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CHAPTER 1

INTRODUCTION

In recent years, the real-time systems community has been making significant effort in using commercial-
off-the-shelf components to develop performance-assured systems. Several research initiatives have
been undertaken to enable writing cost-effective software that provides Quality-of-Service (QoS)
guarantees on multiple platforms whose resource capacity, speed and load profile are unknown at
application Ccsign time. Ideally, performance-assured systems should provide QoS guarantees that
are easily customizable to the size, speed, and capability of the target hardware and OS. Platform-
specific code, on the other hand, is a main contributer to the cost and complexity of commercial
software. In QoS-sensitive applications, resource-capacity-dependent code unduly complicates the
software programming effort and maintainability. In order to reduce this complexity, new program-
ming abstractions, operating system mechanisms and portable middleware are needed to facilitate
next-generation platform independent real-time programming. They should eliminate resource ca-
pacity dependent code from real-time software while providing QoS guarantees commensurate with
platform resource constraints.

The thesis presents a resource-management framework, called Adaptware, that (i) enables ap-
plication designers to express “flexible” performance requirements, (ii) enforces QoS guarantees,
and (iii) adapts application timing behavior to platform capacity and load conditions. Adaptware
is layered between the application and the OS kernel. It handles, on behalf of the application, the
temporal correctness, adaptation, and resource allocation issues in a performance-assured system.

We focus on using Adaptware in conjunction with commercial servers. Services performed by
the server, as well as service software itself, may have a substantial commercial value which gener-
ates interest in proper service design within the computing industry. The performance of the service

affects the revenue it generates. With the advent of real-time and mission critical services such
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as online brokerage and multimedia, the problem of proper QoS-sensitive service design acquires
added importance. Adaptware complements existing service architectures with QoS guarantees. In
Adaptware we design and implement resource-monitoring mechanisms that automatically profile
service execution times and monitor platform-load conditions. This resource monitoring will be fed
back to, and integrated with, service scheduling. We develop scheduling mechanisms and policies
that achieve maximum utility for a finite amount of resources. By abstracting away resource allo-
cation and management mechanisms for QoS adaptation, Adaptware allows service developers to
write distributed applications without regard to particular platform capacity or load. To demonstrate
the independence between application code and QoS management in Adaptware, we demonstrate in
this thesis the use of Adaptware to provide QoS guarantees on behalf of existing best-effort legacy
servers, such as Apache, whose development predated our research. We show that when layered on
top of Adaptware, the unmodified best-effort service achieves QoS-sensitive characteristics without

code changes or recompilation.

1.1 Adaptation Support for Servers

A performance-assured server must be able to provide each client or class of clients their desired
QoS irrespective of the behavior of other clients. This implies protection of well-behaving clients
from those violating their QoS specification. Such protection may imply preempting, delaying or
dropping the processing of non-conforming client requests or blocking mis-behaving connections,
we call these mechanisms QoS isolation.

In order to achieve better QoS isolation between different clients, flows, traffic classes, or other
abstract entities, we suggest the abstraction of QoS contracts. Adaptware allocates resources to
QoS contracts which makes it easier to perform per-contract QoS control. Adaptware addresses and

offloads the following concerns associated with QoS contracts:

e QoS mapping: Given contract parameters, the system should be able to map them into the
corresponding resource requirements (€.g., CPU time and communication bandwidth). This
mapping, however, depends on parameters of the underlying platform (e.g., processor speed).
A system that adapts transparently to available platform resources should employ an adaptive
QoS-mapping function. Some form of self-profiling capability is required to estimate service

cost. Adaptware will be used to realize this self-profiling capability.
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e QoS optimization: By virtue of the QoS contract between the server and clients, each client
specifies a range of acceptable QoS. Given a variable amount of platform resources and a
dynamically-changing number of clients, the system should adapt individual clients’ QoS to
achieve the maximum possible aggregate utility under given load conditions. We will derive
(near) optimal policies to automatically select the level of QoS for each contract so as to

maximize the aggregate utility for the community of clients.

e QoS enforcement: Enforcement mechanisms are required to achieve QoS-sensitive perfor-
mance. Such mechanisms will monitor and police QoS contracts so that malicious clients
cannot dominate the available resources. Enforcement mechanisms ensure that the clients
abide by their part of the QoS contract. Adaprware investigates and implements enforcement
mechanisms that do not require modification to the OS kernel, and do not require architectural

changes to service code.

By shifting the authority in managing clients’ QoS lcvels to Adaprware, the application code is
decoupled from the assumptions on the underlying resource availability and capacity. Service utility

is maximized over the community of clients for the given platform capacity and load.

1.2 Adaptation Middleware

We developed new middleware tools and APIs to embody our analytical and experimental results
for future development of performance-assured QoS-adaptive systems. Adaptware tools reported in

this thesis are summarized below:

e gthreads: A user-thread package that offloads QoS adaptation from the application program-
mer. Programming in gthreads enables expression of multiple application-QoS levels as well
as QoS-degradation policies. Under an overload condition, the grhreads user-level scheduler
transparently triggers QoS adaptation to select the appropriate QoS level for system load and
maximize system utility under resource constraints. Load monitoring, thread execution time

profiling, and QoS adaptation are performed internally by the scheduler.

e CLIPS: A Communication Library for /mplementing Performance-assured Services. Com-
munication is an essential element of any distributed application. We build an end-host com-
munication subsystem that facilitates QoS-adaptive communication. It enables the expression

of multiple QoS levels on a per-connection, per-client, or per-service-class basis associated
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with each application. CLIPS implements the necessary monitoring and load-profiling sup-
port to perform QoS mapping and manage QoS-adaptive end-point communications.

e gContracts: A portable middleware layer that provides the approximate capabilities of gthreads
and CLIPS on regular UNIX.

e RTPOOL: A distributed programming environment that augments gthreads and CLIPS with
support for load sharing and invocation migration in distributed real-time applications. The
environment implements protocols to migrate threads between machines, and assign their

QoS levels such that the aggregate distributed system utility is maximized.

The above tools are the research vehicle we use to test ideas, models and algorithms for supporting

next-generation platform-independent composable, adaptive real-time software.

1.3 Experimental Evaluation

A goal of our design and experimental study is to shed light on architectural challenges, resource-
management solutions, and implementation difficulties of adaptive real-time systems. Thus, our

evaluation of Adaptware’s efficacy includes the following broad metrics.

e Performance Predictability: Our resource-management mechanisms must make it possible
for applications to give performance assurances. Our implementation must ensure that on-

line mechanisms indeed meet the expectations set off-line.

o Adaptation: We will quantify the efficacy of our adaptation mechanisms. In case of resource
shortage, application performance using Adaptware’s support will be compared to that of un-
controlled degradation of traditional applications at overload. System’s reactions to overload

are of particular interest to our research.

e Deployment effort: The advantages of Adaptware do not come for free. The cost of utiliz-
ing the new flexibility should be weighted against the benefits in terms of adaptability. We
investigate this tradeoff in the context of different application scenarios. We show that in
many cases the new QoS APIs can be hidden from existing application code thereby signif-
icantly reducing the Adaptware deployment effort, and that adaptation software imposes no
significant performance penalty.
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In order to experiment with platform-dependencies we need at least two different implementation
platforms. Hence, we implement our abstractions both inside an experimental operating system and
in middleware on top of regular UNIX. Insights are gained from comparing the two implementa-

tions.

1.4 Thesis Outline

In the rest of this thesis, we describe elements of the Adaptware framework. We begin in Chapter 2
by motivating the framework using web servers as a preferred example. Web servers were chosen
due to the ubiquity of the Web and the proliferation of emerging web-based applications such as
e-shopping, banking, brokerage, call routing (e.g., for 800 numbers), and multimedia access. The
chapter demonstrates the need for QoS adaptation in web servers and illustrate its practicality from
three different view points: (i) feasibility to apply adaptation technology (on the web) with no
modification to existing servers, clients or service protocols, (ii) ability to achieve sufficient savings
in resource requirements by adaptation, and (iii) non-intrusiveness of QoS adaptation in terms of
performance overhead.

We then embark on developing a QoS adaptation framework that consists of architectural sup-
port, resource-management mechanisms, programming abstractions, and theory for adapting QoS to
dynamically-fluctuating resource capacity and demands. Chapter 3 describes the main architecture
of Adaptware, and explores utility-optimizing resource allocation policies.

A major focus of this work lies in QoS-enforcement mechanisms. Chapter 4 describes basic
enforcement mechanisms on the end-system. It describes and evaluates a QoS-adaptive commu-
nication subsystem running on top of a microkernel-based operating system. It describes how to
provide QoS guarantees for single and aggregate flows. It also describes a middleware framework
that implements QoS adaptation on top of UNIX. While the middleware solution offers coarser-
grained guarantees, the advantage of using this middleware is increased portability, since it may
be used with little or no modifications on any standard variant of UNIX. An approach based on
dynamic shared libraries is suggested for augmenting legacy code with QoS adaptation capabilities
without recompilation.

Chapter 5 extends the basic adaptation mechanisms of Chapter 4 to distributed systems. It
proposes a server architecture for distributed compute-intensive real-time applications. The server

offers an abstraction of a single computing resource, while transparently performing QoS adap-
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tation and load sharing that maximizes distributed system utility. We describe and evaluate the
performance of a control application that uses the distributed server.

Finally, Chapter 6 presents elements of the theoretical framework required for Adaptware de-
ployment in distributed hard real-time systems, such as the application presented in Chapter S.
Unlike soft real-time applications such as web hosting and multimedia, hard real-time applications
require absolute guarantees on the satisfaction of individual timing constraints during system opera-
tion. An important problem is to demonstrate a priori that a system of tasks is able to meet its timing
constraints under the given scheduling and resource assumptions (and assuming the correctness of
the implementation of resource management). This NP-complete problem is attacked in Chapter 6
under assumptions of increasing complexity regarding task models, intertask communication, task
precedence constraints, and task resource requirecments. Both optimal and heuristic solutions are

developed.
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CHAPTER 2

ADAPTATION IN WEB SERVERS

2.1 Introduction

We investigate performance-assured, adaptive web servers, a motivating application for the Adapt-
ware framework. The case study illustrates the need for adaptation in contemporary web servers,
demonstrates how adaptation can be achieved without modifying existing client and server software,
and evaluates the impact of the approach on service performance, overload behavior, predictability,
and user-perceived utility. The goal of the study is to provide an “existential proof” of the fea-
sibility and performance benefits of Adaptware in the context of a chosen application of interest.
Such proof establishes a case for embarking on developing a generalized QoS architecture in the
remainder of this thesis. The work presented in this chapter has been carried out at Hewlett-Packard
Laboratories.!

We have chosen web servers as our example application for several important reasons. The
Internet is presently undergoing substantial changes from a communication and browsing infras-
tructure to a medium for conducting business and selling a myriad of emerging services. The World
Wide Web provides a uniform and widely-accepted application interface used by these services
to reach multitudes of clients. These changes place the web server at the center of a gradually
emerging e-service infrastructure with increasing requirements for service quality, reliability, and
security guarantees in an unpredictable and highly dynamic environment. Yet, web servers today
offer poor performance under overload, no means for client prioritization, no means for service-
level adaptation, and no means for performance isolation among different classes of connections.

As the request rate increases beyond server capacity, server response-time and connection error rate

' All software and ideas described in this Chapter were developed by the author during his internship at HP.
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deteriorate dramatically, potentially causing client-perceived service outage. Since clients typically
issue several sequential requests during a session with the web server, the entailing accumulation of
errors results in severe, indiscriminate, performance deterioration. Due to the increasing scope and
importance of web-based applications, and the inadequacy of QoS support in present web servers,
we choose them for our case study.

Web QoS extensions can take several forms. In the simplest form, as an alternative to connec-
tion failure or rejection, clients may be willing to receive a degraded, less resource-intensive version
of the requested content. Web content is adapted by the server in accordance with load conditions.
The scheme not only allows more clients to access the server concurrently at peak load, but also
reduces the amount of wasted resources when server load exceeds capacity. Resources at overioad
are wasted as the OS, communication subsystem, and server are tied up by an increasing number
of client connections that eventually fail (e.g., time out) and are aborted by the client. In our mea-
surements, for example, when the offered load is 3 times the server capacity, more than 50% of
resources are wasted on eventually-aborted connections. The remaining capacity allows less than
1 in 6 connections to succeed, instead of 1 in 3. We present a content adaptation mechanism that
allows the server to control its load by adapting delivered content while optimally utilizing its avail-
able resources. The mechanism virtually eliminates connection errors over a significant range of
overload conditions and improves server resource utilization.

In dealing with the overload problem we recognize today’s changing nature of the WWW, While
initially, the WWW may have been a uniform distributed hypertext browsing infrastructure, today
both the published content and the category of applications accessing it are becoming increasingly
diversified. A web server today might host several sites on behalf of parties with potentially conflict-
ing interests, or serve clients of different importance to the content provider. Web servers, therefore,
must support performance isolation between multiple hosted services,? and performance differenti-
ation between classes of clients, e.g., based on the identity of the client, or the nature of accessed
content. For example, a web server which hosts multiple sites should not allow any one site to
dominate all resources forcing other sites to starve. Similarly, a web server at overload may need
to give preferential treatment to more important clients (as defined by some configurable metric) as
opposed to treating all requests alike. A main goal of our content adaptation mecharisms, therefore,

is to provide performance isolation and QoS differentiation within the web server.

2The term service is used here to denote, for example, web hosting services (e.g., hosting a particular web site),
e-commerce services (e.g., running a shopping mall’s on-line cash register), or search services.
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As the WWW extends to encompass QoS-sensitive content, such as sound and movie clips,
as well as mission-critical applications, such as e-commerce, it becomes important to design web
servers capable of providing QoS guarantees. For example, the web server should be able to guar-
antee for a hosted site a maximum throughput in terms of request rate and bandwidth delivered to
its clients. We investigate content adaptation mechanisms that allow for such QoS provisioning.

In addition to dealing with server overload in a QoS-sensitive fashion, content adaptation tech-
nology, such as the mechanisms we describe in this chapter, has other important benefits. For
example, it may be used to adapt server output to client-side resource limitations. The process-
ing power, connection bandwidth and display resolution may vary significantly from one client to
another. Content adaptation can provide the most appropriate version of content to each client in ac-
cordance with their resource constraints. Currently, content providers must fine-tune a compromise
version of content that hopefully will not encumber slower clients, yet remain satisfactory to higher-
end clients. The existence of adaptation technology, such as that described in this chapter, will allow
content providers to deliver higher-quality content whenever possible thus enhancing their clients’
browsing experience. While acknowledging this additional benefit of adaptation technology, we
focus on adaptation as a means to control server overload.

The rest of this chapter is organized as follows. Our adaptation model and assumptions are pre-
sented in Section 2.2, followed by a feasibility study in Section 2.3 that demonstrates the potential
benefits of deploying the proposed web technology. Section 2.4 describes our basic architecture,
refined in Section 2.5 to provide QoS management capabilities such as performance isolation, QoS
differentiation and QoS guarantees. Implementation details are discussed in Section 2.6. The pre-
sented web content adaptation architecture is evaluated in Section 2.7 by testing the performance
of an implemented software prototype. The chapter concludes in Section 2.8 with a summary of

contributions and implications on the Adaptware framework.

2.2 Content Adaptation Model

Content adaptation is viable if there were meaningful ways to adapt content on the web in a way

that preserves adequate information while decreasing resource requirements. For example:

e Image degradation by lossy compression: In a survey of 80 shopping web sites (listed in
Appendix A), conducted in July 1998, we found that GIF and JPG images alone constitute,

on average, more than 65% of the total bytes of a site. In many cases, these images can be

9
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significantly compressed without an appreciable decrease in quality. To help appreciate the
potential bandwidth savings, Figure 2.1 compares a 74KB GIF to a 8.4KB JPG image of
the same object. Although the difference in byte size is roughly an order of magnitude, the
difference in quality is insignificant on most clients’ displays. This demonstrates a potential

to conserve resources by degrading image quality (e.g., via JPG lossy compression).

® Reduction of embedded objects per page: From the server-side perspective, document size
is not as important as the number of embedded objects per page. Upon retrieving a URL
the client application sends independent requests to fetch its embedded objects. Each request
to the server consumes a relatively large fixed overhead in addition to a variable document-
size-dependent overhead. On an Apache server running on HP-UX we found the processing
time per request to be 1.6 ms independently of the retrieved URL size, plus an additional
65 us per each KB of delivered data.® Retrieving an 8 KB file will thus consume only 50%
more processing resources at the server than retrieving a 1 byte file. Therefore, at overload,
processing-time savings arising from reducing the number of expendable or cosmetic items

per page (such as little icons, bullets, bars, separators, and backgrounds) can be significant.

e Reduction in local links: Another way of adapting content is to reduce local links. This
reduction will affect user browsing behavior in a way that tends to decrease the load on the

server as users access less content.

Having illustrated several ways to degrade web content, a designer must decide whether content
should be preprocessed a priori and stored in multiple copies of different qualities, or be com-
pressed on the fly as need arises. Previous work considered adapting multimedia content to match
client bandwidth limitations assuming sufficient bandwidth on the server. Such efforts utilize on-
the-fly compression techniques which introduce extra processing overhead but reduce the size of
delivered data. In contrast to these methods, we focus on content adaptation as a means to alleviate
server overload. When the server is overloaded introducing an extra data compression stage, for
example, will only further impair performance. Thus, we require that content be pre-processed a
priori and stored in multiple copies that differ in quality and size. The approach is quite affordable
for web servers given the low prices of secondary storage. One may imagine appropriate authoring

tools that allow web content developers to annotate parts of the content as expendable, degradable,

3These are HTTP 1.0 measurements taken for Apache 130 on a single-processor K460 (PA-8200 CPU) running
HP-UX 10.20, with 512 MB main memory, and GSC 100-BaseT network connection.

10
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Figure 2.1: Comparing a 74KB GIF and an 8.4KB JPG

or important. This can be done by using an extended form of HTML that is preprocessed by content
management tools to create and maintain separate standard-HTML versions of the site. Preprocess-
ing will generate automatically multiple copies of the content that differ in quality and resource
requirement. Such tools will offload the responsibility of generating and maintaining multiple con-
tent versions from the content provider.

From the server’s perspective, multiple content trees can be made available with different ver-
sions of the same URLs. To identify the different versions, the path to a particular URL in a given
content tree may be the concatenation of the content tree name and the URL name, prefixed by the
name of the root service directory of the web server. For example, in the root service directory

“/root” one may create two content trees, “/full_content” and “/degraded_content”. A URL, such as,

11
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“/my _picture.jpg” will be served from the directory “/root/full_content/my _picture.jpg” if appropri-
ate for the particular client class and if server load permits. Otherwise the URL will be served from
“/root/degraded_content/my _picture.jpg” thus supplying a more economic version.

The scheme applies to dynamic content as well, e.g., that generated by CGI scripts. Multiple
content trees may contain different versions of the named CGI script (e.g., “/cgi-bin/my _script.cgi”).
The script URL is prepended by the right tree name (e.g., “/full_content” or “/degraded_content™) to
determine which version of the script to execute under given load conditions. For example, the web
server can invoke a less resource-intensive search script that looks for only the first S matches under
overload, instead of one that looks for 25 matches under normal load conditions.

Our experience indicates that serving dynamic content is much more resource-consuming than
serving static content. Our adaptation mechanism allows some dynamic content to be replaced
by static content by switching to a different content tree. For example, an on-line vendor can use
a dynamically-generated version of their product catalog that interacts with a stock database to
display the items currently in stock. Content adaptation mechanisms allow the server to switch
automatically, without system administrator assistance, to a statically pre-stored catalog version
whenever bandwidth becomes scarce thereby saving resources.

We focus on static content, and assume that multiple copies of this content are available to the
server. The development of authoring tools for content preprocessing is out of the scope of this

thesis.

2.3 Adaptation Feasibility Study

A first step towards motivating adaptation technology is to quantify its efficacy in terms of the
achieved potential performance benefits. For that purpose we performed a quick feasibility study
analyzing the nature of content of 80 selected web sites (listed in Appendix A). The goal of this
initial study is to demonstrate a credible range of web applications for which benefits of content
adaptation can be easily applied. We decided to analyze on-line shopping sites. On-line shopping
is a growing practice. According to data obtained by Hewlett-Packard Labs in 1998, more than
98% of large businesses and more than 33% of small businesses advertise their products on-line.
Although some e-shoppers still prefer to make the final purchase by phone, it is becoming more
common to browse available alternatives electronically before embarking on a purchase. Shopping

sites, in addition to their growing popularity, have several other favorable attributes that make them
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a good candidate for our analysis. For example:

e As more users find it easier to shop online, a shopping site may get a large number of hits,
and thus (unlike personal web pages, for example) is susceptible to overload. Shopping sites
can therefore credibly benefit from our adaptation techniques.

e Since businesses are often not web experts they outsource site management to professional
web-hosting service providers who might be interested, for economical considerations, in
cohosting several sites per machine yet providing performance guarantees to each. Since we
develop the technology for performance isolation and QoS guarantees we find it natural to
analyze the type of sites to which this technology is most likely to be applied.

e Shopping sites are visually intensive. They should attract e-shoppers attention, and depict
products in a way that encourages a purchase. These sites can greatly benefit from adaptation
technology that allows providing a richer content whenever possible, yet handles overload by

switching to a less resource-intensive version when needed.

e We found that e-shopping sites are generally more moderate in size than other sites we con-

sidered, such as sports sites, or news sites, and hence are easier to analyze.

In our study, we downloaded site content, degraded its quality, and estimated the expected perfor-
mance improvement. Performance improvement was estimated in terms of the reduction, upon con-
tent degradation, in consumed server utilization arising from client access. The consumed server uti-
lization was derived from server request rate and bandwidth by profiling a real web server (Apache)
to relate utilization, service request rate, and requested URL size as will be discussed later in this
chapter. Performance improvement by content adaptation depends on the particular way content is
adapted, which may be arbitrary and subjective. We therefore found it informative to determine an
upper bound on such performance improvement achievable by any content adaptation heuristic.

Intuitively, the best performance improvement is achieved if all content is reduced to plain text.
Being too severe a degradation, it serves as an upper bound on the actual performance improvement
one may reasonably expect from using a milder degradation approach.

Performance improvement due to adaptation further depends on client access patterns and caching.
More popular pages tend to be cached by proxies thereby reducing further requests for these pages
on the server. As a result, page access distribution tends to be more uniform on the server than on

the proxy. In the absence of detailed statistics on client access patterns for the surveyed sites we
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will ignore page popularity and assume that page access is uniform. We believe that this simpli-
fying assumption will err on the safe side making our performance-improvement estimates more
conservative than they actually are. This is because visually intensive pages attract more clients
thus creating a positive correlation between access frequency and page complexity. This correlation
increases the performance gains attained by adapting popular page content over what we account
for when we ignore page popularity.

Client caching affects the efficacy of adaptation by reducing the number of accesses on the
server. In the absence of client caching each HTML page access will entail downloading all its
embedded objects. Server access rate and bandwidth delivered to the client will therefore depend
on the total number of embedded objects per page. On the other hand, if the client has a large cache,
once an embedded object is downloaded it will no longer be requested again by the same client.
Thus, performance is affected on average by the incremental number of new objects per page (those
not already in the client’s cache). We computed two estimates of performance improvement, one
that corresponds to no client caching, and one that corresponds to an infinite cache size (and long
sessions). We call the former estimate optimistic, since it provides the maximum performance im-
provement. The latter estimate is pessimistic. The actual performance improvement is somewhere
in between. In the following we present these estimates taking into account the aforementioned

considerations.

2.3.1 The Optimistic Estimate

In this case we assume that the client accesses at random one page of the site.* No parts of that page
are cached by the client a priori. Let the number of embedded objects per HTML page be Emb in
the site’s original content tree. Retrieving exactly one web page will therefore impose, on average,
1 + E'mb accesses on the server (1 access to retrieve the HTML file and Emb accesses to retrieve
its embedded objects). If content is degraded to pure text, retrieval of the same page will impose
only 1 acccss.

To compute the savings in bandwidth resulting from content degradation, let the average HTML
file size be H bytes, and let the average embedded object size be I bytes. The bandwidth delivered
per page is therefore H + I Emb if content is not degraded, and H if content is degraded to text.

We have experimentally verified, as discussed later in the chapter, that server utilization, U,

“This is only an approximation since some pages are more popular than others. Note that more popular pages,
however, will tend to be cached by proxies making server accesses more uniformly distributed.
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consumed by a given request rate R and delivered bandwidth BW is accurately approximated by
the linear function U = aR + bBW, where a and b are measurable constants that depend on
the server software and platform. The ratio of server utilization values consumed by retrieving an

average web page before and after degradation is thus:

Ratiogptimistic = (a(1l + Emb) + b(H + IEmb))/(a+ bH) 2.1

This ratio reflects the performance improvement achieved due to degradation. We computed param-
eters a and b by profiling our Apache server as will be discussed later. The parameters I, H and
E'mb were computed from the actual statistics of the downloaded sites. The top curve in Figure 2.2
plots the resulting performance improvement ratio. The curve is discussed in more detail in the

following subsection after we compute the pessimistic estimate as well.

2.3.2 The Pessimistic Estimate

To compute the pessimistic estimate of performance improvement, we assume the client has an
infinite cache. The longer the client’s session is, the more pages are cached and the less is the load
imposed by the server. An infinite session will eventually cache all pages of the site, downloading
each exactly once. Let i be the number of HTML files on the site, d be the number of unique
embedded objects. The performance improvement achieved by content adaptation is the ratio of

utilization values consumed to download the site before and after degradation. The ratio is:

Ratiopessimistic = (a(h +d) + b(Hh + Id))/(ah + bhH) 2.2)

Using simple algebraic manipulation, the above equation can be rewritten as:

Ratiopessimistic = (a(1 + Emboiz) + b(H + [Embopm:n))/(a + bH) @2.3)

where Embnin = d/h is the ratio of the number of embedded objects to HTML files on the
site. Note that the number of embedded objects per page, is Emb = Embn,;, if every embedded
object is referenced in exactly one HTML file. Since, some embedded objects (e.g., common icons,
or backgrounds) may be referenced in more than one HTML file, in general Emb > Embnin.
Substituting this inequality in Equation (2.1) and comparing with Equation (2.3) we can see that

Ratiogptimistic > Ratiopessimistic- FOr an arbitrary user session length and cache size, we expect

the performance improvement to lie generally between Ratiocptimistic and Ratiopessimistic-
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The values d, h, Emb, H, I above were computed from the data of each surveyed site. The
constants a and b were measured for our server (Apache 1.3 running on an HP-UX platform). The
resulting estimates are shown in Figure 2.2. The figure depicts the percentage of surveyed sites,
P(z) (on the vertical axis), whose performance will improve by at least 2% (the horizontal axis)
upon adapting their content to pure text. Both the optimistic and pessimistic percentage estimates
of are shown. Thus, for example, consider the point z = 400. The estimates indicate that 30% to
90% of all sites will improve performance by at least 400%. Another way of interpreting the graph
is to consider a particular percentage of sites P(z), and observe the corresponding performance
improvement range. For example, consider the point P(z) = 60. The estimates indicate that

at least 60% of all sites will see a performance improvement of 200% to 700%. These are very

encouraging results.
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Figure 2.2: Performance Improvement Expected from Degrading to Text

2.3.3 A Degradation Heuristic

In order to access performance improvement for less severe degradation methods (as opposed to
degrading to pure text) we repeated the derivation of optimistic and pessimistic performance im-
provement bounds when content of surveyed sites is degraded according to the following heuristic

rules:
Rule 1: Remove all GIF images smaller than 1KB. Such images almost always constitute dispos-
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able cosmetic icons and clipart items.

Rule 2: Degrade all images that are longer than 32KB by a factor of 8. As demonstrated in Fig-
ure 2.1 large images can generally be compressed by an order of magnitude with no significant
effect on quality.

Rule 3: Eliminate redundant items. Let each embedded object be referred to from exactly one
HTML page.

We skip the derivation of performance improvement expressions used, since it is very similar to
the derivations presented in Section 2.3.1 and Section 2.32. Figure 2.3 compares the optimistic
and pessimistic performance improvement bounds computed in this case. While the optimistic
estimate shows a large performance improvement, the pessimistic estimate reveals an important
observation. Namely, the performance improvement, from the server’s perspective, comes mostly
from reducing the number of hits on the server (reducing the embedded objects per page), and
not from image size reduction in the surveyed sites. To explain this observation, note that in the
pessimistic case, the degradation heuristic at hand conserves bandwidth but does not significantly
reduce the number of hits on the server. This is because in the pessimistic case we assume that
clients have an infinite cache (i.e., download each embedded object only once), which means that
Rule 3 above has little or no effect on reducing the average number of downloaded objects per page.
Figure 2.3 shows that the resulting performance improvement (by applying the first two rules) is not
significant. In the optimistic case, however, performance improvement comes both from bandwidth
reduction and reduction in hit rate. The combine effect is much more pronounced. Bandwidth
reduction is therefore important only in the sense of reducing client’s response time when client
bandwidth is the bottleneck, but not in the sense of reducing server overload.

The above feasibility study gives insights into how content should be degraded for maximum
performance improvement, as well as estimates how much performance can be improved. It is
shown that content adaptation can indeed lead to significant resource savings for a large category of

sites.

2.4 Adaptive Content Server Architecture

In this section we discuss an architecture for content adaptation, and instantiations of this architec-

ture that differ in their complexity and capabilities. The architecture will improve server overload
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Figure 2.3: Performance Improvement Expected from Mild Degradation

behavior by adapting delivered content to load conditions. In Section 2.5 we generalize this archi-
tecture to provide QoS guarantees, performance isolation and service differentiation. Qur goal is to
achieve these properties transparently to the web server. Existing servers should be able to benefit
from our technology with no need for software modification or recompilation. We present two ways
such transparency is achieved; the external process approach, and the middleware approach. Both
assume that content trees of different quality are available a priori.

The external process approach places adaptation software in a separate process that runs con-
currently with the web server. The process causes content adaptation by switching a link from
the server’s root service directory to the content tree that matches load conditions. The middle-
ware approach, on the other hand, adapts delivered content by intercepting clients’ requests to the
web server and changing the path of the requested URL such that it refers to the “right” content
tree. Adapting content on a per-request basis results in a much finer-grained control over server
utilization and allows developing extensions such as performance isolation, service differentiation,
and QoS guarantees. In the following we present the architectural components common to both
approaches, then their realization in the context of each. In general, content adaptation software

consists of the following components:
e Load Monitor: Web server load has to be monitored in order to detect overload conditions.
e Adaptation Trigger: The adaptation trigger maps the monitored load value into a decision to

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



invoke, undo, or change the extent of content degradation as appropriate.

e Content Adaptor: Once the trigger fires, indicating a state of server overload or underutiliza-

tion, action is required to restore server load to desired conditions, if possible.

® Request Classifier: In general, the action taken by the content adaptor may depend on the
identity of the client or the requested content. For example, a less severe action may be taken
with more important clients. A request classification mechanism is therefore needed. The
mechanism allows giving preferential treatment to a subset of sites or clients as appropriate

to meet QoS guarantees.

We describe different implementations of the above components, their advantages and disadvan-

tages, as well as their impact on achievable server functionality.

2.4.1 The Minimal Adaptive Server

In the simplest case, adaptation software is implemented as a process external to the unmodified
web server. The software is allowed to toggle, depending on load conditions, between two content
trees; one for high quality content and one for degraded quality content. The architecture is depicted
in Figure 2.4. It implements an instance of a load monitor, adaptation trigger and content adaptor as

follows.

Figure 2.4: The Minimal Adaptive Server

e Load Monitor: A simple way of deciding whether or not the server is overloaded is to mon-
itor server’s response time. This is accomplished by a local process that periodically sends
HTTP requests. Response time is proportional to the length of the server’s input request

queue (e.g., the server’s socket listen queue in a UNIX implementation). When the server
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is underloaded the queue tends to be short (or empty) resulting in small response times. At
overload the request queue overflows making the response time grow an order of magnitude.
This approximately bimodal behavior of the queue has been verified by our tests as shown in
the evaluation section and can serve as a clear overload indicator. The advantage of estimat-
ing queue length by monitoring response time (rather than, say, counting queued requests) is
that such a mechanism can be implemented outside the server requiring no modification to its

code.

e Adapration Trigger: Adaptation is triggered when the monitor senses an increase in server
response time beyond a precomputed threshold, Thresh. This threshold can be set equal to
(or slightly smaller than) the maximum server response time specified in a QoS agreement, if
any, thereby causing adaptation when the agreement is about to be violated. In the absence
of such a specification, the threshold can be derived from the preconfigured maximum input
request queue length, Q, and the average service time, S. For example, if we consider a 90%

full queue to be an overload indication, the trigger can be set to Thresh = 0.9QS.

e Content Adaptor: Once the adaptation trigger is fired, the content adaptor switches transpar-
ently from the high quality service tree to the degraded quality service tree in the root service
directory. The content adaptor is implemented outside the server. It switches content trees
by changing directory links. For example, let the root service directory be “/root”, let the
high quality tree name be “/full_content”, and let the degraded quality tree name be “/de-
graded_content”. The content adaptor creates a link from “/root” to “/root/full content” to be
used during normal operation. At overload, it changes that link to “/root/degraded_content’.
Thus, when the unmodified server accesses the same file name, such as “/root/my_url.html”,
it transparently retrieves the file *“/root/degraded_content/my _url.html” rather than the file
“/root/full content/my url.html” when the system is overloaded. The retrieved file size will

thus vary depending on load conditions.

The advantage of the above described scheme is that its implementation does not require access
to the server source code nor does it require recompiling or relinking the server with new or mod-

ified middleware libraries. The solution is completely transparent and fairly portable to different

platforms.
Figure 2.5 compares the performance of an adaptive and non-adaptive servers by graphing the
connection error probability versus request rate. In this experiment we generated requests for 64K
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images at an increasing rate. An adapted 8K version of the images was available in the degraded
content tree. As shown in the figure, the traditional server suffers an increasing error rate when
offered load exceeds capacity at about 160 requests/s. In contrast, our adaptive server switches to
less resource-intensive content thus exhibiting almost no errors up to about 3 times the above rate.

In general, the extent of performance improvement will depend on workload and degree of content

degradation available.
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Figure 2.5: Adaptation and Connection Failure Probability

24.2 An Enhanced Adaptive Server

While the aforementioned simple adaptation technique increases maximum server throughput and
decreases error rate shown in Figure 2.5, it has some limitations. For example, it is not obvious
when to switch back from degraded content to high quality content, and the server may become
underutilized upon switching to degraded content. Our measurements indicate that server response
time is not particularly indicative of the degree of underutilization. The input request queue tends
to be identically small as long as the server is operating below capacity. It is therefore difficult
to tell whether or not reverting to high quality content at a particular time will result in overload.
This limitation can be circumvented by measuring the load on the server machine instead of server
response time. The measurement should give an idea of how underutilized the server is. When
utilization decreases below a configurable value, the server may revert to non-degraded content.

CPU utilization is sometimes regarded as a good load indicator. However, measuring CPU uti-
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lization by adaptation software to estimate the load on the server may give incomplete or misleading
information. For example, the existence of a low priority process or thread in the server that imple-
ments a busy-waiting loop on some event will render CPU utilization identically 100% even when
the server is “idle” (i.e., does not have any requests to serve). Furthermore, depending on the ratio of
the platform’s CPU bandwidth to the communication bandwidth, a server may become overloaded
due to communication bandwidth saturation even at low CPU usage. Unfortunately, the bottleneck
resource can fluctuate between the CPU and the network depending on the load mix. For example,
we observed on our test platform that a large number of requests for small objects tends to saturate
the CPU while a smaller number of requests for larger objects tends to saturate the network. Thus,
CPU utilization alone is not indicative of how close the system is to its full capacity, since its capac-
ity is bounded by that of the bottleneck resource. A similar concern arises when all server threads or
processes are blocked on disk I/O. The resulting CPU idle time cannot be taken advantage of since
I/O is the bottleneck.

We developed two different mechanisms for measuring system load that account for the uti-
lization of the bottleneck resource. The methods can be implemented at any software layer where
server requests and responses are visible. In particular they can be implemented in a middleware
layer below the server transparently to server software by embedding them in the read() and write()

socket library calls. These mechanisms are described in the following section.

Server Utilization Measurement

Logically, a server is “fully utilized” when an increase in request rate will result in connection
failures. By the same token, a server is not utilized when it has no requests to serve. Between
these two extremes a utilization scale can be constructed that inherently accounts for the load on the

bottleneck resource. We developed two methods for measuring utilization:

o The Linear Approximation Method: We have established that system utilization, U, consumed
by processing client requests can be adequately approximated by a linear function of mea-
sured request rate R, and delivered bandwidth, BW, such that:

U=aR+b5BW

where constants a and b can be computed by either on-line or off-line profiling as will be
described and analytically justified in the evaluation section. The function is good for esti-
mating offered load as long as it does not exceed server capacity. When capacity is exceeded
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the measured rate R (and consequently the bandwidth W) saturates and possibly decreases
due to overflow of kernel queues and abortion of an increasing number of connections in the
kernel. These effects render the above linear approximation invalid under overload, since R
no longer reflects all requests. We therefore combine the linear approximation with response
time monitoring to determine the load on the server. The combined utilization measurement

function is as follows:

— If measured response time is above threshold then let U = 100%

— If measured response time is below threshold then let U = aR + bBW.

One advantage of this method is that it is easy to implement in a concurrent system. Middle-
ware code running in the context of each server process or thread, T’;, records the observed
request rate R; and delivered bandwidth BW; by that thread and computes its corsumed
utilization U;. A separate monitor process or thread then reads and sums up the recorded per-
thread values to obtain the aggregate request rate R = 3°; R;, bandwidth BW = 3. BW},
and utilization U = J_; U; of the server. Access synchronization to shared data structures
is not required since there is only one writer to any piece of recorded data. The scheme can
be implemented transparentiy to the server. In particular, the request rate, R;, can be mea-
sured transparently by embedding a request counter in the read() socket call used by the
web server. The delivered bandwidth, BW;, can be measured transparently by embedding a

response-length accumulator in the write() socket call.

The method allows server capacity planning for QoS guarantees. It provides means for con-
verting a desired request rate and bandwidth into a corresponding resource capacity allocation
(i.e., allocated utilization). On the disadvantage side, it requires computing the constants a
and b, e.g., via a priori profiling. In Section 2.5.4 we describe how this is done.

e The Gap Estimation Method: A simpler method for estimating the fraction of time the server
spends serving requests is to increment a global counter upon every request arrival and decre-
ment it upon every response departure. As before, the counter can be implemented in middle-
ware. The counter will return to its initial value only when a “gap” is present, i.e., when all
current requests have been served, and no additional requests have arrived yet. By summing
up the gaps over a period of time, 7', a monitor process or thread can compute the total “idle

time”, G, within that period, where idle time is the time where no requests are pending. The
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utilization is estimated as U = (T — G)/T. The method is illustrated in Figure 2.6, which
shows concurrent processing of request bursts separated with idle time. The method does
not require a priori profiling, and does not require monitoring response time. However, it
has the disadvantage of using a global counter that may be updated by multiple writers and
thus requires some form of locking or access synchronization that may impede performance.
More importantly, it does not allow mapping rate and bandwidth requirements into system
capacity allocation requirements and therefore, in itself, does not provide means for capacity
planning for QoS guarantees. Another limitation of this technique is that it computes only
aggregate utilization. It does not provide, for example, an accurate way of knowing whether
or not an individual hosted site exceeded its capacity allocation, and thus is not a good choice
for implementing QoS isolation. Finally, the technique works well only when the bottleneck
resource is local to the server. Thus, for example, it works well only when all clients are fast
(e.g., on a departmental Ethernet behind a firewall). If a client is the bottleneck, its request
may take a very long time to serve for reasons other than server overload. The gap estimation

methoa will erroneously count this service time towards server resource consumption.

Request
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Figure 2.6: Measuring Utilization via Gap Estimation

2.4.3 Server Utilization Control

Adaptation software described so far implements mechanisms for measuring system load that can
be used to toggle between two modes of operation; a high quality delivered content mode, and
a degraded content mode. This bi-modal nature makes it impossible to achieve adequate system
utilization when adaptation takes place. When overload is detected all client requests are adapted
potentially making the server underloaded. This effect is shown in Figure 2.7 which compares the
delivered bandwidth of our server to that of a non-adaptive server for the experiment reported in Fig-
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ure 2.5. The bandwidth is plotted versus request rate as the servers are driven to overload. Note from
Figure 2.5 that the servers saturate at a request rate of about 160 req/s. A sharp drop in delivered
bandwidth is shown in Figure 2.7 when that particular rate is reached on the adaptive server. This
drop occurs because overload is successfully detected at that point, trigerring adaptation. Adaptation
takes place by switching to less resource-intensive content leaving server bandwidth underutilized.
We would like to avoid overload without underutilizing the server. Our approach to achieve this
goal is to degrade only a fraction (rather than the entire population) of clients. The fraction can
range anywhere from “no clients degraded” to “all clients degraded”. It is determined by a uti-
lization control loop that regulates automatically the number of clients degraded so that the desired
system utilization is achieved. In order to remain effective even after all clients have been degraded,
the utilization control loop will start rejecting requests, essentially performing an admission control

function as well.

Request Rate (req/s)
i = % e = "o

Delivered BW (Mbvs)
Delivered BW (Mb/s)

[
Request Rate (req/s)

Figure 2.7: Server Underutilization

The utilization control loop described below is one of the more interesting contributions of this
thesis. In its simplicity and general applicability it is a very powerful way of controlling resource
allocation without kernel-level resource allocation and enforcement mechanisms. It employs ad-
mission control and adaptation techniques to regulate resource consumption as desired even in the
absence of an accurate application load model and without knowledge of execution times and re-

source requirements of the service. While the control loop relies only on well known fundamentals
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of classical control theory, the use of this theory in the context of web servers is a novelty of this
work. The loop is composed of two parts; an adaptation controller that determines the amount of
partial degradation required, and an actuator that carries out the degradation. In the application at
hand, the actuator implements content adaptation; it degrades delivered content to a specified frac-
tion of clients. We call this actuator a content adaptor. The following subsections describe these

two components, starting with the content adaptor.

The Content Adaptor

Let the abstract parameter G be the “control knob” that tunes the extent of partial degradation
required from the adaptor. The adaptor accepts input G in the range [0, M]. The upper extreme,
G = M, indicates that all requests are to be served the highest quality content. The lower extreme,
G = 0, means all requests should be rejected. Decreasing G will therefore monotonically decrease
server load (albeit perhaps in a nonlinear fashion). The upper limit M is the number of available
content trees. For a typical adaptive server we expect that M = 2. For a non-adaptive server,
M = 1. The content adaptor maps the value of G into (i) the identity of the tree(s) the content
should be served from, and (ii) the fraction of clients served from each tree. To illustrate how this
mapping takes place, assume that content trees are numbered from 1 to M in increasing order of
quality. Let 0, in this numbering scheme, stand for request rejection. Let I be the integral part of G,
and F be the fractional part. The following rule is used by the content adaptor to determine which

tree to serve an incoming request from:
e IfGisaninteger(i.e.,, G = I, F = (), the request is served from tree I (or rejected if I = 0).

e If G is not an integer, a pseudo-random number NV is computed in the range {0, 1] upon the

receipt of the request. If N < F the request is served from tree / + 1. Otherwise it is served
from tree I (or rejected if I = 0).

As depicted in Figure 2.8, this algorithm provides a continuous partial degradation spectrum that
ranges from serving all requests from the highest quality content tree to rejecting all requests. While
G determines the fraction of requests to degrade, it does not specify which requests should be
degraded. The identity of degraded requests depends on the way the number NV is computed given
the identity of the requesting client. In this section we assume that all requests are equal. Thus,

other than the need to fully utilize resources, there is no particular grounds for degrading some but
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not all of the requests. With that in mind, we present examples of two functions for computing N,

and their effects on the client-perceived web server behavior.

Tred™ G b
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l | ] % |
0 1 2 M
Level

Figure 2.8: The Partial Degradation Range

e Random (with uniform distribution): Upon the arrival of each request a random number N is
chosen with uniform distribution in the range [0, 1]. From the client’s perspective this method
may result in fluctuations between good and degraded content over the duration of the client’s
session with the web server, as the quality of content is determined according to the value
of N, where N is generated independently for each request in the session using a random
function. Such fluctuations may be distracting. It may be more desirable to be consistent in

the quality of content presented to a given client.

e Client-identifier hashing: A client can be identified using a cookie, or an IP address. A hash-
ing function k() is applied to the client’s identifier that transforms it into the number N in
the range [0, 1]. This method provides a consistent quality of content for each client access-
ing the server since each client is always hashed into the same number. Note, however, that
the method may permanently discriminate against some of the clients depending on which
number their identifier maps to. In particular, clients who map into larger numbers will be
degraded first. To prevent such discrimination, the hashing function may be toggled periodi-
cally, e.g., between h() and 1 — h(). The toggling period should be long enough compared to
the average client’s session length to reduce quality of content fluctuations during a session’s

lifetime.

The Utilization Controller

The previous subsection describes how partial degradation is achieved once the control parameter
G is known. This section presents how the parameter G is determined by the adaptation controller
in a self-regulating fashion. We use control theory to stabilize an overloaded server at a desired

level of resource utilization. Let U; be the desired target utilization of the server. Let U be the
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utilization computed by any of the methods described in this section. Let e be the “utilization
error”, e = Uy — U. Note that positive values of error indicate underutilization while negative
values indicate overload. The adaptation controller samples the error e at fixed time intervals and
produces an output, G, proportional to the sum of the observed samples since system startup. In the
simplest case, at each sampling time the controller performs the following computation:

G=G+ke

If (G <0)thenG =0

If(G>M)thenG=M

where k is a proportionality constant.

Intuitively, if the system is overloaded (i.e., U > U;) the negative error e results in a decrease in G.
As a result the fraction of degraded requests increases which decreases server utilization (and vice
versa). When the system reaches target utilization (i.e., U = U,), the error e becomes zero, and this
G is fixed.

Classic control literature proposes analytic techniques that compute the value of k in the above
equation for best convergence. The apparatus is often referred to as an integral controller. More
sophisticated versions of that controller include the Proportional Integral (PI) controller and the
Proportional Integral Differential (PID) controller. We use a PI controller in our loop, tuned for
quarter amplitude damping, which is a traditional industrial control practice. The controlled process
is modeled as a dead time element, of value equal to half the sampling time of the controller. The
control loop is depicted in Figure 2.9. For completeness, we describe the mathematics involved in
tuning the PI controller.

Requests

Modified
=

Figure 2.9: The Utilization Control Loop

Estmated Utilization
U

Tuning the Controller

The utilization control mechanism implemented in our adaptation software uses a PI controller. The

standard PI controller is given by the equation:
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G =Ky(e+ K;)_ ebt) (24)

where e is the controller’s input (the utilization error). Tuning the controller refers to finding the
most appropriate values for constants K; and K,. Let the coatroller’s transfer function, in the
Laplace domain be denoted by G (), where s is the Laplace transform operator. G(s) is the Laplace

transform of Equation 2.4:

G(s) = Kp(1 + Ki/s) 2.5)

In order to tune the controller, a model of the controlled process must be obtained. In our case, the
controlled process is modeled by a dead-time element, and a gain. The dead-time element is one
whose output lags behind its input by a certain time T;. The gain quantifies the amplitude of the
change in output resulting from a unit change in input. Process input in this case is the service level
determined by the controller, which has a range of M. Process output is the controlled utilization
which has a range of 0 to 100% (or 1 if expressed as a fraction). Process gain is thus 1/M. From a
control stability perspective, the control system becomes less stable as process gain increases. Thus,
we design the controller for the worst case (i.e., maximum) process gain. The maximum gain occurs
when M is minimum, i.e., for a server containing one tree. The maximum process gain is therefore
unity. In addition to the gain, in digital systems, sampling introduces an effective dead-time of half
the sampling period. The Laplace transform of the dead-time element is e*7¢. The transfer function

of the process, P(s), is thus given by the Laplace transform:

P(s) = 1.e’T¢ (2.6)

where T} is half the sampling period. Figure 2.10 depicts the control loop. From this figure, note
that the achieved utilization U is given by U = G(s)P(s)e, where e = U, — U is the difference
between the target utilization U; and U. Using simple algebraic manipulation, it can be seen that

the transfer function from the desired utilization U to the achieved utilization U is given by:

U:/U = P(s)G(s)/(1 + P(s)G(s)) X))

Given a change in input U, the output U converges to U, in an oscillatory fashion. The natural

frequency of oscillation w of the control loop is obtained by computing the poles of the transfer
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Figure 2.10: The Control Loop

function in Equation 2.7, with s = jw, where j is the imaginary unit vector in the complex number

domain. This is done by computing a solution to:

1+ P(s)G(s) =0 (2.8)

with s = jw. Substituting from Equation 2.5 and Equation 2.6 in Equation 2.8 we get:

e TaR, (14 K;/jw) = -1 .9

To solve the above complex-number equation, it is transformed into polar coordinates and decom-
posed into phase and gain components. The phase of the process e’*T¢ is —wT; and the phase
of the PI conuoller K,(1 + K;/jw) is —tan™!'(K;/w). It is a common practice in industrial PI

controller tuning to set controller phase to —= /6. In order words:

tan~! (K;/w) = /6 (2.10)

Thus, the phase component of Equation 2.9 can be written as follows:

-wly —n/6=—7 .11

The above expression is an equation in a single unknown, w, which denotes the natural frequency

of oscillation for the control loop. The obtained expression for w is:

w=57/6Ty=2.62/Tyrad/s 2.12)

The parameter K; of the PI controller can now be computed from Equation 2.10 by substituting in

it the computed value of w. Simple algebraic manipulation yields:
K;=3.19/T4 2.13)
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The second controller parameter, K, determines the stability of the control loop. In a stable loop,
the controller G(jw) = K,(1 + K;/jw) and the process P(jw) = e’*T4 attenuate oscillations
causing them to stabilize eventually with output (achieved utilization) equal to input (desired target
utilization). For an attenuation gain of -y (in industrial loops v = 0.5 is a recommended setting), the

following loop gain condition must be satisfied:

|e7“T4| Kp[1 + Ki/jw| = v 2.14)

The above condition yields an expression for Kp:
Ky =v/(1+ (Ki/w)?*)** 2.15)

To tune the PI controller, we first used Equation 2.12 to determine the natural frequency of oscilla-
tion. Then, constants K; and K, were computed from Equation 2.13 and Equation 2.15 respectively
with v = 0.5.

Testing the Controller

Figure 2.11 depicts the achieved utilization of a server that uses our utilization measurement and
control mechanisms. The degree of degradation is managed by the PI controller tuned as described
above. In this experiment, the request rate on the server was increased suddenly, at time = 13,
from zero to a rate that offers a load equivalent to 300% of server capacity. Such a sudden load
change is much more difficult to control than small incremental changes, thereby stress-testing the
responsiveness of our control loop. The target utilization, U;, was chosen to be 85%. As shown in
Figure 6.8, the controller was successful in finding the right degree of degradation such that mea-
sured server utilization remains successfully around the target for the duration of the experiment.

The experiment demonstrates the responsiveness and efficacy of the utilization control loop.

2.5 QoS Extensions for Adaptive Servers

In the preceding sections we described an architecture for content adaptation that avoids overload
by degrading content while maintaining a target server utilization. We assumed that all clients are
equal and all content was treated the same way. In this section we generalize this architecture to

support the following important features:
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Figure 2.11: Utilization Control Performance

e Performance isolation and QoS guarantees: The web server is extended to export the ab-
straction of multiple adaptive virtual servers. A different virtual server can be associated,
e.g., with each hosted site or user class. The virtual server adapts delivered content such
that a configurable maximum request rate and maximum delivered bandwidth are guaranteed

independently of the load on other virtual servers thereby achieving performance isolation.

e Service differentiation: In addition to achieving performance isolation and QoS guarantees,
the web server supports request prioritization. Upon overload, lower priority requests are
degraded first. We demonstrate this architecture with two priority classes, although describe

how it can be extended to an arbitrary number of client priorities.

e Excess capacity sharing: When an adaptive virtual server does not consume all its allotted

resources, excess capacity is made available to other virtual servers on best effort basis.

2.5.1 Performance Isolation

An adaptive virtual server can be configured for a maximum maintainable request rate R.,,- and
a maximum delivered bandwidth BW,,,,.. The configuration expresses an agreement whereby the
server guarantees the ability to deliver bandwidth BW ., as long as the aggregate request rate
does not exceed R... If the request rate condition is violated (i.e., exceeds R...-) the bandwidth
guarantee is revoked. The server adapts delivered content to deliver the best quality URLs without

overrunning its capacity allocation.
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The key to achieving performance isolation is capacity planning, load classification, and utiliza-

tion control as discussed below:

e Capacity planning: The maximum maintainable request rate R,,,-; and the maximum de-
livered bandwidth BW,,,,; specification of each virtual server ¢ are converted into a corre-
sponding target capacity allocation, U;, = aRmaz; + bBWpq,. The target utilization sum
2_; U:, over all virtual servers residing on the same machine should be less than 100% for
the guarantees to be realizable. This is checked each time a new virtual server is created. If

5°; Ui, > 100% a capacity planning error is returned.

e Load classification: A load classifier intercepts input requests and classifies them to identify
the virtual server responsible for serving each request. Request classification can be done
based on the requested content, addressed site, or client identity depending on system admin-
istrator’s policy. For example, if each virtual server is associated with a hosted site, requests
can be classified based on the site name embedded in the request header. In the current im-
plementation we implement classification by sender IP, although it is straightforward to add

other classification policies.

e Utilization control: Once requests are classified, the request rate R; and delivered bandwidth
BW; for each virtual server : are computed, from which a corresponding utilization value,
U: = aR; + bBW,, is obtained. The utilization U; of each virtual server is controlled indi-
vidually by an instance of the utilization control loop described in Section 2.4.3. The control
loop implements the degree of content degradation necessary to keep U; of the virtual server
at its target value, U;,, thereby achieving the server’s individual performance guarantee. The

architecture is depicted in Figure 2.12.

2.5.2 Service Differentiation

In this section we describe how to incorporate service differentiation into our architecture for adap-
tive content delivery. The goal is to support client prioritization such that lower priority clients are
degraded first. Consider a virtual server that supports client prioritization. Let there be m priority
classes defined within that server, such that priority 1 is highest, and priority m is lowest. Collec-
tively, clients of the virtual server are allocated a target utilization U; that may have been derived

from a maximum rate and maximum bandwidth specification for that server. This capacity should
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be made available to clients in priority order. The following extension of utilization control achieves

this goal:

e For each priority class j, let the target utilization be Uy, = U, — 3~,.; U;, where U; =

aR; + bBW; is the current measured utilization of the (higher) priority class 7.

e Compute the extent of degradation G'; individually for each priority class using the integral
controller equation:® G; = G; + k(U:, — Uj).

e Degrade each class in accordance with the value of G; as described in Section 2.4.3.

The above scheme allocates the entire virtual server capacity to the highest priority class. The
unused capacity of each class is then allocated to lower priority classes. Clients within each priority
class are served in accordance with the current capacity, U:,, allocated for their class. If this capacity
is not enough, the clients will be degraded or rejected by the utilization control loop, to keep their
utilization at the target, U, . In practice, client rejection consumes a finite amount of time. Thus,
in the presence of low priority traffic, a higher priority class will never achieve its full capacity
allocation, U, . This can be accounted for in the computation of U, ; as follows:
Ut, =U, - Z:i<j Ui - Zl>j Urcject,-

5PI and PID control may also be used
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where Urcject; = @reject R is the overhead of rejecting all current requests of a lower priority class

[, the overhead of rejecting a single request being a,jcc:.

2.5.3 Best Effort Traffic and Sharing Excess Capacity

An important advantage of grouping several virtual servers on the same machine is the ability to
better reuse extra server capacity. Consider two physically separated servers, each of capacity,
C. If load on one exceeds capacity while the other is underutilized, there is no way to reroute
extra traffic to the idling server (unless a gateway is used in front of the server farm to balance
load). Idling resources may be wasted on one server while requests are being rejected on another.
A single server of capacity 2C does not suffer this problem. We therefore extend the preceding
mechanisms to allow virtual servers to exceed their contracted target utilization, U,, as long as there
is extra capacity on the machine. Since the virtual server has no contractual obligation to provide
the extra capacity in the first place, extra request traffic for any virtual server is uniformly treated
on best-effort basis as non-guaranteed. Non-guaranteed traffic is allowed to occupy the excess
capacity on the machine using a mechanism similar to that of service differentiation described in
the previous section. Specifically, the degradation level G, of nonguaranteed traffic is computed
from G, = G, + k(100 — U), where U = aR + bBW is the current aggregate utilization of the

computed from the aggregate request rate and bandwidth.

2.54 Profiling and QoS Guarantees

Earlier we demonstrated the need to compute parameters a and b that relate server request rate, R,
and delivered bandwidth, BW, to consumed capacity, U, where U = aR+ bBW . A simple way of
computing these parameters is to obtain several measurements of U and the corresponding R and
BW, then apply linear regression techniques to determine a and b that best fit the above equation.
Note that R and BW can be measured online by counting requests seen and bytes delivered within
a given period. Utilization, U, can be measured in an experimental setting using the gap estimation
method described earlier. Given the measured values of R, BW, and U, at successive time intervals,
estimation theory provides a way to find a linear fit that minimizes the error. It provides the nec-
essary formulae for computing and updating parameters a and b on-line in view of successive new
measurements. An on-line version of the estimator may be used to compute a and b during server

operation by sampling periodically the current U, R, and BW then updating parameter estimates.
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Alternatively, a and b can be determined by testing the server with a pre-specified workload.
Testing can proceed by requesting a URL of a given size at an increasing rate until client connections
start timing out indicating server overload. The maximum attained request rate and bandwidth are
then recorded. For our purposes, server utilization can be assumed to be 100% at this load condition.
The experiment is repeated for different sizes of the requested URL, giving a different rate and
bandwidth combination that saturates the server. The resulting set of R, BW, and U = 100%
points is used to construct the line aR + bBW = 100 on an R, BW plane. The line intersects the
R and BW axes at 100/a and 100/b respectively, from which a and b are found.

2.6 Implementation

The adaptation software was implemented in C for a UNIX platform. The software was tested on an
HP PA-RISK 2.0 workstation running HP-UX 10.20. For the purpose of this experiment an Apache
1.3.0 web server was used. In this section we give more details on software implementation, the

testing environment and evaluation of adaptation software.

2.6.1 Web Server Model

In order to handle a large number of clients concurrently, web servers adopt either a multithreaded
or a multi-process model. Multithreaded web servers require kernel thread support. Such support
is provided in most modern operating systems, €.g., Solaris, Linux, and Windows NT. A separate
kernel thread is assigned by the server to each incoming HTTP request. Threads can share common
state in global memory. In a multi-process model, common to older UNIX implementations, a
separate process is assigned to each incoming request. Since spawning a process is a heavy-weight
operation, a pool of processes is usually created at server startup. Created processes listen on a
common web server socket, and may communicate via shared memory. A process that accepts a
connection handles it until it is closed. Apache 1.3.0, used in our experiments, subscribes to this
model.

The adaptation software is designed as a middleware layer between the web server and the
underlying operating system. The middleware API may be called directly from the web server if
desired, in which case it is not transparent. Alternatively, middleware calls may be made from
the socket library used by the server, in which case server code remains unmodified. We begin by
describing the API of our adaptation middleware.
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2.6.2 Adaptation Software API

Adaptation mechanisms described in this chapter require three entry points. Namely, (i) an initial-
ization point, (ii) a request pre-processing point, and (iii) a request post-processing point. The first
point is called once upon server startup. The latter two are called upon the receipt of each request
and the sending of each reply respectively. The specific calls are as follows.

e adaptsoft_init ()
This function should be called from the main server process that would later fork off worker
processes to handle incoming requests. The call should be made before the aforementioned
forking takes place so that child processes inherit the initial data values set by adaptsoft_init(.
The function will initialize some global variables (e.g., a shared memory pointer) to be in-
herited and used by the worker processes. It will also fork off two processes of its own. The
response time monitor which will monitor server response time by sending periodic HTTP
requests, and the utilization controller which will implement server utilization control loops.

Later in this section we describe these processes in more detail.

e adaptsoft_adapt (URI, IP)
This function should be called each time an HT TP request is read off the server’s listen queue.
It takes as parameters the requested URI and the client’s IP address. It invokes a classification
mechanism that returns a URI to be served. The returned URI string will be the input URI
prepended by the “right” content trec name chosen among those defined in the middleware
configuration file. If the request is to be rejected the returned URI is NULL. Currently the
URI string is modified in place. Thus, enough extra space must be available in the input string

to augment the URI.

e adaptsoft_log_size (bytecount)
This function should be called after each request is served to tell the middleware the size of
the served URL (in bytes). The middleware uses this information to perform monitoring and

bandwidth control.

2.6.3 Adaptation Software Implementation

The implementation of our adaptation software is best understood by following the path of a request

inside the web server. When a request is first dequeued from the server socket’s listen queue by some
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worker process, W;, the function adaptsoft.adapt () is called in the context of W;. This function
classifies the request as belonging to virtual server j. In the current implementation, classification
is done based on sender’s IP address, although it can also be done based on accessed site name,
or client’s identity. The function then increments a counter, r;[j], that accumulates the number of
requests for virtual server j seen by worker process W;. When W; has finished processing the
request, it sends out the response and calls adaptsoft log size() passing it the number of bytes sent.
The function adaptsoft log_size() updates a counter, b;[7], that accumulates the total bytes sent by
process W; on behalf of virtual server j.

Load Monitoring

Periodically, a call to adaptsoft.adapt () by process W; also invokes a load analysis function. The
function computes on behalf of each virtual server k the requestrate R;[k] = r;[k]/t that process W;
has seen for virtual server k within the last ¢t time units. It also computes the bandwidth BW;[k] =
b;[k]/t that process W; has delivered on behalf of virtual server k£ within that time interval. Finally it
computes the utilization U;[k] = aR;[k] + b BW;[k] that process W; consumed on behalf of virtual
server k, and stores U;[k] in shared memory. Upon computing R;[k], BW;[k], and U;[k] for each
virtual server k, all counters r;[k] and b;[k] are reset to zero in preparation for the next period. The
period at which load analysis is carried out need not be fixed. In our implementation, the load
analysis function is invoked in each process W; by the first call to adaptsoft_adapt () that occurs
after some minimum interval ¢,,;, has elapsed since the last invocation of load analysis in W;. The

arrangement implements periodic utilization monitoring.

Utilization Control

The utilization controller is implemented as a separate process forked off by adaptsoft_inii() during
startup. The process executes a loop that wakes up periodically to compute the extent of degradation
for each virtual server then sleeps until the next period. Upon waking up, the controller aggregates
utilization values U;[k] to compute the utilization Ur = 3_; U;[k] of each virtual server. This
utilization is then compared to the desired utilization and the degree of degradation G is computed

for the virtual server k as described in Section 2.5.
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Content Adaptation

The content adaptor is implemented in adaptsoft adapt (). When adaptsoft_adapt () is invoked upon
request arrival, and the request is classified as belonging to some virtual server &, the load adaptor is
called to determine which content tree this request is to be served from. The adaptor uses the value
of Gk, as described in Section 2.4.3 to determine the content tree. The name of that content tree is
then prepended to the URL name passed. If the content tree is determined to be 0, the adaptor, by
convention, resets the URL name to NULL, indicating that this request must be rejected.

While in the above discussion we focused on virtual server traffic, one can easily see the scheme
works the same way for best effort traffic as well, the difference being in how G is computed by
the controller as described in Section 2.5.2. Appendix B shows the actual configuration file used to
configure the adaptation software for web server QoS.

2.7 Evaluation

In this section we present a performance evaluation of the developed adaptation software. This soft-
ware was run in conjunction with an Apache 1.3.0 server on an HP-PA RISK workstation running
HP-UX 10.20. To emulate a large number of web clients we used httperf, a testing tool that can gen-
erate concurrently a large number of HT TP requests for specified URLSs at a specified rate. In order
to overload the web server, httperf was run on 4 workstations collectively emulating the community

of clients. The workstations were connected to the server via a 100Mb switched Ethernet.

2.7.1 Estimating Service Time

In our first experiment, we profiled the Apache server to determine the time, T, it takes to serve a
URL of size z. Measuring server response time was found not to be indicative of service time T,
because the former includes queuing time, network latency, etc. We therefore measured service time
by obtaining the inverse of the maximum throughput. The idea is that if the server can serve no more
than n requests per second, then, for all practical purposes, each request takes 1/n to serve. The
experiment was repeated for different sizes of the requested URL. Table 2.1 shows the maximum
throughput and the corresponding service time for each URL size.

Table 2.2 compares the measured service times to service times computed using the linear ap-
proximation Ts(z) = A + Bz where z is URL size, A = 1.604, B = 0.063. The constant A can

be thought of as the time it takes to serve a zero-size URL. The constant B is the additional service
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URL Size (KB) | Max Request Rate (req/s) | T, ms/req
1 586 1.706
2 578 1.73
4 538 1.858
8 482 2.075

16 383 2611
32 301 3322
64 169 5917
128 85 11.76
256 42 23.81
512 21 47.62

Table 2.1: Service Time vs. Request Size

time required per KB of URL size. It can be seen that the quality of this approximation is very
good for smaller URL sizes, but deteriorates significantly as URL size increases. The reason is that
the service time computed from the linear expression approximates the end-system’s service time.
When the retrieved URLs are small the maximum request rate is determined by the end-system’s
bandwidth (including both CPU and disk access) making the approximation accurate. As URL size
increases, the bottleneck shifts from the end-system to the network. Since the end system is no
longer the bottleneck, the estimated service time falls below the observed service time dominated
by that of the bottleneck resource.

In order to model service time more accurately we use a composition of two linear approx-
imations, one estimates service time if the end system is the bottleneck and the other estimates
service time if network bandwidth is the bottleneck. While the former is given as before by
Ts(z) = 1.604 + 0.063z, Table 2.2 suggests that the latter be given by T = 0.093z, which is
equivalent to stating that the network saturates at a transfer rate of approximately 86 M b/ s. We then
take the larger of the two service times to account for the bottleneck resource. Thus, the combined
expression for T, is:

Ts(z) = max{1.604 + 0.063z,0.093z}

The quality of the above approximation is shown in Table 2.3. We can see that the approximation

is accurate over most of the range of URL sizes. We believe that the larger error at size 32K is
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URL Size (KB) | Measured T, | Computes 7, | Error
1 1.706 1.677 -1.7%
2 1.73 1.73 0%

4 1.858 1.856 -0.1%
8 2.075 2.108 1.6%
16 2,611 2612 0%
32 3.322 3.62 8.9%
64 5917 5.636 -4.7%
128 11.76 9.668 -17.8%
256 23.81 17.73 -25.5%
512 47.62 33.86 -28.9%

Table 2.2: Approximating Service Time

due to particulars of the OS implementation. It appears that HP-UX is optimized for long TCP
transfers, making CPU service time increase sublinearly with transfer size thus falling below the
linear estimate.
The total service time T)y of N requests is 31 <i<n T, (z:), where z; is the requested URL size
in the ith request, and T}, (z;) is the service time of that request. Substituting for T, (z;) we get:
Tn = max{1.604N +0.063 3", <;<n Zi,0.093 2i<i<n Ti}
where , <;<n i is the total bytes requested. Let us denote it by S. Thus, Ty = max{1.604N +
0.063S5,0.093S}. If N requests were served by the server within some time interval T', system
utilizationis U = Tn /T = max{1.604N/T + 0.063S/T,0.093S/T}. Note in this expression that
N/T is the observed request rate R, and S/T is the delivered bandwidth BW. Thus:

U = max{1.604 R + 0.063BW, 0.093BW} (2.16)

In practice, requests for URLs above 64KB will constitute only a small fraction of all requests on
the server. Thus, it is probably safe to assume that the first term will usually dominate in the above
expression. This reduces it to the linear approximation U = aR + bBW we described earlier in this
chapter, where a = 1.604 and b = 0.063. When using the automated profiling feature, constants
a and b were found to be 1.4 and 0.05. We attribute this difference to the way automated profiling

computes utilization. During automated profiling, utilization is computed via the gap estimation
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URL Size (KB) | Measured 7, | Computed T, | Error
1 1.706 1.667 -2.3%
2 1.730 1.730 0%
4 1.858 1.856 -0.1%
8 2075 2.108 1.6%
16 2611 2.612 0%

32 3322 3.62 8.9%
64 5917 5.952 0.6%
128 11.76 11.90 1.2%
256 23.81 23.81 0%
512 47.62 47.62 0%

Table 2.3: Approximating Service Time

method. Connection errors begin to occur when the utilization computed by the gap estimation
method is only 80% and not 100% as hypothesized in the manual profiling analysis. Constants a
and b computed by automated profiling are subsequently lower by 20%. Thus, if automated profiling
is used, the server should be configured for maximum capacity of only 80% instead of %100. This
does not mean that the server will be less efficient. It merely means that a, b and U values are
uniformly scaled by a factor of 80/100.

Note that in Equation (2.16), U is expressed on ascale from 0 to 1, R is expressed in req/ms and
BW is expressed in ms/kB. It is more natural to expressed R in req/s, and BW in Mb/s. After
the appropriate conversion of units (in particular note the conversion from kilobytes to Megabits),

we get the more natural expression:

U = 0.001604 R(req/s) + 0.007875 BW (Mb/s) Q.17

The a and b parameters are robust to changes in workload (e.g., changes in request rate and re-
quested URL size). However, since they represent, in part, the computational overhead of TCP/IP
connections, these parameters might change depending on the average number of retransmissions
and the number of segments required to send a given amount of bytes. Thus, for example, the a and
b parameters might be smaller for clients accessing the server locally via a high bandwidth LAN

and larger for clients accessing the server across a congested or lossy wide area network. In the
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preceding experiments clients were accessing the server viaa LAN. We have not experimented with
server access over a wide area network to estimate parameter robustness under these conditions.
We expect, however, that a and b will remain stable enough in the face of gradual client population

changes for the automated profiling to update them in a timely and accurate manner.

2.7.2 Measuring Response Time

In our experiments, we found that Apache server response time when measured across a fast network
(or from a client residing on the same machine with the server) has two important properties. First,
it is essentially bi-modal. It remains low until the server becomes overlcaded, at which time it
increases dramatically. Second, the “knee” in response time seen at overload is roughly equal to
the product of service time, T, and the maximum length of the listen queue configured for the
server. For example, Figure 2.13 plots server response time versus request rate when the listen
queue was configured for maximum length of 48, 192, and 768 respectively. In this experiment all
requests were for URLSs of size 64KB. The sudden increase in server response time when the request
rate increases beyond 160 requests/s makes a clear overload indicator. Figure 2.14 plots response
time versus request rate when the URL size is changed. In this experiment the listen queue was
configured for a maximum length of 48. The requested URL size was 8KB in one experiment, and
64KB in another. As before a clear rise in response time was observed when server capacity was
exceeded. The response time remains identically small until the threshold of overload and is not

particularly indicative of server load until the server is overloaded.

2.7.3 Adaptation at Overload

Content adaptation reduces the load on the server thereby avoiding connection failures. As request
rate increases on the server a threshold, R4.grqde, is reached where content has to be degraded in
order to prevent overload. As request rate continues to increase beyond R4.grqd., more clients must
be degraded until, eventually, a point R,.;..: is reached where no further degradation is possible. If
request rate increases beyond R..j..: some clients must be rejected to prevent indiscriminate con-
nection failures. A server that does not adapt exhibits connection errors starting at rate Ryegrade,
while a server that adapts will continue to serve all requests up to the higher rate R, ;... In Sec-
tion 2.4.1 we presented an experiment where the request rate was increased for URLSs of size 64KB.
An adapted 8K version of the same URL was used for degraded content. In this experiment we
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Figure 2.14: Server Response Time for Different URL Sizes

found, approximately, that Ricgrade = 160 and R..jec: = 460. The ratio Rrcject/ Rdegrade is the
the maximum sustainable request rate of an adaptive server as compared to the maximum sustain-
able request rate of a non-adaptive server. The value R, cjcct/Rdegrade — 1 is the net improvement
in the maximum sustainable request rate due to adaptation. This improvement depends on the re-
quested URL size. Figure 2.15 plots the net improvement (in percents) versus the average requested
URL size, z. The degraded content, in all cases, was 8 times smaller in size than the full-length
content, but the required number of server accesses was the same. The percentage improvement
in maximum sustainable rate is illustrated both when the accessed URL is a static file of size z,
and when it is a CGI script returning a URL of size z. In the latter case a static memory buffer of

the specified size was returned by the script with no initialization and no meaningful content. The
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CGI scripts were written in C. Results for interpreted Perl scripts were slightly lower (not shown in

Figure).
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Figure 2.15: Adaptation Payoff: Increase in Maximum Sustainable Rate

In can be seen that the percentage improvement in sustainable rate decreases as the requested
URL size decreases. This is because the smaller the requested URL the more dominated is service
time by the fixed size-independent processing overhead, rather than the size-dependent data transfer
cost. The rate improvement achieved by compressing the URLs is relatively insignificant (less than
100%) for URL sizes below 32K. Thus, content dominated by smaller objects should be degraded by
reducing the number of embedded objects per page, rather than reducing the bytes per object. Also
note that CGI scripts are not amenable to degradation by reducing the size of generated content.
The fixed overhead involved in invoking the script is so great that the additional data-size dependent
costs are insignificant unless the returned data volume is substantial. We therefore suggest that

dynamic content be degraded by converting it to static whenever possible.

2.74 Rejection Overhead

Our adaptive server rejects clients to control utilization when no further degradation is possible. The
server can either silently close a client’s connection, or return an error message such as “Service
not Available”. In either case some processing occurs on the end-system before the request is

rejected (e.g., protocol processing). To quantify the amount of time spent in processing an eventually
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rejected request, we instrumented the server to reject all requests by closing the connection as soon
as the request is read off the server socket. The request rate on the server was then increased,
and the maximum response rate was recorded. The maximum rate was found to be around 900
req/s, which is the maximum rate at which rejection can be processed. The time wasted on each
rejected request (the inverse of the maximum rejection rate) is thus approximately 1.1 ms/req. This
is to be compared with 1.604, the time it takes to serve a zero-size URL (denoted by constant
A in Section 2.7.1). The difference is believed to be due to file system access associated with
serving the URL. It appears that this difference is not substantial. More than one millisecond of
processing time is wasted on each request even if it is rejected. Request classification and rejection
should thus be done at the earliest point possible upon request reception in order to conserve end-
system’s resources. One suitable place for this mechanism is at the bottom of the protocol stack
in the operating system’s communication subsystem. The difficulty in performing classification at
the bottom of the protocol stack lies in the necessity to violate protocol boundaries and peek into
headers of higher-ievel protocols such as HTTP.

It is interesting to compare the aforementioned rejection overhead to the overhead wasted on
each failed connection in a server that does not support rejection. Let us denote it by 7. To compute
T, consider the top graph in Figure 2.7 which depicts the delivered bandwidth in a regular (non-
adaptive) Apache server subjected to an increasing request rate. The maximum delivered bandwidth
(cf about 84Mb/s) occurs at the overload threshold (at rate 160 reg/s). Onset of overload indicates
that the server is unable to serve successfully more than 160 req/s. Substituting in Equation (2.17),

the following equation holds:

160a + 84b = Umaz (2.18)

where Up,.- is the maximum server utilization at overload. As overload continues to increase, the
delivered bandwidth declines to only 36 MB/s at rate of 600 reg/s. For a worst case estimate of T,
assume that the decline in bandwidth is attributed solely to the overhead of handling failed requests.
Since the server cannot serve more than 160 requests successfully out of the 600 it receives every

second, the number of failed requests is at least 440 req/s. The following equation holds:

160a + 365 + 440T ¢ = Upar (2.19)

By subtracting Equation (2.18) from Equation (2.19), solving for T, then substituting for the value
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of b (as determined in Section 2.7.1, b = 0.007875s/Mb), we get Ty = 0.86ms in the worst case.
Note that this number is less than the 1.1 ms request rejection overhead.

The implications of the above are interesting. User level admission control mechanisms trivially
require that all requests be seen by the server (so that an admission control decision can be made
for each). This implies that each request, whether it ends up rejected or not, will have to consume
platform resources up to the point where it leaves the kernel and is inspected by the server or
middleware. As shown above, each request rejected by the server consumes 1.1ms, on average.

A best effort server, on the other hand, will serve requests in a FIFO order. As a result, under
overload, its socket’s listen queue will overflow in the kernel. Many client connections will timeout
and fail early in the OS before being seen by the server. As shown, a request failed in the kernel
consumes only 0.86ms. As a result, the resources wasted per failed request are less (about 22%
less on our platform than rejection overhead, as shown above). The remaining capacity available
to requests that do get through is therefore higher in a best effort server. Thus, while an admission
control mechanism will improve the average response time of requests that are not rejected, it will
necessarily increase the average rejection rate over the failure rate of a server with no such mecha-
nism. This fact motivates using adaptation instead of rejection as a way to control server overload
whenever possible. Content adaptation is especially suited for alleviating light to moderate overload
conditions when the server has enough capacity to serve a fraction of, but not all, requests. In cases
of severe overload, the server may suffer the receive livelock problem which may preclude serving
any requests at all. Methods for resoiving the receive livelock problem are beyond the scope of this

thesis.

2.7.5 Performance Isolation

We described a performance isolation mechanism that allows creating multiple adaptive virtual
servers with individual rate and bandwidth guarantees. The mechanism provides protection among
individual virtual servers, as well as protection between the virtual servers and the non-guaranteed
best-effort traffic. Figure 2.16 demonstrates these features. In this experiment all requests were for
32KB URLs.® A background best-effort load of 300 req/s was applied to overload the machine (see
Table 2.1 for maximum sustainable rate of 32KB requests). In addition, two adaptive virtual servers,
V1 and V>, were configured. Server V; was configured for a maximum guaranteed bandwidth of 13
Mb/s, and a maximum guaranteed rate of 50 req/s. During the experiment, a constant load of 50

®In a real-life situation the workload is likely to be less severe.
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req/s was applied to that server requiring a bandwidth of 12.8 Mb/s, i.e., just within the allocated
server capacity (note that bandwidth in Mb/s is 32KB/req times 8 b/B times 50 reg/s). Server V>
was configured for a maximum guaranteed bandwidth of 27 Mb/s, and a maximum guaranteed rate
of 100 req/s. The load on server V> was increased gradually from 0 to 100 reg/sec, giving rise to
a bandwidth requirement of up to 25.6 Mb/s, which is also within server capacity. It is important
to note that while each virtual server in isolation was loaded within its individual capacity limit,
the aggregate load on the machine (including non-guaranteed traffic) was well above the overload
threshold because of best-effort load.. Figure 2.16 depicts the offered load on each virtual server
(in terms of bandwidth in Mb/s assuming no content degradation), as well as the actual bandwidth
delivered by each server. Both are plotted versus the aggregate request rate. For clarity, the best
effort load is not shown. It can be seen that the actual bandwidth delivered follows closely the
offered load on each virtual server. Thus, despite server overload, virtual servers V; and V, attain
their performance guarantees and suffer no content degradation. Furthermore, variations in load on
virtual server V; do not affect virtual server V. Performance isolation is thus achieved in the sense
of maintaining the QoS guarantees independently for each virtual server regardless of other load.
For comparison, we repeated the experiment using a regular Apache server that does not use
our adaptation extensions. As before, a best effort load of 300 req/s was applied in addition to a 5O
req/s load on server V; and an increasing 0 to 100 req/s load on server V5. Figure 2.17 depicts the
results of this experiment. It can that the delivered bandwidth of both virtual servers falls short of
the offered load. The difference refiects the fraction of connections that fail and don’t get served due
to overload. Not also how the increase in delivered bandwidth of server V) results in a decreases
in delivered bandwidth of server V,. No performance isolation is observed. The comparison of

Figure 2.16 and Figure 2.17 illustrates the advantage of the developed adaptation software.

2.7.6 Service Differentiation

Adaptation software allows defining multiple priority classes of requests. In this section we exper-
iment with defining two priority classes, namely a basic class B and a premium class P. Requests
of class P are treated as higher priority than those of B. In the experiment, we offered a con-
stant load of 100 premium class requests per second. We then gradually increased the rate of basic
class requests. Figure 2.18 plots the delivered premium and basic bandwidth versus request rate. It
also shows the offered load of both premium and basic clients. Note that when the server becomes

overloaded, basic clients are degraded before premium clients thus achieving service differentiation.
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Figure 2.16: Performance Isolation in Adaptive Server
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Figure 2.17: Regular Apache Performance

2.7.7 Policing vs. Excess Capacity Sharing

As we argued earlier, an important advantage of colocating several adaptive virtual servers on the
same machine is the ability to utilize unused capacity of one virtual server by another that is over-
loaded. The overloaded server should te allowed to exceed its individual capacity allocation when
extra capacity is available, as long as it does not affect other virtual servers. When the machine is
overloaded, however, each virtual server should be policed to its individual capacity allocation in
order to achieve performance isolation and overload control. These two features are provided by
the excess capacity sharing mechanism described in Section 2.5.3. To evaluate the efficacy of this
mechanism we conducted two experiments. In the experiments a virtual server V; is created whose
offered load at run-time exceeds its capacity allocation. Low background load is used in the first ex-
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Figure 2.18: Service Differentiation

periment. As a result, virtual server V| overruns its capacity allocation utilizing the excess capacity
on the machine. In the second experiment, high background load is applied. As a result, the virtual
server is policed to its individual capacity limit. Moreover, in both experiments a second virtual
server, V2, is also used. Server V2, which operates within its capacity limit at all times, is shown to
deliver its offered load without degradation despite the (controlled) capacity overrun of server V;,
and the background load. Excess capacity sharing is thus shown not to interfere with performance
isolation.

Figure 2.19 depicts the results of the first experiment. It shows the contracted as well as the
actual bandwidth of servers V; and V;. Server V is configured for maximum bandwidth of 13Mb/s,
and maximum request rate of 100 req/s. Server V5 is configured for maximum bandwidth of 27Mb/s
and maximum request rate of 100 req/s. At run time, the request rate of V> is held constant at
100, offering a total bandwidth requirement of 25.6Mb/s, i.e., just within its capacity limit. The
request rate on server V) is increased gradually from 0 to 250 req/s. The aggregate rate of both
servers is shown on the horizontal axis. It can be seen that server V> overruns its capacity allocation
delivering a peak of about 35Mb/s at a rate of 140 req/s (at which the aggregate rate is 240 req/s
in Figure 2.19). This is to be compared with its guaranteed maximum bandwidth of 27Mb/s and
maximum request rate of 100 req/s. Server V; remains unaffected, since the excess capacity sharing
mechanism ensures performance isolation.

The experiment is repeated with a background load of 100 reg/s. It can be seen that V] is made

to deliver exactly its maximum guaranteed bandwidth (27Mb/s) when its rate reaches the maximum
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guaranteed rate (100req/s). This is equivalent to traffic policing, except that in adaptive virtual
servers it is achieved via content degradation. The bandwidth consumed by V; drops below its
guarantees value when the maximum rate guarantee is violated by the community of clients. This is
to ensure that the total system capacity utilization of that virtual server remains constant. Similarly,
the server is allowed to deliver more than its maximum guaranteed bandwidth when its rate is below
the maximum guaranteed rate. This is an optimization that makes use of the capacity allocated to the
server to deliver more bandwidth when the request rate hasn’t reached its maximum value. Again,

server V3 is not affected due to correct performance isolation.
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2.8 Conclusions

In this chapter we presented motivational material for building Adaptware. We focused on an impor-
tant application and illustrated the need for adaptation technology in the context of that application.
We built an adaptation software prototype and evaluated its resulting performance. Unlike present
day non-adaptive servers, and unlike servers that implement binary admission control, we demon-
strated an adaptation mechanism that enables a server to cope with overload in a graceful manner.
We described the design and implementation of a utilization control loop that adapts service per-
formance in a way that enforces a logical target resource allocation in the presence of variable
server load while virtually eliminating connection errors. We proposed several extensions to this
mechanism that provide performance isolation, service differentiation, sharing excess capacity, and
QoS guarantees. We demonstrated that the architecture can be implemented in a middleware layer
transparently to existing server and browser code thereby facilitating deployment.

To generalize adaptation software and separate it from specific application requirements, we
extract from this case study certain useful abstractions and mechanisms. The first important ab-
straction is that of QoS levels. Different content trees represent different levels of quality of service
exported to the client. Adaptation software toggles between QoS levels depending on load condi-
tions.

The second abstraction is that of a QoS contract. For example, authors of a hosted web site
may require from their hosting service that it allocates enough resources for their site to meet a hit
rate of R for an average URL size of . The service provider can interpret that specification as a
request rate, R, and a delivered bandwidth, BW = zR. A utilization budget U = aR + bBW
can then be allocated for the hosted site to meet the contracted specification. In general, a QoS
contract can have multiple QoS levels represeting a range of acceptable conditions, each is mapped
into corresponding resource requirements to be allocated to the contract.

Guaranteeing the contracted performance entails enforcing the particular resource capacity al-
location to the contract. For example, each hosted site must be guaranteed its chunk of server
resources. In the described architecture, enforcement of capacity allocation is essentially achieved
by traffic policing using the utilization control loop. The loop ensures that the contract consumes no
more than the capacity allocated to it. The efficacy of this approach has been experimentally veri-
fied in Figure 6.8. Alternatively, policing could have been performed on outgoing traffic to regulate

server load. This mechanism may be more appropriate for multimedia servers where outgoing flows
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have considerable duration and bandwidth. The advantage of using policing mechanisms for enforc-
ing resource allocation is that implementing such mechanisms does not require kernel modifications
for enforcing capacity allocation. QoS management mechanisms that avoid kernel extensions are
preferred because of their relative ease of development and maintainability.

The goal of adaptation is to maximize service utility. In this application, utility was trivially
maximized by the utilization control loop by virtue of serving the highest QoS level to the largest
possible number of clients that does not overload the server. In a more complex application, where
some clients are more important than others, more complex utility optimizing resource allocation
algorithms are needed to perform logical resource allocation that consider individual client impor-
tant and resource requirements. In the remaining chapters we generalize the abstraction of QoS
levels and QoS contracts, define a formal notion of utility, develop utility optimizing resource allo-
cation algorithms, and demonstrate enforcement mechanisms of resource allocation that police QoS

contracts.
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CHAPTER 3

ADAPTWARE AND UTILITY OPTIMIZATION

3.1 Introduction

In this chapter we generalize the architecture developed in Chapter 2 and introduce the basic ele-
ments of Adaptware; an architecture for adaptive QoS management on server end-systems. QoS-
sensitive resource management on server end-systems is motivated by the multitude of emerging
Internet applications, such as multimedia streaming and e-commerce, which require predictable
performance and contractual performance guarantees. The consequences of failure to satisfy these
guarantees range from mild inconvenience (e.g., when potential buyers choose a different shopping
site due to failure to download a page) to severe financial loss (e.g., due to failures in on-line trading
services). QoS-sensitive applications need a minimum amount of resources in order to operate in
a way that is acceptable to the users. With an exponential growth of the Internet user population,
popular servers are becoming centralized points of bottleneck. As we demonstrated in the previ-
ous chapter, in case of overload, traditional “fair” distribution of resources among server connec-
tions/sessions may degrade applications performance equally and indiscriminately below their min-
imum required level, thus resulting in low “user-perceived utility” while collectively consuming a
significant amount of resources. For example, an overloaded web or e-commerce server may be un-
able to complete mest purchase transactions while consuming significant bandwidth on eventually-
abandoned connections. Service quality can be improved by allocating bottleneck resources on the
server end-system in a QoS-sensitive manner to minimize unnecessary resource consumption, and
dynamically adapt the resource allocation to changing load conditions. One natural place for such

QoS extensions is the server operating system or middleware.
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Adaptware enables business-critical and QoS-sensitive applications to write “QoS contracts”
between the server and clients. We show how widely different applications, such as video-on-
demand and guaranteed commercial web-hosting, with different QoS semantics and different load
characteristics, can make use of our QoS contracts. Given the contracted QoS specification, we
describe in this chapter QoS mapping mechanisms and resource allocation policies that optimize
service utility under given load and resource constraints. While the policies compute the desired
resource allocation, we need mechanisms to ensure that this allocation is enforced. Description of
allocation enforcement mechanisms is deferred to Chapter 4.

The success of QoS-management policies and mechanisms in server end-systems depends not
only on their efficacy but also on the ease of “retrofitting” them into the existing best-effort service
infrastructure. We pay special attention to reducing the cost of retrofitting legacy software with
QoS extensions. As mentioned above, unlike several other efforts, we propose extensions that do
not require modifying the OS kernel. Implementing QoS extensions outside the kernel has lower
development costs, and results in easily maintainable and upgradable code.

New QoS policies and mechanisms usually require new QoS manipulation APIs. While new
APIs may benefit software design practices in the future, they raise concerns regarding their util-
ity for today’s legacy best-effort code. To address this issue, we demonstrate how the new APIs
can be hidden in transparent middleware by exploiting dynamic shared libraries to provide legacy
applications with QoS extensions beneath a regular socket API without modifying application code.

The rest of this chapter is organized as follows. Section 3.2 elaborates on the notion of QoS
used in this work. It proposes a flexible form of QoS contracts suitable for emerging QoS-sensitive
services. Section 3.3 describes our general architecture for embedding QoS provisioning into best-
effort server platforms. Section 3.4 addresses the utility-optimizing resource allocation problem,
which is NP-complete, and explores simple polynomial-time resource allocation solutions. The

chapter concludes with Section 3.5.

3.2 The QoS Contract

In Adaptware, QoS requirements must be specified to the server’s communication subsystem. This
specification is called a QoS contract. Most real-time applications have a certain degree of flexi-
bility in terms of resource requirements. For example, video applications can adapt to bandwidth

limitations by image compression and frame rate reduction, while web servers can adapt delivered
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content. To express the flexibility of adaptive applications, a QoS contract C; contains the following

information:

e A desired QoS level, Ly.sired;, the server will attempt to deliver. The semantics of a QoS

level will be discussed later in this section.

e The maximum tolerable service degradation: this degradation is specified by 2 minimum

acceptable QoS level Lin, < Lgesired; from the server under this contract.
e The utility (or charge rate) R:[k] for each QoS level Ly in the range [Lnin;, Ldesired. |-

e The QoS-violation penaity, V;, for failing to meet the requirements of the minimum level
Lmin, of an established contract. It is useful to think of contracts as having an extra QoS
level called the rejection level, with no resource requirements (no service) and a “reward” of
R;[k] = —V;. It quantifies the penalty of disrupting service to the client (e.g., closing the

connection in the middle of transmitting a movie).

Normally, the server should avoid running applications below the QoS threshold Ln;n,, or above
the desired level L4.sircq; . The server, however, may choose to terminate a connection at the cost of
paying the QoS violation penalty to release resources for a more important client. While the client’s
perception of service utility might be a continuous function of QoS between L in, and Lyesireq; , the
server may not be able to deliver arbitrary QoS in that range. Instead, the server may export only a
finite number of QoS levels, 1, ..., n, for example, either low-quality audio, standard audio, or high-
fidelity audio. Those QoS levels that fall between L,;n, and Ly.sirq; are said to be acceprable
under contract C;. [deally, the server must choose, for each contract C;, a QoS level k; among
those acceptable under the contract, such that the aggregate utility of delivered QoS, 3_; Ri[k:], is
maximized for the community of clients. If clients pay for their received QoS, this maximization
translates into maximization of the server’s total revenue.

We have deliberately avoided in the above discussion any mention of semantics of QoS levels.
In applications such as video-on-demand where clients request an online movie transmission, QoS
levels may represent frame rates and average frame sizes. The contract is “signed” between the
server and the requesting client. The server will attempt to deliver picture quality L4esireq;, but can
degrade quality down to L,;5, in case of overload.

In other applications contracts may be defined on connection aggregates. For example, consider

commercial web hosting. The server may host several independent web sites. A contract C; is
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signed with each site owner that guarantees a portion of dedicated server capacity to the site. The
guarantee controls aggregate site traffic. Although the QoS levels specified in the contract may in
principle have arbitrary semantics, in Adaptware we specify a QoS level k of contract C; with the

following two parameters:

e Aggregate Service Rate, ui;[k]: expressed as M;[k] units of service per specified period P;[k],
i.e., ui[k] = M;[k]/P;[k]. The units of service are arbitrary, but all contracts with a particular
server must use the same unit. Examples of service rate are: M;[k] served URLSs per period
(e.g., in web servers), M;[k] served packets per period (e.g., in guaranteed communication),
or M;[k] served frames per period (e.g., in audio/video servers). Adaptware localizes the

interpretation of service rate to a single plug-in.

e Aggregate Data Bandwidth, W;[k]: specifies the aggregate bandwidth in bytes per second to
be allocated for the contract. Aggregate bandwidth is orthogonal to service rate, because the
unit of service (such as a request, frame or packet) does not necessarily have a fixed number

of bytes.

Aggregate service rate and data bandwidth are useful QoS parameters because communication re-
source consumption, as shown in Chapter 2, can be generally approximated by two components: (i)
a fixed average per-unit-of-service consumption (such as per-packet protocol-processing cost), and
(ii) a data-size-dependent consumption (such as data copying and transmission cost). This approx-
imation becomes increasingly valid with increased levels of traffic aggregation, as the aggregate
approaches the average behavior. Thus, aggregate service rate and data bandwidth are a very useful
and scalable way of describing resource consumption in large servers. The accuracy of this approxi-
mation has already been established for web servers [4, S]. We do not deal with jitter and end-to-end
response-time constraints, since their satisfaction depends largely on network support that cannot be
guaranteed by the end-system alone. Furthermore, today’s Internet application technology adapts
successfully to delay variations with adequate client-side buffering, making the perceived QoS more

a function of connection rate and bandwidth.

3.3 Architecture

This section discusses our architecture and deployment model of QoS extensions. We focus on en-

abling legacy application software to reap QoS benefits without code modification or recompilation.
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User

Figure 3.1: Architecture for QoS

Figure 3.1 gives a high-level architectural view of performance-assured services, showing im-
portant components and their interactions. The shaded regions are the software components we
add to the existing infrastructure to provide QoS-contract guarantees. Unshaded regions represent
best-effort legacy code. In our model, clients desiring QoS provisioning will subscribe (via some
convenient API such as a web browser) to receive “premium” service. Subscriptions are processed
via a subscription agent, which is a process or CGI script separate from the server process, invoked
on the server machine. The agent creates QoS contracts with the machine’s communication subsys-
tem on behalf of the subscribed clients by calling the QoS-sensitive API extensions exported by the
communication subsystem. These clients may be identified to the operating system, for example,

by their IP address. The OS then enforces the contract.

3.3.1 Contract Establishment

Contract establishment refers to contract creation, activation, and admission control. We make a
logical distinction between contract creation and contract activation. Video-on-demand clients, for
example, may want to subscribe to the service (as they would to a premium cable channel), in or-

der to receive contracted QoS whenever they connect to the service. In such a case, the contract

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is created once, and stored by the subscription agent with the option to be activated internally by
the communication subsystem whenever a socket is created with this particular client. Upon con-
tract activation resources should be allocated to serve the contract. Contract activation therefore
triggers a utility-optimizing admission-control algorithm within the communication subsystem that
determines the amount of resources to be allocated in order to sustain an acceptable QoS level. The
contract is admitted if this resource capacity is available. If the contract is not admitted, contract
activation fails and the client is served on a best-effort basis (presumably at no charge). A client
may request that contract creation and activation be atomic, in which case a created contract is ac-
tivated immediately. This model is more suitable for services such as web hosting, where the web
site owner has the contract created and activated with the server for the lifetime of the hosted web
site. We permit contract parameters to be modified after contract activation. This is equivalent to an

atomic termination of an old contract and activation of a new one with the modified parameters.

3.3.2 Contract Enforcement

Admitted contracts are enforced by QoS control which essentially enforces the appropriate resource
allocation. Since we are interested in portable QoS control mechanisms, resource allocation is
achieved without OS kernel enforcement mechanisms such as capacity reserves [88]. Thus, resource
allocation is logical. Our approach is to rely on policing mechanisms to ensure that actual resource
consumption coincides with the logical resource allocation. To describe how this is done, it is
useful to classify contracts depending on the flows they control. In services with long-lived flows
and per-flow contracts (e.g., video transmission), load is controlled most efficiently via low-control
mechanisms that police the outbound server connections to limit resource consumption, so it does
not exceed its allocation. In services with short-lived flows and contracts defined on flow aggregates
(e.g., web hosting), load is controlled more efficiently by policing the inbound request rate. The
scheme uses monitoring and feedback mechanisms to admit only as many requests as necessary
to utilize but not exceed the allocated contract resources. Our architecture contains both outgoing
flow-control and incoming request rate policing mechanisms. Request rate policing is not to be
confused with admission of new contracts into the system. While the latter mechanism ensures that
the machine is not overloaded as a whole, the former ensures that each individual contract does not
use more resources than its allocated share.

The operating system classifies and prioritizes connections transparently to the server. OS calls

such as accept(), performed on the server’s well-known port, return connections to the server in
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priority order. Rejected connections are closed by the OS, causing no further resource consumption.
Non-contracted clients receive a lower priority, and thus are served only when extra resources are
available to serve them.! Outgoing server connections, such as video flows, are classified by contract
within the OS. The OS serves them in a QoS-sensitive fashion, implementing flow shaping and
policing mechanisms as appropriate for each QoS contract. Server threads overdrawing their allotted
resources are blocked on communication calls such as write(), allowing other threads to run. Server

code can remain best-effort in nature.

3.3.3 QoS Extensions

In summary, Adaptware’s architectural extensions to present service software fall in the following

three categories:

e Contract Establishment and Utility Optimization: A contract C; is created and activated for
a new client, admission control is invoked, an optimal QoS level is chosen, and resources are

logically allocated for C;.

e Classification: Client requests and server responses must be classified in order to “charge”
request execution to the corresponding contract’s resource budget. While we introduce default
classification mechanisms (e.g., classification by IP), we allow applications to perform other

types of classification on their own as will be described later.

e Enforcement and QoS Control: After classification, request processing must be charged to
the corresponding contract’s resources such that a contract’s resource consumption does not
exceed its resource allocation. We will compare an OS implementation of QoS enforcement

with a middleware implementation, and discuss the advantages and limitations of each.

In the remainder of this chapter we focus on the utility optimization problem. Namely, in the pres-
ence of multiple clients with different importance and different customized contracts how to allocate

resources to them such that service utility is maximized. Enforcement is discussed in Chapter 4.

3.4 Utility Optimization

Let each created contract C; have multiple acceptable QoS levels, such that the resource require-

ments of QoS level k are given by U;[k] (which may be a vector), and the utility of delivering this

'Hopefully, this policy will encourage subscription.
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QoS level is R;[k] (which may depend on client importance). It is desired to find the resource al-
location that achieves the maximum aggregate utility Y _; R;[k] given a finite amount of available
resource capacity. Since, in our model, QoS-sensitive applications have minimum resource require-
ments to yield non-zero utility to the end-user, the optimization algorithm must limit the number of
clients served concurrently. Otherwise, the per-client share of resources will eventually drop below
the required minimum, as load increases on the server, thus reducing service utility to zero.

The nature of the utility-maximization policy depends in large part on user tolerance to QoS
violation. Users’ tolerance to violation of contract C; is captured by the contract’s QoS-violation
penalty V;. As one may expect, if the QoS-violation penalty is high (e.g., the end-user may be very
unhappy if a video-on-demand transmission was terminated abruptly by the server), reservation-
based mechanisms achieve higher total utility since the resources allocated to a QoS contract are
never taken away. Later in this section we compare a simple FCFS reservation policy to the opti-
mal policy and show near-optimal performance. We also show that if the QoS-violation penalty is
negligible, simple priority scheduling will asymptotically approach the optimal utility-maximizing
solution as the number of clients increases. We describe how resource requirements of contracts are
estimated from QoS level specification (Section 3.4.1), present an optimal resource-allocation pol-
icy (Section 3.4.2), compare it with FCFS reservation and prioritization (Section 3.4.3), and derive

near-optimal load-sensitive FCFS resource allocation policies.

34.1 QoS Mapping

The resource requirements imposed by each QoS contract must be known before utility optimization
can be made. In the previous chapter we reported, in the context of web servers, that (i) the time for
the end-system to process a unit of service (e.g., packet, frame, or URL) is accurately approximated
by a+ bz (where a and b are constants, and z is the size of data served), and that (ii) the correspond-
ing consumed network bandwidth is approximated by cz. Parameters a, b, and c are determined by
linear regression, and need to be re-evaluated only when the platform is upgraded. Aggregating the
capacity consumed by processing a sequence of service units during some observation period, the

bottleneck resource utilization required to meet the QoS level, &, of contract C;, is given by:

Uilk] = maz(aM;[k]/ P[] + bWilk], cWi[k]) G.1

where M;[k]/PF;[k] and W;[k] are the service rate and bandwidth parameters of the QoS level.
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The first term in this expression represents CPU consumption which increases with both the re-
quest rate and data bandwidth served. The second represents communication link consumption.
The bottleneck resource is the one whose consumption is higher. Thus, from Equation (3.1), if
aM;[k]/ Pi(k] + bW;[k] > cW;[k] the bottieneck is the CPU. Otherwise it is the link. Using simple

algebraic manipulation, the bottlieneck resource is identified as follows:

if Wilkl/uilk] > a/(c—b) bottleneck : link
if Wilk]l/uilk] < a/(c—b) bottleneck : CPU
where  pi[k] = M;[k]/Pi[k] (32)

Different contracts may in theory overload different resources. In practice, however, we optimize
for the case where the bottleneck resource does not depend largely on the individual contract. This
is justified because the average size, W;[k]/ui[k], of a unit of service does not vary considerably
from one contract to another. For example, the average frame size does not depend considerably on
a particular movie, and the average URL size does not depend considerably on the particular web
site (although there are always exceptions). Therefore, the values of W;[k]/u;[k] for all contracts
tend to be clustered, and likely to be on the same side of the constant a/(c — b). Substituting this
observation in Inequalities. (3.2), we conclude that clients generally overload the same bottleneck
resource. This important property justifies using a single utilization value and one-dimensional
resource optimization for a multiple-resource end-system.2 We therefore define the abstract end-
system resource utilization as a scalar value such that 0% utilization indicates no load, and 100%
utilization indicates saturation of the server’s bottleneck resource. Optimal QoS levels within the
admitted contracts must be selected to maximize the aggregate utility while keeping end-system

utilization below 100%. This is described in the following section.

3.4.2 Optimal Resource Allocation

Suppose there are n QoS contracts handled by the server. Let contract C’; specify m; acceptable QoS
levels with utility R;[1], . . ., R:{m], respectively, and let the QoS-violation penalty be V;. Each QoS
level k is now given by the utilization requirement U;[k] computed as described in Section 3.4.1. We
introduce an additional (artificial) QoS level for each contract, called the rejection level (at which

*This property does not hold for applications that can trade one resource for another, e.g., adaptive on-line video
compression.
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the client receives no service). This level has no resource requirement (i.e., U;[k] = 0), and incurs
a negative utility equal to its QoS-violation penalty (i.e., R;[k] = —V;) for an established contract,
and 0 for a contract being considered for admission.

To reduce this NP-complete problem to a polynomial-time problem, we consider a subclass
where U;[k] can only take discrete values which are multiples of some arbitrary small constant
4. This problem is solvable in polynomial time with dynamic programming. We construct a grid
of subproblems, S(i, U), where S(¢, U) is the subproblem of optimally assigning QoS levels to
contracts C1, ..., C; without exceeding a utilization U. For notational simplicity, S(z, U) aiso
denotes the resulting aggregate service utility. Given n contracts, we need to solve the problem

S(n, 100). Using dynamic programming, we construct the following recursive relation:

5@ U)= max {R{k]+S(E-1LU- Ui(k])|Ui{k] < U}. (3.3)

For the SpeCial caseof 1 = 1,
(lv ) = l<"kl<ax1{ l[ ]l l[ ] > } 34)

Since the utilization is discretized, there is only a finite number, K = 100/4, of possible utilization
values in the range [0, 100]. Thus, there are a total of nK subproblems S(i, U) to be solved. The

complete algorithm is given below.

Algorithm A

1fori=1to n

2 for U=0 to 100 in steps of §

3 compute S(: U) from Equation 3.3
4 return S(n,100)

The returned solution assigns a QoS level for each contract. In the worst case, the solution returned
by the above algorithm will specify the rejection level for all contracts. Note from Algorithm A
that when contract C, is being admitted (activated), the sets of problems S(1, *), ..., S(n — 1, %)
will have already been computed at the admission time of contract C,,_;. Thus, at the admission
time of C,,, we need to compute only the incremental set of problems S(n, ), which is an O(l,,)

computation, where [, is the average number of acceptable QoS levels per contract. Furthermore,
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of all problems in set S (n, ), only S(n, 100) is in the “critical path” of admitting the new contract.
The other problems in S(n, *) can be computed later in the background. The incremental utility-

optimizing contract admission-control algorithm is thus as follows:

admission_control(contract C,,)

1 compute S(n,100) from Equation 3.3
2 if S(n,100) < S(n - 1,100) reject C,

3 else accept C,

4 compute remaining problems in set S(n,*)

We shall use Algorithm A and its incremental form as a basis for comparison with simpler QoS-
maximizing heuristics to assess the quality of the heuristic solutions. This comparison gives insight

on the best OS mechanisms to use for QoS optimization for a particular application.

3.4.3 Suboptimal Policies

We now evaluate the efficacy of FCFS and priority-based policies in finding near-optimal resource
allocation solutions. We begin by proving, analytically, the near-optimality of FCFS under non-
restrictive assumptions. Assume that the server exports n QoS levels, Ly, ..., L,. Assume that the
resource requirements of each QoS level are fixed and determined only by the level itself (e.g., the
resources needed for movie transmission depend only on image quality and not the identity of the
recipient). Let the QoS level with the highest absolute reward be denoted L;;, and the QoS level
with the highest reward per unit of consumed utilization be denoted by L;,. Let the consumed
utilization U;[k] be denoted by A and [ for the two QoS levels respectively. Assume that contracts
assign a random uniformly-distributed utility R;[k] to each QoS level, such that the utility of level
L, ranges between Min;, and Maz,, and the utility of level L;; ranges between Miny; and
Mazp;.

The optimal policy will always keep the clients with the largest ratio of utility to resource con-
sumption. Thus, the optimal policy will achieve, at best, a utility of maz(Mazy;/h, Maz;, /1)
per unit of resources. The FCFS policy will keep the clients that arrive before the processing ca-
pacity saturates. Since utility is uniformly-distributed, FCFS will achieve the expected utility of
(Mazh; + Ming;)/2h per resource unit if it assigns QoS level Lj;, and (Maz;, + Min,)/2! per
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resource unit if it assigns QoS level L;,. In general, by assigning L;; to new clients under low
load and assigning L;, under high load, FCFS allocation policy can achieve an average utility of
maz((Mazhi+ Ming;)/2h, (Mazi,+ Ming,)/2l) per unit of resource consumption. For the sake
of finding a lower bound on achieved utility, the above expression is minimized by setting Min;;
and Miny, to zero. In this case the FCFS achieves half of the optimal utility, which constitutes the
lower bound. FCFS is thus proven to be a near-optimal policy.

The difference between the optimal policy and FCFS decreases when the QoS-violation penalty
is taken into account. QoS violation penalty is never incurred by FCFS since it never reallocates
resources assigned to already admitted clients. The optimal policy can increase utility by taking
resources away from initially-accepted clients and allocating them to more important ones at the
cost of paying the QoS violation penalty. Naturally, the larger the penalty the less beneficial such
resource reassignment may be, and the closer the optimal policy becomes to FCFS.

Figure 3.2 depicts simulation results that compare FCFS allocation and fair allocation to an
optimal QoS maximizing resource allocation policy. By fair, we mean the prevailing policy in con-
temporary servers, where each client gets an equal share of resources on the average. All contracts
were assumed to have two QoS levels; L;, which requires 2% utilization per client, and L;, which
requires 1%. Rewards are uniformly distributed in their respective ranges. The figure plots aver-
age normalized utility defined as the aggregate utility achieved for the community of clients by the
given resource allocation policy normalized by that of the optimal policy and averaged over 100
experiments. The average normalized utility is plotted versus server load, expressed in the number
of accessing clients. Note that the maximum number of clients supportable at QoS level Lj; is S0,
and the maximum number supportable at L, is 100. The server is underutilized when ciients < 50,
and overloaded when clients > 100. The FCFS policy assigns the highest QoS level, L;;, at low
load. At high load it assigns the QoS level with the highest reward per unit of resource consumption.
Several curves are shown for the FCES policy which differ in the QoS violation penalty V of the
application, expressed as percentage of maximum reward (max R;[k]).

The figure shows that FCEFS is trivially optimal (by selecting QoS level Lz;) when the server is
underutilized. As load increases the performance of FCFS drops since assigning L;; may become
wasteful of resources. Eventually, as load increases, our FCFS policy switches to assigning L, to
incoming clients thus approaching the optimal policy again. When it becomes impossible to serve
all clients, the optimal policy, unlike FCFS, can increase utility further by replacing current less

important clients by arriving more important ones assuming the QoS violation penalty is small.
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Figure 3.2: Near Optimal Resource Allocation

As more clients access the server the probability of such replacement increases, thus increasing
the optimal aggregate utility over that achievable by FCFS. This explains the slight decline in the
relative performance of FCFS as the load increases beyond 100 clients in Figure 3.2. It also explains
why FCEFS is closer to the optimal when the QoS violation penalty is higher. For critical applications
(such as e-commerce) where the QoS violation penalty is very high, FCFS becomes optimal for a
large range of load conditions.

The figure also shows that fair resource distribution quickly approaches zero utility in a stair-
case fashion as the machine gets overloaded, thus motivating QoS-sensitive resource allocation. A
drop in utility is seen with fair distribution when per-client resource allocation decreases below the
minimum requirements of a particular QoS level.

A priority based policy, on the other hand, may serve clients in the order of reward per unit
of resource consumption. This is equivalent to the knapsack problem. The utility achieved by
placing the most valuable items (clients) in the knapsack first approaches asymptotically the optimal

solution as the resource consumption of each item decreases approaching a continuous problem
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formulation. If all items are the same “size” (same utilization requirements), then placing the the
most valuable items first is an optimal utility-maximizing solution. This reasoning assumes no QoS-
violation penalty. When the penalty is taken into consideration priority-based resource allocation
will achieve less utility since, by neglecting the QoS-violation penalty, the server is likely to pay it
more often than it would under an optimal policy. This results in decreasing the atility achieved by
prioritization compared to the optimal policy. Since we are interested in applications with high QoS

violation penalty we do not consider prioritization any further.

3.5 Conclusions

We proposed a notion of QoS contracts that captures the flexibility in applications’ QoS constraints.
A QoS contract specifies acceptable QoS levels along with their utility, and a QoS-violation penalty.
We generalized the adaptation techniques described in Chapter 2 with a particular focus on solving
the general utility optimization problem in applications with elastic QoS requirements specified by
QoS contracts. We presented an optimal algorithm for maximizing aggregate user-perceived ser-
vice utility on server end-systems, and compared it with both reservation- and prioritization-based
solutions. We demonstrated that a simple FCFS policy with load-sensitive QoS-level assignment is
near-optimal. We presented methods to estimate a contract’s resource requirements. We discussed
how API extensions for QoS specification and management can be hidden from legacy applications
by making the new API calls transparently to the server. In summary, we argued for deploying QoS
management on server end-systems, and demonstrated the benefits of such deployment in terms of

higher aggregate service utility, as well as practicality of utility optimization.
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CHAPTER 4

END-SYSTEM ARCHITECTURE FOR ADAPTIVE QOS

4.1 Introduction

In the preceding chapter we described and evaluated policies for logical resource allocation. To
complete the description of Adaptware we need mechanisms to ensure that this allocation is en-
forced. Contracts should be able to access their resource budgets and should be able to consume
only those resources logically allocated to them. Such allocation enforcement mechanisms are de-
scribed below.

We impilement two non-intrusive architectures for QoS-contract enforcement that reside in user
space. User-space implementatioas have a significantly lower development cost. For microkernel-
based operating systems we investigate a solution for QoS enforcement implemented in a commu-
nication subsystem server which is the main focus of this chapter. The communication server runs
on the Open Group microkernel Mk7.2, and exports a socket-like API with limited QoS extensions.
For monolithic operating systems we describe extensions implemented in middleware. They handle
communication resources on behalf of the OS communication subsystem so as to meet the require-
ments of QoS contracts. The advantage of a middleware implementation is greater portability, which
is an important goal of Adaptware. The two approaches differ primarily in the way per-contract re-
source reservation is enforced. In the OS implementation, we control user-level communication
resource scheduling. In the middleware implementation, on the other hand, our software has little
control on the way communication processing is scheduled. Instead, coarse-grained policing mech-
anisms are applied to provide a given amount of resources for each contract. We begin by describing

the OS implementation.
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4.2 Design Overview

The communication subsystem is structured as a multi-threaded communication server with QoS
extensions for expressing and enforcing QoS contracts and their resource allocation. In order to
achieve per-contract QoS we use a thread-per-contract model. A dedicated thread, called a contract-
handler thread, is assigned within the communication server to each QoS contract to serve its com-
munication flows. These dedicated contract-handler threads are scheduled according to the con-
tracted QoS parameters. For connections with no QoS contracts, a default handler thread is used.
This handler is created at server boot time and assigned a lower priority than that of other handlers.
A user-level scheduler, implemented in the communication server, is responsible for sequencing
the contract-handler threads, thus decoupling their QoS-specific scheduling policy from the generic
fixed-priority scheduling support in the kernel. If the network link is the bottleneck, a complemen-
tary mechanism is needed to prioritize traffic transmission on the link. For this purpose, outgoing
packets are queued in a common heap at the bottom of the protocol stack implemented within the
server. The heap is sorted by handler priority. Packets are dequeued from this heap in priority order
when the network device is not busy.

The communication subsystem exports an extended socket API to the application. Applications
perform IPCs to invoke the communication primitives supported by the server. The “send” IPC call
wakes up an API thread in the communication server that queues up the outgoing message in an
input message queue for transmission by the corresponding contract handler. There is one input
message queue per QoS contract, including one for the default handler. When a new contract is
created, an input message queue is created for it, as well as a dedicated contract-handler thread.
The contract handler is signaled when its input message queue becomes non-empty. This results
in periodic execution of the handler until the queue is drained. By default all outgoing traffic is
handled by the default handler until an explicit socket BindContract call is made. The call binds
a socket to a specified (non-default) QoS contract. From then on, all outgoing communication via
this socket will be deposited into that contract’s message queue and processed by its corresponding
contract-handler thread. Essentially, this technique classifies outgoing traffic in accordance with the
socket on which it is sent.

A different set of contract handler threads process incoming traffic. If the client has QoS exten-
sions it can tag its request by the identity of a QoS contract. Otherwise, the request is handled by
the default handler (for incoming traffic) and is typically classified later by the server which does
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an accept() on the client and binds the resulting socket to the proper contract. Figure 4.1 presents
the communication subsystem architecture illustrating QoS mapping, admission control, QoS-level

selection, scheduling, contract-handler threads, traffic classification, message queues, and the out-

going packet heap.
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Figure 4.1: Communication subsystem architecture

QoS mapping, admission control, and QoS level selection have already been discussed in the
previous chapter. We incorporate these algorithms into the communication subsystem so they are
invoked upon establishment of each new contract to assign a QoS level to it and compute the cor-
responding logical resource requirements. In this chapter, we focus primarily on enforcing QoS
contracts and ensuring that each contract gets its logically allocated resources. This is done by
means of QoS-sensitive communication thread scheduling, as well as load monitoring and auto-
mated profiling to adapt to changes in dynamic load conditions and platform speed. Conceptually,
in order to enforce logical resource allocation, the communication subsystem must ensure that the

contract-handler thread for contract C; gets the optimal processing utilization U;[k]], as comp

once every P;[k}] seconds. The scheduler allocates to the thread a budget E;[k7] = U;[k?]Pi[k}]
during each period. The thread gets blocked when its budget expires. The budget is replenished at
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the start of the next period at which time the contract handler may be resumed. The arrangement
polices outgoing server traffic so it does not exceed its resource allocation. Hence our end-host

communication subsystem meets the following goals:

e Provides per-flow or per-service-class guarantees on the end-host. Once a QoS contract is

established with a client, it is enforced.

e Maximizes the aggregate reward (for delivered QoS) across all clients. In applications such as
video-on-demand servers where clients pay for their received QoS, this maximization trans-

lates into maximization of the total server’s revenue.

e Adapts responsively to transient load disturbances and resource shortage. This is in sharp
contrast to indiscriminate degradation that applies to premium-service clients as well as basic-

service clients alike.

We describe in Section 4.3 our implementation platform. In Section 4.4 we refine the definition of
QoS-levels to provide both latency and bandwidth guarantees on the end-system, and review the
notion of QoS contracts used in our communication subsystem. Section 4.5 describes gthreads, a
user-level scheduling package to enforce contractual obligations. Section 4.6 describes CLIPS, a
Communication Library for /mplementing Performance-assured Services and discusses several
implementation issues related to the platform at hand. Evaluation and testing results are presented
in Section 4.7. Section 4.8 discusses extensions of the framework to aggregated flow contracts and

presents a middleware realization called gContracts. The chapter concludes with Section 4.9.

4.3 The Implementation Platform

We implemented the proposed communication architecture on Pentium-based PCs, running the MK
7.2 microkernel developed by the Open Group (OG).! MK 7.2 is a derivative of CMU’s Mach.
The communication subsystem architecture was implemented using the facilities of OG’s CORDS
environment which are based on z-kernel support originally developed at the University of Ari-
zona. The advantage of using z-kernel in our platform lies in its uniform protocol interface that
allows us to compose arbitrary protocol stacks in a flexible manner. An z-kernel protocol stack
can be configured from protocol objects by specifying a protocol graph of the communication sub-
system. The specification is then compiled into the desired protocol stack. This flexibility enables

'OG is formerly known as the Open Software Foundation.
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the separation between the protocol stack and the resource-management mechanism. CORDS adds
to the z-kernel framework the notion of per-connection passive resource reservation. It exports
the abstraction of paths which can be associated with particular contracts. The framework allows
charging the consumption of resources such as memory bandwidth and message buffers at different
layers of the protocol stack to the same path, which facilitates the implementation of per-contract
resource management. It also implements per-path input thread pools to shepherd incoming traf-
fic. The framework allows realizing differential services by assigning different priorities to threads
of different paths. We changed CORDS to use threads whose priority is automatically set by our
communication subsystem scheduler in accordance with the current QoS-level selection.

While a server-based implementation is natural for a microkernel operating system, it may per-
form poorly compared to user-level protocol libraries due to excessive data copying and context
switching [85, 133]. Implementing the service as a protocol library, however, distributes the func-
tions of admission control and run-time resource management among several address spaces. Since
applications may each compete for communication resources, controlling system-wide resources is
more effectively done when these functions are localized in a single domain. The CORDS frame-
work provided on MK 7.2 gives an easy way of migrating CORDS server code into the kernel by
setting appropriate kernel compile-time flags. Thus, the communication server can be developed
more effectively in user space, then migrated into the kernel for efficiency if desired. An addi-
tional advantage of using the CORDS framework is its availability on widely-used platforms such
as Windows NT. Figure 4.2 shows the end-host architecture, especially the communication server
implementing the communication protocol stack. It also shows the interface between the applica-
tion(s) and the server in our implementation environment.

To enforce QoS guarantees, we implement a user-level thread package whose scheduler trans-
parently executes the near-optimal QoS level selection algorithms described in Sections 3.4.2, and
assigns thread scheduling priorities appropriately to satisfy the selected QoS levels. This scheduling
package, called gthreads, is novel in that its threads are explicitly aware of their own QoS levels.
For the particular case of a communication subsystem server, a generic contract handler was imple-
mented to perform protocol processing, packetization/depacketization, data buffering, policing, and
client aggregation.

We now review the notion of QoS guarantees, generalizing it to specify both rate and latency
requirements, then describe and evaluate the implementation of gthreads, and a communication

library, called CLIPS, that implements our QoS-sensitive communication-specific functions. To-
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Server
(and protocol stack)

Figure 4.2: Communication architecture

gether, these components off-load the burden of QoS enforcement from designers of real-time ser-

vices and allow QoS adaptation to platform capacity and load.

4.4 Real-time Communication Guarantees

The generalized semantics of a QoS level are described in Section 4.4.1. For completeness, Sec-
tion 4.4.2 reviews the notion of QoS-contracts based on expressing multiple acceptable QoS levels.
The issue of quantifying the relative desirability (reward) of these QoS levels by the client is elabo-

rated on in Section 4.4.3.

4.4.1 QoS Levels

A QoS level, L;, specifies a desired bandwidth and latency guarantee for a socket or a set of sockets.
In the simplest case, it is expressed by a number M; of packets, a period FP;, a bandwidth W, and a
buffer size parameter B;. The bandwidth guarantee states that the socket will be allocated enough
resources so that at least W; bytes can be transmitted per second assuming that the packet rate is no
larger than M; packets every FP; units of time. The buffer parameter specifies the maximum number
of packets to be buffered in the communication subsystem due to the sender’s burstiness. Without
loss of generality, we can assume that B; is specified in multiples of M;. The maximum number
Nmaz(t) of packets that can be generated within an interval of length t is (B; + [t/ P;|) M. Since
[t/ P;] M; of these packets will have been transmitted by time ¢, the expression for Ny, (t) implies
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that at most B; M; can be awaiting transmission at the sender at any given time. A packet generated
at time ¢ at the source is said to be conformant if the total number of packets generated by time ¢ is
less than N, (). Packets generated in excess of the above are said to be non-conformant. Latency
guarantees are given to conformant packets only. Since M; conformant packets are guaranteed to be
transmitted every P; units of time and since the maximum number of conformant packets awaiting
transmission is B;M;, a conformant packet will be transmitted within B;P: time units after its
generation at the source. Thus, if a conformant packet is generated at time £, the latency guarantee
states that it will be transmitted by the deadline D; = ¢ + B; P;. Non-conformant packets may be
dropped or delayed until they become conformant in which case they will be transmitted within
B; P; time units after their conformance time.

A QoS level for areceiving connection specifies a budget that holds enough computing resources
to receive a flow of bandwidth W; assuming that no more than M; packets are received every P;
time units. Packets in excess of M; received within a period P; are non-conformant. The buffer size
parameter B; specifies the maximum size of the delivery buffer in multiples of M;. This parameter
is useful when the receiver task is not synchronized with the communication service, in which case
the service must buffer incoming packets until the application executes areceive. A packet is said to
have been delivered when it has been processed by the protocol stack at the receiver and deposited in
a delivery buffer. The communication service guarantees a conformant data packet to be deposited
into the delivery buffer no later than P; time units after it has been received. The application must
read (i.e., drain) the delivery buffer within B; P; time units of the packet’s reception or else the buffer
may overflow.

A single socket may have two contracts associated with it; one for outgoing traffic and one
for incoming traffic. The two contracts may have different QoS levels. Note that the QoS level as
defined above is an end-host level abstraction, and not an end-to-end connection-level abstraction. It
can be used with connectionless protocols such as UDP. In particular, it does not imply that network
bandwidth is actually reserved for a connection to satisfy the bandwidth guarantee. The network
might not support per-flow bandwidth reservation. We decouple the concerns of end-host resource
reservation from those of network resource reservation. The latter concern should be addressed at
the network communication protocol layer and in routers, while the former is a concern of end-host

resource management covered by our architecture.
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44.2 The QoS Contract

The QoS contract Q; specifies alternative QoS levels, their corresponding rewards, and a QoS-
violation penalty as defined in Section 3.2. Contracts can be defined separately for outgoing and
incoming traffic sharing the same socket. Thus, contracts can be either of “sender” or “receiver”
type. Each QoS level is expressed in terms of its M, P, W, and B traffic parameters described
in Section 44.1. All rewards must have the same units across clients. For example, in one im-
plementation, rewards are specified in a range from 0 to 100%, which is then scaled within the
communication server by the importance level of the client. In another implementation, clients are
given “credit lines” in accordance with their importance, then allowed to specify reward values that
are debited to their capital. The QoS-violation penalty is the cost incurred if none of the requested
alternative QoS levels can be provided by the communication subsystem. Technically, we should
separate between the QoS-violation penaity and the QoS-rejection penalty. The former is incurred
if the communication subsystem violates an existing contract by degrading a client below the min-
imum contracted QoS-level. The latter is incurred if a new request is rejected prior to contract
establishment. Depending on the application these penalties can be set by the client or the service
provider. For some applications it may be argued that there should be no rejection penalty when no

contract has been established yet. Figure 4.3 shows an example connection-establishment request.
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Figure 4.3: Connection establishment request
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Rewards and violation penalty are not a redundant expression of the same concept. They quan-
tify different aspects of client preferences. For example, a multimedia user may attach a very high
violation penalty to an important lecture while assigning low rewards to the resolution of video
transmission during the lecture if he/she is more interested in the audio contents. The same user
may attach a relatively low violation penalty on viewing Jurassic Park while assigning sufficiently
high rewards to the resolution of the movie’s transmission. This tells the system that in case of
overload the resolution of the lecture should be degraded first, before that of Jurassic park, but if re-
sources are no longer sufficient to maintain both connections, Jurassic Park should be the one to be
terminated. Note, also, that specifying only one acceptable QoS level with a default (e.g., infinite)
violation penalty reduces this interface to a traditional on-line admission control API. An infinite
violation penalty would mean that QoS-violation results in system failure, as is the case in hard real-
time systems. If such is the case, the underlying system should also support resource reservation,
and the worst case resource requirements of arriving requests should be known at arrival time. Since
our interest is primarily in applications which have flexible QoS requirements we do not make the
above assumptions.

Should the QoS contract be “signed” by the server, the client is guaranteed to receive the service
at one of its requested QoS levels, or be “paid” the specified amount of QoS-violation penalty.
The selection of a particular QoS level is delegated to the server (in this case, the communication
subsystem). Furthermore, the communication subsystem may change the delivered QoS to another
level in the client’s QoS contract at its discretion, when appropriate. This gives the subsystem
enough leeway for QoS adaptation and the optimization of aggregate reward.

4.4.3 Reward Estimation

The problem of specifying rewards for different QoS levels (as well as the QoS levels themselves)
warrants additional discussion. In real-time applications interacting with a human user (rather than
a physical environment) QoS levels and rewards are essentially subjective. For example, the pa-
rameters of QoS levels may be set by application designers to correspond to “poor”, “good” and
“excellent” performance, respectively. In a previous chapter we illustrated a web application where
different QoS levels correspond to different content trees. The reward information may either be
prespecified by the service provider or set by the end users at the time of contract establishment
using an intuitive GUI (such as a slide rule which quantifies user satisfaction with the predefined

QoS levels). In certain applications, an “expert” user interface may allow users to customize their
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applications by manipulating the preset definition of “poor”, “good” and *“excellent” QoS. This is
somewhat similar, for example, to adjusting the brightness and contrast of a regular TV screen, or
adjusting the multiple bands of a stereo equalizer for a certain playback quality. In a system de-
ployed for commercial purposes, QoS levels and rewards would typically be selected by the service
provider. For example, an e-commerce server can use reward information based on a combination
of customized user preferences and user membership fees.

QoS-level and reward specification for applications that deal with an external physical environ-
ment, as opposed to a human user, should be done based an objective performance measure. For
example, in [3] we illustrated a case where QoS levels and rewards were specified by an Al agent
representing an application domain expert for an automated flight application to minimize mission
failure probability. In general, the specification of QoS levels and rewards is an application-specific
policy that should be discussed in the context of the particular application. Our main goal in Adapr-
ware is to provide general mechanisms for such specification that are rich enough to express elastic

service requirements, whenever such information is available.

4.5 gthreads User-level Scheduling

We enforce the contractual guarantees mentioned in Section 4.4 using QoS-sensitive scheduling
of contract handler threads within the communication server. For this purpose we built a generic
scheduling package, called gthreads, targeted for future performance-assured services. It exports
QoS contracts as a first class abstraction. QoS contracts can be created, deleted, or modified.
Threads can be assigned to contracts, in which case they are called contract handler threads. The
execution period and budget of threads assigned to a particular contract are selected by the user-
level scheduler in accordance with the current QoS level at which the contract is executed. In order
to improve the portability of the gthreads scheduler, we divide it architecturally into two layers. The
bottom layer abstracts the machine and operating system into a real-time virtual environment that
exports quasi-periodic threads described below. The top layer is machine- and OS-independent. It
implements QoS contracts on top of the API exported by the quasi-periodic thread layer. In the
following subsections we describe the abstractions and architectural components of the user-level

scheduler.
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4.5.1 The Quasi-Periodic Thread Abstraction

Informally, a quasi-periodic thread is a thread that executes periodically for a finite duration, starting
at an arbitrary point in time. More formally, a quasi-perdiodic thread has a dynamic budget E'(t),
and a dynamic execution period P(t), where ¢ denotes time, such that:

e E(0)>0.

e The invocation time of a quasi-periodic thread is the time, I, at which it is called using

start_quasiperiodic().
e The finish time of a quasi-periodic thread is the time F’ at which it calls stop_gquasiperiodic().

o The logical arrival times of a quasi-periodic thread are all instances
ap =T + k3 ocick—1 Plai) < F,
where k =0,1,2,...,
and T is:

- the thread’s invocation time /, if the budget was non-zero at time /, or

— the budget replenishment time, if the budget was zero at time /.
The budget is replenished at a; + P(ax).

e The quasi-periodic thread can do at most E(ax) units of work in any interval (ax, ar+ P(ak)],

where k is an integer.

Quasi-periodic threads are the contract handler threads in our architecture. Turning periodic execu-
tion on and off with start_quasiperiodic and stop_quasiperiodic is useful, for example, to avoid
repeatedly re-invoking a service thread by the scheduler when there are no requests to serve. In
fact, in our implementation, start_quasiperiodic is invoked by arrival of service requests, while
stop_quasiperiodic is called after the served request queue has been drained. Figure 4.4 depicts an
instance of executing a quasi-periodic thread. The period and budget of quasi-periodic threads may
in general change with time due to adaptation. We describe how quasi-periodic threads are imple-
mented on operating systems with POSIX-compliant kernel threads and fixed priority scheduling.

4.5.2 Implementing Quasi-Periodic Threads

For each quasi-periodic thread, Q;, the gthreads scheduler maintains a thread data structure that
associates Q; with an underlying POSIX-compliant kernel thread T; (the kernel need not support
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Figure 4.4: Quasi-periodic Execution

periodic thread scheduling), an underlying kernel semaphore S;, a period FP;, a periodic budget E;,
and an eligibility flag F;. The budget is replenished every period P; by a periodic timer event.
The eligibility flag determines whether periodic execution of the thread is enabled or disabled. It
can be set or reset by the external gthreads API calls start_quasiperiodic and stop_quasiperiodic
respectively. Initially the gthreads scheduler starts out with an empty set of quasi-periodic threads. A
kernel thread T; can register itself at will with the gthreads scheduler, in which case a quasi-periodic
thread data structure Q; is created for it, including the creation of semaphore S;. By default, the
eligibility flag of the newly created quasi-periodic thread is turned off. Upon registration with the
qthreads scheduler, the thread T; is blocked on the kernel semaphore S;. Once the eligibility flag
is set, the semaphore S; will be signaled periodically with period P;. The thread will be allowed to
execute within each period only until its budget, E;, expires. When the eligibility flag is reset, the
thread will no longer be signaled.

An event requesting service from the thread will use gthreads API to start the specified quasi-
periodic thread, which turns on the eligibility flag. If the thread has non-zero budget, it will be put
in the ready queue of the gthreads scheduler immediately. Otherwise, it will be put in the ready
queue when the budget is replenished.

The gthreads scheduler maintains a list of ready threads. At any given time, only one of these
threads can be scheduled for execution. This is ensured by keeping all registered threads blocked on
their respective semaphores, except one thread whose semaphore is signaled. An arbitrary schedul-
ing policy can be implemented by controlling the sequence in which semaphores are signaled. Con-
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text switches occur when threads voluntarily yield the CPU. This implies that threads must period-
ically execute a yield call. If the calling thread’s budget has expired, or if a higher priority thread
is waiting, the yield results in a context switch performed by signaling the next thread’s semaphore
then blocking the yielding thread on its own semaphore. This cooperative preemption model con-
trols the instances at which threads can be preempted, thereby substantially reducing the complexity
and execution cost of concurrent applications, (e.g., by reducing the the locking and unlocking of
shared data structures). The model implies that we trust the thread programmer. This implication is
Justified since gthreads is designed for building servers. We assume that server code can be trusted
by its OS.

During intervals when no threads are running, a high priority timer invokes the gthreads sched-
uler periodically to check for arrival times of quasi-periodic threads. Eligible quasi-periodic thread
identifiers reside in a heap sorted by their future arrival times. The timer tick dequeues all entries
whose arrival time has come and enqueues corresponding entries for the respective subsequent invo-
cations. Dequeued entries are then put in the gthreads scheduler ready queue which is a heap sorted
by thread priority. Arbitrary priorities can be assigned to quasi-periodic threads. Two policies are
of particular interest. These are, EDF priorities and rate-monotonic priorities. In EDF scheduling,
the priority of the thread invocation is set equal to the end of its invocation period, i.e., its deadline.
Threads will earlier deadlines are invoked first. In rate-monotonic scheduling, the priority is equal
to thread period, such that smaller periods have higher (i.e., numerically smaller) priorities.

4.5.3 Semaphore Operations

Since the gthreads scheduler does not have its own threads, but rather “borrows threads from the
kernel”, a kernel thread registered with gthreads may upset gthreads scheduling if it blocks on ker-
nel semaphores. This is because unless the blocking thread notifies the user-level scheduler that
it is about to block, the scheduler does not know when it blocks and will not schedule another
thread for execution. Any semaphore operations of quasi-periodic threads, therefore, have to use
qthreads semaphores. We implemented our own semCreate, semW ait and semSignal opera-
tions. Let ;7 be some semaphore created by gthreads’ semCreate. When a quasi-periodic thread
Q: calls semW azt on j, if the semaphore is already locked, the thread is blocked on its own ker-
nel semaphore S;, and entered into js queue maintained by the gthreads scheduler. If the highest
priority thread blocked on j is Tk, a subsequent semSignal on j signals the kernel semaphore
Sk. Thus, blocked threads are awakened in priority order. The priority queue of the semaphore
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allows semaphore operations to obey whatever prioritization policy is implemented in the gthreads
scheduler. Priority inheritance and priority ceiling protocols can easily be implemented if desired.

4.5.4 Thread Budgets

Thread budget manipulation in gthreads is one of the more unique aspects of the gthreads sched-
uler. The execution budget of quasi-periodic threads is defined in abstract units of work with band-
width semantics measured in machine-independent application-level units such as frames per sec-
ond, URL hit rate, or byte throughput. Using machine-independent execution budgets for threads
is in sharp contrast to operating system abstractions such as capacity reserves where budgets are
defined in machine specific units such as milliseconds of CPU time. The separation between budget
units and machine speed in our architecture allows Adaptware to adjust itself easily to changes in
the underlying platform capacity without changing server code. Such adjustment is done by pe-
riodically computing, within the gthreads scheduler, the mapping function from units of work to
machine utilization. We require that a quasi-periodic thread, Q;, decrements its budget, E;, using
a decrement Budget(A) call upon performing each unit of work. The call will block when the
budget E; expires. The decrement, A, is in general a vector of values that describe the unit of work
performed. These values are converted by the operating system to a scalar decrement in the execu-
tion budget E; assigned to Q;s contract, C;, by QoS level control. Thus, §E; = 6.A, where 8 is a
vector of linear coefficients determined by a self-profiling module. The length of vectors A and 6
is a configurable parameter instantiated at system initialization time. In view of the QoS contract
definition presented in Section 4.4.2, we set the vector A to be (6r, dpw ), where 8g is the number
of packets sent in the unit of work (e.g., 1 if the unit of work is a packet), and dgw is the number
of bytes sent (which will vary depending on the size of the sent packets). From the QoS mapping
results described in Section 3.4.1, we know that the decrement in the execution budget is given by
0E; = aér + bdpw, where a and b are the profiling parameters. Thus, § = (a, b). Alternatively,
we can restrict  to be of length 1, in which case § E; = a'Sr. The latter case is more suited for
multimedia servers where all packets in the sent stream have the same packet size. In this case, dgw
is proportional to 8g. Therefore, §E; = adr + bdpw = (a + bspTy)dr = a'dr, where sy is
the uniform packet size.

Contract handler threads are trusted with decrementing the budget appropriately every unit of
work. Since the gthreads package is developed for server designers we assume that the designer can

be trusted. From the designer’s perspective, a unit of work may denote a served packet, a served
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URL, a served video frame, a served audio frame, or other similar service rate measures depending
on the application. In addition to manipulating the budget, decrementBudget internally calls
yield which will result in a context switch if a higher priority thread is ready. Thus, cooperative
preemption of quasi-periodic threads discussed in Section 4.5.2 is implemented transparently on

unit of work boundaries.

4.5.5 Self-profiling

An important goal of Adaptware is automatic adaptation to platform capacity. Platform capacity,
therefore, needs to be determined dynamically without manual instrumentation and measurement
every time resources are upgraded, code is changed, or the application is re-executed on different OS
or hardware. For this purpose we employ a self-profiling subsystem. A profiling module is executed
as a high priority thread invoked periodically by the scheduler at a preconfigurable period . The
job of the profiling module is to update the measurement vector 6, which is a global scheduler
data structure. Outside the profiling module, the scheduler makes no assumptions regarding the
semantics of the measurement vector, 6, beyond the stipulation that the logical budget consumed
by a quasi-periodic thread in processing an abstract unit of work is given by the dot product of
the two vectors, 8 and A, where A is the vector of values passed by quasi-periodic application
threads in decrementBudget calls. This separation of concerns enhances the maintainability and
upgradeability of Adaptware. For example, in order to change the semantics of QoS contracts (i.e.,
the semantics of A), changes to Adaptware code may be localized to the profiling module that
computes ¢) with no alterations required to the rest of the scheduler architecture and enforcement
mechanisms. This is in contrast to other operating system implementations where the nature of
enforced guarantees is hardwired into kernel code. In our particular implementation of the profiling
module it is assumed that, A = (égr, dpw ), where 6r and §gw denote the packets and bytes sent

respectively. The profiling subsystem looks up, every period 7:
e the number of packets, N = }_ zpg, transmitted within 7,
e the number of bytes, W = }_ zgw, transmitted within 7, and

e the percentage of time u during which at least one quasi-periodic thread was ready or running.
It represents system utilization by the scheduled communication threads (taking into account

the tasks that preempt their execution).
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Let the vector X be defined as (N, W). Linear regression is used to compute vector ¢, such that
T = X6. The known least square estimator yields § = (XZX)~'X7Tru. For better computa-
tional efficiency, we use a recursive form of the least squares estimator. The recursive least squares
estimator computes the parameter estimates that minimizes the standard deviation of measurement
error, assuming white measurement noise. Let the profiling vector at the kth invocation of the pro-
filing module be denoted by X. Let the measured utilization be u. Let the current estimate of
profiling parameters be given by the vector 6. These estimates can be initialized to zero at the start
of estimation. Let F; be a square matrix whose initial value F; at the start of estimation is set to a

unit matrix. The estimator’s equations at sampling instant &k are:

e = (XFPiXe+1)7t @.1)
O = Oy + Pe_ymeve(Tpr — XF0r_1) @.2)
P. = Py — P 1 XaimiXFPe @4.3)

To improve convergence and increase statistical confidence in the estimates, we increase the ob-
servation period T to yield consistent results, thus filtering out high frequency variations. The
automated computation of 6 decouples thread budget definitions from platform capacity consid-
erations, essentially computing the mapping between machine-independent budgets and platform
speed adaptively in a transparent manner within the operating system. We believe that the ability
to perform such mapping is an important quality of future operating systems that support real-time

applications on arbitrary platforms.

4.5.6 Programming with QoS Contracts

On top of the quasi-periodic thread abstraction described in preceding sections, we implemented
QoS contracts, the second main abstraction of gthreads. A contract is created by a createContract
call. Quasi-periodic threads can the be assigned to the contract via a contrcat AllocateT hread
call. The values of QoS parameters are declared via the contract Register Level call which defines
QoS levels. The call specifies the byte and/or packet rate parameters. It invokes QoS mapping,
described in Section 3.4.1, to compute the corresponding utilization budget. The contract cannot
be activated until it passes the admission control test. A contract is submitted to admission control
via the contractSubmit primitive, which executes the QoS optimization algorithm of Section 3.4.2
that determines whether the contract should be admitted and assigns an optimal QoS level k= for

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



each admitted contract. Upon admitting a new contract, the period and budget parameters of all
quasi-periodic threads assigned to the contract are set to those of the chosen QoS level. In the
implementation, the budget of a quasi-periodic thread is represented by a pointer, which allows
sharing the same budget among multiple threads. Thus, all the threads assigned to the same contract
share the same budget. The following is an application code sample that creates a QoS contract:

contractId = contractCreate ();
contrcatAllocateThread (contractId, threadId);

contractRegisterLevel (contractId, QoS_Level.l, $0.02);

1

2

3

4 contractRegisterLevel (contractId, QoS.Level 2, $0.01);
5 contractRegisterLevel (contractId, QoS_Level 3, $0.006);
6 contractRegisterLevel (contractId, No_Service, $-V);

7

contractSubmit (contractlId);

In this example, the first two lines initialize contarct data structures for the newly-created contract
and assign a contract handler thread to it. Lines 3-S define the QoS levels acceptable in the QoS
contract (passing a data structure that describes appropriate QoS parameters), and their rewards.
Line 6 specifies the QoS violation penalty. The negative sign in —V indicates that the penalty is
debited rather than credited to the server. The last line submits the contract for the admission-control
algorithm.

The QoS level selected for each contract is kept in the contract’s state. The present QoS level can
be polled by the contract handler thread using the primitive contractGetQ oS Level which returns
the QoS level. The returned value can be used to determine which code version needs to be executed
by the thread during the current iteration of its service loop. Different QoS levels may give rise to
different versions of code. For example, data compression may be performed in one level but not

another.

4.5.7 Load Monitoring and QoS Level Adjustment

While contract admission control sets the QoS levels of quasi-periodic threads based on load es-
timates obtained by self profiling we need to adjust these QoS levels in view of actual measured
load when the estimates are inaccurate. Thus, we check for overload or under-utilization conditions

periodically, and make a small incremental adjustment to the QoS levels of some threads around the
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operating point computed by the admission control module. The purpose of QoS-level adjustment
is to keep the system from getting under-utilized or overloaded due to transient load or inaccurate
profiling estimates 6. Adjusted QoS levels are always selected among those specified in the QoS
contract for the threads in question. In our implementation, overload conditions are detected by
checking whether or not thread deadlines are violated. This is accomplished by adding a missed-
deadline counter to the gthreads scheduler. When d deadlines are violated, “overload” is flagged. In
the current implementation, deadline violations are never “forgotten” until overload is flagged (at
which point the counter is reset). In cases where the application can tolerate a certain rate of dead-
line misses, it may make more sense to “forget” about deadline violations that occurred more than
a specified time interval V" ago. Overload should be flagged if d deadlines have been violated in the
last V' time units. The parameter d (and V') can be configured according to application’s tolerance
to deadline misses. Under-utilization conditions are detected by inspecting the effective utilization
1. When it drops below a pre-configured threshold and some of the threads are scheduled below
the maximum QoS level L4.sir-q Specified in their contract, “under-utilization” is flagged. Once
overload or under-utilization is flagged, a QoS-adjustment heuristic is executed to adapt QoS levels
accordingly. It executes a fast greedy algorithm attempting to maximize the aggregate achieved

reward as shown below:

QoS Level Adjustment Heuristic
1 if overload then
2 Choose the gthread, Q;, whose degradation by one QoS level results
in the mintmum decrease in reward
(i.e., Ri[current]— Rcurrent —1] is minimum)
Degrade @; to next QoS level.
underutilization then
Choose the gthread, @;, whose promotion by one QoS level re sults

in the mazimum increase in reward

W W NNV W
=

(i.e., Rji[current+1]— R;[current] is maximum)

10 Promote @Q; to next QoS level.
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Since the heuristic offers a non-optimal solution, we may need to recompute QoS levels using
an optimal algorithm periodically, with a larger period. Together, the optimal algorithm and the
heuristic adjustment keep service utility maximized for the community of clients.

4.6 CLIPS Communication Resource Management

We describe our implementation of the multithreaded communication server using gthreads support.
The architecture is called CLIPS (Communication Library for /mplementing Performance-assured
Services). It offers an adaptive communication resource-management mechanism on end-hosts.
Figure 4.5 depicts the main components of the communication server. It illustrates both the send
and receive data paths. As seen from Figure 4.5, three different types of threads are involved in
handling data on each path, namely, API threads, contract handler threads and kernel interface

threads. These threads are discussed in more detail in the following subsections.

——Ga— S8 Gy

SRR

!

Per-Contract [ Message Queues ]
Input Message Queues
Contract Handler
Threads
Per-Contract
I Packet Heap I Input Packet Queues

O Kemel Interface Threads O

L Server/Kemel Interface Port ——{ Server/Kemel Interface Port H

Figure 4.5: The Communication Server

4.6.1 Application-Server IPC and API Threads

Application messages accumulate in the kernel queues for delivery to the server. In a QoS-sensitive
system the length of such a queue should be derived from the application traffic specification, for ex-
ample message rate, size, and burst. If the queue is too small, application messages may be dropped
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or result in frequent overflow and context switches thereby affecting performance. If the queue is
overly long, application messages may reside in it longer than desired and result in violations of
contracted latency guarantees. Unless we modify kernel code, we cannot control the allocation of
kernel-level IPC queues (Mach port queues in our implementation). Therefore, our strategy is to
drain them as fast as possible, transferring messages to contract-specific queues in the communi-
cation server. These queues are sized in accordance with the connection’s traffic specification. We
create API threads within the server whose function is to consume messages from the corresponding
Mach port queue. Once an application sends a message to the server, an API thread reads it from
the Mach port and queues it for the corresponding contract handler. The thread, whose execution
time is charged to the handler’s budget, runs at handler priority, and is allowed to continue running
at background priority when the handler’s budget expires.

One API thread is created per socket in the communication server. The same thread handles
both sent and received data. Normally, the API threads are blocked waiting for /0. When an
application invokes an API call on a particular socket, the corresponding API thread is unblocked.
The thread identifies the requested operation and invokes the corresponding routine in the server. If
the operation is a send, the thread queues up the data into the input message queue of the contract
handler associated with the given socket. If the queue fills up, the thread is blocked on the message
enqueue operation until queue space becomes available essentially blocking the application until
the enqueue operation can be completed. If the operation is a receive, the thread reads the received
message queue. Note that in this scheme a blocked send operation will prevent a receive from
taking place on the same socket since there is only one API thread per socket. We allow this
situation to happen because in most servers sockets to particular clients are used unidirectionally to
send outbound traffic. Clients access the server via a different socket (e.g., the server’s well known

port) to send incoming requests.

4.6.2 Contract Handler Threads

Contract handler threads are the main worker threads in our communication subsystem. There are
two contract handler threads per contract; one for sending data and one for receiving. Collectively,

the tasks implemented by the contract handler threads in serving a contract are as follows:

o QoS-level-sensitive message dequeuing: The handler of contract C; dequeues messages from

its input message queues at a fixed rate, asynchronously with the enqueue operation, every
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period P;[k] as specified by its QoS level, k. If several sources deposit messages into the same
queue (as might be the case with client aggregation), WFQ can be implemented to achieve fair
bandwidth sharing, and guarantee each client a minimum share of the contract’s bandwidth.

The message queue is sized to B;[k]M;[k] in accordance with the QoS contract.

e Protocol processing: Communication protocol processing, packetization and depacketization
is performed by the contract handler. The handler can be configured to execute an arbitrary
protocol stack. We gain such flexibility by using z-kernel for protocol development. z-kernel

exports a uniform protocol interface and allows configuring arbitrary protocol stacks.

e Per-contract policing: In order to prevent clients from violating their traffic specification,
client traffic is policed on a per-handler basis to ensure that each connection is conformant to
the rate of service dictated by its current QoS level. Traffic is policed by limiting each con-
tract handler to send (receive) no more than M;[k] packets during each period P;[k]. This is
achieved by calling contract Decrement Budget after each packet transmission as described
in Section 4.5.4. The call blocks the calling thread when the budget expires. Note that such
voluntary blocking (yielding) indirectly enforces a CPU run-time limit on each invocation of

the handler.

® Outgoing packet queuing: The contract handler, on the sender side, deposits processed pack-
ets in an outgoing queue. When the communication link becomes available to the sending
host, link bandwidth must be allocated to outgoing packets in proper priority order to provide
the QoS levels selected by gthreads. Outgoing packets are therefore queued in a priority heap
sorted by thread deadline, as assigned to the thread by the gthread scheduler.

® Receive side demultiplexing: Incoming packets are demultiplexed by the receiver which then
invokes the contract handler responsible for serving the particular connection. The commu-
nication subsystem scheduler then schedules each contract handler to run in accordance with

the deadline assigned to it from its QoS level.

4.6.3 Outgoing Network Device Handler Thread

The bottom layer of the protocol stack, in our server architecture, interfaces with ti:.c kernel device
driver via the kernel’s [IPC mechanism. Device output is initiated by CLIPS as close as possible
to the device driver without being in the kernel. Outgoing packets are dequeued from the priority
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heap in which they are deposited by contract handlers, and sent to the network device in the kernel.
Being in user space, the dequeue operation cannot be invoked directly by the kernel device driver in
response to transmission completion interrupts unless the underlying OS supports user-level upcalls.
In the absence of such support user-level code cannot be executed in interrupt context. Instead, we
utilize a high priority user-level thread to perform packet dequeuing and device transfers. The thread
is signalled when the packet heap becomes not empty. It loops dequeuing successive packets and
sending them synchronously to the kernel until the heap is drained. Packets are sent to the kernel
synchronously in order to avoid packet accumulation in the FIFO queue of the kernel’s device driver.
Ideally, we would have implemented the priority heap in the device driver, eliminating the need
for the packet heap and the dequeuing kernel interface thread in user space. This solution requires
modifying the kernel unless the operating system allows inserting customized device drivers without

changing kernel code.

4.6.4 Incoming Packet Classification Thread

Resource reservation must be coordinated in a QoS-sensitive fashion. CORDS provides two abstrac-
tions, paths and allocators, for reservation and allocation of system resources. Resources associated
with paths include dynamically allocated memory, input packet buffers, and input threads that shep-
herd messages up the protocol stack [49]. Paths, coupled with allocators, provide a capability for
reserving and allocating resources at any protocol stack layer on behalf of a particular connection,
or contract. With packet demultiplexing at the lowest level at the receiver (i.e., performed in the
device driver), it is possible to isolate packets of different contracts from each other early in the
protocol stack. Incoming packets are stored in buffers explicitly tied to the appropriate contract and
serviced by contract handler threads previously allocated to that contract.

Proper handling of received data requires that a packet’s contract be identified as early as pos-
sible in the protocol stack, and that packets be queued and served accordingly. One solution for
this problem would be to prepend a contract identifier to sent packets to allow early contract-based
demultiplexing at the receiver. While this technique is natural for networks supporting a notion of
virtual circuit identifiers (VCI) such at ATM, it is not so for traditional data link technologies such as
Ethernet. In the case of Ethernet, the CORDS driver has the capability to add a new path identifier to
the data link header that serves as a contract identifier. This, however, would create a non-standard
Ethernet header that would not be understood by hosts not running the CORDS framework.

In our implementation, the unmodified in-kernel network device driver simply relays received
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packets to the communication server in FIFO order via the available IPC mechanism, in our case
Mach ports. This FIFO ordering has two main disadvantages. First, it does not respect connection
QoS requirements, since urgent packets can suffer unbounded priority inversion when preceded by
an arbitrary number of less urgent packets in the queue. Second, since the same queue is used for
guaranteed and non-guaranteed traffic, depending on packet arrival-time patterns, guaranteed data
maybe dropped when the queue is filled by non-guaranteed packets. These two problems cannot
be solved without modifying the kernel device driver. To ameliorate this unpredictability, a high
priority thread waits on the communication server’s input port and dequeues incoming packets as
soon as they arrive, depositing them in their appropriate contract-specific queues. This prevents
FIFO packet accumulation in the kernel and allows the server to service packets in priority order

according to their contract.

4.7 Evaluation

We conducted several experiments to test the performance of the implemented communication sub-
system server and verify its ability to meet the contracted QoS requirements. To emulate natural
operating conditions, the server machine was placed on one segment of a shared departmental 10Mb
Ethernet serving a couple of hundred machines in the department (204 to be exact). The Ethernet is
connected to a campus-wide network via an FDDI ring that is in turn connected to an Internet back-
bone. Firsi, we identified the cost of QoS adaptation in the proposed architecture. Our profiling
results indicate that the periodic load monitoring overhead is about 7us per iteration, the QoS-
optimization overhead is approximately 32us per QoS contract, and the heuristic QoS-adjustment
overhead is 8us. Currently, monitoring and heuristic QoS adjustment are performed once every
100ms, and QoS-optimization is invoked every S seconds. For 10 contracts created in the system
(due to client aggregation the number of clients can be much more), the above figures indicate
that the aggregate overhead consumed by QoS-adaptation mechanisms is less than 0.1 %. In the
following we describe two sets of experiments. The first was conducted under conditions where
CPU power was the bottleneck resource. The second was conducted when the network was the
bottleneck. As we shall see, different elements of the architecture were sensitized in the two sets of

experiments, giving rise to different performance characteristics and problems.
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4.7.1 Experiments with a CPU bottleneck

We conducted a set of experiments with QoS contracts in an environment where the end-system
was the bottleneck resource. Since in our testbed the server was fast enough to saturate the link,
we turned on the (fairly heavy) debugging mode to slow down the server enough to become the

bottleneck.

Contract Policing

In response to contract establishment requests, we created a set of contract handler threads, each
of which processes application messages that are generated persistently by “dummy” applications
and sent using our communication subsystem API. Each application would simply sit in a tight loop
generating fake data. The contract handler thread for each connection enforces its QoS contract
and polices the application in accordance with its selected QoS level. Connection throughput was
measured at the receivers. Figure 4.6 shows the measured throughput versus time for each of three
UDP flows. In this experiment the contacted rates for the UDP flows were 1.5Mb/s, 1Mb/s and
0.5Mb/s, respectively.? The figure shows that although the applications dump messages persis-
tently to the communication subsystem without regard to a maximum rate, their measured through-
put does not violate the contracted QoS due to appropriate policing. Similar results were seen when
we added non-guaranteed traffic in the background. Since non-guaranteed traffic is served by a
lower priority (default) handler, it does not get through unless no guaranteed contract handlers are
running.
Rate fMB/s)

Figure 4.6: Policing effect

2Where b, in this section, refers to bits.
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Admission Control

The rate-policing and traffic prioritization mechanisms alone, however, are not sufficient for en-
forcing the QoS contracts. In Figure 4.7 we show what happens when we increase the number
of guaranteed connections above the schedulable limit. In this experiment, we incrementally add
new connections, creating a 1Mb contract for each. The QoS contract for each connection has
M; = 100kb, and P; = 100ms. As we can see, the system becomes overloaded and the average
connection throughput decreases below its contracted value as the aggregate bandwidth consumed
by the system saturates. In our experiments the maximum aggregate consumed bandwidth was
found to be approximately 3.7Mb (due to the heavy debugging mode). The inability of individual
connections to receive their contracted rate calls for an admission-control mechanism to ensure that

the set of all guaranteed connections is schedulable.

Rate (MB/s)
1
40 . .
_____ Maximum (Saturation) Aggregate Rate _——-
30—
Measured Aggregate Rate
20—
LM 3¢ Contracted Connection Rate
Measured Average
- Connection Rate
0 2 1 . | L I L I L .
0 1 2 3 4 5 6 7 8 9

Number of Connections
Figure 4.7: Overload and violation of contracted QoS

We incorporated the admission-control algorithm presented in Section 3.4.2. We initialized the
length of the profiling vector é to unity, essentially reducing it to a scalar, a. We used Ethernet
packets as the unit of work in our architecture, decrementing the budget of contract handler threads

upon each packet transmission. The on-line estimated value of a was about 3.25ms/pkt, which
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yields a maximum throughput of about 307 (Ethernet) packets per second. This throughput permits
admitting only three 1Mb connections. From Figure 4.7 we can see that running more than 3
connections results in QoS contract violation, indeed. Thus, our combination of automated profiling
and admission control does succeed in adjusting to platform capacity such that overload is prevented

and QoS guarantees are maintained.

QoS Adaptation

We analyzed system response to transient load disturbances. In this experiment, we fixed the num-
ber of connections, defined multiple QoS levels for each, then varied the load on the host letting
the optimization algorithm implemented by the QoS level control module run periodically (every 5
seconds) to recompute the QoS levels based on the most recent estimate of a. Two long compilation
tasks were started concurrently with packet transmission to overload the CPU. Figure 4.8 shows the
results of a representative run. The top part of the figure shows S contracted connections, labeled
Cy,...,Cs, where C) is the least important connection, and Cs is the most important. The QoS
contract for each connection had 3 QoS levels of bandwidth 1Mb (M; = 100kb, P, = 100ms),
0.33Mb (M; = 67kb, P; = 200ms) and 0.11Mb (M; = 33kb, P; = 300ms) respectively. Rewards
were assigned proportionally to the bandwidth and weighted by connection importance. Thus, the
reward for QoS level k£ of connection C; was R;[k] = iM;[k]. The figure depicts the QoS level
selected for each connection at every invocation of the QoS selection/optimization algorithm. The
bottom part of the figure shows the change in the measured cost-per-packet, a, as well as the number
of missed deadlines between successive invocations of QoS optimization (A deadline miss means
that M; bits weren’t transmitted within P; time units.) As can be seen from the figure, less im-
portant connections were degraded during overload intervals to keep aggregate system throughput
below saturation. Since the QoS level optimization algorithm runs at a slow period (5 seconds), we
cbserved a relatively large number of deadline violations. This is because QoS level selection was
not responsive to short term load fluctuations which caused some deadlines to be missed. When the
experiment was repeated with the fast QoS level adjustment heuristic enabled to change the QoS
levels in response to transient load disturbances, most of the deadline misses were eliminated, as
shown in Figure 4.9.

The above-presented experiments illustrate the function and effectiveness of the main architec-
tural elements of our design. Namely, our architecture is shown to (i) provide per-contract guaran-

tees on the end-host, (ii) maximize the aggregate reward of the end-host’s communication service
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Figure 4.8: QoS level adaptation

across all clients, and (iii) adapt responsively to transient overloads and resource shortage.

4.7.2 Experiments with a Link Bottleneck

In order to test the performance of our communication subsystem when the communication link is
the bottleneck, we recompiled the server with debugging code disabled, causing it to become signif-
icantly faster. The new executable was fast enough to saturate the 10M b Ethernet. The experiments
reported in this section were conducted on a private Ethernet to prevent saturating the department’s
network with large UDP flows. To verify that the contracted QoS is still enforced we created 3 con-
tracted UDP flows of bandwidth 1Mb, 2Mb and 3Mb, respectively. A non-guaranteed UDP flow
was sent concurrently with gradually increasing bandwidth. We observed that once the aggregate
outgoing flow saturates the Ethernet link, the server is unable to maintain bandwidth guarantees

for contracted flows. This effect is demonstrated in Figure 4.10 by the decline in guaranteed flow
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Figure 4.9: Improved responsiveness due to QoS level adjustment heuristic

bandwidth after the communication link gets saturated.
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Figure 4.10: A Glitch in Enforcing QoS Guarantees

The Buffer Size Dependency

Ideally, guaranteed bandwidth should have remained constant, since non-guaranteed flows are served
at a lower priority and should not have interfered with guaranteed flows. The explanation of this
interference lies in communication buffer overflow on the end-system. We used a version of code
in this experiment where an internal packet buffer is associated with each outgoing connection.
When the network is slow, the server causes these buffers to saturate with the server’s outgoing data
awaiting transmission, which blocks the sending contract handler threads. As a result, the size of

the outgoing data buffers plays a critical role in determining the outgoing connection throughput.
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A low-priority UDP connection with a large buffer may send more data during periods of network
overload than a high-priority connection with a small buffer which makes priority scheduling inef-
fective.

To demonstrate the effect of buffer size on UDP flows, a QoS contract was established with a
guaranteed client A, specifying the packet rate of R; = M;/P; = 600 pkts/s (1500 bytes/pkt). A
non-contracted client B was created. The aggregate data generated by both clients saturates the
server’s 10 Mb/s Ethernet link causing an overload. The ratio of the outgoing data buffer sizes of
the two connections was changed graduaily from 0.2 to 4, and the ratio of the connection through-
puts was recorded for each ratio of buffer size. Figure 4.11 plots the observed ratio of bandwidth
delivered to the two clients versus the buffer size ratio of their respective connections. The figure
shows both (i) the case where the server was instrumented to let the default handler run at the same
priority as client A’s handler, and (ii) the case where A’s handler has the higher priority. It can
be seen that regardless of contract handler priority, the delivered bandwidth ratio followed closely
the connection buffer-size ratio showing a strong correlation between outgoing buffer size and con-
nection bandwidth. We fixed the aforementioned problem by aggregating all outgoing packets in a
single buffer implemented as a priority heap and dequeuing packets in priority order.
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Figure 4.11: Bandwidth dependency on buffer size
The Semaphore Dependency

In order to test the new communication subsystem prototype, two contract handler threads were

created in the server to process two data streams: one to a guaranteed client A, and the other to
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a non-guaranteed client. The handlers process outgoing data and deposit it in the common packet
heap, blocking on a common semaphore when the heap is full. Handler priorities were such that
the thread serving the guaranteed client was higher in priority than that serving the other client. We
policed both clients to a packet rate of R; that was gradually increased, as shown by the dotted line
in Figure 4.12, to cause overload. The solid lines in Figure 4.12 show the corresponding actual
packet rate received by each client on their respective destination machines. It can be seen that
each client receives the generated rate R; up until the aggregate packet generation rate at the server
increases beyond 700pkt/s (i.e., until R; = 350pkt/s for each client). This aggregate rate saturates
the 10Mb/s Ethernet. When R; is increased beyond 350, the server fails to deliver packets at rate
R; even to the higher priority client, although it delivers an aggregate rate much higher than R;. We

conclude that clients are not served in priority order.
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Figure 4.12: Effect of priority-insensitive semaphores

The reason this time had to do with semaphore implementation. The Mach kernel does not
ensure that when a semaphore is signaled, the highest-priority thread waiting on the semaphore
gets the CPU. Instead, a waiting thread is awakened in FIFO order. The use of a single semaphore
for the two communication subsystem threads randomizes thread execution in a way that does not
allow the guaranteed (high-priority) client to properly utilize the available bandwidth. In order to
verify that the semaphore implementation is the cause of the observed problem, we implemented
qthread semaphores (on top of Mach semaphores) with a priority queue of their own. The gthread
semaphores ensure that the highest-priority waiting thread is resumed when a semaphore is signaled.
The above experiment was repeated. Figure 4.13 shows that the higher-priority client now achieves
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its ideal service rate, R;, much more closely at the expense of the lower-priority client.
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Figure 4.13: Prioritization with improved semaphore implementation

Residual Effects

We conjecture that the residual inaccuracy in achieving the ideal service rate by the guaranteed client
is due to the interaction between the policing mechanism and priority scheduling. When the budget
of a contract handler expires the handler blocks, allowing the default lower priority handler to run.
Since the CPU is not the bottleneck the low priority handler can run until it saturates the outgeing
packet heap. When the high priority coatract handler is eventually resumed it may not be able to
send its data in time. These problems arise only under overload. In the absence of overload, the
system performs to specification, e.g., as seen in Figure 4.12, for aggregate packet rates below 700
pkts/s. We, therefore, utilized a policing mechanism to “emulate” priorities. A utilization budget
is created for the default low-priority handler. Its value is set to the remaining system capacity left
unused by guaranteed clients, i.e., to 100% — 3"; U;. The low-priority handler is policed not to
over-draw its allocated resources by implementing it as a quasi-periodic thread of an appropriate
period and budget.

Figure 4.14 illustrates the goodness of this approach at mimicking the thread prioritization effect
when the network is the bottleneck. The previous experiment was repeated with one guaranteed
and one non-guaranteed client, except that this time the non-guaranteed connection was policed to

prevent overload. When the network is saturated, the data rate of the non-guaranteed client is forced
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to decline, via policing, with the increase in the contracted rate of the guaranteed client to keep
their sum constant at the maximum network bandwidth. It can be seen from Figure 4.14 that the

guaranteed client is now able to receive its contracted service rate.
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Figure 4.14: Achieving QoS-sensitive behavior

Figure 4.15 shows the consumption of network bandwidth, which is the bottleneck resource.
Note how the network saturates at an aggregate delivered bandwidth of 10 Mb/s (measured at the
receivers), which is its maximum capacity, when the aggregate service rate increases beyond 700
requests per second. This verifies that the network is indeed the bottleneck resource in the presented
experiments.

We now repeat the experiment shown in Figure 4.10 using the communication server enhanced with
aforementioned modifications. The same UDP flows were created of contracts for 1AMb, 2Mb and
3Mb, respectively. A non-guaranteed UDP flow was sent concurrently with gradually increasing
bandwidth. This time we observed that each guaranteed flow received its contracted bandwidth. We
also observed that the non-guaranteed flow was policed to the remaining bottleneck resource capac-
ity. These results are demonstrated in Figure 4.16. We conclude that our adaptive communication
subsystem is able to ensure QoS guarantees regardless of the bottleneck resource. This feature
separates our design from other architectures which often focus either on link bandwidth manage-
ment (typically in the networking community), or end-system resource scheduling (typically in the

operating system community). The obtained guarantees are adapted to platform resources and load.
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Figure 4.15: Network bandwidth saturation

4.8 Extensions

The mechanisms described in the previous sections can be implemented in middleware on top of a
regular operating system such as UNIX. QoS extensions we introduce fall roughly into (i) profil-
ing extensions executed periodically and independently of other scheduled activities, (ii) admission
control extensions invoked at contract creation and activation time, and (ii) enforcement extensions
embodied into the gthread quasi-periodic thread policing mechanism used to police contract handler
threads. Of these extensions, (i) and (ii) can be executed outside the operating system in a middle-
ware layer as described in Chapter 2. Policing needs to be redesigned, since the middleware does
not have access to thread scheduling in the communication subsystem. The middieware associates
resources with contracts (instead of threads). It makes no assumptions on thread-to-client mapping
in the server process and communication subsystem, which separates this middleware implemen-
tation of QoS-provisioning from other mechanisms for performance isolation and QoS guarantees,
such as [3,55,63,75, 86, 88,95, 140]. These solutions usually addressed QoS provisioning as a
per-thread or per-process concept.

4.8.1 Contract Policing in Middleware

To police QoS contracts, our middleware, called ¢Contracts, keeps a periodic timer. At the be-
ginning of every period P;, an execution budget of P;U; is allocated for each admitted contract
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Delverad Bandwidth (Mbvs)

Q:, where U; is the logical utilization allocated to the contract. Policing must ensure that no con-
tract Q; exceeds its allocated execution budget. The middleware executes policing code in the
context of the server’s worker threads when they perform socket calls. gContracts exports the
contractChargeBudget(client_id, r) primitive for the purpose of policing. The primitive is called
upon execution of each service unit, where z is the byte size of the served unit. The call reduces the
budget U; P; by maz(a + bz, cz), the processing time attributed to the served unit. If the budget
expires the call either blocks or, in its non-blocking version, returns an error. To describe how to

this policing mechanism achieves its purpose, we make a distinction between two general types of

SCrvers:

o Servers with long-lived flows: A server is said to have long-lived flows if the single con-
nection’s flow lasts much longer than P;. In that sense, servers with persistent HTTP 1.1
connections, for example, do not necessarily belong to the long-lived flow category since
their connections may be idle most of the time with only sporadic short bursts of flow. Video
servers, on the other hand, are a good example of this type. Serving a single request will take
the entire duration of a movie (i.e., in the order of hours). Service rate, R; = M;/PF;, in this
case is typically the rate at which the single request is served, e.g., the frame rate at which the
movie is transmitted. In servers with long-lived flows, cither the server’s worker thread or the
write() library call that sends the frames out to the client is instrumented to call the blocking

version of contractChargeBudget(client_id, frame_size) upon each frame transmission.
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The call will block in gContracts when the execution budget expires, and will unblock when it
is replenished. Since the budget is replenished to U; P; every pericd F;, the average utilization

due to request execution on behalf of the i-th client cannot exceed Uj;.

e Servers with short-lived flows: a server is said to have short-lived flows if a large number
of server responses can be sent to completion within P;. This, for example, is true of web
servers which typically have the capacity to process hundreds of requests per second. In
servers with short-lived flows, contracts are typically defined on flow aggregates. Service
rate, R; = M;/P,, in this case, defines the aggregate request rate (c.g., the hit rate on a
particular web site). Bandwidth W; defines the aggregate delivered byte rate. In this case,
the use of the blocking version of contractCharge Budget(client_id, z) is inappropriate for
policing because, upon budget expiration, the call blocks only the calling thread. It leaves it
possible for a different thread to pick another request whose processing is charged to the
same contract. In the worst case, all server threads may encounter, during some period
P;, requests charged to a contract whose budget has expired. All these threads will thus
block on contractChargeBudget(client_id, z), bringing the entire server to a halt until
that budget is replenished. The situation cannot arise in servers with long-lived flows be-
cause the service time of a request is much larger than P;, making it impossible for more
than one request to be charged to the same contract during any single budget replenish-
ment period. To avoid this problem, in servers with short-lived flows, the read() library
call is instrumented to call contractCheckBudget(client_id) as each request is read in.
The latter call returns an error if the budget has expired, in which case the instrumented
read() will discard this request (for violation of the contracted rate) and read the next. The
write() library call that sends the response to the client is instrumented to call a nonblock-
ing contractCharge Budget(client_id, response_size) upon response transmission to up-
date the budget accordingly. (Note that if server source is available, it may be easier to call
contractCheck Budget(client_id) and contractCharge Budget(client_id, response_size)
directly from the server’s worker thread.) Since no requests are served after the U; P; budget
expires, and since the budget is replenished every period F;, the average utilization by the :-th

client cannot exceed U;.
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4.8.2 Discussion

Not surprisingly, there is a significant difference in the means of enforcing QoS contracts between
long-lived flows (e.g., multimedia) and short-lived flows (e.g., HTTP). Multimedia applications,
for example, are dominated by long-lasting connections of considerable bandwidth delivered to the
client. Essentially, QoS enforcement is achieved by policing individual outbound server flows as
described above. In web servers, on the other hand, contracts are defined for aggregate traffic, e.g.,
the aggregate of all the flows from a particular hosted site. In the worst case, all server threads may
encounter, during some execution interval, requests charged to a contract whose budget has expired.
All these threads will thus block on I/O bringing the entire server to a halt until that budget is re-
plenished. To prevent such scenario, assigning different (non-overlapping) server thread pools to
different traffic categories becomes essential for proper QoS management of aggregate flows when-
ever the underlying OS mechanisms or network traffic shaping mechanisms impose upper bounds
on aggregated flow bandwidth (as in proportional share OS resource allocation, and weighted fair
queuing).

To reuse today’s best-effort server code, where a single pool of threads or processes serves ail
requests, our policing solution essentially relies on request admission control to make the outgoing
aggregate flow bandwidth conform to specifications. Since the resource requirements imposed by a
single service request are often unknown, measurement-based admission control is used to regulate
the fraction of admitted requests based on bandwidth measurements. In web servers, the length of
requested URLSs, for example, can differ by a couple of orders of magnitude from one request to an-
other. Measurement-based admission control will be effective as long as the resource requirements
of the largest request remain a small fraction of the total server capacity, making it possible to apply
the laws of large numbers to aggregated flows and use a fluid flow model. In Chapter 2 we detailed
a a measurement-based admission control technique that relies on a control loop which adjusts the
fraction of admitted requests and the degree of degradation depending on load conditions.

An important question with admission control is which requests to reject. One might argue that
indiscriminate rejection is acceptable within the same traffic class. This, however, is not always a
good policy. Consider a web server hosting two sites, A and B, and assume that the request rate
on site A has increased beyond its contracted limit. Assume all clients of site A are equal. If
rejection is indiscriminate, the rejected requests may originate from any client. If clients’ sessions

are comprised of multiple requests, all clients are likely to see rejections during the session, and none
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is able to complete their session satisfactorily. From the perspective of maximizing the aggregate
utility of the service, it may be more desirable to adjust admission control such that a subset of
clients are rejected consistently under overload, while others see consistently good service (i.e.,
actually complete their sessions). In [S] such an admission control mechanism is described, where
the pool of consistently admitted clients is sized dynamically based on measured server load.

Both policing and measurement-based admission control can be used to implement service dif-
ferentiation. A low-priority aggregate flow is forced (by either method) to fit within the bandwidth
left unused by higher-priority flows. This mechanism successfully “fakes” priorities in middleware,
even when identical same-priority threads handle different traffic classes in the server. It requires an
estimate of aggregate server capacity as well as a measurement of the bandwidth used by each pri-
ority class. While the approach works well for a limited number of classes, it is unclear if can scale
up to a large number of priority levels because admission control in each level depends on measure-
ments of all higher priority levels, and measurement accuracy decreases with the granularity of a
traffic class.

Another important problem that arises with flow prioritization is that of consistent flow-priority
management across multiple resources. Higher-priority flows should receive precedence over lower-
priority flows in accessing not only the CPU resources, but also memory buffers, disks, and com-
munication bandwidth. Unless the CPU is the bottleneck resource, threads will block waiting on
the real bottleneck which must then be allocated in the same priority-sensitive fashion.

Classification of requests into one of several flows poses a particularly important concern. Such
classification is often dependent on application-specific data (e.g., the site named in the HTTP
header). Implementing request classification in the socket library transparently to the server may
result in a large run-time overhead since it will require parsing all requests and interpreting their
content (such as the HTTP header fields) in the context of read() calls. Classification, however, is
already performed in the context of usual server execution, so it is advantageous to have access to
server code. Unfortunately, performing classification in user space (i.e., in the server or middleware)
is not efficient for another reason. Since admission control is performed after classification (to dis-
criminate among different classes), rejected requests will have consumed a substantial amount of
resources in the kernel by the time they are rejected by the server. A substantial amount of execution
resources can thus be wasted on eventually rejected connections. This concern calls for OS support
for early classification in the kernel.

Finally, if Adaptware is called from within a socket library, care must be taken to call it only
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on socket operations related to the server. Thus, only the server should be linked with the new
library. Furthermore, only the sockets representing connections with clients should activate Adapt-
ware API. The library must keep track of these sockets and distinguish between them and regular
file descriptors (e.g., log files) or other communication (e.g., with CGI scripts). A possible solution
is to indicate the server’s well-known port in the middleware’s configuration file. Only operations
on sockets whose descriptors are returned by an accept() call to the well-known port should invoke

Adaptware API.

4.9 Conclusions

We presented a new abstraction and structuring methodology for communication subsystems on
end-hosts based on a more flexible notion of a QoS contract. We elaborated on the QoS specifi-
cation API which allows the application developer to define flexible communication requirements
by specifying a set of acceptable QoS levels, rewards, and QoS violation penalty. We presented a
thread-per-contract architecture that enforces the QoS contract. We described an implementation of
contract handlers as gthreads scheduled by the communication subsystem to maximize aggregate
reward. Scheduling contract handlers involves appropriate selection of a QoS level for each handler
in accordance with current resource load and capacity. We described a mechanism for QoS-level
selection based on a combination of periodic optimization and fast heuristic adjustment. A reward
optimization algorithm uses a dynamically computed estimate of per-packet handling cost to deter-
mine the QoS-levels. A simple heuristic was described that dynamically adjusts the selected QoS
levels in response to transient load disturbances. We discussed mechanisms for overload and un-
derutilization detection, as well as policies for adjusting QoS levels in response to such conditions.
A communication server architecture, called CLIPS, was described and contrasted against a mid-
dleware implementation, called gContracts. The impact of such mechanisms and policies has been
briefly illustrated using experimental results from an actual implementation of the communication
subsystem. The analysis shows that the design is capable of meeting its stated goals regardless of

the bottleneck resource, platform speed, and load mix.
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CHAPTERS

ADAPTATION IN DISTRIBUTED SYSTEMS

5.1 Introduction

This chapter extends the QoS adaptation framework to achieve predictability and graceful degrada-
tion in long-lived distributed real-time services. By “long-lived” we mean that a service request,
if granted, will hold its resources for a relatively long period of time. Predictability in real-time
applications has traditionally been achieved by reserving resources and employing admission con-
trol under some a priori assumed load and failure conditions. Graceful QoS degradation, on the
other hand, requires resources to be reallocated dynamically in order to cope with changing load
and failure conditions while maximizing system utility. Both predictability and graceful QoS degra-
dation are necessary for real-time applications, but pose conflicting requirements. The proposed
framework attempts to reconcile these requirements in distributed applications.

We incorporate the notion of QoS contracts proposed earlier into a processing capacity man-
agement middleware service called RTPOOL. The service is designed and implemented to support
timeliness guarantees for distributed real-time applications. We review the proposed QoS-adaptation
model in the context of RTPOOL (Section 5.2), then describe RTPOOL architecture highlighting
the synergy between components of the service and the QoS-negotiation support (Section 5.3). We
present relevant details of RTPOOL implementation and the negotiation API (Section 5.4), and de-
scribe the use of RTPOOL in the context of an automated flight control application (Section 5.5).
Flight performance is evaluated (Section 5.6), illustrating the efficacy of QoS adaptation support,
followed by a brief summary of contributions (Section 5.7).
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5.2 Model

We consider a class of distributed real-time systems in which various software components perform
tasks to accomplish a single overall “mission.” We will henceforth call this mission an application.
Flight control, shipboard computing, automated manufacturing, and process control applications
generally fall under this category. The application is composed of a set of tasks, each of which
requires a set of resources/services. Following the main QoS contract model of Adaptware, a client
requesting service specifies in its request a set of QoS levels and their rewards to the service provider,
as well as a rejection and violation penalty. To control system load in a way that ensures predictable
service, the service provider must subject the client’s request to on-line admission control which de-
termines whether to guarantee or reject the request. The architecture of the service provider is given
in Figure S.1. The provider runs on top of a pool of resources whose size may vary dynamically,
and serves a dynamic set of real-time clients. The underlying resources available to the provider are
monitored by the resource monitoring module. The provider exports a QoS-negotiation API to its
clients based on QoS levels, rewards and penalties. The QoS-negotiation module is responsible for
selecting the appropriate QoS level for each client so that overall utility is maximized. The feasi-
bility assessment module is responsible for checking whether or not the selected QoS levels of the
respective clients can be sustained using currently-available resources. Assisted by the feasibility
assessment module, the QoS-negotiation module performs admission control on incoming service

requests.
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5.3 RTPOOL

We designed an instance of the service provider we call RTPOOL, shown in Figure 5.2, to export
the abstraction of a single distributed computing resource. This service is responsible for load
sharing on a pool of processors to guarantee timeliness. It employs a processor membership protocol
that keeps track of processor pool membership and reports processor failures. In order to provide
timeliness guarantees, schedulability analysis is used.

Clients of RTPOOL are application tasks. RTPOOL service requests are used to guarantee the
timeliness of new incoming tasks. RTPOOL assumes periodic tasks, while handling aperiodic tasks
with periodic servers. A task is composed of a set of modules, and has a deadline by which all of its
modules must be completed. The modules may have arbitrary precedence constraints among them-
selves, thus specifying their execution sequence. We assume that task arrivals (guarantee requests)
are independent, so we do not support precedence constraints among different tasks.

Each task’s request includes its rejection penalty, and parameters of its QoS contract that specify
different QoS levels and their respective rewards. A client task’s QoS level is specified by the
parameters of its execution model. For an independent periodic task, the parameters consist of task
period, deadline, and execution time. We modeli period and deadline as negotiable parameters. This
represents a significant departure from most scheduling literature, although the authors of [115]
articulate on the alterability of task periods in real-time control systems using system stability and
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performance index. Task execution time, on the other hand, depends on the underlying machine
speed and thus should not be hardcoded into the client’s request. Instead, each QoS level in the
negotiation options specifies which modules of the client task are to be executed at that level. This
allows the programmer to define different versions of the task to be executed at different QoS levels,
or to compose tasks with mandatory and optional modules. The reward associated with each QoS
level tells RTPOOL the utility of executing the specified modules of the task with the given period
and deadline.

Requests for guarantecing tasks may arrive dynamically at any machine in the pool. Tasks
normally receive higher QoS than their minimum QoS level. It is therefore highly probable for the
new arrival to be guaranteed on the local machine. To guarantee a request at the local machine,
RTPOOL executes a local QoS-optimization heuristic. The heuristic (re)computes the set of QoS
levels for all local clients (including the new one just arrived) which maximizes the sum of their
rewards. Recomputing the QoS levels may involve degrading some tasks to accommodate the new
one. The task is rejected if borh (i) the new sum of rewards (including that of the newly-arrived
task) is less than the existing sum prior to its arrival, and (ii) the difference between the current
and previous sums is larger than the new task’s rejection penalty. Otherwise, the requested task is
guaranteed. As aresult, task execution requests will be guaranteed unless the penalty from resulting
QoS degradation of other local clients is larger than that from rejecting the request. When a task
execution request is rejected by the local machine, one may attempt to transfer and guarantee it on
a different machine using a load-sharing algorithm.

Note that conventional admission control schemes would always incur the request rejection
penalty whenever an arrived task makes the set of current tasks not schedulable. By offering QoS
degradation as an alternative to rejection we can show that the reward sum (or perceived utility)
achieved using our scheme is lower bounded by that achieved using conventional admission control
schemes given the same schedulability analysis and load sharing algorithms. Thus, in general, our
proposed scheme achieves higher perceived utility.

Figure 5.3 gives an example of the local QoS-optimization heuristic. The heuristic implements
a gradient descent algorithm, terminating when it finds a set of QoS levels that keeps all tasks
schedulable, if any. Note that unless all tasks are executed at their highest QoS level, the machine
suffers from unfulfilled potential reward. The unfulfilled potential reward, U PR;, on machine V;,
is the difference between the total reward achieved by the current QoS levels selected on the machine

and the maximum possible reward that would be achieved if all local tasks were executed at their
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Let each client task T. have QoS levels M;[0],..., M[best;] with
rewards Ri[0],..., R:[best;], respectively.

1. Start by selecting the best QoS level, M;[best;], for each
client T;.
2. While the set of selectad QoS levels is not schedulable, do

Steps 2 and 4.

3. For each client T: receiving service at level M[;] > M.[0],
determine the decrease of local reward, Ri[j] — Ri[j — 1]. re-
sulting from degrading this client to the next lower level.

4. Find client Ti whaose Ri[j]—Ri[j—1] is minimum and degrade it

to the next lower level.

5. Go to Step 2.

Figure 5.3: Local QoS optimization heuristic

1. On source machine, N;, find client Tx whose removal will

result in maximum increase, W, in total reward.
2. N, request reassigning Tk, with reward W.

3. Each machine N,, where UPR; — UPR, > V, receives the re-
quest and recomputes QoS levels for its local clients plus
Ti. 1If its total reward is higher with Tk, N, bids for Tk

with the reward increment W, resulting from accepting it.

4. N; transfers Tk to highest bidder.

Figure 5.4: Distributed QoS optimization protocol

highest QoS level. This difference can be thought of as a fractional loss to the mission. Often this
loss is unavoidable because of resource limitations. However, such loss may also be caused by poor
load distribution, in which case it can be improved by proper load sharing.

RTPOOL employs a load-sharing algorithm that implements a distributed QoS-optimization pro-
tocol. The protocol uses a hill climbing approach to maximize the global sum of rewards across all
clients in the distributed pool. It is activated between two machines N; and N; when the difference
UPR; — UPR; exceeds a certain threshold V. The protocol is given in Figure 5.4.

Close examination of the local QoS optimization heuristic and the distributed QoS optimiza-

tion protocol reveals that neither makes assumptions about the nature of the client and the seman-
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tics of its QoS levels.! For RTPOOL this means complete independence between the task model
used by the feasibility assessment module, and the QoS-negotiation mechanism. As a result, it
is easier to enhance RTPOOL to handle more elaborate task models, constraints, and QoS-level
parameters/semantics without affecting its QoS-negotiation mechanism. The disadvantage of this

separation of concerns compromises optimality somewhat, as illustrated by example in Section 5.6.

5.4 Implementation and API

In this section we highlight implementation details of the RTPOOL service, particularly those re-
lated to its QoS-specification API. RTPOOL is currently running on top of TOG Mach RT, MK7.2.
on a PC platform, and is implemented as a user-level library, which exports the abstraction of tasks,
threads, QoS levels, and rewards. Highlighted below are the components of the implemented proto-

type.

54.1 Scheduling and QoS Negotiation

We use gthreads, described in Chapter 4, for thread scheduling and QoS adaptation support. The
package implements a user-level local scheduler on each machine. The local scheduler is the lowest
layer of RTPOOL. It supports quasi-periodic threads, whose period can be changed at run-time in
response to changes in the QoS level.

On top of quasi-periodic threads, we export the abstraction of tasks, QoS levels, and rewards. Its
API permits the user to create tasks, create threads within each task, define QoS levels for the task,
and specify rewards. It also permits the user to specify for a given thread the QoS levels in which
the thread is eligible to execute. When new load (i.e., task or a set of tasks) arrives it is submitted
to the system via a corresponding primitive that invokes admission control. As a result, QoS levels
are re-calculated, and a new value for unfulfilled potential reward is computed.

Dynamic arrival of a task at the local machine occurs when (i) another task requests it to be
executed there, or (ii) the load-sharing heuristic migrates it from another machine to the one under
consideration. QoS levels are also recomputed on a machine when its local load decreases. This
occurs when (i) a periodic thread is terminated (i.e., will no longer be invoked periodically), or (ii)

a task is migrated away from the local machine. Once a set of new active QoS levels has been

'The distributed QoS-negotiation protocol, however, assumes service to a given client can be migrated to another
node.
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established, the gthreads package adjusts the parameters of the periodic threads known to the local
scheduler. This includes modifying their deadlines and periods when applicable. In the current
implementation, all created tasks execute in the same address space. The application is compiled

into a single executable image at system start time.

54.2 Invocation Migration

On top of gthreads we provide an invocation migration mechanism to implement the distributed
QoS optimization protocol described in Section 5.3. The mechanism is completely transparent to
the application. We call it invocation migration, because the transfer occurs between two successive
invocations of a periodic task (i.e., when one invocation has terminated and the next hasn’t started
yet).

When the distributed QoS optimization heuristic determines that a task is to be migrated, the
state variables of each thread in the transferred task are sent to the new machine, the threads belong-
ing to the task are destroyed at the source and recreated with the transferred state at the target. A
state variable is one whose value needs to be preserved across successive invocations. In the current
implementation, state variables of a thread hkave to be indicated to RTPOOL using a corresponding
library call at thread initialization time. The QoS levels are recomputed on the source and target
after the transfer to update the QoS levels accordingly. If a task must always execute on a certain
machine (e.g., because of some I/O devices it needs on that machine), the task can be wired to that

machine by calling a wire_task() primitive.

543 Pool Membership API

A membership algorithm is used to maintain a consistent view of the current membership of the
shared resource pool. Our group membership algorithm is a derivative of [2]. The only interface the
user sees to that algorithm is the subscribe_to_pool() call which causes the machine on which the call
was executed to join the named pool. Typically, when the application starts up on a given machine,
it executes the join primitive which broadcasts a join request to the given pool. If the request is not
answered (i.e.,the pool doesn’t yet exist), the machine creates a singleton pool of itself and attempts
to run the application on its own. The machine designates itself as the group leader for the pool
(initially, consisting of itself only). When a group leader receives a join request from a different

machine, it broadcasts a membership message [2] to all group members including the new machine.
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When a new machine subscribes to (joins) the pool each machine in the pool adds the new member to
the group. Since the new machine does not run any application task, its unfulfilled potential reward
is zero. Due to our load-sharing heuristic, machines whose unfulfilled potential reward is above a
given threshold will attempt to offload tasks to the new member. The new machine accepts tasks
one at a time, recomputing QoS levels after each arrival, and recomputing its unfulfilled potential
reward. Task transfer will continue until the unfulfilled potential reward is balanced among all
machines within a certain threshold, which stops the distributed QoS optimization.

When a machine fails, its failure is detected via the membership protocol and broadcast to all
group members. Task assignment information is replicated on each machine in the pool. The group
leader (the machine with the highest number in the pool) re-creates the destroyed tasks. The load-
sharing heuristic redistributes the load, if necessary. When the group leader fails, its successor (the
machine with the next highest number in the pool) becomes the leader. Task state is lost in crash.
Loss of state can be avoided by task replication. Wile the current implementation does not support
it, it is easy to extend this implementation to replicate tasks such that the state of failed tasks may

be retrieved from their replicas.

54.4 Communication API

An application need not be aware of where each of its tasks is executing. The decision of where
to run each task is left up to the load-sharing heuristic. This requires location-independent com-
munication primitives. Tasks communicate in our architecture via location-independent send() and
receive() primitives which determine the destination from the target task identity then use the com-
munication subsystem architecture described in Chapter 4 to send messages to the recipient. Our
communication protocol stack is implemented using z-kernel 3.2 [60], and is layered on top of a
UDP/TP stack. Based on CLIPS, the communication subsystem architecture on each host supports
prioritized, bounded-time message delivery which enables RTPOOL to determine the effect of com-
munication delays on the schedulability of periodic tasks as will be described in the next chapter
which details schedulability analysis.
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@

Figure 5.5: Flight management system functions.

5.5 Application

We have used RTPOOL to provide negotiable timeliness guarantees for several real-time tasks re-
quired in a fully-automated flight control system.2 The system was used to fly a simulated model
of an F-16 fighter aircraft. Details of the automated aircraft flight problem are provided in Sec-
tion 5.5.1, followed by a description of a method to determine the involved task QoS levels and
rewards from application domain knowledge (Section 5.5.2). Section 5.5.3 summarizes the set of

tasks, QoS levels, and rewards that describe the application.

5.5.1 Automated Flight Control

Current Flight Management Systems (FMS) perform several flight control functions, including flight
planning, navigation, guidance, and control [79]. Figure 5.5 illustrates these FMS tasks and their
interconnections; details of each module are provided in [79] and [110]. In current FMS, real-
time execution guarantees exist for the navigation, guidance, and control modules, allowing critical
function deadlines to be met. Schedulability guarantees for these systems are typically computed
off-line. Our QoS-negotiation scheme will allow the system to gracefully degrade performance
when enough resources are lost to violate the off-line guarantees. We consider the case where all
tasks have a known bounded execution time. Issues in dealing with potentially unbounded on-line
computations, such as run-time intelligent mission planning, are discussed in [14].

Aircraft guidance commands are typically issued in terms of aircraft altitude (z), and com-
pass heading (k). To control a simulated F-16 aircraft we employ a control loop to compute the
continuous-valued commands for a set of primary actuators, including the elevator, ailerons, rud-

der, and throttle. The elevator, ailerons, and throttle generate aecrodynamic forces which directly

?The application described in this section is given by Ella Atkins who collaborated with the author on testing RTPOOL.
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affect aircraft roll and pitch attitude, and, via dynamic coupling, indirectly affect aircraft heading
and airspeed. Our controller is also capable of commanding a secondary set of actuators whose
effect is to achieve better flight performance, but that are not as critical for flight safety. Secondary
actuators include the F-16’s afterburner which generates extra engine thrust, as well as the flaps and
speed brake, used to provide extra control for airspeed and altitude.

In a parallel research effort [13] a set of linear controllers have been implemented to calculate
the primary actuator commands to achieve the desired reference altitude (z..s) and heading (h,.s)
for the aircraft. The inputs to the controllers include sensor measurements of current aircraft altitude
z, heading h, pitch angle p and roll angle r. Equation (5.5.1) shows the control laws used during

our experiments, adopted from those used in [14].

E
elevator K, 0 -K, -—Kg 0 0 fares
ailerons | = 0 K, 0 0 -K,, -Ka, p
rudder 0 K, 0 0 —-Kp,, —Ka, I:

\ 7 )
In the higher-performance controller modes (see Section 6.3), the system also exerts control
over the set of secondary actuators. We control each with a discrete-valued command so that each

assists the continuous-valued primary actuators appropriately. For details on the discrete control

law refer to [13].

5.5.2 Computing QoS Levels and Rewards

Our QoS-negotiation scheme enables the application domain expert to express application-level
semantics to RTPOOL using QoS levels, rewards and rejection penalty. In this section we briefly
highlight how this support can be taken advantage of using the analytic techniques developed in the
context of CIRCA (the Cooperative Intelligent Real-time Control Architecture) [14]. Based on a
user-specified domain knowledge base, CIRCA’s main goal is to build a set of control plans to keep
the system “safe” (i.e., avoid catastrophic failures such as an aircraft crash) while working to achieve
its performance goals (e.g., arrive at its destination on time). In order to deal successfully with an
inherently non-deterministic, perhaps poorly modeled, environment of a complex real-time system
CIRCA employs probabilistic planning which models the system by a set of states and transition

probabilities. System failure is modeled by temporal transitions to failure states (TTFs). CIRCA’s
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mission planner uses its domain knowledge base to compute the actions to be taken (set of tasks)
and their timing constraints (QoS levels), so that the probability of TTFs is reduced below a certain
threshold. The reward decrease corresponding to degrading a task from one QoS level to another,
or rejecting a task altogether, is computed from the corresponding increase in failure probability.

For example, the planner computes a maximum period for each task based on the notion of pre-
empting TTFs [13]. For any state, an outgoing TTF is considered to be preempted if its probability
(computed by CIRCA using transition temporal properties and any applicable task’s maximum pe-
riod) is below the specified probability threshold value. To define alternative QoS levels, CIRCA’s
planner may compute task alternative periods based on a set of alternative TTF probability thresh-
olds. For example, say a TTF has a cumulative probability distribution that reaches the threshold
value when the preemptive task’s maximum period is set to 0.2 seconds. But, suppose we may
need to relax the task’s period requirement under overload. The period of the degraded QoS level is
computed from the next higher probability threshold level, and this task is assigned a lower reward
that corresponds to the reduction in certainty that the TTF will be preempted. A complete set of
QoS levels may be developed by considering each pre-specified probability threshold for each TTF,
with one task QoS level associated with each TTF probability threshold value.

5.5.3 Description of Flight Tasks

We have used the Aerial Combat (ACM) F-16 flight simulator [100] for all flight tests, running it
on a Sun workstation connected via sockets to the real-time execution platform. We have tested
the QoS-negotiation capabilities by flying the simulated aircraft around the pattern illustrated in
Figure 5.6. In this pattern, the aircraft executes a takeoff and climb, then holds a constant altitude
as it continues around its rectangular course. When turning to final approach, the aircraft descends,
using radio navigation sensors (i.e., the ILS) to guide it accurately to the runway. By varying
periods of the controllers, course navigation system (i.e., the high-level task that commands the
aircraft altitude and heading), and the sensors, we were able to observe the degradation in flight
quality (i.e., stability) as a function of each task’s selected QoS level.

In this section, we describe the tasks and associated rewards used during our tests of the QoS
negotiation algorithms. The goals of our example mission were to complete the flight around a
rectangular pattern (illustrated in Figure 5.6), and to destroy observed enemy targets, if any, using
the simulated F-16’s onboard radar and missiles. Four separate tasks were required to control the

aircraft during flight: “Guidance”, “Control”, “Slow Navigation”, and “Fast Navigation.” These
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Figure 5.6: Aircraft flight pattern flown during testing.

tasks function much like their similarly-named counterparts in Figure 5.5. The “Guidance” task is
responsible for setting the high-level reference trajectory of the aircraft. For our tests, this task spec-
ified quantities such as heading and altitude to guide the aircraft from takeoff through landing. The
“Control” task is responsible for executing the low-level control loops that compute actuator com-
mands from the commanded high-level trajectory. We have two “Navigation” tasks that read sensor
values, distinguished by the update frequency required, and command radio frequency changes as
required. The navigation sensor values are used by the “Guidance” task to determine when and how
to alter the commanded trajectory, and are used as standard state feedback by the “Controller” task.

Table 5.1 shows the set of QoS levels present for all tasks, including the associated reward,
execution time, and period. In our simple set of tests, we set each task deadline equal to its period,
although there are no such requirements in our QoS negotiation protocol. Also, because each of
these tasks is considered critical to execute (at least at a degraded QoS level), we set all task rejection
penalties sufficiently high such that all tasks are always accepted by the QoS negotiator.

In addition to the basic flight control tasks discussed above, we simulate a function neces-
sary during military operation: “Missile Control.” The “Missile Control” task is composed of two
precedence-constrained threads: “Read Radar” and “Fire Missile”. The “Read Radar” thread mon-
itors aircraft radar to detect approaching enemy targets, then, if a target has been detected, the “Fire
Missile” thread is used to launch a missile at any enemy targets that appear on radar. As shown
in Table 5.1, the simulated “Missile Control” task is computationally expensive and has two QoS
levels. If Level 1 is possible, radar will be scanned with sufficient frequency to allow most any
enemy target to be detected and destroyed. Otherwise (level 0), fast-moving targets may not be
destroyed. During experiments (in Section 7.3), we varied the reward for “Missile Control” QoS
Level 1 depending on the “subjective” relative importance of taking down enemy targets vs. flight
control performance.

As described above, the “Controller” task is responsible for executing the control loop. At

each invocation, the controller uses the currently stored sensor values to compute the appropriate
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Task { L R ET(ms) { P(sec) | Ver
G (O 10 100 10 def
1 15 100 5 def
2 20 100 1 def
CcC |0 1 80 b1 sec
1 100 60 1 prim
2 104 80 1 sec
3 120 60 0.2 | prim
4| 124 80 0.2 sec
SN |0 10 100 10 def
1 20 100 5 def
2 25 100 1 def
FN | 0 1 60 5 def
1 100 60 1 def
2 120 60 0.2 def
MC |0 1 500 10 def
130200 500 1 def

Table S.1: Flight plan with different QoS levels.

actuator values to control both aircraft attitude and position/velocity. Two versions of this function
were tested, one that used the secondary actuators (QoS levels 2 and 4) and one that did not (QoS
levels O, 1, and 3). Use of these actuators allows the aircraft to perform better in terms of takeoff
distance and climb rate as shown in Section 5.6 below, but these actuators require a larger task
execution time and are not critical for maintaining safety. The importance of the control loop period
is illustrated by the relatively high reward given to the low-period QoS levels for the “Controller”
task, and the small reward changes between the use of the different versions (e.g., level 3 vs. level
4) reflects the fact that the difference in choice of version is not critical for safety.}

Next, the “Slow Navigation” task is responsible for reading those sensors that do not require a

high sampling rate because they either are not used for the control loop or else they do not change

3We defined a QoS “level 0" for the “Controller” and “Slow Navigation” tasks that, as will be shown in Section 5.6,
were so slow that the aircraft becomes unstable during tuming maneuvers. These levels are included among their task’s

QoS negotiation options for illustrative purposes only, and would be there otherwise.
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rapidly. All navigation sensors are grouped into this task because they are used by the “Guidance”
task to determine the high-level altitude and heading commands, but not by the more safety-critical
control loop task. The Table 5.1 reward/period values for “Slow Navigation™ reflect the non-critical
nature of this task. Finally, the “Fast Navigation” task is responsible for maintaining all sensor
data used by the “Controller” task. Since the system must read this data to maintain sufficient state
variable accuracy, the periods and rewards are similar in structure to that used by the “Controller”
task (although we had only one version of this task, since a bulk sensor data read was the only
computational task required).

5.6 Evaluation

We have concentrated our test efforts on demonstrating the use of the QoS negotiation architecture
for the one particular example describe above: aircraft flight control. In this section, we show test
results which illustrate specifically how QoS negotiation can help flight control degrade gracefully.
In Section 5.6.1, we assess the accuracy of the QoS negotiation heuristic for our set of flight tasks
by observing QoS degradation of the same task set with lower machine speeds. In Section 5.6.2
we study aircraft performance during flight as a function of the “Controller” task’s QoS level, il-
lustrating one example in which the QoS negotiator allows graceful performance degradation. In
Sections 5.6.1 and 5.6.2, we focus on tests which use a single machine, and consider only the flight
guidance, navigation, and control tasks. We conclude our experiments (Section 5.6.3) with tests
which employ the full set of flight and missile control tasks from Table 5.1 and observe the effects
of load sharing between two machines. As shown in Section 5.6.3, our system exhibits graceful

performance degradation upon machine failure.

5.6.1 QoS Negotiation Heuristic Testing

In Section 5.3, we described a simple local QoS optimization heuristic to help a service provider
select a high-reward set of QoS levels for its clients. Using the QoS levels and rewards listed in
Table 5.1, we illustrate the behavior of the presented heuristic. In this experiment we kept the task
set fixed, and decreased the underlying CPU speed (increasing task execution times), then observed
the corresponding decrease in task QoS levels. Figure 5.7 plots the observed QoS levels versus CPU
speed, normalized by the minimum CPU speed for which the task set is schedulable.

Since, the heuristic uses only reward information to guide its search for a feasible set of QoS
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Figure 5.7: QoS levels selected vs. CPU speed for flight tasks.

levels (thus being applicable as is in any service that uses our QoS negotiation scheme) optimality
is compromized yet “graceful degradation” of QoS modes is still illustrated.

5.6.2 Aircraft Performance

We evaluated the performance of our system by studying its ability to control the aircraft simulator
during flight. In this section, we consider only the flight control tasks as they execute on one
machine, saving discussion of the load sharing protocol and missile control task for the next section.
As shown in Figure 5.7, since the “Controller” and “Fast Navigation™ tasks required the smallest
execution period, these tasks are the bottlenecks for execution, so changes in aircraft performance
are most easily observed by looking at changes in QoS levels for these tasks. Since these tasks are
tightly coupled (i.e., the “Controller” task uses results from “Fast Navigation™), we considered a
matrix of test cases in which we varied the “Controller” QoS level from its highest value (4) to the
lowest specified level (0), and simply ensured that the “Fast Navigation” level acted with at least as
low a period as was present in the “Controller” level.

As shown in Table 5.1, the “Controller” task QoS levels are a function of two variables: task
period and version. We look at tests illustrating the major differences in performance for each of
these variables in this section. Figure 5.8 shows aircraft altitude during the takeoff and climb phase
of flight. This figure illustrates the main performance difference between the two versions of the
task in the “best performance” case of each (i.e., period = 200 msec). In level 4, the afterburner
and flaps are operational, which requires a larger “Controller” task execution time, while in level

3, the afterburner and flaps remain off. As shown in the Figure, the afterburner and flaps allow the
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Figure 5.8: Aircraft altitude performance with and without “extra” control actuation.

aircraft to take off and climb more quickly, but both achieve the stable altitude of S000 ft. eventually.
This example illustrates why the rewards for these different versions are not very different, since
performance for level 4 is only slightly better than that in level 3. This example illustrates how QoS
negotiation can achieve graceful degradation. Overall processor utilization is decreased by reducing
the “Controller” task to level 3, but safety (i.e., controller stability) is not compromised.

In the next series of tests, we studied aircraft performance as “Controller” QoS level changes
affect the task period. For these tests, we isolated version from period modification effects with a
tests series in which the afterburner and flaps were consistently actuated (levels 0, 2, and 4). Similar
trends result using the other task version (levels 1 and 3). To illustrate the changes, we consider
three different QoS levels: level 4 with a period of 0.2 seconds (200 msec), level 2 with a period
of 1 second, and level O with a period of § seconds. We include level O among the Controller’s
negotiation options for illustration purposes only, as a comparative example showing controller
instability. Of course, no unstable QoS levels should be defined among a client’s negotiation options,
since the client should not *“‘ask” for instability as a service option.

Figures 5.9 through 5.12 show state variables as a function of time from takeoff and climb
through the turn to a heading of East after reaching FIX 1 (as shown in Figure 5.6). Figure 59
shows the aircraft altitude for the different controller periods. The plot for Period=0.2 (QoS level
4) is the “best” case; the aircraft climbs quickly to 5000 ft and stabilizes there. When the controller
period is increased to one second, the aircraft is still stable in altitude, but it is much more sluggish,
climbing to altitude more slowly and taking longer to stabilize. The range of periods between 0.2
and 1.0 seconds illustrates graceful degradation, since all will result in a stable controller, just not
as capable of responding quickly. Finally, to illustrate the necessity of real-time response, we tested
the same controller at a period of 5.0 seconds (QoS level 0). In this case, the controller becomes
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unstable and the aircraft eventually crashes.

Figure 5.10 shows aircraft heading as a function of time for the three different “Run Controller”
periods during takeoff, climb, and turn from a heading of South to a heading of East. The change in
Period from 0.2 sec to 1.0 sec simply slows system response, but a controller period of 5.0 seconds
drives the system unstable.

Figures 5.11 and 5.12 show plots of pitch angle and roll angle, respectively, for the two “stable”
controller periods. We do not include period = 5.0 seconds here because the instability obscures the
other plots. Since pitch angle and altitude are coupled, the pitch angie has largest magnitude when-
ever the altitude is climbing (or descending), and as illustrated in this plot, the increase in period to
1.0 seconds causes a large pitch angle to be required for a longer time, a stable but undesirable per-
formance trait for aircraft flight. The roll angle plot (Figure 5.12) also shows a delay and longer roll
angle deviation from 0.0 for the slower-period control cycle. Additionally, Figure 5.12 illustrates
another possible problem with the slow period: overshoot. As shown in the Figure, with a period
of 0.2 seconds, the roll (or bank) angle quickly reaches the desired value for a constant-rate turn
from South to East. However, bank angle for the slower controller far overshoots its desired value
before the controller notices and reacts. In both cases, the controllers are stable, but the pilot and
any passengers would certainly not be very happy about the rather severe bank angle temporarily
achieved (and if the period were much slower at all, the bank overshoot would be sufficiently large

to drive the aircraft out of the our controller’s stable region).

5.6.3 Load Sharing

Load sharing capabilities have been implemented in RTPOOL, and we have performed a final
set of tests which included both the flight control tasks (with performance characteristics shown
above) and a missile control task as described in Section 5.5.3. In these tests, we start the system
with two machines available for task execution. Because, as defined in Table S.1, the missile control
task was computationally expensive, the load sharing protocol places all flight control tasks on one
machine and the missile control task (both the “read radar” and "fire missile” threads) on the other
machine.

When the two machines function normally, both the flight and missile control tasks ran in their
maximum performance levels. In this case, enemy targets are quickly detected and fired upon, while
flight control is identical to the best performance profiles in the Section 5.6.2 plots. For the next test

set, we began operation with two functioning machines, then shut one down (simulating machine
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Figure 5.10: Aircraft heading performance for different controller task levels.

Figure 5.11: Aircraft pitch performance for different controller task levels.
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Figure 5.12: Aircraft roll performance for different controller task levels.
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failure) just after takeoff. This requires the load sharing and QoS negotiation algorithms to function
dynamically, such that the one functional machine now has to execute both the flight and missile
control tasks. If “Missile Control” reward is relatively low (we set it to 30), the system chooses
to degrade the “Missile Control”, “Guidance”, and “Slow Navigation” functions (to level 0), but
manages to keep the “Controller” and “Fast Navigation” tasks at safe levels. In this manner, the
flight control is a bit sluggish but stable However, the aircraft is unable to launch missiles at most
targets.

Alternatively, this system may be aboard an expendable drone whose most important function
is to destroy a target or attack enemy aircraft. In this case, the reward set may be structured such
that the missile control task takes precedence over accurately maintaining flight control.* To illus-
trate such changes in the task reward set, we altered the reward for QoS level 1 of the “Missile
Control” task to 200 (as shown in Table 5.1). Now, when the second machine shuts down, the QoS
negotiator reduces all flight control levels to O, since the missile controller is perceived as the most
important iask. After one machine fails, the aircraft eventually becomes unstable (as illustrated in
Section 5.6.2), but it is still able to quickly detect and respond to enemy targets that appear on radar.

It is important to note that, if we had used traditional algorithms for schedulability analy-
sis which do not allow for negotiated QoS degradation, the system would have failed to guaran-

tee/accept the entire task set on the same processor which may lead to a complete failure.

5.7 Conclusions

We extended Adaptware to provide a novel scheme for QoS negotiation in distributed real-time
applications. This scheme may be applicable for the design of server farms, extending the interface
of such services in that (i) it adopts a modified notion of QoS contracts that allows for defining
QoS compromises and supports graceful QoS degradation, and (ii) it provides a generic means to
maximize service utility for the community of clients in a distributed server. Our QoS negotiation
method improves the guarantee ratio over traditional admission control algorithms and increases the
application-level perceived utility of the system.

The proposed QoS-negotiation architecture has been incorporated into RTPOOL, an example

middleware service which implements a computing resource manager for a pool of processors. RT-

*In our tests, when the missile control takes precedenceover flight control during single machine operation, the aircraft
becomes unstable. This is more extreme than one might want for an actual system, since one can’t launch missiles if the

aircraft has crashed.
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POOL is used as a computing server for a flight control application to demonstrate the efficacy of
QoS negotiation. We demonstrated that the application does have negotiable parameters/constraints
and can thus benefit from the added flexibility of our QoS contract model. We also showed that
application QoS levels and their respective rewards can be analytically derived from system fail-
ure probability. QoS-negotiation support, while guaranteecing maximum QoS levels during normal

operation, is shown to provide graceful QoS degradation in case of resource loss.
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CHAPTER 6

SCHEDULABILITY ANALYSIS

6.1 Introduction

In the previous section we avoided discussing schedulability analysis techniques that may be em-
ployed by RTPOOL to accommodate real-time applications. Real-time application tasks have indi-
vidual deadlines to be met by RTPOOL. In general, these tasks may need to communicate with one
another, which imposes additional constraints on their allocation in order for their deadlines to be
met. In hard real-time systems, failure to meet the deadline of a task may result in catastrophic con-
sequences. Each task must therefore be guaranteed a priori to meet its timing constraints. Efficient
techniques for schedulability analysis are needed. These techniques should be used at admission
time of new applications, as well as by RTPOOL'’s distributed QoS optimization heuristic when
tasks are offloaded from one machine to another such that each task is guaranteed to meet its timing
constraints on its prospective destination before it is admitted or reassigned. Since periodic tasks
are the base load of most real-time systems, and since gthreads’ main abstractions rely on peri-
odic tasks, we shall focus in this chapter on a periodic task model and describe how to schedule it.
Sporadic tasks may be considered periodic by using, for example, a sporadic server.

Task precedence constraints and resource requirements need to be accounted for by schedula-
bility analysis. The algorithm should find a feasible schedule (i.e., one that meets all deadlines),
whenever such a schedule exists. We cast the schedulability problem into that of minimizing max-
imum task lateness, where lateness is defined as the difference between task completion time and
deadline. A feasible schedule would then correspond to a solution where maximum task lateness is

non-positive. If the optimal schedule has positive lateness, then no feasible schedule exists. This
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chapter addresses the problem of finding the optimal' schedule for hard real-time tasks given a
particular task-to-processor assignment, known periodic task arrival times, precedence constraints
and resource requirements. It constitutes a pre-run-time analysis stage that compliments RTPOOL’s
run-time scheduling mechanisms (such as EDF scheduling) that enforce the desired schedule. As
we describe later in the chapter, the analysis stage computes task deadlines, a part of QoS level
specification, that make the resulting EDF schedule optimal in the sense of globally minimizing the
maximum task lateness of the distributed application. The algorithms described are needed only for
hard real-time applications where the deadline of =ach individual task invocation must be met. For
soft real-time tasks, such as request handling in distributed web server farms, this analysis is not
required.

The problem of minimizing maximum task lateness in hard real-time systems was optimally
solved by Xu and Parnas [14S5] for uniprocessors. An attempt to extend their approach to several
processors was made by Shepard and Gagne [119], but their algorithm occasionally fails to find
existing feasible schedules as we pointed out in [3]. Xu remedied this shortcoming by proposing
optimal multiprocessor scheduling with precedence and exclusion constraints [146]. However, his
model is not suitable for distributed systems, since it assumes that tasks can be resumed on any
processor at no additional cost, neglects the cost of intertask communication, and does not address
the problem of scheduling inter-machine messages.

In distributed hard real-time systems, inter-machine message communication affects task schedu-
lability, and thus, has to be accounted for. One way to solve the combined task and message
scheduling problem is to separate message communication from task scheduling. The communi-
cation architecture described in Chapter 4 can guarantee bounded latency on message transmission
and reception on the host. Communication protocols such as RSVP or Real-time Channels can
guarantee bounded-time message transport in the network. Assuming the existence of such sup-
port in the network (typically in a closed embedded system), the task scheduling problem can be
solved given the fixed and known message delay bounds. An optimal algorithm for solving such
task scheduling problem is presented in {98]. A disadvantage of separating message scheduling
from task scheduling is that the bounded message delays guaranteed by the communication sub-
system depend on message priority (or class) which in turn depends on the sending/receiving task
schedule from which the urgency of the message is determined (i.e., the slack time available for its

transport such that the receiver does not miss its deadline). The schedule of communicating tasks,

lin the sense of minimizing maximum task lateness
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however, cannot be computed without knowing the communication delay bounds between them in
the first place. Because of this tight coupling between message delay bounds and task schedules,
the problems of task scheduling and message scheduling should be solved together. We develop a
combined approach to schedulability analysis that takes into consideration both tasks and intertask
messages.

Several heuristics have been proposed to solve the combined problem, e.g., {8] and [61]. A
flexible scheme which combines off-line analysis with on-line guarantees is suggested in [34] for
uniprocessors. In [94], a rather similar scheme is described for distributed systems. It uses off-line
analysis to convert task precedence and communication constraints into pseudo deadlines of tasks
and messages, then employs an on-line guarantee routine to find a runtime task and message sched-
ule that minimizes the number of tasks missing deadlines. An algorithm combining this problem
with that of task allocation was presented in [104].

In contrast, we propose an optimal algorithm for scheduling tasks in a distributed real-time
system which interacts with the problem of message scheduling, thereby improving the quality of
solution. Assuming that the real-time channel paradigm [65] is used for message communication,
the problem of message scheduling reduces to that of an appropriate choice of message deadlines.
We define a message-priority space in which each point corresponds to a different message-priority
assignment. Our algorithm may be viewed as searching the message-priority space and the space
of all task schedules for a point where the task scheduling problem has an optimal solution in the
sense of globally minimizing maximum task lateness. Conceptually, the search proceeds in two
orthogonal dimensions. The first searches the message priority space. At a given point in the
message-priority space, the second searches the space of all possible task schedules for a schedule
that minimizes maximum task lateness. Due to the complexity of the combined problem, optimality
is guaranteed in the second dimension, while a near optimal solution is sought in the first dimension.

Since it often suffices in hard real-time systems to find a feasible schedule which satisfies all
deadlines as opposed to an optimal one, the search algorithm can be terminated after finding a first
feasible schedule. This does not eliminate the need for casting the search as a lateness minimiza-
tion problem. By finding the minimum-lateness schedule infeasible, the minimization approach
allows the algorithm to terminate when the task set is unschedulable without explicitly expanding
the entire solution space. Thus, the search algorithm remains efficient whether the answer to the
schedulability problem is positive or negative. This is in contrast to other algorithms [104] which

generally find a feasible schedule quickly if one exists, but cannot positively determine that a task
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set is unschedulable until they expand the entire search space.

The rest of this chapter is organized as follows. Section 6.2 presents the basic algorithm. Sec-
tion 6.3 evaluates its performance. A fast heuristic derived from it is presented in Section 6.4. It uses
a greedy (instead of optimal) technique to search for feasible schedules. The basic algorithm is gen-
eralized to a more practical model for resource requirements in Section 6.5. The chapter concludes

with Section 6.6.

6.2 The Basic Algorithm

This section presents the basic algorithm proposed for combined task and message scheduling. Sec-
tion 6.2.1 describes the system model and notation, while Section 6.2.2 presents a general solution

approach. Simulation results are provided in Section 6.3.

6.2.1 System Model

The distributed system is composed of a set, P, of p processing nodes (PNs), PNy,---, PN,
connected by an arbitrary network N. PNs run a set T of n hard real-time tasks, T3, ---,T,. Each
task is assumed to reside permanently on one processor. Tasks may be assigned to processors using
one of several heuristics, €.g., as described in RTPOOL. Each task T} in the distributed system has
a known arrival time a, total execution time ck, and deadline di. The known arrival time is usually
computed from task periodicity. Periodic tasks are invoked once every period P;. The arrival time
of periodic task T} is associated with its individual invocations, such that the arrival time a.[;] of
its jth invocation, Tk[7], is the beginning of its period ar = (j — 1) P;. The deadline of a periodic
task invocation is set relative to its arrival time. For periodic tasks it suffices to analyze the system
within an interval of time equal to the least common multiple (LCM) of all task periods. We call
such interval the planning cycle. Table 6.1 gives an example set of periodic tasks assigned to two
PNs. The duration of the planning cycle is LCM (3, 6, 12) = 12. This set will be used throughout
the rest of the chapter to illustrate the solution approach.

A task may be composed of one or more modules. Each module M; of a task invocation T[]
kas a worst-case execution time C; which bounds its actual execution time, an arrival time A; which
denotes the earliest time the module can be invoked, and a deadline D; which is the latest time it
can finish execution. Initially, A; = ax[j], and D; = di[j] of the corresponding task invocation. In
a particular schedule v, the time S;(+) when module M; is first given the CPU is called the module
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Taski | PN | cx |de —ar | Pr
Th 1 1 3 3
T, 1|2 55 6
T3 113 11 12
Ty 213 6
Ts 2 1 12
Ts 2 |05 35 6

Table 6.1: An example task set.

start time and the time E;(y) when the module finishes execution is called the module completion
time. The completion time of a task invocation T%[;] is the completion time E},, of its last module
Mi,s:. The lateness of task invocation T¢[7] in schedule v is defined as the lateness of the task’s
last module, Elq¢(Y) — Diast- A positive task lateness indicates that the task missed its deadline.
Schedule lateness, lateness(7) is the maximum lateness over all task invocations in the schedule.

Modules may have synchronization constraints which are either precedence constraints (e.g.,
when one module waits for the results of another) or mutual exclusion constraints (between pairs of
modules accessing the same serial resource). A precedence constraint M; precedes M; means
that M; and M; must be scheduled such that F;(y) < S;(y). A mutual exclusion constraint
M; excludes M; means that neither of the two modules can have an execution interval between
the other’s start time and completion time. In other words, the modules must be scheduled such
that either M; precedes M; or M; precedes M;. Note that ezcludes is commutative. The set
Syncini: is the set of all synchronization constraints defined initially for the system. In this section
we cast resource constraints as mutual exclusion constraints between (entire) modules which im-
plies that modules lock/unlock all their required resources together, and hold them throughout the
entire interval of their execution. Thus, there is no possibility of deadlock. This restriction will be
relaxed in Section 6.5. Modules residing on different processors communicate via message passing.
A message from module M; to module M; in a planning cycle is denoted by m; ;. Communication
among modules residing on the same node is assumed to incur a fixed overhead, which is included
in the execution time of the sending module.

For our running example, Table 6.2 depicts all task invocations in the task set shown in Table 6.1

within the planning cycle. For simplicity of illustration, all tasks except one (73) are chosen to
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consist of only one module. To illustrate synchronization constraints, we let task Ts (module M;,;)
use some results computed in module M~ of task 73 that are sent to T5 via a message mz,;;. We
also let each odd-numbered invocation of task T (i.e., module My) communicate a message to
the fourth invocation of task T; (module M) in the same planning cycle. Furthermore, we let
tasks T4 and T5 use the same serial resource thus creating a mutual exclusion constraint between
each invocation of T4 (modules Mg and M;0) and task T5 (module M;;). The resulting set of
synchronization constraints Sync;,;; is shown in Table 6.2. This example task set will be used
throughout the chapter to illustrate the algorithm.

Invocation | Module | ax | cx | di
Ti[1] M, 01 3
Ty[2] M, | 3] 1] 6
T3] M; 6 | 1 9
T,[4] M, 9 1 12
T;(1] Ms 0| 2|55
T>[2] Ms 6 | 2 |115
T3[1] M~ 01 11

Mg 0| 2 11
Ty[1] Mo 0} 3 4
T4[2] Mo 6 | 3 10
T5[1] M;; |01 9
Te[1] M, |0os]| 3s
Tef2] | M13] | 6 |05 95

Messages: mz 1), mg 4
SYyncinit =
{M=7 precedes My, M7 precedes Mg, Mg precedes My, My excludes My, Mo excludes My, }

Table 6.2: The module set.
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6.2.2 The Solution Approach

Our objective is to find an optimal task schedule and a near-optimal message priority assignment in
the sense of minimizing schedule lateness (defined in Section 6.2.1) across all PNs. In doing so we
consider (C1) a message communication paradigm, (C2) an optimal task scheduling algorithm, and
(C3) a message priority assignment heuristic.

The message communication paradigm, C1, defines the mechanism used for message transport
on the target system. The paradigm itself is not a contribution of our algorithm but rather a parameter
of the underlying system. It must guarantee bounded communication delay for messages. We
compute (i) a message priority order using some heuristic C3 that attempts to reduce task lateness,
(ii) message delay bounds using paradigm C1, and (iii) an optimal schedule using the optimal task
scheduling algorithm C2 that minimizes task lateness for given message delays. The real-time
channels presented in [65] guarantee bounded transport delays in the network, which CLIPS ensures
bounded end-system processing time of communicated messages. They will be used as an example
for the paradigm C1. The general idea of real-time channels is to reserve resources in the network
(e.g., on network routers) to guarantee bounded-time processing of a stream of messages specified
by a given period, maximum message size, and worst-case jitter.

A B&B technique is used to minimize the lateness of the distributed communicating tasks. It
can be viewed as a search, by implicit enumeration, through the entire valid solution space. A valid

solution, v, is a schedule with the following properties.

e Every module M; in v starts no earlier than its arrival time, i.e., S;(y) > A;, and is given the

CPU for atotal of C; time units.

e All task synchronization (i.c., precedence and exclusion) constraints in the set Syncini: are

satisfied.?

o Messages delays are computed using paradigm C1 and are accounted for in the schedule. That
is, if module M; sends a message m;,; to module M;, and the delay bound of m; ; computed
by paradigm C1 is d; ;, then S;(v) > d; ; + Ei(v).

A valid solution v is feasible if it satisfies the additional constraint that every module M; in v
finishes before its deadline (i.e., E;(v) < D;). The B&B search can be viewed as traversing a search

tree. The root vertex, V;oo¢, Of the search tree represents the space of all possible valid solutions.

>We have defined in Section 6.2.1 what it means to satisfy the precedence and exclusion constraints.
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Branching from vertex V' is a subdivision of the solution space of the parent among a set of child
vertices. We denote by Space(V) the set of all valid solutions represented by vertex V. Thus, for a
parent vertex V, branching subdivides the solution space Space(V') among a set of child vertices.
In other words, the union of {Space(C) : C is a child of V'} over all children of V' amounts to
Space(V). Bounding a vertex V' is the estimation of a value, bound(V), that lower-bounds schedule
lateness of all valid solutions in Space(V'). That is, Vy € Space(V) : lateness(y) > bound(V).
Bounding allows us to prune vertices whose bounds are higher (i.e., worse) than the lateness of the
best solution found so far, say Best Lateness, since such vertices cannot lead to an optimal solution.
To enable pruning, a tentative schedule, solution(V), is computed at each expanded vertex V out
of the set Space(V'). Vertices whose bound is greater than the lateness of solution(V) are then
pruned. The algorithm continues until an optimal solution is found, i.e., all vertices have been
pruned except one, and no further branching is possible. The complete algorithm is thus listed

below.

1. Setup Vioo:. Let ActiveVertezSet = {V 0 }-

Let BestLateness = lateness(solution(V,,ot))

2. Let Vezpand be the vertex with minimum bound(V') among all vertices, V' € ActiveVertezSet.

Pop Vzpand Out of ActiveVertexSet.

3. Find solution(Vezpand)- If lateness(solution(Vezpana)) < BestLateness
let BestLateness = lateness(solution(Vezpand)). Find the children of vertex Vrpand

applying the branching function, branch(V) to Vezpand-

4. Prune the vertices that do not improve on the best solution found so far, i.e., vertices V for

which bound(V) > BestLateness.
5. Add the remaining vertices to the set ActiveVertezSet.

6. If ActiveVertexSet is non-empty, go to step 2. Otherwise, return the solution with the

current BestLateness.

In the following subsections, we (i) show how the root vertex is set up, (ii) describe the function
solution(V') that computes a schedule at vertex V' out of the space of valid schedules, Space{V),
represented by the vertex, (iii) give details of the branching function, branch (V') that returns a set of

child vertices given a parent vertex V/, and (iv) derive the bounding function that determines, given
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some vertex V, a lower bound on schedule lateness for all schedules in Space(V'). These functions
in conjunction with the pseudo-code given above completely specify our B&B algorithm. As with
any B&B algorithm, its optimality is guaranteed as long as (i) branching does not leave any part of
the solution space unreachable, and (ii) bounding computes a true lower bound of the performance
measure for each vertex [69]. These properties are proved when discussing branching and bounding

respectively.

Setting up the Root Vertex

The root vertex represents the entire space of all valid solutions. Space(V,,..) is implicitly specified
by (i) module arrival times and computation times, and (ii) a set of synchronization constraints
Sync(Vioot) = Syncinit, as given in the problem input (e.g., see Table 6.2). Any valid solution
to the scheduling problem must satisfy (i) and (ii), (as weil as account for message delay bounds
computed by paradigm C1). A valid feasible solution would also satisfy all deadlines.

For the purpose of computing an initial schedule solution(V;,.:), we also compute an initial
message priority order, Ord(V;..:) using heuristic C3. The “urgency” of each message is first
estimated as follows. The precedence constraints associated with messages among modules running
on different PNs are neglected, and modules on each PN are scheduled using EDF subject to the
remaining precedence and exclusion constraints. Let the resulting schedule be v, constraints- FOT
each message m; ; from module M; to module M; we note the completion time E’;("Yno constraints)
of the sending module M; in schedul€ Yo constraines Which is the time message m; ; is sent. The
message must make it to the receiver M; in time for it to execute by its deadline, D;. Thus, the
relative deadline for message m; ; is set to D; — C; ~ Ei(Yno constraints)-

Messages are ordered by their relative deadlines, such that messages with tighter relative dead-
lines have higher priorities. Ties are broken arbitrarily. This results in the initial message priority
order Ord(V;o0t). Figure 6.1 demonstrates the schedule ¥no constraints fOr one planning cycle of the
task set in Table 6.2. It shows the intervals from message transmission time to receiver deadline for
the two messages in the planning cycle, m7 1, and mg 4. From the figure it is seen that m~ ;; must

have higher priority than mg 4. Thus, Ord(V;,0t) = m7,11, Mg 4 (in decreasing priority order).

Computing solution(V)

In order to prune vertices in the search space we compute a valid solution at each visited vertex V.

The solution is drawn from the solution subspace Space(V') represented by the vertex. The lateness
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Figure 6.1: Computing message priority order Ord(V;o0t)-

of the computed solution is used to prune vertices whose bound() is higher. Thus, the goodness
of the function solution(V) in picking a low-lateness schedule out of Space(V') determines how
efficient the pruning process is. In this subsection we describe the function solution(V).

Given a complete message priority order Ord(V') at vertex V, and a set Sync(V) of synchro-
nization constraints, we need to (i) compute message delays, (ii) compute a valid task schedule, and
(iii) find schedule Iateness. Of these, computing message delays is not performed by our algorithm.
Instead, it is performed by the underlying communication paradigm, C1 (e.g., real-time channels).
In our running example, we would thus use C1 to establish a channel for the higher priority message
m7 1 first, then establish a channel for message mo 4. For the purpose of illustration, assume that
the delay bounds computed by C1 for messages m7,;; and mg 4 are 1.75 and 3, respectively.

Once the message delay has been established for each message, the function solution (V') com-
putes a new arrival time A;, and deadline D; for each module M; to account for message commu-

nication delays and precedence constraints. The following recursive equations are used.
A; = max(A;, {A;j+C;+ mj;| M; precedes M;}) 6.1)
D; = min(D;, {Dj - Cj— m;j| M; precedes Mj;}). (6.2)

where C; is the worst-case computation time of Mj, and m;; (m;;) is the computed communication
delay between M; and M; (M; and M;), if any. This is a standard technique for deadline and
release time modification in order to account for precedence constraints. Variations of it have been
used in several publications, e.g., [94,98,118,146]. For example, in the task set of Table 6.2,
A1 = max(0, A7 + C7 + mz,11) = 2.75,and D7 = min(12, Dy; — Cyy — m7,11,D8 — Cs) =
min(12,9-1-1.75,12 - 2) = 6.25

Next, solution(V') computes an EDF schedule subject to the above arrival times and deadlines,

as well as precedence and exclusion constraints in set Sync(V). We choose EDF because it is a
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locally optimal preemptive scheduling policy. To prevent unbounded (dynamic) priority inversion,
a module which blocks others with earlier deadlines inherits the earliest of these deadlines. We call
this policy EDF with Deadline Inheritance (EDF-DI). Note that we do not use dynamic priority ceil-
ings [32], because deadlocks cannot occur in our simplified model. Figure 6.2 shows the schedule
computed by solution(V') at the root vertex for the task set in Table 6.2. In this example, schedule
lateness is, lateness(solution(Vyo0t)) = 1.5, which is the lateness of Ts (module Mj;).

Ord(V) = mz,11, Mg 4

Sync(V) = { M7 precedes My, M7 precedes Mg,

Mg precedes My, Mg excludes My, Mo excludes M}
lateness(solution(V)) = 1.5

Figure 6.2: Root schedule.

Branching branch(V)

The branching function, branch(V'), subdivides the valid solution space Space(V) represented by
a parent vertex V' into a set of subspaces, each represented by a child vertex. To make sure that
no parts of the solution space are “lost”, the union of the subspaces Space(C) over all children
C of vertex V' must amount to Space(V). The set of valid solutions Space(V') at an arbitrary
vertex V' is implicitly represented by (i) module arrival times and computation times at vertex V,
and (ii) the set of synchronization constraints Sync(V). The solution space is subdivided by the
branching function in order to help pruning subsets of that space. We prune vertices whose lower
bound is worse (i.e., higher) than the best lateness of a schedule found by solution(V'). Thus, we
need solution(V) to return progressively better schedules as we get deeper in the search tree to
enable pruning more vertices. In what follows, we describe how branching is done, and present the

methodology used to attempt to improve the lateness of solution(V') at each descendant.
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Consider some vertex V' in the search tree generated by our B&B algorithm. Let T, be the
task with the maximum task lateness in the schedule computed by solution (V). If there is a tie,
let T;, be the task with the maximum lateness that finishes first. This tie-breaking rule is important
to guarantee “progress” (i.e., prevent an infinite loop in the algorithm) as will be described later in
this section. Let M},,¢,, be the last module of task T',,. For example, in the root schedule shown in
Figure 6.2, Mia,:,, is M;;. Unless the schedule at V' happens to be optimal, there exists a way to
reduce schedule lateness. In other words, it is possible to let module Mj,,; . finish earlier. In the
following we consider all possible ways of letting M, .. finish earlier. In order to categorize and
describe these ways, we use the concept of a busy period [145]. Informally, the busy period, B;,
of module M; is the interval [G;, E;], where E; is the completion time of M;, and G; is the start of
the period of continuous processor utilization that includes M;. For example, in the root schedule
shown in Figure 6.2 the busy period of the latest module My is By = [6, 10.5]. The busy period
B; of module M; is defined recursively as follows:

1. M; € B;,

2. While 3 M, whose completion time satisfies t < Ex < E; (where t=min { A; | M; € B;)
D let M. € B;.

In order to reduce schedule lateness we consider the following three cases, exactly one of which

will be satisfied in any schedule (since their ORing amounts to unity).

Case 1: No module M; in Bi,,:,, has predecessors on other processors (according to set Sync(V)),

and no module M; in By,,:,, has adeadline D; > D¢,
Case 2: J some module M; in Bj,,:,, whose deadline D; > Di,s:,,..

Case 3: 3 some module M; in By,,,,, who has a predecessor M on a different processor (according

to set Sync(V)), and no module in By, has a deadline D; > Dyys;,,-

Case 1: No module M; in Bi,,,, has predecessors on other processors (according to set
Sync(V)), and no module M; in Bi,,:,, has a deadline D; > Dj,s:,,. In any schedule with a lower
lateness than solution(V') the module M, , (which has the maximum lateness in solution(V'))
must complete earlier. However, since all other modules in By,,:,,, have tighter deadlines, the sched-

ule where M, executes last in Byg,, (i.e., solution(V')) is optimal. That is to say, it is the
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optimal solution within the subset Space(V) of all possible schedules represented by vertex V. No
further branching from that vertex is possible. The branching function returns a null set of children.

Case 2: There exists some module M; in Bi,,, whose deadline D; > Dy,4, .. Since EDF
scheduling is used to obtain solution(V'), modules scheduled before the latest module M,
in its busy period must necessarily have earlier deadlines. The only way some module M; in
Biast,, can have D; > Digse,, yet be scheduled before M., is because of priority inversion
due to a mutual exclusion constraint which prevents that module from being preempted. In other
words, Case 2 implies that 3M; € By, such that M; excludes M; € Sync(V). For ex-
ample, in Figure 6.2 we can see a situation where the latest module M,; which becomes ready
upon delivery of message my7;; at time ¢ = 6.75 cannot preempt a less urgent module Mg
due to a mutual exclusion constraint even though Do > D;;. We also see a case where M3
of intermediate priority delays less urgent Mo before M;; becomes ready, thus indirectly de-
laying the higher priority module M;; because of the mutual exclusion constraints.’ “Eliminat-
ing” the exclusion constraint would resolve the problem of priority inversion, potentially result-
ing in a better schedule. To eliminate an exclusion constraint, M; ezcludes Mj, the branch-
ing function branch(V') generates two children C; and C> such that Space(C)) is the subset of
all schedules in Space(V) where M; precedes M;, and Space(C>) is the subset of all sched-
ules in Space(V') wherc M; precedes M;. In other words, we set the children’s synchronization
constraints such that Sync(C,) = Sync(V) — {M; excludes M;} + {M; precedes M;} and
Sync(Cz) = Sync(V) — {M; excludes M;} + {M; precedes M;}. Since an exclusion con-
straint M; excludes M; € Sync(V) means that in any valid solution either M; precedes M; or
M precedes M;, it can be seen that Space(C,) U Space(C2) = Space(V). However, in each
child independently, the exclusion constraint has been replaced with a precedence constraint.

For the sake of illustration, Figure 6.3 gives the Sync() sets of the two children of the root
vertex whose schedule, shown in Figure 6.2, satisfies Case 2. The figure shows that applying the
solution() function to each child gives a better schedule (in terms of maximum task lateness) than
that of the parent. (Compare the maximum lateness of the children in Figure 6.3 to that of root
schedule in Figure 6.2.) Child, results in decreasing the deadline of module M ¢ (see Equation 6.2)
thus preventing M3 from preempting M;o. As a result, both M;o and M, finish earlier, thus
reducing schedule lateness. Child, results in causing Mo to wait until M), is finished instead of

*EDF-DI does not prevent such priority inversion because it cannotkeep Mo from being preempted before it inherits
the deadline of M,
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blocking it due to mutual exclusion, also reducing schedule lateness. This lateness improvement
leads to more efficient pruning. Intuitively, the improvement is attributed to the local optimality of

EDF scheduling when no mutual exclusion constraints are present.

Child 1:

T1 T2 T1 T3 T1 T3 T2 T1

Ord(V) = mr 11, mg 4
Sync(V) = { M7 precedes My, M+ precedes Mg, My precedes My, My excludes M,,,
Mo precedes My, }

lateness(solution(V)) =1

Child 2:

Ord(V) = mz 11, mg 4

Sync(V) = {M; precedes My, M7 precedes Mg, Mg precedes My, My excludes M,
My, precedes Mo}

lateness(solution(V)) = 1.25

Figure 6.3: Branching in Case 2

Case 3: There exists some module M; in By, who has a predecessor M; on a different
processor (according to set Sync(V)), and no module in Big,, has a deadline D; > Diqt,,..
Following the same argument as in Case 1, the schedule generated in Case 3 for the busy period
Bigst,, = [Glastms Elast,n] is locally optimal. The latest module has the largest deadline and is
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therefore scheduled last in the busy period. However, since in Case 3, 3M; € By,,:,, which has
a remote predecessor M, schedule lateness may be improved by either increasing the priority of
message m;;, if any, to let it arrive earlier at the destination, or else by rescheduling M; earlier
on its processor. In either case, the busy period By,,:,, as a whole may start earlier thus potentially
reducing schedule lateness. For example, consider the schedule of Child, shown in Figure 6.3. The
latest module My,,:,, is Mo whose lateness is 1.25. The busy period Bigs:,, is Big = [6.75, 11.25].
There exists a module M; = M; in By, with a remote predecessor M; = M7, thus Case 3 is
satisfied. Message m7,;; already has top priority. So we consider scheduling M- earlier to decrease
the lateness of the latest task. In general, a remote predecessor M; is forced to start earlier by
decreasing its deadline such that it inherits the lateness of Miqs:,,. Thus, the branching function in

Case 3 returns a set of children as follows.

o If 3 a message m; ; from a remote predecessor M; immediately preceding some M; € Bi,st,,
(i.e., M; precedes M; € Sync(V)) increase the priority of m ; (if possible). The algo-
rithm shown in Figure 6.4 specifies how message priority is increased. Essentially, the first
promoted message gets the highest priority. Each time another message is promoted, its pri-
ority is set one level below the priority of the previously promoted message. The variable
priority_limit(V) tells which level message priority should be increased to at search vertex
V. The variable is set to the highest priority, 1, at the root, and is incremented each time
a message has been promoted. We do not claim optimality with respect to setting message
priorities, although we expect that increasing the priority of a message on the critical path is

likely to improve schedule lateness.

e If message priority cannot be increased (or there are no messages) then for all remote prede-
cessors M; immediately preceding some M; € Bi,s:,, (ie.. M; precedes M; € Sync(V))
create a child vertex with same module arrival times, computation times, and synchronization
constraints, and let M; inherit the lateness of the latest task, i.e., reduce the deadline of M in
the child to min(Dj;, E; — lateness(Miqast,, )), where lateness(Miqst,,) = Elast,, — Diastn-
Note that changing a module deadline makes the heuristic function, solution(), return a dif-
ferent (potentially better) EDF schedule for child C than it does for its parent V', leading to
pruning more vertices. However, Space(C) = Space(V') because the valid solution space is

defined independently of deadline values.

If the deadline of a predecessor M; of the latest module is advanced, the predecessor will either
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message_priority_increase(V)

ifV = Vioor
priority limit (V) =1
let message_priority = priority_limit (V)

else
priority limit (V') = priority limit (parent (V) + 1
if message_priority is lower than priority_limit (V')

let message._priority = priority limit (V)

Figure 6.4: The branching function.

(i) finish earlier in the new schedule (i.e., a different schedule, v, results at the child), or (ii) will
become the latest task itself. In either case “progress” is guaranteed in the sense that the child
differs from the parent in either the schedule returned by Solution(V') or the latest task. Note
that case-(ii) above is because the predecessor’s deadline has been advanced to D; = E;(yv) —
lateness(Miqys:,, ), Where v is the schedule at the parent vertex V. Thus, if the predecessor does
not finish earlier in the new schedule (i.e., if E;(vc) = E;(yv)), its lateness will be E;(yc) — D; =
Ej(vv) — D; = lateness(Miast,,)- Since our tie breaking rule chooses the latest task to be the
one with the minimum completion time among those with the maximum lateness, it will choose
M; rather than M, as the latest task in the new schedule, v¢. This guarantees progress. Note
that branching in Case 3 is similar to substituting a precedence constraint between the latest task
and one of its remote predecessors with an artificial deadline on the predecessor. Removal of a
precedence constraint between tasks residing on different processors brings the EDF schedule at
the child vertex closer to the optimal. EDF is optimal when all such precedence constraints (and all
exclusion constraints) are removed. Figure 6.5 illustrates branching in Case 3. It shows the schedule
obtained by branching from vertex Child; shown in Figure 6.3 by letting the predecessor M7 inherit
the lateness of the latest module M. The new deadline of M7 becomes Dy = 5 — 1.25 = 3.75.
Intuitively, M7 must complete by that deadline in order for M;¢ to complete in time. The resulting
new EDF schedule shifts M+~ earlier (in accordance with its new deadline) which happens to result
in a globally optimal schedule. Figure 6.6 summarizes the branching function.
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Ord(V) = mz,11, mg 4
Sync(V) = { M7 precedes My, M7 precedes Mg, My precedes My, My excludes M,,
My, precedes Mo}

Figure 6.5: Branching in Case 3.

Bounding bound(V)

Our bounding function determines a lower bound on lateness at a vertex V' by removing from set
Sync(V) (i) all the mutual exclusion constraints, and (ii) all precedence constraints among modules
on different processors, then computing vertex cost subject to the remaining set of local precedence
constraints, say Syncrem (V) C Sync(V), and module arrival times and deadlines as described
earlier. (Note that message priorities are irrelevant here, because precedence constraints and delays
associated with interprocessor messages have been ignored in Sync,.,, (V').)

The lateness of the computed EDF schedule is globally optimal among all schedules that sat-
isfy Sync,.m (V). This is because (i) since no exclusion constraints are present in Sync,em (V)
EDF is locally optimal, and (ii) since all constraints in Sync,.m (V) are between modules on the
same processor, modules on each processor are “independent” of modules on every other processor.
Therefore, the set of locally optimal uniprocessor schedules is a globally optimal schedule. Let the
aforementioned optimal lateness be called L, ;n.

Finally, since any solution S € Space(V) to the original task scheduling problem satisfies the
constraint set Sync(V), it satisfies, by implication, the constraint subset Sync,.m (V). Thus, the
lateness of S cannot be less than the global optimum L;,. Thus, L,,;, is a true lower-bound on
lateness for any valid solution in Space(V). The optimality of the B&B algorithm follows from
the correctness of the bounding function, and the ability of the branching function to encompass
the entire solution space. Intuitively, the branching function transforms the set of initial precedence

and exclusion constraints into an equivalent set of constraints with no mutual exclusion and no
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branch()
if Case 1 return solution(V') optimal
if Case 2
Find M;, M; € Biast,, Where D; > Digye,, and 3{M; ezcludes M;} € Sync(V)
Generate Child C; where Sync(C1) = Sync(V') — {M; excludes M;} + {M; precedes M;}
Generate Child C; where Sync(C2) = Sync(V) — {M; excludes M;} + {M; precedes M;}
if Case 3
if 3m; ; where M; € Big,:,., and M;, M; run on different processors
Increase the priority of m; ; as shown in Figure 6.4
Let Sync(C) = Sync(V)
else Y M; where M; precedes M; € Sync(V'), M; € Biq,:,, and M;, M; run on different processors
Generate Child C with Sync(C) = Sync(V') and D; = min(Dj, Ej + Eigse,. — Diase,.)

Figure 6.6: The branching function.

precedence constraints across different processors; a case in which EDF is globally optimal.

6.3 Evaluation

To demonstrate the utility of the algorithm, a simulator was constructed, generating arbitrary task
graphs on which the algorithm can be applied. On each run, the algorithm was given a task graph,
an optimal solution was found, and the number of generated vertices was recorded. The numbers
of modules, processors, precedence and exclusion constraints, were varied to determine the trends
in algorithm performance. We restrict the following discussion to the most tangible results we
found, namely, the effects of application concurrency, CPU utilization, and module interaction on
the performance of the algorithm. We considered systems of 300 modules running on 4 processors.
The effect of application concurrency is analyzed by varying the number of concurrent application
threads per processor. CPU utilization is varied by changing the average module execution time.
Finally, module interaction is controlled by varying the number of communicated messages between
different modules. In the figures given below, each point is obtained by averaging 25 readings.
Figure 6.7 shows the effect of concurrency. The number of concurrent application threads per
processor is varied from 1 to 9. Note that the total number of application threads may be much more
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than the above. By concurrent threads we mean only those that become ready to execute during the
same time intervals. CPU utilization is fixed at 90%, and the number of messages in the system is
fixed at 150 (half the number of modules). It can be seen that an optimal schedule is found near the
root in most cases when the degree of concurrency is low. This is explained by the fact that EDF
scheduling (performed at the root) is locally optimal. Exploiting this characteristic may lead to an
optimal solution when application concurrency is low. For concurrency of 6 threads per processor
or less, the average number of generated vertices is less than 5. As the concurrency increases, the
local optimality of EDF scheduling becomes less and less sufficient. Thus, our algorithm expands
progressively more vertices to find a globally optimal solution.

Figure 6.8 demonstrates the effect of CPU utilization. CPU utilization is the total computational
workload per processor divided by schedule length. The number of messages in the system was
fixed at 150, and the average degree of concurrency was 8. The algorithm performs very well for
utilization up to 80%. The average number of generated vertices over that range is less than 10.
As utilization increases, the algorithm runtime increases abruptly, due mainly to the accompanying
increase in the length of the busy period, and therefore the increase in branching factor.

Finally, Figure 6.9 illustrates the effect of module interaction measured in number of communi-
cated messages within the system. CPU utilization was fixed at 90%, and the degree of concurrency
was fixed at 8. Unlike the other curves, the algorithm runtime increases almost linearly with the
number of messages. As the number of messages increases, so does the branching factor. However,
since each message introduces a precedence constraint, increasing the number of messages tends to
constrain the task graph and decrease scheduling options at any given time, thus reducing the depth
of the search tree.

In general, for a wide range of workloads the algorithm generates an optimal solution at or
near the root of the search tree. A similar observation was reported in [119]. This is due to the
nature of the performance measure being optimized. Schedule lateness refers to the lateness of only
one module. If we happen to be unable to reduce the lateness of the latest module, the algorithm
terminates even though there may be ways to decrease the lateness of other modules. The generation
of vertices is inexpensive. For the task sets considered in this section, the worst-case computation

time of a run was in the order of a few seconds on a Sun Ultra workstation.
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6.4 A Simple Heuristic

The complexity of the algorithm presented in Section 6.2 prevents it from being deployed on-line.
However, this complexity can be reduced by employing a greedy heuristic which performs depth-
first search with no backtracking. The proposed heuristic expands each vertex V' by generating all
its children, then branches to the minimum-cost child, ignoring all others. Thus, at each vertex,
after generating its children, a complete schedule is computed for each child (as opposed to a lower
bound). Children whose schedule lateness is more than that of the parent are pruned. Among the
surviving ones, the child with the minimum schedule lateness is selected for expansion next. The
algorithm continues until a vertex is reached that has no children, (or until the first feasible schedule
is found, if so desired). Although pathological cases may be constructed where the heuristic fails to
find an existing feasible schedule, it was able to arrive at the optimal schedule in 29 out 30 randomly-
generated cases of periodic task sets with 90% CPU utilization. This number, however, depends
much on the nature of the task set. In the case where tasks arrive at random times with random
deadlines the heuristic performs worse than in the case where tasks arrive at regular intervals and

have the same deadline at each invocation. To compare the costs of running the two algorithms,
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30 randomly-generated periodic task sets (of 400 tasks each) were constructed and each algorithm
was run on each set. The number of generated vertices was nor used as a measure for algorithm
comparison since the amount of computation per vertex is higher for the heuristic algorithm. This
is because it computes a complete schedule for each child vertex, while the optimal one computes
only a lower bound. Since the computation of a schedule at a vertex was found to be the most costly
element of both B&B algorithms, the number of complete schedules computed until a solution is
found was taken as the measure for their comparison. The heuristic was found to generate 74%
less schedules than the optimal algorithm for the task set size considered before the best schedule is

found. It is projected that the savings are greater for larger task sets.

6.5 A More General Resource Constraint Model

In the previous sections we presented an algorithm for combined task and message scheduling in
distributed real-time systems. The algorithm uses a simple model for resource requirements. The

model has two limitations:
o Resources are assumed to be locked/unlocked rogether;
e All resources are locked at module start and unlocked upon module termination.

Figure 6.10 illustrates consequences of these limitations. For example, we cannot model the fact
that resource R2, in Figure 6.10, must be locked only for a fraction of a module’s execution time.
Instead, in the model, it has to be locked throughout the entire interval of the module’s execution. A
more severe consequence is that all resources have to be unlccked at module termination, whereas
communication can only occur at module boundaries. Thus, in Figure 6.10, we must create a module
boundary at the point when a message is sent. This will erroneously imply that all held locks are
released at that point. As a result, there is nothing to prevent the scheduler from inserting a module
which uses R1 or R2 between M; and M, violating the actual exclusion constraints. In what
follows, we present a more realistic version of resource constraints, and describe how the algorithm

in Section 6.2 can be modified to accommodate it.

6.5.1 A General Exclusion Model

We extend the notion of an exclusion constraint to include exclusion between strings of modules

where a string of £ modules M; M; --- M; is a sequence M, precedes M, --- precedes M.
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Thus, the constraints have the general form ModuleString, ezcludes ModuleString,, meaning
that all modules in one of the strings have to terminate before any module in the other can start.
For example, Figure 6.11 depicts the resource requirements of two tasks. The following exclusion

constraints can be derived:
e Cl: My M3 My M5 excludes Mg Mg (because of R1)
e C2: M3 M4 excludes Ms Mg M10 M11 (because OfRZ)

o C3: M5 excludes Mg My Mo My, (because of R3)

Note that under this model, a deadlock may occur. For example, in Figure 6.11 a potential

deadlock arises because task; and task; lock resources R1 and R2 in different orders.

6.5.2 Algorithm Modifications

A close look to the algorithms described in previous sections may reveal that no modifications are
necessary to accommodate the new type of exclusion constraints. This is because an exclusion con-
straint such as M, M3 M4 M5 excludes My Mo can simply be viewed as an equivalent exclusion
constraint M, ezcludes My, where M, = My M3 M4Ms, and M, = MgM,q. Our only concern is
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Figure 6.11: An example of mutual exclusion.

to avoid deadlocks when computing a valid solution, Solution (V). Thus, to accommodate the ex-
clusion model presented above, we slightly modified the definition of a valid schedule. In particular,
in addition to the former requirements, a valid schedule must also be deadlock-free. As a result, the
function Solution(V) must have a way to detect deadlocks in the computed solution. This function
is performed off-line, and can utilize any of the known methods for deadlock detection. (Deadlock
detection is not investigated in this work.) A trivial way of detecting deadlock is to schedule all
tasks until no further tasks can be scheduled. If some tasks remain unscheduled then a deadlock is
present. The problem is how to modify the schedule once a deadlock is detected.

To answer the above question, note that if there were no exclusion constraints, deadlocks would
not develop. We had already demonstrated one way of removing exclusion constraints by replacing
them with precedence constraints. When a deadlock is detected by Solution(V), it is circumvented
using a similar technique. Consider a deadlock that occurs during the computation of a solution
schedule Solution(V) at some search vertex V. A typical deadlock detection algorithm can then
identify a cycle of modules in which each module cannot run because it is waiting for another mod-
ule in the cycle to proceed. Such waiting may be due to either precedence or exclusion constraints.
Since there are no cycles in the precedence constraint graph in the problem input, at least one of the
edges in the deadlock cycle must be due to an exclusion constraint. This exclusion constraint can be
replaced by one of two possible precedence constraints.* Consequently vertex V' branches into two
children. If the replacement results in a cyclic precedence constraint graph in any of the two gener-

ated constraint sets, the corresponding child vertex is destroyed. Bounding is then performed on the

“The replacement of an exclusion constraint by complementary precedence constraints has been described in Sec-
tion 6.2.2.
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surviving vertices. As in the original search algorithm, Solution(V) is re-applied to the vertex with
the lowest bound. It will no longer run into the same deadlock since the cycle causing the deadlock
has been broken. In essence, to avoid the deadlock we have “eliminated” an exclusion constraint
the same way we described earlier in the context of branching. Eventually enough of the exclusion
constraints will be eliminated to produce a deadlock free schedule. The aforementioned technique
does not compromise the optimality of the solution since it does not compromise the ability of the

branching function to encompass the entire solution space.

6.6 Conclusion

We presented a new B&B algorithm for off-line combined task and message scheduling in dis-
tributed real-time systems. The algorithm computes task deadlines and message priorities such
that the maximum task lateness is minimized. It accounts for precedence and exclusion constraints
between task modules. Furthermore, it exploits the coupling between task completion times and
message delays by recomputing message priorities and deadlines during the search to reduce the
maximum task lateness.

A simulation study has shown that the algorithm scales well with respect to system size and the
number of communicated messages among tasks. A heuristic version of the algorithm is presented,
where a greedy technique is used to trade optimality for speed. We also suggest a way to general-
ize the algorithm for a more practical resource model. The algorithm can be used in RTPOOL for
admission control of incoming hard real-time tasks. It would compute a set of deadlines that consti-
tute part of their QoS level specification. The hard real-time task set is guaranteed to be schedulable
subject to the computed deadlines. Soft real-time tasks can be accounted for in this analysis by a
single independent periodic task (budget) of the aggregate utilization of the soft real-time task set.
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CHAPTER 7

RELATED WORK

Adaptware reflects a recent change in direction in the research agenda of the real-time system
community towards adaptive real-time computing. Traditionally real-time computing has been con-
cerned mainly with predictability, as opposed to adaptation. Predictable performance has usually
been achieved using task assignment and scheduling, resource reservation, and admission control.
We briefly describe the evolution of these mechanisms from means to provide predictable real-time

performance to components of adaptation architectures for QoS-sensitive applications.

7.1 Real-Time Computing: A Historical Perspective

Real-time computing has emerged as a distinct computing discipline in the late 60s and early 70s
with the publication of key results on predictable scheduling under time constraints, such as, [80].
Since then, task assignment and scheduling algorithms that guarantee predictable temporal behavior
of the computing system have been studied extensively, both in operations research and real-time
systems [11, 16,22, 2§, 35,36, 48, 113, 142]. Since most real-time applications have been (and still
are) periodic in nature, the periodic task model has received special attention in literature. For ex-
ample, Dhall and Liu [43] and their colleagues developed various assignment algorithms based on
the rate monotonic scheduling algorithm [80], or intelligent fixed priority algorithm [114]. Clas-
sical methods for task assignment in distributed systems have been developed for minimizing the
sum of task processing costs on all assigned processors and interprocessor communications (IPC)
costs, including graph-theoretic solutions [131, 132] and integer programming solutions [84] among
others (82,84, 117, 123]. Since the problem of assigning tasks subject to precedence constraints is

generally NP-hard {40, 50,73, 77], some form of enumerative optimization or approximation us-
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ing heuristics needed to be developed for this problem [36,37,66,117]. Ma er al. [84], and Sin-
clair [123] derived optimal task assignments to minimize the sum of task execution and communi-
cation costs with the branch-and-bound (B&B) [68] method. The computational complexity of this
method was evaluated using simulation in {84, 123].

With the proliferation of real-time applications in different industrial domains, predictable re-
source scheduling algorithms have been reported for process control [10, 12], turbo engine con-
trol [72], autonomous robotic systems [83], and avionics [56]. Al-based approaches that utilize
application domain knowledge were described in [10, 56,83]. Solutions to the resource alloca-
tion problem have also been presented for specific hardware topologies such as hypercubes [138],
hexagonal architectures [120] and mesh-connected systems [149]. Simulated annealing [67] has
been proposed as an optimization heuristic. Different flavors of using simulated annealing in the
context of real-time task assignment and scheduling can be found in [21, 33, 136, 141].

Abstract execution models of increasing complexity have been developed to capture the resource
requirements and computing characteristics of real-time applications. For example, [122] considers
an abstract problem where a given task graph is invoked periodically under an end-to-end deadline.
A task allocation and message schedule are computed such that the end-to-end deadline is satisfied
for each invocation. In (105, 134, 144] efficient methods are considered for allocating periodic tasks
where different tasks may have different deadlines. Graph-based heuristics, which attempt to min-
imize interprocessor communication, are used for task assignment in [134, 144]. Analytic models
for load sharing have been developed in [121]. Off-line schedulability analysis [6, 119, 145, 146]
was used to verify that the reserved resources are sufficient to meet all timing constraints.

Optimal solutions for task allocation problems in hard real-time systems have been reported.
For example, [146] describes an optimal branch and bound (B&B) algorithm for task assignment
and scheduling on multiprocessors subject to precedence and exclusion constraints. In [109] a task
assignment and scheduling algorithm was presented to optimally minimize the total execution time
(TET) of an arbitrary task graph in a distributed real-time system. An optimal task scheduling
algorithm is presented in [98] for communicating periodic tasks and used in [99] to help optimally
allocate communicating periodic tasks in heterogeneous distributed real-time systems.

Fault-tolerant real-time systems literature also touched on issues in real-time resource alloca-
tion and management. For example, a k-Timely-Fault-Tolerant problem is solved in [97] where
an assignment and schedule are found for replicated tasks such that all deadlines are met in the

presence of up to k processor failures. In [S7, 105] replicated tasks with precedence constraints are
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considered.

For periodic task sets, the generalized rate monotonic scheduling theory [116] and holistic
schedulability analysis [135] have proven to be a particularly useful pre-run-time analysis technique.
These algorithms were coupled with concurrency control methods such as priority ceiling [52], and
dynamic priority ceiling protocols [32]. The pre-run-time resource allocation and schedulability
analysis methods discussed so far share in common the fact that they are static in nature. They
require an exact a priori characterization of worst-case offered load and processing capacity. Such
characterization is difficult to obtain for practical systems.

In the 80s, with the increasing complexity of real-time applications, such as the space shuttle
and Mars pathfinder, the real-time system community introduced the concept of “next generation”
dynamic real-time systems [126]. It was postulated that in future real-time applications, the com-
puting system may operate in unpredictable poorly studied environments where load patterns are
not known in advance. This was a significant departure from previous literature which typically
assumed full knowledge of the task set and execution requirements. The dynamic real-time sys-
tem model was pioneered by the Spring kernel project [128, 129] which introduced planning-based
scheduling and online guarantees for dynamically arriving tasks [70, 94, 106, 125, 127,152, 153].

7.2 Related Work on Operating Systems

More recently, resource reservation has been applied for temporal isolation of real-time applica-
tions [63, 75, 88] in an attempt to safely colocate real-time and best effort processing via appro-
priate operating system support. While earlier real-time operating systems [39, 137] provided a
priority-based interface, new kernel extensions have been proposed to provide real-time guarantees
for QoS-sensitive applications. For example, capacity reserves [88] have been used in Mach to al-
locate processing capacity for multimedia applications [75], and flexible CPU reservation was used
in Rialto for efficient scheduling of time-constrained independent activities [63]. Resource shares
have been suggested as another mechanism for performance isolation. Examples include hierarchi-
cal CPU scheduling [55], proportional-share lottery and stride scheduling [140], and proportional-
share allocation for time-shared systems [130]. Proportional-share scheduling has also been used
to schedule system services [62]. Other notable real-time kernel extensions include the SMART
scheduler in Solaris [95], a real-time scheduler for Linux [124], and the concept of resource-centric

kernels [101]. Recently, resource containers have been proposed as an operating system extension
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motivated by server-side processing needs [19]. Resource containers allow fine-grained control of
resource management in monolithic kernels. Different thread activities, as well as kernel processing
on their behalf, can be charged to different resource containters as appropriate for the application. In
essence, resource containers are similar to capacity reserves with the distinction that the latter was
developed for microkernels. As with reserves, containers are specified in platform specific terms
(such as CPU cycles) unlike QoS contracts, and require kernel modification.

To complement operating system research on QoS-sensitive scheduling, several operating sys-
tem extensions have been developed for QoS-sensitive communication. QoS-sensitive operating
system communication subsystems have been investigated in [76, 86, 147]. QoS-guaranteed pro-
tocol stack implementation in the user space has been proposed in {54,78]. Real-time upcalls
(RTUs) [53] were proposed as a mechanism to schedule protocol processing for networked mul-
timedia applications via event-based upcalls [38]. Rate-based flow control of multimedia streams
via kernel-based communication threads is proposed in [148]. Explicit operating system support for
communication has been a focus of the Scout operating system, which uses the notion of paths as a
fundamental operating system structuring technique [91]. The CORDS path abstraction [49], which
is similar to Scout paths, provides a rich framework for development of real-time communication
services.

Recent efforts have also addressed an important problem associated with data reception, namely,
receive livelock [103]. Receive livelock has been addressed at length in [90] via a combination of
techniques (such as limiting interrupt arrival rates, fair polling, processing packets to completion,
and regulating CPU usage for protocol processing) to avoid receive livelock and maintain system
throughput near the maximum system input capacity under high load. Another approach is to sched-
ule applications in a proportional share manner and use the cumulative rate to limit packet process-
ing to solve the receive livelock problem [62]. Lazy receiver processing (LRP) [44], while not
completely eliminating it, significantly reduces the likelihood of receive livelock even under high

input load.

7.3 Related Work on Networking

While the real-time and operating system research focused on the end-system, end-to-end QoS has
been investigated in the networking community. An extensive survey of such QoS architectures is

provided in [29], which provides a comprehensive view of the state of the art in the provisioning of
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end-to-end QoS. Reservation-based protocols were suggested to provide QoS guarantees for com-
munication services [18, 65]. Support for QoS or preferential service in the network has been exam-
ined for provision of integrated and differentiated services on the Internet [24, 26, 39, 143]. Several
classes of service were considered, including guaranteed service which provides guaranteed delay
bounds, and controlled load service which has more relaxed QoS requirements. Issues involved in
sharing link bandwidth across multiple classes of traffic are explored in [46]. The signaling required
to set up reservations for application flows can be provided by RSVP [150], which initiates reser-
vation setup at the receiver, or ST-II [42], which initiates reservation setup at the sender. Real-time
communication services [87] were developed in the context of the Armada project {1] concerned

with middleware for real-time communication and fault-tolerance.

7.4 Towards QoS Adaptation and Multimedia Applications

In mid 90s, with the advent of less critical classes of real-time applications, such as muitimedia,
and with the relative maturity of operating system and networking research on QoS guarantees and
service differentiation, the real-time systems community introduced the concept of QoS adapta-
tion into its real-time scheduling, resource management, and admission control literature. Recent
research efforts considered general adaptive resource management frameworks for real-time appli-
cations with elastic QoS constraints. QoS-adaptive service models were presented in [30, 58, 59].
In [3] we described a QoS negotiation framework that attempts to maximize system utility. We
proposed a flexible QoS-specification interface for applications with elastic QoS requirements and
demonstrated its applicability in the context of a flight control system. This work was extended for
communication-oriented applications in {7] which advocated a new architecture for OS communi-
cation subsystems. The Q-RAM architecture [102] introduced QoS-sensitive near-optimal resource
allocation algorithms for applications with multiple resource requirements and multiple QoS di-
mensions. FARA [108] presents a hierarchical adaptation model for complex real-time systems. An
end-to-end QoS model similar to ours is presented in [59] in the context of a middleware approach
to QoS management that requires application cooperation. The approach is extended in [27] to ac-
count for practical limitations such as inaccuracies in estimating application resource requirements.
In [47] a dynamic distillation method was proposed to adapt to network and client variability via
on-line compression techniques. The technique, however, is inapplicable for dealing with server

overload.
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Novel real-time operating systems and communication architectures were developed to embody
QoS adaptation support. The Rialto operating system [64], targeted at multimedia applications,
took the approach of dynamically maximizing aggregate system “value” using a resource planner.
The Nemesis operating system designed in the context of the Pegasus project [78] investigated sup-
port for adaptive multimedia applications. In the multimedia community, various communication
architectures have been proposed to support adaptive QoS guarantees. Examples include the QoS-A
framework [28], the Heidelberg QoS model [139], V-net [45], NetWorld [31], the QoS-adaptation
model of [7], COMETS’ Extended Integrated Reference Model (XRM) [74], the OMEGA end-
point architecture [93], and the QoS Broker [92]. Odyssey [96], presents a framework for experi-
menting with application-aware adaptation on mobile computing platforms. A novel RSVP-based
QoS architecture supporting integrated services in TCP/IP protocol stacks, running on legacy (e.g.,
Token Ring and Ethernet) and high-speed ATM LAN networks is described in {20]. The AQUA
system [71] has developed QoS negotiation and adaptation support for allocation of CPU and net-
work resources. A native-mode ATM transport layer has been designed and implemented in [9]. It
provides support for traffic policing and shaping; however, no support is provided for scheduling
protocol processing and incorporation of implementation overheads and constraints. A good sur-
vey of such communication architectures can be found in [15]. Predictable graceful degradation
has also been investigated in the context of fault-tolerant real-time computing. Examples are the
overload management [107], imprecise computation technique [81], adaptable redundancy [23] and
mandatory/optional task scheduling [41].

7.5 Contrast with Adaptware

While earlier architectures for QoS adaptation concerned themselves primarily with introducing new
APIs, kernel or network support for QoS, Adaptware is concerned with developing a transparent
layer between the kernel and application, that performs QoS management. Thus, we take a non-
intrusive approach to QoS adaptation. Our work differs from operating system approaches in that
it doesn’t require the underlying OS kernel to be redesigned. Instead, we consider the design of
QoS-adaptive middleware services on top of commonly-available kernel support. Our approach,
therefore, makes our implementation more portable and adaptable. Similarly, our approach can
benefit the plethora of legacy application code, since it does not require redesigning the application

to make use of the new mechanisms. Concentrating on middleware, our work is complementary to
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the research on real-time communication protocols [17, 65, 111, 151], network support for QoS 51,
112], and real-time kernel support [63,76,89, 101]. Unlike previous middleware approaches [27,
591 which introduced QoS extensions for applications with per-flow QoS constraints, Adaptware
addresses the issue of transparency of QoS extensions to applications where constraints are imposed
on flow aggregates. It implements proper per-traffic-class QoS management even when used by
legacy multithreaded (or multiprocess) best-effort servers in which a single pool of identical same-
priority threads serves all traffic classes in FCFS order. Thus, while Adaptware introduces new
programming abstractions that encourage a QoS-sensitive application design methodology, it does
not preclude re-using existing mainstream server code in new QoS-sensitive contexts.

Unlike QoS adaptation methods arising in the multimedia community {28, 31,93, 139], we con-
sider a QoS-negotiation model suitable not only for multimedia applications but also for web ser-
vices and embedded systems. While multimedia applications are dominated by the high volume
of long-lived communicated data whose source and destination are typically fixed, in web servers
flows are short-lived and server load is dominated by incoming request processing, while in embed-
ded systems (e.g., process control) computation is more dominant than communication and dynamic
task allocation for better load sharing is an important concern.

Ideally, QoS adaptation should be coordinated at both ends and all internal/intermediate points
of the connection. Real-time communication protocols such as RTP [111], can be used with our
scheme to help clients adapt application-level performance to network delays. RSVP [151], or real-
time channels (17, 65, 86] can be used to reserve host and network bandwidths, when applicable.
Further development of such techniques for flexible end-to-end guarantees is beyond the scope of
this thesis. Unlike “hard real-time” communication architectures [86], we make no assumptions
about the existence of resource-reservation support both on the OS kernel and in the network, al-
though we can make good use of such support if available.

We do not require a priori system-load characterization and profiling information for proper
maintenance of QoS contracts. Instead, as a part of our adaptation scheme, a self-tuning mechanism
is incorporated to adjust itself to the measured load and resource conditions. We develop novel
mechanisms for controlling resource allocation that rely on classical control theory. These mech-
anisms are targeted for server platforms. Since such platforms typically run a single application
(the server), we do not deal with issues of trust among independent applications with conflicting
requirements for which kernel-level enforcement solutions are more suitable. Overall, the thesis is

step towards applying the wealth of real-time and classical control concepts in more mainstream do-
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mains and emerging applications of Internet computing in order to provide predictable and adaptive
performance guarantees.
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CHAPTERS§

CONCLUSIONS

In this thesis we investigated building adaptation middleware and operating system extensions
for next generation adaptive real-time applications. We first presented motivational material for
building Adaprware. We focused on web servers as an important application and illustrated the
need for adaptation technology in the context of that application. Unlike present state-of-the-art,
we demonstrated an adaptation mechanism that enables a server to cope with overload in a graceful
manner. We demonstrated how the adaptation mechanism can be used to provide performance
isolation, service differentiation, sharing excess capacity, and QoS guarantees.

The goal of adaptation is to maximize service utility. We generalized the adaptation software
and separated it from specific application requirements, by extracting from this web case study cer-
tain useful abstractions and mechanisms. We further suggested flexible QoS contracts as a main
system resource management entity. Guaranteeing the contracted performance entails enforcing
the particular resource capacity allocation to the contract. The abstraction must therefore be sup-
ported by the operating system or middleware. We developed generalized adaptation techniques
with a particular focus on solving the utility optimization problem in applications with elastic QoS
requirements specified by QoS contracts. We presented an optimal algorithm for maximizing ag-
gregate user-perceived service utility on server end-systems, and compared it with both reservation-
and prioritization-based solutions.

We presented two different architectures for enforcing QoS contracts. The first is implemented
within an operating system’s communication subsystem. We presented a thread-per-contract end-
host communication subsystem architecture and described an implementation of contract handlers
as threads scheduled to maximize aggregate service utility. This architecture, called CLIPS, was
contrasted against a middleware implementation, called gContracts that enforces QoS contracts by
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means of measurement-based adaptation control and load policing. Aspects of classical control
theory were re-introduced in the context of a computing environment and used both to analyze the
stability of the measurement-based adaptation control loop and to tune the adaptation controller.
Experimental results showed that the approach is capable of meeting its stated goals in enforcing
QoS contracts regardless of the bottleneck resource, platform speed, and load mix. An important
feature of our architecture is the capability for automated self-profiling that estimates platform speed
and characterizes the application such that QoS contract specifications can be mapped into resource
requirements without a priori offline pre-computation.

We extended Adaptware to provide a novel scheme for QoS negotiation in distributed real-
time applications. This scheme may be applicable for the design of server farms, extending the
interface of such services in that (i) it adopts a notion of QoS contracts that allows for defining
QoS compromises and supports graceful QoS degradation, and (ii) it provides a generic means
to maximize service utility for the community of clients in a distributed server. Our distributed
QoS negotiation method improved the guarantee ratio over traditional admission control algorithms
and increases the application-level perceived utility of the system. The proposed QoS-negotiation
architecture was incorporated into RTPOOL, an example middleware service which implements a
computing resource manager for a pool of processors.

Finally, we presented techniques for schedulability analysis when Adaptware is applied to hard
real-time applications. A new B&B algorithm we presented for combined task and message schedu-
lability analysis in a distributed real-time system to verify temporal correctness before the system is
deployed. A simulation study has shown that the algorithm scales well with respect to system size
and the number of communicated messages among tasks. A heuristic version of the algorithm was
presented, where a greedy technique is used to trade optimality for speed. We also suggested a way
to generalize the algorithm for a more practical resource model.

The presented work on Adaptware represents a seed for many interesting possible ramifications
and future research directions. Of particular interest is the use of the well developed control theory
in novel computing contexts such as web servers. Several extensions are possible in that regard. For
example, Robust Control Theory provides theoretical foundations for choosing control parameters
and algorithms such that the resulting system performance is insensitive to the inaccuracies and
unpredictability in the controlled system model. Applied to web servers, such theory can produce
robust load control algorithms that achieve the desired application QoS even when server load pro-

files, execution costs, and available resources are inadequately modeled, unpredictable, or partially
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unknown. A complimentary direction to this research is to produce more accurate mechanisms for
online characterization of service model parameters to be used, e.g., for proper QoS mapping. For
example, while we succeeded in modeling web service execution times accurately for HTTP 1.0
requests, it may be interesting to investigate the accuracy of this method with HTTP 1.1 persistent
connections.

On a different dimension, the work presented in this thesis focused mostly on resource manage-
ment on a single machine, more research is needed on distributed resource management, e.g., within
server farms. For example, it is interesting to investigate load sharing algorithms that globally opti-
mize service utility in the farm. Integration of these algorithms with core networking support (such
as diff-serv architecture), or network appliances such as proxy caches is another avenue for future
extensions.

From a performance evaluation standpoint, while the thesis demonstrates a proof of concept
on a non-standard operating system, it is interesting to implement the presented mechanisms in
Linux or a similar widely-used OS and investigate the resulting actual performance in terms of pre-
dictability and adaptability, as well as the actual overheads associated with QoS-sensitive resource
management.

On a more abstract scale, it is interesting to view Adaptware as a core for multi-dimensional
QoS optimization. Adaptation mechanisms presented in this thesis consider only a single dimension
where all QoS levels can be linearly sorted by their importance. In more general systems, QoS may
have several dimensions such as timeliness, fault-tolerance, security, etc. A theoretical framework

is needed for multi-dimensional QoS optimization in such applications.
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APPENDIX A

Surveyed Shopping Sites

The table below lists the surveyed sites, the size of each site in Kbytes, the Average size (in KB)
of HTML files, GIFs and JPGs, and the percentage of total bytes attributed to images. All of the
surveyed sites belong the shopping category in the sense that they advertize and allow purchasing
items or services on-line. These include clothing items, greeting cards, household articles, furniture,

arts, flowers and adult services.

Site Name Total Size | HTML | GIF JPG | Images
http://artessentials.com/products.htm 332K 135K | 47K | 3.7K 26%
http://www.rlcgroup.com/oracle/ 211K 19K | 103K | 248K | 98%
http://www.caroline-b.com/ 761K 72K | 37K | 9.1K 65%
http://www.vidmail.com/ 88K 3JK | 47K - 16%
http://www.crossdress.net/ 1896K SSK [23.1K [ 347K | 92%
http://www.videocatalog.com/ 20K 22K - 114K | 54%
http://www.lacis.com/ 2167K 8.1K | 68K | 79K 88%
http://artessentials.com/products.htm 332K 135K | 48K | 3.7K 26%
http://www.catscan.com/nancy/index.htm 299K 31K | S3K | 13.7K | 82%
http://www.shearcomfort.com/ 144K 112K | 237K | 7.7K 91%
http://www.enterpriseart.com/ 784K 58K | 103K | 48K 75%
http://home.erols.com/swimwear/ 897K 1.1IK | 16K | 282K | 97%
http://www.iinet.net.au/ elirab/ 1206K SOK | 42K | 15K 74%

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



continued

http://www.crafts2urdoor.com/ 223K | 58K | 128K - 63%
http://www.mysticvaly.com/ 966K | 75K | 143K | 179K | 81%
http://www.reunionblues.com/ S18K | 7.1K | 11.3K - 83%
http://www.coorsandco.com/CA _index.htmi 818K [ 55K | 9.1IK - 83%
http://www.rollerwarehouse.com/ 177K [ 08K | 42K | 73K | 57%
http://www.indiansilk.com/ 749K | 1.7K | 33.2K - 97%
http://www.indiaworld.co.in/home/narita/index.html | 627K | 45K | 16.1K | 242K | 83%
http://vermontcountrystore.com/vcs/ves.htm S39K | 29K | 13.1K | 35.1K | 93%
http://www.cuddledown.com/ 1249K | 8.0K | 135K | 172K | 81%
http://www.tweeds.com/weltotweed.html 8416K | 48K | 7.7K | 26.3K | 89%
http://www.damartusa.com/ 3395K | 4.1K | 169K - 85%
http://www.sabaki.com/Products/English/index.html | 1054K | 4.2K | 30.7K - 96%
http://www.ishops.com/hc/ 176K | 6.7K | 29K | 60.3K | 53%
http://heels.sexyshoe.com/ 2682K | 9.6K | 20.6K | 21.1K | 74%
http://www.silhouettes.com/ 1144K | 52K | 2.1K { 202K | 47%
http://www.bcsupernet.com/users/sativa/ 9K [47K | 97K | 45K | 74%
http://www.smith-hawken.com/ 426K | 77K | 27K | 62K | 44%
http://www.mind.net/darnell/ 3348K | 3.8K | 284K - 99%
http://www.bugleboy.com/virtualstore/ 1215K | 3.6K | 1.8K | 10.7K | 75%
http://www.ellemag.com/ 8657K | 6.1K | 41K | 79K | 4%
http://www.llbean.com/ S3K | 14K | 08K | 165K | 74%
http://www.jantzenswim.com/ 219K | 13K | 7.1K | 84K | 83%
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continued

http://www.viamall.com/fredholly/ 21446K | 45K | 13.8K | 83.8K | 94%
http://www.baroness.com/features/ 1124K | 24K | 11.2K | 20.2K | 90%
http://www.r2intertec.com/basicapparel/ | 366K | 84K | 1S9K | 174K | 78%
http://www.shoesforcrews.com/catalog/ | 1514K | 90K | 9.3K | 27.8K | 86%
http://www.furs.com/FUR/ 139K | 5.5K | 0.67K - 6%
http://www.bullock-jones.com/ 200K [ 09K | 33K | 151K | 91%
http://www.aldenshoes.com/ 69K | 19K | 096K | 36K | 20%
http://www1.viaweb.com/austads/ 60SK | 59K | 25K - 35%
http://www.koalaswim.com/main.htm 106K |41K | 27K | 177K | 8%
http://venusmodelsearch.com/ 241K | 5.6K - 37K | 28%
http://www.onehanesplace.com/ 49K | 29K | 6.1K | S4K | 34%
;http://www.ullapopken.com/ S137K | 41K | 35K | 130K | 7%
http://www.tallclassics.com/ 170K [3.6K | S.1K | 8.0K | 84%
http://www.hottouch.com/ 102K | 40K | 371K | 55K | 79%
http://www.wetride.com/ 128K | SSK | 72K | 8.0K | 81%
http://www.erotica.byus.com/ 426K | 27K | 75K | 12.6K | 95&
http://www freelove.com/ 292K | 13K | 68K | 126K | 42%
http://www.swedenteens.com/ 422K | 40K | 65K | 10.8K | 82%
http://www.pornpeepshows.com/ 134K [3.7K | S3K | 68K | 82%
http://3sex.com/guests 418K | 17K | 7.1K | 234K | 76%
http://porn.raunchysexx.com/ 161K | 5.1K | 13.1K | 152K | 83%
http://www.xxxsexphotos.com/ 259K | 93K | SO9K | 95K | 55%
http://www.smutland.com/ 446K | 36K | 39K | 254K | 90%
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continued

http://www.bettersex.com/ 265K | 34K | 46K - 59%
http://www.artcat.com/products.htm 4235K | 46K | 10.7K | 53.5K | 97%
http://www.bi-furniture.com/html/products.htm 475K | 42K | 78K | 79K | 75%
http://www.ballard-designs.com/ 342K 13K | 25K | 15.1K | 89%
http://www.cllenburgs.com/ 147K 45K | 68K | 39.3K | 80%
http://www.cf-direct.com/catalog.htm 1822K | 8.1K | 88K | 99K | 78%
http://www.primenet.com/ tashjian/ 42K 38K - - 0%
http://www.ethanallen.com/home_garden/coverpage/ | 15S09K | 34K | 150K | 6.5K | 87%
http://www.majesticproducts.com/ 3829K | 55K | 376K | 172K | 91%
http://www.countrybed.com/ S1I9K 3.1K | 135K | 26.2K | 91%
http://www.safariland.com/ 365K | 79K | S.7K | 73K | 55%
http://www.starkbros.com/CAT TOPHTM 383K 95K | 27K | 6.7K 29
http://www_Rocknrescue.com/catalog.htm 3229K | 95K | 33K | 94K | 78%
http://www.marmot.com/htmpages/homepg.htm 262K 48K | 88K - 50%
http://www.cookiebouquets.com/ S8K 73K | 28K | 22.6K | 86%
http://www.harborsweets.com/ 155K 52K | 35K - 38%
http://www.sportys-catalogs.com/ 166K SSK | 18K | 92K | 38%
http://www.folder-factory.com/ 100K 1.8K | 498K | 42K | 82%
http://artonline.com.br/art/indice_e.htm 199K | 24K | 40K | 3.1K | 41%
http://www.franceantiq.fi/sna/berko/ber_uk.htm 3365K | 113K | 0.6K | 29.7K | 58%
http://www.franceantiq.fr/cne/manic/manic-uk.htm | 17081K | 30K | 2.5K | 13.3K | 21%
http://www.neaguild.com/macrodel/ 872K | 24K | 19K - 91%
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APPENDIX B

Configuration File

# Caution: Make sure that CONFIG_DIR in http.adaptive.h points to the

# directory where this file is located.

The Adaptive Web Server has two main modes of operation; a LEARNING mode

and a standard mode. These modes can be toggled between by setting/resetting
the LEARNING flag. The purpose of the LEARNING mode is to let the server
perform self-profiling upon installation on a new platform. The server

will still deliver content while LEARNING, although no QoS guarantees are

offered in this mode. Ideally, the server should be heavily loaded while

LN P O R R

learning. If the server receives only occasional requests, learning is not

I*

recommended. If the load is large enough, the server will learn within 10
# minutes or so. It should then be configured for desired QoS guaranteed

4 (see below) and restarted with LEARNING disabled.

# Execution Flags in LEARNING mode:

# LEARNING

# The above flag enables the LEARNING mode. Comment it out to turn learning

# off.
# SELF.MODULATION
# The above flag shculd be turned on in LEARNING mode. It allows the server

4 to modulate internal load at will (e.g., by degradation or rejection) even

# at constant offered external load. This toggling enhances LEARNING since
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it effectively changes the locad on the server allowing the server to
“learn® the effects of load change. If this flag is commented out, you
must ensure that the load applied to the server while LEARNING has enough

inherent variability on its own, or else learning will produce erroneous

L B I

results

ESTIMATOR.PERIOD 5

The above flag defines the period (in seconds) over which load statistics

are averaged during LEARNING. It is recommended to keep this period

sufficiently large to reduce the effect of measurement noise. The flag has

F OF ® O

no effect if learning is disabled.

# General execution flags:

SERVER.IP 15.4.91.45
SERVER.PORT 8011

# The above flags define server IP and port number.

# VERBOSE
# Comment the above flag out if you don’t want excessive printouts to the

# screen.

TARGET.UTILIZATION 80

# The above flag defines the desired target utilization for the server.

# Utilizations above target will be treated as overload and dealt with
accordingly. Target utilization is specified as a percentage (0 to 100).
A target utilization close to 100 will result in bad performance due to

jitter and frequent listen queue overflow. It is best to keep target

*FOOF B Ik

utilization at or below 80
HTDOCS.TREE /degraded
HTDOCS.TREE /good

# The above flag defines the subdirectory names containing the different
¢ content trees. The definitions must be organized in increasing order of

# quality of content. The corresponding subdirectories should be located
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in the main service directory of the server. If one of the content trees
is served from the main directory itself it is denoted by "/*. There can

be only one content tree if desired. 1In this case, degradation will be

EL I

accomplished by request rejection.

ENABLE_ADAPTOR

The above flag enables the content adaptor. The content adaptor is the
part of the adaptive server architecture that prepends the "right" content
tree name to the requested URL in accordance with load conditions. If the
adaptor is disabled (i.e., the above flag is commented out) the middleware
will still execute 21l its functicns as usual, except that the results will
be masked from the server. The URL in each request will remian unchanged.

Disabling the toggle is useful, e.g., to compute the pure overhead of our

L U R B | SR -

middleware compared to a non-adaptive server
# Performance Isolation and Tiered Services Flags:

# The Adaptive Server allows defining virtual private servers of guaranteed
# maximum rate and bandwidth. The middleware will allocate enough capacity
# for each virtual private server to meet its bandwidth requirement as

# long as the request rate does not exceed the maximum specified rate.

# The format for specifying the maximum rate and badnwidth is:
# PREMIUM_CLASS class.id rate bandwidth

Currently: (class_id) is the name of the text file that contains a
listing of all clients belonging to this class. Clients are identified by
their IP address. The file should contain one IP address per line, and

should reside in the configuration directory. (rate) must be specified in

L T -

req/s. (bandwidth) must be specified in Mb/s (i.e., Megabits/s)
# PREMIUM.CLASS classl 100 50

# PREMIUM.CLASS class2 100 26

# Uncomment the flag below to let each virtual server be strictly confined
# to its allocated resource capacity. When the flag is commented out wvirtual

# private servers are allowed to exceed their capacity allocation if excess
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# capacity exists on the server.

# STRICT.POLICING

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY

[1] T. Abdelzaher, M. Bjorklund, S. Dawson, W. Feng, F. Jahanian, S. Johnson, Marron,
A. Mehra, T. Mitton, A. Shaikh, K. Shin, Y. Wang, and H. Zou, “ARMADA middleware
and communication services,” Journal of Real-Time Systems, vol. 16, no. 1, , January 1999.

{2] T. Abdelzaher, A. Shaikh, F. Jahanian, and K. Shin, “RTCAST: Lightweight multicast for
real-time process groups,” in /EEE Real-Time Technology and Applications Symposium,
Boston, Massachusetts, June 1996.

(3] T. E. Abdelzaher, E. M. Atkins, and K. G. Shin, “QoS negotiation in real-time systems and
its application to automated flight control,” in JEEE Real-Time Technology and Applications
Symposium, Montreal, Canada, June 1997.

(4] T.F. Abdelzaher and N. Bhatti, “Web content adaptation to improve server overload behav-
ior,” in International World Wide Web Conference, Toronto, Canada, May 1999.

[5] T.FE Abdelzaher and N. Bhatti, “Web server QoS management by adaptive content delivery,”
in International Workshop on Quality of Service, London, UK, June 1999.

[6] T. E. Abdelzaher and K. G. Shin, “Optimal combined task and message scheduling in dis-
tributed real-time systems,” in /EEE Real-Time Systems Symposium, Italy, Pisa, December
1995.

[7] T.E. Abdelzaher and K. G. Shin, “End-host architecture for qos-adaptive communication,” in
IEEE Real-Time Technology and Applications Symposium, Denver, Colorado, June 1998.

[8] R. Agne, “A distributed offline scheduler for distributed hard real-time systems,” in Dis-
tributed Computer Control Systems. Proceedings of the 10th IFAC Workshop, pp. 3540,
Summering, Austria, September 1991.

[9] R. Ahuja, S. Keshav, and H. Saran, “Design, implementation, and performance of a native
mode ATM transport layer,” in INFOCOM, pp. 206-214, March 1996.

(10] M. Alfano, A. Di-Stefano, L. Lo-Bello, O. Mirabella, and J. H. Stewman, “An expert system
for planning real-time distributed task allocation,” in Proceedings of the Florida AI Research
Symposium, Key West, FL, USA, May 1996.

[11] H. H. Ali and H. El-Rewini, “Task allocation in distributed systems: a split graph model,” J.
Combin. Math. Combin. Comput., vol. 14, no. 1, pp. 15-32, January 1993.

[12] P. Altenbernd, C. Ditze, P. Laplante, and W. Halang, “Allocation of periodic real-time tasks,”
in 20th IFAC/IFIP Workshop, Fort Lauderdale, FL., USA, November 1995.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[13] E. M. Atkins. Reasoning About and In Time when Building Plans for Safe, Fully-Automated
Aircraft Flight. Ph.D. Thesis Proposal, December 1996.

(14] E. M. Atkins, E. Durfee, and K. G. Shin, “Plan development in circa using local probabilistic
models,” in Uncertainty in Artificial Intelligence: Proceedings of the Twelfth Conference, pp.
49-56, August 1996.

[15] C. Aurrecoechea, A. Cambell, and L. Hauw, “A survey of QoS architectures,” in 4th IFIP
International Conference on Quality of Service, Paris, France, March 1996.

[16] K.R. Baker, Introduction to Sequencing and Scheduling, Wiley & Sons, 1974.

(17] A. Banerjea, D. Ferrari, B. Mah, M. Moran, D. Verma, and H. Zhang, “The tenet real-time
protocol suite: Design, implementation, and experiences,” IEEE/ACM Transactions on Net-
working, vol. 4, no. 1, pp. 1-10, February 1996.

(18] A. Banerjea, D. Ferrari, B. Mah, M. Moran, D. Verma, and H. Zhang, “The tenet real-time
protocol suite : design, implementation, and experiences,” IEEE/ACM Transactions on Net-
working, vol. 4, no. 1, pp. 1-10, February 1996.

[19] G. Banga, P. Druschel, and J. C. Mogul, “Resource containers: A new facility for resource
management in server systems,” in Third USENIX Symposium on Operating Systems Design
and Implementation, pp. 45-58, New Orleans, Louisiana, February 1999.

[20] T. Barzilai, D. Kandlur, A. Mehra, D. Saha, and S. Wise, “Design and implementation of an
RSVP-based quality of service architecture for integrated services Internet,” in DCS, May
1997.

[21] J. E. Beck and D. P. Siewiorek, “Simulated annealing applied to multicomputer task allo-
cation and processor specification,” in Proceedings of 8th IEEE Symposium on Parallel and
Distributed Processing, pp- 232-239, October 1996.

[22] A. Billionnet, M.-C. Costa, and A. Sutter, “An efficient algorithm for a task allocation prob-
lem,” J. Assoc. Comput. Mach., vol. 39, no. 3, pp. 502518, March 1992.

[23] M. Bizzarri, P. Bizzarri, A. Bondavalli, F. Di-Giandomenico, F. Tarini, P. Laplante, and
W. Halang, “Design of flexible and dependable real-time applications,” in 20th IFAC/IFIP
Workshop, Lauderdale, FL, USA, November 1995.

[24] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for
Differentiated Services. Internet Draft (draft-ietf-diffserv-arch-01.txt), August 1998.

[25] S. H. Bokhari, “A network flow model for load balancing in circuit-switched muiticomput-
ers,” [EEE Trans. Parallel and Distrib. Sys., vol. 4, no. 6, pp. 649-657, June 1993.

[26] R. Braden, D. Clark, and S. Shenker, “Integrated services in the Internet architecture: An
overview,” Request for Comments RFC 1633, July 1994. Xerox PARC.

[27] S. Brandt and G. Nutt, “A dynamic quality of service middleware agent for mediating ap-
plication resource usage,” in Real-Time Systems Symposium, pp. 307-317, Madrid, Spain,
December 1998.

(28] A. Cambell, G. Coulson, and D. Hutchison, “A quality of service architecture,” ACM Com-
puter Communications Review, April 1994.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[29] A.T. Campbell, C. Aurrecoechea, and L. Hauw, “A review of QoS architectures,” MSJ, 1996.

[30] S. Chatterjee, J. Sydir, B. Sabata, and T. Lawrence, “Modeling applications for adaptive
qos-based resource management,” in Proceedings of the 2nd IEEE High-Assurance System
Engineering Workshop, Bethesda, Maryland, August 1997.

(31] D. Chen, R. Colwell, H. Gelman, P. K. Chrysanthis, and D. Mosse, “A framework for ex-
perimenting with QoS for multimedia services,” in International Conference on Multimedia
Computing and Networking, 1996.

[32] M.-L. Chen and K.-J. Lin, “Dynamic priority ceilings: A concurrency control protocol for
real-time systems,” Journal of Real Time Systems, vol. 2, no. 4, pp. 325-346, 1990.

[33] S.T. Cheng, S. I. Hwang, and A. K. Agrawala, “Schedulability oriented replication of peri-
odic tasks in distributed real-time systems,” in Proceedings of the 15th International Confer-
ence on Distributed Computing Systems, Vancouver, Canada, 1995.

[34] H.Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of real-time tasks under prece-
dence constraints,” Journal of Real-Time Systems, vol. 2, no. 3, pp. 181-194, September
1990.

[35] W. W. Chu, “Task allocation in distributed data processing,” IEEE Computer, vol. 13, pp.
57-69, Nov 1980.

(36] W. W. Chu and L. M. Lan, “Task allocation and precedence relations for distributed real-time
systems,” JEEE Trans. on Computers, vol. C-36, no. 6, pp. 667—679, June 1987.

[37] W. W. Chu and K. Leung, “Module replication and assignment for real-time distributed pro-
cessing systems,” Proc of IEEE, vol. 75, no. 5, pp. 547-562, May 1987.

[38] D.D. Clark, “The structuring of systems using upcalls,” in Symposium on Operating Systems
Principles, pp. 171-180, 198S.

[39] R. Clark, E. Jensen, and F. Reynolds, “An architectural overview of the Alpha real-time dis-
tributed kernel,” in Proceedings of the USENIX Workshop on Microkernels and other Kernel
Architectures, 1992.

[40] E. G. Coffman, Computer and Job-Shop Scheduling Theory, Wiley and Sons, New York,
1976.

[41] R. Davis, S. Punnekkat, N. Audsley, and A. Burns, “Flexible scheduling for adaptable real-
time systems,” in Proceedings Real-Time Technology and Applications Symposium, pp. 230—
236G, Chicago, IL, USA, May 1995.

[42] L. Delgrossi and L. Berger, “Internet stream protocol version 2 (ST-2) protocol specification
- version ST2+,” Request for Comments RFC 1819, August 1995. ST2 Working Group.

(43] S. K. Dhall and C. L. Liu, “On a real-time scheduling problem,” Operations Research, vol.
26, no. 1, pp. 127-140, 1978.

[44] P. Druschel and G. Banga, “Lazy receiver processing (LRP): A network subsystem architec-
ture for server systems,” in Proc. 2nd OSDI Symposium, pp. 261-275, October 1996.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[45] B.Field, T. Znati, and D. Mosse, “V-net: A framework for a versatile network architecture to
support real-time communication performance guarantees,” in InfoComm, 1995.

[46] S. Floyd and V. Jacobson, “Link-sharing and resource management models for packet net-
works,” IEEE Transactions on Networks, vol. 3, no. 4, pp. 365-386, August 1995.

[47] A.Fox,S. Gribble, E. A. Brewer, and E. Amir, “Adapting to network and client variability via
on-demand dynamic distillation,” in Seventh International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pp. 160-170, Cambridge, Mas-
sachusetts, October 1996.

(48] S. French, Sequencing and Scheduling, Halsted Press, 1982.

{49] FE.Travostino, E.Menze, and FReynolds, “Paths: Programming with system resources in sup-
port of real-ti me distributed applications,” in Proc. IEEE Workshop on Object-Oriented Real-
Time Dependab! e Systems, February 1996.

[50] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, 1979.

[51] L. Georgiadis, R. Guerin, V. Peris, and R. Rajan, “Efficient support of delay and rate guaran-
tees in an Internet,” in ACM SIGCOMM, Stanford, California, August 1996.

[52] J. B. Goodenough and L. Sha, “The priority ceiling protocol: A method for minimizing the
blocking of high priority Ada tasks,” Ada Letters, vol. 7, no. 8, pp. 20-31, August 1998.

[53] R. Gopalakrishnan and G. M. Parulkar, “A real-time upcall facility for protocol processing
with QoS guarantees,” in Symposium on Operating Systems Principles, p. 231, December
1995.

(54] R. Gopalakrishnan and G. Parulkar, “Efficient user space protocol implementations with qos
guarantees using real-time upcalls,” IEEE/ACM Transactions on Networking, 1998.

[55] P. Goyal, X. Guo, and H. Vin, “A hierarchical cpu scheduler for multimedia operating sys-
tems,” in Proceedings of Second Usenix Symposium on Operating System Design and Imple-
mentation, Seattle, Washington, October 1996.

[56] C. M. Hopper and Y. Pan, “Task allocation in distributed computer systems through an ai
planner solver,” in Proceedings of IEEE 1995 National Aerospace and Electronics Confer-
ence, volume 2, pp. 610-616, Dayton, OH, USA, May 1995.

[57] C.-J. Hou and K. G. Shin, “Replication and allocation of task modules in distributed real-time
systems,” in 24th IEEE Symposuim on Fault-Tolerant Computing Systems, pp. 26—3S, June
1994.

[58] D. Hull, A. Shankar, K. Nahrstedt, and J. W. S. Liu, “An end-to-end qos model and manage-
ment architecture,” in Proceedings of IEEE Workshop on Middleware for Distributed Real-
time Systems and Services, pp. 82-89, San Francisco, California, December 1997.

[59] M. Humphrey, S. Brandt, G. Nutt, and T. Berk, “The DQM architecure: middleware for
application-centered qos resource management,” in Proceedings of IEEE Workshop on Mid-
dleware for Distributed Real-time Systems and Services, San Francisco, California, Decem-
ber 1997.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[60] N. C. Hutchinson and L. L. Peterson, “The x-Kernel: An architecture for implementing net-
work protocols,” IEEE Transactions on Software Engineering, vol. 17, no. 1, pp. 64-76,
January 1991.

[61] K. Jeffay, “On latency management in time-shared operating systems,” in Real-Time Operat-
ing Systems and Software, pp. 86-90, May 1994.

[62] K. Jeffay, D. Smith, A. Moorthy, and J. Anderson, “Proportional share scheduling of cop-
erating system services for real-time applications,” in Real-time Systems Symposium, pp.
480491, Madrid, Spain, December 1998.

{63] M. Jones, D. Rosu, and M.-C. Rosu, “CPU reservations and time constraints: Efficient, pre-
dictable scheduling of independent activities,” in /6th ACM Symposium on Operating Sys-
tems Principles, Saint-Malo, France, October 1997.

{64] M. B. Jones and P. J. Leach, “Modular real-time resource management in the rialto operat-
ing system,” Technical Report MSR-TR-95-16, Microsoft Research, Advanced Technology
Division, May 1995.

[65] D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-time communication in multi-hop net-
works,” IEEE Trans. on Parallel and Distributed Systems, vol. 5, no. 10, pp. 1044—1056,
October 1994.

[66] H.Kasahara and S. Narita, “Practical multiprocessor scheduling algorithms for efficient par-
allel processing,” IEEE Trans. on Computers, vol. C-33, no. 11, pp. 1023-1029, November
1984.

[67] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated annealing,” Science,
vol. 220, pp. 671-680, 1983.

[68] W. H. Kohler and K. Steiglitz, Computer and Job-Shop Scheduling Theory, chapter Enumer-
ative and Iterative Computational Approach, pp. 229-287, Wiley and Sons, 1976.

[69] W. H. Kohler and K. Steiglitz, “Enumerative and iterative computational approach,” Com-
puter and Job-Shop Scheduling Theory, pp- 229-287, 1976.

[70] G. Koren and D. Shasha, “D-over: An optimal on-line scheduling algorithm for overloaded
real-time systems,” in JEEE Real-Time Systems Symposium, pp. 290299, Phoenix, Arizona,
December 1992.

[71] L. Krishnamurthy, AQUA: An Adaptive Quality of Service Architecture for Distributed Mul-
timedia Applications, PhD thesis, University of Kentucky, 1997.

[72] J.L.Lanet, “Task allocation in a hard real-time distributed system,” in Proceedings of the 2nd
Conference on Real-Time Systems, pp. 244—252, Szlarska Poreba, Poland, September 1995.

(73] E. L. Lawler, Deterministic and Stochastic Scheduling, chapter Recent Developments in De-
terministic Sequencing and Scheduling: A Survey, pp. 35-74, Reidel, Dordrecht, The Nether-
lands, 1982.

[74] A. Lazar, S. Bhonsle, and K. Lim, “A binding architecture for multimedia networks,” Journal
of Parallel and Distributed Computing, vol. 30, pp. 204-216, Nevember 1995.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[75] C. Lee, R. Rajkumar, and C. Mercer, “Experiences with processor reservation and dynamic
QoS in real-time mach,” in Proceedings of Multimedia, Japan, March 1996.

[76] C. Lee, K. Yoshida, C. Mercer, and R. Rajkumar, “Predictable communication protocol pro-
cessing in real-time Mach”,” in Proceedings of the Real-time Technology and Applications
Symposium, June 1996.

[77] J. K. Lenstraand A. H. G. R. Kan, “Complexity of scheduling under precedence constraints,”
Operations Research, vol. 26, no. 1, pp. 23-35, Jan 1978.

[78] L Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns, and E. Hyden,
“The design and implementation of an operating system to support distributed multimedia
applications,” JSAC, June 1997.

{79] S. Liden, “The evolution of flight management systems,” in of the 1994 [EEE/AIAA Thir-
teenth Digital Avionics Systems Conference, pp. 157-169. IEEE, 1995.

[80] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-
time environment,” J. of ACM, vol. 20, no. 1, pp. 46-61, 1973.

(81] J. W.-S. Liu, W. Shih, K.-J. Lin, R. Bettati, and J. Chung, “Imprecise computations,” JEEE
Proceedings, January 1994.

(82] V. M. Lo, “Heuristic algorithms for task assignment in distributed systems,” /IEEE Trans.
Comput., vol. 37, no. 11, pp. 1384-1397, November 1988.

(83] T. C. Lueth and T. Laengle, “Task description, decomposition and allocation in a distributed
autonomous multi-agent robot system,” in Proceedings of International Conference on Intel-
ligent Robots and Systems, pp. 1516—-1523, Munich, Germany, September 1994.

(84] P. Y. R. Ma and et. al., “A task allocation model for distributed computing systems,” IEEE
Trans. on Computers, vol. C-31, no. 1, pp. 41-47, January 1982.

(85] C. Maeda and B. N. Bershad, ‘“Protocol service decomposition for high-performance net-
working,” in Symposuim on Operating System Principles, pp. 244255, December 1993.

[86] A. Mehra, A. Indiresan, and K. G. Shin, “Structuring communication for quality of service
guarantees,” in IEEE Real-Time Systems Symposium, pp. 144—154, Washington, DC, Decem-
ber 1996.

{87] A. Mehra, A. Shaikh, T. Abdelzaher, Z. Wang, and K. Shin, “Realizing services for guar-
anteed qos communication on a microkernel operating system,” in /JEEE Real-Time Systems
Symposium, Madrid, Spain, 1998.

[88] C. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves: Operating system sup-
port for multimedia applications,” in Proceedings of the IEEE International Conference on
Multimedia Computing and Systems, May 1994.

[89] C. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves: Operating system sup-
port for multimedia applications,” in Proceedings of the IEEE International Conference on
Multimedia Computing and Systems, pp. 90-99, May 1994.

[90] J. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in an interrupt-driven ker-
nel,” in Winter USENIX Conference, January 1996.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[91] D. Mosberger and L. L. Peterson, “Making paths explicit in the Scout operating system,” in
OSDI, pp. 153-168, October 1996.

[92] K. Nahrstedt and J. Smith, “The QoS broker,” IEEE Multimedia, vol. 2, no. 1, pp. 53-67,
1995.

[93] K. Nahrstedt and J. Smith, “Design, imlementation, and experiences with the OMEGA end-
point architecture,” IEEE JSAC, September 1996.

[94] M. D. Natale and J. A. Stankovic, “Dynamic end-to-end guarantees in distributed real-time
systems,” in Proc. Real-Time Systems Symposium, pp. 216-227, December 1994.

[95] J. Nieh and M. S. Lam, “The design, implementation, and evaluation of SMART: A scheduler
for multimedia applications,” in 16th ACM Symposium on Operating System Principles, pp.
184197, Saint-Malo, France, October 1997.

[96] B. D. Noble and M. Satyanrayanan. Experience with Adaptive Mobile Applications in
Odyssey. to appear in Mobile Networking and Applications.

[97] Y. Oh and S. H. Son, “Scheduling hard real-time tasks with tolerance to multiple processor
failures,” Multiprocessing and Multiprogramming, vol. 40, pp. 193-206, 1994.

(98] D.-T. Peng and K. G. Shin, “Optimal scheduling of cooperative tasks in a distributed system
using an enumerative method,” IEEE Trans. Software Engineering, vol. 19, no. 3, pp. 253-
267, Mar 1993.

[99] D.-T. Peng, K. G. Shin, and T. F. Abdelzaher, “Assignment and scheduling of communicating
periodic tasks in distributed real-time systems,” IEEE Transactions on Software Engineering,
vol. 23, no. 12, pp. 745-758, December 1997.

[100] R. Rainey. ACM: The Aerial Combat Simulation for X11, February 1994.

[101] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels: A resource-centric
approach to real-time systems,” in Proceedings of the SPIE/ACM Conference on Multimedia
Computing and Networking, January 1998.

[102] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “Practical solutions for qos-based re-
source allocation problems,” in Real-time Systems Symposium, pp. 296306, Madrid, Spain,
December 1998.

[103] K. K. Ramakrishnan, “Performance considerations in designing network interfaces,” IEEE
Journal on Selected Areas in Communications, vol. 11, no. 2, pp. 203-219, February 1993.

[104] K. Ramamritham, “Allocation and scheduling of complex periodic tasks,” in Proc. Int'l Conf.
on Distributed Computing Systems, pp. 108—1185, 1990.

[105] K. Ramamritham, “Aiiocation and scheduling of precedence-related periodic tasks,” /JEEE
Transactions on Parallel and Distributed Systems, vol. 6, no. 4, pp. 412-420, April 1995.

[(106] K. Ramamritham, J. A. Stankovic, and W. Zhao, “Distributed scheduling of computing tasks
with deadlines and resource requirements,” IEEE Transactions on Computers, vol. 38, no. 8,
pp- 1110-1123, August 1989.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(107] P. Ramanathan, “Graceful degradation in real-time control applications using (m, k)-firm
guarantee,” in Proceedings of IEEE 27th International Symposium on Fault Tolerant Com-
puting, Seattle, WA, USA, June 1997.

(108] D. Rosu, K. Schwan, and S. Yalamanchili, “FARA - a framework for adaptive resource allo-
cation in complex real-time systems,” in Real-time Technology and Applications Symposium,
pp- 79-84, Denver, Colorado, June 1998.

{109] P. Scholz and E. Harbeck, “Task assignment for distributed computing,” in Proceedings of the
1997 Conference on Advances in Parallel and Distributed Computing, pp. 270-277, Shang-
hai, China, March 1997.

[110] J. Schreur, “B737 flight management computer flight plan trajectory computation and analy-
sis,” in Proceedings of the American Control Conference, pp. 3419-3429, June 1995.

[111] H. Schulzrinne, “RTP: The real-time transport protocol,” in MCNC 2nd Packet Video Work-
shop, volume 2, Research Triang!e Park, North Caroiina, December 1992.

[112] H. Schulzrinne, “A comprehensive multimedia control architecture for the Internet,” in
NOSSDAV, St. Louis, Missouri, May 1997.

[113] S. Selvakumar and C. S. R. Murthy, “Static task allocation of concurrent programs for dis-
tributed computing systems with processor and resource heterogeneity,” Parallel Computing,
vol. 20, no. 6, pp. 835-851, 1994.

[114] O. Serlin, “Scheduling of time critical processes,” in Proc. of AFIPS 1972 Spring Joint Com-
puter Conf., pp. 925-932, Montvale, N. J., 1972, AFIPS Press.

{115] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On task schedulability in real-time control
systems,” in IEEE Real-Time Systems Symposium, pp. 13-21, Washington, DC, December
1996.

[116] L. Sha, R. Rajkumar, and S. S. Sathaye, “Generalized rate monotonic scheduling theory: A
framework for developing real-time systems,” Proceedings of the IEEE, vol. 82, no. 1, pp.
68-82, January 1994.

[117] C. C. Shen and W. H. Tsai, “A graph matching approach to optimal task assignment in dis-
tributed computing systems using a minimax criterion,” /EEE Trans. on Computers, vol.
C-34, no. 3, pp. 197-203, March 1985.

[118] T. Shepard and M. Gagne, “A model of the F18 mission computer software for pre-run-time
scheduling,” in Proc. Int'l Conf. on Distributed Computing Systems, pp. 62-69, 1990.

[119] T. Shepard and M. Gagne, “A pre-run-time scheduling algorithm for hard real-time systems,”
IEEE Transactions on Software Engineering, vol. 17, no. 7, pp. 669-677, Jul 1991.

(120] K. G. Shin and C. J. Hou, “Evaluation of load sharing in harts with consideration of its
communication activities,” JEEE Transactions on Parallel and Distributed Systems, vol. 7,
no. 7, pp- 724-739, July 1996.

[121] K. G. Shin and C. J. Hou, “Analytic models of adaptive load sharing schemes in distributed
real-time systems,” IEEE Trans. on Parallel and Distributed Systems, vol. 4, no. 7, pp. 740—
761, July 1993.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[122] S. B. Shukla and D. P. Agrawal, “A framework for mapping periodic real-time applications
on multicomputers,” IEEE Transactions on Parallel and Distributed Systems, vol. 5, no. 7,
pp. 778-784, July 1994.

[123] J. B. Sinclair, “Efficient computation of optimal assignments for distributed tasks,” J. of Par-
allel and Distributed Computing, vol. 4, pp. 342-362, 1987.

[124] B. Srinivasan, S. Pather, F. Ansari, and D. Niechaus, “A firm real-time system implementation
using commercial off-the-shelf hardware and free software,” in Real-time Technology and
Applications Symposium, pp. 112-120, Denver, Colorado, June 1998.

[125] J. Stankovic, “Decentralized decision making for task reallocation in a hard real-time sys-
tem,” IEEE Transactions on Computers, vol. 38, no. 3, pp. 341-355, March 1989.

[126] J. Staakovic and K. Ramamritham, Hard Real-time Systems, IEEE Press, 1988.

[127] J. A. Stankovic, K. Ramamritham, and S. Cheng, “Evaluation of a flexible task scheduling
algorithm for distributed hard real-time systems,” JEEE Transactions on Computers, vol. 34,
no. 12, pp. 1130-1143, December 1985.

[128] J. A. Stankovic and K. Ramamritham, “The design of the Spring kernel,” in Proc. Real-Time
Systems Symposium, pp. 146—157, December 1987.

[129] J. A. Stankovic and K. Ramamritham, “The Spring Kernel: A new paradigm for real-time
systems,” IEEE Software, pp. 62-72, May 1991.

(130] L Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and C. Plaxton, “A proportional-
share resource allocation algorithm for real-time time-shared systems,” in Real-Time Systems
Symposium, pp. 288—-299, Washington, DC, December 1996.

[131] H.S. Stone, “Multiprocessor scheduling with the aid of network flow algorithm,” /EEE Trans.
on Software Engineering, vol. SE-3, no. 1, pp. 85-93, January 1977.

(132] H. S. Stone and S. H. Bokhari, “Control of distributed processes,” IEEE Computer, vol. 11,
pp. 97-106, July 1978.

(133] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. Lazowska, “Implementing network protocols
at user level,” IEEE Transactions on Networking, vol. 1, no. S, pp. 554-565, October 1993.

[134] T.-S. Tia and J. W.-S. Liu, “Assigning real-time tasks and resources to distributed systems,”
Internnational Journal of Minim and Microcomputers, vol. 17, no. 1, pp. 18-25, 1995.

[135] K. Tindeil and J. Clark, “Holistic schedulability analysis for hard real-time systems,” Micro-
processing and Microprogramming, vol. 40, pp. 117-134, 1994.

[136] K. Tindell, A. Burns, and A. Wellings, “Allocating hard real-time tasks: An np-hard problem
made easy,” J. of Real-Time Systems, vol. 4, no. 2, pp. 145-166, May 1992.

(137] H. Tokuda, T. Nakajima, and P. Rao, “Real-time Mach: Towards a predictable real-time
system,” in Proceedings of the USENIX Mach Workshop, pp. 73-82, October 1990.

[138] B. R. Tsai and K. G. Shin, “Assignment of task modules in hypercube multicomputers with
component failures for communication efficiency,” IEEE Transactions on Computers, vol.
C-43, no. S, pp. 613-618, May 1994.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[139] C. Volg, L. Wolf, R. Herrwich, and H. Wittig, “HeiRAT — quality of service management for
distibuted multimedia systems,” Multimedia Systems Journal, 1996.

(140] C. Waldspurger, Lottery and Stride Scheduling: Flexible Proportional-Share Resource Man-
agement, PhD thesis, Massachusetts Institute of Technology, September 1995.

(141] E. Wells and C. C. Caroll, “An augmented approach to task allocation: Combining simulated
annealing with list-based heuristics,” in Proc. Euromicro Workshop, pp. 508-515, 1993.

[142] R. E. D. Woolsey and H. S. Swanson, Operations Research for Inmediate Applications: A
Quick and Dirty Manual, Harper and Row, 1974.

[143] J. Wroclawski, “Specification of the controlled-load network element service,” Request for
Comments (RFC 2211), September 1997.

[144] S. S. Wu and D. Sweeping, “Heuristic algorithms for task assignment and scheduling in a
processor network,” Parallel Computing, vol. 20, pp. 1-14, 1994.

(145] J. Xu and D. L. Parnas, “Scheduling processes with release times, deadlines, precedence,
and exclusion relations,” IEEE Trans. Software Engineering, vol. SE-16, no. 3, pp. 360-369,
March 1990.

[146] J. Xu, “Multiprocessor scheduling of processes with release times, deadlines, precedence,
and exclusion relations,” JEEE Transactions on Software Engineering, vol. 19, no. 2, pp.
139-154, February 1993.

[147] D.K. Y. Yau and S. Lam, “Migrating sockets for networking with quality of service guaran-
tees,” in International Conference on Network Protocols, Atlanta, Georgia, October 1997.

[148] D. K. Y. Yau and S. S. Lam, “An architecture towards efficient OS support for distributed
multimedia,” in Proc. Multimedia Computing and Networking (MMCN ’96), January 1996.

[149] S. M. Yoo and H. Y. Youn, “An efficient task allocation scheme for two dimensional mesh-
connected systems,” in Proceedings of the 15th International Conference on Distributed
Computing Systems, pp. S01-508, Vancouver, Canada, 1995.

[150] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A new resource ReSer-
Vation Protocol,” IEEE Network, pp. 8—18, September 1993.

[151] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A new resource reser-
vation protocol,” IEEE Network, September 1993.

[152] W. Zhao, K. Ramamritham, and J. Stankovic, “Preemptive scheduling under time and re-
source constraints,” /JEEE Transactions on Computers, vol. 36, no. 8, pp. 949-960, August
1987.

[153] W. Zhao, K. Ramamritham, and J. Stankovic, “Scheduling tasks with resource requirements
in hard real-time systems,” IEEE Transactions on Software Engineering, vol. 13, no. §, pp-
564-577, May 1987.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



