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CHAPTER 1 

INTRODUCTION

Recent advances in network technology has brought about substantial increases in band­

width along with wide-spread Internet access through high-speed connections beyond the 

corporate and academic communities and into homes. This has resulted in the introduction 

o f a large number of applications with a wide range of quality-of-service (QoS) require­

ments [121. Representative of these new applications are those with real-time traffic, such 

as video and audio. This real-time communication [2] [75] requires guarantees such as 

bounded end-to-end delay, bounded cell-loss rates, and guaranteed bandwidth from the net­

work. Today’s packet-switched networks can employ a variety of methods to provide the 

QoS guarantees for present and future applications.

As a packet traverses the network towards its destinations, contention for resources at 

each node within the network will result in queueing of some packets while others receive 

service. The goal of the various QoS mechanisms is to determine how to allocate resources 

to the queued packets such that the QoS requirements are satisfied for the corresponding 

applications. Assuming packets can be efficiently classified (classification determines the 

application, flow, or connection to which the packet belongs), mechanisms such as packet 

marking (which determines the packets to be dropped with a certain probability in case of 

buffer overflow), traffic shaping, and link scheduling can be used to deliver QoS.

The goal of traffic shaping is to monitor and control connections so that they abide by 

their connection traffic parameters. Because schedulers can distort the traffic envelope of 

a connection, packets need to be re-shaped if they are to receive their desired QoS and not 

disrupt other connections down stream. Link schedulers multiplex among packets from dif­

ferent connections onto a single link for transmission. The order in which queued packets

I
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are served is determined by the link-scheduling algorithm. When a packet enters a node, it 

is first placed into the shaper. If the shaper determines that the packet is abiding by its traffic 

parameters, the packet is considered eligible for transmission and moved into the scheduler 

queue, which will eventually schedule it for transmission. Otherwise, the packet will 

remain in the shaper until it becomes eligible.

Shaping and scheduling algorithms differ in the QoS guarantees they can provide to 

individual connections (e.g., end-to-end delay bounds, delay jitter, distribution of unused 

bandwidth). However, realizing the benefits of the algorithm requires an efficient imple­

mentation which can process a large number of packets on a high-speed link. Due to the 

very high link transmission rates and very small amount of time available to process each 

packet, a hardware implementation of the shaper and scheduler is needed to transmit pack­

ets at link speeds. For example, a 64 byte (1,500 byte) packet on a 1 Gbps link allows for 

5,120 ns (12,000 ns) between successive packet transmissions. In a worst-case scenario the 

scheduler must determine the packet to transmit every 5,120 ns (12,000 ns), while the 

shaper is moving one or more eligible packets into the scheduler within the same 5,120 ns 

(12,000 ns). At the same time, the shaper must also process one or more newly-arrived 

packets. Software solutions are typically not fast enough to keep up with the packet trans­

mission rate due to the associated overheads (i.e., in requesting service from the processor, 

sending and retrieving data from the processor). On the other hand, a hardware solution can 

operate close to the operating speeds of the link.

This dissertation deals with the issues involved in the design and implementation of 

hardware architectures for traffic shaping and link scheduling. In particular, we focus on 

the key basic components of any traffic shaping and link scheduling implementation which 

must operate on every packet. Migrating these simple and highly repetitive tasks to a hard­

ware implementation can significantly improve performance. However, this performance 

must not limit the overall flexibility of the implementation, as the specific traffic shaping 

and link scheduling algorithms implemented can change in response to the current needs of 

the network, user, or network designer. This thesis examines several hardware architec­

tures, with an emphasis on the following three attributes:

Performance: An effective implementation requires that it be able to process a very large

2
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number of packets within a very small amount of time.

Scalability: Changing the design parameters for an implementation should not require 

changes to the architecture. In other words, the architecture must scale easily to different 

parameters. Also, scaling to larger design parameters should not degrade the performance 

of the implementation.

Flexibility: The architecture must be capable of supporting a wide range of traffic shaping 

and link scheduling algorithms. A hardware implementation does not necessary mean a 

fixed solution. A flexible architecture allows a network designer to change the algorithms 

to adapt to different demands.

By incorporating these features, we propose architectures which combine the performance 

of a hardware implementation with the flexibility of a software implementation capable of 

implementing any mix of traffic shaping and link scheduling algorithm.

1.1 Application Domain

This research concentrates on traffic shaping and link scheduling in a packet-switched net­

work. Each node within the network provides a switching function by forwarding incoming 

packets to their correct outgoing links. For the traffic shaper and link scheduler architec­

tures discussed in this paper, we consider a common router/switch architecture, as shown 

in Figure 1.1. Throughout this thesis, we will use the words “switch” and “router" inter­

changeably. The router [40] is characterized by a packet processing unit at each incoming 

and outgoing link, a shared buffer space and output queueing [36]. The input link process­

ing units provide per-packet services such as packet classification and route decision. Each 

output link incorporates a traffic shaper and link scheduler. Although other memory con­

figurations are possible [73], output buffering offers better performance than input buffer­

ing while a shared buffer configuration has better memory utilization. When a packet enters 

a node, the packet classifier determines the connection to which the packet belongs (we will 

refer to this as the flow/connection id/number) [35] [42] [84], while a route decision is 

made to determine which output link to forward the packet [34] [37] [55] [83], At the same

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



node

traffic sh ap ing

link schedu ling

p ac k e t classification 

rou te  dec ision

Sw itching Function

S h a red  Buffer

input p ack e t p ro cesso r ou tpu t p ac k e t p ro c e s s o r

Figure 1.1: Simplified block diagram of a single node with a shared buffer and 
per-link packet processing.

time the packet is stored in the buffer and an address (pointer to memory) and length of the 

packet are returned. A tag consisting of the flow id, a pointer to the packet, and the packet’s 

length, is created for each packet and forwarded to the output link specified by the route 

decision.

At the output packet processor, the tag is processed by the traffic shaper and placed into 

a shaper queue. It will remain there until the shaper decides the flow is conforming to its 

traffic parameters. When the packet corresponding to the tag is eligible for transmission, 

the shaper calculates its priority and releases it to the scheduler by writing the tag into the 

scheduler queue. The job of the scheduler is to determine the next packet to transmit when 

the link becomes idle, with the packet chosen among those in the scheduler queue based on 

the priorities of the packets. The goal of this thesis is to identify the mechanisms required 

in a traffic shaper and link scheduler implementation, study the issues and problems that 

need to addressed for an effective implementation, and propose new architectures for 

implementing these mechanisms.

1.2 Contributions of the Dissertation

This dissertation makes several research contributions related to the design and implemen­

tation of traffic shaping and link scheduling algorithms.

4
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Priority queue architectures: We highlight the challenges of building scalable priority 

queue architectures, and propose two new architectures which scale to the large number of 

packets (N) and the large number o f priority levels (P) necessary in supporting modem 

high-speed networks and a wide range of algorithms.

Traffic shaper and link scheduler architectures: We highlight the challenges in building 

a scalable, flexible, and effective integrated traffic shaper and link scheduler architecture. 

We propose two new architectures which use novel techniques to solve key problems in the 

design o f an integrated mechanism.

Network interface architecture: We motivate the need for providing traffic shaping and 

link scheduling services on and end-host server, and present a network interface architec­

ture with a dedicated shaper-scheduler mechanism.

A shaper-scheduler processing (SSP) engine: We analyze a wide range of traffic shaping 

and link scheduling algorithms and extract a common framework. Based on this study, we 

develop a small set of instructions and present a microcontroller-based shaper-scheduler 

processing engine which provides the flexibility of a software implementation with the 

high performance of a hardware solution.

A hardware/software co-design and co-simulation tool: Finally, we present a simple C- 

based event-based simulator which can handle both hardware and software components of 

a design without the need for expensive communication mechanisms, such as inter-process 

communications and exchange of control and data information, between the hardware and 

software components. This tool allows for the quick implementation and evaluation 

through simulation at a fraction of the time required by traditional hardware simulators 

such as NCVerilog.

1.3 Outline of the Dissertation

The rest o f this dissertation is organized as follows:

Chapter 2 includes a detailed comparison of four hardware priority queue architectures 

from the current literature. Based on these comparison results, two new architectures are

5
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presented. Using the Verilog hardware description language and the Epoch silicon com­

piler, we designed and simulated these two new architectures, as well as the four existing 

architectures. The simulation experiments compare the designs across a range of priority 

queue sizes and performance metrics, including enqueue/dequeue speed, chip area, and 

number of transistors.

Chapter 3 begins with a detailed study of several well-known traffic shaping and link 

scheduling algorithms, and we detail a set of key mechanisms that any implementation will 

require. We compare several existing shaper-scheduler architectures, and present two new 

architectures. An evaluation of each architecture focuses on its scalability in terms of flex­

ibility and implementation issues.

Chapter 4 presents an end-host server network interface architecture with a dedicated 

shaper-scheduler mechanism. A study of alternative solutions provides the motivation for 

dedicated support on the network interface. Simulation experiments show how an audio/ 

video streaming server can take advantage of our architecture to provide improved perfor­

mance (as seen by end clients) for a large number of clients.

Chapter 5 breaks down traffic shaping and link scheduling algorithms to obtain the basic 

set o f instructions and data structures necessary to program them. Based on this study, a 

shaper-scheduler processing engine and a complete shaper-scheduler architecture is pre­

sented. Several example implementations using different mixes of algorithms are shown to 

evaluate the overall architecture’s efficacy and performance.

Chapter 6 describes a hardware-software codesign and co-simulation tool which allows 

a designer to model and simulate a mix of high-level and detailed descriptions of both soft­

ware and hardware components of a design on the same simulation platform.

Chapter 7 concludes this dissertation with a brief summary of our contributions and 

examines possible future directions for this research.
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CHAPTER 2 

HARDWARE PRIORITY QUEUE ARCHITECTURES

2.1 Introduction

The simplest link-scheduling algorithm is first-in-first-out (FIFO). The problem with this 

approach is that it is characterized by poor utilization of resources and poor performance. 

In particular, a FIFO scheduler cannot admit many new connections, especially when the 

link services connections with a wide range of traffic parameters and QoS requirements. 

Other link-scheduling algorithms achieve better performance by assigning a priority 

number to connections or individual packets. This priority field can represent a traffic class, 

a deadline, a virtual finishing time, or a sequence number, depending on the link-schedul­

ing algorithm. Once the priority number is determined, a priority queue ranks packets based 

on the priority assignment. The net effect of the link-scheduling algorithm and the priority 

queue is to interleave the packet transmission from the various connections such that each 

connection’s QoS requirements are satisfied.

The priority queue is essential in implementing the link-scheduling algorithm. Due to 

the high-speed at which the networks operate, a hardware priority queue [60] is needed to 

transmit packets at link rates. For example, in a 155 Mbps (2.5 Gbps) Asynchronous Trans­

fer Mode (ATM) network, an ATM cell can be transmitted every 2.7 psecs (0.17 psecs). In 

a worst-case scenario the priority queue must determine the next highest priority cell 

(dequeue operation) every 2.7 psecs (0.17 psecs), while being able to accept new cells 

(enqueue operation) from all incoming links within the same 2.7 psecs (0.17 psecs). Soft­

ware solutions, which are logarithmic in time complexity, are typically not fast enough to 

keep up with the packet transmission rate due to the associated overhead (i.e., in requesting 

service from the processor, sending and retrieving data from the processor). On the other

7
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hand, a hardware solution can operate close to the operating speeds of the link. Also, a hard­

ware solution can overlap enqueue and dequeue operations with packet transmission to 

avoid wasting link bandwidth.

As we mentioned in the previous chapter, after a packet is stored in the shared buffer, a 

tag is used within the scheduler to refer to that packet. Within the context o f a priority 

queue, this tag consists of a valid/invalid bit, an address (log2N bits), and a priority (log,P 

bits). Here N is the total storage capacity of the shared buffer measured in number o f pack­

ets, while P is the number of priority levels supported in the link-scheduling algorithm.

The priority queue is responsible for storing the entries and calculating the highest-priority 

entry when the output link is ready to transmit another packet. So, regardless of internal 

architecture the priority queue must provide for the storage of packet tags, initialization 

(clear contents of the priority queue), enqueue of new tags, and dequeue of the highest pri­

ority tag.

Since a switch’s buffer size (N) and the number of priority levels (P) needed by the link 

scheduler can be both very large, the priority queue must be easily scalable to these two 

parameters. That is, the total entry capacity of the priority queue must match the total 

packet capacity of the shared buffer, and it must support a large number o f priority levels. 

At the same time, the priority queue’s performance must not fall behind link rates as it is 

scaled to N and P. If this were to happen, then a link will remain idle even though there are 

packets to be transmitted. Finally, the priority queue design should scale well with the 

number of output ports in the shared-memory switch, instead of requiring completely sep­

arate logic for each outgoing link, as in existing architectures.

We present two new priority queue architectures which were designed to minimize the 

effects o f scaling (with respect to N and P). The first new architecture reduces and controls 

the performance loss due to increasing the queue capacity without adding a large amount 

of extra hardware. This was done by combining the salient features of two existing priority 

queue architectures, the shift register [13][15][74] and systolic array [44][45]. We then 

extend this architecture to service multiple links instead of just one. Both o f the new archi­

tectures perform well enough to support very high-speed links, and both provide constant­

time (in terms of number of clock cycles) enqueue and dequeue operations. But before 

describing our new architectures, we first describe four priority queue architectures -

8
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binary tree, FIFO, shift register, systolic array -  from the current literature in Section 2.2. 

A brief description o f each architecture and operation is given, followed by a discussion on 

limitations to their scalability. Two new architectures are then proposed and evaluated in 

Section 2.3 (hybrid systolic/shift) and in Section 2.4 (multiple link). Each of these two sec­

tions also gives a detailed explanation of the new architecture’s operations. Section 2.5 pre­

sents the results of some implementations of the various priority queues for several switch 

parameters. The implementations were done using the Verilog hardware description lan­

guage and the Epoch silicon compiler for several combinations of P (up to 256) and N (up 

to 1024). These results show limitations of the existing architectures when scaled to large 

N and P, and are compared to implementations of the new architectures. Section 2.6 con­

cludes with a summary of the chapter.

2.2 Priority Queue Architectures

This section presents four priority queue (PQ) architectures from the current literature. The 

FIFO and the binary tree architectures are the more intuitive ones. However, these two 

architectures do not scale well with increasing N and P. The shift register and the systolic 

array architectures take a different approach and scale much better than the FIFO and 

binary tree. The following subsections describe each of these architectures and discuss the 

effects o f scaling on architectural complexity and implementation.

2.2.1 Binary Tree of Comparators

A binary tree comparator architecture [56][59], shown in Figure 2.1, consists of an N-entry 

storage block and a comparator tree of depth log2N, whose output is the highest-priority 

entry among those in storage. A feedback mechanism is used to remove the output of the 

tree from storage. An advantage o f this architecture is that the comparator tree logic can be 

shared among several storage blocks, reducing hardware costs. A disadvantage is that FIFO 

ordering is not maintained among entries with the same priority. Such FIFO ordering is 

important when applications assume that packets at the same priority level will arrive in the 

same order in which they were sent. Increasing N results in more leaf nodes (i.e., compar-

9
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Figure 2.1: Binary tree o f comparators priority queue.

ators) being added to the tree and increasing the capacity of the storage block. Problems 

with such scaling include bus loading problems with distributing the new entry to each stor­

age element in the storage block, and increased dequeue time resulting from an increase in 

depth (log,N) of the comparator tree. A possible solution to the increased dequeue time is 

to pipeline the comparator tree operation to reduce the clock period and increase perfor­

mance; this can be useful if the comparator tree is shared among several outgoing links 

[59]. Another solution is to initiate the comparator tree only after dequeue operations and 

use extra logic to handle entries that arrive during and in between dequeue operations. This 

takes advantage of the fact that packet transmission time is longer than the comparator tree 

operation [56].

2.2.2 FIFO Priority

Like the bucket sorting algorithm, the FIFO PQ architecture [ 11 ][ 13], shown in Figure 2.2, 

inserts entries into one of the P FIFOs based on the entry’s priority. Since each FIFO cor­

responds to a particular priority level, the queue does not need to store a priority field with 

each entry. During a dequeue operation, a priority encoder scans the head o f the FIFOs in 

decreasing priority order and removes an entry from the first non-empty FIFO. Increasing

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Priority

Encoder

Input

Selectornew entry

-* j Addr'PrioAddr Prio

highest 

priority entry

Figure 2.2: FIFO priority queue.

P requires adding more FIFOs, which results in added hardware costs and increased com­

plexity of the priority encoder. Using logically linked lists [13][87] instead of physical 

FIFOs can reduce hardware costs. But this approach still suffers from the complexity prob­

lem of the priority encoder for large P.

2.2.3 Shift Register

The shift register PQ [13][15][74], as shown in Figure 2.3, consists of an array of blocks 

that store the entries in sorted order. Each block stores a single entry and communicates 

with the blocks immediately to its right and left. Higher-priority entries are stored to the 

right of lower-priority entries, with the 0" block containing the current highest-priority 

entry. On an enqueue operation, the new entry is broadcast to all the blocks via the 

new_entry_bus. Each block makes a local decision as to what action to take, with only one 

o f the blocks latching the new entry. The others will either keep their current entry or latch 

the right neighbor’s entry. The net effect is to have the new entry force all entries with lower 

priority to shift one block to the left, while the new entry places itself to the left o f the 

entries with higher and equal priority. The lowest priority entry is discarded during an

11
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enqueue if the queue is full. A dequeue operation in the shift register simply reads the 0lh 

block’s entry while all other entries shift one block to the right.

As shown in Figure 2.3, each block consists of a holding register which stores the entry, 

a comparator which compares the priorities of the entry on the new_entry_biis and the hold­

ing register, a multiplexor (to choose from the left, right or new entry) and decision logic 

[ 13][ 15]. Since each block stores one entry, the queue’s capacity can be increased by 

adding more blocks to the existing queue. Because each block makes decisions based on 

just local information, increasing queue capacity does not require modifications to the 

block’s decision logic nor any central control logic for the queue. This makes scaling for 

large N very simple. As P increases, additional bits are added to the priority field in the 

entry’s tag. This simply requires modifying each block’s storage requirement and its com­

parator.

Unfortunately, implementation problems limit the scalability of this architecture. As 

seen in Figure 2.3, before any decision can be made by each block during an enqueue oper­

ation, the new entry must be present at the inputs of all the blocks. At the VLSI level, the 

new_entry_bus must be routed to the inputs of all the blocks in the array. As we saw with 

the binary tree architecture, this creates a bus loading problem, which adds to the hardware 

costs (buffers), and decreases the maximum operating speed of the queue. Thus, the shift 

register architecture’s scalability with respect to N is limited by performance, not by archi-
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tectural complexity. Performance also decreases as P increases due to the added delay in 

the comparator logic. This is because the comparator’s time complexity grows linearly (for 

a serial comparator) with the number of bits in the priority field.

2.2.4 Systolic Array

The systolic array PQ [44][45] is shown in Figure 2.4. Similar to the shift register architec­

ture, the systolic array architecture consists of an array of identical blocks, with each block 

holding a single entry. On an enqueue operation, only the Oh block compares priorities of 

its entry and that of the new entry. On the next cycle the lower-priority entry is inserted into 

the left neighbor’s block which repeats the same process of comparing and sending the 

lower-priority entry to the next block. So the systolic array does not become fully sorted 

until several cycles after the new insertion. Despite this feature, both insertion and removal 

still remain constant-time operations from the outgoing link’s point of view. Because each 

block passes the lower-priority entry to the next block, the O'" block always holds the high- 

est-priority entry in the queue. Once an entry is removed from a block, it gets the entry from 

its left neighboring block, creating a right shift operation on the entire queue.

Each systolic array block consists of a holding register, which stores the entries in sorted 

order, as well as a temporary register, that holds passing entries enroute to the next block 

to the left. The passing entry is the lower-priority entry in a block during an enqueue oper­

ation. Multiplexors, a comparator, and decision logic also make up the rest of the block. A
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block diagram is shown in Figure 2.4. Queue capacity is increased by adding more blocks 

to the end o f the queue without worrying about a central controller. Also, there is no bus 

loading problem as was the case with the shift register PQ. Increasing P requires extra stor­

age and a wider comparator, as in the shift register priority queue. Unfortunately, the one 

main drawback is that the systolic array PQ requires twice more storage than the shift reg­

ister architecture. Considering the simplicity of each block, the temporary register adds a 

considerable hardware cost to each block, compared to the shift register block. Also, the 

cost and delay of the comparator increases linearly with each extra bit in the priority Field, 

which decreases the maximum operating clock frequency.

2.3 Modified Systolic Array Priority Queue

This section presents a new priority-queue architecture that combines the salient features 

of the systolic array and the shift register. The architecture has a tunable parameter which 

enables us to balance the trade-off between bus loading and hardware costs. We then extend 

this hybrid architecture to guarantee FIFO transmission of packets within the same priority 

level.

2.3.1 Hybrid Shift/Systolic

O f the four PQ architectures discussed in Section 2.2, the shift register architecture and the 

systolic array architecture are better than the other two in terms of supporting very large N 

and P. The FIFO architecture is limited to a small number of priority levels, while the 

binary tree comparator’s complexity makes it difficult to scale with increasing N. On the 

other hand, the shift register and systolic array are more favorable because they have no 

centralized logic, and each block can be replicated as many times as necessary without any 

modifications. Also, a large number of priority levels can be easily supported by simply 

using more bits in the priority encoding. Unfortunately, the shift register’s bus loading 

problem limits the maximum clock frequency, while the systolic array block’s double stor­

age requirement makes it considerably more hardware-intensive than the shift register.

The systolic array architecture scales well with N and its maximum operating clock fre­

quency does not decrease as N increases. But, because 50% o f all the registers are used as

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Control Control Control Control

M odified
Systo lic
Block

M odified

Systolic
Block

M odified
Systolic
Block

M odified
Systolic
Block

re a d  write

Highest priority 
entry

A d d rl Prio I

A ddr Pno

n ew  entry

re a d /
write
out

le f t jn

left_out

C ontroller

Tem p
R eg

xj

Shift

Block
Shift
Block

Shift

Block•  •  •

c -t 1 0

read / 
w n te  in

■ fight .o u t

new_entry_bus
. nght j n
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temporary registers, the systolic array uses much more hardware than the shift register. To 

reduce this overhead, we propose a modified systolic architecture where each block con­

sists of a length c shift register. So instead of one temporary register for every holding reg­

ister in each block, the ratio decreases by a factor of 1/c. Also, because scaling the modified 

systolic architecture for larger N does not involve changing c, the bus loading problem 

associated with the shift register stays constants as N grows.

Each modified systolic block holds c entries by replacing the single holding register with 

a length c shift register PQ, as shown in Figure 2.5. The interface o f the modified systolic 

block is the same as that of the systolic block. Enqueue and dequeue requests are received 

from the right neighboring block and the results of those requests are sent to the right neigh­

boring block. The right-most block receives requests and sends results to the link. During 

a new entry insertion into the modified systolic block, the new entry is placed in one of the 

blocks o f the shift register PQ. If there is an overflow of the shift register PQ, either the new

entry or the entry in the cth shift block (whichever has lower priority) is placed into the 

temporary register and inserted into the left neighboring modified systolic block during the 

next cycle. Since the shift register PQ stores all the entries in sorted order with the highest-
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priority entry in the first block, the removal request is satisfied by moving all the entries 

one block to the right. The entry in the right-most block is sent to the neighboring right 

modified systolic block. During the next cycle, a removal request is made to the neighbor­

ing left modified block and the resulting entry is stored in the shift register PQ.

2.3.2 FIFO Ordering

Without any further modifications, the modified systolic array PQ will not maintain FIFO 

ordering among entries of equal priority, as illustrated in Figure 2.6. Here the number rep­

resents the priority and the subindex (not part of the entry) represents the arrival order 

among entries with the same priority. Insertion of a new entry with priority 9 pushes the 

12, entry to the next modified systolic block and is placed behind the 122 entry. The prob­

lem here is that the second shift block cannot determine if the 12, entry corresponds to a 

new entry (which should go after \2n ) or an old entry (which should stay ahead of 12.,).

This is solved by adding a one bit field (new/old) to the end (least significant bit) of the 

priority field and is included as part o f the priority number when priority comparisons are 

done. The new/old bit is added as the entry enters the priority queue, and is stripped off 

when the entry leaves the queue. New entries that are inserted into the queue have this bit 

set. Likewise, all entries that are stored in a shift block have this bit set. The bit is cleared 

when an entry that was already in a shift block is pushed into the temporary register and 

sent to the neighboring left modified systolic block.
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The modified systolic architecture improves on the systolic architecture by lowering the 

percentage o f total registers used for temporary storage. This reduction in hardware is 

accomplished without losing any of the advantages of the systolic architecture - simple 

block architecture (easily scaled for increasing N by adding new blocks to the end of the 

existing queue), no performance loss as more blocks are added to the queue, and constant­

time (cycles) enqueue and dequeue operations. Also, because the bus driving the shift reg­

ister blocks is broken up into small length-c parts, the bus load within each modified sys­

tolic block is not affected by the additional modified systolic blocks. So, once a value for c 

is determined, only one modified systolic block must be designed and optimized for per­

formance and area. This block is then replicated as many times as necessary without any 

modifications.

2.4 Multiple Output Link Priority Queue

To further reduce the hardware complexity of packet switches, we extend the architecture 

from Section 3 to service multiple output links. For simplicity, we first present a multiple- 

link priority queue based on the shift-register architecture before generalizing the technique 

to the hybrid systolic/shift design. We then discuss how the architecture can provide a con­

stant-time dequeue operation, while still differentiating between packets destined for dif­

ferent output links. To avoid overlapping multiple operations in a single systolic array 

block, the design includes a small, constant number of “wait states.”

2.4.1 Multiple Shift Register Priority Queue

Given that a switch has a separate priority queue for each of its M ( > l) output links, the 

total queue capacity is MN entries. Since the shared buffer can only hold N packets, most 

o f the blocks in the priority are unused at any given moment, as shown in Figure 2.7(a). An 

N-entry priority queue which services M (<N) output links can potentially save a maximum 

of 50% in hardware for M=2, and up to 75% for M=4. Here we present a multiple output 

link priority queue architecture, which has good scaling properties and constant-time 

enqueue and dequeue operations which are independent of M and N.
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We first extend the shift register architecture to support multiple links. This requires 

modifications to the entries and shift register block. The packet’s entry is augmented such 

that the priority field consists o f the output link number, priority number, and new/old bit. 

The shift register stores entries such that those corresponding to higher output link numbers 

come after those corresponding to lower output link numbers, as shown in Figure 2.7(b).

The blocks in the shift register architecture require several modifications to support mul­

tiple output links. First, each block receives another control signal (outnum) which indi­

cates the requested output link number. The value on outnum is latched along with the new 

entry during an enqueue operation, while it is used to determine which entry to output 

during a dequeue operation. Second, each block has a tristate buffer, which drives an output 

bus. This tristate buffer is needed because the highest-priority entry for a given output link 

can be in any o f the blocks in the shift register. On a dequeue operation, a block will drive 

the output bus with the value in its holding register if the block decides it has the highest- 

priority entry for the requested output link. Figure 2.8 shows the block diagram of the mul­

tiple shift register queue with just the added control signals.

Within each multiple shift register block, no extra control logic is required for the 

enqueue operation. But during the dequeue operation each block needs to decide if it must 

drive the output bus. As seen from Figure 2.7(b), the highest-priority entry o f any output 

link is always to the right o f all other entries with the same output link number. Once the 

output bus has been read, all entries to the left of the one just read move one block to the 

right. The decision-making process for this dequeue operation is shown in Figure 2.9(a). A
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if read {
if ((holding_reg_outnum =  outnum) && 

(rght_blk_holdng_reg_outnum < outnum)) { 
drive output bus;
load left shift blk’s entry on next cycle;

}
else if ((holding_reg_outnum >= outnum) &&

(rght_blk_holdng_reg_outnum >= outnum)) { 
load left shift blk’s entry on next cycle;

}
else {/*holding_reg_outnum < outnum*/ 

do nothing;
}

}

(a) Remove highest-priority entry

if readjow {
if ((holding_reg_outnum == outnum) && 

(left_blk_holdng_reg_outnum > outnum)) { 
drive output bus;
load left shift blk’s entry on next cycle;

}
else if (holding_reg_outnum > outnum) { 

load left shift blk’s entry on next cycle;
)
else { /*holding_reg_outnum < outnum*/ 

do nothing;
}

}
(b) Remove lowest-priority entry

Figure 2.9: Pseudo code for read and read lowest-priority operations in multiple 
shift register block

similar operation can also remove the lowest-priority entry for an outgoing link, as shown 

in Figure 2.9(b). This operation is useful when extending the modified systolic architecture 

to support multiple outgoing links, as explained in the next subsection.

2.4.2 Multiple Systolic Array Priority Queue

Due to the bus loading problem in the shift register architecture, the PQ described in Sec­

tion 2.4.1 does not scale well with respect to N. Besides the new entry bus, shown in Figure 

2.3, the multiple shift register architecture also has the problem of each shift register block

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



]__ [
multiple 
systolic 
anay 

Woe* 3

] C

multiple 
systolic 
array 

block 2

i  r

4H
outnum_out_reg

left j n _

left.out
tefLout^reg

a
reed .out/ 
write.out

multiple 
systolic 
array 

block 1

_ L
multiple
systolic
array

highest priority 
entry

Adflr! Prio } 

new entry

outnum.in

new_entry_bus

I

output bus

c
•  •  •

multiple shift register queue

rfght_out_reg

| t N
controller counters N

nght.out

nght m

read , in/ 
write j n

Figure 2.10: Multiple systolic array priority queue and block

driving the output bus, and the associated delay and hardware costs of having to drive a 

very large bus. Despite this problem, the multiple shift register can be used as a building 

block to support multiple outgoing links in the modified systolic architecture. By using the 

same ideas as in Section 2.3, the multiple systolic array architecture replaces the single 

holding register with the multiple shift register. By choosing a value for c which minimizes 

the total number o f temporary registers without introducing significant bus loading prob­

lems, a single c-entry multiple shift register can be designed and used in the multiple sys­

tolic array architecture.

As seen in Figure 2.10, the external interface to the multiple systolic array block remains 

the same, with the addition of the outnum control signals. Besides the temporary register 

(left_out_reg), there is also another register (onum_out_reg) which indicates the link 

number o f the entry in the temporary register. The right out register (right_out_reg) stores 

the output from the output bus, while a multiplexor chooses among three sources to drive 

the new entry bus. Also, instead of the read and write control signals directly feeding the 

shift register, the controller uses them to generate its own internal read and write control 

signals which are then fed to the shift register.
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2.4.3 Constant-Time Dequeue/Enqueue

Without further modifications to the architecture described in Section 2.4.2, a situation as 

shown in Figure 2 .11(a) can occur. If there are more than c entries in the queue for any 

output link, a dequeue request can result in extra remove requests being sent from the one 

systolic block to the next systolic block. In the worst case, the requests can propagate to the 

last block, in which case the result will need to propagate all the way back up. In order to 

avoid this problem and have a constant-time dequeue operation, each systolic block uses 

counter to maintain a “atleast-l-entry-per-output-link’’ property, whenever possible. This 

assumes that c > M .  A counter is used for each output link to keep track o f the number of 

packets queued at that link. The counter is incremented (decremented) whenever an entry 

corresponding to the counter’s output link is inserted (removed) from the systolic block.

After an enqueue operation, entries start to propagate through the array of systolic 

blocks in the left direction. Writing another entry into a systolic block that is full will result 

in either the right_in entry or the entry in the shift register queue’s c block (which ever has 

lower priority) to be written into the left_out register. But before the entry in the left_out 

register is sent to the left systolic block, the controller makes sure that doing so does not 

violate the “atleast-l-entry-per-output-link” property. If it does, another entry is chosen to 

be sent to the left systolic block while the entry from the left_out register is reinserted into 

the shift register queue. Here the other entry that is chosen is the lowest-priority entry cor-
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counter[outnum_in}++;
left_out=lower priority between rightjn and

if (counter[outnum_in]==0) do 
invalidate right__out; 

enddo 
else do

counter[outnum_in]--; 
right_out=highest priority entry in shift

shift-register-queue[c];
outnum_out=outnum of lower priority between

rightjn and shit-register-queue[c];
if (left_out is valid) do 

if (counter[outnum_dout]==1) do register queue with outnum Jn; 
outnum_out=outnumJn; 
request read from left systolic block; 
if (leftjn  is valid) do 

insert leftjn  into shift register queue; 
counter[outnumJn]++; 

enddo 
enddo

var outnum Jemp = outnum such that
counter[outnum Jemp] > 1;

right_out=lowest priority entry in shift
register queue with outnum Jemp;

insert left_out into shift register queue; 
left_out=right_out;
outnum_out=outnum of entry in right j>ut; 
invalidate right_out; (b) read
coiunter{outnum_out}--; 
write left_out and outnum_out into left 

systolic block; 
enddo 
else do 

counter[out_out]--;
write left_out and outnum_out into left 

systolic block; 
enddo 

enddo

Figure 2.12: Pseudo code for write and read operations in systolic block

responding to an output link with more than one entry in the systolic block. The controller 

obtains this replacement entry by checking all the counters, and then issues a read_low 

command to the shift register queue. Also, following a dequeue operation, the zeroth sys­

tolic block requests an entry with the same output link number from the first systolic block 

which, after sending the result, requests an entry with the same output link number from 

the second systolic block, and so on. This is done to maintain the property for all systolic 

blocks. Details of these systolic block operations are shown in Figure 2.12. Note that the 

state transitions are not shown there.

(a) write
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2.4.4 Non-Overlapping Operations

Since the systolic block must finish one request before processing another request, wait 

states are needed to prevent overlapping of operations. The insertion operation takes 5 

clock cycles, while the remove operation takes 4 clock cycles (these are independent of c 

and M). Without any wait states, a block can make an insertion request to its left neighbor 

on the 5th cycle while servicing an insertion request. Similarly, a remove request can be 

made to the left block on the 2nd cycle while servicing a remove request. Doing this will 

result in the overlapping of request service, as shown in Figure 2.13. This overlap is 

avoided by delaying the remove request till the 5th cycle, instead of the 2nd cycle. Since 2 

cycles are need to get the result, a total of 7 cycles are needed for the remove request. 

Although the insert operation still takes just 5 cycles, consecutive requests can only be 

made every 7 cycles to the multiple systolic block.

Despite the added complexity o f the state machine and extra hardware needed to support 

multiple output links, the multiple systolic array is still much cheaper to implement than 

individual priority queues for each output link. Also, the time (cycles) required to service 

the dequeue and enqueue operations is constant for any output link, and remains unchanged
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regardless o f how large N becomes. Like the modified systolic architecture, each block is 

self-contained and no outside controller is required. As N increases, more blocks are added 

to the existing chain without modifications to the existing blocks. Also, since the priority 

number is encoded within each entry, a large number of priority levels can be supported 

without requiring a large amount of hardware. Thus, scaling does not involve modifying 

the architecture, implementation for large N is simplified since only one systolic block 

needs to be designed, and there is no loss in performance due to scaling.

2.5 Performance and Implementation

To compare the various priority queue architectures discussed thus far, each architecture 

was implemented using the Verilog hardware description language and the Epoch silicon 

compiler, an automatic layout generator. This provides a common framework which makes 

the cost and performance comparisons more meaningful. The implementation results 

showed that both new architectures had better scaling properties in terms of performance 

and hardware costs than the four existing architectures. Also, the multiple-link architecture 

was shown to scale well with M, provide good performance, and offered considerable hard­

ware savings in comparison to using a priority queue per-link approach.

2.5.1 Evaluation Methodology

Costs were measured in terms of amount o f silicon area and the number of transistors used 

by the design, while performance was measured by the maximum clock speed and through­

put (number of enqueue/dequeue operations completed per second). Throughput can be 

easily calculated by using the maximum clock speed and number of clock cycles needed by 

each operation. Maximum clock speed was calculated by doing a critical path analysis of 

the design, and determining the delay through these critical paths using Epoch’s timing 

analyzer. All designs were structurally specified using parts from Epoch’s Verilog library, 

while state machines and control logic were described in behavioral Verilog. Each of the 

layouts was compiled by Epoch, which uses standard cells to generate a layout, using a 1.2 

|im  CMOS technology. Although custom layout would give better results, we are more 

interested in comparing the scaling effects than in raw numbers. In other words, we want
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to look at the relative costs and performance of the various architectures as N and P 

increase. Also, note that our implementations were limited to a maximum of 1024 for N. 

This was due to insufficient workstation memory for performing the various simulations.

One final note regarding the implementations concerns the use o f registers for storage 

o f priority queue tags. Although other storage devices could have been used in the designs, 

we chose to use registers because they allowed us to quickly implement, scale and compare 

the various designs. Since the main goal of this work was to study the relative scaling 

effects of the various designs, other storage alternatives were not studied. For example, in 

the shift and systolic architectures, the single holding register per block can be replaced 

with a SRAM module with the capacity to hold several priority queue tags. This will reduce 

hardware costs since the comparison and other logic is shared among several tags instead 

of one. But doing so increases the time required for dequeue and enqueue operations since 

these need to be serialized due to accesses to SRAM. So, choosing the size of the SRAM 

becomes a problem of sacrificing performance for smaller hardware costs. Although this 

work does not consider the trade-off between serial SRAMs and parallel registers, wc have 

evaluated the associated cost and performance implications in the priority queue architec­

tures in [59],

2.5.2 Existing Architectures

Figure 2.14 compares the four existing priority queue architectures in terms of VLSI hard­

ware costs as a function of N, with P fixed at 16. Here we chose a small value o f P for two 

reasons. It allowed for implementations with large N, and made the scaling effects associ­

ated with large N more pronounced. As expected, we see the systolic array architecture’s 

hardware cost is much larger than that of the shift register due to the extra register used for 

temporary storage. Also, despite having similar transistor counts, the binary tree architec­

ture occupies more area than the shift register architecture. This is mainly because of the 

routing required from the storage to the priority comparator tree, and routing within the 

comparator tree.

As expected, performance degrades with increasing N, as shown in Figure 2.15. Here 

we see the throughput is highest for the shift register architecture. But as N increases, the
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Figure 2.15: Scaling effects on performance as N increases (P=16)

performance degradation is much steeper for the shift and binary tree architectures than that 

o f the systolic and FIFO architectures. This is due to the bus loading problem in the shift 

register and binary tree architecture, and the increase in depth of the comparator tree in the 

binary tree architecture. The gradual decrease in performance in the systolic and FIFO 

architectures can be attributed mainly to the extra bits in the registers and multiplexors, 

which add delay to the control signals which must drive these components. Although 

Figure 2.15 shows the shift register architecture with better throughput than the systolic 

array architecture, for larger values of N, we can predict the throughput of the systolic to 

be higher than the shift. Due to insufficient workstation memory we could not obtain data 

for larger values o f N other than the ones shown in Figure 2.15. But by extrapolating the 

curves for the shift and systolic in Figure 2.15, we can see the two curves should cross at a 

point somewhere between N=1024 and N=2048. At this point, throughput o f the systolic 

should be higher, while the performance of the shift architecture should continue to degrade 

at a much faster rate than that of the systolic due to the dominating effect o f the bus loading 

problem. For much larger values of N, this bus problem should make the shift register 

architecture an ineffective solution due to the associated hardware costs and performance 

loss.

Each bit added to the priority field adds delay to the priority comparator, which in turn 

slows down the operation of the priority queue for the shift register, systolic array, and
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binary tree architectures. Since a large number of priority levels can be supported with rel­

atively few bits, and because the delay associated with the extra bit is small compared to 

the total delay, scaling for large P is feasible and the resulting implementations can be 

effective. With a non-pipelined binary tree though, the delay is multiplied by the depth of 

the tree. In the FIFO case, the bottleneck is in the priority encoder, which must scan each 

FIFO to select the next highest priority entry. This can be seen in Figure 2.16. Note also 

that the depth of the physical FIFO (due to increasing N) does not affect performance, but 

adds to the FIFO fall-through time. So, it is possible that an entry might not be available 

immediately after it is inserted into the queue. The logical FIFO architecture avoids this 

problem by using linked lists instead.

2.5.3 Modified Systolic Array Architecture

The motivation for the modified systolic array architecture was to take advantage of the 

shift register and systolic array architecture’s features and, at the same time, reduce the neg­

ative side-effects due to scaling with respect to N. The shift register architecture suffered 

from the bus loading problem, while the systolic array architecture used a significant 

amount of extra hardware for the extra register. The solution that was proposed was to use 

a separate shift register queue inside each systolic array block. Each shift register queue 

stores c entries, where c is determined by hardware and performance requirements. When
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and systolic (P=16)

c= l, this is the same as the original systolic architecture, whereas if c=N, then we get the 

original shift register queue. So for small c, hardware costs and performance are close to 

those o f the systolic architecture, and as c increases the hardware costs steadily approach 

those o f the shift register architecture. Also, as c increases, the performance of the modified 

decreases due to extra bus loading, as is the case with the shift architecture. This point is 

shown in Figure 2.17. Here P=16, and two values of c are used. Initially for small values of 

N, the shift architecture has the best performance, mainly because of negligible bus loading 

and also because the operations in the shift architecture require one cycle, as opposed to 

two in the systolic and modified. But as N increases, the rate at which performance 

decreases is much sharper in the shift register case due to the bus loading problem. With
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the systolic and modified systolic, the performance curve is relatively horizontal. For larger 

N, performance for the modified systolic should be higher than that of the shift register due 

to this very gradual decrease in performance in the modified systolic architecture. Consid­

ering the amount of hardware used in the modified systolic is only slightly more than that 

of the shift, and considering the aggressive buffering strategies required in the shift archi­

tecture to get these performance numbers, the modified systolic is a much more effective 

solution despite the performance difference. So once a value for c is determined based on 

the performance requirements, the design can be scaled to very large N, without worrying 

about severe performance degradation from bus loading, or buffering strategies.

2.5.4 Multiple Systolic Array Architecture

Despite added hardware costs (due to extra registers, added complexity of control logic, 

tristate buffers, and counters), we see that there is still a substantial amount of hardware 

saved by using the multiple queue. Based on implementations with a 16-entry multiple sys­

tolic array block, we observed the following. For M=4, the multiple architecture occupied 

32% less area and used 55% less transistors versus the shift, and 46% less area and 72% 

less transistors versus the systolic. For M=8, the multiple architecture occupied 67% less 

area and used 75% less transistors versus the shift, and 73% less area and 85% less transis­

tors versus the systolic. Here we multiplied the costs for a single shift or systolic queue by 

M to account for one queue per output link. Some results are shown in Figure 2.18. We also 

observed that adding support for more output links in the multiple systolic block increased 

the costs only slightly. This is because most of the multiple link support already exists, and 

all that is needed are extra counters and minor additions in the controller. This can be seen 

by the extra line inside the bars for the multiple systolic architecture in the M=8 graphs. 

The top line indicates the value for M=8, while the lower line shows the value for M=4. As 

seen, the difference in the two lines is very small indicating a small increase in cost for extra 

output link support.

For c=16, N=64, and P=256, the maximum clock speeds for the multiple systolic archi­

tecture are 40 MHz (M=4) and 38 MHz (M=8). This drop in speed is due to the extra bits 

in the priority field used to encode the output link number. Considering each enqueue and
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Figure 2.18: Implementation comparison with multiple systolic architecture 
(P=256)

dequeue operation requires 7 cycles, this translates into 5.71 mops (millions o f operations 

per second) for M=4, and 5.43 mops for M=8. If we consider each switch as having M 

inputs and M outputs, with all input and output links getting round-robin access to the 

queue, the queue can support link speeds up to 303 Mbps for M=4, and 144 Mbps for M=8 

(assuming 53 byte packets). At current ATM standards of 155 Mbps, a multiple systolic 

priority queue can be designed and implemented to support such switches. For switches 

with a larger number of links, by grouping 4 to 8 outgoing links together, hardware costs 

can still be significantly reduced while being able to support very high-speed links.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.6 Summary

In this chapter we proposed and evaluated two new hardware priority queue architectures 

for link scheduling in high-speed switches. Based on Verilog and Epoch designs and sim­

ulations, we showed that the four existing architectures were limited by scalability (with 

respect to either N or P or both). For small N and P, all four existing architectures had com­

parable hardware costs and performance. But as they were scaled to support large N and P, 

each architecture’s limitations became more pronounced. O f the four architectures, the shift 

register architecture and the systolic array architecture had better scalability. By combining 

the two architectures, the modified systolic architecture reduced the negative effects of 

scaling suffered by the two architectures. In particular, hardware costs were significantly 

reduced by decreasing the number of total temporary storage registers; performance loss 

due to the bus loading problem in the shift register could be controlled and isolated from N 

by using several length-c shift register queues. Here c was chosen by considering hardware 

and performance requirements. The multiple systolic architecture added multiple link sup­

port to the modified systolic architecture, without sacrificing scalability. Although extra 

cycles were added to the dequeue and enqueue operations, both these operations could be 

done in constant time (cycles), regardless of N or M, the number of output links supported 

by the architecture. We have also observed that scaling with respect to M was possible with 

very little additional hardware. Verilog and Epoch simulations have confirmed the salient 

features o f the new architectures.

We showed that the two new hardware priority queue architectures scale well to increas­

ing N and P. Both offer good performance and are easy to implement, and hence can be 

used in guaranteeing QoS requirements in high-speed networks. Such effective priority 

queue implementations allow switches to use more aggressive link-scheduling algorithms 

that can admit more connections with diverse traffic patterns and QoS requirements.
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CHAPTER 3

INTEGRATED TRAFFIC SHAPING AND 
LINK SCHEDULING ARCHITECTURES

3.1 Introduction

This chapter examines the movement of tags (which correspond to a packet in the shared 

buffer) within a shaper-scheduler. We examine several traffic shaping and link scheduling 

algorithms to determine the basic mechanisms required in an implementation. Building on 

the priority queue architectures proposed in the previous chapter, we present two new 

shaper and scheduler architectures which were designed for high-performance and flexibil­

ity with good scaling properties with respect to N, the number of flows a shaper-scheduler 

must keep track of for a given output link. The first architecture presents a simple solution 

which allows for a constant-time operation to find and move an eligible packet from the 

shaper to the scheduler queue. This is accomplished by extending the multiple-link priority 

queue architecture presented in Section 2.4. The second architecture eliminates the shaper 

to scheduler problem by using a single-stage architecture instead of traditional two-stage 

shaper and scheduler architectures (the concept of one-stage and two-stage architectures is 

discussed in Section 3.2). This is accomplished by using two multiple-link priority queues 

in parallel. The resulting architecture can provide the same functionality as traditional two- 

stage architectures while maintaining constant-time operations.

Before describing our new architectures, we first provide some background on traffic 

shaping and link scheduling in Section 3.2. We then describe some shaper/scheduler archi­

tectures from the current literature in Section 3.3. A brief description o f each architecture 

and operation is given, followed by a discussion on limitations to their flexibility and scal­

ability. The two new architectures are then presented in Section 3.4 and Section 3.5. Details
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of the architectures and operation are explained here, along with discussion of implemen­

tation issues and changes to the architecture to deal with implementation related scaling 

effects. Section 3.6 concludes with a summary of the chapter.

3.2 Background

There are numerous traffic shaping and link scheduling algorithms in the literature, each 

characterized by different QoS guarantee properties. Despite this difference, all these algo­

rithms share a common framework upon which they can be mapped. Traffic shapers hold 

back newly-queued packets from being serviced until the packet’s flow conforms to its traf­

fic envelope. This implies marking each packet with a conformance (eligibility or start) 

time, and having the shaper move packets out of the shaper and into the scheduler queue 

only when the system time reaches the start time. Shapers differ in how they compute the 

start time. On the other hand, when the link becomes available, the link scheduler chooses 

the next packet to transmit among all eligible packets queued in the scheduler queue. This 

implies that packets are assigned a priority (also called deadline or fin ish  time), with the 

scheduler choosing the packet with the highest priority. Scheduling algorithms simply 

differ in how they compute the priority. We illustrate these points by describing several 

well-known algorithms.

3.2.1 Leaky-bucket Shaper

This algorithm [19] [58] [59] [75] [78] is conceptually very simple and is the basis for most 

shapers in the literature. The shaper generates tokens for a flow / at a rate o f p •, where a  ■

is the maximum number of tokens that can be accumulated in the bucket. A newly-arrived 

packet is eligible for transmission only if there are enough tokens in the bucket. Otherwise, 

it must wait in the shaper until enough tokens have accumulated. When a packet is eligible 

and moves into the scheduler, it grabs the necessary number of tokens from the bucket. In 

the case of fixed-sized packets (i.e., ATM cells), each token corresponds to a single packet.

Assuming the kth packet from flow / arrives at time A ( p f ) , and requires Lf  tokens, the 

packet’s start time S (pf) (earliest time the packet is eligible) can be computed very easily
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Since the shaper will serve packets from the same flow in FCFS order, the shaper need 

only keep one entry for each flow with one or more packets queued in the shaper. The pack­

ets can be ordered as a simple list. When the first, or head-of-the-line (HOL) packet 

becomes eligible, the start time for the flow’s next queued packet is calculated by setting 

its arrival time as the start time of the previous packet. If there are packets queued in the 

shaper for flow / when a new packet arrives, the new packet is simply appended to the end 

o f the list without the need to calculate its start time.

3.2.2 Link Scheduling

In a static priority algorithm each flow has a predetermined priority number associated with 

it. All packets belonging to the flow are marked with the same priority. The special case 

where there is only one priority level is the FCFS algorithm, where no packets have priority 

over others.

Under EDD [2] [30] [39] [59] [75] [81] [89], each packet is assigned a due date (dead­

line), with the scheduler transmitting smallest deadline first. With these schemes each flow 

i provides the minimum packet interarrival time /, and a local delay bound d  for each node

the packet passes in the network.

Packet-by-packet generalized processor sharing (PGPS) [52], also known as Weighted 

FQ (WFQ), Frame-based FQ (FFQ) [69] [80], Starting-potential based FQ (SPFQ) [68] 

[80], Start-time FQ (SFQ) [32], Worst-case Fair WFQ (WF2Q) [6] and WF2Q+[7], and 

Self-clocked FQ (SCFQ) [31 ] are several examples of packetized versions of fair queueing 

(FQ) algorithms [19] [22] [52] [86] [89]. Despite the large number of variations, the basic 

foundation for all these algorithms is the same. The function V(t)  returns the system time 

(or system potential) at time t. For each packet that enters the scheduler, it is assigned a start 

time S(pf )  and a finish time F( p f ) . Packets are then transmitted in increasing order of start

time or finish time, depending on the algorithm. The difference among the various PFQ 

algorithms lies in how they compute the system, start, and finish times. Typically, each 

flow is specified by only by its allocated rate p(-.
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Other link scheduling algorithms include weighted round-robin [4 1 ], hiearchical round- 

robin [38], Stop and Go [76] (a framing strategy), Virtual Clock [90], and many others.

3.2.3 Framework

The common denominator among all these algorithms is the notion o f stamping each packet 

with a number, with service order based on that number. Shapers queue packets and service 

them based on their start times, while the scheduler queues packets based on their priorities. 

Packets in the shaper queue can only be considered for transmission when they are eligible 

(i.e., the shaper moves the packet to the scheduler queue). Several researchers have pro­

posed various shaper-scheduler implementations [14] [48] [70], whose results we incorpo­

rate into our work. The basic framework of these implementations includes two sorted 

queues (shaper and scheduler), a mechanism for determining and moving eligible packets 

into the scheduler queue, and a control mechanism which computes the start and finish 

times o f each packet. After each packet transmission, the shaper needs to compute the start 

times of any new HOL packets that have arrived and insert them into the shaper queue. 

Next, the shaper must move any eligible HOL packets into the scheduler queue. If these 

HOL packets are not the last in the flow’s linked list, then the new HOL packets must be 

processed by the shaper and inserted into the shaper queue. The scheduler then needs to 

determine and transmit the next packet.

3.3 Integrated Shaper and Scheduler Architectures

Figure 3.1 shows a generic view of the shaping and scheduling mechanism. Since packets 

from the same flow are serviced in FCFS order, the shaper performs per-flow shaping and 

need only maintain one entry per flow in the shaper queue. Packets in a flow are maintained 

as a linked list, with new packets appended to the end of the list. Each output link processor 

has a separate linked list manager, which maintains the linked list for each flow. This linked 

list manager is typically incorporated into the shaper-scheduler design. Only the eligible 

time o f the HOL packet in each flow is used by the shaper. Eligible times for the remaining 

packets in the flow can be easily computed from the eligible time of the previous packet.
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Figure 3.1: Logical view of a two-stage shaper and scheduler architecture, where 
N=max number o f flows

This assumption holds because S(pf )  > S { p f ~ l ) and7(pf )  > F(pf  ~ 1. Based on the system

clock, the shaper calculates the finish times for all eligible HOL packets and moves them 

into the scheduler. Unlike the shaper, the scheduler performs per-packet queueing, and ser­

vices packets in order of their priorities. After moving the HOL packet, if there are more 

packets in the flow the shaper computes the start time for the next packet in the list and 

places it into the shaper queue.

This type of two-stage architecture [87] [88] (first-stage shaper and second-stage sched­

uler) lends itself well to implementing a combination of shaping and scheduling algorithms. 

This is because all shaping and scheduling algorithms described in Section 3.2 can be 

mapped into an implementation which produces an eligible time (shaping), a finish time 

(scheduling), or both (S-RPS). A network architect can mix and match algorithms to meet 

desired QoS goals. However, this type of flexibility requires that the architecture provide 

the following basic operations needed by all the algorithms. First, the shaper requires an 

efficient queueing mechanism to store start times for all HOL packets and quickly find all 

eligible packets given the system time. Similarly, the scheduler also requires a queueing 

mechanism to store finish times and find the packet with the highest priority or the earliest 

finish time. Finally, an efficient mechanism is required to transfer all eligible packets from 

the shaper to the scheduler. In other words, an efficient integrated shaper and scheduler
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Figure 3.2: Logical view of shaper-scheduler with HOL packets arranged by 
their starting times.

architecture must provide an efficient solution to the sorting problem, and an organization 

o f the sorters which can solve the shaper-to-scheduler transfer problem.

Since the actual packets are stored in a shared buffer, the shaper-scheduler only manip­

ulates tags. Each queued packet has a corresponding tag in the shaper-scheduler. Through­

out the rest of this thesis, the notion of queueing, sorting, and moving of packets by the 

shaper-scheduler is used to refer to the manipulation of the tags corresponding to the pack­

ets.

The rest of this section describes and evaluates several two-stage architectures from the 

current literature. Section 3.3.1 describes an architecture [14] which uses a search-based 

priority queue engine (RSE) to solve the sorting problem, and uses several of the RSEs to 

implement an integrated shaper and scheduler. A calendar queue [18] is used in [67] [70] 

[80] to implement the shaper queue. This is described in Section 3.3.2. To reduce imple­

mentation costs an approximation scheme using groups of FIFOs [58] is described in Sec­

tion 3.3.3.

3.3.1 Search-based Sorting

A logical view of the shaper-scheduler architecture proposed in [14] is shown in Figure 

3.2. HOL packets are maintained according to their start times in the shaper queue. Since
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the shaper can transfer only one packet at a time to the scheduler, HOL packets with the 

same start time must also be sorted in order of their finish times. This requires that the 

shaper sort packets based on their start times and finish times. Since the number o f packets 

with the same start time is unbounded, the time it takes for the shaper to transfer all the 

packets with the same start time (S ) could be potentially much larger than the packet trans­

mission time. During this time, the system clock will continue to count up and other packets 

could also become eligible. At this point packets with start times larger than S will continue 

to wait even though some of the packets might have finish times which are smaller than 

those packets with start time S. As described in [ 14] [70], the shaper only needs to transfer 

two packets to the scheduler (among packets with start time equal to the current system 

time, the packet with the smaller finish time, and among packets with start time equal to the 

start time of the packet just transmitted, the packet with the smallest finish time) during 

each time slot. The reason for this is because none of the other eligible packets in the shaper 

queue will transmit during the next time slot since their finish times are greater than or 

equal to that o f the packet with the smallest finish time in the scheduler queue. A time slot 

is defined as the time required to transmit a fixed size segment. A packet can consist of one 

segment (i.e., ATM cell) or multiple segments.

Instead of a sorted priority queue (PQ), this architecture uses a RAM-based search 

engine (RSE) as its basic PQ building block. Given an array [0 ,..., W -  1 ] whose values 

are either 0 or 1, the RSE returns the smallest index with value 1. In other words, the index 

represents the start/finish time, and a 1 indicates that there are packets with that start/finish 

time. In the case of the shaper queue, a 2D RSE is used, with each element of the 2D array 

indexed by [start time, finish time], A value 1 indicates that there are HOL packets with 

those values. Given a start time, the 2D RSE returns an index number which is a concate­

nation o f the start time and finish time corresponding to the smallest finish time with value 

1. Assuming that the maximum value for the start time is W  and the M  for the finish time, 

the shaper requires an array o f length WM. The scheduler queue requires a 1D RSE with an 

array o f length M.

The main disadvantage of this architecture is that scalability is dominated by WM. If we 

assume 15 bit values for both W  and M  and a maximum of N flows, the amount of memory
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required for the shaper array is 2 15 x 2 15 x log2A/ = (134 x log,A/)MBytes. To support a

large range of rates, the values for W and M could require more than 15 bits, making this 

an expensive implementation. Also, the RSE uses a tree-based algorithm whose implemen­

tation and time per search is dependent on the actual values of W  and M, which makes it 

difficult to scale with respect to these parameters. The time for each RSE operation is 

0 (log |/?S £ |), where (Iog|/?S£|) is the depth of the tree used in the RSE.

This architecture assumes that the system clock is incremented after every segment 

transmission. When there are no eligible packets to transmit, the system clock is set to the 

smallest start time among all queued HOL packets in the shaper. Because the shaper queue 

simply returns the packet with the smallest finish time given a start time value, a separate 

RSE is used to track start times for all queued HOL packets, further adding to implemen­

tation cost.

Since each flow is maintained as a linked list of packets, implementation costs increase 

linearly with N. The rest of the shaper-scheduler and operations are not affected by the size 

of N. Also, because of its generic two-stage architecture, most of the algorithms described 

in Section 3.2 can be accommodated.

3.3.2 Calendar Queue Sorting

The architecture presented in [67] [70] [80] also implements the logical shaper-scheduler 

shown in Figure 3.2. The main difference is that a calendar queue [ 18] is used in the shaper 

to maintain start times of HOL packets. The shaper queue is implemented as an array 

[0 ,... ,  W -  1 ], where W  is the maximum value for the start time. Each element of the array 

points to a list o f HOL packets with the corresponding start time. Since packets in each list 

can have different finish times, each list must sort packets in increasing finish time order. 

This sorting is necessary because of the two packet transfer per time slot rule described in 

the previous section.

The main disadvantage of this architecture is the need to sort each list each time a new 

packet is added. An 0( \ ogN)  implementation is proposed which re-arranges the list in 

increasing finish time order. For high-speed networks this approach might not be fast 

enough to keep up with packet arrivals. An alternate approach could use a separate hard-
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Figure 3.3: A hierarchical shaper-scheduler architecture with approximate 
sorting units.

ware PQ with constant time operations [48] for each list. This, however, requires W PQs of 

capacity N each (to account for the worst case when all flows have the same start time), 

resulting in very high implementation costs.

Because of the calendar queue implementation, a pointer scanning the array requires 

O(W)  time to find the smallest start time among all queued HOL packets in the shaper. 

Time required for this search can be reduced by using another PQ of start times, similar to 

what is done in [14]. This, however, adds to the implementation cost.

Scalability with respect to N and flexibility properties are the same as those of the archi­

tecture described in Section 3.3.1. The main difference is in the time required for each oper­

ation (0 (lo g N)  vs. 0(\ogRSE ) ) and the implementation cost for the shaper (O(W)  vs. 

O(W M ) ).

3.3.3 Approximate Sorting

[17] [58] [66] realize the high cost o f sorting and propose an approximation scheme. 

Instead of maintaining a list of HOL packets sorted by their starting times, HOL packets 

are grouped together based on their allocated service rates p . As shown in Figure 3.3, [58] 

proposes a hierarchical arrangement of groups, where each group services a range of rates. 

W ithin each group a sorting unit places the packet into a sorting bin, where each bin holds
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packets with start times which fail within a certain range. If W(. is the maximum start time 

for group i and gi is the bin granularity in group /, then each group only needs W / g i bins. 

Within each bin packets are serviced in FIFO order. Every units of time, all the packets

in a bin become eligible for transmission. The group arbiter then schedules transmission 

among eligible packets from all groups by using a Weighted RR scheme or a variation of 

the SCFQ described in [58]. The architectures in [17][66] place further restrictions by sup­

porting only a Finite number of rates.

Since each FIFO bin can be implemented as a simple linked list, the cost of each group 

is 0 (  VP •/#,•). However, this savings in implementation cost comes at a sacrifice of flexibil­

ity. Because these approximation schemes affect the performance guarantees of the original 

algorithm, careful analysis is needed to make sure that for a given service discipline the 

deviation is not too great due to the approximation. This severely limits the range of service 

disciplines supported by this architecture. For example, a strict EDD scheme would not be 

possible under this architecture without a very large number of bins, and a very fast search 

mechanism to find the non-empty bin with the smallest deadline.

3.4 Sorted Constant-time Two-Stage Architecture

This section presents a new two-stage shaper-scheduler architecture which provides con­

stant time operations for both the shaper and scheduler which are not affected by N, W, or 

M, and has implementation costs which scale linearly to N. The constant time operation is 

accomplished by extending the PQ concepts shown in [48] to allow for the removal o f the 

packet with the smallest finish time for a given start time. We show how this is used in the 

shaper-to-scheduler transfer. We also discuss implementation issues related to this archi­

tecture and present a solution.

3.4.1 Dual-Key Shift PQ

O f the shaper-scheduler architectures discussed in Section 3.2, the architectures with exact 

sorting on both the start time and Finish time provide the most flexibility. However, their 

effectiveness depends on how efficiently they can find and transfer eligible packets from
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Figure 3.4: Logical block diagram of dual-key shift PQ.

the shaper queue to the scheduler. Assuming variable size packets, at each time slot at most 

two packets need to be transferred. A smaller time slot offers a wider range o f rates to 

flows, but reduces the time allowed for the transfer. The O(log) solutions in Section 3.2 

will not scale to increase in link speed and number o f flows. A larger time slot can poten­

tially cause the link to idle, since packets that do not arrive on time slot boundaries will have 

to wait until the next time slot even though they might be able to transmit otherwise.

We present a simple solution to the transfer problem by extending the multiple shift PQ 

presented in Section 2.4 so that it can be used as the shaper PQ. The main idea of the shift 

PQ [15] [48] [74] is as follows. The PQ consists of an array of blocks, each block holding 

one tag. There are N  blocks, since only HOL packets are stored in the shaper PQ. At any 

given time the PQ maintains the tags in order of the priorities (i.e., block 0 stores the high­

est, block 1 the next highest, and so on). Assuming PQ blocks are numbered right to left (0 

being the rightmost block), the net effect of writing a new tag into the PQ is to force all tags 

with lower priority than the new one to shift one block to the left, while the new tag places 

itself to the left of the tags with higher and equal priority. A readout o f the highest priority 

tag from block 0 results in a shift of all tags one block to the right. By sorting on two keys 

instead o f one, the multiple shift PQ is able to support more than one output link. A tri-state 

buffer is added to each block to enable readout of the highest priority tag (based on the 

key2) for a given output link (keyI). In our shaper architecture, key!  refers to the start time, 

while key2 becomes the finish time. A logical block diagram is shown in Figure 3.4. As 

shown, tags with the same start time are ordered based on their finish times. Because each 

block is able to make the correct decision based solely on local information, the time
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1.  . i f  r ead {
2 . . val i d (i ) = 0 ;
3.. if (keyl(i) == keyl on input_bus) and
4.. (keyl(i-l) < keyl on input_bus) {
5.. valid(i ) = 1;
6.. drive output_bus = key2(i );
7.. keyl(i) = keyl(i+1);/*this is done on rising edge of
next*/
8.. key2 ( i ) = key2 ( i + 1 ) ;/*cycle, so read only need 1 cycle*/'
9.. /*this does a shift right starting at block i*/ 
1 0 . . }
11.. else if (keyl(i) >= keyl on input_bus) and
12.. (keyl(i-l) >= keyl on input_bus) {
13.. keyl(i) = keyl (i + 1);/*this does a shift right*/'
14.. key2(i) = key2(i+1);/*starting at block j<i*/
15.. }
16.. else {
17.. do nothing; /‘desired block j > i*/
18. . }
19. . }

Figure 3.5: Pseudo code for read operation in block i of the dual-key shift PQ.

required for each write or read operation is 1 clock cycle. Figures 3.5 and 3.6 shows the 

control logic for each block in the dual-key shift PQ. Not shown is the shift operation, 

which moves the entire PQ one block to the right.

Given the start time on the input bus, only one block will drive the output bus with the 

result, if a tag exists with that start time. Detecting whether or not there is valid data on the 

output bus requires that each block also output a valid bit, with all valid bits logically ORed. 

A “ I” indicates valid data on the output bus, and “0” otherwise.

3.4.2 Minimum Time Slot Value

The system time is updated at every time slot, at which time HOL packets that arrived 

during the previous time slot need to be inserted into the shaper queue and at most two 

packets need to be transferred from the shaper to the scheduler. In the worst-case scenario 

the number of HOL packets that need to be inserted will be RX, the number of input links 

o f the node. Typically RX  ranges from 4 to 128 for today’s high-end commercial routers

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. . if write {
2 . . if (keyl(i) > keyl input_bus) {
3 . . keyl(i) = key1(i-1);/*this is done on rising edge of
next */
4 . . key2 ( i ) = k e y 2 (i-1);/*cycle, so read only need 1 cycle*
5. . /*this does a left right starting at block j<i*
6. . }
7 . . else if (keyl(i) == keyl input_bus) and
8. . (key2(i) > key2 input_bus) {
9. . k e y l (i ) = keyl(i-1);
10 . . k e y 2 (i ) = key2(i-l);
11. . }
12 . . else if (keyl(i) -= keyl input_bus) and
13 . . (key2(i) < key2 input_bus) {
14 . . keyl(i) = keyl input_bus;
15 . . k e y 2 (i) = key2 input_bus;
16. . }
17 . . else {
18 . . do nothing;
19 . . }
20 . . }

Figure 3.6: Pseudo code for write operation in block i o f the dual-key shift PQ.

and switches. For large time slots it is possible to insert the maximum {RX + 2) packets into 

the shaper. Assuming that the shaper PQ can operate at 100 MHz (each operation takes 10 

ns), Table 3:1 shows the maximum number of shaper operations possible for various link

link speed 1 byte 5 bytes 10 bytes 53 bytes 1500 bytes

100 Mbps 8 40 80 424 12000

500 Mbps 1 8 16 84 2400

1 Gbps <1 4 8 42 1200

Table 3.1. Number of shaper operations possible per time slot at 100 Mhz (10 ns 
per operation).

speeds and time slots. As shown in the table above, for small time slots it might be neces­

sary to limit the number of newly-arrived HOL packets serviced by the shaper. Any remain­

ing packets will have to be serviced during the next time slot, potentially leading to the
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hold-back of packets which would otherwise have been transferred to the scheduler during 

the next time slot. The only solution to this problem is to carefully tailor the size o f the time 

slot based on the link speed, minimum packet size, and RX. Non-HOL packets (other pack­

ets in the same flow are queued in the shaper) must also be processed by the shaper during 

the time slot. These packets are appended to the linked list corresponding to their flows 

without being added to the shaper PQ. Time required for this must also be taken into con­

sideration when determining the minimum time slot.

3.4.3 Shaper-Scheduler Architecture and Operation

The overall architecture consists of the dual-key shift PQ used as the shaper PQ and a 

scheduler PQ. When packets first enter the system, their start and finish times are com ­

puted. After each time slot, new HOL packets are inserted into the shaper PQ, while at most 

two shaper-to-scheduler transfers need to be performed. During the first transfer the system 

time V{t) is used as an input into the shaper PQ and a read operation is performed. The start 

time o f the packet currently transmitting or just finished transmitting is used as input during 

the second shaper PQ read. If K(/) < min{S( HOL packets queued in shaper PQ )), then both 

reads will return invalid results. In this case a shift operation is done, with the packet in the 

right-most block transferred to the scheduler and the system time set to the packet’s start 

time.

Packets in the scheduler are serviced in increasing order of their finish times. Any PQ 

implementation with maximum operation time less than or equal to the time for the smallest 

packet to transmit can be used. An important parameter in deciding the implementation of 

the scheduler PQ is its maximum capacity. Ideally, this should be infinite. The RSE auto­

matically achieves this by maintaining an array of linked lists, with each list indexed by the 

finish time of the packets in the list. For PQ architectures with a fixed capacity, careful anal­

ysis is required to determine the minimum PQ size. Otherwise, an eligible packet with a 

finish time smaller than that o f the packet at the head of the scheduler queue might miss its 

deadline because of a full scheduler PQ.

The interface to the shaper-scheduler provides the following functions. Write into the 

shaper PQ, readout of an eligible packet in the shaper PQ, read of the top of the shaper PQ
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Figure 3.7: Tag arrangement in the hierarchical dual-key shift PQ.

without removing it (when there are no eligible packets), write into the scheduler PQ, and 

read out o f the top of the scheduler PQ.

3.4.4 Implementation Issues

Despite the architectural simplicity, implementation issues limit performance for very large 

/V. As seen in Figure 3.4 the input is distributed to all the blocks via a bus, while each block 

needs to drive the output bus. More blocks require a larger bus, which adds both costs for 

extra/larger buffers to drive the bus, and increases operation times due to the extra time 

required to drive the bus. Although not o f the same magnitude, this problem is similar to 

that o f the clock distribution problem in today’s high-end microprocessors which use very 

expensive and complicated solutions to minimize clock skew throughout the chip. [48] pro­

poses a systolic approach to isolate the size o f the bus from N  by dividing the shift PQ into 

(N / c ) shift PQ systolic blocks of length c each. In order to maintain constant-time read of 

the highest priority tag for any given output link, the “at-least-l-entry-per-output-link” 

property is introduced. Each systolic block in the new architecture (includes the smaller 

length c  shift PQ) retains atleast one tag for all possible output links. Since the number of 

output links is relatively small, min(c)  =  R X . However, for the shaper PQ 

min(c) = m a x (W ) , which will not help with the bus loading problem. Also, the cost of 

maintaining W  counters in each systolic block can be very expensive.

W ithout any modifications, the following situation, as shown in Figure 3.7, can occur. 

The tag with the requested start time will not necessarily be in the right-most systolic block.
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Figure 3.8: Block diagram of the hierarchical dual-key shift PQ.

If the first block does not have the requested tag, it will ask its left neighbor. In the worst 

case, the requested tag could be in the left-most block, meaning that each shaper read can 

take (N / c ) x 2 cycles for the result to get back to the right-most block. In order to maintain 

constant-time reads, we propose to treat each c-entry dual-key shift PQ as a block in a hier­

archical dual-key shift PQ consisting of ( N/ c )  blocks. This is shown in Figure 3.8. The 

inputs are still distributed to all the blocks, but with a major difference. Before, the input 

bus needed to drive the inputs of N blocks. In the new implementation the value on the input 

bus is latched into a register (Regln) at each larger block, so it only needs to drive ( N/ c )  

inputs. Since the load on the bus depends on both the length o f the bus and the number of 

inputs driven by the bus, this method significantly reduces implementation costs associated 

with large buffers. Similarly, during the read the output from each c-entry dual-key shift 

PQ is latched into a register (RegOut). The output of this register then drives the output bus 

o f the hiearchical shift PQ. The savings in implementation costs results from smaller tri­

state buffers for each shift block within each c-entry dual-key shift PQ. Instead of driving 

a bus which spans /V blocks, these buffers only need to drive a bus spanning c blocks. After 

the read operation a shift operation is done by the block of c-entry dual-key shift PQs. The 

decision making process is shown in Figures 3.9 and 3.10. Since each hierarchical block 

(h-block) is able to make a decision based on just local information, the read, write, and 

shift operations still remain constant-time operations. However, the number o f cycles
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1. .Cl: latch Regln( i) ;
2 .. C2 : do read and latch RegOut (i) ;
3 ..if (RegOut(i) is valid) and (val id(i-1)== 0)
4 .. C 3 : valid(i ) = 1;
5. . C 3 : drive do_shift_r_bus = 1
6. .else if (RegOut(i) is valid) and (valid(i-1)==1)
7 .. C 3 : valid(i) = 0;
8. . C 3 : re-insert RegOut(i) into block i's shift PQ;
9 ..else
10 . , valid(i) = 0;
11 . . C3 : do_shift_r(i) = do_shif t_r_bus ;
12 . . if (valid(i)==1)
13 . . C 4 : (i,c) = ( i + 1,0);
14 . . C 4 : output bus = RegOut(i) ;
15 . .if (do_shift_r(i)==1) and (S( (i ,0)) > S{ Regln(i )))
16 . . C 4 : shift right;
17 . . / * [ ( i , 0) , (i,l).....( i, c )] =
[ (i , 1) , (i,2).....( i + 1 , 0 ) ] */

Figure 3.9: Pseudo code for read operation in h-block i in the hierarchical dual* 
key shift PQ.

required for the read increases to 4 while 3 cycles are required for the write. The shift takes 

2 cycles because of the latching of the control signals. In line 12 of Figure 3.9, h-block i 

has the desired tag, which has been shifted out o f its own c-entry shift PQ, and latched into 

its RegOut. This leaves the entry (i,c) empty, which needs to latch the rightmost tag from 

h-block i+1 (on its left). In lines 3-10, the condition where h-block i is valid, i-1 is not, and 

i-2 is valid, cannot occur because this condition implies that tags were not sorted properly 

based on their start times during the write (tags with the same start time must be in consec­

utive blocks). In line 2 of Figure 3.10, tempreg holds the tag in the leftmost block. If h- 

block / decides that it is the holding place for the new tag, then the previous leftmost tag 

needs to sent to be the rightmost block o f h-block (i+1) for the left shift.

In the dual-key shift PQ, having to route N  signals to the input port o f the OR function 

makes implementing this impractical for a very large N. An alternate implementation is 

shown in Figure 3.11. The valid_bus is initially pre-charged to logical value 1. A block will 

output “ 1” if it drives the output bus, causing the charge in the output bus to discharge 

through the transistor (when the gate is set to “ 1” the transistor creates a short between the
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1..C1: latch Regln(i);
2..Cl: tempreg(i) = (i,c);
3 . .
4 . .1. (S(Regln(i)l > S C (i,c ))) {
5.. C2, C 3 : idle;
6. . }
7 . .else if (S (Regln(i)) == S((i,c))) and
8.. (F(Regln(i)) >= F((i,c))) {
9.. C 2 : tempreg(i) = Regln(i);
10.. C 3 : idle;
11 . . }
1 2 . .else if (S((i,c)) > SCRegln(i)) > S((i,0))) or
13.. (S((i,c)) > (S(Regln) >= S {i,c )) and (F(Regln(i)l >= 
F((i,0)))) or
14.. (S ( ( i , c ) ) == ( S (Regln) > S(i,d) and (F(ReglnCi)) <
F((i.c)))) {
15.. C 2 : insert Regln(i) into block i's shift PQ;
16.. C 3 : idle;
17. . }
18..else (
19.. C3: shift left;
20 ../*[( i , 0 ),( i , 1),...,(i,c ) ] = [(i-1,tempreg(i-
1) ) , (1,0).....(i,c-1) ]*/
21. . }

Figure 3.10: Pseudo code for write operation in h-block i in the hierarchical dual 
key shift PQ.

f ik x k  i+1 b lo ck  i b lo ck  i-1 b lo ck  i-2
valid?

p re c h a rg e v o ltag e  s e n s o r

Figure 3.11: Determining validity of the output bus in the dual-key shift PQ.

source and drain). A voltage sensor at the other end will output a “ 1” if it senses a drop in 

voltage (valid) and “0” otherwise. The OR output of each h-block can then be used as the 

input into the OR gate for the hierarchical organization.
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3.4.5 Evaluation

At an architectural level the dual-key shift PQ’s implementation cost and performance 

scales well to N, M,  and W. In terms of scalability, each additional flow simply adds another 

block to the PQ, while increasing M  and W simply adds more bits to the encoded start and 

finish times. Increasing the maximum of these values increases implementation costs 

which increase by O(W)  and 0 ( M ) respectively for the extra bits required to store these 

values. However, performance is affected by N  due to the bus loading problem, while the 

operation time for the PQ increases at rate 0( W)  and O(M)  due to the increased time 

required to compare a larger number of bits. Also, implementation costs can be very high 

for large N  values due to the large buffers.

The hierarchical dual-key shift PQ isolates the bus load from N.  However, the savings 

in buffers comes at a cost to performance. Instead of one cycle read and write operations, 

because the PQ is broken up into smaller pieces, extra steps need to be taken to maintain a 

consistent view throughout the entire PQ. As seen in Figures 3.9 and 3.10, a maximum of 

4 cycles are required for each read and 3 cycles for the write operation.

In [48], maximum clock speeds of 40 MHz (25 nsec clock) are reported for this archi­

tecture. These results, however, were obtained from a 1.2 micron CMOS process. This is 

several generations old, and with today’s submicron CMOS process, clock speed of over 

100 MHz will be easily achievable. This is equivalent to 25 million shaper operations per 

second. Assuming a node with 16 input ports, and minimum packet size of 64 bytes, the 

shaper can support input link speeds of atleast 800 Mbps.

3.5 Sorted Constant-time One-Stage Architecture

This section presents a new architecture that does not employ the traditional two stage 

approach to shaper-schedulers. Two PQs, both of which sort on two keys, are used in 

tandem to provide the shaping and scheduling mechanism. The start PQ (SPQ) sorts pack­

ets based on start time and then finish time, while the finish PQ (FPQ) sorts in the reverse 

order, finish time and then start time. Instead of transferring eligible packets to the sched­

uler and then choosing a packet to transmit from those in the scheduler, the new architecture
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Figure 3.12: HOL packet arrangement in one-stage architecture.

simply looks at all HOL packets before making a decision. For simplicity, we will first 

describe how the architecture works, before discussing details of the architecture.

3.5.1 Operation

A write operation simply inserts the new packet into both PQs. Only HOL packet tags need 

to be inserted. A packet which is not the HOL packet in a flow will not be considered for 

transmission until the HOL packet and all other packets that arrived before it have been 

transmitted. After a packet is chosen to be transmitted, the next packet in the flow, if any, 

is inserted into the dual bank of PQs.

A read operation only occurs after the transmission of a packet has finished. The result 

o f the read is the next packet to be transmitted. This packet satisfies the following criteria. 

It must be eligible (its start time is less than or equal to the system time) and it must have 

the smallest finish time among all eligible HOL packets. As shown in Figure 3.12, we need 

to consider two cases. If the system time is less than the start time of the top block’s tag in 

SPQ ( V( t )) < S(SPQ(0))), then no packets are eligible and no action is taken. Otherwise, 

the next packet to transmit is somewhere in FPQ. For example, if the system time is 6, then 

we see that there are three possible matches (blocks 1, 3, 5). At this point the desired tag 

resides in block 1. After the tag is removed from FPQ, it must also be removed from SPQ. 

The mechanisms used to remove this tag in constant time from both PQs are described in 

the next section. If there are more packets in the same flow, the next packet’s start and 

finish times are computed and the corresponding tag is written into both PQs.

The interface of the one-stage shaper-scheduler provides the following functions. A 

readout of the packet with the smallest Finish time among all eligible packets, a read o f the
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top of the SPQ without removing it (when there are no eligible packets) and a write into the 

shaper-scheduler.

3.5.2 Start-Time PQ

In order to have a constant-time read operation, we extend the dual-key shift PQ proposed 

in Section 3.4.1. First, on a read operation the SPQ is required to remove the packet that 

was just scheduled (removed from the FPQ). Along with the start time, the flow id and 

Finish time are broadcast on the input bus. Since only one packet per flow will reside in the 

SPQ, the logic for each block will be much simpler. It will drive the output bus if its con­

tents match that of the input bus, and a shift right will occur starting at that block. The other 

blocks can decide whether to load in the block to its right (participate in the shift) or do 

nothing simply by comparing its contents to that of the input bus. Second, the SPQ does not 

require an output bus since only block 0’s contents are needed during a shift operation. 

Both read and write operations require one cycle to complete. The write operation does not 

need any modifications.

Figure 3.12 shows the SPQ storing both start and finish times for each packet. Since only 

HOL packets are queued in both PQs, each packet can be uniquely identified by its How id. 

This implies that the finish time does not need to be stored in the SPQ, since the SPQ only 

needs to output the smallest start time when there are no eligible packets in the FPQ. How­

ever, when we consider the following scenario we see that storing the finish time in the SPQ 

results in the saving of an operation. If based on the current system time there are no eligible 

packets to transmit, the system will either wait (a non-work-conserving server) or the 

system will set the system time to that of the smallest start time among currently queued 

packets (work-conserving server). If the finish time is not stored in the SPQ, three opera­

tions are required to determine the next packet to transmit in a work-conserving server. 

First, the SPQ needs to be accessed to read the smallest start time. After the system time 

has been updated, the FPQ then needs to be accessed to determine the packet with the 

smallest finish time. This will return the flow id of the packet, which is used to remove the 

corresponding entry from the SPQ. This is done because the smallest start time packet is 

not necessarily the one with the smallest finish time. However, if the SPQ also sorts packets
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Figure 3.13: Block diagram of the finish-time PQ.

based on start and finish times, the first access to determine the smallest start time will also 

return the HOL packet with the smallest deadline. The second operation then uses the flow 

id to remove the corresponding packet from the FPQ. This results in a saving of one oper­

ation.

3.5.3 Finish-Time PQ

The dual-key shift PQ is extended to support the removal of the tag with the smallest finish 

time among tags with start time less than or equal to a specified time. As we saw in Figure 

3.12 multiple non-contiguous blocks can have tags with start time less than or equal to the 

time on the input bus. Since tags are ordered in finish time order, the correct output is the 

right most match. However, the other blocks need to be notified that one of the blocks on 

its right will be driving the output bus. As shown in Figure 3.13 a chain of OR gates are 

used. A block will only drive the output bus if its tag is eligible and the output of the OR 

gate from the block to its right is 0 (not eligible). It is easy to see that only one block will 

drive the output bus, and will always be driven during a read since the FPQ will only be 

read if there is an eligible packet (decided by reading SPQ).

Due to the propagation delays in the OR gates, an eligible packet could reside in the left­

most block and the right-most block. The output of the right-most block’s OR gate will 

need to propagate through all the blocks in the PQ before the left-most block is notified that 

it shouldn’t drive the output bus. Coupled with the bus loading problem on the input and
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1..C1: latch Regln(i);
2..C2: do read and latch RegOut(i);
3..1. (RegOut(i) is valid) and (OR(i-l)==0) {
4.. C 3 : O R (i) = 1; valid(i) = 1;
5.. C 3 : drive do_shift_r_bus = 1;
6 .  . }
7 . .else if (RegOut(i) is valid) and (OR(i-l)==l) {
8.. C 3 : O R (i) = 1;
9.. C 3 : re-insert RegOut(i) into block i's shift PQ;
10. . }
11..else {
12.. C 3 : O R (i) = 0; valid(i) = 0;
13. . }
14..C3: do_shift_r(i) = do_shift_r_bus;
15..1. (valid(i)==1) {
16.. C 4 : ( i,c ) = (i+1,0);
17.. C 4 : output bus = RegOut(i);
18. . }
19..1. (do_shift_r(i)==1) and (OR(i-1)==1) and (OR(i)==0) {
20.. C 4 : shift right;
21.. / * [ ( i , 0 ) , ( i , 1)...... ( i , c ) ] =
[(i,1) , (1,2) (i + 1,0)]*/
22 . . }

Figure 3.14: Pseudo code for read operation in h-block i of the hiearchicai finish- 
time PQ.

output buses, the implementation costs and performance degradation limit the number of 

blocks in the PQ. Similar to the solution proposed in Section 3.4.4, the N-entry FPQ is 

broken up into a hierarchical organization of c-entry FPQs. The block diagram is the same 

as the one shown in Figure 3.8, except that a chain of OR gates connect the N / c  c-entry h- 

blocks. The control for each h-block’s read operation is shown in Figure 3.14. The write 

operation remains the same, except the roles of the start time and Finish time are reversed. 

This hierarchical organization reduces the bus loading, and decreases the maximum 

number of OR gates a signal must propagate through. This, however, comes at a cost to per­

formance as the time required for each read operation increases from one to four. To 

increase the performance of each c-entry FPQ block, a scheme similar to that o f carry-look­

ahead used in carry-ripple adders can be used to reduce and bound the maximum propaga­

tion delay of the OR gate chain.
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3.5.4 Evaluation

As we will see in Chapter 5, the one-stage architecture provides the same functionality as 

the two-stage architectures. The main advantage of this architecture is that it eliminates the 

need for the shaper to scheduler transfer of eligible packets. Scalability with respect to N, 

W, and M  are the same as the two-stage architecture proposed in Section 3.4. Using a hier­

archical organization can control performance degradation for large N.

3.6 Summary

In this chapter we first proposed two new architectures for queueing of packets and deter­

mining eligibility. For the first architecture, we proposed a new shaper PQ which can find 

the eligible packet with the smallest finish time in constant time. The second architecture 

eliminates the need for the shaper-to-scheduler transfer of eligible packets by using a 

unique one-stage solution. This is a deviation from the traditional, and more intuitive, two- 

stage solution that has been proposed. We evaluated these two new architectures at an 

architectural level and also discussed implementation issues and proposed changes to the 

architecture to minimize some of the implementation-related scaling effects (i.e., bus load­

ing, multiple gate delays).

W e showed that the two new hardware shaper-scheduler architectures provide the bare 

essential tag transfer mechanisms needed for any mix of traffic shaping and link scheduling 

algorithms. Both offer good performance and are easy to implement, and hence can be used 

in guaranteeing QoS requirements in high-speed networks.
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CHAPTER 4

IMPLEMENTING TRAFFIC SHAPING AND 
LINK SCHEDULING ON AN 

END-HOST SERVER

4.1 Introduction

This chapter examines the implementation of traffic shaping and link scheduling mecha­

nisms on an end-host server. Delivering QoS guarantees requires an end-to-end solution 

[3]. In other words, traffic shaping and link scheduling mechanisms must be in place both 

within the network at switches and routers, and also at the flow’s source (i.e., the server). 

Although most research focuses on implementation at nodes within the network, this chap­

ter focuses on implementing traffic shaping and link scheduling on an end-host server with 

a single outgoing link. During heavy loads when a large number of outgoing flows are 

being set up by the server, congestion at the outgoing link requires traffic shaping and link 

scheduling to guarantee that each flow meets its QoS guarantees. Unlike switches and rout­

ers which simply react to incoming packets, depending on how the shaper-scheduler is 

implemented on the server, the resulting implementation will either react to packets gener­

ated by applications running on the server, or will directly impact the generation o f packets 

by applications. This direct impact can change the QoS received by each flow. To highlight 

these issues, and to motivate the need for a dedicated shaper-scheduler on the server, we 

will present and examine more traditional implementation strategies. By traditional we 

refer to software implementations, either at the operating system or application level, which 

run on the same server CPU(s).

This chapter presents a network interface architecture with dedicated traffic shaping and 

link scheduling support. When a new flow is initiated, its traffic parameters are downloaded
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into the network interface through its programmable interface. Assuming that the applica­

tion receives enough CPU to process its stream into packets, the network interface will 

smooth the flow’s stream, regardless of how bursty the actual processing packet is, and 

schedule transmission on the outgoing link so that all flows receive their desired QoS. This 

approach allows the shaper-scheduler to operate concurrently with the rest of the server, 

thereby reacting to the flows. The architecture also significantly reduces server CPU load 

during heavy loads (both CPU usage and number of flows being served). Very fine-grain 

link multiplexing, and consequently more diverse set o f QoS guarantees, can be easily sup­

ported in this architecture for a large number of flows.

The rest of the chapter is organized as follows. A detailed examination of shaper-sched­

uler implementation issues on end-host servers is given in Section 4.2. In Section 4.3 we 

present our network interface architecture, and describe its operation within the framework 

o f a streaming server. We also present two possible implementations of our architecture. 

Section 4.4 presents a performance evaluation o f these two implementations, along with a 

brief description of our simulation environment and traffic models. Section 4.5 concludes 

the paper with a summary of our work and a brief list of future directions.

4.2 Implementation Strategies

This section examines several traditional means of implementing a shaper-scheduler on an 

end-host server. We will discuss the mechanisms and limitations of these solutions. We 

first state assumptions regarding the server configuration.

4.2.1 Assumptions

Figure 4.1 shows a generic server that we assume in our work. One or more processors arc 

connected to secondary storage devices and the network interface through an interconnect. 

In most PC server configurations, this is just a shared bus. However, as processors and net­

work link speeds become faster, and larger storage devices become more readily available, 

servers will be capable of serving more and more requests. Based on this trend, the current 

shared bus will become a major bottleneck, and will be replaced by a faster and more effi-
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Figure 4.1: A generic server model.

cient interconnect mechanism. Although we don’t assume a specific type of interconnect, 

we do assume that the interconnect will be fast enough not to be the bottleneck.

We also assume that applications will receive enough CPU cycles for packet processing 

[ 1 ]. This implies a process scheduler on the OS, which is important for applications which 

need to process and transmit data at periodic intervals. Without this any shaper-scheduler 

implementation will be made ineffective. We assume that each application is associated 

with one or more flows, and that each flow is specified by a set of traffic parameters (i.e., 

burst size and minimum burst interval). For example, a stored video-on-demand server 

application can transmit several different flows (i.e., video streams) to remote clients for 

real-time playback. Although the entire video file is stored on disk, streaming the file 

allows the user to start playback without waiting for the entire file to download. As video 

files tend to be very large, streaming results in more efficient use o f network resources, and 

allows the server to deliver good performance to a larger number o f clients. In this example, 

each video stream’s traffic parameter is specified by its playback rate. Transport layer pro­

tocols such as TCP simply try to detect and avoid congestion within the network, and are 

not suitable for such streaming applications which require a specified spacing between each 

transmission burst.

4.2.2 Application-level traffic shaping

Applications such as streaming servers which need to pace each flow at a specified rate, 

can take advantage of a traffic shaper. However, without any OS-level support, one solu-
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tion is to have each application pace its own flows. This assumes either a FCFS or other 

link scheduler at the transmit queue. Such self-pacing requires that each application moni­

tor each flow and hold back transmissions for a flow if it violates the flow’s traffic param­

eters. Since a send call to the OS will attempt to transmit the data as soon as possible, the 

application can do one o f two things to pace out its data transmission. It can either process 

the data and then perform a check (conformance to the traffic parameters) right before the 

send call, or it can delay the processing of the data (using timers) to the next start time. Both 

methods require a form of delay mechanism, which is not feasible nor accurate for small 

delays and large number of applications and flows. If each application or flow is processed 

by a different process or thread, the number of context switches from user to user and from 

the user to kernel during the send call can add significant overhead and load on the server 

CPU(s). For example, if each flow transmits 2KB each 0.1 second, 1000 simultaneous 

flows will require at least 10,000 task switches. To reduce this overhead, each application 

can increase both the burst size and burst interval to 20KB per second. This, however, 

requires larger buffers at each node in the network for each flow. Larger bursts also can 

increase the probability o f packet drops during congestion within the network.

This type of self-shaping mechanism is currently employed by current commercial 

stream servers such as Apple’s QuickTime Streaming Server, M icrosoft’s Windows Media 

Services, and RealNetwork’s RealServer. Under low server CPU loads, such self-time 

mechanisms might function well. However, under heavy loads, especially when the stream­

ing server application must share the server CPU with other applications, the amount of 

time the streaming server application must wait for the server CPU could be much larger 

than a flow’s minimum burst interval. This results in interrupted playback at the client.

4.2.3 Operating system support

An alternative solution to self-shaping, is to add shaping and link scheduling support at the 

OS level. Whenever the application gets access to the server CPU, each flow can buffer 

enough data at the shaper to last several burst intervals, and allow the OS to perform the 

traffic shaping and link scheduling. This implies that the actual send call is not made until 

the scheduler decides to transmit an eligible packet. Also, to ensure that flows are shaped
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according to their parameters, the shaper needs to be periodically executed. Although in 

Section 3.3 we defined this interval to be after each packet transmission, an actual imple­

mentation can make this period larger. This allows the shaper-scheduler to batch schedule 

a number o f packet for transmission which become eligible during each period. However, 

a large period can distort a flow so that it no longer adheres to its traffic parameters. Also, 

as we will show later, the amount of processing required to shape and schedule is not trivial. 

This load grows with the number of flows, thus taking away CPU from applications, and 

lowering the number o f flows supported by the server. In the worst case, the processing of 

the shaper and scheduler could interfere with the processing required by the applications.

4.3 Dedicated NIC Support

Both self-shaping and OS-supported shaping and scheduling rely on running on the same 

CPU as the applications. When the number o f flows and load on the server CPU are low, 

both these schemes will work well. However, when either increases the processing needs 

o f the shaper-scheduler will interfere with the processing needs of the applications. Our 

solution is to add dedicated support on the network interface (NIC). This allows concurrent 

operation of the shaping and scheduling with the rest of the server. The following subsec­

tions describe the basic operation of our NIC, and two possible implementations.

4.3.1 Basics

Flow setup

An application will setup a new flow only if an admission control algorithm [3] determines 

that the resources required to process and transmit the new flow will not exceed server 

resources. The admission control algorithm also guarantees that flows that are currently in 

service will not be affected when the new flow is admitted. Once the flow is admitted, an 

internal flow id is assigned to that flow. All references to the flow are made using the flow’s 

flow id. The flow’s data parameters are then downloaded into the NIC’s shaper-scheduler.
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Packet movement

Before data can be transmitted it needs to be packetized and moved to the NIC buffers. 

Assuming a UDP-like protocol, each flow’s bursts will be processed by the UDP and IP 

protocol stack in the OS, before being presented to the device layer. At the device layer 

(e.g., ethemet), an ethemet header is attached and then copied to the NIC. In order to reduce 

the packet processing and movement overheads [5] [20] [21] [24] [49] [57] [63] [65], many 

researchers have proposed various network interface architectures. Single copy schemes 

[5] [20] [21 ] [63], which move data directly from user space to the NIC buffers, attempt to 

reduce the multiple memory copies necessary as the data moves down the various protocol 

stacks. Other schemes move some or all of the packet processing onto the NIC [23] [49] 

[77]. Instead of adding to the NIC, other schemes introduce new-buffer management mech­

anisms [25] [26], reduce DMA overheads [9], or give user-level applications direct access 

to the NIC [27] [51] [82],

We borrow from these results by assuming the following model. Each flow is assigned 

a user-level memory space which does not get paged out of physical memory. At most, the 

amount of memory will be enough for 1 or 2 seconds worth of data. The address and size 

o f this memory will be fixed for the duration of the flow. The NIC is initialized with the 

starting address of this block of memory at the time of flow setup. For simplicity, we 

assume that all addresses are physical addresses and no address translation is needed for 

virtual addresses. Packets are then copied into NIC buffers using a DMA mechanism on the 

NIC. At this point, the packet has been fully processed and is ready for transmission, requir­

ing no further packet processing at the NIC.

Buffer management

To amortize DMA overheads, the buffer manager on the NIC downloads several packets at 

a time for each flow. Each flow will have an associated linked list of packets in the NIC 

buffers. The buffer manager keeps track of the current number of packets in the buffers for 

each flow, and downloads packets from memory when needed. When the scheduler deter­

mines the next packet to transmit, the packet’s flow id is used by the buffer manager to read 

the packet from NIC buffers into the NIC’s physical interface FIFO. A separate linked list
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Figure 4.2: Data structure used to encode traffic parameters.

is used for best-effort packets. Best-effort packets are transmitted by applications which are 

not associated with any flows and do not require any QoS guarantees.

Control interface

A memory-mapped control interface is used to communicate with the NIC. All commands 

(download traffic parameters, stop a flow) are delivered through the command FIFO. Any 

exceptions, status information, and shaper-scheduler requests are made through a request 

FIFO.

Traffic parameters

Figure 4.2(a) shows the data structure (schedule segment) used to encode the traffic param­

eters for each flow. Like most shaping and scheduling disciplines, we use a simple rate- 

based scheme. The rate is specified by its burst interval (T), burst size (S), and duration (D). 

The duration refers to the number o f bursts required to send the entire flow. For a stored 

video file, this is simply the file size divided by S. For a continuous flow (live video, audio), 

the infinite flag is set to tell the shaper-scheduler to ignore D. Both T and S are in units of 

chunks, which are fixed-size segments. We assume that all packets are integer multiples of 

chunks. For example, if S=2, and T=20, then the flow requires 2 chucks to be transmitted 

for every 20 chunks transmitted.

This traffic model can also be used to characterize VBR-encoded video streams. 

Smoothing techniques [28] [29] [61] [64] can be used to compute a transmission schedule 

which consists o f a small number o f constant-rate transmission intervals. This can be
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encoded as several schedule segments, as shown in Figure 4.2(b), which uses the more flag 

to chain 3 schedule segments.

Shaper-scheduler operation

Each active flow has an associated shaper tag which is queued in the shaper queue. The 

shaper tag consists of the flow id, the start time, and Finish time of the flow’s HOL packet. 

The start time is the Finish time of the previous packet plus the burst interval (T). For the 

First packet in the flow, its start time is the current time. An internal counter keeps track of 

the time by counting the number of chunks scheduled for transmission so far. The Finish 

time is the packet’s start time plus T. In other words, its deadline is the earliest time the next 

packet in the flow can begin transmission. When the HOL packet becomes eligible (its start 

time is greater than or equal to the current time), the shaper will create a scheduler tag (flow 

id and Finish time) and insert it into the scheduler queue. If there are more packets to trans­

mit in the flow, the shaper reads the flow’s schedule segment to create a new shaper tag. If 

this packet is the last in the flow, an end-of-flow message is written into the request fifo. 

After each packet transmission, the shaper will move any packets that have become eligi­

ble, while the scheduler determines the next packet to transmit. The scheduler then writes 

a data tag (flow id) into the transmit FIFO, which is processed by the buffer manager.

4.3.2 Hardware Implementation

Figure 4.3 shows the block diagram of the hardware implementation, which consists of two 

main blocks. The buffer manager contains the packet buffers, as well as the state machine 

to update the linked list of packets and interact with the DMA engine. The shaping and 

scheduling is performed by the control block, which is shown in Figure 4.4. A pointer 

memory, indexed by flow id, keeps track of the list of scheduler segments for each flow. 

Each line of the schedule segment SRAM contains one schedule segment. Since a flow can 

have multiple schedule segments, a FIFO (not shown) keeps track of free lines in the sched­

ule segment SRAM that can be used to store new schedule segments. When a flow ends, or 

when the schedule segment ends, its address is returned to this FIFO. The heart o f the 

shaper and scheduler is a dedicated priority queue mechanism [13][48], which provides
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constant time queueing, sorting, insertion, and removal of tags. The shaper’s priority queue 

sorts tags based on the start time, while the scheduler’s priority queue sorts tags based on 

their finish time.
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4.3.3 Software Implementation

The NIC architecture for the software implementation is shown in Figure 4.5. This is sim­

ilar to M yrinet's network interface [10] which uses the LANai processor and three DMA 

engines to move data to and from the network interface. Whereas Myrinet uses a byte wide 

Myrinet physical connections, our architecture is not dependent on the physical interface 

and can be built upon any link technology.

All schedule segments, packets, and other information are stored in onboard memory 

which is accessible by the server processor. The DMA engine and transmission FIFO are 

addressable by the NI processor. We also assume that the transmission FIFO has a DMA 

state machine which allows it to read out packets from memory without involving the NIC 

processor.

Figure 4.6 shows pseudo code for the software implementation. Note that the buffer 

management functions are not shown. The command interface is simply a region of the NIC 

processor’s memory which can be accessed by the server processor. Flow setup and new 

schedule segments are written here. The NIC processor polls this memory and updates the 

schedule segment list. As with the hardware implementation, each active flow has a linked 

list of schedule segments associated with it.
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1 . . m a i n () {
2 . . while 1 {
3.. if top of scheduler pq is eligible for xmit
4.. create and insert a data tag;
5.. remove top entry and sort scheduler pa;
6.. else if data tag FIFO not full and best-effort packets have
been released by shaper
7.. insert a best-effort data tag;
8.. else if top of shaper pq is eligible for release and sched­
uler pq is not full
9.. remove top entry from shaper pq;
10.. if necessary
11.. create and insert new entry for shaper pq;
12.. sort shaper pq;
13.. create and insert entry into scheduler pq;
14.. sort scheduler pq;
15.. update schedule segment;
16.. else if necessary
17.. release a best effort packet;
18.. else if command FIFO not empty
19.. process command FIFO;
2 0..endwhile
21..enamain

Figure 4.6: Pseudo code of the software implementation.

As with the hardware implementation, the traffic shaper will insert as many entries into 

the link scheduler as possible. This is done to prevent missed deadlines. Consider two con­

nections with the same eligibility time. If only a single entry is written into the scheduler 

PQ before running the link scheduler, the stream with the less urgent deadline can be sched­

uled and transmitted first, causing the other stream to miss its deadline.

Instead of transferring the actual page into the transmission FIFO, the NIC processor 

sets up the DMA engine on the FIFO. Similarly, when reading a page from source into NIC 

buffers, the NIC processor sets up the DMA engine on the I/O bus interface. Using DMA 

engines frees up processor cycles for other computations. Since the NIC processor is not 

actively involved in the actual transfer of packet data, a notification scheme is used to 

signal the NIC processor at the end of a page write into NIC buffers and at the end of a page 

transmission. This is needed to manage the linked list of pages and to keep track of the NIC 

buffer usage.
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4.4 Evaluation

To evaluate our proposed architecture we developed a simple event simulator using C, and 

modeled both hardware and software version, also in C. This provides us with a common 

framework which makes comparing our results more meaningful. This also allows us to use 

the same traces and setup configurations to evaluate both implementations. Simulation 

results show the efficacy of our architecture in providing QoS-sensitive link multiplexing, 

especially when dealing with a large number of streams with widely-varying rates on a very 

high capacity link. We introduce the concept of period division and show the performance 

improvements obtained by using such fine-grain link multiplexing, and how our architec­

ture can support this feature.

4.4.1 Simulation Environment

To evaluate our implementations, we wrote a simulator which enabled us to model and sim­

ulate both hardware and software components on a single platform. This simulator is pre­

sented in Chapter 6. Combining event-driven simulation techniques and software 

performance estimation, we were able to simulate long periods of time using our compiled 

simulator. By adding delay statements into the code for software components, we were able 

to avoid the issue of modelling a specific processor for the software implementation.

4.4.2 Reducing Delay and Delay Jitter

In our simulations we used link speeds o f 100 Mbps, 622 Mbps, and 1 Gbps, with a fixed 

packet size of 128 bytes. Streams that need to burst data in larger sized packets can easily 

do so by using multiples of 128 bytes. By parsing the packets on the outgoing link based 

on their stream id, we were able to measure the delay jitter seen by the end clients.

At 100 Mbps the number of simultaneous streams ranges from 20 to 140, while the total 

num ber of streams during each simulation run was close to 200. For the 1 Gbps link, these 

numbers were between 120 to 580, and over 1000 streams. To quantify overall performance 

we measured the average delay and delay jitter for each stream over a one second interval. 

W e then converted the delay jitter number into a percentage value (average deviation)
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Figure 4.7: Link utilization at 100 Mbps and 1 Gbps link speeds.

based on the desired, or requested, delay. For example, a stream requesting data transmits 

every 1 msec will see 10% delay jitter if transmissions occur every (1 ±0.1 msec). These 

values were then averaged across all streams for each 1 second interval. Figure 4.7 shows 

the measured link utilization using a 100 Mbps and I Gbps link. The graph for the 622 

Mbps run has the same profile in that utilization starts out very low and nears full capacity 

towards the end of the simulation run. Figure 4.8 shows average deviation values. As
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Figure 4.8: Performance measurements at 100 Mbps and 1 Gbps link speeds.

expected, the average deviation increases with increased load on the network link. By 

increasing the size o f the scheduler PQ, we can force the traffic shaper and link scheduler 

to look ahead even further in time to determine a better link schedule. As shown in the 

graphs deviation values remain constant throughout the simulation run for very large 

scheduler PQ sizes. W e also see that after a certain size there is no further drop in deviation 

despite further increases in the scheduler PQ size.
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This is mainly because the rates differ greatly among the various streams. Some of the 

video streams transmit large amounts of data (5 to 26 KB) every 33 msec, while other 

streams transmit much smaller amounts of data (100 to 1000 bytes) every 1 to 2 msecs. As 

a consequence these smaller period streams can potentially wait past their deadlines if they 

get queued behind several large bursts. Even small jitter values translate into large percent­

age values because of the relatively small period sizes. Increasing the scheduler PQ size can 

reduce deviation only up to a certain point because doing so does not solve the problem 

where the smaller period stream gets queued behind several large bursts.

By reducing the size of the large bursts to match the burst size of the smaller period 

streams we can significantly reduce deviation of these smaller period streams. For example, 

if a video stream needs to burst 25 KB every 33 msecs, we can divide the period such that 

bursts are reduced to 750 bytes every 1 msec (factor of 33) or even 1.9 KB every 2.2 msec 

(factor of 15). We refer to this process as period division. Since all streams now have sim­

ilar burst sizes, the same blocking problem discussed in the previous paragraphs results in 

a much smaller queueing time for the smaller period stream. As seen in Figure 4.9 deviation 

is reduced compared to the deviation values without the period division and using the same 

scheduler PQ size. This last observation is particularly important for the hardware imple­

mentation due to the hardware costs in building very large PQs. This is explained in the 

next section. Figure 4.10 shows deviation values for one of the smaller period streams. As 

expected, these streams gain the most by period division. From Figure 4.10(b) we see that 

the same deviation can be achieved with a 256 size PQ using period division or 8196 size 

PQ without period division, resulting in a factor of 32 in hardware savings. We can see the 

same trends in Figure 4.10(a).

4.4.3 CPU Load

Figure 4.11 shows processor loads for some of the simulation runs. Since the priority queue 

and its operations are implemented as a binary heap, processor load does not increase sig­

nificantly with increased PQ size. However, load does increase by a factor of 2 to 4 when 

we use period division because the number of operations to transmit the same amount of 

data has increased. At low link speeds the load is below 10%, but approaches 100% at high
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Figure 4.9: Performance measurements after incorporating period division.

link speeds. For even higher link speeds and larger number o f simultaneous streams, the 

computing load required will exceed the capacity of the processor. This means that the 

server will have to reduce the number of simultaneous clients to deliver the same level of 

QoS across all streams. Otherwise, the shaper-scheduler’s load will exceed 100%, causing 

the link to go idle even when there are packets to transmit.
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Figure 4.10: Performance measurements of a single small period stream.

4.5 Summary

In this chapter we proposed and evaluated a network interface architecture with dedicated 

support for QoS-sensitive transmission. We defined an architecture and low-level functions 

for supporting traffic shaping and link scheduling. Based on hardware and software imple-
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Figure 4.11: Processor loads.

mentations we measured performance seen by the user in terms of delay and jitter, and 

showed the effect of increasing the scheduler PQ size in reducing delay jitter. We also 

showed the effectiveness of fine-grain link scheduling in significantly reducing delay jitter 

without using very large capacity scheduler PQs, which significantly lowers hardware 

implementation cost. We showed that, by moving the implementation into the network 

interface, the server can take advantage of the concurrent execution of operations. This 

allows the server to support finer levels of QoS, without burdening the server processor.
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Not only does this free the server processor to process other tasks, but it also results in a 

larger number of connections receiving their desired QoS. This allows the system to make 

the best use o f server resources in terms of processor time and link bandwidth.
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CHAPTER 5

A PROGRAMMABLE TRAFFIC SHAPING AND 
LINK SCHEDULING ENGINE

5.1 Introduction

The focus o f shaper-scheduler architecture work in Chapter 3 and in the current literature 

[14] [58] [66] [67] [70] [87] has been mainly on efficient mechanisms for queueing HOL 

packets, determining eligible packets, and sorting eligible packets based on their finish 

times. However, an important issue that is largely ignored is the implementation of the con­

troller and associated datapath. The controller is responsible for queueing newly-arrived 

packets, maintaining flow state, computing start and finish times, and keeping track of the 

system time. The datapath is characterized by the connection o f the various state machines, 

memory elements, and the shaper and scheduler queues, and determines the efficiency of 

data transfers. Consequently, the overall performance of the shaper-scheduler will depend 

on the efficiency of the controller and datapath implementation. Previous related work has 

either not addressed this issue or has simply assumed a generic processor block with no fur­

ther details. Although hard-wiring an implementation for a specific algorithm can provide 

the best performance, it provides the least flexibility and will require a re-design for other 

algorithms. To leverage on the high performance of hardware, and yet provide enough flex­

ibility, we propose a shaper-scheduler processing (SSP) engine.

The SSP is a very simple micro-controller-based processor, with separate downloadable 

program memory and data memory. Based on a small instruction set, the processor can be 

programmed to execute any mix of traffic shaping and link scheduling algorithm. The 

shaper-scheduler architectures from Chapter 3 are incorporated into the datapath as 

memory-mapped devices. Since these devices provide the queueing, sorting, and searching
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functions, any algorithm can be quickly programmed by considering just the timestamp 

computations.

The rest o f this chapter is organized as follows. In Section 5.2 we first detail several 

shaper and scheduling algorithms discussed in Section 3.2, focusing on the timestamp com­

putation aspects of each. Based on this we propose a generic processing unit and datapath 

implementation. An overview of the operations and datapath are given in Section 5.3. In 

Section 5.4 we describe a memory organization that can store the data structures required 

for any shaping and scheduling algorithm implementation. Section 5.5 describes the pro­

cessor. An evaluation of the SSP is given in Section 5.6. We then show how this can be 

used to effectively implement a few well-known algorithms.

5.2 Algorithms

5.2.1 Leaky-bucket Shaper

The shaper generates tokens for a flow / at a rate of p( . where a ( is the maximum number

of tokens than can be accumulated in the bucket. Assuming the k,h packet from flow i

arrives at time A( pf ) ,  and requires Lf  tokens we can calculate the packet’s start time S(pf )

(earliest time the packet is eligible) as shown in Figure 5.1(a). The algorithm simplifies to 

Figure 5 .1(b) when dealing with fixed size packets. As seen, the operations used in this 

algorithm include basic addition, subtraction, division, and comparison instructions. How­

ever, the division always involves dividing by the flow’s rate. But by specifying the rate as 

a fraction, and its inverse an integer, the division can be replaced by a multiplication.

5.2.2 Earliest Due Date

Under EDD, each packet is assigned a due date (deadline). Each flow i provides the mini­

mum packet interarrival time / ( and a local delay bound d  for each node the packet passes

thin the network. Assuming the k packet from flow / arrives at time A( pf ) ,  its deadline (or 

finish time) is F(pf )  = A(pf )  +d.  In Delay EDD, an extension to EDD, the packet’s dead-
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(a) Variable length packets

C curr = m i n { ° i > a curr +

if (Lf  — ®curr) then 

S(pf )  = A(pf )

®curr ~  ®curr ~

else
L* -

S(pf )  = A(pf )  + —

(b) Fixed size packets

a curr = m i n { a i’ ° c u r r  + 

i f  ( ° c h / t > 0 )  t h e n

S(pf )  = A(pf )

®curr ~  ®curr ~  ^

else

S(pf )  = 5 ( p f - ')  + ^

Figure 5.1: Calculating eligibility times in a leaky-bucket shaper.

line is defined as F(pf )  = max{A(pf )  +d , F( p f ~{) + /■} . In this algorithm only additions 

and comparison operations are required.

5.2.3 Fair Queueing

Packet-by-packet generalized processor sharing (PGPS), also known as Weighted FQ 

(WFQ), Frame-based FQ (FFQ), Starting-potential based FQ (SPFQ), Start-time FQ 

(SFQ), W orst-case Fair WFQ (WF2Q) and WF2Q+, and Self-clocked FQ (SCFQ) are sev­

eral examples of packetized versions (PFQ) of the fair queueing (FQ) algorithm from the
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literature. Despite the large number o f variations, the basic foundation for all these algo­

rithms is the same. The function V(t) returns the system time (or system potential) at time 

t. For each packet that enters the scheduler, it is assigned a start time S(pf )  and a finish

time F ( p f ) . Packets are then transmitted in increasing order of start time or finish time,

depending on the algorithm. The difference among the various PFQ algorithms is in how 

they update the system time, and how the start time and finish times are calculated.

For example, in PGPS

x
V(t  + t)  = V(t) + -------- , where B is the set of connections with queued packets,

I P ;
/ e B

and

S(pf )  =  max { F( p f - ' \ V( A( p f ) ) \

Up f )
F(pf )  =  S(pf )  + -

P i

where L(pf )  is the length of packet p f .

In SCFQ the system time is defined as the finish time of the packet currently receiving 

service. SFQ uses the start time of the packet currently in service instead. In WF2Q+,

V(/ + t)  = max{ V(t) + W(t,t + x), minie  g (5 (p ^ ^ ))}, where p ^  is the packet corre­

sponding to the HOL packet for flow i at time t. The start times and finish times are com­

puted in the same manner.

Similar to the leaky-bucket shaping algorithm, most PFQ algorithms require the same

arithmetic instructions, along with a comparison operation. In WF2Q+, minie  B(S(/?-:(r)))

is simply the top entry in the shaper PQ. This value is obtained by reading the highest pri­

ority entry (smallest eligible time) in the shaper PQ.

5.3 Basics

We assume that the buffer manager handles the actual buffering of the packet, and simply
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returns a packet tag which consists o f the flow id, a pointer (starting address o f the packet 

in the buffer, or page number for fixed size packet networks), and the packet length (in units 

of time slots, or not included for fixed size packet networks). These tags are placed into a 

FIFO queue, and are removed by the shaper-scheduler for processing.

The main memory elements are those for storage of flow state and flow linked list. First, 

the packet tag’s flow id is used to access the flow’s linked list. If this list is non-empty, then 

the tag is simply appended to the end of the list. Otherwise, this packet tag corresponds to 

a new HOL packet which requires a read of the flow’s state to compute the packet’s eligible 

time and Finish time. Since the finish time needs to be computed anyway, doing so now 

instead of when the packet actually becomes eligible saves a memory read for the flow 

state. A new tag (shaper tag) consisting of the flow id, and its start and finish times are cre­

ated and inserted into the shaper PQ. Depending on whether the one-stage or two-stage 

architecture is used, the tag is inserted into the scheduler PQ now or when the packet is 

transferred. A counter is also needed which is incremented at every time slot interval when 

data is transmitted, and stays idle otherwise.

As we saw in the previous section, all the service disciplines can be mapped to a 

common framework. The computation of the start and finish times requires one or more 

additions, comparison operations, and divisions (or multiplications). Since two operand 

min and max operations are common in these algorithms, separate min and max operations 

can be incorporated into the ALU. Instead of using an if-then-else statement, these instruc­

tions will reduce the number of cycles required to find the min and max of two operands. 

Finding eligible packets and link scheduling is performed by the shaper and scheduler PQs, 

so the controller simply needs to make a request to these modules. Based on this fact, a 

simple processor with an ALU consisting o f a few instruction, several registers for tempo­

rary storage, and program memory is all that is required to implement any algorithm.

Figure 5.2 shows the required datapath. The data memory holds flow state, and its width 

depends on a cost/performance trade-off analysis. A wider memory unit will have better 

throughput, but will be more expensive to implement. Both memory units are written by an 

external management unit which will load in flow parameters and shaping and scheduling 

code. The packet transmission unit simply requires the starting address and length of the
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Figure 5.2: Logical block diagram of a generic shaper-scheduler 
implementation.

packet to transmit and sends back a signal which increments the counter after the transmis­

sion at each time slot.

5.4 Memory Management

Each algorithm requires different flow state information. For maximum throughput, all 

state information should be kept on a single line of memory addressed by the flow id. How­

ever, provisioning for the maximum possible amount of state information is unrealistic. 

This requires that multiple lines of memory be used, with the number of lines dependent on 

how much state is required. To address the flow state, a two stage memory access scheme 

is used. The first N lines of memory are reserved for pointers to the actual data, and are 

addressed by the flow id. The node manager will handle all memory management tasks. 

The flow’s data is stored in contiguous lines starting at the address pointed by the returned 

pointer. This is shown in Figure 5.3. Within each line, one or more Fields can be stored, and 

is determined by the node manager (e.g., a 64-bit wide memory can store two 32-bit fields). 

This arrangement requires that any range of the register be read/writable (i.e., a 64-bit reg­

ister RO is 4-way accessible if the values R0[ 15:0], R0[31-16], R0[47:32], R0[63:48] can 

be used as operands into the ALU). This method reduces memory requirements. The finish
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Figure 5.3: Memory management in data memory.

time might require a much larger number of bits than the token bucket size or packet length.

For simplicity we assume that the node manager will use the same shaping and sched­

uling discipline for all flows. This means that only one program needs to be stored in the 

program memory. This also simplifies the access of a particular field in the flow state, since 

the program needs to consider only one type of data structure for the flow’s state. For exam­

ple, as shown in Figure 5.3, to access f4 of flow i=2, the content of data memory at address 

2 (DM[2]) is read, and the content of address (x+2) is read into a register. In this example, 

accessing the entire state o f flow / will require (3+1) memory reads. Depending on the per­

formance requirements, the width o f the data memory can be increased to reduce the 

number o f reads.

The data memory is also used to store the linked list of packet tags. The node manager 

reserves a portion of the data memory and allocates the necessary number of lines of 

memory (a page) for each packet tag. An idle address FIFO module stores the starting 

addresses of all pages which are not being used. This FIFO is initialized by the node man­

ager. Upon entering, the new packet tag is stored in an empty page, whose address is first 

obtained from the idle address FIFO. When the packet corresponding to that packet tag has 

been sent to the packet transmitter, the page’s address is returned to the idle address FIFO.
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Figure 5.4: Block diagram of processing unit.

5.5 Processor

As mentioned previously, the processor needs to perform basic memory reads and writes, 

condition checking, comparisons (equal, greater, less than), branches, and arithmetic 

instructions. A max and min operation with two operands should also be included. Also, 

since the operands can be any field in the register, the ALU must be able to correctly select 

and operate on any range in the register. A memory mapped I/O scheme can be used to 

access the other modules in the datapath. A range of data memory can be reserved, with 

each module being mapped into one or more addresses in this range. A memory translator 

can be used to generate the correct control signals based on the address. For example, a read 

to address (N +l) can be mapped so that the shaper module will put the next eligible 

packet’s tag onto the databus.

Figure 5.4 shows a block diagram of the processor. Here we assume a 64-bit wide 2-way
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accessible registers. The ALU will correctly handle operations with both 64 and 32 bit 

operands. For example, an add of a 32 bit and 64 bit operand will append the value 0 to the 

upper 32 bits o f the 32 bit operand, with a 64 bit result. The bank of result flags are set by 

the module that was read/written by the processor. For example, a valid output from a 

shaper read will set the shaper_flag, and is cleared after it is checked by the processor. The 

counter_flag is set when the counter is incremented, and cleared when checked by the pro­

cessor. The packet_flag is set when a packet is done transmitting, and cleared when 

checked by the processor.

5.6 Evaluation

The major cost of implementing the controller and datapath will be from the PQs and the 

memory units. Assuming the shaper-scheduler supports up to 1,000 flows, 64 bytes per 

flow state, 8 bytes per packet tag, and a shared packet buffer in the node for a maximum of 

100,000 minimum sized packets, the total data memory required will be 872 KB for 64-bit 

wide memory (8 lines per flow state, I line per packet tag), and 468 KB for 32-bit wide 

memory (16 lines per flow state, 1 line per packet tag). For 10,000 flows these number 

increase to 1.52 MB and 1.08 MB. For 100,000 flows and a buffer space of 1 million pack­

ets, the memory requirements become 15.2 MB and 10.8 MB.

Since the number of instructions that need to be supported by the processor and the 

number o f registers in the register file will be very small (less than 20 instructions and less 

than 10 registers are required), the cost of the processor will not be the deciding factor in 

overall implementation cost. However, this is not the case when we look at performance 

issues.

As we saw in previous sections, the shaper and scheduler PQ units are able to return 

results within 4 clock cycles. As we will see in Section 5.7, the processor can take more 

than 4 cycles to process each packet. However, we see that the attainable throughput by 

each shaper-scheduler is still more than adequate for today’s high-speed networks. Assum­

ing a clock period of 10 ns (100 MHz clock, which is very attainable with today’s submi­

cron CMOS technology), and assuming each packet processing takes on average 10 cycles 

(this also assumes the memory read/write latencies are within 10 ns), the shaper-scheduler
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implementation can process 10 million packets per second (4 Gbps throughput for 50-byte 

packets). Assuming an average packet length of 50 bytes, and in the worst-case scenario 

where 16 input ports are continuously forwarding packets, the maximum link speed that

can be supported is 235 Mbps ((10x106) x 50 x 8 /(1 6 +  1). If an algorithm requires slightly 

more processing o f up to 20 cycles per packet, then this number drops to 118 Mbps. How­

ever, under more realistic conditions, and combined with a custom implementation of the 

shaper-scheduler using very aggressive design techniques and technology, we are confi­

dent that higher link speeds can be supported.

5.7 Example Implementation

This section presents implementation strategies for some well-known algorithms using our 

shaper-scheduler architecture. For each algorithm we present the program code assuming 

our two-stage shaper-scheduler PQ, and also the one-stage version. We will also discuss 

some implementation issues not covered in the previous section.

5.7.1 Preliminaries

The basic outlines for the two-stage and one-stage programs are shown in Figures 5.5 and 

5.6. The main difference is that the two-stage version must transfer at most two tags from 

the shaper PQ to the scheduler PQ at every counter tick, while the one-stage version does 

not require this step. Also, both require a new scheduling decision after every packet trans­

mission. Ideally, the packet flag is actually set before the packet is done transmitting, so 

that the next packet can be read from the packet buffer and immediately transmitted without 

any link idle time. At all other times both programs are processing newly-arrived packets.

5.7.2 Leaky-bucket shaper with static priority

A similar algorithm proposed in [88] shows the effectiveness of this type of shaping and 

scheduling in providing throughput, delay and delay jitter guarantees. The flow state con­

sists o f the max and current bucket size, rate, eligible time of the previous packet, and a
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1..T O P : if counter_£lag set {
2.. /*shaper to scheduler transfer*//*R0 holds system time*/
3.. M[SHAPER_V] = R O ; /*write system time into shaper*/
4.. idle 3 cycles; /*wait for shaper*/
5.. R1 = M [SHAPER_R];
6.. if shaper_flag set {
7.. /*shaper output is valid*/
8.. M[SCHEDULER_W] = R 1 ; /*write into scheduler*/
9.. /*check if there are more packets in this flow*/
10.. /*and update linked list*/
11.. /*compute start and finish times of new HOL packet*/
12.. /*and assemble tag in R1 and write tag into shaper*/
13.. M[SHAPER_W] = R l ;
14. . }
15.. M [SHAPER_V] = R 2 ; /*R2 holds S of current packet transmit*/
16.. idle 3 cycles;
17.. R1 = M[SHAPER_R];
18.. if shaper_flag set {
19.. /*shaper output is valid*/
20.. M [SCHEDULER_W] = R 1 ; /*write into scheduler*/
21.. /*check if there are more packets in this flow*/
22.. /*and update linked list*/
23.. /*compute start and finish times of new HOL packet*/
24.. /*and assemble tag in R1 and write tag into shaper*/
2 5.. M[SHAPER_W] = R l ;
26. . }
27 . . }
28..1. packet_flag set {
2 9.. R1 = M[SCHEDULER_R];
30.. if scheduler_flag set {
31.. /*get packet length and ptr from linked list*/
32.. /*assemble a transmit tag in Rl*/
33.. M[TRANSMIT_W] = R l ;
34 . . }
35. . }
36 . . /*otherwise check FIFO for newly arrived packets*/'
3 7..Rl = M [FIFO];
38..1. fifo_£lag set {
39.. /*if a HOL packet assemble tag in R3 and write into 
shaper*/
40.. /*otherwise update linked list*/
41. . }
42..GOTO TOP;

Figure 5.5: Main program loop for the two-stage architecture.
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1 . . TOP: i f  p a c k e t _ f l a g  s e t  {
2.. M[SHAPER_V] = RO; /*write system time into shaper*/
3.. /*R0 holds system time*/
4.. Rl = M[SCHEDULER_R];
5.. if scheduler_flag set {
6.. /*get packet length and ptr from linked list*/
7.. /*assemble a transmit tag in Rl*/
8.. M[TRANSMIT_W] = R l ;
9 . .
10.. /*check if there are more packets in this flow*/
11.. /*and update linked list*/
12.. /*compute start and finish times of new HOL packet*/
13.. /*and assemble tag in Rl and write tag into shaper*/
14.. /*this will also cause a write into scheduler*/
15.. M [SHAPER_W] = R l ;
16. . }
17. . }
18../‘otherwise check FIFO for newly arrived packets*/
19..Rl = M [FIFO];
20..1. fifo_flag set {
21.. /* i f a HOL packet assemble tag in R3 and write into 
shaper*/
22.. /‘otherwise update linked list*/
23 . . }
2 4 . .GOTO TOP;

Figure 5.6: Main program loop for the one-stage architecture.

static priority (which is the finish time in static priority schemes). The rate is given by two 

numbers a and b (a fixed size segments every b time slots). Since the inverse of the rate is 

needed, the data memory holds the value (b/a). This value will always be greater than zero, 

and will be rounded to the nearest integer. The flow state is shown in Figure 5.7.

Figure 5.8 shows the code which computes the eligible time based on the leaky-bucket 

shaping algorithm. The finish time in this case is a static priority, which can be read from 

the flow state.

5.7.3 Self-Clocked FQ

Figure 5.9 shows the code for a SCFQ scheduling algorithm, which only computes the 

finish time o f the packet. As seen, only two line (13, 14) are required to compute the times-
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Figure 5.7: Flow state organization in data memory for a leaky-bucket with 
static priority service discipline.

1../*R4-LL has the flow id. get addr to first line in R5*/
2..R5 = M[R4-LL];
3..R6 = M [ R5 ] ; /*get first line of state*/'
4..R7 = M[R5 + 1]; /*2nd line*/
5..R8 = M[R5 + 2]; /*3rd line*/
6..AC = RO - R7-LH;
7..AC = AC * R7-LL;
8..AC = AC + R7-HL;
9..R7-HL = min{R7-HH, AC}; /*curr bucket/
10..1. R6-LH <= R7-HL { /*L<=current bucket*/
11.. R7-LH = R O ; /*eligible time. RO is system time*/
12.. R7-HL = R7-HL - R6-LH; /*updated bucket*/
13 . . }
14..else {
15.. AC = R6-LH - R7-HL;
16.. AC = AC * R7-LL;
17.. R7-LH = AC +- RO; /*eligibie time*/
18..}
19..R9-HL = R4-LL; /‘create shaper tag:id*/
20..R9-LH = R7-LH; /‘eligible time*/
21..R9-LL = R8-LL; /‘priority*/
22..M [SHAPER_W] = R 9 ; /‘write into shaper*/
23..M[R5 + 1] = R 7 ; /‘update state*/

Figure 5.8: Computing eligible and finish time in leaky-bucket with static 
priority.

tamp. The remaining 5 lines are used to read and write the flow state. Depending on the
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1. . /*R0 has the F time of the packet currently transmit*/ 
2../* It is set when a scheduling decision is made*/
3 . . HH HL LH LL

1 next 1 tail 1 L 1 ptr R6

1 unused 11 unused 11 finish of previous packet 1 1/rate 1 R7

9../*R4-LL has the flow id. get addr to first line in R5*/
1 0..R5 = M[R4-LL];
11..R6 = M [R5]; /*get first line of state*/
12..R7 = M[R5 + 1]; /*2nd line*/
13..AC = max{R0, R7-LH);
14..AC = AC + (R6-LH * R7-LL); /‘new finish time*/
1 5 . .R7-LL = AC;
16..M[R5 + 1) = R 7 ; /‘update state*/

Figure 5.9: Finish time computation in SCFQ.

performance requirements, the memory width can be increased, which can result in just 2 

cycles for the memory accesses.

5.7.4 Weighted Round Robin (WRR)

In a WRR scheme, the amount of service each priority level receives during each round is 

based on its weight. Assuming each round has T service slots (each service slot is one flow), 

each flow is assigned a number rank (this determines the order in which flows are ser­

viced in a given round), and a weight vv(- (number of packets a flow is allowed to transmit

per round). Along with these values, each flow also keeps track o f the number o f slots 

remaining in the current round. Based on this information, it is easy to compute the finish 

time of a packet, as shown in Figure 5.10. Since the scheduler transmits packets in increas­

ing order o f finish times, the scheduler will automatically jump over those flows with no 

packets to send. The finish time computation code is shown in Figure 5 .11.
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1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3

Finish time 1 1 2 3 3 3 4 4 5 6 6 6 7 7 8 9 9 9

Figure 5.10: Finish time computation in weight round-robin. Flow 1 has weight 2, 
flow 2 has weight 1, and flow 3 has weight 3.

1 . . HH HL LH LL

next 1 tail 1 L i ptr 1 R6

T 1 slots remain 1 slots max 1 current F 1 R7

7 . . /*R4-LL has the flow id. get addr to first line in R5*/
8..R5 = M [R4-LL];
9..R7 = M[R5 + 1]; /*2nd line*/
10..R8-HL = R4-LL; /*R8 is new tag to be inserted in scheduler*/
11..R8-LH = R7-LL; /*R8 = id and finish time*/
12..R7-HL = R7-HL - 1; /‘another slot used*/
13..1. (R7-LH = = 0 )  (
14.. R7-HL = R7-LH;
15.. R7-LL = R7-LL + R7-HH; /‘next round*/
16. . }
17..M [R5 + 1] = R 7 ; /‘update*/

Figure 5.11: Finish time computation in WRR.

5.8 Summary

In this chapter we examined and evaluated the design of a complete shaper-scheduler 

implementation which is flexible and scalable. Previous works has focused on just the sort­

ing problem and examined mechanisms to determine eligible packets and move them into 

a scheduler queue. Whereas these efforts have simply targeted a small set of service disci­

plines, we propose a complete design which can efficiently support a wide range of algo­

rithms. We first proposed two new architectures for queueing of packets and determining 

eligibility. For the first architecture, we proposed a new shaper PQ which can find the eli­

gible packet with the smallest finish time in constant time. The second architecture elimi-
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nates the need for the shaper-to-scheduler transfer of eligible packets by using a unique 

one-stage solution. This is a deviation from the traditional, and more intuitive, two-stage 

solution that have been proposed. We evaluated these two new architectures at an architec­

tural level and also discuss implementation issues and propose changes to the architecture 

to minimize some of the implementation related scaling effects (i.e., bus loading, multiple 

gate delays).We then describe a common theme upon which all shaping and scheduling 

algorithms can be mapped. Based on this analysis we propose a processor and datapath 

which can be programmed to implement any combination of shaping and scheduling algo­

rithms. Using the results from previous research, and based on qualitative analysis, we 

show that our proposed architectures scale well to large number of flows, and with current 

CMOS technology, can be implemented to provide very high throughput for high-speed 

networks.
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CHAPTER 6

HARDWARE/SOFTWARE CO-DESIGN AND 
CO-SIMULATION

6.1 Introduction

Integrating both hardware and software components during the modeling and simulation of 

a system allows a designer to easily evaluate various design choices and measure its impact 

on overall system performance. This chapter presents a simple event-based simulator 

which can handle both hardware and software components of a design without the need for 

expensive communication mechanisms, such as interprocess communications and 

exchange of control and data information, between the hardware and software components. 

Both the simulator and components are modelled in the C language, with software models 

annotated with timing-related information derived from processor-dependent specifica­

tions. The simulation of multiple software components is coordinated by a software com­

ponent which models the task scheduling behavior of the target OS. Since all components 

are compiled into a single executable together with the simulator, simulation time is signif­

icantly reduced compared to simulators which interpret component descriptions during run 

time.

System designers typically need to partition a design into tasks performed by hardware 

components and those done in software running on a processor (e.g., general-purpose CPU, 

DPS chip). Traditionally, once the design has been partitioned, the hardware and software 

components are modelled and simulated separately using different modeling languages and 

simulation tools. Any design problems encountered later on during prototyping when both 

components are brought together becomes very costly to fix, and are usually patched up by 

adding extra code or logic. Also, the long turn-around time required to implement the re-
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partitioning of the design makes it difficult to evaluate different partitioning strategies.

The problems mentioned above are well-known and have been the focus o f numerous 

researchers tackling issues in hardware/software co-design and co-simulation. The work 

presented in this chapter describes a simulator which was developed while evaluating the 

impact o f QoS (quality-of-service) support on network interfaces for streaming content 

servers. We needed to model a general-purpose server with a single network link connected 

through a network interface. QoS support could be implemented as dedicated hardware on 

the network interface, or as software running on an embedded processor on the network 

interface, or as software running on the server’s CPU. While evaluating the impact o f these 

design choices we found existing design tools inadequate or too slow. Our simulator 

allowed us to model and simulated arbitrarily large software components and arbitrarily 

small hardware components on a single platform. All components are modelled in C, while 

the simulator uses a single event-based queue with events sorted by time. Threads are used 

during the execution of software components, with a separate thread for the server’s OS. 

Timing information is annotated into the original code to model delays in software compo­

nents, while hardware components assume existence o f a global clock. The C code for the 

software component is the exact same code (with very minor modifications) as the code 

that would be used in the actual implementation. After adding delay statements, the C code 

is compiled and executed on the local processor. Since both the simulator and all models 

are compiled into a single executable, run time is significantly reduced compared to other 

methods which interpret component descriptions during runtime. By combining the flexi­

bility o f C and the speed of a compiled simulation we were able to quickly explore different 

design alternatives and to obtain more meaningful data from running simulations of longer 

run times.

This chapter is organized as follows. We first look at some related work in hardware/ 

software co-design and co-simulation in Section 6.2. We also describe different software 

performance estimation schemes in Section 6.2. In Section 6.3 we describe the basic oper­

ation o f our event simulator and also illustrate details using the network interface as an 

example. Some performance results are shown in Section 6.4. Section 6.5 concludes the 

chapter with a summary o f our work, and possible future extensions to the simulator.
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6.2 Related Work

In developing our simulator we need to address two issues. In Section 6.2.1 we look at var­

ious schemes which provide a single environment for hardware/software co-design and co­

simulation. In Section 6.2.2 we describe various methods to estimate software performance 

during hardware/software co-simulation.

6.2.1 Co-simulation

The natural choice to model hardware components is in a HDL (e.g., VHDL or Verilog), 

while high-level languages such as C or C++ are often used for software components. As 

such, one solution to developing a single environment for co-simulation simply combines 

both HDL simulations with C simulations. Examples of these include Seamless-CVE from 

Mentor Graphics and work presented in [50][79], The separate simulations are synchro­

nized via communication mechanisms, which further complicate the design process and 

adds overhead [85] during the simulation run. In [50] the HDL of hardware components are 

mapped to FPGAs. So instead of simulating the hardware components, the simulation actu­

ally runs the hardware models off FPGAs to speed up the simulation. Other solutions use 

separate clocks for the hardware and software simulations, with mechanisms to periodi­

cally synchronize the clocks.

A simple way to eliminate the need for synchronization is to use a single simulation. An 

obvious solution is to model the entire system, including the target processor which will 

run the software, using a single modelling tool. Execution of the software components run­

ning on the target processor is then simulated along with the hardware components. An 

example of this is SimOS [62], which models an entire system including the processor, 

memory hierarchy, and I/O devices to simulate the running of an entire OS and applica­

tions. One of the main drawbacks of this approach is that a new model needs to be written 

for each processor under consideration. Although the use of an ISS (instruction set simula­

tor) reduces the design time, a significant amount of time is still required to model different 

processors. Also, the extra resources required to include the simulation of the processor 

model can significantly increase simulation time.

Alternative approaches to single simulators try to do without accurate models of the pro-
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cessors and ISSs by estimating delays of software components. Some related work in this 

area is detailed in Section 6.2.2. [72] models both hardware and software components in 

VHDL, which allows the simulation to run on any VHDL simulator. [53] uses the POLIS 

design environment [16] to describe and synthesize C code models of both hardware and 

software components. The Ptolemy tool [54] is then used to actually simulate the generated 

C code. Here, an event-based simulator sorts events based on timestamps and triggers the 

execution of the corresponding component. Global information keeps the status of shared 

resources (i.e., the processor running software components) to guarantee that only one soft­

ware component is running on the processor at anytime. These methods provide an efficient 

means to quickly explore the different architectures for a given design. Although accuracy 

is sacrificed for simulation speed, researchers have shown that simulation results are rela­

tively close to actual measured results. Since the main goal of these simulators is to quickly 

measure system performance at a high-level and early in the design stage, sacrificing some 

accuracy is an acceptable price to pay for significant reduction of simulation times.

Based on these results, we also use the single simulator with software performance esti­

mation in our simulator. Although the simulator described in [53] is similar to ours, the 

mechanism used to simulate the software components is different. The simulator in [53] 

uses a software scheduler to determine which software component will execute next. This 

scheduler is not part o f the design being simulated, and makes its decision based on the 

status o f the processor running the software components. This implies that the event simu­

lator needs to distinguish between hardware components and software components. In our 

simulator, we actually include a software component which models the target design’s OS 

process scheduler. This software component handles the execution of all other software 

components running on a processor. As we will see in Section 6.3.1, this means the event 

simulator only needs to consider a generic component.

6.2.2 Software Performance Estimation

An accurate simulation of software requires a detailed model of the target processor. 

Because o f the complexity of modem processors with widely-varying pipelines and 

memory hierarchies, such modeling is often impractical. An alternative is to generate the
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assembly code o f the software component on the target processor. An ISS (instruction set 

simulator) is used during the simulation to interpret the behavior of each instruction and 

associate a delay with each instruction based on the target processor’s profile [46]. Cycle- 

accurate ISSs also keep track o f the state o f the processor to give more accurate delays. 

State information can include the status of the pipeline, register usage, and cache and 

memory content. This method still requires a detailed knowledge of the target processor’s 

instruction set. An alternative ISS [4] instead uses a virtual instruction set, whose delays 

are based on profiling target processors.

Although less accurate, annotating the software component with delay statements pro­

vides a much faster way to estimate delays incurred during execution. [43] compiles C code 

into assembly code, and then generates a C version of the assembly code (each C statement 

has a corresponding line in the assembly code) with delay statements associated with each 

assembly instruction. [33] does the same but also takes into account the number of memory 

reads and writes. [71 ] uses a flow graph of the software component and associates a delay 

for each node (which corresponds to a block of code). Execution o f the software component 

can be mapped into a path along the graph, with the execution delay being simply the sum 

of the delays o f the nodes along the path. While these approaches are dynamic in that delays 

are calculated during simulation, static methods [47] perform a static analysis of the soft­

ware code before run time. However, such static analysis can only provide best case and 

worst case numbers.

We use a similar approach to that presented in [43]. However, instead of simulating the 

C version of the generated assembly code, we add the delay statements into the original C 

code, and directly compile and execute the code during simulation. [33] uses a thread per 

fixed code block (blocks o f code with constant execution time regardless of inputs). A 

single software component could thus require multiple threads, with total execution time 

being the sum of the delays o f all the threads that were run. Our simulator uses a single 

thread per software component, with delays accumulated after each C statement.

6.3 A Hardware/Software Co-Simulator

In this section we describe the simulator that we developed to study different network inter-
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face architectures with QoS support in the context of streaming multimedia servers. For this 

study we needed to simulate low-level hardware designs, software running on an embedded 

processor, and the server’s OS and other programs running on the server processor. In order 

to obtain meaningful results we had to simulate long periods of time (about 15 minutes) 

instead o f short times in the psec or even msec range. Although Verilog was sufficient in 

modeling the hardware designs, it did not provide the constructs necessary to model soft­

ware components. Also the time needed to run simulations was far too long to evaluate 

multiple configurations and work loads. By modeling all aspects of our design in C, and by 

compiling both the design and the simulator into a single executable, we were able to sig­

nificantly reduce the time required for each simulation.

In Section 6 .3 .1 we describe our-event based simulator and the basic data structures. We 

also describe how we handle the simulation of software components. In Section 6.3.2 we 

use our network interface as an example to illustrate some of the details o f our simulator.

6.3.1 Event-based Simulation

The basic mechanism of an event-based simulator is very simple. A queue maintains a list 

o f events with each event corresponding to a component in the design. After processing an 

event, the simulator takes the event with the earliest time and removes it from the queue. 

The task associated with the corresponding component is executed, and any event that are 

triggered by this are inserted into the event queue which can be a simple linked list. More 

efficient techniques such as calendar queues can be used to speed up the insertion o f new 

events into the queue. Since the number of components we had to model was small, conse­

quently the number o f events at any time was also small. For this reason, the linked list 

implementation was found to be sufficient for our simulator.

Figure 6.1 shows a basic view of the event queue. Each event consists o f a timestamp, a 

pointer to a data structure (object) which corresponds to an instantiation of a component, 

and a pointer to the next event in the queue. An object consists o f three parts. The first 

includes data structures which describe the current state of the component. These can cor­

respond to the current state o f a state machine, and memory elements such as FIFOs and 

registers. The second part contains a list of pointers to other objects which can be triggered
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Figure 6.1: Basic simulator data structures.

by the execution of the current component. This simply corresponds to establishing a con­

nection between component outputs to other component inputs. The last part is a simple 

pointer to the task which determines the behavior o f the component. Multiple instantiations 

o f the same object share the same code, so only a single copy of the code needs to be com­

piled into the simulator. When an event is removed from the queue, the simulator passes 

the pointer to the object as a parameter to the task and executes the task. The list of triggered 

object pointers are used to propagate any results to other connected components. At the end 

o f the task, events corresponding to the triggered objects are created and returned to the 

event simulator.

Hardware components can be as simple as non-memoried combinational logic or com­

plicated state machines with various memory and non-memory elements. In our design all 

our hardware components were of the latter. This substantially reduces the number of 

events and speeds up the simulation. The outcome of the execution of the task depends on 

the values in the data structures which describe the current state of the component. Since 

we assume all hardware components operate off o f a global clock, passage o f time is accu­

mulated in clock cycles. The actual delay is obtained by multiplying by the clock period 

which is stored in a system configuration file. This allows us to easily change the clock
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Figure 6.2: Simulation flow with a single software component thread.

speed for the entire system.

Unlike hardware components which operate concurrently with each other, execution of 

software components needs to take into account the status of the processor running the soft­

ware component. The simulator needs to guarantee that only one process runs on a given 

processor at any time. In our simulator this is accomplished by the use of threads and sema­

phores. Each software component, including the server’s OS, uses its own thread to execute 

its task. When a thread begins execution it locks the semaphore and hence blocks all other 

threads running on the same processor. This allows for easy facilitation of multiple proces­

sors in the simulation since threads can be assigned the semaphore corresponding to its pro­

cessor. Figure 6.2 shows a simple example using a single software component. At the start 

o f the simulation a thread for the software component is created and made to wait on its 

semaphore. At this point there are two processes in the simulation, one for the simulator 

and the other for the software component’s thread, each with its own semaphore. The task 

for the software component wakes up the thread by performing a s e m _ p o s t  operation on 

the thread’s semaphore and then blocks on a s e m _ w a it  call on its own semaphore (label 

A in Figure 6.2). The thread then runs for a while and returns control back to the simulator 

process by s e m _ w a i t  on its semaphore and a s e m _ p o s t  on the simulator’s semaphore 

(label B). At this point the thread returns any new events that it has triggered during its exe­

cution to the simulator. The delays used to determine the timestamp for these new events 

is dynamically calculated during the execution of the thread by accumulating clock cycles 

used for each C statement. After counting instructions from assembly code generated by 

gcc, we annotated the C code with delay statements. Although this method does not give
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/* original C code 
* /

/* annotated C code 
* /

software_component(*object) software_component(*object) { 
d elay(statementl); 
statementl; 
d elay(statement2); 
statement2; 
break();
delay(statements); 
statement3; 
b reak();

statementl; 
statement2; 
statements;

}

Figure 6.3: Software component C code before and after annotations.

accurate measurements, we found the margin of error very reasonable and resulted in very 

fast simulation times. Also, accurate measurements in estimating the performance of the 

software components was not necessary since we were only interested in overall system 

performance early in the design process.

As described above, the software component’s thread runs for sometime before return­

ing control back to the simulator process. This amount of time can be very short (a few C 

statements) or long (several iterations of a loop) and depends on the amount of interaction 

between the software components and other components. During delay analysis of the C 

code, break-points are also added to the code, as shown in Figure 6.3. At each break-point 

a function call is made to block the thread (sem _ w a i t ) and wake up the simulator process 

( s e m _ p o s t) .  Because we are using threads we do not need to worry about preserving vari­

able contents or placing a marker to indicate where to resume execution. All of this is done 

by the threads, so when the thread is woken up it resumes execution from where it left off.

6.3.2 Example

Figure 6.4 shows a block diagram of our system which provides QoS functionality via soft­

ware running on a processor which is on the network interface. Here we modelled a server

too
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Figure 6.4: Block diagram of system with embedded processor on the network 
interface card.

process, an I/O interface (interface between the server processor and I/O bus, I/O bus and 

network interface, and communication mechanism used by the server process and network 

interface), a software component thread for the QoS functions (since this is the only task 

running on the embedded processor an OS and scheduler was not needed), and an interface 

to the network link.

At the start of the simulation the server process reads from a configuration file. This has 

a list o f requests and times indicating when the request occurs. When the simulation time 

reaches a request’s time, the server process downloads the necessary information into the 

network interface via the communication mechanism in the I/O interface. The QoS func­

tion, which runs continuously on the embedded processor, uses this information to schedule 

packets for transmission. The output of the QoS functions is a sequence of tags, which cor­

respond to queued packets. These tags are written into the network link interface, which 

injects packets into the network.

An alternative design moves the QoS functions as a program running on the server pro­

cessor. This program must compete for processor time with other programs. In our simula­

tor we can create arbitrary number of load programs, which take up a certain amount of the 

processor time. This is done to measure the effect of different loads on the server processor. 

As seen in Figure 6.5 we have several threads, one for the OS’s process scheduler, one for 

the QoS functions, and any number of load programs. Although there are several threads 

for each of the software components, only events for the process scheduler are needed in
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Figure 6.5: Simulation flow with multiple software components running on a 
single processor.

the event queue. The process scheduler keeps track of all other threads, which program was 

last to use the processor, and the amount of processor time each program has used so far. 

After the simulator wakes up the process scheduler (label A in Figure 6.5), a scheduling 

algorithm is used to determine which of the currently running programs will run next on 

the processor. The scheduling algorithm can be a simple round robin scheme, priority 

schemes, or an algorithm that takes into account the QoS requirements. The thread corre­

sponding to this program is then awoken by the scheduler (B). After the program returns 

control to the scheduler (C), any events triggered by the program along with a new event 

for the scheduler are returned to the simulator (D). By having just process scheduler events 

in the event queue, events for each different program are not required. This results in a 

smaller number of events in the event queue and also as a consequence guarantees that only 

a single software component is simulated running on a given processor. We can easily add 

more processors to the simulation by adding more process schedulers.

Besides events for the components, we can also create events which do not correspond 

to any components in the design. For example, we can create debug events which are trig­

gered periodically. These can be used to simply print the current simulation time, or to take 

snap-shots o f the current state of components.
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6.4 Performance

One of the main goals in developing a custom simulator was speed. Traditional tools that 

were available to us, such as Verilog and NCVerilog, were too slow. Some of the larger 

simulations took anywhere from 2-14 days to run on a Sun Ultra 10 300 MHz workstation. 

This made it impossible to run the 30 configurations on each of the various implementation 

strategies. By modelling all components in C and compiling them into a single executable, 

we were able to achieve much faster simulation times. Pure hardware model simulations 

achieved the most improvement, with the longest simulation running for an hour. The addi­

tion o f software components increased this time substantially to about 15-17 hours. This is 

due mainly to the high overhead of switching between threads.

As was mentioned earlier, our method of annotating simple delay statements into the 

software component code only produces rough estimates of the performance of the soft­

ware. Accurate results require either modelling the processor in detail or keeping track of 

detailed status of the processor (e.g., pipeline stages, registers, cache, memory access laten­

cies) during the execution of the software component. However, to measure the accuracy 

of our simulation model we performed tests on various different processors and compared 

the results to our estimated values. Figure 6.6 shows these results. The x-axis corresponds 

to different experiments. Each experiment uses different configuration parameters and 

system loads. The y-axis measures the amount of CPU time used for just the QoS functions. 

Values over 100% indicate that the processor was not fast enough, resulting in missed dead­

lines. As shown, the absolute values that our model estimated are not accurate. This was 

expected since we used a very crude algorithm in estimating software delays. What is 

important is that our model correctly estimates the trends. That is, our estimates correctly 

show a high-level view of CPU usage, which is adequate for evaluating different architec­

tures early in the design stage with high-level descriptions. In fact, we can see that our esti­

mates are very close to the values for the Pentium III 500. Such trend evaluation is 

important in evaluating the scaling properties of the software component and overall design 

early in the design process. For example, this allows the designer to quickly evaluate the 

load characteristics o f a particular set of algorithms under consideration.
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Figure 6.6: CPU usage comparison.

6.5 Summary

In this chapter we presented an event-based simulator for use in evaluating high-level 

designs with both hardware and software components. Simulation time is significantly 

reduced over other conventional simulation tools. This is accomplished by modelling all 

components in C and compiling these along with the simulator into a single executable. 

Software components are also compiled and run, instead of interpreted during the simula­

tion. This provides a quick estimate of the software component’s performance. Unlike 

other simulators, we model the actual implementation’s OS process scheduler as a software 

component to keep track of the processor’s state and to schedule the execution of the vari­

ous software components on the processor. This feature has the benefit of allowing our sim­

ulator to easily support the simulation of multiple processors and multiple software 

components, and the switching of software components to different processors.

Although the current status of our simulator was sufficient for our needs, there are many 

more details that need to be worked out before it can become a general-purpose simulator. 

In this work we manually added delay and break statements in the software components.
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Ideally, this would need to be automated, as it is a time-consuming process. We can also 

improve on the accuracy of the delay estimations by taking into consideration factors 

described in Section 6.2.2. We also need to deal with events that occur at the same time 

which affect the same objects. Besides these and other details, an important future work 

includes defining a clear set of structures from which all models will be derived. In other 

words, we need to define a set of guidelines for writing code for the hardware and software 

component descriptions. Although the current framework for writing design description 

code was sufficient for our designs, we still need to consider other designs to iron out 

details in our framework (interface between objects, events, and the simulator).
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CHAPTER 7 

CONCLUSIONS

7.1 Research Contributions

In this thesis, we proposed an architecture for integrating the traffic shaper and link sched­

uler. This thesis has made the following contributions made in developing this architecture.

Priority queue architectures: This forms the basic building block for this thesis. We pre­

sented two new basic architectures with constant-time operations for sorting. As we saw in 

later chapters, a high-performance priority queue is essential in any effective traffic shaping 

and link scheduling implementation. A detailed study explores both scalability and imple­

mentation issues related to these architectures.

Traffic shaper and link scheduler architectures: Using the work presented in Chapter 2 

as a foundation, we show how extended versions of the priority queue architectures can be 

used in solving key issues in the design of a shaper-scheduler architecture. We extract the 

core mechanisms needed in all shaping and scheduling algorithms, and propose two new 

shaper-scheduler architectures. In particular, the second architecture incorporates a novel 

one-stage scheme which eliminates the need to transfer eligible packets from the shaper to 

the scheduler queue. We show how this architecture provides the same functionality as that 

of the traditionally accepted two-stage mechanisms.

Network interface architecture: We show how traffic shaping and link scheduling can be 

incorporated on an end-host server using dedicated hardware on the network interface. We 

present an implementation using an audio/video-on-demand streaming server application 

as an example. We show how the server can stream a large number of flows up to the max-
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imum capacity of the server, while delivering low delay-jitter to the end-clients for unin­

terrupted playback o f the streams.

A Shaper-scheduler processing (SSP) engine: We decompose traffic shaping and link 

scheduling algorithms to construct an instruction set which can be used to implement any 

mix o f algorithms. A micro-controller-based processing engine is proposed that enables a 

network designer the maximal flexibility for selecting traffic shaping and link scheduling 

schemes. Incorporating our shaper-scheduler architectures from Chapter 3, we propose a 

complete architecture for implementing traffic shaping and link scheduling. This includes 

a flexible memory organization and datapath, and using our proposed architecture we show 

example implementations of several algorithms.

A hardware/software co-design and co-simulation tool: We examine the issues in 

designing and simulating a mixed design with both hardware and software components. 

Based an event-driven simulator core, our simulation tool uses threads to directly execute 

software components. Simulation time is further reduced by incorporating compiled simu­

lation and software performance estimation techniques.

7.2 Future Directions

The increase in demand for network bandwidth continues to grow, even as network provid­

ers struggle to add capacity to existing infrastructure. This demand for more bandwidth is 

not expected to slow down anytime soon. More users connecting to the Internet through 

high-speed connections, introduction of new applications taking advantage of the Internet, 

increased use of high-bandwidth applications such as high-definition audio and video, 

third-generation wireless service which will connect the wireless world to the Internet, and 

new Internet appliances, are all expected to substantially increase network traffic. Today’s 

routers are expected to handle aggregate throughputs of over 50 Gbps, with link speeds 

reaching I Gbps. To meet throughput demands, high-end routers employ a number of pro­

grammable hardware architectures to implement certain key router functions. Similar to 

our shaper-scheduler architecture, programmable IP route lookup engines are implemented 

in hardware to make quick route decisions at link speeds. However, as the diversity of
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applications using the Internet grows, routers will be required to meet the different QoS 

guarantees required by these applications. Our shaper-scheduler is just one piece of the 

entire solution.

Packet classification: Any QoS mechanism depends on quickly classifying a packet to 

determine the level of QoS it will receive. Similar to traffic shaping and link scheduling 

algorithms, the classification algorithm will need to change to meet different QoS goals. 

Flexible hardware architectures need to be developed to meet both performance and flexi­

bility requirements. Also, it is not clear how different packet classification strategies affect 

delivered QoS to applications. We need to explore the performance of different packet clas­

sification strategies for a variety of traffic loads using a wide range of applications.

Router management: This central processing unit monitors and updates all control and 

data information on all router components. Along with route table generation and mainte­

nance, it also needs to configure and update the various QoS mechanisms (e.g., our flexible 

shaper-scheduler). Effective router management software needs to be developed to take 

advantage of the underlying QoS mechanisms.

Traffic shaping and link scheduling performance: Our flexible architectures can be used 

to implement any mix of algorithms. However, we need to study the performance for var­

ious mixes o f algorithms for a variety of traffic loads. Based on these performance results, 

new algorithms could be developed.

Router model: The issues mentioned above range from low-level hardware issues to high- 

level software issues. Using our simulator, a full model of a router can be used to quickly 

evaluate the efficacy of different mechanisms, evaluate trade-offs in hardware/software 

partitioning strategies, examine the effects of different router configurations, and determine 

new router features needed to deliver QoS.
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ABSTRACT

HARDWARE SUPPORT FOR 
QUALITY-OF-SERVICE GUARANTEES 

IN PACKET SWITCHED NETWORKS

by
Sung-Whan Moon

Chair: Kang G. Shin

Modem integrated networks can support the diverse quality-of-service requirements 

of current and emerging applications by incorporating effective traffic shaping and link 

scheduling mechanisms. However, processing a large number o f packets on a high-speed 

link requires an efficient hardware implementation of the shaping and scheduling mecha­

nism. This thesis presents new hardware architectures which provide fast, flexible, and 

efficient implementations for delivering QoS guarantees.

Priority queues are essential in all traffic shaping and link scheduling algorithms, 

and their efficacy is dependent on an effective priority queue mechanism.We propose two 

new priority queue architectures that scale to the large number o f packets and large num­

ber of priority levels necessary in modem switch designs.

Building on these results, we propose two new traffic shaper and link scheduler 

architectures. By incorporating our programmable shaping and scheduling processor, we 

propose a complete traffic shaper and link scheduler implementation which achieves high 

performance and maximum flexibility needed to implement a wide range and mix of shap­

ing and scheduling algorithms. We also investigate traffic shaping and link scheduling 

issues on an end-host server, and propose a network interface architecture with dedicated 

shaping and scheduling support.

Finally, we describe a hardware-software codesign and co-simulation tool which we 

developed to implement our architectures. The tool allowed us to evaluate both low-level 

hardware and high-level software components of a design using a common platform.
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Incorporating event-driven simulation, software performance estimation, and compiled 

simulation techniques, we were able to easily evaluate different software/hardware parti­

tioning strategies.
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