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C H A PT E R  1

IN T R O D U C T IO N

Real-time computing [103.108] deals with predictable and  timely execution o f  tasks to 

meet application-specific t im ing constraints. In the past, real-time computing focused al

most exclusively on large and  expensive projects related to avionics, space, and  defense 

applications. Considerable research efforts were devoted to developing large-scale m ulti

processor/distributed systems for air traffic control, radar  tracking systems, and planetary  

exploration robots. In such applications, actual hardware costs tend to be much less than  

development costs, so real-time software algorithms developed for such systems focus pri

marily on providing correct functionality and trea t  efficiency as only a secondary concern 

at best. If performance needs to  be improved, it is usually done by using faster processors 

and networks (since hardware cost is not much of an issue).

The sharp drop in microprocessor prices over the past several years has resulted in dig

ital control being used in much smaller and simpler embedded applications [30] such as 

autom otive controllers, cellular phones, and home electronic appliances. Also, the  increas

ing popularity of the Internet has led to a new class of com puting/com m unication  devices 

called inform ation appliances (IAs) [71]. IAs are specialized devices with In ternet con

nectivity. Examples include web televisions (webTVs). personal digital assistants (PD A s), 

web video phones, and digital cellular phones with e-mail and web browsing capabilities. 

All of these devices (cars. IAs. and home appliances) are consumer products. T hey  are 

mass-produced in volumes of tens of millions of units, so th a t  unlike the large-scale appli

cations mentioned previously, manufacturing costs (including hardware costs) tend  to  be 

much more than development costs. Keeping production costs to a minimum is pa ram ount 

in such applications, meaning th a t  real-time software m ust be very efficient in its use of

1
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central processing unit (C PU ) and network resources.

Such consumer applications are now widespread and im portan t enough to make effi

ciency the primary concern in the design of algorithms for real-time system-level services. 

Building upon the schemes developed for large-scale applications, new schemes need to be 

developed for real-time task  scheduling, synchronization, and network communication. Like 

the schemes for large-scale systems, these new schemes must provide correct functionality, 

but beyond tha t ,  they must also satisfy the efficiency requirements of emerging real-time 

embedded applications.

1.1 Em bedded System s

All digital systems contained in a larger environment and controlling tha t  environment in 

some way can be called embedded system s  [30,35]. In most of these systems, the environment 

being controlled imposes response time restrictions on the embedded system in which case 

it is referred to as a real-time embedded system [30.35]. The on-board  navigation system 

of an aircraft is a real-time embedded system as is the engine controller of an automobile 

and the digital signal processing (DSP) controller in a cellular phone.

We are interested in consum er item  embedded systems. These are embedded systems 

used in consumer products such as cars, home electronic appliances, and IAs. Just  a  few 

years ago. embedded systems used in consumer products were simple microcontrollers run

ning a few tasks written in assembly or C. But the  embedded systems of today  (Figure 1.1) 

tend to be networked, run application code w ritten  in object-oriented ( 0 0 )  languages such 

as Java, execute an increasing number of complex tasks, and need real-time operating system 

(RTOS) [95] support — either to handle audio/video or to interact with the environment. 

The challenge is to provide a  functionally-rich operating system (OS) able to  support these 

new applications while keeping OS overheads to a  minimum. An efficient OS enables low- 

cost hardware to be used in consumer products and  this lowers per-unit costs. Moreover, 

slow hardware uses less electric power which prolongs battery life in mobile devices like cell 

phones and PDAs. Both these factors (low cost and  longer ba tte ry  life) make the  product 

a ttrac tive  for customers.

2
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communication devices
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Home
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Loosely-coupled distributed 
embedded systems

(In-vehicle, home automation)
web phone) .L A N /

fieldbus

wired
connection

wireless or 
wired connectionwireless

connection

Internet

Figure 1.1: Examples of consumer item embedded systems.

1.2 Research O bjectives

Existing solutions for basic problems in real-time computing (predictable and timely 

scheduling, synchronization, and communication) — which were developed with large-scale 

applications in mind and may have acceptable performance for such systems — are not 

efficient enough to be feasible for cost-conscious consumer products (as described later in 

this section). This results in embedded systems programmers often a ttem pting  to  improve 

performance through hand-crafted — thus ad hoc — techniques which not only increases 

design-time but also tends to be error-prone.

Researchers in the past have focused on large-scale applications [3.17.51.72] and with 

good reason: smaller applications used either mechanical or analog electronic control (as 

in automobiles) or. if using digital control, had a  simplistic design where the controller 

performed only very basic functions (as in various home appliances). These consumer 

item embedded systems were simple enough that hand-crafted software was feasible. All 

hardware was controlled directly by the application code: in fact, there was no distinction 

between OS and application software (Figure 1.2-a). This resulted in efficient use of avail

able hardware resources but at the cost of complete non-portability of software (which was 

acceptable in these simple systems). Today, the complexity of embedded systems is increas

ing rapidly. Cellular phone controllers — besides running traditional DSP algorithms — 

must also handle e-mail, web browsing, and security/encoding features. Automotive cruise 

controllers do more than  maintain a constant speed; they also provide collision avoidance

3
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features. Another factor contributing to this rapidly increasing complexity is networking. 

More and more embedded devices are connected to the Internet (such as web TV's and 

cellular phones). Also, applications which have multiple controllers (such as automobiles) 

now have these controllers interconnected by a  fie ld  bus [10.91] (local a rea  networks (LANs) 

specially designed for real-time control applications) to allow the controllers to coordinate 

their activities, thus providing new features and bette r  performance.

The increased complexity of today's embedded systems1 necessitates tha t  an RTOS be 

used to manage various resources (Figure l.'2-b). The OS services needed in these embedded 

systems are essentially the same as in any real-time system: the multiple application tasks 

must be properly scheduled to meet their deadlines, access to various resources (such as 

critical sections) must be managed through synchronization primitives to ensure m utual 

exclusion, and network communication must be handled predictably and  in a timely manner. 

But what is unique about embedded systems used in consumer products is th a t  these 

systems are mass produced. This makes low per-unit costs one of the  prim ary concerns in 

the design of these systems. Automotive applications alone account for tens of millions of 

embedded systems produced every year and the  same is true for the  simple (without Internet 

connection) cellular phones in use today. Annual production volumes of IAs (including 

cellular phones with Internet connectivity) are expected to reach 48 million units by year 

2001 [5]. At these volumes, ex tra  costs of even a  few dollars per unit t rans la te  into a loss of 

millions of dollars overall. So. the microprocessors used in these cost-conscious applications 

are those which have been in production for several years and their prices have dropped 

to a few dollars per chip. IAs communicate through wireless networks or over phone lines, 

so the network bandwidth available to them  is much less than  th a t  available to desktop 

workstations. Similarly, the field bus networks are of low bandwidth , usually 1-3 M bits/s  

[94]: on one hand this keeps costs down and on the other, this is all the  bandwidth tha t  

is really needed to exchange short messages of sensor readings and ac tu a to r  commands. 

This gives embedded systems a very different "flavor1 than larger applications with faster 

processors and networks. As a  result, solutions appropriate  for large systems have too 

high an overhead for embedded systems. For example, a multitude of RTOSs have been 

designed to  date which provide a predictable platform for task execution and inter-process

’ From here on, we use the term  embedded system  to  mean consumer item em bedded system , unless sta ted  
otherwise.

4
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communication, but m ost of these RTOSs like A lpha [51] and the Spring Kernel [109] 

were designed for large parallel and distributed systems with powerful processors and fast 

interconnection networks. But in the  context of smaller embedded systems, these RTOSs 

are  too  large to fit in on -board  ROM (since most of these systems do not have disks, ROM 

is used for non-volatile s to rage), their communication protocol architectures are too general 

(and  hence, too slow), and  their  run-time overhead is too high for low-cost processors used 

in embedded systems. A t tem p ts  to reduce the RTOS overheads have till now been in 

the  direction of taking a large RTOS and removing useful features from it like threads, 

preem ptive scheduling, and  m em ory protection, which tends to make an RTOS difficult to 

use. As a  result, em bedded system  designers tend to  shy away from off-the shelf RTOSs. 

op ting  for customized solutions which are inflexible, and costly to design and port.

In this thesis, we look at the  basic problems of real-time computing (task  scheduling, 

synchronization, and netw ork communication) from the perspective of embedded systems 

and  either adapt existing solutions or propose new ones which would be low enough in cost 

and  overhead to be feasible for embedded systems. In our solutions to these problems, we do 

not place any restrictions on the  application program mer (which makes application software 

design easier), nor do we rely on existence of special hardw are support (since adding special 

hardw are  features increases costs, thus being contrary  to  our prime objective). Instead, 

ou r  research focused on identifying characteristics peculiar to  real-time systems in general 

or embedded systems in particu lar and exploiting these properties to arrive a t  efficient 

solutions for OS services needed in embedded systems.

1 .2 .1  I m p le m e n ta t io n  P la t fo r m

We evaluate the perform ance of our various OS optimizations by implementing them 

within the EM ERALDS (Extensible Microkernel for Embedded. ReAL-time. Distributed 

Systems) RTOS. EM ER A LD S is a small kernel we designed for cost-conscious embedded 

devices. It provides m ultitask ing , efficient context switching, interrupt handling, and other 

basic OS primitives (details are in Chapter 3).

EMERALDS runs on the  M otorola 68040 processor which is typical of the low-cost CPUs 

used in embedded systems. O ur proposed schemes for task  scheduling, synchronization, and 

network communication (b o th  field bus communication as well as U D P /IP  communication 

over the Internet) were all implemented within EM ERALDS and performance m easured on

5
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the 68040.

EMERALDS was also ported to the Motorola 68332 and PowerPC 505 microcontrollers 

in a joint project with Ford Scientific Research Lab. Ford evaluated performance of EM ER 

ALDS on these microcontrollers and compared it to several commercial small RTOSs. Re

sults of these evaluations showed EMERALDS to have superior performance (see C hap te r  3). 

Moreover. EM ERALDS was also modified to conform to the OSEK autom otive OS s tan 

dard [89] and ported  to the Hitachi SH-2 processor in a  joint project with Hitachi Research 

Lab.

1.3 O utline o f  the D issertation

The remainder of this dissertation is organized as follows.

Chapter 2 discusses various OS services needed by embedded systems, and  motivates 

the need to optimize these services for embedded systems. It also gives an overview of 

our proposed approaches for optimizing these services and our primary contributions in 

achieving this goal.

Chapter 3 describes the base EMERALDS kernel and  covers some of the unique features 

of EMERALDS including memory protection scheme (where the kernel is m apped into each 

address space) and  low-cost local message passing using s ta te  messages.

Chapter 4 deals with task scheduling. It outlines the shortcomings of existing sched

ulers and describes how these may be overcome by combining the best features of existing 

schedulers to get combined sta tic /dynam ic scheduling.

Chapter 5 describes our low-overhead priority inheritance semaphore implem entation 

scheme. We show th a t  the scheme is broadly applicable to embedded systems and  does not 

put any limitations on the application programmer (unlike some other semaphore optim iza

tion schemes).

Chapter 6 focuses on audio/video communication requirements of IAs. We present a 

communication protocol architecture which reduces both  I-cache misses as well as d a ta  

copying overheads (without relying on any special network or hardware features), thus 

improving performance for bo th  short audio and long video messages.

Chapter 7 discusses scheduling messages on the Controller Area Network (C A N ) which 

is a popular field bus used in automotive and factory au tom ation  applications. T he  short

6
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packet size of CAN makes certain scheduling schemes infeasible while other schemes lead to 

low network utilization. We develop a hybrid scheme which is feasible for CAN and delivers 

high utilization.

Finally. C hap ter  8 concludes this dissertation by summarizing its primary contributions 

and suggesting directions for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

A p p l i c a t io n s

CO

SOI..
$100

S y s te m  c o s t

A p p l ic a t io n  

d i re c tly  c o n tro l

S /W  |
I sH A V  I

C P U  
8 -  o r  1 6 -b it

I /O
S e n s o rs ,  A c tu a to r s

J
D

C A p p l i c a t io n s

U s e r - le v e l

S y s te m - le v e l

RTOS
M u ltita s k in g , S c h e d u lin g , 

S y n c h ro n iz a t io n ,  C o m m u n ic a tio n

S o f tw a re  5 1 0 0 s S o f tw a re

' H a rd w a re H a rd w a re

CPU
3 2 -b it

S y s te m  c o s t G
I/O 

N e tw o rk s  
S e n s o rs .  A c tu a to rs

(a)
Embedded systems of the past 

(still used in some simple devices)

(b)
Today's embedded systems

$ 1 0 0 0  to  

$  I,(KM),(MM)
U s e r -le v e l

S y s te m - le v e l

Middleware

ZZL
RTOS

M u lt ita s k in g ,  S c h e d u lin g ,  

S y n c h ro n iz a tio n ,

S o f tw a re

H a rd w a re

CPU
3 2 -  o r  6 4 -b it ,  m u lt ip ro c e ss o r

S y s te m  c a s t

I /O
N e tw o rk s , D isk s  

S e n s o rs ,  A c tu a to rs

( c )

Large-scale systems

J

Figure 1.2: Software, hardware, and cost differences between consumer item embedded systems of the past, those of today, and large-scale 

systems.



C H A PT E R  2

OS SERVICES N E E D E D  B Y  E M B E D D E D  SYSTEM S

System-level services can be classified as either OS or middleware services. The OS en

compasses services which are widely used by almost all applications (thread/process m an 

agement. memory m anagem ent, communication primitives, etc.). Middleware services are 

implemented on top of the  OS (e.g.. in the form of daemon processes) and they provide ser

vices needed by specialized applications usually running on large-scale parallel or distr ibuted 

platforms. Examples of middleware services include reliable/a tom ic multicast [1.37]. con

sistent event ordering [12,59. 123], and task allocation in a  paralle l/d istr ibuted environment 

[107], At present, embedded systems used in consumer items are  not complex enough to 

require middleware services. Applications such as cellular phones and home electronics 

do not have a distributed architecture, so they simply do not need middleware services.1 

Autom otive controllers are  interconnected by a LAN. but the various subsystems in a  car 

are  only loosely-coupled so th a t  simple message-passing is enough to satisfy application 

requirements. As such, we will not discuss middleware services any further and instead, 

focus on OS services needed in embedded systems.

2.1 Real-Tim e OS Services

The primary purpose of an RTOS is to provide a predictable platform for execution of 

application tasks. In embedded systems, there is an added requirement th a t  OS services 

must be highly efficient. These efficiency and predictability requirements shape the design

’One exception is the Java v irtual machine. It supports application portab ility  rather than execution in 
a d istributed  environm ent, so it can be thought of as a specialized application rather than a middleware 
service.

9
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of various OS services as discussed next.

2.1.1 Scheduling

In a real-time system, a  task  scheduler must be used to multiplex the C P U  between the 

various tasks in a manner which ensures that task deadlines are met. Real-time schedulers 

can be classified into two broad categories: time-slice cyclic scheduler and priority-based  

schedulers. In time-slice scheduling, the entire execution schedule is constructed either off

line or at task admission tim e, and at run-time the scheduler simply assigns the  CPU to 

tasks according to these schedules. This is a simple and efficient scheme provided th a t  tasks 

have harmonic periods of execution. But cyclic scheduling usually does not work well for 

aperiodic tasks, tasks with mutually  prime periods, and workloads with both short and long 

periods (as discussed in detail in C hap ter  -1). Note that all three of these conditions occur 

commonly in modern-day embedded systems.

Priority-based schedulers use some policy to prioritize tasks, then at run-time, the sched

uler ensures that the CPU  is always assigned to the highest-priority active task. This re

quires maintaining a sorted queue of tasks which results in more run-time overhead than  

cyclic schedulers. However, priority-based schedulers are more capable of handling aperiodic 

tasks and do not impose any  restrictions on task periods.

Priority-based schedulers are further classified as static  or dynamic. Static schedulers 

assign a fixed priority to tasks. The rate-monotonic (RM) scheduler is the best-known 

static  scheduler under which tasks with shorter periods are assigned higher priorities. Under 

dynamic scheduling, each different invocation of a task can have a different priority. For 

example, the earliest-deadline firs t (E D F) scheme schedules tasks according to the  absolute 

deadlines of individual task  invocations: earlier the deadline, higher the priority.

On one hand, dynamic schedulers are able to deliver better  CPU utilization than  static 

schedulers, but on the o ther  hand, they incur higher run-time overhead because they  have 

to repeatedly re-sort tasks according to their changing deadlines. As such, for practical 

purposes, the two categories of priority-based schedulers often deliver the same low overall 

performance. As much as 10% of CPU cycles can be lost because of the scheduler. Till now. 

real-time system designers have accepted these lost cycles as the price to pay for ensuring 

predictability. However, such high scheduler overheads are not acceptable in cost-conscious 

embedded systems, which motivates development of new, low-overhead scheduling schemes.

10
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2.1 .2  Synchronized Access to Shared R esources

W hen tasks access a shared resource such as a critical section or I /O  device, the tasks 

m ust synchronize with each other to ensure m utual exclusion. Semaphores are commonly 

used for this purpose. One common use of semaphores is in object-oriented ( 0 0 )  program

ming. Updates to the s ta te  variables of objects have to  be protected through semaphores 

to ensure m utual exclusion, and this represents significant run-time overhead. The advent 

of Java  has made 0 0  programming important for embedded systems since Java provides 

networked embedded systems with the capability to download and execute code on-demand. 

This underscores the importance of providing efficient, low-overhead semaphores in embed

ded systems.

2 .1 .3  C om m unication

An increasing number of embedded systems today  tend to be networked. Some sys

tems (such as cellular phones and web TV's) may be connected to  the Internet whereas 

in o ther  systems (such as an automobile), multiple controllers within the system may be 

interconnected by a field bus. All such systems require OS support for real-time network 

communication. Moreover, some applications exhibit heavy message-passing between tasks 

running on the same processor. An RTOS for embedded systems must provide efficient 

support  for all these different forms of communication as discussed next.

N etw ork  C om m unication

Providing end-to-end real-time communication guarantees requires:

•  Scheduling messages on the network (a wide a rea  network (WAN) a n d /o r  a LAN/field 

bus) to ensure timely delivery, and

•  S tructuring end-host message processing to ensure predictable and timely delivery of 

messages to applications.

Supporting real-time traffic over WANs (such as the  Internet) requires th a t  routers be 

capable of handling prioritized traffic. Since WAN scheduling deals mostly with router 

issues, it does not affect the design of OS services for embedded systems and is beyond the 

scope of this thesis. Interested readers are referred to  [24.119].

11
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Since a field bus is contained entirely within an  embedded system, scheduling messages 

on a field bus is the  responsibility of the embedded systems designer. Moreover, each 

message transm itted  or received over a network (be it a  LAN or a WAN) needs to have 

some processing done on it by the OS (such as a ttach ing /str ipp ing  headers and determining 

destination). Ju s t  as application task processing m ust be scheduled properly in a real-time 

system , message processing also must be done in a predictable m anner. These issues are 

discussed next.

F i e ld  B u s  S c h e d u l in g :  The recent proliferation of embedded systems has resulted in

m any network protocols being designed specifically to  satisfy the real-time control require

m ents of embedded systems. These protocols include the Controller A rea Network (CAN) 

[47], Profibus [32]. FIP [28], SP-50 [44], M A P /T O P  [80], SERCOS [46], and T T P  [61]. All 

these protocols are known by the general name of fie ld  bus because they are meant to con

tro l the so-called field devices (sensors and ac tua to rs)  and all of them  have a  bus topology. 

Buses are preferable to rings, stars, or other point-to-point topologies because they require 

the  least am ount of wiring [68] which keeps production costs down.

Scheduling messages on a field bus is made difficult by the fact th a t  these messages 

are  usually ju s t  5-10  bytes long (which is all th a t 's  needed to exchange sensor readings 

and  ac tua to r  commands). This is in sharp con tras t  to large-scale LANs such as FDDI. 

E the rne t ,  and ATM where the minimum message size is 52 bytes or more. This influences 

th e  design of various scheduling schemes which append headers to each message. In larger 

W ANs, headers of even several bytes are acceptable, but in embedded systems where the 

entire  message is ju s t  5-10 bytes of data , the headers must be kept down to a few bits only.

E n d - H o s t  P r o t o c o l  P r o c e s s in g :  Because of their  web-centric na tu re ,  an efficient com

m unication subsystem is an important part of an  IA OS. The communication subsystem 

m ust efficiently and predictably handle both audio as well as video communication.

Predictability is needed to ensure timely processing of incoming and  outgoing messages 

[82]. The protocol architecture must provide mechanisms to guarantee  th a t  high-priority 

real-time messages (such as live voice) do not get unnecessarily delayed by the processing 

o f  lower-priority or non-real-time messages. At the  same time, the protocol architecture 

m ust provide for efficient execution of protocol code. The higher the  protocol processing

12
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overhead, less the  effective bandwidth delivered to applications. The architecture must be 

able to  efficiently handle not only long messages (such as video) but also short, frequent 

ones (such as live audio). Also, studies have shown th a t  receive-side protocol processing 

overhead is higher than  send-side overhead [55.57.79] and this is what limits th roughput:  

so, we focus on improving receive-side overhead while ensuring predictability.

L ocal M essage-P assin g

The traditional mechanism for exchange of information between tasks is message-passing 

using mailboxes. Under this scheme, one task prepares a message, then invokes a  system 

call to  send th a t  message to a mailbox, from which the message can be retrieved by the 

destination task. While this scheme is suitable for certain purposes, it has two m ajor 

disadvantages:

• Passing one message may take  50-100//S on a processor such as the M otorola 68040. 

Since tasks in embedded applications such as automotive usually need to  exchange 

several thousand messages per second (related to engine R P M ). this overhead is un

acceptable.

• If a  task needs to multicast the  same message to multiple tasks, it must send a  separate  

message to  each.

Because of these disadvantages, application designers are typically forced to use global 

variables to exchange information between tasks. This is an unsound software design prac

tice because reading and writing these variables is not regulated in any way which can 

introduce subtle, hard-to-trace bugs in the software. This motivates investigation of new 

mechanisms for intertask communication.

2.1 .4  M iscellaneous Services

Besides task  scheduling, synchronization, and communication support, the RTOS must 

also provide several standard  basic primitives such as address spaces, threads, efficient 

context switching, and ability to interact with the environment through in terrupts. Unlike 

OS services mentioned previously, the  overheads of context switching and interrupt handling 

are dicta ted  primarily by the hardw are structure (such as number of registers and processor's 

in te rrup t handling mechanism). B u t  still, these services need to be optimized by fine-tuning

13
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OS code.

2.2 A  Remark on Extensible OS Architectures

A recent hot topic of discussion in the OS community is the issue of extensibility. This 

deals with the OS providing mechanisms which allow the OS to be extended to  provide 

new functionality. Extensibility falls into three broad categories: the microkernel approach 

[38.75]. the grafting approach [7.100]. and library OSs based on a thin kernel layer which 

securely exports hardware resources [22.53]. The microkernel approach envisions a  small 

kernel implementing address spaces, interprocess communication, and o ther  minimal core 

OS functionality while all o ther services (such as network communication and  file sys

tems) are provided by privileged user-level servers. The flexibility arises from the  ability to 

change/modify servers without modifying the core kernel. The grafting approach allows for 

"direct" extension of the  kernel by allowing code fragments (written in some safe language) 

to be added to the kernel. The kernel executes these fragments in a sandbox or o ther  such 

safety mechanism to protect against malicious behavior. Finally, the library OS approach is 

similar to  the microkernel approach in that  it relies on a minimal kernel, but it differs from 

microkernels in that the  kernel is even more stripped-down than  in the case of microkernels. 

In fact, the kernel only provides an abstraction layer on top of actual hardware and all real 

functionality is implemented by library routines.

Terms such as "small" and "efficient" are commonly seen in literature related to exten

sibility. However, the reader should not confuse extensibility issues with the issues explored 

in this thesis. Extensible OSs lead to efficiency in the sense that  application-specific opti

mizations can be easily incorporated in the OS. However, extensible OSs in no way suggest 

what those optimizations should be. Our work deals with devising OS optim izations for 

embedded systems. As such, our work is orthogonal to OS extensibility issues.

2.3 Proposed Approaches and Prim ary Contributions

In the previous subsections, we identified task  scheduling, synchronization, and  commu

nication as key OS services which must be optimized to achieve good OS perform ance in 

embedded systems. Listed below are brief overview's of the approaches we took to optimize 

these services and our primary contributions.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• T a s k  s c h e d u l in g :  The earliest-deadline-first (E D F ) [76] scheduling scheme ideally sched

ules workloads w ith utilizations of up to  100%. B ut this is a theoretical limit which is not 

achieved in practice because of the high run-tim e overhead incurred by ED F in sorting 

tasks according to  deadlines. On the o ther hand, th e  rate-m onotonic (RM ) [76] schem e has 

a  much lower run-tim e overhead since it does not have to repeatedly re-sort th e  tasks, but 

on average, it delivers a schedulable utilization o f only 88% [67]. For a p rac titio n er, the 

sum of these two overheads (the run-tim e overhead plus schedulable u tilization being less 

than  100%). which we call the total scheduling overhead, is a “true” measure o f the  perfor

m ance of a  scheduler because it indicates how m any CPU  cycles will actually  be available 

for execution of application tasks.

We developed a mechanism to partition  tasks in a  given workload into two g roups, and we 

dem onstra ted  th a t when one group is scheduled by ED F and the other by RM. the  resulting 

to ta l scheduling overhead is less than  th a t for e ither EDF or RM alone. This schem e — 

which we call combined sta tic/dynamic  (CSD) scheduling — lowers run-tim e overhead by 

using m ultiple scheduling queues, but a t the same tim e, delivers high schedulable utilization 

by properly assigning tasks to the different queues. A proper partitioning of tasks is critical 

to the good performance of CSD. We present an ite rative  m ethod to partition  the  tasks in a 

given workload into two groups. W hen tasks in one group are scheduled by E D F and tasks 

in the o th e r group are scheduled by RM, the total scheduling overhead (run-tim e overhead 

plus schedulable utilization being less than  100%) is less than  that of ED F or RM alone. 

By reducing this to ta l overhead. CSD outperform s both RM and EDF in real system s.

•  E f f i c i e n t  s e m a p h o r e s :  O bject-oriented program m ing can be feasible in m ulti-th readed  

em bedded system s only if the OS provides efficient, low-overhead sem aphores. We present 

a new sem aphore implem entation scheme which saves one context switch per sem aphore 

lock operation  in most circumstances. Note th a t an efficient semaphore schem e is useful 

not only for 0 0  programming but for any application requiring synchronization between 

m ultiple th reads of execution.

Previous work in improving sem aphore perform ance has focused on either relaxing the 

sem aphore sem antics to get better performance [111], coming up with new sem antics and 

new synchronization policies [114]. or pu tting  restrictions on the application p rogram m er to 

disallow certain  actions (such as making blocking system  calls) while holding a  sem aphore 

[89]. The problem  with these approaches is th a t these new/modified sem antics m ay be suit-
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able for some particu la r applications but usually  they  do not have wide applicability. We 

took the approach of providing full sem aphore sem antics (w ith priority  inheritance [101]). 

bu t optim izing the  im plem entation of these sem aphores by exploiting ce rta in  features of 

em bedded applications [126]. We rely on th e  fact th a t  the order in which em bedded ap 

plications access objects (which is the sam e as the order in which sem aphores are used) 

can be determ ined a t compile-time. This is tru e  because of the sensor-contro ller-actuator 

loop executed by typical em bedded applications. T he  compiler provides h in ts which enable 

the OS to schedule th reads for execution only when the sem aphores th ey  need are avail

able. Sem aphore lock system  calls succeed w ithout blocking, resulting in reduced context 

switching and im proved performance.

• P r o to c o l  a r c h i t e c tu r e  f o r  a u d io /v id e o :  Real-tim e audio and video com m unication 

over the Internet is an integral part of many IAs which means th a t despite slow hardw are, the 

com m unication subsystem  w ithin the OS m ust be able to  efficiently handle heavy network 

traffic. The subsystem  m ust be structured to  handle bo th  short as well as long messages 

with minimal overhead. Handling short messages efficiently is im p o rtan t for applications 

such as Internet telephony where live voice packets are usually ju st 30-50  bytes (as in the 

GSM audio encoding scheme [99] used in various In ternet phones). O n the  o ther hand, 

video applications exchange long messages (10-15  kbytes [25]) and these m ust be handled 

efficiently as well.

We devised optim izations for reducing receive-side network protocol processing overhead 

thus enabling efficient handling of real-time audio and video messages [128]. (W e focus on 

receive-side overhead since it usually exceeds send-side overhead.) In o u r schem e. I-cache 

miss overheads are m inimized by safely bypassing m ultiple protocol layers, benefiting short 

messages such as live audio. Moreover, message d a ta  needs to be copied only once (w ithout 

any hardw are support from the  network a d a p te r  or any restrictions on th e  netw ork A PI) 

which benefits long messages such as video and  stream ing  data .

• C A N  s c h ed u l in g  a n d  h o s t  su ppor t:  T he  C ontroller A rea N etw ork (C A N ) is being 

widely used in real-tim e control applications such as autom obiles, a irc ra ft, and au tom ated  

factories [118]. CAN features priority-based bus a rb itra tio n , so scheduling real-tim e m es

sages on CAN am ounts to  properly assigning priorities to  messages to  ensure  transm ission 

by their deadlines.
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Pure earliest-deadline first (E D F) scheduling of messages is not useful for CAN: packets 

have only 8 bytes of payload so using a 20+  bit deadline as th e  priority  (and including it with 

each packet) results in unacceptable network overhead. Fixed-priority  deadline-m onotonic 

(DM ) scheduling needs fewer bits to  express priorities bu t yields relatively low utilization. 

YVe designed a scheduler called the mixed traffic scheduler (M T S) which combines E D F and 

DM by using quantized deadlines [122.125.127]. Packets are  scheduled based on deadlines 

if deadlines are distinguishable a fter quantization; otherw ise they  are scheduled using DM 

priorities. Not only is MTS feasible for CAN (as dem onstra ted  by its im plem entation within 

EM ERA LD S), it also delivers higher network utilization th a n  DM. □

The following chapters discuss these scheduling, synchronization, and com m unication 

issues in detail.
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C H A PT E R  3

EM ERALDS: A  REAL-TIM E O PER A TIN G  SY ST E M

EMERALDS is a sm all, fast kernel we have designed for use in em bedded devices [124]. 

It features efficient contex t switches, in terrupt handling, and memory usage. It provides full 

memory protection between processes, features an efficient system call m echanism , and has a 

low-overhead in tra-node inter-process com m unication (IPC ) scheme. We used EM ERALDS 

as a platform  for im plem enting and evaluating the  various optim izations we developed for 

scheduling, sem aphores, and communication.

The main goal in designing EMERALDS was to  see which features of em bedded systems 

can we use to reduce size and overhead. Em bedded system s provide m any opportun ities for 

simplification. Processes tend  to  exchange short, simple messages like sensor readings and 

ac tuato r com m ands. A file system is usually not needed: all executable code is in ROM 

and all dynamic m em ory requirem ents are satisfied by RAM. These characteristics allow us 

to reduce the system  call overhead, simplify IPC . and keep EM ERALD S' size do%vn to a 

minimum.

An im portant question related to reducing size was which OS services to  include in 

EMERALDS and which to  leave out. Many RTOSs leave out common OS features like 

memory protection and th reads in an a ttem p t to  reduce size and increase speed. We did not 

take this approach. Instead, we provide all comm on OS services but use novel mechanisms 

for optimizing these services. This enabled us to  m eet our goals of efficiency and small size 

w ithout scaling back on functionality.

In the next section we give a brief overview of EM ERALDS. Sections 3 .2 -3 .5  give the de

tails of EM ERALDS, covering processes, threads, m em ory protection. IPC . etc. Section 3.6 

gives some tim ing m easurem ents and Section 3.7 s ta tes  conclusions and fu tu re  work.
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Figure 3.1: EM ER A LD S’ architecture.

3.1 A rchitectural Overview

EM ERALDS is a real-time operating system  w ritten in the C + +  language. Following 

are EM ER A LD S' salient features as shown in Figure 3.1.

• M ulti-threaded processes:

— Full memory protection between processes.

— T hreads are scheduled by the kernel.

• IPC  based on message-passing and m ailboxes. Shared m em ory is also provided.

— Optim ized local message passing

• Sem aphores and condition variables for synchronization: priority  inheritance for semaphores.

• Support for communication protocol stacks.
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• Highly optim ized context switching and in terrup t handling.

• Support for user-level device drivers.

Note th a t EM ERALD S does not include a  file system  since our ta rg e t applications 

are in-m emory: ROM  is used as non-volatile storage and on -board  RAM satisfies all run

tim e memory requirem ents of the application. Leaving ou t th e  file system  significantly 

reduces the size of th e  OS. Also, in m ost em bedded control system s (such as autom otive), 

the different nodes exchange only short sensor readings and a c tu a to r  com m ands over a 

field bus. T hreads can exchange such sim ple messages by ta lk ing  directly  to  the  field bus 

device driver w ithou t using any protocol stack, so EM ERA LD S does not have a  built- 

in com m unication protocol stack. However. IAs do need a p ro toco l stack  for Internet 

com m unication, so EM ERALDS incorporates a protocol a rch itec tu re  which can be used to 

extend EM ERALD S to  include a stack if needed (see C hap ter 6).

The rest of th is chapter discusses various system  calls provided by EM ERALDS for 

p rocess/th read  m anagem ent, synchronization, and com m unication: as well as simple op

tim izations we developed for mem ory pro tection , efficient system  calls, and local message 

passing. EM ERALD S also uses novel techniques for task scheduling, sem aphores, and inter

node com m unication, and these techniques are described in de ta il in la te r chapters.

3.2 P rocesses and Threads

EM ERALDS provides m ulti-threaded processes. A process in EM ERALD S is a passive 

entity, representing a  protected address space in which th reads execute. Each th read  has 

a user-specified prio rity  and is preem ptively scheduled by the kernel based on this priority. 

Table 3.1 lists the  EM ERALDS system  calls related to processes and  th reads.

Sy s te m call Impor tant  P aram eters Func tion

c r e a t e - p r o c O  

c r e a t e _ t h r e a d ( )  

j o in _ t h r e a d ( )  

d e t a c h _ t h r e a d ( )

Thread priority  

Thread priority  

Thread ID 

Thread ID

C reate process w ith  1 thread  

C reate thread

W ait for child thread  to  finish 

Tell kernel: w ill n ot w ait for thread

Table 3.1: Process and thread  system  caUs.
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T he two most im portant features o f EMERALDS processes and threads a re  m em ory 

p ro tection  and real-time scheduling. Scheduling is covered in detail in C hap ter 4. Here we 

discuss EM ERALD S' memory protection scheme.

M e m o r y  P r o te c t io n

The need for memory protection in tim e-shared system s is indisputable. One user's 

processes m ust be protected from all o ther — possibly malicious — users. In single-user 

em bedded system s, memory protection is useful for slightly different reasons. In relatively 

isolated em bedded systems such as autom otive controllers, memory pro tection  provides 

softw are fault isolation. Bugs in application code can m anifest themselves as malicious 

faults, which, w ithout m emory pro tection , can corrupt the  memory of o ther processes or 

even the kernel. W ith memory p ro tection , a memory access outside of the process' address 

space will cause a TRAP to the  kernel and recovery action may be taken.

M emory protection is even more im portan t in relatively open embedded system s such 

as IAs. Downloaded Java code may be intentionally malicious, making m em ory protection 

a  m ust in such systems.

All these benefits of m em ory protection will not be of much practical use if the  imple

m entation  of memory protection was not efficient and small-sized. To meet these goals, we 

m ade full use of the fact th a t our ta rge t applications are in-memory. This enabled us to 

reduce the to ta l size of a page tab le to  a few kbytes com pared to several m egabytes for 

v irtual m em ory systems with disk backing stores. In the la tte r , the entire page tab le must 

exist, even if most of the address space is unused. This is needed to distinguish unm apped 

pages from those which have been swapped out to d isk .1 But for in-memory system s, this 

distinction is not needed. This allows the page table to be trim m ed down using the hier

archical na tu re  of most page tables. For example, the M otorola 68040 has three-level page 

tables. Each th ird  level page table represents ‘256 kbytes of address space. So. if a  process 

has three segments — code, d a ta , and stack — and each is less than 256 kbytes, then its 

page tab le will be as shown in Figure 3.2.

All but th ree entries in the first-level page table are null, so only three second-level page

’Some OSs such as Linux use segm ent registers present in x86 processors to distinguish unm apped and 
swapped out pages. The VAX-11 provided a page table length register to achieve the sam e goal [70]. 
However, such hardware support is not available on many popular processors used in em bedded system s 
such as 680x0, so an alternate scheme is needed in these CPUs.
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First
level

null
null
null

null
null

Code

Second
level

null
null
null
null
null
null
null

D a t a f Stack ,

null
null
null
null
null
null
null

null
null
null
null
null
null
null

Third
level

Figure 3.2: A typical page table in EM ERALD S. The hierarchical s truc tu re  is used to 

reduce the size of the page table.

tables exist. An a ttem p t to access an address covered by an invalid entry  will result in a 

T R A P to the kernel indicating a bug in the  software. Similarly, in each second-level page 

table, only one en try  is valid and all o ther third-level page tables do not exist. This way. 

to ta l size of the page table is ju st 2432 bytes for a page size of 8 kbytes. (More third-level 

page tables are needed if any segment exceeds 256 kbytes). W hile this example is specific to 

the MC 68040. m ost o ther modern CPU s also provide three-level page tables with sim ilar 

param eters.

The small size of page tables not only saves memory, but also enables o ther optim izations 

like mapping the  kernel into every address space (see Section 3.3). This greatly reduces the 

overhead associated with system calls, m aking our im plem entation of memory protection 

feasible for em bedded systems.

3.3 Efficient System  Call M echanism

Above we m entioned the advantages of memory protection. Its disadvantage is the 

context switch overhead incurred when m aking system calls (because the user and kernel 

usually exist in separa te  address spaces). This is why some RTOSs om it memory protection 

so they only have to  make subroutine calls to  access kernel services; not so with mem ory
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: :::: User code:::

Free

;;;;;;KemC;t code: ::
: User data ::

Free

User stack ...
Kernel data
Kernel stack

Figure 3.3: A typical address space in EM ERALDS. A rea labeled kernel stack is used for 

in te rru p ts  and area labeled user stack  is used by both  the  user and the  kernel.

pro tection .

W e  resolved this problem by m apping the kernel in to  each user-level address space 

(unlike o ther OSs in which the kernel runs in its own address space). A typical 32-bit 

EM ERALD S address space is shown in Figure 3.3.

W ith  this type of m apping, a switch from user to  kernel involves ju st a TR A P (which 

sw itches the CPU from user to  kernel/supervisor m ode) and a  jum p to the app rop ria te  

address: there is no need to  switch address spaces. Also, system  call code in EM ERALDS 

is designed to  take param eters stra igh t off the user's stack  (possible since both kernel and  

user are  in the same address space). This scheme has the  following advantages.

• No need to copy param eters from user space to  kernel space. All th a t Locore.S 

(assem bly code used for m aking system  calls) does is point the  kernel stack poin ter to  

the  user stack and some o ther m inor stack ad justm en ts. As a result, system  calls in 

EM ERALDS (except those involving servers) have an  overhead com parable to  th a t  of 

a subroutine call (see Section 3.6).

•  No need to transla te  pointers. If the  user and kernel are in separate address spaces, 

the  d a ta  pointed to by a  pointer m ust be copied to  the kerneFs address space, and  

a pointer to this copy passed to  the  system call rou tine (or a t least, the app rop ria te  

user memory pages need to  be m apped into the  kernel’s address space). B ut in 

EM ERALDS, all user pointers are valid inside the kernel, so no need to do any d a ta
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copying.

Im plem entation : M apping the kernel into each user address space is feasible in EM ER

ALDS because bo th  th e  kernel and its d a ta  segm ent are so small. In o ther operating system s 

w ith s tandard  v irtu a l memory, the size of the  kernel's d a ta  segm ent is so large (due to large 

page tables) th a t m apping  it into each user address space is not feasible (unless hardw are 

support is available as already mentioned in Section 3.2). The m apping is achieved by 

having appropria te  second-level page table en tries point to  com m on third-level page tables 

which map the kernel. T hus, size of a process’s page table is not affected. Also, the kernel 

areas are p ro tected  from  corruption by faulty user code by using page table entries to m ark 

them  as read-only for user mode. This way. user processes are protected  from each o ther 

and the kernel is p ro tec ted  from user processes.

3.4 Inter-P rocess C om m unication (IPC )

T he prim ary IPC  m echanism  in EMERALDS — for both  inter- and intra-processor com m u

nication — is m essage-passing. For in tra-processor com m unication. EM ERALDS also pro

vides shared m em ory as well as a specialized, high-efficiency local message passing scheme.

3 .4 .1  M e s s a g e -P a s s in g  U sin g  M a ilb o x e s

EM ERALDS provides the system calls listed in Table 3.2 for exchanging messages be

tween threads. These calls are used to  create &: delete m ailboxes and send !t receive mes

sages. EM ERALDS also allows a 32-bit priority  to  be assigned to  each message which is 

used to sort messages in a  mailbox so tha t the  receiver th read  retrieves the highest-priority 

message first.

M essage-passing in EM ERALDS has been designed w ith efficiency and flexibility in 

m ind. Most com m unication networks designed for em bedded, real-tim e systems such as 

CAN [47], T T P  [61]. SERCOS [46], SP50 [44], e tc .. provide the  bo ttom  two layers of the 

ISO OSI reference stack  (the  physical and data-link  layers) which is sufficient for exchanging 

sim ple messages (all th a t  the  sender has to do is ta lk  directly to  the  network device driver). 

For more complex IP C . the  remaining stack layers m ust be im plem ented in software. So 

EM ERALDS allows bo th  direct network access as well as use of protocol stacks. EM ER-
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System call Important Parameters Function

m b o x _ crea te ()

m b o x -d e le te O

m sg_sen d()

m sg _ r e c e iv e ( )  

tr y _ m sg _ r e c e iv e ( )

C PU -w ide unique identifier 

M ailbox identifier 

D estination  node and m ailbox, 

local server m ailb ox  

M ailbox identifier 

M ailbox identifier

Create m ailbox  

Delete m ailbox  

Send m essage to  m ailb ox

Retrieve m essage from  m ailbox  

Non-blocking version o f  m s g -r e c e iv e ( )

Table 3.2: M essage-passing system  calls. The last two calls are for use by protocol servers.

ALDS also provides optim izations for local message-passing between th reads on the same 

node. Here we describe the  EM ERALDS mechanisms for local m essage-passing. Details of 

the network com m unication arch itectu re  of EMERALDS are in C h ap te r 6.

Local M essage-P assing:

Suppose th read  T l  wants to send a  message to another th read  T 2 on the same node. 

The la tte r  has a m ailbox with identifier A/2. Thread T l will use the  m sg_send() system 

call to  send this message, specifying the  destination mailbox (A/2 in th is case) and message 

priority. The kernel deposits the m essage directly into A/2, then unblocks T l .  T 2 can then 

retrieve this message from A/2 in two ways:

1. T 2 can execute a m sg _ re c e iv e ()  system  call.

2. W hen T2  creates A/2, it can specify an in terrupt service routine (ISR ) to be executed 

whenever a message arrives in A/2. This ISR may execute m sg _ re c e iv e ()  to retrieve 

the message.

The first mechanism is suitable for periodic messages while the second one is for infrequent 

sporadic and aperiodic messages.

Note th a t m sg _ re c e iv e O  is a blocking system  call which may not always be suitable for 

real-time system s. Thus. EM ERALDS provides its non-blocking counterpart 

try _ m sg _ re c e iv e ()  which returns an error if a mailbox has no messages.
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3 .4 .2  L o ca l M e ssa g e -P a ss in g  U s in g  S ta te  M essa g es

From the perform ance point of view, global variables are ideal for sharing inform ation 

between tasks, but if reading from and w riting to  global variables is not regulated, subtle  

bugs can crop up in the  application code. S ta te  messages [60] use global variables to  pass 

messages between tasks, but these variables are  managed by code generated  autom atically  

by a software tool, not by the application designer. In fact, the application designer does not 

even know th a t global variables are being used: the interface presented to  the program m er 

is almost the sam e as th e  mailbox-based message-passing interface.

S tate messages are  not meant to  replace traditional message-passing, but are m eant 

as an efficient a lte rnative  to  trad itional message-passing for a wide range of situations as 

explained next.

S tate  M essage Sem antics

State messages solve the single-writer, m ultiple-reader com m unication problem. One 

can imagine th a t s ta te  message "m ailboxes" are associated with the senders, not w ith th e  

receivers: only one ta sk  can send a s ta te  message to a "mailbox” (call this the writer task ) 

but many tasks can read the "m ailbox” (call these the reader tasks). This way. s ta te  

message "mailboxes" behave very differently from traditional mailboxes, so from now on we 

will call them  SMmailboxes. The differences are summarized below:

• SMmailboxes are associated with the w riters. Only one w riter may send a message 

to an SM m ailbox. but multiple readers can receive this message.

• A new message overwrites the previous message.

• Reads do not consum e messages, unlike standard  mailboxes for which each read op

eration pops one message off the message queue.

• Both reads and writes are non-blocking. This reduces the num ber of context switches 

suffered by application tasks.

U sefulness

In real-tim e system s, a piece of d a ta  such as a sensor reading is valid only for a certain  

duration of tim e, after which a new reading m ust be made. Suppose task  7 \ reads a sensor 

and supplies the reading to task T2 . If T\ sends two such messages to  T2 , then the  first
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message is useless because the second message has a more recent and up-to-date sensor 

reading. If trad itio n a l mailboxes w ith queues are used for com m unication, then To m ust 

first read the old sensor reading before it can get the new one. M oreover, if m ultiple tasks 

need the sam e sensor reading, T\ m ust send a  separate message to  each.

S ta te  m essages stream line this en tire  process. An SM mailbox S M I  will be associated  

with Ti  and it will be known to all tasks th a t S M I  contains the reading of a certain  sensor. 

Every tim e Ti reads the  sensor, it will send th a t  value to S M I .  Tasks which want to  receive 

the sensor value will perform individual read operations on S M I  to  receive the m ost up- 

to -date  reading. Even if T\ has sent m ore than  one message to S M I  between two reads by 

a task , the reader task  will always get the  m ost recent message w ithout having to  process 

any o u td a ted  m essages. More im portan tly , if a reader does two or m ore reads betw een two 

writes by 7 \ .  th e  reader will get the  sam e message each tim e without blocking. This makes 

perfect sense in real-tim e system s because the da ta  being received by the reader is still 

valid, up-to -date , and useful for calculations.

T he single-w riter, m ultiple-reader situation  is quite common in embedded real-tim e sys

tems. Any tim e d a ta  is produced by one task  ( may it be a sensor reading or some calculated  

value) and is to  be sent to one or m ore o ther tasks, s ta te  messages can be used. But in 

some situa tions, blocking read operations are still necessary such as when a task m ust wait 

for an event to occur. Then, trad itional message-passing a n d /o r  sem aphores m ust be used. 

Hence, s ta te  messages do not replace trad itional message passing for all situations, bu t they 

do replace it for m ost inter-task com m unication requirem ents in em bedded applications.

Previous W ork

S ta te  messages were first used in the MARS OS [60] and have also been im plem ented in 

ERCOS [9‘2]. T he s ta te  message im plem entation used in these system s as described in [62] 

is as follows. T he problem with using global variables for passing messages is th a t a  reader 

may read a half-w ritten  message since there is no synchronization between readers and 

writers. This problem  is solved by using an A’-deep circular buffer for each s ta te  m essage. 

An associated po in ter is used by the w riter to post messages, and used by readers to  retrieve 

the latest message. W ith a deep enough buffer, the scheme can guaran tee th a t d a ta  will 

not be corrupted  while it is being read by a reader, but a large N  can make sta te  m essages 

infeasible for our lim ited-m emory ta rg e t applications.
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T he solution presented in [62] Limits .V by having readers repeat the  read operation  

until they get uncorrupted d a ta . This saves m em ory at the  cost of increasing the read 

tim e by as m uch as several hundred microseconds, even under the assum ption th a t  writers 

and readers run on separate processors w ith shared memory. W ith such an arch itec tu re , 

it is not possible for a  reader to preem pt a w riter. But we want to use s ta te  m essages for 

com m unication between readers and  w riters on the  sam e C PU  without increasing the read 

overheads. For this situation, depending on the relative deadlines of readers and  w riters. 

.V may have to  be in the hundreds to  ensure correct operation.

O ur solution to  the problem is to  provide OS support for s ta te  messages to  reduce .V to 

no more th an  5-10 for all possible cases. In the following, we describe our im plem entation 

scheme for s ta te  messages including the calculation of .V for the case when bo th  readers 

and w riters are  on the same C PU . T hen , we describe a system  call included in EM ERALD S 

to support s ta te  messages.

I m p le m e n ta t io n  in  E M E R A L D S

Let B  be the  maximum num ber of bytes the CPU  can read or w rite in one instruction . 

For most processors, B  = 4 bytes. We have im plem ented a  tool called M e s s a g e G e n  which 

produces custom ized code for the  im plem entation of s ta te  messages depending on w hether 

the message length L exceeds B  or not.

The case for L <  B  is simple. M e s s a g e G e n  assigns one L-byte global variable to  the 

s ta te  m essage and provides m acros through which the w riter can write to this variable and 

readers can read from it. Note th a t  for this simple case, it is perfectly safe to  use global 

variables. T he  only complication possible for a global variable of length <  B  is to  have one 

w riter accidentally overwrite the  value w ritten to  the variable by another w riter. But this 

problem cannot occur with s ta te  m essages because, by definition, there is only one writer.

For the  case of L > B. M e s s a g e G e n  assigns an A'-deep circular buffer to  each s ta te  

message. Each slot in the buffer is L  bytes long. M oreover, each s ta te  message has a 1-byte 

index I  which is initialized to 0. Readers always read slot I ,  the w riter always w rites to 

slot /  -I- 1. and  /  is increm ented only after the w rite is complete. This way readers always 

get the m ost recent, consistent copy of the message.
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• _____________maxReadTime ;

H ------------ N— Ut---------------|N--------------- |N----------------- |N---- --

’ d  " "  P-------* dmcw  w

Figure 3.4: Calculation o f x max. W rite operations are denoted by X. Excluding the first

w rite, there  are (_(m a x R e a d T im e  — (Pw -  dw)) /P w\ =  4 w rites, so x max =  5.

C alcu lating  Buffer D ep th  .V: Now. we address the issue of how to  set .V. the dep th  of

the buffer. It can happen th a t  a reader starts  reading slot i of the  buffer, is preem pted after 

reading only part of the m essage, and resumes only after the  w riter has done x  num ber of 

write operations on this m essage. Then. .V must be g rea ter than  the largest value x  can 

take:

.V =  max(2, x max + 1).

Let m axR eadTim e be the m axim um  tim e any reader can take  to  execute the read operation  

(including time the reader m ay stay  preem pted). Because all tasks m ust complete by their 

deadlines (ensured by the scheduler), the maximum time any task  can be preem pted is d — c. 

where d  is its deadline and  c is its execution time. If cr is the  tim e to execute the  read 

opera tion , then m axR eadTim e =  d  — (c — cr ).

The largest num ber o f w rite operations possible during m axReadTim e occur for the  

situation  shown in Figure 3.4 wrhen the first write occurs as late as possible (just before the 

deadline of the writer) and  the  rem aining writes occur as soon as possible after th a t (right 

a t the beginning of the w rite r 's  period). Then.

- m a x  1 —
maxReadTime — ( Pw — dw)

Pw

where Pw and dw are the  w rite r 's  period and deadline respectively. T hen. V can be calcu

lated using x max.

S low  R e a d e rs :  If it tu rn s  ou t th a t  one or more readers have long periods/deadlines (call

them  slow readers) and as a  resu lt. x max is too large (say, 10 or more) and too much m em ory 

will be needed for the buffer, then EMERALDS provides a  system  call which executes the  

sam e read operation as described above, but disables in terrup ts so th a t copying the message 

from the buffer becomes an  atom ic operation. This call can be used by the slow readers 

while the  faster readers use the  standard  read operation. By doing this, .V depends only
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on the faster readers and memory is saved. T he  disadvantage is th a t th e  system  call takes 

longer than  the s tan d ard  read operation. B ut this system call is invoked only by slow 

readers, so it is invoked infrequently and the e x tra  overhead per second is negligible. Note 

th a t the  write operation is unchanged no m a tte r  w hether the readers a re  slow or fast.

3 .4 .3  S h ared  M e m o r y

EM ERALDS allows page-based sharing of memory between processes running on the 

sam e CPI*. Two system  calls are provided for th is purpose: sh m _ a ttach () and shm _detach() 

The system  call sh m _ a ttach () is called w ith  an identifier. If no shared-m em ory segment 

exists w ith this identifier, then physical m em ory is allocated and a new segm ent is created. 

This segment is m apped into the calling process's address space and a poin ter to  the s ta rt 

of the segment is retu rned . When sh m _ a tta c h ()  is called again with the  sam e identifier by 

any process on the sam e CPU . the kernel finds the segment with th a t identifier and maps 

it into the calling process's address space (no new memory is allocated).

The system  call shm _detach() does the opposite of s h m _ a tta c h () . It unm aps the 

nam ed segment from the calling processes address space. Moreover, if no o ther process has 

this segment m apped into its address space, then  the physical memory associated  with the 

segm ent is also freed up. This provides a sim ple program m ing model. W hen processes need 

to  use a  shared m em ory segment, they call sh m _ a tta c h ()  with th a t segm ent's identifier. 

The first such call allocates physical memory and  all the later ones ju st m ap in the segment. 

W hen processes no longer need a segment, they  call shm _detach (). These calls unm ap the 

segment from their address space, except the  last call which also frees up the  physical 

memory. These sem antics are easier to use th a n , for example, UNIX [110] sem antics where 

shared memory m ust be explicitly created before m apping it into an address space, and 

must be explicitly deleted after unm apping it from each address space.

3.5 M iscellaneous OS Services

3 .5 .1  S em a p h o res

T hreads often need to ensure m utual exclusion when accessing critical regions of code 

dealing with shared resources. EMERALDS provides semaphores (som etim es also known as 

mutexes  as in POSIX terminology) for this purpose. The system calls in Table 3.3 are used
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to create, delete, lock, and unlock sem aphores. If a thread tries to  acquire a sem aphore 

which is a lready  locked, th a t thread will block and will be added to a  queue of threads 

waiting for th a t  sem aphore. W hen the lock holder releases the sem aphore, the highest- 

priority th read  in the  queue will be unblocked. An alternative to  the  blocking sem_Lock() 

call is the  s e m _ try lo c k ()  call which returns an error if the sem aphore is already locked. If 

the sem aphore is free, it will be locked. EM ERALDS uses certain  optim izations to reduce 

the overhead o f sem aphore locking. Details are in C hapter 5

System call Impor tant  Parameters Function

se m _ c r e a te ()  

s e m j ie le t e O  

sem _Lock() 

s e m _ tr y lo c k ( ) 

se r a j in lo c k O

C P U -w id e unique ID 

Sem aphore identifier 

Sem aphore identifier 

Sem aphore identifier 

Sem aphore identifier

C reate sem . 

D elete sem . 

Acquire sem . 

N on-block ing  

Release sem .

c v _ c r e a te ( )  

c v _ jd e le te ()  

c v _ lo c k ()  

c v _ u n lo c k ( )

C P U -w id e unique ID 

CV identifier 

CV identifier 

CV identifier

Create C V  

D elete C V  

Acquire C V  

Release C V

Table 3.3: System calls for sem aphores and condition variables.

3 .5 .2  C o n d it io n  V ariab les

Condition variables differ from sem aphores in the effect of signaling the variable. W hen 

a sem aphore is signaled (using sem _unlock() ). its effect lasts. This m eans th a t even if no 

thread is cu rren tly  blocked waiting for the sem aphore, the signal will not be lost. If later 

on a th read  tries to  acquire the sem aphore, it will succeed. On th e  o ther hand, signaling a 

condition variable has no effect if no threads are waiting on th a t condition variable a t the 

time of th e  signal.

The system  calls for condition variables are similar to  those for semaphores and are 

listed in Table 3.3. N ote th a t a system call such as c v . t r y w a i tO  does not m ake sense with 

condition variable sem antics, so it is not provided by EM ERALDS.
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3 .5 .3  D e v ic e  D r iv e r s

Since there  are  so m any devices (e.g.. sensors, ac tu a to rs , network ad a p te rs )  used in 

em bedded system s, it is v irtually  impossible for the  OS designer to supply device drivers 

for all of them . T he next best thing is to make it as easy as possible for users to  w rite their 

own user-level device drivers. EM ERALDS does ju st th a t .  A device driver is a  user process 

(instead of being p a rt of the kernel), and special system  calls are available for device drivers 

to access devices and deal w ith in terrupts. EM ERALDS also uses in-kernel device drivers 

where a p p ro p ria te  for efficiency reasons.

EM ERALD S provides two special system calls to  w rite user-level device drivers. The 

first. m ap .d e v ice C ). allows a  device driver to map a m em ory-m apped device in to  its address 

space.2 From th en  on. the  device driver can use s tan d a rd  memory operations to  access the 

device. The s e t _ i s r ( )  system  call allows device drivers to  handle in terrupts. Device drivers 

use this call to  tell the kernel which ISR subroutine to  execute when an in te rru p t occurs. A 

separa te  ISR can be a ttach ed  to  each in terrupt level. As far as com m unication between user 

threads and device drivers is concerned, standard  EM ERALDS IPC m echanism s (message- 

passing and shared  m em ory) can be used since EM ERALD S device drivers run  as user-level 

threads.

EM ERALD S allows even non-device driver th reads to  use the above system  calls. When 

used responsibly, this can be a great asset in em bedded real-tim e system s. L'suallv. ju st one 

(possibly m u lti-th readed) process is responsible for directly com m unicating w ith a  certain 

device like a sensor or an ac tu a to r. In this situation , it becomes very efficient to  integrate 

the device driver w ith th a t  process. This way. the  device can be accessed using subroutine 

calls — com pletely avoiding context switch overheads.

3 .5 .4  M e m o r y  M a n a g e m e n t

The system  call m em _alloc() can be used by a  process to get the desired num ber of 

pages of physical m em ory m apped into its address space. This call re tu rn s  the  starting  

address of th e  allocated  space, and can be used to  build library-based m em ory allocators to 

provide C calls like m alloc() and free(). Memory ob tained  through m em _alloc() is retained 

by a process un til it te rm ina tes, a t which tim e all its m em ory is reclaimed by the system .

JCurrentIy, EM ERALDS does not support I/O -m apped devices because the MC 68040 — on which 
EMERALDS is presently  im plem ented — does not have a separate  I /O  space.
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3 .5 .5  T im e r s

T he call s t a r t_ t im e r ( )  can be used to  create and s ta rt a tim er. This call has two 

variants. T he first is a blocking version, in which the  calling thread blocks for the specified 

duration  o f tim e. The second non-blocking version is used to execute a  tim er ISR. The 

calling th re a d  specifies a routine to be executed as the ISR and a tim e delay. W hen the 

tim er expires, the ISR is executed, and it can reset the tim er for the next in te rru p t. This 

way, the  ISR can execute periodically.

3.6 Perform ance

We have com pleted a uniprocessor version of EM ERALDS for the MC 68040 processor 

which is one o f the most popular and comm only used processor in em bedded system s with a 

wide installed base. The size of this version o f EM ERALDS is about 13 kbytes. Com paring 

this to  o th e r m ajor RTOSs for embedded applications (Table 3.4). we see th a t  our goal of 

a small-sized RTOS has been achieved.

R T O S Si:e (kbytes)

QNX 101

Vx Works 5.1 ‘286

EMERALDS 13

Table 3.4: Sizes of various RTOSs (uniprocessor versions). Size of QNX is from [39] and 

includes th e  "kernel." P roc . and Dev modules which is the minimal configuration with device 

driver su p p o rt. VxW orks' size is from a compiled stand-alone version.

Table 3.5 shows the latencies of some system  calls and other operations in the current 

version of EM ERALDS on a ‘25 MHz 68040 processor with two independent 4 kbyte in

struction  and d a ta  caches. Latencies are m easured using a 5 MHz clock (th e  fastest clock 

available on the Ironies IV-3207 boards we use). T he operations labeled w ith “ involve a 

context sw itch to  another thread. All o ther operations return to the calling th read .

C om paring  the  n u l lO  system call to the  n u l l Q  subroutine call, we see th a t EM ER

ALDS’ technique of mapping the kernel into each address space results in efficient system  

calls, incurring  only a 1.8 ps more overhead th an  subroutine calls. Even when a  context
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Operation Latency (ps)
C ontext switch (th read  to  thread) 9.2
n u l l O  subroutine call 0.2
n u l l O  system call 2.0
c re a te .p r o c O * 194.4
c r e a te _ th r e a d ( ) ’ 50.4
jo in _ th r e a d ( )  (th read  already exited) 17.2
d e ta c h _ th re a d ( )  (th read  already' exited) 16.4
d e ta c h .th r e a d O  (th read  has not exited) 2.2
sh m _ a ttach () (one page mem. allocated) 10.6
sh m _ a ttach () (a ttach  existing segment) 8.6
shm _detach() (one page mem. deallocated) 10.0
shm _detach() (just unm ap segment) 8.0
se m _ c rea te () 4.8
se m _ d e le te () 3.2
sem _lock() (sem aphore free) 5.8
sem _lock() (with threads waiting) C hap 5
sem _unlock() (no th read  waiting) 7.0
sem _unlock() (w ith threads waiting) C hap 5
c v .c r e a te O 6.2
c v _ d e le te ( ) 5.4
c v _ w a it( ) “ 25.4
c v _ s ig n a l( )  (no th read  waiting) 3.4
c v _ s ig n a l ( ) ' (th read  waiting) 30.4
m box_create () 6.4
m box_dele te () 3.6
m sg_sendO  (8 bytes) 16.0
m sg _ re c e iv e ()  (8 bytes) 7.6
S ta te  message send  (8 bytes) 2.4
S ta te  message r e c e iv e  (8 bytes) 2.0
S ta te  message re c e iv e _ s lo w  (8 bytes) 4.4

Table 3.5: Timing of various operations in EM ERA LD S, 

switch to a different address space is required, it incurs less th an  10 ps  overhead.

3 .6 .1  C o m p a r iso n  w ith  C o m m e r c ia l R T O S s

The Scientific Research Laboratory (SRL) of Ford M otor C om pany evaluated the per

formance of EM ERA LD S and nine comm ercial embedded RTOSs for autom otive engine 

control. These RTOSs include Nucleus. pSOS Select. RTX, RTXC, RTOS. C-Executive.
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Figure 3.5: OS overhead due to  in terrupts. ‘250 periodic task sw itches/s  and a 4ms clock 

tick tim er.

VRTX me. RTEK. and M TASK.

In initial testing, SRL has focused on m easuring overheads of basic OS services like 

in te rru p t handling, task  sw itching, tim ers, and  clock tick on a 16.7MHz M otorola 6833*2 

m icrocontroller. Their resu lts3 are shown in Figure 3.5 (the results released by SRL do 

not identify which m easurem ents are for which OS, so we refer to  th e  com m ercial RTOSs 

as 0 S 1 -0 S 9 ) . The num ber of in terrup ts/second  tha t the engine contro ller m ust service 

depends on the engine’s speed. At high RPM  (revolutions per m inu te), the  controller sees 

abou t 1000 in te rru p ts /s . A t this rate , the various RTOSs have an overhead ranging from 

15% to 30% of CPU tim e. EM ERALDS is one of the best with only 16% overhead. Only 

OS9 has a lower overhead o f 15.5%. but com pared to other OSs. it has much higher RAM 

overhead (about 4000 bytes for 10 tasks com pared to 500-1000 bytes for all th e  o ther OSs 

including EM ERALDS) which makes 0S9 infeasible for sm all-m em ory em bedded system s. 

This makes EM ERALDS the  best OS am ong all the feasible OSs.

3.7 Conclusions and Future Work

Small to medium sized em bedded real-tim e system s are becoming increasingly common 

in applications like au tom otive control, robotics, and industrial au to m atio n . To be com pet

itive in the m arket, these system s must reduce cost to a minimum. Any RTOS to  be used

3The 68332 does not have a MMU, so these results are for a version of EMERALDS without memory 
protection.
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in these system s must therefore not only support pred ictab ility  (essential in any real-tim e 

system  and provided in EM ERALD S in the form of predictable scheduling of th re a d s)  but 

also be efficient and small in size. Efficiency allows cheaper processors to be used an d  small 

size decreases the cost of ROM needed to  store the executable code. Most o th e r m odern 

RTOSs are e ither too large in size (hundreds of kbytes or m ore) or they do not offer several 

popu lar OS features like m em ory protection and threads in an a ttem p t to  reduce size and 

increase speed. Our goal in designing EMERALDS was to  develop an RTOS which was not 

only predictable but also small and  efficient, w ithout c u ttin g  back on standard  OS services 

relevant to em bedded system s. To achieve this goal, we m ade use of several fea tu res of 

em bedded system s which allowed us to  increase the efficiency of system calls and  keep the 

size of EM ERALDS to ju st 13 kbytes (uniprocessor version).
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C H A PT E R  4

C O M B IN E D  EDF A N D  RM  SCH ED ULING

Real-time com puting  system s m ust behave predictably even in unpredictable environ

ments [103]. This predictability  is ensured by system-level services, most im p o rtan t among 

them  being the  ta sk  scheduler in the RTOS.

Real-time ta sk  scheduling has been focus of active research for several decades [6. 

69.76,106]. This has led to the  development of well-known scheduling schemes such as 

rate-monotonic  (R M ) [76], earliest-deadline-first (E D F ) [76], and deadline-monotonic  [69]. 

But in recent years, the  focus of research has shifted from uniprocessor task  scheduling 

to  scheduling tasks and messages in m ultiprocessors and d istributed system s [2.54.117]. 

Uniprocessor task  scheduling is trea ted  as a "solved" problem  and research in th is  a rea  has 

tapered off.

Unfortunately, well-known uniprocessor task scheduling solutions such as RM and EDF 

are only "theoretical" solutions in the sense that they do not consider the p rac tica l im

plem entation of these schedulers in real systems. For exam ple. EDF delivers a  processor 

utilization of 100%. but not all of this CPU capacity is available for execution o f workload 

tasks. EDF incurs high run-tim e overhead in keeping tasks sorted  by their (changing) dead

lines. When this overhead is taken into consideration, the  C PU  capacity left for workload 

tasks is well below 100%. The sta tic  RM scheduler has much lower run-tim e overhead but 

its average-case schedulable utilization is only 88% [67] — well below th a t for E D F . In 

practice, neither E D F nor RM deliver good performance. In fact, for many real w orkloads, 

performance of b o th  these schedulers is about the same [58].

The recent popu larity  of m ultim edia applications has led to  renewed interest in m aking 

uniprocessor task  scheduling efficient. In [33], a delayed preem ption scheme is presented
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in which a  running task is preem pted only a t quantized tim e boundaries. This scheme is 

useful for protocol da ta  processing since it allows relatively short packet-handling tasks to 

execute to completion before being preem pted. However, u tility  of such delayed preem ption 

schedulers in handling application task  workloads is yet to  be dem onstrated . The Rialto 

scheduler [52] uses time-slice scheduling to reduce run-tim e overhead to  a m inim um , but it 

employs heuristics for constructing the schedule, resulting in non-optim al solutions.

In em bedded systems, scheduler inefficiencies become a m ajo r concern because of rela

tively slow CPU s. This led us to investigate ways to reduce scheduler overhead and improve 

perform ance.

O ur approach to solving this problem was not to invent new scheduling theory but 

instead  to  make existing schedulers (ED F and RM in particu lar) work better in real im

plem entations. We present a new uniprocessor task scheduling scheme called the combined 

s ta tic /dynam ic  (CSD) scheduler. It combines the best features of RM and EDF to deliver 

b e tte r  perform ance than both when execution overheads are factored in. CSD lowers run

tim e overhead by using multiple scheduling queues, but a t the sam e tim e, delivers high 

schedulable utilization by properly assigning tasks to the different queues. A proper parti

tioning of tasks is critical to  the good performance of CSD. VVe present an iterative method 

to partition  the tasks in a given workload into two groups. W hen tasks in one group are 

scheduled by EDF and tasks in the o ther group are scheduled by RM . the total scheduling 

overhead (run-tim e overhead plus schedulable utilization being less than  100%) is less than 

th a t of ED F and RM. The to tal scheduling overhead is a " true"  m easure of the performance 

of a scheduler. By reducing this to ta l overhead. CSD outperform s bo th  RM and ED F in 

real system s.

We have implemented CSD in EM ERALDS. We m easure the run-tim e overheads as

sociated with CSD, EDF, and RM and we dem onstrate th a t  when these overheads are 

considered in schedulability tests. CSD feasibly schedules m ore workloads than  ED F or 

RM.

T he next section discusses some of the overheads associated w ith task  scheduling and 

m otivates the need for a new scheduling scheme which reduces these overheads. Section 4.2 

describes the  CSD scheduler and gives the theoretical basis for its superiority  over ED F and 

RM. Section 4.3 gives an extension to  the basic CSD scheme which overcomes some of the 

shortcom ings of its original form. We experimentally evaluate the  perform ance of CSD in
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Section 4.4. Section 4.5 pu ts CSD in context of previous research in real-tim e scheduling 

and  highlights the novelty of CSD. The chapter concludes w ith Section 4.6.

4.1 Task Scheduling Overheads

Consider a periodic task  which runs once every 1ms. For ju s t th is one task , the  scheduler 

m ust run twice every 1ms: once when the task  is released and once when the task  com

pletes. Considering th a t  typical OS operations usually take  40 -50^s and th a t a typical task 

workload consists of ‘20-40 tasks w ith at least 5-7  tasks having periods less than  10ms. the 

scheduler's execution alone can use up 5-15% of CPU  tim e. T his is why some application 

program m ers prefer cyclic time-slice scheduling techniques in which the en tire  schedule is 

calculated either off-line or a t task-adm ission tim e, and  a t run-tim e, tasks are switched in 

an d  out according to  th is fixed schedule. This reduces the  scheduler's run-tim e overhead 

bu t introduces several problem s:

• The schedules m ust be calculated by hand, so they  are difficult and  costly to  modify if 

the task characteristics change during the application design process. Heuristics can 

be used to  calculate schedules, but they result in non-optim al solutions (some feasible 

workloads may get rejected).

• Cyclic schedulers give poor response times for h igh-priority  aperiodic tasks because 

the arrival tim es o f these tasks cannot be an tic ipated  off-line.

• If a workload contains both  short and long period tasks (as is often the case in control 

applications), the  resulting time-slice schedule can be qu ite  large, consum ing signifi

cant am ounts o f memory.

W ith real-time system s now having more tasks and  m ore aperiodic activities, cyclic 

schedulers are no longer su itab le for task  scheduling. T h e  a lte rna tive  is to  tu rn  to  priority- 

driven schedulers like RM  and ED F which use task  priorities to  m ake run-tim e decisions 

as to  which task should execute when. These schedulers do not require any costly off-line 

analysis, can easily handle changes in the workload during th e  design process, and can 

handle aperiodic tasks as well using, for example, a sporadic server [106]. However, since 

priority-driven schedulers m ake run-tim e scheduling decisions, they  incur overhead which
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can be 5-15%  of CPU  time. This calls for new task scheduling schemes with lower overheads 

which would free up more tim e for the  execution of application tasks.

4.2 Com bined S ta tic /D yn am ic Scheduler

The ta sk  scheduler’s overhead can be broken down into tw o components: the run-time  

overhead and  the schedulability overhead. The run-tim e overhead is the  tim e consumed by 

the execution of the scheduler code. This has to do with m anaging the queues of tasks and 

selecting the  highest-priority task  to  execute whenever some task  blocks or unblocks.

The schedulability overhead is defined as 1 — U", where U“ is the  ideal schedulable utiliza

tion. For a  given workload and a given scheduler. Um is the highest workload utilization th a t 

the scheduler can feasibly schedule under the ideal conditions th a t  the scheduler’s run-tim e 

overhead is ignored. This is best explained through examples. Consider a workload of n

tasks, {r, : i =  1 ,2 ........n}. Each task  r, has a period P,, execution tim e c,. and deadline d,.

Then th is workload has utilization U = ci/Pi- EDF is a  dynam ic-priority scheduler 

which gives highest priority to the  earliest-deadline task [76], and  can schedule all %vorkloads 

with U < 1 under the ideal condition th a t E D F ’s run-tim e overhead is ignored. We say th a t 

Um = 1 for ED F. O ther schedulers such as RM (which schedules tasks according to fixed 

priorities based on the tightness o f their P, [76]) can have U~ < 1. For example, a workload 

with U =  0.90 may be schedulable under RM. but if some c, is slightly increased so th a t 

U becomes 0.91. the workload m ay no longer be schedulable even under ideal conditions. 

We say th a t  U~ =  0.90 for this workload under RM. This m eans th a t 10% of CPU  tim e 

is "unusable” because of the scheduling policy, and we refer to  this as the schedulability 

overhead.

ED F has zero schedulability overhead but high run-tim e overhead. By con trast. RM 

has low run-tim e overhead bu t. depending on the workload, it can cause significant schedu

lability overhead. In the rest of th is section, we analyze the sources of these overheads and 

then design a  mechanism to yield high schedulability with low -run-tim e overhead. O ur goal 

is not to  devise new scheduling theo ry  bu t to use the best features of existing schedulers 

(ED F and  RM ) to  get good perform ance in real im plem entations.
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4.2.1 R u n -tim e Overhead

The run-time overhead ( A t )  has to do with parsing queues of tasks and adding/deleting 

tasks from these queues.

W hen a running task  blocks, the OS must upda te  some d a ta  structures to  identify the 

task as being blocked and then pick a  new task  for execution. We call the overheads as

sociated with these two steps the blocking overhead Atf, and the selection overhead A t , .  

respectively. Similarly, when a blocked task  unblocks, the OS must again up d a te  some in

ternal d a ta  s truc tu res , incurring the unblocking overhead A t u. The OS must also pick a task 

to execute (since the  newly-unblocked task m ay have higher priority than the  previously- 

executing one), so the  selection overhead is incurred as well.

Each task blocks and unblocks at least once every period: it is unblocked a t  the  beginning 

of the period and then blocks itself after executing for c, time units. This means that 

the minimal scheduler run-time overhead per task  r, is Atf, + A t u -f 2 A t s incurred once 

every period. Overhead is even greater if r, uses blocking system calls during execution. 

This is application-dependent, but we assume tha t  half the tasks block once during their 

execution. For simplicity, we assume that  each task suffers a  run-time overhead of A t  =  

l .o(Ati,  + A t u + '2A t , ) .  Then, with the run-time scheduler overhead figured in. the  workload 

utilization becomes U =  (ct +  A t ) / P, which can be significantly g rea ter  than the 

utilization when A t  is ignored.

Now. we calculate A t  for both EDF and RM scheduling policies. Our calculations 

are based on a linked list implementation of schedulers. A sorted heap can give lower 

run-time overhead for a large number of tasks, but linked lists are more efficient for the 

relatively smaller num ber of tasks (15-40) typically seen in real-time systems. Experimental 

measurements to corroborate  this s tatement are  presented in Section 4.4.

In EMERALDS, we have implemented E D F as follows. All blocked and unblocked tasks 

lie in a single, unsorted  queue. This makes sense because task priorities change continually 

under EDF. so keeping the queue sorted is not worth the overhead. Tasks are  blocked and 

unblocked by changing one variable in the appropria te  task control block (T C B ). To select 

the next task to execute, the entire list is parsed and the earliest-deadline ready task is 

picked. Writh this scheme, both A and A t u are 0 ( 1 ) .  but A t ,  is O(n) .  where n is the 

number of tasks. Since A t ,  is counted twice per task block/unblock operation. A t  for EDF
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increases rapidly as n increases.

The typical implementation for RM is to have a queue of ready tasks sorted by (fixed) 

task  priorities. Blocking and unblocking involve deletion from, and insertion into, the  list 

in sorted order. But in EM ERALDS, we chose a  different implementation which allows us 

to optimize other OS services (especially semaphores) while the run-time overhead stays 

about the same as for the typical implementation. All blocked and unblocked tasks are 

in a  single queue sorted by priority, highest-priority task first. A single pointer h i g h e s t P  

points to the  highest-priority ready task, so A t3 is 0 ( 1 )  because h ig h e s tP  points to the 

task which should execute next. To block a task, one variable is updated in the TC B  (same 

as in E D F ), but now h ig h e s tP  has to be updated  as well. The scheduler parses down the 

queue till it finds the next ready task  in the queue, then sets h ig h e s tP  to  point to  tha t  

task. This is why Af& takes 0 ( n )  time in the worst case. On the other hand, unblocking 

a task only involves checking if the  unblocked task  has higher priority than the h i g h e s t P  

task. If so. h ig h e s tP  is simply reset to point to  the  newly-unblocked task and this takes 

0 (  1 ) time.

For RM. A <6 =  0 ( n )  whereas for EDF. A t ,  = O (n) .  A  i f ,  is counted only once every task 

block/unblock operation while A t3 is counted twice, which is why A t =  1 .5 (A ^ + A iu + ‘2A<a ) 

is significantly less for RM than it is for EDF. especially when n is large (20 or more).

4.2.2 Schedulability O verhead

We have already mentioned th a t  EDF has zero schedulability overhead, so if the  run

time overhead is ignored, no scheduler can be b e tte r  than  EDF. Previous work has shown 

th a t  on average. U~ =  0.88 for RM [67]. To see why U ’ for RM is less than that  for ED F, 

consider the  workload shown in Table 4.1. Each task  r, has deadline d, =  Pt . U = 0.88 for 

this workload, so it is feasible under EDF.

Figure 4.1 shows what happens if this workload is scheduled by RM. In the time interval 

[0,4), tasks r i~ r 4 execute, but before r 5 can run. r j  is released again. Under RM. r i - r 4 have 

higher priority than r 5 (because of their shorter P,), so the  la tte r  cannot run until all of 

the former execute for the second time, but by then  r$ has missed its deadline. This makes 

the workload infeasible under RM and illustrates why RM has a non-zero schedulability 

overhead.

On the other hand, if ED F is used to schedule the  same workload. r 5 will run before
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i Pi (ms) c, (ms)
1 4 1

2 5 I
3 6 1

4 7 1

•5 8 0.5
6 2 0 0.5
7 30 0.5
8 50 0.5
9 1 0 0 0.5
10 130 0.5

Table 4.1: An example task workload with U =  0.88. It is feasible under ED F but not 
under RM.

misses deadline 

T 1 X2 X3 T4 T1 X2 T3 T4

time
0 1 2 3 4 5 6 7 8  

Figure 4.1: RM scheduling of the  workload in Table 4.1.

r 2 -r.t run for th e  second time (because d$ =  8  is earlier than  the second deadlines of r 2 - r 4) 

and the workload will be feasible (Figure 4.2).

0 1 2 3 4 5 6 7 8

Figure 4.2: EDF scheduling of the workload in Table 4.1.

4.2.3 CSD: a B alance betw een E D F  and RM

Going back to  the  workload in Table 4.1. notice th a t  r 5 is the "troublesome" task. i.e.. 

because of this task  the  workload is infeasible under RM. Tasks r6 - r 10 have relatively longer 

periods, so they  can be easily scheduled by any scheduler, be it RM or EDF.

We used this observation as the basis o f  the  CSD scheduler. Under CSD. tasks r i~ r 5 

will be scheduled by E D F so tha t  r 5 will not miss its deadline (procedure to  determine 

which task is the  troublesom e task in a given task set is discussed in Section 4.2.6). Once 

the troublesome task  is taken care of. we can use the low-overhead RM policy to  schedule 

the remaining tasks r6 - r 10. This way. the run-tim e overhead of CSD is less than  tha t  of
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E D F  (since the ED F queue's length has been halved) but a little more than th a t  of RM. 

T h e  schedulability overhead of CSD is the same as for EDF (i.e.. zero) which is much less 

th a n  tha t  of RM. Thus, the to ta l  scheduling overhead of CSD is significantly less than  tha t  

o f  bo th  EDF and RM.

The CSD scheduler maintains two queues of tasks. The first queue is the dynamic-  

priority  (DP) queue which contains tasks to be scheduled by EDF. The second queue is 

the  fixed-priority (F P )  queue which contains tasks to be scheduled by RM (or any other 

fixed-priority scheduler such as deadline-monotonic [69]. but for simplicity, we assume RM 

is the  policy used for the  FP  queue).

Given a workload {r, : i = l .*2 n} with tasks sorted by their RM-priority (tasks

with  shorter periods have lower index i), let rT be the "troublesome" task  in this workload. 

T hen , tasks Ti~rr are placed in the DP queue while r r+1- r n are in the FP  queue. CSD gives 

priority  to the DP queue over the FP  queue. This makes sense because all tasks in the  DP 

queue have higher RM-priority (shorter periods) than any task in the FP  queue. A single 

counter  keeps track of the number of ready tasks in the DP queue. It is incremented when 

a  D P task becomes ready and is decremented when a DP task blocks. W hen the scheduler 

is invoked, it first checks this counter. If it is greater than zero, the DP queue is parsed 

to  pick the earliest-deadline ready task. Otherwise, the DP queue is skipped completely 

an d  the scheduler picks the highest priority ready task from the FP queue (pointed to  by 

h i g h e s tP ) .

4 .2 .4  R un-T im e O verhead of CSD

We mentioned th a t  CSD has zero schedulability overhead. Its run-time overhead de

pends on whether the  task  being blocked or unblocked is a DP or FP task. There are four 

possible cases:

1. DP task blocks: Atb  is constant (same as for EDF). but A<s depends on whether any 

ready tasks are left in the DP queue or not. For real-time schedulability analysis, we 

are interested in the  worst-case overhead, and this occurs when there are o ther  ready 

tasks in the DP queue. Then. A t ,  is the time to parse the DP queue and is the  same 

as A t,  for EDF except th a t  the queue length is only r instead of n. So, A t ,  =  O(r)  

instead of 0 ( n ) .

2. DP task unblocks: A fu is constant (same as for EDF). At least one ready task  is 

definitely in the  D P queue (the one th a t  was just unblocked), so A t ,  is always the 

time to parse the  r-long DP queue, i.e.. A t ,  =  0(r) .
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3. FP task blocks: Atb  is the same as for RM except the queue length is only n — r so 

tha t  Atb  =  0 ( n  — r). Regarding A t s. we need to  know if any DP task can be ready 

or not. But this is not possible, because the task  which just blocked is an F P  task 

and this task  could not have been executing had any DP tasks been ready. Since the 

DP queue has no ready tasks, the scheduler ju s t  selects h ig h e s tP  from the F P  queue. 

This makes A t 3 =  0 ( 1 )  (same as for RM).

4. FP  task unblocks: A t u is a constant (same as for RM). The DP queue may or may 

not have ready tasks, but for the worst-case A t s . we must assume that  it does, so 

A t s = 0 ( r ) .  □

From this analysis, the total scheduler overhead for CSD is Atb + A t s_biock + A t u +  

A t s_unbiock per task  block/unblock operation. For D P  tasks, this becomes 0 ( 1 )  +  0 ( r )  +  

0 (  1) +  0 ( r )  =  0 ( ‘2 r ) , 1 whereas for FP tasks, the overhead equals 0 ( n  — r) +  0 ( l )  +  0 ( l )  +  

0 ( r )  =  0 { n ) .  This means th a t  an r-Iong list is parsed twice for DP tasks (worst-case). 

while an n-long list is parsed once for FP tasks. Comparing this to EDF (n-long list parsed 

twice) and RM (n-long list parsed once), we see why the run-time overhead of CSD can be 

less than th a t  of EDF (since r is less than n ) and only slightly greater than tha t  of RM. 

Considering tha t  CSD has no schedulability overhead, it easily outperforms both E D F  and 

RM.

4.2.5 Schedulab ility  Test

A task set { r : : i =  1 .2 ............ n} with tasks sorted by their RM-priority (tasks with

shorter periods have lower index i) is feasible under ED F if [76]

£r _  c, -j- At(  E D F )  ^  ^

t=i P'

where A t ( E D F )  is A t  for EDF. The workload is feasible under RM if [6

w  . ( ^ C j + A t i R M )
Vi. 1 <  i < n, min > —-----------------

"  “  o<t<d, y ^  t
t

~Pj
< 1.

In practice, this equation need only be evaluated for a  finite number of t values as described 

in [63].

Schedulability under CSD is tested as follows. First, check if the DP tasks iq -  rr are 

feasible under EDF:

'S trictly  speaking, 0 (2 n )  =  2O(n)  = O(n) ,  but we use the term  0 (2 n )  to  remind readers th a t an n-long 
queue is traversed twice.
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r -  v "  c* D P )
L'd p  =  <  1-

i=i P<

Then, check the feasibility of the FP tasks as follows:

Vi. r  <  i <  n. min 
o <t<d,

Cj +  A t ( X t

~P>
< 1.

where A' is D P  or F P  when j  is a DP or FP  task , respectively. This check is done only 

for FP tasks ( i  goes from r  +  1 to n), but it considers all the DP tasks as having higher 

priority than  a  given FP  task  (j  goes from 1 to i).

4.2.6 L ocating rr

The key to C S D ’s good performance is the  proper partitioning of the  workload into 

DP and FP  tasks. Having two queues lowers run-tim e overhead but the  low schedulability 

overhead of CSD depends on correctly identifying r r . then allocating r t - r r to  the  DP queue 

and the remaining tasks to the FP queue.

Task t> can be easily located through an iterative procedure by using the  CSD schedula

bility test described above. For a given workload, s ta r t  by assuming r =  0 and perform the 

schedulability test. If successful, then stop, otherwise keep increasing r until the schedula

bility test passes o r  r exceeds n in which case the  workload is not feasible by CSD. This 

way. tasks can be partitioned between the two queues to minimize C S D ’s to ta l  scheduling 

overhead for any given workload.

4.3 R educing Run-Tim e Overhead of CSD

CSD’s main advan tage  is that even though it uses EDF to deliver good schedulable 

utilization, it cuts back on run-time overhead by keeping the DP queue short. But as the 

number of tasks in the  workload increases, the  DP queues length also increases and this 

degrades C SD ’s performance. To rectify this situation, we modify CSD to  keep run-time 

overhead under control as the number of tasks n  increases.

4.3.1 C ontrolling D P  Queue R un-T im e Overhead

Under CSD, effective execution time of each task  in the DP queue increases by A t (D P )  

which depends on length of the DP queue r. A t ( D P )  increases rapidly as r  increases, which 

degrades performance of CSD.
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D PI DP2 FP
Task
Blocks

A f6 0 ( 1 ) 0 ( 1 ) 0 ( n  — r)
A ta 0 (max(q. r — q)) 0 (r) 0 ( 1 )

Task 
U nblocks

A t u 0 ( 1 ) 0 ( 1 ) 0 ( 1 )
A  ta 0 ( q ) 0 (max(q, r -  ?)) 0 (max(q. r -  q))

Total run-tim e overhead 0 (r) 0 (2 r  -  q) O ( n - q )

Table 4.2: R un-tim e overheads for CSD-3. The to ta l values assume th a t  the DP2 queue is 
longer than  the  D P I  queue (max(q, r — q) = r — q) which is typically the  case.

Our solution to this problem is to split the  DP queue into twoqueues D P I  and DP2. DPI 

has tasks with higher RM-priority (shorter periods), so the scheduler gives D P I  priority over 

DP2. We call this modified scheme CSD-3 because of its three queues. Properly allocating 

tasks to D P I  and DP2 is discussed in Section 4.3.3, but first, note th a t  both D P I and DP2 

are expected to be significantly shorter than  the original DP queue so th a t  the run-time 

overhead of CSD-3 should be well below th a t  of the original CSD scheme (which we will 

call CSD-2 from now on) as discussed next.

4.3.2 R u n -T im e O verhead of C SD -3

The run-tim e overheads for CSD-3 can be derived using the same reasoning as used for 

CSD-2 in Section 4.2.4. The overheads for different cases are shown in Table 4.2. where q is 

the length of the  D P I  queue and r is the to ta l number of DP tasks (so th a t  r — q is the length 

of DP2 queue). The table shows that the run-tim e overhead associated with DPI tasks is 

O (r)  which is a significant improvement over 0 ( 2 r )  for CSD-2. Since D P I  tasks are the 

shortest-period tasks in the  workload, they are  the ones which execute the most frequently 

and are responsible for most of the scheduling overhead. Reducing th e  run-time overhead 

associated with these tasks from 0 (2 r )  to O ( r )  leads to CSD-3 performing significantly 

better than  CSD-2.

The run-tim e overhead of DP-2 tasks is reduced as well from 0 ( 2 r )  in CSD-2 to 0( '2 r—q). 

Similarly, the overhead for FP  tasks is reduced from 0 ( n )  to 0 ( n  -  q).

4.3.3 A llo ca tin g  Tasks to D P I and D P 2

If all DP tasks had the same periods, we could split them evenly between D P I and DP2. 

Each queue's length will be half that of the original DP queue. This would cut the run-time
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overhead of scheduling DP tasks in half2 and would give the best possible reduction in 

scheduler overhead. But when tasks have different periods, two factors must be considered 

when dividing tasks between D P I and DP2:

•  Tasks with the shortest periods are responsible for the most scheduler run-time over

head. For example, suppose A t =  0.1ms. A task with Pi =  1ms will be responsible 

for A t /P{  =  10% CPU overhead, whereas a task with P, =  5ms will be responsible 

for only 2%. This means tha t  only a few tasks with short periods should be kept in 

D P I  to  keep A t ( D P l )  small. DP2 should have more tasks than D P I.  This will make 

\ t ( D P 2 )  > A t ( D P l ) ,  but this will balance out because tasks in DP2 have longer 

periods so th a t  51, A 1/P ,  for the two queues is approximately balanced.

• Balancing the run-time overhead between the queues cannot be made the sole criterion 

for allocating tasks to D P I and DP2; the scheduling overhead must be considered 

as well. Once the DP tasks are split into two queues, they no longer incur zero 

schedulability overhead. Even though tasks within a DPx queue are scheduled by 

ED F. the  queues themselves are scheduled by RM (all D P I  tasks have statically 

higher priorities than  DP2 tasks), so that CSD-3 has non-zero schedulability overhead. 

Tasks must be allocated to D P I  and DP2 to minimize the sum of the  run-time and 

schedulability overheads. For example, consider the workload in Table 4.1. Suppose 

the least run-time overhead results by putting tasks r i- r^  in DPI and the rest of the 

DP tasks in DP2. but this will cause 7-5 to miss its deadline (see Figure 4.1). Putting 

7-5 in D P I  may lead to slightly higher run-time overhead but will lower schedulability 

overhead so th a t  r 5 will meet its deadline.

At present, we use an exhaustive search (using the schedulability test described next) 

to find the best possible allocation of tasks to D P I.  DP2. and FP queues. The search runs 

the schedulability test 0 { n 2) times for three queues. This takes 2-3 minutes on a 167MHz 

Ultra - 1 Sun workstation for a workload with 100 tasks.

4.3.4 Schedulab ility  Test for CSD-3

As before, assume the task set {r, : i =  1,2 n}  has tasks sorted by their RM-priority.

Since D P I  tasks are scheduled by ED F, tasks Ti -  r7 are feasible if:

in c re a s in g  the  num ber of queues also increases the overhead of parsing the prioritized list of queues, but 
our m easurem ents showed this increase to  be negligible (less than  a microsecond) when going from two to 
three queues.
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£ ci + ± t ( P P l )  ^  1 

1 = 1 P i

D P I  tasks have priority over DP2 tasks while DP2 tasks among themselves are scheduled 

by ED F. We modify the test for FP  tasks to  work for DP2 tasks. To check schedulability 

for a DP2 task i. the test treats all D P I  tasks as having higher priority than i (j  runs from 

1 to  q),  but checks deadlines of DP2 tasks ( k  runs from q +  1 to  r) to decide how many 

invocations of each (if any) have priority over the first invocation of i:

?
Vi. q < i < r. min

-  0<t<dt
Cj +  \ t ( D P  1) 

t
t

p i + E
k=q+1

ck + A t ( D P  2 ) 
t Pk

< 1.

where the  function [Y|* excludes the last invocation of j  released before time t if its deadline 

exceeds dt :

(Mrl ~ 0  Pk +  d k  ^  d '■ t ■ t
Pk

p~k t
t

Pk -  1— I otherwise

This test for DP2 tasks uses the critical time zone assumption [76] which is valid only if all 

D P I  and  DP2 tasks have utilization < 1 <  1. A' is D P I  or DP 2  if i is a

D P I  or DP2 task, respectively). Note that because of the check for deadlines, the critical 

time zone assumption is not automatically valid here as it is under rate-monotonic analysis. 

The test for FP tasks is the same as for CSD - 2  except for minor modifications:

Vi. r < i < n. min 
~ 0 <t<d,

Cj + A < ( A ) t

~Pj
< 1 .

where A' is D P I ,  D P ‘2, or F P  when j  is a D P I .  DP2. or FP  task , respectively.

4.3 .5  B eyond CSD-3

The general scheduling framework of CSD is not limited to ju s t  three queues. It can be

extended to  have 4 .5  n number of queues. The two extreme cases (one queue and n

queues) are both  equivalent to RM while the intermediate cases give a combination of RM 

and ED F.

We would expect CSD-4 to have slightly better performance than  CSD-3 and so on 

(as confirmed by evaluation results in Section 4.4.2). although the  performance gains are 

expected to  taper  off once the number of queues gets large and the  increase in schedulability 

overhead (from having multiple ED F queues) starts exceeding the  reduction in run-time 

overhead.
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EDF using queue (/zs) RM using queue (/zs) RM using sorted  heap (/zs)

A  tb 

A fu 

A  t3

1 . 6

1 .2

1.2 +  0 .‘25n

1.0 +  0.36n 

1.4 

0 . 6

0.4 +  ‘2.8[log2(n  +1)"] 

1.9 +  0.7[Iog2( n +  1)] 

0 . 6

Table 4.3: Run-time overheads for EDF and RM (n  is the number of tasks). Also shows 

measurements for RM when a heap is used instead of a linked list. M easurements made 

using a  5MHz on-chip tim er.

For a given workload, the best number of queues and the best number of tasks per queue 

can be found through an exhaustive search, but this is a  computationally intensive task and 

is not discussed further in this chapter. This chapter demonstrates the  usefulness of the 

general CSD scheduling framework and how it can be beneficial in real systems. Addressing 

issues related to optim al configuration of CSD for a given workload is part  of future work.

4.4 Perform ance Evaluation

In this section, we evaluate the usefulness of CSD in scheduling a wide variety of work

loads. by comparing CSD to EDF and RM. In particular, we want to  know which is the 

best scheduler when all scheduling overheads (run-tim e and schedulability) are considered. 

The ED F and RM run-tim e overheads for EM ERALDS measured on a '25MHz Motorola 

68040 processor [87] with separate  4kbytes instruction and da ta  caches are in Table 4.3. The 

run-time overhead of CSD is derived from these values as already discussed in Sections 4.2.4 

and 4.3.2. The overhead to  parse the list of queues in CSD-x (to find a queue with ready 

tasks) was measured at O.oofis per queue.

Table 4.3 also shows the  run-time overhead for RM when a sorted heap is used instead 

of a linked list to hold the  tasks. The total run-time overhead A t for a heap is more than 

tha t  for a  queue for n <  58. Most real-time workloads do not have enough tasks to make 

heaps feasible, so for the  rest of this section we use the measurements for queues.

O ur test procedure involves generating random task  workloads, then for each workload, 

scaling the execution times of tasks until the workload is no longer feasible for a given 

scheduler. The utilization a t  which the workload becomes infeasible is called the breakdown 

utilization [56]. We expect th a t  with scheduling overheads considered. CSD will have the 

highest breakdown utilization.
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4.4 .1  R esults

Because scheduling overheads are a function of the number of tasks ( n)  in the  workload, 

we tested all schedulers for workloads ranging from n — 5 to n =  50. For each n, we generate 

500 workloads with random  task periods and execution times. We scale the  execution times 

and check feasibility using the schedulability tests in Sections 4.2.5 and  4.3.4. until the 

workload becomes infeasible.

The run-time overhead of priority-based schedulers depends not only on the number 

of tasks but on the periods of tasks as well (since the scheduler is invoked every time a 

task  blocks or unblocks). Short period tasks lead to frequent invocation of the scheduler, 

resulting in high run-tim e overhead, whereas long period tasks produce the  opposite result. 

In our tests, we vary not only the number of tasks but the periods of tasks as well. We do 

this by generating a base workload (with a  fixed n), then producing three workloads from 

it by dividing the periods of tasks by a factor of 1. 2. and 3. This allows us to evaluate the 

impact of varying task periods on various scheduling policies.

We generate base task  workloads by randomly selecting task periods such that each 

period has an equal probability of being single-digit (5-9ms). double-digit (10-99ms). or 

triple-digit (100-999ms). Figures 4.3-4.5 show breakdown utilizations when task periods 

are divided by 1. 2, and 3. respectively. In Figure 4.3. task periods are relatively long (5ms- 

1s). The run-time overheads are low which allows EDF to perform close to its theoretical 

limits. Even then, CSD performs better than  EDF. CSD-4 has 17% lower to ta l  scheduling 

overhead for n = 15 and  this increases to more than  40% for n =  40 as EDF's strong 

dependency on n begins to  degrade its performance.

Figure 4.4 is for periods in the 2.5ms-500ms range. For these m oderate length periods, 

initially EDF is better  than  RM. but then ED F 's  run-time overhead increases to the point 

th a t  RM becomes superior. For n =  15. CSD-4 has 25% less overhead than  EDF, while for 

n = 40. CSD-4 has 50% lower overhead than  RM (which in turn  has lower overhead than 

ED F for this large n).

Figure 4.5 shows similar results. Task periods range from 1.67ms-333ms, and these short 

periods allow RM to quickly overtake ED F. Nevertheless. CSD continues to  be superior to 

both.

4.4 .2  CSD-x

Figures 4.3-4.5 also show a comparison between three varieties of CSD. They show 

th a t  even though a  significant performance improvement is seen from CSD - 2  to CSD-3
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Figure 4.3: Average breakdown utilizations for CSD. ED F. and RM when task periods are 

scaled down by a factor of 1 .
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Figure 4.4: Average breakdown utilizations for CSD. ED F. and RM when task periods are 

scaled down by a factor of 2 .
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Figure 4.5: Average breakdown utilizations for CSD. EDF, and RM when task periods are  

scaled down by a factor of 3.

(specially for large n), only a minimal improvement is observed from CSD-3 to CSD-4. 

This is because even though the run-time overhead continues to decrease, the increase in 

schedulability overhead almost nullifies the reduction in run-time overhead.

CSD-4 could be expected to give significantly better breakdown utilization than CSD-3 

only if workloads can be easily partitioned into four queues without increasing schedulability 

overhead, but this is rarely the case. D P I tasks have statically higher priority than DP2 

tasks. D P‘2 tasks have higher priority than DP3 tasks, and so on. As the number of queues 

increases, the schedulability overhead s tar ts  increasing from that of EDF to that of RM. 

This is why we would expect th a t  as x increases, performance of CSD-x will quickly reach 

a maximum and then start  decreasing because of reduced schedulability and increased 

overhead of managing x queues (which increases by O.oops per queue). Eventually, as x 

approaches n, performance of CSD-x will degrade to that of RM. □

The results presented here confirm the superiority of the CSD scheduling framework as 

compared to EDF and RM. The results show that  even though CSD-2 suffers from high 

run-time overhead for large n, CSD-3 overcomes this problem without any significant in

crease in schedulability overhead. This way, CSD-3 delivers consistently good performance 

over a  wide range of task workload characteristics. Increasing the number of queues gives 

some further improvement in performance, but the schedulability overhead starts  increas

ing rapidly so that using more than  three queues yields only a minimal improvement in 

performance.
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4.5 Related Work

Using multiple scheduling queues is not a new idea. The ERCOS task scheduler [92] 

uses separate  queues for preem ptive and non-preemptive tasks. Multiple queues are  used 

in network scheduling to combine different types of traffic on the  same link in a  switched 

network [26.27.54]. But in all these cases, multiple queues are used to share a  single 

resource (CPU  or network link) between tasks/messages with different quality o f  service 

(QoS) requirements. W hat is novel about CSD is the use of multiple queues to improve 

performance. We allocate tasks  to different queues in a m anner  tha t  reduces the  task 

scheduling overhead, giving b e t te r  performance than conventional schedulers like E D F  and 

RM. As such, our scheme is orthogonal to scheduling schemes which handle varying QoS 

requirements. The two can be combined by using CSD to schedule one or more queues of 

a QoS scheduler.

The rotating-priority-queues (R P Q ) scheme [73.74] was also proposed for network schedul

ing and like CSD. it too a t te m p ts  to find a middle ground between EDF and s ta tic  priority 

schedulers by using multiple queues. Packets within a queue use FIFO ordering but the 

relative priorities between queues ro ta te  in a fixed way. The motivation behind R P Q  was 

to find an efficient hardware implem entation for network packet scheduling. RPQ achieves 

this by coarse-grained deadline quantization and using FIFO ordering for all packets with 

the same quantized deadline. This lowers hardware costs bu t can degrade schedulability 

significantly.

Liu and Layland in their seminal paper [76] also proposed combining ED F and RM. 

Their motivation was to exploit fixed CPU interrupt priorities to schedule short-period 

tasks while using a software E D F  scheduler for long-period tasks. High-priority tasks get 

scheduled by fixed-priority scheduling (using hardware mechanisms) while low-priority tasks 

are scheduled using software deadline-driven scheduling. In today 's  complex system s, ty 

ing the  scheduler to hardware in terrupt priorities is not feasible. In fact, many m odern 

processors (such as various versions of PowerPC) do not even support multiple hardw are 

priority levels. In such circumstances, the proposal of Liu and Layland is no longer appli

cable. When all scheduling is done in software, it makes much more sense to use dynamic 

scheduling for short-period tasks  and  fixed-priority scheduling for the rest of the workload 

as is done by CSD.

The start-time fair queuing  (SFQ ) algorithm [34] was proposed as a framework to  enable 

use to  different schedulers for different classes of applications. Conceivably, SFQ can be used 

to  combine EDF and RM. However, origins of SFQ are also in network scheduling where it
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is feasible to use s tar t  time as a  basis for fair queuing. This is because packets belonging to 

a  certain  stream (i.e.. flow of packets) can accum ulate which allows the scheduler grea ter 

flexibility in proportioning the network link bandw idth . For example, if packets for a  certain 

s tream  are expected to arrive once every ‘2 ms then  they will continue to arrive regardless of 

w hether  earlier packets have been forwarded or not. The situation is completely different in 

C P U  scheduling. If one invocation of a periodic task  does not complete, the next invocation 

will not be released. So. if a  short period task is combined with several long period tasks, 

SFQ  will dispatch all the first invocations of the long period tasks before second and  higher 

invocations of the long period task  because the former have earlier start  times. This means 

th a t  the second invocation of the short period task  will be considerably delayed (and  no 

o th e r  invocations of this task  will "accumulate” , preventing SFQ from "catching up” la ter  on 

as it can in network scheduling). This makes SFQ undesirable for scheduling tight-deadline 

tasks.

4.6  Conclusion

One of the most im portan t services provided by the RTOS is real-time task scheduling. 

Schedulers such as RM and EDF can incur overheads of 5-15% of CPU time, leaving only 

85-95%  of the CPU for executing user tasks, yet little attention has been paid towards 

s tudy ing  the sources of these overheads and even less a ttention towards devising schemes 

to reduce these overheads. In this chapter, we presented the CSD scheduler which creates 

a balance between static and  dynamic scheduling to deliver greater breakdown utilization 

th rough  a reduction in scheduling overhead of as much as 40% compared to E D F  and 

RM. CSD is a general scheduling framework which allows the scheduler to be configured 

according to the workload to deliver the best possible performance.

Fu tu re  work includes exploring issues related to  the optimal configuration of CSD (op

tim al number of queues and  optimal number of tasks per queue) for a given workload. 

A no ther  interesting avenue of research is studying the possibility of using the low-overhead 

RM policy to schedule queues other than  just the  last queue. This can be beneficial if 

the  tasks in a queue have only a  minimal difference between RM-schedulability and  EDF- 

schedulability. Then, using RM (instead of E D F) for such queues will reduce run-tim e 

overhead without significantly affecting schedulability overhead.
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C H A P T E R  5

EFFICIENT SEM APH O RES

In object-oriented programming in m ulti-threaded systems, updates to the s ta te  vari

ables of objects (by the  methods of the object)  have to be protected through semaphores 

to ensure mutual exclusion. Semaphore operations are invoked each time an object is ac

cessed. and this represents significant run-tim e overhead. This is of special concern in 

cost-conscious embedded systems. Object-oriented programming can be feasible in such 

applications only if the  OS provides efficient, low-overhead semaphores. VVe present a new 

semaphore implementation scheme which saves one context switch per semaphore lock op

eration in most circumstances. Of course, an efficient semaphore scheme is useful not only 

for 0 0  programming but for any application requiring synchronization between multiple 

threads of execution.

5.1 Introduction

In this chapter, we focus on OS support for object-oriented ( 0 0 )  program ming in em

bedded systems. The advent of Java and increasing use of C + +  has made 0 0  programming 

im portant for embedded systems. 0 0  design gives benefits such as reduced software design 

time and software re-use [83]. But with these benefits comes the ex tra  cost of ensuring mu

tual exclusion when an ob jec t’s internal s ta te  is updated. Semaphores1 [18,36] are typically 

used to provide this m utual exclusion. Because semaphore system calls are invoked every 

time an execution th read  enters or exits an object, it becomes essential th a t  the RTOS 

provide efficient, low-overhead semaphores: otherwise, 0 0  design will not be feasible for 

embedded applications because of high costs.

'T h e  optim ization scheme presented in this chapter applies equally well to both sem aphores and mutexes. 
However, for simplicity, we concern ourselves only w ith sem aphores in this chapter.
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Most research in the area of reducing task  synchronization overhead has focused on 

multiprocessors [81.116]. But our target architectures are either uniprocessor (as in home 

appliances) or very loosely-coupled distributed systems (as in au tom otive applications). 

Even with the latter, th reads typically do not need to access remote objects , so our concern is 

only with improving task  synchronization performance for a single processor. Previous work 

in this area  has focused on either relaxing the semaphore semantics to  get be tte r  performance 

[111], coming up with new semantics and new synchronization policies [114]. or putting 

restrictions on the application programmer to  disallow certain operations (such as making 

blocking system calls) while holding a semaphore [89]. The problem with  this approach 

is th a t  these new/modified semantics may be suitable for some particular applications but 

usually they do not have wide applicability.

We took the approach of providing full semaphore semantics (with priority inheritance 

[1 0 1 ]). but optimizing the  implementation of these semaphores by exploiting certain features 

of embedded applications [126]. As a result, our semaphore scheme has wide applicability 

within the domain of embedded applications, while significantly improving performance 

over s tandard implementation methods for semaphores.

In the next section, we give a brief overview of 0 0  programming as it pertains to embed

ded real-time systems, focusing on OS support needed for 0 0  programming. In Section 5.3. 

we describe our new implementation scheme. Section 5.4 discusses some limitations of the 

scheme and ways to overcome these limitations so tha t  our scheme can be used in almost 

all embedded applications. Section 5.5 evaluates the performance of ou r  new scheme, and 

we conclude with Section 5.6.

5.2 Objects and Semaphores in Embedded R eal-T im e Sys

tem s

An object is a collection of private state  information (or data) and a  set of methods which 

manipulate the data . Objects are ideal for representing real-world entities: the ob jec t’s 

internal da ta  represents the physical state  of the  entity (such as tem pera tu re ,  pressure, 

position. RPM. etc.) and  the methods allow the s ta te  to be read or modified. These 

notions of encapsulation and modularity greatly  help the software design process because 

various system components such as sensors, ac tuators , and controllers can be modeled by 

objects. Then, under the  0 0  paradigm, real-time software is just a collection of threads of 

execution, each invoking various methods of various objects [48].
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Conceptually, this 0 0  paradigm  is very appealing and gives benefits such as reduced 

software design time and software re-use. But practically speaking, these benefits come at 

a  cost. The methods of an object must synchronize their access to the o b jec t’s d a ta  to 

ensure m utual exclusion. Because object invocations occur very frequently, it is essential 

th a t  any scheme used to achieve this synchronization must be both memory-ef f icient  as 

well as time-efficient:  otherwise. 0 0  design will be infeasible for embedded system s due to 

high costs.

5 .2 .1  A c t i v e  a n d  P a s s i v e  O b j e c t  M o d e l s

There  are two fundamentally different ways for objects and  execution threads to  interact 

with each o ther  and this has some bearing on the type of synchronization scheme used to 

ensure m utual exclusion.

Under the  active object model [11], one or more server th reads are perm anently  bound 

to an object. When a client th read  invokes a method, a server thread executes the  m ethod 

on behalf o f the client.

W ith  the passive object model [11]. objects do not have th reads of their own. To invoke 

a  m ethod, a  thread will enter the objec t,  execute the m ethod , and then exit the ob jec t .

From the point of view of synchronization, the active object model has an advantage  

if only one thread is assigned per object. Since only one th read  is in the object at any 

time, there  is no need to worry abou t  mutual exclusion. But the  active object model has 

several disadvantages. First of all. having a thread per object means th a t  there will be a 

large num ber of threads in the system  (anywhere from several tens to more than  a  hundred 

depending on the application). Each thread needs its own stack, thread control block, 

etc.. which makes the active object model very memory-inefficient. Moreover, each object 

invocation requires a context switch from the client th read  to  the server th read , so this 

model is time-inefficient as well.

W ith  the passive object model, multiple threads can be inside the same objec t a t  one 

time, so they must synchronize their activities. Semaphores [18.36] are commonly used 

for this purpose (e.g.. to provide the  monitor construct [40]). Even though locking based 

on semaphores incurs time overhead, it is decidedly much more memory-efficient th a n  the 

active object model.
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5.2.2 OO D esign  U nder EM ERALDS

For the above s ta ted  reasons, vve advocate the  passive object model for embedded soft

ware design. Because a  semaphore system call is made every time an ob jec t 's  m ethod is 

invoked, semaphore operations (sem _lock() and sem_unlock() calls under EM ERALDS, 

used to lock and unlock semaphores, respectively) become some of the most heavily used 

OS primitives when 0 0  design is used. This motivated us to investigate new and  efficient 

schemes for implementing semaphore locking in EMERALDS as described next.

5.3 An Efficient Semaphore Im plem entation Schem e

The first step in designing efficient semaphores is to  look at the way semaphores are typ

ically implemented in various systems, identify distinct steps involved in locking/unlocking 

semaphores, and try  to  eliminate or optimize those steps which incur the  g rea tes t  overhead. 

To do these optimizations, we will use characteristics common to embedded applications.

5.3.1 Standard Sem aphore Im plem entation

The standard  procedure to lock a semaphore can be summarized as follows:

i f  (sem lo ck e d )  -C
do p r i o r i t y  i n h e r i t a n c e ;
add c a l l e r  t h r e a d  t o  w a i t  queue;
b lo c k ;  / *  w a i t  f o r  sem to  be r e l e a s e d  * /

}
lo c k  sem;

Priority inheritance [101] is needed in real-time systems to avoid unbounded priority 

inversion [114]. If a  high-priority thread 7 \  calls sem_lock() on a sem aphore already 

locked by a low-priority th read  7j, the la t te r’s priority is temporarily increased to tha t  of 

the former. W ithout priority inheritance, a medium priority thread T m can get control 

of the CPU by preem pting 7j while Th remains blocked on the semaphore, thus causing 

priority inversion. W ith  priority inheritance. 7j will keep on running until it unlocks the 

semaphore. At th a t  point, its priority will go back to its original value, bu t now Th will be 

unblocked and it can continue execution.

First of all, notice th a t  if the semaphore is free when sem J.ock() is called, then the 

semaphore lock operation has very little overhead2. In fact, for this case, only one counter

JThis is especially true  in EMERALDS where system  call overhead is com parable to  subroutine call 
overhead even with full m em ory protection between processes [124].
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  thread -------► context L: Lock U: Unlock
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Figure 5.1: A typical scenario showing thread To a t te m p tin g  to lock a semaphore already 

held by thread Ti. Tx is an unrelated thread which was executing while To was blocked. 

Conceptually. Tr can be Ti.

un b lock  T2

c o n te x t  s w i tc h  C\  (Tx t o  T2)
(T 2 executes and calls sem _lockO  )

do p r i o r i t y  i n h e r i t a n c e  (T 2 t o  Ti) 
b lo c k  T2

c o n te x t  s w i tc h  C 2 ( T o  t o  T \ )
(Ti executes and calls s e m _ u n lo c k () )

undo p r i o r i t y  i n h e r i t a n c e  of Tt 
u nb lock  T2

c o n te x t  s w i tc h  C 3 (JT\ t o  T2 )

Figure 5.2: Operations involved in locking a semaphore for the scenario shown in Figure 5.1

has to be incremented and some other variables updated .

In real-time systems, we are interested in worst-case overheads, and for semaphores, this 

occurs when the semaphore is already locked by th read  T\ when some thread T 2 invokes the 

sem _lock() call. Figure 5.1 shows a typical scenario for this situation. Thread T2 wakes 

up (after completing some unrelated blocking system call) and then calls sem _lock(). This 

results in priority inheritance and a context switch to T\ ,  the current lock holder. After Ti 

releases the semaphore, its priority returns to its original value and a context switch occurs 

to T2 . These steps are outlined in Figure 5.2.

For tasks scheduled by EDF, the context switches are responsible for the largest over

head because this is where A ts is incurred (which takes 0 ( r )  time, see Chapter 4), whereas 

the  remaining operations take only 0 (1 )  time. For this reason, we will focus our optimiza

tion efforts on eliminating one or more context switches and this should result in good 

performance improvement for DP tasks.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For FP tasks, context switches incur a  fixed (although significant) overhead, so elimi

nating one context switch is not as beneficial for F P  tasks as it is for DP tasks. However, 

each of the two priority inheritance (PI) steps take 0 ( n  -  r) time because the task must 

be removed from the  FP  queue and then re-inserted in sorted order according to  its new 

priority. All the remaining operations take 0 ( 1 )  time, even the block operation because the 

PI operation preceding the block resets h ig h e s tP  so th a t  the block operation doesn’t have 

to. This is why. for FP  tasks, we focus our optimization efforts on the PI operations.

5 .3 .2  S e m a p h o r e  I m p le m e n ta t io n  in  E M E R A L D S

Going back to Figure 5.2. we want to eliminate context switch CV We also want to 

optimize the two PI steps. First, we deal with C 2 which occurs when T2 in unblocked after 

some blocking system call (To had made this call to wait for some event E  such as a message 

arrival or timer expiry). T 2 then executes and calls sem _ lock () .  only to block again because 

the semaphore is locked by Tj.

The idea is th a t  when event E  occurs, instead of letting T2 run. let T\ execute. T\ will go 

on to release the semaphore and T2 can be activated at this point, saving Ci (Figure 5.3). 

This is implemented as follows. As part of the  blocking call ju s t  preceding sem _lock() .  

we instrument the code (using a code parser described later) to add an extra param eter 

which indicates which semaphore T2 intends to  lock (semaphore S  in this case). When 

event E  occurs and T2 is to be unblocked, the OS checks if 5  is available or not. If 5  is 

unavailable, then priority inheritance from T2 to the current lock holder Tj occurs right 

here. T2 is added to  the waiting queue for 5  and it remains blocked. As a result, the 

scheduler picks Tj to  execute — which eventually releases S  — and Tj is unblocked as part 

of this sem_unlock() call by Tj. Comparing Figure 5.3 to Figure 5.1. we see tha t  context 

switch C 2 is eliminated. The semaphore lock/unlock pair of operations now incur only one 

context switch instead of two. resulting in considerable savings in execution time overhead 

for DP tasks (see Section 5.5 for performance results).

For FP tasks, we want to optimize the two PI steps, each of which takes 0 ( n  -  r) time 

(Chapter 4). The first PI step (Tj inherits TVs priority) is easily optimized by using the 

observation tha t ,  according to  T j 's  new priority, its position in the FP  queue should be just 

ahead of T2 ’s position. So. instead of parsing the FP  queue to  find the correct position 

to insert Tj, we insert Tj directly ahead of Tj without parsing the queue which reduces 

overhead to 0 (  1 ).

We want to reduce the overhead of the second PI step to 0 ( 1 )  as well. In this step, T\
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I X  .3

Switch to TI s
instead of T2 ' ---------------X----------*"

L time

----------  thread  ► context L ;Lock U: Unlock
execution switch semaphore semaphore

Figure 5.3: The new sem aphore implementation scheme. Context switch Co is eliminated.

returns to its original priority. We want to do this without having to parse the  en tire  queue. 

One incorrect solution is to remember Xj's neighbors from its original position in the  queue 

in an a ttem p t to re tu rn  Tj to  th a t  position by inserting it between these neighbors. But 

if these neighbors themselves undergo priority inheritance, their position in the  queue will 

change and the scheme will not work.

The solution used in EM ERALDS is to switch the positions of Ti and T2 in the  queue 

as part  of the first PI opera tion  when T\ inherits To's priority. This puts T\ in the  correct 

position according to its new priority while Tj acts as a “place-holder” for T\  to  rem ember 

TVs original position in the  queue. Then the question is: is it safe to put T2 in a  position 

lower than  what is d ic ta ted  by its priority? T h e  answer is yes. As long as Ti s tays  blocked, 

it can be in any position in the  queue. Ti unblocks only when T\ releases the  semaphore, 

and at that time, we switch the positions of T\  and  To again, restoring each to the ir  original 

priorities. With this scheme, both  PI operations take 0 ( 1 )  time.

One complication arises if T\ first inherits TVs priority, then a third thread T3 a t te m p ts  

to lock this semaphore and Ti  inherits TVs priority. For this case, T3 becomes Ti 's  place

holder and T2 just goes back to  its original position. This involves one ex tra  s tep  compared 

to  the simple case described initially but the  overhead is still 0 ( 1 ).

Note that these optim izations on the PI operations were possible because ou r  scheduler 

implementation keeps bo th  ready and blocked tasks in the same queue. Had th e  F P  queue 

contained only ready tasks , we could not have kept the place-holder TCB in the  queue.

C ode Parser:

In EMERALDS, all blocking calls take an e x tra  param eter which is the identifier of the 

semaphore to be locked by the  upcoming sem _lock()  call. This parameter is set to  —1 if 

the  next blocking call is not sem _lock() .  For embedded systems, it is possible to  write  a 

parser which examines the  application code and  autom atically  inserts the correct sem aphore
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identifier into the  argument list of  blocking calls just preceding semJLockO calls. P arser  

design issues are discussed further in Section 5.4.

S ch ed u lab ility  A nalysis for th e  N ew  Schem e:

From the  viewpoint of schedulability analysis, there can be two concerns regarding the 

new sem aphore scheme (refer back to Figure 5.3):

1 . W h a t  if th read  Ti does not block on the call preceding sem _lock()?  This can happen  

if event E  has already occurred when the call is made.

2. Is it safe to delay execution of Tn even though it may have higher priority than T\  (by 

doing priority inheritance earlier than  would occur otherwise)?

Regarding the  first concern, if To does not block on the call preceding sem _lock().  then 

a context switch has already been saved. For such a s ituation. T2 will continue to execute 

till it reaches sem _lock() and a  context switch will occur here. W hat our scheme really 

provides is th a t  a context switch will be saved either on the  sem J.ock()  call or on the 

preceding blocking call. Where the savings actually occur a t run-time do not really m a t te r  

for calculation of worst-case execution times for schedulability analysis.

For the  second concern, the answer is tha t  yes. it is safe to  let T\ execute earlier than  

it would otherwise. The concern here is tha t  T2 may miss its deadline. But this cannot 

happen  because under all circumstances. T2 must wait for Tj to release the sem aphore 

before T2 can complete. So from the schedulability analysis point of view, all th a t  really 

happens is th a t  chunks of execution time are swapped between T\ and T2 without affecting 

the completion time of T2 . Another similar concern is th a t  after event E.  Ti may have to 

produce an ou tp u t  or send a message/signal to another th read  (call it T3 ). Delaying T 2 may 

cause T3 to miss its deadline. The answer to all such scenarios is th a t  as just discussed. T2 

completes by its deadline (even though it may be delayed). As long as T 2 completes by its 

deadline, no o ther  thread tha t  depends on T 2 will miss its deadline, so schedulability of the 

task  workload is not adversely affected.

5.4 A pplicability o f th e N ew  Scheme

T here  can be three circumstances under which our proposed semaphore scheme m ay not 

work:

1 . T he  code parser is unable to  identify which semaphore is to be locked next due to  con-
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f o r  ( ; ; )  {
r e a d  s e n s o r  1 ; 
r e a d  s e n s o r  2 ;

r e a d  s e n s o r  x;  
u p d a te  a c t u a t o r  1 ; 
u p d a te  a c t u a t o r  2 ;

u p d a te  a c t u a t o r  y;  
b lo c k  t i l l  t im e r  e r p i r y

o r  e v e n t  o c c u r r e n c e ;

}

Figure 5.4: A typical sensor-controller-actuator loop commonly found in embedded control 

applications

ditional constructs such as loops with a variable number of i terations or i f - t h e n - e l s e  

s tatem ents.

2. The blocking call preceding an sem_lock() is another sem _lock()  so that only one 

context switch is saved between these two calls.

3. The lock holder T\ (F igure 5.3) blocks after event E  but before releasing the semaphore. 

Then with standard  semaphores. T2 will be able to execute, but under our scheme it 

cannot which may lead to To missing its deadline.

In the rest of this section, we discuss how often (if at all) these scenarios can occur in 

embedded real-time systems, which specific forms they can occur in. and how these problems 

can be resolved.

5 .4 .1  C o d e  P arser  I s su e s

Most threads in embedded systems execute sensor-controller-actuator loops as shown in 

Figure 5.4 (for IA s . the “sensor" can be a network device and the  "ac tu a to r’’ can be an 

audio or video output device). Each device (sensor or actuator)  is represented by an object 

protected by its own semaphore. Each device may be a real senso r /ac tua to r  or a logical 

one representing several devices being controlled as one group.

Note th a t  the same devices are accessed each time the loop executes. The order in which 

semaphores are locked is fixed, so there is no ambiguity for the  code parser. At run-time,
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the method which gets invoked on an object may depend on the input data:

i f  ( s e n s o rR e a d in g  > A) v a l v e . o p e n ( ) ; 
e l s e  v a l v e . c l o s e ( ) ;

but this does not change the order in which semaphores are locked because all m ethods of an 

object are protected by the same semaphore. In other words, m ost embedded applications 

are s tructured as in Figure 5.4. and for such a structure, the parser can easily determ ine 

which semaphore is to  be locked after a given blocking call.

In case a blocking call occurs inside a loop followed by sem _lock()  outside the loop, the 

argum ent to be passed for the semaphore identifier is calculated conditionally as follows:

w h i le  (cond) {

i f  (cond) 
sem = - 1 ; 

e l s e
sem = S; 

s o m e _ b l o c k in g _ c a l l ( . . . ,  sem) ;

>

s e m _ lo c k (S ) ;

This way. - 1  is passed as the param eter  for all but the last iteration of the  loop. Again, this 

code can be autom atically  inserted by the code parser without the  application p rogram m er 

having to make any m anual modifications to the code. Note th a t  this scheme works as long 

as the condition cond does not depend on the blocking call or code after the call. This is 

true  for loops which execute for a fixed number of iterations which is the most common 

case in embedded control systems. One example is code which steps a  stepper m otor  x 

number of times. Value of x may depend on sensor readings, bu t  it stays fixed while the 

loop executes.

Regarding loops w ith  a  variable number of iterations, our experience shows th a t  such 

loops typically do not contain blocking calls in embedded real-time systems. A variable- 

iteration loop is used to  wait for a condition to come true (such as a  spin lock), bu t th a t  is 

what blocking calls do as well (wait for a condition). The two m ay be combined if th e  result 

of the blocking call is uncertain  (such as for condition variables with Mesa semantics used 

in general-purpose com puting), but such a situation rarely occurs in embedded real-time 

systems.
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5 .4 .2  C o n s e c u t iv e  sem _lock() C a lls

Going back to  Figure 5.4, the bodies of th e  methods invoked by the th read  may contain 

blocking calls, especially condition variable and  message-passing calls. In these calls, the 

parser will insert the identifier of the upcoming se m _ lo c k () . But if such calls are  not present, 

then two or more sem _lock() calls can occur with no other blocking call in between them. 

T hen , only one context switch will be saved per pair of semJLockO calls. This leads to an 

in teresting avenue for future research. Our scheme can be generalized so th a t  the blocking 

call a t  the  end of the control loop will not unblock until all the semaphores needed by the 

th read  for execution become available. In o th e r  words:

for (;;) {
obj_l.method // protected by sem SI
obj_2.method // protected by sem S2

obj_n.method // protected by sem Sn
block(..., SI, S2, ..., Sn);

>

This is somewhat similar to the Spring kernel's notion of reserving all resources a  task  

needs before letting the task execute [109], bu t with an important difference: the  Spring 

kernel executes tasks non-preemptively while under our proposal, threads execute preemp

tively. This allows higher priority threads to preem pt a given thread (giving good schedula- 

ble utilization) while reducing the number of context switches seen by the th read  to wait for 

resources (giving shorter execution times). However, advance reservation o f  all semaphores 

will increase scheduler complexity and may also adversely affect task schedulability. Impact 

of these issues on performance must be studied to  determine the viability o f  this extension.

5 .4 .3  B lo c k in g  b y  th e  L ock H o ld e r  T h r e a d

Going back to Figure 5.3, suppose the lock holder T\ blocks after event E  but before 

releasing the semaphore. W ith standard semaphores. T 2 will then be able to execute (at 

least, till it reaches sem _lockO ), but under ou r  scheme, Ti  stays blocked. This gives rise 

to the concern th a t  with this new semaphore scheme, T2 may miss its deadline.

In Figure 5.3, T\  had priority less than  th a t  of T2 (call this case .4). A different problem 

arises if T\  has higher priority than To (call it case B).  Suppose sem aphore S  is free when 

event E  occurs. Then T 2 will become unblocked and it will start executing (F igure  5.5). 

But before T2 can call sem _lock(), T\ wakes up, preempts T 2 , locks 5 ,  then  blocks for some
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E
T   V T2 preempted

\  by T1
'  L B  Switch to some

T, '  4--------K-------- K  other thread
1 \  '  \

L

  thread -------*■ context L: Lock B: block
execution switch sem.

Figure 5.5: If a higher priority th read  T \  preem pts To. locks the  sem aphore, and blocks, 

then T2 incurs the full overhead of sem _lock() and a context sw itch is not saved.

event. T o  resum es, calls sem _ lock (). and blocks because S  is unavailable. The context 

switch is not saved and no benefit comes out of our sem aphore scheme.

All these problems occur when a  th read  blocks while holding a  sem aphore. To resolve 

these problem s, we first make a small m odification to  our sem aphore scheme to  change the 

problem  in case B  to be the sam e as the problem in case .4. This leaves us with only 

one problem  to  address. Then, by looking at the larger p ictu re  and considering threads 

o ther th a n  ju st T’i and T2 . we can show th a t this problem is easily circum vented and our 

sem aphore scheme works for all blocking situations th a t occur in practice as discussed next.

M odification  to  th e  Sem aphore Schem e:

For th e  situation  shown in Figure 5.5. we want to somehow block T o  when the higher- 

priority  th read  T \  locks S .  and unblock T-i when T \  releases 5 . This will prevent To from 

executing while 5  is locked, which makes this the same as the  situation  in case .4.

Recall th a t when event E  occurs (F igure 5.5), the OS first checks if 5  is available or not 

before unblocking 7Y Now. let us extend the scheme so th a t th e  OS adds To  to a special 

queue associated with 5 . This queue holds the threads which have completed their blocking 

call ju s t preceding sem _lock() but have not called sem _lock() yet.

T h read  7 \ will also get added to  this queue as part of its blocking call ju st preceding 

se m _ lo ck (). W hen Tj calls sem _ lo ck (). the OS first removes T \  from this queue, then puts 

all th read s  rem aining in the queue in a blocked state . Then, when T \  calls sem _un lock(). 

the OS unblocks all threads in the queue. This way. T2 is prevented from executing while 5  

is locked which results in the sam e behavior as in case .4. Also, if done properly, addition 

and rem oval of th reads from this queue incurs very little overhead (abou t 5-7  ps on a 

25 MHz MC 68040 without caches and ju s t 1-2 fis  with caches).

W ith  this modification, the only rem aining concern (for b o th  cases .4 and B )  is: if
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  t h r e a d -► context L:Lock (J: Unlock B: Block S: Signal
execution switch sem. sem.

Figure 5.6: S ituation when the  lock holder Tj blocks for a  signal from another th read  T s .

execution of Ti is delayed like this while other threads (of possibly lower priority) execute, 

then T 2 m ay miss its deadline. This concern is addressed next.

A pplicab ility  under V arious B locking Situations:

T here can be two types o f blocking:

• W ait for an internal event, i.e.. wait for a signal from ano ther thread after it reaches 

a certain  point.

• W ait for an external event from the environm ent. This event can be periodic or 

aperiodic.

The first type of blocking is used by threads to  synchronize w ith each other and the  second 

type is used to  interact with the environment.

Blocking fo r  Internal Events: The typical scenario for this type of blocking is for th read

Ti to en ter an object (and lock semaphore 5) then block w aiting for a signal from ano ther 

th read  T s . Meanwhile. T 2 stays blocked (Figure 5.6). T he question is: is it safe to  delay 

T2 like this even if T , is lower in priority than T2? The answ er is yes. because T 2 cannot 

lock S  till T \  releases it. and Tj will not release it till it receives the signal from T s . so even 

though T s  may be lower in priority  than T 2 . it is safe to  let T s  execute earlier. This leads to 

7 \ releasing 5  earlier than  it would otherwise which leaves enough time for T 2 to  com plete 

by its deadline.

Blocking fo r  External Events: External events can be e ither periodic or aperiodic. For

periodic events, polling is usually used to interact w ith the  environm ent and blocking does 

not occur. A common exam ple is a periodic sensor-controller-actuator loop where sensors
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are read and ac tu a to r commands are updated  periodically and no blocking calls are involved. 

One common exception is to block on a tim er (usually, to wait for the  current period to 

end), but this blocking call occurs a t the  end o f the  main loop of execution of the  th read  

and is not inside any object and no sem aphores are held by the  th read  when this call is 

m ade.

Blocking calls are used to wait for aperiodic events, but it does not make sense to  have 

such calls inside an object. There is always a possibility th a t an aperiodic event m ay not 

occur for a  long tim e. If a  thread blocks w aiting for such an event while inside an ob jec t, it 

m ay keep th a t object locked forever, preventing o th er threads from m aking progress. So the 

usual practice is to  not have any sem aphores locked when blocking for an aperiodic event.

In short, dealing w ith external events (w hether periodic or aperiodic) does not affect the  

applicability of our sem aphore scheme under the  com m only-established ways of handling 

ex ternal events. But in case some application does require blocking for external events while 

inside an object, our semaphore scheme can be tu rned  off by specifying — 1 as the sem aphore 

identifier in the blocking call just preceding sem _ lock (). This will cause EM ER A LD S' 

sem aphores to  behave ju st like s tandard  im plem entation sem aphores, but we do not believe 

this will be needed very often, if at all.

5.5 Perform ance Evaluation

To m easure the improvement in perform ance resulting from our new sem aphore schem e, 

we im plem ented it under EMERALDS and m easured perform ance on a 25 MHz M otorola 

68040 processor [87].

W hen a thread  enters an object, it first acquires the sem aphore protecting the  ob jec t, 

and when it exits the object, it releases the sem aphore. T he cum ulative tim e spent in 

these two operations represents the overhead associated with synchronizing th read  access 

to  objects. To determ ine by how much this overhead is reduced when our scheme is used, we 

m easured the tim e for the  acquire/release pair of operations for bo th  standard  sem aphores 

and our new scheme and then compared the  two results. In the  following, we first describe 

our evaluation procedure, then present the results.

5 .5 .1  T h e  T est  P r o c e d u r e

We want to  m easure the worst-case overhead for acquire/release because this is w hat is 

used in schedulability analysis. The worst case occurs if
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  t h r e a d  ► context Z..'Lock U:  Unlock B: Block S: Signal
execution switch sem. sem. thread

Figure 5.7: Test procedure for s tan d a rd  sem aphores. Interval <1 is the overhead for ac

qu ire/release operations.

• the semaphore is already  locked when sem _lock() is called, and

• priority inheritance occurs.

To get this behavior, we use two th reads in our tests. T \  and Ti, with T 2 having higher prior

ity. For the standard sem aphore im plem entation, the tes t proceeds as shown in Figure 5.7. 

T 2 executes first and blocks w aiting for a signal from T \ .  T \  executes, locks sem aphore 5 . 

and  signals T2 which is unblocked, goes on to execute sem _ lo ck (). and priority inheritance 

occurs. Thread T \  then releases S .  its priority goes back to  its original value, and a context 

switch occurs back to To. We m easure interval t\ which is the tim e for an acquire plus a 

release and includes relevant context switches.

We repeated this test w ith the  new sem aphore scheme. Figure 5.8 shows the new 

sequence of events. In th is case, priority inheritance is done by the OS when T\ signals 

T2 . so Ti continues after the  signal and unlocks 5 . 7Vs priority goes back to  its original 

value. T2 is unblocked, and it goes on to  lock 5  w ithout needing any more context switches. 

Then the difference t2 — t$ (F igures 5.7 and 5.8) represents the  improvement due to  the  new 

scheme and — (f2 — *3 ) is the  overhead for acqu ire/release under the new schem e. Note 

th a t we cannot directly m easure the  acquire/release overhead for the new scheme because 

priority  inheritance occurs well before the rest of the acquire operation.

5 .5 .2  E x p e r im e n ta l R e s u lt s

O ur semaphore scheme elim inates one context sw itch and optimizes the priority  inheri

tance mechanism for F P  task s, so the performance of ou r scheme depends on w hether the 

relevant tasks are in the  D P or F P  queue, as well as on the  num ber of tasks in the  queue. 

Figure 5.9 shows the sem aphore overheads for tasks in the  DP queue as the num ber of tasks 

in the  queue are varied from  3 to  30. Since the  context switch overhead is a linear function
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Figure 5.8: Test procedure for the  new sem aphore scheme.
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Figure 5.9: W orst-case performance m easurem ents for DP tasks. T he overhead for the 

standard  im plem entation increases twice as rapidly as for the new scheme.

of the num ber of tasks in the DP queue (because of A ts ). the acquire/release times increase 

linearly w ith the queue length. But the  standard  im plem entation’s overhead involves two 

context switches while our new scheme incurs only one. so the m easurem ents for the  s tan 

dard  schem e have a slope twice th a t of our new scheme. For a typical DP queue length of 15. 

our scheme gives savings of 1 1 /rs over the standard  im plem entation (a  '28% im provem ent), 

and these savings grow even larger as the DP queue's length increases. Figure 5.11 shows 

the percentage improvement with varying num ber of threads.

For the  F P  queue, the standard  im plem entation has a linearly increasing overhead while 

with the new im plem entation, the overhead is constant (because prio rity  inheritance takes 

0 (  1) tim e). Also, one context switch is elim inated. As a result, the acquire/release overhead 

stays constan t a t 29.4^s. For an FP  queue length of 15, this is an im provem ent of 10.4^s 

or 26% over the standard  im plem entation.

In general, our scheme gives perform ance improvements o f ‘20-30% . depending on w hether 

the tasks involved in locking and unlocking the semaphore are in th e  D P or FP  queue and
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Figure 5.11: Percent im provem ent in performance due to  our new sem aphore scheme.
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the  length of the queue.

5.6 Conclusion

Em bedded application program m ers generally tend to avoid object-orien ted  program 

m ing. one reason being the  high overhead associated with synchronizing th read  access to 

ob jec ts. Semaphores m ust be used to ensure m utual exclusion when updating  the s ta te  vari

ables of objects, and this usually means a large enough overhead to  m ake object-oriented 

program m ing infeasible for cost-conscious em bedded applications.

In this chapter, we presented a new sem aphore im plem entation scheme which saves one 

contex t switch per sem aphore acquire/release pair of operations (for m ost scenarios found 

in em bedded applications) and  improves perform ance by 20-30% . We used the fact that in 

em bedded applications, the  sequence in which sem aphores are to be locked can be identified 

a t compile time. Then, during run-tim e, we use th is known sequence to do ahead-of-tim e 

checks on the status of sem aphores (w hether they  are available or no t). If a  sem aphore is 

unavailable, we delay the  execution of threads until the sem aphore is released. This way. 

the  sem aphores are always available when th reads actually m ake the sem _lock() system 

call and  the call does not block, saving one contex t switch.

Fu ture  work includes study ing  the advantages and disadvantages of ex tending  our scheme 

so th a t  instead of looking ahead only to the next sem _lock() call, the scheduler will con

sider all the semaphores a  th read  may need to  execute so th a t all resource conflict-related 

context switches are elim inated. Also, in this chap ter we focused only on im proving the 

sem aphore lock operation. In the future, we plan to  investigate optim izations related  to  the 

release operation to  get fu rther improvements in synchronization overheads.
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C H A P T E R  6

E N D -H O ST  PROTOCOL P R O C E SSIN G  A R C H IT E C T U R E

Inform ation appliances (IAs) [64.71] are  single-user devices with Internet connectivity , 

used for specialized com m unication and inform ation  retrieval purposes. C urrently . IAs exist 

as w ebTV s. sm art cellular phones with e-m ail and web browsing, PDAs, and web phones. 

T h e  future of IAs is already evident in new devices such as web video phones which use the 

In te rn e t for audio/video com m unication. W ith  annual production volume of IAs expected 

to  reach 48 million units by year ‘2001 [5], IAs are  becoming an im portant class of em bedded 

devices.

IAs differ from o ther em bedded devices (such as autom otive controllers) in th a t  they 

com m unicate directly over the  Internet. This m eans th a t IAs m ust run a full com m unication 

pro tocol stack. Real-tim e audio and video com m unication over the Internet is an in tegral 

p a r t  of many IAs which m eans th a t despite slow hardw are, the comm unication subsystem  

w ith in  the OS m ust be able to efficiently handle heavy netw ork traffic. In this c h ap te r, we 

p resent optim izations for reducing receive-side netw ork protocol processing overhead thus 

enabling  efficient handling of real-time audio and video messages. (We focus on receive-side 

overhead since it usually exceeds send-side overhead.) In our scheme. I-cache miss overheads 

a re  minimized by safely bypassing multiple protocol layers, benefiting short m essages such 

as live audio. Moreover, message d a ta  needs to  be copied only once (w ithout any hardw are 

su p p o rt from the network adap ter or any restric tions on the network API) which benefits 

long  messages such as video and stream ing d a ta .

T he next section discusses the aud io /v ideo  com m unication requirem ents of IAs. Sec

tion  6.2 gives an overview of protocol processing overheads. Section 6.3 presents o u r  schemes 

for reducing these overheads, and these optim izations are then evaluated in Section 6.4. Sec

tion  6.5 discusses related work and the ch ap te r concludes with Section 6 .6 .
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6.1 A u d io /V id eo  Com m unication in IAs

IAs differ from trad itional PCs and w orkstations in two key aspects. F irs t. IAs are 

specialized devices which perform  specific functions and are not m eant for general-purpose 

com puting. Second. IAs use simple, low-cost hardw are to  keep production costs low. For 

example, the current generation of personal in form ation managers (PIM s) typically use 

processors running at 16-44 MHz [71]. These CPU s are sufficient for the specialized func

tions supported by IAs. M oreover, low-speed processors consume less power, thus providing 

longer operation with lighter batteries; both being key requirem ents for portab le IAs.

Since audio/video com m unication is a prim ary function performed by IAs. the  comm u

nication subsystem w ithin the  OS must be highly efficient to work well with the  low-cost, 

slow hardw are of IAs. T he subsystem  must be s tru c tu red  to handle both short as well as 

long messages with m inim al overhead. Handling sho rt messages efficiently is im portan t for 

applications such as In ternet telephony where live voice packets are usually ju st 30-50 bytes 

(as in the GSM audio encoding scheme [99] used in various In ternet phones). On the o ther 

hand, video applications exchange long messages (10-15  kbytes [25]) and these too  m ust be 

handled efficiently.

Different overheads come into play depending on w hether short or long messages are 

being processed. Data-touching  overheads (which include d a ta  copying and checksum over

heads) tend to dom inate when dealing with long m essages. For short (audio) m essages, the 

message size is just tens of bytes (so copying overheads are not im portan t), but messages are 

sent once every 10-30ms [98]. W ith messages arriving w ith such high frequency, non-data- 

touching overheads (context switching, in terrupt handling. I-cache miss overheads, etc.) 

become an im portant p a rt of protocol processing.

Studies have shown th a t  receive-side protocol processing is more com plicated and has 

higher overhead than  the  send-side [55.57.79] and th is is what limits th roughput: so. here 

we focus on improving receive-side overhead. The send-side architecture is sim pler than  the 

receive-side because processing can occur as part of th e  send system  call (as done in [19.65. 

79]) and this is the scheme we use as well. However, on the  receive-side, protocol processing 

in general cannot occur a t the  tim e of the receive system  call since the message m ay not have 

arrived yet. This leads to  th read  blocking and context switching which increases receive-side 

overhead, which is why we focus on improving the receive-side architecture.

We present schemes to  improve both non-data-touching as well as data-touching  over

heads. For the former, we use application-specific knowledge to  safely bypass selected layers 

within the protocol stack, completely avoiding all I-cache misses associated w ith those lay-
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ers. We show th a t th is layer bypass can be easily applied to  live voice m essages, resulting in 

considerable reduction in non-data-touching overheads. Regarding data-touch ing  overheads 

(which affect long m essages), we exploit the periodic na tu re  of video applications. We show 

th a t  the single-copy scheme presented for non-real-tim e system s in [15] — which requires 

specialized network ad ap te r hardw are to  be feasible for non-real-tim e system s — works well 

w ithout any hardw are support for m ultim edia applications because of their periodic nature. 

We show th a t when this single-copy scheme is combined with a real-time task scheduler. 

it can be used effectively for video applications. We also show th a t our optim izations for 

real-tim e messages can be implemented w ithout d isrupting the handling of non-real-tim e 

messages. Moreover, our protocol architecture does not rely on any special hardw are and 

is independent of the  type of underlying network.

For the purpose o f evaluation, we have im plem ented U D P /IP  using our protocol architec

tu re  within EM ERALDS. We chose UDP as the protocol to  im plem ent since it is commonly 

used for audio and video applications. The protocol code was taken from FreeBSD -1.4 and 

m inor modifications were m ade to make it work w ith our protocol arch itecture.

6.2 Protocol A rchitecture Issues

Network protocol arch itecture  has been an active area of research for m any years [41.97] 

and  various techniques have been proposed to m ake protocol processing efficient. Following 

is an overview of I-cache and data-copying overheads, schemes proposed by o ther researchers 

to  reduce these overheads, and shortcomings of these schemes.

6.2 .1  Efficient I-C ache Usage

Comm unication protocols are designed to work w ith a wide variety of applications. 

They must accom m odate varying communication pa tte rn s , error conditions, and operating 

m odes. This is essential for a protocol to be widely accepted. The downside is th a t gen

erality  is achieved a t  the  expense of performance. A large portion of the  protocol code is 

devoted to checking for rarely-occurring errors or special message form ats. These checks 

are  usually coded as shown in Figure 6.1. Most of the tim e, there are no errors so th a t the 

body of the i f  s ta tem en ts  never execute. However, code is still fetched into the I-cache. 

causing replacement misses. Moreover, repeated branches can cause CPU  pipeline stalls. 

For relatively slow C PU s such as those used in IAs. this results in significant non-data- 

touching overhead which is im portan t when processing short audio messages. As a result.
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if (checkl) {

>

if (check2) {

>

if Ccheck3) {

}

Figure 6.1: Typical s tru c tu re  o f erro r checks in protocol code.

researchers a tte m p te d  to  minimize such overheads by various means. In [8 6 ], techniques 

called outlining  and cloning are presented in which frequently-executed p a th s  th rough  the 

protocol stack are identified (by studying the  protocol code), and this in fo rm ation  is passed 

to the compiler which places code in m em ory to minimize I-cache misses for these paths. 

In [93], increm ental specialization is presented in which special code optim ized for the  com 

mon case is used whenever possible. The system  includes a  num ber of checks which cause a 

switch to  the code which handles the fully general case if the special case no longer applies.

All these techniques can be considered as low-level optim izations. In general, they 

require a careful study  of protocol im plem entation code to  achieve full perfo rm ance benefits 

and this entails considerable effort on the p a rt of the  program m er. Some m ethods have been 

proposed to  partially  au tom ate  these op tim izations, bu t their full advantage is achieved only 

by m anually applying the optim izations to  protocol code. This indicates a  need to  develop 

an easier-to-use scheme to reduce I-cache misses: a scheme %vhich does not require low-level 

fine-tuning of protocol code yet avoids all unnecessary I-cache misses.

6.2.2 S ingle-C opy A rchitectures

The single-copy network arch itecture was proposed by network ad ap te r (N A ) designers 

[15] to  reduce data-touching  overheads. T he idea is to  design an NA w ith  enough buffer 

space so th a t on transm ission, d a ta  is copied once from user-space directly to  the  NA. while 

on reception, d a ta  stays in the NA until the  application makes a receive system  call and 

then d a ta  is copied directly to user-space. In case NA buffers fill up, d a ta  has to  be buffered 

within the kernel, leading to two d a ta  copies.

This arch itectu re  was proposed for general-purpose com puting, and to  be effective for 

such applications, the  NA not only needs “enough” buffers, it also needs “flexible” buffers.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T he A fterbu rner NA [15] uses linked lists to  manage NA buffers. For both transm ission and 

reception, it has two queues of in-use and free buffers, so it can continue operating as long 

as some free buffers are available. This is a more com plicated and expensive NA design 

th an  com m on NAs such as LANCE [4].

L A N C E 1 uses circular queues of buffers. For transm ission, it transm its messages from 

the  ring until it reaches a  free buffer a t which point it stops. For reception, it fills buffers 

in the  receive ring until it reaches a filled buffer at which point it s ta rts  dropping packets. 

This sim ple design is low-cost and works perfectly w ith two-copy architectures. B ut if the 

single-copy arch itecture were to  be used for an NA such as LANCE for general-purpose 

applications, there will be problem s with bo th  transm ission and reception.

T r a n s m is s io n  Issu e s : Suppose a protocol such as T C P  is being used. T C P  requires th a t

message d a ta  be kept by the  kernel until acknowledgment is received. Due to  the circular 

m anner in which LANCE accesses buffers, the kernel cannot keep a lock on one particu lar 

buffer for a  long tim e because LANCE will stop once it reaches this buffer (even if o ther 

buffers are  ready for transm ission down the ring).

R e c e p t io n  Is s u e s :  Once LANCE fills some buffer b w ith  a received packet, the  kernel

m ust rem ove d a ta  from this buffer before LANCE goes around  the  ring and comes back to  

this buffer. If buffer b has not been em ptied. LANCE will simply stop when it reaches b 

(even if o th er buffers are free down the ring) and will s ta r t  dropping packets. For general- 

purpose applications, this is likely since there is no bound on how long an application may 

take before m aking the receive system  call.

W hen used for general-purpose applications, single-copy architectures work well only 

w ith hardw are support. W ithou t hardw are support, they  can quickly degrade in perfor

m ance to  the level of two-copy arch itectures. As we will show later, for real-tim e applica

tions, the  single-copy arch itectu re  is feasible when combined with a real-time task scheduler , 

and it does not require any special hardw are support.

6.2 .3  Our D esign G oals

O ur prim ary  goal is to  provide efficient audio/video com m unication support for IAs 

by lowering b o th  data-touching  and non-data-touching overheads. A secondary goal is to

'C u rren t-genera tion  IAs use m odem s for communication. However, as the network bandw idth require
m ents of IAs increase, we would expect IAs to  s ta r t  using simple, low-cost NAs similar to LANCE.
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achieve this w ithout hardw are support from the NA. This is im portan t for IAs since adding 

special features to the  NA can increase hardware costs significantly. A nother goal is th a t 

our arch itecture  m ust be able to  work with existing APIs (such as the BSD socket A P I) and 

m ust work for all netw ork types, whether connection-oriented or not. In o ther w ords, we 

will m ake no assum ptions abou t the network or the A PI and we will not assum e existence 

of any special features in the  NA (o ther than  "sufficient” buffer space as discussed in detail 

in Section 6.3.3).

6.3 Protocol A rchitecture for Audio and Video

Real-tim e audio and video comm unication applications have certain characteristics not 

found in general-purpose applications:

•  Application code executes periodically with well-known periods for both audio  and 

video.

•  T ransport protocols used for communication do not use acknowledgments. U D P is 

commonly used over the  In ternet.

A cknow ledgm ent-based tran spo rt protocols are usually not used for audio and video 

transm ission. If a m essage is lost, then by the time the loss is detected and the message is 

re tran sm itted , the d a ta  contained in the message would already  be too stale to  be of any 

use. Forward error correcting codes a t the application level are typically used to  recover 

from lost messages. As such. UDP is the most comm only-used transport protocol for audio 

and video. We use this fact along with the periodic n a tu re  of m ultim edia applications 

to design an efficient a rch itec tu re  which lowers both data-touch ing  and non-data-touching 

overheads.

T he  next subsection describes the basic structure  we chose for our protocol arch itectu re , 

followed by a description of our protocol processing optim izations in subsections 6.3.'2-6.3.3.

6 .3 .1  Basic S tructure

We chose lazy receiver processing (L R P) [19] (F igure 6.2) as our basic protocol archi

tec tu re . In this scheme, th e  send-side processing is done by the  application th reads. W hen 

a  send system call is m ade, the  application thread enters the  kernel, executes all relevant 

pro tocol and device driver code, and transfers the d a ta  to  the  NA for transm ission. This is 

sim ilar to the send-side schemes used in [65,79].

T he  main advantage o f LRP is for the receive-side processing. Under LRP, incom ing
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Figure 6.2: Lazy receiver processing.

packets trigger in terrupts which cause the device driver to execute and it passes packets on 

to  the  packet filter [23,84]. (T he packet filter is a small piece of code which is dynam ically 

installed in the kernel by individual applications to  detect packets belonging to  those appli

cations and take appropriate  actions.) The filter tries to  forward packets directly to queues 

associated with the destination  th read  where packets stay unprocessed until the  application 

m akes a receive system  call. This is possible for real-tim e messages since the application 

th reads are usually periodic (w ith  the period being ensured by the real-tim e task  scheduler) 

so th a t  packets are always processed w ithin a known tim e interval.

For non-real-time applications, there  is no bound on how long the  application may take 

to  m ake the  receive call. As such, non-real-tim e packets are forwarded to  a  special netw ork 

th read  which performs protocol processing and keeps the message until the final destination  

th read  makes a call to  receive it. The netw ork th read  also acknowledges messages if needed 

(as in T C P ). In fact, the need to  send tim ely acknowledgments in protocols such as T C P  

is th e  prim ary reason for having a separa te  netw ork thread .

LRP provides more predictable message handling than o ther protocol arch itectures such 

as th e  user-level architecture presented in [65] which always relies on special netw ork th reads 

for protocol processing. This can lead to  priority  inversion  [82], i.e.. handling of a  high- 

priority  real-tim e message (such as live voice) being unnecessarily delayed by the  processing 

of lower-priority or non-real-tim e messages. P riority  inversion can occur if the  netw ork 

th read  executes a t a priority  different from the  destination thread (th is can happen if one 

netw ork thread  handles traffic for m ultiple application th reads). For exam ple, if the  netw ork
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th re a d  runs a t a  priority  lower th an  th a t  of the  destination  th read , an  in term ediate-priority  

th re a d  can preem pt the  netw ork th read , preventing messages from reaching the higher- 

prio rity  destination  th read . In LRP. all protocol processing is done by the  destination 

th re a d  itself, which prevents any priority inversion and ensures pred ictab le  processing.

A nother advantage o f LRP is th a t it saves one context switch for real-tim e messages 

com pared  to  arch itectures which always use in term ediate  network th reads for protocol pro

cessing. This makes LR P ideally suitable for use in real-tim e system s.

N ext, we describe ou r optim izations for protocol processing. N ote th a t these optim iza

tions do not depend on LRP and would work equally well with o th er protocol architectures.

6 .3 .2  R educing N on-D ata-T ouch ing O verheads

For lowering non-data-touch ing  overheads — especially those rela ted  to  I-cache misses 

— we present a new schem e called layer bypass. It is easier to apply th a n  low-level optim iza

tions like outlining and specialization. It does not require any in -dep th  analysis of protocol 

code, and can be used effectively for short m essages, which is where lower non-data-touching 

overheads are most beneficial.

Layer bypass relies on the  observation th a t m ost of the functionality  im plem ented by 

various protocol layers is simply not needed when processing short messages. The few 

opera tions th a t are needed are either already duplicated  in the packet filter or can be easily 

m igra ted  there. This allows various protocol layers to  be bypassed, com pletely avoiding all 

I-cache misses these layers m ay have caused.

Laver bypass can be applied as follows. T he protocol specification for various protocol 

layers is first studied to  determ ine which aspects of the  protocol are not needed for a given 

m essage stream  (such as live audio m essages). Those layers are identified which perform 

little  or no functions. T he  few useful operations these layers do perform  can all be placed 

to g e th e r in the packet filter or some o ther such small module appropria te ly  inserted in the 

pro tocol stack. T hen th e  redundan t layers can be bypassed completely.

N ote th a t layer bypass is sim ilar in spirit to  specialization, i.e., it makes the common 

case fast. But it differs fundam entally  from specialization in th a t  it deals with m acro 

opera tions, not small functions. If small portions o f the code were to  be bypassed, the 

resu lting  code will look ju s t like in Figure 6.1 and perform ance m ay actually  degrade. This 

is why specialization relies on a com pletely separa te  piece of code to  im plem ent the fast case, 

bu t th is leads to  increased code size which is a  disadvantage in sm all-scale system s such as 

IAs. Layer bypass envisages functionality  im plem ented in a large chunk of code (an entire
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layer) to  be bypassed. This not only results in g rea te r reduction in I-cache misses bu t also 

allows a single piece o f code to  exist for all cases w ith the  protocol architecture providing the 

mechanism to  bypass unnecessary layers. W ith layer bypass, all protocol layers exist and 

there is only one im plem entation  of each layer. Layers no t useful for certain applications are 

bypassed for those applications while the rem aining applications can use the full protocol 

stack. O utlining, cloning, specialization, and o ther low-level optim ization schemes can still 

be applied to  protocol layers (if appropriate) since these schemes are orthogonal to  layer 

bypass.

Next, we show th a t layer bypass can be used very effectively for audio messages. It can 

also be used for handling o ther types of short messages such as web server requests, and  we 

present a small illu stra tion  as proof-of-concept.

L a y e r  B y p a s s  fo r  L iv e  A u d io  M e ssag es :

To bypass a protocol layer for messages for a certain  application, the application designer 

must consider the opera tions performed by th a t layer and decide whether these operations 

are needed or not for messages for th a t application. We illustrate  this m ethodology by 

applying layer bypass to  live audio messages for receive-side processing. Let's first consider 

the IP layer which perform s the following m ajor functions:

IP :  Routing, fragm entation /reassem bly . IP address checks. IP header checksum, checks for 

malformed headers and packets. IP option processing.

A receiving host does not perform  any routing. Short live audio messages need not be 

fragm ented/reassem bled. IP options are used for netw ork testing, so they do not apply 

here. The packet filter checks the destination IP address, so this function of the IP layer is 

already being handled by the  packet filter. This leaves the  various error checks which are 

related to rarely-occurring error conditions. It is safe to  bypass the IP header checksum 

and other error checks for the following reason: the  packet filter examines the various fields 

in the header and will recognize the packet as an audio  message only if the fields contain 

expected values. If the  header has been corrupted, th e  filter will not recognize the packet; it 

will be forwarded to  th e  IP layer, norm al processing will occur, the errors will be detected , 

and the packet will be discarded.

Next, we look at th e  feasibility of bypassing the U D P layer which performs the  following 

m ajor functions:

U D P : UDP d a tag ram  checksum, cooperate with IP layer in handling IP options, m ulticast
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a da tag ram  to  multiple local sockets (if requested), port address checks, generate 

ICM P messages if destination port does not exist, pass incoming datagram s to  correct 

socket.

The UDP checksum is usually turned off for live audio messages since audio applications 

use their own forw ard error correcting codes (if they use error codes a t all). This is because 

of the soft real-tim e nature  of the application. Local m ulticast is not needed for audio 

applications, and the packet filter already checks the destination port address. If this check 

fails, the packet is routed through the full protocol stack where error handling (if needed) 

can occur. This shows th a t UDP can be bypassed safely for live audio messages.

This exam ple shows how a  high-level description of a protocol layer is all th a t 's  needed 

to determ ine feasibility for bypass. It also shows the usefulness of layer bypass for handling 

live audio messages. The IP layer can be bypassed because no reassem bly is required, and 

UDP can be bypassed because the checksum is not needed. The packet filter checks the des

tination IP and port addresses, strips headers, and forwards messages directly to the socket 

layer, saving considerable I-cache misses. This results in a significant reduction in protocol 

processing overheads on the slow CPUs used in IAs (see Section 6.4 for m easurem ents).

Layer B ypass for W eb Servers:

To show th a t layer bypass is not just lim ited to live audio messages bu t can also be used 

for other short m essages, we give an exam ple of its application to web servers. Since it is 

not the main topic of this chapter, we om it details and only present the  general framework.

Layer bypass can be used for H TTP request messages. A server m ay receive thousands 

of such messages per second. These messages are short, so the IP layer can be bypassed for 

the same reasons as for audio messages. This leaves the T C P  layer. T he m ajor functions 

performed by T C P  are message sequencing and reliable delivery (using acknowledgments). 

Regarding sequencing, if web document request messages get re-ordered, it makes no real 

difference. For reliability, no separate acknowledgment messages are needed since the ack 

will be piggybacked on the server reply message. However, T C P  keeps track  of the sequence 

numbers of incom ing messages to perform acknowledgments. So, the  T C P  layer can be 

bypassed provided th a t  the packet filter can update  the TC P connection’s sequence numbers 

by invoking the appropria te  routines in the  T C P  im plem entation. This is a violation of the 

layering concept, but packet filters violate layering anyway. This leaves the  issue of the  T C P 

checksum. Feasibility of bypassing the checksum has to be determ ined on an application- 

by-application basis. However, bypassing it should be safe for most web servers since MAC
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layers already provide one level of error checking. □

T h e  above exam ples dem onstrate  the usefulness and applicability o f layer bypass. Layer 

bypass has one draw back: it is most effective when the layers being bypassed are a t the  

top  (for outgoing messages) or bottom  (for incoming messages) of the  protocol stack. To 

bypass middle layers, a filter will have to  be inserted between layers and this will increase 

processing overhead for messages which do not utilize layer bypass. However, for end-host 

receive-side processing, the layers feasible for bypass are usually the  bottom  layers. For 

exam ple, layer bypass is m ost useful for short messages where non-data-touching overheads 

m a tte r  the  m ost, and for such messages, the IP layer can alm ost always be bypassed since 

m essage reassembly is not needed.

6 .3 .3  Im proving D ata-Touching O verheads

We now show th a t the  single-copy scheme — which, w ithout hardw are support, has 

lim ited value for non-real-tim e systems — can be used effectively for video com m unication 

w ith  no special hardw are support. The key to  the effectiveness of the  single-copy schem e 

in real-tim e system s is a  real-tim e scheduler which guarantees th a t  the  application executes 

a t its period and does not face unpredictable delays. (Note th a t  such a  scheduler is needed 

anyw ay — not ju st for the single-copy scheme — for the purpose of meeting tim ing con

s tra in ts .)  Hence, incom ing packets will stay in the NA buffers for no longer than the period 

of the  application. This is in contrast to non-real-tim e applications where no such bound 

exists on how long an application may take to  retrieve its packets from the NA.

In ou r scheme, packet arrivals trigger in terrup ts. The device driver executes and forms 

an m buf chain of the packets. Mbufs are linked lists of buffers which allow easy addition  

and removal of headers (see [6 6 ] for details). D ata  is left in the  NA and the mbufs are m ade 

to poin t to  th a t  d a ta . T he packet filter then enqueues the m buf chain in the appropria te  

socket, and the associated user th read  is signaled. If the th read  had already made a  receive 

call then  IP. UDP, and socket layer processing occurs as soon as the  th read  is scheduled for 

execution . O therwise, packets are processed when the receive call is m ade.

Before the device driver exits the in terrup t service routine, it checks if a free buffer 

is available for more packets. For LANCE, this m eans checking if th e  next buffer in the  

ring has been processed and relinquished by the kernel. If no t, d a ta  is copied from th a t  

buffer in to  kernel buffers and the NA buffer is freed to  avoid dropping packets. Obviously, 

when th is happens, perform ance is the same as the  two-copy scheme. T hen, the im p o rtan t
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question is: how often can this happen  under the condition th a t  both real-tim e as well as 

non-real-tim e applications (such as telnet and web browsing) are receiving packets?

Real-tim e audio and video applications run with some period T . T  for audio is quite 

sh o rt, usually 10-30ms [98]. so audio  is not a  problem. Video applications usually run  at 

30 fram es/s  [96] but to  conserve C PU  and network bandw idth  — which is im p o rtan t in IAs 

— som e m ay run a t a slower ra te  of ‘20 or even 10 fram es/s . giving a T  as large as 0.1s. 

This is the  m axim um  time messages for a video application have to stay in NA buffers. If 

NA buffers are about to overflow and the video messages have not been processed, packets 

for these messages have to be copied out of the NA into kernel buffers to make room  for 

incom ing packets. This can occur if a burst of non-real-tim e packets arrive, filling NA 

buffers in a short period of tim e. Following is an analysis of how frequently th is  m ight 

happen  when both  real-time and  non-real-tim e packets are being received through th e  NA.

E stim a tin g  N on-R eal-T im e P acket Arrivals:

In the  past. Poisson processes have been used to model packet arrivals [29]. This reduces 

the  com plexity of network traffic analysis because of the sim plicity of Poisson processes. 

However, various studies have shown th a t wide-area netw ork traffic is too bu rsty  to  be 

correctly  modeled by a Poisson process [16.90]. Telnet arrivals have been m odeled by a 

P are to  d istribu tion  [90], but only em pirical models exist for F T P  [16] and web browsing [13. 

14]. This precludes any closed-form derivation of non-real-tim e packet arrival d istribu tions. 

A dded to  this is yet another difficulty th a t network traffic characteristics may change from 

tim e to  tim e or place to place. These characteristics depend on factors such as netw ork 

congestion, speed a t which servers can transm it data . etc. T his means that any calcu lation  

o f packet arrival distributions will be an estim ate a t best.

A ccurate m odeling of netw ork traffic is not our in ten t. All we want is to show th a t 

receiving even 10-20 non-real-tim e packets within tim e interval T  is highly im probable , 

and  get some idea of how im probable th a t is. Since netw ork adapters usually have 128- 

‘256 receive buffers [4.15] — and th is is likely to  increase even further as m emory densities 

increase and cost decreases — receiving even 10-20 packets w ith in  T  seconds is not enough to 

d isrup t the  handling of real-tim e packets. An engineering approxim ation of packet arrival 

ra tes  is all th a t  is needed to  get an idea whether the single-copy scheme can be used 

successfully in IAs or not.

For evaluation purposes, we chose to  use web browsing as a  representative non-real-tim e 

application . M easurem ents of web traffic have shown th a t retrieval of even small web pages
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take  more th an  2 seconds [14]. This is the tim e needed to  look up the rem ote host's  DNS 

e n try  and establish T C P  connections. After this in itia l phase d a ta  transfer begins a t the 

ra te  of 1 byte per 90-100^s [14]. Most web pages are  relatively small-sized. M easurem ents 

in [14] show most pages to  be ‘256-512 bytes, but w ith  the increasing use of in-line images, 

this is likely to increase. Even then , the trend o f favoring small-sized pages will persist, 

especially considering the small display screens th a t  IAs have. As such, we assume a  lOkbvte 

page size.

We know of no study  which correlates size of a web page to  the num ber of network 

packets needed to transfer the page. so. instead, we use some common-sense approxim ations. 

An E thernet packet can carry up to  1500 bytes, so lOkbvte require a minimum of 7 packets. 

However, each in-line image is usually sent as a sep ara te  message, so we will conservatively 

assum e ‘20 packets to carry every lOkbyte of d a ta . W ith  these assum ptions and using 90/zs 

as the  per-byte transfer tim e (which is faster than  th e  wireless link speeds available to  most 

IAs today ), we get a packet arrival rate  of 2*2 p ack e ts /s  or '2.2 packets/0 .Is. Even if due to 

burstiness. five times as m any packets arrive within T  = 0 .1s, we still get only 11 packets/T . 

Burstiness is more likely when downloading large docum ents, bu t after downloading such 

a docum ent, the user will take m ore time to read the  docum ent (maybe several m inutes) 

which increases the gap between downloads and spaces the  series of bursts fu rther and 

fu rther a p a rt.

Considering both connection and reading delays, downloads are separated by a t least 

several seconds. Even if 5 bursts of 11 packets/T  occur during download (highly unlikely 

since the  m ajority  of web pages fit in fewer than  30 packets) and the user spends ju st one 

second reading the docum ent, the  probability of g e ttin g  a  bu rst of 11 packets/T  is only 5 

tim es in 35T seconds or 0.143. This is negligible considering th a t NAs typically have more 

th an  a hundred buffers.

In sum m ary, lack of characterization  of netw ork traffic prevents an accurate calculation 

of the  p a tte rn  of non-real-tim e packet arrivals. We have used available d a ta  regarding web 

traffic to  show th a t even under highly-exaggerated netw ork use conditions, probability  of 

receiving a large number of non-real-tim e packets w ith in  T  is still small, so th a t our protocol 

processing optim ization should be useful for real-tim e applications most of the tim e. □

Note th a t  the above analysis is tru e  even for the  NAs with the  simplest buffer-m anagem ent 

policies, such as LANCE. As such, the single-copy scheme for real-time applications does 

not require any special/expensive hardware suppo rt which is an im portant consideration 

for IAs.
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6 .3 .4  N on-R eal-T im e M essages

Non-real-tim e traffic can co-exist w ith real-time traffic, but because of unpredictable 

execution of non-real-time applications, no statistical analysis as one presented above is 

possible for such applications. If the  application responds quickly enough, only one copy 

will be needed, otherwise packets will have to be copied and stored  in kernel buffers. At 

the device driver level, when a  non-real-tim e message arrives, it will be left in the NA 

buffer till it is either processed or it has to be copied to the kernel to  free up the NA 

buffer. At the protocol stack level, special network threads perform  protocol processing 

for non-real-tim e messages (F igure  6.2). The packet filter can be configured to forw ard 

non-real-tim e messages to an appropria te  network thread instead  of sending them  to  the  

application thread. A pplications can specify if certain com m unication end-points are  to 

receive real-tim e or non-real-tim e messages, and the packet filter can use this inform ation 

to forward messages accordingly.

6.4 Evaluation R esu lts

We want to evaluate the effectiveness of our architecture in handling both short audio 

and long video messages. For short messages, we measure receive-side overheads both  w ith 

and w ithout layer bypass to show the effectiveness of layer bypass in reducing protocol 

processing overheads. For long messages, we compare the single-copy and standard  two- 

copy schemes.

6.4 .1  Platform

We implemented our protocol architecture within EM ERALDS on a 25MHz M otorola 

68040 processor with separate  4kbyte d a ta  and instruction caches. EM ERALDS features 

highly optimized context sw itching, in terrup t handling, and m em ory usage [124]. The 68040 

is typical of CPUs used in m any IAs today. (We will later discuss the results on a faster 

processor.)

We use two processors in our experim ents, connected by a lO M b/s private E thernet 

using the LANCE network ad ap te r. LANCE uses DMA to  transfer d a ta  between its buffers 

and the  network. In some cases, the  memory contention between DMA and CPU  can 

d isto rt overhead m easurem ents. In all measurements in this section, we have a ttem p ted  

to  minimize this distortion so th a t  m easurem ents depend only on the  protocol arch itec tu re  

and not on the NA.
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Operation Overhead (p s)
C ontext switch 9.2
In terrup t handling (w ith  1 context

switch and device-driver code) 40.0
Packet Filter 6.9

Table 6.1: M easurem ent o f some non-data-touching overheads.

For evaluation, we implemented U D P /IP  using our architecture. T he protocol and 

LANCE device driver code was taken from FreeBSD 4.4 and m inor m odifications were 

m ade to  make it work with EM ERALDS. We also added our own packet filter ra th e r than 

using the high-overhead BSD packet filter. For simplicity, we im plem ented a U D P /IP - 

specific filter. Interested readers are referred to  [23] for more generalized high-perform ance 

packet filters.

6 .4 .2  Perform ance Im provem ents

We sent datag ram  messages from one processor to  another and m easured the  total 

overhead of receive-side protocol processing including in terrupt handling and all relevant 

context switches. The to ta l receive overhead was measured by noting the increase in the 

execution tim e of a delay loop of known duration  running on the receive-side host with 

m essage reception being the only o ther on-going activity  on th a t host. M easurem ents were 

m ade using a 5MHz on-chip tim er. For each d a ta  point (fixed message size) we repeated 

th is experiment 100 times and averaged the  results. Further increase in num ber of samples 

did not result in any significant change in averaged results. We also m easured various 

non-data-touching components of the receive-side overhead by instrum enting  the  kernel to 

m easure execution times of relevant operations as shown in Table 6.1.

Short M essages:

Figure 6.3 shows the to ta l receive overhead for short message sizes. This figure presents 

m easurem ents for the cases when processing is done by a special netw ork th read  (labeled 

“standard  arch itectu re” ), regular LRP, and  LR P when layer bypass is used as well. In all 

cases, the UDP checksum is tu rned  off. From the figure, we see the benefit of bypassing 

IP and UDP layers. Perform ance is im proved 20% (beyond th a t of L R P). Note th a t  the 

sharper variations in the plots are a result of B SD ’s m buf allocation scheme [57] and are 

not related to the protocol architecture.
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Figure 6.3: Receive overhead for sho rt messages.

The above m easurem ents were for a relatively slow processor typical of C PU s used in 

IAs. As already m entioned, layer bypass can also be applied to  web servers which use 

much faster processors. To evaluate the usefulness of layer bypass for such applications, we 

em ulated  our protocol arch itec tu re  on a 167 MHz Sparc U ltra - 1 workstation (16 kB 1/ 16 

kB D caches) running Solaris 2.5.1. We use two th reads which execute all the protocol code 

a t the  user level to send m essages to  one another. LA NCE is em ulated  using shared m em ory 

and in te rru p t overhead is em ulated  through context sw itches betw een the th reads. All the 

device driver, packet filter, protocol, and socket code executed in the  previous experim ent 

is also executed in this experim ent. The results are shown in Figure 6.4. Even though 

protocol processing overhead is dom inated by heavy-weight Solaris context sw itches (two 

switches cost about 40^s). still layer bypass delivers a 14% im provem ent in perform ance.

Long M essages:

Figure 6.5 plots the receive overhead for messages ranging from 20 to  6000 by tes. It 

shows the overheads for th e  two-copy and single-copy schemes. For short m essages, the 

savings from the single-copy scheme are not significant since non-data-touching overheads 

account for most of the  receive overhead. But as m essage size increases and copying costs 

begin to  dom inate, the  benefit of elim inating one copy becomes more apparent an d  the 

percentage reduction in receive overhead (com pared to th e  s tan d ard  two-copy arch itec tu re) 

increases steadily until it reaches 2 2 % for a message size o f 1.4kbytes. Further increase 

in message size results in m essages being fragm ented into two packets (E thernet has an 

M TU of 1500 bytes). This causes sharp increases in overhead every 1458 bytes as shown
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Figure 6.5: M easurem ent of receive overheads for long messages.

in the figure since each packet generates a separate in te rru p t. The increase in going from 

one packet to two is large since this is also the point th a t d a ta  s ta rts  to overflow the small 

4kbyte d a ta  cache. These d a ta  cache misses cause the percent overhead reduction  to level 

out a t about 15% for m essages larger than 1.4kbyte.

6.4.3 Improved P red ictab ility

Figures 6 .6 - 6 .7 show th e  effectiveness of LRP in im proving predictability. These figures 

show the variations in execution periods of a high-priority th read  which executes an infinite 

loop to receive ikbyte m essages which arrive at a period of 1.5ms (100 m essage receptions 

shown per figure). A low -priority th read  is also receiving messages on the sam e node. These
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Figure 6 .6 : Timeline plot of delays between consecutive receptions for the  standard  protocol 

architecture.

messages arrive 4ms ap a rt. We kept these messages short (10 bytes) to  minimize variation in 

protocol processing tim es of high-priority messages due to background DMA of low-priority 

messages.

Figure 6 . 6  depicts the case when the standard  arch itecture  is used and the th read  with 

the 1.5ms period has higher priority than the netw ork thread . Protocol processing for the 

low-priority th read  interferes w ith that of the high-priority thread , leading to  variations in 

the period of the  la tte r  of as much as 0 . 1 2 ms

Figure 6.7 shows the case for LRP. Variations are significantly sm aller, m axim um  being 

ju st 0.08ms — 33% smaller th an  that for the standard  architecture. The variations are 

primarily due to  in terrup ts and limited priority inversion which occurs when the low-priority 

receive thread  is in a critical section and cannot be preem pted by the high-priority thread. 

These m easurem ents justify  our choice of LRP for ensuring predictability.

6.5 R elated  Work

Many researchers a ttem p ted  to  reduce data-touching overheads in various ways. Virtual 

memory page re-m apping is commonly used to reduce data-copying costs when crossing 

protection boundaries [20]. This technique works well to  a certain ex ten t, especially when 

combined with the m buf mechanism of BSD [6 6 ]. M bufs are linked lists of buffers. To add 

a header, all th a t  needs to  be done is allocate a m em ory buffer (anyw here in the  address 

space), put the  header d a ta  in it. and link this buffer a t the head of the  m buf chain. Then,
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Figure 6.7: Tim eline plot of delays between consecutive receptions for LRP.

as the message passes from one process to  another, the  m buf chain is m apped ou t o f the 

former process’ address space and into th a t of the la tte r . For message transm ission, if the 

message can be tra n sm itte d  im m ediately over the netw ork, d a ta  needs to be copied only 

once: from host m em ory to  netw ork adap ter (NA). But if the  kernel must retain the  m essage 

(possibly for retransm ission later on), then two copies m ust occur unless the app lication  is 

modified so th a t its outgoing message d a ta  is aligned a t page boundaries. The kernel can

then map the pages containing the message out of the u ser’s address space, replace them

with other pages, and unblock the caller.

The situation is even more com plicated on the receive side. Once a message arrives, 

it is copied from NA to  host memory, and protocol processing occurs. But tran sferring  

the message from kernel to  user will require another copy unless the API is such th a t  it 

allows the kernel to  place messages anywhere in the u ser’s address space and then  inform  

the user of the location. This is not the case with the BSD socket interface, w here the 

location for incom ing messages is specified by the user, not by the kernel, resulting in two 

d a ta  copies. Yet an o th er problem w ith memory rem apping is the cost of rem apping pages 

from one dom ain to  ano ther. In [20] an optim ization is presented in which m appings are 

cached to reduce overhead significantly. This works reasonably well for transm ission, but 

works for reception only if the  network protocol allows packet-level demultiplexing a t  the  

device driver level. Low-level message demultiplexing is quite common by means o f packet 

filters [84] but it requires the  first packet of a message to  arrive before the m essage’s final 

destination can be determ ined. If packets get re-ordered, then pacAreMevel dem ultiplexing 

is possible only if the  network is connection-based such as ATM. In short, caching page
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mappings canno t work over connectionless netw orks such as E thernet.

O ther pro tocol arch itec tu re  optim izations have been proposed, such as giving appli

cations direct (bu t controlled) access to the NA [21], but these schemes usually require 

hardw are su p p o rt from the  NA.

Regarding non-data-touching  overheads, a b a tch  processing technique was proposed in 

[8 ]. The idea is to  w ait till several small messages have been received: then process them  as 

a batch, thereby  reducing I-cache misses. This schem e is useful for handling bursts of short 

messages bu t is not effective for live audio m essages because they are spaced at regular 

intervals in tim e.

An innovative protocol architecture was presented in [115] which also aims to  optim ize 

the fast p a th . T he  packet filter compares headers of incoming packets against pre-computed 

expected values. In case of a  m atch, the packet is forw arded im m ediately to the application, 

thereby reducing the latency of processing. T he ac tual protocol stack is invoked la ter to 

update s ta te  and  pre-com pute the  expected header for the  next packet. This scheme reduces 

latency but has no effect on throughput since th e  en tire  protocol stack still executes.

6.6 C onclusion

Inform ation appliances (IAs) are an emerging class of em bedded devices which are used 

for specialized com m unication tasks such as aud io /v ideo  com m unication over the In ter

net. The In ternet-cen tric  na tu re  of IAs combined w ith the  need to  keep costs low in these 

m ass-produced devices (which results in the use o f slow /cheap processors) dictates th a t the 

com m unication subsystem  w ith the OS be highly efficient to enable audio/video com m uni

cation despite slow hardw are. In this chapter we presented a  protocol architecture which 

focuses on im proving m essage reception overhead (which usually exceeds transmission over

head) for real-tim e audio and video. Our design not only adap ts existing optim izations for 

use in real-tim e com m unication but also includes new optim izations to  reduce overhead and 

increase th ro u g h p u t.

Video applications are characterized by large m essage sizes while live audio messages are 

short but frequent. This presents a challenge for the  protocol arch itecture designer. Both 

data-touching  and  non-data-touching overheads m ust be reduced. T he former is im portan t 

for large video messages and the la tte r for short audio messages. For non-data-touching 

overheads, we presented the  layer-bypass scheme under which entire layers within the pro

tocol stack are  bypassed by transferring the few useful functions they perform to the packet
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filter. This way. I-cache misses associated w ith protocol processing are minimized, which re

duces overhead by 14-20% for short messages. To reduce data-touching overheads, we used 

the single-copy scheme [15], showing th a t  for real-tim e messages, it can be used effectively 

without any hardw are support from the  NA. and improves overhead by 15-22%.
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C H A P T E R  7

M ESSAGE SCH ED ULING  FO R CONTROLLER A R E A

N ET W O R K  (C A N )

The previous chap ter dealt with com m unication requirements of em bedded devices con

nected to the In ternet. In this chapter, we address communication issues rela ted  to  ano ther 

im portan t class of em bedded systems which are field bus-based such as au tom otive  and fac

to ry  autom ation system s. These systems consist of multiple com putational nodes, sensors, 

and  actuators interconnected by a low-speed LAN called a field bus [94]. O f the  m ultiple 

field bus protocols available for such use (including SP-50 FieldBus [44]. M AP [80], T T P  

[61], etc.), the C ontroller A rea Network (CA N ) [49.104] has gained w ide-spread acceptance 

in th e  industry [118].

CAN is a contention-based m ulti-m aster netw ork which has the po ten tia l to  efficiently 

handle both periodic as well as sporadic messages. It is currently being used in a  wide range 

of embedded real-tim e control applications [118] including autom otive control, industrial 

au tom ation , and medical m onitoring. Its m ain a ttrac tio n  is its low cost (a  CAN interface 

chip costs about $5) and  reliability features like atom ic m ulticasts and fault confinem ent. It 

provides prioritized bus access and fast response times for high-priority m essages, making 

it ideal for use in real-tim e control applications.

Control networks m ust carry both periodic and sporadic real-time m essages, as well as 

non-real-tim e messages. All these messages m ust be properly scheduled on the netw ork so 

th a t  real-tim e messages meet their deadlines while co-existing with non-real-tim e messages 

(we limit the scope of this chapter to  scheduling messages whose characteristics like deadline 

and  period are known a priori). Previous work regarding scheduling such m essages on CAN 

includes [11*2,113], bu t they focused on fixed-priority scheduling. Shin [102] considered 

ea.rliest-dead.line first  (E D F ) scheduling, but did not consider its high overhead which makes
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EDF im practica l for CAN. In this chap ter, we present a scheduling schem e for CAN called 

the mixed traffic scheduler (M TS) [122.125.127] which increases schedulable utilization and 

perform s b e tte r  th a n  fixed-priority schemes while incurring less overhead th an  ED F. We also 

describe how M TS can be im plem ented on existing CAN network a d ap te rs . We address the  

problem of how to  control priority inversion (low -priority message being tran sm itted  ahead 

of a h igher-priority  one) within CAN netw ork adap ters and evaluate  different solutions for 

this problem .

We m easure various execution overheads associated with MTS by im plem enting it w ithin 

EM ERALD S. Using an em ulated CAN network device (ano ther 68040 acting as a CAN 

network a d a p te r  and connected to  the  main node through a VM E bus), we present detailed 

m easurem ents of all execution, in te rrup t handling, task  scheduling, and context switching 

overheads associated  with MTS to show the feasibility of using M TS for control applications.

In the nex t section we give an overview of the CAN protocol. Section 7.2 describes the 

various types of messages in our ta rg e t application workload. T hey include both real-tim e 

and non-real-tim e messages. Section 7.3 gives the MTS algorithm . Section 7.4 discusses 

issues related  to  im plem entation of M TS. focusing on the priority  inversion problem. Sec

tion 7.5 evaluates the network schedulability perform ance of M TS (com pared to  ED F and 

DM) and presents im plem entation overhead m easurem ents. The chap ter concludes with 

Section 7.6.

7.1 C ontroller Area N etw ork (C A N )

CAN [49. 104] is an advanced serial com m unication protocol for d istribu ted  real-tim e 

control system s. It is a contention-based m ulti-m aster network whose timeliness properties 

come from its collision resolution algorithm . Some o ther salient features of CAN are prior

itized bus access, reconfiguration flexibility, high reliability in noisy environm ents th rough 

CRC checks and bit stuffing, and netw ork speeds up to  IM b/s (in th e  rest of the chapter we 

assum e this speed). The CAN specification defines the physical and  d a ta  link layers (Lay

ers 1 and 2 in the  ISO /O SI reference model). Both layers are im plem ented in a netw ork 

adap ter (N A ) chip which connects the  processing element (like m icroprocessor or sm art 

sensor) to  the  bus. Such chips are available from various vendors w ith  a variety of features. 

Recently, som e vendors have introduced m icrocontrollers with on-chip CAN modules which 

allow these m icrocontrollers to interface directly w ith the CAN bus.
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SOF Identifier Control Data CRC Ack EOF

12 6 0-64 16 7

SOFt Start of Frame
CRC: Cyclic Redundancy Code
EOF: End of Frame

Figure 7.1: Various fields in the standard  CAN d a ta  fram e along %vith the length of each 

field in bits (including field delim iter bits).

7.1.1 C A N  D ata  Fram e

A d a ta  message in CAN has seven fields as shown in Figure 7.1. CAN allows two m essage 

form ats to  coexist on the  sam e bus. They differ in the leng th  of the identifier (ID ) field: 

the standard  form at has an  1 1 -bit ID. whereas the extended  form at has a 29-bit ID . The 

ID field (i) controls bus a rb itra tio n , and (ii) describes the  m eaning of the d a ta  (m essage 

routing).

Here we describe m essage routing in CAN (bus a rb itra tio n  is described laster in this 

section). The ID. instead o f containing some destination address, contains a code identifying 

the  m eaning of the d a ta . CAN allows all or part of the ID field to  be used for this purpose. 

For exam ple, if the ID is 11 bits long, periodic messages from  a  tem pera tu re  sensor may 

have a binary code xxxxxxlO llO . where an x denotes a bit no t being used for identification. 

All nodes desirous of knowing the current tem perature will set filters  in their CAN netw ork 

adap ters to m atch the above code. Then, whenever a m essage w ith this ID code is sent on 

the bus. the NA will au tom atically  receive it and notify the  processing element of the  node. 

This scheme is called message filtering.

Each CAN message can contain 0 to 8  bytes of d a ta  in the  data field. The m inim al 

CAN d a ta  frame has 47 b its  when no d a ta  bytes are sent (44 bits for the frame plus a  3-bit 

inter-fram e space). W hen 8  bytes of d a ta  is sent, the fram e is 111 bits long.

For safety of d a ta  tran sfer, a 15-bit CRC check is sent w ith  each message. This CRC is 

calculated over the SO F. ID , control, and da ta  fields.

The control field contains the data length field plus one bit which identifies the  fram e 

as standard  or extended. T he d a ta  length field is 4 bits wide and specifies the num ber of 

bytes in the d a ta  field, from  0  to  8 .

The ack field is used to  acknowledge correct reception o f a  message. This is a  single 

bit which is sent recessive by the transm itter. As receivers receive the SOF. identifier, 

control, and d a ta  fields of a  message, they locally calculate th e  CRC over these b its. Next 

they receive the CRC field which they compare with their locally-calculated value. If they
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m atch, the receiver overw rites the ack bit on the bus w ith a dom inant bit. signaling correct 

reception of the message. But if an error is detected  through a CRC m ism atch, the node 

signals an error as described next.

7.1.2 A ctive Error D etection  and A tom ic M ulticast

Once a receiver detects a  corrupted message, it not only discards th a t m essage but also 

transm its an e rro r flag. This flag is a special sequence of bits which purposely violate the 

bit stuffing rules of CAN. The error flag is tran sm itted  by the receiver while the  sender of 

the message is still tran sm ittin g  the last few bits of the original message. T he  error flag 

overwrites the last portion  of the message, ensuring th a t if o ther nodes did not detect a 

CRC failure, they will a t least detect the violation of bit stuffing rules. This ensures tha t 

if one node detects an  error, all nodes are notified of it and they too discard th a t  message. 

This results in atom ic m ulticast, i.e., either all receivers receive a message or none do.

7.1.3 Bus A rbitration  M echanism

CAN makes use of a wired-OR (or wired-AND) bus to  connect all the nodes (in the rest 

of the chapter we assum e a  wired-OR bus). Two logical bit representations are  defined: 

dominant  and recessive. If even a single node transm its a dom inant bit. the bus will reflect 

a dom inant bit. else it will reflect a recessive bit.

W hen a processor has to send a message it first calculates the  message ID which may be 

based on the priority  of the message. The ID for each message must be unique to prevent 

a tie. Let each ID be 6 bits long.

The bus acquisition algorithm  works as follows. Processors pass their messages and 

associated IDs to  the ir CAN NAs. The NAs wait till the bus is idle, then tran sm it the SOF 

which is a single dom inant bit. AO NAs synchronize to the leading edge of the  SO F sent by 

the sta tion  s ta rtin g  transm ission first. FoUowing this synchronization, the NAs w rite their 

respective IDs on th e  bus, one bit at a  tim e, s ta rtin g  with the most significant bit. After 

writing each bit, each NA waits long enough for signals to  propagate along the bus, then it 

reads the bus. If a node had w ritten a recessive bit but reads a  dom inant one, it m eans th a t 

another node has a m essage with a higher priority. If so. this node drops out o f contention. 

After b such rounds, there is only one winner and it can use the  bus.
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7.2 W orkload Characteristics

In control applications, some devices exchange periodic messages (such as autom otive 

ABS controller) while others are more event-driven (such as sm art sensors). Moreover, 

operators may need sta tu s information from various devices, thus generating  messages which 

do not have tim ing constraints. To cover all these varieties, we classify m essages into three 

broad categories:

1. Hard-deadline periodic messages.

2. Hard-deadline sporadic messages.

3. N on-real-tim e (best effort) aperiodic messages.

7.2.1 Periodic M essages

A common exam ple of this type of messages is autom otive ABS control. The controller 

must periodically sample the current ro ta tional velocity and slip of the  wheel and then 

send appropria te  corrections to the braking ac tua to rs . Such messages have hard  deadlines, 

because if the up d a te  message to  the ac tua to rs  is delayed beyond its deadline, the  car may 

skid out of control. In general, most sensor-controller-actuator loops have hard-deadline 

periodic messages. Such systems include all robots and industrial cu ttin g  tools as well as 

various autom otive actuators.

A periodic message i has period Tt , length C ,. and relative deadline Z?,, the last being 

defined relative to  the release time of the message. We also define the absolu te deadline d, 

of a message as its deadline relative to the global tim e frame (defined in term s of a system 

of synchronized clocks). Also. C, < D{ < T,.

Note th a t a  single periodic message will have multiple invocations, each one period 

apart. So. whenever we use the term  message stream  to refer to a periodic message, we are 

referring to all invocations of th a t periodic message.

7.2.2 Sporadic M essages

Strictly  speaking, all events in the real world are aperiodic in n a tu re . If these events 

are expected to  occur frequently enough, periodic m onitoring can be used to  detect them  

and take appropria te  action (as in ABS control). There are o ther events which are not as 

frequent, such as tem perature  of a process exceeding a  critical threshold. In fact, maximum 

interval between two such events is unbounded (event may never occur again). In such 

cases, using periodic messages is a waste o f netw ork bandw idth and C PU  cycles because
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there is no thing to  say most of the tim e.

Smart sensors  [9] are most suitable for detecting such events. These sensors have DSP 

capabilities to  recognize events on their own. so they signal the  controller only when re

quired. If these m essages are trea ted  as purely aperiodic, then  we are assuming th a t they 

may be released a t any tim e — even in rapid  succession. If so, we will not be able to  guar

antee their delivery by their deadlines. Fortunately, in m ost real-w orld situations, there 

exists a  m inim um  interarrival tim e for aperiodic events. In the  tem p era tu re  hazard exam 

ple m entioned above, once the hazard is detec ted , the process will probably be shut down 

and restarted  la te r  on — during which tim e there  cannot be any m ore tem perature  haz

ard messages. T his corresponds to  a m inim um  interarrival tim e (M IT ) for such messages. 

Such aperiodic m essages which have a  M IT are called sporadic messages  [85]. Knowing the 

MIT of a sporadic message makes it possible to  guarantee its delivery even under the worst 

possible s itua tion .

7.2.3 N on -R ea l-T im e M essages

In au tom otive  system s, a m onitoring process needs to collect s ta tu s  inform ation from 

various controllers for on-board diagnostic purposes. Similarly, in m anufacturing and pro

cess control applications, an operato r m ust be able to m onitor the  s ta tu s  of every device in 

the system . Such messages are non-real-tim e because they do not have tim ing constrain ts. 

Any com m unication protocol for control applications must be able to  accom m odate such 

messages while guaranteeing  the deadlines o f real-tim e traffic.

7.2.4 L ow -Speed vs. H igh-Speed R eal-T im e M essages

Messages in a  real-tim e control system  can have a wide range o f deadlines. For example, 

messages from a  controller to a high-speed drive may have deadlines of few hundreds of 

microseconds. On the o ther hand, messages from devices such as tem pera tu re  sensors can 

have deadlines o f a  few seconds because the  physical property being m easured (tem pera tu re) 

changes very slowly. Thus, we further classify real-tim e m essages into two classes: high

speed and low-speed . depending on th e  tightness of their deadlines. As will be clear in 

Section 7.3.2, th e  reason for this classification has to do w ith the  num ber of bits required 

to represent th e  deadlines of messages.

Note th a t uhigh-speedr is a relative term  — relative to  th e  tigh test deadline Do in the 

workload. All m essages with the sam e order o f m agnitude deadlines as D q (or within one 

order of m agn itude  difference from Do) can be considered high-speed messages. All others
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will be low-speed.

7.3 T h e M ixed Traffic Scheduler

As s ta te d  earlier, access to the CAN bus is controlled by the  IDs of com peting messages. 

This necessitates tha t messages be assigned IDs in a  proper m anner to ensure their tran s

mission by their deadlines. In o ther words, message scheduling on CAN corresponds to the 

proper assignm ent of IDs to  messages.

To see the  difficulties faced in scheduling messages on CAN. we must first consider a 

typical CAN network adap ter (N A ). Various CAN NAs usually have m em ory space for 

one or m ore messages. W hen a processor has to send a  message, it will calculate the ID 

and tran sfer the message (w ith its ID) to the NA. From  then on. the NA will function 

autonom ously: it will com pete for the  bus with the m essage ID. and upon ge tting  access, it 

will tran sm it the  message (there  m ay be an option to notify the processor once a message 

has been sen t).

Once a  message has been transferred  to the NA for transm ission, its ID will stay  fixed 

unless the processor comes and updates it. If the ID is to  be derived from the m essaged 

priority, th a t  priority should stay  fixed (at least for reasonably long periods of tim e). For 

this reason, fixed-priority scheduling is a natural fit for CAN. Each message will have a 

unique priority  which will form its ID. However, in general, fixed-priority schemes give lower 

utilization th an  other schemes such as non-preemptive ED F. Non-preem ptive scheduling 

under release tim e constraints is N P-hard in the strong  sense [50], m eaning th a t there is 

no polynom ial tim e scheduler which will always give the m aximum  schedulable utilization. 

However, the  au thors of [120] showed th a t EDF performs b e tte r  than o ther sim ple heuristics. 

This is why several researchers have used EDF for netw ork scheduling [26.54.121]. This 

m otivates us to  use EDF to schedule messages on CAN, bu t ED F incurs high overhead (as 

discussed la te r) which makes it im practical for CAN.

In this section, we first describe the problems associated with fixed-priority and EDF 

scheduling, then  in Section 7.3.4, we present MTS as a  solution for these problem s. MTS 

combines E D F and fixed-priority scheduling to overcom e the problems of ED F. making 

MTS p ractical for CAN.
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pnonty deadline uniqueness

Figure 7.2: S truc tu re  of the ID for ED F scheduling.

7.3 .1  F ixed-P riority  Scheduling —  Low U tilization

As already m entioned, fixed-priority scheduling is the na tu ra l choice for curren tly  avail

able CAM bus interface chips. T he m ost popular form of fixed-priority real-tim e scheduling 

is rate monotonic  (RM ) [76]. In this scheme, messages w ith a  shorter period get higher 

prio rity  th an  those with longer periods. RM assumes th a t deadline equals period, which 

is not always true in reality. Instead  of RM. we can use its close relative, deadline mono

tonic  (D M ) scheduling [69]. W ith  DM , messages with tigh ter relative deadlines are assigned 

higher priorities and these priorities form the ID for each message [112,113].

DM is a simple scheme and is easily implementable on CAN. However, to  get g rea ter 

schedulable utilization, we would like to use EDF to schedule messages on CAN.

7 .3 .2  E arliest-D eadline Scheduling —  D eadline Encoding P roblem s

E D F works by giving higher priority  to  messages with earlier deadlines-to-start tra n s

mission at the  scheduling in stan t. O ur goal is therefore to m ake the IDs reflect the  deadlines 

of m essages. Moreover, each message m ust have a unique ID (which is a requirem ent of 

C A N ). This can be done by dividing the ID into three fields [102]. as shown in Figure 7.2. 

The deadline  field is derived from the  deadline of the message. Actually, it is the  logical 

inverse of the  deadline because we want the shortest deadline to  have the highest prior

ity. To deal with the case when two messages have the sam e deadline, each message has a 

unique code which forms its uniqueness  field. If two messages have the sam e deadline, the 

one w ith the  higher uniqueness code will win. This uniqueness code also serves to  identify 

the m essage for reception purposes. For ED F scheduling, messages may be assigned codes 

a rb itra rily  as long as they are unique for each message [102]. However, as we will see later, 

the  question of assigning uniqueness codes will be critical in M TS.

In Figure 7.2. the priority  field is a  single bit used to  distinguish real-tim e and  non-real- 

tim e messages. It is 1 for real-tim e messages and 0 otherw ise. This ensures th a t  real-tim e 

messages always have higher priority  than  non-real-time ones.

As tim e progresses, absolute message deadlines (i.e., logical inverse of the ac tual dead

lines) get larger and larger. Eventually, they will require m ore bits than are available in the  

CAN ID field. The obvious solution is to  use slack time [102] (tim e to deadline) instead of
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the  deadline itself, but this introduces two o ther problem s:

P i .  Remaining slack tim e of a message changes w ith  every clock tick. This will require 

IDs of all messages to  be updated continually (a t the  s ta rt of each a rb itra tio n  round). 

This will put too much burden on the local C PU .

P 2 . A typical com m unication workload in a real-tim e control system  m ay have messages 

with vastly different deadlines. This m eans th a t we must encode a  wide range of 

laxities, and there  m ay not be enough bits in the  CAN ID field to do this.

Problem  P i  can be solved by using a w rap-around scheme which we describe in Sec

tion 7.3.3. The main reason EDF is im practical for CAN is because of P 2 : too  m any bits 

are required for the  deadline field in the ID. In a typical workload, messages associated  with 

high-speed drives may have deadlines in the hundreds of microseconds range (high-speed 

messages). O ther messages, such as those related to  tem peratu re  sensors, m ay have dead

lines of several seconds (low-speed messages). If we represent deadlines a t the  granu larity  

of. say, a microsecond, then more than  2 0  bits will be required to represent deadlines of 

several seconds.

One may say th a t if the extended format of CAN is used with its 29-bit IDs, then there 

will be enough bits to  represent deadlines with enough left over for the uniqueness field. 

U nfortunately, if this scheme is used, each message will be 20 bits longer com pared to  the 

standard  1 1 -bit form at of CAN (the extended form at uses two more fram ing bits th an  the 

standard  form at). This means th a t 20-30% bandw idth  will be wasted ju st because of using 

the  longer ID form at, and the loss in schedulability (because of blocking effects of longer 

message frames) will be even greater. This makes E D F im practical for CAN.

7 .3 .3  T i m e  E p o c h s

Here we discuss a solution to problem P i .  We will face the same problem  with MTS 

and we will use the sam e solution.

One simple way to  solve P I  will be to redesign the bus interface chips to  have pro

gram m able counters in appropriate  positions of th e  ID. This way. the slack tim e will be 

updated  autom atically  a t every clock tick. However, a t present such chips are not com

mercially available. Even if they were, they would be more expensive th an  chips w ithout 

counters. This m otivates us to  investigate a softw are solution (a cost/perfo rm ance tradeoff).

In a software solution, the  CPU  will still have to  u p d a te  the ID, but we w ant to  reduce the 

frequency of these updates, i.e., spend less C PU -tim e on updates. Our solution uses actual
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deadlines (instead  o f slack tim e) but expresses them  relative to a  periodically-increasing 

reference called the  start o f  epoch (SO E). T he tim e between two consecutive SOEs is called 

the  length o f  epoch. I. Then, the deadline field for message i will be the logical inverse of 

di — SOE =  d{ — L£J I, where d, is the absolute deadline of message i and t is the  curren t 

tim e (it is assum ed th a t  all nodes have synchronized clocks [31]). Value of t  depends on 

w hat fraction of C P U -tim e the designer is willing to  allow for ID updates. Let th is fraction 

be x. Let M  be th e  M IPS of the CPU and n be the num ber of instructions required to  do 

the update. Since each update must be I  seconds ap art, t  > r  V/" l0g -

This ID up d a te  scheme is needed for M TS as well. Next, we describe the  details of 

M TS. then in Section 7.3.5. we present a  protocol to  implement the  ID update  scheme.

7.3.4 M TS

MTS a ttem p ts  to  give high utilization (like ED F) while using th e  s tan d ard  1 1 -bit ID 

form at (like DM ). M TS can be thought of as a cross between ED F and DM.

In DM, an 1 1 -b it ID can represent ’2048 messages. No realistic system  will have this 

m any different m essage stream s, so th a t a  few ID bits will remain unused. T he goal is to 

use these bits to  enhance schedulability. Suppose there are an equal num ber of high-speed 

and low-speed m essages in a workload. If the  high-speed ones have a  ten tim es faster ra te , 

they will use ten tim es more bandw idth th an  low-speed messages. This m eans th a t if we 

can increase the schedulability of ju st high-speed messages, we will get a large im provem ent 

in overall schedulability.

The idea behind M TS is to use ED F for high-speed messages and DM for low-speed ones. 

F irst, we give high-speed messages priority over low-speed and non-real-tim e ones by se tting  

the most significant bit to 1 in the ID for high-speed messages (F igure 7.3a). This p ro tects 

high-speed messages from all o ther types o f traffic. If the uniqueness field is to  be 5 bits 

[127] (allowing 32 high-speed messages), and the priority field is 1 b it, then  the rem aining 5 

bits are still not enough to encode the deadlines (relative to  the la test SO E). O ur solution 

is to  quantize tim e in to  regions and encode deadlines according to  which region they  fall in. 

To distinguish m essages whose deadlines fall in the same region, we use the D M -priority  of 

a  message as its uniqueness code. This makes MTS a hierarchical scheduler. At the  top 

level is ED F: if the  deadlines of two messages can be distinguished a fte r quan tization , then 

the one with the earlier deadline has higher priority. At the lower level is DM: if messages 

have deadlines in th e  sam e region, they will be scheduled by their DM priority.

We can calculate length of a region (/r ) as lT =  where D max is the  longest relative
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deadline DM priority

(a)

0 I DM pnonty

(b )

0 0 fixed pnonty

(C)

Figure 7.3: S tru c tu re  of the ID for MTS. Parts (a) through (c) show the IDs for high-speed, 

low-speed, and non-real-tim e m essages, respectively.

.  000 . .  001 .  010 .  . Oil 100 . 101 _ _ 110 II I

I I 1---------1-------- 1 I-------- 1-------- 1---------1 ►
SOE end of epoch

I Dmax

Figure 7.4: Q uantization o f deadlines (relative to  s ta r t  of epoch) for m  =  3.

deadline of any high-speed message and m  is the width of the  deadline field (5 bits in this 

case). This is clear from Figure 7.4 (shown for m =  3). The worst-case situation  occurs if 

a message w ith deadline D max is released just before the end of epoch so th a t its absolute 

deadline lies £ + D max beyond the  current SOE. The deadline field must encode this time 

span using m  b its leading to the  above expression for lr .

We use DM scheduling for low-speed messages and fixed-priority scheduling for non-real- 

time ones, w ith the  latter being assigned priorities arbitrarily . T he IDs for these messages 

are shown in Figures 7.3 (b) and (c) respectively. The second-m ost significant bit gives 

low-speed messages higher priority  th an  non-real-time ones.

This scheme allows up to  32 different high-speed messages (periodic or sporadic). 512 

low-speed messages (periodic or sporadic), and 480 non-real-tim e m essages1 — which 

should be sufficient for most applications.

7.3.5 ID U p d ate  P rotocol

The IDs of all high-speed messages have to be updated at every SOE. One way to do this 

is to have a  periodic (tim er-driven) process at every node which wakes up every I  seconds 

and updates IDs of all ready messages. Because clocks are not perfectly synchronized. ID 

updates on different nodes may occur a t slightly different tim es. This can cause priority 

inversion if the  ID of a low-priority message is updated before th a t  of a high-priority one.

’CAN disallows consecutive zeros in the  six most significant bits of the  ID. This means th a t 32 codes for
non-real-time messages are illegal which leaves 512 — 32 =  480 legal codes.
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Then, for a  small window of tim e, the low-priority message will have a higher p rio rity  ID 

than  the high-priority message. To avoid this problem , we m ust use an agreement pro tocol 

to  trigger the ID update on all nodes. The CAN clock synchronization algo rithm  [31] 

synchronizes clocks to within 20/xs, so that the ID update  processes on various nodes will 

wake up w ithin *20^s of each o th er. A simple agreem ent protocol can be th a t one process 

is designated to  broadcast a message on the CAN bus. This message will be received by all 

nodes a t the same time (because of the nature of the CAN bus) and upon receiving this 

special message, all nodes will upda te  the IDs of their local messages. But this pro toco l 

has two disadvantages. F irst o f all. too much CAN bandw idth is wasted tra n sm ittin g  the 

ex tra  message every I seconds. Moreover, a separate  protocol m ust be run to  elect a  new 

leader in case the old leader fails. Instead, we use the following protocol which is n o t only 

robust bu t also consumes less bandw idth. Upon activation, each ID update process takes 

the following actions:

1. Set a  flag to inform the CAN device driver th a t the ID update  protocol has begun.

2. Configure the CAN network adap ter to receive all messages (by adjusting the  receive 

filter).

3. Increm ent the da ta  length (DL) field of the highest-prioritv ready message o n  th a t 

node.

After tak ing  these actions, the process blocks on a tim er till the  next SOE.

T he first incremented-DL m essage to be sent on the CAN bus will serve as a signal to  all 

nodes to  update  the IDs of their messages. If the original DL of the message is less th a n  8 , 

then increm enting the DL will result in transmission of one ex tra  d a ta  byte (device drivers 

on receiving nodes strip this e x tra  byte before forwarding the message to the app lication  as 

described la ter). If the DL is already 8 . CAN adapters allow the 4-bit DL field to be set to 

9 (or higher) but only 8  d a ta  bytes are transm itted .

Now. each node sta rts  receiving all messages tran sm itted  on the CAN bus. T he device 

driver on each node has a  table listing the IDs of all message stream s in the system  along 

with their d a ta  lengths. As messages arrive, the device driver compares their DL field to 

the values in this table until it finds a message with an increm ented DL field. All nodes 

receive th is message at the sam e tim e and they ail take the following actions:

1. Restore the receive filter to  re-enable message filtering in the NA.

2. If th e  local message whose DL field was increm ented by the periodic process has not 

been transm itted  yet, then  decrement the DL field back to its original value.
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3. U pdate message IDs to  reflect the new SOE.

Each node receives the  incremented-DL m essage a t the same time, so the  ID update  

process on each node s ta r ts  a t the  same tim e. A fter the  first increm ented-DL message 

com pletes, the next-highest-priority  message begins transm ission. As long as all nodes 

com plete their ID updates before this message com pletes (a  window of a t least oofis since 

this message contains a t least one da ta  byte), all messages will have updated  IDs by the 

tim e the  next bus a rb itra tio n  round begins and no priority  inversion will occur. In case one 

or m ore nodes are slow and  cannot complete the  ID update  w ithin this window of tim e, all 

nodes can be configured to  do the update while th e  n th message after the first increm ented- 

DL m essage is in transm ission, where n is a  small num ber large enough to allow th e  slowest 

node to  calculate all new IDs and then ju st w rite these to  the  NA while the n t>l m essage is 

in transm ission.

This protocol incurs a network overhead of 16 bits every C seconds (com pared to 47 

bits per epoch for the simple leader-based agreem ent protocol). Reception o f the  first 

increm ented-D L message causes the device drivers to  set the  DL fields of their local messages 

back to  their original values, but before this can com plete, the next transm ission (also with 

an increm ented DL field) has already started . T hese two messages have 8 e x tra  d a ta  bits 

each (worst-case) which leads to the 16-bit overhead. On the  CPU  side, the periodic process 

incurs some overhead. M oreover, while the netw ork a d a p te r’s filter is disabled, the  device 

drivers m ust process two messages which may or m ay not be m eant for th a t  node. The 

device drivers must perform  filtering in software and discard messages not m eant for their 

node. M easurements of these various CPU overheads are in Section 7.5.3.

7.3 .6  Schedulability C onditions

For M TS. we want off-line schedulability conditions which, when satisfied, will guaran tee  

th a t all real-tim e messages will meet their deadlines. We will first review sim ilar conditions 

for non-preem ptive DM. and then develop those for M TS.

D ead lin e  M onotonic

For the non-preem ptive case, a message i is feasible if all higher-priority m essages are 

feasible and message i finds an opportunity  to  s ta r t  transm ission sometime during  [0 , D, — 

C,]. If messages are num bered according to the ir priority  w ith j  =  1 being th e  highest- 

priority  message, then i is schedulable [54] if:

31 6  5 . Z.\{t/T]]Cj  +  C p < t , where S  = { set of all release times o f messages

1 ,2 , • • t -  I through tim e D, -  C,} U{D, -  C ,}; T j. C j ,  and Dj are the period , length,
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start of region end of region

dz d< d,

~  1
start of region end of region

Figure 7.5: Suppose y  has higher DM -prioritv th an  x but z does not. Then in (a ) , x  has 

the highest priority, w hereas in (b). it has the  lowest.

and relative deadline of message j :  and Cp is the  length of the  longest possible packet. 

MTS

First, we will discuss the  schedulability check for high-speed messages and then  look at 

low-speed ones. T he  worst-case loading conditions for a high-speed message invocation x 

result when there is

1 . worst possible traffic congestion, and

2 . worst possible deadline encoding.

The first s itua tion  is created by releasing all messages a t the sam e time t = 0 as long 

as C j / T j < 1. T he second occurs when dead line-to -start of x  falls at the s ta r t  of a

region as illustrated  in Figure 7.5.

Now. we can d raw  a  parallel between schedulability conditions for MTS and those for 

DM. From the above discussion, note tha t invocation y has higher priority than invocation 

x  (belonging to sep ara te  message stream s) if y  satisfies one of the following two conditions:

1. (dx -  C x ) > (dy -  C y ), or

2 . (a) (dx - C x ) <  (d y - C y ) <  (dx -  C x +  l r ). and

(b) DM prio rity  of y  is greater than  th a t  of x . and

(c) y is released before dx -  Cx .

We can use these conditions to  determine schedulability  of some high-speed message stream

i. We identify all invocations of message s tream s j  which have higher priority th an  the 

first invocation of i and schedule them  according to  M TS. If the  bus ever becom es idle 

during interval [0, Z), — C ,], then stream  Fs first invocation will get a chance to  run  and  i is 

feasible. Formally, a  high-speed message stream  i is schedulable under MTS if and  only if 

J2j=i Cj / T j < I and it satisfies the following condition:
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3f € S. Ylj I t / T j l 'C j  +  CP < t .

where j  = { 1 . 2 , . . . ,  i -  1 . 1 +  1 . . . . ,  /i}. S  ={set of release tim es of each j  through tim e

Di — C,}  U{Di  — C,}, Cp is the size of a longest possible packet, and function ff/T ,]*

equals [t / Tj ]  if last invocation o f j  released before t has higher priority than  the first

invocation of t: and equals [t jTj]  — 1 otherwise.

Checking schedulability of low-speed messages is simple — ju st check DM schedulability 

for each. Since high-speed messages have shorter deadlines than  low-speed ones, they will 

autom atically  have higher DM priority  (which is exactly w hat we want).

7.4 Im plem entation

In this section, we present schemes to  implement MTS on M otorola's TouCAN module 

[8 8 ] which features 16 message buffers and internal a rb itra tion  between transm ission buffers 

based on m essage ID. As such, TouCAN is representative of m odern CAN NAs. We explore 

several in ter-related  im plem entation issues:

•  M anaging buffer space in the netw ork adapter.

• Queuing and sequencing messages in host CPU.

•  Controlling priority inversion.

In the following, we present a  brief description of TouCAN. the problems faced when 

implementing real-tim e scheduling on CAN. and our solution to these problems for MTS.

7.4.1 M otorola  TouCAN

TouCAN is a  module developed by M otorola for on-chip inclusion in various microcon

trollers. TouCAN lies on the same chip as the CPU and is interconnected to  the CPU 

(and other on-chip modules) th rough M otorola's interm odule bus. M otorola is currently 

m arketing the  MC68376 [8 8 ] m icrocontroller which incorporates TouCAN w ith a CPU32 

core.

TouCAN has 16 message buffers. Each buffer can be configured to either transm it or 

receive messages. W hen more than  one buffers have valid messages waiting for transm ission, 

TouCAN picks the buffer with the highest-priority ID and contends for the bus w ith this ID. 

In this respect TouCAN differs from older CAN network adapters such as the  Intel 82527 

[45] which a rb itra te  between buffers using a fixed-priority, daisy-chain scheme which forces 

the host C PU  to  sort messages according to  priority before placing them  in the  network
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adapter buffers. This was one of th e  main reason we picked TouCAN for im plem enting 

MTS.

7.4.2 TouC A N  D evice E m ulation

At this tim e, TouCAN is available only w ith the MC68376 m icrocontroller. To imple

ment MTS within EMERALDS on TouC A N . we would first have to  port EM ERALDS to 

the M C68376 microcontroller. To avoid th is, we instead used device em ulation [42] under 

which a general-purpose m icrocontroller is m ade to em ulate a network adap ter. This em 

ulator interfaces to the host CPU th rough  an I/O  bus. The em ulator presents the host 

CPU the sam e interface th a t the ac tu a l network adap ter would. The em ulator receives 

commands from the host CPU , perform s the corresponding actions, and produces the sam e 

results th a t the actual network a d a p te r  would.

Network adap ter emulation presents two advantages over using the actual netw ork ha rd 

ware. F irst, design time is reduced significantly since software does not have to  be ported  

across platform s. Moreover, software testing is easier w ith an em ulator than  with an actual 

network ad ap te r because the em ula to r can be easily m ade to em ulate network conditions 

that may be unpredictable or difficult to  reach with a real network (such as various tra n s

mission and reception related events, error conditions, etc.).

The disadvantage of network em ulation is th a t overhead m easurem ents are not exact. 

The M TS im plem entation overheads we are interested in are:

1. In terrup t handling, context sw itching, and o ther associated operating  system  over

heads.

2. Message queuing on host C PU .

3. D ata  transfer between host C P U  and network adapter.

W ith network emulation, the first two overheads can be measured exactly  since they 

depend solely on the host CPU and  the operating system . The th ird  elem ent will have 

some inaccuracy, but since for CAN, only 6-14 bytes per message (including message ID) 

are transferred  between the host and  the adap ter, this inaccuracy should be insignificant.

We use a  68040 board to em ulate the  TouCAN module and connect it to  the  host CPU  

(another 68040) through a VM E bus. A TouCAN-emulating C + 4- program  runs on the 

em ulator. Through the VME bus, it  presents the same m em ory-m apped interface to the  

host th a t a TouCAN module would. The em ulator software executes an infinite loop to  

check various em ulated command “reg isters.” W henever the host modifies any of these 

registers, the  em ulator takes the app ro p ria te  actions and interrupts the host through the  

VME bus if needed.
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7.4.3 P roblem s In Im plem enting M essage Scheduling On C A N

In im plem enting M TS on CAN. our goal is to  minimize the average overhead suffered 

by the  host node for tran sm itting  a message. T his overhead has the following com ponents:

1. Q ueuing/buffering messages in softw are if netw ork adap te r buffers are unavailable.

2. T ransferring messages to network ad ap te r.

3. Handling in te rrup ts  related to message transm ission.

We do not consider overheads related to pro tocol processing because applications using CAN 

usually do not need to  use protocol stacks; in stead  they  com m unicate directly w ith  th e  CAN 

device driver for efficiency reasons. Moreover, such overheads are heavily O S-dependent.

To understand  the difficulties involved in reducing message transm ission overhead , it 

serves to com pare CAN to  o ther LAN protocols such as token-based schemes (token-ring , 

FD D I, etc .). In the  la tte r , the network becomes available periodically (whenever th e  local 

node has the token) a t which tim e, the netw ork a d ap te r can transm it messages in its buffer. 

Priority  inversion can occur if adapter buffers are filled with low-priority m essages. If a 

high-priority m essage arrives a t this point, it has to  be buffered in software to  w ait for one 

or more messages already in the adapter to  be sent. But this priority inversion is bounded 

by the  token ro ta tion  tim e and number of buffers in the  ad ap te r [43],

In CAN. priority  inversion can be unbounded. If the  adap te r buffers contain low -priority  

messages, these messages will not be sent as long as there  are higher-prioritv messages 

anywhere else in the  network. Consequently, a  high-priority message can stay  blocked in 

software for an indeterm inate  period of tim e, causing it to  miss its deadline. Because o f this 

priority  inversion problem , any network scheduling im plem entation for CAN (regard less of 

which scheduling policy — DM or MTS — is being im plem ented) has to ensure th a t  a d ap te r 

buffers always contain  the highest-priority m essages and only lower-priority m essages are 

queued in software.

7.4.4 M TS on TouC A N

Suppose B  buffers are allocated for m essage transm ission (usually B  is abou t tw o-th irds 

of the  to ta l num ber of buffers; see Section 7 .5 .3). If the  to ta l num ber of ou tgo ing  m essage 

stream s is B  or less, then M T S’s im plem entation is straight-forw ard: assign one buffer 

to  each stream . W henever the CAN device d river receives a message for transm ission , it 

sim ply copies th a t m essage to  the  buffer reserved for th a t  stream . In this case, no buffering 

is needed within the  device driver which also m eans th a t  there is no need for the  CAN
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adap ter to genera te  any in terrup ts  upon com pletion of message transm ission2, and this 

leads to the  lowest-possible host CPU  overhead.

W hen num ber o f message stream s exceeds B .  some messages have to  be buffered in 

software. To reduce host CPU overhead, we w ant to buffer the fewest possible messages 

while avoiding p rio rity  inversion. Just as MTS tre a ts  low-speed and high-speed messages 

differently for scheduling purposes, we treat these messages differently for im plem entation 

purposes as well. O u r goal is to keep the overhead for frequent messages (those  belonging to 

high-speed periodic s tream s) as low as possible to  get a  low average per-m essage overhead. 

In our im plem entation , if the num ber of periodic high-speed message stream s N h p is less 

than  B , then we reserve N h p buffers for high-speed periodic stream s and tre a t them  the 

same as before (no buffering in software).

The rem aining L  =  B  — N h p buffers are used for high-speed sporadic, low-speed. and 

non-real-tim e m essages. As these messages arrive a t  the device driver for transm ission , they 

are inserted into a  priority-sorted  queue. To avoid priority  inversion, the device driver must 

ensure th a t the L  buffers always contain the L  messages a t the head of th e  queue. So. if a 

newly-arrived m essage has priority higher than  th e  lowest-priority message in the  buffer, it 

"preem pts'’ th a t m essage by overwriting it. This preem ption increases C P U  overhead but 

is necessary to  avoid priority  inversion. The preem pted message stays in th e  device driver 

queue and is eventually  tran sm itted  according to  its priority.

Among these L buffers, the buffer containing the I  -(- l (/l lowest prio rity  message is 

configured to  trigger an  in te rrup t upon message transm ission ( /  is defined la te r). This 

in terrupt is used to  refill the buffers with queued messages. [  must be large enough to 

ensure th a t the bus does not become idle while th e  in terrupt is handled and buffers are 

refilled. Usually an /  of 1 or 2 is enough (tvhich can keep the bus busy for 47-94 fis 

minimum ). Note th a t  this puts a restriction on L  th a t it must be greater th an  I .  Making 

L less than  or equal to /  can lead to  the CAN bus becoming idle while th e  ISR executes, 

but makes more buffers available for high-speed periodic messages. This can be useful if 

low-speed messages m ake up only a  small portion o f the workload and high-speed sporadic 

messages are e ither non-existent or very few. T his tradeoff is discussed in m ore detail in 

Section 7.5.4.

If N h p >  B  then  we m ust queue even high-speed periodic messages in softw are. Then 

we have a  single prio rity -sorted  queue for all outgoing messages and all B  buffers are filled 

from this queue.

2The CAN adap ter m ust be program m ed to generate in te rru p ts  if messages are queued in softw are waiting 
for adapter buffers to  becom e available, which is not the case here.
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O verheads

For stream s with dedicated buffers, the CPU  overhead is just the  calculation of the 

message ID and transferring the message da ta  and ID to  the  network a d a p te r. Note that 

message d a ta  can be copied directly from user space to  the netw ork ad ap te r to  keep overhead 

to  a m inim um .

For messages which are queued in software, there is an  ex tra  overhead of inserting the 

message in the  queue (including copying the 8 or fewer bytes of m essage d a ta  from user 

space to  device driver space before inserting in the queue), plus the overhead for handling 

in terrup ts  generated  upon message transmission. This in te rru p t overhead is incurred once 

every Q — I  message transm issions, where Q is the num ber of buffers being filled from the 

queue ( Q can be B  or L depending on whether high-speed periodic m essages are buffered 

or not). Also, each message will potentially have to preem pt one o th e r message. The 

preem pted message had already been copied to the netw ork adap ter once and  now it will 

have to  be copied again, so the preemption overhead is equivalent to  the  overhead for 

transferring the message to  the network adapter. Table 7.1 summ arizes the  overheads for 

various types of messages. M easurements of these overheads are in Section 7.5.

Message type Overhead

Not queued Calculate ID +  copy to NA

Queued C alculate ID -I- insert in priority queue +  copy to NA +  preem pt +  

in te rru p t/(Q  -  I)

Table 7.1: Sum m ary of overheads for M TS's im plem entation on TouCAN.

Note th a t DM scheduling also incurs similar overheads. The only difference is th a t the 

ID of m essage stream s under DM is fixed, so a new ID does not have to  be calculated each 

time. O ther than  th a t , im plem enting DM on TouCAN is no different th a n  im plem enting 

MTS.

7.4.5 P reem p tion  as a M echanism  for C ontrolling Priority Inversion

In CPU  scheduling, priority inheritance [101] is a well-known m echanism  for handling 

priority inversion between threads of execution. If a low -priority th read  holds a  resource 

needed by a  high-priority th read , the former's priority is tem porarily  increased to th a t of 

the la tte r  until the resource is released.

For C PU  scheduling, priority inheritance is feasible because resources (such as a critical 

section) are usually held for short periods of tim e com pared to  the overall execution times
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of th re a d s . Tem porarily elevating thread priorities for these brief du rations does not hurt 

schedulability  much.

B ut for network message transm ission, a message holds the resource under contention 

(i.e., th e  netw ork adap ter buffer) until it completes transm ission. Using priority  inheritance 

in th is s itu a tio n  can lead to a significant schedulability degradation (see Section 7.5.5).

A n o th e r technique for tackling priority inversion in CPU scheduling is preem pt-and- 

re s ta rt [114] in which the resource holder is preem pted and forced to  re s ta r t  la ter from the 

beginning of the critical section. The disadvantage of this scheme is th a t  once a th read  is 

p reem p ted , all CPU  work it had done since entering the  critical section is lost.

O u r netw ork preem ption scheme is sim ilar to  p reem pt-and-restart. but unlike CPU 

scheduling, no “netw ork work” is lost due to  preem ption (although som e e x tra  C PU  over

head is incurred). This makes preem pt-and-restart more a ttractive for netw ork scheduling 

than  for C PU  scheduling because the only cost is th e  preem ption overhead.

Preem ption Overheads in Various Networks

P rio rity  inversion within the network adap ter is a  problem in all shared-access networks. 

In a  netw ork  such as CAN where message sizes are  small, preem ption costs are  low, so 

p reem ption -and-restart can be used effectively. But for networks such as FD D I and E thernet 

which have large packet d a ta  units in the kilobytes, it would appear th a t  preem ption is 

infeasible, but in reality th a t is not the case. Most network adapters (such as LANCE [4] 

for E th e rn e t)  do not keep message da ta  in network ad ap te r memory. Instead , d a ta  is kept 

in host m em ory and the network adapter is provided w ith pointers to  th is d a ta  and it uses 

DMA to  transfer d a ta  as needed. If this is the case, preem ption can be used to  address the 

priority  inversion problem in these networks as well. Previous solutions to  reduce priority 

inversion for such networks include schemes which lim it the number o f FIFO  buffers used 

for transm ission  [43]. This reduces priority inversion but also increases the frequency of 

in te rru p ts . If preem ption is used, the maximum allowable FIFO queue length can be used 

which reduces in terrup t overhead to a minimum; th is a t the low cost of overw riting a  few 

m em ory  locations containing pointers to  message d a ta .

7.5 R esults

In th is  section we first evaluate the schedulability performance o f M TS as compared 

to  ED* and DM. ED* is an imaginary scheduling policy which works the  sam e as EDF 

but requires only an 11-bit ID. We would expect M T S ’s performance to  lie betw een those 

of ED * and DM. To check schedulability under ED *, we use the schedulability  check for 

non-preem ptive ED F in [1*21].
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O ur m easurem ents show th a t performance of M TS depends upon various workload char

acteristics. We identify th e  conditions under which M TS perform s well and show th a t these 

conditions are typical o f control applications.

We also m easure the  various overheads related to  im plem entation  of MTS and present 

results to  justify  certain  im plem entation-related design decisions.

7.5.1 W orkload M od el

To com pare the schedulability performance of ED *. M TS. and DM. we generate w ork

loads w ith different characteristics and test their schedulability  under each of the  three 

scheduling policies. Unless s ta ted  otherwise, workloads are  generated  as follows.

Each workload has 8 -15  high-speed periodic s tream s. 2 high-speed sporadic stream s 

(13-25%  of the num ber o f periodic stream s). 25 low-speed periodic stream s, and 4 low- 

speed sporadic stream s. Deadlines of high-speed m essages are set random ly in the  0 .5-2m s 

range while those for low-speed messages are set random ly  betw een 2-100m s. Periods of 

periodic messages are calculated by adding a small random  value to  the deadline, while 

M IT of sporadic stream s is set to  2s (for both low-speed and  high-speed sporadic s tream s). 

Length of epoch is 2 ms.

W orkloads for a  p articu la r experiment are genera ted  by changing one of the above pa

ram eters (such as deadlines of low-speed messages, num ber of high-speed sporadic stream s, 

and £). For each experim ent, different da ta  points a re  ob tained  by varying the num ber of 

high-speed periodic s tream s from 8  to  15 which leads to  a  variation in workload utilization 

roughly in the 50-100%  range. For each da ta  point, we genera te  1000 workloads (w ith  a 

fixed num ber of high-speed periodic stream s) and m easure  the  percentage found feasible un

der ED*. M TS. and DM . Increasing the number of w orkloads beyond 1000 did not produce 

any significant variation in measured results.

All results for MTS include the overhead resulting from  16 e x tra  bits per epoch for ID 

updates.

7.5.2 Schedulab ility  Comparisons

MTS was designed based on the premise th a t  ce rta in  m essages have relatively short 

periods/deadlines (high-speed messages) while others have relatively long periods/deadlines 

(low-speed messages). Figures 7 .6 -7 . 8  show th a t M TS goes from  being close in perform ance 

to DM (F igure 7.6) to  being close in performance to  ED * (F igure  7.8) as deadlines of high

speed and low-speed m essages become more and m ore d ifferentiated .

In Figure 7.6, low-speed messages have relatively tig h t deadlines (2-50m s), so M TS's 

perform ance is closer to  th a t  of DM than  to th a t of ED *. O ur m easurem ents showed th a t

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100.0

* I
■O 80.0  r
0 I
3  •u
1  60 .0  ro
3  j-
J  40.0  L-

e
uL.

EDj
MTSj
DM

20.0  r

0.0
60 .0 70.0 80.0 90.0 100.050.0

Utilization (%)

Figure 7.6: Schedulability when deadlines of low-speed messages are set in the 2-50m s 

range.
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Figure 7.7: Schedulability when deadlines of low-speed messages are set in the ‘2 - 1 0 0 ms 

range.
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Figure 7.8: Schedulability when deadlines of low-speed messages are set in the  2 - 2 0 0 ms 

range.

at the  8 6 % utilization m ark . 89% of the workloads infeasible under M TS were infeasible 

because of low-speed m essages. In other w ords, when the low-speed portion  of the  workload 

is "difficult” to schedule (because of tight deadlines or any other reason), M T S ’s performance 

is significantly worse than  th a t of ED*, although it is still much b e tte r  th an  DM because 

M TS schedules high-speed messages m ore successfully than DM. In fact. M TS feasibly 

schedules about 20 percentage points more workloads than  DM for workload utilizations of 

80-100% .

In Figure 7.7. low-speed messages have deadlines in the 2-100m s range. This means 

th a t low-speed messages are now a smaller portion of the workload (utiLization-wise) which 

results in a corresponding increase in perform ance of MTS. It can now feasibly schedule 

25-40 percentage points m ore workloads th an  DM for workload utilizations of 75-100%. 

This trend continues in Figure 7.8 in which low-speed messages have deadlines ranging 

from 2ms to 200ms and perform ance of M TS is close to th a t of ED*. For these workload 

characteristics, a t the 85% utilization m ark. 63% of the workloads infeasible under MTS 

are infeasible because of low-speed messages. Because of this improved schedulability of 

low-speed messages, MTS feasibly schedules 30-45 percentage points m ore workloads than 

DM for workload utilizations of 70-100%.

Clearly, performance o f M TS relative to  ED* and DM is w orkload-dependent. MTS 

perform s well when all (or m ost) low-speed messages have deadlines several times larger 

th an  those of high-speed messages. W hen we look a t workloads of typical real-tim e control 

applications, we find th a t there  is indeed a great variation between periods of various 

tasks (and a corresponding variation in periods/deadlines of messages sent by these tasks). 

T he well-known avionics task  workload [77,78] is accepted as typifying real-tim e control
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applications and also has been used by o thers for research on real-tim e scheduling [56]. 

T he  workload is reproduced in Table 7.2. It has 6 tasks w ith  deadlines in the 5-50m s 

range (i.e.. high-speed tasks) and 11 tasks w ith deadlines in the  59-1000m s range (low- 

speed tasks). On this basis, we would expect most real-world com m unication workloads 

to  conform  to the basic premise behind the  design of MTS (i.e .. high-speed messages have 

relatively tight deadlines and low-speed messages have relatively long deadline), leading to 

good perform ance in practical real-tim e control applications.

Execution time (ms) Deadline (ms) P e r io d /M IT  (ms)
3 5 2 0 0

2 25 25
5 25 25
1 40 40
3 40 40
5 50 50
8 59 59
9 80 80
2 80 80
5 1 0 0 1 0 0

1 2 0 0 2 0 0

1 2 0 0 2 0 0

1 2 0 0 2 0 0

3 2 0 0 2 0 0

3 2 0 0 2 0 0

1 1 0 0 0 1 0 0 0

1 1 0 0 0 1 0 0 0

Table 7.2: Avionics task workload.

D ep en d en ce  on Sporadic Stream s

For the rem aining tests, we use workloads with low-speed messages having deadlines in 

the  2-100m s range. Figures 7.9-7.10 show the effect of varying the num ber of high-speed 

sporadic stream s. Figure 7.9 is based on workloads w ith no high-speed sporadic s tream s 

while the  workloads in Figures 7.10 con tain  4 high-speed sporadic stream s (27-50%  of the  

num ber of high-speed periodic stream s). These figures show th a t  as the  sporadic com ponent 

of th e  workload increases. DM suffers a sharp  decline in perform ance. M TS’s perform ance 

also drops but not as much as th a t o f DM . This affirms th a t  deadline-based schemes are 

m ore capable of handling sporadic m essages. Increasing the num ber of sporadic m essages 

increases the load a t the critical in stan t (using Liu and L ayland’s term inology [76]), even 

though  overall workload utilization is alm ost unchanged. W ith  so m any tight-deadline 

messages released at the same tim e, prioritizing messages based on deadlines results in a
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Figure 7.10: Schedulability when num ber of high-speed sporadic stream s is 4. 

significant improvem ent in perform ance over fixed-priority scheduling.

7.5.3 C PU O verheads

T he overhead m easurem ents for im plem entation  of MTS on a  ‘25MHz M otorola 68040 

with the  EM ERALDS RTOS are in Table 7.3. These m easurem ents are with caches turned 

off since autom otive controllers typically do not use caches (to  reduce cost, increase pre

dictability, and to  fit more I/O  devices on-chip).

From  this d a ta , we see th a t high-speed m essages with dedicated netw ork adap ter buffers 

incur an overhead of

ID calculation +  transfer to  NA +  misc. =  16.8^is/msg.
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Operation Overhead (ps)

C alculate  ID (high-speed messages)

Insert in priority  queue (including copying to  device driver m em ory) 

T ransfer message to  NA ( 8  d a ta  bytes)

P reem pt message

In te rru p t handling and dequeuing o f tran sm itted  messages 

M iscellaneous (param eter passing, etc.)

3.0

6.3 +  1.55/ q

7.8

7.8 

42.4

6 .0

Table 7.3: CPU  overheads for various operations involved in im plem enting MTS.

If high-speed periodic messages are queued, then average per-m essage overhead depends 

on the num ber of buffers used for transm ission (Q).  TouCAN has 16 buffers. Of these. 

5-6 are usually used for message reception and their IDs are configured to receive the 

various message stream s needed by the node. This leaves about 10 buffers for message 

transm ission. T hen, under w orst-case scenario, message transm ission incurs an average 

overhead (assum ing 1  = 2 ):

r » in te rrup t
ID calculation +  queuing + preem pt +  transfer to  NA 4---- —-----— (- misc. =

Q — 1
36.2 +  1.55 / q  ^ s/m sg ,

where the worst-case Iq is the to ta l num ber of message stream s using th a t  queue. Low-speed 

and non-real-tim e messages have fixed IDs. so they incur an overhead o f 33 .2+ 1.55/ q  /is/m sg 

if all low-speed and high-speed messages share the same queue.

If high-speed messages are using dedicated buffers, then Q — I  is sm aller for low-speed 

messages. Assuming only 3 buffers are  available and I  =  2, then low-speed and non-real- 

tim e m essages incur overheads of 70.3 +  1.55/ q  p s /m sg  while high-speed sporadic messages 

have overheads of 73.3 +  1.55/ q  p s /m sg .

From these num bers we see th a t if a certain node has 7 high-speed periodic stream s. 

1 high-speed sporadic stream , 1 0  s tream s of low-speed and non-real-tim e messages, and if 

the high-speed periodic messages m ake up 90% of the  outgoing traffic while Q — I  =  1 for 

high-speed sporadic/low -speed/non-real-tim e messages, then average per-m essage overhead 

comes to  (16.8)(0.9) + (70 .3+  1.55(11))0.1 =  23.9/z/msg. Overhead is significantly higher if 

the num ber of high-speed periodic stream s is large enough that high-speed messages have 

to  be queued. In th a t case, per-m essage overhead can be twice as m uch as the  overhead 

when high-speed periodic stream s have dedicated buffers. Fortunately, real-tim e control 

applications do not have more th an  10-15 tasks per node (the avionics task  workload is 

an exam ple). Not all tasks send inter-node messages and those th a t  do typically do not
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send more than  1-2 messages per task . This indicates th a t for m ost applications, dedicated 

buffers should be available for high-speed message stream s, resulting in a  low per-message 

overhead in the 20-25ps range.

We used a simple linked list to  sort messages in the priority queue. This works well for a 

sm all num ber of messages (5 -10) th a t typically need to be in the queue. For larger num ber 

o f messages, a sorted heap will give lower overhead.

Note th a t these overheads are  applicable to  DM as well. Only difference is that under 

DM . the ID does not have to  be calculated, so per-message overhead will be 5ps less than 

for M TS.

ID Re-adjustment at End o f Epoch

Table 7.4 lists the CPU overheads incurred during the ID u p d a te  protocol. Overhead 

for the  periodic task includes all context switching and CPU scheduling overheads. One 

con tex t switch occurs when th e  task  wakes up and another when th e  task  blocks. Both of 

these are included in the overhead m easurem ents.

Operation Overhead (ps)

Periodic task

Device driver in te rrup t (message arrival) 

Read message from NA ( 8  d a ta  bytes) 

Software filtering and DL lookup 

ID update

6 8 .0

40.4

7.8 

3.0

2 .8  per m essage

Table 7.4: CPU overheads for various operations involved in up d a tin g  message IDs.

During each ID update, th e  device driver receives two messages (each incurring an 

overhead of 40.4 +  7.8 +  3.0 =  51.2/is including all context sw itching overheads). After 

receiving the first message. IDs of high-speed messages are upda ted . Assuming IDs of 5 

messages need to  be updated , th e  to ta l overhead per epoch becomes 184.4^s. If t  — 2ms, 

the  ID update  takes up about 9% of CPU tim e. This motivates us to  increase i.

Increasing t  increases the level of quantization of deadlines which results in reduced 

schedulability for high-speed m essages. But on the other hand, th e  netw ork overhead as

sociated  w ith ID updates (16 bits per epoch) decreases, leading to  increased schedulability. 

For I  =  2ms. 16 ex tra  bits per epoch consume only 0.8% of the  netw ork bandwidth for 

a lM b /s  bus, but their im pact on network schedulability (due to  their blocking effect) is 

m uch higher. O ur m easurem ents showed th a t with this ex tra  overhead, about 2-3 per

centage points fewer workloads are feasible under MTS (for the sam e workload utilization)
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Figure 7.11: Im pact of changing £ on M TS schedulability.

th a n  w ithout this overhead. As such, increasing £ can result in a sizeable im provem ent in 

schedulability due to reduced ID update  overhead which can offset the loss in schedulability 

due to  coarser quantization.

Figure 7.11 shows the effect of increasing £ on schedulability. It shows th a t when £ is 

doubled from 2 ms to 4m s, netw ork schedulability is actually  improved slightly when two 

high-speed sporadic stream s are in the  workload. But when six sporadic stream s are used, 

loss in schedulability from coarser quantization is m ore than  the gain from reduced ID 

u p d a te  overhead, so th a t 1-2 percentage points fewer workloads are feasible. These results 

show th a t for light-to-m oderate high-speed sporadic loads, increasing £ to 4ms continues to 

give good perform ance, and  even for heavy high-speed sporadic loads. £ =  4ms results in 

only a  slight degradation in perform ance.

If £ is increased to  3m s, then  the ID update CPU  overhead reduces to  about 6 % of CPU 

tim e, whereas for £ =  4m s. it becomes 4.6% of CPU  tim e.

7 .5 .4  Varying L

In Section 7.4.4 we m entioned th a t  reducing the num ber of buffers used for low-speed 

m essages (L)  to less than  I  -I- 1 can be beneficial since it makes more buffers available 

for high-speed periodic m essages. If L is less than  /  -F 1. then the CAN bus can become 

idle while the  CPU refills the  netw ork adapter buffers. Under worst-case scenario, th e  bus 

becom es idle after the transm ission of each high-speed sporadic and low-speed message. We 

m easure the im pact of th is effect by increasing the length  of each of these messages by the 

du ra tio n  by which the bus was idle. The results are in Figure 7.12. We use /  =  2 for these 

experim ents, meaning th a t  L should be a t least 3 to  prevent the bus from becoming idle.
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Figure 7.12: Schedulability when num ber of buffers for low-speed messages is decreased 

below /  +  1 ( /  =  2  for these experim ents).

Reducing L to  2 can idle the bus for one message length (47/zs) worst-case and reducing it 

to ju s t 1 will m ake the  bus idle for 94/is.

The results show th a t reducing L by one has no significant im pact on schedulability. but 

perform ance of M TS drops significantly when L is reduced any further. DM is m ore robust 

in this m a tte r  w ith  no significant change in perform ance even when L is reduced to  ju s t 1 .

7.5.5 U sing  P rior ity  Inheritance

It is difficult to  determ ine what the schedulability conditions for MTS will be if priority  

inheritance is used (instead of preem ption) to  control priority inversion between outgoing 

messages on the  sam e node. The difficulty is in determ ining the worst-case scenario. Releas

ing all messages a t the sam e time may not lead to the  worst-case situation since only those 

messages in th e  netw ork adapter at the  tim e of the  release will inherit priorities. Releasing 

messages w ith som e phase offsets will cause m ore messages to  inherit priorities b u t will not 

lead to  the  w orst-case loading of the bus.

Actually, we do not need to  kno%v th e  exact worst-case situation  to show th a t  priority  

inheritance does not perform  as well as preem ption for CAN scheduling. It is clear th a t  the  

actual w orst-case s itua tion  must be sam e as or worse than :

• All m essages released at the sam e tim e.

• Only th e  h ighest-priority  message suffers any blocking due to  priority inheritance. It 

can s tay  blocked for as much as 1 1 1 /rs (longest message transm ission tim e).

Figure 7.13 shows th e  results under th is situa tion . It clearly shows th a t priority inheritance
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Figure 7.13: Im pact on schedulability of using priority inheritance (P I) instead of preem p

tion.

is not a su itab le  policy for handling priority  inversion in CAN netw ork adapters because 

as much as 10 percentage points fewer workloads are feasible under MTS when priority 

inheritance is used, and even worse for DM.

7.6 Conclusion

The CAN s tan d a rd  message fram e form at has an 11-bit ID field. If fixed-priority schedul

ing (such as DM ) is used for CAN. some of these bits go unused. The idea behind MTS 

is to  use these ex tra  bits to enhance netw ork schedulability. M TS places a quantized form 

of the message deadline in these ex tra  bits while using the D M -prioritv of messages in the 

remaining bits. This enhances schedulability of the most frequent messages in the system  

(high-speed m essages) so that MTS is able to feasibly schedule 20-40 percentage points 

more workloads than  DM.

Since message IDs are based on deadlines, they must be periodically updated. We 

presented a protocol to perform this upda te  without any priority inversion. This protocol 

consumes abou t 5-6%  of CPU tim e, but considering the large im provem ents in network 

schedulability th a t  M TS displays over DM, this ex tra  overhead is justified.

We also presented a scheme to  im plem ent MTS on the TouCAN network adapter which 

is representative of m odern CAN netw ork adapters. The biggest challenge in implem enting 

CAN scheduling (be it MTS or DM ) is controlling priority inversion within the network 

adapter. We showed th a t because of CA N 's characteristics (short m essage size), preem ption 

of a message in the adapter by a  newly-arrived, higher-priority outgoing message is an 

effective m ethod for avoiding priority  inversion. The alternative — priority inheritance —
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is not feasible because the e x tra  blocking suffered by messages causes a sizeable loss in 

netw ork schedulability.

Perform ance of MTS depends in part on the value of t.  A large t  reduces both  C PU  

overhead as well as network overhead related to  ID updates, b u t increasing t  too much 

can h u rt schedulability when deadline quantization becomes too coarse. For future work, a 

softw are tool needs to be designed which can analyze a particu lar workload and determ ine 

the best value of I for it, so th a t  M TS can deliver optim al perform ance by giving high 

netw ork schedulability while keeping CPU overhead to a m inim um .

A nother avenue of research is to  study  message reception issues for CAN to try  to 

reduce the average per-message reception overhead. Unlike m essage transm ission, message 

reception does not depend on which network scheduling policy (D M  or M TS) is used. 

Message reception overheads can be reduced by optimizing in te rrup t handling, using polling 

(instead  of in terrupts) to  detect message arrival, or using a com bination of in terrup ts and 

polling.
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C H A PT E R  8

CONCLUSIO NS

T he com puting world is no longer lim ited to expensive desktops, w orkstations, and  PC s. 

Fairly sophisticated consum er item  embedded system s are becom ing a  part of our everyday 

life. These devices run ou r cars, control our sm art inform ation gadgets, and a u to m a te  our 

homes. W ith  annual production volumes reaching tens of millions of units, these em bedded 

system s are now an im portan t class of com putation devices.

W hereas embedded system s of the  past were simple m icrocontrollers running a  few 

tasks w ritten  in assem bly or C. the embedded system s of today  tend  to be netw orked, 

run application code w ritten  in object-oriented ( 0 0 )  languages such as Java, execute  an 

increasing num ber of complex tasks, and need real-tim e OS (RTO S) support — either 

to handle audio/video or to  in teract with the environm ent. The challenge is to  provide 

all these OS services while keeping overheads to a m inim um  and w ithout pu ttin g  e x tra  

burden on the application program m er. An efficient OS enables low-cost hardw are to  be 

used in consum er products which lo%vers per-unit costs and makes the  product a ttra c tiv e  for 

custom ers. This thesis dealt w ith developing low-overhead solutions for high-utilization task  

scheduling, support for 0 0  program m ing (in the form of efficient sem aphores), and real

tim e netw orking (protocol arch itec tu re  and network scheduling) for embedded system s. We 

were able to  show th a t these OS services can be m ade efficient w ithout sacrificing flexibility, 

restric ting  OS APIs, or relying on any special hardw are features.

We now summ arize th e  prim ary contributions of this d isserta tion  and suggest avenues 

for fu ture research.

8.1 Research C ontributions

This dissertation focused on key OS services %vhich m ust be optim ized for good overall 

perform ance in embedded system s. P rim ary  contributions m ade in th is regard are as follows:

• As a first step , we designed the  EM ERALDS RTOS to  serve as the  platform  for the  rest of
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our research. EM ERALD S has highly optim ized context switching, in te rrup t handling, and 

system  call m echanism . The kernel is m apped in to  each address space, so th a t system  r a i l s  

are reduced to  a  T R A P  followed by a subroutine call. This is done w ithout any hardw are 

support (o ther th an  a  simple page-table M MU) by using characteristics of embedded sys

tem s. EM ERALD S also features optim ized local (in tra-node) message passing using s ta te  

messages. We used EM ERALDS as a  platform  for im plem enting and evaluating the various 

optim izations we developed for scheduling, sem aphores, and com m unication as discussed 

nex t.

•  Task scheduling can take up 5-15% of CPU tim e (especially for relatively slow autom otive 

controllers). This overhead has two com ponents: run-tim e overhead and C PU  utilization 

being less th an  100%. Dynamic schedulers like earliest-deadline first (E D F ) give high u ti

lization but incur high run-tim e overhead. S ta tic  schedulers like rate-m onotonic (RM ) have 

low run-tim e overhead but give low utilization. We designed the combined sta tic /dynam ic  

(CSD ) scheduler which splits tasks into two groups: one scheduled by ED F and the o ther by 

RM. C ritical to  good performance of CSD is proper assignm ent of tasks to the two groups. 

We developed an ite rative  method for partition ing  tasks. W ith this grouping of tasks. CSD 

incurs run-tim e overhead comparable to  RM while delivering schedulable utilization com 

parable to  E D F. We implemented CSD in EM ERALD S and experim ental m easurem ents 

show th a t it can feasibly schedule more workloads th an  EDF or RM through a reduction 

in scheduling overhead of as much as 40% com pared to  EDF and RM.

• Networked em bedded systems are able to dow nload code (such as Java applications) and 

execute them  on-dem and. The advent of Java has m ade 0 0  program m ing im portan t for 

em bedded system s. In 0 0  programming, updates to  the  sta te  variables of objects have to  be 

pro tected  through semaphores to ensure m utual exclusion, and this represents significant 

run-tim e overhead. We developed a new priority  inheritance sem aphore im plem entation 

scheme which saves one context switch per sem aphore lock operation in m ost circum stances, 

thus reducing sem aphore overheads by ‘20-30% . This is achieved by a com bination of OS 

mechanisms and an off-line instrum entation of application code by an au tom atic  code parser. 

The parser inserts h in ts for the OS in the application code which allow elim ination of context 

switches a t run-tim e.

• M any em bedded applications today require In te rnet connectivity (such as Internet tele

phones and w ebTV ). Netw'ork bandw idth delivered to  these applications is lim ited by host 

protocol processing overheads, especially on the receive side. We designed an architecture 

for reducing receive-side overhead for processing real-tim e audio and video messages by ex

ploiting the  periodic na tu re  of such messages. All protocol processing for real-tim e traffic is 

perform ed by the  application threads which ensures predictability. M oreover, overhead for
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short messages (such as live voice) is reduced by safely bypassing m ultiple protocol layers, 

g rea tly  reducing I-cache misses. Also, message d a ta  is left in the netw ork ad ap te r buffers 

until the application makes a receive call so th a t d a ta  needs to be copied only once (w ithout 

any hardw are suppo rt from the network adap ter or any restrictions on the  network API). 

This is possible since the  real-time scheduler guarantees an execution period for the au

dio /v ideo  applications which in turn  ensures th a t d a ta  is not left in the netw ork adap ter for 

m ore than  a known m axim um  time interval. We implemented U D P /IP  using this architec

tu re  within EM ERALDS and dem onstrated its ability to  efficiently and predictably  handle 

sho rt messages (such as live voice) as well as long ones (such as video and  stream ing data). 

Processing overhead for short messages was reduced 14-20% while th a t for long messages 

was reduced 15-22% .

•  For embedded applications which require m ultiple controllers within a  system  (such as a 

car or a m anufacturing workcell) to be interconnected by a LAN. we designed a network 

scheduling scheme for the Controller Area Network (CAN), which is a  popular LAN for 

autom otive and factory  autom ation applications. Pure EDF scheduling of messages is not 

useful for CAN: packets have only 8  bytes of payload so th a t including a  deadline with 

each packet results in unacceptable overhead. Fixed-priority deadline-m onotonic (DM) 

scheduling needs fewer bits to  express priorities but it yields relatively low utilization. We 

designed a scheduler called the mixed, traffic scheduler (MTS) which combines EDF and 

DM using quantized deadlines and a moving tim e frame of reference. Packets are scheduled 

based on deadlines if deadlines are distinguishable after quantization: otherw ise they are 

scheduled using DM priorities. Not only is MTS feasible for CAN (as dem onstra ted  by its 

im plem entation w ithin EM ERALDS), it can also feasibly schedule 20-40 percentage points 

m ore workloads th a n  DM.

8.2 Future Work

As use of em bedded system s (specially IAs ) becomes more widespread, several im portant 

problem s will have to  be addressed as briefly discussed next.

Resource redistribution: One avenue of future research is to explore m echanism s to  allow the 

OS to  reclaim resources (such as CPU tim e and mem ory) granted by the  OS to  applications. 

This should be done w ithout causing the application to crash or m alfunction and with 

m inim al change in the  way applications are w ritten  right now (i.e., application developer 

should not be overly burdened). The need for such reclam ation m echanism s will arise in 

netw ork-connected IAs which handle diverse functions such as telephony, web browsing, e- 

mail, etc. These sm all, portable devices will have com paratively scarce hardw are resources.
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The idea is to give applications all the resources they  need if resources are available. T hen, 

if an urgent task  needs to  be sta rted  (such as handling a  phone call), the OS should be 

able to  redistribute resources to allow the new task  to  execute. At first, reclaim ing CPU 

tim e seems easy, but this is not true for real-time applications which require guaran teed  

CPU  resources to function correctly. Burdening applications with having to  constan tly  re

negotiate resource usage w ith the OS is an unreasonable solution. But if the  OS can control 

the execution tim e of real-tim e applications (e.g.. by controlling the network d a ta  flowing 

to  audio/video applications) then CPU  time can be easily reclaimed. Sim ilar techniques 

can be used to  reclaim m em ory and other resources.

Communication support fo r  portable devices: The cu rren t paradigm  for a  po rtab le  device 

(such as a PDA) to connect to  the Internet is to use a  cellular phone to connect to  a  fixed 

Internet host which provides access to  the rest of the  In ternet. Even mobile IP  [105] relies 

on a  home agent (which is an IP host residing on the  hom e subnetwork of the  mobile host) 

to  forward IP packets to  the  mobile host. These e x tra  hops increase netw ork traffic. But 

if the Internet and the  telephone worlds are to merge, then cell stations them selves will be 

In ternet hosts. Then, as the  mobile device moves and switches cells, the new cell should now 

be its gateway to the rest of the Internet. It would be interesting to investigate protocols 

to re-route d a ta  stream s so th a t d a ta  is au tom atically  directed to the correct cell/host as 

a  portable device moves from one cell to another. For audio/video stream s, the  re-routing 

m ust also be perform ed in real-time.

Application Programming Interfaces fo r  IAs: The m echanism s employed in hard  real-tim e 

control systems to allow' applications to com m unicate their execution and com m unication 

requirem ents to  the RTOS do not fit the needs of IAs. For example, the trad itio n a l task 

scheduling paradigm  requires the application to  provide its worst-case execution tim e, pe

riod. and deadline to  the  scheduler. But in the dynam ic operating environm ent of IAs, the 

worst-case execution tim e of applications will probably not be known. This is specially true  

for Java code because the  application designer has no idea which processors the  code may 

run on. so no a priori worst-case execution time m easurem ent is possible. As such, new 

A PIs must be developed which allow the applications to  s ta te  their resource requirem ents in 

a simple way and m aybe even om it certain pieces of inform ation (which is then  dynam ically 

determ ined as the application executes).

Scalable servers fo r  IA s:  Currently, servers are designed to  maximize th roughpu t they  can 

supply to relatively few concurrent clients. As IAs begin to  proliferate, the servers m ust be 

designed to scale well not only in delivered bandw idth b u t also in the ability to  concurrently  

support millions of clients. One example would be an  In ternet radio sta tion . Such a  server 

m ay have to service millions of clients although bandw id th  requirements of each client may
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not be th a t  high. Techniques which can be used to enable such services include aggregation 

of flows, m ulticast, and hierarchical organization of the server.
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