Real-time perfor mance guar antees in manufacturing systems

Zhou, Lei

ProQuest Dissertations and Theses; 1999; ProQuest

pg. na

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

This reproduction is the best copy available

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REAL-TIME PERFORMANCE GUARANTEES
IN
MANUFACTURING SYSTEMS

by
Lei Zhou

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1999

Doctoral Committee:

Professor Kang G. Shin, Co-Chair

Assistant Professor Elke A. Rundensteiner, Co-Chair
Professor Yoram Koren

Assistant Professor Nandit Soparkar

Professor Toby J. Teorey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9929989

UMI Microform 9929989
Copyright 1999, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Lei Zhou 1999

All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To
my wife Huishan Joy Wang,
my mom Meiyu Sun,
and my dad Rongzhan Zhou,

whose love and support I can always count on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

My advisors, Professors Kang G. Shin and Elke A. Rundensteiner, have been very
helpful with their valuable advice and suggestions. Special thanks to members of the Real-
Time Computing Laboratory (RTCL) and University of Michigan Database Group
(UMDG), in particular, Tarek F. Abdelzaher, Nauman A. Chaudhry, Viviane M. Crestana,
Scott Dawson, Wu-Chang Feng, Seungjae Han, Stacie L. Hibino, Parikh Hiren, Yun-Wu
Huang, Ning Jing, Matthew C. Jones, Jin-Ho Kim, Harumi A. Kuno, Amy Lee, Ashish
Mehra, Todd Mitton, Anisoara Nica, Young-Gook Ra, Anees A. Shaikh, Youngsoo Shin,
Chi-To Shiu, Shi-Ge Wang, Michael J. Washburn, Xi Zhang, and Khawar M. Zuberi, for
their help and feedback on my work and their company during my study.

This work was supported in part by the National Science Foundation under Grants
DDM-9313222, IRI-9309076 and IRI-95044 12, and the Engineering Research Center for

Reconfigurable Machining Systems.

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

DEDICATION ii
ACKNOWLEDGEMENTS iii
LIST OF FIGURES vii
LIST OF TABLES X
CHAPTER 1
INTRODUCTION .1
Ll MOUVALON. ..ccieiiite ettt et et e e e e e e e ae e ee e e e e e nnnnns 1
L2 BacCKZIOUNM ..o.eoeiee ettt e m s s es s s ae e e e 4
1.2.1 Real-time COMPULINE......oueiemiicieeeeec e e et cen e s e ee e eeeae e enee 4
1.2.2 Real-time performance SUALanteescceceecceeceeeeeveceeercceeeseeresscssssenenns 5
1.2.3 Real-time application developmentc..coeeeeiieermrincciiiicc e 7
1.3 Target Application DOmAaINcccouieiimerireeeiree e eeee e e ee e s 8
1.4 A Map of the DiSSErtation . ..c..coiiiiriieccieiteeeeteecee e e ee e e e seeeseenaean 10
CHAPTER 2
OPERATING SYSTEM UNPREDICTABILITY 12
2.1 INOAUCHOMN ..ottt ettt e e e ce s e e e e st e e e e st e et enenanae 12
2.2 Timer interval unpredictabilityooooieeieeieeeie et 13
2.2.1 VXWOIKS LITIET «..eeeneiiineiieeceeeeeeee et e eeeee e e ses e e cee s teeee et e nnsnaes 13
2.2.2 QINX HITIET coieeinicieeee et e et ee e eeeeeensnsssseeesenssnnsnesnnnssenaseseesesensaernnnes 17
2.2.3 PSOSYSIEIML LITIET - ceneeeeceenceietereereeceeereeaeeeeseseeesaessenmeesesesanreesssassanan 18
2.3 Task Execution Time Unpredictability.......ccceeeeeemeercceeeeceeecceeeeeeceeeenee 19
2.4 Causes of UnprediCtability.....cocvvoeieeeeieeiieieeei et s e ce et eeeaeas 23
24,1 OS SEIVICES ..ottt ee st st e e et e e eee s me e s seanens 23
2.4.2 OS INLEITUPLS «.ceeneieineiiecceteer e esentnesneeeesnesessesesaseas e e nneae s seesesceeaensaranns 24
2.4.3 Major classes of RTOS aCHVILES.....ceeeereereireeeeeieeeeeeereeeeerecreeeceescenaenes 26
2.4.4 Relative significance of RTOS actiVities......cccceeeeeeeeeeereeeeeeecceeeneeennnn.. 27
2.5 SUIMMALY c..eoiieiiiieecee e e e e et e sse s et e ssa s e ae e aeesesseaeme e stassntsssensses 32
v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

HARD DEADLINE GUARANTEES IN THE PRESENCE OF TIMING UNPRE-

DICTABILITY 34
3.1 INtrOAUCHION ..ttt ettt eetee e aeseaees e e e nee e e s aeennmneeesees e sneeesns 34
3.2 Scheduling Algorithm Performance in the Presence of Timing

UnNPrediCtabilify ..c.ooeeeeciceeiee et e et e eeme e eeeeesen e e sneeen 37

3.2.1 SIMUIALIONS eueeeeeiieenieeieeeceeeereeeee e te e e eesee e eeeseee s s eeeense e nmeessesnsesnneen 37
3.2.2 Experimental MEaSUTEIMENLS «...cc.ceeereemeeeeeemeereemeeneesmeeeereeenmeesmeeneeennes 49
3.2.3 DISCUSSION «..ceeeccecccmieieeeceneateeeeeereeseeeeesseessesssneeessmsseesnnsesesssnesnsanensnnen 52

3.3 RMTU: Rate-Monotonic in the presence of Timing Unpredictability 54
3.3.1 An empirical task schedulability model: RMTU.........ccccoeeeermeeeceveennnnn. 55
3.3.2 Derivation of model parametersccccecueemeeveeeeeeerveeeeneeeeeeeeeeeeseereees 61
3.3.3 Model validationcoueeeeeeeeeceecieceeeiee e eeeee e e e ee e e eae s eanee 65
3.3.4 DISCUSSION ..oneeceneeeeeetreecee e te et seee et se s s cetaes e e sseene e se s s sssennesnen 68

3.4 RelAted WOIK c..eeeieeeeee ettt e e e e e eam s e naene 71
3.5 SUDMATY .ottt et ee et e e e s as e e e aensnteesnneeenneesssenneesnnas 73

CHAPTER 4

PROBABILISTIC DEADLINE GUARANTEES......cccrienterancrnccasescsssascsncssacen 74
4.1 INOAUCHON. c..ececineceeeeeceee ettt e eete e e eeeeesnseeeesseeennseennens 74
4.2 Probabilistic Real-Time Constraint Model (PRTCM)......ccceeeiecerecmeeimeennen. 76
4.3 Performance Evaluation Crteriac.cecuveeeeeuveeiereeeeeeeeeeeeeemeeeeeeeeeeeeeeneens 80

4.3.1 Task-oriented objective fUNCHONc..oeemieeeiieeeceeeeeeeeeeeeeeeee e, 81
4.3.2 Job-oriented objective fUNCHION ..ccoeeeueieeeeeeeieeieeeeeeeeeeeeeeee e 82
4.3.3 Temporary overload. ... oieeeeeceee e eeeee e e cae e naeeees 83
4.4 Heuristics for Probabilistic GUATanteescccccevveeeeeeeneeeeeeereeeeeeeeeereeeeenees 85
4.4.1 Completion-probability-cognizant heuriSticsc.cveeereeeeereeeeeeennnen. 85
4.4.2 CPU-utilization-cognizant heUriStiCScveemeemeereeeeeeeeeeeeeseeeeeeeeeeeeeeenee 87
4.5 Simulation Parameterscceeceeeeeereeieiecceeiee e e eee e eeeeeeeecaeseeeeeensecsnenns 88
4.5.1 CPU utilization PatteITIS .. .ceermeirueerereeeeineeeeeeeseeeereseeeeneeeeesnseenseesnneas 89
4.5.2 Task period diStrIDULIONScoeeeieeeeemeeieeeceieeeieeeeeeeeeeeeeeeeeeeeeeeeem e aeeneas 90
4.6 Evaluation ReSUILS ...ccoooiiniiiieeeeeeee et 90
4.6.1 Variable CPU UULIZALONS «eeeeueeieeeiieeectieeeeeeeeteeceee e ceee e eseeeeesseeernneeenneens 91
4.6.2 Fixed task eXeCUtiOn tIMES. ...cccueemiemeeeerieeeeeneeceeeeeeeeeeseeenseseneesseennes 95
4.6.3 Fixed task CPU UtLIZAtIONS «.ceeeeeeerenieeiceeeeeeeeeeeee e eeeeeeeeerseseneeseenanas 97
4.6.4 SUITHIIATY .econeiieeeeeeeeeeeeeeeee e eceeneee e e seeesseesseessseeenseeeesssssneeennseesnseeenneees 98
4.7 Comparison between Probabilistic and Deterministic Guarantees............. 100
4.8 Related WOTK ..ot e m e anas 107
4.9 SUMIMALY ...oveeieeieeeeeerreeceereteseteeeteeeeeeese e neeesasestesessneesssssseesmnseeesseseannean 110
v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

MEASUREMENT-BASED SIMULATION TECHNIQUE 112
IS0 BN 5T o Yo A S Ted 6o) o WU URS RSt 112
5.2 MBST: Measurement-Based Simulation Technique for Probabilistic

Deadline GUATANLEESoeeeeeeeeeeeeeeeeeeeeeeeeeeseeneeeeeneeemsnrraaseseseeeememsan s 113

TP G I T3 ‘o o's Lo o (=3 LS URU U URUUEURUUt 115

5.2.2 RUN-UME MIOAEL ..ot eeeeeeeteeeesereememeeseremsteomsamceeeenseamnesansaas 118

5.2.3 SimMulation MOAEL......ooee e eeeeeeeeemeeeeee e teeeeeeeeeeeeeneeeeeneaeee 119

5.2.4 Probabilistic deadline gUArantees........ccccceveccricumreruemnincersceseemeereeeeeenen. 120

5.3 Application of MBST to Open-Architecture Machine Tool Controllers....121

5.3.1 UMOAQC TESIDEA....uciteeeeeeeeeeceeeeeeeeeeeeeemreeeseneesennresaeaeoeeasseeemeonnns 122

5.3.2 COntLOIIEr TaASKS ..ot ieemeeeeceeeeceeeteceeeeeeeeeeesareennrnssrrmsrsaeeamceeesessmanesanns 124

5.3.3 Tasks with constant nominal execution tmMES ...ooeereeeeeeeeeeeeeemneeeecennnaens 125

5.3.4 Machine tool CONtroller taASKS . ..oov e v eeeeeeeeeeeeeeereeeee e eee e eeeaeanas 136

5.4 Discussion and Related WorkK ..o eeeeeeeeeeeeeeteeeeee et eee oo e eeeeeaenees 153

5.5 SUINMALIY ettt e et e e e e e e s s ee s es s e s e cemeseae e e e e ateannsannnnns 154
CHAPTER 6

APPLICATION DEVELOPMENT 155

6.1 IDTOAUCHION ettt eeeeeeceeeeerressssseseseesessssesta s aamenseaeaeevaanes 155

6.2 Prototype Open-Architecture Milling Machine Controllers....................... 156

6.3 Two-Axis Controller with Separate Task Structurecccooccceecoeacecnnenes 158

6.4 Testbed WithOUt NEIWOTIK ... o oot eeeeeeeeeeeeeeermeeennreeestcaeenee e aeaeeeeaaas 162

6.5 Two-Axis Controller with Combined Task Structure......cooceeeeeeemeeeeeaaeen. 163

6.6 ReElAtEd WOIK et ceeeeteeeeee e essmeeseem s setmm e eeee e eeeeees 169

6.7 SUIMIMIALY ...ttt ee e eee e e se e ae s s s e e sressae s me s esasnesannsnn 169
CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS 171

7.1 Research CoOntrIDULIONS ... oo oot eeceeeececteeeenceennereneeenreeeseseneeeneeeeacnnasas 171

7.2 FULULE DITECHOMS «uureeeeeeeeeeceeeecoteeesemteerreesseeennasneessssnsnsesnemenssmennsoesssmnnnn 172

BIBLIOGRAPHY 174

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure
1. Basic CONIOL L0OD- weemimeeeeeieeeee ettt e neee 9
2. Histogram of VxWorks timer intervals (bin width: 100 US)...cccoeeeeeeeeeeeceeeneene. 14
3. Histogram of VxWorks event-generating function execution times (bin width: 0.1
LS) ettt e e at e et e s e e s e s ne st e raense e mneeansanns 15
4. Timer “MmemOry” DEHAVIOL. co.c i it e e ee e e e 16
5. Histogram of QNX timer intervals (bin width: 100 [S)..ccuveeueeumveeneinieeceeeenee. 18
6. Histogram of pSOSystem timer intervals (bin width: 100 US). ..cocooeveeeeeeemennn.... 19
7. Measured execution time of task 1 in the first set (stand-alone).cccceeeeeeennen.... 21
8. Measured execution time of task 1 in the second set (RM). ...oeemoeeeeoeeereeeeeaann. 22
9. Measured execution time of task 1 in the third set (FIFO). cccoeeeeeemeeeeeeeeeeeenn. 22
10. Impact of tick size on task INEIVALccoviieiieeieeiee e eenee 30
11. Impact of tick size on task eXecution time.ccoeceeceeeeeeeeeeecreeeceeeecee e 31
12. Distribution of task PEIiOUS. .ce.ceemieeeemeeeeeceeieiee et eee e e ses 40
13. Performance of scheduling algorithms (seed: ~1). ceeemeeeemimeeeeeiieeeceeeeeeeeeen. 45
14. Performance of scheduling algorithms (seed: -2222).cooeemreereiieeeeeeeeenne. 46
15. Performance of scheduling algorithms (Seed: ~77). .ooeuemeeemeeeeeeeeeeeeeeeeeeeeeeeeeenne 46
16. Task execution with an ideal software tmer.cooveeemeeeeeeeeeeceeeeeeeeeeeeeeenee. 56
17. Task execution with tiMer Varation.ccceeeeeeoieeeceeeieeeceeeeeeeeeeeeee e e eaeeenne 56
18. Execution time vs. IESPONSE tME VS. SEIVICE tME. couveeremeeenerenereereeeceeeeeeceeenenens 63
19. Single-task achievable CPU utilization versus task period.ccooeceececeeucenn. 64
20. Residual-value-based categorization of real-time task deadlines.cccceeeueeeence. 77
21. Completion-probability- and residual-value-based categorization......................... 79
22. Spectrum of fixed-priority scheduling algorithms.ccccooeeviimiiiiiieeeeennee. 85
23. Bimodal and uniform task period diStributions.ccceeeeeeeeeieerieieeeeee e 91
24. Performance of scheduling algorithms under variable CPU utilizations and uniform
PErIOd dISIIIDULION. «.eeeeieectieeececet ettt e e e s e seees e e et e e s s e eeneernes 93
25. Performance of scheduling algorithms under variable CPU utilizations and bimodal
Period diStIDULION. .eoveieeeceee ettt ettt m s e 94
26. Performance of scheduling algorithms under fixed task execution times and uni-
form period diStITBULION.c.cviiieeieiiieceeeeieter ettt e ee et eeseen 95
27. Performance of scheduling algorithms under fixed task execution times and bimo-
dal period diStITDULION. ..eouviuiiviiiiieicceit ettt e et ee e eeeeneen 96
28. Performance of scheduling algorithms under fixed task CPU utilizations and uni-
form period diStrDULION. «...c.eveiiiiei ettt e 97
29. Performance of scheduling algorithms under fixed task CPU utilizations and bimo-
dal period diStrIDULION. ...oveuiieiececcece ettt e ettt 98
vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

31.

32.

33.

34.

35.

36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.

54.

55.

56.

57.
58.
59.
60.
61.
62.

63
64
65

Reproduced with permission

- Performance comparison between probabilistic and deterministic guarantees under
variable CPU utilizations & uniform task period distribution.cc.cceeeeeeen... 102
Performance comparison between probabilistic and deterministic guarantees under
variable CPU utilizations & bimodal task period distribution.......cc....cc.eeeeee.... 102
Performance comparison between probabilistic and deterministic guarantees under
fixed task execution times & uniform task period distribution.occcceeuc...... 105
Performance comparison between probabilistic and deterministic guarantees under
fixed task execution times & bimodal task period distribution.c.......... 105
Performance comparison between probabilistic and deterministic guarantees under
fixed task CPU utilizations & uniform task period distribution. 106
Performance comparison between probabilistic and deterministic guarantees under
fixed task CPU utilizations & bimodal task period distribution.ccc.uce..... 106
Measurement-based simulation technique (MBST). c..eoeueereeeeeeeeeeeeeee e 115
Comparison of data-generating approaches (XYZ Servo task).cccoevemeene.... 117
Open-architecture controller model.cooeriiniieeeeeeeeee e 122
University of Michigan Open-Architecture Controller testbed. 123
Milling machine control appliCation.ccoceveeeececeenenmectencecenceceteteeeene e eneens 124
Execution time of simplified Display task running in isolation.c.c.c.cccceeueve.... 128
Execution time of simplified X Servo task running in isolation.......................... 128
Execution time of simplified XY Servo task running in isolation....................... 129
Execution time of simplified XYZ Servo task running in isolation. 129
Execution time of simplified Force Acquisition task running in isolation. 130
Execution time of simplified Force Supervisor task running in isolation. 130
Execution time of simplified X Servo task running with Display....................... 132
Execution time of simplified XY Servo task running with Display.................... 132
Execution time of simplified XYZ Servo task running with Display.................. 133
Execution time of simplified Display task running with X Servo....................... 133
Execution time of simplified Display task running with XY Servo.................... 134
Execution time of simplified Display task running with XYZ Servo.................. 134
Execution time of simplified Force Acquisition task running with XYZ Servo,
Force Supervisor and DiSPIay.cccccoeceeeeriereenresertenee e e eeese et eeeeneees 135
Execution time of simplified XYZ Servo task running with Force Acquisition,
Force Supervisor and DiSplay.ccoococicmiooicecccececerce e enees 136
Execution time of simplified Force Supervisor task running with Force Acquisition,
XYZ Servo and DISplay. ..ccoceeeeerceeieeeceeeee ettt 136
Execution time of simplified Display task running with Force Acquisition, XYZ
Servo and FOrce SUPEIVISOL.coviouiieeiiiieiccet ettt et eneeee 137
Typical components of an open-architecture controller task.......ccoccvevereurenen.e. 138
Simulated and measured task execution time of Force Acquisition..................... 139
Simulated and measured task execution time of X Servo.ccceeceeeeveecenveeneenns 140
Simulated and measured task execution time of XY Servo.....cccceeeeuvereereennn.e. 140
Simulated and measured task execution time of XYZ Servo.cccccoeeeveeeenenn.. 141
Simulated and measured task execution time of Force Supervisor. 141

. Simulated and measured task execution time of Display.ccevereeceeeeecncenne. 142

. Execution time of X Servo task running with Display.cccceeoeeemerreceveeiccenn. 143

. Execution time of XY Servo task running with Display.ccccceeeeveeerevuieneennes 143

Viii

of the copyright owner. Further reproduction prohibited without permission.

66. Execution time of X'YZ Servo task running with Display......ccccccoieoereereceeccnncens 144
67. Execution time of Display task running with X Servo. .. 145
68. Execution time of Display task running with XY S€rvo. «.c.ccccoeemrececeeecccee o 145
69. Execution time of Display task running with XYZ S€rvo.ccececeeeeceeeercecceecencens 146
70. Execution time of Force Acquisition task running with XYZ Servo, Force Supervi-
SOT ANd DISPIAY. ettt e e ee e ot se ot s s e e e s ae e e e s s eeesesenees 146
71. Execution time of XYZ Servo task running with Force Acquisition, Force Supervi-
SO AN DISPIAY. .eeemereeireirieceeeeeteet et e tee e eee s e e ser e ees e e s e seeeseeseae s ene 147
72. Execution time of Force Supervisor task running with Force Acquisition, XYZ Ser-
VO AN DISPIAY. c.eeeeeeieeeieeee et e e e eaee e e e et an e e e 147
73. Execution time of Display task running with Force Acquisition, XYZ Servo and
FOICE SUPEIVISOL. -..eeeeiieecenee et e eeeee e eesen s e s e s e e s s e e saeenaeen 148
74. Completion time of Force Acquisition task running with XYZ Servo, Force Super-
VISOT and DISPIAY. «c.eneeiieeeceeeeeee ettt ettt e e 150
75. Completion time of X'YZ Servo task running with Force Acquisition, Force Super-
VISOT @Nd DISPIAY. ettt ettt sttt eee e e eas e e e e as 150
76. Completion time of Force Supervisor task running with Force Acquisition, XYZ
Servo and DISPIay. ... oottt ettt 151
77. Completion time of Display task running with Force Acquisition, XYZ Servo and
FOICE SUPEIVISOL. ..ot e s e e e e s e eae e s e e e neas 151
78. Prototype milling machine controller.c.cceeoieiiererrceneerecceeceeee e ceeennee 157
79. Prototype two-axis modular controller with separate task structure.................... 158
80. Task SXECULION SEQUEIICE. ..corrirrceeuirrtriaieecreee e e esece e seeseeenteseesensese e ceesaesans 162
81. Performance with & without QNX network drivers.cceeeeceeeveeeeeeceeeeeeeevannnns 164
82. Prototype two-axis modular controller with combined task structure.................. 166
83. Mean intervals before and after combining tasks.cc.cceoeeeereececencencerencenueencnn. 167
84. Standard deviations before and after combining tasks.ccccoeeemceiecenincnrceneene. 167
ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table

I. VxWorks POSIX timer measurement StatiStiCS.eeeureeeeemeemmeeeermeeeeeeeeeeereceeenenns 14
2. Sample measured periods with VXWOIKS......ccccriiiiioiieeeeeeeeeee. 16
3. QNX POSIX timer measurement SLAtISHICS.eevmreerueeeeeeeeeeeeseeneeeesscemeeemecoeenneen 17
4. pSOSystem timer MeasuremMent SLAtISHCS. .cceeveeueeerseeeeeeeereeenmeeeereeeeeseeeemeeenseesnens 19
5. TASK SEUS. ettt ettt et e e et e st e e e e s e e e e e ss e e aeeennennennas 20
6. Statistics of measured execution times of task L. .cccccoevveeeeeeeeeeceeeieeeeeeeeeeeenee. 23
7. Measured statistics of task with priority 25 under QNX. ...coorieimieieeeeeeeeae 29
8. Measured statistics of task with priority 27 under QNX.ooooeeemiecrieeceeeenne. 29
9. Simulation PAramMELEIS. ... oo it eeeeeeeere e e aee e remeaseessssaensneesnsenesnseeneens 38
10. Impacts of task random start and interval variation on miss ratios. 41
11. Impacts of task random start and interval variation with timer resets. 42
12. Overhead of tMET TESELS. ...euiiiiriiiieceireneeeeeeceeetee e eeeeeca e s ee e eeeme e seeene e meeneeneen 43
13. Performance of scheduling algorithms under different system load. 45
14. Deadline misses of individual tasks.ccoecuieeoeeeieroimeeeeee e 47
15. Interval statistics under RM without timer r€Sets.ceecveeeeereeeereeeecenereeceeeeeeennne. 49
16. Interval statistics under EDF without timer resets........cccceeeceeeeieecececeeceneceecnneeee. 50
17. Interval statistics under FIFO without timer resets.cocceeeeeeeereeeeeeeeecneeeemrennenns 51
18. Miss ratios of simulations and MEASUIEMENLS.ceeeeeeeeeeereeeerreeeeeeeeeeeenrernnenns 51
19. Statistics Of task PEriods. ..oom ettt 52
20. Statistics of timers with different nominal periods.ccceceeeeieeeienreececeeeereneen. 60
21. Single task eXperiment LESULLS.c.oii et cereee e e e e e ae e s e 65
22. Validation with three-task €XPeriments.cceeeeeeveermveeerreeeeeeeeeeereeeeeseeeeneeeenens 66
23. Validation with five-task €Xperiments.cceeeeeeeuveeemeecereeereeeeeeeeeeseeeeeeeeeseenneens 67
24. List of simulation Parameters.ccccccceeierereerieseeseeseeeeescereeereeeeeessesesreneanens 89
25. Performance of scheduling algorithms under variable CPU utilizations and uniform

Period dISEITBULION.oiiiiicicei ettt et e e s e mt e s e e e e e e sassnesaennns 92
26. MBST simulation configurations.ccceeeoeeeeeeeeeemeeceeeeeeeeeeeeeeneeeneeeeeeeeeesveeneas 121
27. Prototype controllers and their respective tasks.ccccoeeeeecreeceeeeeecceecrereeneens 125
28. Statistics of execution times of simplified tasks.ccccoeeeoeeeeeeoeeciecieeeeeeeeneene 127
29. Statistics of timer OVerhead...........oovuireiriiericecieeeeee et eeee e ee e eaeeees 131
30. Logical components of prototype controller tasks..........ceeecceeeecereicereeecceneeeeneene. 139
31. Task completion times of the 3-axis controller with force control...................... 152
32. Predicted task completion times of 5-axis controller with force control. 153
33. Statistics for controller with separate task StruCture.ccceeeeeeemeeeieeecveeeneennen. 160
34. Start times Of cONtroller taSKS. «.c..eeeiiiiiiieeieeee e et eeee e e 161

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35. Statistics for controller with separate task structure and without QNX network driv-

€IS TUNIHIIG. oeeeereeenncceenceseteeenenennaneanste eaneeanessesssssmsesceessransesssnemseas nsessetesesssenennnnen 164
36. Statistics for controller with combined task structure and with QNX network drivers
TUDNNIILZ. «eeoneicieiccesieeesceeeneerescessresaseseseeesamnsses s mnesamses e ases s asesbeasnsansestaennasmseseen 166

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

1.1 Motivation

Timing constraints are an integral part of the correctness and safety of a real-time system.
The single most important characteristic of a real-time system is the ability to determine
for a given set of tasks whether the system will be able to meet their timing requirements.

A real-time task is described by its arrival time, deadline, worst-case contention-
free execution time, and criticality (i.e., hard, firm and soft [142]). Under this
categorization, only hard real-time tasks can possibly obtain deadline guarantees, while
firm and soft real-time tasks receive only best-effort services.

There has been extensive research in the areas of scheduling theory for hard real-
time tasks [47, 48, 51, 55, 77, 78, 88, 93, 137, 138]. However, there exists a wide gap
between such real-time scheduling theories and the reality of applying the theory to task
sets implemented via real-time operating systems (RTOSs). To simplify the issues
associated with providing hard deadline guarantees, these real-time scheduling theories,
such as the rate-monotonic (RM) scheduling theory [93], have generally ignored the
implementation costs and unpredictability involved in scheduling a task set in a RTOS.
However, a RTOS may introduce significant system overhead and unpredictability, for
example, run-time priority-changing overhead and timer interval variation. Large
overhead related to the change of task priority at run-time may make dynamic-priority

scheduling prohibitively expensive. Time interval variation could delay the release of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tasks and cause them to miss their deadlines. Our research fills the gap by taking the
RTOS unpredictability into account in determining if all deadline can be guaranteed.

For periodic hard real-time tasks, we introduce an empirical task schedulability
model, called Rate-Monotonic in the presence of Timing Unpredictability (RMTU), to
augment the original RM scheduling algorithm to handle timing unpredictability. The
model parameters are determined empirically and systematically by running and
measuring a set of simple tasks on the target system. The model is empirical because its
parameters are derived from measurement data. It is also systematic because it includes a
set of systematic experiments, which can be applied to different target systems.

While there is also much research in scheduling for firm and soft real-time tasks
[31,52,60, 61, 87,94, 142, 145, 147, 148, 149, 150, 175, 178], this is often inadequate for
specifying requirements and characterizing performance of many real-time applications,
where tasks can tolerate deadline misses but only to a certain degree. For example, a
machine tool controller may function satisfactorily if it can obtain 90% of sensor readings
in time. Such tolerance of deadline misses indicates that these controller tasks are not hard
real-time tasks and therefore do not require hard deadline guarantees. But, on the other
hand, best efforts are insufficient for these tasks because there is no guarantee that, for
example, 90% of sensor readings will be done on time.

To address this problem, we develop a practical framework for probabilistic
deadline guarantees. The first component of this framework is the Probabilistic Real-Time
Constraint Model (PRTCM), with which the tolerance of application task deadline misses
can be quantified in terms of completion probability. The second component consists of
two classes of new scheduling algorithms: completion-probability-cognizant and CPU-
utilization-cognizant heuristics. We then evaluate their performance as well as scheduling
algorithms RM, Earliest-Deadline-First (EDF) and First-In-First-Out (FIFO), in the
context of probabilistic deadline guarantees. An especially interesting situation occurs

when the system is temporarily overloaded, due to RTOS unpredictability (e.g., timer

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

jitters [185]), hardware failure, or optimistic scheduling. Our simulation results show that
most scheduling algorithms work well if the system is not overloaded. However, when the
system is temporarily overloaded, RM performs well in terms of useful job ratio while
UML_CP is superior in terms of task completion probability miss ratio. Finally, we show
that the introduction of completion probability can improve CPU utilization as well as job
and task guarantee ratios, by comparing the performance of these scheduling algorithms
between probabilistic and deterministic deadline guarantees.

Probabilistic deadline guarantees require the knowledge of task completion time
distributions. There can be many approaches to obtaining task completion time
distributions. One extreme is to use formal analyses or simulations that assume an
idealized computing environment. However, RTOS unpredictability makes such an
approach difficult and unreliable. The other extreme relies solely on actual measurement
data. However, without an understanding of the system or the application, such a method
will be of little value because it cannot predict the application performance in a different
computing environment or a slightly different application in the same environment.

To achieve a balance between the two extremes and maximize the benefits of both,
we propose a Measurement-Based Simulation Technique (MBST) for making probabilistic
deadline guarantees. MBST uses individual application task execution times (measured in
isolation) as inputs, models task interaction and system overhead, and generates task
completion time distributions to determine whether probabilistic deadline guarantees can
be made. Applying MBST to our prototype open-architecture milling machine controllers,
MBST is shown to produce results that match very well the actual measurements. It can
also be used to predict the performance of tasks that have not yet been fully implemented.

While the above approaches for hard and probabilistic deadline guarantees address
the real-time performance issues given an application implementation, we still need to
examine how a real-time application should be implemented in order to meet its

requirements in the presence of RTOS unpredictability. We investigate the issues related to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

application software development and evaluate strategies to minimize the effects of RTOS

unpredictability.

1.2 Background

1.2.1 Real-time computing

As computers are becoming an essential part of real-time systems, real-time computing
has emerged as an important discipline in computer science and engineering.

There are three major components and their interplay that characterize real-time
systems [142]. First, time is the most precious resource to manage in real-time systems. A
computation is defined as real-time if its correctness depends not only on its logical
correctness but also on the time at which it completes. A real-time application is usually
comprised of a set of cooperating tasks. The tasks are often invoked at regular intervals
and have deadlines by which they must complete their execution, hence referred to as
periodic tasks. For example, a sensor-reading task in a control application may read
several position and velocity sensors every 10 milliseconds and must finish reading before
the end of each period. Other tasks in a real-time application may be invoked only when
certain events occur and they are referred to as aperiodic tasks.

The second major component of a real-time system is reliability. This is crucial
because a failure in a real-time system could have severe consequences. Traditionally,
deadlines of real-time tasks are classified as hard, firm or soft. A deadline is said to be
hard if the consequences of not meeting it can be catastrophic, such as the deadline of the
emergency shutdown task in a machine tool controller. A deadline is firm if the results
produced by the corresponding task cease to be useful as soon as the deadline expires, but
the consequences of not meeting the deadline are not catastrophic, e.g., the deadline of
weather forecast (except for severe weathér conditions). A deadline which is neither hard

nor firm is said to be soft. The utility of results produced by a task with a soft deadline

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decreases over time after the deadline expires. An example of soft deadlines may be the
transaction deadline of an automatic teller machine. The longer the customer waits, the
unhappier he or she becomes.

Third, the environment under which a computer operates is an active component of
any real-time system. For example, a manufacturing machining system may be comprised
of a milling machine and its controller. It is meaningless to consider the controller
software and hardware alone without the milling machine itself. Because many important
characteristics of the controller are determined by the physical limits of the milling

machine, such as the range limits on the machine’s displacement and velocity.

1.2.2 Real-time performance guarantees

The notion of predictability is very important to real-time systems. However, the meaning
of predictability may vary from one real-time application to another or even from one real-
time task to another within the same application. For example, some critical applications
or tasks may require hard deadline guarantees, i.e., their deadlines are satisfied at all
times. Some applications or tasks with less stringent timing constraints may require
probabilistic deadline guarantees. Depending on the application requirements, the term
“probabilistic deadline guarantee” could mean that a certain fraction of tasks are
guaranteed to meet their deadlines, or that a given task has a certain probability of meeting
its deadline. We provide a definition that encompasses both semantics in Chapter 4.

In order to provide real-time performance guarantees, it is necessary to analyze the
tasks that comprise the real-time application to determine if all task deadlines can be met.
This problem is called schedulability analysis and has been extensively studied in the
literature. In general, the schedulability analysis is computationally intractable if the tasks
are not preemptive [41] or have data dependencies [104, 152]. However, if the tasks are

independent and preemptive, it is possible to efficiently determine their schedulability.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, if the total CPU utilization of the tasks is no greater than a threshold
computed by the RM scheduling theory [93], all tasks can be provided hard deadline
guarantees. RM is optimal for assigning static (pre-assigned) task priorities.

Various dynamic-priority scheduling algorithms have also been studied [51, 55,
93]. EDF is proven to be optimal for assigning dynamic task priorities [93]. At any time
instant, it assigns the highest priority to the task with the earliest deadline. Using this
scheduling algorithm, it is possible (in theory) to achieve 100% CPU utilization by the
tasks. The assumptions and limitations of the RM and EDF scheduling theories are
discussed in Chapter 3.

Like all computer applications, real-time applications derive many of their
capabilities from the characteristics of their underlying RTOSs. Therefore, to evaluate the
application performance, the characteristics of RTOSs should be taken into account. As
we will describe in Chapter 2, RTOSs exhibit significant unpredictability, for example,
timer interval variation. Such a variation could delay the release of tasks and cause them to
miss their deadlines. Therefore, we need to investigate the characteristics of RTOS
unpredictability and identify sources of disturbance.

Since a real-time application is typically comprised of a set of periodic tasks, we
will measure the performance of such tasks, in terms of variations in task interval and
execution time, in three most widely used commercial RTOSs (VxWorks, QNX and
pSOSystem). We will then analyze the causes of the performance unpredictability. Our
study show that interval and execution time variations are observable and not negligible.
Furthermore, the major sources (such as interrupts) of RTOS unpredictability cannot be
avoided because they are an inherent part of computer systems.

Any non-negligible RTOS unpredictability must be included in the schedulability
analysis for all practical real-time systems. However, little research on schedulability
analysis in the presence of RTOS unpredictability has been reported in the literature.

Jeffay and Stone [66] considered interrupts in their schedulability analysis for periodic

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tasks. They developed conditions under which the feasibility and schedulability problems
can be solved, and demonstrated that their solutions are computationally feasible. But they
assume that interrupts occur strictly periodically, which is rarely the case in practice.
Instead, we develop an empirical schedulability model that extends the RM scheduling
theory for hard deadline guarantees to handle timing unpredictability. We systematically
measure the target system and derive the model parameters from the measurement data.
As a consequence, our model reflects the characteristics of the target system more closely
and provides more realistic (and more conservative) hard deadline guarantees.

While the notion of probabilistic guarantees have appeared in the literature [23, 46,
69,75, 76, 122, 142, 166, 170], few research results on probabilistic guarantees have been
reported. Thus, we develop a practical framework for probabilistic deadline guarantees,
consisting of PRTCM, completion-probability-cognizant and CPU-utilization-cognizant
heuristics, a performance comparison of our heuristics and RM, EDF and FIFO, and

MBST.

1.2.3 Real-time application development

Many modern real-time applications, including open-architecture machine tool
controllers, rely on the services provided by the underlying RTOS, such as the software
timer, scheduler and inter-process communication (IPC). While real-time performance
guarantee addresses deadline guarantee issues given an application implementation, it is a
different problem how a real-time application should be implemented in order to meet its
requirements in the presence of RTOS unpredictability.

While there has been extensive work on RTOSs (e.g., [155, 157, 165]) and their
modeling (e.g., [72]) or open-architecture controllers (e.g., [S, 6, 7, 20, 53, 117, 125, 158,
160, 1741]), it is unknown how well real-time controllers with such a modular structure perform in
practice in an open-architecture environment and what kind or magnitude of impact the underlying

RTOS unpredictability has on the controllers. We address this need in Chapter 6.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Target Application Domain

The requirements and characteristics of different types of real-time systems can be quite
different. For example, manufacturing control applications may impose deadlines on real-
time data access operations in the order of hundreds of microseconds. In contrast, the
timing requirements of an air traffic control application may not be as stringent. Up to 5
milliseconds of read/write response time is acceptable [132].

While most results from our research can be generalized to other real-time
systems, we focus on open-architecture machine tool controllers, because our research is
an integral part of the Open-Architecture Controller project within the Engineering
Research Center for Reconfigurable Machining Systems. We will use open-architecture
modular controllers as an example application domain to demonstrate our research results
for practical real-time applications.

Machine tool controllers are getting more sophisticated in recent years due mainly
to the use of rapidly-advancing computer technology. However, there are still problems of
high life-cycle costs and lack of openness in commercially-available controllers. It is often
very difficult, if not impossible, to incorporate third-party software (such as new control
algorithms or interpolators) into existing controllers. There is considerable research
interest in the subject of open control systems, in both academia and industry. Examples of
this activity include the Open System Architecture for Controls within Automation Systems
(OSACA) project [125] in Europe and the Enhanced Machine Controller (EMC) project
[5] at the National Institute of Standards & Technology in the United States.

As defined by the IEEE 1003.0 Technical Committee of Open Systems, an open
system provides capabilities that enable properly implemented applications to run on a
variety of platforms from multiple vendors, interoperate with other systems applications,
and present the user with a consistent style of interaction [62]. This suggests that open-

architecture machine controllers should have a modular structure such that a controller can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be assembled with modules from different vendors and can easily be extended by adding
or changing modules. Open-architecture controllers should also have well-defined module
interfaces so that modules can be developed independently by different vendors. For
example, a manufacturer should be able to easily substitute its PID motion control module
with a fuzzy logic control module, because the fuzzy logic control module offers better
precision of the controlled process.

Controller modules to be plugged into open-architecture controllers can be either
hardware or software. Examples of hardware modules include a VME processor board or
a dynamometer, while examples of software modules include a POSIX-compliant RTOS
kernel or a force controller. Modules can be selected based on price, performance and/or
other criteria, while meeting the requirements of the controller. The resulting controller
would be more flexible and adaptable.

Figure 1 shows a basic control loop of a typical control application. The controller
takes inputs (e.g., the desired positions and velocities) from the user and the feedback
(e.g., the actual positions and velocities) from the controlled process, computes new
control commands to minimize the discrepancy between the desired and actual values, and

sends them to the actuators.

Disturbance

Inputs Control

4
e

R Y
- @ servo[™ actuator -
NG
» 4
\ /

shared real-time data

Figure 1: Basic control loop.

A controller consists of a set of periodic real-time tasks, such as sensor-reading
tasks and servo motion control tasks, as illustrated in Figure 1, and a few aperiodic tasks,

such as the emergency shutdown task.! Some control tasks have hard deadlines. For

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

example, the emergency shutdown task must bring the controlled mechanical machine to a
complete stop within a short, pre-specified time limit. Failing to meet the deadline could
cause severe property damages or human injuries. Such tasks require hard deadline
guarantees. Other control tasks, e.g., the sensor-reading tasks, can tolerate deadline misses
but only to a certain degree. Therefore, they require probabilistic deadline guarantees. The
deadlines of these periodic tasks are at the end of their respective periods.

In a monolithic controller, the codes of these conceptual tasks are typically
interwoven. In an open-architecture modular controller, however, the tasks are actual
software modules that can be clearly identified and separated. Furthermore, the modules
are constructed and organized in such a way that modules of same types (e.g., sensor
modules) are interchangeable in the controller regardless of their vendors, as long as they
meet the application requirements. The issues related to how to modularize the controllers

are discussed in [5, 6, 7, 19, 125], but beyond the scope of this dissertation.

1.4 A Map of the Dissertation

The remainder of the dissertation is organized as follows:

Chapter 2 presents our measurement results of system unpredictability in three
commercial RTOSs: VxWorks, QNX and pSOSystem. We identify the characteristics of
system unpredictability and the sources of system disturbance.

Chapter 3 describes our approach for hard deadline guarantees in the presence of
RTOS unpredictability. We first examine the effects of timing unpredictability on three
real-time scheduling algorithms (RM, EDF and FIFO) in terms of task deadline miss
ratios, using both simulations and experimental measurements. We then propose an

empirical task schedulability model (Rate-Monotonic in the presence of Timing

1. The emergency shutdown task is not shown in Figure 1, because it is actually a higher-level task
that overwrites the inputs to the controller. It relies on the lower-level control tasks (such as those
shown in the figure) to bring the machine to a stable state within the time limit.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Unpredictability, or RMTU), as well as a systematic approach to determine the model

parameters empirically.

Chapters 4 and 5 present our practical framework for probabilistic deadline
guarantees. In Chapter 4, we define the Probabilistic Real-Time Constraint Model
(PRTCM), introduce completion-probability-cognizant heuristics and CPU-utilization-
cognizant heuristics, and compare their performance with RM, EDF and FIFO. In
Chapter 5, we describe the Measurement-Based Simulation Technique (MBST) and
demonstrate its application to our prototype open-architecture milling machine

controllers.

Chapter 6 describes our experiments with real-time application development

strategies to minimize the impact of RTOS unpredictability.

Chapter 7 presents a summary of our contributions and a discussion of future

directions.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

OPERATING SYSTEM
UNPREDICTABILITY

2.1 Introduction

Developing complex real-time systems is an evolutionary process fraught with technical
difficulties. Historically, much of the real-time research has been based on idealized
conditions like negligible implementation costs or nonexistence of RTOS unpredictability.
For example, the RM scheduling theory [93] assumes an ideal system with neither
implementation overhead nor timing unpredictability.

In reality, no RTOS can provide ideal services, such as POSIX timers and system
scheduler, simply because there is always overhead associated with the implementation of
such services. Furthermore, contemporary microprocessor architectures (such as Intel x86
and Pentium processors) rely on hardware interrupts to manage system resources (e.g., /O
devices). Interrupts can cause significant unpredictability in RTOS services, such as timer
interval variation.

To help us research the issues related to providing deadline guarantees and
developing real-time open-architecture controllers in the presence of RTOS
unpredictability, we first attempt to identify the characteristics of such unpredictability,

investigate the sources of disturbance, and study if they can be eliminated or alleviated.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Timer interval unpredictability

In a multi-tasking environment, periodic tasks rely on the RTOS timer to realize the
periodicity. The timer service typically consists of one or more functions, such as the
POSIX [62] functions timer_create(), timer_delete(), timer_gettime() and timer_settime().
A task uses a software timer to generate an event periodically. After each invocation of the
task is completed, the task goes into sleep until the timer wakes it up with the next timer
event.

Clearly, the characteristics of the RTOS timer service have a potentially significant
impact on the performance of periodic tasks. We now present the experiments to measure

the timer behaviors of three commercial RTOSs—VxWorks, QNX and pSOSystem.

2.2.1 VxWorks timer

Our first set of timer experiments is conducted on a Motorola MVME 147 board. This is a
VMEbus-based processor board with a Motorola 30 MHz 68030 CPU and 4 MB of RAM.
It runs VxWorks (version 5.1.1) [171]. VxWorks is a development and execution
environment for real-time embedded applications on a wide variety of target processors. It
includes a high-performance RTOS which executes on a target processor. The system
clock resolution of the VxWorks kernel is 1 ms (1000 ticks/second).

The VME StopWatch [49] is used for timing measurements. It is a board that is
pluggable into the VME chassis and time-stamps bus events. These events are reads or
writes to specific VME extended addresses. In our experiments, a simple inline function
call is used to generate the events. The internal clock resolution of the VME StopWatch is
25 ns.

We use the POSIX timer to periodically trigger a simple task T which consists of
only two consecutive function calls that generate events E; and E,, respectively. There is

no other code between the function calls. Therefore, the elapsed time between E; and E, is

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the execution time of one function call,! while the elapsed time between two consecutive
E; (or E,) events is the task interval (or timer interval, i.e., interval between two
consecutive timer firings). Table 1 lists the statistics of the measurement of a task with a
10 ms period using the POSIX timer, while Figures 2 and 3 show the histograms of the

measured task intervals and event-generating function execution times, respectively.

Execution Time Interval
Sample Size 963 962
Mean (us) 1.90 9999.9
Standard Deviation (us) 0.0383 202.7
Min (us) 1.85 7716.3
Max (us) 2.20 11964.9

Table 1: VxWorks POSIX timer measurement statistics.

100 T

80 .

%

20 §

0 ik

8 10 12
Interval (ms)

Figure 2: Histogram of VxWorks timer intervals (bin width: 100 us).

L. Strictly speaking, this elapsed time consists of the execution time of the function call and system
overhead associated with the call. Since we are only interested in the overall effect of the call, there
is no need to separate the two components of the elapsed time.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 : ; T T

60 .

%

20 + .

0 I =N J A
0 1 2 3 4 5
Execution Time (us)

Figure 3: Histogram of VxWorks event-generating function execution times (bin
width: 0.1 ps).

From the measurements, we made two important observations about timer
characteristics. First, timer intervals vary around the nominal period (see Figure 2). This is
because there are other OS activities besides the user task that consume CPU cycles. Many
OS tasks run at higher priorities than user tasks. For example, the VxWorks process
manager ?ExcTask runs at the highest priority. The hardware interrupts generated by
devices (e.g., network devices) are also serviced at higher priorities by the OS kernel. All
these inevitably cause the fluctuations in the timer firings as well as task execution times
(see Figure 3).

Second, timers have exhibited “memory” behavior. From the actual measurement
data (not shown here), we observe that, whenever an interval deviates from the nominal
period by at least one or two percentage points, the next interval almost always swings in
the opposite direction by roughly the same amount. Table 2 lists a subset of consecutively
measured periods. Every number in the five-column table represents a measured interval.
The first interval of each column was measured immediately after the last one in the

preceding column, while other periods in each column were measured immediately after

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the preceding ones in the same column. For example, the longest interval of 11,964.9 us
(first one in the third column) in Table 1 is followed immediately by the shortest interval
of 7,716.3 us, which is in turned followed by a slightly longer interval of 10,316.9 us.
This can be explained by the use of absolute time inside the OS kernel. One timer firing is
late (hence the longer interval) because of other higher-priority system activities. The
RTOS still tries to fire the timer at its next originally-scheduled time. Therefore, the
interval immediately following the longer one is shorter than the nominal value. In this
example, the second timer firing is slightly early, which further shortens the second
interval. The third firing is on time. The average of these three intervals is 9,999.4 us,

which is very close to the nominal period of 10 ms. Figure 4 illustrates this phenomenon.

Measured Interval (nanosecond)
1 2 3 4 5
9993000 10314375 11964875 9749575 9993625
10005875 9998875 7716275 10248675 10002650
9675825 9999875 10316875 10002150 9677625
10321250 9999950 10003375 9997750 10315375
9681200 10001800 10001000 10007550 10002125

Table 2: Sample measured periods with VxWorks.

actual timer firing time

nominal timer firing time

Figure 4: Timer “memory’’ behavior.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The nature of these two timer characteristics, variation and “memory” behavior,
suggests that they are generic phenomena of RTOSs. To confirm this observation, we

conduct similar timer experiments on two other RTOSs—QNX and pSOSystem.

2.2.2 QNX timer

QNX is a commercial, micro-kemel, POSIX-compliant RTOS [127]. It uses a priority-
based, preemptive kernel scheduler. Our experiments are conducted on a XYCOM
XVME-674/16 board running QNX version 4.22. This board is a VMEbus PC/AT
processor module with an Intel 66 MHz 80486DX?2, 32 MB dual-access DRAM, SVGA
and IDE controllers. The QNX system clock resolution is set to 50 us and the VME
StopWatch is used for the timing measurement.

For the simple task with a 10 ms period (same as that in the VxWorks experiments)
using POSIX timer functions, Table 3 gives measured task execution time and interval
statistics. The QNX POSIX timer also exhibits interval variation. The timer “memory”
behavior is seen as well, which can be illustrated by the following sequence of six
consecutive timer intervals extracted from the measurement data: 9974.3, 9976.9,
10257.5, 9782.0, 9966.4, and 10005.0 pus. The first two intervals are close to the nominal
value. The third interval is abnormally long, which is compensated by the next unusually-

short interval. The fifth and sixth intervals are again close to the nominal value.

Execution
Time Interval
Sample Size 1950 1949
Mean (us) 427 9996.3
Standard Deviation (is) 4.82 30.9
Min (us) 145 9739.1
Max (us) 16.00 10257.6

Table 3: QNX POSIX timer measurement statistics.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

80

%

40

20

8 10 12
Interval (ms)

Figure 5: Histogram of QNX timer intervals (bin width: 100 us).
2.2.3 pSOSystem timer

The pSOSystem is another commercial modular high-performance RTOS designed
specifically for embedded microprocessors [63]. It includes a real-time multi-tasking
kernel pSOS™. Though the pSOSystem (version 1.1) is not POSIX-compliant, it has
system calls similar to POSIX timer functions. We substitute the POSIX timer functions
with pSOSystem-specific functions in our experiments.

We use a setup similar to that for VxWorks and QNX, where pSOS™ runs on a
VMEbus-based processor board—Ironics IV3207 (Motorola 25 MHz 68040 with 4 MB
RAM). The system clock resolution of pSOS™ is 10 ms (100 ticks/second). Again, timer
interval variation (Table 4 and Figure 6) and “memory” behavior are observed in the

measurement data.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Execution
Time Interval
Sample Size 999 998
Mean (us) 0.68 10000.2
Standard Deviation (us) 0.011 825
Min (us) 0.65 9764.2
Max (us) 0.78 10244.8

Table 4: pSOSystem timer measurement statistics.

100

%

20 - 8

AL

8 10 12
Interval (ms)

Figure 6: Histogram of pSOSystem timer intervals (bin width: 100 us).
2.3 Task Execution Time Unpredictabiiity

As we observed in the timer experiments, task execution times vary from one invocation
to another even though they are supposed to be same. We now conduct more experiments
to investigate the characteristics of task execution time variation.

We ran three sets of tasks, as shown in Table 5, in the VxWorks environment
described earlier for the timer experiments. Each set was run at a time and there is no other

user task in the system. Similar to the timer experiments described in Section 2.2, we

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generate an event at the beginning and the end of a task. The elapsed time between these
two events, called measured execution time, will include the execution time of a function

call that generates the event, the execution time of the task, and the amount of time the

task is preempted or blocked.

Task Set task 1 task 2 task 3
1 N/A period (ms) 10 N/A N/A
priority 20 N/A N/A
2 RM period (ms) 10 14 33
priority 20 21 22
3 | FIFO period (ms) 10 14 33
priority 20 20 20

Table 5: Task sets.

Individual tasks in these experiments have an identical contention-free execution
time, because they use the same executable, but they can have different periods and
priorities. The first set consists of a single task with a period of 10 ms and a priority of 20.
The three tasks in the second set have periods of 10, 14 and 33 ms, respectively. They are
scheduled using RM. In VxWorks, a smaller number represents a higher priority. The third
task set is the same as the second, but using FIFO instead of RM.

In the three task sets, task 1 either runs alone or has higher or same priority than
other tasks in the same set. Therefore, task 1 will not be preempted by either task 2 or
task 3. In an idealized system with no system overhead or unpredictability, the measured
execution times of task 1 in all three task sets should be the same.

Figures 7, 8 and 9 show the histograms of task 1 execution times for the three
experiments, respectively. The horizontal axis is the measured execution time, while the
vertical axis represents the percentage of task invocations with that amount of the
measured execution time. For example, about 96% of measured task | execution times are

between 1650 and 1700 us when the task runs alone (Figure 7). However, they are

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reduced to about 72% (Figure 8) and 60% (Figure 9) when the number of tasks increases
from 1 to 3 and the tasks are scheduled by RM and FIFO, respectively. For the two
experiments with three tasks, the distributions of task 1 execution times are also different
when different scheduling algorithms are used, as depicted in Figures 8 and 9. Table 6 lists
the measured statistics.

Clearly, the actual measured execution times of a task varies even though they
should be the same in theory (which assumes no system overhead and unpredictability).
Our experiments indicate that the actual measured execution times depend on not only the
number of tasks running in the system but also how the tasks are scheduled (even when
the concerned task has the highest priority). This makes theoretical analysis of the tasks
extremely difficult. Again, the main reason for this phenomenon is that RTOS serves other

system activities at higher priorities, which we will discuss in the next section.

100 T T

80 :

60 - a

%

40 +]

20 b

0 .
1600 1800

2000 2200 2400
Execution Time (us)

Figure 7: Measured execution time of task 1 in the first set (stand-alone).

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80 .

%

20 - -

Ami= | |
1600 1800 2000 2200 2400

Execution Time (us)

Figure 8: Measured execution time of task 1 in the second set (RM).

100 ; T —

60 b — .

%

40 - :

] . 1

0 .
1600 1800 2000 2200 2400
Execution Time (us)

Figure 9: Measured execution time of task 1 in the third set (FIFO).

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

task 1 execution time
first set second set third set
Sample Size 17503 10731 23123
Mean (us) 1701.12 175021 174775
Standard Deviation (us) 28.69 123.66 127.70
Min (is) 162530 1625.00 1625.05
Max (is) 2012.62 2299.62 2482.05

Table 6: Statistics of measured execution times of task 1.

2.4 Causes of Unpredictability

There is significant unpredictability in both timer intervals and task execution times,
which is caused by OS activities. We now identify major classes of OS activities and

examine their impacts on the variations of timer interval and task execution time.

2.4.1 OS services

An OS provides the environment within which programs are executed. As described in
[120], the most common classes of OS services to programs and the users are given as

follows:

* Program Execution: the system must be able to load a program, as a process,

into memory and run it.

* Input/Output Operations: a running program may require input and output,
which may involve a file or an I/O device. For specific devices, special
functions may be desired (such as rewind a tape drive). Since a user program
cannot execute I/O operations directly, the OS must provide some means to do

SO.

* File System Manipulation: OS provides a uniform logical view of information

storage, the file, by abstracting from the physical properties of its storage

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

devices. Files store data and programs, and are mapped, by the OS, onto

physical devices.

* Error Detection: OS constantly needs to be aware of possible errors. Errors
may occur in the CPU and memory hardware (such as a memory error or a
power failure), in /O devices (such as a disk write error), or in the user
program (such as an arithmetic overflow). For each type of error, the OS
should take the appropriate action to ensure correct and consistent

computation.

* Resource Allocation: when there are multiple users or jobs running at the same
time, resources (such as CPU cycles and memory) must be allocated to each of

them.

* Accounting: OS may need to keep track of which users use how much and
what kinds of computer resources, for the purpose of charging for the system

usage or accumulating usage statistics.

» Protection: when there are multiple users or jobs, they should not interfere
with each other. In addition, their access to the information stored in the

computer system and various resources must be controlled.

2.4.2 OS interrupts

Operating systems are event-driven programs [120]. If there are no jobs to execute, no /O
devices to service, and no users to respond to, an OS will sit and wait for something to
happen. Events are almost always signaled by the occurrence of an interrupt. Several

different types of interrupts may occur:

e System call: an interrupt is generated when a system call is made to terminate
the currently running program (normally or abnormally), to ask the OS for
information (such as time), to request resource (such as CPU or memory), or to

request an I/O operation.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* I/O device interrupt: an I/O device will interrupt CPU when it finishes an /O

request. A timer interrupt signals the passage of a given period of time.

* Program error: certain types of program error (such as an illegal instruction)
cause hardware traps. The trap transfers control through the interrupt vector to

the OS just like an interrupt.

The term “interrupt” is used here in a loose sense for any event that causes CPU to
make a temporary transfer of control from the currently running program to another that
services the event.

The basic method of interrupting the CPU is to activate a control line that connects
the interrupt source to the CPU. The interrupt signal is then stored in a CPU register which
is tested periodically, usually at the end of every instruction cycle. Each interrupt source
may require the execution of a different interrupt service routine (ISR). On detecting the
presence of an interrupt request, the CPU executes the ISR associated with the interrupt.

The ISRs and processes get CPU cycles in the following order:

1. ISR associated with the highest priority interrupt.

2. ISR associated with the next highest priority interrupt.

4. ISR associated with the lowest priority interrupt.
5. process with the highest priority.

6. process with the next highest priority.

7.

The reason that ISRs have higher priorities than all system and user processes is
the hardware architecture. CPUs are designed to jump to ISRs automatically on detection
of any interrupts. Because of this, a phenomenon called priority inversion could occur,
where a higher-priority task could be preempted or blocked by a lower-priority task for an

unbounded amount of time [137]. Suppose an application task process runs at a higher

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

priority than a keyboard driver process. If there are keyboard inputs during the execution
of the task, interrupts generated by the keyboard will invoke the ISR attached to the
keyboard interrupts. Since the ISR has higher priority, it will preempt the application task
process. Therefore, the higher-priority task is effectively preempted by the lower-priority
keyboard activities. Priority inversion is undesirable for real-time applications because it

can cause, for example, unpredictable task completion times.

2.4.3 Major classes of RTOS activities

For real-time systems, we identify three major classes of activities — I/O interrupt
handling, process scheduling and timer management — that have significant impacts on
task execution and timer interval variations.

Interrupts are the primary means for I/O devices to obtain CPU services. They are
used to request the CPU to initiate a new I/O operation, to signal the completion of an I/O
operation, and to signal the detection of hardware or software errors. Interrupts improve
computing performance by allowing I/O devices direct and rapid access to the CPU and
by freeing the CPU from the need of continually testing the status of I/O devices, since /O
devices are typically much slower than the CPU.

Whenever a job is terminated or released, the OS is interrupted to schedule “jobs”
on the CPU. The kemnel scheduler is invoked whenever a process changes state, namely,
when a process becomes unblocked, or the time-slice for a running process expires, or a
running process is preempted. Unlike processes, the kernel itself is never scheduled for
execution. It is entered only as the direct result of kernel system calls, either from a
process or from a hardware interrupt. It decides which process to execute next. In most
RTOSs, the kernel scheduler uses priority-based, preemptive policies.2 This fact explains

the phenomenon in Section 2.3 where the task execution time distribution is dependent on

2. Note that the kernel scheduler does not assign priorities to individual processes, which is the
responsibility of the user. Instead, it merely executes the user-specified schedule.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the system load and scheduling policies. For example, during the execution of task 1 of the
second task set in Table 35, tasks 2 and 3 may be released, thus calling the kernel scheduler.
Even though the kernel scheduler will still choose task 1 to run because it has the highest
priority, some CPU time is consumed to make the decision. Therefore, the completion of
task 1 is delayed by the OS scheduling activities.

Since we are particularly interested in OS timer service behavior, we single out
activities associated with timer interrupts. Note that periodic real-time tasks typically use
the OS timer service to run periodically in a multitasking environment. The performance
of OS timer management is reflected directly in the timer interval variation. The
granularity of timers is determined by the system clock tick size, which is the rate at which
timer interrupts (called ticks) are generated. Note that the system clock tick is not the same
as the hardware clock tick, which is much more frequent. A timer interrupt signals the
passage of some interval of time. At every system clock tick, the CPU is interrupted by a
timer interrupt and runs an ISR for the timer interrupts, which, in turn, examines the
existing software timers to see if any of them has expired. If a timer has expired, the OS
sends a signal to the process waiting on the timer; otherwise, it does nothing. So, all time

requests via software timers are rounded up to the timer granularity.

2.4.4 Relative significance of RTOS activities

Interrupts and process scheduling are handled by the OS kernel. In VxWorks and
pSOSystem, timer management is also the responsibility of the kernel. In QNX
(version 4.23), however, timers are maintained by the process manager (named Proc32),
which runs as a real process. One can change the priority of the QNX process manager,
thus allowing us to examine the relative significance of the kernel and process manager
activities, in terms of their impact on the variations of task interval and execution time. If

a user task has a higher priority than the process manager, it should be able to avoid any

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

negative impact by the process manager activities, except ISRs in the process manager,
which always have higher priorities than processes.

For our experiment, we assigned the process manager (Proc32) a priority of 26. We
then ran a user task with a period of 10 ms at a lower priority (which is chosen to be 25)
than that of the process manager. All other system processes, including device drivers,
have priorities of 24 or lower. In QNX, bigger numbers represent higher priorities. After
measuring the performance of the user task, we then ran the same task at a higher priority
(which is chosen to be 27 but can be any other higher priority) and measured its
performance.

Furthermore, since the timer management activities occur at every system clock
tick, this overhead should decrease as the tick size increases. To verify this conjecture, we
ran our user task with tick sizes ranging from 50 us to 5000 ps. Tables 7 and 8 list the
measured performance with priorities of 25 and 27, respectively. For example, the first
row of Table 7 shows that the mean execution time of the task with a priority of 25 is
560.4 pus, the standard deviation of its execution time is 8.0 us, while the mean and
standard deviation of the task interval are 9994.9 s and 61.9 ys, respectively.

To better understand our measurement results, we plot the impacts of tick size on
task interval and execution time in Figures 10 and 11, respectively. The “First set” of data
shown in the figures is the same as those listed in Tables 7 and 8. We re-ran the same
experiments and plotted their measurement data in Figures 10 and 11 as the “Second set.”
In Figure 10, the vertical axis of the top graph represents the mean of task interval, which
should be as close to 10 ms as possible. The vertical axis of the bottom graph is the
(logarithmic) standard deviation of task interval, which should be as small as possible.
The horizontal axes for both graphs are the (logarithmic) system tick size. Similarly, the
vertical axes of the top and bottom graphs of Figure 11 are the mean and standard
deviation of task execution time, respectively, while their horizontal axes' are the

(logarithmic) system tick size.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

User Task with a Priority of 25 and a Period of 10 ms
Tick Execution Time Interval
Size

(us) # sample mean (us) | std dev (us) # sample mean (|Ls) std dev (us)
50 975 5604 8.0 951 9994.9 619
100 974 4774 9.1 949 9994.8 45.8
200 975 445.5 3.0 950 9994.3 93.8
400 974 434.2 4.8 949 9995.1 64.7
800 975 420.6 1.9 951 9995.2 400.4
1000 975 421.4 4.1 950 9993.0 48.3
1600 976 421.0 27 951 9994 .4 686.8
2000 975 420.7 2.6 950 9994.1 55.0
3200 975 421.1 2.9 951 9989.9 1055.9
5000 975 421.3 5.6 950 9993.7 22.8

Table 7: Measured statistics of task with priority 25 under QNX.

User Task with a Priority of 27 and a Period of 10 ms
Tick Execution Time Interval
Size

(us) # sample mean (us) | std dev (us) # sample mean (|Ls) std dev (us)
50 975 5753 253 950 9994.8 23.8
100 975 481.6 13.6 951 9994.8 43.9
200 974 446.2 4.9 949 9994.1 68.0
400 974 4335 3.6 949 9994.9 49.6
800 974 420.9 3.5 949 9995.2 400.2
1000 975 420.4 1.9 950 9994.2 41.2
1600 975 421.5 6.1 950 9995.7 689.8
2000 974 421.2 4.2 949 9993.8 26.3
3200 976 420.5 33 951 9994.3 1064.6
5000 976 420.9 3.5 951 9996.2 127.3

Table 8: Measured statistics of task with priority 27 under QNX.
There are a few interesting observations to make from these measurement. First,

there is little performance difference between the task with a priority higher than the QNX

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9988 . ——rry - ———— —
9990 -
2 gg92 4
% First set, priority 25
% 9994 - -~ First set, priority 27 N
- ——- Second set, priority 25
— - -— Second set, priority 27
9996 - -
9998 + : L 1
10000 e] 1
7
3
S o
c
S 1000 - -
k= 3
>
o)
(m]
e
[100 3 .
el C 3
c C
it :
2 L
10 n . L i N n 1 i
10 100 . R 1000 10000
Tick Size (us)

Figure 10: Impact of tick size on task interval.

process manager and that with a lower priority. This indicates that the impact of the
activities of the process manager (except its ISRs) on the variations of task interval and
execution time is minimal. The main sources of system unpredictability must then come
from I/O interrupt handling, process scheduling and other ISRs, because they always
preempt system and user processes, regardless the priority of the process manager (which
runs as a regular user process).

Second, the mean values of the task interval are very close to the nominal period,
as shown in Figure 10. They are within about 10 yus or 0.1% of the nominal period of
10 ms. As the tick size increases, the mean values tend to fluctuate a little more from one

measurement to another, perhaps due to the less frequent examination of the timers.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

600 - r—— — — ,
First set, priority 25
sso0- Nz | e First set, priority 27 .
— - — — - Second set, priority 25
4 i — - — Second set, priority 27
c 500 4
«
(13}
=
450 -
400 . .
30 — — T —
o |
A
c
220 4
.
>
a N,
ko] N
a 10 N .
o
c
8
1]

10 10000

Tick Size (us)

Figure 11: Impact of tick size on task execution time.

More importantly, Figure 10 shows significantly large standard deviations of the
task interval when the tick sizes cannot divide the nominal period. For example, the
interval standard deviation of the task with a priority of 25 and a nominal period of 10 ms
is 400.4 pus, when the tick size is 800 ps. When the tick sizes are 400 ps and 1000 s, the
standard deviation values are dramatically reduced to 64.7 us and 48.3 s, respectively.
Clearly, if the nominal period is not an integral multiple of the tick size, the timers will be
fired either earlier or later than the desired time instants. In this case, the larger the tick
size, the bigger the interval standard deviation, as shown in Figure 10.

Another interesting phenomenon is that the mean task execution time tends to
converge to some constant (Figure 11), as the tick size increases. This indicates that the

timer management activities do have a significant impact on task execution time. If a timer

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interrupt occurs during the execution of the task, the task will be preempted by the ISR
attached to the timer interrupt, which will consume some CPU cycles to examine the
timers, thus delaying the completion of the task. When the tick size increases, such
preemptions will occur less frequently and the measured task execution time will shorten.
The measured task execution will converge to its contention-free execution time, which is
a constant in our experiments. In Figure 11, the standard deviation of the task execution
time is also larger when the tick size is small. It remains in a small range when the tick size
is larger.

In summary, we identified three classes of OS activities [/O — interrupts handling,
process scheduling and timer managing — as the main sources of variations in task
interval and execution time. These OS activities take precedence regardless of the priority
of the user task. Our experiments showed that it is important to set system tick size such
that the nominal task periods are integral multiples of the tick size, in order to reduce the
timer interval variation. Using relatively large tick size also helps reduce the measured

task execution time.

25 Summary

In a multitasking environment, RTOS software timers are typically used to implement
periodic real-time tasks. Because these tasks have deadlines, it is also essential to have an
accurate estimate of the actual task execution times in order to assess the schedulability of
the tasks. Therefore, the performance of a real-time task (in terms of its ability to meet its
deadline) can be highly dependent on the predictability of RTOS timers and task execution
time.

However, from our experimental measurement data, we observed that both RTOS
timer intervals and task execution times exhibit significant unpredictability. Timer

intervals can vary and have “memory” behavior, while task execution times can also

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fluctuate. We identified three classes of OS activities., /O interrupt handling, process
scheduling, and timer managing, as the main sources of disturbance for the timer interval
and task execution time variations.

The OS performance is also sensitive to the system clock resolution (tick size).
When the resolution decreases (i.e., system clock tick size increases), the task execution
time improves as reflected by smaller mean. The timer interval variation increases
dramatically, if the nominal period is not an integral multiple of the tick size. Therefore, it
is important to set system tick size such that the nominal task periods are integral
multiples of the tick size, in order to reduce the timer interval variation. Using relatively

large tick size also helps reduce the measured task execution time.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

HARD DEADLINE GUARANTEES
IN THE PRESENCE OF TIMING
UNPREDICTABILITY

3.1 introduction

Since a real-time open-architecture controller typically consists of a set of cooperative
periodic tasks, scheduling such tasks is of great importance. These periodic tasks must
typically be completed by the end of their respective period.

According to our target application requirements, most control tasks have
probabilistic deadlines while a few (e.g.,, an emergency shutdown task) have hard
deadlines. In this chapter, we will investigate approaches of providing hard deadline
guarantees, based on the assumption that all task deadlines are hard. In the next chapter,
we will relax this restriction to include both hard and probabilistic deadlines and explore
issues related to providing probabilistic deadline guarantees.

Many controller tasks have data dependencies among them. For example, the
inputs of the control-law tasks depend on the outputs of the sensor-reading tasks.
However, it has been shown that the scheduling problem for tasks with data dependencies
is generally intractable [104, 152]. For tasks that have data dependencies with very short
critical sections or use a nonblocking messaging mechanism to transfer shared data, they
can be approximated as independent tasks. For example, a control-law calculation task
with a 10 milliseconds period may need only a few microseconds of exclusive access to

the shared data in order to get sensor readings and update control commands. The

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

probability that it will block either the sensor-reading task or the actuator task is very
small. If the shared data have multiple versions and the controller can tolerate the use of
slightly outdated data, there will be no blocking at all. This approximation of tasks with
nonblocking data dependencies as independent tasks is necessary and crucial in that it
reduces an intractable scheduling problem to one that is more manageable and still
practically acceptable.

For a set of independent, preemptive, periodic tasks, whose relative hard deadlines
are the same as their respective periods, Liu and Layland [93] proved that the rate-
monotonic (RM) priority assignment is an optimal static-priority! scheduling algorithm.
RM dictates that tasks with shorter periods will have higher priorities. It has an elegant
sufficiency condition for task schedulability: if the overall CPU utilization is no greater
than a certain threshold, which is a function of the number of tasks, all tasks are
guaranteed to meet their deadlines. RM is optimal in the sense that no other fixed priority
assignment can schedule a task set (guaranteeing all hard deadlines) which cannot be
scheduled by RM.

They [93] also proved that earliest-deadline-first (EDF) is an optimal dynamic-
priority scheduling algorithm for a set of independent and preemptive tasks with hard
deadlines. At any given time, EDF assigns the highest priority to the task with the earliest
deadline. EDF can achieve up to 100% of CPU utilization, which is a significant
improvement over RM.

Both RM and EDF assume deterministic and precise task release times and
negligible run-time scheduling and context switching overhead. However, the precise
moments of RTOS timer firings can deviate from the nominal time instants, thus

introducing variation in actual task intervals. This could adversely affect the performance

1. A scheduling algorithm is said to be sratic if the priorities cannot be changed once they are
assigned to the tasks; otherwise, it is dynamic.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of scheduling algorithms in terms of deadline miss ratios. It is unclear how well RM and
EDF perform under such a condition.

In Section 3.2, we will study the performance of most common scheduling
algorithms—RM, EDF and FIFO (first-in-first-out)—in the presence of timing
unpredictability. Our simulation and measurement results show that RM is as good as EDF
and better than FIFO in meeting task deadlines. This is because that, in situations where
not all tasks meet their deadlines, EDF may unnecessarily assign higher priorities to tasks
that will surely miss their deadlines. FIFO has larger deadline miss ratios than RM and
EDF under high system load, because it gives no preferential treatment to tasks with
shorter periods. When system load increases, such tasks are more likely to miss their
deadlines since they may have to wait for other less urgent tasks to complete. In terms of
task interval uniformity, the performance of RM is also comparable to others. In addition,
RM incurs little run-time scheduling overhead. Therefore, RM is chosen for our open-
architecture controller research and development.

In the presence of RTOS timing unpredictability, however, the original RM theory
is no longer valid and needs to be adjusted. In Section 3.3, we propose an empirical task
schedulability model, called RMTU (Rate-Monotonic in the presence of Timing
Unpredictability), to augment the original RM scheduling algorithm to handle timing
unpredictability. The model parameters are determined empirically and systematically by
running and measuring a set of simple tasks on the target system. The model is empirical
because its parameters are derived from measurement data. It is also systematic because it
includes a set of systematic experiments, which can be applied to different target systems.

Measurements of additional experiments with multiple tasks confirm the validity
of our empirical model and the derived model parameters. With RMTU, RM can now be
extended to provide hard deadline guarantees for tasks in practical computing
environments, where timers are not perfect. Using our model, task schedulability can be

easily checked and, if possible, empirically guaranteed.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Scheduling Algorithm Performance in the Presence of Timing
Unpredictability

In this section, we study the performance of real-time scheduling algorithms in the
presence of timing unpredictability and determine which one(s) should be used for our
open-architecture controller research and development.

Because of the nature of timing unpredictability and the complexity of task
scheduling, it is extremely difficult, if not impossible, to use analytic approaches. For this
reason, we use both simulations and experimental measurements. We examine the
performance of RM, EDF and FIFO, in terms of task deadline miss ratios, which is
defined as the percentage of jobs (invocations of tasks) that miss their deadlines. The
reason for choosing RM and EDF is that they are optimal under their respective
assumptions and there are no known scheduling algorithms that are specificaily designed
to handle RTOS unpredictability. Since FIFO provides bounded task response time
(assuming all task execution times are bounded), which is desirable for real-time

applications, it is also chosen for our study.

3.2.1 Simuliations

We first run simulations to study the performance of scheduling algorithms. The main
advantage of simulation is that it allows us to isolate the impacts of individual factors that
may affect the performance.

Table 9 lists all simulation parameters. Task intervals are assumed to follow
approximately a normal distribution. Note that this interval variation is an inherent
problem of RTOS timers but not part of application specifications or scheduling algorithm
features.

The parameter we use to model timer interval variation is the standard deviation
(o) of the normal distribution. Intuitively, the variation should be within a few ticks of the

system clock regardless of the length of the nominal period, because the software timer

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Simulation Parameter Notation
seed for random number generator 5
number of tasks n
task execution time C
task deadline D
minimum period T nin
maximum period T
timer interval standard deviation (¢
random start r

Table 9: Simulation parameters.
implementation is independent of the nominal pex:iod.2 Therefore, we use the same
standard deviation for all task periods and limit the maximum variation to 3c. These
choices of simulation parameters are justified by the experimental measurement results
presented in Chapter 2.

Randomness of the task start is another parameter we use. All tasks start at the
same time O by default; but they may also start at any time between O and the end of their
respective period minus their execution time with an equal probability. The former
condition represents the critical instant. The critical instant for a task is defined to be an
instant at which a request for that task will have the largest response time [93], which
occurs whenever the task is requested simultaneously with requests for all higher-priority
tasks. The latter condition represents an environment where tasks may be equally likely to
start at any given time.

All tasks in one simulation have the same execution time. Tasks are fully

preemptive, though context switching overhead is assumed negligible.3

2. This conjecture is verified by the experimental measurements described in Section 3.3.1.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We first concentrate on the effect of aforementioned parameters on the miss ratio.

We then examine the performance of the scheduling algorithms under different system

loads.

3.2.1.1 Impacts on deadline miss ratios

In this section, we investigate the impacts of different parameters on the task deadline

miss ratio. For this set of simulations, the parameters are set as follows:

e Seed: -1, used to initialize the random number generator.
» Number of tasks: 70.

» Execution time of each task: 5 ps.

* Min (max) period: 100 pus (1000 ps). Task periods are selected between min
and max with equal probability.

* Deadline: the end of each period.

Figure 12 shows the period distribution of the set of tasks used in the simulations.
The horizontal axis is task period, while the vertical axis is the number of tasks with any
given period. This task set represents a high system load, where RM cannot guarantee all
deadlines.* Here, we want to examine the effects of timer interval variation and random

start under different scheduling algorithms. We will study the effect of different loads

later.

3. In the context of RTDB, data access (i.e., read and write) operations to shared data objects are
typically periodic in open-architecture controllers. These operations can also be modeled as
periodic tasks. However, since such operations are atomic and very shorter (no more than a few
microseconds), it is therefore more appropriate to treat them as non-preemptive operations. We
conducted simulations for non-preemptive tasks as well. Our findings are similar to those for
preemptive tasks.

4. Using EQ 1 in Section 3.3, the deadlines of 70 indepeadent, preemptive, periodic tasks can only
be guaranteed under RM if the CPU utilization is no greater than about 0.70.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 T 1] 1) L}
Number of Tasks: 70
CPU Utilization: 0.917906
0w J
-~
[%2)
@
[
°
&
0
€
=1
0 1 , 1 L
0 200 400 600 800 1000

Task Period (us)

Figure 12: Distribution of task periods.

Table 10 illustrates the impacts of random task start and interval variation on task

deadline miss ratios. These simulations clearly reveal the following phenomena:

1. While tasks may miss their deadlines, the miss ratios are small (less than 1%).
This means that RM, EDF and FIFO perform quite well in the presence of
timer interval variation, though they may no longer be able to guarantee all

hard deadlines.

o

Random start of the tasks helps when there is no interval variation. This is no
surprise, because random starts generally reduce the number of critical
instants, thus the task is less likely to miss its deadline. When there is interval
variation, random starts do not necessarily help task deadline miss ratios.
Because interval variation without random starts could reduce the chance that
tasks are released at the same time, the aggregate effect of interval variation

and random starts could increase the chance of conflicts.

3. The variation of task periods has a significant impact. We observe that, when
timer interval variation is introduced, either tasks start to miss their deadlines

or there is a significant (more than 20 times) increase in miss ratios.” This is

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

because a job may be released late, thus leaving less time available before its

deadline.
standard
scheduler random start | deviation (us) # jobs miss ratio
RM N 0 183104 0.009%
Y 0 183076 0%
N 50 183057 0.199%
Y 50 183078 0.175%
EDF N 0 183099 0%
Y 0 183076 0%
N 50 183084 0.199%
Y 50 183077 0.175%
FIFO N 0 183068 0.018%
Y 0 183058 0%
N 50 183074 0.461%
Y 50 183053 0.417%

Table 10: Impacts of task random start and interval variation on miss ratios.

3.2.1.2 Effects of timer resets

RTOS timers exhibit “memory” behavior. When a longer interval is generated due to
system unpredictability, it is typically succeeded by a shorter one. Intuitively, resetting the
timer after each firing would eliminate the dependencies between task intervals, thus
removing the source of the “memory” behavior. Because the tasks have also deadline
constraints, we need to examine the effect of resetting timers on task deadline miss ratios

as well. We use the same simulation parameters in Table 9, except that the timer is reset

5. While the absolute difference is small (less than 0.5%) between the miss ratios with and without
interval variation, it is statistically significant. If we consider the task completion time as a discreet
process with only two possible outcomes (meeting and missing deadline) and apply the Chi-square
test, we can find that the task completion time distributions are statistically different with and
without interval variation.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

after each firing. We assume that the overhead of resetting timers is negligible. As we will
show later in this section, this assumption does not affect our conclusions.

Table 11 tabulates the simulation results for the same set of tasks in the previous
section. Comparing Tables 11 and 10, it is evident that resetting timers causes a significant
increase in task deadline miss ratios in the presence of timer interval variation. For
example, the last row of Table 11 shows that the miss ratio is 38.44%, while it is only

0.417% in Table 10 for the same task set under the same conditions except timer resets.

standard

scheduler random start | deviation (us) # jobs miss ratio
RM N 0 183104 0.009%
Y 0 183076 0
N 50 183182 42.567%
Y 50 183178 47.973%
EDF N 0 183099 0
Y 0 183076 0
N 50 183279 37.148%
Y 50 182872 41.749%
FIFO N 0 183068 0.018%
Y 0 183058 0
N 50 183173 48.181%
Y 50 182843 38.435%

Table 11: Impacts of task random start and interval variation with timer resets.

Without timer resets, there is only one Gaussian random variable® that affects the
job release times. That is, the n-th release time has a mean of (n-1)T (where T is the
nominal period) and a standard deviation of ¢. However, with timer resets, each timer
firing is independent of other firings except they all have the same nominal period. In

~ other words, the time interval between any two consecutive timer firings is independently

6. Strictly speaking, it is not a Gaussian random variable because we limit the maximum variation
to 30.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

determined. Therefore, the release time of the n-th job of a task is the sum of n-/
independent Gaussian variables, each of which has a mean of T and a standard deviation
of . The overall effect is that the n-th release time has a mean of (n-1)7T and a standard
deviation of 6. /n—1. The larger standard deviation is responsible for the significant
increase of task miss ratios.

Clearly, resetting timers is not a viable solution because of the significant increases
in task deadline miss ratios, even when the timer operation overhead is ignored. In a
practical system, the timer reset overhead can be significant. Table 12 shows the measured
results of a task with a nominal period of one millisecond. Each timer reset function call
can take more than 100 ps. If this overhead is taken into account in our simulations, the

task miss ratios will be even worse.

Execution Time interval
Sample Size 2043 2042
Nominal Value (us) 0] 1000
Mean (us) 168.6 1150.9
Standard Deviation (us) 22.0 46.4
Min (Us) 152.0 3954
Max (is) 362.6 1984.9

Table 12: Overhead of timer resets.

3.2.1.3 Performance comparison

From the above simulations, we see that the major impact on task deadline miss ratios
comes from the variation of timer firings. As proven in [93], EDF is better than RM in that
it can achieve up to 100% of CPU utilization while guaranteeing all deadlines. However, it
is not clear how EDF and RM will perform, relative to each other, in the presence of
interval variation, which may cause jobs to miss their deadlines. This set of simulations

attempts to ascertain whether one of the two algorithms outperforms the other in the given

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

environment. We also include FIFO because it has the desirable characteristic of bounded
response time (assuming all task execution times are bounded).

In the simulations, we vary the number of tasks, the scheduling algorithm, and the
seed for the random number generator, while keeping the following parameters constant.

These pcrameters are chosen to approximate our application development environment.

e Random start of tasks: No.

* Execution time of each task: 5 ps.

* Min period: 100 us.

* Max period: 1000 ps.

e Standard deviation of periods: 50 us.
e Deadline: the end of each period.

Table 13 lists the simulation results of the three scheduling algorithms using three
different seeds to initialize the random number generator. These seeds are selected
arbitrarily and they cause the random number generator to produce different sequences of
random numbers conforming to the specified probability distribution.

Our first observation is that some tasks missed their deadlines even when the
scheduling theory guarantees all deadlines. For example, in the first experiment (first row
of Table 13), the CPU utilization of the 10 tasks is only 0.121. If there were no timing
unpredictability, all tasks would have made their deadlines using any of the three
scheduling algorithms (RM, EDF and FIFO). Second, all miss ratios are very small: less
than 1% in our simulations.

We now take a closer look at the relative performance of RM, EDF and FIFO.
Figures 13, 14 and 15 depict their miss ratios for various system load in three sets of

simulations, with a seed of -1, -2222 and -77, respectively.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RM EDF FIFO
seed # tasks | CPU utilization | miss ratio | sample size miss ratio | sample size miss ratio | sample size
10 0.121 0.230% 22629 0.203% 22629 0.221% 22629
20 0.225 0.088% 42118 0.083% 2117 0.093% 42121
30 0.345 0.057% 64665 0.080% 64660 0.068% 64657
- 40 0.468 0.094% 93429 0.094% 93431 0.090% 93436
50 0.616 0.068% 122874 0.096% 122858 0.092% 122881
60 0.754 0.134% 150407 0.124% 150400 1219% 150399
70 0918 0.199% 183057 0.199% 183084 0.461% 183074
10 0.089 0% 16634 0% 16634 0% 16635
20 0.199 0% 38253 0% 38252 0% 38251
30 0.365 0.132% 72640 0.110% 72636 0.138% 72639
a 10 0.506 0.098% 100735 0.098% 100734 0.113% 100731
& 50 0.589 0.089% 117277 0.079% 117282 0.082% 117275
60 0.720 0.073% 143511 0.068% 143516 0.105% 143511
70 0.852 0210% 169694 0.191% 169710 0.334% 169690
20 0.957 0.259% 190641 0243% 190665 0.6H4% 190658
10 0.126 0.020% 20250 0.020% 20250 0.015% 20249
20 0.258 0427% 46857 0.427% 46853 0.446% 46857
30 0.344 0344% 64323 0.345% 64320 0.364% 64323
~ 40 0.447 0.267% 83646 0.279% 83651 0.259% 83646
= 50 0.584 0.202% 115506 0.224% 115517 0.231% 115509
60 0.674 0.175% 134538 0.169% 134521 0.208% 134520
70 0.765 0.166% 152833 0.162% 152836 0.228% 152822
80 0922 0.185% 184145 0.175% 184148 0.370% 184145
Table 13: Performance of scheduling algorithms under different system load.
0.5 T T 7 1.0
+
—-— FIFO
04 r 1 0.8
!
'I
Fo3t * / 1068
o / g
z ' 5
723
So2f odd
0.1 502
0.0 : : :
0 20 40 60 80
Number of Tasks

Figure 13: Performance of scheduling algorithms (seed: -1).

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I' 4
—— RM .
---- EDF !
—-— FIFQ +1
04 + i 408
. /
' !
— _/ c
goar + ; 4 08§
° ' s
& =1
a >
S02r 045
0.1+ 02
0.0
0

Number of Tasks
Figure 14: Performance of scheduling algorithms (seed: -2222).

0.5 : - - 1.0
—— RM L
---- EDF| »_
—-— FIFO] A\
04t y 108
+
+ /
To3f 1065
2o 8
g =
@ 2
2]
So02¢ 1045
+
0.1 fF <02
|
0.0 : : -
0 20 40 60 80
Number of Tasks

Figure 15: Performance of scheduling algorithms (seed: -77).

There are two interesting observations from these figures. First, the miss ratios of
FIFO are significantly larger than that of RM and EDF under high system load, while all
three scheduling algorithms have similar performance under low system load. This is

because FIFO does not use any task deadline information. With FIFO, tasks with shorter

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

periods compete with other tasks for the CPU on an equal basis, but their deadlines tend to
be in a more immediate future. While the CPU may be able to handle all tasks with little
delay under light system load, the contention becomes more significant under heavy
system load, thus causing more tasks with shorter periods to miss their deadlines. This is
evident in Table 14, which lists the number of deadline misses for individual tasks. The
table shows one low system load case and one high system load case. Only a few tasks

with the shortest periods are listed in both cases. This observation indicates that RM and

EDF are superior to FIFO.
RM EDF FIFO
CPU period # sample # sample # sample
seed | tasks utilization (us) misses size misses size misses size
-1 10 0.121 130 52 7209 46 7209 50 7209
332 0 2823 0 2823 0 2823
total 52 | 22629 46 22629 50| 22629
70 0918 113 153 8823 158 8824 303 8824
127 64 7851 62 7852 142 7851
129 38 7729 53 7730 130 7730
130 47 7670 48 7671 107 7670
131 44 7611 44 7612 112 7612
163 2 6117 0 6118 15 6117
total 364 | 183057 365 | 183084 844 | 183074

Table 14: Deadline misses of individual tasks.

Second, in the presence of timing unpredictability, RM and EDF have very close
miss ratios regardless of system load. The theoretical performance advantage of EDF over
RM is derived based on the assumption that all tasks meet their deadlines. However, the
situation is quite different when there are tasks missing their deadlines. Tasks that are
about to miss their deadlines tend to have earlier deadlines and, therefore, will be selected

by EDF to run first. But this does not help the overall deadline miss ratios. For tasks that

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are sure to miss their deadlines, it is better to drop them such that other tasks have a better
chance to make their deadlines.’ On the other hand, RM assigns tasks with shorter periods
higher priorities, regardless of the urgency of their deadlines relative to others. Since such
tasks are more sensitive to timer interval variation, RM effectively becomes a interval-
variation-sensitivity-monotonic priority assignment, which intuitively helps reduce the
effect of timing unpredictability. Therefore, in the situations where not all tasks meet their
deadlines, the performance of EDF is comparable to that of RM.

We now examine the performance of these scheduling algorithms in terms of
interval uniformity. Tables 15, 16 and 17 show the interval statistics of the simulations
under RM, EDF and FIFO, respectively. We observe that the means of the differences
between task periods and the nominal period are very close to zero in all simulations. The
standard deviations of the periods are also relatively small.

RM and EDF perform similarly, since both allow higher-priority tasks to move
ahead even when they are released later. EDF gives smaller minimums and maximums
under high system load than RM. Because if a task is delayed longer, it tends to have an
earlier deadline, thus being assigned a higher priority by EDF.

While the performance of FIFO is comparable to those of RM and EDF under light
to medium system load (with 40 tasks or fewer), FIFO performs better than RM and EDF
under high system load, in terms of means, standard deviations, minimums and
maximums of task periods. This is because FIFO provides a tight upper bound in task
response times, regardless task periods.

From the above simulation result, we have the following observations. First, under
light and medium system load, the performances of FIFO, RM and EDF are comparable in

terms of both deadline and interval constraints. Under high system load, FIFO offers better

7. In our study, all tasks are run to completion no matter if they meet their deadlines or not. This is
the typical case in open-architecture machine tool controllers.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mean interval standard
seed # tasks samplesize | difference (us) | deviation (ys) min (us) max (s)
10 22628 -0.00047 68.8 -259 263
20 42117 -0.00193 70.0 -281 300
30 64664 -0.00045 70.3 =272 266
- 40 93428 -0.00069 70.4 -278 285
50 122872 -0.00141 7.1 -349 347
60 150405 -0.00114 72.8 ~$80 502
70 183055 -0.00015 832 -993 1692
10 16633 -0.00503 70.9 -267 297
20 38252 -0.00020 70.9 -294 303
30 72639 -0.00232 70.1 =272 278
] 40 100734 -0.00184 70.6 =281 287
‘(:.i 50 117275 -0.00149 71.0 -379 389
60 143509 -0.00182 723 -498 549
70 169692 -0.00209 76.6 -992 1195
80 190639 -0.00530 94.4 -992 3902
10 20249 -0.00371 69.8 =261 257
20 46856 0.00015 69.4 -276 282
30 64322 -0.00092 69.7 -289 294
~ 40 83644 -0.00052 70.1 -288 305
= 50 115504 -0.00091 706 315 352
60 134537 -0.00038 s -195 469
70 152831 -0.00038 73.5 -577 672
80 18414 -0.00120 852 -994 2316

Table 15: Interval statistics under RM without timer resets.

performance than RM and EDF in terms of interval constraints, but it has worse
performance in terms of deadline constraints. There is a trade-off here.

Second, RM and EDF perform comparably in terms of both deadline and interval
constraints. However, we did not consider the run-time overhead of EDF in our
simulations. From our measurements, the overhead of changing task priorities at run-time
is more than 100 us in the UMOAC testbed environment (see Chapter 4), which is

prohibitively expensive for machine tool controllers. Therefore, RM is preferred because

it has no such run-time scheduling overhead.

3.2.2 Experimental measurements

To verify the simulation results and to discover any factors/system behaviors that may not

be accounted for in our simulations, we use the UMOAC testbed for actual measurements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

mean interval standard
seed # tasks sample size difference (us) | deviation (us) min (us) max (us)
10 22628 -0.00047 68.9 274 263
20 42116 -0.00022 70.0 =277 260
30 64659 -0.00183 70.4 -266 280
- 40 93430 -0.00001 700 -279 295
50 122856 -0.00066 70.1 -349 388
60 150399 -0.00054 709 -$70 524
70 183082 -0.00044 75.2 —430 2
10 16633 -0.00503 70.7 -267 297
20 38251 0.00007 705 -267 290
30 72635 -0.00119 69.8 =272 285
[~ 40 100732 -0.00318 69.9 -284 289
&.. 50 117281 -0.00175 70.2 -379 389
60 143514 -0.00173 70.7 -379 545
70 169708 -0.00225 726 -135 673
80 190664 -0.00287 76.8 -384 833
10 20249 -0.00371 69.8 -261 253
20 46851 -0.00127 69.3 -289 300
30 64318 -0.00167 69.5 -288 272
~ 40 83650 -0.00027 69.6 -282 281
K 50 115515 -0.00189 699 -310 327
60 134520 -0.00056 70.3 95 432
70 152833 -0.00096 713 -501 595
80 184147 -0.00071 755 -394 747

Table 16: Interval statistics under EDF without timer resets.
Since RM and FIFO can be more efficiently implemented than EDF, we will only consider
RM and FIFO in our comparison between simulations and experimental measurements.

We first simulate the executions of a set of 5 tasks under RM and FIFO, with a
interval standard deviation of 50 us, no random starts, and an estimated execution time of
15 ps. The task periods are randomly chosen between 1 ms and 10 ms. The periods of
these tasks are rounded to the nearest integral multiple of the system tick resolution
(49447 ns) in order to obtain better timer accuracy. The performance of these tasks are
then measured and compared with the simulation results.

Table 18 tabulates the deadline miss ratios from the simulations and
measurements. While simulations predict that no tasks scheduled by RM will miss their
deadlines, the experimental measurements show that a few invocations of task O missed
their deadlines. This result is significant because the total CPU utilization for these 5 tasks

is only about 1.82%, much less than the threshold of 74.3% given by RM (EQ 1 in

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mean interval standard
seed # tasks sample size | difference (is) { deviation (us) min (Us) max (us)
10 22628 0.00007 69.0 -292 276
20 42120 0.00051 70.1 -282 266
30 64656 0.00010 705 -269 264
- 40 93435 -0.00026 705 277 290
50 122880 0.00036 704 299 360
60 150398 -0.0003+ 704 -376 414
70 183073 -0.00016 711 -291 376
10 16634 0.00009 70.7 -295 299
20 38250 -0.00219 706 =263 293
30 72638 -0.00050 70.1 -285 285
a 40 100730 -0.00006 704 -282 300
& 50 117274 ~0.00015 703 294 305
60 143510 0.00041 707 -328 401
70 169689 0.00030 71.0 -362 352
80 190657 0.00022 720 -367 491
10 20248 0.00304 70.1 -283 258
20 46856 0.00037 693 =270 274
30 64322 -0.00055 69.8 =270 275
— 40 83645 0.00017 70.0 -290 234
w 50 115508 -0.00003 702 =311 298
60 134519 -0.00055 703 -327 366
70 152821 0.00054 708 -$18 363
80 184144 0.00003 71.8 -302 469

Table 17: Interval statistics under FIFO without timer resets.
Section 3.3). This means that actual RTOS unpredictability can be more complex and
severe than the interval variation used in our simulations. Similar results are observed for

the same tasks scheduled by FIFO.

task 0 1 2 3 4 total

pertod (Us) 2800 2277 9648 6018 6749 N/A

§ s sample size 3443 4233 1000 1602 1429 11707
zg e miss ratio 0 0 0 0 0 0
G o sample size 3443 4233 1000 1602 1429 11707
E miss ratio 0 0 0 0 0 0
period (us) | 2818.5 | 2274.6 | 96422 | 60325 | 6724.8 N/A

‘g_‘ s sample size 641 751 170 259 222 2043
£ = miss ratio | 0.624% 0 0 0 0| 0.196%
g o sample size 641 751 170 260 222 2044
E miss ratio | 0.624% | 0.399% 0 0 0| 0.342%

Table 18: Miss ratios of simulations and measurements.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 19 shows the statistics on periods of both simulations and measurements.
The standard deviations of the measured task periods are much larger than those of the
simulations. This indicates that the timer interval standard deviation used in the
simulations may not be large enough. The value of the standard deviation is chosen based
on our timer experiments in Chapter 2. Here, we are dealing with « different number of
tasks whose periods are also different. This increased system load may cause the timer

variation to increase.

task 0 1 2 3 4
period (jis) 2800 277 9648 6018 6749
sample size 3442 4232 999 1601 1428
mean (s) -0.0125 -0.0130 -0.1081 -0.0862 0.0007
= std. dev. (ts) 703 69.9 75 715 68.6
5 min (is) -263.5 2153 -210.8 2346 -239.0
3;“ max (is) 2700 246.3 227.0 2345 2420
£ sample size 3442 4232 999 1601 1428
mean (us) -0.0081 -0.0165 -0.0781 -0.0956 -0.0098
g std. dev. (us) 702 69.9 713 719 68.0
- min (j1s) -263.5 2355 -210.8 2705 -239.0
max (iis) 270.0 2543 227.0 2345 218.5
period (pts) 2818.5 2746 9642.2 6032.5 6724.8
sample size 640 750 169 258 221
mean (us) -0.93 -0.74 444 -1.88 225
Z std. dev. (us) 385.0 185.5 172.2 180.2 1027
g min (us) -2765.5 222217 -802.1 -12225 3773
g max (us) 4001.6 2168.8 1028.9 1760.8 386.4
5 sample size 640 750 169 259 221
mean (its) -0.93 071 240 2201 224
g std. dev. (us) 3874 312.9 2323 175.9 90.7
- min (us) 271728 22277 15629 -1179.7 2
max (us) 4760.5 39179 1435.6 1960.3 318.0

Table 19: Statistics of task periods.

3.2.3 Discussion

The results of our simulations and experimental measurements offer a number of
important observations regarding the performance of real-time scheduling algorithms
(RM, EDF and FIFO) in the presence of RTOS timing unpredictability.

First, tasks may miss their deadlines in the presence of RTOS unpredictability even

when the scheduling theory guarantees all deadlines, because the theory assumes idealized

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system conditions, such as deterministic and precise task release times and negligible run-
time scheduling and context switching overhead.

Second, the task deadline miss ratios are small (less than 1% from both simulations
and experimental measurements). This means that RM, EDF and FIFO are still good
scheduling algorithms for practical real-time systems.

Third, FIFO leads to larger miss ratios than RM and EDF under high system load.
This is because FIFO gives no preferential treatment to tasks with shorter periods. When
system load increases, such tasks are more likely to miss their deadlines since they may
have to wait for other less urgent tasks to complete. Therefore, RM and EDF are preferred
over FIFO for providing deadline guarantees.

Fourth, RM and EDF have similar performance regardless of system load. In the
situations where not all tasks meet their deadlines, EDF may unnecessarily assign higher
priorities to tasks that will surely miss their deadlines. Since RM is easier to implement
and incurs no run-time scheduling overhead, it is the preferred choice for our open-
architecture controller research and development.

Last but not least, from the comparison between simulations and measurements,
we learned that simulation by itself may be inadequate in determining the performance of
scheduling algorithms because it is extremely difficult to model the RTOS unpredictability
accurately in the simulation. For real-time systems, it is important to use scheduling
algorithms that, while not necessarily optimal, will be predictable, guarantee acceptably
high levels of resource utilization, and address practical issues such as RTOS timing
unpredictability. Therefore, an empirical scheduling model that uses the measurements of

the actual system is needed, which we will present in the next section.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 RMTU: Rate-Monotonic in the presence of Timing Unpredictability

RM is the preferred scheduling algorithm for our open-architecture controller in the
presence of RTOS unpredictability, in particular timer variation. However, the original
RM scheduling theory is no longer valid under such a condition and simple simulation
models may not be adequate in determining the actual scheduling algorithm performance.
In this section, we propose an empirical task schedulability model, called RMTU (Rate-
Monotonic in the presence of Timing Unpredictability), extending the original RM
scheduling theory to handle timing unpredictability. By empirical, we mean the model
parameters are derived from the measurement of the target system.

For completeness, we first briefly review the results of the RM scheduling theory
[93]. Suppose there is a set of m independent, preemptive, periodic tasks, Tj, T, ..., Tp»
with periods T}, T5, ..., T,,, deadlines D, D,, ..., D,,, and worst-case contention-free
execution times (WCETs) C;, C,, ..., C,, and initial release times [;, I, ..., I,
respectively. For each task 1;, i=1,2,...,m, its deadline is assumed to be equal to its period.
In other words, 7; is released at time instants [}, [;+7;, I;+2T, ..., and must be completed

by I;+D;, I;:+2D;, I+3D;, ..., respectively. Without loss of generality, the task periods are

i 4
assumed to be sorted in a non-decreasing order, T, £T,<..£T;=...=T7,,.

RM assigns higher priority to tasks with shorter periods. The priorities are fixed
once they are assigned to the tasks. Based on the above assumptions and ignoring all
overhead and system unpredictability, Liu and Layland [93] proved that RM is optimal in
the sense that no other fixed-priority assignment rule can schedule a task set which cannot

be scheduled by RM. Furthermore, all tasks can meet their deadlines under such a priority

assignment if the CPU utilization U satisfies the following relationship:

1
m C —_
2 ? (] (EQ 1)

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EQ 1 can also be written in the following form, which can be compared more

easily with the model we will propose.

Ve, 1<i<m A+ S2y +C"<'2§ 1 2
Tp _z_.m,-z—;l— 7, Ti_z - (EQ 2)

While the original RM scheduling theory is simple and elegant, its results are no
longer valid in the presence of RTOS unpredictability. In order to use RM and provide
hard deadline guarantees, the original RM scheduling theory needs to be extended. In
Section 3.3.1, we propose an empirical model, RMTU, for determining task schedulability
in the presence of timing unpredictability. In Section 3.3.2, we design a set of systematic
experiments to derive the model parameters. We then conduct experiments designed to
validate our empirical model in Section 3.3.3. Finally, we discuss the results in

Section 3.3.4.

3.3.1 An empirical task schedulability model: RMTU

Because timing unpredictability is omnipresent in RTOSs and has an adverse impact on
task deadline miss ratios, we must take it into account when checking the schedulability of
the tasks. In this section, we first examine the effects of these timing characteristics on the
schedulability of hard real-time tasks. Based on this analysis, we will then propose an
empirical task schedulability model.

We will use the simplest scenario—a single user task in the system——to illustrate
the difference between the ideal and the realistic conditions. Figure 16 shows the ideal
case where there is no glitch in timer firings. Task T has a period of Tand a WCET of C. It
is released initially at time [and subsequently at I+7, [+27, ... Its deadline is the end of
each period. We can see that all inter-timer-firing intervals in Figure 16 are equal to the

nominal period 7, as assumed by the RM scheduling theory.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T T
5 < time
T >
I I+T

1+2T

Figure 16: Task execution with an ideal software timer.

However, intervals between timer firings can vary. When a timer firing is delayed,
the next firing can still be, and is typically, on time. This situation manifests itself as timer
“memory” behavior, as illustrated in Figure 17. The initial timer firing is on time at the
time instant 7, the second is late by v time units at /+7+v, and the third is again on time at
I+2T. The net effect is a longer interval of T+v, followed by a shorter interval of 7-v. The
parameter v is called the timer deviation. Note that v could change from one interval to

another. If v > 7-C, the job in that period will miss its deadline.

T+v ! T-v
—-r
T v -t .
"] time
I -
I's +T

+2T

Figure 17: Task execution with timer variation.

From the above example, we can clearly see that the timer variation has an adverse
effect on task schedulability, because it can leave less time for a task to complete by its
deadline. We now want to quantify this effect. Since we are interested in meeting hard
deadlines, we only need to examine the critical instant. A critical instant for a task is
defined to be an instant at which a request for that task will have the largest response time
[93]. For our single-task example in Figure 17, the critical instant is at time /47, assuming
that v represents the largest timer delay. Because of the delay, the task is released late at
time /+T+v instead of /+7. This leaves the task only 7-v time units to complete execution
before its deadline of I+27. For this task T to be schedulable, assuming that the timer is the

only unpredictablé source in the system, the following inequality must hold:

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<1/ (EQ3)

N0
+

The effect of the timer delay v is similar to the situation where the task has a
WCET of C+v. If the timer delay is treated as the additional execution time on top of the
WCET, the following equation (actually, a set of inequalities) provides the sufficiency

condition of task schedulability with RM for a set of m tasks:

!
c +v, 7
Vi, ISism———+ ..+ ‘T '.<.{2‘-1J (EQ4)

where v; denotes the worse-case timer deviation for the i-th task. The i-th inequality is a
sufficiency condition for the schedulability of task ;. EQ 4 differs from the original RM
EQ 2 only in that the C; is replaced by C+v;.

However, the timer deviation is different from the additional task execution time in
that the processor can still do other useful work during the time a task is delayed by the
timer. Therefore, in considering the schedulability of task T;, the timer deviations of
higher-priority tasks should not be included in the computation. This gives rise to the

following modified equation:

1
c, G, C. v; 7
Vi, [<i<m 2+ 24 4L+ tgif2' -1 s

i il=m Tl T2 Tl. T[. 3[J (EQ)

The timer deviation v; in EQ 4 appears similar to the blocking factor B; in [129].
Rajkumar et al. [129] studied the RM scheduling of periodic tasks with blocking for

synchronization. They proved the following sufficiency condition for task schedulability:

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B

c, C, B;
Ti

C.
V1,l1<iSm,—~+—+...+—+
T, I<ism 7,7 T, T,

1
< i(Z? -1) (EQ 6)
where B; is the blocking factor of task T;. This is the amount of time task T; can be blocked
when it would otherwise be eligible to run. This blocking could result from waiting for
some shared resource (e.g., a semaphore) held by a lower-priority task on the same
processor or a task of any priority running on another processor (in the case of a
multiprocessor system).

EQ S is similar to EQ 6, except that it has the timer deviation v; instead of the
blocking factor B;. In other words, the effect of timer delay on task schedulability is
similar to that of blocking, although the causes are different. The timer deviation
originates from the non-ideal software timer characteristics—variation and “memory”
behavior, while the blocking factor comes from the contention of shared system resources
(other than the CPU, e.g., semaphores). In a multiprocessor system, the difference is more
evident, where a task could be blocked multiple times within a period by a task of any
priority running on another processor. This is clearly not the case for the timer delay.
Therefore, the results of [129] can be readily applied to the effect of timer delay on task
schedulability. That is, EQ 5 represents the sufficiency condition that all task deadlines
will be met using the RM priority assignment.

Now, if we are given the WCET and the timer deviation for each task and assume
that other characteristics of the underlying system are ideal, we can then determine the
schedulability condition of the given set of tasks by applying EQ 5.

However, the underlying system is far from being ideal. Furthermore, in our target
application domain, open-architecture machine tool controllers, the real-time software
developers are typically mechanical engineers. They may often want to foqus on issues in

the areas of their expertise instead of worrying about RTOS problems. Thus, it is more

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

desirable to have the supporting tools to derive or estimate all necessary parameters, such
as the WCETSs and timer deviations.

To help the real-time application developers determine task schedulability with the
RM priority assignment in the presence of timing unpredictability, we introduce an
empirical task schedulability model—RMTU. RMTU has the following sufficiency

condition for task schedulability:

Ve, 1<i<m U+ <+ +C"+v"<'2§ i (EQ7)
pli=st=m, s TI .o -Z—,; i;;-_l -

where U is a constant representing the CPU utilization of OS activities, such as the OS
kernel scheduling and interrupt handling; v; is the worse-case timer deviation for task T;.
EQ 7 differs from EQ 5 by the addition of U,. Once we obtain the parameters U, C;, and
v;, we can use EQ 7 to determine if all the hard deadlines can be met. This model is
empirical in that the model parameters will be derived from measurement data of the
target system.

Considering that the timer delay is caused by higher-priority OS activities, it
should be independent of neminal timer periods. To verify this, we measure the variation
of timers with different nominal periods. We used the VxWorks setup as described in
Chapter 2 to run 8 periodic tasks, one at a time, and measured their intervals. The nominal
periods of these tasks range from 5 ms to 200 ms. The typical range of control task periods
is from 1 ms to 100 ms. Since the tick size is 1 ms, it is inappropriate to run tasks with a
period that is very close to, or less than, 1 ms.

Table 20 summarizes the measurement results. The mean, minimum and
maximum intervals in the table are normalized by their respective nominal task periods so
that it is easier to compare the measurements of tasks with different periods. For example,

for the 10 ms task (the second row in the table), the actual mean, minimum and maximum

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

intervals are 10000.38, 8391 and 11487 us, respectively. We can see that the worst-case
timer deviations are between one and two milliseconds and have no linear relationship

with nominal timer periods.

Task Mean Standard
Period Sample interval Deviation Min Max
(ms) Size (us) (is) (us) (us)
5 1213 1.26 132 -1669 1544
10 802 0.38 175 -1609 1487
20 607 -0.33 196 -1653 1385
30 539 -0.71 247 -1373 1393
50 394 0.42 254 -1060 1156
70 522 1.40 224 -1185 1264
100 417 3.54 150 -1425 1608
200 510 1.06 133 -1565 1540

Table 20: Statistics of timers with different nominal periods.

Given that the worst-case timer deviation is independent of nominal timer periods,

RMTU (EQ 7) can be revised as follows:

< 8
- EQ®)

1
. . oy iLv_ i
RMTU: V1, I<ism U, +=+...+ -+ =<i2 -1
T Y

where the timer deviation v is a constant, regardless of task periods 7;. EQ 8 represents the
sufficiency condition of task schedulability. It uses two model parameters U, and v to
capture the unpredictability of RTOS, CPU utilization of OS activities and variation in
timer periods. These two parameters can be determined empirically. This model results in
a tighter upper bound of CPU utilization for RM task scheduling in the presence of RTOS
unpredictability.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.2 Derivation of model parameters

Now that we have introduced the empirical task schedulability model RMTU, we will

describe a systematic approach to deriving the model parameters.

3.3.2.1 Assumptions and derivation

To apply RMTU, we need to know all the parameters in EQ 8. T, T, ..., T,, are the task
periods, which are realized using RTOS timers in applications. In an actual
implementation of tasks, the periods could differ from the specified values. Since RTOS
timers can deliver mean intervals very close to the nominal task period, we will use the
task periods as given in our schedulability analysis.

Theoretically, the worst-case nominal task execution times C;, Cj, ..., C,, may be
obtained by analyzing the task code, given that the task execution times are bounded. In a
real system, however, the same OS activities that cause timer glitches can affect task
execution times as well. Therefore, the measured WCETs reflect more accurately the
actual system performance than those obtained from code analysis and should be used in
determining task schedulability. Finally, the worst-case timer deviation can only be
obtained experimentally.

In essence, most model parameters need to be determined empirically. Now, we

can design the experiments to derive these model parameters. Considering RMTU for the

single-task case, EQ 8 becomes:

U+ e X<l (EQ9)
ST, T,

We define the available CPU utilization (U,,,;) as the percentage CPU cycles that
can be used by user tasks. The achievable CPU utilization (U,_;,.,) is defined as the

maximal CPU utilization by user tasks without missing any deadlines. It can be computed

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as the summation of ratios of the WCET to period of individual tasks. U,.;,,, has the same
value as the CPU utilization U in the original RM theory—the left-hand side of the less-
than-or-equal-to operator in EQ 1, while the right-hand side represents U,, ;.

EQ 1 indicates that both the available and achievable CPU utilizations are equal to
1 for all task periods in the single-task case. On the contrary, RMTU EQ 9 shows that the
available CPU utilization (i.e., /-U,) will be most likely less than 1. Furthermore, tasks
with smaller periods will result in less achievable CPU utilizations.

There are a number of reasons for these results. First, the RM scheduling theory
assumes that there are no other system activities. However, in any real system, there are
OS tasks that run at priorities higher than all user tasks. Second, the RM theory ignores OS
overhead, such as context switching and scheduling overhead. Again, this is not true in a
real system. Third, the RM theory does not consider variations associated with the OS
services, such as the POSIX timer, which have adverse impacts on task schedulability.

EQ 9 can be rewritten as EQ 10. For simplicity, the task subscript and the less-than
sign are dropped.® In the equation, task period T is given, while the WCET C can be
measured. The available CPU utilization /-U; and the timer deviation v can be derived by

using linear regression:

C=U-U)T-v (EQ 10)

3.3.2.2 Systematic approach

Based on EQ 10, we design a systematic approach to determining the model parameters

empirically as follows:

8. This simplification is feasible because the derived model parameters will be plugged back into
EQ 8.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Run a single task with a fixed period and adjustable execution time (e.g., by
using a loop to perform some calculations and a user-specified parameter to set

the number of iterations) at the highest priority allowed by the RTOS.

2. Measure the start and completion time of each task invocation to check if it
misses its deadline. The number of measured task invocation should be as large

as possible and no less than a few hundreds for a given task execution time.

3. If the task misses its deadline, decrease the task execution time and repeat
Step 2; otherwise, increase it. Adjust the task execution time until that the task
does not miss its deadline and that a small® increase in its execution time will

cause it to miss its deadline.
4. Record the worst-case execution time C and the corresponding task period 7.

5. Repeat Steps 1-4 for several different task periods in the range of target

application task periods.

6. After obtaining (C, T) values from Steps 1-5, use linear regression to derive the

available CPU utilization (/-U;) and the timer deviation v.

Note that the measured WCET also captures the effect of RTOS activities on the
task execution time. It is different from response time or service time. Response time is the
elapsed time between the release of the task to its completion, while service time is the
task execution time net of RTOS activities or preemptions. Figure 18 illustrates the

differences.

Response Time

l Execution Time

F— ol g UME
release start \/ finish

Service Time

Figure 18: Execution time vs. response time vs. service time.

5. In our experiments, a small change is typically less than 1% of total task execution time.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.2.3 Experimental results

We conducted the experiments described above on our computer system running
VxWorks. Figure 19 shows the relationship between the measured achievable CPU
utilization (WCET over task period) and the task period. While the RM scheduling theory
(EQ 1) predicts that the achievable CPU utilization should be 1 regardless of different
periods in the single-task case, Figure 19 clearly shows an upward trend in achievable
CPU utilization as the task period increases (as indicated by EQ 9, which is derived from

EQ 8), thus confirming the validity of RMTU (EQ 8).

1.00
c 0.90
9
©
N
=
z
5 o080
)
el
[}
>
k]
i =y
Q
< 070 + R
0.60 L L
1 10 100 1000

Period (ms)

Figure 19: Single-task achievable CPU utilization versus task period.

Table 21 lists the measurement and computation results. The first 8 rows of the
table shows the data for tasks whose periods range from 5 ms to 200 ms. The last 3 rows
are the results of linear regression. For example, using the measured maximum execution
times, the linear regression produces a timer deviation v of 1.802 ms and an available CPU

utilization (/-U;) of 1.0016 (fourth column in the table).lo The correlation coefficient is

10. We will discuss why U, could be greater than | in Section 3.3.4.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

very close to 1, indicating a strong positive correlation between the task period and

measured WCET. We will discuss these results and their applicability in Section 3.3.3.

Task Achievable Maximum Mean Minimum
Period T CPU Execution Execution Execution
(ms) Sample Size Utilization Time C (ms) Time (ms) Time (ms)

5 1214 0.688 3.438 2771 2.695

10 803 0.831 8.314 7.726 7.650

20 608 0.898 17.954 17.672 17.588

30 540 0.939 28.184 27.700 27.583

50 395 0.972 48.597 48.002 47.962

70 523 0.970 67.920 67.395 67.259

100 418 0.983 98.347 97.694 97.651

200 511 0.993 198.606 197.698 197.586

timer deviation v (ms) 1.802 2.271 2.350

available CPU utilization 1-Uj (ms) 1.0016 0.9996 0.9995

regression correlation coefficient +1.00000 +1.00000 +1.00000

Table 21: Single task experiment results.

3.3.3 Model validation

Since we have derived the timer deviation v and the available CPU utilization (Z/-U[)
experimentally, we can use RMTU (EQ 8) to determine the schedulability of any given set
of independent, periodic tasks for that given hardware and software environment. RMTU
can also be applied to admission control. Before a new task is admitted, its impact on the
existing tasks in the system and the schedulability of the new task need to be checked
using EQ 8.

To validate the empirical model, we have run several sets of three and five
independent tasks in the same VxWorks setup where the model parameters were derived
(Section 3.3.2). Tasks are scheduled using the RM priority assignment. In our validation
experiments, all tasks in the same task set have the same amount of contention-free

execution time, but differ in their periods. Only one set of tasks, either three or five tasks,

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are run at a time. The execution times of the tasks in the same set are adjusted such that no
tasks miss their deadlines and that a small increase in their execution times will cause at
least one task to miss its deadline. The performance of the tasks are measured and
compared with the WCETs and achievable CPU utilizations predicted by the original RM
scheduling theory (EQ 1) and RMTU (EQ 8).

Tables 22 and 23 show the experimental results for the three- and five-task sets,
respectively, as well as results by the RM theory and RMTU. For example, in Table 22,
each of the 5 rightmost columns represents the data for a different task set. The first 3 rows
are the periods of 3 tasks in the task set. The fourth row shows the composite periods of
individual task sets. The composite period T, is computed using EQ 11. The remaining

rows show the results of RM, RMTU and measurement.

Set 1 2 3 4 5
task 1 (ms) 10 20 30 40 50
3 task 2 (ms) 14 33 47 66 79
g task 3 (ms) 33 53 81 97 99
composite period (ms) 4957 10.084 14.935 19.817 23.387
s worst-case execution time (ms) 3.865 7.863 11.646 15453 18.236
a achievable CPU utilization 0.780
timer deviation v (ms) 1.802
E available CPU utilization 1-U, (ms) 1.0016
E worst-case execution time (ms) 3.603 7.536 11.338 15.116 17.848
achievable CPU utilization 0.727 0.747 0.759 0.763 0.763
o sample size 400 264 243 234 218
;‘;% worst-case execution time (ms) 4592 8.692 13.414 16.570 20.079
£ achievable CPU utilization 0.926 0.862 0.898 0.836 0.859

Table 22: Validation with three-task experiments.

L -v4 (EQ 1)

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Set 1 2 3 4 5
task 1 (ms) 10 17 27 50 67
task 2 (ms) 23 42 47 66 84
3 task 3 (ms) 41 52 69 73 88
g task 4 (ms) 77 81 38 79 94
task 5 (ms) 100 91 93 98 100
composite period (ms) 5.240 7987 10.535 13.945 16.998
s worst-case execution time (ms) 3.896 5.939 7.833 10.368 12.638
a achievable CPU utilization 0.743
timer deviation v (ms) 1.802
E available CPU utilization 1-U; (ms) 1.0016
E worst-case execution time (ms) 3.810 5.793 7.645 10.134 12.358
achievable CPU utilization 0.727 0.725 0.726 0.727 0.727
o sample size 103 142 145 183 148
% worst-case execution time (ms) 5.119 7.549 9.396 12.217 14.160
: achievable CPU utilization 0.977 0.945 0.892 0.876 0.833

Table 23: Validation with five-task experiments.

The periods of these tasks are chosen between 10 ms and 100 ms. To better verify
RMTU, they are selected such that the composite periods of the task sets are distributed
more evenly within the range.

The first set in Table 23 has five tasks, whose periods are 10, 23, 41, 77 and
100 ms, respectively. According to the original RM theory (EQ 1), the task set is
schedulable if their achievable CPU utilization is no greater than 0.743. This corresponds
to a worst-case execution time of 3.896 ms. Note that the execution times are the same for
all five tasks. The timer deviation and available CPU utilization are 1.802 ms and

1.0016,!1 respectively, which were derived from the experiments in Section 3.3.2. Using

11. See next section for a discussion why the derived available CPU utilization may be greater than
1.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

these two model parameters, RMTU gives an achievable CPU utilization of 0.727 and the
corresponding WCET of 3.810 ms.

The last three rows of the table show the actual measurement data of the tasks. The
sample size is the number of invocations for the task with the longest period. For tasks
with shorter periods, there are more data points, proportional to the ratio of their task
periods. For the first task set, there are 103 data points for the 100 ms task. For the 10 ms
task, there would be roughly 10 times more data points. In the actual measurement, there
are 1024, 445, 250, 133 and 103 data points for the five tasks in the first set of Table 23,
respectively. The measured WCET for this task set is 5.119 ms (which corresponds to an
achievable CPU utilization of 0.977), exceeding the 3.810 ms schedulability threshold set
by RMTU. A tiny increase in the task execution time caused the task with the longest
period (hence the lowest priority) to miss its deadline.

In these tables, no tasks missed their deadlines when the CPU utilization is less
than, or equal to, the schedulability threshold given by RMTU, showing the validity of the
model as a sufficiency condition for task schedulability with the RM priority assignment

in the presence of timing unpredictability.

3.3.4 Discussion

There are a number of important observations to be made from our experimental
measurement in Sections 3.3.2 and 3.3.3. First, RMTU gives a tighter upper bound of the
achievable CPU utilization than the original RM scheduling theory. For example, the first
set of tasks in Tables 22 have periods of 10, 14 and 33 ms, respectively. All tasks have the
same execution time. While the RM theory indicates a CPU utilization upper bound of
0.780 and the WCET of 3.865 ms, our empirical model gives 0.727 and 3.603 ms,
respectively. In other words, the deadlines guaranteed by the RM theory may actually be
missed in our experimental environment, because the RM theory does not take the timing

unpredictability into account.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mathematically, RMTU gives a tighter upper bound of the achievable CPU
utilization if and only if the following holds, by comparing the original RM theory (EQ 1)
and RMTU (EQ 8):

U+T"—>0 (EQ 12)

If we use the more conservative version of RMTU (EQ 14), EQ 12 will always
hold. Even if EQ 8 is used instead of EQ 14, EQ 12 should also hold because of its
physical implication—the overall effect of having RTOS activities and timer interval
variation is the reduced CPU cycles for tasks, thus more difficult to schedule the task set.

Second, the tasks can typically reach better achievable CPU utilization than
predicted by either RM or RMTU. For the above set of tasks, the measured WCET is
4.592 ms and hence the achievable CPU utilization is 0.926. However, this is not
equivalent to an actual CPU utilization of 0.926, because most task executions take less
time than the worst case. Therefore, the measured achievable CPU utilization should only
be used as a sufficiency condition for checking the task schedulability.

Third, the available CPU utilization (/-U,), one of our empirical model
parameters, could be greater than one. At the first glance, it may be strange that the
available CPU utilization can be greater than one. However, the available CPU utilization
is again not the actual CPU utilization. When the WCETs are used in EQ 10 to derive
model parameters, the available CPU utilization can be over-estimated (thus resulting in a
value larger than 1). This is because only a very small number of task invocations actually
take that much time to complete. If we want to be more conservative in determining the

schedulability of tasks, we can re-define the available CPU utilization as:

U,yuq = min(1, [—U,) (EQ 13)

avail —

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where (I-Uj) is the derived value from the experiments. RMTU EQ 8 can then be

rewritten as:

. ! Cy C v
VT",.ISlSm, (I_Uavail)+—+.-.+—+—
T, T

[
Si(Z?—I) (EQ 14)

This revised equation represents a more stringent sufficiency condition for task
schedulability. It could result in smaller achievable CPU utilizations.

The measured mean or minimum execution times can also be used in our empirical
model. As shown in Table 21, this results in larger timer deviations and smaller available
CPU utilizations. However, the measured WCETs are more appropriate for the following
reasons. First, since we are interested in meeting hard real-time deadlines, a more
conservative approach is in order. Second, the measured WCETs reflect the real
computing environment better than either mean or minimum execution times. Note that
the measured minimum task execution times correspond to the contention-free WCETs
that would have been derived by code analysis. Because of higher-priority OS activities,
the actual (measured) WCETSs can be much longer than the theoretical (contention-free)
ones. For example, the measured WCET of Task 1 in the first set of Table 21 is 4.592 ms,
while its measured minimum execution time is only 3.885 ms. Furthermore, the
underlying OS is very complex and cannot be fully modeled by the timer characteristics
we described earlier. The precise schedulability analysis of a set of independent, periodic
tasks in a real system is extremely difficult, if not impossible, and may not be available in
the near future. By using measured WCETSs, we have the additional benefit of factoring

into our schedulability analysis system disturbances other than the timer variation.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Related work

Since the introduction of the RM priority assignment [93], there has been significant
interest in applying and extending the theory. A periodic task set {t,, T,, ..., T,,} with
D;=T, 1<i<m,is schedulable by RM if EQ 1 holds. This result has been extended for
the cases with D;<T; [68, 77, 78, 88], with deadlines being integral multiple of periods
[78, 89], and with D;> T; [138].

Rajkumar er al. [129] and Lortz and Shin [98] studied scheduling issues for
periodic tasks with blocking due to non-preemptive critical task sections or mutually
exclusive access to shared resources. In the uniprocessor case, the sufficiency condition

for schedulability under RM is as follows:

1
Cc, C C. B =

VT, 1<i<m, L+ 224 . +—+t<i2'=] is
; I m’T1+T2+ +Ti T, i (EQ 15

where B; is the blocking factor of task ;.

All of the above RM extensions assume ideal timers, except that the task deadlines
do not necessarily coincide with their respective periods. But the ideal-timer assumption
no longer holds in real systems.

EQ 15 is the same as a primitive form of our empirical model EQ 5, except that it
has the blocking factor B; instead of the timer deviation v; in RMTU. While we can use the
results from [129], our model is addressing a phenomenon that has causes different from
blocking. Furthermore, RMTU does not assume ideal RTOS timers while EQ 15 does.
RMTU can be considered as an extension of EQ 15 in the sense that the blocking factor
can be lumped together with the timer deviation. We also developed a set of systematic

experiments to derive the model parameters empirically.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While most existing research related to the scheduling of periodic tasks deals with
simplified or idealized system conditions, there is also work investigating the application
of the theory to task sets implemented via real-time operating systems.

Kettler, Katcher and Stronsnider [72] proposed an engineering methodology that
allows users to accurately model and evaluate RTOSs, thus providing a framework to
account for implementation costs in real-time scheduling theory. Their approach requires a
high degree of expertise to create a valid model for any given RTOS. Such expertise may
be scarce among users. Furthermore, as the RTOSs become more sophisticated with added
functionality (such as network and multimedia device modules), the modeling work
becomes more difficult. Instead, we designed a set of systematic experiments to
characterize the underlying RTOS and we provide a simple sufficiency condition for
applying the RM scheduling theory.

Audsley et al. [11] proposed a non-preemptive fixed-priority scheduling approach
for safety critical hard real-time systems. They describe the advantages of the fixed
priority scheduling over the traditional cyclic executive scheduling approach and outline
an approach for gathering the necessary evidence for presentation to certification
authorities. They also point out some disadvantages in the fixed-priority scheduling. In
particular, the release jitter of tasks may be worse than that using cyclic scheduling due to
the dynamic nature of the run-time schedule. Release jitter refers to the same phenomenon
as the timer variation. Their solution is to use a non-preemptive approach trying to avoid/
minimize the problem. We instead address the problem directly by modeling and
measuring the effects of the jitter.

Jeffay and Stone [66] studied the feasibility and schedulability problems for
periodic tasks that must compete for the processor with interrupt handlers, which are
assumed to always have priority over application tasks. They developed conditions that
solve the feasibility and schedulability problems, and demonstrated that their solutions are

computationally feasible. However, the assumptions in their formal analysis remain

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

overly-simplistic. For example, they assume that interrupt handlers are strictly periodic,
which is rarely the case in practice. By contrast, our work is more practical and can be a

viable methodology in real-time application development.

3.5 Summary

A real-time open-architecture machine tool controller typically consists of a set of
periodic tasks. These tasks need to be scheduled such that their deadlines can be met.
However, it is not clear how theoretically-proven optimal scheduling algorithms (e.g., RM
and EDF) will perform in the presence of RTOS unpredictability. Therefore, we first
studied the performance of RM, EDF and FIFO using a combination of simulations and
experimental measurements.

Based on our simulations, we find that theoretically-proven algorithms often will
not work as expected in an actual real-time computing environment, simply because there
are important factors ignored in the development of the algorithms. We showed that,
among RM, EDF and FIFO, FIFO has worse deadline miss ratios than RM and EDF under
high system load, while RM and EDF have similar performance. Therefore, we favor RM
over EDF and FIFO, because of its implementation simplicity and no run-time scheduling
overhead.

In addition, our simulations and experimental measurements showed that the
original RM scheduling theory results are no longer valid in the presence of timing
unpredictability. In order to handle such timing unpredictability, we proposed an empirical
model, called RMTU, extending the RM scheduling theory. We further designed an
approach that allows the application developer to systematically run and measure a set of
simple tasks. The model parameters can then be derived from the measurement data. Our
experiments verified the validity of RMTU. The results of this study should be useful not

only to control application developers, but also to real-time practitioners at large.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

PROBABILISTIC DEADLINE
GUARANTEES

4.1 Introduction

A real-time task is usually characterized by its arrival/release time, deadline, and worst-
case nominal execution time. Depending on the severity of the consequence of missing its
deadline, the task is classified as hard, firm or soft [142]. With this classification, only
hard real-time tasks require absolute deadline guarantees. Firm and soft real-time tasks
require no guarantees and receive only best-effort services, because the semantics of
“firm” or “soft” deadline guarantees are not defined clearly. This classification is often
inadequate for specifying requirements and characterizing the performance of many real-
time applications. For example, tasks in machine tool controllers can tolerate deadline
misses, but only to a certain degree [112]. This indicates that these controller tasks are not
hard real-time tasks and hence, do not require absolute guarantees. On the other hand,
best-effort approaches are insufficient for them because there is no guarantee whatsoever.
One simple-minded solution to this problem is to treat all tasks as hard real-time
tasks. However, such a solution is not economical for those applications that can tolerate
some deadline misses. Moreover, treating all tasks as hard will severely limit the number
of tasks the system can accommodate. For example, suppose a hard real-time task T; runs
once every 10 ms for a duration of 5 ms each time and another task 7, runs every 15 ms for
6 ms each time but can tolerate deadline misses up to 50% of the time. Their deadlines are

the same as their respective periods. If both tasks are released at time O initially, the

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deadlines of t; will be at time instants 10 ms, 20 ms, 30 ms, and so on. Similarly, the
deadlines of 1T, will be 15 ms, 30 ms, 45 ms, and so on. Clearly, these two tasks cannot be
guaranteed using the RM scheduling algorithm [93] if both of their deadlines are treated as
hard. On the other hand, their original timing requirements can be met by using the same
RM scheduling algorithm if the tolerance of deadline misses is taken into account.

To address this problem, we propose a practical framework for probabilistic
deadline guarantees. This framework includes several key components. We first define a
Probabilistic Real-Time Constraint Model (PRTCM), with which the tolerance of
application task deadline misses can be quantified in terms of completion probability.

While in theory the above two tasks could get hard deadline guarantees using the
earliest-deadline-first (EDF) or the first-in-first-out (FIFO) scheduling algorithm, system
unpredictability can make the guarantees difficult or impossible. Even if the system can
provide hard deadline guarantees for all tasks in some cases, it would in general be
severely under-utilized. Comprehensive assessment of scheduling algorithms is therefore
necessary to determine which algorithm works well for making probabilistic deadline
guarantees.

We propose a number of completion-probability-cognizant and CPU-utilization-
cognizant heuristics, and evaluate their performance as well as popular scheduling
algorithms -- RM, EDF and FIFO -- in the context of probabilistic deadline guarantees. An
especially interesting situation occurs when the system is temporarily overloaded, as a
result of system unpredictability (e.g., timer jitters [185]), hardware failure, or optimistic
scheduling. Our simulation results show that most scheduling algorithms work well if the
system is not overloaded. However, when the system is temporarily overloaded, RM
generally performs best in terms of useful job ratio under all three system load patterns we
simulate. UM (Utilization-Monotonic) performs best in terms of task completion
probability miss ratio under variable CPU utilizations and fixed task execution times, but

it is not effective under fixed task CPU utilizations. As an alternative, UM_CP

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Utilization-Monotonic with Completion Probability) generally performs well in terms of
task completion probability miss ratio under all three system load patterns. We also show
that the introduction of completion probability can improve CPU utilization as well as job
and task guarantee ratios, by comparing the performance of these scheduling algorithms
between probabilistic and deterministic deadline guarantees.

Another key component of our practical framework for probabilistic deadline
guarantees is a measurement-based simulation technique to obtain task completion time
distributions, which will be described in next chapter.

The remainder of this chapter is organized as follows. Section 4.2 describes the
probabilistic model, PRTCM. Section 4.3 defines criteria for evaluating the performance
of a real-time scheduling algorithm. Section 4.4 introduces new heuristics for probabilistic
deadline guarantees. Sections 4.5 and 4.6 describe simulation parameters and results,
respectively. Section 4.7 compares our results of evaluating scheduling algorithms for
both probabilistic and deterministic deadline guarantees. Section 4.8 presents related

work, while Section 4.9 summarizes the chapter.

4.2 Probabilistic Real-Time Constraint Model (PRTCM)

The hard, firm or soft deadline of a real-time task is classified based on the residual value
imparted to the application when the task is completed after its deadline, as illustrated in
Figure 20. As soon as a hard real-time task misses its deadline, its residual value becomes
negative infinity. A task with a firm deadline has zero residual value if it is completed after
its deadline. A soft real-time task may still provide a positive residual value after it misses
its deadline. This value is typically a non-increasing function of time that goes to zero
eventually. A non-real-time task has a constant residual value and no deadline.

However, such a categorization is often inadequate. For example, the sensor-

reading task in a machine tool controller may be allowed to miss its deadline occasionally

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£y | s A
= deadline 7'3, deadline
> >
hard firm
0 o 0 -
\ w time time
- infinity - infinity
2A 24
= deadline =
> >
soft non-real-time
N
RN
. \Ss\
. \
o ° -
time time

Figure 20: Residual-value-based categorization of real-time task deadlines.

but it must be completed 90% of the time by its deadline. Another example is the
transmission of video data over a computer network. To maintain the picture quality, it is
often required that at most one frame out of any K consecutive frames is allowed to miss
its deadline. Using the residual-value-based categorization, these two applications would
fall into the soft real-time category since they can tolerate some deadline misses. But it is
clear that the simple notion of “soft” cannot fully convey the requirements of these two
applications.

The problem with this categorization is that it mixes two distinct concepts: residual
value and criticality. Criticality represents the application’s tolerance of deadline misses
(i.e., whether the application allows any deadline misses or to what degree it allows
deadline misses). The residual value quantifies the utility of the task if it is completed after
its deadline. While the two concepts have a strong correlation, one cannot always be
substituted for the other. For example, if the residual value of a real-time task is -eo, it must
be a hard real-time task, disallowing any deadline miss. On the other hard, if a task can

tolerate no deadline misses, its residual value could be - or 0, depending on whether the

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deadline is hard or firm. Furthermore, the hard, firm and soft classification of criticality is
too coarse to be useful for many applications.

We therefore separate criticality from residual value by introducing the concept of
completion probability. The completion probability of a real-time task, denoted by P,, is
defined as the required probability with which the task must be completed by its
deadline.! By “required,” we emphasize that completion probabilities be a part of
application requirements, as opposed to the system’s capability to satisfy such
requirements. The completion probability captures the criticality of a real-time task by
quantitatively specifying its tolerance of deadline misses. A probabilistic real-time task is
defined as a real-time task whose deadline is associated with a completion probability.

In the machine tool controller example we mentioned earlier, the sensor-reading
task must be completed by its deadline 90% of the time, which corresponds to a constant
completion probability of 0.90. For the video data transmission application that can
tolerate at most one miss out of any K consecutive deadlines, the completion probability is
a function of the history of transmitting the last K-/ frames. The completion probability

for frame i is:

P (i) 1, if frame j missed its deadline where je {i— K+ [,i—K+2, ...,i—1}
1) =
¢ 0, otherwise

Conceptually, the completion probability is 1.0 for tasks with hard deadlines, equal
to or less than 1.0 for firm deadlines, and strictly less than 1.0 for soft deadlines. While
both hard and firm deadlines can have the same completion probability of 1.0, their

residual values are different: -oo for the former and O for the latter. Using both concepts of

1. We proposed a preliminary version of the concept of completion probability in [184]. Although
the concept of completion probability is defined for real-time deadlines, it can be generalized to any
real-time constraints, such as temporal relationships between data items. We call this generalized
concept constraint probability, defined over a real-time constraint as the required probability with
which the constraint must be met.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

completion probability and residual value will allow us to better specify the requirements
of real-time applications. Figure 21 shows where the traditional hard, firm and soft

deadlines map to in the new categorization space.

completion
probability A
Hard (-infinity, 1) machine tool controllers
Firm
C
P P . >
-infinity residual value

Figure 21: Completion-probability- and residual-value-based categorization.

Real-time tasks with hard deadlines correspond to a single point in Figure 21,
namely, the one that has a completion probability of 1.0 and a residual value of -eo. Tasks
with firm deadlines have a residual value of O and could have any value of completion
probability, corresponding to the line segment from (0,0) to (0,1) inclusive in the figure.
Tasks with soft deadlines map to a region whose completion probability ranges from O to,
but not including, 1.0, and whose residual value is non-negative, i.e., the shaded area.
Most periodic tasks in open-architecture machine tool controllers fall into this region, as
illustrated by the meshed area.

There could be another category of tasks corresponding to the region left of the
vertical axis, whose completion probability ranges from O to 1 and whose residual value is
negative. For example, the policy of some pizza delivery places states that the customer
pays nothing if the pizzas are not delivered within a certain time limit after the order is
received. Clearly, the residual values of such delivery tasks are negative. Because if the
task is completed after the deadline, the company receives nothing from the customer
instead of getting paid for its food and service. The completion probability of such tasks

should be as close to 1 as possible to reduce potential losses.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Traditionally, if the deadline of a hard real-time task can always be met by the
system, the task is said to have a hard-deadline guarantee provided by the system. There
are usually no deadline guarantees given to soft or firm real-time tasks. Given the new
notion of completion probability, we now introduce the accompanying concept of
probabilistic deadline guarantee. A task has a probabilistic deadline guarantee if its
completion probability is guaranteed by the system. In this context, a real-time scheduling
algorithm is said to be optimal if no other scheduling algorithm can provide probabilistic
deadline guarantees for a task set if this algorithm cannot.

In short, PRTCM introduces the concept of completion probability and adopts a
categorization for real-time tasks based on completion probability and residual value. It
further defines the semantics of probabilistic deadline guarantee and enables a new
dimension for schedulability analysis. We want to stress that our PRTCM is based on
application requirements. It establishes the foundation for the evaluation of the system’s
capability of providing probabilistic deadline guarantees. While there is a body of work on
real-time scheduling using residual values [26, 67], we only need to consider the

completion probability in providing probabilistic deadline guarantees.

4.3 Performance Evaluation Criteria

An important part of the design of real-time systems for probabilistic deadline guarantees
is to select an appropriate scheduling algorithm. Unlike deterministic guarantees,
evaluating scheduling algorithms is more difficult in the case of probabilistic guarantees.
Part of this difficulty comes from the existence of abundant evaluation criteria. The
relative performance of scheduling algorithms may change, depending on the criteria used
for the evaluation.

There can be two types of evaluation criteria, task-oriented and job-oriented. In a

real-time system, jobs are the units of work that are actually processed by the CPU, while

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tasks are typically used to characterize logical groups of related jobs, e.g., regularly
recurring jobs can be specified as a periodic task.

Both task-oriented and job-oriented objective functions can be useful for
applications. For example, Internet Service Providers (ISPs) typically have retail
customers with dramatically different usage patterns. Some customers may go on-line
once a week and for a short time, while some may connect to the net many times per day
and for a long duration. The usage of others may be in between. ISPs often try to keep as
many customers happy as possible, as opposed to giving higher priorities to heavy users,
especially when they are paying a flat fee. Each customer’s use of the service can be
considered as a job, while all uses by each customer can be considered a task. In this
example, the objective function is to satisfy as many tasks (i.e., customers) as possible.

On the other hand, a job-oriented objective function may be more appropriate if
the service pricing is mainly based on individual jobs, such as in express package delivery
services. Every package delivery can be considered an equally important job, and the goal
is to have as many of them delivered in time as possible.

For our evaluation of scheduling algorithms, we define two objective functions.
One is task-oriented and the other is job-oriented. Both are designed to measure how well

the completion probability requirements of PRTCM are met.

4.3.1 Task-oriented objective function

In the context of probabilistic guarantees, the most important task-oriented criterion in
selecting a scheduling algorithm is the number of tasks whose completion probabilities are
satistied. We define the task completion probability miss ratio as the ratio of the number of
tasks whose completion probability requirements are not met, to the total number of tasks.
This metric provides a direct measurement of how well the completion probability

requirements are met at the task level.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For those scheduling algorithms with the same task completion probability miss
ratio, the secondary selection criterion can be the task deadline miss ratio, which measures
how well the deadline requirements (regardless of completion probability requirements)
are met at the task level. For example, we have two tasks whose completion probability
requirements are both met. One task has a few jobs missing their deadlines while the other
has none. Therefore, the task completion probability miss ratio is zero and the task
deadline miss ratio is 50%.

We also distinguish the fask deadline miss ratio from the job deadline miss ratio.
The former is defined as the ratio of the number of tasks whose deadline requirements are
not met, to the total number of tasks. The latter is defined as the ratio of the number of jobs
missing their deadlines to the total number of jobs. For the same job deadline miss ratio,
there can be quite different task deadline miss ratios. For example, if all jobs missing their
deadlines belong to a single task, the corresponding task deadline miss ratio will be very
small. However, if every task has some jobs missing deadlines, the task deadline miss
ratio will be 100%. Similarly, there can be different job deadline miss ratios for the same

task deadline miss ratio.

4.3.2 Job-oriented objective function

As a job-oriented objective function in the context of probabilistic guarantees, we define
the useful job ratio as (ZJ ,-)/(total number of jobs) , where J; is the number of jobs of
task T; that meet their dezfdlines if the completion probability of the task is satisfied. J; is
equal to zero if the completion probability of t; is not satisfied. For example, tasks T; and
T, have the same period and same completion probability of 0.75. Suppose 90% and 50%
jobs of 7; and 7, meet their deadlines, respectively. The useful job ratio would then be
45% since no jobs of T, count. The assumption behind this definition is that if the
completion probability of a task is not satisfied, none of its jobs are useful even though

some of them may meet their deadlines. The useful job ratio provides a direct

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

measurement of how well the completion probability requirements are met at the job level.

Ideally, it should be 100%.

4.3.3 Temporary overioad

Schedulability analysis is usually based on average CPU utilization, or the percentage of
CPU time used by jobs over an infinite time interval. For a finite time interval, the CPU
utilization may be higher or lower than the average CPU utilization. For example, in the
RM analysis [93], the average CPU utilization over an infinite time interval is the same as
that over the time interval which is the least common multiple (LCM) of individual task
periods. But within the LCM time interval, CPU utilization can be higher or lower than the
average. If we consider the LCM as the granule, CPU utilizations will be the same over
any time interval for a given set of periodic tasks.

We define the CPU demand as the percentage 6f the total execution time of jobs
released within a specified time interval. For a periodic task, its CPU demand over an
infinite time interval is equal to the ratio of its execution time to its period. While CPU
utilization cannot exceed 1.0, CPU demand has no such limit. Of course, a CPU demand
of over 1.0 cannot be satisfied by a single processor.

For any given time interval, the load of a real-time system may range from light to
medium, to heavy, and to overloaded. The meaningful granule of such time intervals is
typically the LCM of the task set. Using CPU demand, we can provide a more quantitative

definition of system load ranges as follows:

* Light: CPU demand is less than 0.4.
e Medium: CPU demand is between 0.4 and 0.7.
e Heavy: CPU demand is between 0.7 and 1.0.

* Overloaded: CPU demand is more than 1.0.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An interesting phenomenon is temporary overload where the CPU demand
exceeds 1.0 for some time intervals. This can happen even when the granule is the LCM.

Possible causes of temporary overload are:

» There is a processor failure in the system. Some tasks that were allocated to the

failed processor may be transferred to this processor.

¢ Optimistic scheduling policy may be used. If not all tasks require hard
guarantees, more tasks may be admitted than otherwise permitted. In certain

time intervals, the CPU may be temporarily overloaded.

» There are timer jitters. The intervals between timer firings vary due to the
contention with other higher-priority RTOS activities. When a timer firing is
delayed, the effective CPU demand of the job for that period increases, since
there is less time available for executing the job in the period before its
deadline. This can cause a temporary overload. For example, let T and C be the
period and execution time of a task, respectively. Suppose a job of the task
should be released at time [and its deadline is /+7. Its CPU demand for the
period from [to [+7T is C/T. However, if the job is released late at time /+v, it
cannot make use of the time interval from [to I+v, even if the CPU is idle.

Effectively, the CPU utilization increases to C/(T-v).

While the CPU could be overloaded at times, it is not overloaded on average in any
meaningful real-time system. The temporary overload condition is interesting, especially
in the context of probabilistic guarantees, where some deadline misses can be tolerated.
The system may be designed to provide satisfactory performance under average load, and
acceptable performance under temporary overload by deliberately adopting optimistic
task/job admission policies. Consequently, in our evaluation of scheduling algorithms, we
will identify those that work well under the average condition and are also robust under

temporarily-overloaded conditions.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Heuristics for Probabilistic Guarantees

The information about completion probability and CPU utilization are important for
making probabilistic guarantees, especially when the system can be temporarily
overloaded. We propose two types of scheduling algorithms for probabilistic guarantees:

one cognizant of completion probability and the other cognizant of CPU utilization.

4.4.1 Completion-probability-cognizant heuristics

We first consider a spectrum of fixed-priority heuristics that put progressively more

weight on completion probability when determining task priorities, as illustrated in

Figure 22.
5
Z A CPM (completion-probability-monotonic)
£ i [-
> 2
= RM_CP9 CPB_RM 'g_'
§ RM_CP5 g
S =
5 RM_CP1 §
S| - ——— - ‘
g RM (rate-monotonic)
S
o
Q

Figure 22: Spectrum of fixed-priority scheduling algorithms.

The first heuristic is the Completion-Probability-Monotonic (CPM) scheduling
algorithm, which assigns higher priorities to tasks with larger completion probabilities,
regardless of their periods. It represents one extreme of the spectrum of scheduling
algorithms. At the other extreme of the spectrum is the RM scheduling algorithm that
considers task periods without regard to completion probabilities. Since CPM may
generate a task priority assignment different from RM, which is optimal in terms of job
deadline miss ratio under idealized system conditions, CPM is likely to result in a job

deadline miss ratio higher than RM. But the idea behind CPM is to shift the job deadline

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

misses to the tasks with smaller completion probabilities. RM and CPM are equivalent if
the task with a shorter period always has a larger completion probability.

We introduce several other heuristics that use the information about both period
and completion probability in assigning task priorities. The first class of heuristics is
called RM_CPn (Rate Monotonic with Completion Probability) that assigns task priorities

based on the following formula:

priority o<

where CP and T are the completion probability and period of the task, respectively.
RM_CPO is equivalent to RM. Assuming that both completion probabilities and periods
cannot be zero and the periods are bounded, it can also be shown that RM_CPn is
equivalent to CPM when 7 is large enough.2 RM_CPn modifies RM such that a task with
a longer period but larger completion probability may possibly be assigned a priority
higher than a task with a shorter period but smaller completion probability. As n increases,
RM_CPn puts more weight on completion probability than period. We will evaluate
RM_CP1, RM_CP5 and RM_CP9.

Another class of heuristics we propose is called CPB (Completion Probability
Bucket). With CPB, tasks are first sorted into m buckets of completion probability. These
m buckets divide the entire range (0, 1] of completion probability into m equal sub-
ranges.® Tasks in a bucket with larger completion probabilities have higher priorities than

those in another bucket with smaller completion probabilities. We will evaluate one

2. We need to prove that priority, > priority, if CP;>CP, and n2N , where N is a constant
natural number. Let o = min(CP; /CP) where CP; >CP and B = max(T/T) where
T;>T; . Itis now easy to choose an N such that o > B and show that the following holds

(I) >(I) >Ol >|3> '=> ’ > 2": riority , > priorit
— i I

3. The equal sub-ranges are not a necessity. It is perfectly fine to divide the range differently if that
makes sense for the given applications.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

particular heuristic from this class—CPB_RM (Completion Probability Bucket with Rate
Monotonic). Suppose m=10, then tasks whose completion probabilities are in (0.9, 1.0]
are in one completion probability bucket, while (0.8, 0.9] is another bucket. Within each
bucket, RM is used. CPB_RM modifies CPM such that tasks with similar completion
probabilities are scheduled with RM, instead of strictly using their completion
probabilities.

CPB_RM may result in a priority assignment different from RM_CPn, say,
RM_CP2. Suppose there are three periodic tasks whose periods are 1 ms, 2 ms and 4 ms
and whose completion probabilities are 0.5, 0.9 and 0.95, respectively. CPB_RM will
have Priority 2 > Priority 3 > Priority 1, while RM_CP2 will have Priority 2 > Priority 1 >
Priority 3.

Scheduling algorithms that assign higher priorities to tasks with shorter periods

(e.g., RM) tend to favor job-oriented objective functions.

4.4.2 CPU-utilization-cognizant heuristics

We introduce two CPU-utilization-cognizant heuristics, both of which tend to favor task-
oriented objective functions for performance evaluation. The first heuristic is the
Utilization-Monotonic (UM) scheduling algorithm. It assigns higher priorities to tasks
with lower CPU utilizations, regardless of other parameters (such as task periods or
completion probabilities). The task CPU utilization is computed as the ratio of the nominal

execution time of the task to its period.

.. 1
prlorlty o< C—/i_;

The idea behind UM is that tasks with lower CPU utilizations impose less
competition for CPU cycles than other tasks. If we try to satisfy the requirements of tasks
with lower CPU utilizations first, there is a better chance that the total number of tasks

whose completion probability requirements can be met is larger.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our second CPU-utilization-cognizant heuristic tries to improve on the UM
heuristic by taking completion probability into account. It is called Utilization-Monotonic
with Completion Probability (UM_CP), where tasks with smaller CPU utilization to
completion probability ratios have higher priorities:

prony = e/T
where C, T and CP are the nominal execution time, period and completion probability of
the task, respectively. The idea is that the information about a task’s completion

probability could be as important as its CPU utilization.

4.5 Simulation Parameters

We use a task model similar to that described in [93]. All tasks are periodic with constant
periods and worst-case execution times. Their deadlines are the end of periods. Table 24
lists the simulation parameters.

The seed for the random number generator is randomly chosen. A different seed
represents a different sequence of random numbers of the same distribution. All tasks are
initially released at the same time, which represents a critical instant. Task completion
probabilities are generated between the specified minimum and maximum values with an
equal probability.

Tasks are fully preemptive. The context switching overhead is assumed negligible.
The run-time scheduling overhead of EDF is also ignored, but this makes no difference in
our conclusions, because EDF does not perform better than the others, even when its run-
time scheduling overhead (higher than others) is not considered.

Though the actual number of tasks in the system and load may change over time,
we only need to use fixed number of tasks and load for each simulation and apply the

results to appropriate time intervals under consideration. For example, a system may have

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Simulation Parameter Notation Value
seed for random number generator s -1
random start r no
number of tasks n various
minimum task execution time Chin 0.5% 50 ps 1%
maximum task execution time Cax 5% 50 us 1%
execution time standard deviation Cc 0
minimum task period T onin 1000 us
maximum task period T oax 100,000 ps
task period distribution f uniform and bimodal
period standard deviation Cp 0
task deadline D end of each period
minimum completion probability CPrin 0.2
maximum completion probability CPrax 1.0

Table 24: List of simulation parameters.
10 specific tasks from t; to t, and 20 different tasks from t, to t;. The simulation results of
the first 10 tasks can be applied to the first time interval from t; to t, and likewise for the
second time interval. Obviously, the time intervals in consideration must be large enough

to minimize the effects of transient or boundary conditions.

4.5.1 CPU utilization patterns

All tasks in our simulations have constant nominal execution times, which are randomly
chosen between the specified minimum and maximum task execution times with an equal
probability. The task execution times and periods are selected based on typical tasks in
open-architecture machine tool controllers. In particular, we have three different CPU
utilization patterns: variable CPU utilizations (where task execution times range from
0.5% to 5% of their respective task periods), fixed task execution times (where all task
execution times are 50 s regardless of their periods), and fixed task CPU utilizations

(where all task execution times are equal to 1% of their respective periods). We do not

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consider variations in execution time and period, since their effects may be reflected in the

changes of CPU demand in different time intervals.

4.5.2 Task period distributions

While the uniformly-distributed task periods may be a good approximation for many
applications, we also observe that task period distributions can be bimodal in some other
cases. For example, in our prototype open-architecture machine tool controllers, servo
tasks have shorter periods (e.g., 1 or 10 ms) while supervisory and display tasks have
longer periods (e.g., 40 or 100 ms). There are typically few tasks with periods in the
middle of the range.

To evaluate the performance of scheduling algorithms in such situations, we
introduce a bimodal distribution that consists of two mirror-imaged unit-mean exponential
distribution functions. The random numbers generated from the bimodal distribution are
limited to a range between O and 100, which is then scaled to the specified range of task
periods. Figure 23 shows the histograms of 90 task periods used in one of our simulations,
generated by the bimodal and uniform distributions respectively. In the top graph, task
periods are generated by the bimodal distribution and most of them are less than 5 ms or
between 95 and 100 ms. In the bottom graph, task periods spread everywhere within the

entire period range using the uniform distribution.

4.6 Evaluation Results

We now examine the performance of the proposed heuristics (in particular, RM_CPI,
RM_CP5, RM_CP9, CPB_RM, CPM, UM and UM_CP), as well as EDF, FIFO and RM,
under different system load conditions. The results of this evaluation can be used by real-
time application developers in their selection of a scheduling algorithm that is suitable for

probabilistic guarantees.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bimodal Distribution
v T

Percentage
n
o

L 2] 1
o] 20 40 60 80 100
Uniform Distribution
6 T T T

e

LB 0 000 B

0 40 60 a0 100
Task Period (millisecond)
Figure 23: Bimodal and uniform task period distributions.

o

Percentage
N

4.6.1 Variable CPU utilizations

Our first set of simulations uses variable CPU utilizations, where task execution times
range from 0.5% to 5% of their respective task periods. Table 25 lists and Figure 24 plots
the simulation results for the uniform task period distribution. The top graph uses the job-
oriented objective function, showing the useful job ratios over number of tasks for
individual scheduling algorithms. The second graph from the top instead uses our task-
oriented objective function. The third graph plots the overall job deadline miss ratios,
regardless of whether the completion probabilities of tasks are satisfied or not. The bottom
graph plots the CPU demand over number of tasks.

From Table 25 and Figure 24, we have made the following observations:

1. When the system load is very light (e.g., CPU demand < 0.14), no job
deadlines are missed under all scheduling algorithms. Thus, the useful job
ratios and task completion probability miss ratios are 100% and 0%,

respectively.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CPU
tasks | demand | EDF | FIFO|{ RM |RM_CP1|RM_CP5|RM_CP9|CPB_RM | CPM | UM |UM_CP
Useful Job % 5 0.14} 100.00 } 100.00 | 100.00 100.00 100.00 100.00 100.00 | 100.00 | 100.00 100.00
Task CP Miss % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Job DL Miss % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Useful Job % 10 0.31{ 100.00| 9999 | 100.00 100.00 100.00 99.92 9991 | 99911 100.00 99.91
Task CP Miss % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Job DL Miss % 0.00 0.01 0.00 0.00 0.00 0.08 0.09 0.09 0.00 0.09
Useful Job % 15 0.47 | 100.00 | 99.89 | 100.00 100.00 99.96 99.76 99.72] 99.58 | 100.00 99.56
Task CP Miss % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Job DL Miss % 0.00 0.11 0.00 0.00 0.04 .24 0.28 042 0.00 0.4+
Useful Job % 20 0.61 | 100.00 | 87.81 | 100.00 100.00 9.15 89.87 88.34| 86.17| 8947 87.20
Task CP Miss % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Job DL Miss % 0.00| 1219 0.00 0.00 585 10.13 11.66] 13.83| 10.53 12.80
Useful Job % 25 0.76 | 100.00 | 83.95| 100.00 100.00 91.60 87.01 85.11| 81.03| 8822 82.03
Task CP Miss % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Job DL Miss % 0.06| 16.05 0.00 0.00 8.40 12.99 14.89| 1897 11.78 17.97
Useful Job % 30 094 | 100.00| 61.27| 99.99 99.96 87.30 81.57 7949 | 71.25] 83.79 72.82
Task CP Miss % 0.00 333 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Job DL Miss % 0.00| 30.76 0.01 0.04 12.70 18.43 2051 28.75| 16.21 27.18
Useful Job % 35 1.07 0.00 000§ 97.12 97.16 77.05 70.15 66.83| 51.64| 63.90 5547
Task CP Miss % 100.00 | 100.00 | 14.29 11.43 11.43 1143 1143 | 1429| 14.29 1143
Job DL Miss % 99.64| 99.88 2.88 284 22095 29.84 3317} 42451 2436 39.82
Useful Job % 40 1.19 0.00 000} 9557 93.10 7243 63.84 49.83| 45.02| 65.08 5447
Task CP Miss % 100.00 | 100.00 | 20.00 22.50 20.00 20.00 2250] 25.00| 15.00 12.50
Job DL Miss % 99.85| 99.95 443 6.90 27.57 36.16 41.90{ 52.29| 30.14 4554
Useful Job % 45 1.35 0.00 0.00| 93.71 91.63 66.41 45.64 5265| 4275| 67.39 4537
Task CP Miss % 100.00 | 100.00 | 28.89 28.89 28.89 3556 28.89 | 3L.11) 20.00 28.89
Job DL Miss % 99921 99.97 582 8.36 33.58 44.69 47.35{ 5555| 3230 48.18
Useful Job % 50 1.51 0.00 0.00| 93.20 90.70 64.82 $4.90 36.81| 3427} 72.03 54.12
Task CP Miss % 100.00 | 100.00] 34.00 36.00 34.00 38.00 36.00| 36.00| 26.00 34.00
Job DL Miss % 99.92} 9998 6.80 9.03 34.94 18.31 63.20| 6573} 27.73 42.89
Useful Job % 55 1.62 0.00 0.00| 9L.15 89.86 57.59 3732 3496 31.26 70.96 54.70
Task CP Miss % 100.00 | 100.00{ 40.00 38.18 40.00 43.64 43.64 1 43.64) 27.27 34.55
Job DL Miss % 99.93 | 99.98 8.52 10.14 40.80 54.79 63.95| 66.15} 29.04 4448
Useful Job % 60 1.76 0.00 0.00) 8948 88.25 53.27 36.21 3214} 30.89| 69.37 53.69
Task CP Miss % 100.00 | 100.00| 43.33 +41.67 43.33 45.00 46.67| 46.67| 31.67 36.67
Job DL. Miss % 99931 9998 | 10.50 11.75 46.07 59.81 65.45| 67.33| 30.60 46.08
Useful Job % 65 1.90 0.00 000 884l 87.35 45.90 36.38 3333 | 28.79| 61.92 5251
Task CP Miss % 100.00 | 100.00 | 4+.62 43.08 49.23 47.69 4769 | 49.23| 38.46 40.00
Job DL Miss % 99.95| 99981 11.59 12.65 5181 63.63 6571 68.21| 33.35 46.81
Useful Job % 70 1.97 0.00 0.00| 86.87 86.41 45.57 34.10 30.89 | 26.65} 60.36 49.86
Task CP Miss % 100.00 § 100.00 | 47.14 45.71 5143 50.00 51.43| 5286 38.57 41.43
Job DL Miss % 99.95| 9998 13.13 13.33 5391 65.24 67.88 | 70.42| 3474 46.38

Table 25: Performance of scheduling algorithms under variable CPU utilizations and
uniform period distribution.

2. As the load increases but is still in the light-to-medium range (e.g., CPU
demand < 0.76), some deadlines are missed under certain scheduling

algorithms (such as FIFO, RM_CPS5, RM_CP9, CPB_RM, CPM, UM and

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 ®
z
s or] o—oeDF
z 60 * o—GFFO
_‘5, oL < o——ofM
3 & — -ARM_CP1
T 20
K] « ~ ~CRM_CPS

] % — -TRM_CP9
;‘IDO- 4 ' ? A ? b~ — ->CPB_RM
E 80 - <4 = ——<CPM
= L
€ o ———a UM
H s e UM_CP
E 0
% L
= or
- 5 I ' '

[} * *
.. 1o T T - < N4 ¢
z
g 8or b
€ ef LozTEETEE TR IR
H L s e g e ——4
3 40+
2 L
a 2
S Y

0 -

20 T T T T

[| | | | i]

T i DTN p S BRI B .o S —
f [[| l |
gopb———-"d————L el SRS DU R ———
2 | | | | |
005___ _T————T——__l_—-——l_—--ql-—_—_—‘

0.0 1 ! 1 | l

10 20 30 40 50 60 70

Number of Tasks

Figure 24: Performance of scheduling algorithms under variable CPU utilizations
and uniform period distribution.

UM_CP) but not the others (such as EDF, RM and RM_CP1). So far, all tasks
have met their completion probability requirements. The useful job ratios are

equal to 100% minus their corresponding job deadline miss ratios.

3. When the CPU becomes overloaded, the completion probability miss ratios for
EDF and FIFO jump to 100%, while those of other scheduling algorithms are
more resilient and degrade gradually. There is no significant performance
difference between our completion-probability-cognizant heuristics and RM,
in terms of task completion probability miss ratio, even though there is a
significant difference in their job deadline miss ratios. Comparing with RM
and the completion-probability-cognizant heuristics, UM has better task
completion probability miss ratios (UM_CP is also better but not as much), as

the system load increases.

4. Similarly, when the CPU becomes overloaded, the useful job ratios for EDF
and FIFO drop significantly, while those of other scheduling algorithms are
more resilient, degrading gradually. Unsurprisingly, RM has the best useful job

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ratio since it essentially gives higher priorities to tasks that invoke more jobs.
Among completion-probability-cognizant heuristics, the more it deviates from
RM, the worst its useful job ratio. Among CPU-utilization-cognizant
heuristics, UM performs better than UM_CP. Their performances are in the
middle range of RM and completion-probability-cognizant heuristics.

Figure 25 plots the simulation results for the bimodal task period distribution.
Compared to Figure 24, useful job ratios, task completion-probability miss ratios, and job
deadline miss ratios all show similar trends, though the relative performance of scheduling
algorithms varies slightly. When the system is overloaded, RM and RM_CP1 remain the

best in terms of the useful job ratio while UM and UM_CP are the best in terms of the task

completion probability miss ratio.

8

G——OEDF
G——aFfFo
| o—oORM
& — -&AM_CP1
& <+ — <AMCPS
¢ — -GRM_CP9
b o~ ~ ->CPS_RM
= — —x CPM
*—e UM

Usolul Job Ratio (%)

8o 388 2

4~ UM_CP

Task CP Miss Ratlo (%)

8o 8 8 8 8

-

Job DL Miss Ratlo (%)
fo 8 8 8 8

5 0 5

CPU Demand

R R s [Sty Rt St
05 ; ——+——+——-%———|———4———|——-—J
1 ! f I I L | j
10 20 30 40 S0 60 70 80 90
Number of Tasks

Figure 25: Performance of scheduling algorithms under variable CPU utilizations
and bimodal period distribution.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6.2 Fixed task execution times

Our second set of simulations uses fixed task execution times, where all task execution
times are 50 us regardless of their periods. The simulation results are piotted in Figures 26
and 27 for the uniform and bimodal task period distributions, respectively. Since all task
execution times are the same, tasks with shorter periods have larger CPU utilizations.
Therefore, UM is the exact opposite of RM in this case. The performance of scheduling

algorithms may be summarized as follows:

100 . - »
F L
s 8r o——0EDF
2 60 o——aFFo
2 oL 1 o—onm
3 & = -ARM_CP1
T 20}
s < — —GRM_CPS
0 L L L L % ~ ~TAM_CP2
;‘m T T v ¥ T o~ = ->CPS_RM
s 80 -~ —=CPM
= L
H L 4t UNM_CP
I 40
a -
o
x 20 =
: L
= o * - - &
_. 100 T T T T
£
s 8
=
£ g0
-
F L
I 40
-nl -
s 20
[} -
70 - & # "
15 " 1] T T T
F I | | l !
2 ! ! !
frofb——b— b =T
L | ! | I | [
205 [U PN MU S——
¢ i ! 1 | | ! 1
0.0 | | 1 | I 1 ! |
50 100 150 200 250 300 350 400 450 500

Number of Tasks
Figure 26: Performance of scheduling algorithms under fixed task execution times

and uniform period distribution.

1. When the system is not overloaded, all scheduling algorithms perform very
well in terms of both useful job ratio (which are 100% or close to 100%) and

task completion probability miss ratio (which are zero or close to zero).

2. When the system is overloaded, the task completion probability miss ratios of
UM and UM_CP are significantly lower than those of CPM and CPB_RM,
which are significantly lower than those of RM_CP1 and RM, which in turn

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

O——OEDF
S—-aFAFO
o—oFRM

& — -ARM_CP1
<+ — —ARM_CPS
€ % - -TRM_CPS
Y > ~oCPBAM
- — —< CPM
s UM

——UM_CP

Usetul Job Ralla (%)

8o 8 8 8 8
L

-

Task CP Miss Rallo (%)

8 88888588
g

Job DL Mias Ratlo (%)

N
oo

E’ST‘-T"‘T ‘‘‘‘‘‘‘‘‘‘‘‘‘‘
gwopPm—m—b
2 f I I
©os L S S S A i B
00 ! I ! I ! ! 1 1
10 20 30 40 50 60 70 80 S0 100
Number of Tasks

Figure 27: Performance of scheduling algorithms under fixed task execution times
and bimodal period distribution.

are significantly lower than those of EDF and FIFO, which are almost 100%.
The task completion probability miss ratios of RM_CP5 and RM_CP9 are
between those of RM_CP1 and CPB_RM. Clearly, CPU-utilization-cognizant
heuristics perform best. Giving higher priorities to tasks with lower CPU
utilizations allows more tasks to meet their completion probability
requirements. Among completion-probability-cognizant heuristics, ones that
take task completion probability requirements more into account perform

better than those that do not or consider less.

3. When the system is overloaded, the useful job ratios of all scheduling
algorithms are similar except EDF and FIFO (which are zero). The lower task
completion probability miss ratios of CPU-utilization-cognizant heuristics are
offset by the smaller job numbers of the tasks that meet their completion
probability requirements. Completion-probability-cognizant heuristics have a

similar situation.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6.3 Fixed task CPU utilizations

Our last set of simulations uses fixed task CPU utilizations, where all task execution times
are equal to 1% of their respective periods. When all tasks have the same fixed task CPU
utilization, UM and UM_CP become the same as FIFO and CPM, respectively. The
simulation results are shown in Figures 28 and 29 for the uniform and bimodal task period

distributions, respectively.

8
y

4

F}
p

Usotul Job Ratio (%)
8 88 8
T

T T T T T T T T T h * e > — ->CPB_AM
~ - - — —= CPM
*—e UM

—+UM_CP

Task CP Mizs Ratlo (%)

8888580885288 8¢

Job DL Miss Ratio (%}

ho

CPU Damand
) -
th o

e
=)

40 S50 60 70 8 9% 1
Numberof Tasks

Figure 28: Performance of scheduling algorithms under fixed task CPU utilizations
and uniform period distribution.

The useful job ratios and task completion probability miss ratios of FIFO, UM and
EDF deteriorate quickly as the system load increases from medium to overloaded. All
other scheduling algorithms perform similarly in terms of task completion probability
ratio. In terms of useful job ratios, RM performs best while CPM or UM_CP is the worst.

The performance of other heuristics is in between.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

O——OEDF
g——aFfiFo
o——ORM

1 & — -ARM_CPt
< ~ —GAM_CPS
- — - RM_CP9
O= = O CPB_RM
- — —x CPM
*——a UM
+—UNM_CP

Usetul Job Ratla (%)

8o 888 8

Task CP Miss Ratlo (%)

8 8588 8 8,888 2

Job OL Miss Ratlo (%)

ho

CPVU Demand
o -
i o

[
(=3

Number of Tasks

Figure 29: Performance of scheduling algorithms under fixed task CPU utilizations
and bimodal period distribution.

4.6.4 Summary
From these simulations, we made the following observations for three different CPU
utilization patterns:

1. Variable CPU utilizations
* When the system is lightly loaded, all scheduling algorithms perform well.

* When the system is temporarily overloaded, EDF and FIFO perform badly.
RM and UM work best in terms of useful job ratio and task completion
probability miss ratio, respectively. RM_CP1 performs close to RM while
UM_CP does close to UM. The other completion-probability-cognizant
heuristics (e.g., CP_RMS and CP_RMY9) perform average with respect to both

job-oriented and task-oriented objective functions.

2. Fixed task execution times

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* As long as the system is not cverloaded, all scheduling algorithms perform

well.

* When the system is temporarily overloaded, EDF and FIFO perform badly. All
other scheduling algorithms perform similarly in terms of useful job ratio
(though UM and UM_CP are slightly worse). CPU-utilization-cognizant
heuristics (i.e., UM and UM_CP) are significantly better than RM and
completion-probability-cognizant heuristics in terms of task completion

probability miss ratio.
3. Fixed task CPU utilizations

* As long as the system is not overloaded, all scheduling algorithms perform

well.

* When the system is temporarily overloaded, EDF and FIFO perform badly.
UM and UM_CP are the same as FIFO and CPM, respectively. RM performs
best in terms of useful job ratio. All scheduling algorithms (except EDF, FIFO
and UM) perform similarly in terms of task completion probability miss ratio.

From the above observations, when the system is not overloaded, almost all
scheduling algorithms perform well in terms of both useful job ratio and task completion
probability miss ratio, regardless of load patterns. However, EDF and FIFO should not be
used under temporary overload conditions. The choice among RM, completion-
probability-cognizant heuristics and CPU-utilization-cognizant heuristics should depend
on objective functions and load patterns. In general, RM and UM_CP perform well under
all three system load patterns in terms of useful job ratio and task completion probability

miss ratio, respectively.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.7 Comparison between Probabilistic and Deterministic Guarantees

We have evaluated several scheduling algorithms in the context of probabilistic deadline
guarantees. In particular, the performance of these scheduling algorithms is characterized
in terms of useful job ratio (which is the percentage of jobs which meet their deadlines and
whose tasks meet their completion probability requirements) and task completion
probability miss ratio (which is the percentage of tasks whose completion probability
requirements are not satisfied). We now compare the performance of these scheduling
algorithms in the context of probabilistic and deterministic deadline guarantees. The
difference between probabilistic and deterministic deadline guarantees is that the deadline
of a task can be probabilistically guaranteed if the task completion probability is satisfied
even when some jobs of the task miss their deadlines, while the task’s deadline can only be
deterministically guaranteed if there is not a single job missing its deadline. In other
words, the same scheduling algorithms are evaluated with different objective functions.

For our comparison, we use three performance metrics. The first metric is CPU
utilization when all task requirements are satisfied, similar to the achievable CPU
utilization defined in Chapter 3 and [185]. It means zero task completion probability miss
ratio for probabilistic deadline guarantees and zero job or task deadline miss ratio for
deterministic deadline guarantees. This metric is intended to compare the effects of
probabilistic and deterministic deadline guarantees for one special situation when all task
requirements are met.

The second metric is the task guarantee ratio, which is defined as the percentage
of tasks that can be guaranteed. This calculates the percentage of tasks whose completion
probabilities are met for probabilistic deadline guarantees, which is equal to one minus the
task completion probability miss ratio. For deterministic deadline guarantees, the task

guarantee ratio is the percentage of tasks whose deadlines are met, which is equal to one

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

minus the task deadline miss ratio. Our second metric is intended to gauge the
performance difference from a task-oriented perspective as the system load changes.

The third metric is the job guarantee ratio, which is defined as the percentage of
jobs that can be guaranteed when the corresponding tasks of these jobs can meet their
completion probability requirements. The job guarantee ratio is equal to the useful job
ratio for probabilistic deadline guarantees. For deterministic deadline guarantees, the job
guarantee ratio is the percentage of jobs whose deadlines are met when no other jobs of
their corresponding tasks miss their deadlines. Our third metric is intended to gauge the
performance difference from a job-oriented perspective as the system load changes.

We will illustrate the performance differences between probabilistic and
deterministic deadline guarantees under three different CPU utilization patterns—variable
CPU utilizations, fixed task execution times, and fixed task CPU utilizations.

Figures 30 and 31 show the performance with variable CPU utilizations of
different scheduling algorithms for probabilistic and deterministic deadline guarantees,
under the uniform and bimodal task period distributions, respectively.

In Figure 30, the bottom graph shows the CPU utilizations for the scheduling
algorithms when all task requirements are satisfied. The three rightmost bars, labeled
EDF_h, FIFO_h and RM_h, represent the CPU utilizations for EDF, FIFO and RM when
all (hard) task deadlines are met, respectively. All others are for probabilistic deadline
guarantees. In this case, the introduction of probabilistic deadline guarantees significantly
improves the CPU utilizations for FIFO and RM over deterministic deadline guarantees,
though there is little difference for EDF. All our heuristics for probabilistic guarantees
have high CPU utilizations.

The middle graph of Figure 30 plots the task guarantee ratio (Y axis) over system
load (X axis). When the system is not overloaded, scheduling algorithms for both
probabilistic énd deterministic deadline‘ guarantees perform very well, except FIFO for

deterministic deadline guarantees. When the system is temporarily overloaded, EDF and

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Jobs guaranieed

% taske guaranfeed

I3
-

LENAREE M
1

I3
o

CPU Utillzation (sll tasks guarantsed)

04 - —
a2 4
a0 1] L —) 2 I ' 1. 2 1] 1 I I E_L—[i1
u. - b = -8 = = =
5 ¢ Z £ £ g Z £ 3 5 5 5 =
w T 3} 3] =4 q o < a w z
£ 7 8 35 o g ¢
T z -3 31

Figure 30: Performance comparison between probabilistic and deterministic
guarantees under variable CPU utilizations & uniform task period distribution.

a--—oOEDF
o—aFfFo
———0RM

& — aRM_CP1
+ —~ <RM_CPS
* - IAM_CP9
> — »CPB_RM
-~ =« CPM

% Joba guarsnteed

+——e UM
uMm_cep
O---—-QEDF_h
g-—grAro_h
O-——-ORM_h

% tasks guaranised

g =
® o
T

1

o

o

T
L

CPU Ulllization (all taska guaranteed)

I3
15}

g ®
T T
-
L

um_ce -
EDF.h |

1

EDF |-
FIFO
RM
AM_CP1 |-
RM_CP5 |-
RM_CPe -
CPB_AM -
CPM |-
UM
FIFO_h |-
RM_h |-

Figure 31: Performance comparison between probabilistic and deterministic
guarantees under variable CPU utilizations & bimodal task period distribution.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIFO for both probabilistic and deterministic guarantees can no longer guarantee any
deadlines. Both are prone to the domino effect, where the first job that misses its deadline
may cause all subsequent jobs to miss their deadline. This is because they are trying to do
the impossible—giving fair chance for all tasks to run when there are simply not enough
CPU cycles available to do so. The performance of other scheduling algorithms degrades
more gradually because they assign fixed priorities to tasks. Consequently, low-priority
tasks may never get a chance to run and thus give higher-priority tasks some opportunity
to meet their requirements. The performance of RM for deterministic guarantees is not as
good as that of RM for probabilistic guarantees, simply because the task requirements of
the former is more stringent than the latter. Our CPU-utilization-cognizant heuristic UM is
more resilient as the system load increases.

The top graph of Figure 30 plots the job guarantee ratio over system load. When
the system is lightly-loaded, both scheduling algorithms for probabilistic and deterministic
deadline guarantees perform very well, except FIFO for deterministic deadline guarantees.
As the system load increases, performance of all scheduling algorithms gets worse. When
the system becomes temporarily overloaded, EDF and FIFO for both probabilistic and
deterministic guarantees can no longer guarantee any deadlines. The performance of other
scheduling algorithms again degrades more gradually. The performance of RM for both
probabilistic and deterministic guarantees and RM_CP1 is significantly better than the
others. The performance of RM for probabilistic guarantees is slightly better than that of
RM for deterministic guarantees.

Figure 31 shows the result of the same comparison under the bimodal task period
distribution. The CPU utilizations of EDF, FIFO and RM for probabilistic guarantees are
better than or the same as their counterparts for deterministic guarantees. The CPU
utilizations of CPB_RM, CPM, UM and UM_CP when all tasks are guaranteed are not as

good as those in the uniform period distribution case. The performance of scheduling

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithms under the bimodal task period distribution shows the similar trend as that under
the uniform distribution.

Figures 32 and 33 show the scheduling algorithm performance with fixed task
execution times, under uniform and bimodal task period distributions, respectively. Under
both task period distributions, the CPU utilizations of the scheduling algorithms EDF,
FIFO and RM with probabilistic deadline guarantees are equal to or better than their
counterparts with deterministic deadline guarantees when all task requirements are met.
When the system is not overloaded, all scheduling algorithms perform relatively well
except FIFO_h. When the system becomes overloaded, the CPU-utilization-cognizant
heuristics (i.e., UM and UM_CP) perform better than the completion-probability-
cognizant heuristics (i.e., CPM, CPB_RM, RM_CP9, RM_CP5 and RM_CP1) in terms of
task guarantee ratio. The latter perform better than RM with probabilistic guarantees,
which perform better than RM with deterministic guarantees. All heuristics and RM have
similar performance in terms of job guarantee ratio. EDF and FIFO with either
probabilistic or deterministic deadline guarantees have the worst performance in terms of
both task and job guarantee ratios.

Figures 34 and 35 show the scheduling algorithm performance with fixed task
CPU utilizations, under uniform and bimodal task period distributions, respectively. In
this case, UM is equivalent to FIFO for probabilistic deadline guarantees, while UM_CP
is the same as CPM. All scheduling algorithms except FIFO_h perform well when the
system is not overloaded. When the system is overloaded, EDF, FIFO and UM quickly
become ineffective while others have similar, relatively good performance in terms of task
guarantee ratio. RM and completion-probability-cognizant heuristics perform better than
CPU-utilization-cognizant heuristics in terms of job guarantee ratio. EDF, FIFO and RM
for deterministic deadline guarantees perform worse than their counterparts for

probabilistic deadline guarantees.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o—o EDF
o—aFiFo
—oORM

a ~ ARM_CP1
<« — <AM_CPS
¥ - TRM_CP3
o> — »CPB_RM
- — <« CPM
—e UM
v UM_CP
Q-~—QEDF_h
a-—grRFo_h
O-—ORM_h

% Joba guaraniesd

% lasks guarantead

o
e

5 & 38
1

T~ 1T T

e
»

v
1.

R

CPU Utllization {all tasks guniantesd)
H
EDF [—
FIFO |
RM
AM.CPY |-
AM_CPS .-
AM_CP9 |-
CPB_AM -
CPM |-
UM
UM_CP |-
EDF_h |-
AM.h |-

Figure 32: Performance comparison between probabilistic and deterministic
guarantees under fixed task execution times & uniform task period distribution.

o—OEDF
o——8FIFO
o—0 RM

& - ARM_CPt
<« — <RM_CP5S
] + - v”mcPe
> - »CPB_RM
1 = —«<CPM
a—a UM
~—— UM_CP
Q---QEDF_h
a-—TFIFO_h
O--~QRM_h

% Jobs guaranieed

% tasks guaranteed

5 & &
T
!

2
>
L

LEnS It 2t

CPU Ulliization (il tasks guaranieed)

a2 -
00 1 L] 1]] ! —t 1 1 1 1 i 1 | .
w [} b3 - w @ = = = -8 = = =
a [[+ Q. o & Q 1 i 1
8 £ 2§ § 85 & 5 3 % w o 3
3 s 7 o =] w w
o -4 < o

Figure 33: Performance comparison between probabilistic and deterministic
guarantees under fixed task execution times & bimodal task period distribution.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% Jobs guarantesd

* tasks guaranteed

2 &8 & 8
L SR B |
5
-
~
1

[
T

CPU Liiltzation (w)) tasks guaiantesd)
P
°

JERRARA AR

EDF |-
FIFO |-
AM_CPs |-
AM_CP® |-
CPB_AM |
CPM
UM
UM_CP |
EDF_h |-
FIFO_h
RAM_h |-

RM_CPY |-

Figure 34: Performance comparison between probabilistic and deterministic
guarantees under fixed task CPU utilizations & uniform task period distribution.

o—oOEDF
o—aFriFo
§ —o0RAM
'§— & — ARM_CP1
EX <+ — <RM_CPS
é ¥ — YAM_CP9
® o- — »CPB_AM
- — <CPM
—e UM
—UM_CP
O-——QEDF_h
3 &-—~8RAFo_h
H
- ey O-—ORMh
Y
F3 i S S R
el o ETE—G—g. g gogb
2 H
* x|
0 Il —— o
() as 5]
1o L]] T 14 T T i 1 T T 13 |4
as - -
a6 - B

L

CPU Utlllzatlon (all tasks guaranieed)

8 B ¥
T
FIFO |-

1 i 1 1 1 L L | 1

& = z » I = = = o = = =

o < -8 a. - I°3 o 5 Q u.l t]

w 3] o o d o =
2 7 2 g ° 3 8 ¢ &
= o [[}

Figure 35: Performance comparison between probabilistic and deterministic
guarantees under fixed task CPU utilizations & bimodal task period distribution.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In short, by introducing the concepts of completion probability and probabilistic
deadline guarantee, EDF, FIFO and RM can provide the same or better performance than
their counterparts for deterministic guarantees, in terms of CPU utilization, task and job
guarantee ratios. When the system is temporarily overloaded, in general, RM and
completion-probability-cognizant and CPU-utilization-cognizant heuristics are

particularly effective for providing probabilistic deadline guarantees.

4.8 Related Work

Concepts similar to the completion probability can be found in the literature. Our
completion probability associates the deadline of a real-time task with the required
probability that the task must complete by its deadline. This concept is similar to the
guarantee level proposed by Kim and Song [75, 76] and the guarantee probability by
Kamat, Malcolm and Zhao [69]. They essentially describe the same concept differently.
The guarantee level is defined as the degree of criticality of the constraints of a real-time
transaction. The main difference between completion probability and guarantee
probability is that the former emphasizes requirements while the latter emphasizes system
capability. For example, a real-time task may require a 0.9 probability of meeting its
deadline (i.e., a completion probability of 0.9 or a guarantee level of 9), but the real-time
system may be able to guarantee only a 0.8 probability of completing the task by its
deadline (i.e., a guarantee probability of 0.8).

Our PRTCM can also be considered a superset of the concept of (n m)-hard
deadlines introduced by Koren and Shasha [79] and expanded by Bernat and Burns [14].

PRTCM allows not only the specification of (n m)-hard deadlines but also semantics

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

beyond them. For example, a skip parameter [79] of 3 means that after missing a deadline

at least 2 jobs must meet their deadlines. In PRTCM, this is equivalent to the following:

P (i) 1, if job j missed its deadline where j = i—2,i—1
1) =
¢ 0, otherwise

We could extend the concept of (n m)-hard deadlines to (n m)-probabilistic
deadlines and PRTCM would still be able to express the semantics. For example, we could
extend the above example to mean that after missing a deadline at least 2 jobs must meet
their deadlines with a probability of 0.99; otherwise a job must meet its deadline with a
probability of 0.2. Such requirements would not be uncommon results of Quality-of-
Service (QoS) based Service Level Agreements (SLAs). Our example may correspond to
a SLA that guarantees not only a minimum service level (with a few escape clauses) but
also an average (better) service level. In PRTCM, such a SLA may be described as

follows:

P (i) 0.99, if job j missed its deadline where j = i —2,i— 1
1) =
€ 0.2, otherwise

There is significant amount of work on scheduling under overload conditions. For
example, Locke [95] has shown that EDF is prone to the domino effect and its
performance rapidly degrades during overload intervals. Maruchek and Strosnider [102]
also evaluated the graceful degradation properties of real-time scheduling algorithms.
Their findings are consistent with our simulation results for EDF, FIFO and RM.

A number of heuristic algorithms have been proposed to improve the performance

of EDF under overload conditions [21, 28, 51, 79, 155, 161]. Baruah et al. [13] have

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

shown that there exists an upper bound on the performance of any on-line preemptive
scheduling algorithms under overload conditions. This upper bound is in terms of the
cumulative value guaranteed by a clairvoyant scheduler (i.e., one that knows the future).
The value associated to each job is equal to the job’s execution time if it completes by its
deadline; otherwise, the value is zero. Buttazzo, Spuri and Sensini [25] compared EDF
and several value-based heuristics with different guarantee mechanisms (e.g., admission
control and resource reclamation) to avoid the domino effect and achieve graceful
degradation during transient overloads. Our focus is instead on fixed-priority heuristics to
deal with overloads using completion probability based metrics (as opposed to cumulative
values).

Heidmann [54] and Tia et al. [163] provided probabilistic schedulability analyses
of periodic tasks where the computation time of each job is a random variable. Our work
focuses on the probabilistic requirements mode! and scheduling heuristics to deal with
overload conditions.

Although there exists work on the probabilistic approach in database systems (e.g.,
[46, 166, 170]), StarBase [75, 76] is the only real-time database (RTDB) we are aware of
that addresses the probabilistic deadline guarantee issue. The StarBase RTDB model
includes three classes of real-time transactions: Class I (hard transactions) requires a
100% guarantee, Class II (critical transactions) requires probabilistic (or statistical)
guarantees, and Class III (soft or firm transactions) requires only best-effort. StarBase
seeks to minimize the number of high-priority transactions which miss their deadlines, and
discards tardy transactions at their deadline points. Because it assumes no a priori
knowledge about the transaction load, StarBase does not provide any deadline guarantees.

Scheduling with completion probability requirements is also similar to stochastic
scheduling in operations research, e.g., [23, 122]. However, stochastic scheduling

typically deals with the situation where the system services may be unavailable with

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

certain probability. Our work differs in that we are concerned with the unpredictability of

service performance but assume that the services are always available.

4.9 Summary

We presented three of the four components of our proposed practical framework for

probabilistic deadline guarantees:

* PRTCM: allows the tolerance of application task deadline misses to be
specified in terms of completion probability, in addition to other requirements.

This also clearly describes the semantics of probabilistic deadline guarantees.

* Heuristics for probabilistic deadline guarantees: that are completion-
probability-cognizant, such as RM_CPn, CPB_RM and CPM, as well as CPU-

utilization-cognizant, such as UM and UM_CP.

* Evaluation of heuristics and scheduling algorithms: in terms of useful job ratio
and task completion probability miss ratio. In particular, we investigated how
these scheduling algorithms perform when the system is temporarily
overloaded using three system load patterns: variable CPU utilizations, fixed
task execution times, and fixed task CPU utilizations. Our simulations showed
that, in general, all scheduling algorithms for probabilistic deadline guarantees
perform well when the system is not overloaded, regardless the system load
patterns. However, when the system is temporarily overloaded, there can be a
significant performance difference between the algorithms. EDF and FIFO
typically have almost zero useful job ratios and 100% task completion
probability miss ratios under such overload conditions due to the domino
effect. Therefore, EDF and FIFO should not be used to handle temporary
overload conditions. The relative performance of RM, completion-probability-
cognizant heuristics and CPU-utilization-cognizant heuristics vary, depending
on system load patterns and evaluation objective functions. In general, RM

performs best in terms of useful job ratio under all three system load patterns.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UM performs best in terms of task completion probability miss ratio under
variable CPU utilizations and fixed task execution times, but it is not effective
under fixed task CPU utilizations. As an alternative, UM_CP generally
performs well in terms of task completion probability miss ratio under all three
system load patterns. We also showed that, by introducing the concepts of
completion probability and probabilistic deadline guarantee, EDF, FIFO and
RM can provide the same or better performance than their counterparts for

deterministic guarantees.

The last component of the framework, MBST, will be described in next chapter.

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

MEASUREMENT-BASED
SIMULATION TECHNIQUE

5.1 Iintroduction

To provide probabilistic deadline guarantees, the task completion time distributions must
be known. There can be many approaches to obtaining task completion time distributions.
At one extreme of the spectrum is to use formal analyses or simulations that assume
idealized computing environment, as in the case of the RM analysis [93]. However,
RTOSs have significant unpredictability. This makes any approaches that assume
idealized system environment difficult and unreliable.

At the other extreme of the spectrum is to rely solely on actual measurements.
However, if one measures the application performance without understanding the system
or the application, the results will be good only for that particular configuration of the
application and its computing environment. Such a method will be of little value because
it cannot predict the application performance in a different computing environment (e.g.,
using a different scheduling algorithm) or a slightly different application in the same
environment.

To achieve a balance between the two extremes and maximize the benefits of both,
we propose a Measurement-Based Simulation Technique (MBST) for making probabilistic
deadline guarantees. MBST uses individual application task execution times (measured in
isolation) as inputs, models task interaction and system overhead, and generates task

completion time distributions to determine whether probabilistic deadline guarantees can

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be made. Applying MBST to our prototype open-architecture milling machine controllers,
MBST is shown to produce simulation results that match very well the actual
measurements. It can also be used to predict the performance of tasks that have not yet
been fully implemented.

The remainder of this chapter is organized as follows. Section 5.2 gives details of
the components and strategies of MBST. In Section 5.3, we demonstrate the validity and
usefulness of MBST by applying it to our prototype open-architecture machine tool

controllers. Sections 5.4 includes discussions and related work, while Section 5.5

summarizes the chapter.

5.2 MBST: Measurement-Based Simulation Technique for Probabilistic
Deadline Guarantees

A common characteristic of embedded real-time systems is that information about the
application tasks and computer system configurations is known a priori. For example,
before a machine tool controller is put in place, the number and type of controller tasks
that can possibly run simultaneously are known, as well as the computer setup. With this
information, it is possible to provide probabilistic deadline guarantees by evaluating the
real-time system performance. In order to determine whether probabilistic deadline
guarantees can be provided, we must obtain the completion time distributions of
individual tasks. For example, given the deadline and completion probability requirements
of a periodic task, we will be able to check whether its deadline can be guaranteed if the
task completion time (relative to its release times) is known.

Given both application tasks and the computer system, the objective of MBST is to
determine if the completion probability requirements of individual application tasks can
be met. To achieve this objective, MBST uses measured (in isolation) application task

component performance data as input, models task interaction and system overhead, and

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generates task completion time distributions. It takes two stages to apply MBST to any
real-time system: validation and operation.

In the validation stage, the validity of the MBST is checked against actual task
execution time measurements of the target real-time application. While in theory the task
release times are observable, they are low-level system events (e.g., firings of POSIX
timers) that are not easily accessible to user processes. In our experiments with open-
architecture machine tool controllers, we used easily measurable VMEDbus events, which
are generated by a simple function call and recorded by the VME StopWatch (see
Section 5.3). We place such a VMEbus event-generating function at the start of the code
segment that we want to measure and another one at the end of the segment. Since a task
may or may not start execution immediately after it is released, the resulting measurement
is the start and end times of the task segment, against which MBST will be validated.
More specifically, we will compare the measured execution time distributions of
individual tasks and the corresponding simulated distributions.

Once MBST is validated using task execution time distributions, it is in the
operation stage, where the task release times and end times from the simulations are used
for providing probabilistic deadline guarantees. The key assumption here is that if the
simulated task execution time distributions from MBST are valid, the corresponding task
completion time distributions are also valid for the following reasons. First of all, the
calculations of task execution time and completion time share a common element, task
end time. Second, the other two elements, task release and start times, are closely
correlated. A task cannot start execution until it is released. In the absence of preemption
and blocking, a task will start execution immediately after it is released, resulting in the
same value for release time and start time. Therefore, if we model the task preemption and
blocking appropriately, valid task execution time distributions will lead to valid task
completion time distributions. Furthermore, the task preemption and blocking affect task

execution time distributions as well. An inappropriate task preemption and blocking

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model will be unable to produce valid task execution time distributions in all cases.
Consequently, valid task execution time distributions by MBST will result in valid task
completion time distributions and validate probabilistic deadline guarantees.

MBST consists of three models: task model, run-time model and simulation
model, as illustrated in Figure 36. We will describe these models in details in the

following sections.

C Application Characteristics)

v
| identify task components |
v

| measure component execution times I

ldeterminc component/task relan'onshigl

\ 4
v

| select scheduling algorithm |

determine task interaction

determine systern overhead
RUN-TIME MODEL

4
v

I select task phasing]

TASK MODEL

1 run simulations]

get task completion time distributions
SIMULATION MODEL

C Probabilistic Deadline Guarantees)

Figure 36: Measurement-based simulation technique (MBST).

5.2.1 Task model

An important feature of MBST is to predict overall task performance by using individual

task component data. The task model is crucial to this feature. The first step is to identify

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

logical components of application tasks. A logical component is a part of the application
task that implements some specific functionality. The reason we call it “logical” is that it
may not have been implemented when we apply MBST. This allows MBST to be used in
“what if” analyses. For example, we may want to know a task’s performance when it
needs to read twice as many sensors before implementing it. With MBST, we can
approximate the new task by adding corresponding task components using existing data,
as shown later in Section 5.3.4.6. The task components may be application-dependent.

The next step of the task model is to measure the actual execution times of
individual task components. Because all practical systems have inherent unpredictability,
using measured data as inputs to our simulation model produces more realistic results.

To measure the execution times of individual task components, the corresponding
task is run in isolation with the specified period in the target computer system. Running
tasks in isolation gives us better control of the measurement conditions. The interaction
among tasks will be addressed in the run-time model.

Given the execution time measurement data of individual task components, the
simulation software must be able to generate overall task execution times that would be
close to the measured overall task execution times. This is not as simple as it may appear.
Initially, we assume that the task component execution times follow normal distributions.
We feed the statistics of each task component execution time (mean, standard deviation,
minimum and maximum) to the simulator. Whenever a task execution time is needed, the
simulator will generate individual task component execution times independently, based
on their respective statistics. The overall task execution time is the summation of the
individual task component execution times. However, task component execution times
may not necessarily follow normal distributions. Consequently, the simulator-generated
task execution time distribution may differ from the actual measurement data, which is the
case in our prototype open-architecture milling machine controller tasks. Figure 37

compares the measured task execution time distribution with several simulator-generated

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ones for the XYZ Servo task. We can see that the task execution time distribution using

the normal distribution assumption does not match the actual measurement well.

0-5 T T T T 1] T i T i

I i ¢ measured

04 L using romal distributions
) using independent measured distributions

using correlated measured distributions

Q
X

Probabllity Mass Function
(=]
)

0.1

00 | : il o B Sife ¥ a g AW Dt b
500 600 700 800 900 1000 1100 1200

Task Execution Time (us)
Figure 37: Comparison of data-generating approaches (XYZ Servo task).

Considering that the execution time of a real task may not necessarily follow any
particular distribution, we modify our simulator to use the actual task component
measurement data directly. An ordered sequence of measured execution time is stored in
the simulator for each task component. To obtain a task component execution time, the
simulator will generate an integer between | and the length of the sequence with equal
probability and use the integer as an index to retrieve a stored execution time. An overall
task execution time is the summation of individual task component execution times,
retrieved independently (i.e., the indices are generated independently). We call this an
“independent combination” approach. Figure 37 shows the XYZ Servo task execution
time distribution generated by this approach, which is labeled “using independent
measured distributions.”

Though the above approach does not assume any specific statistical distribution,

its result is still far from being satisfactory, because the execution times of individual task

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

components of the same task are not independent. For example, when the communication
component of the XYZ Servo task (see Section 5.3.4.1) gets reference inputs from the
message queues, the interpolator component may need to process the data to generate a
series of desired values. When the communication component does not read message
queues, the interpolator component also has less work to do. To solve the problem, we
need to preserve the dependencies in the original task component measurement data. The
measurement data of individual task components must be ordered appropriately: the
execution time of the first task component of the first invocation of the task is measured,
then the second component of first invocation, ..., last component of first invocation, first
component of second invocation, ... Therefore, the overall execution time of the first task
invocation is comprised of the first measurement of all task components. Using this
ordering information, we modify the simulator to use a single index for all task
components, as opposed to using independent indices. We call this “synchronized
combination.” The XYZ Servo task execution time distribution generated by this approach

matches the measured distribution very well, as shown in Figure 37.

5.2.2 Run-time model

The next major part of MBST is the run-time model. The first step is to choose an
appropriate real-time scheduling algorithm, based on application characteristics. The
results of our research described in Chapter 4 can be used for this selection process.

Once the scheduling algorithm is chosen, we need to determine the relationships
among tasks. In order words, which tasks may be blocked or preempted by which tasks.
Task interaction may depend on the scheduling algorithm. For example, there will be no
blockings among tasks if FIFO is used. On the other hand, blockings and possibly priority
inversion must be considered if a priority-based preemptive scheduling algorithm is used.
This is one of the most crucial and difficult steps in MBST and requires application

domain and system knowledge.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The next step is to determine the system overhead, such as scheduling overhead
and context switching overhead. Fixed-priority scheduling algorithms (such as RM and
FIFO) incur very low run-time scheduling overhead, while dynamic-priority ones (such as

EDF) incur high overhead. Similarly, this step requires in-depth system knowledge.

5.2.3 Simulation model

To establish the simulation model, the key step is to determine task phasing—initial task
release times relative to each other. Depending on the phasing, task completion time
distributions can be quite different. Suppose two periodic tasks T; and T, have constant
periods of 10 ms and 20 ms and constant nominal execution times of 2 ms and 3 ms,
respectively. Using the RM scheduling algorithm, t; will have a higher priority than T,. If
T, is released initially at the same time as T; or less than 3 ms before T;, T, will have a
constant completion time of 5 ms (relative to its release time). This is the worst phasing
for T, because T, will always be preempted by T for the longest time—the entire
execution time of 7;. However, if 1, is released between 2 ms and 7 ms after T, T, needs
only 3 ms from its release to completion. This represents the best phasing for T, where two
tasks have no contention at all.

Task phasing selection plays an important role in our model validation strategy.
Because of timer interval variation, for example, the actual task phasing may be
unpredictable in practical systems. Therefore, it is very difficult for MBST to replicate the
actual task phasing. Consequently, it does not make sense to directly compare any one task
execution time distribution generated by MBST with the actual measurement. To
overcome this difficulty in validating MBST, we instead use a bounding strategy. In our
simulations, we choose one best task phasing where there is least contention among tasks
and one worst phasing where there is most contention. If the resulting two task execution

time distributions can bound the actual measurement for every task, MBST is validated.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MBST uses two task phasing simulation configurations, best and worst, to bound
the actual task execution time measurements. Both simulation configurations use constant
task intervals to obtain deterministic task phasing. In the best configuration, the initial task
release times are manually! adjusted to minimize contention among tasks. Suppose there
are two tasks Ty and T,. Their nominal periods are 1 ms and 10 ms and their nominal
execution times are 80 [s and 750 ps, respectively. The best phasing would be that the
release time of T, is between 80 us and 250 ps after that of t;. Considering variations of
their respective task execution times, we may set the interval between their release times
to, say, around 165 [is, such that the two tasks are least likely to content with each other. In
the worst configuration for task execution times, every task is released just before all
higher priority tasks. Therefore, the task will always be preempted by all tasks that have
higher priorities, resulting in the longest execution time.

While the best and worst simulation configurations use constant task intervals, task
intervals have variations in reality. Such variations could increase task contention for the
best configuration and decrease contention for the worst configuration. To approximate
the actual best and worst task performance, MBST uses two more simulation
configurations, random start and same start, respectively. These two configurations use the
measured task intervals instead. In the random start configuration, the initial release of
each task is selected randomly between O and its task period minus its execution time,
while all tasks are released initially at the same time in the same start configuration.

Table 26 summarizes the characteristics of these simulation configurations.

5.2.4 Probabilistic deadiine guarantees

After MBST is validated, we can then obtain completion time distributions of individual

tasks, based on the worst task phasing to be conservative. Using this information and task

1. When the number of tasks is large, a tool that uses optimization techniques such as linear
programming will be helpful.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simulation task execution
configuration task phasing task interval time
best least contention constant measured
random start less contention measured measured
same start more contention measured measured
worst most contention constant measured

Table 26: MBST simulation configurations.
requirements, we will be able to determine if probabilistic deadline guarantees can be
provided. Section 5.3 demonstrate the validity and usefulness of MBST in the

development of machine tool controllers.

5.3 Application of MBST to Open-Architecture Machine Tool Controllers

For open-architecture machine tool controllers, we apply MBST based on a generic open-
architecture model with a (conceptual) central data repository, as illustrated in Figure 38.
Rectangles are functional units of an open-architecture controller. They provide and obtain
data from the central data repository, which can be either conceptual or physical.

The part program provides reference inputs, such as positions and velocities, to the
controller. An interpolator takes the reference inputs and decomposes them into a series of
desired values. Sensors provide information about the actual machine status, such as its
current positions, velocities and force. The supervisory control unit uses some or all
sensor values to determine if and how certain desired values generated by the interpolators
should be overridden. The servo control unit takes sensor values, desired values and
overriding values as inputs and computes control commands, which are sent to the
actuators.

With this architectural model, any control functional units can be easily replaced

by other units with similar functionality as long as their interface with the data repository

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

remains the same. For example, a PID servo control unit can be substituted with a fuzzy

logic servo control unit.

Data Repository

Part reference inputs > [\ < sensor values Sensors

Program - ™ 4
] 7
VARV

Interpolators[—————— -, P~ Supervisory
———?———-——-—»\ -
desired values | VA overriding values Control
Rnd
Servo ! -~
Control Actuators
coatrol comm:md_sl >

Display < information

Figure 38: Open-architecture controller model.

5.3.1 UMOAC Testbed

Our prototype controllers are developed in the University of Michigan Open-Architecture
Controller (UMOAC) testbed for a milling machine, as shown in Figure 39. VMEbus
[121] is used to connect control computers (CPU-1 and CPU-2) and IO cards, while
Ethernet provides connection to the outside world. VMEbus offers up to 64-bit address
and data buses, multiprocessing capability and a seven-level interrupt protocol. It can
handle data transfers at a speed up to 80 Mbytes/second. VMEbus provides easy system
integration and flexibility by allowing systems to be built with standard parts and
minimum tooling costs.

Control tasks are executed on VMEbus-based processor boards (e.g., CPU-1 and
CPU-2) running a RTOS in order to achieve good performance and timing predictability.
Sensors and actuators on the milling machine are accessed through VMEbus-based IO
interface boards (e.g., IO-1 & I0O-2). Control software may be compiled directly on the
control processors (e.g., CPU-I), or downloaded from a remote PC or workstation (e.g.,

PC-1 or Workstation-1). This testbed architecture allows easy adoption of new hardware

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

components as they become available, and thus provides good hardware openness. Well-
defined interfaces and the support for performance polymorphism [180] form a foundation

of software openness.

PC-1 Workstation-1
: !
P

CPU-1| [cPu2| © ® e

o

L VME bus 1
P t
[0-1 0-2| ®© ® ® | StopWatch

IR

milling machine

Figure 39: University of Michigan Open-Architecture Controller testbed.

The experiments are conducted on a XYCOM XVME-675/19 VMEbus PC/AT
processor module (i.e., CPU-1 in Figure 39). The processor board has a 100 MHz
486DX4, with 32 Mbytes dual-access DRAM, SVGA and IDE controllers. A commercial
real-time operating system QNX [127] is used.

The default QNX system clock resolution is 10 milliseconds. This is too coarse
because our target control applications often require tasks with a period of 1 ms. On the
other hand, if the resolution were too fine, the CPU would spend most of its time
managing system resources without getting much useful work done. Given UMOAC
testbed hardware and software configurations, we found that 50 ps (or 49447 nanoseconds
to be exact) is the finest resolution with which QNX can function stably. For our

experiments, we choose a clock resolution of 100 pis.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We use VME StopWatch [49] for timing measurements. It is a piece of VMEbus-
based hardware that can timestamp read or write events to specific VME extended
addresses. Its clock resolution is 25 nanoseconds. In our experiments, a simple inline

function call is used to generate the events.

5.3.2 Controller Tasks

Figure 40 shows a milling machine control application. It consists of several tasks:
Human-Machine Interface (HMI), Display, Motion Controller and Force Controller
(which in turn consists of two tasks: Force Acquisition and Force Supervisor). The HMI
task controls the start and stop of the motion controller and displays the milling machine
status (e.g., positions). The Motion Controller task controls the movement of the milling
machine. It reads sensors and sends control commands to the actuators on the milling
machine. The Motion Controller task also makes the current machine status data available
for the Display task to collect and send to the HMI task. The Force Controller reads the
dynamometer (i.e., force sensor) on the milling machine and may override the feedrates of

the Motion Controller.

REAL-TIME NON-REAL-TIME

Human-Machine
Interface (HMI)

Force Controller

IForcetAcquisition

(Milling Machine)

Figure 40: Milling machine control application.

Since the HMI task is not a real-time task, it is not run on the same processor with
other real-time control tasks. It communicates with other tasks via nonblocking message

queues. Therefore, we will only consider real-time control tasks (4 shaded boxes in

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 40) in our experiments. In our prototype controllers, the Force Acquisition, Force
Supervisor, Motion Controller and Display tasks have periods of 1 ms, 40 ms, 10 ms and
40 ms, respectively.

Our prototype controllers are designed to have progressively more functionality
and complexity. The simplest prototype controller consists of only two control tasks: a
single-axis Motion Controller (X Servo task) and the Display task. The 2- and 3-axis
controllers have 2- and 3-axis Motion Controllers (XY Servo and XYZ Servo tasks),
respectively, as well as the Display task. The final prototype is a 3-axis controller with
supervisory force control. Table 27 lists all prototype controllers and their constituent

control tasks.

Prototype Controller Control Task
l-axis motion control X Servo, Display
2-axis motion control XY Servo, Display
3-axis motion control XYZ Servo, Display
3-axis motion control with force control XYZ Servo, Display, Force Acquisition, Force Supervisor

Table 27: Prototype controllers and their respective tasks.

5.3.3 Tasks with constant nominal execution times

Determining system overhead is one of the crucial steps in establishing the run-time
model of MBST. The accuracy of system overhead parameters has direct impact on the
reliability of the overall simulation results of MBST. However, it is difficult to set and
evaluate the accuracy of these parameters using the measurement data of real controller
tasks for the following reasons. First, controller tasks are complex. They may have
interaction among them, e.g., contention for the VMEbus. Determining such interaction is
another crucial step in establishing the run-time model. Task execution times are an
unknown function of both system overhead and task interaction. Trying to determine both

appropriately at the same time can be extremely difficult, if not impossible.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Second, the nominal execution time of a real controller task may vary from one
invocation to another. Some task components may run less frequently than others. For
example, a servo motion control task may only need to read the reference position and
velocity every 7 control loop periods. The task can interpolate the reference values into a
series of desired values internally. The execution time of a function in the task may also be
input data dependent. Because of such nominal execution time variations, the direct
effects of adjusting system overhead parameters may not be easily separated from other
factors.

Because of these reasons, we want to simplify the problem by dealing with
independent tasks with constant nominal execution times. The objective is to isolate the
effects of system overhead and determine proper system overhead parameters for the run-
time model. Note that while the nominal task execution times are constant, the observed or
measured ones are not. Therefore, the use of such simplified tasks is nontrivial. By
choosing appropriate specifications for these simplified tasks, we can ensure the system
overhead parameters determined here are valid for real controller tasks as well.

The simplified tasks must be run and measured in the same computer system as the
real controller tasks. To generate similar load and operating conditions, we use one
simplified task as a “proxy” for each real controller task. The simplified task has the same
period as the real one and its constant nominal execution time is close to the average
execution time of the real task. Furthermore, the simplified tasks are scheduled with RM,
as in the real controllers.

The following sections describe the step-by-step application of MBST to the

simplified tasks.
5.3.3.1 Establishing task model

For these tasks with constant nominal execution times, the task model is trivial. Each task

consists of only one task component. Each task is run on the control processor (CPU-1 in

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the UMOAC testbed of Figure 39) in isolation and its execution time is measured.

Table 28 lists the statistics of the measurement data of overall task execution times of

individual tasks.
standard
deviation sample period
task mean (Us) (us) min (lts) max (us) size (ms)
Display 44.0 1.88 41.1 90.2 4096 40
X Servo 312 231 310 363 4096 10
XY Servo 477 8.15 469 535 4096 10
XYZ Servo 722 15.7 709 819 4096 10
Force Acquisition 80.6 7.13 74.6 127 4096 1
Force Supervisor 631 278 627 695 4096 40

Table 28: Statistics of execution times of simplified tasks.

In MBST, the measured execution time distributions of individual task
components running in isolation are used as inputs for the simulations of multiple tasks
running together with possible interaction among them. To ensure the validity of the
simulations, we first need to verify that the isolated task execution time distributions
generated by MBST simulation software are consistent with the measurement data.
Figures 41, 42, 43, 44, 45 and 46 compare the measured and simulated task execution time
distributions for Display, X Servo, XY Servo, XYZ Servo, Force Acquisition and Force
Supervisor running in isolation, respectively. For example, the top graph in Figure 41
shows the probability mass functions of the measured and simulated Display task
execution times, while the bottom graph shows the corresponding cumulative distribution
functions. These figures show that the MBST-generated distributions match the
measurement data very well. Other figures show the similar results and they are included

here for completeness.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

: measured
simulated

o g ol
= @ «
T T T

" 1

Probabllity Mass Function

o
S
T

=
=]

» — « measured
G~ simulated

o
™Y
T
'

o
o
T
)

o
~
T
A

©
N
T

Cumulative Distributlon Functlon

o
o

:
50 100
Task Execution Time (us)

Figure 41: Execution time of simplified Display task running in isolation.

Q

o
4

i measured
c [simuatea
o 08 | -
s
1=
rd
5 06
-
«
=
Zos g
3
<
a
Sozt

1.0
g » =« measured
S G—a simulated
gost
3
.
[-3
2
35 0.6 -
2
i
o 04 _
k-
2
2 0.2
3 -
E
=3 3
[3]
0.0 L
350 400

Task Execution Time (us)

Figure 42: Execution time of simplified X Servo task running in isolation.
5.3.3.2 Establishing run-time model
The first step of establishing the run-time model is to select a scheduling algorithm. Based
on the evaluation results in Section 4.4.1, the RM scheduling algorithm is chosen for our

prototype controllers. Therefore, RM is also used for the simplified tasks. Because these

tasks are independent, there is no interaction among them except for the contention for

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

: measured

:I smulated

o
@
T

4
o
¥

o
S
T

Probabllity Mass Function
I
T

g
o

» — « measured
G—=a simulated

,.
L
o
@
T

06

04

tive Distributl

S 02t

Ci

00 L
450 500 550
Task Execution Time (us)

Figure 43: Execution time of simplified XY Servo task running in isolation.

b
(]

I measured
] simuated

14 o o
& o o«
T T T

Probablilty Mass Function

o
9]
v

1.0
» ~ « measured
G—a simulated
08 b
U
S 06 4
E
a 04 1
S 02k 4
Q
0.0 L &
700 7s0 800 850

Task Execution Time (us)

Figure 44: Execution time of simplified XYZ Servo task running in isolation.
CPU cycles. Setting system overhead parameters is the ‘only step left in establishing the

run-time model.

There are two major overheads associated with running multiple periodic tasks.
The first is the timer overhead. Each periodic task uses a POSIX timer to run periodically.
After each invocation of the task, it goes into sleep (i.e., the task process is in the

suspended mode) until it is waken up by a signal generated by the timer. The timer

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

" measured

D smuated

a e o
S @ @
T T T

L n

Probabliity Mass Function
3
T
)

=
o

» - « measured
O—£ simulated

o
»
T

It

Cumulative Distributlon Functlon

50 100 150
Task Execution Time (us)

Figure 45: Execution time of simplified Force Acquisition task running in isolation.

=
o

™ measured

[simuiated

o od o

> o o

T T T
s

Probabllity Mass Functlon
s
T

=
o
;-

» = « measurad
G—a simulated

o
o
¥

L

Cumulative Distribution Funcilon

650 700
Task Execution Time {us)

Figure 46: Execution time of simplified Force Supervisor task running in isolation.
overhead includes the CPU time it takes for the timer to signal the suspended task, for the
task to change its status from suspended to ready, and for the timer to re-arm itself.

Table 29 lists the statistics of our measurement data for the timer overhead. We

will use the minimum measured value of 11 Us as the nominal timer overhead in our

simulations.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

standard
deviation sample
overhead mean (Ls) (us) min (us) max (us) size
timer 15 8.2 I1 45 1997

Table 29: Statistics of timer overhead.
Another major overhead is the context switching overhead—the CPU time it takes
to save the state of the task process being preempted and restore the state of the task

process to be run. For an Intel 486DX4 processor, this overhead is about 8 ps [127].

5.3.3.3 Establishing simulation model

Four different simulation configurations are used: best, random start, same start and worst.
In the case of best and worst configurations, the task phasings are manually adjusted such
that the tasks in each task set will have shortest and longest execution times, respectively.
Simulations of the simplified tasks are then run for the 1-, 2-, and 3-axis motion

controllers and the 3-axis controller with force control.

5.3.3.4 Validating MBST

If all parameters of MBST are set appropriately, the resulting task execution time
distributions from the best and worst simulation configurations should bound the actual
measured data. The task execution time distributions from the random start and same start
simulation configurations should be between the best and worst as well, with random start
closer to the best and same start closer to the worst.

Figures 47, 48 and 49 compare the measurement and simulation results of the X,
XY and XYZ Servo tasks in the 1-, 2-, and 3-axis motion controllers, respectively, where
the only other task Display has a lower priority. Since the servo tasks are the highest
priority task, the results of 4 simulation configurations should be the same, which is
indeed the case.

For the X and XY Servo tasks, the measurement and simulation results are almost

identical. For the XYZ Servo task (Figure 49), the simulation results are slightly better

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

than the measurement. 92.3% measured task execution times lie between 700 us and

750 s, while it is about 97.5% from simulations.

: measured

- random sart
== same start

I
o
T

Probabllity Mass Function

02

» — -« measured

&——a Dest

4+ random start

[re O—@ same start
F—= worst

Ive Distributl
)
Y
T

S 02F

Q

0.0 -
300 350 400
Task Execution Time (us)

Figure 47: Execution time of simplified X Servo task running with Display.

T measured

- random start
same start
worst

o o [
P’S I3 o
T T

Probability Mass Functlon
R
T

o
.
L

» = « measured

A—1 best

<4 +——random start

el G—& same start
b V—F worst

o
1Y
T

o
o
T

D

o
»
¥

302+

%% 54;0 sso 600
Task Execution Time (us)
Figure 48: Execution time of simplified XY Servo task running with Display.
Figures 50, 51 and 52 compare the measurement and simulation results of the
Display task in the 1-, 2-, and 3-axis motion controllers, respectively. The Display task has

a lower priority and can be preempted by the motion control tasks. Since the CPU

utilization is low in all three controllers (0.03, 0.05 and 0.07, respectively), there is little

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17 measurea
c I '[| best
co0s} < Il rancom start
= | == same st
- 06 <
2 |
= b -
z]
Toa <
3 :
< -
4 i
& 02 -{
1.0 —_— =S]
e >~ = measured
,' (&4 best
08 + ’ ~+—random start
& Al 10—6 same start
,, T worst
0.6 ’ -
v
4
=3 r
- o
S04t -
> :
02 -
© 7
@0 : : :
700 750 800 850
Task Execution Time (us)

Figure 49: Execution time of simplified XYZ Servo task running with Display.
contention for the CPU cycles. Therefore, the measured task execution time distributions
are almost identical to the simulation results from the best and random start
configurations. The simulation results from the same start configuration are between those

from the best and worst configurations, as expected.

10 L T T T
: measured
3 best
S 08 - random start
z == samesiarn
é £33 worst
> 06 7 4
L3
a
: ;
Zosk E
2]
]
& 02 {] 1
10 + ~ & u

06

4 = =
0 P & L &
» - « measured
E A—abest
08 < +——+ random starn
il = O~—0 same stant
F—F worst

04 -

Distributl

Soz2r 1

00 < & < < = <. L
1] 100 200 300 400 500
Task Execution Time (us)

Figure 50: Execution time of simplified Display task running with X Servo.

For the 3-axis motion controller with force control, Figures 53, 54, 55 and 56

compare the measurement and simulation results of the Force Acquisition, XYZ Servo,

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

best
random start

== samestart
worst

o
=3
s

d
o
s

o
a
"

Probablilty Mass Funclion
o
N

[3
b

1

» = « measured
S—Abest

+=—+ random start
O—O sama start
V——= worst

o
= s
T 0

° o
» o
T A T

o
X3

Cumulative Distribution Function

= Py T 2 s P = =, P x I

100 200 300 400 500 €00

e
o

Task Execution Time (us)

Figure 51: Execution time of simplified Display task running with XY Servo.

i measured
best
random start

= samestant
worst

Probablilty Mass Function
o °
-~ (-]

o
[

g
[~]

» = « measured
&0 best
«+——+ random start
G—O same start
F— worst

&

e
o

o
&

o
A

Cumulative Distributlen Function

e
o

0 100 200 300 400 SO0 600 700 800 900
Task Execution Time (us)

Figure 52: Execution time of simplified Display task running with XYZ Servo.

Force Supervisor and Display tasks, respectively. Using RM, the Force Acquisition task is
assigned the highest priority and XYZ Servo a lower priority. Force Supervisor and

Display share the same lowest priority.

All execution time distributions of the Force Acquisition task are almost identical,
as it is not preempted by any other controller tasks. In Figures 54 and 55, 56, The
simulation results from the best, random start, same start and worst configurations clearly

range from the best (the leftmost curve of the cumulative distribution function) to the

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

worst (the rightmost curve), in that order. The measured XYZ Servo task execution time
distribution is very close to that of the worst simulation configuration (Figure 54), because
it is likely to be preempted by the Force Acquisition task. While the measured Force
Supervisor distribution is similar to that of the random start configuration (Figure 55), the
results of the Display task (Figure 56) are similar to those of Figures 50, 51 and 52.

In all the above experiments, the measured task execution time distributions are
bounded by the simulation results from the best and worst task phasing configurations.
While in some cases, the measured task execution time distributions are very close to
those of the best simulation configuration, in some other cases, they are very close to those
of the worst simulation configuration. This indicates that our models are accurate and
provide tight bounds for the actual task performance. Therefore, MBST is validated and
we will use the system overhead parameters set here for our experiments with real

controller tasks.

: measured

random start
samae start
worst

o o ©
% o to
Y T T
1 " L

Probabllity Mass Functlon

o
[
T

od
[~]

» — « measyred
A——Abest

-4 +— random start
G——O samae stant
¢——F worst

) o o
'S o ©
T Y v
"

Cumulative Distributlon Function
o
I £
e

o
o

L
Q 100 150
Task Execution Time (us)

Figure 53: Execution time of simplitied Force Acquisition task running with XYZ
Servo, Force Supervisor and Display.

o

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 T
i i measured
c best
Sos 4 Al random sart
° == same start
5 B worst
- 06 4
]
-3
=
Zoa4 4
=
s
]
& a2
10]
c » — « measured
Kl &——abest
2os +——+random start
c O—6 same start
g F— worst
3 06
2
]
o 04
£d
2
s
3 02
E
3
o
00 L
700 800 800 1000

Task Execution Time (us)

Figure 54: Execution time of simplified XYZ Servo task running with Force
Acquisition, Force Supervisor and Display.

1.0 T
: measured
c best
S 08 random start
s == samestart
s : R worst
w 06 1 4
4 "
] 4
= b
Zos i
3 :
=
for :
I]
El
Bl
1.0
» — « measured
&5 best
08 - +—+random start
o« G—O same start
V—& worst
3 06 -
E
]
a 04
02
Q

0o d P GGG PP PP P =
600 1100 1600

Task Execution Time (us)

Figure 55: Execution time of simplified Force Supervisor task running with Force
Acquisition, XYZ Servo and Display.

5.3.4 Machine tool controller tasks

Having determined system overhead parameters in our experiments with simplified tasks,

we now apply MBST to real controller tasks.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i measured
best
4 - random start

== same slart
il T3 wors

o o
o o

Probabilily Mass Function
o
a

(=]
[N

>

-

'S

3

-

3

L IRV

z
¥
[
f
9
[
9
»
L
[
[
»
[
L
[
[
q

A N & "
» — < measured
= / A—dAbest
08 < +——+random start
O——O same stant

0.0 $—F—Fe G =, P S S N S - T S

0 100 200 00 400 500 600 700 800 900 1000 1300

Task Execution Time (us)
Figure 56: Execution time of simplitied Display task running with Force Acquisition,
XYZ Servo and Force Supervisor.

5.3.4.1 Establishing task model

Open-architecture machine tool controller tasks are typically periodic. During each period,
a control task may get data, read sensors, process data, update actuator signals and send
data, as illustrated in Figure 57. These 5 logical task components are not necessarily
present in all controller tasks. Furthermore, the execution frequencies of task components
may be different, though they are typically integral multiples of the task period.

For example, a servo motion control task may consist of all 5 components. Its “get
data” component may involve reading reference positions from message queues once
every 7 task periods and running interpolators to obtain desired positions. It reads the
encoders and tachometers on the controlled machine to get current positions and
velocities. It then processes the above information, as well as any overriding values the
supervisory controllers may provide. The resulting actuator signals are sent to the
actuators on the milling machine. Finally, it may send out contour errors. On the other
hand, a display task may have only two componc_ants———“get data” from the data repository

and “send data” to the HMI task on a different computer.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I Get data |

Y

[Read sensors |

* wait until

[Process data I next period

' Update actuator signals]

[Send data]

Figure 57: Typical components of an open-architecture controller task.

Table 30 lists the task components of our prototype controller tasks. Each logical
task component may in turn consist of several physical task components. For example, the
“get data” component of a servo task includes a communication component that reads the
message queues to obtain reference values and an interpolator component to generate a
series of desired values. The execution times of all physical components are measured
when individual tasks are running in isolation.

The overall task execution times of individual isolated tasks are generated using
measured task component execution time distributions with the “synchronized
combination” approach. Figures 58, 59, 60, 61, 62 and 63 show the simulated and
measured execution time distributions for the controller tasks running in isolation. The

simulation results match the actual measurements very well.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

update

actuator
task get data read sensors process data signals send data
Display get current N/A N/A N/A send batch
positions positions
X Servo | get l-axis ref- read 1-axis compute [- | send signal to send contour
erence values encoder and axis actuator | l-axis actuator €Irors
and interpolate tachometer signal
XY Servo | get 2-axis ref- read 2-axis compute 2- send signals send contour
erence values encoders and axis actuator | to 2-axis actu- errors
and interpolate tachometers signals ators
XYZ Servo | get 3-axis ref- read 3-axis compute 3- send signals send contour
erence values encoders and axis actuator | to 3-axis actu- eITors
and interpolate tachometers signals ators
Force N/A read dyna- find maxi- N/A send maxi-
Acquisition mometer | mum in a win- mum force
dow value
Force | get maximum N/A | compute over- N/A send overrid-
Supervisor force value riding ing feedrates
feedrates

Table 30: Logical components of prototype controller tasks.

Probablilly Mass Function

08 +

e
¥

Distribuy

04

3 02 -

C

L 2 I

L

2 1

£ measured

E simutated

» — = measured
G—-€ simulated

0.0 L

200 250 300 350 400

Task Execution Time (us)

Figure 58: Simulated and measured task execution time of Force Acquisition.

139

45 500

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

: measured

e o o

e [+ (-]
T T
\

Probabllity Mass Function

)
)

.‘?—I—I:r“‘f—w} ; ;:—ﬁ::"‘ﬁ.m =

o

» — =« measured
G—asimulated

o
®

T
1.

e
o

T
1

o
»
T

e
N
T

Cumutative Distribution Function

0.0 ; . L L : . : : : .
200 250 300 350 400 450 500 550 600 650 700 750
Task Execution Time (us)

Figure 59: Simulated and measured task execution time of X Servo.

1.0 1 T T T T T R
H : measured
- [simutated
508+ 1
3
=
a
. 06| 4
3
= .
=
Zosr — E
= ey i
] r K
a8 : H
Boal || -
tof I R — e
»- — « measured
- G——a simuated
0.8 - b
U
= 06 b
E
=
a 043+ “
302 -
[3
0.0 : N 2 L 2 L L L . L :
350 400 450 S00 550 600 650 700 750 800 850 900 950
Task Execution Time (us)

Figure 60: Simulated and measured task execution time of XY Servo.
5.3.4.2 Establishing run-time model
Our prototype open-architecture machine tool controllers use the RM scheduling

algorithm.? We will use the system overhead parameters in Section 5.3.3, since they were

derived for the same system environment.

2. For other scheduling algorithms, such as those evaluated in Chapter 4, the steps of applying
MBST will be the same but the run-time models will be different.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

" moasured
c {TJ smulated
o 08 -
S
<
I
- 06 - B
3
L
=
Z o4 J
3 :
] H —
2 H H
Soz2p H E
10 PO N I e — R 2 i s A)
» = « measured
G—4a simulated
08 -
u
[=3
S
5 06 P
a
=
a 04 - -
302 E
Q
0.0 L . i . . :) L) .
600 650 700 800 850 900 950 1000 1050 1100 1150
Task Execution Time (us)

Figure 61: Simulated and measured task execution time of XYZ Servo.

™)

i measured
c] simulated
s o8t B
S
c
Z
5 06 P —— -
- :
a
=
Tosp i -
=
=3
F-3
Soz2t E
1.0 + of
< » — = measured
= c—a simulated
go0s8} 4
3
e
=
2
S 06 E
2
=
004 -
o
2
2 02
E - B
E
3 -
o
0.0 n -
350 400 450 500
Task Execution Time (us)

Figure 62: Simulated and measured task execution time of Force Supervisor.
Though there are inter-process communications between controller tasks, they use
non-blocking mechanisms such as message queues. Like independent tasks, controller
tasks compete for CPU cycles if they are on the same processor and are subjected to
preemptions based on their priorities. However, unlike independent tasks, some controller
tasks need to access sensors and actuators via I/O cards on the shared VMEbus (see

Figure 39). VMEDbus uses a master-slave architecture. Functional modules called masters

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.0 T T T T T 3 T T -
: * measured

S :] simulated

e e
o (-]
T T T

Probabllity Mass Function
2
T

o
[
T

o o
]]
T M T
\" - T B
i

g
o

» — « measured
" o—asimulated

o

»
T

"

Cumulatlve Distrlbulion Function
[=]
[
T
'

. . L 2) 2 : L
50 100 150 200 250 300 350 400 450
Task Execution Time (us)

o
=3

Figure 63: Simulated and measured task execution time of Display.
(e.g., CPU) transfer data to and from modules called slaves (e.g., I/O cards). During a
typical read/write cycle, the master acquires the bus, addresses a slave, and then transfers
data. Therefore, a higher priority task needing to access the VMEbus may have to wait for
any bus read/write cycle in progress by a lower priority task. Note that this is not a case of
priority inversion, because the blocking of the higher priority task is at most one VMEbus
cycle. For a lower priority task with VMEbus access in progress, it may have to redo the
bus cycle if it is preempted by a higher priority task. These possibilities will be considered

in our simulation model.

5.3.4.3 Establishing simulation model

Again, four different simulation configurations are used: best, random start, same start and
worst. In the case of best and worst configurations, the task phasings are manually
adjusted such that the tasks in each task sets will have shortest and longest execution
times, respectively. In addition, in the worst configuration, the contention for the VMEbus
by tasks with bus access needs are taken into account. Simulations of the controller tasks
are then run for the 1-, 2-, and 3-axis motion controllers and the 3-axis controller with

force control and compared with measurement results.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.4.4 Validating MBST

Figures 64, 65 and 66 compare the measurement and simulation results of the real X, XY
and XYZ Servo tasks in the prototype 1-, 2-, and 3-axis motion controllers, respectively,
where the only other task is Display with a lower priority. In all cases, the results from

different simulation configurations are almost identical and match the measurement data

very well.
10 T T S
: measured
best
§ 08 | - fandom start
3 == same start
s 06
-
<
=
Zos
]
-]
2oz
10 F]
» — = maasured
&—a best
0.8 ++——+ randcm start
('S (G—© same stant
06
E
Q 04
02 -
Q
00 L L : L
200 300 400 500 600 700 800

Task Execution Time (us)

Figure 64: Execution time of X Servo task running with Display.

i i measured
best

08 - < Ml random start
= same start

.@m

Probabliity Mass Function

» ~ « measured
&——aA best

<+ +—+ random starnt
(G—© same start
¥—F worst

08 |-

06

04 -

02

Cumulative Distribution Function

20 L PR : : L : . ' : :
350 400 450 500 550 600 650 700 750 800 850 900 950
Task Execution Time (us)

Figure 65: Execution time of XY Servo task running with Display.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Probability Mass Function
o e 14

& o]
R T T

g

3

a

g

8

5

== » -« measured
&—abest

= <++—+ random start
C—@ same start
V-V worst

2 & &
T

Cumulative Distribution Function
R
T

. L :
700 800 900 1000 1100 1200
Task Execution Time (us)

Figure 66: Execution time of XYZ Servo task running with Display.

o
o

The results of the Display task in these 3 prototype controllers are shown in
Figures 67, 68 and 69, respectively. They are very similar to each other and to those of the
simplified Display task (Figures 50, 51 and 52). Because of low CPU utilizations, the
Display task has a very small probability of being preempted by the servo tasks.
Therefore, the measured execution time distributions are very close to those from the best
simulation configuration. The results from the random start and same start configurations
are between the best and the worst. Again, because interval variations and low CPU
utilizations, the distributions from the best and random start configurations are almost
identical.

Finally, we examine simulation and measurement results of the 3-axis controller
with supervisory force control. Figures 70, 71, 72 and 73 show the execution time
distributions of the tasks Force Acquisition, XYZ Servo, Force Supervisor and Display,
respectively.

For the Force Acquisition task (Figure 70), the results of the best, random start and
same start simulation configurations are almost identical, as expected. These
configurations do not consider the VMEbus contention. On the other hand, the worst

simulation configuration assumes the longest possible blocking due to bus contention.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Probabllity Mass Function

Cumulative Distribution Funcllon

00 T L L s
o 200 400 600 800 1000 1200

Task Execution Time (us)

Figure 67: Execution time of Display task running with X Servo.

Probabllity Mass Functlon
o o o
kS o 1Y

o
[

B

> = « measured
&—aADbest
++——+ random start
G—O same start
—F worst

&

o
(3

F

s

o 04
a2

0.0 b-F—FF—9 33 / : L —

0 200 400 600 800 1000 1200
Task Execution Time (us)

Figure 68: Execution time of Display task running with XY Servo.

Figure 70 shows that, in the task execution time range between 50 us and 250 us, the
worst configuration produces a cumulative probability function that is about 10% lower
than those of other simulation configurations (a CDF of 0.88 versus 0.97). The actual
measurement verifies the effect of VMEbus contention (a CDF of 0.89 between 50 ps and

250 ps), though the delay is not as long as the worst case.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Probabllity Mass Function

Cumulative Distribution Function

; : L L
o 200 400 600 800 1000 1200 1400 1600
Task Execution Time (us)

:

00 P S

Figure 69: Execution time of Display task running with XYZ Servo.

10 T T B S T T T T

: measured
best
_g a8 random start
z == same stant
£ worst
“ 08 E
-
o
=
Zosf;
a
3
S
so2
1o Pl .
P » — « measured
&—a best
08 | 4+—+ random start
e G—O same stant
b v—3 worst
06 4
Q04 4
302 -
[=
o'o PR /] i’ L 1 A I3 1 3 -
50 100 150 200 250 300 350 400 450 S00 550 600 650

Task Execution Time (us)

Figure 70: Execution time of Force Acquisition task running with XYZ Servo, Force
Supervisor and Display.

For tasks XYZ Servo, Force Supervisor and Display, respectively, Figures 71, 72
and 73 clearly show the effects of different phasings because these tasks could be
preempted. In general, the task execution time distributions generated by the best, random
start, same start and worst simulation configurations are progressively worse (i.e., longer

execution time), in that order. Occasionally, the distributions of the random start

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.0 T T T T
: measured
. best
o 08¢+ random start
kY == samestart
2 ors
- 06
-
<
=
Zos
-
]
a8
202
10 4
» — « measured
'A—Abﬁl
08 =+t random start
Us G—O samae start
F— worst
06 1
S 04
02
o
¥ »- - 4 1

00 ¥ . v >
600 700 800 $00 1000 1100 1200 1200

Task Execution Time (us)

Figure 71: Execution time of XYZ Servo task running with Force Acquisition, Force
Supervisor and Display.

10 T T T T T
: measured
- best
o 08+ random start
3 === samestart
] £20 worst
- as
]
o 3
= H
Zoafr] i
3
3 T
S
= l ‘j ll
o L. Jﬂ ;i " ‘..I ha
c | » — = measured
2 A—a best
g o8 J+——+ random start
2 0—o same st
g F—F worst
3 06
=l
=
G o4
i
2
2 °.
3 02
E
3
3]
00

; .
300 1800 2100 2400

Task Execution Time (us)

Figure 72: Execution time of Force Supervisor task running with Force Acquisition,
XYZ Servo and Display.

configuration can be slightly better than those of the best. Figure 71 shows such a case.
The CDF of the XYZ Servo task execution time at 850 s is about 0.81 by the best
configuration and about 0.84 by the random start. The reason for this phenomenon is that
there are variations in task intervals and execution times. The best configuration uses

constant intervals and actual (varying) execution times, while the random start

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Probabllity Mass Funcilon

tan F,
¥

Ilve Diatri

C

1500 2000

1000
Task Execution Time (us)

Figure 73: Execution time of Display task running with Force Acquisition, XYZ
Servo and Force Supervisor.

configuration uses both actual (varying) intervals and execution times. Though the best
configuration attempts to minimize contention by manually adjusting the task phasing,
there are situations where varying intervals lead to better phasings.

For example, suppose there are two tasks whose periods are 1 ms and 10 ms and
whose execution times are 100 s and 950 Uis, respectively. For the best configuration, any
phasing would cause the 10 ms period task to be preempted by the 1 ms period task, since
it assumes constant intervals. However, with random start, the following scenario could
occur. The first task (1 ms period) is released at time O, completed at time 100 pus. The
second task is released at time 100 ps. However, unlike the best configuration case, the
next release of the first task could be at time 1050 us due to interval variations, thus
allowing the second task to finish without being preempted.

Even though the best simulation configuration may not be truly “best” because of
the variations in task intervals and execution times, the effects of those special situations
as illustrated above are very small. In Figure 71, except for that point where the CDF of

the best configuration is smaller than that of the random start by less than 5% (0.81 versus

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.84), the CDF of the best configuration is consistently equal to or larger than that of the
random start.

In all cases, the measured execution time distributions of controller tasks are
bounded by those generated by the best and worst simulation configurations. Therefore,
MBST proved to be effective in modeling and predicting the performance of open-

architecture controller tasks.

5.3.4.5 Providing probabilistic deadline guarantees

Since we have validated the simulation results of MBST with measured task execution
times, we can now make probabilistic deadline guarantee decisions based on the task
completion time distributions generated by MBST.

We will use our 3-axis milling machine controller with supervisory force control as
an example. Figures 74, 75, 76 and 77 show the completion time distributions of the tasks
Force Acquisition, XYZ Servo, Force Supervisor and Display, respectively. Again, we use
4 different simulation configurations: best, ransom start, same start and worst. The best
and worst configurations are slightly different from those used in bounding measured task
execution time distributions. Here the phasings are adjusted to reflect scenarios where the
task completion times are the shortest and longest, respectively. To obtain shortest
completion times, task phasings are selected such that there is minimal contention among
tasks. On the contrary, all tasks are released at the same time for the worst phasing, a
critical instant where the task completion times are the longest.

To be on the conservative side, we will use the results from the worst simulation
configuration. Table 31 lists a few completion probability requirements and the
corresponding task completion times of individual tasks. For example, if the deadline of
the XYZ Servo task is 2315 ps or later relative to its release time, a probabilistic guarantee
for up to a completion probability of 1.0 can be provided. Note that whether a probabilistic

deadline guarantee is possible depends on two requirements: deadline and completion

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lo ~E T T T
f best
c - random start
8 08 + = samestant
i warst
a
S 08
]
o
=
Zoal
3
3
K
& 02~ -
1.0 == -
< & best
+——+ random start
08 40— same start
(e ¢— warst
©
2
. 06 |-
a
s
a 04
02 -
Q
O,D [L I} L 1 L
0 100 200 300 400 500 600 700

Task Completion Time (us)
Figure 74: Completion time of Force Acquisition task running with XYZ Servo,
Force Supervisor and Display.

1.0 r
best

c random start
o 08k same s@an
kK worst
e
2
S 06
]
o
-3
Z o4
b1
-
2
& 02

1.0]
c &—a best
2 +——+ random start
g o8 40—€ same start
2 —¥ worst
c
2
E 06
2
ki
a 04
L4
2
=
3 02
E
3
o

0.0 8-%-8-9-5 . - -

1000 1500 2000
Task Completion Time (us)

Figure 75: Completion time of XYZ Servo task running with Force Acquisition,
Force Supervisor and Display.

probability. If the deadline of the XYZ Servo task is 1200 us and its completion
probability is 0.9, no probabilistic deadline guarantee can be provided based on our
simulation results. However, if the completion probability is 0.8 or smaller, the

probabilistic deadline guarantee can then be provided.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Probabllity Mass Function

&——A best
= +—+ randiom start
08 O—© same start
frd T worst

06 -

Q04+

L

0.0 S—
-850 =350 150 650 1150 1650 2150 2650

Task Completion Time (us)

Figure 76: Completion time of Force Supervisor task running with Force
Acquisition, XYZ Servo and Display.

1.0 T T T T T T T
best
. random start
S 08 | 4 B same stan
z worst
c
e
- 06 -
-
«
=
Zo4p 1
2
[]
2
Fozf
10 H i SR P N
&——Abest
+—+ random starnt
08 4G—O same start
frig V== worst
Q6
a 04
3 02
© j
L

0.0 . g L
-1650 -1150 -650 -150 350 850 1350 1850 2350
Task Completion Time (us)

Figure 77: Completion time of Display task running with Force Acquisition, XYZ
Servo and Force Supervisor.

5.3.4.6 Predicting S-axis controller performance
Another important application of MBST is to estimate the performance of the controllers
that have not yet been implemented. Suppose we expect to add a joint with 2 degrees of

freedom to the milling machine. Our 3-axis controller will then need to expand its control

to 5 axes. To do that, the servo motion control task requires reading the sensors and

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Task Completion Time (1s)

Completion Force Force

Probability Acquisition XYZ Servo Supervisor Display
1.0 630 2314 2318 2661
0.9 225 1316 1739 1830
0.8 77 1112 1550 1758
0.7 65 943 1470 1544
0.6 64 918 1440 1480
0.5 64 902 1421 1453

Table 31: Task completion times of the 3-axis controller with force control.
driving the actuators of 2 additional axes, as well as additional data interpolation and
updates. Since we have not implemented the 5-Axis Servo task, we will use the
corresponding task components in the XY and XYZ Servo tasks to approximate the
additional work required in the 5-Axis Servo task. Other tasks (i.e., Force Acquisition,
Force Supervisor and Display), remain pretty much the same.

Table 32 lists the performance prediction of the 5-axis milling machine controller
with supervisory force control, using the worst simulation configuration. Comparing with
the performance of the 3-axis counterpart in Table 31, we can see that the effect on the
performance of the Force Acquisition task is minimal, because it has the highest priority.
For the 5-Axis Servo task, it generally takes more time than the XYZ Servo task to
achieve the same completion probability,> because it has more work to do now. Since the
Force Supervisor and Display tasks may be preempted by both the Force Acquisition and
5-Axis Servo task, the longer-running servo task will cause a delay in the completion

times of both Force Supervisor and Display, as evident in Table 32.

3. Though Table 31 indicates that to guarantee a completion probability of 1.0, the deadline of the
XYZ Servo task needs to be 2315 us or later, there are actually only two out of 4000 task
completion times that are over 1900 Uus by examining the simulation data. To guarantee a
completion probability of 0.99, for example, a deadline of 1514 ps or later would suffice.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Task Completion Time (s)

Completion Force Force

Probability Acquisition 5-Axis Servo Supervisor Display
1.0 642 2575 2979 3453
0.9 225 1859 2375 2481
0.8 80 1726 2260 2395
0.7 66 1631 2144 2246
0.6 64 1584 2097 2147
0.5 64 1556 1963 2109

Table 32: Predicted task completion times of 5-axis controller with force control.
5.4 Discussion and Related Work

MBST attempts to achieve a balance between assuming an idealized computing
environment and assuming nothing. While modeling of non-ideal system resources has
been the subject of some recent research [10, 66, 72], it remains to be a practically-
difficult problem because of the complex and unpredictable nature of disturbance sources,
such as interrupts. As the trend of building open systems with commercial-of-the-shelf
(COTS) components continues, this modeling work becomes more difficult and less cost-
effective. The use of open systems is expected to reduce system cost by leveraging
commercial development and to facilitate upgrades of system components over time.
Examples of such efforts include the University of Michigan Open-Architecture
Controller (UMOAC) project [112] and US Navy’s New Attack Submarine (NSSN)
Command Control Communication and Intelligence (C3I) system [42].

However, the adoption of COTS technology means potentially frequent changes in
system components. Each of these components may be engineered by different companies
with different technologies. The modeling results of individual components for one
system may be difficult to be reused for another system since the system constituents may

be different.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While MBST does not assume an idealized computing environment, it does not
attempt to model every system component either. MBST uses the measurement data for
individual task components when tasks are running in isolation. Such measurement data
encompass information about system unpredictability, though the information may not
necessarily be able to be separated from the data. MBST requires the modeling of major
system overhead and task interaction, which are more observable and understandable.

MBST improves on measurement-based approaches for hard deadline guarantees,
such as MDARTS [96], by introducing probabilistic deadline guarantees. MDARTS uses
the worst-case measurement data to provide hard deadline guarantees, but it has no
support for probabilistic guarantees. MBST allows tasks with less siringent timing
requirements to be guaranteed when they might not be guaranteed in MDARTS. For
example, to guarantee the deadline of the XYZ Servo task in Table 31 with the MDARTS
approach, the deadline of the task needs to be 2314 us or later. However, by examining the
data, we discover that there are only two task completion times that are over 1900 ps. To

guarantee a completion probability of 0.99, the task deadline needs to be only 1513 us or

later.

5.5 Summary

We presented the last key component of our proposed practical framework for probabilistic dead-

line guarantees (other components are described in the previous chapter):

* MBST: uses measured application task component performance data as inputs,
models task interaction and system overhead, and generates task completion
time distributions to determine whether probabilistic deadline guarantees can
be provided. Applying MBST to our prototype open-architecture milling
machine controllers, MBST is shown to produce simulation results matching
very well with actual measurement of real tasks. It can also be used to predict

performance of tasks that have not yet been fully implemented.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

APPLICATION DEVELOPMENT

6.1 Introduction

While our studies presented in previous chapters have addressed the real-time
performance issues given an application implementation, we have not examined how a
real-time application should be implemented in order to better achieve its requirements in
the presence of RTOS unpredictability, which is the focus of this chapter. We will conduct
our research using prototype open-architecture modular controllers in the UMOAC
testbed.

Historically, the software structure of many commercial and research machine tool
controllers is monolithic [20]. There is no clear task structure in these monolithic
controllers and the source code of individual tasks is interwoven. Therefore, it is
extremely difficult to incorporate third-party software into such a controller. On the
contrary, tasks in an open-architecture modular controller are well-defined entities. They
can be compiled and linked independently. Tasks can execute as separate computer
processes. Each periodic task uses a software timer of its own in order to run at its
specified interval.

Due to their modularity, open-architecture controllers rely more on the services
provided by the underlying RTOS, such as the software timer, scheduler and inter-process
communication (IPC). In reality, no RTOS can provide ideal services. Furthermore,

contemporary microprocessor architectures rely on hardware interrupts to manage system

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resources, which can cause significant unpredictability in RTOS services, such as timer
interval variation.

While there has been extensive work on RTOSs (e.g., [155, 157, 165]) and their
modeling (e.g., [72]) or open-architecture controllers (e.g., [5, 6, 7, 20, 53, 117, 125, 158,
160, 174]), it is unknown how well real-time controllers with such a modular structure
perform in practice in an open-architecture environment and what kind or magnitude of
impact the underlying RTOS unpredictability has on the controllers. Addressing this need
is the main intent of this chapter.

In particular, we evaluate two application implementation strategies for
minimizing the effects of the RTOS unpredictability. A real-time system can be divided
into two parts: the application software and the system environment (i.e., everything else)
that the application runs in. Our first strategy aims to optimize the computer system
environment for the given application. An example of such optimization is to run only the
system processes necessary for the application. Our next strategy attempts to optimize the
structure of application software. Regrouping software functional modules is an example
of such optimization. We conclude the chapter with related work and a summary of our

research results.

6.2 Prototype Open-Architecture Milling Machine Controllers

We have developed a prototype modular real-time milling machine controller on the
UMOAC testbed, as shown in Figure 78. The rectangles in the figure are tasks. The ovals
represent data objects shared by different tasks, while the arrows to and from shared data
show the data dependencies.

This prototype three-axis controller has a linear or circular interpolator on the X
and Y axes and a one-axis interpolator on the Z axis. The X and Y axes correspond to a

mechanical platform on which parts can be affixed. The Z axis is a spindle. The servo

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(desired positions/velocities)

XY Interpo[atoTI [YA InterpolatorJ

(feedrate overrides) C incremental positions)
IForce Supervisorl Ixservoi YServo

(forces) (lactual positions/velocities) (control commands

3 s
Force Feedback | [Feedback] Iﬁ:mzm

Milling Machine

Figure 78: Prototype milling machine controller.
motion control of all axes uses either PID or fuzzy logic control law [112]. In addition, a
supervisory force controller is added to the system. The Force Feedback task periodically
reads the dynamometer mounted on the milling machine. It finds the maximum force
reading within a window of 40 samples and sends it to the Force Supervisor. This
Supervisor controls the feedrates of the X and Y axes in order to maintain a constant force
while the milling machine is cutting a metal part.

The real-time tasks in our prototype milling machine controller have deadline and
interval constraints. To run control tasks in our UMOAC testbed, we need to select a
scheduling algorithm that performs well in terms of satisfying both constraints. Our
evaluation of RM, EDF and FIFO scheduling algorithms indicates that RM is the preferred
choice.

The Force Feedback task has a period of 1 ms and a priority of 27, which is the
highest priority among all controller tasks using RM. The Force Supervisor task has a
period of 40 ms and a priority of 24. All other tasks in Figure 78 run with a period of
10 ms and at the priority of 26. A larger number represents a higher priority. Tasks with

the same priority are executed on a first-in-first-out (FIFO) basis.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Without loss of generality, we use a simpler version with two independent axes
(Figure 79) for our performance evaluation experiments. Another reason is for safety,
because we do not want to actually cut a part using the spindle (the Z axis) during our
experiments. The force controller does not function without the Z axis, since its Input is

the force related to the cutting action.

(desired positions/velocities)

(X [nterpolator] [Y Intcrpolatorl

(_ incremental positions j

(_ control commands Cacrual positions/velocities)

Milling Machine

Figure 79: Prototype two-axis modular controller with separate task structure.

6.3 Two-Axis Controller with Separate Task Structure

We now identify and evaluate strategies to optimize our control application, so as to
minimize the effects of RTOS unpredictability. Our two-axis open-architecture milling
machine controller has a separate task structure (Figure 79). It consists of a set of
cooperating tasks (rectangles in Figure 79), which are compiled and linked independently.
X and Y Interpolator tasks translate desired positions and velocities into incremental X
and Y positions. The incremental positions are updated and fed to X and Y Servo tasks
periodically. The Feedback task periodically reads the sensors (e.g., encoders and
tachometers) attached to the milling machine and posts actual positions and velocities of

individual axes. Based on the incremental and actual position and velocity information, X

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and Y Servo tasks compute new control commands using a specified control law for X and
Y axes, respectively. Two motion control laws are currently implemented—PID and fuzzy
logic [112]. In this experiment, the PID control law is used for both servo tasks. The
Actuator task takes the digital control commands and sends them in either digital or
analog form to the appropriate motors of the milling machine. Communications among
tasks are achieved via shared memory.

An advantage of having such a separate task structure is flexibility. Tasks may be
allocated to multiple nodes in a distributed computer system. One allocation strategy is to
run different types of tasks on different computer nodes. Time-critical tasks may be
assigned to dedicated nodes, while non-real-time tasks may be run on a general-purpose
node. For example, user interface tasks (if any) may be carried out on Workstation-1 in the
UMOAC testbed, while the real-time task Feedback is run on CPU-1 and other real-time
tasks on CPU-2 (Figure 39).

With the separate task structure, individual tasks may also be added, removed or
modified, while the remaining tasks of the application are still 1:unning.1 One example of
such flexibility is to add the Y Servo task at run-time. We first run all tasks except
Y Servo. At this point, the controller has only control over the X axis. While the controller
is running, we start Y Servo and inform the controller of the change. The controller then
adds Y Servo to its control loop and becomes a two-axis controller.

We now measure the performance of our controller. All tasks of the prototype
controller are periodic and invoked once every 10 milliseconds. Each task is run as a

separate computer process. The RM scheduling algorithm is used.? Since these processes

1. Of course, changes that affect the application stability should be avoided. For example, before
adding a new task, we need to check if existing tasks can continue performing satisfactorily. This
can be accomplished by dry running all tasks (including the new task) and measuring their
performance. »

2. To provide deadline guarantees, we need to consider the case where both X and Y Servo tasks
are running.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have the same period of 10 ms, they are assigned the same priority of 26. No other process
except the QNX Process Manager has a higher priority. All tasks are run on CPU-1, which
is a 100 MHz 486DX4 with 32 Mbytes of RAM.

Table 33 shows the performance measurements of these tasks. The mean intervals
of all tasks are very close to their nominal period of 10 ms, but with some variations. We

now examine how RTOS unpredictability affects controller performance.

Sample Mean Std. Dev. Min Max

Size (us) (us) (us) (us)
XServo | exec. time 313 209.1 8.0 194.2 230.5
interval 313 9996.3 33.2 9726.4 10314.7
YServo | exec. time 313 208.5 7.8 193.1 2283
interval 313 9996.2 229 9938.6 10074.2
Interval between starts 313 594.9 13.8 373.2 643.4

of XServo and YServo

X Interpolator | exec. time 312 93.0 7.4 772 132.7
interval 312 9996.1 24.2 99114 10116.1
Y Interpolator | exec. time 311 95.1 6.5 86.6 119.2
interval 311 9996.0 21.2 9948.1 100499
Feedback | exec. time 313 68L.5 243 649.6 771.0
interval 313 9996.2 28.2 9899.9 10151.0
Actuator | exec. time 313 153.0 8.7 141.5 208.3
interval 313 9996.3 225 9916.4 10090.9

Table 33: Statistics for controller with separate task structure.

We found that the controller operates stably when the PID control law is used.
However, when the fuzzy logic control law [112] is used in the X and Y Servo tasks, the
milling machine exhibits some jitters. One possible reason is because the fuzzy logic

control law is more sensitive to timing variations. With the separate task structure,

3. A discussion of the effect of three different scheduiing algorithms (EDF, RM and FIFO) can be
found in Sections 3.2.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

individual controller tasks are on their own timers. Therefore, the temporal relationships
among the tasks are more unpredictable than those in a monolithic controller.

Ideally, for example, tasks X and Y Interpolators, Feedback, X and Y Servos, and
Actuator should be executed in that order at the beginning of each period. The execution
order is necessary to ensure the logical correctness of the application (see below for an
example of the effect of an undesired task interleaving). The aggregation of tasks at the
beginning (or any other point) of each period is to ensure that the sensor readings are
consistent and as close to the current conditions as possible. Such relationships among
tasks cannot always be guaranteed in controllers with a separate task structure. The
starting times of the first few invocations of the tasks in our prototype controller are listed
in Table 34. The initial execution sequence is Actuator, Feedback, X Servo, Y Servo,
X Interpolator, Actuator, Y Interpolator, Feedback, X Servo, Y Servo, X Interpolator,

Actuator, Y Interpolator, ..., etc.

Actuator Feedback X Servo Y Servo Inter;i)lator Inter[:[t)lator
(ms) (ms) (ms) (ms) (ms) (ms)
222.33 225.56 226.68 227.18 230.09 235.15
23246 235.61 236.75 237.23 240.14 245.17
24236 245.59 246.73 24722 250.08 255.16
252.34 255.55 256.71 257.19 260.07 265.;
26235 265.54 266.69 267.19 270.05 275. 12_J

Table 34: Start times of controller tasks.

Another possibility for the jitters is undesired task interleaving. We observe that, in
Table 33, the intervals between the starts of X and Y Servo tasks have a mean of 594.9 us
and a standard deviation of 13.8 ps. Since all tasks are running as separate computer
processes and there is a sizeable interval between the X and Y Servo tasks, it is
conceivable that the Actuator task may run between the servo tasks and thus obtain an

updated X-axis but an old Y-axis control command. This situation is illustrated in

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 80. If the Actuator task runs before the Y Servo task, as shown in Figure 80 (dotted
arrows), it receives an updated X-axis control command (“goto x2”) but an outdated Y-
axis control command (“goto y1” instead of “goto y2”). As a consequence, the trajectory
of the machine movement deviates from the desired course, causing a deterioration in the

precision of the controlled process.

Task Execution Sequence

goto x1 goto yl goto x2 goto y2

—)r X Servo l——)' Y Servo }——)' Actuator |—>Eeedback I—b{ X Servo H Y Servo ’—P{ Acma(or—l—b

.

‘1 Actuator }-b‘ Y Servo }-}

undesired interleaving goto y2
Trajectory
(x2, y2)

- »l- undesired

(xI, yl) x2,yl)

(x0, y0)

Figure 80: Task execution sequence.

While controllers with a separate task structure generally have great flexibility,
they are vulnerable to timing irregularity and undesired task interleaving. In our prototype
controller, such vulnerability causes jitters when using the fuzzy logic control law. We

need to identify and evaluate strategies to reduce the vulnerability.

6.4 Testbed without Network

In the above experiment, we found that the actual temporal relationship between the
controller tasks with a separate task structure may not always be the desired one, which
can affect the performance of the controller. For example, there is a sizeable time interval

between the starts of servo tasks. Ideally, the mean and standard deviation of the interval

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between the X and Y Servo tasks should both be zero. This is obviously impossible in
reality, but we should try to close the gap and minimize timing variation. One strategy is to
locate and eliminate the cause of the timing variation.

From our experience with the testbed, we discovered that one major source of
timing disturbance comes from the QNX network drivers (e.g., Net, Net.ether/000, and
Socker). Other sources, though much less significant, include floppy and terminal drivers.
Therefore, in this experiment, we want to measure the performance of the same controller
in the absence of QNX network drivers. We disable the QNX network drivers, thus
removing the connection between CPU-1 and other computers (see UMOAC testbed in
Figure 39 of Chapter 5). This results in a standard alone controller computer.

Table 35 lists the measurement results for the execution times and periods of
individual controller tasks. When the network drivers are disabled, the mean execution
times and the standard deviations of both execution time and interval of most tasks are
improved.* As a consequence, the mean interval between the X and Y Servo tasks has
been shortened from 594.9 ps to 490.0 ps. The standard deviation of this interval is also
improved from 13.8 ps to 9.7 pus. Figure 81 illustrates the performance difference.

This experiment indicates that the strategy of locating and eliminating sources of
timing disturbance can be quite effective. However, this strategy can be infeasible when
the sources are essential system hardware or software modules. This leads to our next

experiment in search for an alternative strategy.

6.5 Two-Axis Controller with Combined Task Structure

Although disabling QNX network drivers can improve the performance of real-time

controllers, it would be a major setback for a distributed system. Without the network

4. The Y Interpolator is an exception. Its performance is slightly worse without network drivers.
Because during its execution, other tasks are released and cause the disturbance in its execution.

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sample Mean Std. Dewv. Min Max

Size (us) (us) (us) (us)
XServo | exec.time 323 202.1 5.3 191.6 219.7
interval 323 9996.4 19.8 9958.1 10067.7
YServo | exec. time 323 201.1 6.8 191.4 224.6
interval 323 9996.5 19.7 9955.4 10051.8
Interval between starts 323 490.0 9.7 454.5 S1LS

of XServo and YServo

X Interpolator | exec. time 323 90.6 3.0 77.6 1104
interval 323 9996.3 22.1 9898.8 10090.3
Y Interpolator | exec. time 323 104.3 350 75.7 184.7
interval 323 9996.5 22.1 9938.2 10130.7
Feedback | exec. time 323 634.8 15.6 6154 692.7
interval 323 9996.4 20.9 9968.4 10051.2
Actuator | exec. time 323 1314 8.6 122.3 170.5
interval 323 9996.7 30.5 9990.0 10128.7

Table 35: Statistics for controller with separate task structure and without QNX
network drivers running.

25 i
20 W With Network Driver |
:’; i
s BWithout Network Driver
S5
L
>
L
[a]
T
5 10
hed
c
s
7
5
4]

YServo Interval Time between XServo and YServo

Figure 81: Performance with & without QNX network drivers.

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

drivers, each computer will become isolated. Although careful adjustment of network
configuration and driver parameters helps reduce the problem, the network remains a
major source of timing disturbance. While we do not want to sacrifice the networking
capability, we need to investigate other methods to improve the performance of real-time
controllers. A candidate strategy is to combine tasks with similar periods into a composite
task. Note that a controller with composite tasks is different from a monolithic controller
in that the components of a composite task are still modular, as in the controller with a
separate task structure.

In the controller with a separate task structure, it can be difficult to prevent other
tasks (e.g., the Actuator task) from running between the X and Y Servo tasks, because of
the timer variation and other unpredictability associated with the RTOS. A software
structure that can enforce the sequence of task execution would help. Because the mean
and standard deviation of the interval between the X and Y Servo tasks should be as close
to zero as possible, all tasks of the same’ period are combined into a single task, in which
the X Servo task is executed right before the Y Servo task. The composite task is compiled
and linked as a single executable. It runs at a period of 10 ms and needs only one timer.
For the tasks in a composite task, the inter-task communications among them can now be
using global shared data objects instead of using shared memory since these tasks share
the same address space. Figure 82 shows the new controller structure, which consists of
only one composite control task now.

Table 36 lists the performance measurements of the controller with the combined
task. Note that the QNX network drivers are enabled in this experiment. As expected, the
mean interval between X and Y Servo tasks is shortened significantly from 594.9 us to

76.9 ps (Figure 83). The standard deviation of the interval also improves (Figure 84).

5. If task periods are similar but not identical, it may be possible to use the shortest period as the
common period for the combined task.

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GUI

(desired positions/velocities)

(_ incremental positions)

(actual positions/velocities)

control commands)

Ay

\
[XYInterpolators| Feedback| XServo | YServo| Actuator]
Combined Task

Figure 82: Prototype two-axis modular controller with combined task structure.

Sample Mean Std. Dev. Min Max

Size (us) (us) (us) (us)
Y Servo | exec. time 948 76.9 10.9 614 1534
interval 948 9995.8 104.5 9739.9 10278.8
Interval between starts 948 76.9 10.9 614 1534

of XServo and YServo
Combined | exec. time 948 998.7 88.2 896.2 1192.9
Task

interval 948 9996.6 33.9 9874.9 10156.6

Table 36: Statistics for controller with combined task structure and with QNX
network drivers running.

However, the Y Servo task exhibits larger interval variation than that in the
controller with the separate task structure, as shown in Figure 84. This is because some
tasks (X and Y Interpolators, Feedback and X Servo) are executed before Y Servo in the
combined task. Therefore, the variance of the Y Servo interval reflects the aggregate
effect of the variances of the combined task interval and the execution times of those tasks
before the Y Servo task. Even though the standard deviation of the Y Servo interval
worsens, it is still relatively small-—about 1% of the mean interval. On the other hand, the
improvements are significant on the mean and standard deviation of the interval between

X and Y Servo tasks.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12000
10000 B Separate Tasks —
B1Combined Task
8000 |
@
Z
[
g 6000
o
>
<
4000
2000
5949
769
o 2 []
YServo Interval Time between XServo and YServo

Figure 83: Mean intervals before and after combining tasks.

M Separate Tasks [

8

OCombined Task ~ |——

3

Standard Deviation (us)
8 8

YServo Interval Time between XServo and YServo

Figure 84: Standard deviations before and after combining tasks.
The modular controller with the combined task has less overhead. With the

separate task structure, the mean of the total execution time was 1440.2 us, while the

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

combined task structure lowers this mean to 998.7 us. Therefore, combining the tasks
reduces execution time by more than 30%. The combined task requires no context switch
and shared memory inter-task communication for its constituent tasks. The savings in
execution time mostly comes from the elimination of the context switch overhead. While
our measurement indicates that each shared memory read or write takes about 1 ys, the
context switch overhead is in the order of 10 us [127]. Also, because all of the code is run
in the same address space there are more opportunities for optimization by the application
developer which may further improve the efficiency of the code.

Though not as flexible as the separate task structure, the combined task structure is
easier to understand because of its sequential nature, especially considering that
mechanical engineers are the main developers of control applications and many of them
do not have experience in multi-tasking programming methods. Because the inter-task
communication is removed, it is less complex. The sequential execution structure
resembles monolithic control programs in that they all have a single thread of control.
Unlike the monolithic programs, however, the new controller consists of well-defined
modules and thus is easier to change, maintain and reuse. For example, the well-defined
task components (i.e., Interpolator, Feedback, Servo and Actuator) in our composite
controller task make it possible for us to apply our proposed MBST methodology for
probabilistic deadline guarantees. We can use MBST to predict task performance if there
are changes to individual task components. This is not possible with a monolithic
controller.

In summary, open-architecture modular controllers with a separate task structure
are very flexible, in terms of task changes and distribution. But they are vulnerable to
timing variations and undesired task interleaving. In order to reduce such vulnerability,
one strategy is to identify and eliminate timing disturbance sources while maintaining the
separate task struf:ture. This strategy can be very effective, but it is often infeasible

because the disturbance can come from essential system hardware or software modules,

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e.g., device drivers. The alternative strategy is to combine tasks with the same period into
a composite task. While not as flexible as those with a separate task structure, the resulting
controllers with the combined task structure offer deterministic task execution orders and
smaller overhead. There is clearly a trade-off between feasibility and performance. The

optimal point may be application dependent.

6.6 Related Work

Koren et al. [80] analyzed the effect of control architectures and communication networks
on a manufacturing system’s performance. In particular, they estimated the amount of
real-time data and communication network bandwidth needed in open-architecture
controllers. We instead characterize and measure controller performance in terms of
deadline and interval constraints.

The study by Abdelzaher and Shin (3], which was conducted independently,
indicates that grouping tasks by period has the potential of increasing CPU utilization
while keeping the task set schedulable. This is consistent with our findings with real
controller tasks.

We are not aware of any published work on empirical studies of the impact of
software timer unpredictability on the performance of modular real-time controllers. This
work is important in that it reveals practical issues associated with the implementation of
real-time open-architecture controllers. The experiences gained and the lessons learned

from this empirical study can be valuable to practitioners as well as researchers.

6.7 Summary

Traditional, monolithic controllers are being modularized to take advantage of newly-
available hardware and software components and to reduce controller development and

maintenance costs. Since the resulting modular open-architecture controllers rely on the

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RTOS services, the behavior of the underlying RTOS can have a significant impact on the
controller performance.

Given the presence of RTOS unpredictability, we identified and evaluated two
strategies to improve the performance of modular controllers. The first strategy is to study
the interaction among application and RTOS modules. Once the problem sources are
discovered, they can be avoided or fine-tuned in order to minimize their impact. However,
this strategy can be ineffective when the problem sources are essential system modules. In
this case, a more desirable strategy is to study the software architecture of controllers.
There are opportunities to improve the controller software architecture by optimizing data
flow or interaction among controller modules. For example, we reorganized separate tasks
of our prototype controller with the same period into a single task. Our experiment showed
that the controller with the combined task structure exhibits significant performance

improvements.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

CONCLUSIONS AND FUTURE
DIRECTIONS

7.1 Research Contributions
Our work has made following important contributions to real-time systems research:

* We identified and measured characteristics of system unpredictability in three

commercial RTOSs: VxWork, QNX and pSOSystem.

* We investigated the effects of non-ideal characteristics of RTOSs on the
schedulability of periodic real-time tasks under RM, EDF and FIFO scheduling
algorithms. We found that RTOS unpredictability, such as the interval variation
of POSIX timers, has a significant impact on the system’s ability to meet task

deadlines.

* To make hard deadline guarantees in the presence of RTOS unpredictability,
we proposed RMTU to augment the original RM scheduling theory. We also

designed systematic experiments to derive the model parameters.

* For non-hard real-time tasks requiring performance guarantees, we developed
a practical framework for probabilistic deadline guarantees, whose
components include PRTCM, completion-probability-cognizant and CPU-
utilization-cognizant heuristics, a comparative study of scheduling algorithm
performance, and MBST. Our performance evaluation of RM, EDF, FIFO and
our new heuristics showed that RM performs well in terms of useful job ratio

while UM_CP is superior in terms of task completion probability miss ratio.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Furthermore, our experiments with prototype milling machine controllers in

the UMOAC testbed demonstrated the validity of MBST.

* To provide guidelines for real-time application development in the presence of
RTOS unpredictability, we identified strategies to minimize its impact—tuning
the underlying computer system and optimizing the software architecture of
the application itself. Our measurement data of prototype open-architecture
milling machine controllers showed that, while both strategies are effective,

the latter produces better results.

Our research results reported in this thesis represent the first step in developing
practical solutions to real-time computing issues in real-world applications, in particular,

open-architecture manufacturing control systems.

7.2 Future Directions

Several areas of our research can be extended. Because of the difficulties associated with
providing hard or probabilistic deadline guarantees in the presence of RTOS
unpredictability, we have focused our research on the uniprocessor case. The techniques
developed apply to real-time tasks after they are assigned to the processor. As real-time
applications become more and more distributed, it would be very helpful to study the
effects of RTOS and communication network unpredictability on real-time applications. In
order to provide deadline guarantees, we would need to develop principles for task
assignment or load sharing in the presence of system unpredictability.

Because some of our real-time deadline guarantee techniques are empirical, their
results are system-dependent. In the context of open control systems, reconfiguration of
the mechanical machine hardware necessitates the reconfiguration of the computing and
control environments as well. This inadvertently affects the real-time performance of the

system. Performance assessment methodologies and automated tools would be of great

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

value in order to re-calibrate the parameters of our empirical models for deadline
guarantees.

System integration would also be a very important problem. It would be helpful to
develop a knowledge base that encapsulates our empirical deadline guarantee models and
methodologies, as well as other real-time computing principles and application hardware/
software component models. This knowledge base will then be consulted in determining

how to integrate different components.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1]

(2]

(3]

(4]

(3]

(6]
(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

BIBLIOGRAPHY

Robert Abbott, and Hector Garcia-Molina, “Scheduling Real-time Transactions,”
SIGMOD Record, Vol. 17, No. 1, March 1988, pp. 71-81.
Robert K. Abbott, and Hector Garcia-Molina, “Scheduling real-time transactions:

A performance evaluation,” ACM Transactions on Database Systems, Vol. 17, No.
3, September 1992, pp. 513-560.

Tarek F. Abdelzaher, and Kang G. Shin, “Period-Based Partitioning and Alloca-
tion of Large Real-Time Applications,” 1996.

D. Agrawal, and V. Krishnaswamy, “Using Multiversion Data for Non-interfering
Execution of Write-only Transactions,” Proceedings of the 1991 ACM SIGMOD
International Conference on Management of Data, May 1991, pp. 98-107.

James Albus, “RCS: A Reference Model Architecture for Intelligent Machine Sys-
tems,” Proceedings of the International Workshop on Open-Architecture Control-
lers for Automation, Ann Arbor, Michigan, April 1994.

Y. Altintas, and W.K. Munasinghe, “A hierarchical open-architecture CNC system
for machine tools,” Annals of the CIRP, Vol. 43, No. 1, 1994, pp. 349-354.

B. Anderson, “Next Generation Workstation/Machine Controller (NGC),” Proc.
IPC’92, April 1992, pp. xix-xxvi.

Hagit Attiya, et al., “Bounds on the time to reach agreement in the presence of tim-
ing uncertainty,” Journal of the Association for Computing Machinery, Vol. 41,
No. 1, January 1994, pp. 122-152.

A. Attoui, and M. Schneider, “An Object Oriented Model for Parallel and Reactive
Systems,” Proceedings of Real-Time Systems Symposium, December 1991, pp. 84-
93.

N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings, “Applying
New Scheduling Theory to Static Priority Pre-emptive Scheduling,” Software
Engineering Journal, September 1993, pp. 284-292.

N.C. Audsley, 1.]. Bate, and A. Burns, “Putting Fixed Priority Scheduling Theory
into Engineering Practice for Safety Critical Applications,” Proceedings of the
1996 IEEE Real-Time Technology and Applications Symposium, June 1996, pp. 2-
10.

S. Baruah, D. Chen, and A. Mok, “Jitter Concerns in Periodic Task Systems,” Pro-
ceedings of Real-Time Systems Symposium, December 1997, pp. 68-77.

S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha,
and F. Wang, “On the Competitiveness of On-Line Real-Time Task Scheduling,”
Proceedings of Real-Time Systems Symposium, December 1991.

G. Bernat, and A. Burns, “Combining (n m)-Hard Deadlines and Dual Priority
Scheduling,” Proceedings of Real-Time Systems Symposium, 1997, pp. 46-57.

Carlton Bickford, Marie S. Teo, Gary Wallace, John A. Stankovic, and Krithi
Ramamritham, “A Robotic Assembly Application on the Spring Real-Time Sys-

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[16]
(17]

(18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

tem,” Proceedings of the 1996 IEEE Real-Time Technology and Applications Sym-
posium, June 1996, pp. 19-28.

Thomas E. Bihari, “Current Issues in the Development of Real-Time Control Soft-
ware,” Real-Time Systems Newsletter, Vol. 5, No. 1, 1989, pp. 1-5.

Thomas E. Bihari, and Prabha Gopinath, “Object-Oriented Real-Time Systems:
Concepts and Examples,” IEEE Computers, December 1992, pp. 25-32.

Sushil Birla, “A Conceptual Framework for Modeling Manufacturing Automa-
tion,” Directed Study Report, Department of Electrical Engineering and Computer
Science, University of Michigan, September 1993.

Sushil Birla, “Modeling Sensors in Manufacturing Automation,” Department of
Electrical Engineering and Computer Science, University of Michigan, 1995.

Sushil Birla, and Kang Shin, “Intelligent Control of Manufacturing Automation:
Making it Affordable and Maintainable,” Proceedings of the 27th CIRP Interna-
tional Seminar on Manufacturing Systems, May 1995, pp. 59-68.

S. Biyabani, J. Stankovic, and K. Ramamritham, “The Integration of Deadline and
Criticalness in Hard Real-Time Scheduling,” Proceedings of Real-Time Systems
Symposium, December 1988.

Grady Booch, Object-Oriented Design with Applications, Benjamin/Cummings,
1991.

R. A. Bowman and J. A. Muckstadt, “Stochastic analysis of cyclic schedules,”
Operations Research, 41, September-October 1993, pp. 947-958.

A. P. Buchmann, et al., “Time-Critical Database Scheduling: A Framework for
Integrating Real-Time Scheduling and Concurrency Control,” Proc. Fifth Data
Engineering Conf., 1989, pages 470-480.

G. Buttazzo, M. Spuri, and F. Sensini, “Value vs. Deadline Scheduling in Overload
Conditions,” Proceedings of Real-Time Systems Symposium, 1995, pp. 90-99.

Ken Chen and Paul Muhlethaler, “A Scheduling Algorithm for Tasks Described by
Time Value Function,” The Journal of Real-Time Systems, Vol. 10, No. 3, May
1996, pp. 293-312.

Albert Mo Kim Cheng, “Scheduling transactions in real-time database systems,”

38th Annual IEEE Computer Society International Computer Conference - COM-
PCON SPRING 93,1993, pp. 222-231.

S. Cheng, J. Stankovic, and K. Ramamritham, “Dynamic Scheduling of Groups of

Tasks with Precedence Constraints in Distributed Hard Real-Time Systems,” Pro-
ceedings of Real-Time Systems Symposium, December 1986.

Jan Chomicki, “Real-time integrity constraints,” Proceedings of the 11th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 1992,
pp- 274-282.

Manhoi Choy, Mei-Po Kwan, and Hong Va Leong, “On real-time distributed geo-
graphical database systems,” Proceedings of the 27th Hawaii International Con-
ference on System Sciences (HICSS-27), 1994, pp. 337-346.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[31]

[32]

(33]

[34]

[35]

(36]

[37]

(38]
[39]

[40]

(41]

[42]

[43]

[44]

[45]

Jen-yao Chung, Jane W.S. Liu, and Kwei-jay Lin, “Scheduling Periodic Jobs That
Allow Imprecise Results,” JEEE Transactions on Computers, Vol. 39, No. 9, Sep-
tember 1990, pp. 1156-1174.

E. Civello, A. Copsey, and P. Terelak, “Object-oriented development of real-time
monitoring and control systems: a case study,” IEE Colloquium on the Design,
Implementation and Use of Object-Oriented Systems, London, UK. January 1994,
pp- 3/1-3/3.

E.G. Coffman, Jr. and Zhen Liu, “On the optimal stochastic scheduling of out-for-
ests,” Operations Research, Vol. 40, pp. S67-S75, Jan-Feb., 1992.

James Coplien, Advanced C++ Programming Styles and Idioms, Addison-Wesley,
1992.

Michael F. Coulas, Glenn H. Macewen, and Genevieve Marquis, “RNet: A Hard
Real-Time Distributed Programming System,” IEEE Transactions on Computers,
Vol. C-36, No. 8, August 1987, pp. 917-932.

U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ledin, D.
McCarthy, A. Rosenthal, S. Sarin, M.J. Carey, M. Livny, and R. Jauhari, “The
HiPAC Project: Combining Active Databases and Timing Constraints,” SIGMOD
Record, Vol. 17, No. 1, March 1988, pp. 51-70.

Lisa DiPippo, and Victor Wolfe, “Object-based Semantic Real-time Concurrency
Control,” Proceedings of Real-Time Systems Symposium, December 1993, pp. 87-
96.

Stuart R. Faulk, and David L. Parnas, “On Synchronization in Hard-Real-Time
Systems,” Communications of the ACM, Vol. 31, No. 3, March 1988, pp. 274-287.

Esther Frostig, “A stochastic scheduling problem with intree precedence con-
straints,” Operations Research, Vol. 36, pp. 937-43, Nov-Dec., 1988.

Hector Garcia-Molina, and Kenneth Salem, “Main Memory Database Systems: An
Overview,” [EEE Transactions on Knowledge and Data Engineering, Vol. 4, No.
6, December 1992, pp. 509-516.

Michael R. Garey, and David S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, 1979.

Roman Ginis, Victor Fay Wolfe, and J.J. Prichard, “The Design of an Open System
with Distributed Real-Time Requirements,” Proceedings of the 1996 IEEE Real-
Time Technology and Applications Symposium, June 1996, pp. 82-90.

Marc H. Graham, “How to get serializability for real-time transactions without
having to pay for it,” Proceedings of Real-Time Systems Symposium, December
1993, pp. 56-65.

Marc H. Graham, “Real Time Data Management,” Proceedings of the Tenth IEEE
Workshop on Real-Time Operating Systems and Software, May 1993, pp. 51-56.

Marc H. Graham, “Issues in Real-Time Data Management,” The Journal of Real-
Time Systems, 4, 1992, pp. 185-202.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

Vincenzo Grassi, Lorenzo Donatiello, and Salvatore Tucci, “On the optimal check-
pointing of critical tasks and transaction-oriented systems,” IEEE Transactions on
Software Engineering, Vol. 18, No. 1, January 1992, pp. 72-77.

Ching-Chih Han, and Kwei-Jay Lin, “Scheduling Distance-Constrained Real-Time
Tasks,” Proceedings Real-Time Systems Symposium, 1992, pp. 300-308.
Ching-Chih Han, and Kwei-Jay Lin, “Scheduling Real-Time Computations with
Separation Constraints,” Information Processing Letters, 42, 1992, pages 61-
66.Hector Garcia-Molina and Bruce Lindsay, “Research Directions for Distributed
Databases,” SIGMOD Record, Vol. 19, No. 4, December 1990, pp. 98-103.

Seungjae Han, Kang G. Shin, and Jaehyun Park, “A Non-intrusive Distributed
Monitoring Support in Fault Injection Experiments,” 4th IEEE International Work-
shop on Evaluation Techniques for Dependable Systems, October 1995.

Jayant R. Haritsa, “Approximate Analysis of Real-Time Database Systems,” Pro-
ceedings of the 10th International Conference on Data Engineering, 1994, pp. 10-
19.

Jayant R. Haritsa, Miron Livny, and Michael J. Carey, “Earliest Deadline Schedul-
ing for Real-Time Database Systems,” Proceedings of Real-Time Systems Sympo-
sium, December 1991, pp. 232-242.

Jayant R. Haritsa, Michael J. Carey, and Miron Livny, “Data Access Scheduling in
Firm Real-Time Database Systems,” The Journal of Real-Time Systems, 4, 1992,
pp- 203-241.

Tony Haynes, “The NGC/LEC Project,” Proceedings of the International Work-
shop on Open-Architecture Controllers for Automation, Ann Arbor, Michigan,
April 1994.

P.S. Heidmann, “A Statistical Model for Designers of Rate Monotonic Systems,”
RMA Users Forum, Software Engineering Institute, PA, 1994.

Jiawei Hong, Xiaonan Tan, and Don Towsley, “A Performance Analysis of Mini-
mum Laxity and Earliest Deadline Scheduling in a Real-Time System,” IEEE
Transactions on Computers, Vol. 38, No. 12, December 1989, pp. 1736-1744.

John E. Hopcroft, and Jeffrey D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, 1979.

Wen-Chi Hou, Gultekin Ozsoyoglu, and Baldeo K. Taneja, “Processing Aggregate
Relational Queries with Hard Time Constraints,” Proceedings of the 1989 ACM
SIGMOD International Conference on Management of Data, 1989, pp. 68-77.

Jing Huang, and Le Gruenwald, “Logging techniques in real-time database sys-
tems,” Proceedings of the Energy-Sources Technology Conference, 1994, pp. 247-
257.

J. Huang, J.A. Stankovic, K. Ramamritham, and D. Towsley, “Experimental Eval-
uation of Real-Time Optimistic Concurrency Control Schemes,” Proceedings of
the 17th International Conference on Very Large Data Bases, Very Large Data
Base Endowment, September 1991, pp. 35-46.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[60]
[61]

[62]
[63]
(64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

Jiandong Huang, et al., “On Using Priority Inheritance In Real-Time Databases,”
Proceedings of Real-Time Systems Symposium, December 1991, pp. 210-221.

Jiandong Huang, et al., “Priority Inheritance In Soft Real-Time Databases,” The
Journal of Real-Time Systems, 4, 1992, pp. 243-268.

IEEE, IEEE Guide to POSIX Open System Environment (IEEE 1003.0), 1995.
Integrated Systems Inc., pSOSystem/68K User’s Manual, 1992.

Yutaka Ishikawa, Hideyuki Tokuda, and Clifford W. Mercer, “An Object-Oriented
Real-Time Programming Language,” IEEE Computer, October 1992, pp. 66-73.

Farnam Jahanian, and Aloysius K.-L. Mok, “A Graph-Theoretic Approach for
Timing Analysis and its Implementation,” IEEE Transactions on Computers, Vol.
C-36, No. 8, August 1987, pp. 961-975.

Kevin Jeffay, and Donald L. Stone, “Accounting for Interrupt Handling Costs in
Dynamic Priority Task Systems,” Proceedings of Real-Time Systems Symposium,
December 1993, pp. 212-221.

E.D. Jensen, C.D. Locke, and H. Tokuda, “A Time-Driven Scheduling Model for
Real-Time Operating System,” Proceedings of Real-Time Systems Symposium,
December 1985, pp. 112-122.

M. Joseph, and P. Pandya, “Finding Response Times in a Real-Time System,” The
Computer Journal, Vol. 29, No. 5, 1986, pp. 390-395.

Sanjay Kamat, Nicholas Malcolm, and Wei Zhao, “Performance Evaluation of a
Bandwidth Allocation Scheme for Guaranteeing Synchronous Messages with
Arbitrary Deadlines in an FDDI Network,” Proceedings of Real-Time Systems
Symposium, December 1993, pp. 34-43.

Ryoji Kataoka, Tetsuji Satoh, and Kenji Suzuki, “Survey of concurrency control
for real-time database systems,” IEICE Transactions on Information and Systems,
Vol. E76-D, No. 2, February 1993, pp. 145-153.

Kevin B. Kenny, and Kwei-Jay Lin, “Building Flexible Real-Time Systems Using
the Flex Language,” IEEE Computer, May 1991, pp. 70-78.

Kevin A. Kettler, Daniel I. Katcher, and Jay K. Strosnider, “A Modeling Method-
ology for Real-Time/Multimedia Operating Systems,” Proc. Real-Time Technol-
ogy and Applications Symposium, pp. 15-26, May 1995

Jinhwan Kim, and Heonshik Shin, “Priority-driven concurrency control based on
data conflict state in distributed real-time databases,” Microprocessing and Micro-
programming, Vol. 38, No. 1-5, September 1993, pp. 491-498.

Woosaeng Kim, and Jaideep Srivastava, “Enhancing Real-Time DBMS Perfor-
mance with Multiversion Data and Priority Based Disk Scheduling,” Proceedings
of Real-Time Systems Symposium, December 1991, pp. 222-231.

Young-Kuk Kim, and Sang H. Son, “Predictability and Consistency in Real-Time
Database Systems,” in S. Son ed., Advances in Real-Time Systems, Prentice Hall,
1995, pp. 509-531.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

(85]

[86]

(87]

[88]

Young-Kuk Kim, “Predictability and Consistency in Real-Time Transaction Pro-
cessing,” PhD Dissertation, University of Virginia, May 1995.

Mark H. Klein, A Practitioner’s handbook for real-time analysis guide to rate
monotonic analysis for real-time systems, Kluwer Academic Publishers, Boston,
July 1993.

Mark H. Klein, John P. Lehoczky, and Ragunathan Rajkurnar, “Rate-Monotonic
Analysis for Real-Time Industrial Computing,” IEEE Computer, January 1994, pp.
24-32.

G. Koren, and D. Shasha, “Skip-Over: Algorithms and Complexity for Overloaded
Systems that Allow Skips,” Proceedings of Real-Time Systems Symposium, 1995,
pp- 110-117.

Yoram Koren, Zbigniew J. Pasek, A. Galip Ulsoy, and Paul K. Wright, “Timing
and Performance of Open Architecture Controllers,” to appear in Proceedings of
1996 ASME International Mechanical Engineering Congress and Exposition,
Atlanta, Georgia, November 1996.

Henry F. Korth, Nandit Soparkar, and Abraham Silberschatz, “Triggered Real-
Time Databases with Consistency Constraints,” Proceedings of the 16th VLDB
Conference, 1990, pp. 71-82.

Tei-Wei Kuo, and Aloysius K. Mok, “Using Data Similarity to Achieve Synchroni-
zation for Free,” Proceedings of the 11th IEEE Workshop on Real-Time Operating
Systems and Software, 1994, pp. 112-116.

Tei-Wei Kuo, and Aloysius K. Mok, “SSP: a Semantics-Based Protocol for Real-
Time Data Access,” Proceedings of Real-Time Systems Symposium, December
1993, pp. 76-86.

James F. Kurose, and Renu Chipalkatti, “Load Sharing in Soft Real-Time Distrib-
uted Computer Systems,” IEEE Transactions on Computers, Vol. C-36, No. 8,
August 1987, pp. 993-1000.

Kam-yiu Lam, and Sheung-lun Hung, “Static Two Phase Locking Protocols for
Concurrency Control in Distributed Real-time Database Systems,” Proceedings of
the First International Workshop on Real-Time Computing Systems and Applica-
tions, Seoul, Korea, December 1994, pp. 185-189.

Juhnyoung Lee, Myung-Joon Lee, and Cheol Su Lim, “Challenges in Real-Time
Object-Oriented Databases,” Proceedings of the First International Workshop on
Real-Time Computing Systems and Applications, Seoul, Korea, December 1994,
pp- 190-195.

Juhnyoung Lee, and Sang H. Son, “Using Dynamic Adjustment of Serialization
Order for Real-Time Database Systems,” Proceedings of Real-Time Systems Sym-
posium, December 1993, pp. 66-75.

J.P. Lehoczky, et al., “Fixed Priority Scheduling Theory for Hard Real-Time Sys-
tems,” A.M. van Tilborg and G.M. Koob, eds., Foundations of Real-Time Comput-
ing: Scheduling and Resource Management, Kluwer Academic Publishers,
Boston, 1991, pp. 1-30.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

(971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

J.P. Lehoczky, “Real-Time Resource Management Techniques,” J.J. Marciniak,
ed., Encyclopedia of Software Engineering, John Wiley and Sons, New York,
1994, pp. 1011-1020.

Alberto Leon-Garcia, Probability and Random Processes for Electrical Engineer-
ing, Addison-Wesley, 1989.

Kwei-Jay Lin, “Consistency Issues in Real-Time Database Systems,” Proceedings
of the 22nd Annual Hawaii International Conference on System Science, 1989, pp.
654-661.

Kwei-Jay Lin and Ming-Ju Lin, “Enhancing Availability in Distributed Real-Time
Databases,” SIGMOD Record, Vol. 17, No. 1, March 1988, pp. 34-43.

C.L. Liu, and James W. Layland, “Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment,” Journal of the ACM, Vol. 20, No. 1, January
1973, pp. 46-61.

Jane W.S. Liu, et al., “Algorithms for Scheduling Imprecise Computations,” [EEE
Computer, May 1991, pp. 58-68.

C.D. Locks, “Best-Effort Decision Making for Real-Time Scheduling,” Ph.D. dis-
sertation, Department of Computer Science, Carnegie Mellon University, 1986.

Victor B. Lortz, “An Object-Oriented Real-Time Database System for Multipro-
cessors,” Ph.D. dissertation, Department of Electrical Engineering and Computer
Science, University of Michigan, April 1994.

Victor B. Lortz, and Kang G. Shin, “Combining Contracts and Exemplar-Based
Programming for Class Hiding and Customization,” Proceedings of OOPSLA’94,
pp- 453-467.

Victor B. Lortz, and Kang G. Shin, “Semaphore Queue Priority Assignment for
Real-Time Multiprocessor Synchronization,” IEEE Trans. on Software Engineer-
ing, Vol. 21, No. 10, October 1995, pp. 834-844.

S. Marche, “Measuring the Stability of Data Models,” European Journal of Infor-
mation Systems, Vol. 2, No. 1, 1993, pp. 37-47.

Martin Marietta Astronautics Group, Next Generation Workstation/Machine Con-
troller Specification for an Open System Architecture Standard, NGC-0001-13-
000-SYS edition, March 1992.

John Marsh, et al., “Object-oriented management of real-time data in integrated
avionics architectures,” 1993 IEEE National Aerospace and Electronics Confer-
ence, 1993, pp. 529-534.

M. Marucheck, and J.K. Strosnider, “An Evaluation of the Graceful Degradation
Properties of Real-Time Schedulers,” The Tiventy Fifth Annual International Sym-
posium on Fault-Tolerant Computing, 1995.

Clifford W. Mercer, and Hideyuki Tokuda, “The ARTS Real-Time Object Model,”
Proceedings of the 11th Real-Time Systems Symposium, 1990, pp. 2-10.

A.K. Mok, “Fundamental Design Problems of Distributed Systems for the Hard
Real-Time Environment,” Ph.D. dissertation, Massachusetts Institute of Technol-
ogy, May 1983.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Magnus Morin, et al., “Real-Time Hierarchical Control,” [EEE Software, Septem-
ber 1992, pp. 51-57.

Jogesh K. Muppala, Steven P. Woolet, and Kishor S. Trivedi, “Real-Time-Systems
Performance in the Presence of Failures,” IEEE Computer, May 1991, pp. 37-47.

Hidenori Nakazato and Kwei-Jay Lin, “A Design Methodology for Real-Time
Database Systems,” Proceedings of the Tenth IEEE Workshop on Real-Time Oper-
ating Systems and Software, May 1993, pp. 64-68.

Hidenori Nakazato, and Kwei-Jay Lin, “Concurrency control algorithms for real-
time systems,” Microprocessing and Microprogramming, Vol. 38, No. 1-5, Sep-
tember 1993, pp. 647-654.

Swaminathan Natarajan, and Wei Zhao, “Issues in Building Dynamic Real-Time
Systems,” IEEE Software, September 1992, pp. 16-21.

Next Generation Workstation/Machine Controller (NGC) Requirements Definition
Document (RDD), 1989.

Object Management Group, The Common Object Request Broker: Architecture
and Specification, 1992.

Open-Architecture Controls Team, Developer’s Guide for Open-Architecture Con-
trol of the Robotool, Dept. of Electrical Engineering & Computer Science and
Dept. of Mechanical Engineering & Applied Mechanics, U. of Michigan, 1995.
Gultekin Ozsoyoglu, et al., “Processing Real-Time, Non-Aggregate Queries with
Time-Constraints in CASE-DB,” Proceedings of the 8th International Conference
on Data Engineering, January 1992, pp. 410-417.

Gultekin Ozsoyoglu, and Richard Snodgrass, “Temporal and Real-Time Data-
bases: A Survey,” IEEE Transactions on Knowledge and Data Engineering, Vol. 7,
No. 4, August 1995, pp. 513-532.

M. Tamer Ozsu, and Patrick Valduriez, Principles of Distributed Database Sys-
tems, Prentice-Hall, 1991.

Chang Yun Park, and Alan C. Shaw, “Experiments with a Program Timing Tool
Based on Source-Level Timing Schema,” JEEE Computer, May 1991, pp. 48-57.
Jaehyun Park, er al., “An Open Architecture Real-Time Controller for Machining
Processes,” Proceedings of the 27th CIRP International Seminar on Manufactur-
ing Systems, May 1995, pp. 27-34.

Joan Peckham, Victor F. Wolfe, JJ Prichard, and Lisa C. DiPippo, “RTSORAC:
Design of a Real-Time Object-Oriented Database System,” Technical Report 94-
231, University of Rhode Island, 1994.

Dartzen Peng, and Kang G. Shin, “Modeling of Concurrent Task Execution in a
Distributed System for Real-Time Control,” IEEE Transactions on Computers,
Vol. C-36, No. 4, April 1987, pp. 500-516.

James L. Peterson, and Abraham Silberschatz, Operating System Concepts, Sec-
ond Edition, Addison-Wesley, 1985.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[121]
[122]

[123]

[124]

[125]

[126]
[127]
[128]
[129]
[130]

[131]

[132]

[133]

[134]

[135]

[136]

Wade D. Peterson, The VMEbus Handbook, expanded third edition, VFEA Inter-
national Trade Association, 1993.

Michael Pinedo, “Stochastic scheduling with release dates and due dates,” Opera-
tions Research, 31, May-June 1983, pp. 559-572.

A. Pizzarello, and F. Golshani, “In-Memory Databases: An industry perspective,”
2nd International Workshop on Research Issues on Data Engineering: Transaction
and Query Processing, 1992, pp. 96-101.

Gustav Pospischil, et al., “Developing Real-Time Tasks with Predictable Timing,”
IEEE Software, September 1992, pp. 35-44.

G. Pritschow, and C. Daniel, “Open Control System - A Future-Oriented Con-
cept,” Proceedings of the 27th CIRP International Seminar on Manufacturing Sys-
tems, May 1995, pp. 5-17.

Calton Pu, and Krithi Ramamritham, “A Formal Characterization of Epsilon Seri-
alizability,” 1992.

QNX Software Systems Ltd., QNX Documentations, http://www.qnx.com.
Young-Gook Ra, and Elke A. Rundensteiner, “A Transparent Object-Oriented
Schema Change Approach Using View Evolution,” Proceedings of the 11th Inter-
national Conference on Data Engineering, March 1995, pp. 165-172.

R. Rajkumar, L. Sha, and J.P. Lehoczky, “Real-time synchronization protocols for
multiprocessors,” Proc. Real-Time Systems Symposium, Dec. 1988, pp. 259-269.
Krithi Ramamritham, “Real-Time Databases,” Distributed and Parallel Data-
bases, 1, 1993, pp. 199-226.

Krithi Ramamritham, and Panos K. Chrysanthis, “In Search of Acceptability Crite-
ria: Database Consistency Requirements and Transaction Correctness Properties,”
Distributed Object Management, Ozsu, Dayal, and Valduriez Ed., Morgan Kauf-
mann Publishers, 1992.

Krithi Ramamritham, and Nandit Soparkar, “Report on DART’96: Databases:
Active and Real-Time (Concepts meet Practice),” 1996.

Krithi Ramamritham, John A. Stankovic, and Wei Zhao, “Distributed Scheduling
of Tasks with Deadlines and Resource Requirements,” IEEE Transactions on
Computers, Vol. 38, No. 8, August 1989, pp. 1110-1123.

Karsten Schwan, Prabha Gopinath, and Win Bo, “CHAOS-Kernel Support for
Objects in the Real-Time Domain,” IEEE Transactions on Computers, Vol. C-36,
No. 8, August 1987, pp. 904-916.

D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin, “On Task Schedulability in Real-
Time Control Systems,” 1996.

Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky, “Concurrency Centrol for
Distributed Real-Time Databases,” SIGMOD Record, Vol. 17, No. 1, March 1988,
pp- 82-98.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]
[145]
[146]
[147]

[148]

[149]

[150]

[151]

L. Sha, R. Rajkumar, and J.P. Lehocsky, “Priority Inheritance Protocols: An
Approach to Real-Time Synchronization,” IEEE Transactions on Computers, Vol.
39, No. 9, September 1990, pp. 1175-1185.

Wei Kuan Shih, Jane W.S. Liu, and C.L. Liu, “Modified Rate-Monotonic Algo-
rithm for Scheduling Periodic Jobs with Deferred Deadlines,” IEEE Transactions
on Software Engineering, Vol. 19, No. 12, December 1993.

Kang G. Shin, “Real-Time Communications in a Computer-Controlled Workcell,”
IEEE Transactions on Robotics and Automation, Vol. 7, No. 1, February 1991, pp.
105-113.

Kang G. Shin, and C.M. Krishna, “New Performance Measures for Real-Time
Digital Computer Controls and Their Applications,” Control and Dynamic Sys-
tems, Academic Press, 1990.

Kang G. Shin, C.M. Krishna, and Yann-hang Lee, “A Unified Method for Evaluat-
ing Real-Time Computer Controllers and Its Application,” IEEE Transactions on
Automatic Control, Vol. AC-30, No. 4, April 1985, pp. 357-366.

Kang G. Shin, and Parameswaran Ramanathan, “Real-Time Computing: A New
Discipline of Computer Science and Engineering,” IEEE Proceedings, Vol. 82,
No. 1, January 1994, pp. 6-24.

LihChyun Shu and Michal Young, “Real-Time Concurrency Control with Analytic
Worst-Case Latency Guarantees,” Proceedings of the Tenth I[EEE Workshop on
Real-Time Operating Systems and Software, May 1993, pp. 69-73.

B.W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman
and Hall, 1986.

Mukesh Singhal, “Issues and Approaches to Design of Real-Time Database Sys-
tems,” SIGMOD Record, Vol. 17, No. 1, March 1988, pp. 19-33.

Dag Sjgberg, “Quantifying Schema Evolution,” Information and Software Tech-
nology, Vol. 35, No. 1, January 1993, pp. 35-54.

S.H. Son, “Scheduling real-time transactions using priority,” Information and Soft-
ware Technology, Vol. 34, No. 6, June 1992, pp. 409-415.

Sang H. Son, er al., “Integration of a database system with real-time kemel for
time-critical applications,” Proceedings of the Second International Conference on
Systems Integration, 1992, pp. 172-180.

Sang H. Son, Juhnyoung Lee, and Yi Lin, “Hybrid Protocols Using Dynamic
Adjustment of Serialization Order for Real-Time Concurrency Control,” The Jour-
nal of Real-Time Systems, 4, 1992, pp. 269-276.

Sang H. Son, Juhnyoung Lee, and Savita Shamsunder, “Real-time transaction pro-
cessing: pessimistic, optimistic, and hybrid approaches,” 2nd International Work-
shop on Research Issues on Data Engineering: Transaction and Query Processing,
1992, pp. 222. :

Sang H. Son, Young-Kuk Kim, and Robert C. Beckinger, “MRDB: A multi-user
real-time database testbed,” Proceedings of the Hawaii International Conference
on System Sciences, 1994, pp. 543-552.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[152]

[153]

[154]

[155]
[156]

[157]

[158]

[159]

[160]

[161]
[162]

[163]

[164]
[165]

[166]

[167]

Nandit Soparkar, Henry F. Korth, and Avi Silberschatz, “Time-Constrained Trans-
action Scheduling,” Technical Report, TR-92-46, Department of Computer Sci-
ences, University of Texas at Austin, December 1992.

John A. Stankovic, “Misconceptions About Real-Time Computing,” IEEE Com-
puter, October 1988, pp. 10-19.

John A. Stankovic, “Decentralized Decision Making for Task Reallocation in a
Hard Real-Time System,” IEEE Transactions on Computers, Vol. 38, No. 3, March
1989, pp. 341-355.

John A. Stankovic, and Krithi Ramamritham, “The Spring Kernel: A New Para-
digm for Real-Time Systems,” IEEE Software, May 1991, pp. 62-72.

John A. Stankovic and Wei Zhao, “On Real-Time Transactions,” SIGMOD
Record, Vol. 17, No. 1, March 1988, pp. 4-18.

D. B. Stewart, D. E. Schmitz, and P. K. Khosla, “The Chimera II Real-Time Oper-
ating System for Advanced Sensor-Based Robotic Applications,” IEEE Transac-
tions on Systems, Man, and Cybernetics, vol. 22, no. 6, pp. 1282-1295, November/
December 1992.

David B. Stewart, Richard A. Volpe, and Pradeep K. Khosla, “Design of Dynami-
cally Reconfigurable Real-Time Software using Port-Based Objects,” Technical
Report CMU-RI-TR-93-11, Carnegie Mellon University, July 1993.

Bjarne Stroustrup, 7he C++ Programming Language, second edition, Addison-
Wesley, 1991.

M. Szafarczyk, “Open Architecture Controllers and Automatic Supervision in
Manufacturing,” Proceedings of the 27th CIRP International Seminar on Manu-
facturing Systems, May 1995, pp. 45-50.

P. Thambidurai, and K.S. Trivedi, “Transient Overloads in Fault-Tolerant Real-
Time Systems,” Proceedings of Real-Time Systems Symposium, December 1989.

L.M. Thompson, “Using pSOS+ for Embedded Real-Time Computing,” COMP-
CON 1990, pp. 282-288.

T.S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J. W.-S. Liu,
“Probabilistic Performance Guarantees for Real-Time Tasks with Varying Compu-
tation Times,” Proceedings of Real-Time Technology and Applications Symposium,
1995, pp. 164-173.

K.W. Tindell, A. Burns and A. Wellings, “An Extendible Approach for Analyzing
Fixed Priority Hard Real-Time Tasks,” Real-Time Systems, 6, 1994, pp. 133-151.

Hideyuki Tokuda, and Clifford W. Mercer, “ARTS: A Distributed Real-Time Ker-
nel,” ACM Operating Systems Review, 23(3), July 1989, pp. 29-53.

Frank Shou-Cheng Tseng, Arbee L.P. Chen, and Wei-Pang Yang, “A Probabilistic
Approach to Query Processing in Heterogeneous Database Systems,” 2nd Interna-
tional Workshop on Research Issues on Data Engineering: Transaction and Query
Processing, February 1992, pp. 176-183.

Ozgur Ulusoy, “Current Research on Real-Time Databases,” SIGMOD Record,
Vol. 21, No. 4, December 1992, pp. 16-21.

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[168]

[169]
[170]

[171]
[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

Steve Vestal, “On the Accuracy of Predicting Rate Monotonic Scheduling Perfor-
mance,” Tri-Ada, December 1990.

VFEA International Trade Association, The VMEbus Specification.

P.J. Weinberger, and Debasis Mitra, “Probabilistic models of database locking:
solutions, computational algorithms, and asymptotics,” Journal of the Association
for Computing Machinery, 31, October 1984, pp. 855-878.

Wind River Systems, VxWorks Reference Manual 5.1, 1993.

V. Wolfe, L.C. DiPippo, and P.J. Fortier, “The Design of Real-Time Extensions to
the Open Object-Oriented Database System,” TR94-236, Department of Computer
Science, University of Rhode Island, 1994.

Victor E. Wolfe, Lisa B. Cingiser, J. Peckham, and J. Prichard, “A Model For Real-
Time Object-Oriented Databases,” Proceedings of the Tenth IEEE Workshop on
Real-Time Operating Systems and Software, May 1993, pp. 57-63.

Paul Wright, “Open-Architecture Manufacturing,” Proceedings of the Interna-
tional Workshop on Open-Architecture Controllers for Automation, Ann Arbor,
Michigan, April 1994.

Jia Xu, and David L. Parnas, “Scheduling Processes with Release Times, Dead-
lines, Precedence, and Exclusion Relations,” IEEE Transactions on Software Engi-
neering, Vol. 16, No. 3, March 1990, pp. 360-369.

Yong L. Yoon, and Song C. Moon, “Reliable transaction processing for real-time
distributed database systems,” Microprocessing and Microprogramming, Vol. 34,
No. -5, February 1992, pp. 63-66.

Philip S. Yu, e al., “On Real-Time Databases: Concurrency Control and Schedul-
ing,” Proceedings of the IEEE, Vol. 82, No. 1, January 1994, pp. 140-157.

Wei Zhao, Krithi Ramamritham, and John A. Stankovic, “Preemptive Scheduling
Under Time and Resource Constraints,” IEEE Transactions on Computers, Vol. C-
36, No. 8, August 1987, pp. 949-960.

Lei Zhou, Elke A. Rundensteiner, and Kang G. Shin, “Schema Evolution for Real-
Time Object-Oriented Databases,” Technical Report CSE-TR-199-94, Department
of Electrical Engineering and Computer Science, University of Michigan, March
1994.

Lei Zhou, Elke A. Rundensteiner, and Kang G. Shin, “OODB Support for Real-
Time Open-Architecture Controllers,” Proceedings of the Fourth International
Conference on Database Systems for Advanced Applications (DASFAA’95), April
1995, pp. 206-213.

Lei Zhou, Michael J. Washburn, Kang G. Shin, and Elke A. Rundensteiner, “Per-
formance Evaluation of Modular Real-Time Controllers,” Proceedings of 1996
ASME International Mechanical Engineering Congress and Exposition: Dynamic
Systems and Control Division, DSC-Vol. 58, November 1996, pp. 299-306. .

Lei Zhou, Elke A. Rundensteiner, and Kang G. Shin, “Schema Evolution of an
Object-Oriented Real-Time Database System for Manufacturing Automation,”

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IEEE Transactions on Knowledge and Data Engineering, Vol. 9, No. 6, Novem-
ber/December 1997, pp. 956-977.

[183] LeiZhou, Kang G. Shin, Elke A. Rundensteiner, and Nandit Soparkar, “Probabilis-
tic Real-Time Data Access with Interval Constraints,” Proceedings of the First
International Workshop on Real-Time Databases: Issues and Applications
(RTDB’96), March 1996, pp. 15-22.

[184] LeiZhou, Kang G. Shin, Elke A. Rundensteiner, and Nandit Soparkar, “Probabilis-
tic Real-Time Data Access with Deadline and Interval Constraints,” in Sang H.
Son, Kwei-Jay Lin and Azer Bestavros ed., Real-Time Databases Systems: Issues
and Applications, Kluwer Academic Publishers, 1997.

[185] LeiZhou, Kang G. Shin, and Elke A. Rundensteiner, “Rate-Monotonic Scheduling
in the Presence of Timing Unpredictability,” Proceedings of Fourth IEEE Real-
Time Technology and Applications Symposium (RTAS’98), June 1998.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IMAGE EVALUATION
TEST TARGET (QA-3)

I

.....

.

at76

14

~@Taw

Ay

'
AR

150mm
6

TEE
l

125

© 1993, Applied Image, Inc., All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

