design/PentiumII/datashts/24365703.pdf, August 1998.

[32] M. Kim and B. D. Noble. M obile network estimation. In Proc. o f  7th AC M  Conference 
on Mobile Computing and Networking (M OBICOM ’Ol), Rome, Italy, July 2001.

[33] W. Kim, D. Shin, H.-S. Yun, J. Kim, and S. L. Min. Performance comparison of 
dynamic voltage scaling algorithms for hard real-time systems. In Proc. o f  the 8th 
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02),
2002.

[34] H. Kopetz and J. Reisinger. The non-blocking write protocol NBW: a solution to a 
real-time synchronization problem. In Proc. Real-Time Systems Symposium, pages 
131-137, 1993.

[35] R. Kravets and P. Krishnan. Power management techniques for mobile com muni­
cation. In Proceedings o f  the 4th Annual ACM /IEEE International Conference on 
Mobile Computing and Networking (MOBICOM-98), pages 157-168, New York, Oc­
tober 1998. ACM Press.

[36] C. M. Krishna and Y.-H. Lee. Voltage-clock-scaling techniques for low power in hard 
real-time systems. In Proceedings o f the IEEE Real-Time Technology and Applica­
tions Symposium, pages 156-165, Washington, D.C., May 2000.

[37] C. M. Krishna and K. G. Shin. Real-Time Systems. M cGraw-Hill, 1997.

[38] L. Lamport. Concurrent reading and writing. Communications o f  the ACM,
20(11):806-811, November 1977.

[39] C. Lee, J. Lehoczky, R. Rajkumar, and D. Siewiorek. On quality of service optim iza­
tion with discrete qos options. In Proceedings o f  the IEEE Real-Time Technology and  
Applications Symposium. IEEE, June 1999.

1 7 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://developer.intel.com/design/intelxscal/
ftp://download.intel.com/design/pentium/datashts/24199710.pdf
ftp://download.intel.com/design/PentiumII/datashts/24365703.pdf


[40] S. Lee, A. Ermedahl, S. L. Min, and N. Chang. An accurate instruction-level en­
ergy consumption model for embedded rise processors. In Proceedings o f  the ACM  
SIGPLAN Workshop on Languages, Compilers, and Tools fo r  Embedded Systems 
(LC TES’01), pages 1-10, Snowbird, UT, June 2001.

[41] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact 
characterization and average case behavior. In Proceedings o f  the IEEE Real-Time 
Systems Symposium, pages 166-171, 1989.

[42] J. Lehoczky and S. Thuel. Algorithms for scheduling hard aperiodic tasks in fixed- 
priority systems using slack stealing. In Proceedings o f  the IEEE Real-Time Systems 
Symposium, 1994.

[43] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperiodic responsiveness in 
hard real-time environments. In Proc. o f  the 8th IEEE Real-Time Systems Symposium, 
pages 261-270, Los Alamitos, CA, December 1987.

[44] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of 
periodic, real-time tasks. Performance Evaluation, 2(4):237-250, December 1982.

[45] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard 
real-time environment. Journal o f  the ACM, 20(1 ):46—61, January 1973.

[46] J. W. S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung. Imprecise com pu ta-' 
tions. In Proceedings o f  the IEEE, pages 83-93, January 1994.

[47] J. Lorch and A. J. Smith. Improving dynamic voltage scaling algorithms with PACE. 
In Proceedings o f  the ACM  SIGMETRICS 2001 Conference, pages 50-61, Cam ­
bridge, MA, June 2001.

[48] J. R. Lorch and A. J. Smith. Apple M acintosh’s energy consumption. IEEE Micro,
18(6):54—63, Nov. 1998.

[49] J. R. Lorch and A. J. Smith. Software strategies for portable computer energy m an­
agement. IEEE Personal Communications Magazine, 5(3):60—73, June 1998.

[50] Y.-H. Lu, L. Benini, and G. D. Micheli. Low-power task scheduling for multiple 
devices. In International Workshop on Hardware/Software Codesign, pages 39-M3, 
May 2000.

[51] P. S. M agnusson et al. Simics/sun4m: A virtual workstation. In Proc. o f  Usenix 
Annual Technical Conference (U SENIX’98), New Orleans, LA, June 1998.

[52] S. M artello and P. Toth. Knapsack Problems. John Wiley and Sons, Ltd., 1990.

[53] M axim Integrated Products. Precision, High-Side Current-Sense Amplifiers, D ecem ­
ber 1996. Datasheet 19-0335, Rev. 2.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[54] J. Mogul, R. Rashid, and M. Accetta. The packet filter: An efficient mechanism 
for user-level network code. In Proceedings o f the Symposium on Operating System  
Principles, pages 39-51. ACM Press, Nov. 1987.

[55] S.-W. Moon, P. Pillai, and K. G. Shin. STREAMER: hardware support for smoothed 
transmission of stored video over atm. In Parallel Computer Routing and Communi­
cation Workshop, Atlanta, GA, June 1997.

[56] D. Mosse, H. Aydin, B. Childers, and R. Melhem. Compiler-assisted dynamic power- 
aware scheduling for real-time applications. In Workshop on Compilers and Operat­
ing Systems fo r  Low-Power ( CO LP’OO), Philadelphia, PA, October 2000.

[57] R. M. Nauss. The 0-1 knapsack problem  with multiple choice constraints. European 
Journal o f  Operational Research, 2:125-131, 1978.

[58] B. Noble, M. Satyanarayanan, D. Narayanan, J .  E. Tilton, J. Flinn, and K. Walker. 
Agile application-aware adaptation for mobility. In Proceedings o f  the 16th A C M  
Symposium on Operating Systems Principles, St. Malo, France, October 1997.

[59] T. Pering and R. Brodersen. Energy efficient voltage scheduling for real-time operat­
ing systems. In Proceedings o f  the 4th IEEE Real-Time Technology and Applications 
Symposium RTAS’98, Work in Progress Session, Denver, CO, June 1998.

[60] T. Pering and R. Brodersen. The simulation and evaluation of dynamic voltage scaling 
algorithms. In Proceedings o f the International Symposium on Low-Power Electron­
ics and Design ISLPED ’98, pages 76-81, Monterey, CA, August 1998.

[61] T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of dynam ic 
voltage scaling algorithms. In Proceedings o f  the International Symposium on Low  
Power Electronics and Design (ISLPED-98), pages 76-81, New York, August 10-12 
1998. ACM Press.

[62] T. Pering, T. Burd, and R. Brodersen. Voltage scheduling in the IpARM m icroproces­
sor system. In Proceedings o f  the International Symposium on Low-Power Electronics 
and Design ISLPED ’00, Rapallo, Italy, July 2000.

[63] G. Peterson. Concurrent reading while writing. AC M  Transactions on Programming  
Languages and Systems, 5 (l):46 -55 , 1983.

[64] P. Pillai. http://kabru.eecs.umich.edu/rtos/eqos.tar.gz.

[65] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power em bedded 
operating systems. In Proceedings o f  the 18th AC M  Symposium on Operating Systems 
Principles, pages 89-102, Banff, Alberta, CA, October 2001.

[66] P. Pillai and K. G. Shin. Sprint-and-halt scheduling for energy reduction in real-tim e 
systems with software power-down. Technical Report CSE-TR-482-03, Com puter 
Science and Engineering, University of Michigan, 2003.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://kabru.eecs.umich.edu/rtos/eqos.tar.gz


[67] D. Pisinger. The multiple-choice knapsack problem. E u ro p ea n  Jo u rn a l o f  O pera ­
tio n a l R esearch , 83:394-410,1995.

[68] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage scaling on a low-power 
microprocessor. In P ro ceed in g s o f  the 7th Conference on M obile C om puting  and  
Networking M O BICO M ’Ol, Rome, Italy, July 2001.

[69] J. Pouwelse, K. Langendoen, and H. Sips. Energy priority scheduling for variable 
voltage processors. In P ro ceed in g s  o f  the International Symposium on L ow -P ow er  
Electronics and Design ISLP E D ’01, Huntington Beach, CA, August 2001.

[70] J. Pouwelse, K. Langendoen, and H. Sips. Application-directed voltage scaling. IEEE  
Transactions on Very Large Scale Integration System s (TVLSI), 2002.

[71] P. Ramanathan. Graceful degradation in real-time control applications using (m , k)-  
firm guarantee. In IEEE FTCS 27, pages 132-143, 1997.

[72] C. Rusu, R. Melhem, and D. Mosse. Maximizing rewards for real-time applications 
with energy constraints, to appear in ACM  Transaction on Em bedded Computing 
Systems.

[73] C. Rusu, R. Melhem, and D. Mosse. Maximizing the system value while satisfying 
time and energy constraints. In Proceedings o f the Real-Time Systems Symposium  
(RTSS’02), Austin, TX, Decem ber 2002.

[74] SBS Implementers Forum. Sm art Battery Data Specification, Revision 1.1, December 
1998. http://www.sbs-forum.org.

[75] D. B. Seto, J. P. Lehoczky, L . Sha, and K. G. Shin. On task schedulability in real-time 
control systems. In IEEE RTSS 96, pages 13-21, 1996.

[76] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: an approach to 
real-time synchronization. IEEE Trans, on Computers, 39(3): 1175—1198, 1990.

[77] W.-K. Shih. Scheduling in real-time systems to ensure graceful degradation: The 
imprecise-computation and the deferred-deadline approaches. Technical Report 1765, 
Department of Computer Science, University of Illinois at Urbana-Champaign, Ur- 
bana, Illinois, 1992.

[78] K. G. Shin and C. L. Meissner. Adaptation and graceful degradation of control system 
performance by task reallocation and period adjustment. In 11th Euromicro Conf. on 
Real-Time Systems, 1999.

[79] P. Sinha and A. A. Zoltners. The multiple-choice knapsack problem. Operations 
Research, 27(3):503-515, 1979.

[80] J. Stankovic et al. Deadline Scheduling fo r  Real-Time Systems. Kluwer Academic 
Publishers, 1998.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.sbs-forum.org


[81] M. Stemm and R. H. Katz. M easuring and reducing energy consumption of network 
interfaces in hand-held devices. IE1CE Transactions on Communications, vol.E 80-B , 
no.8, p. 1125-31, E80-B(8): 1125-31, 1997.

[82] V . Swaminathan and K. Chakrabarty. Real-time task scheduling for energy-aware 
embedded systems. In Proceedings o f  the IEEE R ea l-T im e Systems Symp. (Work-in- 
Progress Session), Orlando, FL, Nov. 2000.

[83] V. Swaminathan, K. Chakrabarty, and S. S. Iyengar. Dynamic i/o power manage­
ment for hard real-time systems. In Proc. Intl. Symposium on H ardw are/So ftw are  
Co-Design (CODES), pages 237-242, 2001.

[84] H. Takada and K. Sakamura. Experimental implementations of priority inheritance 
semaphore on ITRON-specification kernel. In 11th TRON Project International Sym­
posium, pages 106-113, 1994.

[85] The LAM E Project, http://www.mp3dev.org/mp3/.

[86] H. Tokuda and T. Nakajima. Evaluation of real-time synchronization in Real-Time 
Mach. In Second M ach Symposium, pages 213-221. Usenix, 1991.

[87] Transmeta Corporation, http://www.transmeta.com/.

[88] S.-Y. Tzou and D. P. Anderson. The performance o f message-passing using restricted 
virtual memory remapping. Software -  Practice a n d  Experience, 21 (3):251—267, 
March 1991.

[89] Virtutech. http://www.simics.com/.

[90] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU en­
ergy. In Proceedings o f  the First Symposium on Operating Systems Design and Im ­
plementation (OSDI), pages 13-23, Monterey, CA, Nov. 1994.

[91] G. R. W right and W. R. Stevens. TCP/IP Illustrated, volume 2. Addison-Wesley, 
1995.

[92] E. Zemel. The linear multiple choice knapsack problem. Operations Research, 
28(6): 1412-1423, 1980.

[93] D. Zhu, R. Melhem, and B. Childers. Scheduling with dynamic voltage/speed adjust­
ment using slack reclamation in multi-processor real-time systems. IEEE Trans, on 
Parallel and Distributed Systems, 14(7):686-700, 2003.

[94] K. M. Zuberi. Real-Time Operating System Services fo r  Networked Embedded Sys­
tems. PhD thesis, University of Michigan, 1998.

[95] K. M. Zuberi, P. Pillai, and K. G. Shin. EMERALDS: A small-memory real-time 
microkernel. In Proceedings o f the 17th ACM  Symposium on Operating System Prin­
ciples, pages 277-291, Kiawah Island, SC, December 1999. ACM Press.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mp3dev.org/mp3/
http://www.transmeta.com/
http://www.simics.com/


[96] K. M. Zuberi and K. G. Shin. An efficient end-host protocol processing architecture 
for real-time audio and video traffic. In Proc. Network and Operating System Support 
fo r  Digital Audio and Video (NOSSDAV), pages 111-114, July 1998.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


