
IN FO R M A TIO N T O USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter free, while others may be

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REAL-TIM E O PE R A T IN G SYSTEM SERVICES FO R
N E T W O R K ED E M B E D D E D SYSTEMS

by

Khawar M. Zuberi

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(C om puter Science and Engineering)

in The University of Michigan
1998

Doctoral Committee:
Professor Kang G. Shin, Chair
Assistant Professor Peter Chen
Associate Professor Farnam Jahanian
Professor Galip Ulsoy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9840680

Copyright 1998 by
Zuberi, Khawar Mahmood

All rights reserved.

UMI Microform 9840680
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Khawar M. Zuberi 1998
All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CO N TEN TS

D E D I C A T I O N .. ii

L I S T O F T A B L E S .. vi

L I S T O F F I G U R E S ... vii

C H A P T E R S

1 IN T R O D U C T IO N ... I
1.1 Embedded S y s t e m s .. 2
1.2 Research O b je c t iv e s .. 3

1.2.1 Implementation P la tfo rm .. 5
1.3 Outline of the D is s e r ta t io n .. 6

2 OS SERVICES NEEDED BY EMBEDDED S Y S T E M S 9
2.1 Real-Time OS S e r v ic e s ... 9

2.1.1 S c h e d u l in g ... 10
2.1.2 Synchronized Access to Shared Resources 11
2.1.3 C o m m u n ic a t io n ... 11
2.1.4 Miscellaneous S e r v i c e s .. 13

2.2 A Remark on Extensible OS A r c h i t e c tu r e s ... 14
2.3 Proposed Approaches and Primary C o n t r ib u t io n s 14

3 EMERALDS: A REAL-TIM E OPERATING S Y S T E M 18
3.1 Architectural O v e rv ie w ... 19
3.2 Processes and T h r e a d s ... 20
3.3 Efficient System Call Mechanism .. 22
3.4 Inter-Process Communication (I P C) ... 24

3.4.1 Message-Passing Using M a ilb o x e s ... 24
3.4.2 Local Message-Passing Using S tate M essages............................ 26
3.4.3 Shared M e m o r y ... 30

3.5 Miscellaneous OS S e r v i c e s .. 30
3.5.1 S e m a p h o r e s .. 30
3.5.2 Condition V ariab les .. 31
3.5.3 Device D r iv e rs .. 32
3.5.4 Memory Management .. 32
3.5.5 T i m e r s .. 33

3.6 P e r fo rm a n c e ... 33

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6.1 Comparison with Commercial R T O S s
3.7 Conclusions and Future W o r k ..

4 C O M BIN ED EDF AND RM S C H E D U L IN G
4.1 Task Scheduling Overheads ...
4.2 Combined Static/Dynam ic S c h e d u le r

4.2.1 Run-time O v e rh e a d ...
4 .2.2 Schedulabilitv O v e r h e a d ..
4 .2.3 CSD: a Balance between ED F and R M
4 .2.4 Run-Time Overhead of C S D ...
4.2.5 Schedulabilitv T e s t ...
4 .2.6 Locating r r ..

4.3 Reducing Run-Time Overhead of C S D
4.3.1 Controlling DP Queue Run-Time Overhead
4 .3.2 Run-Time Overhead of C S D - 3
4.3.3 Allocating Tasks to D P I and DP2
4.3.4 Schedulabilitv Test for C S D - 3
4 .3.5 Beyond CSD-3 ..

4.4 Performance Evaluation ..
4.4.1 R e s u l t s ..
4 .4.2 C S D - x ..

4.5 Related W o r k ..
4.6 C o n c lu s io n ...

5 E F F IC IE N T SEM APHORES ..
5.1 I n t r o d u c t i o n ..
5.2 O bjects and Semaphores in Embedded Real-Time Systems

5.2.1 Active and Passive Object Models
5 .2.2 0 0 Design Under E M E R A L D S

5.3 An Efficient Semaphore Implementation S c h e m e
5.3.1 Standard Semaphore Im p le m e n ta t io n
5 .3.2 Semaphore Implementation in EMERALDS

5.4 Applicability of the New Scheme ...
5.4.1 Code Parser I s s u e s ...
5 .4.2 Consecutive sem_lock() C a l l s
5.4.3 Blocking by the Lock Holder T h r e a d

5.5 Performance Evaluation ..
5.5.1 The Test P ro c ed u re ...
5 .5.2 Experimental R e s u l t s ...

5.6 C o n c lu s io n ...

6 EN D-HO ST PR O TO CO L PROCESSING A R C H ITE C TU R E . .
6.1 A udio/V ideo Communication in IAs
6.2 Pro toco l Architecture I s s u e s ...

6.2.1 Efficient 1-Cache U s a g e ..
6 .2.2 Single-Copy A r c h i t e c tu r e s ...
6.2.3 Our Design G o a l s ..

6.3 P rotocol Architecture for Audio and V 'id e o

iv

34
35

37
39
40
41
42
43
44
45
46
46
46
47
47
48
49
50
51
51
54
55

56
56
57
58
59
59
59
61
63
64
66
66
69
69
70
73

74
75
76
76
77
78
79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.1 Basic S t r u c t u r e .. 79
6.3.2 Reducing Non-Data-Touching O v e rh e a d s 81
6.3.3 Improving Data-Touching O v e r h e a d s .. 84
6.3.4 Non-Real-Time M essages ... 87

6.4 Evaluation Results ... 87
6.4.1 P l a t f o r m .. 87
6.4.2 Performance Improvements .. 88
6.4.3 Improved Predictability ... 90

6.5 Related W o r k ... 91
6.6 C o n c lu s io n .. 93

7 M ESSA GE SCHEDULING FOR CO N TR O LL ER AREA N E T W O R K (CAN) 95
7.1 Controller Area Network (C A N) .. 96

7.1.1 CAN D ata F r a m e ... 97
7.1.2 Active Error Detection and Atomic M u l t i c a s t 98
7.1.3 Bus Arbitration M e c h a n i s m .. 98

7.2 Workload C h arac te r is t ic s ... 99
7.2.1 Periodic M essages... 99
7.2.2 Sporadic Messages ... 99
7.2.3 Non-Real-Time M essag es ... 100
7.2.4 Low-Speed vs. High-Speed Real-Time M e s s a g e s 100

7.3 The Mixed Traffic S c h e d u le r ... 101
7.3.1 Fixed-Priority Scheduling — Low Utilization 102
7.3.2 Earliest-Deadline Scheduling — Deadline Encoding Problems 102
7.3.3 Time Epochs ... 103
7.3.4 M T S ... 104
7.3.5 ID Update P r o to c o l ... 105
7.3.6 Schedulability Conditions ... 107

7.4 I m p le m e n ta t io n ... 109
7.4.1 Motorola T o u C A N ... 109
7.4.2 TouCAN Device Emulation ... 110
7.4.3 Problems In Implementing Message Scheduling On CAN . . I l l
7.4.4 MTS on T o u C A N .. I l l
7.4.5 Preemption as a Mechanism for Controlling Priority Inversion 113

7.5 R e s u l t s ... 114
7.5.1 Workload Model .. 115
7.5.2 Schedulability C o m p a r i s o n s ... 115
7.5.3 CPU O v e rh e a d s .. 119
7.5.4 Varying L .. 122
7.5.5 Using Priority I n h e r i t a n c e ... 123

7.6 C o n c lu s io n ... 124

8 C O N C L U S IO N S .. 126
8.1 Research C o n tr ib u t io n s .. 126
8.2 Future W o r k .. 128

B I B L I O G R A P H Y .. 131

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table
3.1 Process and thread system calls.. 20
3.2 Message-passing system calls. The last two calls are for use by protocol servers. 25
3.3 System calls for semaphores and condition variables..................................... 31
3.4 Sizes of various RTOSs (uniprocessor versions). Size of QNX is from [39]

and includes the ‘‘kernel/’ P roc . and Dev modules which is the minimal
configuration with device driver support. VxW orks' size is from a compiled
stand-alone version.. 33

3.5 Timing of various operations in EMERALDS.. 34
4.1 An example task workload with U = 0.88. It is feasible under EDF but not

under RM ... 43
4.2 Run-time overheads for CSD-3. The total values assum e th a t the DP2 queue

is longer than the D PI queue (max(q, r — q) = r — q) which is typically the
case... 47

4.3 Run-time overheads for ED F and RM (n is the num ber of tasks). Also
shows measurements for RM when a heap is used instead of a linked list.
Measurements made using a 5MHz on-chip t im er.. 50

6.1 Measurement of some non-data-touching overheads....................................... 88
7.1 Sum m ary of overheads for M TS's implementation on TouCAN................ 113
7.2 Avionics task workload... 118
7.3 CPU overheads for various operations involved in implementing MTS. . . . 120
7.4 CPL* overheads for various operations involved in updating message IDs. . . 121

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

F igu re
1.1 Examples of consumer item embedded systems.. 3
1.2 Software, hardware, and cost differences between consumer item embedded

systems of the past, those o f today, and large-scale system s................................ 8
3.1 EMERALDS* architecture.. 19
3.2 A typical page table in EM ERALDS. The hierarchical structure is used to

reduce the size of the page tab le ... 22
3.3 A typical address space in EMERALDS. Area labeled kernel stack is used

for interrupts and area labeled user stack is used by both the user and the
kernel.. 23

3.4 Calculation of x max. Write operations are denoted by X. Excluding the first
write, there are [_(m a x R e a d T im e — (P w — dw)) /P w\ = 4 writes, so x max = 5. 29

3.5 OS overhead due to in terrupts . 250 periodic task switches/s and a 4ms clock
tick tim er.. 35

4.1 RM scheduling of the workload in Table 4.1... 43
4.2 ED F scheduling of the workload in Table 4.1... 43
4.3 Average breakdown utilizations for CSD, EDF, and RM when task periods

are scaled down by a factor of 1... 52
4.4 Average breakdown utilizations for CSD. EDF. and RM when task periods

are scaled down by a factor of 2 ... 52
4.5 Average breakdown utilizations for CSD. EDF. and RM when task periods

are scaled down by a factor of 3... 53
5.1 A typical scenario showing th read 7*2 a ttem pting to lock a semaphore already

held by thread T\. Tx is an unrelated thread which was executing while 7*2
was blocked. Conceptually. Tx can be 7*i.. 60

5.2 Operations involved in locking a semaphore for the scenario shown in Figure 5.1 60
5.3 The new semaphore implem entation scheme. Context switch C i is eliminated. 62
5.4 A typical sensor-controller-actuator loop commonly found in embedded con

trol applications .. 64
5.5 If a higher priority thread T\ preempts 7*2, locks the semaphore, and blocks,

then 7% incurs the full overhead of sem_Lock() and a context switch is not
saved... 67

5.6 Situation when the lock holder T\ blocks for a signal from another thread 7*,. 68
5.7 Test procedure for s tandard semaphores. Interval <i is the overhead for ac

quire/release operations... 70

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G«

0
\ .8 Test procedure for the new semaphore scheme... 71

.9 Worst-case performance measurements for DP tasks. T he overhead for the
standard implementation increases twice as rapidly as for the new scheme. . 71

5.10 Worst-case performance measurements for FP tasks. T he overhead for the
s tandard implementation increases linearly while new scheme has a constant
overhead... 7*2

5.11 Percent improvement in performance due to our new semaphore scheme. . . 7*2
6.1 Typical s tructure of error checks in protocol code.. 77
6/2 Lazy receiver processing.. 80
6.3 Receive overhead for short messages... 89
6.4 Receive overhead for short messages on an U ltra-1 Sparc s ta t io n 90
6.5 Measurement of receive overheads for long messages... 90
6.6 Timeline plot of delays between consecutive receptions for the standard pro

tocol architecture... 91
6.7 Timeline plot of delays between consecutive receptions for LRP....................... 9*2
7.1 Various fields in the standard CAN d a ta frame along with the length of each

field in bits (including field delimiter b its) ... 97
7.2 S tructure of the ID for EDF scheduling.. 102
7.3 S tructure of the ID for MTS. Par ts (a) through (c) show the IDs for high

speed. low-speed, and non-real-time messages, respectively.................................. 105
7.4 Quantization of deadlines (relative to s ta r t of epoch) for m = 3 105
7.5 Suppose y has higher DM-priority than x but r does not. Then in (a), x has

the highest priority, whereas in (b), it has the lowest... 108
7.6 Schedulability when deadlines of low-speed messages are set in the *2-50ms

range.. 116
7.7 Schedulability when deadlines of low-speed messages are set in the 2-100ms

range.. 116
7.8 Schedulability when deadlines of low-speed messages are set in the 2-*200ms

range.. 117
7.9 Schedulability when number of high-speed sporadic s tream s is 0 119
7.10 Schedulability when number of high-speed sporadic s tream s is 4 119
7.11 Impact of changing £ on MTS schedulability.. 12‘2
7.1*2 Schedulability when number of buffers for low-speed messages is decreased

below / + 1 (/ = 2 for these experim ents).. 1*23
7.13 Impact on schedulability of using priority inheritance (PI) instead of preemp

tion ... 1*24

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PT E R 1

IN T R O D U C T IO N

Real-time computing [103.108] deals with predictable and timely execution o f tasks to

meet application-specific t im ing constraints. In the past, real-time computing focused al

most exclusively on large and expensive projects related to avionics, space, and defense

applications. Considerable research efforts were devoted to developing large-scale m ulti

processor/distributed systems for air traffic control, radar tracking systems, and planetary

exploration robots. In such applications, actual hardware costs tend to be much less than

development costs, so real-time software algorithms developed for such systems focus pri

marily on providing correct functionality and trea t efficiency as only a secondary concern

at best. If performance needs to be improved, it is usually done by using faster processors

and networks (since hardware cost is not much of an issue).

The sharp drop in microprocessor prices over the past several years has resulted in dig

ital control being used in much smaller and simpler embedded applications [30] such as

autom otive controllers, cellular phones, and home electronic appliances. Also, the increas

ing popularity of the Internet has led to a new class of com puting/com m unication devices

called inform ation appliances (IAs) [71]. IAs are specialized devices with In ternet con

nectivity. Examples include web televisions (webTVs). personal digital assistants (PD A s),

web video phones, and digital cellular phones with e-mail and web browsing capabilities.

All of these devices (cars. IAs. and home appliances) are consumer products. T hey are

mass-produced in volumes of tens of millions of units, so th a t unlike the large-scale appli

cations mentioned previously, manufacturing costs (including hardware costs) tend to be

much more than development costs. Keeping production costs to a minimum is pa ram ount

in such applications, meaning th a t real-time software m ust be very efficient in its use of

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

central processing unit (C PU) and network resources.

Such consumer applications are now widespread and im portan t enough to make effi

ciency the primary concern in the design of algorithms for real-time system-level services.

Building upon the schemes developed for large-scale applications, new schemes need to be

developed for real-time task scheduling, synchronization, and network communication. Like

the schemes for large-scale systems, these new schemes must provide correct functionality,

but beyond tha t , they must also satisfy the efficiency requirements of emerging real-time

embedded applications.

1.1 Em bedded System s

All digital systems contained in a larger environment and controlling tha t environment in

some way can be called embedded system s [30,35]. In most of these systems, the environment

being controlled imposes response time restrictions on the embedded system in which case

it is referred to as a real-time embedded system [30.35]. The on-board navigation system

of an aircraft is a real-time embedded system as is the engine controller of an automobile

and the digital signal processing (DSP) controller in a cellular phone.

We are interested in consum er item embedded systems. These are embedded systems

used in consumer products such as cars, home electronic appliances, and IAs. Just a few

years ago. embedded systems used in consumer products were simple microcontrollers run

ning a few tasks written in assembly or C. But the embedded systems of today (Figure 1.1)

tend to be networked, run application code w ritten in object-oriented (0 0) languages such

as Java, execute an increasing number of complex tasks, and need real-time operating system

(RTOS) [95] support — either to handle audio/video or to interact with the environment.

The challenge is to provide a functionally-rich operating system (OS) able to support these

new applications while keeping OS overheads to a minimum. An efficient OS enables low-

cost hardware to be used in consumer products and this lowers per-unit costs. Moreover,

slow hardware uses less electric power which prolongs battery life in mobile devices like cell

phones and PDAs. Both these factors (low cost and longer ba tte ry life) make the product

a ttrac tive for customers.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Personal computing/
communication devices

(Cell phones. PDAs)

Home
appliances

(set-top box.

Loosely-coupled distributed
embedded systems

(In-vehicle, home automation)
web phone) .L A N /

fieldbus

wired
connection

wireless or
wired connectionwireless

connection

Internet

Figure 1.1: Examples of consumer item embedded systems.

1.2 Research O bjectives

Existing solutions for basic problems in real-time computing (predictable and timely

scheduling, synchronization, and communication) — which were developed with large-scale

applications in mind and may have acceptable performance for such systems — are not

efficient enough to be feasible for cost-conscious consumer products (as described later in

this section). This results in embedded systems programmers often a ttem pting to improve

performance through hand-crafted — thus ad hoc — techniques which not only increases

design-time but also tends to be error-prone.

Researchers in the past have focused on large-scale applications [3.17.51.72] and with

good reason: smaller applications used either mechanical or analog electronic control (as

in automobiles) or. if using digital control, had a simplistic design where the controller

performed only very basic functions (as in various home appliances). These consumer

item embedded systems were simple enough that hand-crafted software was feasible. All

hardware was controlled directly by the application code: in fact, there was no distinction

between OS and application software (Figure 1.2-a). This resulted in efficient use of avail

able hardware resources but at the cost of complete non-portability of software (which was

acceptable in these simple systems). Today, the complexity of embedded systems is increas

ing rapidly. Cellular phone controllers — besides running traditional DSP algorithms —

must also handle e-mail, web browsing, and security/encoding features. Automotive cruise

controllers do more than maintain a constant speed; they also provide collision avoidance

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

features. Another factor contributing to this rapidly increasing complexity is networking.

More and more embedded devices are connected to the Internet (such as web TV's and

cellular phones). Also, applications which have multiple controllers (such as automobiles)

now have these controllers interconnected by a fie ld bus [10.91] (local a rea networks (LANs)

specially designed for real-time control applications) to allow the controllers to coordinate

their activities, thus providing new features and bette r performance.

The increased complexity of today's embedded systems1 necessitates tha t an RTOS be

used to manage various resources (Figure l.'2-b). The OS services needed in these embedded

systems are essentially the same as in any real-time system: the multiple application tasks

must be properly scheduled to meet their deadlines, access to various resources (such as

critical sections) must be managed through synchronization primitives to ensure m utual

exclusion, and network communication must be handled predictably and in a timely manner.

But what is unique about embedded systems used in consumer products is th a t these

systems are mass produced. This makes low per-unit costs one of the prim ary concerns in

the design of these systems. Automotive applications alone account for tens of millions of

embedded systems produced every year and the same is true for the simple (without Internet

connection) cellular phones in use today. Annual production volumes of IAs (including

cellular phones with Internet connectivity) are expected to reach 48 million units by year

2001 [5]. At these volumes, ex tra costs of even a few dollars per unit t rans la te into a loss of

millions of dollars overall. So. the microprocessors used in these cost-conscious applications

are those which have been in production for several years and their prices have dropped

to a few dollars per chip. IAs communicate through wireless networks or over phone lines,

so the network bandwidth available to them is much less than th a t available to desktop

workstations. Similarly, the field bus networks are of low bandwidth , usually 1-3 M bits/s

[94]: on one hand this keeps costs down and on the other, this is all the bandwidth tha t

is really needed to exchange short messages of sensor readings and ac tu a to r commands.

This gives embedded systems a very different "flavor1 than larger applications with faster

processors and networks. As a result, solutions appropriate for large systems have too

high an overhead for embedded systems. For example, a multitude of RTOSs have been

designed to date which provide a predictable platform for task execution and inter-process

’ From here on, we use the term embedded system to mean consumer item em bedded system , unless sta ted
otherwise.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

communication, but m ost of these RTOSs like A lpha [51] and the Spring Kernel [109]

were designed for large parallel and distributed systems with powerful processors and fast

interconnection networks. But in the context of smaller embedded systems, these RTOSs

are too large to fit in on -board ROM (since most of these systems do not have disks, ROM

is used for non-volatile s to rage), their communication protocol architectures are too general

(and hence, too slow), and their run-time overhead is too high for low-cost processors used

in embedded systems. A t tem p ts to reduce the RTOS overheads have till now been in

the direction of taking a large RTOS and removing useful features from it like threads,

preem ptive scheduling, and m em ory protection, which tends to make an RTOS difficult to

use. As a result, em bedded system designers tend to shy away from off-the shelf RTOSs.

op ting for customized solutions which are inflexible, and costly to design and port.

In this thesis, we look at the basic problems of real-time computing (task scheduling,

synchronization, and netw ork communication) from the perspective of embedded systems

and either adapt existing solutions or propose new ones which would be low enough in cost

and overhead to be feasible for embedded systems. In our solutions to these problems, we do

not place any restrictions on the application program mer (which makes application software

design easier), nor do we rely on existence of special hardw are support (since adding special

hardw are features increases costs, thus being contrary to our prime objective). Instead,

ou r research focused on identifying characteristics peculiar to real-time systems in general

or embedded systems in particu lar and exploiting these properties to arrive a t efficient

solutions for OS services needed in embedded systems.

1 .2 .1 I m p le m e n ta t io n P la t fo r m

We evaluate the perform ance of our various OS optimizations by implementing them

within the EM ERALDS (Extensible Microkernel for Embedded. ReAL-time. Distributed

Systems) RTOS. EM ER A LD S is a small kernel we designed for cost-conscious embedded

devices. It provides m ultitask ing , efficient context switching, interrupt handling, and other

basic OS primitives (details are in Chapter 3).

EMERALDS runs on the M otorola 68040 processor which is typical of the low-cost CPUs

used in embedded systems. O ur proposed schemes for task scheduling, synchronization, and

network communication (b o th field bus communication as well as U D P /IP communication

over the Internet) were all implemented within EM ERALDS and performance m easured on

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the 68040.

EMERALDS was also ported to the Motorola 68332 and PowerPC 505 microcontrollers

in a joint project with Ford Scientific Research Lab. Ford evaluated performance of EM ER

ALDS on these microcontrollers and compared it to several commercial small RTOSs. Re

sults of these evaluations showed EMERALDS to have superior performance (see C hap te r 3).

Moreover. EM ERALDS was also modified to conform to the OSEK autom otive OS s tan

dard [89] and ported to the Hitachi SH-2 processor in a joint project with Hitachi Research

Lab.

1.3 O utline o f the D issertation

The remainder of this dissertation is organized as follows.

Chapter 2 discusses various OS services needed by embedded systems, and motivates

the need to optimize these services for embedded systems. It also gives an overview of

our proposed approaches for optimizing these services and our primary contributions in

achieving this goal.

Chapter 3 describes the base EMERALDS kernel and covers some of the unique features

of EMERALDS including memory protection scheme (where the kernel is m apped into each

address space) and low-cost local message passing using s ta te messages.

Chapter 4 deals with task scheduling. It outlines the shortcomings of existing sched

ulers and describes how these may be overcome by combining the best features of existing

schedulers to get combined sta tic /dynam ic scheduling.

Chapter 5 describes our low-overhead priority inheritance semaphore implem entation

scheme. We show th a t the scheme is broadly applicable to embedded systems and does not

put any limitations on the application programmer (unlike some other semaphore optim iza

tion schemes).

Chapter 6 focuses on audio/video communication requirements of IAs. We present a

communication protocol architecture which reduces both I-cache misses as well as d a ta

copying overheads (without relying on any special network or hardware features), thus

improving performance for bo th short audio and long video messages.

Chapter 7 discusses scheduling messages on the Controller Area Network (C A N) which

is a popular field bus used in automotive and factory au tom ation applications. T he short

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

packet size of CAN makes certain scheduling schemes infeasible while other schemes lead to

low network utilization. We develop a hybrid scheme which is feasible for CAN and delivers

high utilization.

Finally. C hap ter 8 concludes this dissertation by summarizing its primary contributions

and suggesting directions for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

A p p l i c a t io n s

CO

SOI..
$100

S y s te m c o s t

A p p l ic a t io n

d i re c tly c o n tro l

S /W |
I sH A V I

C P U
8 - o r 1 6 -b it

I /O
S e n s o rs , A c tu a to r s

J
D

C A p p l i c a t io n s

U s e r - le v e l

S y s te m - le v e l

RTOS
M u ltita s k in g , S c h e d u lin g ,

S y n c h ro n iz a t io n , C o m m u n ic a tio n

S o f tw a re 5 1 0 0 s S o f tw a re

' H a rd w a re H a rd w a re

CPU
3 2 -b it

S y s te m c o s t G
I/O

N e tw o rk s
S e n s o rs . A c tu a to rs

(a)
Embedded systems of the past

(still used in some simple devices)

(b)
Today's embedded systems

$ 1 0 0 0 to

$ I,(KM),(MM)
U s e r -le v e l

S y s te m - le v e l

Middleware

ZZL
RTOS

M u lt ita s k in g , S c h e d u lin g ,

S y n c h ro n iz a tio n ,

S o f tw a re

H a rd w a re

CPU
3 2 - o r 6 4 -b it , m u lt ip ro c e ss o r

S y s te m c a s t

I /O
N e tw o rk s , D isk s

S e n s o rs , A c tu a to rs

(c)

Large-scale systems

J

Figure 1.2: Software, hardware, and cost differences between consumer item embedded systems of the past, those of today, and large-scale

systems.

C H A PT E R 2

OS SERVICES N E E D E D B Y E M B E D D E D SYSTEM S

System-level services can be classified as either OS or middleware services. The OS en

compasses services which are widely used by almost all applications (thread/process m an

agement. memory m anagem ent, communication primitives, etc.). Middleware services are

implemented on top of the OS (e.g.. in the form of daemon processes) and they provide ser

vices needed by specialized applications usually running on large-scale parallel or distr ibuted

platforms. Examples of middleware services include reliable/a tom ic multicast [1.37]. con

sistent event ordering [12,59. 123], and task allocation in a paralle l/d istr ibuted environment

[107], At present, embedded systems used in consumer items are not complex enough to

require middleware services. Applications such as cellular phones and home electronics

do not have a distributed architecture, so they simply do not need middleware services.1

Autom otive controllers are interconnected by a LAN. but the various subsystems in a car

are only loosely-coupled so th a t simple message-passing is enough to satisfy application

requirements. As such, we will not discuss middleware services any further and instead,

focus on OS services needed in embedded systems.

2.1 Real-Tim e OS Services

The primary purpose of an RTOS is to provide a predictable platform for execution of

application tasks. In embedded systems, there is an added requirement th a t OS services

must be highly efficient. These efficiency and predictability requirements shape the design

’One exception is the Java v irtual machine. It supports application portab ility rather than execution in
a d istributed environm ent, so it can be thought of as a specialized application rather than a middleware
service.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of various OS services as discussed next.

2.1.1 Scheduling

In a real-time system, a task scheduler must be used to multiplex the C P U between the

various tasks in a manner which ensures that task deadlines are met. Real-time schedulers

can be classified into two broad categories: time-slice cyclic scheduler and priority-based

schedulers. In time-slice scheduling, the entire execution schedule is constructed either off

line or at task admission tim e, and at run-time the scheduler simply assigns the CPU to

tasks according to these schedules. This is a simple and efficient scheme provided th a t tasks

have harmonic periods of execution. But cyclic scheduling usually does not work well for

aperiodic tasks, tasks with mutually prime periods, and workloads with both short and long

periods (as discussed in detail in C hap ter -1). Note that all three of these conditions occur

commonly in modern-day embedded systems.

Priority-based schedulers use some policy to prioritize tasks, then at run-time, the sched

uler ensures that the CPU is always assigned to the highest-priority active task. This re

quires maintaining a sorted queue of tasks which results in more run-time overhead than

cyclic schedulers. However, priority-based schedulers are more capable of handling aperiodic

tasks and do not impose any restrictions on task periods.

Priority-based schedulers are further classified as static or dynamic. Static schedulers

assign a fixed priority to tasks. The rate-monotonic (RM) scheduler is the best-known

static scheduler under which tasks with shorter periods are assigned higher priorities. Under

dynamic scheduling, each different invocation of a task can have a different priority. For

example, the earliest-deadline firs t (E D F) scheme schedules tasks according to the absolute

deadlines of individual task invocations: earlier the deadline, higher the priority.

On one hand, dynamic schedulers are able to deliver better CPU utilization than static

schedulers, but on the o ther hand, they incur higher run-time overhead because they have

to repeatedly re-sort tasks according to their changing deadlines. As such, for practical

purposes, the two categories of priority-based schedulers often deliver the same low overall

performance. As much as 10% of CPU cycles can be lost because of the scheduler. Till now.

real-time system designers have accepted these lost cycles as the price to pay for ensuring

predictability. However, such high scheduler overheads are not acceptable in cost-conscious

embedded systems, which motivates development of new, low-overhead scheduling schemes.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 .2 Synchronized Access to Shared R esources

W hen tasks access a shared resource such as a critical section or I /O device, the tasks

m ust synchronize with each other to ensure m utual exclusion. Semaphores are commonly

used for this purpose. One common use of semaphores is in object-oriented (0 0) program

ming. Updates to the s ta te variables of objects have to be protected through semaphores

to ensure m utual exclusion, and this represents significant run-time overhead. The advent

of Java has made 0 0 programming important for embedded systems since Java provides

networked embedded systems with the capability to download and execute code on-demand.

This underscores the importance of providing efficient, low-overhead semaphores in embed

ded systems.

2 .1 .3 C om m unication

An increasing number of embedded systems today tend to be networked. Some sys

tems (such as cellular phones and web TV's) may be connected to the Internet whereas

in o ther systems (such as an automobile), multiple controllers within the system may be

interconnected by a field bus. All such systems require OS support for real-time network

communication. Moreover, some applications exhibit heavy message-passing between tasks

running on the same processor. An RTOS for embedded systems must provide efficient

support for all these different forms of communication as discussed next.

N etw ork C om m unication

Providing end-to-end real-time communication guarantees requires:

• Scheduling messages on the network (a wide a rea network (WAN) a n d /o r a LAN/field

bus) to ensure timely delivery, and

• S tructuring end-host message processing to ensure predictable and timely delivery of

messages to applications.

Supporting real-time traffic over WANs (such as the Internet) requires th a t routers be

capable of handling prioritized traffic. Since WAN scheduling deals mostly with router

issues, it does not affect the design of OS services for embedded systems and is beyond the

scope of this thesis. Interested readers are referred to [24.119].

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since a field bus is contained entirely within an embedded system, scheduling messages

on a field bus is the responsibility of the embedded systems designer. Moreover, each

message transm itted or received over a network (be it a LAN or a WAN) needs to have

some processing done on it by the OS (such as a ttach ing /str ipp ing headers and determining

destination). Ju s t as application task processing m ust be scheduled properly in a real-time

system , message processing also must be done in a predictable m anner. These issues are

discussed next.

F i e ld B u s S c h e d u l in g : The recent proliferation of embedded systems has resulted in

m any network protocols being designed specifically to satisfy the real-time control require

m ents of embedded systems. These protocols include the Controller A rea Network (CAN)

[47], Profibus [32]. FIP [28], SP-50 [44], M A P /T O P [80], SERCOS [46], and T T P [61]. All

these protocols are known by the general name of fie ld bus because they are meant to con

tro l the so-called field devices (sensors and ac tua to rs) and all of them have a bus topology.

Buses are preferable to rings, stars, or other point-to-point topologies because they require

the least am ount of wiring [68] which keeps production costs down.

Scheduling messages on a field bus is made difficult by the fact th a t these messages

are usually ju s t 5-10 bytes long (which is all th a t 's needed to exchange sensor readings

and ac tua to r commands). This is in sharp con tras t to large-scale LANs such as FDDI.

E the rne t , and ATM where the minimum message size is 52 bytes or more. This influences

th e design of various scheduling schemes which append headers to each message. In larger

W ANs, headers of even several bytes are acceptable, but in embedded systems where the

entire message is ju s t 5-10 bytes of data , the headers must be kept down to a few bits only.

E n d - H o s t P r o t o c o l P r o c e s s in g : Because of their web-centric na tu re , an efficient com

m unication subsystem is an important part of an IA OS. The communication subsystem

m ust efficiently and predictably handle both audio as well as video communication.

Predictability is needed to ensure timely processing of incoming and outgoing messages

[82]. The protocol architecture must provide mechanisms to guarantee th a t high-priority

real-time messages (such as live voice) do not get unnecessarily delayed by the processing

o f lower-priority or non-real-time messages. At the same time, the protocol architecture

m ust provide for efficient execution of protocol code. The higher the protocol processing

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

overhead, less the effective bandwidth delivered to applications. The architecture must be

able to efficiently handle not only long messages (such as video) but also short, frequent

ones (such as live audio). Also, studies have shown th a t receive-side protocol processing

overhead is higher than send-side overhead [55.57.79] and this is what limits th roughput:

so, we focus on improving receive-side overhead while ensuring predictability.

L ocal M essage-P assin g

The traditional mechanism for exchange of information between tasks is message-passing

using mailboxes. Under this scheme, one task prepares a message, then invokes a system

call to send th a t message to a mailbox, from which the message can be retrieved by the

destination task. While this scheme is suitable for certain purposes, it has two m ajor

disadvantages:

• Passing one message may take 50-100//S on a processor such as the M otorola 68040.

Since tasks in embedded applications such as automotive usually need to exchange

several thousand messages per second (related to engine R P M). this overhead is un

acceptable.

• If a task needs to multicast the same message to multiple tasks, it must send a separate

message to each.

Because of these disadvantages, application designers are typically forced to use global

variables to exchange information between tasks. This is an unsound software design prac

tice because reading and writing these variables is not regulated in any way which can

introduce subtle, hard-to-trace bugs in the software. This motivates investigation of new

mechanisms for intertask communication.

2.1 .4 M iscellaneous Services

Besides task scheduling, synchronization, and communication support, the RTOS must

also provide several standard basic primitives such as address spaces, threads, efficient

context switching, and ability to interact with the environment through in terrupts. Unlike

OS services mentioned previously, the overheads of context switching and interrupt handling

are dicta ted primarily by the hardw are structure (such as number of registers and processor's

in te rrup t handling mechanism). B u t still, these services need to be optimized by fine-tuning

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OS code.

2.2 A Remark on Extensible OS Architectures

A recent hot topic of discussion in the OS community is the issue of extensibility. This

deals with the OS providing mechanisms which allow the OS to be extended to provide

new functionality. Extensibility falls into three broad categories: the microkernel approach

[38.75]. the grafting approach [7.100]. and library OSs based on a thin kernel layer which

securely exports hardware resources [22.53]. The microkernel approach envisions a small

kernel implementing address spaces, interprocess communication, and o ther minimal core

OS functionality while all o ther services (such as network communication and file sys

tems) are provided by privileged user-level servers. The flexibility arises from the ability to

change/modify servers without modifying the core kernel. The grafting approach allows for

"direct" extension of the kernel by allowing code fragments (written in some safe language)

to be added to the kernel. The kernel executes these fragments in a sandbox or o ther such

safety mechanism to protect against malicious behavior. Finally, the library OS approach is

similar to the microkernel approach in that it relies on a minimal kernel, but it differs from

microkernels in that the kernel is even more stripped-down than in the case of microkernels.

In fact, the kernel only provides an abstraction layer on top of actual hardware and all real

functionality is implemented by library routines.

Terms such as "small" and "efficient" are commonly seen in literature related to exten

sibility. However, the reader should not confuse extensibility issues with the issues explored

in this thesis. Extensible OSs lead to efficiency in the sense that application-specific opti

mizations can be easily incorporated in the OS. However, extensible OSs in no way suggest

what those optimizations should be. Our work deals with devising OS optim izations for

embedded systems. As such, our work is orthogonal to OS extensibility issues.

2.3 Proposed Approaches and Prim ary Contributions

In the previous subsections, we identified task scheduling, synchronization, and commu

nication as key OS services which must be optimized to achieve good OS perform ance in

embedded systems. Listed below are brief overview's of the approaches we took to optimize

these services and our primary contributions.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• T a s k s c h e d u l in g : The earliest-deadline-first (E D F) [76] scheduling scheme ideally sched

ules workloads w ith utilizations of up to 100%. B ut this is a theoretical limit which is not

achieved in practice because of the high run-tim e overhead incurred by ED F in sorting

tasks according to deadlines. On the o ther hand, th e rate-m onotonic (RM) [76] schem e has

a much lower run-tim e overhead since it does not have to repeatedly re-sort th e tasks, but

on average, it delivers a schedulable utilization o f only 88% [67]. For a p rac titio n er, the

sum of these two overheads (the run-tim e overhead plus schedulable u tilization being less

than 100%). which we call the total scheduling overhead, is a “true” measure o f the perfor

m ance of a scheduler because it indicates how m any CPU cycles will actually be available

for execution of application tasks.

We developed a mechanism to partition tasks in a given workload into two g roups, and we

dem onstra ted th a t when one group is scheduled by ED F and the other by RM. the resulting

to ta l scheduling overhead is less than th a t for e ither EDF or RM alone. This schem e —

which we call combined sta tic/dynamic (CSD) scheduling — lowers run-tim e overhead by

using m ultiple scheduling queues, but a t the same tim e, delivers high schedulable utilization

by properly assigning tasks to the different queues. A proper partitioning of tasks is critical

to the good performance of CSD. We present an ite rative m ethod to partition the tasks in a

given workload into two groups. W hen tasks in one group are scheduled by E D F and tasks

in the o th e r group are scheduled by RM, the total scheduling overhead (run-tim e overhead

plus schedulable utilization being less than 100%) is less than that of ED F or RM alone.

By reducing this to ta l overhead. CSD outperform s both RM and EDF in real system s.

• E f f i c i e n t s e m a p h o r e s : O bject-oriented program m ing can be feasible in m ulti-th readed

em bedded system s only if the OS provides efficient, low-overhead sem aphores. We present

a new sem aphore implem entation scheme which saves one context switch per sem aphore

lock operation in most circumstances. Note th a t an efficient semaphore schem e is useful

not only for 0 0 programming but for any application requiring synchronization between

m ultiple th reads of execution.

Previous work in improving sem aphore perform ance has focused on either relaxing the

sem aphore sem antics to get better performance [111], coming up with new sem antics and

new synchronization policies [114]. or pu tting restrictions on the application p rogram m er to

disallow certain actions (such as making blocking system calls) while holding a sem aphore

[89]. The problem with these approaches is th a t these new/modified sem antics m ay be suit-

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

able for some particu la r applications but usually they do not have wide applicability. We

took the approach of providing full sem aphore sem antics (w ith priority inheritance [101]).

bu t optim izing the im plem entation of these sem aphores by exploiting ce rta in features of

em bedded applications [126]. We rely on th e fact th a t the order in which em bedded ap

plications access objects (which is the sam e as the order in which sem aphores are used)

can be determ ined a t compile-time. This is tru e because of the sensor-contro ller-actuator

loop executed by typical em bedded applications. T he compiler provides h in ts which enable

the OS to schedule th reads for execution only when the sem aphores th ey need are avail

able. Sem aphore lock system calls succeed w ithout blocking, resulting in reduced context

switching and im proved performance.

• P r o to c o l a r c h i t e c tu r e f o r a u d io /v id e o : Real-tim e audio and video com m unication

over the Internet is an integral part of many IAs which means th a t despite slow hardw are, the

com m unication subsystem w ithin the OS m ust be able to efficiently handle heavy network

traffic. The subsystem m ust be structured to handle bo th short as well as long messages

with minimal overhead. Handling short messages efficiently is im p o rtan t for applications

such as Internet telephony where live voice packets are usually ju st 30-50 bytes (as in the

GSM audio encoding scheme [99] used in various In ternet phones). O n the o ther hand,

video applications exchange long messages (10-15 kbytes [25]) and these m ust be handled

efficiently as well.

We devised optim izations for reducing receive-side network protocol processing overhead

thus enabling efficient handling of real-time audio and video messages [128]. (W e focus on

receive-side overhead since it usually exceeds send-side overhead.) In o u r schem e. I-cache

miss overheads are m inimized by safely bypassing m ultiple protocol layers, benefiting short

messages such as live audio. Moreover, message d a ta needs to be copied only once (w ithout

any hardw are support from the network a d a p te r or any restrictions on th e netw ork A PI)

which benefits long messages such as video and stream ing data .

• C A N s c h ed u l in g a n d h o s t su ppor t: T he C ontroller A rea N etw ork (C A N) is being

widely used in real-tim e control applications such as autom obiles, a irc ra ft, and au tom ated

factories [118]. CAN features priority-based bus a rb itra tio n , so scheduling real-tim e m es

sages on CAN am ounts to properly assigning priorities to messages to ensure transm ission

by their deadlines.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pure earliest-deadline first (E D F) scheduling of messages is not useful for CAN: packets

have only 8 bytes of payload so using a 20+ bit deadline as th e priority (and including it with

each packet) results in unacceptable network overhead. Fixed-priority deadline-m onotonic

(DM) scheduling needs fewer bits to express priorities bu t yields relatively low utilization.

YVe designed a scheduler called the mixed traffic scheduler (M T S) which combines E D F and

DM by using quantized deadlines [122.125.127]. Packets are scheduled based on deadlines

if deadlines are distinguishable a fter quantization; otherw ise they are scheduled using DM

priorities. Not only is MTS feasible for CAN (as dem onstra ted by its im plem entation within

EM ERA LD S), it also delivers higher network utilization th a n DM. □

The following chapters discuss these scheduling, synchronization, and com m unication

issues in detail.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PT E R 3

EM ERALDS: A REAL-TIM E O PER A TIN G SY ST E M

EMERALDS is a sm all, fast kernel we have designed for use in em bedded devices [124].

It features efficient contex t switches, in terrupt handling, and memory usage. It provides full

memory protection between processes, features an efficient system call m echanism , and has a

low-overhead in tra-node inter-process com m unication (IPC) scheme. We used EM ERALDS

as a platform for im plem enting and evaluating the various optim izations we developed for

scheduling, sem aphores, and communication.

The main goal in designing EMERALDS was to see which features of em bedded systems

can we use to reduce size and overhead. Em bedded system s provide m any opportun ities for

simplification. Processes tend to exchange short, simple messages like sensor readings and

ac tuato r com m ands. A file system is usually not needed: all executable code is in ROM

and all dynamic m em ory requirem ents are satisfied by RAM. These characteristics allow us

to reduce the system call overhead, simplify IPC . and keep EM ERALD S' size do%vn to a

minimum.

An im portant question related to reducing size was which OS services to include in

EMERALDS and which to leave out. Many RTOSs leave out common OS features like

memory protection and th reads in an a ttem p t to reduce size and increase speed. We did not

take this approach. Instead, we provide all comm on OS services but use novel mechanisms

for optimizing these services. This enabled us to m eet our goals of efficiency and small size

w ithout scaling back on functionality.

In the next section we give a brief overview of EM ERALDS. Sections 3 .2 -3 .5 give the de

tails of EM ERALDS, covering processes, threads, m em ory protection. IPC . etc. Section 3.6

gives some tim ing m easurem ents and Section 3.7 s ta tes conclusions and fu tu re work.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Multi-threaded
user processes

Device
drivers

Processes/Threads Communication Synchronization

Scheduling protocol Semaphores
Memory management architecture Condition Variables

Protection

IPC Timers Interrupt Kernel

Message-passing Clock handling/
kernel

support for
user-levelShared memory services

device device
drivers drivers

EMERALDS Kernel

* \
• Devices '
i i
\ i' t

\ Sensors Actuators Networks % *

Figure 3.1: EM ER A LD S’ architecture.

3.1 A rchitectural Overview

EM ERALDS is a real-time operating system w ritten in the C + + language. Following

are EM ER A LD S' salient features as shown in Figure 3.1.

• M ulti-threaded processes:

— Full memory protection between processes.

— T hreads are scheduled by the kernel.

• IPC based on message-passing and m ailboxes. Shared m em ory is also provided.

— Optim ized local message passing

• Sem aphores and condition variables for synchronization: priority inheritance for semaphores.

• Support for communication protocol stacks.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Highly optim ized context switching and in terrup t handling.

• Support for user-level device drivers.

Note th a t EM ERALD S does not include a file system since our ta rg e t applications

are in-m emory: ROM is used as non-volatile storage and on -board RAM satisfies all run

tim e memory requirem ents of the application. Leaving ou t th e file system significantly

reduces the size of th e OS. Also, in m ost em bedded control system s (such as autom otive),

the different nodes exchange only short sensor readings and a c tu a to r com m ands over a

field bus. T hreads can exchange such sim ple messages by ta lk ing directly to the field bus

device driver w ithou t using any protocol stack, so EM ERA LD S does not have a built-

in com m unication protocol stack. However. IAs do need a p ro toco l stack for Internet

com m unication, so EM ERALDS incorporates a protocol a rch itec tu re which can be used to

extend EM ERALD S to include a stack if needed (see C hap ter 6).

The rest of th is chapter discusses various system calls provided by EM ERALDS for

p rocess/th read m anagem ent, synchronization, and com m unication: as well as simple op

tim izations we developed for mem ory pro tection , efficient system calls, and local message

passing. EM ERALD S also uses novel techniques for task scheduling, sem aphores, and inter

node com m unication, and these techniques are described in de ta il in la te r chapters.

3.2 P rocesses and Threads

EM ERALDS provides m ulti-threaded processes. A process in EM ERALD S is a passive

entity, representing a protected address space in which th reads execute. Each th read has

a user-specified prio rity and is preem ptively scheduled by the kernel based on this priority.

Table 3.1 lists the EM ERALDS system calls related to processes and th reads.

Sy s te m call Impor tant P aram eters Func tion

c r e a t e - p r o c O

c r e a t e _ t h r e a d ()

j o in _ t h r e a d ()

d e t a c h _ t h r e a d ()

Thread priority

Thread priority

Thread ID

Thread ID

C reate process w ith 1 thread

C reate thread

W ait for child thread to finish

Tell kernel: w ill n ot w ait for thread

Table 3.1: Process and thread system caUs.

‘20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T he two most im portant features o f EMERALDS processes and threads a re m em ory

p ro tection and real-time scheduling. Scheduling is covered in detail in C hap ter 4. Here we

discuss EM ERALD S' memory protection scheme.

M e m o r y P r o te c t io n

The need for memory protection in tim e-shared system s is indisputable. One user's

processes m ust be protected from all o ther — possibly malicious — users. In single-user

em bedded system s, memory protection is useful for slightly different reasons. In relatively

isolated em bedded systems such as autom otive controllers, memory pro tection provides

softw are fault isolation. Bugs in application code can m anifest themselves as malicious

faults, which, w ithout m emory pro tection , can corrupt the memory of o ther processes or

even the kernel. W ith memory p ro tection , a memory access outside of the process' address

space will cause a TRAP to the kernel and recovery action may be taken.

M emory protection is even more im portan t in relatively open embedded system s such

as IAs. Downloaded Java code may be intentionally malicious, making m em ory protection

a m ust in such systems.

All these benefits of m em ory protection will not be of much practical use if the imple

m entation of memory protection was not efficient and small-sized. To meet these goals, we

m ade full use of the fact th a t our ta rge t applications are in-memory. This enabled us to

reduce the to ta l size of a page tab le to a few kbytes com pared to several m egabytes for

v irtual m em ory systems with disk backing stores. In the la tte r , the entire page tab le must

exist, even if most of the address space is unused. This is needed to distinguish unm apped

pages from those which have been swapped out to d isk .1 But for in-memory system s, this

distinction is not needed. This allows the page table to be trim m ed down using the hier

archical na tu re of most page tables. For example, the M otorola 68040 has three-level page

tables. Each th ird level page table represents ‘256 kbytes of address space. So. if a process

has three segments — code, d a ta , and stack — and each is less than 256 kbytes, then its

page tab le will be as shown in Figure 3.2.

All but th ree entries in the first-level page table are null, so only three second-level page

’Some OSs such as Linux use segm ent registers present in x86 processors to distinguish unm apped and
swapped out pages. The VAX-11 provided a page table length register to achieve the sam e goal [70].
However, such hardware support is not available on many popular processors used in em bedded system s
such as 680x0, so an alternate scheme is needed in these CPUs.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First
level

null
null
null

null
null

Code

Second
level

null
null
null
null
null
null
null

D a t a f Stack ,

null
null
null
null
null
null
null

null
null
null
null
null
null
null

Third
level

Figure 3.2: A typical page table in EM ERALD S. The hierarchical s truc tu re is used to

reduce the size of the page table.

tables exist. An a ttem p t to access an address covered by an invalid entry will result in a

T R A P to the kernel indicating a bug in the software. Similarly, in each second-level page

table, only one en try is valid and all o ther third-level page tables do not exist. This way.

to ta l size of the page table is ju st 2432 bytes for a page size of 8 kbytes. (More third-level

page tables are needed if any segment exceeds 256 kbytes). W hile this example is specific to

the MC 68040. m ost o ther modern CPU s also provide three-level page tables with sim ilar

param eters.

The small size of page tables not only saves memory, but also enables o ther optim izations

like mapping the kernel into every address space (see Section 3.3). This greatly reduces the

overhead associated with system calls, m aking our im plem entation of memory protection

feasible for em bedded systems.

3.3 Efficient System Call M echanism

Above we m entioned the advantages of memory protection. Its disadvantage is the

context switch overhead incurred when m aking system calls (because the user and kernel

usually exist in separa te address spaces). This is why some RTOSs om it memory protection

so they only have to make subroutine calls to access kernel services; not so with mem ory

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

: :::: User code:::

Free

;;;;;;KemC;t code: ::
: User data ::

Free

User stack ...
Kernel data
Kernel stack

Figure 3.3: A typical address space in EM ERALDS. A rea labeled kernel stack is used for

in te rru p ts and area labeled user stack is used by both the user and the kernel.

pro tection .

W e resolved this problem by m apping the kernel in to each user-level address space

(unlike o ther OSs in which the kernel runs in its own address space). A typical 32-bit

EM ERALD S address space is shown in Figure 3.3.

W ith this type of m apping, a switch from user to kernel involves ju st a TR A P (which

sw itches the CPU from user to kernel/supervisor m ode) and a jum p to the app rop ria te

address: there is no need to switch address spaces. Also, system call code in EM ERALDS

is designed to take param eters stra igh t off the user's stack (possible since both kernel and

user are in the same address space). This scheme has the following advantages.

• No need to copy param eters from user space to kernel space. All th a t Locore.S

(assem bly code used for m aking system calls) does is point the kernel stack poin ter to

the user stack and some o ther m inor stack ad justm en ts. As a result, system calls in

EM ERALDS (except those involving servers) have an overhead com parable to th a t of

a subroutine call (see Section 3.6).

• No need to transla te pointers. If the user and kernel are in separate address spaces,

the d a ta pointed to by a pointer m ust be copied to the kerneFs address space, and

a pointer to this copy passed to the system call rou tine (or a t least, the app rop ria te

user memory pages need to be m apped into the kernel’s address space). B ut in

EM ERALDS, all user pointers are valid inside the kernel, so no need to do any d a ta

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

copying.

Im plem entation : M apping the kernel into each user address space is feasible in EM ER

ALDS because bo th th e kernel and its d a ta segm ent are so small. In o ther operating system s

w ith s tandard v irtu a l memory, the size of the kernel's d a ta segm ent is so large (due to large

page tables) th a t m apping it into each user address space is not feasible (unless hardw are

support is available as already mentioned in Section 3.2). The m apping is achieved by

having appropria te second-level page table en tries point to com m on third-level page tables

which map the kernel. T hus, size of a process’s page table is not affected. Also, the kernel

areas are p ro tected from corruption by faulty user code by using page table entries to m ark

them as read-only for user mode. This way. user processes are protected from each o ther

and the kernel is p ro tec ted from user processes.

3.4 Inter-P rocess C om m unication (IPC)

T he prim ary IPC m echanism in EMERALDS — for both inter- and intra-processor com m u

nication — is m essage-passing. For in tra-processor com m unication. EM ERALDS also pro

vides shared m em ory as well as a specialized, high-efficiency local message passing scheme.

3 .4 .1 M e s s a g e -P a s s in g U sin g M a ilb o x e s

EM ERALDS provides the system calls listed in Table 3.2 for exchanging messages be

tween threads. These calls are used to create &: delete m ailboxes and send !t receive mes

sages. EM ERALDS also allows a 32-bit priority to be assigned to each message which is

used to sort messages in a mailbox so tha t the receiver th read retrieves the highest-priority

message first.

M essage-passing in EM ERALDS has been designed w ith efficiency and flexibility in

m ind. Most com m unication networks designed for em bedded, real-tim e systems such as

CAN [47], T T P [61]. SERCOS [46], SP50 [44], e tc .. provide the bo ttom two layers of the

ISO OSI reference stack (the physical and data-link layers) which is sufficient for exchanging

sim ple messages (all th a t the sender has to do is ta lk directly to the network device driver).

For more complex IP C . the remaining stack layers m ust be im plem ented in software. So

EM ERALDS allows bo th direct network access as well as use of protocol stacks. EM ER-

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System call Important Parameters Function

m b o x _ crea te ()

m b o x -d e le te O

m sg_sen d()

m sg _ r e c e iv e ()

tr y _ m sg _ r e c e iv e ()

C PU -w ide unique identifier

M ailbox identifier

D estination node and m ailbox,

local server m ailb ox

M ailbox identifier

M ailbox identifier

Create m ailbox

Delete m ailbox

Send m essage to m ailb ox

Retrieve m essage from m ailbox

Non-blocking version o f m s g -r e c e iv e ()

Table 3.2: M essage-passing system calls. The last two calls are for use by protocol servers.

ALDS also provides optim izations for local message-passing between th reads on the same

node. Here we describe the EM ERALDS mechanisms for local m essage-passing. Details of

the network com m unication arch itectu re of EMERALDS are in C h ap te r 6.

Local M essage-P assing:

Suppose th read T l wants to send a message to another th read T 2 on the same node.

The la tte r has a m ailbox with identifier A/2. Thread T l will use the m sg_send() system

call to send this message, specifying the destination mailbox (A/2 in th is case) and message

priority. The kernel deposits the m essage directly into A/2, then unblocks T l . T 2 can then

retrieve this message from A/2 in two ways:

1. T 2 can execute a m sg _ re c e iv e () system call.

2. W hen T2 creates A/2, it can specify an in terrupt service routine (ISR) to be executed

whenever a message arrives in A/2. This ISR may execute m sg _ re c e iv e () to retrieve

the message.

The first mechanism is suitable for periodic messages while the second one is for infrequent

sporadic and aperiodic messages.

Note th a t m sg _ re c e iv e O is a blocking system call which may not always be suitable for

real-time system s. Thus. EM ERALDS provides its non-blocking counterpart

try _ m sg _ re c e iv e () which returns an error if a mailbox has no messages.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 .4 .2 L o ca l M e ssa g e -P a ss in g U s in g S ta te M essa g es

From the perform ance point of view, global variables are ideal for sharing inform ation

between tasks, but if reading from and w riting to global variables is not regulated, subtle

bugs can crop up in the application code. S ta te messages [60] use global variables to pass

messages between tasks, but these variables are managed by code generated autom atically

by a software tool, not by the application designer. In fact, the application designer does not

even know th a t global variables are being used: the interface presented to the program m er

is almost the sam e as th e mailbox-based message-passing interface.

S tate messages are not meant to replace traditional message-passing, but are m eant

as an efficient a lte rnative to trad itional message-passing for a wide range of situations as

explained next.

S tate M essage Sem antics

State messages solve the single-writer, m ultiple-reader com m unication problem. One

can imagine th a t s ta te message "m ailboxes" are associated with the senders, not w ith th e

receivers: only one ta sk can send a s ta te message to a "mailbox” (call this the writer task)

but many tasks can read the "m ailbox” (call these the reader tasks). This way. s ta te

message "mailboxes" behave very differently from traditional mailboxes, so from now on we

will call them SMmailboxes. The differences are summarized below:

• SMmailboxes are associated with the w riters. Only one w riter may send a message

to an SM m ailbox. but multiple readers can receive this message.

• A new message overwrites the previous message.

• Reads do not consum e messages, unlike standard mailboxes for which each read op

eration pops one message off the message queue.

• Both reads and writes are non-blocking. This reduces the num ber of context switches

suffered by application tasks.

U sefulness

In real-tim e system s, a piece of d a ta such as a sensor reading is valid only for a certain

duration of tim e, after which a new reading m ust be made. Suppose task 7 \ reads a sensor

and supplies the reading to task T2 . If T\ sends two such messages to T2 , then the first

•26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

message is useless because the second message has a more recent and up-to-date sensor

reading. If trad itio n a l mailboxes w ith queues are used for com m unication, then To m ust

first read the old sensor reading before it can get the new one. M oreover, if m ultiple tasks

need the sam e sensor reading, T\ m ust send a separate message to each.

S ta te m essages stream line this en tire process. An SM mailbox S M I will be associated

with Ti and it will be known to all tasks th a t S M I contains the reading of a certain sensor.

Every tim e Ti reads the sensor, it will send th a t value to S M I . Tasks which want to receive

the sensor value will perform individual read operations on S M I to receive the m ost up-

to -date reading. Even if T\ has sent m ore than one message to S M I between two reads by

a task , the reader task will always get the m ost recent message w ithout having to process

any o u td a ted m essages. More im portan tly , if a reader does two or m ore reads betw een two

writes by 7 \ . th e reader will get the sam e message each tim e without blocking. This makes

perfect sense in real-tim e system s because the da ta being received by the reader is still

valid, up-to -date , and useful for calculations.

T he single-w riter, m ultiple-reader situation is quite common in embedded real-tim e sys

tems. Any tim e d a ta is produced by one task (may it be a sensor reading or some calculated

value) and is to be sent to one or m ore o ther tasks, s ta te messages can be used. But in

some situa tions, blocking read operations are still necessary such as when a task m ust wait

for an event to occur. Then, trad itional message-passing a n d /o r sem aphores m ust be used.

Hence, s ta te messages do not replace trad itional message passing for all situations, bu t they

do replace it for m ost inter-task com m unication requirem ents in em bedded applications.

Previous W ork

S ta te messages were first used in the MARS OS [60] and have also been im plem ented in

ERCOS [9‘2]. T he s ta te message im plem entation used in these system s as described in [62]

is as follows. T he problem with using global variables for passing messages is th a t a reader

may read a half-w ritten message since there is no synchronization between readers and

writers. This problem is solved by using an A’-deep circular buffer for each s ta te m essage.

An associated po in ter is used by the w riter to post messages, and used by readers to retrieve

the latest message. W ith a deep enough buffer, the scheme can guaran tee th a t d a ta will

not be corrupted while it is being read by a reader, but a large N can make sta te m essages

infeasible for our lim ited-m emory ta rg e t applications.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T he solution presented in [62] Limits .V by having readers repeat the read operation

until they get uncorrupted d a ta . This saves m em ory at the cost of increasing the read

tim e by as m uch as several hundred microseconds, even under the assum ption th a t writers

and readers run on separate processors w ith shared memory. W ith such an arch itec tu re ,

it is not possible for a reader to preem pt a w riter. But we want to use s ta te m essages for

com m unication between readers and w riters on the sam e C PU without increasing the read

overheads. For this situation, depending on the relative deadlines of readers and w riters.

.V may have to be in the hundreds to ensure correct operation.

O ur solution to the problem is to provide OS support for s ta te messages to reduce .V to

no more th an 5-10 for all possible cases. In the following, we describe our im plem entation

scheme for s ta te messages including the calculation of .V for the case when bo th readers

and w riters are on the same C PU . T hen , we describe a system call included in EM ERALD S

to support s ta te messages.

I m p le m e n ta t io n in E M E R A L D S

Let B be the maximum num ber of bytes the CPU can read or w rite in one instruction .

For most processors, B = 4 bytes. We have im plem ented a tool called M e s s a g e G e n which

produces custom ized code for the im plem entation of s ta te messages depending on w hether

the message length L exceeds B or not.

The case for L < B is simple. M e s s a g e G e n assigns one L-byte global variable to the

s ta te m essage and provides m acros through which the w riter can write to this variable and

readers can read from it. Note th a t for this simple case, it is perfectly safe to use global

variables. T he only complication possible for a global variable of length < B is to have one

w riter accidentally overwrite the value w ritten to the variable by another w riter. But this

problem cannot occur with s ta te m essages because, by definition, there is only one writer.

For the case of L > B. M e s s a g e G e n assigns an A'-deep circular buffer to each s ta te

message. Each slot in the buffer is L bytes long. M oreover, each s ta te message has a 1-byte

index I which is initialized to 0. Readers always read slot I , the w riter always w rites to

slot / -I- 1. and / is increm ented only after the w rite is complete. This way readers always

get the m ost recent, consistent copy of the message.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• _____________maxReadTime ;

H ------------ N— Ut---------------|N--------------- |N----------------- |N---- --

’ d " " P-------* dmcw w

Figure 3.4: Calculation o f x max. W rite operations are denoted by X. Excluding the first

w rite, there are (_(m a x R e a d T im e — (Pw - dw)) /P w\ = 4 w rites, so x max = 5.

C alcu lating Buffer D ep th .V: Now. we address the issue of how to set .V. the dep th of

the buffer. It can happen th a t a reader starts reading slot i of the buffer, is preem pted after

reading only part of the m essage, and resumes only after the w riter has done x num ber of

write operations on this m essage. Then. .V must be g rea ter than the largest value x can

take:

.V = max(2, x max + 1).

Let m axR eadTim e be the m axim um tim e any reader can take to execute the read operation

(including time the reader m ay stay preem pted). Because all tasks m ust complete by their

deadlines (ensured by the scheduler), the maximum time any task can be preem pted is d — c.

where d is its deadline and c is its execution time. If cr is the tim e to execute the read

opera tion , then m axR eadTim e = d — (c — cr).

The largest num ber o f w rite operations possible during m axReadTim e occur for the

situation shown in Figure 3.4 wrhen the first write occurs as late as possible (just before the

deadline of the writer) and the rem aining writes occur as soon as possible after th a t (right

a t the beginning of the w rite r 's period). Then.

- m a x 1 —
maxReadTime — (Pw — dw)

Pw

where Pw and dw are the w rite r 's period and deadline respectively. T hen. V can be calcu

lated using x max.

S low R e a d e rs : If it tu rn s ou t th a t one or more readers have long periods/deadlines (call

them slow readers) and as a resu lt. x max is too large (say, 10 or more) and too much m em ory

will be needed for the buffer, then EMERALDS provides a system call which executes the

sam e read operation as described above, but disables in terrup ts so th a t copying the message

from the buffer becomes an atom ic operation. This call can be used by the slow readers

while the faster readers use the standard read operation. By doing this, .V depends only

•29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on the faster readers and memory is saved. T he disadvantage is th a t th e system call takes

longer than the s tan d ard read operation. B ut this system call is invoked only by slow

readers, so it is invoked infrequently and the e x tra overhead per second is negligible. Note

th a t the write operation is unchanged no m a tte r w hether the readers a re slow or fast.

3 .4 .3 S h ared M e m o r y

EM ERALDS allows page-based sharing of memory between processes running on the

sam e CPI*. Two system calls are provided for th is purpose: sh m _ a ttach () and shm _detach()

The system call sh m _ a ttach () is called w ith an identifier. If no shared-m em ory segment

exists w ith this identifier, then physical m em ory is allocated and a new segm ent is created.

This segment is m apped into the calling process's address space and a poin ter to the s ta rt

of the segment is retu rned . When sh m _ a tta c h () is called again with the sam e identifier by

any process on the sam e CPU . the kernel finds the segment with th a t identifier and maps

it into the calling process's address space (no new memory is allocated).

The system call shm _detach() does the opposite of s h m _ a tta c h () . It unm aps the

nam ed segment from the calling processes address space. Moreover, if no o ther process has

this segment m apped into its address space, then the physical memory associated with the

segm ent is also freed up. This provides a sim ple program m ing model. W hen processes need

to use a shared m em ory segment, they call sh m _ a tta c h () with th a t segm ent's identifier.

The first such call allocates physical memory and all the later ones ju st m ap in the segment.

W hen processes no longer need a segment, they call shm _detach (). These calls unm ap the

segment from their address space, except the last call which also frees up the physical

memory. These sem antics are easier to use th a n , for example, UNIX [110] sem antics where

shared memory m ust be explicitly created before m apping it into an address space, and

must be explicitly deleted after unm apping it from each address space.

3.5 M iscellaneous OS Services

3 .5 .1 S em a p h o res

T hreads often need to ensure m utual exclusion when accessing critical regions of code

dealing with shared resources. EMERALDS provides semaphores (som etim es also known as

mutexes as in POSIX terminology) for this purpose. The system calls in Table 3.3 are used

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to create, delete, lock, and unlock sem aphores. If a thread tries to acquire a sem aphore

which is a lready locked, th a t thread will block and will be added to a queue of threads

waiting for th a t sem aphore. W hen the lock holder releases the sem aphore, the highest-

priority th read in the queue will be unblocked. An alternative to the blocking sem_Lock()

call is the s e m _ try lo c k () call which returns an error if the sem aphore is already locked. If

the sem aphore is free, it will be locked. EM ERALDS uses certain optim izations to reduce

the overhead o f sem aphore locking. Details are in C hapter 5

System call Impor tant Parameters Function

se m _ c r e a te ()

s e m j ie le t e O

sem _Lock()

s e m _ tr y lo c k ()

se r a j in lo c k O

C P U -w id e unique ID

Sem aphore identifier

Sem aphore identifier

Sem aphore identifier

Sem aphore identifier

C reate sem .

D elete sem .

Acquire sem .

N on-block ing

Release sem .

c v _ c r e a te ()

c v _ jd e le te ()

c v _ lo c k ()

c v _ u n lo c k ()

C P U -w id e unique ID

CV identifier

CV identifier

CV identifier

Create C V

D elete C V

Acquire C V

Release C V

Table 3.3: System calls for sem aphores and condition variables.

3 .5 .2 C o n d it io n V ariab les

Condition variables differ from sem aphores in the effect of signaling the variable. W hen

a sem aphore is signaled (using sem _unlock()). its effect lasts. This m eans th a t even if no

thread is cu rren tly blocked waiting for the sem aphore, the signal will not be lost. If later

on a th read tries to acquire the sem aphore, it will succeed. On th e o ther hand, signaling a

condition variable has no effect if no threads are waiting on th a t condition variable a t the

time of th e signal.

The system calls for condition variables are similar to those for semaphores and are

listed in Table 3.3. N ote th a t a system call such as c v . t r y w a i tO does not m ake sense with

condition variable sem antics, so it is not provided by EM ERALDS.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 .5 .3 D e v ic e D r iv e r s

Since there are so m any devices (e.g.. sensors, ac tu a to rs , network ad a p te rs) used in

em bedded system s, it is v irtually impossible for the OS designer to supply device drivers

for all of them . T he next best thing is to make it as easy as possible for users to w rite their

own user-level device drivers. EM ERALDS does ju st th a t . A device driver is a user process

(instead of being p a rt of the kernel), and special system calls are available for device drivers

to access devices and deal w ith in terrupts. EM ERALDS also uses in-kernel device drivers

where a p p ro p ria te for efficiency reasons.

EM ERALD S provides two special system calls to w rite user-level device drivers. The

first. m ap .d e v ice C). allows a device driver to map a m em ory-m apped device in to its address

space.2 From th en on. the device driver can use s tan d a rd memory operations to access the

device. The s e t _ i s r () system call allows device drivers to handle in terrupts. Device drivers

use this call to tell the kernel which ISR subroutine to execute when an in te rru p t occurs. A

separa te ISR can be a ttach ed to each in terrupt level. As far as com m unication between user

threads and device drivers is concerned, standard EM ERALDS IPC m echanism s (message-

passing and shared m em ory) can be used since EM ERALD S device drivers run as user-level

threads.

EM ERALD S allows even non-device driver th reads to use the above system calls. When

used responsibly, this can be a great asset in em bedded real-tim e system s. L'suallv. ju st one

(possibly m u lti-th readed) process is responsible for directly com m unicating w ith a certain

device like a sensor or an ac tu a to r. In this situation , it becomes very efficient to integrate

the device driver w ith th a t process. This way. the device can be accessed using subroutine

calls — com pletely avoiding context switch overheads.

3 .5 .4 M e m o r y M a n a g e m e n t

The system call m em _alloc() can be used by a process to get the desired num ber of

pages of physical m em ory m apped into its address space. This call re tu rn s the starting

address of th e allocated space, and can be used to build library-based m em ory allocators to

provide C calls like m alloc() and free(). Memory ob tained through m em _alloc() is retained

by a process un til it te rm ina tes, a t which tim e all its m em ory is reclaimed by the system .

JCurrentIy, EM ERALDS does not support I/O -m apped devices because the MC 68040 — on which
EMERALDS is presently im plem ented — does not have a separate I /O space.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 .5 .5 T im e r s

T he call s t a r t_ t im e r () can be used to create and s ta rt a tim er. This call has two

variants. T he first is a blocking version, in which the calling thread blocks for the specified

duration o f tim e. The second non-blocking version is used to execute a tim er ISR. The

calling th re a d specifies a routine to be executed as the ISR and a tim e delay. W hen the

tim er expires, the ISR is executed, and it can reset the tim er for the next in te rru p t. This

way, the ISR can execute periodically.

3.6 Perform ance

We have com pleted a uniprocessor version of EM ERALDS for the MC 68040 processor

which is one o f the most popular and comm only used processor in em bedded system s with a

wide installed base. The size of this version o f EM ERALDS is about 13 kbytes. Com paring

this to o th e r m ajor RTOSs for embedded applications (Table 3.4). we see th a t our goal of

a small-sized RTOS has been achieved.

R T O S Si:e (kbytes)

QNX 101

Vx Works 5.1 ‘286

EMERALDS 13

Table 3.4: Sizes of various RTOSs (uniprocessor versions). Size of QNX is from [39] and

includes th e "kernel." P roc . and Dev modules which is the minimal configuration with device

driver su p p o rt. VxW orks' size is from a compiled stand-alone version.

Table 3.5 shows the latencies of some system calls and other operations in the current

version of EM ERALDS on a ‘25 MHz 68040 processor with two independent 4 kbyte in

struction and d a ta caches. Latencies are m easured using a 5 MHz clock (th e fastest clock

available on the Ironies IV-3207 boards we use). T he operations labeled w ith “ involve a

context sw itch to another thread. All o ther operations return to the calling th read .

C om paring the n u l lO system call to the n u l l Q subroutine call, we see th a t EM ER

ALDS’ technique of mapping the kernel into each address space results in efficient system

calls, incurring only a 1.8 ps more overhead th an subroutine calls. Even when a context

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Operation Latency (ps)
C ontext switch (th read to thread) 9.2
n u l l O subroutine call 0.2
n u l l O system call 2.0
c re a te .p r o c O * 194.4
c r e a te _ th r e a d () ’ 50.4
jo in _ th r e a d () (th read already exited) 17.2
d e ta c h _ th re a d () (th read already' exited) 16.4
d e ta c h .th r e a d O (th read has not exited) 2.2
sh m _ a ttach () (one page mem. allocated) 10.6
sh m _ a ttach () (a ttach existing segment) 8.6
shm _detach() (one page mem. deallocated) 10.0
shm _detach() (just unm ap segment) 8.0
se m _ c rea te () 4.8
se m _ d e le te () 3.2
sem _lock() (sem aphore free) 5.8
sem _lock() (with threads waiting) C hap 5
sem _unlock() (no th read waiting) 7.0
sem _unlock() (w ith threads waiting) C hap 5
c v .c r e a te O 6.2
c v _ d e le te () 5.4
c v _ w a it() “ 25.4
c v _ s ig n a l() (no th read waiting) 3.4
c v _ s ig n a l () ' (th read waiting) 30.4
m box_create () 6.4
m box_dele te () 3.6
m sg_sendO (8 bytes) 16.0
m sg _ re c e iv e () (8 bytes) 7.6
S ta te message send (8 bytes) 2.4
S ta te message r e c e iv e (8 bytes) 2.0
S ta te message re c e iv e _ s lo w (8 bytes) 4.4

Table 3.5: Timing of various operations in EM ERA LD S,

switch to a different address space is required, it incurs less th an 10 ps overhead.

3 .6 .1 C o m p a r iso n w ith C o m m e r c ia l R T O S s

The Scientific Research Laboratory (SRL) of Ford M otor C om pany evaluated the per

formance of EM ERA LD S and nine comm ercial embedded RTOSs for autom otive engine

control. These RTOSs include Nucleus. pSOS Select. RTX, RTXC, RTOS. C-Executive.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.0
600.0 800.0 1000.0

Interrupts/sec

Figure 3.5: OS overhead due to in terrupts. ‘250 periodic task sw itches/s and a 4ms clock

tick tim er.

VRTX me. RTEK. and M TASK.

In initial testing, SRL has focused on m easuring overheads of basic OS services like

in te rru p t handling, task sw itching, tim ers, and clock tick on a 16.7MHz M otorola 6833*2

m icrocontroller. Their resu lts3 are shown in Figure 3.5 (the results released by SRL do

not identify which m easurem ents are for which OS, so we refer to th e com m ercial RTOSs

as 0 S 1 -0 S 9) . The num ber of in terrup ts/second tha t the engine contro ller m ust service

depends on the engine’s speed. At high RPM (revolutions per m inu te), the controller sees

abou t 1000 in te rru p ts /s . A t this rate , the various RTOSs have an overhead ranging from

15% to 30% of CPU tim e. EM ERALDS is one of the best with only 16% overhead. Only

OS9 has a lower overhead o f 15.5%. but com pared to other OSs. it has much higher RAM

overhead (about 4000 bytes for 10 tasks com pared to 500-1000 bytes for all th e o ther OSs

including EM ERALDS) which makes 0S9 infeasible for sm all-m em ory em bedded system s.

This makes EM ERALDS the best OS am ong all the feasible OSs.

3.7 Conclusions and Future Work

Small to medium sized em bedded real-tim e system s are becoming increasingly common

in applications like au tom otive control, robotics, and industrial au to m atio n . To be com pet

itive in the m arket, these system s must reduce cost to a minimum. Any RTOS to be used

3The 68332 does not have a MMU, so these results are for a version of EMERALDS without memory
protection.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in these system s must therefore not only support pred ictab ility (essential in any real-tim e

system and provided in EM ERALD S in the form of predictable scheduling of th re a d s) but

also be efficient and small in size. Efficiency allows cheaper processors to be used an d small

size decreases the cost of ROM needed to store the executable code. Most o th e r m odern

RTOSs are e ither too large in size (hundreds of kbytes or m ore) or they do not offer several

popu lar OS features like m em ory protection and threads in an a ttem p t to reduce size and

increase speed. Our goal in designing EMERALDS was to develop an RTOS which was not

only predictable but also small and efficient, w ithout c u ttin g back on standard OS services

relevant to em bedded system s. To achieve this goal, we m ade use of several fea tu res of

em bedded system s which allowed us to increase the efficiency of system calls and keep the

size of EM ERALDS to ju st 13 kbytes (uniprocessor version).

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PT E R 4

C O M B IN E D EDF A N D RM SCH ED ULING

Real-time com puting system s m ust behave predictably even in unpredictable environ

ments [103]. This predictability is ensured by system-level services, most im p o rtan t among

them being the ta sk scheduler in the RTOS.

Real-time ta sk scheduling has been focus of active research for several decades [6.

69.76,106]. This has led to the development of well-known scheduling schemes such as

rate-monotonic (R M) [76], earliest-deadline-first (E D F) [76], and deadline-monotonic [69].

But in recent years, the focus of research has shifted from uniprocessor task scheduling

to scheduling tasks and messages in m ultiprocessors and d istributed system s [2.54.117].

Uniprocessor task scheduling is trea ted as a "solved" problem and research in th is a rea has

tapered off.

Unfortunately, well-known uniprocessor task scheduling solutions such as RM and EDF

are only "theoretical" solutions in the sense that they do not consider the p rac tica l im

plem entation of these schedulers in real systems. For exam ple. EDF delivers a processor

utilization of 100%. but not all of this CPU capacity is available for execution o f workload

tasks. EDF incurs high run-tim e overhead in keeping tasks sorted by their (changing) dead

lines. When this overhead is taken into consideration, the C PU capacity left for workload

tasks is well below 100%. The sta tic RM scheduler has much lower run-tim e overhead but

its average-case schedulable utilization is only 88% [67] — well below th a t for E D F . In

practice, neither E D F nor RM deliver good performance. In fact, for many real w orkloads,

performance of b o th these schedulers is about the same [58].

The recent popu larity of m ultim edia applications has led to renewed interest in m aking

uniprocessor task scheduling efficient. In [33], a delayed preem ption scheme is presented

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in which a running task is preem pted only a t quantized tim e boundaries. This scheme is

useful for protocol da ta processing since it allows relatively short packet-handling tasks to

execute to completion before being preem pted. However, u tility of such delayed preem ption

schedulers in handling application task workloads is yet to be dem onstrated . The Rialto

scheduler [52] uses time-slice scheduling to reduce run-tim e overhead to a m inim um , but it

employs heuristics for constructing the schedule, resulting in non-optim al solutions.

In em bedded systems, scheduler inefficiencies become a m ajo r concern because of rela

tively slow CPU s. This led us to investigate ways to reduce scheduler overhead and improve

perform ance.

O ur approach to solving this problem was not to invent new scheduling theory but

instead to make existing schedulers (ED F and RM in particu lar) work better in real im

plem entations. We present a new uniprocessor task scheduling scheme called the combined

s ta tic /dynam ic (CSD) scheduler. It combines the best features of RM and EDF to deliver

b e tte r perform ance than both when execution overheads are factored in. CSD lowers run

tim e overhead by using multiple scheduling queues, but a t the sam e tim e, delivers high

schedulable utilization by properly assigning tasks to the different queues. A proper parti

tioning of tasks is critical to the good performance of CSD. VVe present an iterative method

to partition the tasks in a given workload into two groups. W hen tasks in one group are

scheduled by EDF and tasks in the o ther group are scheduled by RM . the total scheduling

overhead (run-tim e overhead plus schedulable utilization being less than 100%) is less than

th a t of ED F and RM. The to tal scheduling overhead is a " true" m easure of the performance

of a scheduler. By reducing this to ta l overhead. CSD outperform s bo th RM and ED F in

real system s.

We have implemented CSD in EM ERALDS. We m easure the run-tim e overheads as

sociated with CSD, EDF, and RM and we dem onstrate th a t when these overheads are

considered in schedulability tests. CSD feasibly schedules m ore workloads than ED F or

RM.

T he next section discusses some of the overheads associated w ith task scheduling and

m otivates the need for a new scheduling scheme which reduces these overheads. Section 4.2

describes the CSD scheduler and gives the theoretical basis for its superiority over ED F and

RM. Section 4.3 gives an extension to the basic CSD scheme which overcomes some of the

shortcom ings of its original form. We experimentally evaluate the perform ance of CSD in

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.4. Section 4.5 pu ts CSD in context of previous research in real-tim e scheduling

and highlights the novelty of CSD. The chapter concludes w ith Section 4.6.

4.1 Task Scheduling Overheads

Consider a periodic task which runs once every 1ms. For ju s t th is one task , the scheduler

m ust run twice every 1ms: once when the task is released and once when the task com

pletes. Considering th a t typical OS operations usually take 40 -50^s and th a t a typical task

workload consists of ‘20-40 tasks w ith at least 5-7 tasks having periods less than 10ms. the

scheduler's execution alone can use up 5-15% of CPU tim e. T his is why some application

program m ers prefer cyclic time-slice scheduling techniques in which the en tire schedule is

calculated either off-line or a t task-adm ission tim e, and a t run-tim e, tasks are switched in

an d out according to th is fixed schedule. This reduces the scheduler's run-tim e overhead

bu t introduces several problem s:

• The schedules m ust be calculated by hand, so they are difficult and costly to modify if

the task characteristics change during the application design process. Heuristics can

be used to calculate schedules, but they result in non-optim al solutions (some feasible

workloads may get rejected).

• Cyclic schedulers give poor response times for h igh-priority aperiodic tasks because

the arrival tim es o f these tasks cannot be an tic ipated off-line.

• If a workload contains both short and long period tasks (as is often the case in control

applications), the resulting time-slice schedule can be qu ite large, consum ing signifi

cant am ounts o f memory.

W ith real-time system s now having more tasks and m ore aperiodic activities, cyclic

schedulers are no longer su itab le for task scheduling. T h e a lte rna tive is to tu rn to priority-

driven schedulers like RM and ED F which use task priorities to m ake run-tim e decisions

as to which task should execute when. These schedulers do not require any costly off-line

analysis, can easily handle changes in the workload during th e design process, and can

handle aperiodic tasks as well using, for example, a sporadic server [106]. However, since

priority-driven schedulers m ake run-tim e scheduling decisions, they incur overhead which

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be 5-15% of CPU time. This calls for new task scheduling schemes with lower overheads

which would free up more tim e for the execution of application tasks.

4.2 Com bined S ta tic /D yn am ic Scheduler

The ta sk scheduler’s overhead can be broken down into tw o components: the run-time

overhead and the schedulability overhead. The run-tim e overhead is the tim e consumed by

the execution of the scheduler code. This has to do with m anaging the queues of tasks and

selecting the highest-priority task to execute whenever some task blocks or unblocks.

The schedulability overhead is defined as 1 — U", where U“ is the ideal schedulable utiliza

tion. For a given workload and a given scheduler. Um is the highest workload utilization th a t

the scheduler can feasibly schedule under the ideal conditions th a t the scheduler’s run-tim e

overhead is ignored. This is best explained through examples. Consider a workload of n

tasks, {r, : i = 1 ,2n}. Each task r, has a period P,, execution tim e c,. and deadline d,.

Then th is workload has utilization U = ci/Pi- EDF is a dynam ic-priority scheduler

which gives highest priority to the earliest-deadline task [76], and can schedule all %vorkloads

with U < 1 under the ideal condition th a t E D F ’s run-tim e overhead is ignored. We say th a t

Um = 1 for ED F. O ther schedulers such as RM (which schedules tasks according to fixed

priorities based on the tightness o f their P, [76]) can have U~ < 1. For example, a workload

with U = 0.90 may be schedulable under RM. but if some c, is slightly increased so th a t

U becomes 0.91. the workload m ay no longer be schedulable even under ideal conditions.

We say th a t U~ = 0.90 for this workload under RM. This m eans th a t 10% of CPU tim e

is "unusable” because of the scheduling policy, and we refer to this as the schedulability

overhead.

ED F has zero schedulability overhead but high run-tim e overhead. By con trast. RM

has low run-tim e overhead bu t. depending on the workload, it can cause significant schedu

lability overhead. In the rest of th is section, we analyze the sources of these overheads and

then design a mechanism to yield high schedulability with low -run-tim e overhead. O ur goal

is not to devise new scheduling theo ry bu t to use the best features of existing schedulers

(ED F and RM) to get good perform ance in real im plem entations.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1 R u n -tim e Overhead

The run-time overhead (A t) has to do with parsing queues of tasks and adding/deleting

tasks from these queues.

W hen a running task blocks, the OS must upda te some d a ta structures to identify the

task as being blocked and then pick a new task for execution. We call the overheads as

sociated with these two steps the blocking overhead Atf, and the selection overhead A t , .

respectively. Similarly, when a blocked task unblocks, the OS must again up d a te some in

ternal d a ta s truc tu res , incurring the unblocking overhead A t u. The OS must also pick a task

to execute (since the newly-unblocked task m ay have higher priority than the previously-

executing one), so the selection overhead is incurred as well.

Each task blocks and unblocks at least once every period: it is unblocked a t the beginning

of the period and then blocks itself after executing for c, time units. This means that

the minimal scheduler run-time overhead per task r, is Atf, + A t u -f 2 A t s incurred once

every period. Overhead is even greater if r, uses blocking system calls during execution.

This is application-dependent, but we assume tha t half the tasks block once during their

execution. For simplicity, we assume that each task suffers a run-time overhead of A t =

l .o(Ati, + A t u + '2A t ,) . Then, with the run-time scheduler overhead figured in. the workload

utilization becomes U = (ct + A t) / P, which can be significantly g rea ter than the

utilization when A t is ignored.

Now. we calculate A t for both EDF and RM scheduling policies. Our calculations

are based on a linked list implementation of schedulers. A sorted heap can give lower

run-time overhead for a large number of tasks, but linked lists are more efficient for the

relatively smaller num ber of tasks (15-40) typically seen in real-time systems. Experimental

measurements to corroborate this s tatement are presented in Section 4.4.

In EMERALDS, we have implemented E D F as follows. All blocked and unblocked tasks

lie in a single, unsorted queue. This makes sense because task priorities change continually

under EDF. so keeping the queue sorted is not worth the overhead. Tasks are blocked and

unblocked by changing one variable in the appropria te task control block (T C B). To select

the next task to execute, the entire list is parsed and the earliest-deadline ready task is

picked. Writh this scheme, both A and A t u are 0 (1) . but A t , is O(n) . where n is the

number of tasks. Since A t , is counted twice per task block/unblock operation. A t for EDF

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

increases rapidly as n increases.

The typical implementation for RM is to have a queue of ready tasks sorted by (fixed)

task priorities. Blocking and unblocking involve deletion from, and insertion into, the list

in sorted order. But in EM ERALDS, we chose a different implementation which allows us

to optimize other OS services (especially semaphores) while the run-time overhead stays

about the same as for the typical implementation. All blocked and unblocked tasks are

in a single queue sorted by priority, highest-priority task first. A single pointer h i g h e s t P

points to the highest-priority ready task, so A t3 is 0 (1) because h ig h e s tP points to the

task which should execute next. To block a task, one variable is updated in the TC B (same

as in E D F), but now h ig h e s tP has to be updated as well. The scheduler parses down the

queue till it finds the next ready task in the queue, then sets h ig h e s tP to point to tha t

task. This is why Af& takes 0 (n) time in the worst case. On the other hand, unblocking

a task only involves checking if the unblocked task has higher priority than the h i g h e s t P

task. If so. h ig h e s tP is simply reset to point to the newly-unblocked task and this takes

0 (1) time.

For RM. A <6 = 0 (n) whereas for EDF. A t , = O (n) . A i f , is counted only once every task

block/unblock operation while A t3 is counted twice, which is why A t = 1 .5 (A ^ + A iu + ‘2A<a)

is significantly less for RM than it is for EDF. especially when n is large (20 or more).

4.2.2 Schedulability O verhead

We have already mentioned th a t EDF has zero schedulability overhead, so if the run

time overhead is ignored, no scheduler can be b e tte r than EDF. Previous work has shown

th a t on average. U~ = 0.88 for RM [67]. To see why U ’ for RM is less than that for ED F,

consider the workload shown in Table 4.1. Each task r, has deadline d, = Pt . U = 0.88 for

this workload, so it is feasible under EDF.

Figure 4.1 shows what happens if this workload is scheduled by RM. In the time interval

[0,4), tasks r i~ r 4 execute, but before r 5 can run. r j is released again. Under RM. r i - r 4 have

higher priority than r 5 (because of their shorter P,), so the la tte r cannot run until all of

the former execute for the second time, but by then r$ has missed its deadline. This makes

the workload infeasible under RM and illustrates why RM has a non-zero schedulability

overhead.

On the other hand, if ED F is used to schedule the same workload. r 5 will run before

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i Pi (ms) c, (ms)
1 4 1

2 5 I
3 6 1

4 7 1

•5 8 0.5
6 2 0 0.5
7 30 0.5
8 50 0.5
9 1 0 0 0.5
10 130 0.5

Table 4.1: An example task workload with U = 0.88. It is feasible under ED F but not
under RM.

misses deadline

T 1 X2 X3 T4 T1 X2 T3 T4

time
0 1 2 3 4 5 6 7 8

Figure 4.1: RM scheduling of the workload in Table 4.1.

r 2 -r.t run for th e second time (because d$ = 8 is earlier than the second deadlines of r 2 - r 4)

and the workload will be feasible (Figure 4.2).

0 1 2 3 4 5 6 7 8

Figure 4.2: EDF scheduling of the workload in Table 4.1.

4.2.3 CSD: a B alance betw een E D F and RM

Going back to the workload in Table 4.1. notice th a t r 5 is the "troublesome" task. i.e..

because of this task the workload is infeasible under RM. Tasks r6 - r 10 have relatively longer

periods, so they can be easily scheduled by any scheduler, be it RM or EDF.

We used this observation as the basis o f the CSD scheduler. Under CSD. tasks r i~ r 5

will be scheduled by E D F so tha t r 5 will not miss its deadline (procedure to determine

which task is the troublesom e task in a given task set is discussed in Section 4.2.6). Once

the troublesome task is taken care of. we can use the low-overhead RM policy to schedule

the remaining tasks r6 - r 10. This way. the run-tim e overhead of CSD is less than tha t of

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E D F (since the ED F queue's length has been halved) but a little more than th a t of RM.

T h e schedulability overhead of CSD is the same as for EDF (i.e.. zero) which is much less

th a n tha t of RM. Thus, the to ta l scheduling overhead of CSD is significantly less than tha t

o f bo th EDF and RM.

The CSD scheduler maintains two queues of tasks. The first queue is the dynamic-

priority (DP) queue which contains tasks to be scheduled by EDF. The second queue is

the fixed-priority (F P) queue which contains tasks to be scheduled by RM (or any other

fixed-priority scheduler such as deadline-monotonic [69]. but for simplicity, we assume RM

is the policy used for the FP queue).

Given a workload {r, : i = l .*2 n} with tasks sorted by their RM-priority (tasks

with shorter periods have lower index i), let rT be the "troublesome" task in this workload.

T hen , tasks Ti~rr are placed in the DP queue while r r+1- r n are in the FP queue. CSD gives

priority to the DP queue over the FP queue. This makes sense because all tasks in the DP

queue have higher RM-priority (shorter periods) than any task in the FP queue. A single

counter keeps track of the number of ready tasks in the DP queue. It is incremented when

a D P task becomes ready and is decremented when a DP task blocks. W hen the scheduler

is invoked, it first checks this counter. If it is greater than zero, the DP queue is parsed

to pick the earliest-deadline ready task. Otherwise, the DP queue is skipped completely

an d the scheduler picks the highest priority ready task from the FP queue (pointed to by

h i g h e s tP) .

4 .2 .4 R un-T im e O verhead of CSD

We mentioned th a t CSD has zero schedulability overhead. Its run-time overhead de

pends on whether the task being blocked or unblocked is a DP or FP task. There are four

possible cases:

1. DP task blocks: Atb is constant (same as for EDF). but A<s depends on whether any

ready tasks are left in the DP queue or not. For real-time schedulability analysis, we

are interested in the worst-case overhead, and this occurs when there are o ther ready

tasks in the DP queue. Then. A t , is the time to parse the DP queue and is the same

as A t, for EDF except th a t the queue length is only r instead of n. So, A t , = O(r)

instead of 0 (n) .

2. DP task unblocks: A fu is constant (same as for EDF). At least one ready task is

definitely in the D P queue (the one th a t was just unblocked), so A t , is always the

time to parse the r-long DP queue, i.e.. A t , = 0(r) .

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. FP task blocks: Atb is the same as for RM except the queue length is only n — r so

tha t Atb = 0 (n — r). Regarding A t s. we need to know if any DP task can be ready

or not. But this is not possible, because the task which just blocked is an F P task

and this task could not have been executing had any DP tasks been ready. Since the

DP queue has no ready tasks, the scheduler ju s t selects h ig h e s tP from the F P queue.

This makes A t 3 = 0 (1) (same as for RM).

4. FP task unblocks: A t u is a constant (same as for RM). The DP queue may or may

not have ready tasks, but for the worst-case A t s . we must assume that it does, so

A t s = 0 (r) . □

From this analysis, the total scheduler overhead for CSD is Atb + A t s_biock + A t u +

A t s_unbiock per task block/unblock operation. For D P tasks, this becomes 0 (1) + 0 (r) +

0 (1) + 0 (r) = 0 (‘2 r) , 1 whereas for FP tasks, the overhead equals 0 (n — r) + 0 (l) + 0 (l) +

0 (r) = 0 { n) . This means th a t an r-Iong list is parsed twice for DP tasks (worst-case).

while an n-long list is parsed once for FP tasks. Comparing this to EDF (n-long list parsed

twice) and RM (n-long list parsed once), we see why the run-time overhead of CSD can be

less than th a t of EDF (since r is less than n) and only slightly greater than tha t of RM.

Considering tha t CSD has no schedulability overhead, it easily outperforms both E D F and

RM.

4.2.5 Schedulab ility Test

A task set { r : : i = 1 .2 n} with tasks sorted by their RM-priority (tasks with

shorter periods have lower index i) is feasible under ED F if [76]

£r _ c, -j- At(E D F) ^ ^

t=i P'

where A t (E D F) is A t for EDF. The workload is feasible under RM if [6

w . (^ C j + A t i R M)
Vi. 1 < i < n, min > —-----------------

" “ o<t<d, y ^ t
t

~Pj
< 1.

In practice, this equation need only be evaluated for a finite number of t values as described

in [63].

Schedulability under CSD is tested as follows. First, check if the DP tasks iq - rr are

feasible under EDF:

'S trictly speaking, 0 (2 n) = 2O(n) = O(n) , but we use the term 0 (2 n) to remind readers th a t an n-long
queue is traversed twice.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r - v " c* D P)
L'd p = < 1-

i=i P<

Then, check the feasibility of the FP tasks as follows:

Vi. r < i < n. min
o <t<d,

Cj + A t (X t

~P>
< 1.

where A' is D P or F P when j is a DP or FP task , respectively. This check is done only

for FP tasks (i goes from r + 1 to n), but it considers all the DP tasks as having higher

priority than a given FP task (j goes from 1 to i).

4.2.6 L ocating rr

The key to C S D ’s good performance is the proper partitioning of the workload into

DP and FP tasks. Having two queues lowers run-tim e overhead but the low schedulability

overhead of CSD depends on correctly identifying r r . then allocating r t - r r to the DP queue

and the remaining tasks to the FP queue.

Task t> can be easily located through an iterative procedure by using the CSD schedula

bility test described above. For a given workload, s ta r t by assuming r = 0 and perform the

schedulability test. If successful, then stop, otherwise keep increasing r until the schedula

bility test passes o r r exceeds n in which case the workload is not feasible by CSD. This

way. tasks can be partitioned between the two queues to minimize C S D ’s to ta l scheduling

overhead for any given workload.

4.3 R educing Run-Tim e Overhead of CSD

CSD’s main advan tage is that even though it uses EDF to deliver good schedulable

utilization, it cuts back on run-time overhead by keeping the DP queue short. But as the

number of tasks in the workload increases, the DP queues length also increases and this

degrades C SD ’s performance. To rectify this situation, we modify CSD to keep run-time

overhead under control as the number of tasks n increases.

4.3.1 C ontrolling D P Queue R un-T im e Overhead

Under CSD, effective execution time of each task in the DP queue increases by A t (D P)

which depends on length of the DP queue r. A t (D P) increases rapidly as r increases, which

degrades performance of CSD.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D PI DP2 FP
Task
Blocks

A f6 0 (1) 0 (1) 0 (n — r)
A ta 0 (max(q. r — q)) 0 (r) 0 (1)

Task
U nblocks

A t u 0 (1) 0 (1) 0 (1)
A ta 0 (q) 0 (max(q, r - ?)) 0 (max(q. r - q))

Total run-tim e overhead 0 (r) 0 (2 r - q) O (n - q)

Table 4.2: R un-tim e overheads for CSD-3. The to ta l values assume th a t the DP2 queue is
longer than the D P I queue (max(q, r — q) = r — q) which is typically the case.

Our solution to this problem is to split the DP queue into twoqueues D P I and DP2. DPI

has tasks with higher RM-priority (shorter periods), so the scheduler gives D P I priority over

DP2. We call this modified scheme CSD-3 because of its three queues. Properly allocating

tasks to D P I and DP2 is discussed in Section 4.3.3, but first, note th a t both D P I and DP2

are expected to be significantly shorter than the original DP queue so th a t the run-time

overhead of CSD-3 should be well below th a t of the original CSD scheme (which we will

call CSD-2 from now on) as discussed next.

4.3.2 R u n -T im e O verhead of C SD -3

The run-tim e overheads for CSD-3 can be derived using the same reasoning as used for

CSD-2 in Section 4.2.4. The overheads for different cases are shown in Table 4.2. where q is

the length of the D P I queue and r is the to ta l number of DP tasks (so th a t r — q is the length

of DP2 queue). The table shows that the run-tim e overhead associated with DPI tasks is

O (r) which is a significant improvement over 0 (2 r) for CSD-2. Since D P I tasks are the

shortest-period tasks in the workload, they are the ones which execute the most frequently

and are responsible for most of the scheduling overhead. Reducing th e run-time overhead

associated with these tasks from 0 (2 r) to O (r) leads to CSD-3 performing significantly

better than CSD-2.

The run-tim e overhead of DP-2 tasks is reduced as well from 0 (2 r) in CSD-2 to 0('2 r—q).

Similarly, the overhead for FP tasks is reduced from 0 (n) to 0 (n - q).

4.3.3 A llo ca tin g Tasks to D P I and D P 2

If all DP tasks had the same periods, we could split them evenly between D P I and DP2.

Each queue's length will be half that of the original DP queue. This would cut the run-time

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

overhead of scheduling DP tasks in half2 and would give the best possible reduction in

scheduler overhead. But when tasks have different periods, two factors must be considered

when dividing tasks between D P I and DP2:

• Tasks with the shortest periods are responsible for the most scheduler run-time over

head. For example, suppose A t = 0.1ms. A task with Pi = 1ms will be responsible

for A t /P{ = 10% CPU overhead, whereas a task with P, = 5ms will be responsible

for only 2%. This means tha t only a few tasks with short periods should be kept in

D P I to keep A t (D P l) small. DP2 should have more tasks than D P I. This will make

\ t (D P 2) > A t (D P l) , but this will balance out because tasks in DP2 have longer

periods so th a t 51, A 1/P , for the two queues is approximately balanced.

• Balancing the run-time overhead between the queues cannot be made the sole criterion

for allocating tasks to D P I and DP2; the scheduling overhead must be considered

as well. Once the DP tasks are split into two queues, they no longer incur zero

schedulability overhead. Even though tasks within a DPx queue are scheduled by

ED F. the queues themselves are scheduled by RM (all D P I tasks have statically

higher priorities than DP2 tasks), so that CSD-3 has non-zero schedulability overhead.

Tasks must be allocated to D P I and DP2 to minimize the sum of the run-time and

schedulability overheads. For example, consider the workload in Table 4.1. Suppose

the least run-time overhead results by putting tasks r i- r^ in DPI and the rest of the

DP tasks in DP2. but this will cause 7-5 to miss its deadline (see Figure 4.1). Putting

7-5 in D P I may lead to slightly higher run-time overhead but will lower schedulability

overhead so th a t r 5 will meet its deadline.

At present, we use an exhaustive search (using the schedulability test described next)

to find the best possible allocation of tasks to D P I. DP2. and FP queues. The search runs

the schedulability test 0 { n 2) times for three queues. This takes 2-3 minutes on a 167MHz

Ultra - 1 Sun workstation for a workload with 100 tasks.

4.3.4 Schedulab ility Test for CSD-3

As before, assume the task set {r, : i = 1,2 n} has tasks sorted by their RM-priority.

Since D P I tasks are scheduled by ED F, tasks Ti - r7 are feasible if:

in c re a s in g the num ber of queues also increases the overhead of parsing the prioritized list of queues, but
our m easurem ents showed this increase to be negligible (less than a microsecond) when going from two to
three queues.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£ ci + ± t (P P l) ^ 1

1 = 1 P i

D P I tasks have priority over DP2 tasks while DP2 tasks among themselves are scheduled

by ED F. We modify the test for FP tasks to work for DP2 tasks. To check schedulability

for a DP2 task i. the test treats all D P I tasks as having higher priority than i (j runs from

1 to q), but checks deadlines of DP2 tasks (k runs from q + 1 to r) to decide how many

invocations of each (if any) have priority over the first invocation of i:

?
Vi. q < i < r. min

- 0<t<dt
Cj + \ t (D P 1)

t
t

p i + E
k=q+1

ck + A t (D P 2)
t Pk

< 1.

where the function [Y|* excludes the last invocation of j released before time t if its deadline

exceeds dt :

(Mrl ~ 0 Pk + d k ^ d '■ t ■ t
Pk

p~k t
t

Pk - 1— I otherwise

This test for DP2 tasks uses the critical time zone assumption [76] which is valid only if all

D P I and DP2 tasks have utilization < 1 < 1. A' is D P I or DP 2 if i is a

D P I or DP2 task, respectively). Note that because of the check for deadlines, the critical

time zone assumption is not automatically valid here as it is under rate-monotonic analysis.

The test for FP tasks is the same as for CSD - 2 except for minor modifications:

Vi. r < i < n. min
~ 0 <t<d,

Cj + A < (A) t

~Pj
< 1 .

where A' is D P I , D P ‘2, or F P when j is a D P I . DP2. or FP task , respectively.

4.3 .5 B eyond CSD-3

The general scheduling framework of CSD is not limited to ju s t three queues. It can be

extended to have 4 .5 n number of queues. The two extreme cases (one queue and n

queues) are both equivalent to RM while the intermediate cases give a combination of RM

and ED F.

We would expect CSD-4 to have slightly better performance than CSD-3 and so on

(as confirmed by evaluation results in Section 4.4.2). although the performance gains are

expected to taper off once the number of queues gets large and the increase in schedulability

overhead (from having multiple ED F queues) starts exceeding the reduction in run-time

overhead.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EDF using queue (/zs) RM using queue (/zs) RM using sorted heap (/zs)

A tb

A fu

A t3

1 . 6

1 .2

1.2 + 0 .‘25n

1.0 + 0.36n

1.4

0 . 6

0.4 + ‘2.8[log2(n +1)"]

1.9 + 0.7[Iog2(n + 1)]

0 . 6

Table 4.3: Run-time overheads for EDF and RM (n is the number of tasks). Also shows

measurements for RM when a heap is used instead of a linked list. M easurements made

using a 5MHz on-chip tim er.

For a given workload, the best number of queues and the best number of tasks per queue

can be found through an exhaustive search, but this is a computationally intensive task and

is not discussed further in this chapter. This chapter demonstrates the usefulness of the

general CSD scheduling framework and how it can be beneficial in real systems. Addressing

issues related to optim al configuration of CSD for a given workload is part of future work.

4.4 Perform ance Evaluation

In this section, we evaluate the usefulness of CSD in scheduling a wide variety of work

loads. by comparing CSD to EDF and RM. In particular, we want to know which is the

best scheduler when all scheduling overheads (run-tim e and schedulability) are considered.

The ED F and RM run-tim e overheads for EM ERALDS measured on a '25MHz Motorola

68040 processor [87] with separate 4kbytes instruction and da ta caches are in Table 4.3. The

run-time overhead of CSD is derived from these values as already discussed in Sections 4.2.4

and 4.3.2. The overhead to parse the list of queues in CSD-x (to find a queue with ready

tasks) was measured at O.oofis per queue.

Table 4.3 also shows the run-time overhead for RM when a sorted heap is used instead

of a linked list to hold the tasks. The total run-time overhead A t for a heap is more than

tha t for a queue for n < 58. Most real-time workloads do not have enough tasks to make

heaps feasible, so for the rest of this section we use the measurements for queues.

O ur test procedure involves generating random task workloads, then for each workload,

scaling the execution times of tasks until the workload is no longer feasible for a given

scheduler. The utilization a t which the workload becomes infeasible is called the breakdown

utilization [56]. We expect th a t with scheduling overheads considered. CSD will have the

highest breakdown utilization.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 .1 R esults

Because scheduling overheads are a function of the number of tasks (n) in the workload,

we tested all schedulers for workloads ranging from n — 5 to n = 50. For each n, we generate

500 workloads with random task periods and execution times. We scale the execution times

and check feasibility using the schedulability tests in Sections 4.2.5 and 4.3.4. until the

workload becomes infeasible.

The run-time overhead of priority-based schedulers depends not only on the number

of tasks but on the periods of tasks as well (since the scheduler is invoked every time a

task blocks or unblocks). Short period tasks lead to frequent invocation of the scheduler,

resulting in high run-tim e overhead, whereas long period tasks produce the opposite result.

In our tests, we vary not only the number of tasks but the periods of tasks as well. We do

this by generating a base workload (with a fixed n), then producing three workloads from

it by dividing the periods of tasks by a factor of 1. 2. and 3. This allows us to evaluate the

impact of varying task periods on various scheduling policies.

We generate base task workloads by randomly selecting task periods such that each

period has an equal probability of being single-digit (5-9ms). double-digit (10-99ms). or

triple-digit (100-999ms). Figures 4.3-4.5 show breakdown utilizations when task periods

are divided by 1. 2, and 3. respectively. In Figure 4.3. task periods are relatively long (5ms-

1s). The run-time overheads are low which allows EDF to perform close to its theoretical

limits. Even then, CSD performs better than EDF. CSD-4 has 17% lower to ta l scheduling

overhead for n = 15 and this increases to more than 40% for n = 40 as EDF's strong

dependency on n begins to degrade its performance.

Figure 4.4 is for periods in the 2.5ms-500ms range. For these m oderate length periods,

initially EDF is better than RM. but then ED F 's run-time overhead increases to the point

th a t RM becomes superior. For n = 15. CSD-4 has 25% less overhead than EDF, while for

n = 40. CSD-4 has 50% lower overhead than RM (which in turn has lower overhead than

ED F for this large n).

Figure 4.5 shows similar results. Task periods range from 1.67ms-333ms, and these short

periods allow RM to quickly overtake ED F. Nevertheless. CSD continues to be superior to

both.

4.4 .2 CSD-x

Figures 4.3-4.5 also show a comparison between three varieties of CSD. They show

th a t even though a significant performance improvement is seen from CSD - 2 to CSD-3

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100.0

90.0

s
80.0

•— •C S D -4
! * ------- CSD-3

• * CSD-2 ;
□ a EDF

! 4 ■■■ A RM

70.0

60.0
0.0 20.010.0 30.0 40.0 50.0

Number of Tasks

Figure 4.3: Average breakdown utilizations for CSD. ED F. and RM when task periods are

scaled down by a factor of 1 .

100.0

90.0

ao 80.0
3 -• CSD-4 |

-C S D -3 j

70.0
-O EDF

a RM

60.0
0.0 20.010.0 30.0 40.0 50.0

Number of Tasks

Figure 4.4: Average breakdown utilizations for CSD. ED F. and RM when task periods are

scaled down by a factor of 2 .

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100.0

90.0

80.0
CSD-4
CSD-3 i

70.0
- a EDF

a RM

60.0
0.0 20.0 30.010.0 50.040.0

Number o f Tasks

Figure 4.5: Average breakdown utilizations for CSD. EDF, and RM when task periods are

scaled down by a factor of 3.

(specially for large n), only a minimal improvement is observed from CSD-3 to CSD-4.

This is because even though the run-time overhead continues to decrease, the increase in

schedulability overhead almost nullifies the reduction in run-time overhead.

CSD-4 could be expected to give significantly better breakdown utilization than CSD-3

only if workloads can be easily partitioned into four queues without increasing schedulability

overhead, but this is rarely the case. D P I tasks have statically higher priority than DP2

tasks. D P‘2 tasks have higher priority than DP3 tasks, and so on. As the number of queues

increases, the schedulability overhead s tar ts increasing from that of EDF to that of RM.

This is why we would expect th a t as x increases, performance of CSD-x will quickly reach

a maximum and then start decreasing because of reduced schedulability and increased

overhead of managing x queues (which increases by O.oops per queue). Eventually, as x

approaches n, performance of CSD-x will degrade to that of RM. □

The results presented here confirm the superiority of the CSD scheduling framework as

compared to EDF and RM. The results show that even though CSD-2 suffers from high

run-time overhead for large n, CSD-3 overcomes this problem without any significant in

crease in schedulability overhead. This way, CSD-3 delivers consistently good performance

over a wide range of task workload characteristics. Increasing the number of queues gives

some further improvement in performance, but the schedulability overhead starts increas

ing rapidly so that using more than three queues yields only a minimal improvement in

performance.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Related Work

Using multiple scheduling queues is not a new idea. The ERCOS task scheduler [92]

uses separate queues for preem ptive and non-preemptive tasks. Multiple queues are used

in network scheduling to combine different types of traffic on the same link in a switched

network [26.27.54]. But in all these cases, multiple queues are used to share a single

resource (CPU or network link) between tasks/messages with different quality o f service

(QoS) requirements. W hat is novel about CSD is the use of multiple queues to improve

performance. We allocate tasks to different queues in a m anner tha t reduces the task

scheduling overhead, giving b e t te r performance than conventional schedulers like E D F and

RM. As such, our scheme is orthogonal to scheduling schemes which handle varying QoS

requirements. The two can be combined by using CSD to schedule one or more queues of

a QoS scheduler.

The rotating-priority-queues (R P Q) scheme [73.74] was also proposed for network schedul

ing and like CSD. it too a t te m p ts to find a middle ground between EDF and s ta tic priority

schedulers by using multiple queues. Packets within a queue use FIFO ordering but the

relative priorities between queues ro ta te in a fixed way. The motivation behind R P Q was

to find an efficient hardware implem entation for network packet scheduling. RPQ achieves

this by coarse-grained deadline quantization and using FIFO ordering for all packets with

the same quantized deadline. This lowers hardware costs bu t can degrade schedulability

significantly.

Liu and Layland in their seminal paper [76] also proposed combining ED F and RM.

Their motivation was to exploit fixed CPU interrupt priorities to schedule short-period

tasks while using a software E D F scheduler for long-period tasks. High-priority tasks get

scheduled by fixed-priority scheduling (using hardware mechanisms) while low-priority tasks

are scheduled using software deadline-driven scheduling. In today 's complex system s, ty

ing the scheduler to hardware in terrupt priorities is not feasible. In fact, many m odern

processors (such as various versions of PowerPC) do not even support multiple hardw are

priority levels. In such circumstances, the proposal of Liu and Layland is no longer appli

cable. When all scheduling is done in software, it makes much more sense to use dynamic

scheduling for short-period tasks and fixed-priority scheduling for the rest of the workload

as is done by CSD.

The start-time fair queuing (SFQ) algorithm [34] was proposed as a framework to enable

use to different schedulers for different classes of applications. Conceivably, SFQ can be used

to combine EDF and RM. However, origins of SFQ are also in network scheduling where it

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is feasible to use s tar t time as a basis for fair queuing. This is because packets belonging to

a certain stream (i.e.. flow of packets) can accum ulate which allows the scheduler grea ter

flexibility in proportioning the network link bandw idth . For example, if packets for a certain

s tream are expected to arrive once every ‘2 ms then they will continue to arrive regardless of

w hether earlier packets have been forwarded or not. The situation is completely different in

C P U scheduling. If one invocation of a periodic task does not complete, the next invocation

will not be released. So. if a short period task is combined with several long period tasks,

SFQ will dispatch all the first invocations of the long period tasks before second and higher

invocations of the long period task because the former have earlier start times. This means

th a t the second invocation of the short period task will be considerably delayed (and no

o th e r invocations of this task will "accumulate” , preventing SFQ from "catching up” la ter on

as it can in network scheduling). This makes SFQ undesirable for scheduling tight-deadline

tasks.

4.6 Conclusion

One of the most im portan t services provided by the RTOS is real-time task scheduling.

Schedulers such as RM and EDF can incur overheads of 5-15% of CPU time, leaving only

85-95% of the CPU for executing user tasks, yet little attention has been paid towards

s tudy ing the sources of these overheads and even less a ttention towards devising schemes

to reduce these overheads. In this chapter, we presented the CSD scheduler which creates

a balance between static and dynamic scheduling to deliver greater breakdown utilization

th rough a reduction in scheduling overhead of as much as 40% compared to E D F and

RM. CSD is a general scheduling framework which allows the scheduler to be configured

according to the workload to deliver the best possible performance.

Fu tu re work includes exploring issues related to the optimal configuration of CSD (op

tim al number of queues and optimal number of tasks per queue) for a given workload.

A no ther interesting avenue of research is studying the possibility of using the low-overhead

RM policy to schedule queues other than just the last queue. This can be beneficial if

the tasks in a queue have only a minimal difference between RM-schedulability and EDF-

schedulability. Then, using RM (instead of E D F) for such queues will reduce run-tim e

overhead without significantly affecting schedulability overhead.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5

EFFICIENT SEM APH O RES

In object-oriented programming in m ulti-threaded systems, updates to the s ta te vari

ables of objects (by the methods of the object) have to be protected through semaphores

to ensure mutual exclusion. Semaphore operations are invoked each time an object is ac

cessed. and this represents significant run-tim e overhead. This is of special concern in

cost-conscious embedded systems. Object-oriented programming can be feasible in such

applications only if the OS provides efficient, low-overhead semaphores. VVe present a new

semaphore implementation scheme which saves one context switch per semaphore lock op

eration in most circumstances. Of course, an efficient semaphore scheme is useful not only

for 0 0 programming but for any application requiring synchronization between multiple

threads of execution.

5.1 Introduction

In this chapter, we focus on OS support for object-oriented (0 0) program ming in em

bedded systems. The advent of Java and increasing use of C + + has made 0 0 programming

im portant for embedded systems. 0 0 design gives benefits such as reduced software design

time and software re-use [83]. But with these benefits comes the ex tra cost of ensuring mu

tual exclusion when an ob jec t’s internal s ta te is updated. Semaphores1 [18,36] are typically

used to provide this m utual exclusion. Because semaphore system calls are invoked every

time an execution th read enters or exits an object, it becomes essential th a t the RTOS

provide efficient, low-overhead semaphores: otherwise, 0 0 design will not be feasible for

embedded applications because of high costs.

'T h e optim ization scheme presented in this chapter applies equally well to both sem aphores and mutexes.
However, for simplicity, we concern ourselves only w ith sem aphores in this chapter.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Most research in the area of reducing task synchronization overhead has focused on

multiprocessors [81.116]. But our target architectures are either uniprocessor (as in home

appliances) or very loosely-coupled distributed systems (as in au tom otive applications).

Even with the latter, th reads typically do not need to access remote objects , so our concern is

only with improving task synchronization performance for a single processor. Previous work

in this area has focused on either relaxing the semaphore semantics to get be tte r performance

[111], coming up with new semantics and new synchronization policies [114]. or putting

restrictions on the application programmer to disallow certain operations (such as making

blocking system calls) while holding a semaphore [89]. The problem with this approach

is th a t these new/modified semantics may be suitable for some particular applications but

usually they do not have wide applicability.

We took the approach of providing full semaphore semantics (with priority inheritance

[1 0 1]). but optimizing the implementation of these semaphores by exploiting certain features

of embedded applications [126]. As a result, our semaphore scheme has wide applicability

within the domain of embedded applications, while significantly improving performance

over s tandard implementation methods for semaphores.

In the next section, we give a brief overview of 0 0 programming as it pertains to embed

ded real-time systems, focusing on OS support needed for 0 0 programming. In Section 5.3.

we describe our new implementation scheme. Section 5.4 discusses some limitations of the

scheme and ways to overcome these limitations so tha t our scheme can be used in almost

all embedded applications. Section 5.5 evaluates the performance of ou r new scheme, and

we conclude with Section 5.6.

5.2 Objects and Semaphores in Embedded R eal-T im e Sys

tem s

An object is a collection of private state information (or data) and a set of methods which

manipulate the data . Objects are ideal for representing real-world entities: the ob jec t’s

internal da ta represents the physical state of the entity (such as tem pera tu re , pressure,

position. RPM. etc.) and the methods allow the s ta te to be read or modified. These

notions of encapsulation and modularity greatly help the software design process because

various system components such as sensors, ac tuators , and controllers can be modeled by

objects. Then, under the 0 0 paradigm, real-time software is just a collection of threads of

execution, each invoking various methods of various objects [48].

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Conceptually, this 0 0 paradigm is very appealing and gives benefits such as reduced

software design time and software re-use. But practically speaking, these benefits come at

a cost. The methods of an object must synchronize their access to the o b jec t’s d a ta to

ensure m utual exclusion. Because object invocations occur very frequently, it is essential

th a t any scheme used to achieve this synchronization must be both memory-ef f icient as

well as time-efficient: otherwise. 0 0 design will be infeasible for embedded system s due to

high costs.

5 .2 .1 A c t i v e a n d P a s s i v e O b j e c t M o d e l s

There are two fundamentally different ways for objects and execution threads to interact

with each o ther and this has some bearing on the type of synchronization scheme used to

ensure m utual exclusion.

Under the active object model [11], one or more server th reads are perm anently bound

to an object. When a client th read invokes a method, a server thread executes the m ethod

on behalf o f the client.

W ith the passive object model [11]. objects do not have th reads of their own. To invoke

a m ethod, a thread will enter the objec t, execute the m ethod , and then exit the ob jec t .

From the point of view of synchronization, the active object model has an advantage

if only one thread is assigned per object. Since only one th read is in the object at any

time, there is no need to worry abou t mutual exclusion. But the active object model has

several disadvantages. First of all. having a thread per object means th a t there will be a

large num ber of threads in the system (anywhere from several tens to more than a hundred

depending on the application). Each thread needs its own stack, thread control block,

etc.. which makes the active object model very memory-inefficient. Moreover, each object

invocation requires a context switch from the client th read to the server th read , so this

model is time-inefficient as well.

W ith the passive object model, multiple threads can be inside the same objec t a t one

time, so they must synchronize their activities. Semaphores [18.36] are commonly used

for this purpose (e.g.. to provide the monitor construct [40]). Even though locking based

on semaphores incurs time overhead, it is decidedly much more memory-efficient th a n the

active object model.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 OO D esign U nder EM ERALDS

For the above s ta ted reasons, vve advocate the passive object model for embedded soft

ware design. Because a semaphore system call is made every time an ob jec t 's m ethod is

invoked, semaphore operations (sem _lock() and sem_unlock() calls under EM ERALDS,

used to lock and unlock semaphores, respectively) become some of the most heavily used

OS primitives when 0 0 design is used. This motivated us to investigate new and efficient

schemes for implementing semaphore locking in EMERALDS as described next.

5.3 An Efficient Semaphore Im plem entation Schem e

The first step in designing efficient semaphores is to look at the way semaphores are typ

ically implemented in various systems, identify distinct steps involved in locking/unlocking

semaphores, and try to eliminate or optimize those steps which incur the g rea tes t overhead.

To do these optimizations, we will use characteristics common to embedded applications.

5.3.1 Standard Sem aphore Im plem entation

The standard procedure to lock a semaphore can be summarized as follows:

i f (sem lo ck e d) -C
do p r i o r i t y i n h e r i t a n c e ;
add c a l l e r t h r e a d t o w a i t queue;
b lo c k ; / * w a i t f o r sem to be r e l e a s e d * /

}
lo c k sem;

Priority inheritance [101] is needed in real-time systems to avoid unbounded priority

inversion [114]. If a high-priority thread 7 \ calls sem_lock() on a sem aphore already

locked by a low-priority th read 7j, the la t te r’s priority is temporarily increased to tha t of

the former. W ithout priority inheritance, a medium priority thread T m can get control

of the CPU by preem pting 7j while Th remains blocked on the semaphore, thus causing

priority inversion. W ith priority inheritance. 7j will keep on running until it unlocks the

semaphore. At th a t point, its priority will go back to its original value, bu t now Th will be

unblocked and it can continue execution.

First of all, notice th a t if the semaphore is free when sem J.ock() is called, then the

semaphore lock operation has very little overhead2. In fact, for this case, only one counter

JThis is especially true in EMERALDS where system call overhead is com parable to subroutine call
overhead even with full m em ory protection between processes [124].

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TX \
\

' ^ u
T. ' C1 <-------- *

' c, / ' c,\ 2 / v 3
\ / \

r , '' * ^
ume

 thread -------► context L: Lock U: Unlock
execution switch semaphore semaphore

Figure 5.1: A typical scenario showing thread To a t te m p tin g to lock a semaphore already

held by thread Ti. Tx is an unrelated thread which was executing while To was blocked.

Conceptually. Tr can be Ti.

un b lock T2

c o n te x t s w i tc h C\ (Tx t o T2)
(T 2 executes and calls sem _lockO)

do p r i o r i t y i n h e r i t a n c e (T 2 t o Ti)
b lo c k T2

c o n te x t s w i tc h C 2 (T o t o T \)
(Ti executes and calls s e m _ u n lo c k ())

undo p r i o r i t y i n h e r i t a n c e of Tt
u nb lock T2

c o n te x t s w i tc h C 3 (JT\ t o T2)

Figure 5.2: Operations involved in locking a semaphore for the scenario shown in Figure 5.1

has to be incremented and some other variables updated .

In real-time systems, we are interested in worst-case overheads, and for semaphores, this

occurs when the semaphore is already locked by th read T\ when some thread T 2 invokes the

sem _lock() call. Figure 5.1 shows a typical scenario for this situation. Thread T2 wakes

up (after completing some unrelated blocking system call) and then calls sem _lock(). This

results in priority inheritance and a context switch to T\ , the current lock holder. After Ti

releases the semaphore, its priority returns to its original value and a context switch occurs

to T2 . These steps are outlined in Figure 5.2.

For tasks scheduled by EDF, the context switches are responsible for the largest over

head because this is where A ts is incurred (which takes 0 (r) time, see Chapter 4), whereas

the remaining operations take only 0 (1) time. For this reason, we will focus our optimiza

tion efforts on eliminating one or more context switches and this should result in good

performance improvement for DP tasks.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For FP tasks, context switches incur a fixed (although significant) overhead, so elimi

nating one context switch is not as beneficial for F P tasks as it is for DP tasks. However,

each of the two priority inheritance (PI) steps take 0 (n - r) time because the task must

be removed from the FP queue and then re-inserted in sorted order according to its new

priority. All the remaining operations take 0 (1) time, even the block operation because the

PI operation preceding the block resets h ig h e s tP so th a t the block operation doesn’t have

to. This is why. for FP tasks, we focus our optimization efforts on the PI operations.

5 .3 .2 S e m a p h o r e I m p le m e n ta t io n in E M E R A L D S

Going back to Figure 5.2. we want to eliminate context switch CV We also want to

optimize the two PI steps. First, we deal with C 2 which occurs when T2 in unblocked after

some blocking system call (To had made this call to wait for some event E such as a message

arrival or timer expiry). T 2 then executes and calls sem _ lock () . only to block again because

the semaphore is locked by Tj.

The idea is th a t when event E occurs, instead of letting T2 run. let T\ execute. T\ will go

on to release the semaphore and T2 can be activated at this point, saving Ci (Figure 5.3).

This is implemented as follows. As part of the blocking call ju s t preceding sem _lock() .

we instrument the code (using a code parser described later) to add an extra param eter

which indicates which semaphore T2 intends to lock (semaphore S in this case). When

event E occurs and T2 is to be unblocked, the OS checks if 5 is available or not. If 5 is

unavailable, then priority inheritance from T2 to the current lock holder Tj occurs right

here. T2 is added to the waiting queue for 5 and it remains blocked. As a result, the

scheduler picks Tj to execute — which eventually releases S — and Tj is unblocked as part

of this sem_unlock() call by Tj. Comparing Figure 5.3 to Figure 5.1. we see tha t context

switch C 2 is eliminated. The semaphore lock/unlock pair of operations now incur only one

context switch instead of two. resulting in considerable savings in execution time overhead

for DP tasks (see Section 5.5 for performance results).

For FP tasks, we want to optimize the two PI steps, each of which takes 0 (n - r) time

(Chapter 4). The first PI step (Tj inherits TVs priority) is easily optimized by using the

observation tha t , according to T j 's new priority, its position in the FP queue should be just

ahead of T2 ’s position. So. instead of parsing the FP queue to find the correct position

to insert Tj, we insert Tj directly ahead of Tj without parsing the queue which reduces

overhead to 0 (1).

We want to reduce the overhead of the second PI step to 0 (1) as well. In this step, T\

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I X .3

Switch to TI s
instead of T2 ' ---------------X----------*"

L time

---------- thread ► context L ;Lock U: Unlock
execution switch semaphore semaphore

Figure 5.3: The new sem aphore implementation scheme. Context switch Co is eliminated.

returns to its original priority. We want to do this without having to parse the en tire queue.

One incorrect solution is to remember Xj's neighbors from its original position in the queue

in an a ttem p t to re tu rn Tj to th a t position by inserting it between these neighbors. But

if these neighbors themselves undergo priority inheritance, their position in the queue will

change and the scheme will not work.

The solution used in EM ERALDS is to switch the positions of Ti and T2 in the queue

as part of the first PI opera tion when T\ inherits To's priority. This puts T\ in the correct

position according to its new priority while Tj acts as a “place-holder” for T\ to rem ember

TVs original position in the queue. Then the question is: is it safe to put T2 in a position

lower than what is d ic ta ted by its priority? T h e answer is yes. As long as Ti s tays blocked,

it can be in any position in the queue. Ti unblocks only when T\ releases the semaphore,

and at that time, we switch the positions of T\ and To again, restoring each to the ir original

priorities. With this scheme, both PI operations take 0 (1) time.

One complication arises if T\ first inherits TVs priority, then a third thread T3 a t te m p ts

to lock this semaphore and Ti inherits TVs priority. For this case, T3 becomes Ti 's place

holder and T2 just goes back to its original position. This involves one ex tra s tep compared

to the simple case described initially but the overhead is still 0 (1).

Note that these optim izations on the PI operations were possible because ou r scheduler

implementation keeps bo th ready and blocked tasks in the same queue. Had th e F P queue

contained only ready tasks , we could not have kept the place-holder TCB in the queue.

C ode Parser:

In EMERALDS, all blocking calls take an e x tra param eter which is the identifier of the

semaphore to be locked by the upcoming sem _lock() call. This parameter is set to —1 if

the next blocking call is not sem _lock() . For embedded systems, it is possible to write a

parser which examines the application code and autom atically inserts the correct sem aphore

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

identifier into the argument list of blocking calls just preceding semJLockO calls. P arser

design issues are discussed further in Section 5.4.

S ch ed u lab ility A nalysis for th e N ew Schem e:

From the viewpoint of schedulability analysis, there can be two concerns regarding the

new sem aphore scheme (refer back to Figure 5.3):

1 . W h a t if th read Ti does not block on the call preceding sem _lock()? This can happen

if event E has already occurred when the call is made.

2. Is it safe to delay execution of Tn even though it may have higher priority than T\ (by

doing priority inheritance earlier than would occur otherwise)?

Regarding the first concern, if To does not block on the call preceding sem _lock(). then

a context switch has already been saved. For such a s ituation. T2 will continue to execute

till it reaches sem _lock() and a context switch will occur here. W hat our scheme really

provides is th a t a context switch will be saved either on the sem J.ock() call or on the

preceding blocking call. Where the savings actually occur a t run-time do not really m a t te r

for calculation of worst-case execution times for schedulability analysis.

For the second concern, the answer is tha t yes. it is safe to let T\ execute earlier than

it would otherwise. The concern here is tha t T2 may miss its deadline. But this cannot

happen because under all circumstances. T2 must wait for Tj to release the sem aphore

before T2 can complete. So from the schedulability analysis point of view, all th a t really

happens is th a t chunks of execution time are swapped between T\ and T2 without affecting

the completion time of T2 . Another similar concern is th a t after event E. Ti may have to

produce an ou tp u t or send a message/signal to another th read (call it T3). Delaying T 2 may

cause T3 to miss its deadline. The answer to all such scenarios is th a t as just discussed. T2

completes by its deadline (even though it may be delayed). As long as T 2 completes by its

deadline, no o ther thread tha t depends on T 2 will miss its deadline, so schedulability of the

task workload is not adversely affected.

5.4 A pplicability o f th e N ew Scheme

T here can be three circumstances under which our proposed semaphore scheme m ay not

work:

1 . T he code parser is unable to identify which semaphore is to be locked next due to con-

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f o r (; ;) {
r e a d s e n s o r 1 ;
r e a d s e n s o r 2 ;

r e a d s e n s o r x;
u p d a te a c t u a t o r 1 ;
u p d a te a c t u a t o r 2 ;

u p d a te a c t u a t o r y;
b lo c k t i l l t im e r e r p i r y

o r e v e n t o c c u r r e n c e ;

}

Figure 5.4: A typical sensor-controller-actuator loop commonly found in embedded control

applications

ditional constructs such as loops with a variable number of i terations or i f - t h e n - e l s e

s tatem ents.

2. The blocking call preceding an sem_lock() is another sem _lock() so that only one

context switch is saved between these two calls.

3. The lock holder T\ (F igure 5.3) blocks after event E but before releasing the semaphore.

Then with standard semaphores. T2 will be able to execute, but under our scheme it

cannot which may lead to To missing its deadline.

In the rest of this section, we discuss how often (if at all) these scenarios can occur in

embedded real-time systems, which specific forms they can occur in. and how these problems

can be resolved.

5 .4 .1 C o d e P arser I s su e s

Most threads in embedded systems execute sensor-controller-actuator loops as shown in

Figure 5.4 (for IA s . the “sensor" can be a network device and the "ac tu a to r’’ can be an

audio or video output device). Each device (sensor or actuator) is represented by an object

protected by its own semaphore. Each device may be a real senso r /ac tua to r or a logical

one representing several devices being controlled as one group.

Note th a t the same devices are accessed each time the loop executes. The order in which

semaphores are locked is fixed, so there is no ambiguity for the code parser. At run-time,

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the method which gets invoked on an object may depend on the input data:

i f (s e n s o rR e a d in g > A) v a l v e . o p e n () ;
e l s e v a l v e . c l o s e () ;

but this does not change the order in which semaphores are locked because all m ethods of an

object are protected by the same semaphore. In other words, m ost embedded applications

are s tructured as in Figure 5.4. and for such a structure, the parser can easily determ ine

which semaphore is to be locked after a given blocking call.

In case a blocking call occurs inside a loop followed by sem _lock() outside the loop, the

argum ent to be passed for the semaphore identifier is calculated conditionally as follows:

w h i le (cond) {

i f (cond)
sem = - 1 ;

e l s e
sem = S;

s o m e _ b l o c k in g _ c a l l (. . . , sem) ;

>

s e m _ lo c k (S) ;

This way. - 1 is passed as the param eter for all but the last iteration of the loop. Again, this

code can be autom atically inserted by the code parser without the application p rogram m er

having to make any m anual modifications to the code. Note th a t this scheme works as long

as the condition cond does not depend on the blocking call or code after the call. This is

true for loops which execute for a fixed number of iterations which is the most common

case in embedded control systems. One example is code which steps a stepper m otor x

number of times. Value of x may depend on sensor readings, bu t it stays fixed while the

loop executes.

Regarding loops w ith a variable number of iterations, our experience shows th a t such

loops typically do not contain blocking calls in embedded real-time systems. A variable-

iteration loop is used to wait for a condition to come true (such as a spin lock), bu t th a t is

what blocking calls do as well (wait for a condition). The two m ay be combined if th e result

of the blocking call is uncertain (such as for condition variables with Mesa semantics used

in general-purpose com puting), but such a situation rarely occurs in embedded real-time

systems.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 .4 .2 C o n s e c u t iv e sem _lock() C a lls

Going back to Figure 5.4, the bodies of th e methods invoked by the th read may contain

blocking calls, especially condition variable and message-passing calls. In these calls, the

parser will insert the identifier of the upcoming se m _ lo c k () . But if such calls are not present,

then two or more sem _lock() calls can occur with no other blocking call in between them.

T hen , only one context switch will be saved per pair of semJLockO calls. This leads to an

in teresting avenue for future research. Our scheme can be generalized so th a t the blocking

call a t the end of the control loop will not unblock until all the semaphores needed by the

th read for execution become available. In o th e r words:

for (;;) {
obj_l.method // protected by sem SI
obj_2.method // protected by sem S2

obj_n.method // protected by sem Sn
block(..., SI, S2, ..., Sn);

>

This is somewhat similar to the Spring kernel's notion of reserving all resources a task

needs before letting the task execute [109], bu t with an important difference: the Spring

kernel executes tasks non-preemptively while under our proposal, threads execute preemp

tively. This allows higher priority threads to preem pt a given thread (giving good schedula-

ble utilization) while reducing the number of context switches seen by the th read to wait for

resources (giving shorter execution times). However, advance reservation o f all semaphores

will increase scheduler complexity and may also adversely affect task schedulability. Impact

of these issues on performance must be studied to determine the viability o f this extension.

5 .4 .3 B lo c k in g b y th e L ock H o ld e r T h r e a d

Going back to Figure 5.3, suppose the lock holder T\ blocks after event E but before

releasing the semaphore. W ith standard semaphores. T 2 will then be able to execute (at

least, till it reaches sem _lockO), but under ou r scheme, Ti stays blocked. This gives rise

to the concern th a t with this new semaphore scheme, T2 may miss its deadline.

In Figure 5.3, T\ had priority less than th a t of T2 (call this case .4). A different problem

arises if T\ has higher priority than To (call it case B). Suppose sem aphore S is free when

event E occurs. Then T 2 will become unblocked and it will start executing (F igure 5.5).

But before T2 can call sem _lock(), T\ wakes up, preempts T 2 , locks 5 , then blocks for some

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E
T V T2 preempted

\ by T1
' L B Switch to some

T, ' 4--------K-------- K other thread
1 \ ' \

L

 thread -------*■ context L: Lock B: block
execution switch sem.

Figure 5.5: If a higher priority th read T \ preem pts To. locks the sem aphore, and blocks,

then T2 incurs the full overhead of sem _lock() and a context sw itch is not saved.

event. T o resum es, calls sem _ lock (). and blocks because S is unavailable. The context

switch is not saved and no benefit comes out of our sem aphore scheme.

All these problems occur when a th read blocks while holding a sem aphore. To resolve

these problem s, we first make a small m odification to our sem aphore scheme to change the

problem in case B to be the sam e as the problem in case .4. This leaves us with only

one problem to address. Then, by looking at the larger p ictu re and considering threads

o ther th a n ju st T’i and T2 . we can show th a t this problem is easily circum vented and our

sem aphore scheme works for all blocking situations th a t occur in practice as discussed next.

M odification to th e Sem aphore Schem e:

For th e situation shown in Figure 5.5. we want to somehow block T o when the higher-

priority th read T \ locks S . and unblock T-i when T \ releases 5 . This will prevent To from

executing while 5 is locked, which makes this the same as the situation in case .4.

Recall th a t when event E occurs (F igure 5.5), the OS first checks if 5 is available or not

before unblocking 7Y Now. let us extend the scheme so th a t th e OS adds To to a special

queue associated with 5 . This queue holds the threads which have completed their blocking

call ju s t preceding sem _lock() but have not called sem _lock() yet.

T h read 7 \ will also get added to this queue as part of its blocking call ju st preceding

se m _ lo ck (). W hen Tj calls sem _ lo ck (). the OS first removes T \ from this queue, then puts

all th read s rem aining in the queue in a blocked state . Then, when T \ calls sem _un lock().

the OS unblocks all threads in the queue. This way. T2 is prevented from executing while 5

is locked which results in the sam e behavior as in case .4. Also, if done properly, addition

and rem oval of th reads from this queue incurs very little overhead (abou t 5-7 ps on a

25 MHz MC 68040 without caches and ju s t 1-2 fis with caches).

W ith this modification, the only rem aining concern (for b o th cases .4 and B) is: if

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T Switch to T1 *i X \
instead of T2 J S '

' \
j - T2 stays blocked: \

2 switch to Ts 1 y

L time

 t h r e a d -► context L:Lock (J: Unlock B: Block S: Signal
execution switch sem. sem.

Figure 5.6: S ituation when the lock holder Tj blocks for a signal from another th read T s .

execution of Ti is delayed like this while other threads (of possibly lower priority) execute,

then T 2 m ay miss its deadline. This concern is addressed next.

A pplicab ility under V arious B locking Situations:

T here can be two types o f blocking:

• W ait for an internal event, i.e.. wait for a signal from ano ther thread after it reaches

a certain point.

• W ait for an external event from the environm ent. This event can be periodic or

aperiodic.

The first type of blocking is used by threads to synchronize w ith each other and the second

type is used to interact with the environment.

Blocking fo r Internal Events: The typical scenario for this type of blocking is for th read

Ti to en ter an object (and lock semaphore 5) then block w aiting for a signal from ano ther

th read T s . Meanwhile. T 2 stays blocked (Figure 5.6). T he question is: is it safe to delay

T2 like this even if T , is lower in priority than T2? The answ er is yes. because T 2 cannot

lock S till T \ releases it. and Tj will not release it till it receives the signal from T s . so even

though T s may be lower in priority than T 2 . it is safe to let T s execute earlier. This leads to

7 \ releasing 5 earlier than it would otherwise which leaves enough time for T 2 to com plete

by its deadline.

Blocking fo r External Events: External events can be e ither periodic or aperiodic. For

periodic events, polling is usually used to interact w ith the environm ent and blocking does

not occur. A common exam ple is a periodic sensor-controller-actuator loop where sensors

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are read and ac tu a to r commands are updated periodically and no blocking calls are involved.

One common exception is to block on a tim er (usually, to wait for the current period to

end), but this blocking call occurs a t the end o f the main loop of execution of the th read

and is not inside any object and no sem aphores are held by the th read when this call is

m ade.

Blocking calls are used to wait for aperiodic events, but it does not make sense to have

such calls inside an object. There is always a possibility th a t an aperiodic event m ay not

occur for a long tim e. If a thread blocks w aiting for such an event while inside an ob jec t, it

m ay keep th a t object locked forever, preventing o th er threads from m aking progress. So the

usual practice is to not have any sem aphores locked when blocking for an aperiodic event.

In short, dealing w ith external events (w hether periodic or aperiodic) does not affect the

applicability of our sem aphore scheme under the com m only-established ways of handling

ex ternal events. But in case some application does require blocking for external events while

inside an object, our semaphore scheme can be tu rned off by specifying — 1 as the sem aphore

identifier in the blocking call just preceding sem _ lock (). This will cause EM ER A LD S'

sem aphores to behave ju st like s tandard im plem entation sem aphores, but we do not believe

this will be needed very often, if at all.

5.5 Perform ance Evaluation

To m easure the improvement in perform ance resulting from our new sem aphore schem e,

we im plem ented it under EMERALDS and m easured perform ance on a 25 MHz M otorola

68040 processor [87].

W hen a thread enters an object, it first acquires the sem aphore protecting the ob jec t,

and when it exits the object, it releases the sem aphore. T he cum ulative tim e spent in

these two operations represents the overhead associated with synchronizing th read access

to objects. To determ ine by how much this overhead is reduced when our scheme is used, we

m easured the tim e for the acquire/release pair of operations for bo th standard sem aphores

and our new scheme and then compared the two results. In the following, we first describe

our evaluation procedure, then present the results.

5 .5 .1 T h e T est P r o c e d u r e

We want to m easure the worst-case overhead for acquire/release because this is w hat is

used in schedulability analysis. The worst case occurs if

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 t h r e a d ► context Z..'Lock U: Unlock B: Block S: Signal
execution switch sem. sem. thread

Figure 5.7: Test procedure for s tan d a rd sem aphores. Interval <1 is the overhead for ac

qu ire/release operations.

• the semaphore is already locked when sem _lock() is called, and

• priority inheritance occurs.

To get this behavior, we use two th reads in our tests. T \ and Ti, with T 2 having higher prior

ity. For the standard sem aphore im plem entation, the tes t proceeds as shown in Figure 5.7.

T 2 executes first and blocks w aiting for a signal from T \ . T \ executes, locks sem aphore 5 .

and signals T2 which is unblocked, goes on to execute sem _ lo ck (). and priority inheritance

occurs. Thread T \ then releases S . its priority goes back to its original value, and a context

switch occurs back to To. We m easure interval t\ which is the tim e for an acquire plus a

release and includes relevant context switches.

We repeated this test w ith the new sem aphore scheme. Figure 5.8 shows the new

sequence of events. In th is case, priority inheritance is done by the OS when T\ signals

T2 . so Ti continues after the signal and unlocks 5 . 7Vs priority goes back to its original

value. T2 is unblocked, and it goes on to lock 5 w ithout needing any more context switches.

Then the difference t2 — t$ (F igures 5.7 and 5.8) represents the improvement due to the new

scheme and — (f2 — *3) is the overhead for acqu ire/release under the new schem e. Note

th a t we cannot directly m easure the acquire/release overhead for the new scheme because

priority inheritance occurs well before the rest of the acquire operation.

5 .5 .2 E x p e r im e n ta l R e s u lt s

O ur semaphore scheme elim inates one context sw itch and optimizes the priority inheri

tance mechanism for F P task s, so the performance of ou r scheme depends on w hether the

relevant tasks are in the D P or F P queue, as well as on the num ber of tasks in the queue.

Figure 5.9 shows the sem aphore overheads for tasks in the DP queue as the num ber of tasks

in the queue are varied from 3 to 30. Since the context switch overhead is a linear function

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tn
L

at
tune

t h r e a d ► context I .;Lock U: Unlock B: Block 5.' Signal
execution switch sem. sem. thread

Figure 5.8: Test procedure for the new sem aphore scheme.

60.0 r

 • Standard implementation
— ■ New implementation'Jl

2 50.0 h
E

| 40.0 j -

"3 1at
S I

a 30.0 L
3<

20.0
30.00.0 10.0 20.0

Number of Threads

Figure 5.9: W orst-case performance m easurem ents for DP tasks. T he overhead for the

standard im plem entation increases twice as rapidly as for the new scheme.

of the num ber of tasks in the DP queue (because of A ts). the acquire/release times increase

linearly w ith the queue length. But the standard im plem entation’s overhead involves two

context switches while our new scheme incurs only one. so the m easurem ents for the s tan

dard schem e have a slope twice th a t of our new scheme. For a typical DP queue length of 15.

our scheme gives savings of 1 1 /rs over the standard im plem entation (a '28% im provem ent),

and these savings grow even larger as the DP queue's length increases. Figure 5.11 shows

the percentage improvement with varying num ber of threads.

For the F P queue, the standard im plem entation has a linearly increasing overhead while

with the new im plem entation, the overhead is constant (because prio rity inheritance takes

0 (1) tim e). Also, one context switch is elim inated. As a result, the acquire/release overhead

stays constan t a t 29.4^s. For an FP queue length of 15, this is an im provem ent of 10.4^s

or 26% over the standard im plem entation.

In general, our scheme gives perform ance improvements o f ‘20-30% . depending on w hether

the tasks involved in locking and unlocking the semaphore are in th e D P or FP queue and

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60.0

X

3

i Standard implementation
' New implementation

50.0 h

40.0 f
i

30.0 (- ■ ■ - ■

20.0
0.0 10.0 20.0

Number of Threads
30.0

Figure 5.10: VVorst-case perform ance m easurem ents for FP tasks. The overhead for the

s tan d ard im plem entation increases linearly while new scheme has a constant overhead.

40.0

• ----- • DP tasks '
» — « FP tasks |

35.0 r

30.0 r
e
| 25.0 1 a .| 20.0 r
2- i

£
10.0 j-

M

15.0

1

5.0

0.0
0 .0 10.0 20 .0 30.0

Number of Threads

Figure 5.11: Percent im provem ent in performance due to our new sem aphore scheme.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the length of the queue.

5.6 Conclusion

Em bedded application program m ers generally tend to avoid object-orien ted program

m ing. one reason being the high overhead associated with synchronizing th read access to

ob jec ts. Semaphores m ust be used to ensure m utual exclusion when updating the s ta te vari

ables of objects, and this usually means a large enough overhead to m ake object-oriented

program m ing infeasible for cost-conscious em bedded applications.

In this chapter, we presented a new sem aphore im plem entation scheme which saves one

contex t switch per sem aphore acquire/release pair of operations (for m ost scenarios found

in em bedded applications) and improves perform ance by 20-30% . We used the fact that in

em bedded applications, the sequence in which sem aphores are to be locked can be identified

a t compile time. Then, during run-tim e, we use th is known sequence to do ahead-of-tim e

checks on the status of sem aphores (w hether they are available or no t). If a sem aphore is

unavailable, we delay the execution of threads until the sem aphore is released. This way.

the sem aphores are always available when th reads actually m ake the sem _lock() system

call and the call does not block, saving one contex t switch.

Fu ture work includes study ing the advantages and disadvantages of ex tending our scheme

so th a t instead of looking ahead only to the next sem _lock() call, the scheduler will con

sider all the semaphores a th read may need to execute so th a t all resource conflict-related

context switches are elim inated. Also, in this chap ter we focused only on im proving the

sem aphore lock operation. In the future, we plan to investigate optim izations related to the

release operation to get fu rther improvements in synchronization overheads.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 6

E N D -H O ST PROTOCOL P R O C E SSIN G A R C H IT E C T U R E

Inform ation appliances (IAs) [64.71] are single-user devices with Internet connectivity ,

used for specialized com m unication and inform ation retrieval purposes. C urrently . IAs exist

as w ebTV s. sm art cellular phones with e-m ail and web browsing, PDAs, and web phones.

T h e future of IAs is already evident in new devices such as web video phones which use the

In te rn e t for audio/video com m unication. W ith annual production volume of IAs expected

to reach 48 million units by year ‘2001 [5], IAs are becoming an im portant class of em bedded

devices.

IAs differ from o ther em bedded devices (such as autom otive controllers) in th a t they

com m unicate directly over the Internet. This m eans th a t IAs m ust run a full com m unication

pro tocol stack. Real-tim e audio and video com m unication over the Internet is an in tegral

p a r t of many IAs which m eans th a t despite slow hardw are, the comm unication subsystem

w ith in the OS m ust be able to efficiently handle heavy netw ork traffic. In this c h ap te r, we

p resent optim izations for reducing receive-side netw ork protocol processing overhead thus

enabling efficient handling of real-time audio and video messages. (We focus on receive-side

overhead since it usually exceeds send-side overhead.) In our scheme. I-cache miss overheads

a re minimized by safely bypassing multiple protocol layers, benefiting short m essages such

as live audio. Moreover, message d a ta needs to be copied only once (w ithout any hardw are

su p p o rt from the network adap ter or any restric tions on the network API) which benefits

long messages such as video and stream ing d a ta .

T he next section discusses the aud io /v ideo com m unication requirem ents of IAs. Sec

tion 6.2 gives an overview of protocol processing overheads. Section 6.3 presents o u r schemes

for reducing these overheads, and these optim izations are then evaluated in Section 6.4. Sec

tion 6.5 discusses related work and the ch ap te r concludes with Section 6 .6 .

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 A u d io /V id eo Com m unication in IAs

IAs differ from trad itional PCs and w orkstations in two key aspects. F irs t. IAs are

specialized devices which perform specific functions and are not m eant for general-purpose

com puting. Second. IAs use simple, low-cost hardw are to keep production costs low. For

example, the current generation of personal in form ation managers (PIM s) typically use

processors running at 16-44 MHz [71]. These CPU s are sufficient for the specialized func

tions supported by IAs. M oreover, low-speed processors consume less power, thus providing

longer operation with lighter batteries; both being key requirem ents for portab le IAs.

Since audio/video com m unication is a prim ary function performed by IAs. the comm u

nication subsystem w ithin the OS must be highly efficient to work well with the low-cost,

slow hardw are of IAs. T he subsystem must be s tru c tu red to handle both short as well as

long messages with m inim al overhead. Handling sho rt messages efficiently is im portan t for

applications such as In ternet telephony where live voice packets are usually ju st 30-50 bytes

(as in the GSM audio encoding scheme [99] used in various In ternet phones). On the o ther

hand, video applications exchange long messages (10-15 kbytes [25]) and these too m ust be

handled efficiently.

Different overheads come into play depending on w hether short or long messages are

being processed. Data-touching overheads (which include d a ta copying and checksum over

heads) tend to dom inate when dealing with long m essages. For short (audio) m essages, the

message size is just tens of bytes (so copying overheads are not im portan t), but messages are

sent once every 10-30ms [98]. W ith messages arriving w ith such high frequency, non-data-

touching overheads (context switching, in terrupt handling. I-cache miss overheads, etc.)

become an im portant p a rt of protocol processing.

Studies have shown th a t receive-side protocol processing is more com plicated and has

higher overhead than the send-side [55.57.79] and th is is what limits th roughput: so. here

we focus on improving receive-side overhead. The send-side architecture is sim pler than the

receive-side because processing can occur as part of th e send system call (as done in [19.65.

79]) and this is the scheme we use as well. However, on the receive-side, protocol processing

in general cannot occur a t the tim e of the receive system call since the message m ay not have

arrived yet. This leads to th read blocking and context switching which increases receive-side

overhead, which is why we focus on improving the receive-side architecture.

We present schemes to improve both non-data-touching as well as data-touching over

heads. For the former, we use application-specific knowledge to safely bypass selected layers

within the protocol stack, completely avoiding all I-cache misses associated w ith those lay-

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ers. We show th a t th is layer bypass can be easily applied to live voice m essages, resulting in

considerable reduction in non-data-touching overheads. Regarding data-touch ing overheads

(which affect long m essages), we exploit the periodic na tu re of video applications. We show

th a t the single-copy scheme presented for non-real-tim e system s in [15] — which requires

specialized network ad ap te r hardw are to be feasible for non-real-tim e system s — works well

w ithout any hardw are support for m ultim edia applications because of their periodic nature.

We show th a t when this single-copy scheme is combined with a real-time task scheduler.

it can be used effectively for video applications. We also show th a t our optim izations for

real-tim e messages can be implemented w ithout d isrupting the handling of non-real-tim e

messages. Moreover, our protocol architecture does not rely on any special hardw are and

is independent of the type of underlying network.

For the purpose o f evaluation, we have im plem ented U D P /IP using our protocol architec

tu re within EM ERALDS. We chose UDP as the protocol to im plem ent since it is commonly

used for audio and video applications. The protocol code was taken from FreeBSD -1.4 and

m inor modifications were m ade to make it work w ith our protocol arch itecture.

6.2 Protocol A rchitecture Issues

Network protocol arch itecture has been an active area of research for m any years [41.97]

and various techniques have been proposed to m ake protocol processing efficient. Following

is an overview of I-cache and data-copying overheads, schemes proposed by o ther researchers

to reduce these overheads, and shortcomings of these schemes.

6.2 .1 Efficient I-C ache Usage

Comm unication protocols are designed to work w ith a wide variety of applications.

They must accom m odate varying communication pa tte rn s , error conditions, and operating

m odes. This is essential for a protocol to be widely accepted. The downside is th a t gen

erality is achieved a t the expense of performance. A large portion of the protocol code is

devoted to checking for rarely-occurring errors or special message form ats. These checks

are usually coded as shown in Figure 6.1. Most of the tim e, there are no errors so th a t the

body of the i f s ta tem en ts never execute. However, code is still fetched into the I-cache.

causing replacement misses. Moreover, repeated branches can cause CPU pipeline stalls.

For relatively slow C PU s such as those used in IAs. this results in significant non-data-

touching overhead which is im portan t when processing short audio messages. As a result.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (checkl) {

>

if (check2) {

>

if Ccheck3) {

}

Figure 6.1: Typical s tru c tu re o f erro r checks in protocol code.

researchers a tte m p te d to minimize such overheads by various means. In [8 6], techniques

called outlining and cloning are presented in which frequently-executed p a th s th rough the

protocol stack are identified (by studying the protocol code), and this in fo rm ation is passed

to the compiler which places code in m em ory to minimize I-cache misses for these paths.

In [93], increm ental specialization is presented in which special code optim ized for the com

mon case is used whenever possible. The system includes a num ber of checks which cause a

switch to the code which handles the fully general case if the special case no longer applies.

All these techniques can be considered as low-level optim izations. In general, they

require a careful study of protocol im plem entation code to achieve full perfo rm ance benefits

and this entails considerable effort on the p a rt of the program m er. Some m ethods have been

proposed to partially au tom ate these op tim izations, bu t their full advantage is achieved only

by m anually applying the optim izations to protocol code. This indicates a need to develop

an easier-to-use scheme to reduce I-cache misses: a scheme %vhich does not require low-level

fine-tuning of protocol code yet avoids all unnecessary I-cache misses.

6.2.2 S ingle-C opy A rchitectures

The single-copy network arch itecture was proposed by network ad ap te r (N A) designers

[15] to reduce data-touching overheads. T he idea is to design an NA w ith enough buffer

space so th a t on transm ission, d a ta is copied once from user-space directly to the NA. while

on reception, d a ta stays in the NA until the application makes a receive system call and

then d a ta is copied directly to user-space. In case NA buffers fill up, d a ta has to be buffered

within the kernel, leading to two d a ta copies.

This arch itectu re was proposed for general-purpose com puting, and to be effective for

such applications, the NA not only needs “enough” buffers, it also needs “flexible” buffers.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T he A fterbu rner NA [15] uses linked lists to manage NA buffers. For both transm ission and

reception, it has two queues of in-use and free buffers, so it can continue operating as long

as some free buffers are available. This is a more com plicated and expensive NA design

th an com m on NAs such as LANCE [4].

L A N C E 1 uses circular queues of buffers. For transm ission, it transm its messages from

the ring until it reaches a free buffer a t which point it stops. For reception, it fills buffers

in the receive ring until it reaches a filled buffer at which point it s ta rts dropping packets.

This sim ple design is low-cost and works perfectly w ith two-copy architectures. B ut if the

single-copy arch itecture were to be used for an NA such as LANCE for general-purpose

applications, there will be problem s with bo th transm ission and reception.

T r a n s m is s io n Issu e s : Suppose a protocol such as T C P is being used. T C P requires th a t

message d a ta be kept by the kernel until acknowledgment is received. Due to the circular

m anner in which LANCE accesses buffers, the kernel cannot keep a lock on one particu lar

buffer for a long tim e because LANCE will stop once it reaches this buffer (even if o ther

buffers are ready for transm ission down the ring).

R e c e p t io n Is s u e s : Once LANCE fills some buffer b w ith a received packet, the kernel

m ust rem ove d a ta from this buffer before LANCE goes around the ring and comes back to

this buffer. If buffer b has not been em ptied. LANCE will simply stop when it reaches b

(even if o th er buffers are free down the ring) and will s ta r t dropping packets. For general-

purpose applications, this is likely since there is no bound on how long an application may

take before m aking the receive system call.

W hen used for general-purpose applications, single-copy architectures work well only

w ith hardw are support. W ithou t hardw are support, they can quickly degrade in perfor

m ance to the level of two-copy arch itectures. As we will show later, for real-tim e applica

tions, the single-copy arch itectu re is feasible when combined with a real-time task scheduler ,

and it does not require any special hardw are support.

6.2 .3 Our D esign G oals

O ur prim ary goal is to provide efficient audio/video com m unication support for IAs

by lowering b o th data-touching and non-data-touching overheads. A secondary goal is to

'C u rren t-genera tion IAs use m odem s for communication. However, as the network bandw idth require
m ents of IAs increase, we would expect IAs to s ta r t using simple, low-cost NAs similar to LANCE.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

achieve this w ithout hardw are support from the NA. This is im portan t for IAs since adding

special features to the NA can increase hardware costs significantly. A nother goal is th a t

our arch itecture m ust be able to work with existing APIs (such as the BSD socket A P I) and

m ust work for all netw ork types, whether connection-oriented or not. In o ther w ords, we

will m ake no assum ptions abou t the network or the A PI and we will not assum e existence

of any special features in the NA (o ther than "sufficient” buffer space as discussed in detail

in Section 6.3.3).

6.3 Protocol A rchitecture for Audio and Video

Real-tim e audio and video comm unication applications have certain characteristics not

found in general-purpose applications:

• Application code executes periodically with well-known periods for both audio and

video.

• T ransport protocols used for communication do not use acknowledgments. U D P is

commonly used over the In ternet.

A cknow ledgm ent-based tran spo rt protocols are usually not used for audio and video

transm ission. If a m essage is lost, then by the time the loss is detected and the message is

re tran sm itted , the d a ta contained in the message would already be too stale to be of any

use. Forward error correcting codes a t the application level are typically used to recover

from lost messages. As such. UDP is the most comm only-used transport protocol for audio

and video. We use this fact along with the periodic n a tu re of m ultim edia applications

to design an efficient a rch itec tu re which lowers both data-touch ing and non-data-touching

overheads.

T he next subsection describes the basic structure we chose for our protocol arch itectu re ,

followed by a description of our protocol processing optim izations in subsections 6.3.'2-6.3.3.

6 .3 .1 Basic S tructure

We chose lazy receiver processing (L R P) [19] (F igure 6.2) as our basic protocol archi

tec tu re . In this scheme, th e send-side processing is done by the application th reads. W hen

a send system call is m ade, the application thread enters the kernel, executes all relevant

pro tocol and device driver code, and transfers the d a ta to the NA for transm ission. This is

sim ilar to the send-side schemes used in [65,79].

T he main advantage o f LRP is for the receive-side processing. Under LRP, incom ing

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

User thread

non-real-
. time

Kernel

Net. thread
Protocol code

Packet filter
Device driver

Network

Figure 6.2: Lazy receiver processing.

packets trigger in terrupts which cause the device driver to execute and it passes packets on

to the packet filter [23,84]. (T he packet filter is a small piece of code which is dynam ically

installed in the kernel by individual applications to detect packets belonging to those appli

cations and take appropriate actions.) The filter tries to forward packets directly to queues

associated with the destination th read where packets stay unprocessed until the application

m akes a receive system call. This is possible for real-tim e messages since the application

th reads are usually periodic (w ith the period being ensured by the real-tim e task scheduler)

so th a t packets are always processed w ithin a known tim e interval.

For non-real-time applications, there is no bound on how long the application may take

to m ake the receive call. As such, non-real-tim e packets are forwarded to a special netw ork

th read which performs protocol processing and keeps the message until the final destination

th read makes a call to receive it. The netw ork th read also acknowledges messages if needed

(as in T C P). In fact, the need to send tim ely acknowledgments in protocols such as T C P

is th e prim ary reason for having a separa te netw ork thread .

LRP provides more predictable message handling than o ther protocol arch itectures such

as th e user-level architecture presented in [65] which always relies on special netw ork th reads

for protocol processing. This can lead to priority inversion [82], i.e.. handling of a high-

priority real-tim e message (such as live voice) being unnecessarily delayed by the processing

of lower-priority or non-real-tim e messages. P riority inversion can occur if the netw ork

th read executes a t a priority different from the destination thread (th is can happen if one

netw ork thread handles traffic for m ultiple application th reads). For exam ple, if the netw ork

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th re a d runs a t a priority lower th an th a t of the destination th read , an in term ediate-priority

th re a d can preem pt the netw ork th read , preventing messages from reaching the higher-

prio rity destination th read . In LRP. all protocol processing is done by the destination

th re a d itself, which prevents any priority inversion and ensures pred ictab le processing.

A nother advantage o f LRP is th a t it saves one context switch for real-tim e messages

com pared to arch itectures which always use in term ediate network th reads for protocol pro

cessing. This makes LR P ideally suitable for use in real-tim e system s.

N ext, we describe ou r optim izations for protocol processing. N ote th a t these optim iza

tions do not depend on LRP and would work equally well with o th er protocol architectures.

6 .3 .2 R educing N on-D ata-T ouch ing O verheads

For lowering non-data-touch ing overheads — especially those rela ted to I-cache misses

— we present a new schem e called layer bypass. It is easier to apply th a n low-level optim iza

tions like outlining and specialization. It does not require any in -dep th analysis of protocol

code, and can be used effectively for short m essages, which is where lower non-data-touching

overheads are most beneficial.

Layer bypass relies on the observation th a t m ost of the functionality im plem ented by

various protocol layers is simply not needed when processing short messages. The few

opera tions th a t are needed are either already duplicated in the packet filter or can be easily

m igra ted there. This allows various protocol layers to be bypassed, com pletely avoiding all

I-cache misses these layers m ay have caused.

Laver bypass can be applied as follows. T he protocol specification for various protocol

layers is first studied to determ ine which aspects of the protocol are not needed for a given

m essage stream (such as live audio m essages). Those layers are identified which perform

little or no functions. T he few useful operations these layers do perform can all be placed

to g e th e r in the packet filter or some o ther such small module appropria te ly inserted in the

pro tocol stack. T hen th e redundan t layers can be bypassed completely.

N ote th a t layer bypass is sim ilar in spirit to specialization, i.e., it makes the common

case fast. But it differs fundam entally from specialization in th a t it deals with m acro

opera tions, not small functions. If small portions o f the code were to be bypassed, the

resu lting code will look ju s t like in Figure 6.1 and perform ance m ay actually degrade. This

is why specialization relies on a com pletely separa te piece of code to im plem ent the fast case,

bu t th is leads to increased code size which is a disadvantage in sm all-scale system s such as

IAs. Layer bypass envisages functionality im plem ented in a large chunk of code (an entire

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

layer) to be bypassed. This not only results in g rea te r reduction in I-cache misses bu t also

allows a single piece o f code to exist for all cases w ith the protocol architecture providing the

mechanism to bypass unnecessary layers. W ith layer bypass, all protocol layers exist and

there is only one im plem entation of each layer. Layers no t useful for certain applications are

bypassed for those applications while the rem aining applications can use the full protocol

stack. O utlining, cloning, specialization, and o ther low-level optim ization schemes can still

be applied to protocol layers (if appropriate) since these schemes are orthogonal to layer

bypass.

Next, we show th a t layer bypass can be used very effectively for audio messages. It can

also be used for handling o ther types of short messages such as web server requests, and we

present a small illu stra tion as proof-of-concept.

L a y e r B y p a s s fo r L iv e A u d io M e ssag es :

To bypass a protocol layer for messages for a certain application, the application designer

must consider the opera tions performed by th a t layer and decide whether these operations

are needed or not for messages for th a t application. We illustrate this m ethodology by

applying layer bypass to live audio messages for receive-side processing. Let's first consider

the IP layer which perform s the following m ajor functions:

IP : Routing, fragm entation /reassem bly . IP address checks. IP header checksum, checks for

malformed headers and packets. IP option processing.

A receiving host does not perform any routing. Short live audio messages need not be

fragm ented/reassem bled. IP options are used for netw ork testing, so they do not apply

here. The packet filter checks the destination IP address, so this function of the IP layer is

already being handled by the packet filter. This leaves the various error checks which are

related to rarely-occurring error conditions. It is safe to bypass the IP header checksum

and other error checks for the following reason: the packet filter examines the various fields

in the header and will recognize the packet as an audio message only if the fields contain

expected values. If the header has been corrupted, th e filter will not recognize the packet; it

will be forwarded to th e IP layer, norm al processing will occur, the errors will be detected ,

and the packet will be discarded.

Next, we look at th e feasibility of bypassing the U D P layer which performs the following

m ajor functions:

U D P : UDP d a tag ram checksum, cooperate with IP layer in handling IP options, m ulticast

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a da tag ram to multiple local sockets (if requested), port address checks, generate

ICM P messages if destination port does not exist, pass incoming datagram s to correct

socket.

The UDP checksum is usually turned off for live audio messages since audio applications

use their own forw ard error correcting codes (if they use error codes a t all). This is because

of the soft real-tim e nature of the application. Local m ulticast is not needed for audio

applications, and the packet filter already checks the destination port address. If this check

fails, the packet is routed through the full protocol stack where error handling (if needed)

can occur. This shows th a t UDP can be bypassed safely for live audio messages.

This exam ple shows how a high-level description of a protocol layer is all th a t 's needed

to determ ine feasibility for bypass. It also shows the usefulness of layer bypass for handling

live audio messages. The IP layer can be bypassed because no reassem bly is required, and

UDP can be bypassed because the checksum is not needed. The packet filter checks the des

tination IP and port addresses, strips headers, and forwards messages directly to the socket

layer, saving considerable I-cache misses. This results in a significant reduction in protocol

processing overheads on the slow CPUs used in IAs (see Section 6.4 for m easurem ents).

Layer B ypass for W eb Servers:

To show th a t layer bypass is not just lim ited to live audio messages bu t can also be used

for other short m essages, we give an exam ple of its application to web servers. Since it is

not the main topic of this chapter, we om it details and only present the general framework.

Layer bypass can be used for H TTP request messages. A server m ay receive thousands

of such messages per second. These messages are short, so the IP layer can be bypassed for

the same reasons as for audio messages. This leaves the T C P layer. T he m ajor functions

performed by T C P are message sequencing and reliable delivery (using acknowledgments).

Regarding sequencing, if web document request messages get re-ordered, it makes no real

difference. For reliability, no separate acknowledgment messages are needed since the ack

will be piggybacked on the server reply message. However, T C P keeps track of the sequence

numbers of incom ing messages to perform acknowledgments. So, the T C P layer can be

bypassed provided th a t the packet filter can update the TC P connection’s sequence numbers

by invoking the appropria te routines in the T C P im plem entation. This is a violation of the

layering concept, but packet filters violate layering anyway. This leaves the issue of the T C P

checksum. Feasibility of bypassing the checksum has to be determ ined on an application-

by-application basis. However, bypassing it should be safe for most web servers since MAC

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

layers already provide one level of error checking. □

T h e above exam ples dem onstrate the usefulness and applicability o f layer bypass. Layer

bypass has one draw back: it is most effective when the layers being bypassed are a t the

top (for outgoing messages) or bottom (for incoming messages) of the protocol stack. To

bypass middle layers, a filter will have to be inserted between layers and this will increase

processing overhead for messages which do not utilize layer bypass. However, for end-host

receive-side processing, the layers feasible for bypass are usually the bottom layers. For

exam ple, layer bypass is m ost useful for short messages where non-data-touching overheads

m a tte r the m ost, and for such messages, the IP layer can alm ost always be bypassed since

m essage reassembly is not needed.

6 .3 .3 Im proving D ata-Touching O verheads

We now show th a t the single-copy scheme — which, w ithout hardw are support, has

lim ited value for non-real-tim e systems — can be used effectively for video com m unication

w ith no special hardw are support. The key to the effectiveness of the single-copy schem e

in real-tim e system s is a real-tim e scheduler which guarantees th a t the application executes

a t its period and does not face unpredictable delays. (Note th a t such a scheduler is needed

anyw ay — not ju st for the single-copy scheme — for the purpose of meeting tim ing con

s tra in ts .) Hence, incom ing packets will stay in the NA buffers for no longer than the period

of the application. This is in contrast to non-real-tim e applications where no such bound

exists on how long an application may take to retrieve its packets from the NA.

In ou r scheme, packet arrivals trigger in terrup ts. The device driver executes and forms

an m buf chain of the packets. Mbufs are linked lists of buffers which allow easy addition

and removal of headers (see [6 6] for details). D ata is left in the NA and the mbufs are m ade

to poin t to th a t d a ta . T he packet filter then enqueues the m buf chain in the appropria te

socket, and the associated user th read is signaled. If the th read had already made a receive

call then IP. UDP, and socket layer processing occurs as soon as the th read is scheduled for

execution . O therwise, packets are processed when the receive call is m ade.

Before the device driver exits the in terrup t service routine, it checks if a free buffer

is available for more packets. For LANCE, this m eans checking if th e next buffer in the

ring has been processed and relinquished by the kernel. If no t, d a ta is copied from th a t

buffer in to kernel buffers and the NA buffer is freed to avoid dropping packets. Obviously,

when th is happens, perform ance is the same as the two-copy scheme. T hen, the im p o rtan t

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

question is: how often can this happen under the condition th a t both real-tim e as well as

non-real-tim e applications (such as telnet and web browsing) are receiving packets?

Real-tim e audio and video applications run with some period T . T for audio is quite

sh o rt, usually 10-30ms [98]. so audio is not a problem. Video applications usually run at

30 fram es/s [96] but to conserve C PU and network bandw idth — which is im p o rtan t in IAs

— som e m ay run a t a slower ra te of ‘20 or even 10 fram es/s . giving a T as large as 0.1s.

This is the m axim um time messages for a video application have to stay in NA buffers. If

NA buffers are about to overflow and the video messages have not been processed, packets

for these messages have to be copied out of the NA into kernel buffers to make room for

incom ing packets. This can occur if a burst of non-real-tim e packets arrive, filling NA

buffers in a short period of tim e. Following is an analysis of how frequently th is m ight

happen when both real-time and non-real-tim e packets are being received through th e NA.

E stim a tin g N on-R eal-T im e P acket Arrivals:

In the past. Poisson processes have been used to model packet arrivals [29]. This reduces

the com plexity of network traffic analysis because of the sim plicity of Poisson processes.

However, various studies have shown th a t wide-area netw ork traffic is too bu rsty to be

correctly modeled by a Poisson process [16.90]. Telnet arrivals have been m odeled by a

P are to d istribu tion [90], but only em pirical models exist for F T P [16] and web browsing [13.

14]. This precludes any closed-form derivation of non-real-tim e packet arrival d istribu tions.

A dded to this is yet another difficulty th a t network traffic characteristics may change from

tim e to tim e or place to place. These characteristics depend on factors such as netw ork

congestion, speed a t which servers can transm it data . etc. T his means that any calcu lation

o f packet arrival distributions will be an estim ate a t best.

A ccurate m odeling of netw ork traffic is not our in ten t. All we want is to show th a t

receiving even 10-20 non-real-tim e packets within tim e interval T is highly im probable ,

and get some idea of how im probable th a t is. Since netw ork adapters usually have 128-

‘256 receive buffers [4.15] — and th is is likely to increase even further as m emory densities

increase and cost decreases — receiving even 10-20 packets w ith in T seconds is not enough to

d isrup t the handling of real-tim e packets. An engineering approxim ation of packet arrival

ra tes is all th a t is needed to get an idea whether the single-copy scheme can be used

successfully in IAs or not.

For evaluation purposes, we chose to use web browsing as a representative non-real-tim e

application . M easurem ents of web traffic have shown th a t retrieval of even small web pages

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

take more th an 2 seconds [14]. This is the tim e needed to look up the rem ote host's DNS

e n try and establish T C P connections. After this in itia l phase d a ta transfer begins a t the

ra te of 1 byte per 90-100^s [14]. Most web pages are relatively small-sized. M easurem ents

in [14] show most pages to be ‘256-512 bytes, but w ith the increasing use of in-line images,

this is likely to increase. Even then , the trend o f favoring small-sized pages will persist,

especially considering the small display screens th a t IAs have. As such, we assume a lOkbvte

page size.

We know of no study which correlates size of a web page to the num ber of network

packets needed to transfer the page. so. instead, we use some common-sense approxim ations.

An E thernet packet can carry up to 1500 bytes, so lOkbvte require a minimum of 7 packets.

However, each in-line image is usually sent as a sep ara te message, so we will conservatively

assum e ‘20 packets to carry every lOkbyte of d a ta . W ith these assum ptions and using 90/zs

as the per-byte transfer tim e (which is faster than th e wireless link speeds available to most

IAs today), we get a packet arrival rate of 2*2 p ack e ts /s or '2.2 packets/0 .Is. Even if due to

burstiness. five times as m any packets arrive within T = 0 .1s, we still get only 11 packets/T .

Burstiness is more likely when downloading large docum ents, bu t after downloading such

a docum ent, the user will take m ore time to read the docum ent (maybe several m inutes)

which increases the gap between downloads and spaces the series of bursts fu rther and

fu rther a p a rt.

Considering both connection and reading delays, downloads are separated by a t least

several seconds. Even if 5 bursts of 11 packets/T occur during download (highly unlikely

since the m ajority of web pages fit in fewer than 30 packets) and the user spends ju st one

second reading the docum ent, the probability of g e ttin g a bu rst of 11 packets/T is only 5

tim es in 35T seconds or 0.143. This is negligible considering th a t NAs typically have more

th an a hundred buffers.

In sum m ary, lack of characterization of netw ork traffic prevents an accurate calculation

of the p a tte rn of non-real-tim e packet arrivals. We have used available d a ta regarding web

traffic to show th a t even under highly-exaggerated netw ork use conditions, probability of

receiving a large number of non-real-tim e packets w ith in T is still small, so th a t our protocol

processing optim ization should be useful for real-tim e applications most of the tim e. □

Note th a t the above analysis is tru e even for the NAs with the simplest buffer-m anagem ent

policies, such as LANCE. As such, the single-copy scheme for real-time applications does

not require any special/expensive hardware suppo rt which is an im portant consideration

for IAs.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 .3 .4 N on-R eal-T im e M essages

Non-real-tim e traffic can co-exist w ith real-time traffic, but because of unpredictable

execution of non-real-time applications, no statistical analysis as one presented above is

possible for such applications. If the application responds quickly enough, only one copy

will be needed, otherwise packets will have to be copied and stored in kernel buffers. At

the device driver level, when a non-real-tim e message arrives, it will be left in the NA

buffer till it is either processed or it has to be copied to the kernel to free up the NA

buffer. At the protocol stack level, special network threads perform protocol processing

for non-real-tim e messages (F igure 6.2). The packet filter can be configured to forw ard

non-real-tim e messages to an appropria te network thread instead of sending them to the

application thread. A pplications can specify if certain com m unication end-points are to

receive real-tim e or non-real-tim e messages, and the packet filter can use this inform ation

to forward messages accordingly.

6.4 Evaluation R esu lts

We want to evaluate the effectiveness of our architecture in handling both short audio

and long video messages. For short messages, we measure receive-side overheads both w ith

and w ithout layer bypass to show the effectiveness of layer bypass in reducing protocol

processing overheads. For long messages, we compare the single-copy and standard two-

copy schemes.

6.4 .1 Platform

We implemented our protocol architecture within EM ERALDS on a 25MHz M otorola

68040 processor with separate 4kbyte d a ta and instruction caches. EM ERALDS features

highly optimized context sw itching, in terrup t handling, and m em ory usage [124]. The 68040

is typical of CPUs used in m any IAs today. (We will later discuss the results on a faster

processor.)

We use two processors in our experim ents, connected by a lO M b/s private E thernet

using the LANCE network ad ap te r. LANCE uses DMA to transfer d a ta between its buffers

and the network. In some cases, the memory contention between DMA and CPU can

d isto rt overhead m easurem ents. In all measurements in this section, we have a ttem p ted

to minimize this distortion so th a t m easurem ents depend only on the protocol arch itec tu re

and not on the NA.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Operation Overhead (p s)
C ontext switch 9.2
In terrup t handling (w ith 1 context

switch and device-driver code) 40.0
Packet Filter 6.9

Table 6.1: M easurem ent o f some non-data-touching overheads.

For evaluation, we implemented U D P /IP using our architecture. T he protocol and

LANCE device driver code was taken from FreeBSD 4.4 and m inor m odifications were

m ade to make it work with EM ERALDS. We also added our own packet filter ra th e r than

using the high-overhead BSD packet filter. For simplicity, we im plem ented a U D P /IP -

specific filter. Interested readers are referred to [23] for more generalized high-perform ance

packet filters.

6 .4 .2 Perform ance Im provem ents

We sent datag ram messages from one processor to another and m easured the total

overhead of receive-side protocol processing including in terrupt handling and all relevant

context switches. The to ta l receive overhead was measured by noting the increase in the

execution tim e of a delay loop of known duration running on the receive-side host with

m essage reception being the only o ther on-going activity on th a t host. M easurem ents were

m ade using a 5MHz on-chip tim er. For each d a ta point (fixed message size) we repeated

th is experiment 100 times and averaged the results. Further increase in num ber of samples

did not result in any significant change in averaged results. We also m easured various

non-data-touching components of the receive-side overhead by instrum enting the kernel to

m easure execution times of relevant operations as shown in Table 6.1.

Short M essages:

Figure 6.3 shows the to ta l receive overhead for short message sizes. This figure presents

m easurem ents for the cases when processing is done by a special netw ork th read (labeled

“standard arch itectu re”), regular LRP, and LR P when layer bypass is used as well. In all

cases, the UDP checksum is tu rned off. From the figure, we see the benefit of bypassing

IP and UDP layers. Perform ance is im proved 20% (beyond th a t of L R P). Note th a t the

sharper variations in the plots are a result of B SD ’s m buf allocation scheme [57] and are

not related to the protocol architecture.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

250.0

200.0

1 150.0

>

a 100.0
a

50.0

0.0

• --- • Standard architecture |
i o --a L R P ;

»------- « I .R P -t- l a y e r b y p a s s i

0.0 50.0 100.0 150.0
Message size (bytes)

200.0

Figure 6.3: Receive overhead for sho rt messages.

The above m easurem ents were for a relatively slow processor typical of C PU s used in

IAs. As already m entioned, layer bypass can also be applied to web servers which use

much faster processors. To evaluate the usefulness of layer bypass for such applications, we

em ulated our protocol arch itec tu re on a 167 MHz Sparc U ltra - 1 workstation (16 kB 1/ 16

kB D caches) running Solaris 2.5.1. We use two th reads which execute all the protocol code

a t the user level to send m essages to one another. LA NCE is em ulated using shared m em ory

and in te rru p t overhead is em ulated through context sw itches betw een the th reads. All the

device driver, packet filter, protocol, and socket code executed in the previous experim ent

is also executed in this experim ent. The results are shown in Figure 6.4. Even though

protocol processing overhead is dom inated by heavy-weight Solaris context sw itches (two

switches cost about 40^s). still layer bypass delivers a 14% im provem ent in perform ance.

Long M essages:

Figure 6.5 plots the receive overhead for messages ranging from 20 to 6000 by tes. It

shows the overheads for th e two-copy and single-copy schemes. For short m essages, the

savings from the single-copy scheme are not significant since non-data-touching overheads

account for most of the receive overhead. But as m essage size increases and copying costs

begin to dom inate, the benefit of elim inating one copy becomes more apparent an d the

percentage reduction in receive overhead (com pared to th e s tan d ard two-copy arch itec tu re)

increases steadily until it reaches 2 2 % for a message size o f 1.4kbytes. Further increase

in message size results in m essages being fragm ented into two packets (E thernet has an

M TU of 1500 bytes). This causes sharp increases in overhead every 1458 bytes as shown

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* 1 N o la y e r b y p a s s
I j j j j o -------o W ith la y e r b y p a s s

0 .0 i '------------ '-------------'-------------
0.0 50.0 100.0 150.0 200.0

Message size (bytes)

Figure 6.4: Receive overhead for short messages on an U ltra-1 Sparc s ta tio n .

1200.0

looo.o r

aoo.o

600.0 I-

Zi i
•3 400.0 j -
i j I

as [
200.0 if

0.0
2000.00.0 4000.0 6000.0
Message size (bytes)

Figure 6.5: M easurem ent of receive overheads for long messages.

in the figure since each packet generates a separate in te rru p t. The increase in going from

one packet to two is large since this is also the point th a t d a ta s ta rts to overflow the small

4kbyte d a ta cache. These d a ta cache misses cause the percent overhead reduction to level

out a t about 15% for m essages larger than 1.4kbyte.

6.4.3 Improved P red ictab ility

Figures 6 .6 - 6 .7 show th e effectiveness of LRP in im proving predictability. These figures

show the variations in execution periods of a high-priority th read which executes an infinite

loop to receive ikbyte m essages which arrive at a period of 1.5ms (100 m essage receptions

shown per figure). A low -priority th read is also receiving messages on the sam e node. These

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.80

ŷywvvvjV4~+—

t 0.80

0.60 -

■a 0.40

0.20

0.00 —
0.00 80.00 100.0020.00 40.00 60.00

Message reception count

Figure 6 .6 : Timeline plot of delays between consecutive receptions for the standard protocol

architecture.

messages arrive 4ms ap a rt. We kept these messages short (10 bytes) to minimize variation in

protocol processing tim es of high-priority messages due to background DMA of low-priority

messages.

Figure 6 . 6 depicts the case when the standard arch itecture is used and the th read with

the 1.5ms period has higher priority than the netw ork thread . Protocol processing for the

low-priority th read interferes w ith that of the high-priority thread , leading to variations in

the period of the la tte r of as much as 0 . 1 2 ms

Figure 6.7 shows the case for LRP. Variations are significantly sm aller, m axim um being

ju st 0.08ms — 33% smaller th an that for the standard architecture. The variations are

primarily due to in terrup ts and limited priority inversion which occurs when the low-priority

receive thread is in a critical section and cannot be preem pted by the high-priority thread.

These m easurem ents justify our choice of LRP for ensuring predictability.

6.5 R elated Work

Many researchers a ttem p ted to reduce data-touching overheads in various ways. Virtual

memory page re-m apping is commonly used to reduce data-copying costs when crossing

protection boundaries [20]. This technique works well to a certain ex ten t, especially when

combined with the m buf mechanism of BSD [6 6]. M bufs are linked lists of buffers. To add

a header, all th a t needs to be done is allocate a m em ory buffer (anyw here in the address

space), put the header d a ta in it. and link this buffer a t the head of the m buf chain. Then,

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.80 r

~ 1 6 0 '

£ 1.40
2 r
> 1.20 rv :w !
g 1.00 r
s i-
| o.ao j-

i 0.60 [
! 0 4 0 1

0.20 j -

0.00 ; ' ■— - — -
0.00 20.00 40.00 60.00 80.00 100.00

Message reception count

Figure 6.7: Tim eline plot of delays between consecutive receptions for LRP.

as the message passes from one process to another, the m buf chain is m apped ou t o f the

former process’ address space and into th a t of the la tte r . For message transm ission, if the

message can be tra n sm itte d im m ediately over the netw ork, d a ta needs to be copied only

once: from host m em ory to netw ork adap ter (NA). But if the kernel must retain the m essage

(possibly for retransm ission later on), then two copies m ust occur unless the app lication is

modified so th a t its outgoing message d a ta is aligned a t page boundaries. The kernel can

then map the pages containing the message out of the u ser’s address space, replace them

with other pages, and unblock the caller.

The situation is even more com plicated on the receive side. Once a message arrives,

it is copied from NA to host memory, and protocol processing occurs. But tran sferring

the message from kernel to user will require another copy unless the API is such th a t it

allows the kernel to place messages anywhere in the u ser’s address space and then inform

the user of the location. This is not the case with the BSD socket interface, w here the

location for incom ing messages is specified by the user, not by the kernel, resulting in two

d a ta copies. Yet an o th er problem w ith memory rem apping is the cost of rem apping pages

from one dom ain to ano ther. In [20] an optim ization is presented in which m appings are

cached to reduce overhead significantly. This works reasonably well for transm ission, but

works for reception only if the network protocol allows packet-level demultiplexing a t the

device driver level. Low-level message demultiplexing is quite common by means o f packet

filters [84] but it requires the first packet of a message to arrive before the m essage’s final

destination can be determ ined. If packets get re-ordered, then pacAreMevel dem ultiplexing

is possible only if the network is connection-based such as ATM. In short, caching page

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mappings canno t work over connectionless netw orks such as E thernet.

O ther pro tocol arch itec tu re optim izations have been proposed, such as giving appli

cations direct (bu t controlled) access to the NA [21], but these schemes usually require

hardw are su p p o rt from the NA.

Regarding non-data-touching overheads, a b a tch processing technique was proposed in

[8]. The idea is to w ait till several small messages have been received: then process them as

a batch, thereby reducing I-cache misses. This schem e is useful for handling bursts of short

messages bu t is not effective for live audio m essages because they are spaced at regular

intervals in tim e.

An innovative protocol architecture was presented in [115] which also aims to optim ize

the fast p a th . T he packet filter compares headers of incoming packets against pre-computed

expected values. In case of a m atch, the packet is forw arded im m ediately to the application,

thereby reducing the latency of processing. T he ac tual protocol stack is invoked la ter to

update s ta te and pre-com pute the expected header for the next packet. This scheme reduces

latency but has no effect on throughput since th e en tire protocol stack still executes.

6.6 C onclusion

Inform ation appliances (IAs) are an emerging class of em bedded devices which are used

for specialized com m unication tasks such as aud io /v ideo com m unication over the In ter

net. The In ternet-cen tric na tu re of IAs combined w ith the need to keep costs low in these

m ass-produced devices (which results in the use o f slow /cheap processors) dictates th a t the

com m unication subsystem w ith the OS be highly efficient to enable audio/video com m uni

cation despite slow hardw are. In this chapter we presented a protocol architecture which

focuses on im proving m essage reception overhead (which usually exceeds transmission over

head) for real-tim e audio and video. Our design not only adap ts existing optim izations for

use in real-tim e com m unication but also includes new optim izations to reduce overhead and

increase th ro u g h p u t.

Video applications are characterized by large m essage sizes while live audio messages are

short but frequent. This presents a challenge for the protocol arch itecture designer. Both

data-touching and non-data-touching overheads m ust be reduced. T he former is im portan t

for large video messages and the la tte r for short audio messages. For non-data-touching

overheads, we presented the layer-bypass scheme under which entire layers within the pro

tocol stack are bypassed by transferring the few useful functions they perform to the packet

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

filter. This way. I-cache misses associated w ith protocol processing are minimized, which re

duces overhead by 14-20% for short messages. To reduce data-touching overheads, we used

the single-copy scheme [15], showing th a t for real-tim e messages, it can be used effectively

without any hardw are support from the NA. and improves overhead by 15-22%.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 7

M ESSAGE SCH ED ULING FO R CONTROLLER A R E A

N ET W O R K (C A N)

The previous chap ter dealt with com m unication requirements of em bedded devices con

nected to the In ternet. In this chapter, we address communication issues rela ted to ano ther

im portan t class of em bedded systems which are field bus-based such as au tom otive and fac

to ry autom ation system s. These systems consist of multiple com putational nodes, sensors,

and actuators interconnected by a low-speed LAN called a field bus [94]. O f the m ultiple

field bus protocols available for such use (including SP-50 FieldBus [44]. M AP [80], T T P

[61], etc.), the C ontroller A rea Network (CA N) [49.104] has gained w ide-spread acceptance

in th e industry [118].

CAN is a contention-based m ulti-m aster netw ork which has the po ten tia l to efficiently

handle both periodic as well as sporadic messages. It is currently being used in a wide range

of embedded real-tim e control applications [118] including autom otive control, industrial

au tom ation , and medical m onitoring. Its m ain a ttrac tio n is its low cost (a CAN interface

chip costs about $5) and reliability features like atom ic m ulticasts and fault confinem ent. It

provides prioritized bus access and fast response times for high-priority m essages, making

it ideal for use in real-tim e control applications.

Control networks m ust carry both periodic and sporadic real-time m essages, as well as

non-real-tim e messages. All these messages m ust be properly scheduled on the netw ork so

th a t real-tim e messages meet their deadlines while co-existing with non-real-tim e messages

(we limit the scope of this chapter to scheduling messages whose characteristics like deadline

and period are known a priori). Previous work regarding scheduling such m essages on CAN

includes [11*2,113], bu t they focused on fixed-priority scheduling. Shin [102] considered

ea.rliest-dead.line first (E D F) scheduling, but did not consider its high overhead which makes

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EDF im practica l for CAN. In this chap ter, we present a scheduling schem e for CAN called

the mixed traffic scheduler (M TS) [122.125.127] which increases schedulable utilization and

perform s b e tte r th a n fixed-priority schemes while incurring less overhead th an ED F. We also

describe how M TS can be im plem ented on existing CAN network a d ap te rs . We address the

problem of how to control priority inversion (low -priority message being tran sm itted ahead

of a h igher-priority one) within CAN netw ork adap ters and evaluate different solutions for

this problem .

We m easure various execution overheads associated with MTS by im plem enting it w ithin

EM ERALD S. Using an em ulated CAN network device (ano ther 68040 acting as a CAN

network a d a p te r and connected to the main node through a VM E bus), we present detailed

m easurem ents of all execution, in te rrup t handling, task scheduling, and context switching

overheads associated with MTS to show the feasibility of using M TS for control applications.

In the nex t section we give an overview of the CAN protocol. Section 7.2 describes the

various types of messages in our ta rg e t application workload. T hey include both real-tim e

and non-real-tim e messages. Section 7.3 gives the MTS algorithm . Section 7.4 discusses

issues related to im plem entation of M TS. focusing on the priority inversion problem. Sec

tion 7.5 evaluates the network schedulability perform ance of M TS (com pared to ED F and

DM) and presents im plem entation overhead m easurem ents. The chap ter concludes with

Section 7.6.

7.1 C ontroller Area N etw ork (C A N)

CAN [49. 104] is an advanced serial com m unication protocol for d istribu ted real-tim e

control system s. It is a contention-based m ulti-m aster network whose timeliness properties

come from its collision resolution algorithm . Some o ther salient features of CAN are prior

itized bus access, reconfiguration flexibility, high reliability in noisy environm ents th rough

CRC checks and bit stuffing, and netw ork speeds up to IM b/s (in th e rest of the chapter we

assum e this speed). The CAN specification defines the physical and d a ta link layers (Lay

ers 1 and 2 in the ISO /O SI reference model). Both layers are im plem ented in a netw ork

adap ter (N A) chip which connects the processing element (like m icroprocessor or sm art

sensor) to the bus. Such chips are available from various vendors w ith a variety of features.

Recently, som e vendors have introduced m icrocontrollers with on-chip CAN modules which

allow these m icrocontrollers to interface directly w ith the CAN bus.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SOF Identifier Control Data CRC Ack EOF

12 6 0-64 16 7

SOFt Start of Frame
CRC: Cyclic Redundancy Code
EOF: End of Frame

Figure 7.1: Various fields in the standard CAN d a ta fram e along %vith the length of each

field in bits (including field delim iter bits).

7.1.1 C A N D ata Fram e

A d a ta message in CAN has seven fields as shown in Figure 7.1. CAN allows two m essage

form ats to coexist on the sam e bus. They differ in the leng th of the identifier (ID) field:

the standard form at has an 1 1 -bit ID. whereas the extended form at has a 29-bit ID . The

ID field (i) controls bus a rb itra tio n , and (ii) describes the m eaning of the d a ta (m essage

routing).

Here we describe m essage routing in CAN (bus a rb itra tio n is described laster in this

section). The ID. instead o f containing some destination address, contains a code identifying

the m eaning of the d a ta . CAN allows all or part of the ID field to be used for this purpose.

For exam ple, if the ID is 11 bits long, periodic messages from a tem pera tu re sensor may

have a binary code xxxxxxlO llO . where an x denotes a bit no t being used for identification.

All nodes desirous of knowing the current tem perature will set filters in their CAN netw ork

adap ters to m atch the above code. Then, whenever a m essage w ith this ID code is sent on

the bus. the NA will au tom atically receive it and notify the processing element of the node.

This scheme is called message filtering.

Each CAN message can contain 0 to 8 bytes of d a ta in the data field. The m inim al

CAN d a ta frame has 47 b its when no d a ta bytes are sent (44 bits for the frame plus a 3-bit

inter-fram e space). W hen 8 bytes of d a ta is sent, the fram e is 111 bits long.

For safety of d a ta tran sfer, a 15-bit CRC check is sent w ith each message. This CRC is

calculated over the SO F. ID , control, and da ta fields.

The control field contains the data length field plus one bit which identifies the fram e

as standard or extended. T he d a ta length field is 4 bits wide and specifies the num ber of

bytes in the d a ta field, from 0 to 8 .

The ack field is used to acknowledge correct reception o f a message. This is a single

bit which is sent recessive by the transm itter. As receivers receive the SOF. identifier,

control, and d a ta fields of a message, they locally calculate th e CRC over these b its. Next

they receive the CRC field which they compare with their locally-calculated value. If they

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m atch, the receiver overw rites the ack bit on the bus w ith a dom inant bit. signaling correct

reception of the message. But if an error is detected through a CRC m ism atch, the node

signals an error as described next.

7.1.2 A ctive Error D etection and A tom ic M ulticast

Once a receiver detects a corrupted message, it not only discards th a t m essage but also

transm its an e rro r flag. This flag is a special sequence of bits which purposely violate the

bit stuffing rules of CAN. The error flag is tran sm itted by the receiver while the sender of

the message is still tran sm ittin g the last few bits of the original message. T he error flag

overwrites the last portion of the message, ensuring th a t if o ther nodes did not detect a

CRC failure, they will a t least detect the violation of bit stuffing rules. This ensures tha t

if one node detects an error, all nodes are notified of it and they too discard th a t message.

This results in atom ic m ulticast, i.e., either all receivers receive a message or none do.

7.1.3 Bus A rbitration M echanism

CAN makes use of a wired-OR (or wired-AND) bus to connect all the nodes (in the rest

of the chapter we assum e a wired-OR bus). Two logical bit representations are defined:

dominant and recessive. If even a single node transm its a dom inant bit. the bus will reflect

a dom inant bit. else it will reflect a recessive bit.

W hen a processor has to send a message it first calculates the message ID which may be

based on the priority of the message. The ID for each message must be unique to prevent

a tie. Let each ID be 6 bits long.

The bus acquisition algorithm works as follows. Processors pass their messages and

associated IDs to the ir CAN NAs. The NAs wait till the bus is idle, then tran sm it the SOF

which is a single dom inant bit. AO NAs synchronize to the leading edge of the SO F sent by

the sta tion s ta rtin g transm ission first. FoUowing this synchronization, the NAs w rite their

respective IDs on th e bus, one bit at a tim e, s ta rtin g with the most significant bit. After

writing each bit, each NA waits long enough for signals to propagate along the bus, then it

reads the bus. If a node had w ritten a recessive bit but reads a dom inant one, it m eans th a t

another node has a m essage with a higher priority. If so. this node drops out o f contention.

After b such rounds, there is only one winner and it can use the bus.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 W orkload Characteristics

In control applications, some devices exchange periodic messages (such as autom otive

ABS controller) while others are more event-driven (such as sm art sensors). Moreover,

operators may need sta tu s information from various devices, thus generating messages which

do not have tim ing constraints. To cover all these varieties, we classify m essages into three

broad categories:

1. Hard-deadline periodic messages.

2. Hard-deadline sporadic messages.

3. N on-real-tim e (best effort) aperiodic messages.

7.2.1 Periodic M essages

A common exam ple of this type of messages is autom otive ABS control. The controller

must periodically sample the current ro ta tional velocity and slip of the wheel and then

send appropria te corrections to the braking ac tua to rs . Such messages have hard deadlines,

because if the up d a te message to the ac tua to rs is delayed beyond its deadline, the car may

skid out of control. In general, most sensor-controller-actuator loops have hard-deadline

periodic messages. Such systems include all robots and industrial cu ttin g tools as well as

various autom otive actuators.

A periodic message i has period Tt , length C ,. and relative deadline Z?,, the last being

defined relative to the release time of the message. We also define the absolu te deadline d,

of a message as its deadline relative to the global tim e frame (defined in term s of a system

of synchronized clocks). Also. C, < D{ < T,.

Note th a t a single periodic message will have multiple invocations, each one period

apart. So. whenever we use the term message stream to refer to a periodic message, we are

referring to all invocations of th a t periodic message.

7.2.2 Sporadic M essages

Strictly speaking, all events in the real world are aperiodic in n a tu re . If these events

are expected to occur frequently enough, periodic m onitoring can be used to detect them

and take appropria te action (as in ABS control). There are o ther events which are not as

frequent, such as tem perature of a process exceeding a critical threshold. In fact, maximum

interval between two such events is unbounded (event may never occur again). In such

cases, using periodic messages is a waste o f netw ork bandw idth and C PU cycles because

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

there is no thing to say most of the tim e.

Smart sensors [9] are most suitable for detecting such events. These sensors have DSP

capabilities to recognize events on their own. so they signal the controller only when re

quired. If these m essages are trea ted as purely aperiodic, then we are assuming th a t they

may be released a t any tim e — even in rapid succession. If so, we will not be able to guar

antee their delivery by their deadlines. Fortunately, in m ost real-w orld situations, there

exists a m inim um interarrival tim e for aperiodic events. In the tem p era tu re hazard exam

ple m entioned above, once the hazard is detec ted , the process will probably be shut down

and restarted la te r on — during which tim e there cannot be any m ore tem perature haz

ard messages. T his corresponds to a m inim um interarrival tim e (M IT) for such messages.

Such aperiodic m essages which have a M IT are called sporadic messages [85]. Knowing the

MIT of a sporadic message makes it possible to guarantee its delivery even under the worst

possible s itua tion .

7.2.3 N on -R ea l-T im e M essages

In au tom otive system s, a m onitoring process needs to collect s ta tu s inform ation from

various controllers for on-board diagnostic purposes. Similarly, in m anufacturing and pro

cess control applications, an operato r m ust be able to m onitor the s ta tu s of every device in

the system . Such messages are non-real-tim e because they do not have tim ing constrain ts.

Any com m unication protocol for control applications must be able to accom m odate such

messages while guaranteeing the deadlines o f real-tim e traffic.

7.2.4 L ow -Speed vs. H igh-Speed R eal-T im e M essages

Messages in a real-tim e control system can have a wide range o f deadlines. For example,

messages from a controller to a high-speed drive may have deadlines of few hundreds of

microseconds. On the o ther hand, messages from devices such as tem pera tu re sensors can

have deadlines o f a few seconds because the physical property being m easured (tem pera tu re)

changes very slowly. Thus, we further classify real-tim e m essages into two classes: high

speed and low-speed . depending on th e tightness of their deadlines. As will be clear in

Section 7.3.2, th e reason for this classification has to do w ith the num ber of bits required

to represent th e deadlines of messages.

Note th a t uhigh-speedr is a relative term — relative to th e tigh test deadline Do in the

workload. All m essages with the sam e order o f m agnitude deadlines as D q (or within one

order of m agn itude difference from Do) can be considered high-speed messages. All others

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

will be low-speed.

7.3 T h e M ixed Traffic Scheduler

As s ta te d earlier, access to the CAN bus is controlled by the IDs of com peting messages.

This necessitates tha t messages be assigned IDs in a proper m anner to ensure their tran s

mission by their deadlines. In o ther words, message scheduling on CAN corresponds to the

proper assignm ent of IDs to messages.

To see the difficulties faced in scheduling messages on CAN. we must first consider a

typical CAN network adap ter (N A). Various CAN NAs usually have m em ory space for

one or m ore messages. W hen a processor has to send a message, it will calculate the ID

and tran sfer the message (w ith its ID) to the NA. From then on. the NA will function

autonom ously: it will com pete for the bus with the m essage ID. and upon ge tting access, it

will tran sm it the message (there m ay be an option to notify the processor once a message

has been sen t).

Once a message has been transferred to the NA for transm ission, its ID will stay fixed

unless the processor comes and updates it. If the ID is to be derived from the m essaged

priority, th a t priority should stay fixed (at least for reasonably long periods of tim e). For

this reason, fixed-priority scheduling is a natural fit for CAN. Each message will have a

unique priority which will form its ID. However, in general, fixed-priority schemes give lower

utilization th an other schemes such as non-preemptive ED F. Non-preem ptive scheduling

under release tim e constraints is N P-hard in the strong sense [50], m eaning th a t there is

no polynom ial tim e scheduler which will always give the m aximum schedulable utilization.

However, the au thors of [120] showed th a t EDF performs b e tte r than o ther sim ple heuristics.

This is why several researchers have used EDF for netw ork scheduling [26.54.121]. This

m otivates us to use EDF to schedule messages on CAN, bu t ED F incurs high overhead (as

discussed la te r) which makes it im practical for CAN.

In this section, we first describe the problems associated with fixed-priority and EDF

scheduling, then in Section 7.3.4, we present MTS as a solution for these problem s. MTS

combines E D F and fixed-priority scheduling to overcom e the problems of ED F. making

MTS p ractical for CAN.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pnonty deadline uniqueness

Figure 7.2: S truc tu re of the ID for ED F scheduling.

7.3 .1 F ixed-P riority Scheduling — Low U tilization

As already m entioned, fixed-priority scheduling is the na tu ra l choice for curren tly avail

able CAM bus interface chips. T he m ost popular form of fixed-priority real-tim e scheduling

is rate monotonic (RM) [76]. In this scheme, messages w ith a shorter period get higher

prio rity th an those with longer periods. RM assumes th a t deadline equals period, which

is not always true in reality. Instead of RM. we can use its close relative, deadline mono

tonic (D M) scheduling [69]. W ith DM , messages with tigh ter relative deadlines are assigned

higher priorities and these priorities form the ID for each message [112,113].

DM is a simple scheme and is easily implementable on CAN. However, to get g rea ter

schedulable utilization, we would like to use EDF to schedule messages on CAN.

7 .3 .2 E arliest-D eadline Scheduling — D eadline Encoding P roblem s

E D F works by giving higher priority to messages with earlier deadlines-to-start tra n s

mission at the scheduling in stan t. O ur goal is therefore to m ake the IDs reflect the deadlines

of m essages. Moreover, each message m ust have a unique ID (which is a requirem ent of

C A N). This can be done by dividing the ID into three fields [102]. as shown in Figure 7.2.

The deadline field is derived from the deadline of the message. Actually, it is the logical

inverse of the deadline because we want the shortest deadline to have the highest prior

ity. To deal with the case when two messages have the sam e deadline, each message has a

unique code which forms its uniqueness field. If two messages have the sam e deadline, the

one w ith the higher uniqueness code will win. This uniqueness code also serves to identify

the m essage for reception purposes. For ED F scheduling, messages may be assigned codes

a rb itra rily as long as they are unique for each message [102]. However, as we will see later,

the question of assigning uniqueness codes will be critical in M TS.

In Figure 7.2. the priority field is a single bit used to distinguish real-tim e and non-real-

tim e messages. It is 1 for real-tim e messages and 0 otherw ise. This ensures th a t real-tim e

messages always have higher priority than non-real-time ones.

As tim e progresses, absolute message deadlines (i.e., logical inverse of the ac tual dead

lines) get larger and larger. Eventually, they will require m ore bits than are available in the

CAN ID field. The obvious solution is to use slack time [102] (tim e to deadline) instead of

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the deadline itself, but this introduces two o ther problem s:

P i . Remaining slack tim e of a message changes w ith every clock tick. This will require

IDs of all messages to be updated continually (a t the s ta rt of each a rb itra tio n round).

This will put too much burden on the local C PU .

P 2 . A typical com m unication workload in a real-tim e control system m ay have messages

with vastly different deadlines. This m eans th a t we must encode a wide range of

laxities, and there m ay not be enough bits in the CAN ID field to do this.

Problem P i can be solved by using a w rap-around scheme which we describe in Sec

tion 7.3.3. The main reason EDF is im practical for CAN is because of P 2 : too m any bits

are required for the deadline field in the ID. In a typical workload, messages associated with

high-speed drives may have deadlines in the hundreds of microseconds range (high-speed

messages). O ther messages, such as those related to tem peratu re sensors, m ay have dead

lines of several seconds (low-speed messages). If we represent deadlines a t the granu larity

of. say, a microsecond, then more than 2 0 bits will be required to represent deadlines of

several seconds.

One may say th a t if the extended format of CAN is used with its 29-bit IDs, then there

will be enough bits to represent deadlines with enough left over for the uniqueness field.

U nfortunately, if this scheme is used, each message will be 20 bits longer com pared to the

standard 1 1 -bit form at of CAN (the extended form at uses two more fram ing bits th an the

standard form at). This means th a t 20-30% bandw idth will be wasted ju st because of using

the longer ID form at, and the loss in schedulability (because of blocking effects of longer

message frames) will be even greater. This makes E D F im practical for CAN.

7 .3 .3 T i m e E p o c h s

Here we discuss a solution to problem P i . We will face the same problem with MTS

and we will use the sam e solution.

One simple way to solve P I will be to redesign the bus interface chips to have pro

gram m able counters in appropriate positions of th e ID. This way. the slack tim e will be

updated autom atically a t every clock tick. However, a t present such chips are not com

mercially available. Even if they were, they would be more expensive th an chips w ithout

counters. This m otivates us to investigate a softw are solution (a cost/perfo rm ance tradeoff).

In a software solution, the CPU will still have to u p d a te the ID, but we w ant to reduce the

frequency of these updates, i.e., spend less C PU -tim e on updates. Our solution uses actual

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deadlines (instead o f slack tim e) but expresses them relative to a periodically-increasing

reference called the start o f epoch (SO E). T he tim e between two consecutive SOEs is called

the length o f epoch. I. Then, the deadline field for message i will be the logical inverse of

di — SOE = d{ — L£J I, where d, is the absolute deadline of message i and t is the curren t

tim e (it is assum ed th a t all nodes have synchronized clocks [31]). Value of t depends on

w hat fraction of C P U -tim e the designer is willing to allow for ID updates. Let th is fraction

be x. Let M be th e M IPS of the CPU and n be the num ber of instructions required to do

the update. Since each update must be I seconds ap art, t > r V/" l0g -

This ID up d a te scheme is needed for M TS as well. Next, we describe the details of

M TS. then in Section 7.3.5. we present a protocol to implement the ID update scheme.

7.3.4 M TS

MTS a ttem p ts to give high utilization (like ED F) while using th e s tan d ard 1 1 -bit ID

form at (like DM). M TS can be thought of as a cross between ED F and DM.

In DM, an 1 1 -b it ID can represent ’2048 messages. No realistic system will have this

m any different m essage stream s, so th a t a few ID bits will remain unused. T he goal is to

use these bits to enhance schedulability. Suppose there are an equal num ber of high-speed

and low-speed m essages in a workload. If the high-speed ones have a ten tim es faster ra te ,

they will use ten tim es more bandw idth th an low-speed messages. This m eans th a t if we

can increase the schedulability of ju st high-speed messages, we will get a large im provem ent

in overall schedulability.

The idea behind M TS is to use ED F for high-speed messages and DM for low-speed ones.

F irst, we give high-speed messages priority over low-speed and non-real-tim e ones by se tting

the most significant bit to 1 in the ID for high-speed messages (F igure 7.3a). This p ro tects

high-speed messages from all o ther types o f traffic. If the uniqueness field is to be 5 bits

[127] (allowing 32 high-speed messages), and the priority field is 1 b it, then the rem aining 5

bits are still not enough to encode the deadlines (relative to the la test SO E). O ur solution

is to quantize tim e in to regions and encode deadlines according to which region they fall in.

To distinguish m essages whose deadlines fall in the same region, we use the D M -priority of

a message as its uniqueness code. This makes MTS a hierarchical scheduler. At the top

level is ED F: if the deadlines of two messages can be distinguished a fte r quan tization , then

the one with the earlier deadline has higher priority. At the lower level is DM: if messages

have deadlines in th e sam e region, they will be scheduled by their DM priority.

We can calculate length of a region (/r) as lT = where D max is the longest relative

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deadline DM priority

(a)

0 I DM pnonty

(b)

0 0 fixed pnonty

(C)

Figure 7.3: S tru c tu re of the ID for MTS. Parts (a) through (c) show the IDs for high-speed,

low-speed, and non-real-tim e m essages, respectively.

. 000 . . 001 . 010 . . Oil 100 . 101 _ _ 110 II I

I I 1---------1-------- 1 I-------- 1-------- 1---------1 ►
SOE end of epoch

I Dmax

Figure 7.4: Q uantization o f deadlines (relative to s ta r t of epoch) for m = 3.

deadline of any high-speed message and m is the width of the deadline field (5 bits in this

case). This is clear from Figure 7.4 (shown for m = 3). The worst-case situation occurs if

a message w ith deadline D max is released just before the end of epoch so th a t its absolute

deadline lies £ + D max beyond the current SOE. The deadline field must encode this time

span using m b its leading to the above expression for lr .

We use DM scheduling for low-speed messages and fixed-priority scheduling for non-real-

time ones, w ith the latter being assigned priorities arbitrarily . T he IDs for these messages

are shown in Figures 7.3 (b) and (c) respectively. The second-m ost significant bit gives

low-speed messages higher priority th an non-real-time ones.

This scheme allows up to 32 different high-speed messages (periodic or sporadic). 512

low-speed messages (periodic or sporadic), and 480 non-real-tim e m essages1 — which

should be sufficient for most applications.

7.3.5 ID U p d ate P rotocol

The IDs of all high-speed messages have to be updated at every SOE. One way to do this

is to have a periodic (tim er-driven) process at every node which wakes up every I seconds

and updates IDs of all ready messages. Because clocks are not perfectly synchronized. ID

updates on different nodes may occur a t slightly different tim es. This can cause priority

inversion if the ID of a low-priority message is updated before th a t of a high-priority one.

’CAN disallows consecutive zeros in the six most significant bits of the ID. This means th a t 32 codes for
non-real-time messages are illegal which leaves 512 — 32 = 480 legal codes.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Then, for a small window of tim e, the low-priority message will have a higher p rio rity ID

than the high-priority message. To avoid this problem , we m ust use an agreement pro tocol

to trigger the ID update on all nodes. The CAN clock synchronization algo rithm [31]

synchronizes clocks to within 20/xs, so that the ID update processes on various nodes will

wake up w ithin *20^s of each o th er. A simple agreem ent protocol can be th a t one process

is designated to broadcast a message on the CAN bus. This message will be received by all

nodes a t the same time (because of the nature of the CAN bus) and upon receiving this

special message, all nodes will upda te the IDs of their local messages. But this pro toco l

has two disadvantages. F irst o f all. too much CAN bandw idth is wasted tra n sm ittin g the

ex tra message every I seconds. Moreover, a separate protocol m ust be run to elect a new

leader in case the old leader fails. Instead, we use the following protocol which is n o t only

robust bu t also consumes less bandw idth. Upon activation, each ID update process takes

the following actions:

1. Set a flag to inform the CAN device driver th a t the ID update protocol has begun.

2. Configure the CAN network adap ter to receive all messages (by adjusting the receive

filter).

3. Increm ent the da ta length (DL) field of the highest-prioritv ready message o n th a t

node.

After tak ing these actions, the process blocks on a tim er till the next SOE.

T he first incremented-DL m essage to be sent on the CAN bus will serve as a signal to all

nodes to update the IDs of their messages. If the original DL of the message is less th a n 8 ,

then increm enting the DL will result in transmission of one ex tra d a ta byte (device drivers

on receiving nodes strip this e x tra byte before forwarding the message to the app lication as

described la ter). If the DL is already 8 . CAN adapters allow the 4-bit DL field to be set to

9 (or higher) but only 8 d a ta bytes are transm itted .

Now. each node sta rts receiving all messages tran sm itted on the CAN bus. T he device

driver on each node has a table listing the IDs of all message stream s in the system along

with their d a ta lengths. As messages arrive, the device driver compares their DL field to

the values in this table until it finds a message with an increm ented DL field. All nodes

receive th is message at the sam e tim e and they ail take the following actions:

1. Restore the receive filter to re-enable message filtering in the NA.

2. If th e local message whose DL field was increm ented by the periodic process has not

been transm itted yet, then decrement the DL field back to its original value.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. U pdate message IDs to reflect the new SOE.

Each node receives the incremented-DL m essage a t the same time, so the ID update

process on each node s ta r ts a t the same tim e. A fter the first increm ented-DL message

com pletes, the next-highest-priority message begins transm ission. As long as all nodes

com plete their ID updates before this message com pletes (a window of a t least oofis since

this message contains a t least one da ta byte), all messages will have updated IDs by the

tim e the next bus a rb itra tio n round begins and no priority inversion will occur. In case one

or m ore nodes are slow and cannot complete the ID update w ithin this window of tim e, all

nodes can be configured to do the update while th e n th message after the first increm ented-

DL m essage is in transm ission, where n is a small num ber large enough to allow th e slowest

node to calculate all new IDs and then ju st w rite these to the NA while the n t>l m essage is

in transm ission.

This protocol incurs a network overhead of 16 bits every C seconds (com pared to 47

bits per epoch for the simple leader-based agreem ent protocol). Reception o f the first

increm ented-D L message causes the device drivers to set the DL fields of their local messages

back to their original values, but before this can com plete, the next transm ission (also with

an increm ented DL field) has already started . T hese two messages have 8 e x tra d a ta bits

each (worst-case) which leads to the 16-bit overhead. On the CPU side, the periodic process

incurs some overhead. M oreover, while the netw ork a d a p te r’s filter is disabled, the device

drivers m ust process two messages which may or m ay not be m eant for th a t node. The

device drivers must perform filtering in software and discard messages not m eant for their

node. M easurements of these various CPU overheads are in Section 7.5.3.

7.3 .6 Schedulability C onditions

For M TS. we want off-line schedulability conditions which, when satisfied, will guaran tee

th a t all real-tim e messages will meet their deadlines. We will first review sim ilar conditions

for non-preem ptive DM. and then develop those for M TS.

D ead lin e M onotonic

For the non-preem ptive case, a message i is feasible if all higher-priority m essages are

feasible and message i finds an opportunity to s ta r t transm ission sometime during [0 , D, —

C,]. If messages are num bered according to the ir priority w ith j = 1 being th e highest-

priority message, then i is schedulable [54] if:

31 6 5 . Z.\{t/T]]Cj + C p < t , where S = { set of all release times o f messages

1 ,2 , • • t - I through tim e D, - C,} U{D, - C ,}; T j. C j , and Dj are the period , length,

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

start of region end of region

dz d< d,

~ 1
start of region end of region

Figure 7.5: Suppose y has higher DM -prioritv th an x but z does not. Then in (a) , x has

the highest priority, w hereas in (b). it has the lowest.

and relative deadline of message j : and Cp is the length of the longest possible packet.

MTS

First, we will discuss the schedulability check for high-speed messages and then look at

low-speed ones. T he worst-case loading conditions for a high-speed message invocation x

result when there is

1 . worst possible traffic congestion, and

2 . worst possible deadline encoding.

The first s itua tion is created by releasing all messages a t the sam e time t = 0 as long

as C j / T j < 1. T he second occurs when dead line-to -start of x falls at the s ta r t of a

region as illustrated in Figure 7.5.

Now. we can d raw a parallel between schedulability conditions for MTS and those for

DM. From the above discussion, note tha t invocation y has higher priority than invocation

x (belonging to sep ara te message stream s) if y satisfies one of the following two conditions:

1. (dx - C x) > (dy - C y), or

2 . (a) (dx - C x) < (d y - C y) < (dx - C x + l r). and

(b) DM prio rity of y is greater than th a t of x . and

(c) y is released before dx - Cx .

We can use these conditions to determine schedulability of some high-speed message stream

i. We identify all invocations of message s tream s j which have higher priority th an the

first invocation of i and schedule them according to M TS. If the bus ever becom es idle

during interval [0, Z), — C ,], then stream Fs first invocation will get a chance to run and i is

feasible. Formally, a high-speed message stream i is schedulable under MTS if and only if

J2j=i Cj / T j < I and it satisfies the following condition:

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3f € S. Ylj I t / T j l 'C j + CP < t .

where j = { 1 . 2 , . . . , i - 1 . 1 + 1 , /i}. S ={set of release tim es of each j through tim e

Di — C,} U{Di — C,}, Cp is the size of a longest possible packet, and function ff/T ,]*

equals [t / Tj] if last invocation o f j released before t has higher priority than the first

invocation of t: and equals [t jTj] — 1 otherwise.

Checking schedulability of low-speed messages is simple — ju st check DM schedulability

for each. Since high-speed messages have shorter deadlines than low-speed ones, they will

autom atically have higher DM priority (which is exactly w hat we want).

7.4 Im plem entation

In this section, we present schemes to implement MTS on M otorola's TouCAN module

[8 8] which features 16 message buffers and internal a rb itra tion between transm ission buffers

based on m essage ID. As such, TouCAN is representative of m odern CAN NAs. We explore

several in ter-related im plem entation issues:

• M anaging buffer space in the netw ork adapter.

• Queuing and sequencing messages in host CPU.

• Controlling priority inversion.

In the following, we present a brief description of TouCAN. the problems faced when

implementing real-tim e scheduling on CAN. and our solution to these problems for MTS.

7.4.1 M otorola TouCAN

TouCAN is a module developed by M otorola for on-chip inclusion in various microcon

trollers. TouCAN lies on the same chip as the CPU and is interconnected to the CPU

(and other on-chip modules) th rough M otorola's interm odule bus. M otorola is currently

m arketing the MC68376 [8 8] m icrocontroller which incorporates TouCAN w ith a CPU32

core.

TouCAN has 16 message buffers. Each buffer can be configured to either transm it or

receive messages. W hen more than one buffers have valid messages waiting for transm ission,

TouCAN picks the buffer with the highest-priority ID and contends for the bus w ith this ID.

In this respect TouCAN differs from older CAN network adapters such as the Intel 82527

[45] which a rb itra te between buffers using a fixed-priority, daisy-chain scheme which forces

the host C PU to sort messages according to priority before placing them in the network

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adapter buffers. This was one of th e main reason we picked TouCAN for im plem enting

MTS.

7.4.2 TouC A N D evice E m ulation

At this tim e, TouCAN is available only w ith the MC68376 m icrocontroller. To imple

ment MTS within EMERALDS on TouC A N . we would first have to port EM ERALDS to

the M C68376 microcontroller. To avoid th is, we instead used device em ulation [42] under

which a general-purpose m icrocontroller is m ade to em ulate a network adap ter. This em

ulator interfaces to the host CPU th rough an I/O bus. The em ulator presents the host

CPU the sam e interface th a t the ac tu a l network adap ter would. The em ulator receives

commands from the host CPU , perform s the corresponding actions, and produces the sam e

results th a t the actual network a d a p te r would.

Network adap ter emulation presents two advantages over using the actual netw ork ha rd

ware. F irst, design time is reduced significantly since software does not have to be ported

across platform s. Moreover, software testing is easier w ith an em ulator than with an actual

network ad ap te r because the em ula to r can be easily m ade to em ulate network conditions

that may be unpredictable or difficult to reach with a real network (such as various tra n s

mission and reception related events, error conditions, etc.).

The disadvantage of network em ulation is th a t overhead m easurem ents are not exact.

The M TS im plem entation overheads we are interested in are:

1. In terrup t handling, context sw itching, and o ther associated operating system over

heads.

2. Message queuing on host C PU .

3. D ata transfer between host C P U and network adapter.

W ith network emulation, the first two overheads can be measured exactly since they

depend solely on the host CPU and the operating system . The th ird elem ent will have

some inaccuracy, but since for CAN, only 6-14 bytes per message (including message ID)

are transferred between the host and the adap ter, this inaccuracy should be insignificant.

We use a 68040 board to em ulate the TouCAN module and connect it to the host CPU

(another 68040) through a VM E bus. A TouCAN-emulating C + 4- program runs on the

em ulator. Through the VME bus, it presents the same m em ory-m apped interface to the

host th a t a TouCAN module would. The em ulator software executes an infinite loop to

check various em ulated command “reg isters.” W henever the host modifies any of these

registers, the em ulator takes the app ro p ria te actions and interrupts the host through the

VME bus if needed.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.4.3 P roblem s In Im plem enting M essage Scheduling On C A N

In im plem enting M TS on CAN. our goal is to minimize the average overhead suffered

by the host node for tran sm itting a message. T his overhead has the following com ponents:

1. Q ueuing/buffering messages in softw are if netw ork adap te r buffers are unavailable.

2. T ransferring messages to network ad ap te r.

3. Handling in te rrup ts related to message transm ission.

We do not consider overheads related to pro tocol processing because applications using CAN

usually do not need to use protocol stacks; in stead they com m unicate directly w ith th e CAN

device driver for efficiency reasons. Moreover, such overheads are heavily O S-dependent.

To understand the difficulties involved in reducing message transm ission overhead , it

serves to com pare CAN to o ther LAN protocols such as token-based schemes (token-ring ,

FD D I, etc .). In the la tte r , the network becomes available periodically (whenever th e local

node has the token) a t which tim e, the netw ork a d ap te r can transm it messages in its buffer.

Priority inversion can occur if adapter buffers are filled with low-priority m essages. If a

high-priority m essage arrives a t this point, it has to be buffered in software to w ait for one

or more messages already in the adapter to be sent. But this priority inversion is bounded

by the token ro ta tion tim e and number of buffers in the ad ap te r [43],

In CAN. priority inversion can be unbounded. If the adap te r buffers contain low -priority

messages, these messages will not be sent as long as there are higher-prioritv messages

anywhere else in the network. Consequently, a high-priority message can stay blocked in

software for an indeterm inate period of tim e, causing it to miss its deadline. Because o f this

priority inversion problem , any network scheduling im plem entation for CAN (regard less of

which scheduling policy — DM or MTS — is being im plem ented) has to ensure th a t a d ap te r

buffers always contain the highest-priority m essages and only lower-priority m essages are

queued in software.

7.4.4 M TS on TouC A N

Suppose B buffers are allocated for m essage transm ission (usually B is abou t tw o-th irds

of the to ta l num ber of buffers; see Section 7 .5 .3). If the to ta l num ber of ou tgo ing m essage

stream s is B or less, then M T S’s im plem entation is straight-forw ard: assign one buffer

to each stream . W henever the CAN device d river receives a message for transm ission , it

sim ply copies th a t m essage to the buffer reserved for th a t stream . In this case, no buffering

is needed within the device driver which also m eans th a t there is no need for the CAN

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adap ter to genera te any in terrup ts upon com pletion of message transm ission2, and this

leads to the lowest-possible host CPU overhead.

W hen num ber o f message stream s exceeds B . some messages have to be buffered in

software. To reduce host CPU overhead, we w ant to buffer the fewest possible messages

while avoiding p rio rity inversion. Just as MTS tre a ts low-speed and high-speed messages

differently for scheduling purposes, we treat these messages differently for im plem entation

purposes as well. O u r goal is to keep the overhead for frequent messages (those belonging to

high-speed periodic s tream s) as low as possible to get a low average per-m essage overhead.

In our im plem entation , if the num ber of periodic high-speed message stream s N h p is less

than B , then we reserve N h p buffers for high-speed periodic stream s and tre a t them the

same as before (no buffering in software).

The rem aining L = B — N h p buffers are used for high-speed sporadic, low-speed. and

non-real-tim e m essages. As these messages arrive a t the device driver for transm ission , they

are inserted into a priority-sorted queue. To avoid priority inversion, the device driver must

ensure th a t the L buffers always contain the L messages a t the head of th e queue. So. if a

newly-arrived m essage has priority higher than th e lowest-priority message in the buffer, it

"preem pts'’ th a t m essage by overwriting it. This preem ption increases C P U overhead but

is necessary to avoid priority inversion. The preem pted message stays in th e device driver

queue and is eventually tran sm itted according to its priority.

Among these L buffers, the buffer containing the I -(- l (/l lowest prio rity message is

configured to trigger an in te rrup t upon message transm ission (/ is defined la te r). This

in terrupt is used to refill the buffers with queued messages. [must be large enough to

ensure th a t the bus does not become idle while th e in terrupt is handled and buffers are

refilled. Usually an / of 1 or 2 is enough (tvhich can keep the bus busy for 47-94 fis

minimum). Note th a t this puts a restriction on L th a t it must be greater th an I . Making

L less than or equal to / can lead to the CAN bus becoming idle while th e ISR executes,

but makes more buffers available for high-speed periodic messages. This can be useful if

low-speed messages m ake up only a small portion o f the workload and high-speed sporadic

messages are e ither non-existent or very few. T his tradeoff is discussed in m ore detail in

Section 7.5.4.

If N h p > B then we m ust queue even high-speed periodic messages in softw are. Then

we have a single prio rity -sorted queue for all outgoing messages and all B buffers are filled

from this queue.

2The CAN adap ter m ust be program m ed to generate in te rru p ts if messages are queued in softw are waiting
for adapter buffers to becom e available, which is not the case here.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O verheads

For stream s with dedicated buffers, the CPU overhead is just the calculation of the

message ID and transferring the message da ta and ID to the network a d a p te r. Note that

message d a ta can be copied directly from user space to the netw ork ad ap te r to keep overhead

to a m inim um .

For messages which are queued in software, there is an ex tra overhead of inserting the

message in the queue (including copying the 8 or fewer bytes of m essage d a ta from user

space to device driver space before inserting in the queue), plus the overhead for handling

in terrup ts generated upon message transmission. This in te rru p t overhead is incurred once

every Q — I message transm issions, where Q is the num ber of buffers being filled from the

queue (Q can be B or L depending on whether high-speed periodic m essages are buffered

or not). Also, each message will potentially have to preem pt one o th e r message. The

preem pted message had already been copied to the netw ork adap ter once and now it will

have to be copied again, so the preemption overhead is equivalent to the overhead for

transferring the message to the network adapter. Table 7.1 summ arizes the overheads for

various types of messages. M easurements of these overheads are in Section 7.5.

Message type Overhead

Not queued Calculate ID + copy to NA

Queued C alculate ID -I- insert in priority queue + copy to NA + preem pt +

in te rru p t/(Q - I)

Table 7.1: Sum m ary of overheads for M TS's im plem entation on TouCAN.

Note th a t DM scheduling also incurs similar overheads. The only difference is th a t the

ID of m essage stream s under DM is fixed, so a new ID does not have to be calculated each

time. O ther than th a t , im plem enting DM on TouCAN is no different th a n im plem enting

MTS.

7.4.5 P reem p tion as a M echanism for C ontrolling Priority Inversion

In CPU scheduling, priority inheritance [101] is a well-known m echanism for handling

priority inversion between threads of execution. If a low -priority th read holds a resource

needed by a high-priority th read , the former's priority is tem porarily increased to th a t of

the la tte r until the resource is released.

For C PU scheduling, priority inheritance is feasible because resources (such as a critical

section) are usually held for short periods of tim e com pared to the overall execution times

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of th re a d s . Tem porarily elevating thread priorities for these brief du rations does not hurt

schedulability much.

B ut for network message transm ission, a message holds the resource under contention

(i.e., th e netw ork adap ter buffer) until it completes transm ission. Using priority inheritance

in th is s itu a tio n can lead to a significant schedulability degradation (see Section 7.5.5).

A n o th e r technique for tackling priority inversion in CPU scheduling is preem pt-and-

re s ta rt [114] in which the resource holder is preem pted and forced to re s ta r t la ter from the

beginning of the critical section. The disadvantage of this scheme is th a t once a th read is

p reem p ted , all CPU work it had done since entering the critical section is lost.

O u r netw ork preem ption scheme is sim ilar to p reem pt-and-restart. but unlike CPU

scheduling, no “netw ork work” is lost due to preem ption (although som e e x tra C PU over

head is incurred). This makes preem pt-and-restart more a ttractive for netw ork scheduling

than for C PU scheduling because the only cost is th e preem ption overhead.

Preem ption Overheads in Various Networks

P rio rity inversion within the network adap ter is a problem in all shared-access networks.

In a netw ork such as CAN where message sizes are small, preem ption costs are low, so

p reem ption -and-restart can be used effectively. But for networks such as FD D I and E thernet

which have large packet d a ta units in the kilobytes, it would appear th a t preem ption is

infeasible, but in reality th a t is not the case. Most network adapters (such as LANCE [4]

for E th e rn e t) do not keep message da ta in network ad ap te r memory. Instead , d a ta is kept

in host m em ory and the network adapter is provided w ith pointers to th is d a ta and it uses

DMA to transfer d a ta as needed. If this is the case, preem ption can be used to address the

priority inversion problem in these networks as well. Previous solutions to reduce priority

inversion for such networks include schemes which lim it the number o f FIFO buffers used

for transm ission [43]. This reduces priority inversion but also increases the frequency of

in te rru p ts . If preem ption is used, the maximum allowable FIFO queue length can be used

which reduces in terrup t overhead to a minimum; th is a t the low cost of overw riting a few

m em ory locations containing pointers to message d a ta .

7.5 R esults

In th is section we first evaluate the schedulability performance o f M TS as compared

to ED* and DM. ED* is an imaginary scheduling policy which works the sam e as EDF

but requires only an 11-bit ID. We would expect M T S ’s performance to lie betw een those

of ED * and DM. To check schedulability under ED *, we use the schedulability check for

non-preem ptive ED F in [1*21].

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O ur m easurem ents show th a t performance of M TS depends upon various workload char

acteristics. We identify th e conditions under which M TS perform s well and show th a t these

conditions are typical o f control applications.

We also m easure the various overheads related to im plem entation of MTS and present

results to justify certain im plem entation-related design decisions.

7.5.1 W orkload M od el

To com pare the schedulability performance of ED *. M TS. and DM. we generate w ork

loads w ith different characteristics and test their schedulability under each of the three

scheduling policies. Unless s ta ted otherwise, workloads are generated as follows.

Each workload has 8 -15 high-speed periodic s tream s. 2 high-speed sporadic stream s

(13-25% of the num ber o f periodic stream s). 25 low-speed periodic stream s, and 4 low-

speed sporadic stream s. Deadlines of high-speed m essages are set random ly in the 0 .5-2m s

range while those for low-speed messages are set random ly betw een 2-100m s. Periods of

periodic messages are calculated by adding a small random value to the deadline, while

M IT of sporadic stream s is set to 2s (for both low-speed and high-speed sporadic s tream s).

Length of epoch is 2 ms.

W orkloads for a p articu la r experiment are genera ted by changing one of the above pa

ram eters (such as deadlines of low-speed messages, num ber of high-speed sporadic stream s,

and £). For each experim ent, different da ta points a re ob tained by varying the num ber of

high-speed periodic s tream s from 8 to 15 which leads to a variation in workload utilization

roughly in the 50-100% range. For each da ta point, we genera te 1000 workloads (w ith a

fixed num ber of high-speed periodic stream s) and m easure the percentage found feasible un

der ED*. M TS. and DM . Increasing the number of w orkloads beyond 1000 did not produce

any significant variation in measured results.

All results for MTS include the overhead resulting from 16 e x tra bits per epoch for ID

updates.

7.5.2 Schedulab ility Comparisons

MTS was designed based on the premise th a t ce rta in m essages have relatively short

periods/deadlines (high-speed messages) while others have relatively long periods/deadlines

(low-speed messages). Figures 7 .6 -7 . 8 show th a t M TS goes from being close in perform ance

to DM (F igure 7.6) to being close in performance to ED * (F igure 7.8) as deadlines of high

speed and low-speed m essages become more and m ore d ifferentiated .

In Figure 7.6, low-speed messages have relatively tig h t deadlines (2-50m s), so M TS's

perform ance is closer to th a t of DM than to th a t of ED *. O ur m easurem ents showed th a t

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100.0

* I
■O 80.0 r
0 I
3 •u
1 60 .0 ro
3 j-
J 40.0 L-

e
uL.

EDj
MTSj
DM

20.0 r

0.0
60 .0 70.0 80.0 90.0 100.050.0

Utilization (%)

Figure 7.6: Schedulability when deadlines of low-speed messages are set in the 2-50m s

range.

100.0 r

a 80.0 -

2b
£ 60 .0 r
» !

2
a 1

£ 40 .0 r

ED7]
MTSl
DM j

0.0
6 0 .0 70.0 80 .0 90.0 100.050.0

Utilization (%)

Figure 7.7: Schedulability when deadlines of low-speed messages are set in the ‘2 - 1 0 0 ms

range.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100.0

80.0 'r

S so.o j-
4*2
I !

4 0 .0 ■-

ED-1
MTSI
DM [

20.0 h

0.0
50.0 60.0 70.0 80 .0 90.0 100.0

Utilization (%)

Figure 7.8: Schedulability when deadlines of low-speed messages are set in the 2 - 2 0 0 ms

range.

at the 8 6 % utilization m ark . 89% of the workloads infeasible under M TS were infeasible

because of low-speed m essages. In other w ords, when the low-speed portion of the workload

is "difficult” to schedule (because of tight deadlines or any other reason), M T S ’s performance

is significantly worse than th a t of ED*, although it is still much b e tte r th an DM because

M TS schedules high-speed messages m ore successfully than DM. In fact. M TS feasibly

schedules about 20 percentage points more workloads than DM for workload utilizations of

80-100% .

In Figure 7.7. low-speed messages have deadlines in the 2-100m s range. This means

th a t low-speed messages are now a smaller portion of the workload (utiLization-wise) which

results in a corresponding increase in perform ance of MTS. It can now feasibly schedule

25-40 percentage points m ore workloads th an DM for workload utilizations of 75-100%.

This trend continues in Figure 7.8 in which low-speed messages have deadlines ranging

from 2ms to 200ms and perform ance of M TS is close to th a t of ED*. For these workload

characteristics, a t the 85% utilization m ark. 63% of the workloads infeasible under MTS

are infeasible because of low-speed messages. Because of this improved schedulability of

low-speed messages, MTS feasibly schedules 30-45 percentage points m ore workloads than

DM for workload utilizations of 70-100%.

Clearly, performance o f M TS relative to ED* and DM is w orkload-dependent. MTS

perform s well when all (or m ost) low-speed messages have deadlines several times larger

th an those of high-speed messages. W hen we look a t workloads of typical real-tim e control

applications, we find th a t there is indeed a great variation between periods of various

tasks (and a corresponding variation in periods/deadlines of messages sent by these tasks).

T he well-known avionics task workload [77,78] is accepted as typifying real-tim e control

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

applications and also has been used by o thers for research on real-tim e scheduling [56].

T he workload is reproduced in Table 7.2. It has 6 tasks w ith deadlines in the 5-50m s

range (i.e.. high-speed tasks) and 11 tasks w ith deadlines in the 59-1000m s range (low-

speed tasks). On this basis, we would expect most real-world com m unication workloads

to conform to the basic premise behind the design of MTS (i.e .. high-speed messages have

relatively tight deadlines and low-speed messages have relatively long deadline), leading to

good perform ance in practical real-tim e control applications.

Execution time (ms) Deadline (ms) P e r io d /M IT (ms)
3 5 2 0 0

2 25 25
5 25 25
1 40 40
3 40 40
5 50 50
8 59 59
9 80 80
2 80 80
5 1 0 0 1 0 0

1 2 0 0 2 0 0

1 2 0 0 2 0 0

1 2 0 0 2 0 0

3 2 0 0 2 0 0

3 2 0 0 2 0 0

1 1 0 0 0 1 0 0 0

1 1 0 0 0 1 0 0 0

Table 7.2: Avionics task workload.

D ep en d en ce on Sporadic Stream s

For the rem aining tests, we use workloads with low-speed messages having deadlines in

the 2-100m s range. Figures 7.9-7.10 show the effect of varying the num ber of high-speed

sporadic stream s. Figure 7.9 is based on workloads w ith no high-speed sporadic s tream s

while the workloads in Figures 7.10 con tain 4 high-speed sporadic stream s (27-50% of the

num ber of high-speed periodic stream s). These figures show th a t as the sporadic com ponent

of th e workload increases. DM suffers a sharp decline in perform ance. M TS’s perform ance

also drops but not as much as th a t o f DM . This affirms th a t deadline-based schemes are

m ore capable of handling sporadic m essages. Increasing the num ber of sporadic m essages

increases the load a t the critical in stan t (using Liu and L ayland’s term inology [76]), even

though overall workload utilization is alm ost unchanged. W ith so m any tight-deadline

messages released at the same tim e, prioritizing messages based on deadlines results in a

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60.0 70.0 80 .0
Utilization (%)

90.0 100.0

Figure 7.9: Schedulability when num ber of high-speed sporadic stream s is 0.

100.0

80 .0 L

* 60 .o r

40 .0 j -

ED* !
MTS|
DM !

20.0 -

0.0
90.0 100.070.0

Utilization (%)
60.050.0

Figure 7.10: Schedulability when num ber of high-speed sporadic stream s is 4.

significant improvem ent in perform ance over fixed-priority scheduling.

7.5.3 C PU O verheads

T he overhead m easurem ents for im plem entation of MTS on a ‘25MHz M otorola 68040

with the EM ERALDS RTOS are in Table 7.3. These m easurem ents are with caches turned

off since autom otive controllers typically do not use caches (to reduce cost, increase pre

dictability, and to fit more I/O devices on-chip).

From this d a ta , we see th a t high-speed m essages with dedicated netw ork adap ter buffers

incur an overhead of

ID calculation + transfer to NA + misc. = 16.8^is/msg.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Operation Overhead (ps)

C alculate ID (high-speed messages)

Insert in priority queue (including copying to device driver m em ory)

T ransfer message to NA (8 d a ta bytes)

P reem pt message

In te rru p t handling and dequeuing o f tran sm itted messages

M iscellaneous (param eter passing, etc.)

3.0

6.3 + 1.55/ q

7.8

7.8

42.4

6 .0

Table 7.3: CPU overheads for various operations involved in im plem enting MTS.

If high-speed periodic messages are queued, then average per-m essage overhead depends

on the num ber of buffers used for transm ission (Q). TouCAN has 16 buffers. Of these.

5-6 are usually used for message reception and their IDs are configured to receive the

various message stream s needed by the node. This leaves about 10 buffers for message

transm ission. T hen, under w orst-case scenario, message transm ission incurs an average

overhead (assum ing 1 = 2):

r » in te rrup t
ID calculation + queuing + preem pt + transfer to NA 4---- —-----— (- misc. =

Q — 1
36.2 + 1.55 / q ^ s/m sg ,

where the worst-case Iq is the to ta l num ber of message stream s using th a t queue. Low-speed

and non-real-tim e messages have fixed IDs. so they incur an overhead o f 33 .2+ 1.55/ q /is/m sg

if all low-speed and high-speed messages share the same queue.

If high-speed messages are using dedicated buffers, then Q — I is sm aller for low-speed

messages. Assuming only 3 buffers are available and I = 2, then low-speed and non-real-

tim e m essages incur overheads of 70.3 + 1.55/ q p s /m sg while high-speed sporadic messages

have overheads of 73.3 + 1.55/ q p s /m sg .

From these num bers we see th a t if a certain node has 7 high-speed periodic stream s.

1 high-speed sporadic stream , 1 0 s tream s of low-speed and non-real-tim e messages, and if

the high-speed periodic messages m ake up 90% of the outgoing traffic while Q — I = 1 for

high-speed sporadic/low -speed/non-real-tim e messages, then average per-m essage overhead

comes to (16.8)(0.9) + (70 .3+ 1.55(11))0.1 = 23.9/z/msg. Overhead is significantly higher if

the num ber of high-speed periodic stream s is large enough that high-speed messages have

to be queued. In th a t case, per-m essage overhead can be twice as m uch as the overhead

when high-speed periodic stream s have dedicated buffers. Fortunately, real-tim e control

applications do not have more th an 10-15 tasks per node (the avionics task workload is

an exam ple). Not all tasks send inter-node messages and those th a t do typically do not

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

send more than 1-2 messages per task . This indicates th a t for m ost applications, dedicated

buffers should be available for high-speed message stream s, resulting in a low per-message

overhead in the 20-25ps range.

We used a simple linked list to sort messages in the priority queue. This works well for a

sm all num ber of messages (5 -10) th a t typically need to be in the queue. For larger num ber

o f messages, a sorted heap will give lower overhead.

Note th a t these overheads are applicable to DM as well. Only difference is that under

DM . the ID does not have to be calculated, so per-message overhead will be 5ps less than

for M TS.

ID Re-adjustment at End o f Epoch

Table 7.4 lists the CPU overheads incurred during the ID u p d a te protocol. Overhead

for the periodic task includes all context switching and CPU scheduling overheads. One

con tex t switch occurs when th e task wakes up and another when th e task blocks. Both of

these are included in the overhead m easurem ents.

Operation Overhead (ps)

Periodic task

Device driver in te rrup t (message arrival)

Read message from NA (8 d a ta bytes)

Software filtering and DL lookup

ID update

6 8 .0

40.4

7.8

3.0

2 .8 per m essage

Table 7.4: CPU overheads for various operations involved in up d a tin g message IDs.

During each ID update, th e device driver receives two messages (each incurring an

overhead of 40.4 + 7.8 + 3.0 = 51.2/is including all context sw itching overheads). After

receiving the first message. IDs of high-speed messages are upda ted . Assuming IDs of 5

messages need to be updated , th e to ta l overhead per epoch becomes 184.4^s. If t — 2ms,

the ID update takes up about 9% of CPU tim e. This motivates us to increase i.

Increasing t increases the level of quantization of deadlines which results in reduced

schedulability for high-speed m essages. But on the other hand, th e netw ork overhead as

sociated w ith ID updates (16 bits per epoch) decreases, leading to increased schedulability.

For I = 2ms. 16 ex tra bits per epoch consume only 0.8% of the netw ork bandwidth for

a lM b /s bus, but their im pact on network schedulability (due to their blocking effect) is

m uch higher. O ur m easurem ents showed th a t with this ex tra overhead, about 2-3 per

centage points fewer workloads are feasible under MTS (for the sam e workload utilization)

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100.0

6 0 .0

£ 6 0 .0
6)

3
4 0 .0£

I# ——#Sporadics=2, /=2ms
| ■-----■ Sporadics=2, /=4ms
h - - A Sporadjcs=6. l=2ms
I ♦ - - ★ Sporadics=6. /=4ms

20.0 I-

h x
100.0

0.0
60 .0 70.0 90.050 .0 80 .0

Utilization (%)

Figure 7.11: Im pact of changing £ on M TS schedulability.

th a n w ithout this overhead. As such, increasing £ can result in a sizeable im provem ent in

schedulability due to reduced ID update overhead which can offset the loss in schedulability

due to coarser quantization.

Figure 7.11 shows the effect of increasing £ on schedulability. It shows th a t when £ is

doubled from 2 ms to 4m s, netw ork schedulability is actually improved slightly when two

high-speed sporadic stream s are in the workload. But when six sporadic stream s are used,

loss in schedulability from coarser quantization is m ore than the gain from reduced ID

u p d a te overhead, so th a t 1-2 percentage points fewer workloads are feasible. These results

show th a t for light-to-m oderate high-speed sporadic loads, increasing £ to 4ms continues to

give good perform ance, and even for heavy high-speed sporadic loads. £ = 4ms results in

only a slight degradation in perform ance.

If £ is increased to 3m s, then the ID update CPU overhead reduces to about 6 % of CPU

tim e, whereas for £ = 4m s. it becomes 4.6% of CPU tim e.

7 .5 .4 Varying L

In Section 7.4.4 we m entioned th a t reducing the num ber of buffers used for low-speed

m essages (L) to less than I -I- 1 can be beneficial since it makes more buffers available

for high-speed periodic m essages. If L is less than / -F 1. then the CAN bus can become

idle while the CPU refills the netw ork adapter buffers. Under worst-case scenario, th e bus

becom es idle after the transm ission of each high-speed sporadic and low-speed message. We

m easure the im pact of th is effect by increasing the length of each of these messages by the

du ra tio n by which the bus was idle. The results are in Figure 7.12. We use / = 2 for these

experim ents, meaning th a t L should be a t least 3 to prevent the bus from becoming idle.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100.0

80 .0 h•oao
2u

i
ZJ

60.0

3
& 40 .0 [O OMTS (3 bufs)

I* - - *M TS (2 bufs)
i-i -M T S (1 buO
□ a DM (3 bufs)
* — x DM (2 bufs) i
A --& D M (1 buf) !

20.0 j-

0.0
50.0 70.0 90.0 100.060.0 80 .0

Utilization (%)

Figure 7.12: Schedulability when num ber of buffers for low-speed messages is decreased

below / + 1 (/ = 2 for these experim ents).

Reducing L to 2 can idle the bus for one message length (47/zs) worst-case and reducing it

to ju s t 1 will m ake the bus idle for 94/is.

The results show th a t reducing L by one has no significant im pact on schedulability. but

perform ance of M TS drops significantly when L is reduced any further. DM is m ore robust

in this m a tte r w ith no significant change in perform ance even when L is reduced to ju s t 1 .

7.5.5 U sing P rior ity Inheritance

It is difficult to determ ine what the schedulability conditions for MTS will be if priority

inheritance is used (instead of preem ption) to control priority inversion between outgoing

messages on the sam e node. The difficulty is in determ ining the worst-case scenario. Releas

ing all messages a t the sam e time may not lead to the worst-case situation since only those

messages in th e netw ork adapter at the tim e of the release will inherit priorities. Releasing

messages w ith som e phase offsets will cause m ore messages to inherit priorities b u t will not

lead to the w orst-case loading of the bus.

Actually, we do not need to kno%v th e exact worst-case situation to show th a t priority

inheritance does not perform as well as preem ption for CAN scheduling. It is clear th a t the

actual w orst-case s itua tion must be sam e as or worse than :

• All m essages released at the sam e tim e.

• Only th e h ighest-priority message suffers any blocking due to priority inheritance. It

can s tay blocked for as much as 1 1 1 /rs (longest message transm ission tim e).

Figure 7.13 shows th e results under th is situa tion . It clearly shows th a t priority inheritance

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• - ED* (preempt) \
• - - • E D * (PI)
 ■---- ■ MTS (preempt)
■ - - ■ MTS (PI)
-i-----------p DM (preempt)
t---------DM (PI)

Utilization (%)

Figure 7.13: Im pact on schedulability of using priority inheritance (P I) instead of preem p

tion.

is not a su itab le policy for handling priority inversion in CAN netw ork adapters because

as much as 10 percentage points fewer workloads are feasible under MTS when priority

inheritance is used, and even worse for DM.

7.6 Conclusion

The CAN s tan d a rd message fram e form at has an 11-bit ID field. If fixed-priority schedul

ing (such as DM) is used for CAN. some of these bits go unused. The idea behind MTS

is to use these ex tra bits to enhance netw ork schedulability. M TS places a quantized form

of the message deadline in these ex tra bits while using the D M -prioritv of messages in the

remaining bits. This enhances schedulability of the most frequent messages in the system

(high-speed m essages) so that MTS is able to feasibly schedule 20-40 percentage points

more workloads than DM.

Since message IDs are based on deadlines, they must be periodically updated. We

presented a protocol to perform this upda te without any priority inversion. This protocol

consumes abou t 5-6% of CPU tim e, but considering the large im provem ents in network

schedulability th a t M TS displays over DM, this ex tra overhead is justified.

We also presented a scheme to im plem ent MTS on the TouCAN network adapter which

is representative of m odern CAN netw ork adapters. The biggest challenge in implem enting

CAN scheduling (be it MTS or DM) is controlling priority inversion within the network

adapter. We showed th a t because of CA N 's characteristics (short m essage size), preem ption

of a message in the adapter by a newly-arrived, higher-priority outgoing message is an

effective m ethod for avoiding priority inversion. The alternative — priority inheritance —

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is not feasible because the e x tra blocking suffered by messages causes a sizeable loss in

netw ork schedulability.

Perform ance of MTS depends in part on the value of t. A large t reduces both C PU

overhead as well as network overhead related to ID updates, b u t increasing t too much

can h u rt schedulability when deadline quantization becomes too coarse. For future work, a

softw are tool needs to be designed which can analyze a particu lar workload and determ ine

the best value of I for it, so th a t M TS can deliver optim al perform ance by giving high

netw ork schedulability while keeping CPU overhead to a m inim um .

A nother avenue of research is to study message reception issues for CAN to try to

reduce the average per-message reception overhead. Unlike m essage transm ission, message

reception does not depend on which network scheduling policy (D M or M TS) is used.

Message reception overheads can be reduced by optimizing in te rrup t handling, using polling

(instead of in terrupts) to detect message arrival, or using a com bination of in terrup ts and

polling.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PT E R 8

CONCLUSIO NS

T he com puting world is no longer lim ited to expensive desktops, w orkstations, and PC s.

Fairly sophisticated consum er item embedded system s are becom ing a part of our everyday

life. These devices run ou r cars, control our sm art inform ation gadgets, and a u to m a te our

homes. W ith annual production volumes reaching tens of millions of units, these em bedded

system s are now an im portan t class of com putation devices.

W hereas embedded system s of the past were simple m icrocontrollers running a few

tasks w ritten in assem bly or C. the embedded system s of today tend to be netw orked,

run application code w ritten in object-oriented (0 0) languages such as Java, execute an

increasing num ber of complex tasks, and need real-tim e OS (RTO S) support — either

to handle audio/video or to in teract with the environm ent. The challenge is to provide

all these OS services while keeping overheads to a m inim um and w ithout pu ttin g e x tra

burden on the application program m er. An efficient OS enables low-cost hardw are to be

used in consum er products which lo%vers per-unit costs and makes the product a ttra c tiv e for

custom ers. This thesis dealt w ith developing low-overhead solutions for high-utilization task

scheduling, support for 0 0 program m ing (in the form of efficient sem aphores), and real

tim e netw orking (protocol arch itec tu re and network scheduling) for embedded system s. We

were able to show th a t these OS services can be m ade efficient w ithout sacrificing flexibility,

restric ting OS APIs, or relying on any special hardw are features.

We now summ arize th e prim ary contributions of this d isserta tion and suggest avenues

for fu ture research.

8.1 Research C ontributions

This dissertation focused on key OS services %vhich m ust be optim ized for good overall

perform ance in embedded system s. P rim ary contributions m ade in th is regard are as follows:

• As a first step , we designed the EM ERALDS RTOS to serve as the platform for the rest of

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

our research. EM ERALD S has highly optim ized context switching, in te rrup t handling, and

system call m echanism . The kernel is m apped in to each address space, so th a t system r a i l s

are reduced to a T R A P followed by a subroutine call. This is done w ithout any hardw are

support (o ther th an a simple page-table M MU) by using characteristics of embedded sys

tem s. EM ERALD S also features optim ized local (in tra-node) message passing using s ta te

messages. We used EM ERALDS as a platform for im plem enting and evaluating the various

optim izations we developed for scheduling, sem aphores, and com m unication as discussed

nex t.

• Task scheduling can take up 5-15% of CPU tim e (especially for relatively slow autom otive

controllers). This overhead has two com ponents: run-tim e overhead and C PU utilization

being less th an 100%. Dynamic schedulers like earliest-deadline first (E D F) give high u ti

lization but incur high run-tim e overhead. S ta tic schedulers like rate-m onotonic (RM) have

low run-tim e overhead but give low utilization. We designed the combined sta tic /dynam ic

(CSD) scheduler which splits tasks into two groups: one scheduled by ED F and the o ther by

RM. C ritical to good performance of CSD is proper assignm ent of tasks to the two groups.

We developed an ite rative method for partition ing tasks. W ith this grouping of tasks. CSD

incurs run-tim e overhead comparable to RM while delivering schedulable utilization com

parable to E D F. We implemented CSD in EM ERALD S and experim ental m easurem ents

show th a t it can feasibly schedule more workloads th an EDF or RM through a reduction

in scheduling overhead of as much as 40% com pared to EDF and RM.

• Networked em bedded systems are able to dow nload code (such as Java applications) and

execute them on-dem and. The advent of Java has m ade 0 0 program m ing im portan t for

em bedded system s. In 0 0 programming, updates to the sta te variables of objects have to be

pro tected through semaphores to ensure m utual exclusion, and this represents significant

run-tim e overhead. We developed a new priority inheritance sem aphore im plem entation

scheme which saves one context switch per sem aphore lock operation in m ost circum stances,

thus reducing sem aphore overheads by ‘20-30% . This is achieved by a com bination of OS

mechanisms and an off-line instrum entation of application code by an au tom atic code parser.

The parser inserts h in ts for the OS in the application code which allow elim ination of context

switches a t run-tim e.

• M any em bedded applications today require In te rnet connectivity (such as Internet tele

phones and w ebTV). Netw'ork bandw idth delivered to these applications is lim ited by host

protocol processing overheads, especially on the receive side. We designed an architecture

for reducing receive-side overhead for processing real-tim e audio and video messages by ex

ploiting the periodic na tu re of such messages. All protocol processing for real-tim e traffic is

perform ed by the application threads which ensures predictability. M oreover, overhead for

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

short messages (such as live voice) is reduced by safely bypassing m ultiple protocol layers,

g rea tly reducing I-cache misses. Also, message d a ta is left in the netw ork ad ap te r buffers

until the application makes a receive call so th a t d a ta needs to be copied only once (w ithout

any hardw are suppo rt from the network adap ter or any restrictions on the network API).

This is possible since the real-time scheduler guarantees an execution period for the au

dio /v ideo applications which in turn ensures th a t d a ta is not left in the netw ork adap ter for

m ore than a known m axim um time interval. We implemented U D P /IP using this architec

tu re within EM ERALDS and dem onstrated its ability to efficiently and predictably handle

sho rt messages (such as live voice) as well as long ones (such as video and stream ing data).

Processing overhead for short messages was reduced 14-20% while th a t for long messages

was reduced 15-22% .

• For embedded applications which require m ultiple controllers within a system (such as a

car or a m anufacturing workcell) to be interconnected by a LAN. we designed a network

scheduling scheme for the Controller Area Network (CAN), which is a popular LAN for

autom otive and factory autom ation applications. Pure EDF scheduling of messages is not

useful for CAN: packets have only 8 bytes of payload so th a t including a deadline with

each packet results in unacceptable overhead. Fixed-priority deadline-m onotonic (DM)

scheduling needs fewer bits to express priorities but it yields relatively low utilization. We

designed a scheduler called the mixed, traffic scheduler (MTS) which combines EDF and

DM using quantized deadlines and a moving tim e frame of reference. Packets are scheduled

based on deadlines if deadlines are distinguishable after quantization: otherw ise they are

scheduled using DM priorities. Not only is MTS feasible for CAN (as dem onstra ted by its

im plem entation w ithin EM ERALDS), it can also feasibly schedule 20-40 percentage points

m ore workloads th a n DM.

8.2 Future Work

As use of em bedded system s (specially IAs) becomes more widespread, several im portant

problem s will have to be addressed as briefly discussed next.

Resource redistribution: One avenue of future research is to explore m echanism s to allow the

OS to reclaim resources (such as CPU tim e and mem ory) granted by the OS to applications.

This should be done w ithout causing the application to crash or m alfunction and with

m inim al change in the way applications are w ritten right now (i.e., application developer

should not be overly burdened). The need for such reclam ation m echanism s will arise in

netw ork-connected IAs which handle diverse functions such as telephony, web browsing, e-

mail, etc. These sm all, portable devices will have com paratively scarce hardw are resources.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The idea is to give applications all the resources they need if resources are available. T hen,

if an urgent task needs to be sta rted (such as handling a phone call), the OS should be

able to redistribute resources to allow the new task to execute. At first, reclaim ing CPU

tim e seems easy, but this is not true for real-time applications which require guaran teed

CPU resources to function correctly. Burdening applications with having to constan tly re

negotiate resource usage w ith the OS is an unreasonable solution. But if the OS can control

the execution tim e of real-tim e applications (e.g.. by controlling the network d a ta flowing

to audio/video applications) then CPU time can be easily reclaimed. Sim ilar techniques

can be used to reclaim m em ory and other resources.

Communication support fo r portable devices: The cu rren t paradigm for a po rtab le device

(such as a PDA) to connect to the Internet is to use a cellular phone to connect to a fixed

Internet host which provides access to the rest of the In ternet. Even mobile IP [105] relies

on a home agent (which is an IP host residing on the hom e subnetwork of the mobile host)

to forward IP packets to the mobile host. These e x tra hops increase netw ork traffic. But

if the Internet and the telephone worlds are to merge, then cell stations them selves will be

In ternet hosts. Then, as the mobile device moves and switches cells, the new cell should now

be its gateway to the rest of the Internet. It would be interesting to investigate protocols

to re-route d a ta stream s so th a t d a ta is au tom atically directed to the correct cell/host as

a portable device moves from one cell to another. For audio/video stream s, the re-routing

m ust also be perform ed in real-time.

Application Programming Interfaces fo r IAs: The m echanism s employed in hard real-tim e

control systems to allow' applications to com m unicate their execution and com m unication

requirem ents to the RTOS do not fit the needs of IAs. For example, the trad itio n a l task

scheduling paradigm requires the application to provide its worst-case execution tim e, pe

riod. and deadline to the scheduler. But in the dynam ic operating environm ent of IAs, the

worst-case execution tim e of applications will probably not be known. This is specially true

for Java code because the application designer has no idea which processors the code may

run on. so no a priori worst-case execution time m easurem ent is possible. As such, new

A PIs must be developed which allow the applications to s ta te their resource requirem ents in

a simple way and m aybe even om it certain pieces of inform ation (which is then dynam ically

determ ined as the application executes).

Scalable servers fo r IA s: Currently, servers are designed to maximize th roughpu t they can

supply to relatively few concurrent clients. As IAs begin to proliferate, the servers m ust be

designed to scale well not only in delivered bandw idth b u t also in the ability to concurrently

support millions of clients. One example would be an In ternet radio sta tion . Such a server

m ay have to service millions of clients although bandw id th requirements of each client may

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not be th a t high. Techniques which can be used to enable such services include aggregation

of flows, m ulticast, and hierarchical organization of the server.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B IBL IO G R A PH Y

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B IBL IO G R A PH Y

[1] T. Abdelzaher, A. Shaikh. F. Jahanian . and K. Shin. "RTCAST: Lightweight m ulti
cast for real-tim e process groups." in Proc. Real-Tim e Technology and Applications
Symposium, pp. 250-259. June 1996.

[2] T. Abdelzaher and K. G. Shin. “O ptim al combined task and message scheduling in
distributed real-tim e system s." in Proc. Real-T im e System s Symposium, pp. 162-171.
1995.

[3] F. Adelstein and M. Singhal. “Real-time causal message ordering in m ultim edia sys
tem s." in Proc. I n t ’l Conf. on Distributed Com puting System s, pp. 36-43. 1995.

[4] Am 79C90 C M O S Local Area Network Controller fo r E thernet (C -L A N C E). Advanced
Micro Devices. Inc., 1994.

[5] Appliance war could make web less open. News Briefs. IEEE C om puter, vol. 30. no.
10. pp. 20-25, O ctober 1997.

[6] A. C. Audsley, A. Burns, and A. J. YVellings. "Deadline m onotonic scheduling theorey
and application." Control Engineering Practice, vol. 1 . no. 1. pp. 71-78. 1993.

[7] B. Bershad. S. Savage. P. Pardyak. E. Sirer. M. Fiuczvnski, D. Becker. C. C ham bers,
and S. Eggers. “Extensibility, safety and perform ance in the SPIN opera ting system ."
in Proc. Sym p. Operating Systems Principles, pp. 267-284. 1995.

[8] T. Blackwell. "Speeding up protocols for sm all messages." in Proc. SIG C O M M . pp.
8 5 -9 5 ,August 1996.

[9] J. Brignell and N. W hite. Intelligent Sensor System s. Bristol, Philadelphia. 1994.

[10] G. Cena, L. D uran te , and A. Valenzano. "S tandard field bus networks for industrial
applications," C om puter Standards and Interfaces, vol. 17. no. 2, pp. 155-167. January
1995.

[11] R. S. Chin and S. T . Chanson, “D istributed object-based program m ing system s,"
A C M Computing Surveys , vol. 23, no. 1 . pp. 91-124. M arch 1991.

[12] F. C ristian, H. Aghili, R. Strong, and D. Dolev, “Atomic broadcast: From sim ple mes
sage diffusion to byzantine agreem ent," in Proc. In t'l Sym posium on Fault-Tolerant
Computing, pp. 200-206, June 1985.

[13] M. Crovella and A. Bestavros, “Self-similarity in world wide web traffic evidence and
possible causes," in Proc. S IG M E T R IC S , pp. 160-169, May 1996.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[14] C. Cunha. A. Bestavros. and M. Crovella, “Characteristics of W W W client-based
traces.” Technical Report BU-CS-95-010. Boston University. C om puter Science De
p artm en t. 1995.

[15] C. Dalton, G. W atson, D. Banks, C. Calamvokis, A. Edwards, and J. Lumley, "Af
terbu rner,” IE E E Network, vol. 7. no. 4, pp. 36-43, July 1993.

[16] P. B. Danzig, S. Jam in, R. Caceres, D. Mitzel. and D. Estrin , “An em pirical workload
model for driving wide-area T C P /IP netw ork sim ulations,” Journal o f In ternetw ork
ing, vol. 3, no. 1. pp. 1-26. March 1992.

[17] A. S. Debelack. J . D. Dehn, L. L. Muchinsky. and D. M. Sm ith. “ Next generation air
traffic control au tom ation .” IB M System s Journal, vol. 34. no. 1, pp. 63-77. 1995.

[18] E. W. D ijkstra. "Cooperating sequential processes,” Technical R eport EW D-123.
Technical University, Eindhoven, the N etherlands, 1965.

[19] P. Druschel and G. Banga. “Lazy receiver processing (LR P): A netw ork subsystem
architecture for server system s.” in Proc. Operating System s Design and Im plem en
tation, O ctober 1996.

[20] P. Druschel and L. L. Peterson. “Fbufs: A high-bandwidth cross-dom ain transfer
facility,” in Proc. Sym p. Operating System s Principles, pp. 189-202. December 1993.

[21] P. Druschel. L. L. Peterson, and B. Davie. ‘‘Experiences with a high-speed network
adap tor: A softw are perspective," in Proc. SIGCO M M , pp. ‘2-13, A ugust 1994.

[22] D. Engler. M. F. Kaashoek. and J . O ’Toole J r.. “Extensibility, safety and perform ance
in the SPIN operating system .” in Proc. Symp. Operating System s Principles, pp.
‘251-266. December 1995.

[23] D. Engler and M. F. Kaashoek. *‘D P F : Fast, flexible message dem ultiplexing using
dynam ic code generation,” in Proc. SIG C O M M , pp. 53-59. August 1996.

[24] W u-chang Feng, D. Kandlur. D. Saha, and K. Shin, “On providing m inim um rate
guarantees over the in ternet.” Technical report. IBM Research report RC 20618. ver
sion '2, November 1997.

[25] Wu-chi Feng and F. Jahanian. “Providing VCR functionality in a constan t quality
video-on-dem and transporta tion service." Technical Report C SE-T R ‘271-95. Univer
sity of M ichigan, EECS Dept., December 1995.

[26] D. Ferrari and D. Verma, “A scheme for real-tim e channel establishm ent in w ide-area
netw orks,” IE E E Journal on Selected Areas in Com munications, vol. 8 . no. 3, pp.
368-379. April 1990.

[27] S. Floyd and V. Jacobson. “Link-sharing and resource m anagem ent models for packet
netw orks,” IE E E /A C M Trans. Networking, vol. 3. no. 4, pp. 365-386. A ugust 1995.

[28] F IP bus fo r exchange o f inform ation between transm itters, actuators, and pro
grammable controllers, NF C4 6 601-607, French Association for S tandard ization .
1990.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[29] V. Frost and B. M elamed. "Traffic m odeling for telecom m unications netw orks.” IE E E
Com m unications Mag., vol. 33, pp. 70-80, M arch 1994.

[30] J . G. Ganssle. The A rt o f Programming Embedded System s. A cadem ic Press. 1992.

[31] M. Gergeleit and H. Streich, "Im plem enting a d istributed high-resolution real-tim e
clock using the CA N-bus.” in 1st In ternational C A N Conference. Septem ber 1994.

[32] P R O F IB U S standard part 1 and 2. D IN 19 245, G erm an In s titu te of N orm alization.
April 1991.

[33] R. G opalakrishnan and G. Parulkar, "B ringing real-tim e th eo ry and practice closer
for m ultim edia com puting,” in S IG M E T R IC S . pp. 1-12. May 1996.

[34] P. Goyal, X. Guo, and II. Vin, "A hierarchical CPU scheduler for m ultim edia opera ting
system s.” in Proc. Operating System s Design and Im plem enta tion (O SD I). O ctober
1996.

[35] R. K. G up ta , Co-Sysnthesis o f Hardware and Software fo r D igital Embedded System s.
Kluwer Academic Publishers. 1995.

[36] A. N. H aberm ann. "Synchronization of com m unicating processes." C om m unications
o f the AC M . vol. 15, no. 3. pp. 171-176, M arch 1972.

[37] V. Hadzilacos and S. Toueg, "Fault-to leran t broadcasts and rela ted problem s.” in
Distributed Systems, S. M ullender. ed itor, pp. 97-145. Addison Wesley. New York,
second edition. 1993.

[38] H. H aertig, M. Hohm uth. J . Liedtke. S. Schoenberg, and J. W olter. "T he perform ance
of ^-kernel-based system s.” in Proc. Sym p. Operating System s Principles, pp. 66-77.
O ctober 1997.

[39] D. H ildebrand. "An architectural overview of QNX.” in Proc. Usenix W orkshop on
M icro-K ernels and Other Kernel Architectures . April 1992.

[40] C. A. R. Hoare, "M onitors: An operating system structu ring concep t.” C om m unica
tions o f the ACM , vol. 17. no. 10. pp. 549-557, October 1974.

[41] N. C. Hutchinson and L. L. Peterson, "T he x-kernel: An a rch itec tu re for im plem ent
ing netw ork protocols.” IE E E Trans. Software Engineering, vol. 17, no. 1. pp. 1-13.
January 1991.

[42] A. Indiresan. A. M ehra, , and K. G. Shin, "T he END: An em ulated netw ork device for
evaluating adapter design,” in Proc. 3rd Intl. Workshop on P erform ability Modeling
o f C om puter and Communication System s. 1996.

[43] A. Indiresan. Exploring Quality-of-Service Issues in Network In terface Design, PhD
thesis. University of M ichigan, 1997.

[44] Industria l Autom ation System s — System s Integration and C om m unication — Field-
bus (draft) (IS A /S P 50-93), Instrum ent Society of America. 1st edition , 1993.

[45] 82527 Serial Com munications Controller Architectural O verview, Intel C orporation ,
1993.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[46] Electrical Equipm ent o f Industrial M achines — Serial Data L ink fo r Real-T im e Com
m unication between Controls and Drives. In ternational E lectro technical Com m ission.
1994. Revision 8 .

[47] Road vehicles — Interchange o f digital information — C ontroller area netw ork (CAN)
fo r high-speed communication. ISO 11898, In ternational S tandards O rganization, 1st
edition, 1993.

[48] Y. Ishikawa, H. Tokuda, and C. VV. M ercer, "An object-orien ted real-tim e program
ming language.” IE E E Computer, vol. ‘25. no. 10, pp. 66-73 . O ctober 1992.

[49] Road vehicles — Interchange o f digital information — C ontroller area netw ork (CAN)
fo r high-speed communication. ISO 11898. 1993.

[50] K. Jeffay, D. F. S tan a t, and C. U. M artel. “On non-preem ptive scheduling o f periodic
and sporadic task s ,” in Proc. Real-Tim e System s Sym posium , pp. 129-139. 1991.

[51] E. D. Jensen and J. D. N orthcu tt. "A lpha: a non-proprietary opera ting system for
large, com plex, d istributed real-tim e system s." in Proc. IE E E W orkshop on Experi
m ental D istributed System s , pp. 35-41. 1990.

[52] M. B. Jones. D. Rosu. and M.-C. Rosu. “CPU reservations and tim e constraints:
Efficient, predictable scheduling of independet activities,” in Proc. Sym p. Operating
System s Principles, pp. 198-211, O ctober 1997.

[53] M. F. K aashoek and et. al, "A pplication performance and flexibility on Exokernel
system s.” in Proc. Symp. Operating System s Principles, pp . 52-65. O ctober 1997.

[54] D. D. K andlur, K. G. Shin, and D. Ferrari. "Real-time com m unication in m ulti-hop
netw orks.” IE E E Trans, on Parallel and Distributed System s, vol. 5. no. 10. pp. 1044-
1056. O ctober 1994.

[55] D. K andlur. D. Saha, and M. YVillebeek-LeMair, "P ro tocol a rch itec tu re for m ultim e
dia applications over ATM netw orks,” IE E E Journal on Selected Areas in C om m uni
cations. vol. 14. no. 7, pp. 1349-1359, Septem ber 1996.

[56] D. K atcher. H. Arakawa. and J . S trosnider. "Engineering and analysis o f fixed priority
schedulers,” IE E E Trans. Software Engineering, vol. 19, no. 9, pp. 920-934. Septem ber
1993.

[57] J . Kay and J. Pasquale. "M easurem ent, analysis, and im provem ent of U D P /IP
th roughpu t for the D ECstation 5000,” in Proc. W inter U SE N IX . pp. 249-258. Jan
uary 1993.

[58] K. K ettler. D. Katcher, and J. S trosnider, "A m odeling m ethodology for real
tim e/m u ltim ed ia operating system s,” in Proc. Real-Time Technology and Applications
Sym posium , pp. 15-26, 1996.

[59] H. K opetz. "Sparse time versus dense tim e in distributed real-tim e system s.” in Proc.
IntH Conf. on Distributed Computing System s, pp. 460-467, June 1992.

[60] H. K opetz, A. D am m , C. Koza, M. M ulazzani, W. Schwabl, C. Senft, and R. Zain-
linger, "D istribu ted fault-tolerant real-tim e systems: the M ARS approach .” IE E E
Micro, vol. 9, no. 1, pp. 25-40, February 1989.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[61] H. K opetz and G. G runsteidl. " T T P - a protocol for fau lt-to leran t real-tim e system s."
IE E E C om puter. vol. ‘27, no. 1 , pp. 14-23. January 1994.

[62] H. K opetz and J . Reisinger, ‘‘T he non-blocking write protocol NBW: a solution to
a real-tim e synchronization problem ,"1 in Proc. Real-Time System s Sym posium , pp.
131-137.1993.

[63] C. M. K rishna and K. G. Shin. Real-Tim e System s. M cGraw-Hill. 1997.

[64] G. Law ton, "Dawn of the In ternet appliance." IE E E Com puter, vol. 30. no. 10. pp.
16-18, O ctober 1997.

[65] C. Lee. K. Yoshida, C. Mercer, and R. R ajkum ar. "P redictable com m unication p ro to
col processing in Real-Time M ach ."1 in Proc. Real-Time Technology and Applications
Sym posium , pp. 220-229. June 1996.

[6 6] S. Leffler, M. McKusick, M. K arels, and J. Q uarterm an. The Design and Im plem en
tation o f the 4-3BSD UNIX Operating System . Addison-W esley Publishing Com pany.
Inc., 1989.

[67] J . Lehoczky, L. Sha. and Y. Ding, ‘‘The ra te m onotonic scheduling algorithm : exact
characterization and average case behavior .'1 in Proc. Real-Tim e System s Sym posium .
1989.

[6 8] G. W . L enhart, ‘‘A field bus approach to local control netw orks .'1 Advances in Instru-
m enta ion and Control, vol. 48. no. 1 . pp. 357-365, 1993.

[69] J . Y .-T . Leung and J. W hitehead. “On the complexity of fixed-priority scheduling
of periodic, real-tim e tasks." Perform ance Evaluation, vol. 2. no. 4. pp. 237-250.
Decem ber 1982.

[70] H. Levy and R. Eckhouse. J r.. C om puter Programming and Architecture: The YAX-
11. D igital Press, 1980.

[71] T . Lewis, “Inform ation appliances: G adget netopia." IE E E Com puter, vol. 31. no. 1 .
pp. 5 9 - 7 0 .January 1998.

[72] J.-P . Li and M. W. Mutka. "P rio rity based real-time com m unication for large scale
worm hole netw orks ,'1 in Proc. In ternational Parallel Processing Sym posium , pp. 433-
438. April 1994.

[73] J . L iebeherr and D. E. Wrege, "Versatile packet m ultiplexer for quality-of-service
netw orks .'1 in Proc. IE E E In ternational Symposium on High Perform ance D istributed
C om puting, pp. 148-155, 1995.

[74] J . L iebeherr, D. E. Wrege. and D. Ferrari. “Exact admission control for netw orks w ith
a bounded delay service , 11 IE E E /A C M Trans. Networking , vol. 4, no. 6 , pp. 885-901,
D ecem ber 1996.

[75] J . L iedtke, “On ^-kernel construction . 11 in Proc. Symp. Operating System s Principles.
pp. ‘237-250, December 1995.

[76] C. L. Liu and J . W . Layland, “Scheduling algorithm s for m ultiprogram m ing in a hard
real-tim e environm ent ,11 Journal o f the A C M , vol. ‘20, no. 1, pp. 46-61, Jan u ary 1973.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[77] C. D. Locke, D. Vogel, L. Lucas, and J. G oodenough. “Generic avionics software spec
ification,’’ Technical Report CM U /SEI-90-TR-8. Carnegie Mellon University. 1990.

[78] C . D. Locke, D. Vogel, and T . Mesler. "Building a predictable avionics plarform in
Ada: A case study,’’ in Proc. Real-Time System s Sym posium . pp. 181-189, 1991.

[79] C. M aeda and B. Bershad, "Protocol service decom position for high-performance
networking,” in Proc. Sym p. Operating System s Principles, pp. 244-255. December
1993.

[80] M anufacturing A utom ation Protocol (MAP) 3 .0 Im plem entation Release. M A P /T O P
Users Group. 1987.

[81] J . M ellor-Crummey and M. Scott, "Algorithms for scalable synchronization on shared-
m emory m ultiprocessors,” A C M Transactions on C om puter System s, vol. 9. no. 1. pp.
21-65, February 1991.

[82] C. Mercer and H. Tokuda, ‘‘An evaluation of priority consistency in protocol architec
tu res ,” in Proc. IE E E Conf. Local Computer N etw orks, pp. 386-398. O ctober 1991.

[83] B. Meyer. Object-Oriented Software Construction. Prentice-H all. 1988.

[84] J . Mogul. R. Rashid, and M. A ccetta. "The packet filter: An efficient mechanism for
user-level network code.” in Proc. Symp. Operating System s Principles, pp. 39—51.
November 1987.

[85] A. Iv. Mok, "Fundam ental design problems of d istribu ted system s for the hard real
tim e environm ent.” Ph.D thesis. 1983.

[8 6] D. Mosberger, L. L. Peterson. P. G. Bridges, and S. O ’Malley, "Analysis of techniques
to improve protocol processing latency.” in Proc. SIG C O M M . pp. 73-84. August 1996.

[87] M68040 User's M anual. M otorola Inc.. 1992.

[8 8] M C68336/376 User's Manual. M otorola Inc.. 1996.

[89] O S E K /V D X Operating System Specification 2.0. OSEK G roup. 1997. Revision 1 .

[90] V'. Paxson and S. Floyd, "W ide area traffic: T he failure of poisson modeling.”
IE E E /A C M Trans. Networking , vol. 3. no. 3, pp. ‘226-244. June 1995.

[91] P. Pleinevaux and J . D. Decotignie, "Tim e critical com m unication networks: field
buses,” IE E E Network, vol. ‘2, no. 3, . May 1988.

[92] S. Poledna, T. Mocken. and J. Schiemann, "ER C O S: an operating system for au
tom otive applications,” in S A E International Congress and Exposition, pp. 55-65.
February 1996. SAE Technical Paper Series 960623.

[93] C. Pu, T. Autrey, A. Black, C. Consel. C. Cow an, J . Inouye, L. K ethana. J . Walpole,
and K. Zhang, “‘O ptim istic incremental specialization: Stream lining a commercial op
erating system ,” in Proc. Sym p. Operating System s Principles, pp. 314-324. December
1995.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[94] R. S. R aji, “S m art networks for control," IE E E Spectrum , vol. 31. no. 6 . pp. 49-55.
June 1994.

[95] K. R am am ritham and J. A. Stankovic, “Scheduling algorithm s and operating system s
support for real-tim e system s." Proceedings o f the IE E E , vol. 82. no. 1 . pp. 55-67.
January 1994.

[96] A. Reibm an and A. Berger. ‘‘Traffic descriptions for VBR video teleconferencing over
ATM netw orks.’’ IE E E /A C M Trans. Networking, vol. 3. no. 3. pp. 3*29-339, June
1995.

[97] D. C. Schm idt and T . Suda, “T ranspo rt system arch itec tu re services for high-
perform ance com m unications system s.” IE E E Journal on Selected Areas in Com
m unications, vol. 11. no. 4, pp. 489-506, May 1993.

[98] H. Schulzrinne. “RTP profile for audio and video conferences w ith minimal control,”
RFC 1890, Jan u ary 1996.

[99] J . Scourias, “Overview of the G lobal System for M obile Com m unications.”
h ttp ://c cn g a .u w a te rlo o .c a /~ jsco u ria /G S M /g sm rep o rt.h tm l.

[100] M. Seltzer. Y. Endo. C. Small, and K. Sm ith. “Dealing w ith disaster: Surviving mis
behaving kernel extensions.” in Proc. Operating System Design and Im plem entation.
O ctober 1996.

[101] L. Sha. R. R a jkum ar and J. Lehoczky, ‘‘P rio rity inheritance protocols: An approach
to real-tim e synchronization," IE E E Trans, on Com puters, vol. 39. no. 3, pp. 1175-
1198. 1990.

[102] K. G. Shin, "R eal-tim e com m unications in a com puter-controlled workcell." IE E E
Trans. Robotics and Autom ation, vol. 7, no. 1. pp. 105-113. February 1991.

[103] K. G. Shin and P. R am anathan . “Real-tim e com puting: a new discipline of com puter
science and engineering,” Proceedings o f the IE E E . vol. 82. no. 1. pp. 6-24. January
1994.

[104] S A E Handbook, Society of A utom otive Engineers. 1995. pp. ‘23.560-23.573.

[105] J. D. Solomon. Mobile IP. the In ternet Unplugged, Prentice Hall, 1998.

[106] B. Sprunt, L. Sha, and J. Lehoczky, ‘‘A periodic task scheduling for hard-real-tim e
system s,” R eal-T im e System s, vol. 1, no. 1, pp. ‘27-60. June 1989.

[107] J. Stankovic, K. R am am ritham , and S. Cheng, “E valuation of a bidding algorithm
for real-tim e d istribu ted system s,” IE E E Trans, on Com puters, vol. C.34. no. 12. ,
December 1985.

[108] J. Stankovic, “M isconceptions about real-tim e com puting ,” IE E E Computer, vol. 21,
no. 10, pp. 10-19, O ctober 1988.

[109] J. Stankovic and K. R am am ritham , “T he Spring Kernel: a new paradigm for real
tim e opera ting system s,” A C M Operating System s Review, vol. ‘23, no. 3, pp. 54-71,
July 1989.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ccnga.uwaterloo.ca/~jscouria/GSM/gsmreport.html

110] VV. R. Stevens. Advanced Programming in the UNIX Environm ent. Addison-Wesley.
1992.

111] H. Takada and K. Sakam ura, "Experim ental im plem entations of priority inheritance
semaphore on ITRO N -specification kernel.” in 1 1 th TRON Project International Sym
posium. pp. 106-113. 1994.

112] K. Tindell. A. B urns, and A. J . Wellings, "Calculating C ontro ller A rea Network
(CAN) message response tim es , 71 Control Engineering Practice, vol. 3. no. 8 , pp.
1163-1169, 1995.

113] K. W . Tindell, H. H ansson. and A. J . Wellings. "Analyzing real-tim e communications:
Controller Area Network (C A N) .'7 in Proc. Real-Time System s Sym posium , pp. 259-
263. December 1994.

114] H. Tokuda and T . N akajim a. "Evaluation of real-time synchronization in Real-Time
M ach , 77 in Second M ach Sym posium , pp. 213-221. Usenix, 1991.

115] Robbert van Renesse. ‘‘M asking the overhead of protocol layering." in Proc. SIG-
COMM. pp. 96-104. A ugust 1996.

116] C.-D. Wang, H. T akada. and K. Sakam ura. "Priority inheritance spin locks for mul
tiprocessor real-tim e system s.” in 2nd International Sym posium on Parallel Architec
tures. Algorithms, and Networks, pp. 70-76. 1996.

117] J. Xu. “M ultiprocessor scheduling of processes with release tim es, deadlines, prece
dence. and exclusion re la tions .'7 IE E E Trans. Software Engineering, vol. 19. no. ‘2. pp.
139-154, 1993.

118] H. Zeltwanger, “An inside look a t the fundam entals of C A N .” Control Engineering.
vol. 42. no. 1 . pp. 81-87 . Jan u ary 1995.

119] L. Zhang, S. Deering, D. E strin . S. Shenker. and D. Zappala. “ RSVP: A new Resource
ReSerVation Pro tocol," IE E E Network, vol. 7, no. 9, pp. 8 -18 . Septem ber 1993.

120] W. Zhao and K. R am am ritham . “Simple and integrated heuristic algorithm s for
scheduling tasks w ith tim e and resource constra in ts .'7 Jounal o f System s and Soft
ware. vol. 7. pp. 195-205, 1987.

1*21] Q. Zheng and K. G. Shin. “On the ability of establishing real-tim e channels in point-
to-point packet-sw itched netw orks .'7 IE E E Trans. Com munications, vol. ‘24. no. 2 /3 /4 .
pp. 1096-1105. F eb ru ary /M arch /A p ril 1994.

122] K. M. Zuberi and K. G. Shin. “N on-preem ptive scheduling of messages on Controller
Area Network for real-tim e control applications,” in Proc. R eal-T im e Technology and
Applications Sym posium , pp. 240-249, May 1995.

123] K. M. Zuberi and K. G. Shin. “A causal message ordering schem e for distributed em
bedded real-time system s,” in Proc. Sym posium on Reliable and Distributed Systems,
pp. 210-219, O ctober 1996.

1*24] K. M. Zuberi and K. G. Shin, “EM ERALDS: A microkernel for em bedded real-time
system s ,'7 in Proc. Real-T im e Technology and Applications Sym posium , pp. 241-249,
June 1996.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[125] K. M. Zuberi and K. G. Shin, “Real-tim e decentralized control w ith CAN," in Proc.
IE E E Conference on Emerging Technologies and Factory Autom ation , pp. 93-99.
November 1996.

[126] K. M. Zuberi and K. G. Shin. “An efficient semaphore im plem entation scheme for
sm all-m em ory embedded system s." in Proc. Real-Time Technology and Applications
Sym posium , pp. 25-34, June 1997.

[127] K. M. Zuberi and K. G. Shin, “Scheduling messages on C ontroller A rea Network for
real-tim e CIM applications," IE E E Trans. Robotics and A u tom ation . pp. 310-314.
April 1997.

[128] K. M. Zuberi and K. G. Shin. “An efficient end-host protocol processing architecture
for real-tim e audio and video traffic,’’ to appear in Proc. Network and Operating
System Support fo r Digital Audio and Video (NO SSD AV). Ju ly 1998.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IMAGE EVALUATION
TEST TARGET (Q A -3)

✓

A

✓

AT4F

a

1.0

l.l

1.25

Ho

IM
2.2

2.0

1.8

1.4

15 0 m m

I I W I G E . I n c
1653 East Main Street
Rochester, NY 14609 USA
Phone: 716/482-0300
Fax: 716/288-5989

O 1993. Applied linage. Inc.. All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

