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CHAPTER I

INTRODUCTION

1.1 Motivation

Over the past two decades, the Internet has grown from a small network connecting 

dozens of researchers to a gigantic global network connecting people all over the world. 

The tremendous success of the Internet lies in its scalability and robustness — outcomes 

of its so called “end-to-end design principle”. The essence of end-to-end design principle 

is to keep the functionality inside the core of the network as simple as possible, while de­

ploying complex functionalities at the network end-points. Since the Internet was designed 

with adding connectivity, not security, in mind, the Internet infrastructure has exposed its 

weakness to recent DoS (Denial of Service) attacks [22,75].

The TCP/IP protocol suite is the basic component underlying the Internet. The IP 

(Internet Protocol) is the network layer of the Internet. The basic functionality of IP is 

to route and forward a packet to its destination. Within the OSI (Open System Intercon­

nection) model, IP is at layer three and provides a best-effort unreliable delivery service. 

TCP (Transmission Control Protocol) runs on top of IP, supporting a number of “ports” 

on each end-host running IP. TCP provides reliable data delivery, and performs congestion 

and flow control between two communicating ports. However, the TCP/IP protocols lack 

the basic mechanisms for security: authentication or encryption. BP routing is stateless

1
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and destination-based. IP routers have minimal or no mechanism to authenticate the true 

origin of a packet, and IP packets are forwarded to the next hop without source address 

authentication.

The Internet is an open system, so there is no strict access control upon network re­

sources. An end-host with a valid IP address and connection to the Internet, can inject 

arbitrary IP packets into the Internet Due to the security weakness mentioned above, the 

Internet is susceptible to DoS attacks [22, 75], in which an attacker exploits IP spoof­

ing [76] and simply floods forged packets to the victim site. Instead of subverting Internet 

services, DoS attacks limit and block legitimate users’ access by exhausting victim servers’ 

resources [23], or saturating stub networks’ access links to the Internet [45] with a flood 

of spoofed traffic. Flooding packets is the most common DoS attack, due to the readily 

available tools and its simple nature. The difficulties in countering DoS attacks are: (1) no 

matter how secure a victim server may be, it could be bombarded by DoS attacks simply 

because it is connected to the Internet; and (2) its susceptibility to DoS attacks relies on 

the state of security in the rest of the Internet As one of the most difficult problems in 

network security, DoS attacks have become a serious threat to the availability of Internet 

services [22,44,75].

The recent occurrences of Distributed DoS (DDoS) attacks make it even more difficult 

for victims to block and trace back the attacking sources. In typical DDoS attacks, in­

stead of flooding spoofed traffic from a single source, attackers compromise a number of 

machines (slaves) and orchestrate them to simultaneously flood a victim site. The utiliza­

tion of numerous slaves both strengthens the force of the attack and complicates defense 

against it: the dilution of locality in the flooding traffic confuses the victim not to filter 

out bogus packets and trace back the flooding sources. The vulnerability of the Internet to 

DDoS attacks has been witnessed by the recent attacks on popular web sites like Yahoo,
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eBay and E*Trade, and their resultant disruption of services [44]. These attacks against 

high-profile web sites highlight how devastating DDoS attacks are, and how defenseless 

the Internet is.

1.2 Description of DDoS Attacks

A DDoS attack system can usually be described as a hierarchical model, in which an 

attacker controls a master (handler) that, in turn, dictates the hordes of slaves (agents) to 

flood the victim with attacking traffic. The communication between the attacker and the 

master, as well as between the master and the slaves is called the control traffic, while the 

communication between the slaves and the victim is called the flooding traffic. To hide 

the attacker from its detection, the control traffic is encrypted and its channel is covert and 

password-protected. The slaves are recruited by employing automatic scanning and propa­

gation techniques, which search for security holes and inject the attacking instructions into 

the compromised hosts. The hierarchy of the DDoS attack system is shown in Figure 1.1.
■

Attacker Control Traffic

Flooding Traffic

Master

Slave SlaveSlave Slave Slave Slave

Vienna

Figure 1.1: Structure of a DDoS attack 

The mechanism of DDoS attacks works as follows: the master sends control packets to
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the previously-compromised slaves, instructing them to target a given victim. The slaves 

then generate and send high-volume streams of bogus traffic to the victim, but with fake 

or randomized source addresses, so that the victim cannot locate the attackers. DDoS 

attacks are difficult to defend against, as they do not target specific vulnerabilities of a 

computer system, but rather, the very fact that it is connected to the network. With the 

appearance of Trinoo, which only implements UDP flooding attacks, many tools have 

been developed to create DDoS attacks. These readily available attacking tools, such as 

Tribe Rood Network (TFN), TFN2K, Trinity, Plague, Shaft and Stacheldraht, generate 

various flooding attacks [33].

While the conventional flooding attack is a system resource depletion attack, the re­

cent Distributed Reflection DoS (DRDoS) attacks [45,86] virtually “disconnect” a victim 

server from the Internet by hogging the link bandwidth between the victim and its ISP 

with an excessive number of response packets (a.k.a. bandwidth depletion attack). The 

DRDoS attacks masquerade the source IP address of each spoofed request with the vic­

tim’s IP address, and spray the spoofed requests to a large number of Internet servers, 

which are exploited as reflectors. The reflectors will then send combined replies to the 

victim, redirecting and amplifying the flooding traffic.

13 Overview of Existing Approaches

To thwart DDoS attacks, researchers have taken two distinct approaches: router-based 

and victim-based. Router-based approaches install defense mechanisms at IP routers to 

detect, block and trace back attacking traffic. In contrast, victim-based approaches enhance 

the resilience of Internet servers against attacks by fine-grained resource management or 

resource savings for each request.
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13.1 Router-based Defense Mechanisms

The router-based approach performs either on-line filtering of DDoS traffic inside 

routers or off-line analysis of flooding traffic. On-line filtering mechanisms rely on IP 

router enhancements [40,46, 60, 63, 66, 72, 84,120] to detect abnormal traffic patterns 

and block DDoS traffic. Off-line IP traceback [14, 21, 31, 95, 99, 100, 105] attempts to 

establish procedures to track down flooding sources after occurrences of DDoS attacks. 

While it does help pinpoint locations of flooding sources, off-line IP traceback does not 

help sustain service availability during an attack.

On-line Dectection and Filtering

As on-line detection mechanisms, MULTOPS [46] and D-WARD [72] are the two 

typical examples in this field. MULTOPS [46] is a tree of nodes that keep packet-rate 

statistics for subnets at different aggregation levels. Based on the observation of a sig­

nificant disproportional difference between the traffic flowing into and out of the victim, 

routers use MULTOPS to detect ongoing bandwidth attacks. D-WARD [72] is deployed 

at source-end networks, and monitors two-way traffic between the network and the rest of 

the Internet. Based on the comparison with normal traffic models, D-WARD detects and 

throttles the ongoing flooding attacks. Its normal traffic models are simply based on flow 

rates. However, due to the diversity of user behaviors and the emergence of new network 

applications, it is difficult to obtain a robust and general model for describing the normal 

traffic flow rates.

Among various filtering schemes [40,63,84] executing on IP routers, the most straight­

forward scheme is ingress filtering [40]. It blocks spoofed packets at edge routers, where 

address ownership is relatively unambiguous, and traffic load is low. Ingress filtering [40] 

configures the internal router interface to block spoofed packets whose source IP addresses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

do not belong to the stub network. This limits the ability to flood spoofed packets from that 

stub network, since the attacker would only be able to generate bogus traffic with internal 

addresses. However, the success of ingress filtering hinges on its wide-deployment in IP 

routers. Most ISPs are reluctant to implement this service due to administrative overhead 

and lack of immediate benefit to their customers.

Given the reachability constraints imposed by the routing and network topology, the 

route-based distributed packet filtering (DPF) [84] exploits routing information to deter­

mine if a packet arriving at the router is valid with respect to its inscribed source/destination 

addresses. The experimental results reported in [84] show that a significant fraction of 

spoofed packets are filtered out, and the spoofed packets that escaped the filtering can be 

localized to five candidate sites which are easy to trace back.

To validate that an IP packet carries the true source address, SAVE [63], a Source 

Address Validity Enforcement protocol, builds a table of incoming source IP addresses at 

each router that associates each of its incoming interfaces with a set of valid incoming 

network addresses. SAVE runs on each IP router and checks if each IP packet arrives at 

the expected interface. By matching incoming IP addresses with their expected receiving 

interfaces, the set of IP source addresses that any attacker can spoof are greatly reduced.

Yau et. al proposed a router throttle mechanism [120], which is installed at the routers 

that are close to the victim. These routers proactively regulate the incoming packets to a 

moderate level, thus reducing the amount of the flooding traffic towards the victim. The 

key idea of pushback is close to that of router throttle, and it identifies and controls high 

bandwidth aggregates in network [55, 66]. The router could then ask adjacent upstream 

routers to limit the amount of traffic from the identified aggregate. This upstream rate- 

limiting is called pushback and can be propagated recursively to routers further upstream.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

IP Traceback

Since the source addresses of flooding packets are faked, it is challenging to find the 

origin of a flooding source. To identify the compromised end-hosts that directly generate 

flooding packets and the network path that these packets subsequently follow, various 

traceback techniques [14, 20, 31, 95, 99, 100, 105] have been proposed. A typical IP 

traceback mechanism has routers mark IP address information on packets en-route to the 

victim, which collects this information and uses it to reconstruct the path to the flooding 

source.

The ICMP traceback mechanism [14] proposed a new type of ICMP message: trace- 

back messages. For each packet to be forwarded, with a low probability, an itrace router 

generates an ICMP message to the destination address of the packet, including the IP ad­

dress of the router as well as the IP addresses of the previous and next-hop routers. During 

a flooding attack, the victim can utilize these ICMP traceback messages to reconstruct the 

path to the flooding source. However, the overhead of ICMP traceback is relatively high, 

and there is a tension between fast path reconstruction and low network overhead incurred 

by ICMP traceback messages.

To reduce the tracing overhead, PPM (Probabilistic Packet Marking) [95] was pro­

posed to embed traceback information within an IP packet. Routers probabilistically mark 

packets with partial path information into one rarely used IP header field — 16-bit IP 

identification field. Compressed edge fragment sampling is used to embed the 72-bit edge 

information into the 16-bit field. Fragments are reassembled at the victim to reveal all the 

IP addresses of the upstream routers towards the flooding source. Compared with ICMP 

traceback, this scheme can trace back lower-volume flows with less overhead. However, 

with the increase of flooding sources, the victim runs into computational difficulties caused 

by fragment reconstruction. This problem was addressed by Song and Perrig [100]. Their
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scheme encodes routing information more efficiently and accurately with the use of net­

work topology maps. Moreover, this scheme authenticates the routers’ markings so that 

even a compromised router cannot forge or tamper with other legal markings.

The controlled flooding technique developed by Burch and Cheswick [21] infers the 

attacking path by observing the impact of selectively exhausting some network links upon 

the victim. Since router buffers are shared, packets across the loaded link are more likely 

to be dropped. If the attacking packets traverse a bandwidth-exhausted link, the victim 

will receive less DoS traffic. By monitoring the changes in the rate of attacking traffic, it is 

possible for the victim to know the links that the DoS traffic are traversing. However, this 

scheme does not work well if there are many flooding sources in a DDoS attack. Also, it 

requires the victim to have a good Internet topology map and a list of “willing” hosts, in 

order to exhaust the related links’ bandwidths. Finally, this approach is only effective at 

tracing on-going attacks.

Using noisy polynomial reconstruction, Dean et. al [31] proposed an algebraic ap­

proach to performing IP traceback. The marks in packets are the values of linear poly­

nomial with the router’s identity as its leading coefficient. The victim runs polynomial 

interpolation with noise on the received packets to trace out the attacking path. Snoeren 

et. al presented a hash-based IP traceback [99], which can track the origin of a single 

packet delivered by the network in an efficient and scalable way. The Source Path Isola­

tion Engine (SPIE) records sets of hashes of packets traversing a given router. A victim 

can then find out the path of a given packet by querying routers for the set of hashes corre­

sponding to the packet. Stone [105] built an IP overlay network for tracking DoS floods, 

which consists of IP tunnels connecting all edge routers. The topology of this overlay 

network is deliberately simple, and suspicious flows can be dynamically rerouted across 

the tracking overlay network for analysis. Then, the origin of the floods can be revealed.
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Based on IP traceback marking, Path Identifier (Pi) [119] embeds a path fingerprint in 

each packet so that a victim can identify all packets traversing the same path across the 

Internet, even for those with spoofed IP addresses. Instead of probabilistic marking, Pi’s 

marking is deterministic. By checking the marking on each packet, the victim can filter out 

all attacking packets that match the path signatures of already-known attacking packets. Pi 

is effective even if only a half of the routers in the Internet participate in packet marking.

13-2 Victim-based Defense Mechanisms

Compared to the router-based approaches, the victim-based approaches have the ad­

vantage of being immediately deployable. Also, a potential victim has a much stronger 

incentive to deploy defense mechanisms than network service providers. Victim-based 

approaches protect Internet servers either by using sophisticated resource management 

schemes or by significantly reducing each request’s resource consumption to withstand 

the flooding traffic.

Advanced resource-management schemes provide more accurate resource accounting, 

and fine-grained service isolation and differentiation [11, 17, 90, 101], for example, to 

shield interactive video traffic from bulk data transfers. However, without a mechanism to 

detect and discard spoofed traffic, spoofed packets will share the same resource principals 

and code paths as legitimate requests. While a resource manager can confine the scope 

of damage to the service under attack, it may not be able to sustain the availability of the 

service being attacked.

To defend TCP-based network services against SYN flooding attacks, a software agent, 

called synkill [96], has been developed for mitigating the impact of malicious SYN re­

quests. Working in a LAN environment, synkill continuously monitors TCP’s three-way 

handshake messages. If a SYN packet is not acknowledged in a certain amount of time,
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synldll will inject a matching RST packet to free the resources occupied by the illegiti­

mate half-open connection. Moreover, based on network observation and administrator- 

provided input, synldll classifies IP source addresses, with a high probability, to have been 

spoofed or not

As firewalls have been installed at almost all sites, several SYN flooding protection 

systems are available at these firewalls, such as SynDefender [65] and Syn proxying [4]. 

The firewall before the protected server plays a key role in protection mechanisms, which 

act on behalf of the server before a connection is actually established. It intercepts the 

TCP traffic between clients and the server, and maintains state for each TCP connection. 

The drawback of these approaches is the longer delay incurred to each TCP connection 

setup.

Syn cache [62] and Syn cookies [15] belong to the server-based mechanism. Syn cache 

also maintains states for each SYN request, but its state structure is much smaller. Syn 

cache employs a global hash table to keep the incomplete queued connections, instead of 

the per-socket linear list. The listen queue is split among hash buckets. In the Syn cookies 

mechanism, when the server receives a SYN packet, it responds with a SYN/ACK packet 

and the ACK sequence number calculated from the source address, source port, source 

sequence, destination address, destination port and a secret seed. Then, the server releases 

all states. If an ACK comes from the client, the server can recalculate the ACK sequence 

number to determine if it is a response to the previous SYN/ACK. If it is, the server can 

directly enter the “established” state and open the connection. So, the server removes the 

need to watch for half-open connections.

Syn cookies have been implemented as a standard component of Linux kernel. How­

ever, Syn cookies themselves lack the detection functionality. Syn cookies are activated 

when the server’s backlog queue is full. Unfortunately, backlog queue length increases
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due often to legitimate flash crowds, instead of SYN flooding attacks. Without a proper 

detection mechanism, keeping Syn cookies active under legitimate flash crowds cannot 

mitigate the workload stress; on the contrary, the computational overhead incurred by Syn 

cookies only aggravates the shortage of CPU cycles of the server.

1.4 Primary Research Contributions

The backbone of this research is the development of a series of methodologies and 

mechanisms that work together to counter DDoS attacks. These mechanisms include 

transport-aware IP router architecture that provides fine-grained service differentiation and 

resource isolation, a SYN-dog for detecting SYN flooding attacks that is the most common 

DDoS attacks [75], a hop-count filter for weeding out spoofed packets at victim servers, 

and an BP Easy-pass for network-edge resource access control. The contributions of this 

dissertation are described below.

1.4.1 Transport-aware IP Routers: a Built-in Protection Mechanism

The lack of service differentiation and resource isolation by the current BP routers ex­

poses their vulnerability to DDoS attacks [44]. Based on the concept of layer-4 service dif­

ferentiation and resource isolation, where the transport-layer information is inferred from 

the IP headers and used for packet classification and resource management, we present a 

transport-aware IP (rEP) router architecture that provides fine-grained service differentia­

tion and resource isolation among different classes of traffic aggregates. The rEP router 

architecture consists of a fine-grained Quality-of-Service (QoS) classifier and an adaptive 

weight-based resource manager. A two-stage packet-classification mechanism is devised 

to decouple the fine-grained QoS lookup from the usual routing lookup at core routers. The 

fine-grained service differentiation and resource isolation provided inside the rEP router is a 

powerful built-in protection mechanism to counter DDoS attacks, reducing the vulnerabil­
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ity of Internet to DDoS attacks. Moreover, the rIP architecture is stateless and compatible 

with the Differentiated Service (DiffServ) infrastructure. Thanks to its scalable QoS sup­

port for TCP control segments, the rIP router also supports bi-directional differentiated 

services for TCP sessions.

1.4.2 SYN-dog: Sniffing SYN Flooding Attacks

We present a simple and robust mechanism, called SYN-dog, to sniff SYN flooding 

attacks. The core of SYN-dog is based on the distinct protocol behavior of TCP con­

nection establishment and teardown, and is an instance of the Sequential Change Point 

Detection [13]. To make the detection mechanism insensitive to site and access pattern, a 

non-parametric Cumulative Sum (CUSUM) method [19] is applied, thus making the de­

tection mechanism robust, more generally applicable and its deployment much easier. The 

statelessness and low computation overhead of SYN-dog make itself immune to flooding 

attacks. The efficacy of SYN-dog is evaluated by extensive trace-driven simulations. The 

evaluation results show that SYN-dog has short detection latency and high detection ac­

curacy. Moreover, due to its proximity to the flooding sources, SYN-dog not only sets 

alarm upon detection of ongoing SYN flooding attacks, but also reveals the location of the 

flooding sources without resorting to the IP traceback [14,20,31,95,99].

1.43 Hop-Count Filtering: An Effective Defense Against Spoofed DDoS Traffic

IP spoofing has been exploited by DDoS attacks to (1) conceal flooding sources and 

localities in flooding traffic, and (2) coax legitimate hosts into becoming reflectors, redi­

recting and amplifying flooding traffic. Thus, the ability to filter spoofed IP packets near 

victims is essential to their own protection as well as to their avoidance of becoming invol­

untary DoS reflectors. Although attackers can forge any field in the IP header, they cannot 

falsify the number of hops an IP packet takes to reach its destination. This hop-count in-
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formation can be inferred from the Time-to-Live (TIL) value in the IP header. Using a 

mapping between IP addresses and their hop-counts to an Internet server, the server can 

distinguish spoofed IP packets from legitimate ones. Based on this observation, we present 

a novel filtering technique that is immediately deployable to weed out spoofed IP packets. 

Through analysis using network measurement data, we show that Hop-Count Filtering 

(HCF) can identify close to 90% of spoofed IP packets, and then discard them with little 

collateral damage. We implement and evaluate HCF in the Linux kernel, demonstrating 

its benefits using experimental measurements.

1.4.4 IP Easy-pass: Edge Resource Access Control

Providing real-time communication services to multimedia applications and subscription- 

based Internet access often requires sufficient network resources to be reserved for real­

time traffic. However, the reserved network resource is susceptible to resource theft and 

abuse. Without a resource access control mechanism that can efficiently differentiate le­

gitimate real-time traffic from attacking packets, the traffic conditioning and policing con­

ducted at ISP (Internet Service Provider) edge routers cannot protect the reserved network 

resource from embezzlement. On the contrary, the traffic policing at edge routers ag­

gravates their vulnerability to flooding attacks by blindly dropping packets. To counter 

such DQoS (Denial of Quality of Service) attacks, we develop a fast and lightweight 

IP network-edge resource access control mechanism, called IP Easy-pass, which blocks 

unauthorized access to reserved network resources at edge devices. We attach a unique 

pass to each legitimate real-time packet so that an ISP edge router can validate the legiti­

macy of an incoming IP packet very quickly and simply by checking its pass. We present 

the generation of Easy-pass, its embedding, and verification procedures. We implement 

the IP Easy-pass mechanism in the Linux kernel, analyze its effectiveness against DQoS
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attacks. Finally, we measure its overhead and performance.

1.5 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 presents a transport- 

aware IP (rIP) router architecture, which provides fine-grained service differentiation and 

resource isolation among different classes of traffic aggregates, can be utilized as a built-in 

mechanism to counter DDoS attacks. Chapter 3 describes SYN-dog, a simple and robust 

detection mechanism to sniff SYN flooding sources. Based on the distinct protocol behav­

ior of TCP connection establishment and teardown, the SYN flooding detection is treated 

as an instance of the Sequential Change Point Detection. A non-parametric Cumulative 

Sum method is applied, making the detection mechanism insensitive to sites and access 

pattern. Chapter 4 develops a novel hop-count-based filter to weed out spoofed IP pack­

ets. The hop-count information is inferred from the Time-to-Live (TTL) value in the IP 

header. Using a mapping between IP addresses and their hop-counts to an Internet server, 

the server can distinguish spoofed IP packets from legitimate ones. Chapter 5 presents a 

fast and lightweight IP network-edge resource access control mechanism, called IP Easy- 

pass, to defend against DQoS attacks in the data plane. Each real-time packet is attached 

with a unique pass. The packets with no pass or stale passes are discarded, which pre­

vents unauthorized access to reserved network resources at edge devices. Chapter 6 draws 

conclusions, and describes possible future research directions.
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CHAPTER II

TRANSPORT-AWARE IP ROUTERS: A BUILT-IN 
PROTECTION MECHANISM

2.1 Introduction

Like the computing resources of an end-server, there is only a limited amount of net­

work resources — such as bandwidth, buffer, and processing power of routers — available 

to Internet users. The vulnerability of Internet to DDoS attacks roots in its best-effort 

model that provides no resource isolation among different IP flows, making it easy for 

attacking traffic to hog network resources. Having sufficient service differentiation and 

resource isolation at IP routers is essential not only to provide network Quality of Service 

(QoS) to end-users, but also to counter DDoS attacks as a powerful built-in protection 

mechanism inside the Internet.

To support network QoS, the Differentiated Service (DiffServ) infrastructure [38] has 

been proposed as a promising solution due mainly to its scalability and robustness. Based 

on the DS field in the IP header, IP flows are classified into different Behavior Aggre­

gates (BAs). Services are provided for aggregates, not for individual flows, and defined 

by a small set of Per-Hop Behaviors (PHBs), which are the forwarding behaviors applied 

to different aggregates at IP routers. According to the three different services provided 

by DiffServ, three types of PHBs are specified: Expedited Forwarding (EF), Assured For-

15
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•warding (AF), and Best-Effort (BE). Although EF traffic is strictly policed and conditioned 

at edge routers, which protects the rest of network resources from the flooding EF traffic, 

the violated AF traffic is only re-marked without strict policing at network edges. More 

importantly, no conditioning is applied to BE traffic that is the main component of the In­

ternet traffic. Compared to the best-effort service model, DiffServ is more resilient against 

DDoS attacks, but it is is still susceptible to DDoS attacks, especially the BE flooding 

traffic.

In the current DiffServ architecture, the QoS classification at core routers depends 

solely upon the DS field in the IP header,1 yielding only coarse-grained service differ­

entiation and resource isolation. No further service differentiation and resource isolation 

are provided among different transport-layer protocols within a BA. On the other hand, 

UDP and TCP are two dominant transport-layer protocols in the current Internet, but their 

services and traffic behaviors are quite different. Furthermore, UDP and ICMP flood­

ing attacks have been widely used for stealing network bandwidth and disabling a victim 

server. It is necessary to provide resource isolation among TCP, UDP and ICMP traffic, 

and the resource consumption of UDP and ICMP traffic should be bounded. Besides meet­

ing the requirement of the bi-directional service differentiation to TCP sessions, which the 

current DiffServ fails to achieve [82,117], there are three reasons for differentiating TCP 

control segments — SYNs, FINs, ACKs and RSTs — from data segments, especially in 

the best-effort service model.

R l. Usually TCP control segments have much smaller packet size than data segments, so 

they consume much less network bandwidth than data segments.

R2. The loss of a TCP control segment, especially SYNs, incurs more serious perfor­

mance degradation than the loss of a data segment.

1Multi-fi eld packet classifi cation is limited to edge routers in the DiffServ architecture.
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R3. DDoS attack tools usually utilize TCP control segments for generation of DoS at­

tacks, such as TCP SYN and ACK flooding attacks.

In other words, the coarse-grained service differentiation and the lack of resource isolation 

on meta-data packets not only degrade the assured service of TCP sessions, but also expose 

the vulnerability of Internet to DDoS attacks [44],

In this chapter, we propose a transport-aware IP (rIP) router architecture to provide 

fine-grained service differentiation and resource isolation among thinner aggregates with­

out compromising scalability. The basic concept employed is layer-4 service differentia­

tion and resource isolation, in which the transport-layer information is inferred from the IP 

headers and used for packet classification and resource management at IP routers. To sup­

port layer-4 service differentiation and resource isolation, we present a fine-grained QoS 

classifier and an adaptive weight-based resource manager, with which the rEP router infras­

tructure is built. The fine-grained QoS classifier divides each BA into thinner aggregates, 

and the adaptive weight-based resource manager provides service differentiation and re­

source isolation among these thinner aggregates. At core routers, we employ a two-stage 

packet classification mechanism to decouple the routing lookup ffom QoS lookup. The 

first stage performs the routing lookup at the input port, and the second stage performs the 

fine-grained QoS lookup at the output port after the packet is routed through the switching 

fabric.

The performance of the rIP router architecture is evaluated by simulation. The simu­

lation results show that (1) the resource isolation provided by the rIP router significantly 

throttles the flooding traffic received by the victim server; (2) most of the flooding traf­

fic is dropped close to the attacking sources, thus confining flooding damage and saving 

network resources; (3) the flooding traffic has little impact on the normal traffic that be­

longs to a different transport protocol, e.g., the UDP flooding or ICMP flooding traffic
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cannot interfere with the transmission of normal TCP traffic. Therefore, it can be utilized 

as a built-in protection mechanism of IP routers to counter DDoS attacks. Moreover, the 

rIP router provides better end-to-end TCP performance to applications: a high-tiered TCP 

session is guaranteed to have lower ACK loss rate and higher effective throughput than a 

low-tiered one.

Note that rIP routers do not require the support of DiffServ infrastructure, and they 

also work under the best-effort model. Actually, the best-effort model can be viewed as 

a simplified case of the DiffServ model, in which only single BA (best-effort) exists. To 

make our work more general and applicable in future, we investigate rIP routers with a 

more sophisticated DiffServ model. The subset of our results, which is based on the study 

of best-effort aggregates, can be directly applied to the current Internet.

The remainder of the chapter is organized as follows. Section 2.2 presents our initial 

motivation. Section 2.3 describes a fine-grained QoS classifier and an adaptive weight- 

based resource manager, the key components of the rIP router architecture. Section 2.4 

evaluates the performance of the rIP router architecture. Finally, the chapter concludes 

with Section 2.5.

2.2 Initial Motivation

Our work was initially motivated by the desire of providing preferential treatments to 

TCP ACKs and achieving bi-directional differentiated service for each TCP session. By 

default, the current DiffServ architecture treats TCP ACKs from different user classes as 

BE traffic, sharing the same FIFO queue with BE data packets. The congestion caused by 

BE data packets results in buffer overflow at routers, and hence, bursty ACK losses. Espe­

cially under the condition that the TCP sender’s congestion window size is small, the TCP 

sender is more vulnerable to ACK losses in the backward path, and its data transmission is
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interrupted by retransmission timeouts [113]. Therefore, providing service differentiation 

for ACK flows is essential to TCP-based applications.

One simple way to achieve this is that end-hosts mark each ACK as a premium, as­

sured or best-effort packet, corresponding to the class of the data packet being acknowl­

edged, but no enhanced mechanisms implemented at IP routers to distinguish ACKs from 

data segments. If the network resources is over-provisioned, the validity of this simple 

marking scheme has been confirmed by the authors of [82]. However, without proper 

resource provisioning and traffic conditioning for ACK aggregates, the ACKs and data 

segments that share the same queue could interfere with each other. Our simulation results 

in Section 2.4.3 show that the simple ACK marking scheme provides insufficient service 

differentiation and isolation to ACK flows when network resources are under-provisioned.

Furthermore, there are two serious drawbacks with this simple marking scheme: (1) the 

best-effort TCP traffic, which will continue to be the dominant load in the Internet, will not 

receive any performance improvement with the simple marking scheme; and (2) DDoS at­

tacks in the Internet make the simple marking scheme much less attractive, since it is more 

vulnerable to various TCP flooding attacks. The simulation results in Section 2.4.2 con­

firm this claim. Therefore, to achieve better network QoS and counter DDoS attacks, we 

need to differentiate the TCP control segments from data segments and provide resource 

isolation between them at IP routers.

In the previous work [10], in order to improve the TCP performance in the context 

of network asymmetry, the acks-first scheduling scheme has been proposed, giving TCP 

ACKs priority over TCP data segments. So, the router always forwards ACKs before 

data segments. However, this acks-first scheme could cause starvation of data packets 

and violation of traffic profiles, especially under ACK flooding attacks. Also, no ACK 

identification scheme at routers was provided there.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

This initial motivation differentiates our work from the previous work for countering 

DDoS attacks, because it is not a pure security mechanism. It can significantly improve 

the end-to-end TCP performance for clients, justifying the need for the wide deployment 

of /IP router architecture.

2 3  Transport-aware IP Router Architecture

To provide layer-4 service differentiation and resource isolation, we propose a fine­

grained QoS classifier and an adaptive weight-based resource manager, both of which are 

essential to the rIP router architecture. The granularity of the classifier is still based on 

aggregates, not individual flows, and the resource manager is stateless, thus preserving the 

scalability and robustness of the original DiffServ or current Internet infrastructure. More­

over, at core routers the QoS lookup is decoupled from the routing lookup by employing 

a two-stage packet classification mechanism. The set of QoS filtering rules is small, and 

has the same/similar size at both edge and core routers. In contrast to routing lookup, QoS 

lookup is independent of network size and does not cause any scalability problem in packet 

classification. The /IP router architecture is detailed in the remainder of this section.

23.1 Two-stage packet classification

For service differentiation, layer-4 switching [69, 103] has been proposed, in which 

routing decisions are made based on the destination address as well as on the header fields 

at the transport or higher layer. Routing and QoS lookups are integrated into a single 

framework to fulfill layer-4 switching, and therefore, the forwarding database of a router 

consists of a large number of filters to be applied on multiple header fields. The deploy­

ment of a large-scale packet filtering mechanism [49,61,103] makes it feasible to imple­

ment layer-4 or higher switching at edge routers or at the front-end of server farms. How­

ever, layer-4 switching has primarily been used for load balancing by connection routers in
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server farms. It is very difficult to implement layer-4 switching at core routers due mainly 

to security and scalability difficulties. Even with fast and scalable packet classification, 

the problems with layer-4 switching at core routers are: (1) addition of higher-layer infor­

mation — such as port numbers — and more routing entries enlarges the routing table at 

core routers, causing the routing lookup to require more memory and time; (2) when IP 

payload is encrypted, higher-layer headers become inaccessible.

To support layer-4 service differentiation and resource isolation, the fine-grained QoS 

classification has to work well at both edge and core routers. Therefore, we decouple the 

fine-grained QoS lookup from the routing lookup at core routers by employing a two-stage 

packet classification mechanism. In addition to overcoming the scalability problem at core 

routers, there are several other reasons for this decoupling as follows.

•  Routing decisions must be made at the input port, but most of service differentiation 

— buffer management and packet scheduling — is performed at the output port

•  There is a large difference between the search spaces of routing lookup and QoS 

lookup. The size of routing table is very large and ever-increasing with the growth 

of Internet, but the filtering rule set of QoS classification is small and remains stable.

•  Conventional routing lookup is based solely on destination addresses, which is a 

one-dimensional search, but QoS lookup is based on multiple fields, which is a 

multi-dimensional search.

Note that at core routers, our QoS lookup is restricted to the IP header fields, and the 

transport-layer information is accessed only at edge routers if necessary. The proposed 

QoS lookup should not become the performance bottleneck inside the router. Moreover, 

the decoupling greatly simplifies the implementation of packet classification. The architec­

ture of the two-stage packet classification is illustrated in Figure 2.1, where the forwarding
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Input Port
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i  i____

Forwarding Table

Cl: Packet classification for rooting (Rooting lookup): S: Packet Scheduler

C2: Packet classification for QoS (QoS lookup).

Figure 2.1: The architecture of the two-stage packet classifier at core routers 

table is the local version of routing table in the line card. With the forwarding table, the 

routing/switching decision can be made locally at each input port.

23.2 Fine-grained QoS classifier

As the key component of the rIP router architecture, the proposed QoS classifier at 

routers uses several fields in the IP header for QoS classification in addition to the DS 

field. Transport-layer information is extracted to further divide a BA into a UDP aggregate, 

a TCP aggregate and a ICMP aggregate, and then to distinguish TCP control segments that 

mainly consist of ACKs, from TCP data segments in the TCP aggregate. QoS classification 

can be modeled at three different hierarchical levels as shown in Figure 2.2.

IP Flows

Level 1

Behavior Aggregates

y N "
UDP Aggregate TCP Aggregate ICMP Aggregate

Level 3

TCP Data Segments TCP Control Segments

Figure 2.2: The three-level QoS classification
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At the first two levels, it is straightforward to set the filtering rules. By checking DS 

and protocol type fields in the IP header against the filtering rules, the QoS classification 

is simple and does not cause any ambiguity. However, the accurate TCP control segment 

identification at level 3 could be much more complex. To implement the identification of 

TCP control segments at IP routers, the easiest way is to utilize one of the unused bits 

of DS field in the IP header. However, the problem with this solution is that it requires 

the modification of the IP header and cooperation from end-hosts. Moreover, the IETF 

has proposed use of the two unused bits of DS field for the deployment of the Explicit 

Congestion Notification (ECN) mechanism [91] at routers.

So, we propose size- and port- based identification of TCP control segments without 

requiring any new bit. Note that we present below a detailed description of a general TCP 

control segment identification, which can be applied to the identification of each individual 

TCP control segment like SYN, FIN, ACK and RST. The only difference at the port-based 

identification is to check different bits in the 6-bit flag field.

TCP Control Segment Identification

Initially, each TCP segment is encapsulated in a single IP packet, but IP fragmentation 

could occur at intermediate routers. Once the IP packet is fragmented, only the first frag­

ment contains the TCP header. So, the IP packet that contains the TCP header must have a 

zero fragmentation offset. By checking the fragmentation offset field in the IP header, the 

ambiguity caused by IP fragmentation is eliminated. Theoretically, if an IP packet encap­

sulates a TCP control segment, it should meet the following requirements: (1) its protocol 

type is TCP; (2) its fragmentation offset is zero; and (3) the corresponding flags in the 

TCP header are ON. The first two conditions can be verified by checking the IP header, 

but the validation of the third condition needs to access the TCP header. Then, based on
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whether the TCP header is accessed or not, we have two versions of TCP control segment 

identification: lightweight and heavyweight.

Recent Internet traffic measurements [3, 109] have shown that about 40% of all IP 

packets are 40 bytes long, most of which are TCP control segments, implying that an 

overwhelming majority of TCP control segments are 40 bytes long. Since IP options are 

included primarily for network testing or debugging, and the fraction of packets with IP 

header options are typically less than 0.003% [68], it is reasonable to assume that no IP 

option fields are attached to TCP control segments.

The lightweight version is a size-based classifier. It takes advantage of the above ob­

servations. By checking the total length field in the IP header, it can tell TCP control 

segments from data segments without accessing the TCP header. The base filtering rule 

of TCP control segment identification is that the TCP segments whose total length are 40 

bytes, are classified as TCP control segments. The rationale behind this is that, since the 

IP header without options is 20 bytes and the TCP header without options is 20 bytes, a 

total of 40 bytes is the minimum size of an IP packet that encapsulated a TCP segment 

(without any payload). Considering TCP options — MSS option (4 bytes), Window scale 

factor option (3 bytes), Timestamp option (10 bytes) and Selective Acknowledgment op­

tion (10/18/26 bytes) — that can appear in the TCP control segments like SYNs or ACKs 

and the requirement of a 4-byte boundary by padding NOOP options, the complete filter­

ing rule of TCP control segment identification is set as:

Rule : { X  | X  = 4 - n; 10 <  n <  20}

where X  is the total length of an IP packet and n is an integer. Since the maximum space 

that TCP options can use is 40 bytes, the maximum packet length of a TCP control segment 

is 80 bytes.
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The main advantage of the lightweight version is that there is no need to access the 

TCP header, thus reducing overhead significantly. Its chief disadvantage is inaccuracy. 

The tiny TCP data segments that meet the filtering rales will be mis-classified as TCP 

control segments. However, because the tiny TCP data segments are most likely to belong 

to interactive TCP sessions, they have similar features of TCP control segments, i.e., small 

size and loss-sensitive TCP performance. For end-to-end TCP performance it is benefi­

cial to separate them from, and give priority over, other TCP data segments. Moreover, 

the proposed adaptive weight-based resource manager has the ability to cope with this 

inaccuracy.

Since the lightweight version does not access the TCP header, it cannot further dif­

ferentiate TCP control segments into SYNs, FINs, ACKs and RSTs. To achieve accurate 

and fine-grained TCP control segment identification, the TCP header needs to be accessed. 

The heavyweight version of TCP control segment identification is a port-based classifier. 

The matching scope is outside the IP header, and hence, the TCP flags of the TCP header 

are checked. Besides the additional overhead in accessing the TCP header, IPSec makes 

the port-based classification difficult. However, a multi-layer EPSec protocol [122] has 

been proposed, which allows trusted routers to access the transport-layer information.

Even in the heavyweight version of TCP control segment identification, especially 

for ACK identification, we still need to rely on the total length field in the IP header to 

eliminate the ambiguity caused by the following two facts:

•  Some TCP implementations always set the ACK-flag bit ON, once the TCP connec­

tion is established [104]. Furthermore, some malicious TCP senders could inten­

tionally set TCP flag bit ON in its TCP data segments.

•  The piggyback mechanism in which ACKs are sent along with a reverse-direction
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data flow, results in a packet that could be interpreted as a TCP data segment or TCP

The ambiguity caused by always-on ACK-flag and piggybacking can be solved by 

simply checking the total IP packet length. The large packet with ACK-flag ON is clas­

sified as a TCP data segment, but the small packet with ACK-flag ON is classified as a 

TCP ACK. Considering the addition of TCP option fields like the Timestamp in the TCP 

header, we set the threshold to 80 bytes, as the available bytes for TCP options is 40. If the 

total packet length is larger than 80 bytes, the packet is classified as a TCP data segment. 

Otherwise, it is classified as a TCP ACK.

Figure 2.3: The flowchart of the TCP control segment identification algorithm

In summary, we use a lightweight version of flow identification at core routers. All 

transport-layer information is derived from the IP header only, and there is no need to 

access the TCP header. So, it does not violate the layering concept. At edge routers or 

firewalls, layer-4 or 7 switching and packet filtering have been implemented and deployed 

by many vendors. We provide a heavyweight identification scheme which accesses the 

TCP header, only as an option at edge routers. Therefore, even if the format of TCP header 

changes in future, only the heavyweight identification scheme, if employed at edge routers, 

needs to be modified. We believe, however, that the format of TCP header is unlikely to

ACK.
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change due mainly to the compatibility problems with the already widely-deployed TCP.

A detailed description of the complete TCP control segment identification algorithm is 

given in Figure 2.3, where N  is an integer such that 10 <  N  <  20. There are three major 

steps in the heavyweight version, but only two steps in the lightweight version are given 

in Figure 2.3.

Validating lightweight identification

To validate the lightweight version of TCP control segment identification algorithm, 

six Internet traces taken at three different sites [5] are used. All the traces were collected 

between February 2002 and March 2002. The three chosen sites are located at high- 

bandwidth interconnection points. ADV represents the site where the OC3c (155Mbps) 

PoS (Packet over Sonet) link connects the Advanced Network and Services premises in 

Armonk, NY, to their ISP and the Intemet2/Abilene network. ANL is referred to the OC3c 

link between the Aigonne National Laboratory and the Ameritech Network Access Point 

(NAP) in Chicago. BUF is the site where the OC3 PoS link connects NYSERnet’s router 

and State University of New York at Buffalo’s router.

Traces Mis-classifi ed Total Number Error ratio
ADV-1 665 97053 0.68%
ADV-2 354 45463 0.78%
ANL-1 4351 560223 0.77%
ANL-2 2665 437085 0.61%
BUF-1 2218 208301 1.06%
BUF-2 2390 605127 0.39%

Table 2.1: Effect of mis-classification

From these traces, we found that no TCP control segment is mis-classified as a data 

segment and only an insignificant number of tiny TCP data segments are mis-classified as 

control segments. The filtering rule of 4-byte boundary significantly reduces the inclusion 

of tiny data segments (less than 80 bytes) in control segments. For example, in BUF-1
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trace, without this rule, there would be 13318 tiny data segments that are mis-classified. 

However, after applying this rule, the number of mis-classified data segments is reduced 

to 2218. Table 2.1 gives the percentage of mis-classification of TCP data segments vs. the 

total data segments in each trace. Moreover, over 97% of the mis-classified tiny TCP 

data segments are with “PSH” flag ON in its TCP header, indicating the quick delivery 

requirement of these segments.

Discussion

Currently, only a negligible part of the IP traffic is reported to belong to IPv6 [3,109], 

so the proposed QoS classifier is based only on IPv4. Compared to IPv4, the most impor­

tant changes in IPv6 lie in the packet format. The header format of IPv6 is very different 

from that of IPv4. However, the following two features of IPv6 will make the TCP control 

segment identification even easier and fasten (1) IPv4’s variable-length options field is 

replaced by a series of fixed-format headers, and each IP packet has a base header fol­

lowed by zero or more extension headers; (2) no fragmentation occurs at intermediate 

routers, and all the fragmentation and reassembly are restricted to end-hosts. So, it is easy 

to adjust the proposed QoS classifier to work properly in the context of IPv6.

The emergence of Internet Telephony— also called voice over Internet Protocol (VoIP) 

— does not pose any difficulty on the identification of lightweight version TCP control 

segments, since VoIP data streams are carried by Real-Time Transport Protocol (RTP) that 

is running on top of UDP, instead of TCP [94]. Moreover, the real audio streams show a 

significant regularity on packet lengths — concentrating on 244/254,290/300 and 490/502 

bytes [70], which are much larger than 80 bytes.
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2 3 3  Adaptive weight-based resource manager

To enable better service differentiation and resource isolation between thinner aggre­

gates, we propose an adaptive weight-based resource manager for IP routers. A hierarchi­

cal link-sharing structure is built, which is similar to the hierarchy of QoS classification 

and the class-based queueing management [41]. As shown in Figure 2.4, the root of the 

resource tree is the total link capacity. As the level of the resource tree gets lower, the 

IP flows that share the link are split into thinner aggregates. Each leaf node has its own 

queue, and every classified incoming packet is then inserted into the appropriate queue. 

Subsequently, the weighted round-robin scheduler will take care of these queued packets 

and select the next packet for transmission.

Figure 2.4: The link-sharing framework

At level 1 of the resource tree, each node represents the allocated bandwidth to each 

BA. The bandwidth allocation and priority assignment at the BA level are done by the 

Bandwidth Broker (BB) [80] via Service Level Agreements (SLAs). At level 2 of the 

resource tree, the BA is divided further into a UDP aggregate and a TCP aggregate. Each 

node at level 2 corresponds to the bandwidth allocated to the thinner UDP/TCP aggregate. 

Within each BA, the UDP aggregate and the TCP aggregate have the same priority and
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a weighted round-robin scheduling scheme is used between them. The composition of 

each BA is different Most of an EF (Expedited Forwarding) aggregate is UDP real-time 

audio/video. However, in the AF (Assured Forwarding) and BE (Best-Effort) aggregates, 

the majority of packets belong to TCP. The weights assigned to the thinner aggregates 

are based on the recent empirical studies reported in [3,68,70,109], which are listed in 

Table 2.2. Here we assume that the total weight of each BA is 1. The total weight assigned 

to UDP and TCP aggregates in BE is 0.99, since ICMP packets account for less than 1% of 

all IP packets and, by default, these ICMP packets are treated as BE traffic. Note that the 

weights at level 2 are tunable parameters that can be adjusted by network administrators to 

meet their local requirements. The weight assignment is strictly enforced only when there 

is no empty queue. Once a queue is empty, its assigned weight can be temporarily shared 

by other non-empty queues until the next packet enters the queue.

Type Expedited Assured Best-Effort
UDP 0.7 0.05 0.04
TCP 0.3 0.95 0.95

ICMP 0 0 0.01
Total 1 1 1

Table 2.2: Level-2 weight distribution in different BAs

Each node at level 3 of the resource tree represents the bandwidth allocated to TCP data 

or control segments. The TCP data and control segments within the same TCP aggregate 

are also scheduled according to the weighted round-robin policy. The guiding principle 

for the weight setting at level 3 is that preference is given to control segments but there is a 

strict limit on the weight of control segments. The weight preference to control segments 

is the embodiment of resource overprovisioning as suggested in [82], and the strict limit 

prevents the misuse of preference. Because the overwhelming majority of the TCP control 

segments are TCP ACKs, we first present the rule of setting the weight of TCP ACKs, and
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then use the ACK weight as the baseline to derive the weights of all TCP control segments. 

Setting the weight of ACKs

The rule of thumb for setting the weight for TCP ACKs is to approximate the upper 

bound of their bandwidth consumption. If the weight is measured in number of packets, the 

ratio of the weight of TCP ACKs to that TCP data segments is 1:1. This one data segment 

vs. one ACK policy is based on the fact that the transmission of a TCP data segment will 

later trigger a TCP ACK. Considering wide deployment of the delayed ACK mechanism at 

TCP receivers, weights are assigned to give preference to TCP ACKs, and this preference 

is also intended to provide a safety margin to other TCP control segments and tiny TCP 

data segments, in which the lightweight version of TCP control segment identification is 

used.

Adhering to the policy of one data segment vs. one ACK, if the weight is measured in 

number of bytes, then we should consider the average packet size. As mentioned earlier, 

a great majority of TCP ACKs are 40 bytes long, so the average size of TCP ACK is 40 

bytes. Common MSSs of TCP implementations are 512, 536 and 1460 bytes [3, 109]. 

Including the 40 bytes of both the IP and TCP headers, the total packet lengths for these 

MSSs are 552,576, and 1500 bytes, respectively. Their observed ratio is 1:1:2. Thus, the 

average size of a TCP data segment is IK bytes and the ratio of the weight of ACKs to that 

of data segments is 1:25.

The traffic load distribution inside the DS domain will be balanced by routing algo­

rithms and traffic engineering. At an interface of a core router, the volume of outgoing 

TCP data traffic equals that of incoming TCP data traffic, and each outgoing TCP data 

segment2 implies an incoming TCP ACK to the interface. Therefore, this one data seg­

ment vs. one ACK policy is valid for core routers inside a DS domain.

2Or two outgoing TCP data segments if the delayed ACK mechanism is ON at the TCP receiver.
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However, at a leaf router or a boundary router between two different DS domains, this 

policy is often invalid due to the asymmetry of traffic load. This traffic load asymmetry 

has been observed in traffic measurements of the trans-Atlantic link [109]. The weight of 

TCP ACKs should depend on the weight allocated to the TCP data segments in the reverse 

direction. The weight of the ACK aggregate at leaf or boundary routers can be set based 

on traffic measurements or with the help of the Bandwidth Broker. like  the weight setting 

at level 2, the weight assigned to ACKs, which is the baseline of TCP control segments, is 

also a tunable parameter and can be adjusted locally.

Once the weight of the ACK aggregate is set, we use a simple adaptive calibration 

scheme to derive the weight of all TCP control segments for which the ACK weight is used 

as the baseline. The mechanism of the weight calibration works similarly to the adaptive- 

weighted packet scheduling of EF traffic [114]. Its goal is to increase the flexibility of 

the resource manager to absorb bursty control traffic and the tiny data segments that are 

mis-classified as TCP control segments.

Adaptive weight calibration of TCP control aggregate

As in [112], we use the estimated average queue size of the TCP control aggregate 

to adaptively adjust the weight. The average queue size of the TCP control aggregate is 

calculated by using a low-pass filter with an exponentially-weighted moving average. Let 

avg be the average queue size, q the instantaneous queue size and f i  the parameter of the 

low-pass filter, then the average queue size of TCP control aggregate is estimated as:

avg (1 -  fi) - avg + f i-q.

To reduce the instantaneous fluctuation of queue size, the parameter of the low-pass filter 

fi is set to 0.01.

Assuming that the weight of TCP ACKs is wa, we set the original weight of TCP con­
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trol aggregate wc to 1.2 wa. To adaptively calibrate the weight of TCP control aggregate, 

two thresholds, m in^  and maxth, are introduced. By keeping the average queue size 

of the TCP control aggregate below the maximum threshold, bursty losses of TCP con­

trol segments are prevented. To accomplish this, the weight of control aggregate should be 

proportionally increased once the average queue size of control aggregate exceeds the min­

imum threshold. The values of mirith and maxth are set to one fourth and three fourths of 

the buffer, respectively. The linear relationship between the weight and the average queue 

size of control aggregate is given by:

wc, C  £  [0 , mirith)

=  I ^  C  € [m m *,™ .**)

U, C  6 [maxth, full]

where f (C)  is the weight function of control aggregate, U is the upper limit that the weight 

of control aggregate can reach, and C is the average queue size of control aggregate. Since 

the total weight for TCP aggregates is fixed, the increase of control aggregate’s weight 

must cause the same amount of decrease in the data aggregate’s weight. However, once 

the average queue size of control aggregate reduces below maxth, the weights taken from 

data aggregate will be returned.

The weight calibration favors the control aggregate but disfavors the data aggregate, 

which is consistent with the guiding principle of the weight settings. The rationale be­

hind this is that the bandwidth taken by the data aggregate is usually much more than the 

bandwidth consumed by the control aggregate; the small amount of bandwidth shift from 

the data aggregate to the control aggregate can prevent bursty losses of the control seg­

ments, but only leads to a single isolated data packet loss or just a longer queueing delay. 

However, the weight of control aggregate cannot exceed the upper limit, which prevents 

the abuse of preferential treatment of TCP control segments and protects the TCP data
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aggregate from starvation. U is set to 2wc in our simulation.

2.4 Performance Evaluation

The proposed rIP router architecture is evaluated by simulation with ns-2 [77, 111]. 

According to the purpose of simulation, we categorize the simulation experiments into 

two different classes. One is used for evaluating the capability of resource isolation under 

flooding attacks, the other is used for evaluating the capability of service differentiation for 

end-to-end TCP performance. The network topologies of the two classes are different. In 

the presentation of simulation results, Existing refers to the current DiffServ (or Internet) 

architecture, Marking refers to the ACK marking scheme proposed in [82] and Reserved 

refers to the reserved bandwidth for EF and AF flows.

2.4.1 The simulation setup

In our simulation experiments, each end-host is connected to its respective edge router, 

and the edge routers are connected via core routers. The link capacity and one-way propa­

gation delay between an end-host and an edge router are 10 Mbps and 1 ms, respectively. 

The one-way propagation delay between an edge router and a core router is 8 ms, but 

that between two core routers is 16 ms. The UDP/TCP data segment size is set to 1000 

bytes, and the TCP control segment size is set to 40 bytes. The version of TCP used in the 

simulation is TCP New-Reno since it has been widely deployed in the Internet, and the 

delayed-ACK mechanism is ON.

2.4.2 Resource Isolation

In the flooding experiments, the link capacity between an edge router and a core 

router is 6 Mbps, but that between two core routers is 5 Mbps. As the network topology 

for the purpose of a DDoS attack, it is convenient to consider the network topology in
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terms of a tree graph. The victim’s machine is at the root of the tree, with network routers 

being intermediate nodes in the tree. The leaf nodes of the tree are the flooding sources 

and normal end-hosts. The simulated network topology for DDoS attacks is shown in 

Figure 2.5. In our flooding experiments, there is a flooding source in each stub network 

except for the one that the victim belongs to. The flooding rate at each source is constant 

and set to 5000 packets per second in SYN and ACK flooding attacks, but 500 packets per 

second in UDP and ICMP flooding attacks. At the same time, there are TCP connections 

running from normal end-hosts to the victim as the background traffic.

Edge Rooters

Coer Routers

Levd-4 Victim Server

D C

D C

D C

D C

D C

Figure 2.5: The simulated network topology used for resource isolation

We first measure the volume of the flooding traffic that reaches the victim under dif­

ferent IP architectures. Four types of flooding attacks — SYN, ACK, UDP, and ICMP 

flooding — are simulated. All the flooding traffic is transported by the BE service. Since 

there is no difference in treating the BE traffic in the current Internet and DiffServ archi­

tectures, we normalize the various flooding traffic reached the victim in these architectures 

to 1 to make the presentation easier. Then, the flooding traffic received at the victim in the 

rIP router architecture is properly scaled based on the normalization. Figure 2.6 shows that 

the rIP router throttles the flooding volume that reaches the victim and effectively protects
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the victim from flooding attacks. More importantly, most of the flooding traffic will be 

dropped by the first few routers before they reach the core of the network, thus confining 

the damage caused by the flooding source mainly to the local stub network where it orig­

inated. The cascaded throttling of flooding traffic at a first few routers shields the rest of 

the Internet, and saves the network bandwidth. The cascaded throttling of flooding traffic 

is depicted in Figure 2.7.

ICMP-flooding

UDP-flooding

ACK-flooding

a  Existing atIP;

✓-------------- X  - s y y y
0.2 0.4 0.6 0.8

Figure 2.6: The flooding traffic volume reached the victim

I Level-1 □ Level-2 S3 Level-3 B Level-41

ACK-flooding

0% 20% 40% 60% 80% 100%

Figure 2.7: The distribution of dropped packets at different level routers

Moreover, during flooding attacks, the effective TCP throughputs in Existing and Mark­
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ing are reduced almost to zero, but the one in flP router can still achieve 95% (in the cases 

of UDP and ICMP flooding) and 85% (in the cases of SYN and ACK flooding) of the 

bandwidth assigned to the entire BE traffic, thanks to the layer-4 resource isolation. Fig­

ure 2.8 illustrates the dynamics of average throughput of a background TCP connection 

under the UDP or ICMP flooding attack that starts at 0.2s. Since the TCP connection 

is not interfered with by UDP or ICMP floods, its average throughput follows a typical 

sawtooth-like curve.
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Figure 2.8: Average throughput of the background TCP connection

Our simulation results show that rIP router provides a built-in protection mechanism to 

counter DDoS attacks. Splitting layer-4 traffic greatly reduces the performance degrada­

tion caused by such DDoS attacks as flooding of UDP, ICMP, TCP SYN and ACK traffic. 

The resource isolation provided inside the BE traffic class is especially valuable, since the 

edge routers in the DiffServ architecture perform traffic conditioning and policing on EF 

and AF traffic, but not on BE traffic.

For EF or AF traffic, both UDP and ICMP flooding do not cause much damage in all 

DiffServ architectures because the edge routers perform traffic conditioning and policing
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Figure 2.9: The goodput of conformant EF and AF flows under the ACK flooding attack

on EF and AF traffic. However, the simple Marking scheme exposes more vulnerability 

to the ACK flooding attacks. In this architecture, the ACK flows are accepted without 

strict policing based on the belief that the small bandwidth requirement by ACK flows can 

be absorbed by over-provisioning. The flooding ACK flows marked as EF or AF traffic 

can seriously violate the traffic profile between the stub network and the leaf router that 

connects the stub network to the Internet In laige-scale DDoS attacks, even if only a small 

number of ACKs are flooded from each attacking source, once these ACKs are aggregated 

at core routers where no traffic conditioning is performed, the flooding ACK aggregates 

can “steal” the reserved bandwidth from the conformant aggregates. Figure 2.9 charts the 

goodputs of conformant EF and AF flows from a normal end-host to the victim in Marking 

and rIP router, and clearly shows the vulnerability of Marking to the ACK flooding attack 

and the robustness of rIP router to the same attack. Note that the conformant EF flow is 

carried by UDP, but the AF one is carried by TCP.

2.43 Service differentiation

In the experiments of service differentiation, the link capacity between an edge router 

and a core router is 3 Mbps, but that between two core routers is 1 Mbps. We study the
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TCP flows and measure their ACK loss rate and effective throughput, where we not only 

compare the rIP router with the existing DiffServ, but also with the marking scheme for 

TCP ACKs proposed in [82], The simulation network topology for service differentia­

tion is shown in Figure 2.10, which is a relatively simple, yet sufficiently representative 

topology for validating end-to-end TCP performance. The experimental configuration is 

as follows. Three targeted TCP connections are established from Si to C\, which receive 

premium, assured and best-effort services, respectively. In addition to the three targeted 

TCP connections, two more TCP connections carry BE data from S2 to C2. All of them 

have infinite amounts of data to send, i.e., with commonly-used “persistent” sources.

>•]

Figure 2.10: The simulated network topology for service differentiation

With respect to the direction of targeted TCP data flows, we name the path R 3 —> Ri 

as the forward path and the path —> i?3 as the backward path. The resources along the 

forward path R2 —*■ Ri is properly provisioned for the premium and assured forwarding 

traffic, but the remaining network resources are periodically exhausted by the BE traffic, 

causing random data losses to occur in the forward path.

On the backward path R i —► Rz, similar background traffic is generated between Ei 

to Fiy and shares the same path with the targeted ACK flows. The background traffic is a 

mixture of premium, assured and BE traffic. Compared to the simulation configuration in 

the forward path, there are two key differences in the backward path:
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•  the network resources for the premium and assured services in the background traffic 

are under-provisioned; and

• the BE traffic consists of not only TCP flows but also UDP flows, which causes 

severe congestion in the backward path, thus resulting in bursty packet losses.

The Simulation Results

The ACK loss rates of targeted TCP connections are plotted in Figure 2.11, and the 

effective throughputs of the targeted TCP connections are plotted in Figure 2.12. The 

simulation results show us that:

•  the rIP router provides better service isolation for ACK flows, significantly lowering 

the ACK loss rate and increasing effective throughput; and

•  the ACK marking scheme cannot support service isolation for ACK flows when 

network resources are under-provisioned, thus resulting in bursty ACK losses and 

hence degrading TCP performance significantly.

Premium

Figure 2.11: The ACK loss rate in different DiffServ architectures
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Premium

Figure 2.12: The effective throughput in different DiffServ architectures

For EF and AF traffic, the ACK loss rates of Marking are much lower than those of 

Existing, but are much higher than those of the rIP router. Moreover, most of ACK losses 

are bursty rather than random, lowering effective throughput. For EF traffic, the main 

reasons for bursty ACK losses are: (1) to support low delay for EF traffic, the buffer space 

for premium service is very small, and can only accommodate one or two data packets; (2) 

the size of a data segment is much larger than that of an ACK. Once the buffer has been 

filled with one or two data segments, the subsequent incoming ACKs will be dropped.

In the Existing and Marking DiffServ architectures, AF traffic shares the same FIFO 

queue with BE traffic, but AF packets are much less likely to be dropped than BE ones. 

However, without proper resource provisioning for ACK flows, the ACKs are more likely 

to be marked as high drop-precedence packets at edge routers due to the corresponding 

traffic profile violation. Under a severe congestion, all the packets marked with high drop- 

precedence will be dropped, causing bursty ACK losses. Since bursty ACK losses cause 

much severer degradation to TCP performance than random ACK losses, even modest 

ACK loss rates for EF and AF can greatly reduce their effective throughput.
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As the Existing DiffServ, the ACK marking scheme provides no improvement to BE 

traffic. BE ACKs experience a high loss rate in the backward path because of the conges­

tion caused by the UDP flows in the background traffic. Furthermore, due to data losses 

in the forward path, an ACK loss for retransmission in the backward path leads to a time­

out, reducing cwnd to 1, triggering a slow-start, and hence, degrading effective throughput 

significantly.

In contrast, the /IP router architecture significantly improves the performance of BE 

TCP traffic, thanks to its resource isolation between UDP and TCP flows, as well as be­

tween ACKs and TCP data segments within the BE class. The /IP router not only provides 

better service quality to high-tiered services, but also significantly improves the perfor­

mance of BE TCP sessions.

Note that, although the TCP version in our simulation experiment is New-Reno, most 

of the simulation results in this chapter are applicable to all TCP variants for the following 

reasons. First, the TCP behaviors after a retransmission timeout for all of these schemes 

are similar. TCP variants differ only in the way of recovering from packet losses after a 

fast retransmit. Second, the ACK losses in the reverse path only lead to a timeout or slower 

congestion window growth, but cannot trigger a fast retransmit.

2.5 Conclusions

We presented a transport-aware IP router architecture to provide layer-4 service differ­

entiation and resource isolation. The key components of the /IP router architecture are the 

fine-grained QoS classifier and the adaptive weight-based resource manager. A two-stage 

packet classification mechanism is devised to decouple the fine-grained QoS lookup from 

the routing lookup at core routers. BAs are further divided into thinner aggregates. By 

using separate queues and adaptive-weighted bandwidth allocation, better service differ­
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entiation and resource isolation are achieved for these thinner aggregates.

We evaluated the performance of the rIP router architecture by simulation. The simu­

lation results show that:

•  it provides a built-in protection mechanism to counter DDoS attacks: the flooding 

traffic is significantly throttled and most of the traffic is dropped in a close proximity 

to their sources;

•  the resource isolation of the rIP router protects the normal traffic from the flooding 

traffic that belongs to a different transport protocol;

•  the rIP router guarantees that high-tiered TCP sessions receive better service and 

hence yield better performance in terms of loss rate, end-to-end delay and effective 

throughput, than low-tiered TCP sessions;

•  it not only achieves better service quality for high-tiered services, but also signifi­

cantly improves the performance of BE TCP sessions.

Furthermore, the simulation results demonstrate that a simple ACK marking scheme does 

not provide good service differentiation and resource isolation for ACK flows when net­

work resources are under-provisioned. It exposes the vulnerability of EF and AF traffic 

to the ACK flooding attacks. The rIP router architecture is therefore necessary to pro­

vide better network QoS to TCP sessions, and is a simple yet powerful built-in protection 

mechanism to counter DDoS attacks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER f f l

SYN-DOG: SNIFFING SYN FLOODING ATTACKS

3.1 Introduction

The latest research results have shown that more than 90% of the DoS attacks use 

TCP [75], and TCP SYN flooding dominates in the available attacking tools and the num­

ber of DoS attacks known to date [75]. TCP SYN flooding consists of a stream of spoofed 

TCP SYN packets directed to a listening TCP port of the victim. Not only the Web servers 

but also any system connected to the Internet providing TCP-based network services, such 

as FTP or mail servers, are susceptible to TCP SYN flooding attacks.

The stateless and destination-based nature of Internet routing infrastructure cannot dif­

ferentiate a legitimate SYN packet from a spoofed one, and TCP does not perform strong 

authentication on SYN packets. Therefore, under a SYN flooding attack, the victim server 

cannot single out, and respond only to, legitimate connection requests while dismissing 

the spoofed. Moreover, the spoofed source address conceals the true origin of flooding 

sources, thus making it difficult to identify, and trace back, the flooding sources.

Most of the previous related work — such as Syn cache [62], Syn cookies [15], Syn- 

Defender [65], Syn proxying [4], and Synkill [96] — focused on mitigating the effect of 

SYN flooding attacks on the victim in order to sustain service availability. These defense 

mechanisms can be characterized by two common features.

44
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•  They are installed at the firewall of, or inside, the victim server, hence providing 

no hint about the location of the SYN flooding source(s). They have to rely on 

the IP traceback [14, 83, 95, 99, 100] to locate the flooding source(s), which is a 

time-consuming process.

•  They require to maintain or compute states for each TCP connection, which not only 

makes themselves vulnerable to SYN flooding attacks but also degrades end-to-end 

TCP performance, e.g., longer delays in setting up TCP connections.

Recent experiments have shown that even a firewall designed specifically to resist SYN 

floods, became futile under a flood of 22,000 packets per second [81]. On the other hand, 

in the absence of SYN flooding attacks, such a defense mechanism just wastes resources. 

By checking only its backlog queue, the victim server cannot tell whether it is under a 

flooding attack or simply overloaded with legitimate SYN packets. "Without an efficient 

detection mechanism, the defense mechanism installed at a server consumes additional 

server resources, making the already-overloaded server even less responsive to legitimate 

requests.

Furthermore, instead of consuming a server’s resource, the latest reflected SYN/ACK 

attacks [45] seize the link bandwidth between the victim and its Internet Service Provider 

(ISP) by flooding SYN/ACK responses. The above-mentioned defense mechanisms can­

not provide any protection for such a “bandwidth consumption” attack, and innocent re­

flectors make IP traceback more difficult to locate the true flooding sources.

We, therefore, need a simple stateless mechanism to sniff these SYN (including re­

flected SYN/ACK) flooding attacks. It should also be immune to any type of flooding 

attacks, and should not degrade end-to-end TCP performance either. By “sniff” we mean 

not only detect an attack, but also easily uncover the flooding sources without resorting to
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IP traceback. The sniffing mechanism is orthogonal to the defense mechanisms mentioned 

earlier. The relationship between the two is analogous to the one between a surveillance 

radar and surface-to-air missiles within an anti-aircraft defense system, where the radar 

always checks for intruding enemy aircraft, but the missiles stay inactive until an enemy 

intrusion is detected.

In this chapter, we propose a simple and robust mechanism, called SYN-dog, to sniff 

SYN flooding attacks. While SYN-dog monitors the TCP traffic constantly, the defense 

system can be turned off until a warning is issued by the SYN-dog. Instead of monitoring 

the ongoing traffic at the front end or the victim server itself, SYN-dog is installed at 

a leaf router that connects a stub network1 to the Internet. The simplicity (hence the 

attractiveness) of SYN-dog lies in its statelessness and low computation overhead. Its key 

features include:

• SYN-dog utilizes the distinct protocol behavior of TCP connection establishment 

and teardown, which consists of SYN-FIN pair and SYN-SYN/ACK pair, for SYN 

flooding detection.

• SYN-dog is insensitive to sites and access patterns: the non-parametric Cumula­

tive Sum (CUSUM) method [19] is applied, making SYN-dog robust, much more 

generally applicable and its deployment easier.

•  SYN-dog plays a dual role in sniffing SYN flooding attacks: the first-mile SYN-dog 

and the last-mile SYN-dog. Due to its close proximity to the flooding sources, the 

first-mile SYN-dog not only alarms on the ongoing SYN flooding attacks, but also 

reveals the location of the flooding sources.

11.0 A stub network only carries packets to and from local hosts.
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Figure 3.1: TCP states conesponding to normal connection establishment and teardown 
(from [104])

As shown in Figure 3.1 which is borrowed from [104], SYN and FIN packets delimit 

the beginning (SYN) and end (FIN) of each TCP connection in the same direction. In 

contrast, SYN and SYN/ACK packets signal the start of a TCP connection establishment 

in two opposing directions. Under the normal condition, one appearance of a SYN packet 

results in: (1) the eventual return of a FIN packet in the same direction; (2) the correspond­

ing transmission of a SYN/ACK packet in the reverse direction within one round-trip time 

(RTT). Thus, the difference between the number of SYN and FIN (or SYN/ACK) pack­

ets can be utilized to sniff SYN flooding attacks, and the SYN-dog is an instance of the 

Sequential Change Point Detection [13].

Only a few additional variables are introduced to count the number of received TCP 

SYN, SYN/ACK, FIN and RST packets at each interface of a leaf router. We rely on packet 

classification to differentiate the various TCP control packets at leaf routers. Large-scale 

packet classification mechanisms [49, 61, 103] have been proposed and implemented, 

making it possible for routers to distinguish TCP control packets from others at a very
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high speed Therefore, the SYN-dog’s capability to withstand any flooding attacks de­

pends on the ability of a leaf router in classifying and forwarding packets, typically at the 

rate of a million packets per second [61]. No per-connection state or state computation is 

involved in SYN-dog. Unlike the other network intrusion detection systems that maintain 

state for each TCP connection, SYN-dog does not have the cold-start problem2 mentioned 

in [51].

SYN-dog is, in some sense, a by-product of the router infrastructure that can differen­

tiate TCP control packets from data packets [114]. As SYN-dog tells TCP control packets 

from data packets, fine-grained service differentiation and resource isolation can be made 

on TCP flows. End-to-end TCP performance can be improved significantly as shown 

in [114]. Therefore, SYN-dog benefits not only victim servers but also the clients inside 

the stub network, making it attractive for wide deployment.

The efficacy of SYN-dog is evaluated by extensive trace-driven simulations. Traces 

taken from different sites at different times are used to test the sensitivity of SYN-dog. 

The evaluation results show that SYN-dog has short detection latency and high detec­

tion accuracy. Furthermore, SYN-dog is incrementally deployable and its implementation 

overhead is very low. The scheme of utilizing distinct protocol behaviors and the CUSUM 

algorithm can also be used for sniffing other types of flooding attacks.

The remainder of the chapter is organized as follows. Section 3.2 briefly describes 

the working mechanisms of SYN and reflected SYN/ACK flooding attacks. Section 3.3 

presents the SYN-dog framework, including the structure and placement of SYN-dog. 

Section 3.4 describes two different detection methods with respect to the different SYN

pairs utilized. Section 3.5 details the proposed CUSUM algorithm for detecting abnormal

21.0 A to ld  start” refers to the situation when a network intrusion detection system begins to run, or 
after it is restarted, it doesn’t know how to deal with the incoming TCP traffi c that belongs to the connections 
established earlier.
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traffic behaviors, and discusses its robustness against network anomalies. Section 3.6 eval­

uates the performance of SYN-dog using trace-driven simulations. Finally, conclusions are 

drawn in Section 3.7.

3.2 SYN and Reflected SYN/ACK Flooding

SYN flooding attacks exploit the TCP’s three-way handshake mechanism and its lim­

itation in maintaining half-open connections. When a server receives a SYN request, it 

returns a SYN/ACK packet to the client Until the SYN/ACK packet is acknowledged by 

the client, the connection remains in half-open state for a period of up to the TCP con­

nection timeout, which is typically set to 75 seconds. The server has built in its system 

memory a backlog queue to maintain all half-open connections. Since this backlog queue 

is of finite size, once the backlog queue limit is reached, all connection requests will be 

dropped. If a SYN request is spoofed, the victim server will never receive the final ACK 

packet to complete the three-way handshake. Flooding spoofed SYN requests can easily 

exhaust the victim server’s backlog queue, causing all the incoming SYN requests to be 

dropped. Note that the spoofed source address should be an invalid IP address (or the 

corresponding end-host is disconnected from the Internet at that time) so that it may be 

unreachable from the victim; otherwise, any end-host that receives the SYN/ACKs from 

the victim would send a RST to the victim. A RST packet is issued when the receiving 

host does not know what to do with the packet it received. Arrival of a RST causes the 

connection to be reset, foiling the flooding attack.

While the conventional SYN flooding is an attack of “system resource consumption,” 

the recent reflected SYN/ACK flooding attacks [45] virtually “disconnect” a victim server 

from the Internet by hogging the link bandwidth between the victim and its ISP with 

an excessive number of SYN/ACK packets (a.k.a. bandwidth consumption attack). It is a
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kind of Distributed Reflection DoS (DRDoS) attacks [86]. In reflected SYN/ACK flooding 

attacks, a laxge number of innocent BGP routers (service port 179) and well-known TCP 

servers are exploited as the reflectors. The attacker “sprays” the spoofed SYN packets, 

whose source IP addresses are falsified as the victim’s IP address, across a large number 

of reflectors. Each reflector alone only receives a moderate flux of spoofed SYN packets 

so that it can easily sustain the availability of its normal service. However, these innocent 

reflectors involuntarily reflect and amplify the malicious SYN packets. Their SYN/ACK 

responses, which are aggregated and flooded to the victim, are excessive, using up the link 

bandwidth between the victim and its ISP.

Note that in reflected SYN/ACK flooding attacks, all malicious SYN packets from the 

attacker must traverse the leaf router that connects the attacker to the Internet, in order to 

reach the Internet and then get sprayed across the numerous reflectors. The SYN-dog in­

stalled at this leaf router can detect the flow of these malicious SYNs, since no SYN/ACKs 

return to the attacker and the total number of malicious SYNs is still very large. So, the 

same method for sniffing SYN flooding attacks can be applied to sniff reflected SYN/ACK 

flooding attacks. To SYN-dog, the reflected SYN/ACK flooding attack is just a variation 

of conventional SYN flooding attack.

33 The Framework of SYN-dog

In this section, we first briefly describe the structure of SYN-dog, and then discuss 

where to place SYN-dog.

33.1 Structure of SYN-dog

SYN-dog consists of two sniffers, one at the in-bound interface and the other at the out­

bound interface of a leaf router. We refer to the traffic from the Internet to the stub network 

as in-bound, and the traffic in the other direction as out-bound. The in-bound sniffer (out-
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bound sniffer) monitors the incoming (outgoing) TCP traffic. Figure 4.12 illustrates the 

structure of SYN-dog placed at a leaf router.

o -

M l . InternetStub Network
In-bound Sniffer ' 
Inbound Interface

O -

Figure 3.2: The structure of SYN-dog placed at a leaf router

Each leaf router can be either the first-mile or the last-mile router, depending on the 

direction of traffic between the stub network and the Internet The SYN-dog at a leaf 

router, therefore, plays a dual role in detecting SYN flooding attacks:

•  as the first-mile SYN-dog, it detects the flooding attacks that are originated from its 

local stub network and traces the flooding sources inside the local stub network; and

• as the last-mile SYN-dog, it detects flooding attacks on a server that resides inside 

the local stub network, and issues a warning signal upon detection of an attack.

The first-mile SYN-dog plays the primary role in sniffing a flooding attack, due mainly 

to its proximity to the flooding sources. Once an ongoing SYN flooding attack is detected, 

the first-mile SYN-dog’s warning signal automatically indicates the flooding sources to 

be inside the stub network to which the SYN-dog is connected, without resorting to the 

IP traceback. However, the detection sensitivity of the first-mile SYN-dog may diminish 

as the number of attackers gets larger. In a large-scale DDoS attack, the flooding sources 

can be orchestrated so that each flooding traffic source may cause only an insignificant 

deviation from the normal traffic pattern.

In contrast, the last-mile SYN-dog can quickly detect the flooding attacks as all of the 

flooding traffic streams ^ .m erged at the last-mile router. Although it cannot provide any
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hint about the flooding sources, upon receipt of the last-mile SYN-dog’s warning signal 

for an attack, the defense system like SynDefender can be triggered to protect the victim. 

To bring down the victim under protection, the flooding sources have to increase their 

flooding rates significantly, but this will make it easier for the first-mile SYN-dog to detect 

the flooding attack and locate its source(s). So, the last-mile SYN-dog plays an important 

complementary role in sniffing SYN flooding attacks.

33.2 Placement of SYN-dog

In addition to its installation at leaf routers, SYN-dog can also be placed at the fire­

wall or the proxy server of a large organization which has only a single connection to the 

external world. All packets of a TCP session must pass through the same SYN-dog. How­

ever, we do not recommend the SYN-dog to be installed at core routers mainly because 

(1) it is close to neither flooding sources nor the victim; and (2) packets of the same flow 

could traverse different paths; (3) it is not always possible to accurately classify different 

TCP control packets at core routers due to the possible use of IPSec; (4) it cannot detect 

the reflected SYN/ACK flooding attacks easily, since malicious SYNs are diffused before 

reaching the core router.

As has been done in most intrusion detection (ID) systems, SYN-dog can be placed on 

the link that connects a stub network to the Internet by monitoring the bidirectional traffic 

on that link. However, besides the extra specialized equipment and manpower required, 

during high peak (near saturation) flow rates, almost no event of any kind would be logged 

by an ID system — they either have to drop packets at a very high rate or require a high- 

performance multi-CPU architecture for packet state analysis. As the link speed continues 

to improve, it will be more difficult for network flow monitors (that run on a typical PC) 

to pace with the network’s packet transfer rate.
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Recently, multi-homed ASs become necessary to improve availability, reliability and 

load-balancing. In such a case, the stub network is connected to the Internet by multiple 

leaf routers. However, as long as the packets that belong to the same TCP session go 

through the same leaf router, SYN-dog still works. If the packets of the same TCP session 

go through different leaf routers, we need a loose synchronization mechanism between the 

SYN-dogs in these leaf routers, which is the subject of our future work-

3.4 Two Detection Methods

Based on the distinct protocol behavior of TCP connection establishment and tear- 

down, we utilize two types of packet pairs — SYN-FIN and SYN—SYN/ACK pairs — to 

detect SYN flooding attacks. According to the type of packet pairs used, we devise two 

different methods for detecting flooding attacks.

One may conceive a third way to detect a SYN flooding attack by using the connec­

tion state information and associating each SYN packet with the corresponding ACK that 

completes the three-way handshake. However, as SYN-dog is stateless, it cannot tell if 

the ACK is for the received SYN/ACK or just for a data packet received. Therefore, the 

SYN-ACK pair scheme does not work in case of SYN-dog.

3.4.1 SYN-FIN pairs

The first detection method utilizes the SYN-FIN pairs. Because a SYN packet and 

the corresponding FIN pass through the leaf router in the same direction (i.e., the same 

interface as shown in Figures 3.1 and 4.12), the SYN-FIN pair can be monitored by the 

same sniffer. No coordination and communication between these two sniffers are required. 

The first-mile SYN-dog employs only the out-bound sniffer, while the last-mile SYN- 

dog uses the in-bound sniffer only. Although SYN packets can be distinguished from 

SYN/ACK packets, there is no way to discriminate active FINs from passive FINs, since
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each end-host behind a leaf router may be either a client or a server. So, the SYN-FIN 

pairs refer to both (SYN, FIN) and (SYN/ACK, FIN). In this detection method, the SYN 

packets are “generalized” to include the pure SYN and SYN/ACK packets.

Under a long-running normal condition, the TCP semantics has the one-to-one corre­

spondence between SYNs and FINs. However, in reality there can always be a discrepancy 

between the number of SYNs and FINs. Besides the small number of long-lived TCP ses­

sions, the other major cause of this discrepancy lies in the occurrence of RST packets. A 

single RST packet can terminate a TCP session without generating any FIN packet, which 

violates the SYN-FIN pair’s protocol behavior. RSTs are generated for two reasons: (1) 

passive, or the RST is transmitted upon arrival of a packet at a closed port; (2) active, or 

the RST is initiated by a client to abort a TCP connection.3 Each active RST is associated 

with the SYN from the same session, and both of them can be seen by the same sniffer. In 

contrast, a passive RST cannot be associated with any SYN seen by the same sniffer as the 

passive RST and its corresponding SYN must go through different sniffers. Furthermore, 

passive RSTs may even have nothing to do with SYNs. For instance, late arrival of a data 

packet at the port that has already been closed, will trigger the transmission of a RST. We 

treat passive RSTs as a background noise.

In general, three types of SYN pairs are considered as the normal behavior of TCP in 

the first detection method: (SYN, FIN), (SYN/ACK, FIN) and (SYN, RSTactjve). Un­

fortunately, SYN-dog cannot distinguish active RSTs from passive ones. There are two 

simple but extreme ways to resolve this problem: one is to treat all RSTs as active, and the 

other is to treat all RSTs as passive. The first approach degrades the SYN-dog detection 

sensitivity, while the second raises the SYN-dog false alarm rate. To make a trade-off

between detection sensitivity and false alarm rate, it is necessary to set an appropriate

31.0 Active RSTs are issued mostly by clients. In its own best interest, a server rarely sends RST packets 
to clients once the TCP connection is established.
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threshold to filter most of the background noise. Based on our observation, under the nor­

mal condition: (1) SYNs and RSTs have a strong positive correlation; (2) the difference 

between the number of SYNs and that of FINs is close to the number of RSTs. These 

imply that passive RSTs constitute only a small percentage of the entire RSTs. So, we 

set the threshold to 75%, i.e., 3 out of 4 RSTs are treated as active. Moreover, for the 

following reason, SYN-dog can withstand the negative impact of passive RSTs that are 

incorrectly classified as active ones: at the end of each observation period, the CUSUM 

algorithm resets any negative difference between the number of SYNs and that of FINs 

(RSTs) to zero, so the spike of background noise is confined to one observation period 

only, preventing its cumulative effects.

The weakness of the SYN-FIN pairs scheme lies in its vulnerability to simple counter- 

measures. Once the attacker is aware of the presence of such a detection mechanism, it can 

paralyze the mechanism by flooding a mixture of SYNs and FINs (RSTs). Although one 

can argue that by doubling its flooding traffic, the attacker increases the possibility of being 

traced back, one may still wonder if there is a better way to overcome this shortcoming.

3.4.2 SYN-SYN/ACKpair

Fortunately, there is an alternative that is difficult for an attacker to counter. In the 

normal TCP three-way handshake, an out-bound SYN induces an in-bound SYN/ACK 

within a round-trip time. In contrast, for the flooded SYNs, because their spoofed IP 

source addresses are randomized, most of the corresponding SYN/ACKs will never return 

to the flooding sources, and hence, cannot go through the same leaf router as those flooding 

SYNs as shown in Figure 3.3 (mis-match part).

The second detection method makes use of SYN-SYN/ACK pairs to sniff flooding 

attacks. Since SYN/ACK packets are generated by the victim server, it is much more
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difficult for the flooding sources to evade the SYN-dog. Moreover, as compared to the 

SYN-FIN pair scheme, the interval between SYN and SYN/ACK is bounded by one RTT, 

not by the duration of a TCP session that has much larger variations.

SYN/ACKs

SYN/ACKs

SYN/ACKs
SYN Floods

SYN Floods

Leaf Router
Outgoing

Outgoing SYN/ACKs

Stub Network

Figure 3.3: Match and mis-match between SYN-SYN/ACK pair at a leaf router

On the other hand, there are two disadvantages of the second detection method. First, 

unlike the first detection method, the out-bound sniffer and the in-bound sniffer must be 

coordinated. The out-bound sniffer maintains the count of outgoing SYNs and the in­

bound sniffer keeps track of incoming SYN/ACK packets. At the end of each observation 

period, the count information must be exchanged between the two sniffers. Second, the 

SYN-SYN/ACK pair scheme is restricted to be used by the first-mile SYN-dog only, 

which sniffs the flooding sources inside the local stub network. It lacks the capability 

to issue a timely last-mile flooding warning to the network administrator of the local stub 

network that is under attack. The reason for this is that (1) each victim server generates 

a SYN/ACK in response to each SYN it received, regardless whether it is spoofed or
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not; (2) the incoming SYN flood and the outgoing SYN/ACKs pass through the same 

local leaf router. This phenomenon is illustrated in Figure 33  (match part). So, there is 

no noticeable difference between the number of incoming SYN packets and that of the 

outgoing SYN/ACKs generated by the victim servers until the victim servers are totally 

shut down and no more SYN/ACKs are generated.

It is, however, very important for the last-mile SYN-dog to detect the ongoing flooding 

attack in a timely manner. Therefore, the last-mile SYN-dog will rely on SYN-FIN pairs 

for timely detection of an incoming SYN flooding attack.

3.43 Summary of SYN-dog

In summary, SYN-dog plays a dual role: one as the first-mile SYN-dog for sniffing 

flooding sources, and the other as the last-mile SYN-dog for issuing attack warnings. To 

build a robust and powerful SYN-dog, both flooding detection methods are included in the 

SYN-dog. The SYN-SYN/ACK pair method is employed by the first-mile SYN-dog to 

sniff flooding sources inside the local stub network, while the SYN-FIN pairs method is 

used by the last-mile SYN-dog to detect incipient flooding attacks, and issue a warning to 

the local network administrator.

3.5 Statistical Attack Detection

SYN-dog belongs to the commonly-known network-based ID system: an intruder will 

be singled out if its behavior is noticeably different from that of a legitimate user. Like 

most statistical anomaly-detection systems, we compare the observed sequence with the 

profile that represents the user’s normal behavior, and detect any significant deviation from 

the normal behavior. However, unlike the traditional network ID system that passively 

monitors bidirectional traffic streams on network links, SYN-dog is transparently inter­

posed at a leaf router and is implemented as an integrated component of the leaf router.
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The burstiness of TCP connection request arrivals [39] makes the detection of attacks 

much harder, since there is no natural length of burst for self-similar traffic. Furthermore, 

the normal TCP-arrival pattern is site- and time-dependent. However, the strong posi­

tive correlation between SYN-FIN (RST) and SYN-SYN/ACK pairs clearly indicates the 

presence of SYN flooding. According to the specification of TCP/IP protocol [104], in 

its normal operation, a FIN (RST) is paired with a SYN at the end of data transmission, 

and the arrival of a SYN/ACK in the reverse direction follows the transmission of a SYN 

within one RTT. However, under a SYN flooding attack, this SYN-FIN (RST) or SYN- 

SYN/ACK pair’s behavior will deviate significantly from the normal operation.

3.5.1 Data Sampling and Detection Mechanism

We collect the numbers of SYN, SYN/ACK, and FIN (RST) packets during every ob­

servation period t0 at leaf routers, which determines the detection resolution. In order 

to relate the SYN and FIN (RST) packets of the same connection, the sampling time of 

FIN (RST) is delayed by td after SYN is sampled, where td is so chosen that a significant 

portion of connections requested during the SYN sampling period terminate in the corre­

sponding FIN (RST) sampling period. Recent Internet traffic measurements [109] have 

shown that most of TCP connections last 12-19 seconds, so we set the sampling delay td 

to 10 seconds. In contrast, since most RTTs are less than 0.5 second, we start the collection 

of SYNs at the out-bound sniffer and SYN/ACKs at the in-bound sniffer simultaneously. 

To balance the detection resolution and the algorithm’s stability and accuracy, we set f 0 to 

10 seconds. Note, however, that both parameters are tunable and our algorithm is not very 

sensitive to this choice.

Under the normal condition, the difference between the collected number of SYNs 

and FINs (RSTs) or SYN/ACKs is very small, as compared to the total number of TCP
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connection requests. This observation holds in spite of the fact that the total number of 

TCP connection requests may be bursty on a small time scale, and slowly-varying on a 

large time scale. In other words, the correlation between the numbers of SYNs and FINs 

(RSTs) or SYN/ACKs is not sensitive to the request arrival process. The results presented 

in Section 3.6.1 clearly show that the consistent synchronization between SYNs and FINs 

(RSTs) or SYN/ACKs is independent of the sites and time-of-day.

Under SYN flooding attacks, the flooding SYN traffic has significant regularity and 

semantics that can be filtered out Recent experiments with SYN attacks on commercial 

platforms [81] show that the minimum flooding rate to overwhelm an unprotected server 

is 500 SYN packets per second. Even with a specialized firewall designed to resist against 

SYN flooding, a server can be disabled by a flood of 22,000 packets per second [81]. To 

bring down the victim server for 10 minutes, for example, attackers must collectively in­

ject at least 300,000 SYN packets. During the same time period, however, the numbers 

of counted FINs (RSTs) and SYN/ACKs remain largely unchanged. Therefore, there will 

be much more SYNs than FINs (RSTs) or SYN/ACKs collected during the flooding pe­

riod. The difference between the numbers of SYNs and FINs (RSTs) or SYN/ACKs will 

increase dramatically, and remain large during the whole flooding period, which typically 

lasts for several minutes [75]. So, the occurrence of a large difference between the num­

bers of SYNs and FINs (RSTs) or SYN/ACKs indicates a possible SYN flooding attack. 

This will be used in our attack detection.

3.5.2 The CUSUM Algorithm

The CUSUM algorithm is applied to both of the two detection methods. For ease of 

presentation, we only show how it works in the SYN-FIN pair scheme, which is similar 

to the SYN-SYN/ACK pair scheme except that the collection of FINs (RSTs) is replaced
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with that of SYN/ACKs.

Let {An, n =  0.1, • • -} be the number of SYNs minus that of the corresponding FINs 

(RSTs) collected within one sampling period. To further alleviate its dependence on the 

time, access pattern and size of the network, {A„} is normalized by the average number, 

jF,4 of FINs (RSTs) during each sampling period. F  can be estimated in real time and 

updated periodically. An example of recursive estimation and update of F  is:

F{n) = aF{n -  1) +  (1 -  a)H N  (RST)(n), (3.1)

where n is the discrete time index and a  is a constant, whose default value is 0 .01 , lying 

strictly between 0  and 1 that represents the memory in the estimation.

Let X n =  An/F .  Under normal condition, the mean of X n, denoted as c, is much less 

than 1 and close to 0 . {Yn} is no longer dependent on the network size or time-of-day. 

Its dynamics are solely the consequence of the TCP protocol specification. So, we can 

consider {Xn} as a stationary random process.

Our attack detection algorithm is based on the Sequential Change Point Detection [13]. 

The objective of Change Point Detection is to determine if the observed time series is sta­

tistically homogeneous, and if not, to find the point in time when the change happens. It 

has been studied extensively by statisticians. See [13] and [19] for a good survey. There 

have been various tests for different problems. They can be largely divided into two cate­

gories: posterior and sequential. Posterior tests are done off-line where the entire data is 

collected first and then a decision of homogeneity or a change point is made based on the 

analysis of all the collected data. On the other hand, sequential tests are done on-line with 

the data presented sequentially and the decisions are made on-the-fly.

We adopt a sequential test for quicker response when an attack occurs. It also saves

memory and computation. One difficulty, however, is the modeling of {Yn}. Despite a

4 The average number of SYN/ACKs is represented as K.
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number of previous results on the modeling of TCP connection request arrivals [25,28,39, 

87,98], there is no consensus on whether it should be modeled as self-similar or Poisson. 

For dynamic and complex systems like the Internet, it may not be possible to model the 

total number of TCP connection request arrivals by a simple parametric description. So, 

we seek robust tests which are not model-specific. In fact, non-parametric methods fit 

this requirement veiy well. Specifically, we use the non-parametric CUSUM (Cumulative 

Sum) method [19] for detection of attacks. This method enjoys all the virtues of sequential 

and non-parametric tests, and the computation load is very light When the time series is 

i.i.d. with a parametric model, CUSUM is asymptotically optimal for a wide range of 

Change Point Detection problems [13,19].

{Xn} is assumed to satisfy the following two conditions.

C l: {An} is ^-mixing, meaning that the ip(s) parameters, defined below, approach 0 as

where T \  is the tr-algebra generated by {X\, X 2, -, X t} and is the a-algebra

generated by (A /+s, Xt+s+i, - • •}. t£(s) is affected by the dependency among the 

{A„} samples: highly dependent {A'„} has tp(s) that decays slowly as s —» 0.

C2: The marginal distribution of { X n} satisfies the following regularity condition: Bt > 0 

such that E(etXn) < oo.

The details of these conditions can be found in [19]. Note that ^-mixing is a much 

looser requirement than independence, and X n being ^-mixing only indicates that X n is 

not “extremely” dependent. In practice, both conditions are mild and easily satisfiable, 

even for long-range dependent arrival processes. In general, E (X n) =  c 1. We choose

s —* oo:

*= sup sup 
*>i /)€?;

P(AB)
P{A)P(B)

(3-2)
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a parameter a that is the upper bound of c, i.e., a > c, and define X n =  X n—a so that it has 

a negative mean during normal operation. When an attack takes place, X n will suddenly 

become a large positive number. Suppose, during an attack, the increase in the mean of X n 

can be lower-bounded by h. Our change detection is based on the observation of h ;» c. 

Let

Vn =  (yn- i  +  Xn)+, (33)

2/o =  0,

where x + is equal to x  if x  > 0 and 0 otherwise. The meaning of yn can also be understood 

as follows: if we define S* =  X iy with So =  0 at the beginning, it is straightforward 

to show that

yn = Sn -  nun Sfc, (3.4)
l<k<7l

i.e., the maximum continuous increment until time n. A large {yn} is a strong indication

of an attack. Since Eq. (3.3) is recurrent and much easier to compute than Eq. (3.4), we

will use it in making detection decisions.

Let d^(.) be the decision at time n: ‘0’ for normal operation (homogeneity) and ‘1’ 

for attack (a change occurs). Here N  represents the flooding threshold:

0 if yn < N,
(3.5) 

1 if yn > N.

In other words, dy(yn) = I(Yn > N),  where /(.) is the indicator function. The purpose of 

introducing a is to offset the possible positive mean in {ATn} caused by network anomalies 

so that the test statistic yn will be reset to zero frequently and will not accumulate with 

time.

Let Pfi% and Efji be the probability measure and the expected value generated by 

with the attack occurring at time m  (change point at time m); let Px  and be the coun­
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terparts without any attack (no change point). There are two fundamental performance 

measures for the sequential change point detection.

False alarm time (the time without false alarm): the time duration with no false alarm 

reported when there is no attack.

Detection time: the detection delay after the attack starts.

One would want the second measure to be as small as possible while keeping the first 

measure as large as possible. However, they are conflicting goals and cannot be simultane­

ously achieved. Therefore, the design philosophy of a statistical change point detection is 

to minimize the detection time subject to a certain false alarm tolerance. In order to com­

pare the performance of different detection schemes, some criteria of false alarms must be 

specified, like average time between two consecutive false alarms, worst-case false alarm 

time, and so on. An algorithm is said to be optimal with respect to a certain criterion if 

it minimizes the detection time for an attack among all the detection schemes subject to 

the false alarm constraint The CUSUM rule has been shown to be asymptotically opti­

mal with respect to the worst-case mean false alarm time in the change point detection 

problems involving a known parametric model and independent observations [13].

Due to the lack of a complete model for {Xn}, it is difficult to discuss optimality. The 

choice of CUSUM is based on its simplicity in computation and non-parametric imple­

mentation, as well as its generally excellent performance. It has been shown in [19] that,

with the choice of a, the upper bound in case of normal operation, and N,  the flooding

threshold, as N  —► oo, we have

sup I ln P a o ^ n )  =  1)| =  O(JV), (3.6)
n

which is equivalent to

Poo{dN(n) =  1} =  ci exp(-c2iV). (3.7)
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where C\ and c2 are constants, depending on the marginal distribution and mixing coeffi­

cients of {X„}. In other words, the time between consecutive false alarms grows expo­

nentially with N.  The burstiness of traffic is reflected by the mixing coefficients rp(s), and 

thus, does impact the detection performance. However, the constants ci and c2 only play a 

secondary role and can be ignored in practice.

In order to study the detection time, let us define

t n  =  inf{n : d N ( . )  =  1}, (3.8)

( t n  -  m ) +  

pN =  N  ’

where represents the normalized detection time after a change occurs and m  represents 

the starting time of the attack. In CXJSUM, for any m > 1, if h is the actual increase in the 

mean of {Xn} during an attack, we have

Pn ~ * 1 =  T— r -------r, (3-9)h — \c — a\

where h — \c — a| is the mean of {-Xn} when n > m  (after an attack starts). However, 

since h is a bound rather than a true value, the above is a conservative estimation (upper 

bound) of the actual detection time.

3.5.3 Robustness against Network Anomalies

While there is no strict one-to-one match, under the normal condition, a very strong 

positive correlation between the numbers of SYNs and FINs (RSTs) or SYN/ACKs does 

exist as shown in Section 3.6.1. The discrepancy between the numbers of SYN and FIN 

(RST) or SYN/ACK packets lies in SYN losses and subsequent retransmissions. The SYN 

losses are caused by various network anomalies, including network congestion, routing 

loops and link failures. Clearly, these network anomalies reduce the sniffing sensitivity of 

SYN-dog.
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Fortunately, these network anomalies are triggered by unrelated events; and to date 

there exist few evidences indicating that these different network anomalies are closely 

correlated. The recent Internet measurement studies have shown that (1) there is very few 

congestions inside the core of Internet where the bandwidth over-provisioning has been 

widely used and the link utilization varies from 3 to 60% [16]; (2) the majority of routing 

loops last shorter than 10 seconds [53]; and (3) link failures are fairly well spread even in 

the time scale of minutes [52]. Therefore, these randomly-occurring network anomalies 

can be treated as white noise. To offset the effect of white noise, a safety margin can be 

added when the normal upper bound, a, is set, without jeopardizing the sniffing sensitivity. 

Only a severe network congestion, long lasting routing loops, and bursty occurrence of link 

failures — which rarely happen — can confuse the SYN-dog to issue false alarms.

3.5.4 Parameter Specification

To implement the CUSUM algorithm, we only need to specify three tunable parame­

ters: a, the upper bound in case of normal operation; h, the lower bound of the increase in 

case of an attack; and, N, the flooding threshold.

The CUSUM algorithm requires E (X n) < 0 before the change point, and E (X n) >  0 

after it, i.e., a > c and h > a. Based on the discussion in the previous section, to ensure 

a long false alarm time and make it independent of network size and access pattern, we 

set h = 2a in our design. As the last-mile SYN-dog that utilizes SYN-FIN pairs for 

flooding detection monitors the incoming traffic, all the SYN flooding packets converge, 

and therefore, a large difference between the numbers of SYN and FIN (RST) packets is 

easily observable with h »  c. In this case, the detection is not sensitive to the choice of a. 

With a large safe margin, we can simply choose a = 1 and h =  2.

In contrast, as the first-mile SYN-dog that employs SYN-SYN/ACK pairs for flooding
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detection monitors the outgoing SYN and incoming SYN/ACK traffic, only part of the 

flooding SYN packets can be seen by each detector because the attack may be initiated 

from many sites simultaneously. Thus, a proper choice of a is more important To balance 

the detection sensitivity and false alarm rate, we set a =  0.35 and h = 0.7. Note that 

the choices of a and h are independent of the network size and access pattern. In doing 

so, a universal false alarm rate can be realized for easy implementability of our detection 

and sniffing mechanism. On the other hand, in practice, the network administrator of the 

involved edge router can incorporate site-specific information so that the algorithm can 

achieve higher detection performance.

Based on a and h, the flooding threshold N  can be specified as follows: (i) assume 

c =  0, and 7 can thus be obtained from Eq. (3.9); and (ii) specify a target detection time 

(i.e., the product of 7 and N)  such that the flooding threshold N  is determined by Eq. (8). 

We choose t0 as the designed detection time for the last-mile SYN-dog, hence 7 = 1  and 

N  =  1. In contrast, we choose 3t0 as the counterpart for the first-mile SYN-dog, hence 

7 =  2.86 and N  = 1.05.5 Compared to the last-mile SYN-dog, the short detection time 

of the first-mile SYN-dog is not so crucial to the victim: the revelation of the flooding 

sources is more valuable, although it may take longer time. Note that the value of N  is 

partially determined by the designed detection time, so it may not be larger than the value 

of h.

It is worth noting that our algorithm is to check the cumulative effect of an attack. So, 

it can detect attacks with the SYN flooding rate less than h at the expense of a longer 

response time. The actual lower bound of detection sensitivity in terms of SYN flooding 

rate, f min, can be given as
F

fmin = (fi c) ' (3.10)
CO

5N  may not seem to be large but Eq. (3.9) can serve as an approximation.
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Table 3.1: A summary of the trace features
Trace Starting time Traffic type
DEC
Harvard
UNC-in
UNC-out
Auckland-in
Auckland-out

2:00, Thu Mar 9,1995 
12:39, Thu Mar 13,1997 
19:30, Wed Sept 27,2000 
19:30, Wed Sept 27,2000 
14:36, Thur, Dec 5,2000 
14:36, Thur Dec 5,2000

Bi-directional
Bi-directional
Uni-directional
Uni-directional
Uni-directional
Uni-directional

Furthermore, the detection capability is not sensitive to the flooding pattern: it can detect 

the attacks with both constant and bursty flooding rates. The effectiveness of this detection 

is evaluated by trace-driven simulations.

3.6 Performance Evaluation

To evaluate and validate the SYN-dog, we have conducted trace-driven simulation 

experiments. The trace data we used are collected from four different sites at different 

times. The first trace was gathered at DEC’s (now HP) primary Internet access point, 

which is an Ethernet DMZ network. It contains an hour’s worth of all wide-area traffic 

between DEC Western Research Lab and the Internet on March 9th, 1995. The second 

trace was taken on March 13th, 1997 on a 10 Mbps Ethernet connecting Harvard’s main 

campus to the Internet, which is a half-hour trace. The third set was obtained by placing 

network monitors on the high-speed link (OC-12,622 Mpbs) that connects the University 

of North Carolina at Chapel Hill (UNC) campus network to the rest of the world. The trace 

was collected on September 27th, 2000. The fourth set was collected at the Internet access 

link that connects the University of Auckland at New Zealand to the rest of the world. The 

tracing ran from 14:36 to 17:47 on Thursday, December 5th, 2000.

The traces used in our experiments are summarized in Table 3.1. Note that the DEC and 

Harvard traces are mixed traffic collections in both directions, but the UNC and Auckland
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traces are uni-directional: UNC-in and Auckland-in collected the traffic data from the 

Internet to the UNC and Auckland campus networks, respectively, while UNC-out and 

Auckland-out collected the traffic data from the UNC and Auckland campus networks to 

the Internet, respectively.

3.6.1 Normal Traffic Behavior

The three sets of traces represent the normal traffic behaviors at the exchange points 

between different stub networks and the Internet at different times. We parse the traces 

and extract the TCP SYN, SYN/ACK, FIN and RST packets from the TCP traffic.

SYN-FIN Pairs

The dynamics of SYN,6 FIN and RST packets at the DEC site are illustrated in Fig­

ure 3.5 (a), and the corresponding result from the Harvard trace is illustrated in Figure 3.5 

(b). Those from UNC-in and UNC-out are in Figures 3.5 (c) and 3.6 (a), and Auckland-in 

and Auckland-out are in Figures 3.6 (b) and (c), respectively. They clearly show the con­

sistent synchronization between SYN and FIN (RST) packets. The consistency indicates 

that the synchronization is an inherent traffic behavior and independent of time and sites.

We have applied the CUSUM algorithm on all the available traces without adding 

attacks. The test statistics, {yn}, for all traces are plotted in Figure 3.7. For the Harvard and 

UNC traces, y„’s are constantly zeros. For the Auckland traces, more than 99% yn's stay 

at zero. The isolated bursts in yn are always much smaller than the threshold N  =  1.05: 

the maximal spikes of yn in Auckland-in and Auckland-out are 0.32 and 0.27, respectively.

So, no false alarms are reported.

6It is generalized SYNs, including SYNs and SYN/ACKs.
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Figure 3.4: The dynamics of SYN and FIN (RST) packets (part I)
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Figure 3.5: The dynamics of SYN and FIN (RST) packets (part II)
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Figure 3.7: CUSUM test statistics under normal operation
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Figure 3.8: The dynamics of SYN and SYN/ACK packets at DEC and Harvard 

SYN—SYN/ACK pair

The dynamics of SYN and SYN/ACK packets at the DEC and Harvard sites are il­

lustrated in Figures 3.8 (a) and (b), respectively. The outgoing SYNs and incoming 

SYN/ACKs from the UNC and Auckland traces are shown in Figures 3.9 (a) and (b). As 

with SYN-FIN pairs, these figures clearly demonstrate a consistent positive correlation 

between SYN and SYN/ACK packets. The consistency indicates that the strong positive 

correlation is also a distinct protocol behavior and independent of time and sites. Note that 

in the figures of the DEC and Harvard traces, SYNs and SYN/ACKs are collected from 

both directions, instead of “Outgoing SYN” and “Incoming SYN/ACK” as shown in the 

UNC and Auckland traces.

Also, we have applied the CUSUM algorithm on the Harvard, UNC and Auckland 

traces without adding flooding attacks. The test statistics, {y„}, for the Harvard and UNC 

traces are plotted in Figures 3.10 (a) and (b); that for the Auckland trace is plotted in 

Figure 3.10 (c). As expected, for all the traces tested, yn’s are mostly zeros. Among 

the isolated spikes of yn in the Harvard trace, the maximum is about 0.05; the maximal
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Figure 3.9: The dynamics of SYN and SYN/ACK packets at UNC and Auckland

spike of yn in the Auckland trace is about 0.26. Both are much smaller than the flooding 

threshold N  =  1.05. So, no false alarms are reported.

3.6.2 SYN Flooding Detection

With the appearance of Trinoo, which only implements UDP packet flooding, many 

tools have been developed to create DDoS attacks. Most of them, such as Tribe Flood Net­

work (TFN), TFN2K, Stacheldraht, Trinity, Plague and Shaft, generate TCP SYN flooding 

attacks and randomize all 32 bits of the source IP address [32,33]. Although these DDoS 

attack tools employ different ways to coordinate attacks with the goal of achieving robust 

and covert DDoS attacks, their flooding behaviors are similar in that the SYN packets are 

continuously bombarded to the victim.

In the SYN flooding detection experiments, the UNC and Auckland 2000 traces are 

used as the normal background traffic. Among them, UNC-in or Auckland-in is used for 

incoming background traffic, and UNC-out or Auckland-out is for outgoing background 

traffic. The flooding traffic is mixed with the normal traffic, and the SYN-dog at the leaf 

router is simulated, as shown in Figure 3.11. Because the non-parametric CUSUM method
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Figure 3.11: The trace-simulation flooding attack experiment
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Figure 3.12: SYN flooding detection sensitivity at the last-mile SYN-dog 

is used for detection of flooding attacks, the flooding traffic pattern or its transient behavior 

(bursty or not) does not affect the detection sensitivity. Rather, the detection sensitivity 

depends only on the total volume of flooding traffic. So, without loss of generality, we 

assume that the flooding rate is constant.

In DDoS attacks, the flooding traffic seen by the first-mile and the last-mile SYN- 

dogs is quite different. The flooding traffic passing through the last-mile SYN-dog is 

the aggregation of the flooding traffic from all distributed attack sources, allowing for 

much easier detection of an attack. However, the flooding detection at the first-mile SYN- 

dog is much more difficult. In a large-scale DDoS attack, the flooding sources can be so 

coordinated that the traffic from each flooding source may not be noticeable at all. Suppose 

the minimum SYN flooding traffic to bring down a TCP server is V  packets per second. 

Then, the flooding rate at the last-mile SYN-dog is V, but the flooding rate seen by the 

first-mile SYN-dog may be much smaller than this.

We assume that the flooding traffic is evenly distributed among different flooding 

sources and there is only one flooding source inside each stub network. The flooding 

rate seen by the first-mile SYN-dog. equals the individual flooding rate inside the same
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stub network. Therefore, is determined by where As is the total number of the stub

networks that contain flooding sources. This setting is intended to “hide” the attack from 

the first-mile SYN-dog. That is, the less the flooding sources inside the stub network, the 

less flooding traffic seen by the first-mile SYN-dog and the harder to detect the flooding 

attack. The flooding duration in all experiments is set to 10 minutes, a typical attack dura­

tion observed in the Internet [75]. The starting time of flooding attacks in the UNC traces 

is randomly chosen between 1 and 9 minutes, but the starting time in the Auckland traces 

lies between 3 and 166 minutes.

We first examine the detection sensitivity at the last-mile SYN-dog, which employs 

SYN-FIN pairs as its detection method. To demonstrate the high sensitivity of last-mile 

SYN-dog to SYN flooding, the flooding rate V  is set to its minimum, 500 SYNs per 

second. The simulation results are plotted in Figures 3.12 (a) and (b), showing that the 

cumulative sum yn exceeds the flooding threshold “1” in one observation period, i.e., the 

fastest response can be achieved, in the Auckland and UNC trace cases, respectively. So, 

the last-mile SYN-dog of the Auckland case can detect the SYN flooding attack in 10 

seconds, and so does the last-mile of the UNC case. Once the flooding attack is detected, 

a defense system like SynDefender can be triggered to protect the victim from the flood­

ing attack. To paralyze the defense system at the victim, attackers have to increase their 

flooding rate, and the first-mile SYN-dog will then be more likely to detect and locate the 

flooding sources inside the stub network.

To examine the detection sensitivity of the first-mile SYN-dog, which employs SYN- 

SYN/ACK pairs to detect attacks, we vary the flooding rate / ,  seen by the first-mile SYN- 

dog, i.e., the individual flooding rate inside the stub network. As the last-mile detection 

is much easier than the first mile, we only study the detection probability and detection 

time for the latter. We conduct the SYN flooding detection experiments on the UNC and
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Figure 3.13: SYN flooding detection sensitivity of the SYN-dog at UNC

Auckland traces.

The UNC Case

Using the UNC traces as the background traffic, we observe the dynamics of yn. Fig­

ures 3.13 (a), (b) and (c) plot the dynamic behaviors of yn when /* is set to 35, 60 and 

80 SYNs per second, respectively. The accumulative effects of SYN flooding are clearly 

shown in these figures. In the cases of 60 and 80 SYNs per second, the first-mile SYN-dog

Table 3.2: Detection Performance of the first-mile SYN-dog at UNC

Si Detection Prob. Detection Time
35 0.8 24.43
37 1.0 18.75
40 1.0 12.25
50 1.0 5.95
60 1.0 4.05
70 1.0 2.80
80 1.0 2.05
100 1.0 1.45
120 1.0 1.0
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Table 3.3: Detection Performance of the first-mile SYN-dog at Auckland

fi Detection Prob. Detection Time
1.5 0.65 27.1
1.75 1.0 13.8

2 1.0 8.0
2.5 1.0 4.1
3 1.0 2.5
4 1.0 1.5
5 1.0 1.0

can detect the SYN flooding attack in 4 and 2 observation periods, respectively. However, 

in the case of 35 SYNs per second, the first-mile takes a much longer time (about 24 ob­

servation periods, i.e., 4 minutes) to exceed the flooding threshold of 1.05. The detection 

performance of the first-mile SYN-dog in the context of the UNC traces is summarized in 

Table 3.2, which lists the detection probabilities and detection times for different /* values. 

The detection time is measured in number of the observation period t 0, which is set to 10 

seconds.

Clearly, larger flooding rates lead to faster and easier detection of attacks. According 

to Eq. (3.10), the lower detection bound is about 37 SYNs per second in this simulation 

scenario. If we implement the same SYN-dog at a smaller subnet, K  — the average 

number of incoming SYN/ACKs — will be smaller, so we can achieve higher detection 

sensitivity. This is confirmed by the study of the Auckland traces, which is presented in 

the next section.

The Auckland Case

In the case of Auckland traces, the dynamic behaviors of yn are illustrated in Fig­

ure 3.14 when fi  is set to 1.5, 3 and 4 SYNs per second, respectively. In the case of 1.5 

SYNs per second, the first-mile SYN-dog can detect the SYN flooding attack in about 

27 observation periods. In contrast, at the flooding rate of 3 or 4 SYNs per second, the
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Figure 3.14: SYN flooding detection sensitivity of the first-mile SYN-dog at Auckland

first-mile SYN-dog takes a much shorter time (3 or 2 observation periods, respectively) 

to detect the ongoing flooding. The detection performance of the first-mile SYN-dog for 

the context of Auckland traces is summarized in Table 3.3. Since K  of the Auckland 

trace is much smaller than that of the UNC trace, the lower detection bound is reduced 

significantly from 35 to 1.5 SYNs per second.

Discussion

Due to its proximity to the flooding sources, once the first-mile SYN-dog detects the 

ongoing flooding traffic, it can take further steps to pinpoint the flooding sources inside 

the stub network, for example, by filtering the MAC addresses of IP packets whose source 

addresses are spoofed.

From the detectable flooding rate, we can determine the efficacy of our algorithm in 

detecting distributed SYN flooding attacks. To attack a protected server, the aggregate 

flooding rate V  should be larger than 22,000 requests per second [81]. In the UNC case,
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Figure 3.15: Improvement of flooding detection sensitivity 

the lower detection bound is 35, and A s can be as laige as 628 stub networks like the UNC 

case. Considering the fact that the UNC stub network consists of over 35,000 users [98], 

it clearly demonstrates the utility and power of SYN-dog. In the Auckland case, the lower 

detection bound is 1.5, and hence, A s has to be as laige as 14,666 medium size stub net­

works like the Auckland case. Source address spoofing requires that the attack software 

open a raw network socket, so the attacker must have root access on end hosts. Although 

the attacker can simultaneously initiate the flooding attacks from (possibly many) ma­

chines in several ISPs, it is much harder to launch the attacks from a similar laige number 

of stub networks due to access limit.

For the time being, we set the parameters to be independent of network size and access 

pattern. In practice, the network administrator of the involved leaf router can incorporate 

site-specific information so that the algorithm can achieve higher detection performance. 

For instance, in the UNC case, we can reduce a, the upper bound in case of normal oper­

ation, from 0.35 to 0.2 and N , the flooding threshold, from 1.05 to 0.6 without incurring 

additional false alarms. Then, the lower detection bound f min decreases from 35 to 15 

SYNs per second, and the detection sensitivity is greatly improved. The dynamics of yn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

for the case /* = 15 is shown in Figure 3.15.

In summary, SYN-dog not only achieves fast detection and high detection accuracy, 

but also can be easily implementable and broadly applicable.

3.7 Conclusion

We developed and evaluated a simple and robust mechanism to sniff SYN (including 

reflected SYN/ACK) flooding attacks, which is installed at leaf routers. SYN-dog utilizes 

the SYN—FIN or SYN-SYN/ACK pair’s behavior that is invariant under various arrival 

models and independent of sites and time-of-day. The distinct features of SYN-dog in­

clude: (1) it is stateless and requires low computation overhead, making itself immune to 

flooding attacks; (2) the non-parametric CUSUM method is employed, making the detec­

tion robust; (3) it is insensitive to site and access pattern; and (4) it does not degrade the 

end-to-end TCP performance.

The efficacy of SYN-dog is evaluated and validated by trace-driven simulations. The 

evaluation results show that the SYN-dog achieves high detection accuracy and short de­

tection time. Moreover, once the first-mile SYN-dog detects the ongoing flooding traffic, 

information about the location of flooding sources is also revealed, thus saving most of IP 

traceback efforts that might otherwise be needed.
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CHAPTER IV

HOP-COUNT FILTERING: AN EFFECTIVE DEFENSE 
AGAINST SPOOFED DDOS TRAFFIC

4.1 Introduction

An Internet host can spoof IP packets by using a raw socket to fill arbitrary source 

IP addresses into their IP headers [76]. IP spoofing is usually associated with malicious 

network behaviors, such as Distributed Denial of Service (DDoS) attacks. To conceal 

flooding sources and localities in flooding traffic, attackers often spoof IP addresses by 

randomizing the 32-bit source-addiess field in the IP header [32, 33]. Moreover, some 

known DDoS attacks, such as smurf [24] and more recent DRDoS (Distributed Reflection 

Denial of Service) attacks [45, 86], are not possible without IP spoofing. Such attacks 

masquerade the source IP address of each spoofed packet with the victim’s IP address. 

It is difficult to counter IP spoofing because of the stateless and destination-based rout­

ing of the Internet. The IP protocol lacks the control to prevent a sender from hiding the 

origin of its packets. Furthermore, destination-based routing does not maintain state infor­

mation on senders, and forwards each DP packet toward its destination without validating 

the packet’s true origin. Overall, IP spoofing makes DDoS attacks much more difficult to 

defend against.

As the observed prevalence of DDoS attacks in the Internet [75], many router-based
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defense mechanisms have been proposed, including router filtering [40, 84], router throt­

tling [120], Pushback [66, 55], traceback [14, 95, 99, 100, 105] and detection mecha­

nisms [46,116]. However, these solutions require not only router support, but also coordi­

nation among different routers and networks, and wide-spread deployment While previ­

ous victim-based defense mechanisms [11,17,90,101] can confine the scope of damage 

to the service under attack, it may not be able to sustain the availability of the service being 

attacked. In stark contrast, the server’s ability to filter most if not all, spoofed IP packets 

can help sustain service availability even under DDoS attacks.

Therefore, an immediately deployable victim-based filtering, which detects and dis­

cards spoofed traffic without any router support, is essential to protecting victims against 

DDoS attacks. We only utilize the information contained in the IP header for packet filter­

ing. Although an attacker can forge any field in the IP header, he or she cannot falsify the 

number of hops an IP packet takes to reach its destination, which is solely determined by 

the Internet routing infrastructure. The hop-count information is indirectly reflected in the 

TTL field of the IP header, since each intermediate router decrements the TIL value by 

one before forwarding a packet to the next hop. The difference between the initial TTL (at 

the source) and the final TTL value (at the destination) is the hop-count between the source 

and the destination. By examining the TTL field of each arriving packet, the destination 

can infer its initial TTL value, and hence the hop-count from the source. Here we assume 

that attackers cannot sabotage routers to alter TTL values of IP packets that traverse them.

In this chapter, we propose a novel hop-count-based filter to weed out spoofed IP 

packets. The rationale behind hop-count filtering is that most spoofed IP packets, when 

arriving at victims, do not carry hop-count values that are consistent with the IP addresses 

being spoofed. Hop-Count Filtering (HCF) builds an accurate IP-to-hop-count (IP2HC) 

mapping table, while using a moderate amount of storage, by clustering address prefixes
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based on hop-count To capture hop-count changes under dynamic network conditions, we 

also devise a safe update procedure for the IP2HC mapping table that prevents pollution 

by HCF-aware attackers. The same pollution-proof method is used for IP2HC mapping 

table initialization and adding new IP addresses into the table.

Two running states, alert and action, within HCF use this mapping to inspect the IP 

header of each IP packet Under normal condition, HCF stays in alert state, watching for 

abnormal TTL behaviors without discarding any packet Even if a legitimate packet is 

incorrectly identified as a spoofed one, it will not be dropped. Therefore, there is no col­

lateral damage in alert state. Upon detection of an attack, HCF switches to action state, in 

which HCF discards those IP packets with mismatching hop-counts. Besides the IP2HC 

inspection, several efficient mechanisms [43, 46, 79, 116] are available to detect DDoS 

attacks. Through analysis using network measurement data, we show that HCF can rec­

ognize close to 90% of spoofed IP packets. In addition, our hop-count-based clustering 

significantly reduces the percentage of false positives.1 Thus, we can discard spoofed IP 

packets with little collateral damage in action state. To ensure that the filtering mechanism 

itself withstands attacks, our design is light-weight and requires only a moderate amount 

of storage. We implement HCF in the Linux kernel at the IP layer as the first step of incom­

ing packet processing. We evaluate the benefit of HCF with experimental measurements 

and show that HCF is indeed effective in countering IP spoofing by providing significant 

resource savings.

Researchers have used the distribution of TTL values seen at servers to detect abnormal

load spikes due to DDoS traffic [89]. The Razor team at Bindview built Despoof [8], which

is a command-line anti-spoofing utility. Despoof compares the TTL of a received packet

that is considered “suspicious,” with the actual TTL of a test packet sent to the source IP

Percentage o f the legitimate packets identifi ed as the spoofed.
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address, for verification. However, Despoof requires the administrator to determine which 

packets should be examined, and to manually perform this verification. Thus, the per- 

packet processing overhead is prohibitively high for weeding out spoofed traffic in real 

time.

In parallel with, and independent of our work, the possibility of using TTL for detect­

ing spoofed packet was discussed in [107]. Their results have shown that the final TTL 

values from an IP address were predictable and generally clustered around a single value, 

which is consistent with our observation of hop-counts being mostly stable. However, the 

authors did not provide a detailed solution against spoofed DDoS attacks. Neither did 

they provide any analysis of the effectiveness of using TTL values, nor the construction, 

update, and deployment of an accurate TTL mapping table. In this chapter, we examine 

both questions and develop a deployable solution.

There already exist commercial solutions [54,78] that block the propagation of DDoS 

traffic with router support However, the main difference between our scheme and the 

existing approaches is that HCF is an end-system mechanism that does not require any 

network support. This difference implies that our solution is immediately deployable in 

the Internet. The remainder of the chapter is organized as follows. Section 4.2 presents the 

TTL-based hop-count computation and the hop-count inspection algorithm, which is in 

the critical path of HCF. Section 43  studies the feasibility of the proposed filtering mech­

anism, based on a large set of previously-collected t r a c e r o u t e  data, and the resilience 

of our filtering scheme against HCF-aware attackers. Section 4.4 demonstrates the ef­

fectiveness of the proposed filter in detecting spoofed packets. Section 4.5 deals with 

the construction of IP2HC mapping table, the heart of HCF. Section 4.6 details the two 

running states of HCF, the inter-state transitions, and the placement of HCF. Section 4.7 

presents the implementation and experimental evaluation of HCF. Section 4.8 discusses
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the effect of newly-arrived requests and hop-count changes upon filtering accuracy. The 

chapter concludes with Section 4.9.

4.2 Hop-Count Inspection

Central to HCF is the validation of the source IP address of each packet via hop-count 

inspection. In this section, we first discuss the hop-count computation, and then detail the 

inspection algorithm.

4.2.1 TTL-based Hop-Count Computation

Since hop-count information is not directly stored in the IP header, one has to compute 

it based on the TTL field. TIL is an 8-bit field in the IP header, originally introduced 

to specify the maximum lifetime of each packet in the Internet Each intermediate router 

decrements the TTL value of an in-transit IP packet by one before forwarding it to the 

next-hop. The final TTL value when a packet reaches its destination is therefore the initial 

T I L subtracted by the number of intermediate hops (or simply hop-count). The challenge 

in hop-count computation is that a destination only sees the final TTL value. It would 

have been simple had all operating systems (OSs) used the same initial TTL value, but in 

practice, there is no consensus on the initial TTL value. Furthermore, since the OS for a 

given IP address may change with time, we cannot assume a single static initial TTL value 

for each IP address.

Fortunately, however, according to [34], most modem OSs use only a few selected 

initial TTL values, 30, 32, 60, 64, 128, and 255. This set of initial TTL values cover 

most of the popular OSs, such as Microsoft Windows, Linux, variants of BSD, and many 

commercial Unix systems. We observe that most of these initial TTL values are far apart, 

except between 30 and 32,60 and 64, and between 32 and 60. Since Internet traces have 

shown that few Internet hosts are apart by more than 30 hops [26, 27], which is also
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confirmed by our own observation, one can determine the initial TTL value of a packet by 

selecting the smallest initial value in the set that is larger than its final TTL. For example, 

if the final TTL value is 112, the initial T IL  value is 128, the smaller of the two possible 

initial values, 128 and 255. To resolve ambiguities in the cases of {30,32}, {60,64}, and 

{32,60}, we will compute a hop-count value for each of the possible initial TTL values, 

and accept the packet if there is a match with one of the possible hop-counts.

The drawback of limiting the possible initial TTL values is that packets from end- 

systems that use “odd” initial TTL values, may be incorrectly identified as having spoofed 

source IP addresses. This may happen if a user switches OS from one that uses a “normal” 

initial TTL value to another that uses an “odd” value. Since our filter starts to discard 

packets only upon detection of a DDoS attack, such end-systems would suffer only during 

an actual DDoS attack. The study in [34] shows that the OSs that use “odd” initial TTLs 

are typically older OSs. We expect such OSs to constitute a very small percentage of end- 

hosts in the current Internet. Thus, the benefit of deploying HCF should out-weight the 

risk of denying service to those end-hosts during attacks.

4.2.2 Inspection Algorithm

Assuming that an accurate IP2HC mapping table is present (see Section 4.5 for de­

tails of its construction) Figure 4.2.1 outlines the HCF procedure used to identify spoofed 

packets. The inspection algorithm extracts the source IP address and the final TTL value 

from each IP packet. The algorithm infers the initial TTL value and subtracts the final 

TTL value from it to obtain the hop-count. The source IP address serves as the index into 

the table to retrieve the correct hop-count for this IP address. If the computed hop-count 

matches the stored hop-count, the packet has been “authenticated;” otherwise, the packet 

is likely spoofed. We note that a spoofed IP address may happen to have the same hop-
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for each packet:

extract the final TTL Tj and the IP address S', 

infer the initial TTL T*; 

compute the hop-count Hc = Ti — Tf, 

index S  to get the stored hop-count Hs; 

if (HC^ H S)

the packet is spoofed;

else

the packet is legitimate;

Figure 4.1: Hop-Count inspection algorithm.

count as the one from a zombie (flooding source2) to the victim. In this case, HCF will 

not be able to identify the spoofed packet. However, we will show in Section 4.4 that even 

with a limited range of hop-count values, HCF is highly effective in identifying spoofed 

DP addresses.

Occasionally, legitimate packets may be identified as spoofed due to inaccurate IP2HC

mapping or delay in hop-count update. Therefore, it is important to minimize collateral

damage under HCF. We note that an identified spoofed IP packet is only dropped in the

action state, while HCF only keeps track of the number of mis-matched BP packets without

discarding any packets in the alert state. This guarantees no collateral damage in the alert

state, which should be much more common than the action state.

2In this chapter, the terms zombie and fboding source are used interchangeably.
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43 Feasibility of Hop-Count Filtering

The feasibility of HCF hinges on three factors: (1) stability of hop-counts, (2) diversity 

of hop-count distribution, and (3) robustness against possible evasions. In this section, we 

first examine the stability of hop-counts. Then, we assess if valid hop-counts to a server 

are diverse enough, so that matching the hop-count with the source IP address of each 

packet suffices to recognize spoofed packets with high probability. Finally, our discussion 

will show that it is difficult for an HCF-aware attacker to circumvent filtering.

43.1 Hop-Count Stability

The stability in hop-counts between an Internet server and its clients is crucial for HCF 

to work correctly and effectively. Frequent changes in the hop-count between the server 

and each of its clients not only lead to excessive mapping updates, but also greatly reduce 

filtering accuracy when an out-of-date mapping is in use during attacks.

The hop-count stability is dictated by the end-to-end routing behaviors in the Internet. 

According to the study of end-to-end routing stability in [85], the Internet paths were 

found to be dominated by a few prevalent routes, and about two thirds of the Internet paths 

studied were observed to have routes persisting for either days or weeks. To confirm these 

findings, we use daily t r a c e r o u t e  measurements taken at ten-minute intervals among 

113 sites [42] from January 1st to April 30th, 2003. We observed a total of 10,814 distinct 

one-way paths, a majority of which had 12,000 traceroute measurements each over the 

five-month period. In these measurements, most of the paths experienced very few hop- 

count changes: 95% of the paths had fewer than five observable daily changes. Therefore, 

it is reasonable to expect hop-counts to be stable in the Internet. Moreover, the proposed 

filter contains a dynamic update procedure to capture hop-count changes as discussed in 

Section 4.5.2.
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4 3 2  Diversity of Hop-Count Distribution

Because HCF cannot recognize foiged packets whose source IP addresses have the 

same hop-count value as that of a zombie, a diverse hop-count distribution is critical to 

effective filtering. It is necessary to examine hop-count distributions at various locations 

in the Internet to ensure that hop-counts are not concentrated around a single value. If 90% 

of client IP addresses are ten hops away from a server, one would not be able to distinguish 

many spoofed packets from legitimate ones using HCF alone.

Type Sample Number

Commercial sites 11

Educational sites 4

Non-profit sites 2

Foreign sites 18

.net sites 12

Table 4.1: Diversity of t r a c e r o u t e  gateway locations.

To obtain actual hop-count distributions, we use the raw t r a c e r o u t e  data from 50 

different t r a c e r o u t e  gateways in [29]. We use only 47 of the data sets because three of 

them contain too few clients compared to the others. The locations of t r a c e r o u t e  gate­

ways are diverse as shown in Table 4.1. Figure 4.2 shows the distribution of the number of 

clients measured by each of the 47 t r a c e r o u t e  gateways. Most of the t r a c e r o u t e  

gateways measured hop-counts to more than 40,000 clients.

We examined the hop-count distributions at all t r a c e r o u t e  gateways to find that the 

Gaussian distribution (bell-shaped curve) is a good first-order approximation. Figures 4.3 

and 4.4 show the hop-count distributions of four selected sites: a well-connected commer­

cial server n e t . y a h o o . com, an educational institute Stanford University, a non-profit
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Figure 4.2: CDF of size of client IP addresses.

organization c p c u g . o rg , and one site outside of the United States, f  e n i c e . i t .  We 

are interested in the girth of a distribution, which can give a qualitative indication of how 

well HCF works, i.e., the wider the girth, the more effective HCF will be. For Gaussian 

distributions, the girth is the standard deviation, a. The Gaussian distribution3 can be 

written in the following form:

( f c - u )2
f (h )  = C e 2̂ ~

where C is the normalization constant, so the area under the Gaussian distribution sums to

the number of IP addresses measured. The mean value of a Gaussian distribution specifies

the center of the bell-shaped curve, and the standard deviation specifies the girth of the

bell. We are only interested in using the Gaussian distribution to study if hop-count is

a suitable measure for HCF. We are not making any definitive claim of whether hop-

count distributions are Gaussian or not. For each given hop-count distribution, we use

the norm f i t  function in Matlab to fit the distribution of hop-counts for each data set.

We plot the means and standard deviations, along with their 95% confidence intervals, in

Figure ??. We observe that most of the mean values fall between 14 and 19 hops, and the

3By ‘distribution.” we mean it in a generic sense that is equivalent to histogram.
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Figure 4.3: Hop-count distribution (part I) 

standard deviations between 3 and 5 hops. The largest percentage of IP addresses that have 

a common hop-count value is only 10%. Such distributions allow HCF to work effectively 

as we will show in the quantitative evaluation of HCF in Section 4.4.

4 3 3  Robustness against Evasion

Once attackers leam of HCF, they will try to generate spoofed packets that can dodge 

hop-count inspections, hence evading HCF. However, such an attempt will either require 

a large amount of resource or time, and very elaborate planning, i.e., casual attackers are 

unlikely to be able to evade HCF. In what follows, we assess the various ways attackers 

may evade HCF.

The key for an attacker to evade HCF is his ability to set an appropriate initial TTL 

value for each spoofed packet, because the number of hops traversed by an IP packet is 

determined solely by the routing infrastructure. Assuming the same initial TTL value I  for 

all Internet hosts, a packet from a flooding source, which is h~ hops away from the victim, 

has a final TTL value of I  — hz. In order for the attacker to generate spoofed packets 

from this flooding source without being detected, the attacker must change the initial TTL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



|i 
(h

op
) 

PM
F/

PD
F

92

6000
Rued Gaussian distribution 

Real IP addresses
5000 -

4000

3000

2000

1000 -

Hop-Coum

(a) cpcug. o rg

6000 , Ti_,... . 7 . T
Raed Gaussian distribution ■ —■ 

Real IP add resses ............
5000

4000

£  3000

2000

1000

2551 10 15 20 30
Hop*Count

(b) f  e n i c e . i t  in Italy

Figure 4.4: Hop-count distribution (part II)

30

25

+ f+ '
20

15

10

5

0
5 10 15 20 25 30 350 40 45 50

Traceroute Gateway ID

(a )/z

8

7

6

5

Ie 4

3

2

1
00 5 10 15 20 25 30 35 40 45 50

Traceroute Gateway ID

(b) <7

Figure 4.5: Means and standard deviations for traceroute gateways

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

value of each packet to I' = I  — (hs — hz), where hs is the hop-count from the spoofed 

IP address to the victim. Each spoofed packet would have the correct final TTL value, 

I  — (hs — hz) — h: = I  — hs, when it reaches the victim.

An attacker can easily leam the hop-count, hz, from a zombie site to the victim by 

running t r a c e r o u t e .  However, randomly selecting the source address for each spoofed 

IP packet [32, 33] makes it extremely difficult, if not impossible, for the attacker to leam 

hs. To obtain the correct hs values for all spoofed packets sent to the victim, the attacker 

has to build a priori an EP2HC mapping table that covers the entire random IP address 

space. This is much more difficult than building an IP2HC mapping table at the victim, 

since the attacker cannot observe the final TTL values of normal traffic at the victim. For 

an attacker to build such an IP2HC mapping table, he or she may have to compromise 

at least one end-host behind every stub network whose IP addresses are in the random IP 

address space, and perform t r a c e r o u t e  to get hs for the corresponding IP2HC mapping 

entry. Without correct hs values, an attacker cannot fabricate the appropriate initial TTL 

values to conceal forgery.

Without compromising end-hosts, it may be possible for an attacker to probe the hs 

value for a given IP address if it is not sending any packets to the network. The probing 

procedure works as follows: (1) force the victim into the action state to actively filter 

packets by launching a DDoS attack; (2) probe the quiescent host and extract the latest 

value of its IP identification field of the header [118]; (3) send a spoofed packet containing 

a legitimate request with the quiescent IP address as the source IP address to the victim 

with a tentative initial TTL; (4) re-probe the quiescent host and check if its IP ID has 

increased by more than one. If it has, this indicates that the victim has accepted the spoofed

packet and the initial TTL is the desired one.4 Otherwise, the attacker will change the

4If the victim accepts the spoofed packet, a response would be sent to the quiescent host, causing it to 
generate a response, most likely a RST, and increase the IP ID number by one.
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initial TTL value and repeat the above probing procedure. Although it is possible to obtain 

the appropriate initial TTL for a single IP address, probing the whole random address 

space requires an excessive amount of time and effort. First, an attacker has to launch 

a DDoS attack that must last long enough to accommodate a large number of probes, or 

launch numerous short-lived DDoS attacks to accommodate all probing activities. Even 

if the attacker probes only one host per stub network, with the Internet containing tens 

of millions of stub networks, it is difficult to hide during this process of TTL probing. 

Second, the attacker must ensure an IP address remains quiescent during the probing. 

Since the attacker cannot prevent the probed IP address from becoming active, he or she 

can easily misinterpret an increase of the IP ID number as the forged initial TTL being 

correct.

Without compromising end-hosts, an attacker may compute hop-counts of to-be-spoofed 

IP addresses based on an accurate router-level topology of the Internet, and the underly­

ing routing algorithms and policies. The recent Internet mapping efforts such as Internet 

Map [26], Mercator [48], Rocketfuel [102], and Skitter [27] projects, may make the ap­

proach plausible. However, the current topology mappings put together snapshots of var­

ious networks measured at different times. Thus-produced topology maps are generally 

time-averaged approximations of actual network connectivity. More importantly, inter­

domain routing in the Internet is policy-based, and the routing policies are not disclosed 

to the public. The path, and therefore the hop-count, between a source and a destination 

is determined by routing policies and algorithms that are often unknown. Even if an at­

tacker has accurate information of the Internet topology, he or she cannot obtain the correct 

hop-counts based on network connectivity alone. We believe that the quality of network 

maps will improve with better mapping technology, but we do not anticipate any near-term 

advances that can lead to accurate hop-counts based on just Internet maps.
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Instead of spoofing randomly-selected IP addresses, an attacker may choose to spoof IP 

addresses from a set of already-compromised machines that are much smaller in number 

than 2s2, so that he or she can measure all h /s  and fabricate appropriate initial TTLs. 

However, this weakens the attacker’s ability in several ways. First, the list of would-be 

spoofed source IP addresses is greatly reduced, which makes the detection and removal 

of flooding traffic much easier. Second, source addresses of spoofed IP packets reveal the 

locations of compromised end-hosts, which makes IP traceback much easier. Third, the 

attacker must somehow probe the victim server to obtain the correct hop-counts. However, 

network administrators nowadays are extremely alert to unusual access patterns or probing 

attempts; so, it would require a great deal of effort to coordinate the probing attempts so 

as not to raise red flags. Fourth, the attacker must modify the available attacking tools 

since the most popular distributed attacking tools, including mstream, Shaft, Stacheldraht, 

IFN , TFN2k, Trinoo and Trinity, generate randomized IP addresses in the space of 2s2 for 

spoofing [32, 33]. The wide-spread use of randomness in spoofing IP address has been 

verified by the “backscatter” study [75], which quantified DoS activities in the Internet.

4.4 Effectiveness of HCF

We now assess the effectiveness of HCF from a statistical standpoint. More specif­

ically, we address the question “what fraction of spoofed IP packets can be detected by 

the proposed HCF?” We assume that potential DDoS victims know the complete mapping 

between their client IP addresses and hop-counts (to the victims themselves). In the next 

section, we will discuss the construction of such mappings. We assume that, to spoof pack­

ets, the attacker randomly selects source IP addresses from the entire IP address space, and 

chooses hop-counts according to some distribution. Without loss of generality, we further 

assume that the attacker evenly divides the flooding traffic among the flooding sources.
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Figure 4.6: Hop-Count distribution of IP addresses 

This analysis can be easily extended for cases where the flooding traffic is unevenly dis­

tributed. To make the analysis tractable, we consider only static hop-counts. We will later 

discuss an update procedure that will capture legitimate hop-count changes.

4.4.1 Simple Attacks

First, we examine the effectiveness of HCF against simple attackers that spoof source 

IP addresses while still using the default initial TTL values at the flooding sources. Most of 

the available DDoS attacking tools [32,33] do not alter the initial TTL values of packets. 

Thus, the final TTL value of a spoofed packet will bear the hop-count value between the 

flooding source and the victim. To assess the performance of HCF against such simple 

attacks, we consider two scenarios: single flooding source and multiple flooding sources.

A Single Source

Given a single flooding source whose hop-count to the victim is h, let a h denote the 

fraction of IP addresses that have the same hop-count to the victim as the flooding source. 

Figure 4.6 (a) depicts the hop-count distributions seen at a hypothetical server for both real 

client IP addresses, and spoofed IP addresses generated by a single flooding source. Since

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

spoofed IP addresses come from a single source, they all have an identical hop-count 

Hence, the hop-count distribution of spoofed packets is a vertical bar of width one. On the 

other hand, real client IP addresses have a diverse hop-count distribution that is observed 

to be close to a Gaussian distribution. The shaded area represents those IP addresses — 

the fraction ah of total valid IP addresses — that have the same distance to the server as 

the flooding source. Thus, the fraction of spoofed IP addresses that cannot be detected is 

0 .̂ The remaining fraction 1 — an will be identified and discarded by HCF.

The attacker may happen to choose a zombie that is 16 or 17 — the most popular 

hop-count values — hops away from the victim as the flooding source. However, the 

standard deviations of the fitted Gaussian distributions are still reasonably large such that 

the percentage of IP addresses with any single hop-count value is small relative to the 

overall IP address space. As shown in Section 4.3.2, even if the attacker floods spoofed IP 

packets from such a zombie, HCF can still identify nearly 90% of spoofed IP addresses. In 

most distributions, the mode accounts for 10% of the total IP addresses, with the maximum 

and minimum of the 47 modes being 15% and 8%, respectively. Overall, HCF is very 

effective against these simple attacks, reducing the attack traffic by one order of magnitude.

Multiple Sources

DoS attacks usually involve more than a single host, and hence, we need to examine 

the case of multiple active flooding sources. Assume that there are n  sources that flood 

a total of F  packets, each flooding source generates F /n  spoofed packets. Figure 4.6

(b) shows the hop-count distribution of spoofed packets sent from two flooding sources. 

Each flooding source is seen to generate traffic with a single unique hop-count value. Let 

hi be the hop-count between the victim and flooding source i, then the spoofed packets 

from source i that HCF can identify is £ (1  — a*). The fraction, Z, of identifiable spoofed
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packets generated by n flooding sources is:

rr ------
Z  “  F

1 n
= n1=i

This expression says that the overall effectiveness of having multiple flooding sources 

is somewhere between that of the most effective source i with the largest and that 

of the least effective source j  with the smallest Adding more flooding sources does 

not weaken the HCFs ability to identify spoofed IP packets. On the contrary, since the 

hop-count distribution follows Gaussian, existence of less effective flooding sources (with 

small s) enables the filter to identify and discard more spoofed IP packets than in the 

case of a single flooding source.

4.4.2 Sophisticated Attackers

Most attackers will eventually recognize that it is not enough to merely spoof source IP 

addresses. Instead of using the default initial TTL value, the attacker can easily randomize 

it for each spoofed IP packet Although the hop-count from a single flooding source to 

the victim is fixed, randomizing the initial TTL values will create an illusion of packets 

having many different hop-count values at the victim server. The range of randomized 

initial TTL values should be a subset of [h . , Id +  hz], where hz is the hop-count from the 

flooding source to the victim and Id is the default initial T IL  value. The starting point in 

this range should not be less than hz. Otherwise, spoofed IP packets bearing TTLs smaller 

than h: will be discarded before they reach the victim. The simplest method of generating 

initial TTLs at a single source is to use a uniform distribution. The final TTL values, Tv's, 

seen at the victim are Ir — hz, where Ir represents randomly-generated initial TTLs. Since 

hz is constant and Ir follows a uniform distribution, T„’s are also uniformly-distributed.
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Figure 4.7: Hop-Count distribution of IP addresses with a single flooding source, random­
ized TTL values

Since the victim derives the hop-count of a received IP packet based on its Tv value, the 

perceived hop-count distribution of the spoofed source IP address is uniformly-distributed.

Figure 4.7 illustrates the effect of randomized TTLs, where h~ =  10. We use a Gaus­

sian curve with // =  15 and a  =  3 to represent a typical hop-count distribution (see 

Section 4.3.2) from real IP addresses to the victim, and the box graph to represent the 

perceived hop-count distribution of spoofed IP addresses at the victim. The large overlap 

between the two graphs may appear to indicate that our filtering mechanism is not effec­

tive. On the contrary, uniformly-distributed random TTLs actually conceal fewer spoofed 

IP addresses from HCF. For uniformly-distributed TTLs, each spoofed source IP address 

has the probability 1 /if  of having the matching TTL value, where H  is the number of 

possible hop-counts. Consequendy, for each possible hop-count h, only a ^ /H  fraction 

of IP addresses have correct TTL values. Overall, assuming that the range of possible 

hop-counts is [/i*. hj] where i < j  and H  =  j  — i + 1, the fraction of spoofed source IP

T ------------------------1------------------------ 1—
Real IP addresses 

Forged IP addresses 
Undetectable IP addresses
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addresses that have correct TTL values, is given as:

7 i .  ̂ X"'"'
i r + - + t  = h ' ^  hk'

Note that we use Z  in place of 1 — Z  to simplify notation. In Figure 4.7, the range of 

generated hop-counts is between 10 and 20, so H = 11. The summation will have a 

maximum value of 1 so Z  can be at most 1/H = 8.5%, which is represented by the area 

under the shorter Gaussian distribution in Figure 4.7. In this case, less than 10% of spoofed 

packets go undetected by HCF.

In general, an attacker could generate initial TTLs within the range [hm, hn], based on 

some known distribution, where the probability of IP addresses with hop-count hk is Phk- 

If in the actual hop-count distribution at the victim server, the fraction of the IP addresses 

that have a hop-count of hk is a hk, then the fraction of the spoofed IP packets that will not 

be caught by HCF is:

n

Z =  H  a hk ■Phk ■
k=m

The term inside the summation simply states that only phk fraction of IP addresses with 

hop-count hk  can be spoofed with matching TTL values. For instance, if an attacker is able 

to generate initial TTLs based on the hop-count distribution at the victim, Phk becomes 

Qhk. In this case, Z  becomes Z  =  J2k=m °%k- Based on the hop-count distribution in 

Figure 4.7, we can again calculate Z  for m  =  0 and n =  30 to be 9.4%, making this 

attack slightly more effective than randomly-generating TTLs. Surprisingly, none of these 

“intelligent” attacks are much more effective than the simple attacks in Section 4.4.1.

4.5 Construction of HCF Table

We have shown that HCF can remove nearly 90% of spoofed traffic with an accurate 

mapping between IP addresses and hop-counts. Thus, building an accurate HCF table (i.e.,
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EP2HC mapping table) is critical to detecting the maximum number of spoofed IP packets. 

In this section, we detail our approach to constructing an HCF table. Our objectives in 

building an HCF table are: (1) accurate IP2HC mapping, (2) up-to-date EP2HC mapping, 

and (3) moderate storage requirement. By clustering address prefixes based on hop-counts, 

we can build accurate IP2HC mapping tables and maximize HCFs effectiveness without 

storing the hop-count for each IP address. Moreover, we design a pollution-proof update 

procedure that captures legitimate hop-count changes while foiling attackers’ attempt to 

pollute HCF tables.

4.5.1 IP Address Aggregation

It is highly unlikely that an Internet server will receive legitimate requests from all 

live IP addresses in the Internet Also, the entire IP address space is not fully utilized 

in the current Internet By aggregating IP address, we can reduce the space requirement 

of IP2HC mapping significantly. More importantly, IP address aggregation covers those 

unseen IP addresses that are co-located with those IP addresses that are already in an HCF 

table.

Grouping hosts according to the first 24 bits of IP addresses is a common aggregation 

method. However, hosts whose network prefixes are longer than 24 bits, may reside in 

different physical networks in spite of having the same first 24 bits. Thus, these hosts are 

not necessarily co-located and have identical hop-counts. To obtain an accurate IP2HC 

mapping, we must refine the 24-bit aggregation. Instead of simply aggregating into 24- 

bit address prefixes, we further divide IP addresses within each 24-bit prefix into smaller 

clusters based on hop-counts. To understand whether this refined clustering improves HCF 

over the simple 24-bit aggregation, we compare the filtering accuracies of HCF tables 

under both aggregations — the simple 24-bit aggregation (without hop-count clustering)
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and the 24-bit aggregation with hop-count clustering.

For this accuracy experiment, we treat each traceroute gateway (Section 4.3.2) as a 

“web server,” and its measured IP addresses as clients to this web server. We build an 

HCF table based on the set of client IP addresses at each web server and evaluate the 

filtering accuracy under each aggregation method. We assume that the attacker knows the 

client IP addresses of each web server and generates packets by randomly selecting source 

IP addresses among legitimate client IP addresses. We further assume that the attacker 

knows the general hop-count distribution and uses it to generate the hop-count for each 

spoofed packet This is the DDoS attack that the most knowledgeable attacker can launch 

without learning the exact IP2HC mapping, i.e., the best scenario for the attacker.

We define the filtering accuracy of an HCF table to be the percentages of false posi­

tives and false negatives. False positives are those legitimate client BP addresses that are 

incorrectly identified as spoofed. False negatives are spoofed packets that go undetected 

by HCF. Both should be minimized in order to achieve maximum filtering accuracy. We 

compute the percentage of false positives as the number of client BP addresses identified 

as spoofed divided by the total number of client IP addresses. We compute the percentage 

of false negatives according to the calculation in Section 4.4.2.

Aggregation into 24-bit Address Prefixes

For each web server, we build an HCF table by grouping its BP addresses according to 

the first 24 bits. We use the minimum hop-count of all BP addresses inside a 24-bit network 

address as the hop-count of the network. After the table is constructed, each BP address 

is converted into a 24-bit address prefix, and the actual hop-count of the IP address is 

compared to the one stored in the aggregate HCF table. Since 24-bit aggregation does not 

preserve the correct hop-counts for all IP addresses, we examine the performance of three
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Figure 4.8: Accuracies of various filters. (Note that the points of 24-bit clustering filtering 
overlap with those of 32-bit filtering.)

types of filters: “Strict Filtering,” “+1 Filtering,” and “+2 Filtering.” “Strict Filtering” 

drops packets whose hop-counts do not match those stored in the table. “+1 Filtering” 

drops packets whose hop-counts differ by greater than 1 compared to those in the table, 

and “+2 Filtering” drops packets whose hop-counts differ by greater than two.

We have shown in Section 4.4.2 that percentage of false negatives is determined by the 

distribution of hop-counts. Aggregation of IP addresses into 24-bit network addresses does 

not change the hop-count distribution significantly. Thus, the 24-bit strict filtering yields a 

similar percentage of false negatives for each web server to the case of storing individual 

IP addresses (32-bit Strict Filtering in the figure). On the other hand, percentage of false 

positives is significantly higher in the case of aggregation as expected. Figure 4.8 presents 

the combined false positive and false negative results for the three filtering schemes. The 

x-axis is the percentage of false negatives, and the y-axis is the percentage of false posi­

tives. Each point in the figure represents the pair of percentages for a single web server.
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For example, under “24-bit Strict Filtering,” most web servers suffer about 10% of false 

positives, while only 5% of false negatives. As we relax the filtering criterion, false pos­

itives are halved while false negatives approximately doubled. Clearly, tolerating packets 

with mismatching hop-counts requires to make a trade-off between percentage of false 

positives and that of false negatives. Overall, +1 Filtering offers a reasonable compro­

mise between false negatives and false positives. Considering the impact of DDoS attacks 

without HCF, a small percentage of false positives may be an acceptable price to pay.

In practice, 24-bit aggregation is straightforward to implement and can offer fast lookup 

with an efficient implementation. Assuming a one-byte entry per network prefix for hop- 

count, the storage requirement is 224 bytes or 16 MB. The memory requirement is modest 

compared to contemporary servers which are typically equipped with multi-gigabytes of 

memory. Under this setup, the lookup operation consists of computing a 24-bit address 

prefix from the source IP address in each packet and indexing it into the HCF table to find 

the right hop-count value. For systems with limited memory, the aggregation table can be 

implemented as a much smaller hash-table. While 24-bit aggregation may not be the most 

accurate, at present it is a good and deployable solution.

Aggregation with Hop-Count Clustering

Under 24-bit aggregation, the percentage of false negatives is still high («15%) if false 

positives are to be kept reasonably small. Based on hop-count, one can further divide IP 

addresses within each 24-bit prefix into smaller clusters. By building a binary aggregation 

tree iteratively from individual IP addresses, we cluster IP addresses with same hop-count 

together. The leaves of the tree represent the 256 (254 to be precise) possible IP addresses 

inside a 24-bit address prefix. In each iteration, we examine two sibling nodes and deter­

mine whether we can aggregate IP addresses behind these two nodes. We will aggregate
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Hgure 4.9: An example of hop-count clustering.

the two nodes as long as they share a common hop-count, or one of them is empty. If 

aggregate is possible, the parent node will have the same hop-count as the children. We 

can thus find the largest possible aggregation for a given set of IP addresses. Figure 4.9 

shows an example of clustering a set of IP addresses (with the last octets shown) by their 

hop-counts using the aggregation tree (showing the first four levels). For example, the 

IP address range, 128 to 245, is aggregated into a 128/25 prefix with a hop-count of 20, 

and the three IP addresses, 79, 105, and 111 are aggregated into a 64/26 prefix with a 

hop-count of 20. However, we cannot aggregate these two blocks further up the tree due 

to holes in the address space. We are able to aggregate 11 of 17 IP addresses into four 

network prefixes. The remaining IP addresses must be stored as individual IP addresses.

With hop-count-based clustering, we never aggregate IP addresses that do not share 

the same hop-count. Hence, we can eliminate false positives when all clients of a server
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Figure 4.10: Sizes of various HCF tables.

are known as in Figure 4.8. HCF will be free of false positives as long as the table is 

updated with the correct hop-counts when client hop-counts change. Furthermore, under 

hop-count clustering, we observe no noticeable increase in false negatives compared to 

the approach of 32-bit Strict Filtering. Thus, one cannot see the difference in Figure 4.8 

due to their having similar numbers of false positives and negatives. Compared to the 

24-bit aggregation, the clustering approach is more accurate but consumes more memory. 

Figure 4.10 shows the number of table entries for all web servers used in our experiments. 

The x-axis is the ID of the web server ranked by the number of client IP addresses, and the 

y-axis is the number of table entries. In the case of 32-bit Strict Filtering, the number of 

table entries for each server is the same as the number of client IP addresses. We observe 

that the hop-count-based clustering increases the size of HCF table, by no more than 20% 

in all but one case (36%).
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4.5.2 Pollution-Proof Initialization and Update

To populate the HCF table initially, an Internet server should collect traces of its clients 

that contain both IP addresses and the corresponding TTL values. The initial collection 

period should be commensurate with the amount of traffic the server is receiving. For a 

very busy site, a collection period of a few days could be sufficient, while for a lightly- 

loaded site, a few weeks might be more appropriate.

Keeping the IP2HC mapping up-to-date is necessary for our filter to work in the In­

ternet where hop-counts may change. The hop-count, or distance from a client to a server 

can change as a result of relocation of networks, routing instability, or temporary network 

failures. Some of these events are transient, but changes in hop-count due to permanent 

events need to be captured.

While adding new IP2HC entries or capturing legitimate hop-count changes, we must 

foil attackers’ attempt to slowly pollute HCF tables by dropping spoofed packets. One 

way to ensure that only legitimate packets are used during initialization and dynamic up­

date is through TCP connection establishment, an HCF table should be updated only by 

those TCP connections in the e s t a b l i s h e d  state [118]. The three-way TCP hand­

shake for connection setup requires the active-open party to send an ACK (the last packet 

in the three-way handshake) to acknowledge the passive party’s initial sequence number. 

The host that sends the SYN packet with a spoofed IP address will not receive the server’s 

SYN/ACK packet and thus cannot complete the three-way handshake. Using packets from 

established TCP connections ensures that an attacker cannot slowly pollute an HCF table 

by spoofing source IP addresses. While our dynamic update provides safety, it may be 

too expensive to inspect and update an HCF table with each newly-established TCP con­

nection, since our update function is on the critical path of TCP processing. We provide 

a user-configurable parameter to adjust the frequency of update. The simplest solution
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would be to maintain a counter p that records the number of established TCP connections 

since the last reset of p. We will update the HCF table using packets belonging to every 

k-xh TCP connection and reset p to zero after the update, p  can also be a function of system 

load and hence, updates are made more frequently when the system is lightly-loaded.

We note that mapping updates may require re-clustering which may break up a node or 

merge two adjacent nodes on a 24-bit tree. Re-clustering is a local activity, which confines 

itself to a single 24-bit tree. Moreover, since hop-count changes are not a frequent event 

in the network as reported in [85] and confirmed by our own observations, the overhead 

incurred by re-clustering is negligible.

4.6 Running States of HCF

Since HCF causes delay in the critical path of packet processing, it should not be 

active at all time. We therefore introduce two running states inside HCF: the alert state 

to detect the presence of spoofed packets and the action state to discard spoofed packets. 

By default, HCF stays in alert state and monitors the trend of hop-count changes without 

discarding packets. Upon detection of a flux of spoofed packets, HCF switches to action 

state to examine each packet and discards spoofed IP packets. In this section, we discuss 

the details of each state and show that having two states can better protect servers against 

different forms of DDoS attacks.

4.6.1 Tasks in Two States

Figure 4.6.1 lists the tasks performed by each state. In the alert state, HCF performs the 

following tasks: sample incoming packets for hop-count inspection, calculate the spoofed 

packet counter, and update the IP2HC mapping table in case of legitimate hop-count 

changes. Packets are sampled at exponentially-distributed intervals with mean m  in ei­

ther time or the number of packets. The exponential distribution can be precomputed and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

made into a lookup table for fast on-line access. For each sampled packet, IP2HC JnspectO 

returns a binary number spoof, depending on whether the packet is judged as spoofed or 

not This is then used by AverageO to compute an average spoof counter t  per unit time. 

When t is greater than a threshold T\, HCF enters the action state. HCF in alert state 

will also update the HCF table using the TCP control block of every k-th established TCP 

connection.

HCF in action state performs per-packet hop-count inspection and discards spoofed 

packets, if any. HCF in action state performs a similar set of tasks as in alert state. The 

main differences are that HCF must examine every packet (instead of sampling only a 

subset of packets) and discards spoofed packets. HCF stays in action state as long as 

spoofed IP packets are detected. When the ongoing spoofing ceases, HCF switches back to 

alert state. This is accomplished by checking the spoof counter t  against another threshold 

T2, which should be smaller than Ti for better stability. HCF should not alternate between 

alert and action states when t fluctuates around Ti. Making the second threshold T2 <  Ti 

avoids this instability.

To minimize the overhead of hop-count inspection and dynamic update in alert state, 

their execution frequencies are adaptively chosen to be inversely proportional to the server’s 

workload. We measure a server’s workload by the number of established TCP connections. 

If the server is lightly-loaded, HCF calls for IP2HC inspection and dynamic update more 

frequently by reducing user-configurable parameters, k and x. In contrast, for a heavily- 

loaded server, both k and x  are decreased. The two thresholds 7\ and T2, used for detecting 

spoofed packets, should also be adjusted based on load. The general guideline for setting 

execution rates and thresholds with the dynamics of server’s workload is given as follows:

Load y  =>■ Rates \  => Threshold \
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In alert state: 

for each sampled packet p: 

spoof = IP2HC Jnspect(p); 

t  = Average(spoof); 

if ( sp o o f)

K { t > T 1)

Switch-ActionO;

Accept(p);

for the fc-th TCP control block tcb: 

Update_Table(£c&);

In action state: 

for each packet p:

spoof = BP2HC Jnspect(p); 

t = Average(spoof); 

if ( sp o o f)

Drop(p); 

else Accept(p);

i f ( f  < T 2 )

Switch_Alert();

Figure 4.11: Operations in two HCF states.
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Currently, however, we only recommend these parameters to be user-configurable. Their 

specific values depend on the requirement of individual networks in balancing security and 

performance.

4.6.2 Staying “Alert” to DRDoS Attacks

Introduction of the alert state not only lowers the overhead of HCF, but also makes 

it possible to stop other forms of DoS attacks. In DRDoS attacks, an attacker forges IP 

packets that contain legitimate requests, such as DNS queries, by setting the source IP 

addresses of these spoofed packets to the actual victim’s IP address. The attacker then 

sends these spoofed packets to a large number of reflectors. Each reflector only receives 

a moderate flux of spoofed IP packets so that it may easily sustain the availability of its 

normal service, thus not causing any alert. The usual intrusion detection methods based 

on the ongoing traffic volume or access patterns may not be sensitive enough to detect the 

presence of such spoofed traffic. In contrast, HCF specifically looks for IP spoofing, so it 

will be able to detect attempts to fool servers into acting as reflectors. Although HCF is 

not perfect and some spoofed packets may still slip through the filter, HCF can detect and 

intercept enough of the spoofed packets to thwart DRDoS attacks.

4.63 Blocking Bandwidth Attacks

To protect server resources such as CPU and memory, HCF can be installed at a server 

itself or at any network device near the servers, i.e., inside the iast-mile’ region, such as 

the firewall of an organization. However, this scheme will not be effective against DDoS 

attacks that target the bandwidth of a network to/from the server. The task of protecting 

the access link of an entire stub network is more complicated and difficult because the 

filtering has to be applied at the upstream router of the access link, which must involve the 

stub network’s ISP.
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Figure 4.12: Packet filtering at a router to protect bandwidth.

The difficulty in protecting against bandwidth flooding is that packet filtering must be 

separated from detection of spoofed packets as the filtering has to be done at the ISP’s edge 

router. One or more machines inside the stub network must run HCF and actively watch 

for traces of IP spoofing by always staying in the alert state. For complete protection, 

the access router should also run HCF in case attacking traffic terminates at the access 

router. This can be accomplished by substituting a regular end-host configured as a router. 

In addition, at least one machine inside the stub network needs to maintain an updated 

HCF table since only end-hosts can see established TCP connections. Under an attack, 

this machine should notify the network administrator who then coordinates with the ISP 

to install a packet filter based on the HCF table on the ISP’s edge router.

Our two running-state design makes it natural to separate these two functions — de­

tection and filtering of spoofed packets. Figure 4.12 shows a hypothetical stub network 

that hosts a web server that runs HCF. The stub network is connected to its upstream ISP 

via an access router and the ISP’s edge router. Under normal network condition, the web 

server monitors its traffic and builds the HCF table. When attack traffic arrives at the stub 

network, HCF at the web server will notice this sudden rise of spoofed traffic and inform
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the network administrator via an authenticated channel. The administrator can have the 

ISP install a packet filter in the ISP’s edge router, based on the HCF table. Note that one 

cannot directly use the HCF table since the hop-counts from client IP addresses to the web 

server are different from those to the router. Thus, all hop-counts need to be decremented 

by a proper offset equal to the hop-count between the router and the web server. Once the 

HCF table is enabled at the ISP’s edge router, most spoofed packets will be intercepted, 

and only a very small percentage of the spoofed packets that slip through HCF, will con­

sume bandwidth. In this case, having two separable states is crucial since routers usually 

cannot observe established TCP connections and use the safe update procedure.

4.7 Resource Savings

This section details the implementation of a proof-of-concept HCF inside the Linux 

kernel and presents its evaluation on a real testbed. The two concerns we addressed are the 

per-packet overhead of HCF and the amount of resource savings when HCF is active. Our 

measurements show that HCF only consumes a small amount of CPU time, and indeed 

makes significant resource savings.

4.7.1 Building the Hop-Count Filter

To validate the efficacy of HCF in a real system, we implement a test module inside 

the Linux kernel. The test module resides in the IP packet receive function, ip _ rcv . To 

minimize the CPU cycles consumed by spoofed IP packets, we insert the filtering function 

before the code segment that performs the expensive checksum verification. Our test mod­

ule has the basic data structures and functions to support search and update operations to 

the hop-count mapping.

The hop-count mapping is organized as a 4096-bucket hash table with chaining to 

resolve collisions. Each entry in the hash table represents a 24-bit address prefix, and it
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uses a binary tree to cluster hosts within the single 24-bit address prefix. Searching for the 

hop-count of an IP address consists of locating the entry for its 24-bit address prefix in the 

hash table, and then finding the proper cluster that the IP address belongs to in the tree. 

Given an IP address, HCF computes the hash key by XORing the upper and lower 12-bits 

of the first 24 bits of the source IP address. 4096 is relatively small compared to the set of 

possible 24-bit address prefixes so collisions are likely to occur. To estimate the average 

size of a chained list, we hash the client IP addresses from [29] into the 4096-bucket hash 

table to find that, on average, there are 11 entries on a chain, with the maximum being 

25. Thus, we use fixed 11-entry chained lists. We determine the size of the clustering tree 

by choosing a minimum clustering unit of four IP addresses so the tree has a depth of six 

(26 =  64). This binary tree can then be implemented as a linear array of 127 elements. 

Each element in this array stores the hop-count value of a particular clustering. We set the 

array element to be the hop-count if clustering is possible, and zero otherwise.

To implement the HCF-table update, we insert the function call into the kernel TCP 

code past the point where the three-way handshake of TCP connection is completed. For 

every k-th established TCP connection, the update function takes the argument of the 

source IP address and the final TEL value of the ACK packet that completes the handshake. 

Then, the function searches the HCF table for an entry that corresponds to this source IP 

address, and will either overwrite the existing entry or create a new entry for a first-time 

visitor.

4.7.2 Experimental Evaluation

For HCF to be useful, the per-packet overhead must be much lower than the normal 

processing of an IP packet. We examine the per-packet overhead of HCF by instrumenting 

the Linux kernel to time the filtering function as well as the critical path in processing IP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

with HCF without HCF
scenarios avg min avg min
TCP SYN 388 240 7507 3664

TCP open+close 456 264 18002 3700
p in g  64B 396 240 20194 3604

p ing  1500B 298 124 35925 2436
pingfbod 358 256 20139 3616
TCP bulk 443 168 6538 3700
UDPbulk 490 184 6524 3628

Table 4.2: CPU overhead of HCF and normal IP processing.

packets. We use the built-in Linux macro r d t s c l  to record the execution time in CPU 

cycles. While we cannot generalize our experimental results to predict the performance of 

HCF under real DDoS attacks, we can confirm whether HCF provides significant resource 

savings.

We set up a simple testbed of two machines connected to a 100 Mbps Ethernet hub. 

A Dell Precision workstation with 1.9 GHz Pentium 4 processor and 1 GB of memory, 

simulates the victim server where HCF is installed. A second machine generates various 

types of IP traffic to emulate incoming attack traffics to the victim server. To minimize the 

effect of caches, we randomize each hash key to simulate randomized IP addresses to hit 

all buckets in the hash table. For each hop-count look-up, we assume the worst case search 

time. The search of a 24-bit address prefix traverses the entire chained list of 11 entries, 

and the hop-count lookup within the 24-bit prefix traverses the entire depth of the tree.

We generate two types of traffic, TCP and ICMP, to emulate flooding traffics in DDoS 

attacks. In the case of flooding TCP traffic, we use a modified version of t c p t r a c e r o u t e  

[7] to generate TCP SYN packets to simulate a SYN flooding attack. In addition, we also 

repeatedly open a TCP connection on the victim machine and close it right away, which 

includes sending both SYN and FIN packets. Linux delays most of the processing and the
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Figure 4.13: Resource savings by HCF.

establishment of the connection control block until receiving the final ACK from the host 

that does the active open. Since the processing to establish a connection is included in 

our open + c lo s e  experiment, the measured critical path may be longer than that in a 

SYN flooding attack. To emulate ICMP attacks, we run three experiments of single-stream 

p in g s . The first uses default 64-byte packets, and the second uses 1500-byte packets. In 

both experiments, packets are sent at 10 ms intervals. The third experiment uses p in g  

flood (p in g  -  f ) with the default packet size of 64 bytes and sends packets as fast as the 

system can transmit To understand HCFs impact on normal IP traffic, we also consider 

bulk data transfers under both TCP and UDP. We compare the per-packet overhead without 

HCF with the per-packet overhead of the filtering function in Table 4.2.

We present the recorded processing times in CPU cycles in Table 4.2. The column 

under ’with HCF’ lists the execution times of the filtering function. The column under 

‘without HCF lists the normal packet processing times without HCF. Each row in the 

table represents a single experiment, and each experiment is run with a large number (~
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40,000) of packets to compute the average number of cycles. We present both the min­

imum and the average numbers. There exists a difference between average cycles and 

minimum cycles for two reasons. First, some packets take longer to process than others, 

e.g., a SYN/ACK packet takes more time than a FIN packet Second, the average cycles 

may include lower-level interrupt processing, such as input processing by the Linux Ether­

net driver. We observe that in general, the filtering function uses significantly fewer cycles 

than the emulated attacking traffic, generally an order of magnitude less. Consequently, 

HCF should provide significant resource savings by detecting and discarding spoofed traf­

fic. In case of bulk transfers, the differences are also significant However, the processing 

of regular packets takes fewer cycles than the emulated attack traffic. We attribute this to 

TCP header prediction and UDP’s much simpler protocol processing. It is fair to say that 

the filtering function adds only a small overhead to the processing of legitimate IP traffic. 

However, this is by far more than compensated by not processing spoofed traffic.

To illustrate the potential savings in CPU cycles, we compute the actual resource sav­

ings we can achieve, when an attacker launches a spoofed DDoS attack against a server. 

Given attack and legitimate traffic, a and b, in terms of the fraction of total traffic per unit 

time, the average number of CPU cycles consumed per packet without HCF is a-tz+ b-tz, 

where t d  and t L are the per-packet processing times of attack and legitimate traffic, respec­

tively. The average number of CPU cycles consumed per packet with HCF is:

(1 — oc) • a • top  + a  • a • tz> + b • (tz +  tzr)

with toF and tzF being the filtering overhead for attack and legitimate traffic, respectively, 

and a  the percentage of attack traffic that we cannot filter out. Let’s also assume that the 

attacker uses 64-byte p in g  traffic to attack the server that implements HCF. The results for 

various a, b, and a  parameters are plotted in Figure 4.13. The x-axis is the percentage of
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total traffic contributed by the DDoS attack, namely a. The y-axis is the number of CPU 

cycles saved as the percentage of total CPU cycles consumed without HCF. The figure 

contains a number of curves, each corresponding to an a  value. Since the per-packet 

overhead of the DDoS traffic (20,194) is much higher than TCP bulk transfer (6,538), 

the percentage of the DDoS traffic that HCF can filter, (1 — a), essentially becomes the 

sole determining factor in resource savings. As the composition of total traffic varies, the 

percentage of resource savings remains essentially the same as (1 — a).

4.8 Discussion

Note that in our filtering accuracy experiments, we assume that the IP2HC mapping ta­

ble holds the complete IP addresses of their clients and the hop-counts are static. However, 

in reality, there are always new requests coming in and hop-counts may change during a 

DDoS attack. Since we will not update or add new entries to the mapping table during 

DDoS attacks (in the action state), these newly-appeared requests and the legitimate ones 

with changed hop-counts will be dropped by HCF. Therefore, we want to know during a 

DDoS attack: (1) the percentage of incoming IP addresses that are the first-time visitors; 

and (2) the probability of a hop-count change that may invalidate an entry of the IP2HC 

mapping table. Since 90% of DDoS attacks are reported to last less than one hour [75], 

we set the duration of a DDoS attack to one hour.

The answer to the first question is highly dependent upon the clients’ population, 

clients’ access pattern and the duration of initializing the mapping table. Due to the lim­

itation of the available server traces, we conduct a case study based on a one-month Web 

server trace that was collected at an academic department. In this case study, the initial­

ization of the mapping table lasts a week. We use each individual week of the one-month 

trace as a different initialization procedure to collect the IP addresses. Then, we employ
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°  ‘ ' The fraction of newly-appeared IP addresses in the legitimate incoming re­
quests

the subsequent day’s trace of that week as input to find what fraction of incoming IP ad­

dresses are newly-appeared ones, under the one-week initialization. The results of this 

case study are shown in Figure 4.14. The percentages of newly-appeared IP addresses 

are consistent among the four different weeks we considered, which are around 60%. Al­

though the 24-bit IP address can reduce the percentage of newly-appeared IP addresses, 

the reduction is less than 15%. This implies that more than a half of the incoming requests 

are newly-appeared, and three quarters of them will be dropped by HCF. However, this 

is only a specific case for a small educational Web server. With a much busier commer­

cial Web server and longer initialization time, we expect that the results would be very 

different from those in this case study.

Based on the traceroute measurements of our stability study, in which over ten thou­

sands distinct one-way paths were sampled, we elaborate on the distribution of the prob­

ability of a hop-count change within ten minutes5 among our path samples. As shown in

Figure 4.15, nearly 90% of the sampled one-way paths have less than 1% probability to

5The probe interval at traceroute measurements is ten minutes.
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Figure 4.15: The distribution of probability of hop-count changes

change their hop-counts in ten minutes. With respect to this probability distribution, the 

expected probability of a hop-count change within ten minutes is 1.17%. Since we assume 

the duration of a DDoS attack is one hour, we need to derive the expected probability of a 

hop-count change within 60 minutes. As Ph =  1 — (1 — Pm)6, we know that Ph is 6.85%. 

It implies that during a DDoS attack, on average, 6.85% of the mapping table entries will 

be out-of-date.

Meanwhile, the inter-arrival time between two requests from the same IP address, i.e., 

the last request that is received before the outbreak of a DDoS attack and the first request 

after the outbreak of a DDoS attack, determines the fraction of out-of-date hop-counts 

in the mapping table at the start of a DDoS attack. Based on our Web traces, we find 

that the inter-arrival time highly depends on our diurnal activities. During working hours, 

our measured inter-anival time ranges from a few minutes to over 40 minutes and its 

average is around 15 minutes. However, during off-working hours, the inter-arrival time 

ranges from one hour (lunch break) to nine hours (night sleep). So, if the DDoS attack 

is launched during working hours, the average fraction of out-of-date hop-counts at the 

start of a DDoS attack will be 1.75%. In contrast, if the DDoS attack is launched during 

off-working hours, the fraction of out-of-date hop-counts at the start of a DDoS attack will
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be between 6.85% and 47.1%. Here, we assume that the probability of path changes are 

uniformly distributed within the 24 hours of a day.

Although the percentage of out-of-date hop-counts is relatively high in the latter case, 

the out-of-date entries are the ones that have not visited the server for a long time and 

highly likely will not visit the victim during the DDoS attack; but those clients that visit 

the server quite often during off-working hours will have their hop-counts updated, and 

hence, hold accurate hop-counts in the mapping table during the DDoS attack. Therefore, 

the average increase of false positive ratio caused by hop-count changes happened before 

DDoS attacks will be around 1.75% during any given period.

4.9 Conclusion

In this chapter, we presented a hop-count based filtering scheme that detects and dis­

cards spoofed DP packets to conserve system resources. Our scheme inspects the hop-count 

of each incoming packet to validate the legitimacy of the packet. Using a moderate amount 

of storage, HCF constructs an accurate IP2HC mapping table via DP address aggregation 

and hop-count clustering. A pollution-proof mechanism initializes and updates entries 

in the mapping table. By default, HCF stays in alert state, monitoring abnormal DP2HC 

mapping behaviors without discarding any packet. Once spoofed DDoS traffic is detected, 

HCF switches to action state and discards most of the spoofed packets.

By analyzing actual network measurements, we have shown that HCF can remove 

90% of spoofed traffic. Moreover, even if an attacker is aware of HCF, he or she cannot 

easily circumvent HCF. Our experimental evaluation has shown that HCF can be efficiently 

implemented inside the Linux kernel. Our analysis and experimental results have indicated 

that HCF is a simple and effective solution in protecting network services against spoofed 

DP packets. Furthermore, HCF can be readily deployed in end-systems since it does not
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require any network support.

However, the HCF cannot protect the newly-appeared requests during a DDoS attack. 

In our case study, the fraction of newly-appeared IP addresses in the legitimate IP ad­

dresses can be as high as 60%. Therefore, for an Internet server that is visited sporadically 

by most of its clients, the collateral damage caused by HCF may not be acceptable. On the 

other hand, HCF does guarantee the frequent visitors of an Internet service to be served 

during a DDoS attack.
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CHAPTER V

IP EASY-PASS: EDGE RESOURCE ACCESS
CONTROL

5.1 Introduction

To provide real-time communication services to multimedia applications or “subscribed” 

Internet users, the proposed network QoS (Quality of Service) infrastructure like DiffServ 

(Differentiated Service) [37] reserves network resources for real-time traffic. Within the 

network QoS architecture, however, the reserved network resources will become a con­

spicuous target to potential adversaries, and will be more vulnerable to packet forgery 

and resource embezzlement. We call such attacks, targeting at reserved network resources 

and violating network QoS guarantees, as DQoS (Denial o f Quality o f Service) attacks. 

Basically, there are two distinct DQoS attacks: (1) control flow attacks, e.g., killer reser­

vation in RSVP (Resource ReSerVation Protocol) [121], which directly attack the signal­

ing/control protocol in the control plane for network resource reservation and connection 

setup; and, (2) data flow attacks (e.g., resource theft in the data plane), in which bogus data 

packets grab the reserved bandwidth from the “owners,” or genuine real-time data flows. 

Previous research efforts have focused on providing secure communication in the control 

plane for control flows, such as in ARQoS [1] and Authenticated QoS [2] projects. They 

proposed a secure RSVP, in which resources are reserved online using strong authentica-
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tion, and subsequently, compliance with the reservation request parameters is verified.

However, little attention has been paid to defend against DQoS attacks in the data 

plane, and block the attacking traffic from consuming the reserved network resources. 

Currently, the usage of reserved network resource hinges on IP addresses and the setting 

of the ToS (Type of Service) field in the IP header, which can be easily spoofed. Even 

if we secure the QoS signaling procedure, an adversary within the same stub network or 

at a neighboring network that is connected with the same ISP, can passively monitor the 

ongoing traffic towards ISP edge routers. The adversary can then impersonate as legiti­

mate sources by flooding the spoofed data packets that have the same IP header as valid 

data packets. The packet filters based on packet header information only, cannot screen 

out these spoofed packets. Moreover, to meet the SLA (Service Level Agreement) [67] 

between an ISP and its end-users, edge routers perform traffic shaping and policing ac­

cording to the specified traffic profiles. Without a resource access control mechanism that 

can efficiently differentiate legitimate real-time traffic from spoofed packets, the traffic 

conditioning and policing conducted at ISP edge routers cannot protect the reserved net­

work resource from embezzlement. On the contrary, the traffic policing at edge routers ag­

gravates their vulnerability to flooding attacks by blindly dropping packets, since flooding 

bogus packets can easily cause traffic violation at the edge routers. Even a small amount of 

attacking traffic can disrupt the loss rate, delay and jitter guarantees, and seriously degrade 

the promised quality of service.

In this chapter, we propose a fast and lightweighted mechanism for resource access 

control at the ISP edge routers. It primarily protects real-time IP data flows, for which 

network resources are reserved, from DQoS attacks. Our resource access control mecha­

nism is a checkpoint at edge routers, and is used for packet-level admission control. We 

call it an IP Easy-pass, because it is similar to the checkpoint at a toll road where only the
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cars with pre-paid stickers can go through the Easy-pass lane. Note that we apply the IP 

Easy-pass mechanism in the data plane, and assume that there is a secure channel for QoS 

signaling in the control plane between the ISP edge router and an end-host Prior to data 

transfer, through the secure QoS signaling channel, the ISP edge router and the end-host 

must communicate shared secrets for generating Easy-passes.

Since IP is stateless, we attach a unique Easy-pass to every real-time data packet Each 

IP Easy-pass is an encrypted order-sensitive information to warrant the legitimacy of the 

packet carrying it, and plays a role as an admission ticket which can be used only once and 

then becomes void. Stale passes are invalid. Even if an attacker can sniff the already-used 

passes, he cannot deceive the ISP edge routers by simply copying these void passes into 

spoofed packets. Thus, the freshness of a pass is crucial to the admission of the data packet 

carrying the pass. A correct sequence of Easy-passes is pre-determined by both sides. It is 

extremely difficult, if not impossible, for the third party to decrypt the garbled passes in a 

short time, which should be robust against cryptanalysis, and predict the correct sequence. 

This property ensures that an adversary cannot easily forge a valid new IP Easy-pass. The 

rule for access control is simple: the ISP edge router knows the correct sequence of passes; 

it accepts the packet with a new pass that is in the right track; otherwise, any packet with 

a duplicated or out of track pass, is classified as forgery and simply dropped.1

Because the generation and verification of passes are done on a per-packet basis, it 

has to be very fast and lightweighted, incurring as little overhead as possible. To generate 

encrypted passes, several parameters, including a symmetric private key and the funda­

mental elements of producing plain passes, are shared between the ISP edge router and 

the end-host. We attach an IP Easy-pass at the end of each IP packet as its trailer. The

RC5 algorithm [93], a fast symmetric block cipher, is used for Easy-pass encryption and

Considering possible packet losses, we admit normal out-of-sequence packets, which are still in the 
right track, as legal traffi c.
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decryption. The plaintext and ciphertext of Easy-pass are both 64 bits long. We imple­

ment the IP Easy-pass mechanism in the Linux kernel as a kernel module, and analyze its 

effectiveness against packet forgery and resource embezzlement Finally, we evaluate its 

overhead and performance.

The remainder of the chapter is organized as follows. Section 5.2 discusses the moti­

vation of our work. Section 5.3 reveals the vulnerability of the reserved network resource 

to DQoS attacks. Section 5.4 describes the generation of a plain Easy-pass, the encryp­

tion/decryption algorithm, the verification procedure and its embedding as an IP trailer. 

Section 5.5 describes the implementation of Easy-pass in the Linux kernel, and evalu­

ates the effectiveness of the Easy-pass scheme in a network testbed. Finally, Section 5.6 

concludes the chapter with a summary of our work.

5.2 Why Easy-pass

The IPSec [59,108] protocol is often used to provide end-to-end secure communica­

tions at the network layer. It protects each IP packet, supporting address authentication, 

data integrity and confidentiality. Besides serving secure communications between two 

end-hosts, IPSec can also be used between two gateways to achieve VPN (Virtual Private 

Network) services over the public Internet In the VPN model, the end-hosts in a local area 

network are trusted entities. However, IPSec is heavy-weight, incurring non-negligible 

overhead in data transmission [12, 50, 71]. A 10% increase of end-to-end latency over­

head introduced by IPSec [50, 71] may not be a serious problem to file transfers or Web 

sessions. However, such an overhead may violate the delay requirements for delivering 

real-time data streams. In a study of Voice over IPSec, the effective bandwidth was ob­

served to be reduced up to 50% with respect to VoIP [12].

Although IPSec can achieve host-to-edge authentication by using the tunnel mode, its
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security model is an overkill for protecting the reserved network resources at edges. We 

compare the Easy-pass with IPSec AH (Authentication Header) in tunnel mode in three 

different aspects: (1) bandwidth overhead: the length of Easy-pass is 8 bytes; in contrast, 

the header overhead incurred by IPSec AH tunnel mode is 44 bytes, which is 5.5 times as 

much as that of Easy-pass. (2) memory overhead at edges: to counter reply-attack, IPSec 

maintains a window of 64 sequence numbers for each IP flow. Since the sequence number 

is 32-bit long, the memory requirement of anti-reply in IPSec is 4096 bits for each IP flow; 

in contrast, Easy-pass only introduces 32-bit flag and 8-bit base variables to achieve the 

same goal. Therefore, at an edge router, IPSec consumes over 100 times the memory space 

of Easy-pass. (3) CPU overhead: we measure the Easy-pass CPU overhead on an off-the- 

shelf 600 MHz Pentium IH PC with 256 RAM as shown in Section 5.5.3, which is 2/xs; in 

contrast, in a similar platform, the CPU overhead of IPSec authentication (HMAC-MD5) 

ranges from 15 to 30 times more than that of Easy-pass with different packet sizes [88], 

since IPSec authentication covers the entire IP packet. Note that the addition of IPSec 

encapsulation overhead will further widen the gap of CPU cycle consumption between 

IPSec and Easy-pass.

Overall, IPSec is not suitable for protecting reserved network bandwidth, especially 

in wireless LAN and DSL environments. Instead, we need a lightweight edge-resource 

access authorization mechanism to protect the end-hosts that subscribe to the premium 

service, against the flooding attacks from malicious neighbors. For such DQoS problems, 

Easy-pass is the solution and its overhead does not cause violation of the stringent timing 

requirements of real-time traffic.

The hop integrity schemes proposed by Gouda et al. [47] support router authentication 

and hop-by-hop message integrity. The hop integrity protocols are executed at all routers 

in a network, and provide a minimum level of secure communications between two adja­
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cent routers to defend against message modification and message replay. However, hop 

integrity does not keep track of individual data flows or sessions. It cannot prevent resource 

theft and message replay attacks between end-hosts and ISP edge routers. Moreover, the 

accumulation of per-hop overhead may violate the end-to-end QoS requirements.

Session-level admission control in the network QoS infrastructure has been studied 

for a decade or so. A number of schemes have been proposed [18, 58, 56,121], such as 

measured-based admission control [56], distributed admission control [58], and endpoint 

admission control [18], just to name a few. The fundamental goal of session-level admis­

sion control for real-time applications is to accommodate new session requests without 

compromising the ongoing sessions’ QoS guarantees. However, IP Easy-pass is a packet- 

level resource authorization mechanism, which protects the reserved network resource 

from attacking traffic.

To protect Internet servers and network resources, various packet filtering techniques 

have been proposed and used as defensive mechanisms [57,40,63,84,92,106,115,119]. 

The packet filters installed at Internet servers or their nearby firewalls [57, 92,119] only 

prevent such IP packets from reaching the victim, but cannot protect network resources 

from theft and abuse (e.g., insider attacks). The intermediate-router-based packet fil­

ters [63, 84, 106, 115] can block further propagation of flooding traffic in the network, 

but cannot protect the upstream network resources. The ingress/egress filtering tech­

niques [40] at ISP edge routers can prevent IP packets from being spoofed as an outsider, 

but cannot discriminate bogus IP packets with valid IP addresses within the same local 

ISP.
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53  Vulnerability of Reserved Network Resource

We will now show that the reserved network resource in the QoS infrastructure like 

DiffServ [37] is vulnerable to spoofed traffic, and the premium service [36] provided by 

an ISP is susceptible to flooding attacks. Two entities associated with the reserved net­

work resource are ISP edge routers — the service provider — and end-hosts who have 

subscribed to the premium service. Note that the IP Easy-pass mechanism, which is in­

dependent of any network QoS architecture, is not tied with the DiffServ architecture; 

and can be applied to any other QoS infrastructure. We discuss Easy-pass in the context 

of DiffServ, just for the sake of presentation and experimentation. Within the DiffServ 

infrastructure, EF (Expedite Forwarding) is intended to support premium service for real­

time applications that require strict guarantees on bandwidth, delay, jitter and packet loss. 

In this chapter, the network resource reserved for EF traffic at ISP edge routers, including 

link bandwidth and router buffers, is the target of malicious attacks.

53.1 Attacking Model and Assumptions

DQoS attacks in the data plane are made by malicious insiders or unfriendly neighbors, 

who have not subscribed to the premium service. We assume that the adversary is located 

in the same stub network as the victim, or at a different stub network but is connected 

to the same ISP. The adversary can be a cracked machine, an unhappy employee, or a 

naughty freshman. As the joint that connects the stub networks to the rest of Internet, each 

ISP edge router performs traffic conditioning and policing for EF traffic: any violation of 

SLA will be punished by dropping packets. However, such traffic conditioning works only 

if no packets are spoofed; on the contrary, a blindly dropping policy makes the premium 

service much more susceptible to the flood of spoofed EF packets. The reason for this is 

that the network resource reserved for premium service is only a small portion of the link
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bandwidth and buffer space at ISP edge routers, due mainly to the following usage and 

financial factors:

•  most of traffic will continue to be best-effort (BE), since BE service is free; and

•  those users who have subscribed to the premium service will not waste their money 

by overbooking the resource.

Therefore, flooding even a small amount of spoofed premium service traffic can easily 

compromise its quality.

There may be several internal routers and switches between an end-host and its ISP 

edge router. For example, from the EECS Department at the University of Michigan, we 

use t r a c e r o u t e  to track the route to www. c n n . com, and find that it takes 4 hops to 

reach m ic h . n e t ,  the regional ISP for the University of Michigan. The result is shown as 

follows. The topology of the campus network at the University of Michigan is shown in 

Figure 5.1. Within each segmental LAN environment, there is enough bandwidth — e.g., 

the link speed of CAEN (Computer-Aided Engineering Network) varies between OC-12 

(622 Mb/s) and OC-48 (2.4 Gb/s)— to support real-time applications, such as VoIP (Voice 

over IP). It is also a common practice that no traffic conditioning is performed at internal 

routers. We further assume that these internal routers and switches are not sabotaged, 

so that in-flight packets cannot be intercepted and modified. However, the adversary can 

eavesdrop all the traffic between the end-host and the ISP edge router, and inject any packet 

at his will.
> 1 eecs2s-gw (141.213.10.1)
> 2 CAEN-EECS-GW (141.213.3.4)
> 3 141.213.101.4 (141.213.101.4)
> 4 141.213.127.14 (141.213.127.14)
> 5 atm3-0xl.michnet8.mich.net (192.122.183.13)

Suppose m ic h . n e t  provides VoIP service, then between m ic h . n e t  and users at the 

University of Michigan, there must be SLAs on the provision of network resource for sup-
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Figure 5.1: The topology of UM campus networks

porting the voice traffic. Typically, the outgoing voice traffic will be policed at the edge 

router of m ic h .n e t  before traversing its ISP network. Carrying voice traffic does not 

cost much bandwidth, its provision at the ISP edge router should be a small portion of its 

link capacity. Under such a scenario, a malicious user, who has not subscribed to the pre­

mium service, inside the campus network may monitor the ongoing voice traffic, and then 

flood duplicate or spoofed packets, simply launching a reply attack. The perceived quality 

of VoIP service will be degraded significantly. Moreover, during certain peak times of the 

day (e.g., 10 am -  12 noon and 2 pm -  4 pm when most telephone calls are made), the in­

dividual callers may compete with each other for the reserved bandwidth. A rejected caller 

may disrupt the already-established calls by flooding spoofed packets, thereby degrading 

the ongoing phone conversations. Once several such conversations have been forced to 

abort, the resource left will allow the ISP edge router to admit such aggressive caller’s 

request even at these peak times.

We prevent such DQoS attacks by deploying the IP Easy-pass mechanism at the send­

ing end-host and the ISP edge router. The sending end-host generates and encrypts an 

Easy-pass, then attaches it to each outgoing EF packet. The ISP edge router decrypts and
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verifies the received Easy-pass, then detaches it from the EF packet before forwarding the 

packet to the next-hop. Before EF data transmission, the end-host must have already set up 

a secure channel with the ISP edge router for resource reservation signaling. By utilizing 

this secure channel, the end-host and the ISP edge router share the secret information for 

constructing Easy-passes. Such an assumption is quite realistic. Besides the ARQoS [1] 

and Authenticated QoS [2] projects, the IETF NSIS Working Group [110] was recently 

formed to develop a set of standards for end-to-end resource reservation and QoS signal­

ing between different administrative domains. Our Easy-pass scheme can be incorporated 

into the end-to-edge (host-to-network) signaling framework of NSIS so that the shared 

secrets can be exchanged between the end-host and the edge router once a trust relation­

ship has been established between them. Furthermore, The Easy-pass mechanism can also 

be extended to validate the legitimacy of high-tiered traffic across two adjacent ISP edge 

routers that belong to two different ISPs.

5.3.2 Flooding Attacks Disrupting Premium Service

To demonstrate the susceptibility of premium service to flooding attacks, we per­

formed a series of experiments on our testbed. The topology of our testbed is shown in 

Figure 5.2. Our testbed consists of one Linux-based software router r t c l l l  and three 

end-hosts. One end-host r t c l l 3  is used as the receiving host, and the other two as 

sending hosts — one r t c ! 9  is a normal service subscriber and the other r t c l l O  is the 

adversary. Based on a set of traffic control (tc) APIs in the Linux kernel, we built a router 

configuration agent and placed it on the router of our testbed in order to configure the 

traffic control blocks inside the router. At the end-hosts, we built traffic generation agents, 

which are a modified version of Iperf [35], to generate both TCP and UDP traffic. To 

facilitate the experimental setup, a fast Ethernet switch is used to connect the end-hosts.
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Each machine in the testbed runs on a 600 MHz Prentium HI processor with 256M RAM.

figure 5.2: The network topology of the DiffServ testbed

In order to support real-time traffic, we deployed the DiffServ EF PHB (Per-Hop Be­

havior) [36] at the router. In our experiments, 500Kbps of the link bandwidth between the 

router r t c l l l  and the receiving host r t c l l 3  is reserved for the EF traffic originating 

from the legitimate end-host r t c l 9 .  Inside the router, the TBF (Token Bucket filter) is 

used for EF traffic conditioning, and the packet scheduling policy is PQ (Priority Queue­

ing). Due to the simple testbed setup, the measured end-to-end delays are not realistic, so 

we do not include them in our chapter.

; ■  Packat Loss Rato j

Flooding Rat* (Kbps)

Figure 5.3: Vulnerability of EF traffic to flooding attacks (I) (loss rate)

A well-behaved EF traffic carried by UDP is transmitted from r t c l 9  to r t c l l 3 .  

The packet size is 1000 bytes. If no flooding attacks occur, the reserved network resource
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Figure 5.4: Vulnerability of EF traffic to flooding attacks (II) (jitter)

serves the EF traffic well, and achieves the goal of low loss rate, low delay and low jitter. 

However, under flooding attacks, even a small amount of flooding traffic can seriously 

degrade the quality of service received by EF traffic. As shown in Figure 5.3, for the 

flooding rate of 100 Kbps that is only one fifth of the reserved link bandwidth, the loss rate 

is increased from 0 to 19%. The measured end-to-end delay-jitter is plotted in Figure 5.4. 

Under the flooding rate of 100 Kbps, the jitter surges from 3/zs to 5.95 ms, clearly showing 

that the flooding traffic increases the jitter by several orders of magnitude. Such serious 

degradation in packet loss and jitter will make any real-time application like VoIP or video­

conferencing infeasible.

5.4 Description of IP Easy-pass

At an end-host subscribed to EF service, we create a unique pass and attach it to 

each outgoing EF packet. A valid pass authorizes its carrier packet to access the reserved 

network resource at downstream routers. In plain-text, a pass is just a random number. 

However, a sequence of passes for an EF data flow are generated according to certain 

rules. Both the sending host and the ISP edge router agree a priori on the generation
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rules. In this section, we will show how to generate a sequence of passes for an EF data 

flow, then discuss the choice of encryption/decryption algorithm, and finally, present the 

verification and embedding of Easy-passes.

5.4.1 Generation of Easy-Pass

The main parameters in generating a sequence of plain-text passes include a nonce A, 

a gradient A, and a direction 7 . Of the tuple {A, A, 7 }, the first two elements are random 

numbers, and the last one is a boolean. The nonce is the starting point in generating a 

sequence of Easy-passes. The gradient is the span between two consecutive Easy-passes. 

The direction determines if the trend of the Easy-pass sequence is in an increasing or 

decreasing order, and its value is decided at run-time.

Assuming that the number of bits in an Easy-pass is N , the range space fi of Easy- 

pass is 2n . The chosen space for the initial nonce A is [0, fi]; and that for the gradient is 

{ A | 0 <  A <  2fc fl (Q mod A ^ O ) ,  k «  N }. The growth direction of Easy-passes 

is dynamically determined by the chosen A. If A > Q/2, then the value of Easy-passes 

decreases; on the other hand, if A < 0 /2 , then the value of Easy-passes increases. Let 

d(.) be the direction of Easy-passes for EF traffic transmitted between end-host m  and the 

ISP edge router ‘0’ for increasing order and ‘1’ for decreasing order.

The plain Easy-pass is the sum of an initial random number A and the corresponding gradi­

ent A. Let V (.) be the value of Easy-pass for the n-th data transmission. The construction 

of a plain Easy-pass is described as follows:

where n is the transmission order of a data packet starting from 1. The algorithm for

dm( A) =  7  =  <
0 if A <  £2/2;

1 if A >  Cl/2.
(5-1)

V{n) =  A -1- (—l )7 * (n — 1) • A (5-2)
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constructing an IP Easy-pass is illustrated in Table 5.1. Step 0 in Table 5.1 shows the 

selection of two fundamental elements {A, A} during secure QoS signaling phase (e.g. 

via secure RSVP). The rest of steps in Table 5.1 present the construction algorithm of an 

Easy-pass. When the value of an Easy-pass reaches the lower .limit, 0, or the upper -limit, 

Q., we need to wrap around the value to continue within the range space. The number of 

packets per round is Q/A.

V(n) =  <
V ( n ) - f t  if V(n) > f2;

(53)
V(n) +  ft if V (n) < 0.

To prevent the wrap-around sequencer from coinciding with the previous values, in accor­

dance to number theory, we require that the gradient A be a prime number.

To exemplify the working mechanism of IP Easy-pass, a sequence of Easy-passes in 

plaintext are shown in Figure 5.5. In this simple example, we assume that the sample space 

for nonce A is [0,120], and there are Easy-pass sequences with respect to different initial 

nonces. The randomly-selected nonce of the first and second sequences are 57 and 67, 

respectively. Both have the gradient A =  17. Since the nonce of the first sequence, 57, is 

smaller than 60, the median of Q, the first sequence is increasing. In contrast, the second 

sequence is decreasing, due to its nonce being larger than 60. Once the plaintext value of 

Easy-pass is computed, we encrypt it and attach the encrypted Easy-pass to the outgoing 

EF packet as an IP trailer. We discuss the choice of encryption/decryption algorithm in the 

next section.

5.4.2 Choice of Encryption/Decryption Algorithm

Since encryption/decryption is performed on each EF data packet, the overhead in­

curred by the encryption/decryption algorithm should be as low as possible without de­

grading its security. In the Easy-pass mechanism, we employ RC-5 [93] to encrypt Easy-
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Table 5.1: Pseudocode of Constructing an Easy-pass

0. Before data transmission:

nonce«— A; //select a random number for nonce 
gradient«— A; // select a prime number from [0,2fc]

1. At the very beginning of data transmission:

n «— 1;
Wo <—A;
If (A < |ft/2J)

7"—0;
Else

7 « - 1;

2. On data transmission, build the n-th Easy-pass Wn as:

Switch (7) {
CaseO:

If(Wn >fi)
Wn <— Wn — Q; II wrap around

Case 1:
Wn * -W n -i-A ;
If(W „<0)

Wn *— Wn 4- f1; // wrap around
}
7 1 «— n +  1;

passes at the end-host, and then decrypt it at the ISP edge router. This is mainly because

(1) RC-5 is one of the fastest encryption/decryption algorithms available, and (2) RC-5 is 

fully parameterized, allowing flexible choices for its parameters. Briefly, RC-5 is a sym­

metric block cipher, in which the plaintext and ciphertext are fixed-length bit sequences. 

RC-5 is word-oriented, with a variable number of rounds and a variable-length crypto­

graphic key. It is fast and has low memory requirement. Finally, RC-5 provides high-level 

security when parameter values are chosen properly.

The parameters in RC-5 that are adjustable include the word size in bits w, the number
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5 7 < 6 0 <  67] Wrap Around

57 74 91 108 12 29

b b b b* * 7 * b bt »

66 59 32 15 118 101

Time

Figure 5.5: The sequence of Easy-passes

of rounds r, and the number of bytes in secret key b. Note that RC-5 uses an expanded 

key table, S , that is derived from the secret key. The size of table S  also depends on the 

number of rounds, which is equal to 2 • (r +  1) words. RC-5 allows a range of parameter 

values so that one may choose a certain set of parameters that balance the requirement 

between security and performance. Moreover, applications can adjust these parameters 

when their own requirements change.

To test the efficiency of RC-5, we choose a secure option of RC5-32/10/16, where 

w = 32, r  =  10, and b = 16, so that the secret key length is 128 bits. We conduct simple 

experiments on an off-the-shelf 550 MHz Pentium HI PC with 256M RAM, running Linux 

kernel 2.4.7. The CPU time for encryption and decryption on the option of 32/10/16 is only 

1/xs. Next, we vary the number of rounds and length of the secret key, to find out which 

one dominates the consumption of CPU cycles. As shown in Figure 5.6, the increase in 

the number of rounds from 10 to 80 linearly increases the CPU overhead, but increasing 

the secret key length does not affect the CPU overhead. Therefore, we choose 16 bytes 

(128 bits) for the secret key length, instead of 32 or 64 bits that are easier to break. On the 

other hand, we choose the number of rounds to be 10 in order to reduce the resulting CPU 

overhead.

The input (plaintext) and output (ciphertext) of RC-5 are two-word long. Since we
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Figure 5.6: CPU overhead for RC-5 encryption/decryption

choose the length of word as 32-bit, the length of Easy-pass is 64 bits. Then, the range 

space Q is 2s4. Such a large space guarantees avoidance of Easy-pass collision, i.e., no 

two data packets within the same real-time session will have the same Easy-pass. For 

example, even if the real-time session reserves a 100 Mbps bandwidth, its average packet 

size is only 50 bytes, and its duration lasts for four weeks, the required space to avoid any 

Easy-pass collision is still less than 240.

5.43 Verification of Easy-passes

At the ISP edge router, after decrypting the encrypted Easy-pass in each received EF 

packet, we verify its legitimacy according to the generation rule of Easy-passes. The first 

step of the verification procedure is simply checking if js m  integer, where Vd is the 

value of the decrypted Easy-pass of the received EF packet. The next step is to make sure 

that the integer is fresh, i.e., it did not appear before.

If there is no out-of-order transmission between the end-host and its ISP edge router, 

after decrypting the Easy-pass from each valid EF packet, the ISP edge router will see a 

sequence of random numbers starting from A with an interval of A. Assume that the last 

checking number, V<̂ A, is an integer / ,  then the correct checking number for the one being
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validated should b e /  +  l i f / > 0 o r J  — 1 if /  < 0. The correct sequence of checking 

numbers should be a series of {0,1,2,3, • • -} or {0, —1, —2, —3, - - •}.

However, in case of congestion, packet losses or out-of-order packet arrivals may occur 

at the edge router. To account for possible holes in the sequence of checking numbers, we 

introduce a range-window. Given the maximum possible out-of-order value within the 

first-mile environment is m, we set the range-window size to 2m. We also introduce two 

variables: one is base to record the checking number of the latest received in-order packet; 

the other is a 2m-bit long variable, called flag as an bit-index-array to record the received 

out-of-order packets, whose default value is zero. In this chapter, we set m as 16, so the 

range-window covers 32 packets. Then, fla g  is a 32-bit word. Note that with the change 

of the real condition, the value of m is adjustable.

An out-of-order delivery or packet loss is detected, when the difference between the 

incoming packet’s checking number and the base is larger than 1. As shown in Figure 5.7, 

at time <i, the base is 32 but the received packet’s checking number is 35. Since 35 — 32 =  

3 > 1, the out-of-order delivery or packet loss is detected. The value of base is not updated 

until the holes in the sequence are filled or the range-window reaches its limit later.

I I R eccedPK ka :_ J  Om-of-orierP«;tai

!B « r  ^1 The Fifit^uncrorRaiiee-Wiodcm
, | 1

s  I 32 | j 33 j : 34 j H ! 36 : I 37 : H S H
FlejOO 100000 F h * :0 0 l0 0 lll

Figure 5.7: Tracking the out-of-order delivery

In Figure 5.7, we only show one quarter of the range-window, and the first byte offlag 

is initially set to ”00000000” as default. When the packet with the checking number 35 

arrives, the third bit in the flag is set to ”1”, indicating that the packet has been received. 

Any later arrival of a packet with the same checking number will be treated as a duplicate
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and discarded Following this rule, at time t4, the first byte of flag becomes ”00100111” 

The index of the received packet in the flag is its checking number deducted by base. In 

this manner, the verification module keeps track of the holes in the sequence of checking 

numbers, and updates the list of holes by changing the corresponding bit in flag from ’O’ 

to ’ 1’ when one of them is filled
Pint Byte Second Byte Third Byte Fotxh Byte

1 1 1 1 1 1 1 1  I 0 1 0 10 1 1 1 I j 1 0 0 0 0 0 0 0  I 0 0 0 0 0 0 0 0  I 

I Q l Q! o u T n ^ i ^ O O 00000 I I 0 0 0 0 0 0 0 0 ^ 1  00000000

Figure 5.8: Left shift the flag for 8 bits to update the out-of-order state

Once the first byte of flag becomes ’OxFF or the range-window reaches its right-most 

end we shift the flag to left for 8 bits and reset the last byte as ’0x00’, as shown in 

Figure 5.8. Then, we increase the base by 8 correspondingly. This shift is very important 

to seamlessly keep track of the status of the out-of-order delivery using as little memory 

as possible. The pseudocode of verifying an Easy-pass is shown in Table 5.2.

In summary, the filtering rule for weeding out attacking traffic at the ISP edge router is 

simple: if the checking number meets any one of the following conditions: (1) it is not an 

integer, (2) it is smaller than the value of base-, and (3) its value is larger than the value of 

base but the corresponding bit in flag is already set to 1. Then, the packet carrying such a 

pass will be identified as spoofed and hence discarded without further processing.

5.4.4 Embedding of Easy-Pass

We embed an Easy-pass, which is 64 bits long, as the trailer to an IP packet. The 

attachment of an Easy-pass is shown in Figure 5.9. Although the occurrence of packet 

fragmentation between an end-host and its ISP edge routers is rare, the possible fragmen­

tation will detach the pass from the fragments, except for the last one. A malicious attacker
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Table 5.2: Pseudocode of Verifying an Easy-pass

Decrypt the Easy-pass to get Vj

Cn = | ̂  - 1; // derive the absolute checking number
If (Cn is not integer)

discard the packet // attacking packet 
Else

i = Cn - B; // get the index 
If (i < 0) 

discard the packet // duplicate packet 
Else

If ( i > 1) // out-of-order 
Switch (feg[i]> { // check the bit in feg 

Case ’1’ : 
discard the packet // duplicate packet 

Case ’O’ : 
accept the packet; 
feg[i] = T ;
If (feg[l:8] =  ’OxFF || feg[32] =  ’1’) 

feg «  8; // left shift 8 bits 
B = B + 8; / /update the base 

// no holes in the fi rst byte or 
// reaches the highest-end

}

I f( i  =  T ’) / / in the right track 
accept the packet 
B = Cn', II update the base

can exploit the fragmented packets to steal the reserved resource. To overcome the frag­

mentation problem, between an end-host and the ISP edge router, we require that an MTU 

discovery should be performed before data transmission, guaranteeing no fragmentation 

in the corresponding data flow.

The recent Internet measurement [97] has shown that less than 1% IP packets in the In­

ternet are fragmented. More importantly, it confirmed that IP packet fragmentation is still 

“considered harmful.” Therefore, enforcing no fragmentation not only fills the security 

holes, but also improves end-to-end performance.
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Figure 5.9: Embedding the Easy-pass into an IP packet

One advantage of attaching the Easy-pass value as a trailer to each IP packet is that it 

is attached by the end-host and subsequently removed upon verification by the edge router 

before passing the packet on to the ISP network. Therefore, none of the downstream 

routers and the receiving end-hosts need to be modified to accommodate the proposed 

scheme. Another advantage is that like MPLS, it allows attachment of the Easy-pass value 

completely transparent to the transport protocol (TCP, UDP) used by the application-layer.

5 .5 Implementation and Evaluation

The IP Easy-pass mechanism is implemented in the Linux kernel, and its effective­

ness against flooding attacks is evaluated on the DiffServ testbed. In this section, we first 

describe the implementation of Easy-pass, and then perform a series of experiments to 

demonstrate the Easy-pass’s protection on real-time traffic. Finally, we measure the over­

head incurred by Easy-pass and discuss its impact on end-to-end performance.

5.5.1 Implementation of Easy-pass

We implemented the IP Easy-pass scheme as two loadable Linux kernel modules. One 

module, HostModule, is located at the end-host which calculates and attaches 64-bit Easy- 

passes to the packets; and the other module, RouterModule installed at the edge router, 

extracts the Easy-pass and verifies the packet before forwarding it to the next-hop.

The HostModule uses a hook that has been added to IP layer transmission function 

(ip_bu ild_xm it ())  of the Linux kernel version 2.4.7. After preparing the IP packet
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for transmission on the network, HostModule calculates the Easy-pass value, based on the 

current packet count from the designated data flow. The module then encrypts the field at 

run-time using RC5 and attaches it after the payload as the trailer of the packet. The whole 

packet is then placed on the outgoing interface.

On the edge-router side, RouterModule uses a hook added to the IP layer receiving 

function (ip _ rcv  ())  to retrieve the encrypted Easy-pass value from the IP packet The 

module then decrypts and verifies the pass. If the packet is found to have the correct Easy- 

pass value, it is allowed to proceed through the protocol stack. Otherwise, the packet is 

dropped.

Compared with inserting Easy-pass into IP header option fields, attaching the Easy- 

pass as a trailer has the advantage of being transparent to the protocol checking and pro­

cessing. Neither header modification nor payload data shifting is required in this case. 

The only fields that have to be updated are the IP packet total length and the IP checksum, 

which are done inside our modules. This eases the implementation of our Easy-pass.

5.5.2 Effectiveness Against Resource Theft

To validate the effectiveness of Easy-pass against malicious attacks, we performed a 

series of experiments on our DiffServ testbed as described in Section 5.3.2. Basically, 

our experiments can be divided into two groups: one is for protecting low-rate EF traffic, 

such as audio streams, and the other is for protecting high-rate EF traffic, such as video 

streams. Since multimedia traffic (real-time audio and Video) is usually transported by 

UDP [64,70], all the EF traffic in our experiments are carried by UDP.

Protection of Low-rate (Audio) Traffic

As the maximum bandwidth required for supporting VoIP is 80 Kbps [6], we set the 

source sending rate and the reserved bandwidth at the router to 80 Kbps, respectively.
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w/o EZ-Pass w/EZ-Pass
Flood Rate 254 502 254 502

20K 22% 21% 0 0
40K 38% 35% 0 0
60K 45% 40% 0 0
80K 54% 54% 0 0
120K 68% 71% 0 0
160K 80% 85% 0 0

Table 53: Packet-loss rate for low-rate EF traffic

w/o EZ-Pass w/ EZ-Pass
Flood Rate 254 502 254 502

20K 6.8ms 9.3ms 5.2 fjs 5.8/xs
40K 7.2ms 10.2ms S.Sfjs 6.3/xs
60K 7.4ms 103ms 6.1/js 6.7 (is
80K 7.5ms 10.8ms 6.2/xs l.Ofis
120K 7.9ms 11.2ms 6.5(jis 7.3/zs
160K 8.6ms 11.9ms 6.7 fis 7.8 (is

Table 5.4: End-to-end delay-jitter for low-rate EF traffic

Since the typical packet sizes for real-time audio are 254 and 502 bytes [70] (depending on 

the encoding rate), we vary the packet size from 254 to 502 bytes in this set of experiments.

Table HI illustrates the EF packet-loss rate for different flooding rates ranging from 

20 Kbps — one fourth of reserved bandwidth — to 160 Kbps, twice the reserved band­

width. Without the Easy-pass, the packet-loss rate ranges from 21% to 80%. Under the 

same flooding rate, the laiger packet size incurs a slightly higher packet-loss rate, due to 

a slightly larger burst size. In contrast, with the Easy-pass, all the attacking packets are 

identified and discarded. That is, the reserved bandwidth is saved, and hence, no legitimate 

packets are dropped.

Table IV presents the corresponding results for end-to-end delay-jitter obtained from 

the same set of experiments. Without Easy-pass the jitter ranges from 6.8 to 11.9 ms. Also, 

for the same flooding rate, the laiger packet size incurs a slightly higher jitter. In contrast,
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w/o EZ-Pass w/ EZ-Pass
Flooding rate 1000 800 1000 800

300K 22% 21% 0 0
500K 30% 27% 0 0
800K 37% 33% 0 0
1M 42% 38% 0 0

1.2M 48% 44% 0 0
1.5M 57% 53% 0 0
3M 67% 62% 0 0

Table 5.5: Packet-loss rate for high-rate EF traffic

with Easy-pass, the jitter remains in the same order of magnitude as the one without any 

flooding attacks.

Protection of High-rate (Video) Traffic

Since MPEG-1, a popular video compression technique, has an encoding rate of 1.5 

Mbps, in our second group of experiments, we set the source sending rate to 1.5 Mpbs, 

and reserve 1.5 Mbps bandwidth at the router. Since the typical packets for real-time video 

are 800 and 1000 bytes long [64], the EF packet size is varied from 800 to 1000 bytes in 

these experiments.

Table V presents the EF packet-loss rate for different flooding rates ranging from 300 

Kbps, one fifth of reserved bandwidth, to 3 Mbps, twice the reserved bandwidth. Without 

Easy-pass, the packet loss rate ranges from 21% to 67%. As in the low-rate case, for the 

same flooding rate, the laiger packet size incurs a slightly higher packet-loss rate. With 

Easy-pass, all the flooding traffic is identified and discarded, hence protecting the reserved 

bandwidth. None of the legitimate packets were dropped.

Table VI presents the results of end-to-end delay-jitter for the EF traffic. Unsurpris­

ingly, without the Easy-pass, the jitter ranges from 2.1 to 4.3 ms, while the Easy-pass 

preserves the jitter at the same level of the one without any flooding attacks. In general,
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w/o EZ-Pass w/ EZ-Pass
Flooding rate 1000 800 1000 800

300K 2.8ms 2.1ms 2.0/zs 2.0/zs
500K 3.6ms 2.4ms 2.3/zs 2.2/zs
800K 3.8ms 2.9ms 2.5 /zs 2.3 /zs
1M 4.2.ms 3.3ms 2.8/zs 2.6/zs

1.2M 4.5ms 3.6ms 3.4/zs 3.1/zs
1.5M 4.8ms 3.9ms 3.9 /zs 3.5 /zs
3M 5.2ms 4.3ms 4.3 /zs 3.9 fjs

Table 5.6: End-to-end delay-jitter for high-rate EF traffic

the experimental results of the high-rate case are similar to those of the low-rate case, 

demonstrating the effectiveness of Easy-pass against flooding attacks.

5.5.3 Overhead of Easy-pass

It is more important to characterize the overhead of Easy-pass introduced at the ISP 

edge router than that at an end-host, because the end-host can allocate more resources for 

each outgoing real-time packet than the edge router can. Moreover, the verification of 

Easy-pass incurs more CPU cycles than the Easy-pass embedding procedure at the end- 

host

The per-packet overhead of Easy-pass, which is independent of packet size and the 

sending rate, is included in the processing overhead of an EF packet at the router. We 

measure the processing overhead for each EF packet at the router with and without the 

Easy-pass. In this set of experiments, we vary the reserved bandwidth from 100 Kbps to 

2 Mbps, and the packet size from 100 to 1000 bytes. The network resources are well- 

provisioned and the EF traffic is well-behaved, so there is no queueing delay for the EF 

traffic. The measured per-packet processing time in the case of an embedded Easy-pass is 

8 jxs, whereas the same without the Easy-pass is 6 /zs. The results are shown in Figure 5.10. 

The overhead incurred by the verification of Easy-pass is 2 /zs. For the purpose of com-
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Figure 5.10: Processing overhead with and without Easy-Pass

parison, the authentication overhead of the hop-integrity mechanism [47], which is 37 ps, 

is also shown in the Figure 5.10. This value was derived in a separate study [47] using a 

slightly faster machine — a Pentium IE 730 MHz running Linux OS. More importantly, 

the verification of Easy-pass is performed only once at the ISP edge router, not at every 

downstream router. Since the average end-to-end delay between two Intemet-hosts ranges 

from tens to hundreds of milliseconds, the processing overhead of Easy-pass is negligible.

Each Easy-pass incurs the space overhead of 8 bytes. In the context of video traffic, in 

which the typical packet size is 800 or 1000 bytes, the space overhead of Easy-pass is 1% 

or 0.8%. In the context of audio traffic, the space overhead is increased to 3.1% or 1.5%, 

with respect to the 254 or 500 bytes long packets. Such an increase of space overhead is 

acceptable to most users. To further reduce the space overhead, we can trade security for 

performance by decreasing the length of Easy-pass from 64 to 32 bits.

5.6 Conclusion

In this chapter, we proposed a fast and lightweighted IP network-edge resource ac­

cess control mechanism, called IP Easy-pass, to protect reserved network resources at
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edge devices from theft and abuse. By conducting experiments on a DiffServ testbed, we 

demonstrated the vulnerability of the reserved network resource to flooding attacks, and 

the need for DP-layer resource access control. In our scheme, a unique, encrypted, pass is 

attached to each legitimate real-time packet at the end-host The ISP edge router validates 

the legitimacy of each incoming real-time packet simply by checking its pass. We de­

scribed the creation of Easy-pass at the end-host and its verification procedure at the ISP 

edge router using the RC5 enciyption/decryption algorithm. The Easy-pass mechanism 

has been implemented as loadable Linux kernel modules.

We conducted a series of experiments on the DiffServ testbed to evaluate the effec­

tiveness of Easy-pass against flooding attacks. The experimental results have shown that 

the Easy-pass mechanism effectively shields the reserved network resources from spoofed 

packets — it is shown to protect the legitimate packets from either loss or increased end- 

to-end delay-jitters for all the flooding rates we considered. Moreover, we measured the 

computational overhead of Easy-pass, and found it to be a negligible fraction (a few mi­

croseconds) of the processing time of each packet at both the end-host as well as at the 

edge router. Since the verification of Easy-pass is done at the ISP edge router only, not 

every downstream router, the Easy-pass overhead added to the end-to-end delay of an 

application traffic stream is negligible when compared to typical delay values of tens of 

milliseconds. Overall, DP Easy-pass is a very lightweight and effective mechanism for 

providing network-edge resource access control.
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CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation has focused on countering distributed denial of service (DDoS) at­

tacks — one of the hardest network security problems. Our proposed mechanisms demon­

strated their protection for Internet services and network resources. We now give an 

overview of the main contributions of the dissertation and outline some related problems 

that warrant further investigation.

6.1 Research Contributions 

rIP Router Architecture:

Based on the concept of layer-4 service differentiation and resource isolation, we de­

veloped a transport-aware IP router architecture that can be utilized as a built-in mecha­

nism to counter DDoS attacks. The key components of the rIP router architecture are the 

fine-grained QoS classifier and the adaptive weight-based resource manager. The classi­

fier divides the BAs (Behavior Aggregates) into thinner aggregates. Then, the adaptive 

resource manager provides fine-grained service differentiation and resource isolation for 

these thinner aggregates. Our extensive evaluation study has shown that the flooding traf­

fic is significantly throttled and most of flooding packets are dropped in a close proximity 

to their sources.

150
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SYN-dog:

TCP SYN flooding is the most common DDoS attack, which dominates in the avail­

able attacking tools and the number of DoS attacks known to date [75]. We proposed a 

simple and robust mechanism, called SYN-dog, to sniff SYN flooding attacks. The sim­

plicity of SYN-dog lies in its statelessness and low computation overhead. SYN-dog uti­

lizes the distinct protocol behavior of TCP connection establishment and teardown, which 

consists of SYN-HN pair and SYN-SYN/ACK pair, for SYN flooding detection. More­

over, SYN-dog is insensitive to sites and access patterns: the non-parametric Cumulative 

Sum (CUSUM) method [19] is applied, making SYN-dog robust, much more generally 

applicable and its deployment easier. The efficacy of SYN-dog is evaluated and validated 

by trace-driven simulations. The evaluation results show that the SYN-dog achieves high 

detection accuracy and short detection time.

Hop-count Filter (HCF):

While an attacker can forge any field in the IP header of a spoofed packet, he cannot 

falsify the number of hops the packet takes to reach its destination, which is solely deter­

mined by the Internet routing infrastructure. Based on this observation, we presented a 

novel hop-count-based filter to weed out spoofed IP packets. We built an accurate IP-to- 

hop-count (IP2HC) mapping table, while using a moderate amount of storage, by cluster­

ing address prefixes based on hop-count. To capture hop-count changes under dynamic 

network conditions, we also devised a safe update procedure for the IP2HC mapping table 

that prevents pollution by HCF-aware attackers. We implemented HCF in the Linux ker­

nel and evaluated the benefit of HCF with experimental measurements. Our experimental 

results have shown that HCF is indeed effective in countering IP spoofing by providing 

significant resource savings.
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IP Easy-Pass:

To protect reserved network resources at edge devices from DQoS (Denial of Quality 

of Service) attacks, we proposed a fast and light-weighted IP network-edge resource access 

control mechanism, called IP Easy-pass. By conducting experiments on our DiffServ 

testbed, we demonstrated the vulnerability of the reserved network resources to flooding 

attacks. In our scheme, a unique, encrypted, pass is attached to each legitimate real-time 

packet at the end-host The ISP edge router validates the legitimacy of each incoming real- 

time packet simply by checking its pass. The Easy-pass mechanism has been implemented 

as loadable Linux kernel modules. Our experimental results have shown that the Easy- 

pass mechanism effectively shields the reserved network resources from spoofed packets. 

Moreover, we measured the overhead of Easy-pass, and found it to be a negligible impact 

on end-to-end performance.

6.2 Future Directions

As the Internet has become indispensable to our daily lives, the need for fast and 

always-on Internet services is increasing. This section presents several issues that stem 

directly from this dissertation, and a few avenues of future research.

The non-parametric CUSUM methodology [19] employed by the SYN-dog can be 

easily extended to detect other types of flooding attacks, such as TCP ACK flooding and 

ICMP flooding attacks. Based on their distinct protocol behaviors, the ACK-dog or ICMP- 

dog can detect an ongoing flooding attack by observing the violation of normal protocol 

behaviors: for ACK-dog, the imbalance between TCP ACK packets and the corresponding 

TCP data packets in the reverse direction; for ICMP-dog, the imbalance between outgoing 

ICMP Echo requests and incoming ICMP Echo replies. Moreover, based on the CUSUM 

methodology, we can build a framework for traffic monitoring, in which the traffic monitor
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agents are installed at different ISP edge routers to detect abnormal traffic patterns between 

two adjacent ISPs.

There are several issues that warrant further research on HCF (Hop-Count Filtering). 

First, the existence of NAT (Network Address Translator) boxes, some of which may con­

nect multiple stub networks, could make a single IP address appear to have multiple valid 

hop-counts at the same time. This may reduce our filtering accuracy. Second, to install 

the HCF system at a victim site, we need a systematic procedure for setting the parameters 

of HCF, such as the frequency of dynamic updates. Third, we would like to build and de­

ploy HCF in various high-profile server sites to see how effective it is against real spoofed 

DDoS traffic.

Note that there is an arms-race between DDoS attacks and the corresponding defense 

mechanisms. The available DDoS attacking tools are constantly evolving, and new classes 

of DoS attacks are emerging with the newly-found security weaknesses, e.g., the low- 

bandwidth denial of service attacks that exploit algorithmic deficiencies in many common 

applications’ data structures [30]. The emergence of new DDoS attacks makes it more 

challenging to build an effective counter measure. The latest DDoS attacks target root 

DNS servers and BGP routers [9], instead of high-profile Web servers. Since root DNS 

servers and BGP routers are the backbone of the Internet infrastructure, knocking off a 

root DNS server or compromising a BGP router will have much more devastating effects 

on the whole Internet.

Furthermore, a relatively homogeneous software base coupled with high-speed Internet 

connections provides an amenity of climate for the widespread of Internet worms. The 

increasing outbreaks of Internet worms pose an immense risk to the overall security of 

the Internet As the most recent Sapphire/Slammer worm began spreading throughout the 

Internet [73], it doubled in size every 8.5 seconds. It infected more than 90 percent of
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vulnerable hosts within 10 minutes. Each infected machine is compromised, and could be 

used as a flooding source in a massive DDoS attacks later. So far, the Internet worms have 

been mostly nuisances, e.g., the analysis of the Sapphire/Slammer worm revealed no intent 

to harm its infected hosts [73]. However, in the future the Internet worms coupled with 

DDoS attacks will be more virulent, and thus, result in a chaos in the Internet. Currently, 

there is no effective mechanism to defend against the worm threat [74]. How to detect and 

contain such fast spread of Internet worms in real time, is an open issue.
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