INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FAST LOW-COST FAILURE RECOVERY FOR
REAL-TIME COMMUNICATION IN MULTI-HOP
NETWORKS

by

Seungjae Han

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1998

Doctoral Committee:
Professor Kang G. Shin, Chair
Associate Professor Farnam Jahanian
Assistant Professor Sugih Jamin
Associate Professor Atul Prakash
Assistant Professor Kimberly Wasserman

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9840551

Copyright 1998 by
Han, Seungjae

All rights reserved.

UMI Microform 9840551
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Seungjae Han 1998
All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents and Sunju.

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I am indebted to many individuals for their continuous support in completing this thesis.
First of all. [would like to express my deep gratitude to my advisor. Professor Kang G.
Shin. for his guidance. He gave me opportunities to freely explore research ideas. and
encouraged me when [had doubts. [would also like to thank the members of my dissertation
committee, Farnam Jahanian. Atul Prakash. Sugih Jamin. and Kimberly Wasserman. for
their constructive comments and suggestions.

Thanks also go to my officemates and friends who have enriched my life in Ann Arbor.
[have enormously benefited from the interaction and collaboration with Harold Rosenberg.
Atri Indiresan. Ashish Mehra. Hagbae Kim. Jaehyun Park. Tarek Abdelzaher. Emmanuel
Propeta. Charles Meissner. John Reumann. Seok-ku Kweon. Sunghyun Choi. Sung-whan
Moon. and many others. Special thanks to Harold Rosenberg for his contribution to the
early stage of my research.

[fondly remember the help and kindness of Beverly J. Monaghan. the laboratory ad-
ministrative assistant. I also gratefully acknowledge the financial support during the course
of my ph.D. program by the Korean government. the Office of Naval Research. and the
National Science Foundation.

Finally, a special appreciation should be given to my parents for their love and under-
standing. There is no way to replace their role to bring me this far in life. My wife. Sunju.
is another person who deserves my deepest gratitude. She has been not only an inspiring

supporter but also a discussion partner throughout the preparation of this thesis.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

DEDICATION e e e e e e e e e i
ACKNOWLEDGEMENTS et e et et e e i
LIST OF TABLES e e e e e e e e e e e e vii
LIST OF FIGURES e e et ee e viii
CHAPTERS
L INTRODUCTION o e e e e e e e e e l
1.1 Background L 1
1.2 Dependable Real-time Communication 3
1.3 Existing Approaches 5]
1.3.1 Multi-Computer Networks 5]
1.3.2 Wide-Area Data Networks T
1.3.3 Telephone Networks 9
1.3.4 Comparison with Our Approach 11
1.4 The Proposed Approach 12
I.4.1 Design Goals 12
1.4.2 An Overview of the Proposed Approach 13
1.4.3 An Qlustrative Example 17
1.5 Organization of the Thesis 19
2 DEPENDABLE CONNECTION ESTABLISHMENT 21
2.1 Spare-Resource Reservation 21
2.1.1 Deterministic Multiplexing 22
2.1.2 Probabilistic Multiplexing 24
2.1.3 Scalability & Complexity Issue 28
2.2 Dependability QoS Negotiation 29
2.2.1 A Dependability QoS Parameter. P, 30
2.22 Calculationof P, 32
2.2.3 QoS Negotiation Procedure 34
2.2.4 The Number and Disjointness of Backup Channels 36
2.3 Backup-Route Selection 36
2.3.1 Optimal Routing Problem 36
2.3.2 Initial Route Selection 38
2.3.3 Periodic Route Reconfiguration 10
iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Evaluation L e e e e e e e 42

241 Simulation Setupo o oo oL 12
2.4.2 Measurement of Spare Resource Overhead 43
2.4.3 Comparison of Routing Heuristics 47

2.5 Summary and Conclusion 50
3 CHANNEL FAILURE DETECTION 54
3.1 Channel Failure Detection Schemes 54
3.1.1 Channel Failure 54
3.1.2 Neighbor Detection Scheme 56
3.1.3 End-to-End Detection Scheme 56

3.2 Fault-Injection Tool Set Development 57
3.2.1 Fault-Injection in Distributed Real-Time Systems 57
3.2.2 Organization of DOCTOR 58
3.2.3 Software-implemented Fault Injection 60
3.2.4 Non-intrusive Data Monitoring 62

3.3 Fault-Injection Experiment Setup 6-4
33.1 Testbed L 61

3.3.2 Experiment Goal, 66
3.3.3 Experiment Specification 63
3.3.4 Fault-Injection Experiment Sequence 70

3.1 Analysis of Experimental Results il
3.4.1 Fault Manifestations Tl
3.4.2 Failure Detection Coverage. T4
3.4.3 Failure Detection Latency I
3.4.4 Workload Dependency 78

3.5 Summary and Conclusion 7S
4 RUN-TIME FAILURE RECOVERY S0
4.1 Connection Restoration Procedure S0
4.1.1 Failure Reporting and Channel Switching 82
4.1.2 Priority-based Backup Activation 34
4.1.3 Recovery from Multiplexing Failures 35

4.2 Resource Reconfiguration Procedure 83
4.2.1 Channel Closure or Repair R6
4.2.2 QoS Maintenance ST
4.2.3 QoS Degrade & Upgrade 88

4.3 Bounded-Time Failure Recovery 90
4.3.1 The RCC Network 90
4.3.2 RCC Message Delay 92
4.3.3 Failure-Recovery Delay Bound 93

4.4 Dependability QoS Measurement 94
4.4.1 Fault-Tolerance Level of Various Backup Configurations . . 94
4.4.2 Per-Connection QoS Management 96
4.4.3 QoS Support for Heterogeneous Connections 98
4.4.4 Comparison with Brute-Force Multiplexing 100
1.4.5 Graceful QoS Degradation 100

4.5 Summary and Conclusion 105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 ADAPTIVE RESOURCE MANAGEMENT 106

5.1 ElasticQoS Control, 106

5.1.1 Range-QoS Model 107

5.1.2 Excess-Resource Allocation 108

5.2 Network-Triggered Performance QoS Adaptation 110

5.2.1 Run-time QoS Adaptation 111

5.2.2 Evaluation L 112

5.23 Discussion oL e e e 115

5.3 Application-Triggered Performance QoS Adaptation. 115

5.3.1 Run-time QoS Re-negotiation 17

5.32 Evaluation L oL 118

5.3.3 Discussion L L. L e 120

54 Conclusion e e 121

6 CONCLUSIONS ANDFUTUREWORK 122

6.1 Research Contributions 122

6.2 Future Work L 124

BIBLIOGRAPHY e e e e e 127
vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table
1.1
3.1
3.2
3.3
3.4
1.1
4.2
4.3

[T N
o — O W

[I

LIST OF TABLES

Comparison of existing approaches with our approach

Fault
Fault

manifestations (Experiment-1)
manifestations (Experiment-2)

Detection coverage and latency of the neighbor scheme (Experiment-1) . . .
Detection coverage and latency of the neighbor scheme (Experiment-2) . . .

Cases requiring resource reconfiguration

Rfast
R]a.st
Rfast
Rpos
Rpfase

with deterministic multiplexing
with probabilistic multiplexing,
with mixed multiplexing degrees
comparison with brute-force multiplexing
comparison with brute-force multiplexing in case of hot spots

Statistics of two segmentations 0oL L.
QoS re-negotiation results L L L oL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ST

LIST OF FIGURES

Figure

1. Exampleofa SFlchannel 6
1.2 Three rerouting strategies 10
1.3 Overview of self-healing failure recovery. 14
1.4 Failure recovery by reactive rerouting L. L7
1.5 Failure recovery by the proposed scheme 1S
2.1 Deterministic multiplexing algorithms 23
2.2 Probabilistic multiplexing algorithm 26
2.3 Data structures for reducing the algorithm complexity 28
2.4 Example Markov models to derive R(f) 30
2.5 R(t) of a D-connection with a single backup 31
2.6 The effect of non-disjoint routingon R(¢) 35
2.7 Boundary routing oo 40
2.3 The iterative optimization method L. 41
2.9 Simulation networks Lo 13
2.10 Average spare-bandwidth reservation under deterministic multiplexing . . . {4
2.11 Average spare-bandwidth reservation under probabilistic multiplexing . . . 46
2.12 Case 1 (network load = 30%. backup load = 36%) 48
2.13 Case 2 (network load = 30%, backup load = 36%) 49
2.14 Case 3 (network load = 30%. backup load = 362%) 50
2.15 Case 4 (network load = 25%. backup load =30%) 51
2.16 A counterexample Lo 52
3.1 Two nodes connected by dual simplex links 56
3.2 The organization of DOCTOR 59
3.3 Architecture of HMON oo o o 63
3.4 Configuration of the experimental platform 64
3.5 The protocol stackin NP 66
3.6 Real-time message passing at run-time 67
3.7 Two implementations for heartbeat transmission 68
3.8 Failure-detection latency L 69
3.9 Anexampleoffalsealarm 74
3.10 An example of channel failures undetected by the neighbor scheme T4
3.11 An example of early failure detection 7

78

3.12 Comparison of detection latency distribution

viil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Channel state transition i it e e e e e e e e R1

4.2 Three channel-switching schemes, 33
4.3 Unsuccessful channel repair 37
4.4 Three options of QoS degradation 39
4.5 The RCC message format 91
4.6 Message loss during failure recovery 0L 92
4.7 Distribution of QoS differences 97
4.8 QoS maintenance in the under-loaded network 103
4.9 Graceful QoS degradation in the over-loaded network. 104
5.1 Example QoS/utility specification o000 108
5.2 Algorithms for excess-resource allocation atalink 109
5.3 Excess-resource allocation at a under-utilized link 110
5.4 QoS-update procedure oo 111
5.5 Comparison of excess-resource allocation policies 113
5.6 A case when the local-max policy flops 114
5.7 The impact of spare resource reservation on network utilization 114
5.8 Utility function change for QoS-upgrade re-negotiation 116
6.1 General protocol configuration 125
6.2 Fault-tolerant multicast using backup channels 126
ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

1.1 Background

Over the past decade. advances in the transmission-medium technology and the widespread
deployment of powerful-yet-inexpensive computers have enabled a remarkable progress in
computer networking. Initially. computer networks were designed with a different goal from
telephone networks. While the motivation of telephone networks was human-to-human
communication. that of computer networks was building a distributed computer system. in
which resource sharing is possible irrespective of the physical location of resources like pro-
cessors. disks. and peripheral devices. Distributed systems can also provide high reliability
and cost-effectiveness as compared to their counter part. tightly-coupled systems. However.
the growing trend of interconnecting computers by high-speed links (e.g.. optical fibers) has
introduced many new classes of applications over computer networks. including telephone
services. On the other hand. telephone networks have also evolved towards accommodating
computer-generated digital data. While ISDN (Integrated Services Digital Network) is an
evidence of such efforts. the most drastic change at the telephone network side is the adop-
tion of the packet-switching paradigm in place of the traditional circuit-switching paradigm.
e.g.. ATM (Asynchronous Transfer Mode). As a result. the distinction between computer
and telephone networks in term of both target applications and underlying technologies is
disappearing fast. and all communication services are being merged into a single network
infrastructure, called Integrated Services Network. The cable television network is another
candidate for network service integration.

A consensus in this convergence of network services is the necessity of supporting con-
tinuous media applications. i.e.. real-time audio and video. The real-time transfer of con-

tinuous media has traditionally been achieved by circuit switching in telephony services or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by broadcasting over shared media in television services. In packet-switched computer net-
works. continuous media applications need a special care since the end-to-end packet delay
and throughput of a media stream are inherently non-deterministic. Such end-to-end per-
formance characteristics which are necessary to achieve the required functionality of these
applications are often called Quality-of-Service (QoS). Today’s representative computer net-
work. Internet. also lacks QoS support for continuous media applications: the window-based
flow control is unsuitable for traffic with end-to-end timing constraints. Nevertheless. many
multimedia applications have already begun to run over Internet using such protocols as
RTP [82]. XTP [103]. and IP multicast. However. these protocols do not meet the true
multimedia requirements because they only support a best-effort service model. Though
they are flexible to be integrated with non-IP-based protocols which can provide QoS guar-
antees. they themselves cannot guarantee timely packet deiivery. The Next-Generation
[nternet (NGI) is expected to provide new services that meet the diverse QoS requirements
of various emerging applications. and/or enhance the QoS support for existing applications.

In parallel with the growing demands for real-time communication services. recent years
have seen considerable research efforts in developing various performance QoS-guaranteed
(or real-time communication) service paradigms. Several survey papers [1. 107. 28. 97]
discuss many of real-time communication schemes from various perspectives. Here. we only
briefly discuss the basic idea behind the real-time communication schemes for multi-hop
networks (i.e.. point-to-point networks). Most (if not all) real-time communication schemes
share three common properties: QoS-contracted. connection-oriented. and reservation-based.
A contract between a client and the network is established before messages are actually
transferred. To this end. the client must first specify its input traffic behavior and required
QoS. Then, the network computes the resource needs (e.g., link & CPU bandwidths. and
buffer space) from this information. selects a path. and reserves necessary resources along
the path. If there are not enough resources to meet the QoS requirement. the client’s
request is rejected. The client’s messages are transported only via the selected path with
the resources reserved, and this virtual circuit is often called a real-time channel.

Unlike traditional datagram services in which average performance is of prime interest.
guaranteeing QoS is the key requirement of real-time communication services. Numerous
QoS-guaranteed service models have been developed ranging from the static CBR! service
that resembles the telephony service to the ‘controlled-load service' that mimics the best-

effort service in unloaded networks [101]. In-between. there are VBR? deterministically-

!Constant Bit Rate
2Variable Bit Rate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

guaranteed services [83] (also called hard real-time communication) and VBR statistically-
guaranteed services (also called soft real-time communication). Well-known hard real-time
communication schemes include [29. 34. 19. 25. 74. 106]. and examples of soft real-time
communication schemes are [37, 63. 19. 108. 51]. To cope with large time-scale burstiness.
renegotiation-based schemes have also been proposed [76. 35. 109]. While all of the QoS-
guaranteed schemes rely on some form of resource reservation and admission control. each
differs in QoS parameters and/or the firmness of QoS guarantees. (Network utilization can
be enhanced by relaxing the firmness of QoS guarantees.) There also exist feedback-based
schemes [52. 84. 68. 24] which attempt to provide QoS support without resource reservation.

Despite the abundance of QoS communication schemes. very few implementations are
available in the current Internet. mainly because resource reservation is not currently sup-
ported. IPv6 [23] and RSVP [111] are expected to alleviate this limitation. Unlike Internet.
ATM networks are capable of various types of QoS communication services (i.e.. CBR.

VBR. and ABR3) in addition to best-effort services (i.e.. UBR*).

1.2 Dependable Real-time Communication

Primitive real-time communication services will soon be available for such multimedia
applications as Internet phone. WW\W., digital libraries. etc. On the other hand. the in-
crease of network connectivity and link capacity will expand the application domain of
real-time communication to include business- or mission-critical applications. which require
a different type of QoS support. That is, there will be a growing need for *dependable’
real-time communication services for such applications as remote medical service, collab-
orative scientific research. business net-meeting. real-time electronic commerce. or even
remote battle-field command/control. Such critical applications require both dependable
and timely communication services. Typical performance QoS includes message through-
put. end-to-end message delay. and delay jitter. An example of dependability QoS is the
connection availability defined as the probability of a connection being available at any
given time. A guaranteed level of fault-tolerance is essential to these applications. Suppose.
for example, there is a very important video conference and unanticipated network failures
disconnect one or more participants from the conference for an unpredictably long period.

This may lead to a failure or delay in reaching important strategic decisions. which can

cause a significant economic loss.

3 Available Bit Rate
*Unspecified Bit Rate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Network failures can cause even a large-scale disaster. Catastrophic social consequences
of network failures have actually been witnessed in recent breakdowns of the US telecom-
munication network. For instance, the fire at an unmanned tall office in [llinois caused 3.5
million telephone calls to be blocked in 1988. Emergency 911 calls went unanswered. on-line
business transactions were stopped. and flights were delayed because of air traffic controller
failures. Hospital operations were affected and drug stores could not process prescriptions.
Even banks had to be closed for security reasons due to disabled alarm systems [69]. In
1990°s. several similar disasters have been reported for various reasons like a disrupture
of a fiber cable during construction, earthquakes. outage of switching systems. or network
overloading. The public telephone network usually provides a very high availability. bet-
ter than 99.999% on average. thanks to various dependability techniques such as hardware
duplication. standby power. dynamic rerouting. overload monitoring. reliable software. and
resource distribution [59]. However, the consequence of improper failure handling could be
devastating. thus making network reliability a major concern.

As for dependability, the current Internet with datagram services has successfully dealt
with two tvpes of network failures: transient and persistent failures. A typical example of
transient network failures is temporary packet losses due to either network congestion or
data corruption. Persistent failures include breakdown or crash of network components.
Transport protocols like TCP can handle transient loss of packets by acknowledgment and
retransmission. and the connection-less [P protocol deals with persistent failures by rout-
ing packets around the faulty network components. However. with some exceptions [26].
retransmission is unlikely to be useful for real-time communication. because there is usu-
ally not enough time to detect and retransmit a lost real-time message before its deadline
expires. Instead. for real-time communication. forward-error-correction (FEC) techniques
should be used if no data loss is acceptable. The main drawback of FEC is its high overhead.
We also face a serious difficulty in tolerating persistent failures for real-time communica-
tion. because a QoS guarantee is usually realized by reserving resources on a fixed path
and transporting real-time messages only via the path. Hence. a real-time message. unlike
datagram messages. cannot be detoured around faulty components on the fly.

The prevalence of optical fibers affects network dependability in two different ways.
First. the probability of transmission errors in optical links is negligible; the error rate is
dropped from 107° per bit in the 56 kbps links of initial ARPANET to below 10~!° per
bit in optical links [92]. The chance of packet loss due to transmission errors is very low.

and most packet losses are attributed to congestion control mechanisms. Therefore. for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

real-time communication. tolerating transient-failures has become relatively less important
because congestion-induced packet losses are avoided by resource reservation. Furthermore.
occasional loss of messages is tolerable in many real-time applications. such as video confer-
encing. By contrast. the deployment of optical fibers exacerbates the difficulty in tolerating
persistent-failure. because more connections will be running through each large-capacity
link. and thus. even a single link failure can result in loss of a large number of connec-
tions. Unless the network is carefully designed to handle the huge amount of traffic lost due
to failures. the increase of link capacity will seriously threaten the network dependability.
Not only link failures but also node failures are getting more difficult to deal with. Usu-
ally. switching nodes of computer networks (i.e.. routers) are not designed to meet such a
stringent reliability goal as telephone network switches (e.g.. AT&T 5ESS [94]). Higher-
performance routers in future networks will become even harder to provide high reliability.
due mainly to their complex software. Moreover. computer networks are more vulnerable to
vandalism like virus or hacking than the telephone network which has a “closed” architecture.

Considering the criticality of network dependability and the increasing threat of network
failures. the development of effective mechanisms to cope with network failures is a must
in future integrated service networks. This thesis focuses on how to effectively tolerate
persistent failures for dependable real-time communication in multi-hop packet-switched

networks.

1.3 Existing Approaches

In this section. we summarize the previous work on dependable real-time communication
in multi-hop networks. Particularly. notable work in multi-computer networks. wide-area
data networks. and telephone networks. is reviewed with comparative discussions against

our approach.

1.3.1 Multi-Computer Networks

Dependable multi-computer systems have been used in mission- or life-critical real-
time control applications such as transportation vehicles. military systems. life-support
systems, or plant controllers. The traditional tightly-coupled multi-computer approach such
as STAR [6]. FTMP [47]. CM~ [88], SIFT [33], MAFT [60], FTP [64]. and AIPS [65] has
been dominant in such application areas. To meet the stringent reliability requirement of

critical control applications, a fully-connected communication architecture with an excessive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Extra resources

O—=O-+>O—0O
i | | j
i . l
Source node Real-time channel Destination node

Figure 1.1: Example of a SFI channel

capacity has usually been employved. Though this approach provides a very high level of
dependability. the property of the underlying communication architecture limits system
scalability and flexibility. Also. developing proprietary hardware/software instead of using
off-the-shelf products results in high costs that many applications cannot afford.

Meanwhile. distributed systems have emerged as a promising candidate for a new way
of building real-time control computers. due mainly to their high potential for dependabil-
ity and cost-effectiveness. Distributed systems are also suited for those applications which
require physically dispersed environments. A successful paradigm in this approach is the
broadcast-network-based architecture. some examples of which include MARS [61]. Delta-
XPA [11]. Springnet [90].Cyclone [66]. and AAS [22]. This paradigm capitalizes on the sim-
plification of the underlying communication structure and protocols. sacrificing scalability.
flexibility and reliability to some extent. Some research results with regard to dependable
real-time communication in broadcast networks can be found in [21. 2. 62. 15].

A more general approach toward the open-system architecture is to use point-to-point
packet-switched networks with regular or arbitrary topologies. However. most work on this
approach. such as Delta-4 [78]. [SIS [13]. and Consul [71]. has considered only fault-tolerance
issues without taking real-time constraints into account. One of the hardest problems in
the construction of a real-time system in a point-to-point network is timely and reliable
message delivery. Correct and timely delivery of messages generated by real-time tasks is
crucial. because failure of timely message delivery could cause tasks to miss their deadlines.

There have been roughly two types of approaches to achieving dependable real-time
communication in point-to-point multi-computer networks. The first type is the multi-
copy approach in which multiple copies of a message are sent simultaneously via disjoint
paths [79. 56]. This method attempts to achieve both timely and reliable delivery at the

same time. Thus, by transmitting multiple copies of a message over different paths. the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

chance that at least one copy is delivered within its deadline increases and the effects of
possible failures are masked. This approach has an advantage that failures are handled
without service disruption. but it is very expensive and timely message delivery is not
guaranteed. since messages are delivered in a best-effort manner.

The second approach is to set up a single-path real-time channel using such real-time
communication schemes as [535. 114]. When a real-time channel is disconnected due to
component failures. the channel is recovered by establishing a new channel. If a temporary
connection disruption during failure recovery is acceptable to the underlving applications.
this is a cost-effective alternative to the multi-copy method. Actually. temporary message
losses are tolerable in many real-time control applications because of the *system inertia’
characterized by the control system deadline [86]. The scheme proposed in [112] took
this approach. It is called the SFI (Single Failure Inmune) method because it provides
guaranteed failure recovery under a single failure model. In the SFI method. additional
resources are reserved in the vicinity of each real-time channel. and the failed components
are detoured by altering the channel path using the reserved resources. Figure 1.1 illustrates
the setup of a SFI channel. In [113]. the SFI method is extended to survive special patterns
of multiple failures in a hexagonal mesh topology. The resource reserved for fault-tolerance
are not utilized for real-time traffic in the absence of failures. (They can be used by best-
effort traffic. though.)

Similar to the SFI method. our approach reserves some resources for failure recovery.
but the amount of required extra resources is much smaller than the SFI method. In
addition, our approach is not locked to a certain deterministic failure model. so that the
connection dependability can be flexibly controlled according to the application criticality

and environmental factors.

1.3.2 Wide-Area Data Networks

In packet-switched datagram networks. routers (or gateways) are mostly responsible
for failure recovery functions such as isolating faulty components and selecting alternative
routes. For instance, in Internet. current operational status is continuously exchanged
between neighbor networks (i.e.. by Exterior Gateway Protocols) or internal gateways (i.e.,
by Interior Gateway Protocols) for immediate isolation of failures [20, 91]. Since packets
can traverse any routes, intermediate gateways between the source and destination of a
connection can easily reroute its packets to a different path when they detect failures on

the current path. Sometimes, the source host needs to be involved in failure recovery in

=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

response to the reports received from [CMP (Internet Control Message Protocol). While
the packet redirection procedure of Internet is not applicable to real-time communication,
its detection scheme of faulty components and rejoin scheme of repaired components may
be useful.

The simplest way of recovering a real-time channel from a component failure is to es-
tablish a new real-time channel which does not include the failed component. This reactive
method is studied in [10]. In the context of the Tenet approach [9]. this scheme relies on
the broadcast of all component failures to the entire network. so that all hosts can maintain
a consistent view on the current network topology. When a source node detects the failure
of its channel from this broadcast. it tries to establish a new chaanel to replace the disabled
channel. Since no consideration is given a priori for the purpose of fault-tolerance, this
method causes no fault-tolerance overhead in the absence of failures. However. it does not
give any guarantee on failure recovery. The channel re-establishment attempt can fail due to
resource shortage at that particular time. Even when there are sufficient resources. the con-
tention among simultaneous recovery attempts for different faulty connections may require
several trials to succeed, thus delaying service resumption and increasing network traffic. To
regulate simultaneous recovery attempts. random delays can be introduced before starting
each recovery operation.

By contrast. in our approach. a backup channel is established before failures actually do
occur. so one can use it immediately upon occurrence of a failure to the original channel,
without the time-consuming channel (re)establishment process. The time required to es-
tablish a real-time channel is relatively large and unbounded even without contention, since
channel-establishment messages are usually sent as datagrams and non-trivial calculation is
necessary at each node on the channel path for the admission test. In addition. since each
backup channel is equipped with dedicated spare resources. simultaneous failure recovery
attempts do not cause conflicts.> Thus, the failure-recovery delay of our approach is much
smaller than that of the reactive method. and hence, "fast recovery’ is possible.

In [8], a framework is presented to classify fault-tolerant real-time communication schemes
using three factors: dispersity, redundancy (cold or hot). and disjointness. This framework
is general enough to characterize most schemes including our approach, but cannot capture
details to accurately address the pros and cons of each scheme. A more tangible contri-
bution of [8] is the formulation of a forward error correction approach based on dispersity

routing. The innovative aspect of this approach lies in combining error-coding techniques

*This is not exactly true when our resource-sharing technique is used. This issue will be detailed later.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with multiple-copy transmissions. This allows for a tradeoff between resource overhead and
fault-tolerance capability. Its main shortcoming is the additional resource consumption for
FEC. which is undesirable to many real-time applications that can tolerate temporary data
losses. A similar idea has been employed to reduce the frequency and overhead of retrans-

mission for loss-free message delivery. in which the FEC technique is combined with the

retransmission technique [12].

1.3.3 Telephone Networks

In old telephone networks. two telephones were connected by a true electric circuit
through electro-mechanical or pure electric exchanges. Even after the introduction of digi-
tal transmission hierarchies like the SDH (Synchronous Digital Hierarchy) / SONET (Syn-
chronous Optical Network) transmission standard. the 64 kbps circuit-switching paradigm
continued. However. the transition from circuit- to cell-switching (i.e.. ATM network) has
completely changed the problems and solutions of telephone networks. Now. telephone
networks are very close to computer networks. A modern switching node in telephone
networks is almost a general-purpose computer equipped with high fault-tolerance capabil-
ity and powerful [/O capability. A mesh-like network topology is being used instead of a
fully-connected topology. Techniques for telephone services have resemblance to those for
real-time communication services in wide-area computer networks. in that both services
rely on similar principles such as dedicated resources and static routing. Therefore. the
dependability techniques of telephone networks are worth taking a close look. While the
telephone network survivability is accounted for at various levels, here we cover only the
network-layver operation. which is most relevant to this thesis.

Essentially. when a telephone connection is broken. the connection is rerouted by de-
touring the failure point. Failure recovery should be fast, so that people (or applications)
may hardly perceive the service disruption. Even more important is assuring the success
of failure recovery itself. If there are not enough resources available for verouting all dis-
rupted connections. some of the connections should be dropped. To avoid resource shortage
during failure recovery. *spare resources’ are reserved in advance. The allocation of spare
resources is an important issue in the network design. and is closely related to problem of
rerouting failed connections. For the selection of rerouting paths. there are three strategies:
local-rerouting. end-to-end rerouting, and local-to-end rerouting. Each of these strategies is
illustrated in Figure 1.2.

The local-rerouting strategy, also called a span-restoration method. has usually been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

& O—0O

Source node Destination node

O/OOEXEOO

Source node Destination node

(a) Local rerouting

(b) End-to-end rerouting

& O O

Source node Destination node

{c) Local-to-end rerouting

Figure 1.2: Three rerouting strategies

used in STM (Synchronous Transfer Mode) networks. In most research on this strategy
[36. 104. St. 7. 96. 46]. the 'maximum flow” model is used to find the (semi-) optimal
placement of spare-resources under a deterministic failure hypothesis — typically. a single-
link failure model. A drawback of the local-rerouting approach is that the resource usage
becomes inefficient after failure recovery. because channel path-lengths are usually extended
by local detouring. Thus. its operation is the simplest among three rerouting strategies.
but it suffers the lowest resource efficiency. According to [3], end-to-end rerouting is the
best with regard to resource efficiency. and the local-to-end rerouting is the second. in
mesh networks. The simulation with real telephone network topologies also reports similar
trends [102]. The impact of topological characteristics on the performance of rerouting
strategies is discussed in [73].

In the end-to-end rerouting strategy, also called a path-restoration method. a new con-
nection is established between two end-points of each failed connection. There are two
further variations in this strategy, depending on whether the failure recovery paths are

pre-computed or not. In the former, the pre-computed recovery paths should be disjoint

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Resource overhead | Recovery delay | Recovery guarantee
Reactive No Long No
SFI High Shorter Deterministic
Multi-copy Very high No Flexible
Span-restoration Low Shorter Deterministic
Path-restoration Lower Short Deterministic
Our approach Lower Short Flexible

Table 1.1: Comparison of existing approaches with our approach

with the paths of corresponding original connections, while in the latter the recovery paths
can use the components of their original connections. From the viewpoint of spare-resource
reservation. in the former. each recovery connection (or backup connection) reserves its own
spare resources. so that there will be no conflict/contention between recovery attempts. In
the latter (e.g.. [50]), spare resources are shared and recovery paths are not determined
until failures actually do occur. When failures occur. each faulty connection will establish
a new connection by “claiming™ the reserved spare resources. Some connections may need
to attempt several recovery paths before they succeed.

The pre-computed backup-path approach has been studied mainly in the context of
ATM networks. Some of recent efforts on this approach can be found in [32. 38. 3. 72. 102.
48]. Essentially, they derive optimal routing of channels (i.e.. VPs) to minimize the spare-
resource reservation while guaranteeing successful recovery under a deterministic failure

model. They assume that all channel demands are known at the time of network design

and change very rarely.5

1.3.4 Comparison with Our Approach

In Table 1.1. existing approaches are compared with our approach in terms of resource
overhead, recovery delay. and recovery guarantee. The SFI method is similar to the span-
restoration method in many aspects. except that it involves higher overhead, because. in the
SFI method, the entire spare resources required by each connection is reserved under the
worst-case assumption unlike the span-restoration method which optimizes the allocation of
spare resources. Both methods will have a shorter recovery delay than end-to-end rerouting

methods, because failures are handled locally without intervention of end-nodes.

$Each call setup is handled at the VIC level without requiring a new VP to be set up.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The path-restoration method comes closet to our approach in that backup paths are es-
tablished in advance for end-to-end rerouting. but there exist four main differences between
the two. The first difference of this approach from ours is that they are unable to control the
fault-tolerance level of each connection. and all connections are treated equally under the
same failure model. We allow per-connection fault-tolerance control. so that more critical
connections will get higher levels of fault-tolerance. Secondly. the path-restoration method
assume that a fixed traffic demand (i.e.. VP setup requests) is given beforehand and remains
unchanged. while our scheme does not require global knowledge about all connections in the
network. In the path-restoration method. all channel paths and spare resources are simul-
taneously determined. and hence. addition or removal of a channel requires recalculation of
all channel paths and spare resources. which is computationally very expensive. Therefore.
it cannot be applied to an environment where short-lived channels are set up and torn down
frequently. Thirdly. though the control of recovery procedures might be distributed. cen-
tralized. or a hybrid of the two. the calculation/assignment of spare resources is centralized
in the path-restoration method. In our scheme. we separate the spare resource allocation
problem from the channel routing problem. so that (i) backup path may be selected by any
algorithm and (ii) spare resource allocation may be done in a distributed manner. Finally.
we provide an integrated solution to the problem of failure detection. channel switching,
resource reconfiguration. and control-message transmission. which is not specific to a par-
ticular type of networks. For example, our behavior-based failure detection schemes are
independent of the underlying physical media or protocols. in contrast to the special failure
detection techniques capitalizing on physical layer characteristics as [3. 89]. Our control-
message transmission mechanism is also applicable without relying on special mechanisms

provided by a particular network as in [30].

1.4 The Proposed Approach

This section outlines our approach. We first describe the design goals and then introduce

our solution to meet the goals.

1.4.1 Design Goals

To design a fault-tolerant service. one must first define the model of failures to be

tolerated. We assume that (infrequent) transient packet losses are acceptable to the target

applications. or are dealt with by other techniques like FEC. This thesis focuses on how to

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

effectively handle “persistent™ or “permanent™ failures. e.g.. crash failures. There are five

goals that drive the design of our scheme:

¢ Per-connection dependability guarantee: Each connection can request a dif-
ferent level of fault-tolerance depending on its criticality. A successful recovery is
guaranteed as long as the number and type of failures occurred do not exceed the

fault-tolerance capability of a connection.

o Fast (time-bounded) failure recovery: The service-disruption time of a connec-

tion caused by failures should be acceptably short. and may be bounded if certain

conditions are met.

e Small fault-tolerance overhead: The amount of the additional resource overhead

required for fast/guaranteed recovery should be acceptably small.

¢ Robust failure handling: Failures should always be handled robustly even though
failure occurrences may exceed the assumed failure hypothesis. By ‘robustly.” we
mean that the QoS of nonfaulty real-time channels are not affected. and as many

faulty real-time channels as possible are recovered.

¢ Interoperability/scalability: The failure recovery scheme must be interoperable
with existing and future real-time channel protocols. so that it can be used in a wide-
area network equipped with various (heterogeneous) protocols. Also. it should scale

well in a dynamic environment where short-lived connections are setup and torn down

frequently.

1.4.2 An Overview of the Proposed Approach

Two of our main concerns are to reduce and bound the service disruption time caused by
failures and to minimize the fault-tolerance overhead. To quickly restore real-time channels
from failures. we set up backup channels in advance along with each primary channel; that
is. each dependable real-time (D-) connection consists of one primary channel and one or
more backup channels. Upon failure of a primary channel. one of its backups is promoted to
a new primary channel. Since a backup channel is established before failures. the network
can use it immediately upon occurrence of a failure to the original channel, without the
time-consuming channel (re)establishment process. To minimize the resource overhead for

maintaining backup channels, resources for backups are cleverly shared. The dependability

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Primary Channel Setup r - - - -~ -=----=---- - ,

Backup Channel Setup

A

Normal Operation |-

Failure Reporting &
Channel Switching

Failure Detection

|

Figure 1.3: Overview of self-healing failure recovery.

of each connection can be flexibly chosen to reflect the application criticality by controiling
the amount of spare resources reserved for each backup.

Figure 1.3 gives an overview of our failure-recovery scenario. The key steps in our
approach are: (i) backup channel establishment. (ii) failure detection. (ii1) failure reporting
and channel switching. (iv) resource reconfiguration. All of these functions are performed
by the (end and intermediate) nodes of each injured D-connection in a distributed manner.
thus the name ‘self-healing’ failure recovery.

The first step is to set up backup channels. A backup channel remains as a cold-standby
and does not carry any data until it is activated. so that it does not consume resources in
a failure-free situation.” However. a backup channel is not free. as it requires the same
amount of resources as its primary channel to be reserved, in order to provide the same
QoS as its primary upon its activation. We call the resources reserved for backup channels
“spare resources”. In a normal situation, spare resources can be used by non-real-time
traffic. but they cannot be used to accommodate other real-time channels. It is because
if a real-time channel is established by using spare resources which are reserved for other
backups. its QoS guarantee may be violated when spare resources are claimed for failure
recovery. As a result. equipping each D-connection with a single backup routed disjointly
with its primary reduces the network capacity by 50% or more (because the backup is likely
to run over a longer path). Thus. raw backup channels are too expensive.

To cope with this problem, we have developed a resource-sharing method. called backup

multiplering. in which resources are shared among backup channels in such a way that the

"Only primary channels transfer actual messages.

I4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dependability of multiplexed backups is not compromised. Essentially. backup multiplex-
ing reduces the amount of spare resources reservation by overbooking the same resources
for multiple backups. To this end. instead of reserving the resources for each backup on
its path individually. we determine the amount of total spare resources on a hop-by-hop
basis by considering the relation among all backup channels on each hop. A heuristic is to
allow resource sharing among those backups which are unlikely to be activated simultane-
ously. Different connections can be made to have different dependability by adjusting the
parameters of backup multiplexing.

Under backup multiplexing. how to route backups has a significant impact on the amount
of spare resources. We found that traditional routing algorithms such as minimum-hop
routing or maximum load-balanced routing are less effective in backup route selection.
compared to the routing methods which capitalize on the characteristics of spare-resource
calculation.

During the backup establishment. we consider two dependability QoS parameters (P;.
['). where P, is the probability of fast failure recoverv and I’ is the estimated failure-recovery
delay. In other words. with a certain rate of component failures. the probability that a D-
connection will suffer a disruption of real-time communication service longer than [is
not greater than P.. In making QoS contract between the network and client.® [is not
negotiable while P; is.

The service-disruption time of a D-connection can be bounded. if at least one of its
backup channels is available upon failure of its primary channel. When a healthy backup
is available. I' is the sum of failure-detection delay, failure-reporting delay. and backup-
activation delay. As the fast failure recovery depends on the availability of backup channels.
P, increases with the number of backups set up for the D-connection. For example. P, of

a D-connection with a single backup and double backups are:

P! = P(primary not fail) + P(primary fails N backup not fail).

P? = P(primary not fail) + P(primary fails N first-backup not fail)

r

+ P(primary fails N first-backup fails N second-backup not fail).

Backup multiplexing also affects P.. It reduces the amount of spare resources by re-
serving less resources than the summation of resources needed by individual backups. but
creates a possibility of spare resource exhaustion. Thus, some backups cannot be activated

because other activated backups have already taken all spare resources. In such a case. a

8This process is called QoS negotiation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“multiplering failure” is said to occur. When we account for the probability that a backup

suffers a multiplexing failure. P, of a D-connection with a single backup becomes:

P! = P(primary not fail) +

P(primary fails N backup not fail N backup not suffer a multiplexing failure).

Since P(primary fails) and P(backup not fail) are functions of the component failure rate
which is usually very low. these terms have relatively small impacts on P, as compared to
the multiplexing failure probability. Using this P, calculation procedure. the number of
backups and the multiplexing parameter are decided to meet the client’s dependability QoS
requirement.

So far. we have described the backup establishment procedure which is executed before
a failure occurs. Now. we will explain the failure handling procedure after a failure occurs.
The first step in handling a failure is its detection. Failure detection is essentially to discover
anomalies in real-time channels. i.e.. persistent losses of real-time messages. Applications
can specify the failure semantic for each connection. The coverage and latency of failure
detection methods are very important. because they directly affect the dependability QoS
parameters, P, and T. respectively. We have developed two behavior-level failure detec-
tion methods: a hop-by-hop (or neighbor) detection method and an end-to-end detection
method. The effectiveness of these methods is empirically evaluated through fault-injection
experiments on a laboratory testbed.

Once a failure is detected. the detected failure should be reported to the end nodes
of the inflicted channels. which are responsible for the rest of failure handling. If the
disabled channel is a primary channel. one of its healthy backups is activated to become the
new primary. Such operations as failure reporting and backup activation should be done
quickly, and. at the same time. these operations must be robust enough to insulate healthy
connections from the recovery process for failed connections. To this end, we devised a
special mechanism for the control message transmission, which enables timely and robust
delivery of failure-report messages and backup-activation messages.

The next step of channel switching is resource reconfiguration. Thus, after failed pri-
mary channels are replaced by their healthy backups. the faulty primary channels will be
torn down and new backup channels will be established to preserve the dependability QoS
of the corresponding D-connections. When the network suffers resource shortage due to
coincident failures or slow failure recovery and can not establish new backups, the connec-

tion dependability is ‘gracefully’ degraded. When failed components are repaired and there

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¥

B

D2.

'
®
H
1
B—0

e

X
6) D2 S1{N& — —{ NS J—
) o2 ()=

®-
®
&

(a) Initial network (b} After failure recovery

Figure 1.4: Failure recovery by reactive rerouting

exist connections with degraded dependability. resource reconfiguration is performed e.g..
migrating or establishing backups over new routes.

We have also developed an elastic QoS-control scheme to lower (or eliminate) the de-
pendability cost associated with backups (i.e.. the reduction of network’s ability to ac-
cept future connection requests). In this new QoS control scheme. we combined our
failure-recovery scheme with two adaptive QoS-control methods: network-triggered and
application-triggered QoS adaption. Essentially. spare resources are utilized by active chan-
nels (i.e.. primary channels) in a normal situation. so that active channels can utilize the
entire network resources. This is carefully done so as not to unpredictably compromise ex-
isting connections” dependability QoS. The elastic QoS-control scheme enables “seamless™
utilization of spare resources for both performance QoS and dependability QoS. so that the
network can operate without incurring any dependability cost in a failure-free situation.

while being able to predictably respond to failures.

1.4.3 An Illustrative Example

Here. we illustrate the benefit of our approach over the reactive method with an ex-
ample.® In the reactive method, no backup path is pre-assigned and no spare resource is
reserved in advance. When a component failure disables a real-time channel. a new channel
will be established from scratch before resuming the service. Obviously. under this method,

the application will experience an extended recovery delay during the establishment of a

*One can call our approach a proactive method.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Initial network (b) After failure recovery

Figure 1.5: Failure recovery by the proposed scheme

new channel. Even without accounting the recovery delay. the reactive method cannot make
any guarantee on successful failure recovery, because there may not exist proper detours for
the failed channels. Figure 1.4 illustrates such a situation.

Figure 1.4 (a) shows a network which contains three real-time channels. Suppose two
network nodes are connected by two simplex links. each of which can accommodate up
to two channels. When node N2 fails. channels 1 and 2 need to be detoured around N2.
Both channels may need to nse shortest possible paths in order to maximize the chance of
meeting their timeliness QoS requirements. As a result. the resource needs on the link from
N5 to NG exceed its capacity. and the link can accommodate only one of them. say channel
1. as shown in Figure 1.4 (b). Now. channel 2 has to be rerouted over a longer path. If
channel 2’s QoS requirement (i.e.. end-to-end message delay) is too tight to fit the longer
path. channel 2 cannot be recovered from N2's failure. An option is moving channel 3 to
a different path in order to accommodate channel 2 at the link from N5 to N6. However.
this is not a good idea, since moving an existing channel can cause domino effects without
guaranteeing successful rerouting of the affected channels. A better solution is not to set
up channel 3 over the link from N5 to N6 in the original network.

Figure 1.5 illustrates how the same failure in Figure 1.4 is handled in our scheme. Note
the difference between the initial channel setups. In Figure 1.5 (a). primary-1 and -2 are
routed over the same paths as in Figure 1.4 (a), but primary-3 is routed over N9 instead
of N5. It is because, when primary-3 is established, backup-1 and -2 has already been
established on the link from N5 to N6 with reserving all resources on that link. However,

unlike primary-3. backup-3 can be routed over that link by multiplexed with backup-1

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and backup-2. This backup multiplexing is possible since primary-3 does not share any
component with primary-1 or -2. As a result of backup setups. the failure of N2 is tolerated
without causing any connection teardown. In this example. we assumed that channels are

established in the ascending order of their indices. using a shortest-path routing method.

1.5 Organization of the Thesis

Chapter 2 describes various issues in backup channel establishment. The mechanism
of backup multiplexing is presented first. Then. dependability QoS parameters with which
clients can express their fault-tolerance requirements are defined and their calculation pro-
cedure is presented. The problem of backup route selection is also dealt with in this chapter.
A two-step routing method is presented. which can achieve both quick responses to con-
nection establishment requests and optimal resource usage at the same time. Finally. the
simulation results are presented to demonstrate the efficacy of the backup multiplexing and
backup routing mechanisms.

Chapter 3 deals with the first step of run-time failure recovery. i.e.. failure detection.
Two behavior-based failure detection methods are presented. The performance of these
detection methods are experimentally evaluated on a laboratory testbed which implements
a real-time communication protocol developed in RTCL.!0 Experimental data gathered from
the fault-injection experiments are analyzed and their implications are elaborated.

Chapter 4 explores the failure-handling procedure after a failure detection. Steps like
failure reporting. backup channel activation. channel switching, resource reconfiguration af-
ter recovery. and graceful QoS degradation are described. A bound of failure-recovery delay
is derived under a special mechanism developed for robust and timely delivery of the control
messages associated with time-critical recovery operations. This chapter also investigates
the fault-tolerance levels achievable by various backup configurations. and checks if the ac-
tual fault-tolerance level that each connection receives matches the negotiated dependability
QoS.

Chapter 5 presents an adaptive QoS management scheme. the goal of which is to elimi-
nate the fault-tolerance overhead in a failure-free situation. First. a network-triggered QoS
adaptation scheme is described. which allocates spare resources to active channels for higher
performance QoS. Resource allocation is adjusted to the network load condition. Second.

an application-triggered QoS adaptation scheme is described, which allows applications to

!°Real-Time Computing Laboratory in the University of Michigan

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

request QoS re-negotiation at run time. The use of spare resources to assure successful

renegotiation attempts is presented.
Chapter 6 concludes this thesis by summarizing its contributions and suggesting possible

avenues of future research. Earlier work on this thesis has been published in [41. 42. 10. 45.

13).

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

DEPENDABLE CONNECTION ESTABLISHMENT

A dependable real-time (D-) connection requires to set up a primary and one or more
backup real-time channels. Assuming that the procedure for primary-channel establishment
is exported from the underlying real-time channel protocol. we focus on the establishment
of backup channels in this chapter. To establish backups for a D-connection. dependability
QoS should be negotiated between the network and clients. just as performance QoS is
negotiated for primary-channel establishment. The selection of backup paths and the reser-
vation of spare resources are key steps of backup establishment. Although the dependability
QoS parameters may need to be described first. we begin this chapter by presenting our
backup multiplexing schemes because the concept of backup multiplexing is essential to the
entire connection establishment procedure.

This chapter consists of five sections. Section 2.1 describes two backup multiplexing
schemes for efficient spare resource allocation. Section 2.2 introduces our dependability
QoS parameters and presents their derivation process. Section 2.3 deals with the issue of
backup-route selection. Section 2.4 presents simulation results, demonstrating the superior

performance of the proposed scheme. The chapter concludes with Section 2.5.

2.1 Spare-Resource Reservation

The links/nodes used by a primary channel may preferably be avoided in routing its
backups. in order to prevent a single failure from disabling all channels of the same D-
connection. As a result of disjoint routing. equipping each D-connection with a single
backup reduces the network capacity of accommodating D-connections by 50% or more.
as a backup channel requires at least the same amount of resources to be reserved as its

primary channel. The large spare resources can seriously degrade the attractiveness of our

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scheme.

To alleviate this problem. we have developed a resource sharing technique. called backup
multiplering. Its basic idea is that on each link. we reserve only a very small fraction of
link-resources needed for all backup channels going through the link. In this thesis. we
consider ounly link-bandwidth for simplicity. but other resources like buffer and CPU can
be treated similarly. In what follows. we present two methods for backup multiplexing:
(i) "deterministic’ method with ‘resource aggregation’ and (ii) “probabilistic’ method with
admission overbooking.” Each method is explained assuming that the routes of primary

and backup channels are given at the time of backup multiplexing.

2.1.1 Deterministic Multiplexing

This method adopts a deterministic failure model in which the maximum number of
a particular failure type is assumed. and calculates the exact amount of spare resources
which are just enough to handle all possible cases under the assumed failure model. As an
example. the algorithm to calculate the spare resources s; at link ¢ under the single-link
failure model is given in Figure 2.1 (a). ®} denotes the set of all primary channels whose
backups traverse €, and ry is the resource required at each link by the primary channel M.
Each connection is equipped with a single backup channel. because one backup for each
connection is enough to tolerate any single link failure. The algorithm in Figure 2.1 (a)
checks all possible single-link failures to extract the maximum spare-resource requirement
at link €. Whenever a backup channel is established. this algorithm has to be run at each
link on its path. The algorithm for the single-node failure model can be easily devised by
slightly modifying this algorithm.

Usually. spare-resource reservation based on the single failure model provides a suffi-
cient level of fault-tolerance. since the time for channel failure recovery is much smaller
than MTBF (Mean Time Between Failures) of the network components. Nevertheless. if a
higher level of fault-tolerance is required, multiple backups can be set up — i.e.. to tolerate
simultaneous failures. As an example. the algorithm for double-link failure tolerance is pre-
sented in Figure 2.1 (b). To tolerate all possible double-link failures. each primary channel
needs two backups. In Figure 2.1 (b). ®} denotes the set of all primary channels whose first
backups traverse €, and ®? denotes the set of all primary channels whose second backups
traverse . Bl; denotes the first backup of AMj.

Backup channels can be established to allow different D-connections to have different

fault-tolerance capability. For instance. when some connections require single-link failure

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

01 loop for each link i, ¢ #¢

02 loop for each primary channel M/ € &}
03 if M contains link ¢ then

04 Sie — Siet Tk

05 endif

06 endloop

07 endloop

08 s¢ — mar{s!,}.Vi# €

(a) An algorithm for single-link failure tolerance

01 loop for eachlink :. i #¢

02 loop for each primary channel M) € ¢}
03 if M, contains link ¢ then

04 Sie = Sl + Tk

05 endif

06 endloop

o7 endloop
08 loop for each link pair (ij).t # j.t# € j#L

09 loop for each primary channel M; € &2

10 if My contains [and Bl contains j then
[Siyu St T

12 endif

13 endloop

14 endloop
15 Sl —-— m(ll‘{s}_l + Si)v[}.Vl # f.Vj # (

(b) An algorithm for double-link failure tolerance

Figure 2.1: Deterministic multiplexing algorithms

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tolerance and others require double-link failure tolerance. the 10th line of Figure 2.1 (b)
should be changed so that only those connections requiring double-link failure tolerance are
accounted for in calculating s? .

Under deterministic multiplexing. spare resources at each link is determined as an aggre-
gated entity, s,. This type of backup multiplexing is possible only when resource reservation
is completely interchangeable among channels. However. such a condition does not hold for
all real-time channel schemes. but in general it is valid only for ‘rate-based’ schemes. not
for *scheduler-based” schemes (we borrowed this classification from [4]).

In the rate-based schemes [74. 110]. QoS has a static relation with the traffic character-
istics. For example. a higher message rate (hence. higher bandwidth) results in a smaller
message delay. In these schemes. the admission test at a link simply examines whether the
demanded resources exceed the available resources. since the amount of resources determines
the QoS level. By contrast. in the scheduler-based schemes [55. 29], the QoS requirement
(e.g.. delay) of a channel can be specified independently of its traffic characteristics. In
such schemes. the admission test checks for the schedulability of a channel by deriving a
feasible priority assignment to meet its QoS requirement while considering the worst-case
contention with existing channels. Because the priority of a channel is determined by con-
sidering not only its bandwidth requirement but also its delay requirement. resources needed
to guarantee the QoS of a channel may not be sufficient for other channels with a different
QoS requirement. even if they have the same traffic characteristics. The inapplicability of

deterministic multiplexing to scheduler-based schemes is detailed further in Appendix 2.A.

2.1.2 Probabilistic Multiplexing

The probabilistic multiplexing method is designed to use a non-deterministic failure
model. Thus. each network component is assumed to fail with a certain rate. Backup chan-
nels are multiplexed indirectly via a modified admission test (or meta-admission test). In
meta-admission test, some existing backup channels are not accounted for in the admission
test of a new backup channel. which is. in essence. equivalent to resource sharing between
the new backup and those backups unaccounted for.

This multiplexing method is more generally applicable than deterministic multiplexing.
in that ‘admission overbooking’ through meta-admission test is possible regardless of the
underlying real-time channel schemes. Note that the inapplicability of deterministic mul-
tiplexing to scheduler-based schemes is not because of its deterministic failure assumption

but because of the use of resource aggregation.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Deciding which backup channels will not be accounted for in the admission test of a
backup channel is a crucial problem. In other words. the key is to decide which backups
will share the same resources. Our strategy is to multiplex those backups which are less
likely to be activated simultaneously. The probability of simultaneous activation of two
backups of two different D-connections is bounded by the probability of simuitaneous failure
of their respective primary channels. This probability depends on the routing of the primary
channels. and increases with the number of components shared among the primaries.

Assuming that failures occur independently with the same probability A. we can calcu-
late the probability — denoted by S(B;. B;) — of simultaneous activation of two backups.

B; and B;. whose primaries are M; and ;. respectively:

S(B;.B;) = 11— P(no failure in shared components)
-P(no simultaneous failures in the rest)
= L= (L= APEORM) [) (] A=)y
{1 = (1 = APF0I=seda))
S 1= (L= AP (12 AJMY (2)M =MLy
oo Miy- A+ Mj)- A= {c(M)+ c(M;) — sc(M;. Mj)}- A

= sc(M M;)- Al

where c(.M/;) and ¢(.}/;) are the component countsin }; and .M;. respectively. and sc(.M;. M;)
is the number of components shared between them. The approximation is possible because
A is small. Here. components include both nodes and links. One can use different failure
rates for nodes and links by slightly modifying the equation.

Based on this probability. the set of backups to be multiplexed together is determined
for each backup on a link. i.e.. multiplexing is done hop-by-hop. B; and B; are multiplexed
if S(B;, B;) is smaller than a certain threshold v. called multiplexing degree. which is specific

to each backup. So, the rule to decide resource sharing in the single-backup configuration

is:
.‘1,‘ >3] .‘[J = Bi ” B]#

where A; o« M; indicates that sc(M;, M;)- A > v. and B; || B; indicates that B; and B,
are not multiplexible. The relation oa is not necessarily symmetric, so that each backup
can use a different v to determine the set of backups to be multiplexed with itself. The

smaller v of a backup, the higher fault-tolerance will result. This way, per-connection

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

01 loop for each backup channel By on link ¢

02 if se(My, M;)- A > v; and v < v; then
03 g, — {Ilp, ¢+ Bk}
04 endif

05 endloop
!
06 s¢ maz{zka"l re +r;}.VB, €€

Figure 2.2: Probabilistic multiplexing algorithm

control of fault-tolerance is possible. thus allowing more important connections to have
higher fault-tolerance (e.g.. tolerating harsher failures). We require each backup to have
the same multiplexing degree on all of its links for easy management.

When this multiplexing method is applied to rate-based schemes. the spare-resource
requirement at each link can be quantified as a single entity s, as follows. Let [Ig , =
{Bs.Bj3....} denote the set of backups which are not multiplexed with B, on link ¢. One
way to determine the spare resources at link £ is to find the highest resource requirement
among all sets of {llg,,+ B:;}, where all backups are considered equally regardless of
their multiplexing degrees. However. this method may overestimate the amount of required
spare resources at a link, when backups with different multiplexing degrees exist at the link.
Suppose there are one backup with a very small » and many backups with large v on a link.
Then. [1; of the backup with a very small v will determine the amount of spare resources at
the link. which may be much larger than actually needed. To get around this problem, we
consider only backups with no greater multiplexing degrees than that of B; when IIg ¢ is
constructed. Figure 2.2 depicts an algorithm to calculate s, when a new backup channel B;
is established on link ¢ under probabilistic multiplexing. (The same notation as in Figure
2.1 is used.)

A straightforward way of enhancing the fault-tolerance capability of a D-connection is
to establish multiple backups with the same multiplexing threshold. Alternatively. different
multiplexing rules from the rule for first backups can be applied to additional backups.

For example, the following set of rules are for the double-backup configuration to tolerate

double-component failures:

Rule-1: M; >« M; = Bl; || Bl;.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rule-2: Bl,>= M, = B2; || Bl,.
Rule-3: Bl; >~ Bl; = B2, || Bl,.
Rule-4: (Bl;> M;) & (M; > Bl,) = B2, || B2,.
Rule-5: (M;0a M;) & (Bl = Bl;) = B2, || B2;.

where B1; and B2; are the first and second backups of M;. respectively.

Rule-1 is for the relation between first backups. which is the same as in the single-backup
configuration. Rule-2 and 3 are for the relation between first and second backups (belonging
to different connections). and Rule-4 and 5 are for the relation between second backups.
For example. Rule-2 says that B2; and B1, should not be multiplexed to prepare for the
case when }; fails and a shared component between Bl; and M, fails. which causes the
simultaneous activation of B2; and B1;. Other rules can be reasoned similarly.

Probabilistic multiplexing supports per-connection fault-tolerance control in a finer grain
than deterministic multiplexing. Under deterministic multiplexing. the dependability of a
D-connection is decided only by the number of its backups. allowing a coarse-grain fauit-
tolerance control like single failure tolerance or double failure tolerance. By contrast. under
probabilistic multiplexing. the dependability of a D-connection can be controlled by both
number of its backups and associated multiplexing degrees. Even though equipped with
the same number of backups. connections can have different fault-tolerance depending on
the used multiplexing degrees. For instance. with a single backup. some connections may
be 100% tolerant to all single failures. while some may be only 50% tolerant to the same
failure tvpe.

Under probabilistic multiplexing. the dependability of a connection is defined as a proba-
bility that the connection will be safely recovered from failures. However. 100% tolerance to
deterministic failures is also achievable. For instance. if v for a backup B, is set to A, failure
recovery of the corresponding D-connection from any single node/link failure is guaranteed,
because B; will not be multiplexed with any other backup whose primary overlaps with 1/f;.
Similarly. if v is set to 3A. any single link failure can be tolerated. since no backup whose
primary overlaps with M; by more than three components (including the case of sharing
a link and two nodes attached to that link) will be multiplexed with B;. However, the
amount of spare resources resulting from probabilistic multiplexing may not be as small as
that from deterministic multiplexing to tolerate the same type of deterministic failures. It
is because all of the primary channels of the IIg, , members may not overlap with M; at the

same component. In building IIg, ,, we only check if other primary channels overlap with

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\ N)
(m [
t
0. when not included 0, when not included
Network) l . . ? n
links 1, when included : 1, when included
g
\ / RN /7’
n n
(a) Deterministic multiplexing (b) Probabilistic multiplexing

Figure 2.3: Data structures for reducing the algorithm complexity

M; at more than v;/A components. As a result. spare-resource reservation based on [g, ,
tends to overestimate the spare resource needs for tolerating a particular failure type. For
instance. by setting v to A. probabilistic multiplexing actually can tolerate most of single

channel failures instead of single component failures.

2.1.3 Scalability & Complexity Issue

Both backup multiplexing schemes use fully-distributed algorithms: they do not require
each node to maintain global knowledge of the network traffic conditions or to generate
any type of messages to be broadcast. Backup multiplexing is performed hop-by-hop. and
therefore. at each link. only the knowledge of primary channels whose backups traverse the
link is required. Such information can be easily collected. by making a backup channel-
establishment message carry the path information of its primary channel. The efficiency
of backup multiplexing does not degrade as the network gets large. Backup multiplexing
would rather be more effective in large-scale and highly-connected networks. because such
networks contain more versatile paths between the two end nodes of a connection. thus
lowering the probability that primary channels overlap with one another.

In a large-scale network. the computational complexity of backup multiplexing mech-
anisms is a matter of concern. For deterministic multiplexing, the calculation of spare-
resource requirement for each case of failure resides in the inner-most loop and decides the
algorithm complexity. For example, the algorithm for single-link failure tolerance has a
complexity of O(n -l). when n is the number of backup channels on the link under consid-

eration and [is the total number of links in the network. The computational overhead can

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be reduced by storing and reusing the once-calculated information. The data structure for
such a purpose is depicted in Figure 2.3 (a). Whenever a new backup is established. new
information is added to this data structure.

For probabilistic multiplexing. the essential part is constructing a set of non-multiplexible
backups. [I g, ;. on each link €. The complexity of this step is O(n). where n is the number of
backup channels on link €. (This is because each calculation of S(B;. B;) requires constant
time.) To find the largest set. we need to construct [Ig, ¢ for all backups on €. which requires
O(n?) time. However. if we store each [Ig, , calculated before the new establishment request
for B; is made. we only need to update each IIg, ; by calculating S(B;. B;). Hence, the
complexity can be reduced to O(n) at the expense of additional memory. The information
needed to maintained at each link is shown in Figure 2.3 (b). Probabilistic multiplexing

scales particularly well. because its complexity does not contain /. the total number of links

in the network.

2.2 Dependability QoS Negotiation

Instead of providing an identical level of fault-tolerance to all connections. we allow each
client to specify its fault-tolerance requirement. The network then establishes necessary
backups to meet this requirement. Qur scheme provides two dependability QoS parameters
for this negotiation. One is about the guarantee on successful failure recovery. and the other
is about the failure recovery delay. In QoS negotiation. the later is not negotiable while the
former is. Only the former is considered in this chapter.

Deterministic multiplexing exports a simple QoS model. A client specifies its QoS
requirement among a fixed QoS menu such as 100% single-failure tolerance. 100% double-
failure tolerance. and so on. Then the network sets up a proper number of backups for each
client.

Probabilistic multiplexing requires a more complicated QoS negotiation procedure. Two
QoS parameters (P.. I') are exported: P, is the probability of successful failure recovery
and [is the failure-recovery delay bound. In other words. with a certain rate of component
failures, the probability that a D-connection will suffer a disruption of real-time communi-
cation service longer than [is not greater than P,. Described below are the QoS interface

and the spare-resource reservation procedure for probabilistic multiplexing.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Model A

oo

n

(b) Model B

Figure 2.4: Example Markov models to derive R(¢)

2.2.1 A Dependability QoS Parameter, P,

Generally. the reliability of a system. denoted by R(t), is defined as the probability that
the system provides the required service from time 0 to ¢. In our case. the required fault-
tolerant real-time channel service will be provided unless all channels of a D-connection fail

(near) simultaneously.

Let’s consider how to derive R(t) of a D-connection. Assuming a Poisson failure process

with rate A. we derive R(t) of each network component to be e~*t. For the convenience of

presentation. we further assume that the failure rates of all network components are same
and all failures are statistically independent. Then. R(t) of a channel can be expressed
as e ", where the channel path consists of n components. In other words, the failure
rate of the channel is nA. Finally, the reliability of a D-connection can be modeled with a
Markov process using the failure rates of its channels. For example. Figure 2.4 (a) shows
a continuous-time Markov model to derive R(t) of a D-connection with a single backup
channel, where u is the channel repair (or re-establishment) rate. A; and A; are failure rates
of the primary and backup channels, respectively, and A; is the failure rate of the shared
part of both channels. State 0 is the initial state and state 3 is the absorbing state. Figure
2.4 (b) is a simplified model when the primary and backup channels are of the same length.

For example, if both the primary and backup channels of a D-connection are of 4 hops

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
1

°
w0
T

-

R(1) of end-nodes

Reliability
o o o o
w0 (<] ~ Lo
. -
-
-
-
.
.
.
.
ft
4
4
4
4
d
4
4
I’
d
4
"

o
&
s

o
w
.
’

’

’

’
’
¢

o
[N}
T

o
-
’
[
‘
]
i
‘
]
]
1
]
!
{
'
1

(=]

1000 2000 3000 4000 5000 6000

o

Figure 2.5: R(t) of a D-connection with a single backup

length and are routed disjointly, A; is 9A and A3 is 2\ considering two end nodes shared
by both channels. Using the technique in [95]. one can calculate R(¢) of this D-connection

from the Markov model of Figure 2.4 (b):

R(t) = 1 — P(the system is in the absorbing state at time ¢)
- 23872 + BA + /\\/49/\2 + 42u + p? e (/225N 4p—y NITT N2 42N+ 12t
(250 + p)VH9AZ + 42ud + p? — 4972 — $2p\ — 42
238A% + pX — AVH9AZ + 2\ + p? e~ (/225N +u+ /1T a2uN 2.

(25X + p)VAONZ £ 120X + 2 + 49A2 + 42u + pl
We plot the reliability of this connection in Figure 2.5 by setting A to 0.00005 (1/A measured
in minutes) which results in 332 hours of MTBF and setting u to 0.1 (1/p measured in
minutes), which means 10 minutes of channel repair time.

However. representing the QoS parameter as a function of time is unsuitable for the
client-interface model. Thus, instead of using Markov models. we use a combinatorial model
to approximate the reliability of a D-connection. The approximation is possible because
the channel repair rate (x) is much larger than the channel failure rate — the channel
re-establishment time is in the order of seconds or minutes. whereas MTBF is in the order
of 100 or 1000 hours. Thus, a D-connection affected by a failure returns to the initial state
(state 0) much before the second failure occurs. Figure 2.5 shows that the D-connection’s
R(t) is very close to that of its end-nodes, which implies that the quick recovery results in

a nearly perfect reliability except for the cases of end-node failures.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the combinatorial approximation. each network component is assigned a probability.
A. of failure occurrence during one time unit. and the D-connection under consideration is
assumed to be in the initial state at the start of each time unit. When P, represents the
D-connection’s reliability under this combinatorial model. P, is equal to the probability
that at least one channel of the D-connection remains healthy during one time unit. For

example. the P, of a D-connection with a single backup is

P, = P(primary not fail) + P(primary fails N backup not fail).

2.2.2 Calculation of P.

When a backup channel is activated. it draws necessary resources from the spare re-
sources reserved at each link on its path. Since backup multiplexing is based on proba-
bilistic relations. there is a possibility. albeit rare. that the multiplexed backups need to
be activated simultaneously. Such unlikely backup activations can cause the exhaustion of
spare resources. so that the remaining backups cannot be activated; “multiplering failures™
are said to occur to these backups.

Calculation of P, for a D-connection with backup multiplexing requires us to consider
the possibility of multiplexing failures. The P, of a D-connection composed with a primary

channel \/; and a backup channel B; is:
Pr(i) = P(M; not fail) + P(M; fails) - P(B; not fail) - {1 — Pnu.rp(B:)}.

where Ppn.-p(B;) is the probability that B; is not available due to a multiplexing failure.

Pruzf(Bi) is not greater than

links of B,

> Prurg(Bi),
[4

where Ppyurf(B;i.£)is the probability that B; suffers from a multiplexing failure at (. a link
on the path of B;. The P, value associated with more backups can be derived similarly.
Presented below are two methods for calculating Pn - f(B;.€): Method 1 is for accurate

derivation and Method 2 is for quick approximation.

Method 1

A backup channel may suffer a multiplexing failure at a link, if the total resource needs
by simultaneous backup activations exceed the total spare resources at the link. Suppose

the number of backups on link £ is Z and the spare resource at £ is s;. Then. there can be

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2Z-1 different patterns of simultaneous backup activation with B;. Since we can. without
loss of generality. label the & backups activated along with B; from 1 to & and label the

remaining Z — & — 1 backups from k£ + 1 to Z — 1. the probability associated with each

activation pattern is
S(B;.By..... By) - {1 - S(Bi.Biyy.---. Bz_1)}.

Here. S(B;. B;. By) indicates the probability of simultaneous activation of B;. By.. ... By..
Among the 22-! sets. we can tell which requires more resources than s,. and which does
not. P,.¢(B;.€) is equal to the sum of the probabilities associated with those cases which
require more resources than sy.

We use an incremental approach to calculate S(B,..... Bx). We first choose a compo-
nent C'; shared by more than one primary channel of the backups under consideration. and

calculate S(B;..... By) after removing C';. which is denoted by S{C)}(By..... Bi). Then.
S(By..... Br) = /\+(1—/\)'S{CJ}(BI,...,Bk).

where the second term represents the probability that all & backups will be activated si-
multaneously when C; does not fail. S{C-]}(Bl Bi) can be obtained similarly. Thus. by

selecting another shared component C,,.

’\+(1—’\)'S{C,,Cm}(Bl B).

B
O

=

®
L
I

The same step is applied recursively until there remains no shared component. The last

term

S(C,Cmey = (L= (L= AFM) (1 — (1=)R (1 — (1= X)),

where ¢(A[;) is the component count in ;.

For example. when M and), share a component C; and both consist of 3 components.

then
S(B1.B2) = A+(1=A)-Sc,)(B1, Bs)
= A+(1=-A)-{(1-(1=1)H-(1-(1=- 1))}
Method 2

Multiplexing failures do not always occur even if multiplexed backups are activated

simultaneously. Thus, to capture the exact probability of multiplexing failures. we have to

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compare the total resource demands by simultaneous backup activations against s, as in
Method 1. This method. however. over-estimates Pp,,-¢(B;.{) by simply accumulating the
probabilities of simultaneous backup activations which are ignored in multiplexing. This
method requires much simpler calculation than Method 1 at the cost of accuracy. Note that
the over-estimation of Pp,zs(B;) leads to the under-estimation of P.(¢). thus erring on the
safe side.

B; is multiplexed with B; at link €. only if S(B;. B;) is smaller than v;. the multiplexing
degree of B;. Thus. the probability that B; will suffer from a2 multiplexing failure on link
€ due to the simultaneous activation of B, is not greater than S(B;. B;). Let ¥pg, ; denote

the set of backup channels which are multiplexed with B; at €:
Vg .. = {all backupson €} - Ilg ¢ — Bi.

Then. we get
Prurg(Bi€) < 1-— H (1 - S8(B:. By))
vB,EVp, .

S l.—(l—!/,')l\pa"ll.

where |¥g ;| is the number of backups multiplexed with B; on link ¢. In the rest of this

thesis. we assume the use of Method 2.

2.2.3 QoS Negotiation Procedure

As in the case of primary channels. QoS negotiation is a crucial step of backup channel
establishment. Here. we present two QoS negotiation methods.

In the first method. the network selects the number of backups and the multiplexing
degree by considering the client-specified P, requirement and/or the network status. Then.
the resultant P, of the connection is calculated and notified to the client. The client may
or may not be satisfied with the offered fault-tolerance QoS level. and may accept or reject
the offer. With this method, the client-specified P, requirement is met “loosely™ or in a
“best-effort”™ manner.

In the second method. the client’s P, requirement is met as requested, or the request gets
rejected. Assume that the channel establishment is initiated by the source node.! A backup
channel is established by using a pair of channel-establishment messages: (i) the ‘resource

reservation message' from source to destination and (ii) the ‘resource relaxation message’

"This is not a restriction. The destination can initiate the channel establishment.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 A
08 NIs)
RN
08 SO 1

Q.7¢ ~ .

~ ~

\\‘ ~ \\‘
Sharing a component / Tl
=

Sharing two components

Reliabity
° ° [
(&) & w
T v
’
4
7
’
’
1

o
[
v

0.1

0
0 1000 2000 3000 4000 5000 6000
Minutes

Figure 2.6: The effect of non-disjoint routing on R(t)

from destination to source. In the forward pass (reservation message) to the destination.
spare resources are reserved for the backup without multiplexing. while ¥ g, , is calculated
on each link € of the channel path with various v values. The reservation message collects
the ¥ g , information and passes them to the destination node. Then. the destination node
selects the largest v which satisfies the required P, based on the collected information. In
the backward pass (relaxation message) from destination to source. the spare resources on
the channel path are multiplexed according to the selected v. If the required P, is too high
to satisfv. the client’s request will be rejected. (The rejected client may opt to retry with a
lower P, requirement.)

Essentially. we transform the problem of meeting the P, requirement to that of de-
ciding the multiplexing degree. Fortunately. we need to try only a couple of different v
values. because the values of S(B;. B;) are distributed around integer multiples of A, i.e..
S(B;.B,) =~ sc(M;. M;)- A. Thus, the backups on a link are grouped into a certain number
of classes according to their multiplexing degrees. The number of classes is not greater
than the number of components on the longest possible path in the network. The network

can decide the number of backups a priori or can establish backups incrementally until the

required P, is achieved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.4 The Number and Disjointness of Backup Channels

Unless A. the component failure rate. is very large. additional backups will not increase
R(t) of a D-connection much. because the first backup provides nearly the maximal relia-
bility (i.e.. R(t) of its end nodes). as shown in Figure 2.5. Instead. we find the benefit of
muitiple backups from a different perspective: we can take advantage of multiple backups
to reduce resource cverhead in conjunction with backup multiplexing. More details on this
will be discussed in Chapter 4.

The routing of a backup channel has a significant impact on the reliability of its connec-
tion. The links/nodes used by a primary channel should be avoided in routing its backups.
because overlapping routes among the channels of the same D-connection will degrade the
reliability of the connection. The reliability degradation by non-disjoint routing is illus-
trated in Figure 2.6 with the same example used for Figure 2.5. Throughout this thesis. we
assume disjoint routing of the channels belonging to the same D-connection.

The route selection of backup channels has a significant impact on the amount of spare

resources as well. The next section is dedicated to this issue.

2.3 Backup-Route Selection

The shortest-path (i.e.. minimum-hop path) algorithm is often used for channel route
selection. A node which wants to set up a real-time channel broadcasts route-search mes-
sages to find a shortest path. If network topology information is maintained at each node.
a path can be found without broadcasting route-search messages. Recently. more elaborate
routing algorithms have been developed. For instance. in [100]. a smallest-delay path. in-
stead of a minimum-hop path. is selected. In [75], a smallest-delay path is selected among
minimum-hop paths. Another popular metric of QoS routing is the residual bandwidth, so
as to favor a path with larger available bandwidth. The algorithm presented in [98] uses a
metric which aggregates multiple routing parameters such as throughput. delay. and error

rate. Unlike the above-cited research, our interest is in backup-route selection.

2.3.1 Optimal Routing Problem

Essentially, we want to minimize the amount of spare resources while providing the re-
quired fault-tolerance level. Unfortunately, there doesn’t exist any efficient algorithm for
‘optimally” routing backup channels; the problem of finding a path set with multiple con-

straints is known to be NP-complete. The NP-completeness proof of the following decision

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem - which is subsumed by the optimal backup-routing problem — can be found in
[34]:

Is there a feasible set of channel paths such that the sum of traffic flows at each

link is smaller than the link capability. when channel traffic demands are given?

The optimal backup-routing problem is therefore NP-complete, even without considering
backup multiplexing.

Integer Programming (IP) can be used for optimal backup routing. We present, as an
example. an [P formulation to achieve 100% failure recovery from any single link failure

under deterministic multiplexing. The notation used in the [P formulation is as follows:

L: the set of all links in the network.

¢;: the bandwidth capacity of link :.

s;: the spare bandwidth (for backup channels) on link :.
a;: the active bandwidth (for primary channels) on link .
rm: the bandwidth requirement of primary channel m.

M: the set of all primary channels.

E.q: the set of eligible paths for the backup channel of primary channel m.

P;: the set of primary channels which run over link j.

Xim: L if k-th path in E,, is selected as the backup path of primary channel m. and 0

otherwise.
Y{ : 1if k-th path in E, contains link i. and 0 otherwise.

km*

Zm,,: 1if primary channel m contains link j. and 0 otherwise.

We assume that the information about primary channels is given. Thus. F",-. a;. and
Znm,; are given. and E, and }"kf.m can also be derived from the network topology. Since ¢;
and r,, are constants. the only variables in this IP formulation are s; and X ,. essential
for backup route selection. All values are non-negative integers.

Our goal is to minimize the sum of spare resources at all links. so the objective function

wnff]

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The constraint set that should be satisfied to tolerate all single link failures is:

s;20.8;,+a;<c¢;. Vi€ L.

Em
S Zm Xiem=1. Vj€lVmell.

k=1

Xem¥Yi tm 20, Vie LVjel.i#j

M5

P, E
S — Z
m=1k

The first constraint is straightforward. The second constraint indicates the property that

1]

1
only one backup path should be selected among E,, for each primary channel m. which is
disconnected by the failure of link j. When all possible failure scenarios are considered. all
primary channels will fail at least once. so the number of equalities needed to specifv this
constraint will be equal to the number of primary channels in the network. Hence. this
constraint can be rewritten as }:f;‘l Xem=1. Vme M.

The third constraint represents the property that the spare resource on link ¢ should be
sufficient to meet the resource demands of backup activation caused by the failure of link j.

The computational complexity of the above IP formulation is very high. Forinstance. the
number of inequalities resulting from the third constraint is proportional to (ILI IPJ] IEml).
[f the search space includes all possible paths. the dimension of search space is an exponential
function of the product of link numbers and channel numbers. The dimension of constraint
matrix for the simulation condition used in Section 2.4 easily reaches several thousands.

As a result. we have to resort to heuristics that reduce complexity at the expense of op-
timality. Ve adopt a “two-step’ approach in which channels are quickly set up by heuristics.

then reconfiguration is performed periodically to optimize resource usage.

2.3.2 Initial Route Selection

The path, which appears best when a backup channel is being established. is selected
among a set of “eligible™ paths. The eligibility of a backup path can be defined by maximum
path length, end-to-end delay. or bandwidth. A shortest-path search algorithm is used to
find the minimum-cost path where a cost value is assigned to each network link. When
multiple backups are set up for each D-connection. one can use such algorithms as in
[99, 87] which find multiple disjoint paths.

The link cost functions considered here are-

I
—
:

fi(€. B;)
f?(gﬁBi) = Q’.~

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f3l€.Bi) = Ap..

fal€.Bi) = [l Bi) + w1 - f2(E.B)).
fs(€.Bi) = fi(€. Bi) + w2 - f3(€. B;).
fe(€, B;) = fa(€.Bi) + w3 - fil€. B;).
fr€.Bi) = fa€ Bi) + <y - f3(€ By).
fsl€.Bi) = fa(€.Bi) + w5 - fil€. B;).
fol€.Bi) = f3(€. Bi)+ we - f2(L. Bi).

where € is a link identifier and B; is the backup channel to be routed. f, and f; are popular
cost functions for general real-time channel routing. and will be used as references for
performance comparison in Section 2.4. f3 is a new cost function we devised by exploiting
the property of backup multiplexing. The other cost functions are composed by combining
these three basic cost functions.

When f; is used. all links have an identical cost. and hence. the minimum-hop path will
also be the minimum-cost one. This simple cost function differs from the rest in that it
does not utilize the knowledge on resource usage. f; is an attractive/popular cost function
when increasing the network throughput is a main concern. The rationale behind this cost
function is to disperse resource reservation for balancing traffic loads. Q, in f; is equal to
the total resources reserved on link € by both primary and backup channels. Ag ,in f3 is
the increment of spare resources at €. if B; is to be established on ¢.

The weights in the composite cost functions are selected so that the first terms may
become primary factors and the second terms may be used only to break ties among multiple
candidate paths. For example. w, is small enough to ensure «w; - fo(€.Bi) < fi(€. B;).
Each routing heuristic is named according to the cost function used. as R;. Ry, Ro.
respectively.

Different kinds of information are needed for different routing heuristics. R; requires
the information about network topology with the health information of each network com-
ponent. R, requires the information about resource reservation at each link. Rj3 requires
the path information of primary channels to predict the aftermath of backup multiplexing.
There are two options for managing such information: each node can maintain (i) a database
of global knowledge (about others) or (ii) a database of local knowledge (about itself). In
the former, all information is broadcast in the network whenever any change (e.g., channel
setup or teardown) occurs, so that the source node of a channel can decide its path using

the information in the node’s database. In the latter. there is no information broadcast, but

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Destination

O

O
T{D
=@

-

Source

Figure 2.7: Boundary routing

instead. routing messages are broadcast to execute a distributed shortest-path algorithm.

Information outage is inevitable in both options. because the network condition may
change during the resource reservation stage when multiple channels are established simul-
taneously by different nodes. However. even though the information used for routing is
out-of-date during resource reservation. dependability QoS guarantees remain unaffected.
because backup multiplexing has nothing to do with the stale information used by routing
heuristics. It only results in routing a backup channel over a less efficient path.

In addition to these link-state heuristics, we would like to describe a simple routing
heuristic based on the topological information. With this routing heuristic. a channel is
routed on a topologically shortest path which is closest to the boundary of possible routing
area (see Figure 2.7). The cross sign means the unavailability of a link due to failures
or resource shortage. This boundary routing allows a wider search space for routing next

channels between the same nodes. We name this routing method Rg.

2.3.3 Periodic Route Reconfiguration

In the initial routing, those backup channels which have already been established are not
disturbed for routing a new backup channel. Intuitively, if we reroute early backup channels
which had been routed without considering later backup channels. we can improve the
overall resource usage efficiency. Rerouting primary channels will make further improvement
possible. since routing of primary channels plays a key role in backup multiplexing. However,
moving primary channels is a complex process and can cause service disruptions. So, we
do not consider the rerouting of primary channels. Repair of failed components is another

case in which rerouting existing backups is beneficial. Network component failures will

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Csan>

Initial path assignment

i
r Start new iteration

Yes Are all backups tested
in current iteration?

No

Select a backup channel

No
Is there a better path
than the current path?

Yes

Reroute it over the new path

Was any backup channel \ Yes

rerouted in current iteration?

Figure 2.8: The iterative optimization method

disable/activate backups. and new backups will be routed to substitute for the old (i.e.,
disabled or promoted) backups by avoiding the failed components. possibly on a longer
path than the original backup. When the failed components are repaired. the efficiency of
resource usage can be improved by rerouting some backups over the repaired components.

Recalculating all existing backup paths whenever a new backup is established is what
we want to avoid in the dynamic channel setup/teardown environment. Instead. in our
two-step approach. channels are set up quickly using the initial routing heuristics. and
then reconfiguration is performed periodically considering all of the channels which exist
at the moment the reconfiguration starts. Though, Integer Programming (I[P} can be used
for the optimal reconfiguration of existing backups, its computational complexity is high.

Long delay in route reconfiguration involves a risk that some reconfiguration decisions may

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

become less beneficial or meaningless. since existing backups can be torn down or new
channels can be added during the optimization. [P is not a feasible solution particularly for
a large-scale network in the dynamic environment. As a practical alternative. we developed
an iterative optimization method.

The flowchart in Figure 2.8 depicts the iterative optimization method. Starting with an
initial path assignment. a new minimum-cost path of each backup is searched. one at a time.
When there is a new path which requires less spare resources than the original path. the
backup is moved to the new path. The iteration is continued until no further improvement
is made. This algorithm always converges and the number of iterations is bounded by the
square of the total number of backups in the network. as the total cost (i.e.. network-wide
sum of spare resources) monotonically decreases as channels are rerouted. However. the
final result is not necessarily optimal since we do not explore the possibility of rerouting
multiple backups simultaneously. Another reason for sub-optimality is the lack of checking
local optimality. For instance. rerouting a backup over a path with the same or larger cost

can reduce the cost of other backups by a greater margin.

2.4 Evaluation

In this section. we evaluate the performance of backup multiplexing schemes and routing
mechanisms via simulations. The metric for performance evaluation is the average spare
resource at a link to meet the fault-tolerance requirement. The dependability goal assumed

in this section is single-link failure tolerance.

2.4.1 Simulation Setup

Some general simulation setups which will be used throughout this thesis are as follows.
The simulation networks are an 8 x X torus (wrapped mesh) network and an 8 x 8 mesh
network (see Figure 2.9). In the simulation networks, neighbor nodes are connected by two
simplex links, one for each direction. and all links have an identical bandwidth. To obtain
a similar total capacity for both networks. we set the link capacity of the torus network to
200 Mbps and set that of the mesh network to 300 Mbps.

D-connections are established incrementally, one at a time. Channels of each D-connection
are routed disjointly by a sequential shortest-path search algorithm. Thus, the primary
channel is routed first over a shortest path. then the backup is routed without using

the components of the primary channel. Primary channels are always routed using the

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) 8 x 8 torus (b) 8 x 8 mesh

Figure 2.9: Simulation networks

boundary-routing method to allow a wider search space for backup routing.

For simplicity. all D-connections are equipped with same number of backups. and the
same traffic model is assumed for all channels. so each channel requires 1 Mbps of bandwidth
on each link of its path. The end-to-end delay requirement of each channel is assumed to
be met if the channel path is not longer than the shortest-possible path by more than 2
hops. A total of 4032 connections are established incrementally, so that there may exist a

D-connection between each node pair. i.e.. 64 - 63 = 1032.

Remarks: We simulated a regular topology network with a relatively high connectivity.
This is because dependability guarantees are impossible to make on networks with low
connectivity. and simulations over a regular topology may reveal the general properties
of the scheme under test without being influenced by topological randomness. Note that
the future backbone networks are expected to have higher connectivity than the current

Internet, so that k-ary n-cube topologies (like meshes) are reasonable to consider.

2.4.2 Measurement of Spare Resource Overhead

We first measure the average spare bandwidth for various backup configurations. In this
simulation, the boundary-routing method was used for both primary and backup routing.
Figure 2.10 and 2.11 show the simulation results. The ‘network load’ is a metric to indicate
the ratio of the total bandwidth consumed by all primary channels to the total network

bandwidth capacity. The establishment of 1032 connections resulted in a 33 ~ 34% network

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

without muxing ——
40F 7 with muxing ——
£
S 30t 1
3
b3
2
8 20r 1
o o
N
[-%
s - .
o e
o o e A
10 30
Network load (%)
(a) Single backup in 8 x 8 torus
without muxing ———
40 r with muxing -—-- - 1
g?
S 30f 4
3
F3
2
S)
S 20/} 4
D
5
Q
(7]
10F e
0 . N
10 20 30
Network load (%)

(b) Single backup in 8 x 8 mesh

Figure 2.10: Average spare-bandwidth reservation under deterministic multiplexing

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

load in both torus and mesh networks.

For deterministic multiplexing. the single backup configuration is sufficient to to tolerate
any single link failure. So. the algorithm in Figure 2.1 (a) was employed.

For probabilistic multiplexing. single and double backup configurations were simulated
in the torus network. but only the single backup configuration could be simulated in the
mesh network because of its topological limitation. Seven different multiplexing degrees
were applied in each backup configuration. In the double backup configuration. the same
multiplexing rule was applied to both first and second backups. The notation ‘'mux=a’
means that two backups are multiplexed when their primary channels share less than a
network components. i.e.. ¥ = aA. ‘mux=0" has the same effect as disabling multiplexing.
The results of *‘mux=2" and ‘mux=4" are not plotted in Figure 2.11. because. due to the
nature of channel routing. they were very close to the cases of ‘mux=3" and ‘mux=3".
respectively. Two channel paths are not likely to share two nodes without sharing a link
between the nodes. so the results of ‘mux=2" and ‘mux=3" are very close to each other. The
case of sharing two consecutive links (i.e..mux=+4"and ‘mux=3") can be reasoned similarly.

There are several interesting observations to make from the simulation results.

(1) The network capacity is reduced by more than 50% for each backup when backup
multiplexing is not applied. It is because some backups are routed over longer paths than
their corresponding primary channels and the paths of second backups become longer than
those of the first backups. For example. in a torus network. there are usually two shortest
disjoint paths between any two nodes that are more than one hop apart. If the source and
destination nodes lie on the same principal axis and the distance between the two is not
exactly one half of the torus dimension. there exists only one shortest path. Therefore.
without backup multiplexing. the use of multiple backups will lower the network utilization
to an unacceptably low level.

(ii) Comparison between Figure 2.10 and the single backup configuration with ‘mux=3"
in Figure 2.11 shows that deterministic multiplexing requires smaller spare resources than
probabilistic multiplexing, while both guarantee 100 % tolerance to any single link failure.
It is expected considering that deterministic multiplexing reserves minimal spare resources
to tolerate deterministic failures. The dependability QoS measurement in Chapter 4 will
reveal each scheme’s capability of tolerating other failure types.

(iii) Under probabilistic mulitiplexing, the overhead of multiple backups becomes close
to that of a single backup, when high multiplexing degrees are used. See the case of ‘mux=6’

in Figure 2.11 (a) and (b). This result is significant for the dependability QoS comparison

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mux=0 ——
OF mux=t —om- 1
mux=3
- mux=
2 mux=6 -----
z 3 e
= P
E3
°
]
§ 2or
®
[
(=8 R34) -
0} e 1
o “‘-".- L L e
10 20 30
Network load (%)
(a) Single backup in 8 x 8 torus
40+ :
g
=z 30 4
°
E
2
g
S 20t 1
-]
5
o -
wor oA e 4
O = i i
30

[¢] 20
Network load (%)

(b) Double backups in 8 x 8 torus

mux=0 ——

wof e TS -
mux=3
mux=5
mux=6 -----

Spare Bandwidth (%)

0 20
Network load (%)

(c) Single backup in 8 x 8 mesh

Figure 2.11: Average spare-bandwidth reservation under probabilistic multiplexing

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in Chapter 4.
(iv) In the mesh network. the reduction of spare bandwidth by backup multiplexing is

not as much as in the torus network. This is because the absence of wrapped links in the
mesh network makes the primary-channel paths more concentrated on the central region of
the network. thus discouraging multiplexing among their backups.

We performed other simulations with inhomogeneous traffic. such as mixed bandwidth
requirements or hot-spots in resource reservation. The results indicate that the efficiency
of backup multiplexing is relatively insensitive to network traffic conditions. but is more
sensitive to network topology. In general. backup multiplexing is less effective in a sparsely-
connected network. because there are a smaller number of possible backup paths. and
hence. backups have to share the same links even if they are related. which hinders effective
resource sharing among backups. For example. since the routing space of the mesh network
is smaller than that of the torus network. the overall performance of backup multiplexing

is degraded in the mesh network. as compared to in the torus network.

2.4.3 Comparison of Routing Heuristics

For comparison of routing heuristics. we used smaller simulation networks. In the simu-
lation. the algorithm in Figure 2.1 (a) was used for deterministic multiplexing, and ‘mux=3"
was applied to the single-backup configuration for probabilistic multiplexing.

The first experiment (Case 1) was conducted in a 5 x 5 torus network. The bandwidth
requirement of each D-connection was identical. so each channel (both primary and backup)
required 2% bandwidth on each link of its paths. The end points of each D-connection were
evenly distributed across the network. A total of 600 D-connections were established. such
that there existed a D-connections between each node pair. i.e.. 25 - 24 = 600.

As a result of establishing 600 D-connections. the network load became 30%. Figure
2.12 shows the simulation results for Case 1. The average amount of spare resource required
without backup multiplexing was 36% of total network capacity. We call this value *backup
load.” In this case. the overhead of backup channels without multiplexing is 36/30 x 100 =
120%. The average spare bandwidth by the initial routing method is depicted as a bar.
while the reduced spare bandwidth after the iterative optimization is labeled with *+°.

Then. we relaxed the homogeneity condition of Case 1 in next experiments. In Case 2.
the bandwidth requirement of each D-connection was not identical. but three types of con-
nections were mixed: 1/3 connections of 1% bandwidth, 1/3 connections of 2% bandwidth.

and the remaining 1/3 connections of 3% bandwidth among a total of 600 D-connections.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30 . - - - - r
st
£
£ ot
g
2z
2 15T 300 "
a =0 (goy (1216) (11.80) (11.49) ‘1298
® 13.00% ;- TR TN e
g 10} fingell L - . T
« . P : g76: (7.18) .10.00: 1000 : 994
5} LT ;
RO R1 RR R3I R4 RS RE R7T A8 R9
(a) Deterministic multiplexing
30 . . ‘
st
220t (18.00) 82)
18.00: ; P e (1382 - (15.04)

1284° (966) (9.58)

P e S S Jman

: : : 1938928
sp L]

Spare Bandwidih(%)
&

0 i HIE S S S PR i i i i

RO R1 R2 R3 R4 RS Ré R7 2t} R9

(b) Probabilistic multiplexing

Figure 2.12: Case 1 (network load = 30%. backup load = 36%)

The selection of connection end-points and the network topology were the same as Case 1.
Figure 2.13 shows the simulation results.

In Case 3. while keeping other conditions the same as Case 1, the selection of connection
source nodes was restricted such that all connections were originated from only 12 randomly-
selected nodes among 25 nodes. The destination nodes were evenly distributed as in Case 1.
so that the pattern of resource reservation had hot-spots around the selected source nodes.
The simulation results are shown in Figure 2.14.

In Case 4. we established 600 D-connections in a 5 x 5 mesh network. The source/destination
nodes were evenly selected. but the bandwidth requirement of each channel was set to 1%
instead of 2%, considering the smaller network capacity of the mesh. The resultant network
load and backup load were 25% and 30%. respectively. The simulation results are presented
in Figure 2.15.

Generally, both deterministic and probabilistic multiplexing reduced spare resources

significantly, regardless of the network conditions and routing heuristics. Some observations

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30
st
£ L
£ 2
2
: :
5 T 1329 24 123y (1265) (11gq) (1276)
3 : RIS S8 (11.06)
e 1320 £ ; st S AN A viuid
g 10 - At NT76 - gt g .
@ : {10370 (7.61) 1089: 110750 . (750 (739
sl : (740 ¢ - ’ BRARER AT
° R S S S S AN N . NS S S S
RO R1 R2 A3 R4 RS A6 A7 A8 R9
(a) Deterministic multiplexing
30 , — -
2+ 1
£ 20 F (18.14
£ U819 (1731 (1690) (17.23) (17.08)
8 y 27 (1680 (16.07) .
H 18,041 T T 2200 (15.19) J
§ YT R 16081 e e T
@ : i 143" A L
° i {10.32) : : 13.08 (10.23) (9.94)
s 10} Sy : ; ST e]
@ 9.69 : ; 1954 ig2a
st . B
0 ML S L a N A SR : L—

RO R1 R2 R3 R4 RS R6 R7 R8 A9

(b) Probabilistic multiplexing

Figure 2.13: Case 2 (network load = 30%. backup load = 36%)

from the simulation results and their implications are summarized below.

(i) For the initial route selection. those heuristics which include f; as a primary com-
ponent (i.e.. R3. Rg. Rg) outperformed other heuristics by a large margin. Meanwhile the
performance of R, was not much better than that of Ry or R;. These results suggest that
the general-purpose heuristics like f; and f, are less effective for backup routing than those
heuristics which directly take advantage of backup multiplexing. In addition. the perfor-
mance was improved by properly combining basic cost functions. Rs and R; outperformed
R; and R;. and both Rz and Rg did over Rj.

(i1) Inhomogeneous network conditions degrade the performance of backup multiplex-
ing. With mixed bandwidth requirements (Case 2). the efficiency of backup multiplexing
was degraded. though not significantly. Performance loss was also observed in Case 3. It
is because channel routes were concentrated on the hot spots. thus discouraging backup
multiplexing. The same explanation is possible for Case 4. in which channel routing is more

concentrated around the central area of the network than in the torus.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30 . — — . —
25t
£
=3 20 +
H (15.54)
3 gl e 0499 402 (14.64) (14.06) (14.32)
S i Doeeeeeoan T e e (12.74)
a 1114.90¢ - 1436 : A et
@ . i 4308 : 13720 11364 c
g wt i : {9.00) : : 1226 (886) (8.64) -
@ i : e . : . COTTTIeTTEIY eeseeees
8.96 : : 874 gs2
5F H . H : [
° A L i M i de : M A — A R - A H A
RO At R2 R3 R4 RS R6 R7 As R9
(a) Deterministic multiplexing
30 . . —
25t :
3 (19.34)
£ o20p D00 (882 06 (1884) (4772 (1830)
2 1934: l1gg2; T 1836: 7 - . (1546)
2 st s i -16.40. DT 700: e 1
: ' : : 14.52°
’g (10.68) : : 1452 (10.40) (10.42)
3 o W el]
@ el
5
0 N i ; i : . e : A i : A I — : e R i
RO R1 A2 R3 R& RS R6 R7 R8 A9

(b) Probabilistic multiplexing
Figure 2.14: Case 3 (network load = 30%. backup load = 36.2%)

(iii) While the impact of iterative optimization was not substantial in the heuristics
which use f3 as a primary cost function. it was more significant in other heuristics. For in-
stance. the spare bandwidth using R, vielded a similar level to R; before the optimization.
but became much smaller than R; after the optimization. . The large improvement by
iterative optimization implies that the performance of the corresponding heuristic is sensi-
tive to the order of channel establishments. The minor improvement by optimization with
f3-contained heuristics hints that with those heuristics, we can set the interval of periodic

optimization to a large value.

2.5 Summary and Conclusion

In this chapter. we presented the procedure of backup establishment. For each primary
channel, backup routes are pre-determined and spare resources are reserved in advance

along with the routes for guaranteed failure recovery. To reduce the amount of spare

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30 T — T r —r T ~— T - T

3
£ 20¢f 4
£ (16.70)
H e
2 450 1670 (1386) (1426} (13.78) (12.56) (14.06) (13 60) 1
g i D T e (12.56) e
< ii13e6: . (1076) - . . (10.76) (10.98)
2 10l i §12077 e 12200 11870 11210 1197 e oo
& . H : 10.40) H :10.40: :10.45
5t]
o i M . : i . - A rs M A - .l - A — A
RO A1 R2 R3 R4 RS A6 A7 R8 R9
(a) Deterministic multiplexing
10 v
25 | 4
(19.90)
20 : (17.55) (17.89) (17.41) (17.93) (17.40) 7

119.90: e (16.02) o (1601) 77 il (16.02) (15.90)

1581 15.4q; 015991 0 11589 4546 5.

Spare Bandwidth(%)
I
Ll

0 — i P i " —, L P |

RO R1 R2 R3 R4 RS R6 R7 R8s R9

(b) Probabilistic multiplexing

Figure 2.15: Case 4 (network load = 25%, backup load = 30%)

resources, we developed backup multiplexing methods which allow resource sharing among
“unrelated”™ backup channels. By controlling the amount of spare resources. the network
can provide different dependability levels to different connections. We also developed the
two-step backup routing approach which consists of an initial routing stage and a route
optimization stage.

We then evaluated via simulation the effectiveness of the proposed scheme under various
network conditions. The simulation results show that the routing heuristics which directly
exploit the property of backup multiplexing outperform other more general heuristics like
minimum-hop routing or load-balancing routing by a significant margin. With a proper
routing heuristic, backup multiplexing enables very efficient resource utilization. For in-
stance, only as low as 20-30% resources for active channels are needed to be reserved as
spare resources to guarantee successful recovery from any single link failures in mesh-type
networks, while more than 120% spare resources are necessary without backup multiplexing.

There are issues on backup establishment that we have not addressed in this chapter. For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w, (1) walt) w(t) w,(1) Cs

wyo [= _jj

ds

(a) Components of Wj3(¢) and Wi(¢)
wy {1} wy (1) C,

w,o N
A

d3

(b) After grouping M> and M, into My

Figure 2.16: A counter example

example. when will backup channels be established. together with their primary channels
or after establishing primary channel? If backups are established later. will the primary
channels start services before backups are established? Another unanswered question is
whether backups of the same D-connection are allowed to overlap with each other in their
paths. [t might be inevitable in a low-connectivity network. Such issues should be dealt with

in the stage of actual deployment. considering the application and network characteristics.

Appendix 2.A Inapplicability Proof of Deterministic Multi-
plexing

To apply deterministic multiplexing, resources should be exchangeable between backup
channels. More specifically. the underlying real-time channel scheme should satisfy the

following condition:

On a link, multiple channels can be grouped into a single channel and they can

be separated into independent channels again if needed.

We will prove that this condition is not satisfied in scheduler-based schemes. by showing a
counter example in the RTC scheme [55]. a scheduler-based scheme.

In the RTC scheme, a real-time channel M, on a link ¢ is described by a set of parameters
(Ci.d;, pi), where C; is the maximum service time on £ for any message of channel M,. d;
is the maximum permissible delay for messages belonging to M; at this link, and p; is

the minimum message inter-arrival time. When a set of channels {M; = (C;.d;,p;),i =

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l.---.m} run on a common link ¢ and the channel set is ordered according to channel
priorities with M being the highest-priority. the time required to process a message of M;

in the presence of higher-priority messages is:
=1
Wit) = 3 C;-Tt/p,] + C.
=1

Suppose at ¢t = 0 the message arrival of a channel coincides with message arrivals of all
other channels of equal or higher priority (i.e.. the worst case for M;). Then. the message
deadline of M; will always be met if W;(t) < d;. where t is the instant of }M;’s message
arrival.

Assume. for example. there are five channels M,;.---. /5 on ¢ and we want to group M,
and My into a new channel M. M,’s guarantee will not be affected since the new channel
M need not come before 1/, in the channel-priority list. However. the grouping can be
critical to M3 and M;5. The relations between the system-time requirement and the delay
requirement of M3 and Ms are illustrated in Figure 2.16 (a). where wi(t) = C;-[t/pi]. The
priority of M should be higher than Mj. since the guarantee for M> cannot be achieved
regardless of the bandwidth reserved for the channel with lower priority than Mj3. The
bandwidth reserved for /; should be greater than that for M5 and that for M. If the
bandwidth requirement for M/, is greater than that for /. simply using the parameter set
of M, as that of M} will work fine. But in the opposite case. w(t) which should be located
at the position of .M, becomes greater than w;(¢) as shown in Figure 2.16 (b). Hence. the
QoS guarantee for .1/3 will be violated as a result of grouping 1}/, and My into M.

Thus. there is no general way to find a parameter set which subsumes any of two
parameter sets, while preserving the guarantees for other channels. A similar argument can

be applied for other scheduler-based schemes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

CHANNEL FAILURE DETECTION

In the previous chapter. we described the procedure of connection establishment prior
to the occurrence of a failure. Here we focus on failure detection. the first step of run-time
failure recovery. We present two behavior-based detection schemes: neighbor detection and
end-to-end detection. We then evaluate their effectiveness through fault-injection experi-
ments in a laboratory testbed. In particular. we measure and analyze the coverage and
latency of the proposed failure-detection schemes.

This chapter is organized as follows. Section 3.1 presents the failure-detection schemes
under evaluation. Section 3.2 gives an overview of the fault injector used for experimental
evaluation. Section 3.3 describes the experimental setup. Section 3.4 analyzes experimental

results. The chapter concludes with Section 3.5.

3.1 Channel Failure Detection Schemes

Network reliability can be accounted for with message loss rate and recovery delay.
Conventional computer network applications such as electronic mail. file transfer. or network
file systems do not mandate fast failure recovery. but require reliable (correct) delivery of all
messages even if it takes a long time. By contrast. real-time applications require a different
reliability goal from conventional non-real-time applications. In this section. we define the

reliability goal for real-time communication and present failure-detection schemes to achieve

the goal.

3.1.1 Channel Failure

The usual non-real-time datagram service is often called "best-effort delivery’. implying

that the network attempts to deliver messages as quickly as possible by using the avail-

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

able resources. Reliable transport protocols for non-real-time communication guarantee the
eventual (loss-free) delivery of messages between two end-points. Here. the “grain™ of failure
detection is a message. Message loss can be detected using behavior-based failure-detection
schemes. For example. with the “positive acknowledgment™ method. the receiver informs
the sender of the reception of each message (or a group of messages). so that the sender can
detect delivery failures. "Negative acknowledgment’ is an alternative. in which the receiver
detects message losses and requests the retransmission of missed messages to the sender or
other servers.

The reliability goal of real-time communication is not loss-free delivery of messages. In
contrast to non-real-time messages. the content of a real-time message is meaningful only
when it is delivered in time. Retransmitting real-time messages in case of their loss or cor-
ruption may be of little use. since their deadline is usually too tight to allow retransmission.
Therefore. loss-free real-time communication is hard to achieve without relying on expensive
forward-error-correction techniques. However. fortunately. many real-time applications do
not require such strict reliability as ‘no message loss at all’. For example. loss of a couple
of frames in video/voice data streams is acceptable. Temporary message losses are also
tolerable in real-time control applications because of the ‘system inertia’ characterized by
the control system deadline [36]. Therefore. the grain of failure detection is channel failures
instead of individual message losses. A real-time channel is said to have ‘failed". if the rate
of correct! message delivery within a certain time interval is below a threshold specified by
the application. The same failure manifestation (i.e.. error rate) may be acceptable to some
applications while it may not to other applications.

Since a long service disruption will cause application failures. effective failure detection
with high coverage and low latency is essential in reliable real-time communication. For
example, telephone services require fast failure recovery so that humans may hardly notice
the service disruption caused by network failures. Telephone networks employ an expen-
sive failure-detection technique using hardware duplication/comparison to quickly detect
switching-node failures [94]. A key challenge is how to achieve fast failure detection with-
out relying on special hardware support for real-time communication in packet-switched
computer networks. We use behavior-based failure-detection schemes which are similar to
the failure-detection schemes used for reliable datagram communication. In what follows.
we present two failure-detection schemes to uncover channel failures in real-time communi-

cation. These schemes rely on behavior-based techniques can be applied to any network.

'In terms of both content and timing,

U
(3]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ly

Figure 3.1: Two nodes connected by dual simplex links

3.1.2 Neighbor Detection Scheme

To detect node crash/hang failures or permanent link failures. adjacent nodes periodi-
cally exchange node heartbeats (“I am alive™). If a node does not receive heartbeats from
one of its neighbors for a certain period. it considers the silent neighbor failed and stops
sending heartbeats to that node. A heartbeat scheme is generally specified by two pa-
rameters: heartbeat interval ¢4 and a tolerable number. m. of heartbeat misses. When no
heartbeat has been received for (m + 1){; time units. a failure is declared. Heartbeats do
not carry any useful information. and regular messages can be used as heartbeats. Explicit
heartbeats are sent only if there are no regular messages for a pre-specified period.

In networks where two nodes are connected by dual simplex links. a node cannot tell
the difference between the failure of its neighbor nodes and that of the corresponding links
by exchanging node heartbeats only. Instead of relying on sophisticated diagnosis. we treat
all channels running through the suspected link as faulty. So, when the incoming link from
a node fails. the channels on the outgoing link to the node will be considered failed. even
if they were healthy. Suppose a link €;; from node .V, to node .V; fails (Figure 3.1). Even
though channels on ¢;;. a link from .V; to .V,. can continue their services. .V; can no longer
detect the crash of .V; or {;; without healthy ¢;;. Such a channel should be torn down
even if the channel itself is healthy. This is reasonable because a channel cannot maintain

dependable service if the health of the channel cannot be monitored.

3.1.3 End-to-End Detection Scheme

This scheme involves both end nodes of a real-time channel. It works as follows. The
source node, whenever necessary. injects a channel heartbeat into the channel message
stream. A channel heartbeat is a sort of real-time message, and the intermediate nodes
on a channel do not discriminate channel heartbeats from data messages. Each channel
heartbeat contains the sequence number of the latest data message. In this way, the desti-
nation node can monitor the number of data messages lost. If the message-loss rate of the

channel exceeds a threshold specified by the application, the destination node declares that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the channel has failed.

For each channel. the source node manages a heartbeat-generation timer which is peri-
odically incremented. The heartbeat-generation timer is reset every time a message (data or
heartbeat) i1s transmitted over the channel. Only when the value of the heartbeat-generation
timer reaches the maximum heartbeat interval An,-. an explicit channel heartbeat is gen-
erated. Therefore. when An,; is set to a sufficiently large value relative to the data message
interval. explicit heartbeats will seldom be generated due to the (near) periodic nature
of real-time messages. thus making the overhead of channel heartbeats small. The h,,,,
value of a real-time channel should be chosen to fit the channel’s traffic characteristics.
In real-time communication. a contract on traffic characteristics and QoS levels is estab-
lished between an application and the network before messages are actually transferred.
The network computes and reserves resources for a real-time channel from this informa-
tion. Therefore. the A, value of a real-time channel should be larger than the channel’s
minimum message interval specified in the QoS contract: otherwise. the resources reserved
for the channel will not be sufficient to carry both data and heartbeat messages of the

channel. The smallest possible heartbeat interval of a channel is therefore determined by

the channel’s traffic characteristics.

3.2 Fault-Injection Tool Set Development

The use of the proposed failure-detection schemes is not restricted to a particular
system/application. However, its effectiveness is intrinsically related to many system-
dependent issues, such as basic operating system support. communication protocol im-
plementation. underlying hardware capability. and so on. To fully explore such issues. we
have implemented and evaluated the failure-detection schemes on a laboratory testbed.

In this section, the fault-injection tool set that we have developed for experimental eval-
uation is described. The basic design principles are first explained. and the implementation

issues to support the principles are then discussed.

3.2.1 Fault-Injection in Distributed Real-Time Systems

Fault injection has long been viewed as a useful means of testing/evaluating fault-

tolerant systems [49].2 Numerous hardware-implemented fault injectors (HFIs) [5, 38. 67]

2Although numerous approaches have been proposed for dependability evaluation. the complexity of
distributed real-time systems, due mainly to the intercommunication among nodes, makes most of the
techniques intractable except for fault injection into actual prototype systems.

S]]
b |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have been developed and used for various experiments. However. as the complexity of
contemporary computer increases as a result of using highly-integrated VLSI chips. it is
becoming more difficult. or nearly impossible. to evaluate dependability with HFIs alone.
On the other hand. software-implemented fault injectors (SFIs) [83. 16. 533. 27. 57] have been
proposed as less expensive and more controllable alternatives. Although SFI techniques

such as overwriting memory or register contents are becoming popular. they still face many

difficulties.
Some requirements for fault injection in distributed real-time systems are enumerated

below.

1. The fault model should include faults on communication links and communication
adaptor circuitry as well as faults inside a processing node such as memory faults.
CPU faults. or bus faults.

2. The fault injector should be able to coerce the whole target system to follow a certain
intended execution path. which requires it to orchestrate all participants™ behaviors.
This is not achievable by randomly selecting fault type and injection timing.

3. The operational characteristics of workload should be easily adjustable. especially in
terms of the communication activities.

4. Fault injection and data collection must require as little modification to the target
svstem as possible.

5. The intrusion into normal execution by fault injection and data collection should be
minimized and isolated to obtain accurate measurements.

6. When clocks are not synchronized in the distributed system under test or clock skews
among different processing nodes are unacceptably large. a special time-stamping

technique without using system clock should be emploved.

To satisfy the above-claimed requirements. we have developed an integrated fault-

injection environment called DOCTOR (integrateD sQftware-implemented fault injeCTiQn

enviRonment).

3.2.2 Organization of DOCTOR

Figure 3.2 depicts the organization of DOCTOR. In the distributed system architec-
ture assumed. a host computer works as a console node and several processing nodes are
connected via a ‘system network’ and linked to the host node by a ‘development network.’

Each node can be a bus-based multiprocessor system.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Host Computer Target System
| "
I e !
Experiment = ’
Parameter Files q -
] [HMON-S
HMON Network T R !
] { '
Experiment [\ ¥
Data Files T
% HMONSZ)
i
User Development Network System Network

Figure 3.2: The organization of DOCTOR

DOCTOR provides a complete set of tools for automated fault-injection experiments:
fault selection tool. fault injector. synthetic workload generator. data monitor. post data
analysis tool. The fault-selection tool. EGM (Experiment Generation Module) is responsible
for generating a set of fault instances to be injected. ECM (Experiment Control Module) and
FIA (Fault Injection Agent) composes the fault injector. ECM is the run-time experiment
manager and FIA performs actual fault injections under ECM’s control. SWG (Synthetic
Workload Generator) is to generate various artificial workloads. The data monitor. HMON,
collects the experimental data at run time. DAM (Data Analysis Module) analyzes the
collected data off-line after completing the experiment.

The first role of EGM is to analyze the executable images of workloads which will be run
on the target system. A workload could be run on a single processing node or be distributed
among a number of nodes. The user can use real programs as workloads. or can rely on
SWG for artificially-generated workloads. In either case, the symbol-table and object-code
information are extracted to be referenced for the purpose of fault-instance generation. The
second role of EGM is to parse the ‘experiment description file' supplied by the user and
to generate the ‘experiment parameter file’. EGM generates an experiment parameter file
for each node involved in the experiment. Each experiment parameter file contains the
experiment plan such as the information about fault types. injection timings. the start/quit

of each experiment. and so on.

”Rerpr)roduced with permission of the copyright owner. Further reproduction prohibited without permission.

ECM functions as an external controller of FIA. In a fault-injection experiment. one of
the factors that determine the quality of analysis results will be the number of runs.® There-
fore. it is very useful to automate multi-run experiments. The key problem in experiment
automation is the synchronization and re-initialization of several processes involved. The
level of re-initialization required depends on the status of the target system after completing
each run. In some cases. it may be necessary to reset the whole system. and in some other
cases. the restart of workloads may suffice. ECM utilizes the experiment parameter files
supplied by EGM and sends proper commands to FIAs about the fault injection plan and
the synchronization of each run. ECM also sets up an experiment environment by down-
loading executable images of the workload. FIAs, and even system software if needed. FIA
receives commands from ECM and executes them by injecting faults or making workloads
wait/start/stop. It also reports its activities to HMON, such as the injection time. location.
tvpe. etc. FIA runs as a separate process (or runs on an interrupt thread depending on
fault types to be injected) on the same processor where the workload is running.

One distinct structural feature of DOCTOR is the separation of software components
of the host computer from those of the target system. Thus. ECM runs on the host com-
puter while FIA runs on the target system. [t has the advantage of reducing the run-time
interference with the target system caused by fault injection. because only essential compo-
nents are executed on the target system. Another advantage is higher portability since the
highly system-dependent part is isolated from the rest. It also eases the synchronization of
multiple target nodes. i.e.. orchestrating the execution of the distributed system under test.

In the remainder of this section. we discuss the implementation of the fault injector and

the data monitor in more detail.

3.2.3 Software-implemented Fault Injection

Faults affect various aspects of the system state or operational behavior, such as memory
or register contents. program control flow, clock value, the condition of communication links.
and so on. Modifving memory contents has been a basic technique of software-implemented
fault injectors. Faults are likely to (eventually) contaminate certain parts of memory. so
memory faults can represent not only RAM errors but also emulate faults occurring in the
other parts of the system. Though the memory fault model is quite powerful. some faults
may affect system memory contents in a very subtle and nondeterministic way. and hence.

it is very difficult to emulate such a faulty behavior with memory fault injection alone.

3Each fault-injection experiment with specific workloads is called a run.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For instance, it is difficult to emulate erroneous communication-related functions by just
changing memory contents. A more sophisticated fault model is therefore required.
DOCTOR supports the injection of a variety of faults and errors, ranging from low-
level faults such as memory or processor faults to high-level errors such as communication
errors or system-behavior-level errors (e.g.. making processes slow or fast. terminating or
suspending processes. corrupting clock/timer services. or corrupting system-call services).
In essence. low-level faults are injected into addressable storage space. such as caches. main
memory. and CPU registers. while higher-level errors are injected by manipulating message
transmission services or system software services. In real-time systems where time is the
most precious resource, fault injection must be performed with minimum overhead to the
target system. Otherwise. the correctness of the validation itself becomes questionable. To
this end. only essential functions are performed on the same processor under test (i.e..
by FIA) and relatively simple fault-injection techniques which are described below are

employed. (Details on the fault-injector implementation can be found in [44].)

Memory fault: Contents of the cache or main memory are corrupted. The fault injection
target can be either explicitly specified by the user, or chosen randomly from the
address space using the symbol table and object-code information. For better con-
trollability, DOCTOR allows faults to be injected only into a certain memory section

of a particular target task. such as text area. global variable area. or stack/heap area.

Processor fault: CPU faults can occur in data registers. address registers. the data fetch-
ing unit. control registers. the op-code decoding unit. ALU. and so on. However.
accessibility to hardware components is usually limited. To overcome this difficulty.
we inject erroneous effects rather than faults themselves. by emulating the conse-
quences of CPU faults in the architecture-independent level; hence. the contents of
CPU registers or instruction codes are used as the targets of fault injection. The
timing of fault injection can be randomly selected or can be controlled to be the time
when a specific task or instruction is executed. Bus faults can be emulated as well.
by corrupting the content of an instruction just before its execution and restoring it
after the instruction cycle. Similarly. various types of faults in the processing unit can

be emulated, such as ALU errors and instruction fetching unit errors.

Communication error: Errors in communication links can be emulated using a special
fault-injection layer inside the protocol stack. The user can define the intended fault

behavior. while some pre-defined fault types are supported including message loss.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

corruption. delay. and duplication. Fault injection timing/duration can be specified

by either time or message history (e.g.. dropping several consecutive messages of a

certain type).

Evaluation of a fault-tolerance mechanism needs a systematic fault-injection plan. and
thus. the capability of injecting a proper fault instance into a proper location at a proper
time is essential. One important aspect of our fault model is its fine controllability of
the fault-injection timing. DOCTOR supports three temporal types of faults: transient.
intermittent. and permanent. A transient fault is injected only once. and an intermittent
fault is injected repeatedly. When injecting an intermittent fault. the user can specify such
parameters as the fault recurrence interval by probability distributions. Besides the random
injection timing control. DOCTOR allows the user to design fault-injection scenarios with

user-specified timing control in either time-based specification or history-based specification.

3.2.4 Non-intrusive Data Monitoring

The data monitoring instrument to trace the run-time behavior of the system under
test or to collect various dependability parameters is an important component in fault-
injection experiments. Conventional hardware monitors probe a fixed number of physical
signals to obtain low-level data. Though such hardware monitors eliminate interference
in the monitored system. they lack the ability of catching a wide range of software-level
events. Meanwhile, software-implemented monitors can cause unpredictable interferences.
Such software monitors usually rely on the operating system service to snapshot the tim-
ing of a certain event occurrence. Therefore. the overhead of intensive time-stamping may
sometimes be unacceptable for real-time systems. The problem of time-stamping is compli-
cated even further in distributed systems where events can occur asynchronously in different
processors. Comparison of time-stamps is meaningful only if the clock services are synchro-
nized with sufficient accuracy. It is not a practical assumption for some experiments since
the typical clock skew bound is in the order of millisecond. while the required time-stamp
resolution may easily reach the microsecond order.

To overcome the limitation of pure hardware monitors and software monitors, we have
developed a hybrid data monitor. We envision the data collection process consisting of

three steps: event probing, time-stamping, and event logging. Event probing is done by

*Young utilized a hardware/software hybrid monitor [105), where a commercial logic analyzer was used
to probe hardware signals and a software monitor checked the system status to assist the control of hardware
monitor. However, this approach is more oriented toward hardware monitors, and its major concern lies in

the measurement of low-level system activities.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Backplane bus

= =)
e Input °
Timer Controller P:rts :
\
Y
Bus Output
= Interface Memory Port
\L <)

Figure 3.3: Architecture of HMON

the special code inserted into the monitored objects. such as svstem software. application
program. communication protocol stack. or fault-tolerant mechanisms. Events may include
system call invocations. context switches. interrupts. fault injections. fault detections. and
so on. The probed events are time-stamped and logged by the hardware monitor. A
hardware monitor is assigned to each processing node in a distributed environment. and
a special time-stamping mechanism is devised to guarantee that the events from distinct
processors can be compared as if their time-stamps are generated by a centralized clock.

HMON is implemented as a separate board to reduce the hardware dependency on the
processor board and to allow a HMON to be shared by several processor boards on the
same backplane bus®. The logical architecture of HMON is shown in Figure 3.3. In the
current implementation. 1 Mega SRAM is used for data logging purpose. and 25 nanosecond
resolution time-stamp is generated by internal hardware timer. The function of HMON is
passive. [t has a memory-map interface. so when a certain address in the memory-map is
accessed. it performs a pre-specified action. For example. when a memory write operation
is requested at specific addresses. the data content is combined with a time-stamp to make
a logging entry. and the new entry is stored into HMON memory. The data collected in
HMON memory is dumped to the disk during experiments or after experiments. (Details
on the HMON implementation can be found in [39].)

For distributed data collection, a dedicated simple network. called "HMON network.’
is used to connect HMON boards. Each HMON has one output port and 7 input ports
to communicate with other HMONs, and two HMONSs are linked using a twist-pair cable.
Rather than synchronizing the internal timer of each HMON. we chose an indirect way. When

a signal comes through an input port, the identifier of the port is written with current time-

*Currently a VME bus.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P T

Fiber network \\
' NI

Figure 3.4: Configuration of the experimental platform

stamp into HMON memory. The HMON which generates the signal also logs the event

with its time-stamp. so that in the post analysis all the events can be totally ordered by

time-stamps.

3.3 Fault-Injection Experiment Setup

In this section. we describe the hardware/software configuration of our experimental

platform and the specification of fault-injection experiments which are conducted on the

platform.

3.3.1 Testbed

As shown in Figure 3.4. the experimental platform consists of three nodes. Nodes 1-3.
Each nodeis a VME bus-based multiprocessor system with Motorola 68040 microprocessors.
In each node. a CPU board (labeled as NP) is dedicated to communication processing.
while a separate CPU board (labeled as AP) is used for application processing. As a
communication fabric between nodes, a network interface board (NI) featuring the *ANSI
Fiber Channel 3.0 standard’[1] is equipped with each node. In addition. a HMON board is
added to each node for data collection. Node 1 and Node 2 are connected by two simplex

links (i.e., optical fibers). one for each direction. The same type of connection exists between

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Node 2 and Node 3. The host machine is connected to nodes through an Ethernet (i.e..
development network). Nodes are not equipped with disks. and application/system software
is downloaded from the host machine.

An extended version of the pSOS*™ real-time OS [93] is used for AP’'s system soft-
ware. The AP-side software is not important in our experiment, since APs run very simple
applications which request message delivery to the associated NP. and retrieve messages
received by the NP. NP employs a derivative of r-kernel 3.1 [77] as a system executive and
a substrate for building the protocol stack. Since NPs do not run user tasks. we disabled
the virtual address management of r-kernel. Thus. all tasks in NP are executed within a
single (kernel) address space. Memory protection of z-kernel was also disabled to minimize
the overhead.

Each NP features the real-time communication scheme described in [55]. Figure 3.5
gives an overview of the NP protocol stack. The protocol stack includes protocols for
application program interface (API). network management (NM). remote procedure call
(RPC).5 transport-level fragmentation (FRAG).” network/data-link layer (HNET). and the
device driver for network interface boards (DD). The API protocol exports routines that
applications can use to set up/tear down real-time channels and perform data transfer
on the channels. The RPC protocol is used by the NM protocol for transmitting channel
establishment/teardown messages. The HNET protocol provides the function of the network
layer and part of the data-link layer. The run-time message scheduler is also implemented
in it.

The NP system software, r-kernel. uses a non-preemptive scheduling policy with 32
priority levels for task scheduling, and its protocol processing is based on the process-per-
message model. Whenever a message arrives at a network device or needs to be transmitted
into the network. a process (or thread) is created to shepherd the message through the
protocol stack: this eliminates extraneous context switches encountered in the usual process-
per-protocol model. Once a protocol thread is scheduled, it runs without preemption until
completion of protocol processing. While the process-per-message model suffices for best-
effort messages, it introduces complexity for maintaining QoS guarantees and performing
traffic policing. For this reason. we implemented the run-time message scheduler as a
special thread that is created at system startup and runs at the highest-priority level.
Implementation details can be found in [70].

A node-heartbeat generator also runs as a separate task. It is periodically executed and

5 A modified version of r-kernel's CHAN protocol.
" A modified version of r-kernel’s BLAST protocol

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLICATIONS (AP)

[API |

NM
|
RPC
\
FRAG
]
HNET

[— Device Driver

PHYSICAL LAYER (Ni)

Figure 3.5: The protocol stack in NP

checks the values of special flags. each of which is associated with a link and is set whenever
a message is transmitted over the link. If the flag is not set when a heartbeat generator is
invoked, a new heartbeat is generated and sent over the corresponding link. The heartbeat
checking is done in a similar way. The heartbeat checker regularly checks the set of flags
which are set when a message is received over the associated link. The heartbeat checker
resets the flags after checking. If the heartbeat checker finds a flag not set for a longer

than the specified period, it declares a failure detection. Channel heartbeat generation and

checking is done similarly.

3.3.2 Experiment Goal

The end-to-end detection scheme will uncover all channel failures. so the main concern
is its detection latency. Under this scheme the destination node has to wait for the loss
of a specified number of messages before declaring a failure occurrence. Thus, the failure
detection latency is tightly coupled with the definition of channel failure.

The neighbor detection scheme has a much weaker dependency on the underlying failure
definition than the end-to-end scheme, because it monitors the behavior of a neighbor
node. rather than that of a real-time channel. Therefore. one can achieve smaller detection

latencies with the neighbor scheme than with the end-to-end scheme. However, in the

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application Application

A

AP

FRAG

HNET

2o]

<Node 1> <Node > <Node 3>
Figure 3.6: Real-time message passing at run-time

neighbor scheme. there is a possibility that a node is not operating correctly in terms
of message forwarding. but still generates node heartbeats or propagates part of regular
messages. In such a case. the neighbor scheme will result in a less than perfect detection
coverage. Even though the faulty node becomes silent eventually. the detection latency may
be larger than that of the end-to-end scheme.

The implementation of the neighbor detection scheme may influence its performance.
For instance. instead of running as a separate task. the heartbeat generator can run on
top of the clock interrupt thread. However. we have not used this implementation option
because of the following two drawbacks. First. execution time of the clock interrupt handler
is extended. during which other interrupts are disabled. Second. even when the OS task
scheduler or the message scheduler hangs, heartbeats will still be sent out. which will lower
the detection coverage. Not only the mechanism of generating heartbeats but also the
transmission path of heartbeats is important. In general. the closer the transmission path
of heartbeats is to that of regular real-time messages. the higher the detection coverage will

be. In the experiment. we tested two heartbeat-transmission mechanisms:
(i) Sending heartbeats as best-effort messages (option 1).
(ii) Sending heartbeats as real-time messages (option 2).

Figure 3.7 depicts the transmission path of heartbeats in two implementations. At an
intermediate node. only the bottom two protocols. HNET and DD. are executed for mes-
sage passing, as illustrated in Figure 3.6. NM and RPC protocols are used for channel
establishment and API and FRAG protocols are executed only at end-nodes.

The overall experimental goal is to measure the performance of the neighbor detection

scheme (i.e.. its detection coverage and latency) and to examine if and how much sending

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Message Message
Receiver Sender

AP!

FRAG

HNET JESE SR

DD

——» Real-time message
-7 "> Heartbeat (option 2)
- o

Heartbeat (option 1)

- - =

Figure 3.7: Two implementations for heartbeat transmission

node-heartbeats as real-time messages can enhance the detection coverage of the neighbor

detection scheme.

3.3.3 Experiment Specification

In this section. we formulate the fault-injection experiment using the FARM specifi-
cation model [3]. There are four major attributes of a fault-injection experiment: a set of
faults F. a set of activations A. a set of readouts R. and a set of derived measures M.

As the A attribute which specify the workloads used to exercise the system. real-time
channels were established from Node 1 to Node 3 through Node 2 on the testbed. The end-
to-end delay requirement of the real-time channels was set to 30 msec and the application
program generated real-time messages regularly once every 50 msec without any burst. Since
messages were generated periodically. no ‘channel heartbeat” needed to be injected into the
message stream of real-time channels. A channel failure is said to occur if no message is
delivered for more than 100 msec. The interval of ‘node heartbeats’ was set to 60 msec
and the tolerable number of (node) heartbeat misses was set to 2. Hence. if heartbeats are
not received for three consecutive heartbeat intervals (i.e.. 180 msec). a failure is declared
(detected).

As the F attribute, three classes of faults were injected: memory faults. CPU register
faults, and communication faults. Memory faults were injected only into the text area of the
target programs at randomly-selected times. The effects of memory faults in the data area
can be covered largely by CPU register faults, since memory variables are typically loaded
into registers. To emulate CPU faults, the values of data/address registers were corrupted.

Time-driven triggering was not very effective in injecting CPU register faults in our platform.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

message heartbeat heartbeat

s
VVEEER o

latency (nesghbor)

iatency (end-io-end)

fautt
injecion

Figure 3.8: Failure-detection latency

[t is because message threads are created and destroyed very quickly and thus. CPU is idle
for a large portion of time. unlike usual fault-injection experiments in which application
programs run continuously. To increase the fault-activation rate. a different method was
used to trigger a CPU fault-injection: i.e.. when a certain instruction is executed. a fault
is injected into the register used by the instruction. In addition. we injected faults into
CCR to study the effects of faults in control registers. To maximize the chance of fault
activation. CCR faults were injected when conditional branch instructions were executed.
We also emulated the faults in (physical) communication links. The fault-injection layer
was inserted between DD and HNET. Since the results of such communication errors as
message drop or message data corruption are straightforward, we injected corruption errors
into the message header part.

All of the injected faults were transient single-bit toggle faults. According to the common
practice in software-implemented fault injection. we use the term ‘transient’ to mean the
opposite to ‘permanent’. For example. register faults are transient in that the corrupted
register contents can be overwritten by the subsequent instructions. A communication fault
corrupts the header of only one message. so it is also transient. The faults injected into
memory are also transient. but. since the program text area is corrupted, they will have
properties similar to permanent memory faults. Since we are interested in detecting failures
of real-time channels after their establishment. faults were injected only into the NP of
the intermediate node, Node 2. in which only HNET and DD protocols are executed. In
addition to HNET and DD protocols, two OS modules, the task manager (TM) and the
clock service (CS), were included in fault-injection targets.

As the R attribute. HMON collects time-stamped data of such events as message gen-
eration. message relay, message reception. fault injection, failure detection, and heartbeat

generation/reception. Note that we need the distributed monitoring feature, since these

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

events are generated by different processing nodes.

After each experiment. we calculated (i) the channel-failure rate. and (ii) failure-detection
coverage/latency of two detection schemes. These correspond to the M attribute. First,
the result of each fault injection is classified into 3 categories: no error. tolerable error.
channel failure. The channel-failure rate is then computed as the ratio of the third case
to all cases. The failure-detection coverage is the percentage of detections among the runs
in which channel failures had occurred. When calculating the coverage of the neighbor
scheme. we excluded the case when the neighbor scheme detects a failure which had already
been detected by the end-to-end scheme. The failure-detection latency is computed as the
duration between the time of the last message delivered correctly and the time of failure

detection. (Figure 3.8 illustrates the failure-detection latency of two detection schemes.)

3.3.4 Fault-Injection Experiment Sequence

The experiment controller. ECM. on the host machine communicates with FIAs in the
target nodes through an Ethernet. To avoid the interference caused by fault injection. the
function of the FIA in NP is minimized: the communication with ECM is done by a FIA
proxy in AP. and the FIA in NP communicates with the FIA proxy through the VME bus.

The FIA proxy is also responsible for controlling HMON and uploading the collected data
by HMON.
To synchronize the start and the end of each run. dummy FIAs and FIA proxies were

also executed at Node 1 and 3. The experiment was fully automated. so that multi-run

experiments were done without human intervention. Each run consists of 6 sequential steps:

Step 1: EGM generates a fault-injection script for the run. (Scripts for multiple runs can
be generated at once.)

Step 2: ECM downloads system software (including communication subsystem) and fault-
injector software to NPs and APs. and remotely boots the target system.

Step 3: When the connection between ECM and FIA proxy is ready, ECM sends the
current fault-injection script to FIA proxy.

Step 4: FIA waits until applications establish real-time channels.

Step 5: After the message transmission is started. FIA injects a fault (or multiple faults)
and HMON collects data.

Step 6: When the pre-specified experiment duration is reached. the collected data is up-

loaded to ECM, and FIA proxies reset all nodes for the next run.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Analysis of Experimental Results

In this section. we analyze the experimental results collected from more than 15.000
runs. Each run took about 70 seconds: 40 seconds for experiment setup + 30 seconds
for executing the experiment. The same experiments were conducted with two differ-
ent implementations of the neighbor detection scheme. In the first set of experiments
(Experiment-1). node-heartbeats are transmitted as best-effort messages. In the second set
of experiments (Experiment-2), node-heartbeats are transmitted as real-time messages over

a special-purpose real-time channel.

3.4.1 Fault Manifestations

Tables 3.1 shows the composition of fault manifestations when node heartbeats are sent
as best-effort messages. The fault manifestations differed by fault tvpes and locations. For
example. fault injection into address registers resulted in a higher channel-failure rate. while
the fault injection into data registers resulted in a lower channel-failure rate. Faults injected
into CS had a relatively low activation rate. as compared to TM. The fault manifestations
when node heartbeats are sent as real-time messages are summarized in Table 3.2. The
fault instances injected in Experiment-2 might be different from Experiment-1. because
fault instances were randomly generated for each run. As a result. though the overall trend
of fault manifestations is similar. the values in Table 3.2 do not exactly match the values
in Table 3.1. Even if the same fault instances were injected. we might not get the same
results. In general. the repeatability of fault-injection experiments is not very high. because
the granularity of controlling the injection timing is usually too coarse to inject faults at the
exactly same moment repeatedly. Moreover. the target system may follow slightly different
execution paths in different experiments. particularly in distributed systems. Thus. the
obtained composition of fault manifestations may not be a representative result. More
meaningful implication of this experimental result lies in the pattern of system behaviors
caused by faults.

Interestingly. while many of the tolerable errors were due to ‘message deadline viola-
tions’. some of them were due to ‘message losses™ and very few ‘message data corruption’
errors were found. This is because the message data part is stored by the device driver when
the message arrives and is not copied or modified by other protocols in z-kernel. so that the
chance of message corruption is low. In some cases, the delayed messages were eventually

delivered. and the system behavior returned to normal. In some other cases. the abnormal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Channel failure (cf); tolerable error (ok): no error (no)
HNET | DD TM CS
runs 392 387 393 387
Memoryv | cf | 28.1% | 9.3% | 17.8% | 15.8%
ok 03% | 03% | 0.0% | 0.3%
no | 71.2% | 90.4% | 82.2% | 84.0%
runs 387 373 343 373
Dr cf | 17.1% | 13.1% | 114% | 2.4%
ok 3.1% | 8.8% | 0.0% | 0.0%
no | 19.8% | v8.0% | 88.6% | 97.6%
runs 389 359 379 304
Ar cf 68.1% | 59.9% | 61.5% | 45.5%
ok 6.2% | 64% | 0.0% | 17.1%
no 25.5% | 33.7% | 38.5% | 37.5%
runs 307 289 340 345
CCR cf 2% | 13.8% | 44.1% | 0.0%
ok 186% | 17.3% | 94% 0.9%
no T4.3% | 68.9% | 16.5% | 99.1%

runs 336
Msg cf 16.8%

ok 0.0%

no 83.2%

Table 3.1: Fault manifestations (Experiment-1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Channel failure (cf): tolerable error (ok): no error {(no)
HNET | DD T™ CS
runs 396 398 398 399
Memory | c¢f | 31.3% | 10.3% | 16.8% | 18.5%
ok 23% | 0.0% | 0.0% | 0.8%
no | 66.14% | 89.7% | 83.2% | 80.7%
runs 398 385 327 382
Dr cf | 13.3% | 11.7% | 13.1% | 2.6%
ok 3.5% | 3.4% | 0.6% | 0.0%
no | 83.2% | 84.9% | 86.2% | 97.4%
runs | 396 388 391 318
Ar cf | 4.2% | 629% | 70.6% | 11.5%
ok | 23% | 4.9% | 2.3% | 15.7%
no | 23.5% | 32.2% | 70.6% | 42.8%
runs 340 318 334 357
CCR cf | 12.6% | 204% | 52.7% | 0.6%
ok 10.9% | 6.0% | 11.7% | 0.8%
no | 16.5% | 73.6% | 35.6% | 98.6%

runs 397
Msg cf 17.4%

ok 0.0%

no 82.6%

Table 3.2: Fault manifestations (Experiment-2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/==

0043000 {®Y _
K]

Qilure detechon

Figure 3.9: An example of false alarm

iate messages

0 {1 @000

|

Figure 3.10: An example of channel failures undetected by the neighbor scheme

behavior keeps on occurring and vanishing without causing a channel failure or heartbeat
interruption. When such an abnormal behavior continues for longer than three consecutive
heartbeat intervals but less than 400 msec. the neighbor scheme signals a failure detection.
even if no channel failure actually occurs. We call such a situation false alarm. An example
of a false alarm case is depicted in Figure 3.10. According to our experimental results.
false alarms are rare but do occur. If we reduce the number of missing heartbeats before
declaring a failure in the neighbor scheme. the likelihood of false alarm will increase. The
possibility of false alarm bars the neighbor scheme from quickly declaring a failure upon

miss of a single heartbeat. especially when the heartbeat interval is small.

3.4.2 Failure Detection Coverage

We are most interested in the failure-detection coverage and latency of the neighbor
scheme. because the end-to-end scheme has always a perfect coverage. Sometimes channel
failures went undetected by the neighbor scheme. The measured detection coverage and
latency of the neighbor scheme from Experiment 1 are summarized in Table 3.3. A typical
failure symptom which was not detected by the neighbor scheme is illustrated in Figure
3.10. where faults cause only data messages to be delayed or dropped.

It would be interesting to compare our results with the experimental results about
‘fail-silent” behavior of computer systems. For example. (72.6 + 0.1)/(100 — 18.2) = 88.8
% of failures were reported in [80] to have been detected by the CPU-inherent detection

mechanism. The discrepancy of the detection coverage can be explained as follows. First,

T4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Coverage (¢): latency mean (/) in msec
HNET | DD ™ CS
Memory | ¢ | 87.3% | 94.4% | 95.7% | 85.5%
ln | 198.3 | 192.8 | 201.7 | 193.0
Dz c | 72.7% | 100% | 974% | 44.4%
Im 192.5 | 200.4 | 194.5 | 191.5
Ar c | 98.9% | 100% | 91.8% | 92.0%
L | 193.7 | 193.2 | 1934 | 194.6
CCR c | 682% | 92.5% | T1.3% | N/A
ln | 196.3 | 196.8 | 194.3 | N/A
Msg c 100%

Im 193.5

Table 3.3: Detection coverage and latency of the neighbor scheme (Experiment-1)

the two used different fault-injection methods. In [80]. a hardware-implemented (pin-level)
fault injector was used. so the fault injected at a CPU pin for two memory cyvcles can
be manifested as several errors at the level which a software-implemented fault injector
deals with. Moreover. the faults forced into control signal pins will make more pronounced
impacts on the target system than the data-level errors. For instance. even in our exper-
iments. faults in address registers were detected well. By contrast. CCR errors resulted
in a low coverage. It is because CCR errors cause incorrect control flow which is difficult
to detect without special hardware support (e.g.. a watchdog processor). while errors in
address registers can be detected by CPU-intrinsic fault-detection mechanisms like bus er-
ror. unaligned memory access. etc. Second. the underlying workload (i.e.. system software
and application program) was different. Computationally-intensive workloads (e.g., sorting.
searching. matrix multiplication, etc.) were executed in the experiments of [80]. The depen-
dency of fault-tolerance measures on workload has been reported by several researchers, e.g..
[14. 17]. In addition. our target system, like most other real-time systems, is not equipped
with memory-protection capability. The experimental result in [67) indicates that memory
protection can enhance detection coverage up to 15%. Third. the two used different fault-
detection schemes. Though the neighbor detection scheme will detect all crash failures, we
excluded the late detections by the neighbor scheme from the coverage calculation. Thus,

the failures which are detected by the neighbor scheme later than the end-to-end scheme

-]

(1]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Coverage (c): latency mean (/,,) in msec
HNET | DD ™ CS
Memory | ¢ | 96.8% | 100% | 100% | 98.6%
ln | 197.1 | 198.0 | 196.5 | 197.5
Dr c | 79.2% | 97.8% | 100% | v0.0%
ln | 2015 | 204.1 { 201.3 { 203.3
Ar c | 100% | 100% | 100% | 96.2%
lm | 204.1 | 204.6 | 203.6 | 203.6
CCR c | 90.7% | 100% | 100% | 100%
ln | 206.9 | 209.7 | 203.4 | 205.5
Msg c 100%

196.8

Table 3.4: Detection coverage and latency of the neighbor scheme (Experiment-2)

were treated as undetected. The implementation of heartbeat generation and transmission
may also affect the detection coverage.

In fact. the difference in the heartbeat transmission mechanism affects the performance
of the neighbor detection scheme. Comparison between Table 3.4 and Table 3.3 indicates
that the detection coverage observed in Experiment-2 is significantly higher than that of
Experiment-1. A near-perfect coverage was observed for most cases in Table 3.4. [t was
possible because. while heartbeats shared only part of execution path with real-time data
messages in Experiment-1. they went through the same execution path as real-time data
messages in Experiment-2 (see Figure 3.7). In Experiment-2, a special-purpose real-time
channel was dedicated to heartbeat transmission. Considering the sharing of program codes
in processing real-time messages belonging to different real-time channels. if a fault affects
a channel. it is very likely to affect other channels as well. Recall that in r-kernel. when-
ever necessary, a shepherd thread is spawned to process a new message, and all shepherd
threads execute the same (protocol-processing) program code. The property of program
code sharing in message processing is not limited to our platform and is common in most
conventional protocol implementations such as in BSD Unix.

Generally. if the execution of a thread is faulty because of faults in the local data of the
thread, only the message associated with the thread will be affected. not all messages of

a channel. This will be most likely to end up with a transient error. If the source of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

message

T 00
O V Lo _
VfV"Sg ggvvvj‘

Figure 3.11: An example of early failure detection

incorrect execution is in a globally-shared component like program code or systemn software.
all messages of all channels will be affected. which will not hurt the detection coverage of the
neighbor scheme. Only when the channel-specific data (i.e.. a link-deadline) is corrupted.
only the corresponding channels will fail while other channels will not. However. according

to our experimental results, the chance of such occurrences is very low.

3.4.3 Failure Detection Latency

In the current experimental setup. the end-to-end scheme will always result in a con-
stant latency. 100 msec. The expected detection latency of the neighbor scheme is 180 msec.
i.e.. duration of three consecutive heartbeat losses. However. the actual detection latency
measured was about 190-200 msec on average. where some latencies were over 250 msec.
There are three reasons for this. First. the heartbeat generator and the heartbeat checker
are periodically invoked at every 30 msec. As a result, heartbeats may not be generated
immediately after there is no traffic for 60 msec. and a failure may not be declared imme-
diately after the passage of 180 msec without any traffic. Second. faults may delay or drop
messages for some time before a complete channel failure. Late real-time messages are the
same as message losses from the application’s point of view, while they are considered as
implicit heartbeats from the heartbeat checker’s perspective. Thus. delayed messages may
extend the detection latency. Third. the fault-propagation delay can be another reason for a
long detection latency. if the fault-propagation delay is different for real-time messages and
heartbeats. In an extreme case. faults affect real-time messages quickly and affect heart-
beats slowly, which will result in a long detection latency. The second and third reasons
can explain the occasional occurrences of long detection latency over 250 msec.

Meanwhile. negative detection latencies were observed, though rarely. The negative
detection latency means that a failure is detected before it actually occurs. It happens
when message transmission is stopped for longer than 180 msec (i.e.. failure detection) and

then message transmission is resumed but the channel eventually fails. In such a case. the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

02 r . —————————— 02 —— —r
M
0.15 | (: 0.15 b 1 E
] « e
£ o1} ; £ oalt ;
= - =3 . -~ -
2 2 !
3 8
0.05 | 4 0.05 | ! E
|
0 N =1 A e s 1 - A A 0 — i) 'l . — - i A
150 175 200 225 250 275 300 325 350 375 400 150 175 200 225 250 275 300 325 350 375 400
Failure detection latency (msec) Failure detection latency (msec)
(a) Experiment-1 (b) Experiment-2

Figure 3.12: Comparison of detection latency distribution

detection precedes the channel-failure occurrence. Figure 3.11 illustrates this case. Note

that the situation is the same as false alarm except the eventual failure.

The comparison of fault detection latencies shows that Experiment-2 resulted in a
slightly larger average than Experiment-1. It is because the population of long latencies
was increased in Experiment-2 as compared to that of Experiment-1. Figure 3.12 compares

the overall distribution of detection latencies by two experiment setups.

3.4.4 Workload Dependency

We also conducted fault-injection experiments by setting up multiple real-time channels.
The existence of peer channels did not have a significant impact on the performance of the

failure detection schemes. When a channel suffered an abnormal behavior. other channels

experienced similar symptoms in most cases.

3.5 Summary and Conclusion

In this chapter. we investigated the effectiveness of two failure-detection schemes —
neighbor and end-to-end detection — for real-time communication services. The idea of
the neighbor scheme has been used widely in (non-real-time) computer networks to monitor
the health of network nodes, and the end-to-end scheme resembles the conventional reliable
transport protocols. Our experimental results on a laboratory testbed, which was designed
without any particular consideration for fault-tolerance. have indicated that the neighbor

scheme detects a significant portion of failures very quickly. although a long latency occa-

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sionally results. The end-to-end scheme can detect the failures which were missed by the
neighbor scheme. Despite its perfect coverage. the end-to-end scheme has such weaknesses
as high overhead. long latency. and the inability to locate failures. Thus. improving the
detection coverage of the neighbor scheme is indispensable for effective failure recovery. To
meet this requirement. we have developed a new heartbeat-transmission technique in which
heartbeats are sent along a dedicated real-time channel. By applying this technique. we

could achieve very high detection coverage with the neighbor scheme.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

RUN-TIME FAILURE RECOVERY

Depending on the failure semantics and the application characteristics. all channels on
the failed component may fail or only part of them may fail. At run-time. failed channels
should be detected and recovered as quickly as possible. In this chapter we focus on the pro-
cedure necessary after failure detection. which consists of failure signaling (i.e.. reporting).
channel switching and resource reconfiguration. The key principle of our failure-recovery
process is localization. so that the traffic on non-faulty parts of the network remains un-
affected by failure recovery. The delay associated with the failure-recovery process is also
discussed.

This chapter is organized as follows. Section 4.1 describes the procedure of replacing
a faulty primary channel by a healthy backup channel. Section 4.2 deals with resource
reconfiguration after the disrupted service is recovered by channel switching. Section 4.3
presents the condition and result of bounding the failure recovery delay. Section -I.4 presents

the simulation results to measure dependability QoS. The chapter concludes with Section

+4.5.

4.1 Connection Restoration Procedure

The restoration of a primary channel from component failures is accomplished in two
steps. First. if the node which detects a channel failure is different from the node which is
responsible for channel switching, the failure is reported to the latter node. Then. the latter
node selects a backup channel and switches the faulty channel to the selected backup. To
determine the health of backups. failures of backup channels are monitored and reported
to their end-nodes in the same way as primary channel failures. The difference of handling

backup failures from primary failures is the lack of channel switching.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

channel
establishment

msg failure report

activation msg

=

Bsw uoneaior

rejoin-timer timeout

failure report

channel
closure msg

rejoin request
failure report msg

rejoin msg

channel
establishment

msg

Figure 4.1: Channel state transition

There are three important issues in failure reporting. First. who will need to receive fail-
ure reports 7 Second. which path will be used for failure reporting? Third, what information

needs to be carried in a failure report? Qur approach to these issues is:

(1) Failure reports are sent from the failure-detecting nodes to the end nodes of failed

channels.

(ii) Failure reports are delivered through healthy segments of the failed channels™ paths.

(iii) Each failure report contains the ‘channel-id’ of the failure channel.

Our approach handles multiple (near-) simultaneous failures veryv naturally and easily.
A failure report will be discarded by a node when the failure report about the same channel
had already been received/passed through. Thus, if multiple failures occur to a channel.
only one failure report will reach its end-nodes. and all the other reports will be lost due to
the failures themselves or discarded by intermediate nodes.

When an end-node of a D-connection receives a failure report on its primary channel. it
selects one of its backups and sends an “activation message’ along the path of the selected
backup. During its journey. the activation message can come across a node which had
already received a failure report of the backup being activated. In such a case. the activation
message is simply discarded. because this new failure will be reported and another activation
message will follow.

The failure-recovery process sketched above is elaborated on with a state transition dia-

gram in Figure 4.1. At each node. a channel can be in one of four states: non-existent state

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(N). healthy primary channel state (P). healthy backup channel state (B). and unhealthy
channel state (U). The initial state is N. Upon reception of a *channel-establishment mes-
sage.” the state machine enters state P or B. When a node receives a failure report (or detects
a failure) in state P or B. the state machine enters U and the failure report is forwarded
to the appropriate node. Additional failure reports received in state U are ignored. When
an activation message is received in state B. the state machine enters P. The activation
messages received in state U are ignored. The state transition for resource reconfiguration

(e.g.. from U to N. or from U to B) will be explained in Section 4.2.

4.1.1 Failure Reporting and Channel Switching

Now. we compare three possible schemes for failure reporting and backup activation.
Figure 1.2 illustrates them. The main distinction among these schemes is where the failure
reports and activation messages are generated and destined for. In Scheme 1 (Figure 1.2
(a)). the downstream node of the failed component generates a failure report and sends it to
the destination node of the failed channel. Then. the destination node initiates an activation
message. which travels in the opposite direction of the backup channel to be activated. By
contrast. in Scheme 2 (Figure 1.2 (b)). the upstream node generates the failure report. the
channel source node receives the failure report. and the activation message is sent to the
channel destination node. Scheme 3 (Figure 4.2 (c)) is a hybrid of the first two schemes.
Both end-nodes of a failed channel receive failure reports. and backup-channel activation is
done in two ways. If an activation message reaches a node on which the backup channel has
already been activated by the activation message from the other end-node. the activation
message is discarded by the node.

The above descriptions are valid only when a failure is detected by the neighbor detection
method. In case a failure evades the neighbor detection method and is detected by the end-
to-end detection method. no failure reporting will occur and the destination node which
directly detects the failure will initiate an activation message similar to Scheme 1.

Scheme 2 and Scheme 3 have an advantage over Scheme 1 in terms of recovery delay.
because data transfer through the new primary channel (i.e., the backup channel being
activated) can be resumed by its source node immediately after sending the activation
message, while in Scheme 1 the data transfer has to wait until the activation message

arrives at the source node.! If a failure occurs near the destination node or is detected by

'Because the source node has no way to recognize the failure until it receives the activation message
generated by the destination node.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

prmary channel fashure report

O Source Destination O

fasture report R
Q Source Destination Q

taiure report
Q Source Destination

(c) Scheme 3

Figure 4.2: Three channel-switching schemes

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the end-to-end method. this advantage will be minimal. Albeit unlikely. in Scheme 2 or 3. if
a data message arrives at intermediate nodes of the new primary channel before the channel
is activated. the data message will be discarded with no harm. Scheme 3 has an edge over
Scheme 2 in that the channel destination node can prepare early for channel switching. and
the activation delay will be reduced by the bi-directional activation.

In Scheme 3. if a D-connection is equipped with multiple backups. it is necessary that
both end-nodes activate the same backup. If the destination node activates a different
backup from the one selected by the source node. the backup need to be deactivated. since
data messages have already been transmitted over the backup activated by the source node.
One way to accomplish this synchronization is to allocate serial numbers to the backups of

each D-connection. and select a backup according to the serial number.

4.1.2 Priority-based Backup Activation

Connection priorities can be considered in the activation of backup channels. The idea is
to activate the backups belonging to higher-priority D-connections ahead of those of lower-
priority D-connections. if there are not enough resources to grant all activation requests.
This is important when backups with different dependability QoS requirements are coexist-
ing at a link. Remind that only backups with no greater multiplexing degrees (i.e.. backups
with the same or higher-priority) than that of each backup are considered in calculating
the amount of spare resources. Therefore. without priority-based activation. it is possible
that backups with high dependability QoS may suffer resource shortage because backups
with low dependability QoS have already claimed spare resources. In such a situation. the
dependability of a connection may be decided by the temporal order of backup activation
instead of their dependability QoS. so that the connections with low dependability QoS
may receive higher fault-tolerance levels than contracted, while the connections with high
dependability QoS may be treated in the opposite way.

The priority-based activation can be achieved by delaying the activation of lower-priority
backups. Thus, an activation message for a backup channel is sent after a certain delay
determined by the dependability QoS of the corresponding connection. The activation
of backups with a large multiplexing degree (i.e.. lower-priority backups) is delayed so as
to allow the backups with small multiplexing degrees (i.e., higher-priority backups) to be
activated first.2 The main drawback of this method is that the ‘activation wait delay’

is always imposed on lower-priority backups. To completely avoid priority inversion. this

2Recall that the importance of a backup channel is represented by its multiplexing degree.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

delay should be longer than the transmission delay of the activation message over the
longest channel path in the network. In a large-scale network. the recovery delay incurred
to lower-priority backups could be unacceptably long.

An alternative way is to allow a higher-priority backup to preempt lower-priority back-
ups. if the lower-priority backups have already been activated and there are not enough
spare resources to activate all of them. Preempted channels are handled as if they were
disabled by failures. So. the overhead associated with a preemption is the same as that for
a failure recovery. Note that in this way the recovery delays of lower-priority connections
would be extended only if preemptions actually occur. An important issue of this method
is the length of time interval in which lower-priority connections can be preempted. If
the preemptable interval is longer than the time needed for a backup activating operation.
higher-priority backups will preempt active channels (i.e.. primary channels of lower-priority
connections). To avoid oscillation. the preemptable interval should be short. so that lower-
priority connections may be preempted only by the higher-priority connections which fail

(near-) simultaneously with them.

4.1.3 Recovery from Multiplexing Failures

Another type of failures which must be dealt with is multiplexing failures. A multiplex-
ing failure happens when the activation of some backups causes the complete depletion of
spare resources. [f the spare resources at a link are exhausted by the activation of backups.
the remaining backup channels on the link cannot function as standby channels. In such a
case. the remaining backups are said to suffer multiplexing failures. Multiplexing failures

are reported and treated in the same way as component failures.

4.2 Resource Reconfiguration Procedure

After inflicted connections are restored. the faulty channels are torn down and. if neces-
sary, new backup channels are established. Activating backup channels may necessitate the
reconfiguration of the spare-resource reservation. because the resources shared with other
backups are now dedicated to the activated backups (or new primary channels) and the
remaining backups may not receive their original dependability QoS with the reduced spare

resources.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1 Channel Closure or Repair

To tear down a channel. a “channel-closure message” is usually sent over the channel’s
path. so that resources for the channel may be released. However. if failures disconnect
a channel’s path or disable the channel end-nodes. the resource-release process becomes
complicated. The concept of “soft-state connections™ of RSVP [111] is useful for reclaiming
the resources reserved for failed channels.

In addition to easy release of resources. we support optional repairing of channels which
are temporarily out of services. To this end. each node on a channel regularly sets a rejoin
limer whose expiration automatically triggers the channel tear-down at the node. The
purpose of the rejoin timer is to give the unhealthy channels (i.e.. in U state) a chance to
repair themselves. Channel repair has an advantage of eliminating the need of new channel
establishment. in case the unhealthy channels become usable again soon.

The channel repair process is as follows. When a channel source node receives a failure
report. it sends the channel destination node a ‘rejoin-request message” via the path of the
failed channel. and each healthy intermediate node forwards this message. If the failed
component becomes healthy again before the rejoin timer expires. it will also forward the
rejoin-request message. Otherwise. the rejoin-request message will not propagate beyond the
failed component. If a (backup) channel enters U state because of a multiplexing failure.
more spare resources have to be allocated to restore the channel. If it is impossible to
allocate additional spare resources because of resource shortage. the rejoin-request message
will be dropped.

[f the channel destination node receives the rejoin-request message. the channel can be
considered healthy (repaired). The destination node then sends a ‘rejoin message’ back to
the source node over the same path, and the channel state is changed from U to B. meaning
that a repaired channel becomes a backup channel. If the rejoin timer had already expired
when the rejoin message arrives at a node (i.e.. in N state), the channel should be torn down
as the resources for the channel had already been released. To undo the rejoin operations
which have already done for the channel. a channel-closure message is generated by that
node and is sent toward the channel destination. Figure 4.3 illustrates such a case.

The initial value of the rejoin timer should be chosen carefully. While it should be small
for a quick tear-down of unhealthy channels, it should also be large enough to allow their
repair. including (i) the failure reporting delay, (ii) the round-trip time of the rejoin-request
message and the rejoin message. (iii) the time for additional resource allocation.

If all channels of a D-connection fail simultaneously. a new primary channel has to be

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rejoin-request msg rejoin msg . .
Source / Destination

-

real-time channel fejoin-tmer channel-closure msg
timeout

Figure 4.3: Unsuccessful channel repair

Case 1 | Case 2 | Case 3

primary channel X O X

backup channel X X O

Table 4.1: Cases requiring resource reconfiguration

established from scratch. When there is no route which can meet the QoS requirement of
the D-connection. its client will be informed of the unrecoverable failure. Similarly. if any
channel end-node fails or the network is partitioned. all attempts of channel re-establishment
will be unsuccessful and the client will be informed of the unrecoverable failure. In any of
these cases. all the resources reserved for the connection will be released. when the rejoin

timer expires.

4.2.2 QoS Maintenance

After a D-connection is established. in a normal (failure-free) situation. its dependability
QoS is maintained by controlling the admission of new connections not to impair the QoS
of existing connections. just as for preservation of performance QoS. Upon occurrence of a
failure. more explicit actions are taken to maintain the “signed™ terms of QoS. Thus. each
connection inflicted by failures is fixed through resource reconfiguration. There are three
cases which require resource reconfiguration for QoS maintenance as shown in Table 4.1
where X denotes failure and () denotes non-failure (thus healthy).

In Case 1. both primary and backup channels should be re-established. This can happen
even due to a single component failure, when a primary channel is disabled by the component
failure and its backup channel is disabled by a multiplexing failure due to a “side effect”
of the component failure. Since the primary channel has to be established from scratch,
time-bounded failure recovery is not guaranteed in this case. In Case 2. the faulty backup is

torn down and a new backup is established to maintain the dependability QoS of the injured

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

connection. The network tears down the old backup before the new backup is established.
so that the new backup can be routed with the healthy components on the old backup path.
if necessary. In Case 3. the healthy backup is promoted to a new primary channel (i.e.. by
backup activation and channel switching). while the faulty primary is torn down. After
channel switching. a new backup is necessary since the original backup has been activated.
thus ceasing its backup role. The network tears down the faulty primary before the new
backup is set up.

Even when a connection is not directly inflicted by failures. its dependability QoS can be
affected by the failure recovery for other connections. That is. spare resources are shared by
multiple backups. and activation of a backup will deplete the spare resources on its backup
path. As a result. the remaining backups on the links of this path may not receive their
original P.. At such links. the network has to allocate more spare resources to maintain
the same dependability QoS for the remaining backups. The amount of additional spare
resources is calculated by the same method used for initial backup establishment. In the
process of QoS maintenance. the network has to take care of a situation when there are not
enough resources available at a link to match the additionally-needed spare resources. If
the required spare resources are not available. some of the remaining backups have to be
moved to different paths. When proper paths for the backups to be moved do not exist.
such backups may have to be closed. resulting the degradation of dependability QoS of the
associated D-connections. Here. one has to determine which backups to close or move. To
minimize the overhead of moving or rerouting backups. the network may want to choose a
minimal set of backups whose teardown can resolve the resource-shortage problem at that

link. This issue is detailed in the following section.

4.2.3 QoS Degrade & Upgrade

If the network fails in establishing new backups to replace their failed predecessors or
rerouting the present backups due to resource shortage, the degradation of dependability
QoS is inevitable. In such a situation. the network may give up on finding new backups.
hence degrading the dependability QoS of the corresponding connections. In this scenario.
QoS degradation is applied to only the connections which are directly affected by failures
(option 1). Spare resource shortage due to failures can be dealt with differently. For exam-
ple, instead of completely closing certain backups at a link where spare resources fall short.
the network can keep as many backups as possible and degrade the dependability QoS of

their corresponding connections until the available spare resources at the link can accom-

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Spare resource pool

Backup channel % x Option 1

Option 2 Option 3
Figure 4.4: Three options of QoS degradation

modate all backups (option 2). Another way is to degrade the performance QoS of backups
instead of dependability QoS (option 3). While dependability QoS degradation means the
decrease of the probability of successful failure recovery. performance QoS degradation of
a backup means the actual degradation of the connection’s performance guarantee when
the next failure happens. Therefore. option 3 is applicable only if the application allows
performance degradation.

Figure 4.4 illustrates the difference among these options. The degree of overlap between
backups represents the degree of backup multiplexing. where the size of the rectangles
reflects the amount of available spare resources at a link. A combination of these options
allows the network to adopt different policies, depending on the criticality or importance of
each connection. Thus, the network will neither degrade the QoS of important connections
nor close them to save less important connections from running out of their backups. while
allowing the opposite to be feasible.

When failures occur far more often than the network can handle, severe QoS degradation
including connection closures is inevitable. However. in practice, the network will be able to

tolerate most failures without causing a large number of connections to be terminated. as it

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can usually recover from component failures in a much shorter time than the components’
MTBF (mean time between failures). Thus. most QoS-degraded connections are likely to
be restored to their original state before the next/another failure occurs. Repairing failed
components forces the network to move channels on the (congested) links over which QoS-
degraded channels run, back to a route that runs through repaired components. Backups are
preferably migrated first due to the simplicity of their re-routing. as compared to primary
channels. After moving some channels. the QoS of the remaining channels on the congested
links can be upgraded. The channels with degraded performance will be given higher priority

for QoS-upgrade than the channels with degraded dependability.

4.3 Bounded-Time Failure Recovery

Most resource-reconfiguration operations. especially channel re-establishment. are time-
consuming. Fortunately. however. unlike failure detection. failure reporting. or channel
switching. resource reconfiguration is not a time-critical action. because its delay does not
directly affect the service-disruption time except for the case of loss of all channels of a D-
connection. But resource-reconfiguration delay can influence the recovery capability/delay
in handling future failures.

The transmission delay of control messages. such as failure reports. is a major component
of the recovery delay, if we assume that there is at least one backup surviving failures so
as to avoid the need of channel re-establishment. The delay of such control messages
is unpredictable. if they were transported as best-effort messages. Assigning the highest
priority to control messages is not a good solution either. as it may affect the QoS of
regular real-time communication services. Suppose there are malicious nodes or a large
number of coincident failures. In such cases. the flood of control messages can paralyze the
whole (or part of) network. To achieve fast and robust transmission of control messages,
we use a special-purpose real-time channel. called the real-time control channel (RCC). The

messages transported over RCCs are called *RCC messages.”

4.3.1 The RCC Network

An RCC is a single-hop real-time channel which connects two nodes for the transmission
of time-critical control messages. When the network is initialized, a pair of RCCs are estab-
lished. one in each direction, on every link of the network. RCCs will also be established,

when failed components rejoin the network.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Real-Time Message : Header Data

RCC Message : | Seq# Msg Length Data
A
Failure Report : REP Channel-ID
Activation Message : ACT Channel-ID
Acknowledgement : | ACK Seqg#

Figure 4.5: The RCC message format

The format of an RCC message is shown in Figure 4.5. Basically. an RCC message
contains a combination of failure reports. activation messages. and acknowledgments. The
control messages related to resource reconfiguration are excluded. since their delays are not
time-critical. In addition.an RCC is a possible vehicle to convey node-heartbeats for failure
detection. An interesting component of the RCC message format is acknowledgments.
which are used to ensure reliable transmission of control messages. Generally. occasional
losses of real-time (data) messages are tolerable in many applications. However. the loss
of control messages is critical even in these applications. For loss-less transfer. each RCC
message is acknowledged hop-by-hop between two nodes. and if a node does not receive an
acknowledgment of the RCC message which it sent. it resends the unacknowledged RCC
message. Each RCC message contains a sequence number. so that duplicated messages may
be easily detected and discarded.

While the exact specification depends on the underlying real-time channel protocol. we
model an RCC by three parameters without loss of generality: maximum message size 57,
maximum message rate RRCC, and maximum message delay DECS. RCC messages are
transmitted as follows. Each RCC-message has its eligible time and is held until it becomes
eligible for transmission. Thus, the minimum interval (1/RECC) is enforced between two
RCC messages. Until the next time to transmit RCC messages. each node collects the
outgoing control messages and forms RCC messages according to the destinations of the

control messages. In the next node, the received RCC message is fragmented and new

RCC messages are formed. The sequence of disassembly and assembly of RCC messages

continues.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Source Destination

GRS

i+}+4
i+ >] backup channel

Figure 4.6: Message loss during failure recovery

The collection of RCCs on all links forms a virtual network.? called the RCC network.
of the same topology as the underlying physical network. One can consider a (physical)
network as a composition of three logically-separated networks — the primary-channel

network. the backup-channel network. and the RCC network.

4.3.2 RCC Message Delay

The delay of RCC messages depends directly on the capacity of the RCC network. i.e..
if the capacity of the RCC on each link is large enough to accommodate all RCC messages
on the link. the timely delivery of RCC messages can be guaranteed.

There is an upper bound on the RCC message traffic. for the reasons given below. The
number of failure reports on a link £ cannot exceed the number of primary/backup channels
on a pair of links between two nodes incident to €. We have to consider both links. because
in Scheme 3 (of Section 4.1) failure reports for a channel can travel in both forward and
backward directions of the channel. depending on the failure location. Similarly. the number
of activation messages on link € is bounded by the number of backup channels on the pair of
links between the two nodes incident to €. Since both the failure report and the activation
message for the same channel cannot be transported over the same link at the same time.
the maximum RCC traffic is determined by the largest number of channels on a link pair

DRSE.if SREE

mar

among all link pairs. The RCC message delay on any link is bounded by
is greater than the maximum RCC traffic. If the maximum RCC traffic on a certain link

exceeds SFCC some RCC messages may experience a longer delay than DECC at that link.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.3 Failure-Recovery Delay Bound

Now. let’s consider the failure-recovery delay of a D-connection. We assume that at least
one of its backup survives failures. RCC messages are delivered without loss/retransmission.
and the computational delays for recovery operations are negligible compared to the control

message delays. Then. the failure-recovery delay. I. is the sum of

¢ failure detection delay.
o failure reporting delay.
e activation retrial delay.

¢ backup activation delay.

With Scheme 2 or 3. the backup activation delay is zero. because services are resumed
immediately after sending the activation message by the source node. If the RCC message

delay on each link is bounded by DECC . we can derive an upper bound of T for a D-

mar
connection as follows.

The “failure reporting delay” is less than (L, — 1)DRCS . where L,, is the number of
hops of the primary channel of the D-connection. If the failed component is located close to
the source node. the reporting delay will be very short. The *activation retrial delay" needs
to be considered in case the connection has multiple backups. When the activation message
for a backup encounters failures during its journey. one additional round-trip delay is added
to the recovery delay — the transfer delay of the unsuccessful activation message itself and
the delay for reporting the new failure. It is bounded by 2(b — 1)(Ls — 1)DFSC where b
is the number of backups and £, is the length of the longest backup of the D-connection.
With a single backup. the activation retrial delay is none and I is equal to the sum of the
failure detection delay and the failure reporting delay.

Figure 4.6 illustrates the message loss during failure recovery (shaded messages are lost).
The amount of actual message losses (or the service disruption time) is determined by the
sum of (i) messages which are sent over the failed primary channel during failure recovery
and (ii) messages which are already on the failed primary channel but do not pass the failed

component yet, when failure is detected. Thus. the worst-case service disruption time is

the message round-trip delay plus the failure detection latency.

3 A separate network in terms of resource reservation

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 x 8 torus | 8 x 8 mesh
Spare bandwidth 16.88% 20.16%
I link failure 100% 100%
1 node failure 92.67% 93.29%
2 node failures 86.49% 83.04%

Table 4.2: Rj,,, with deterministic multiplexing

4.4 Dependability QoS Measurement

We measured the fault-tolerance capability provided by various backup configurations
through simulations.

The same simulation setup as in Chapter | was used. The simulation networks were an
8 x N torus with 200 Mbps link capacity and an 3 x 8 mesh with 300 Mbps link capacity.
A total of 4032 connections were established. Unless explicitly stated otherwise. the source
and destination of each connection were evenly distributed so that tnere may exist a D-
connection between each node pair. Channels of each D-connection were routed disjointly
with the boundary-routing method (no route-optimization was performed). For simplicity.
the same traffic model was assumed for all channels. so each channel required 1 Mbps of
bandwidth on each link of its path.

Three failure models were simulated: single link failure. single node failure, and double
node failures. When failures were injected into the network after establishing 1032 connec-
tions. each single link failure disabled about 64 primary channels in the torus network. and
about 85 primary channels in the mesh network. By injecting a single node failure. about
139 and 276 primary channels were disabled in the torus and mesh network. respectively.

Each double node failure caused the disconnection of about 365 and 512 primary channels.

respectively.

4.4.1 Fault-Tolerance Level of Various Backup Configurations

At first, we assessed the overall fault-tolerance capability of various backup configura-
tions. Rjsqs was used as a metric for measuring the fault-tolerance level achieved by each
backup configuration. Ryqs is the ratio of fast recovery by using backup channels to the
number of failed primary channels. Thus. the (1 — Rfss) of D-connections, whose pri-

mary fails, require the establishment of new channels for failure recovery. Note that Ry,

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Muxing degree mux=0 | mux=1 | mux=3 | mux=5 | mux=6
Spare bandwidth 35% | 30.25% | 22.5% 16% 9.5%

| link failure 100% 100% 100% | 97.27% | 74.11%
I node failure 100% 100% 100% | 89.99% | 64.72%
2 node failures 93.11% | 93.11% | 92.98% | 84.05% | 38.36%

(a) Single backup in 8 x 8 torus

Muxing degree mux=0 | mux=1 | mux=3 | mux=35 | mux=6
Spare bandwidth N/A N/A [30.25% | 21.25% | 12.88%
| link failure N/A N/A 100% 100% 100%

I node failure N/A N/A 100% 100% | 97.68%
2 node failures N/A N/A 100% | 99.82% | 93.28%

(b) Double backups in 8 x 8 torus

Muxing degree mux=0 { mux=1 [mux=3 | mux=5 | mux=6
Spare bandwidth || 35.47% | 33.11% | 24.47% | 19.69% | 17.22%
1 link failure 100% 100% 100% | 97.63% | 90.39%
I node failure 100% 100% | 99.94% | 91.74% | S4.08%
2 node failures 89.11% | 89.22% | 88.83% | 81.82% | 75.32%

(c) Single backup in 8 x 8 mesh

Table 4.3: Rf,, with probabilistic multiplexing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

accounts for only those connections whose primary fails.*

The simulation result when deterministic multiplexing was applied is shown in Table 4.2.
(The algorithm for single-link failure tolerance was used.) For probabilistic multiplexing.
the results with five multiplexing degrees are summarized in Table 4.3. To investigate the
benefit of the multiple backup configuration under probabilistic multiplexing. the single
and double backup configuration were compared. In Table 4.3 (b). N/A indicates that
the total bandwidth requirement had exceeded the network capacity before establishing all
connections.

For probabilistic multiplexing. ‘mux=1"guaranteed a perfect recovery coverage from all
single failures. and "'mux=3" did from all single link failures. The spare-bandwidth overhead
and the fault-tolerance capability of deterministic multiplexing came between mux=3" and
‘mux=3" of probabilistic multiplexing.

Under probabilistic multiplexing. the use of a smaller multiplexing degree results in
higher fault-tolerance (a larger Ry, value) with an exception between *‘mux=0"and ‘mux=1".
‘mux=0"is the same as disabling backup multiplexing, since no backup will be multiplexed.
Interestingly. the Ry, in case of double node failures was not improved by disabling backup
multiplexing (i.e.. ‘mux=0") as compared to ‘mux=1". The fault-tolerance level was even
decreased by disabling backup multiplexing in the mesh network (see the bottom line of Ta-
ble 4.3 (c)). It can be explained by the impact of backup multiplexing on the channel route
selection. so that primary or backup channels are routed over different paths depending on
whether backup multiplexing is enabled or disabled.

Another interesting observation is that a similar level of fault-tolerance was achievable
with significantly less spare resources in the double backup configuration. For example.
let’s compare the case of single backup with ‘mux=3" with the case of double backups
with ‘mux=6"in the torus network. Using a much smaller spare bandwidth. we achieved
comparable Ry,,. demonstrating the usefulness of multiple backup channels with effective
resource sharing. The comparison between double backups with ‘mux=6" and a single

backup with *‘mux=5" more clearly reveals the benefit of the multiple backup configuration.

4.4.2 Per-Connection QoS Management

Deterministic multiplexing supports a very simple type of dependability QoS. e.g.. 100%
tolerance to all single link failures. In contrast, probabilistic multiplexing offers more versa-

tile QoS supports. Though the Ry,, data in Table 4.3 shows the overall fault-tolerance level

*We exclude from consideration the connections whose end nodes fail.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Average QoS Difference = 0.0003

0.1 T T
0.05 p
]
Q
[—4
o
= ot
a
7}
[=]
o
-0.05 4
0.1 L 4 L
0 1000 2000 3000 4000
Connection Index
(a) 8 x 8 torus (mux=3)
Average QoS Difference = 0.002
0.1 T T v v
0.05 + 4
-]
Q
o
2
£ of "
[
%)
[]
o
-0.05 4
01 b : n . .
0 1000 2000 3000 4000
Connection Index
(b) 8 x 8 torus (mux=3)
0 Average QoS Difference = 0.0047
1 . . — —_—
0.05 | P
o
o
] oo
g (4] | A A 57 e S maans oo AV St '33':"\.‘7-.'{1%'-;«,
[}
7}
Q
(e}
-0.05 J
-0.1 s S . X

[0 1000 2000 3000 4000
Connection Index

(c) 8 x 8 mesh (mux=5)

Figure 4.7: Distribution of QoS differences

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

provided by probabilistic multiplexing. they do not reflect the QoS level each connection
actually receives. since the data in Table 1.3 are average values. To examine if the required
QoS is actually provided for each connection under probabilistic multiplexing, we measured
the QoS each connection experiences. Then. this measured QoS was compared with the
QoS negotiated at connection establishment.

Let P™°7(i) denote the actual QoS received by the i-th connection and P:*!(:) be its
estimated QoS. We compared P™*" (i) with Pt () under the “single-link failure hypothesis'.
The single-link failure hypothesis was used in the calculation of P***: A for links was set
to 1/(64-4) while A for nodes was set to 0. The Method 2 presented in Chapter 2 was
used for the calculation of P'. P™*"(i) was derived from the simulation results. so that
P™7(i)is the ratio of the number of cases of the /-th connection not suffering from failures
or recovering from failures with its backup. to all simulation runs.

For comparison, we calculated the QoS-difference (P7**" — P*!) for each connection in the
single-backup configuration. Figure 4.7 (a) and (b) show the distribution of QoS-differences
of 1032 connections in case of ‘mux=3" and ‘mux=5". respectively. in the torus network.
The average QoS-differences were 0.0003 for ‘mux=3"and 0.002 for ‘mux=5". showing very
accurate QoS estimation. As explained before. Method 2 under-estimates (i.e. positive QoS
differences) the QoS level of each connection. We get negative QoS-differences for some
high-indexed connections. because we attempted to recover low-indexed connections first in
the simulation. The margin of QoS-difference is increased (i.e.. less accurate estimation) as
the multiplexing degree gets higher. because the QoS under-estimation by Method 2 gets
worse. The simulation results of the mesh network are plotted in Figure 4.7 (¢). Comparing

this with Figure 4.7 (b). one can observe a slightly larger QoS-difference.

4.4.3 QoS Support for Heterogeneous Connections

So far. we have assumed that all D-connections require the same level of fault-tolerance.
We now show how the fault-tolerance level of each D-connection is maintained when dif-
ferent connections require different levels of fault-tolerance. To this end, we simulated a
combination of four types of connections: 1/4 of connections with ‘mux=1". 1/4 of connec-
tions with ‘mux=3’, 1/4 of connections with ‘mux=5", and the remaining 1/4 of connections
with ‘mux=6". The number of backups was the same for all connections.

Table 4.4 shows that the fault-tolerance level of each class of D-connections can be
readily controlled, while the overhead remains to be around the average of all the classes.

From the simulations measuring QoS-difference, we obtained similar results to the case

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Spare bandwidth

12.43%

Muxing degree mux=1 | mux=3 | mux=3 | mux=6

l link failure 100% 100% | 93.48% | 50.43%

1 node failure 100% | 99.64% | 69.92% | 14.14%

2 node failures 93.11% | 92.41% | 65.88% | 39.29%
(a) Single backup in 8 x 8 torus

Spare bandwidth 16.38%

Muxing degree mux=1 | mux=3 | mux=5 | mux=6

I link failure 100% 100% 100% 100%

| node failure 100% 100% 100% 100%

2 node failures 100% 100% | 99.45% | 93.67%
(b) Double backups in 8 x 8 torus

Spare bandwidth 17.41%

Muxing degree mux=1 | mux=3 | mux=35 | mux=6

1 link failure 100% 100% | 97.29% | 68%

1 node failure 100% | 99.61% | 88.15% | 52.18%

2 node failures 89.46% | 89.04% | 78.55% | 47.47%

(c) Single backup in 8 x 8 mesh

Table 4.4: Rj,, with mixed multiplexing degrees

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

when the same level fault-tolerance was required for all connections.

4.4.4 Comparison with Brute-Force Multiplexing

We compared the efficiency of our backup-multiplexing schemes with a simple multi-
plexing method. called brute-force multiplering. In the brute-force multiplexing method.
the same amount of spare resources is reserved for all links without considering the net-
work status. For comparison. the amount of spare resources of brute-force multiplexing was
set to the average amount of spare resources resulted by each backup configuration of our
schemes.

The resultant Rj,s values of brute-force multiplexing are compared with our schemes
in Table 4.5. The comparison reveals some interesting points. For example. our schemes
are sometimes only marginally better than the brute-force scheme. We attribute this to the
homogeneity of the simulated network in terms of network topology. channel traffic model.
and the distribution of channel end-nodes. The resource demands for backup activations
are therefore evenly distributed throughout the network. Hence. the performance difference
between brute-force multiplexing and our methods may not be substantial.

However. when any inhomogeneity exists. our schemes outperform the brute-force scheme
by a larger margin. The simulation results of the mesh network supports this observation
(see Table 1.5 (b)). Furthermore. if the channel end-nodes are not evenly distributed or
the required bandwidths of all channels are not identical. hot-spots (in term of the spare
resource demands) occur. and the efficiency of the brute-force scheme degrades significantly
unlike the proposed scheme. As an example. simulation results when connections were
rooted from only 32 nodes among the total of 64 nodes are summarized in Table 4.6. The

gap between our schemes and the brute-force scheme was doubled as compared to Table

+4.5.

4.4.5 Graceful QoS Degradation

\We also investigated how our scheme maintains connection dependability in under-
loaded and over-loaded networks. To simulate an over-loaded network. we set the bandwidth
requirement of each connection to 2 Mbps. Under-loaded and over-loaded networks were
generated by establishing 2016 D-connections and 4032 D-connections, respectively, in a
8 x 8 torus with each link of 200 Mbps bandwidth. We set the bandwidth requirement
of each connection to 2 Mbps and equipped each connection with a single backup whose

multiplexing degree was set to ‘mux=3". Under this simulation setup. 32.0% and 61.5% of

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Brute-force.Probablistic)

(Brute-force.

mux=1 mux=3 mux=>5 mux==6 Deterministic)
Spare bandwidth || 30.25% 22.5% 16% 9.5% 16.88%
1 link failure (100%. | (98.05%. | (92.19%. | (76.31%. (92.97%.
100%) 100%) 97.27%) | T4.11%) 100%)
1 node failure (100%. | (95.34% | (87.98%. | (68.87%. (88.7%.
100%) 100%) 89.99%) | 64.72%) 92.67%)
2 node failures (93.11%. | (89.82%. | (82.23%. | (63.53%. (82.98%.
93.11%) | 92.98%) | 84.05%) | 58.36%) R6.49%)

(a) 8 x 8 torus

(Brute-force.Probablistic)

{Brute-force.

mux=1 mux=23 mux=>5 mux=6 Deterministic)
Spare bandwidth || 33.11% 24.47% 19.69% | 17.22% 20.16%
I link failure (96.18%. | (89.74%. | (83.18%, | (78.18%. (83.72%.
100%) 100%) 97.63%) | 90.39%) 100%)
1 node failure (96.56%. | (88.31%. | (79.49%, | (72.86%. (R0.24%.
100%) 99.94%) | 91.74%) | 84.08%) 93.29%)
2 node failures (86.78%., | (79.62%. | (71.88%. | (66.03%. (72.33%.,
89.22%) | 88.83%) | 81.82%) | 75.32%) 83.04%)

(b) 8 x 8 mesh

Table 4.5: Ry, comparison with brute-force multiplexing

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Brute-force.Probablistic)

(Brute-force.

mux=1 mux=13 mux=>5 mux=6 Deterministic)
Spare bandwidth || 31.37% 214% 16.88% 11.5% 18.37%
1 iink failure (98.97%. | (95.36%. | (84.99%. | (73.39%. (87.8%.
100%) 100%) | 94.14%) | 76.64%) 100%)
1 node failure (98.12%. | (93.63%. | (80.63%. | (66.6%. (84.02%.
100%) 100%) | 85.41%) | 69.01%) 93.78%)
2 node failures (91.69%. | (87.49%. | (75.62%. | (61.66%. (78.09%.
93.11%) | 92.15%) | 78.18%) | 62.58%) 86.6%)
(a) 8 x 8 torus
(Brute-force.Probablistic) (Brute-force.
mux=1 mux=23 mux=>5 mux=6 Deterministic)
Spare bandwidth || 33.21% | 26.33% | 21.09% | 18.35% 21.82%
1 link failure (91.40%. | (84.95%. | (77.55%. | (72.68%, (78.67%.
100%) 100%) | 97.02%) | 89.08%) 100%)
l node failure (90.24%. | (81.85%. | (72.77%. | (66.96%, (74.16%.
100%) | 99.78%) | 91.45%) | 82.87%) 93.91%)
2 node failures (830.66%. | (73.33%. | (65.44%. | (60.31%. (66.62%.
89.35%) | 88.60%) | S81.26%) | 73.82%) 83.41%)

(b) 8 x 8 mesh

Table 4.6: Ry, comparison with brute-force multiplexing in case of hot spots

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2016 connections

1 T T v T T o —— T
0.99 3
& 098} 4
-]
<3
[~
Z o097} 1
0.96 ~ option 1| —— 4
option 2 ===
0.95 " ; : ; " PN ;

0 1 2 3 4 5] 7 8 9 10
Number of failures

Figure 4.8: QoS maintenance in the under-loaded network

network loads were generated for under-loaded and over-load networks. while backup loads
were 13.1% and 27.3%. respectively.

Ten consecutive link failures were injected with no repair of failed links throughout the
simulation. After each failure. we measured the number of connections terminated and the
average dependability QoS of the surviving connections.> We assumed that the interval
between failures were sufficiently large for resource reconfiguration. while only the option 1
and 2 of QoS-degradation were simulated.

The change of average P, for the option | and 2 in the under-loaded network is plotted
in Figure 4.8. All primary channel failures were recovered by switching to their backups.
and nearly the same average P, was maintained throughout the simulation. Since there
happened no QoS degradation. both options 1 and 2 produced the same result. The slight
decrease of average P, as the number of failures increases is due to the extended path lengths
of both primary and backup channels. (Failures forced channels to be routed over a longer
path than before.)

The simulation results in the over-loaded network are plotted in Figure 4.9. First. in
a failure-free situation. the average P, of the over-loaded network is lower than that of
the under-loaded network — the margin is 0.9928 vs. 0.9852. This is because in the over-
loaded network more backups are multiplexed together, and as a result, the probability of
multiplexing failures. a dominant factor of P,. increases.

A high multiplexing failure probability causes the network to fail to re-establish primary

channels in the over-loaded network. Thus. when there is no unreserved resources available.

*In calculating P:, we assume that each link fails independently with rate 1/(64%4), i.e.. a single link-
failure model.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Y T e T ™ T v
option 1
option 2 ---=---
o9+ T
€ o8}
Q
=]
g
:
2 o7f 1
06 b
0.5 L 1 A L T S— L 1 1

0 1 2 3 4 5 6 7 8 9 10
Number of failures

(a) The change of average P;

4050 ———————F—T——————
option 1 ——
@ option 2 -------
£ 4040 | 1
<
c
c
8 4
o 4030 -
=
c
g
o 4020 r
k-]
2
£ 4010 1
3
=4
4000 s i i — A 4. L A P —

0 1 2 3 a 5 6 7 8 9 10
Number of failures

(b) The number of connections in service

Figure 4.9: Graceful QoS degradation in the over-loaded network.

the re-establishment of primary channels for failure recovery will not be successful. In such
a case. the network can either close such connections or re-establish primary channels by
reducing spare resources on their channel paths. In this simulation. we adopted the former.
which results in the closure of some connections. The rationale is that we would like to
preserve the contracted QoS of other connections. If the network allows the re-establishment
of primary channels by decreasing spare resources without any restriction, the dependability
QoS of other connections may be unpredictably compromised.

The decrease of the number of connections in service is plotted in Figure 4.9 (b). showing
that option 2 can preserve more connections in service than option 1. because option 2
degraded the dependability QoS of more connections than option 1. Nevertheless, option 2

still provided a comparable level of dependability QoS to option 1 (see Figure 1.9 (a)).

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Summary and Conclusion

In this chapter. we presented the run-time failure recovery procedure after failure detec-
tion. Two goals in run-time failure recovery are minimizing the service-disruption time and
minimizing the effect on the non-faulty connections. To satisfy these goals. the detected
failures are reported only to the affected connection’s end-nodes instead of broadcasting
to the whole network. Failure-report messages are transmitted over a special-purpose real-
time channel for time-bounded and robust data transfer. We also addressed the issues
of backup activation. channel switching, and resource reconfiguration. The dependability
achievable with various backup configurations was measured by simulating various failure
models. The simulation result shows that dependability QoS requirements are supported
on a per-connection basis. To demonstrate the effectiveness of our scheme. we compared
the performance of our scheme with that of a brute-force scheme which reserves the same
amount of spare resources at all links. Finally. we demonstrated how the resource shortage

is dealt with by graceful QoS degradation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

ADAPTIVE RESOURCE MANAGEMENT

The reservation of spare resources is the essential cost of backup channels. It reduces the
network’s capacity of accommodating more connections and as a result. degrades network
utilization. The focus of this chapter is on how to utilize the spare resources in a failure-
free situation. so as to eliminate the ~dependability cost™ in terms of network utilization.
To this end. we developed an adaptive QoS-control scheme. In a failure-free situation.
spare resources are adaptively allocated to active channels for performance QoS. depending
on the network-load condition or application requests. This allocation is carefully made
so as not to unpredictably compromise existing connections’ dependability QoS even when
spare resources need to be used for recovery from randomly-occurring failures. The adaptive
QoS-control enables ~seamless™ utilization of spare resources for both performance QoS and
dependability QoS. so that the network can operate without incurring any dependability
cost in a failure-free situation. while being able to predictably respond to failures.

This chapter is organized as follows. Section 5.1 presents a new QoS negotiation model
for adaptive QoS control. Section 5.2 describes a QoS adaptation method that responds to
changes in the network-load condition. Section 5.3 describes a QoS adaptation method that
responds to application’s requests for changing the QoS requirements. Evaluation results
are presented in Sections 5.2 and 5.3, along with the corresponding adaptation methods.

The chapter concludes with Section 3.1.

5.1 Elastic QoS Control

Negotiation on QoS parameters between the network and applications is essential to
real-time communication. because QoS guarantees require resource reservation. and the

availability of resources necessary to provide certain QoS guarantees should be checked in

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

advance. So far. we have assumed that the performance QoS requirement of a connection
is specified as a single value.! The single-value QoS model has commonly been used in QoS
negotiation of many real-time communication schemes. An application specifies its QoS
requirement as a value, then the network either accepts or rejects the request [9]. In some
schemes. the network determines currently possible QoS and notifies it to the application.
Under the single-value QoS model. a QoS value is not changed in the connection’s life-time
once it is negotiated at connection establishment. In contrast. we consider an "elastic’ QoS

control scheme which allows the change of the performance QoS of a connection at run time.

5.1.1 Range-QoS Model

For QoS negotiation under the elastic QoS control scheme. we use a range-QoS model.
in which QoS is expressed in the form of [min-QoS. max-QoS].? The network accepts an
application’s request for a real-time connection if there are resources enough to satisfy its
min-QoS requirement. and the resources required to provide min-QoS are “firmly" reserved
for the connection. In addition. each connection can claim ezcess resources which are not
firmly reserved by other connections. Thus. a connection. once admitted. is guaranteed to
receive its min-QoS. and probably more. up to its max-QoS. depending on the availability
of excess resources. The spare resources are reserved by considering only min-QoS. of
connections. so that a backup. upon its activation. is guaranteed to receive the min-QoS of
the corresponding connection.

In the range-QoS model. an application can optionally specify its utility of additional
QoS beyond its min-QoS. Utility expresses the value of addition QoS levels (e.g.. bandwidth)
for an application. For example. under a network pricing architecture based on resource
usage,. utility can be interpreted as the price the application/client will pay for additional
QoS (or resources). Utility is used to determine how excess resources are allocated among
connections. In our model. there is no utility associated with the min-QoS, because we give
a priority to the min-QoS guarantee of existing connections over accepting new connection
requests or increasing the QoS of other on-going connections. Therefore, no utility compar-
ison is necessary against min-QoS. An application can specify its utility for each additional

QoS level as a function, i.e.. utility function. Figure 3.1 shows an example utility function.

'One value for each QoS parameter if there are multiple kinds of parameters.

*Throughout this chapter, min-QoS and max-QoS are used to mean performance QoS. Dependability
QoS parameters are negotiated as single values but implicitly have a range form: P; is a lower bound of
connection reliability whose upper bound is 100% and I is an upper bound of the connection-disruption

time whose lower bound is zero.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Utility

Quality of Service
L

Min QoS Max QoS

Figure 5.1: Example QoS/utility specification

5.1.2 Excess-Resource Allocation

The goal of excess-resource allocation is to maximize the total utility (revenue) the
network will receive. To achieve this goal. we consider two allocation policies: equal-share
policy and local-mar policy. Their basic algorithms are presented in Figure 5.2. where the

notation is:

®,: the set of primary channels at (.

E/: total excess resources at link ¢.

€;: the amount of excess resources allocated to P;.
é: the resource allocation unit.

u(i): the utility of a primary channel P;.

Under the equal-share policy. excess resources are fairly allocated to each channel regardless
of its utility. until each channel’s current QoS reaches its max-QoS. By contrast. under the
local-max policy. excess resources are allocated to the channel which advertises the highest
utility value at that moment. In case of tie, excess resources are fairly distributed among
the channels with the same utility value. The channels which receive max-QoS are not
considered any further for excess resource allocation under both policies.

The QoS of a channel is determined by its bottleneck link that allocates the least amount
of excess resources to the channel on its path. Let us call the amount of excess resources
which will be assigned for the channel by the underlying allocation policy if there is no
bottleneck constraint, as ‘fair share.” Then. at non-bottleneck links of a channel, it is
possible that a channel does not receive its fair share. while some other channels may
obtain more than their fair share. If many channels claim lower excess resources than their

fair share at a link and other channels cannot fully utilize the remaining excess resources.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

01 loop

02 loop for each primary channel P; € &,

03 e; —e; +6: Eq—E; -6
04 if e; > max-QoS of P, then
05 ¢, — b, - P,
06 endif
07 if £, <0 then quit endif
08 endloop
09 endloop
(a) Equal-share policy
01 loop

02 find a set of P;. u(j) = maz{u(i)}.VP; € ®;
03 loop for each P,

04 €, —e; +6: E, —E, -6
05 if e; > max-QoS of P; then
06 b, — &, - P,

07 endif

08 if £, <0 then quit endif

09 endloop
10 endloop

(b) Local-max policy

Figure 5.2: Algorithms for excess-resource allocation at a link

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Max QoS

A Fair share
; Current QoS
£ I Min QoS

&

Guaranteed QoS Region

Connections

Figure 5.3: Excess-resource allocation at a under-utilized link

the link will suffer "under-utilization’. An extreme case of under-utilization happens when
all channels run through the same link. which becomes a bottleneck for all channels. and all
other links in the network are under-utilized. Figure 5.3 illustrates excess-resource allocation
at an under-utilized link. where the extra QoS region is smaller than the region between
the fair-share curve and the min-QoS curve. Of course. the sum of resource requirements
for the guaranteed QoS region and the extra QoS region should be equal to. or less than.
the total capacity of the link.

In our elastic QoS control scheme. spare resources are included in the pool of excess
resources. The difference between spare resources and other excess resources lies in their
use. Spare resources can be used only for enhancing QoS beyond min-QoS. not for min-QoS
guarantees themselves. where other excess resources can be used to establish a new channel
(i.e.. min-QoS guarantee) as well as enhancing QoS of existing connections. It is because. if
spare resources are used for min-QoS guarantees. those min-QoS guarantees can be violated
when failures occur and spare resources are diverted to failure recovery. By differentiating
spare resources from other excess resources. the network can preserve the original QoS
contract even in case of failures. while not degrading network utilization in a failure-free
situation. Elimination of the dependability cost in a normal situation is important. since
it is the “real” penalty without any benefit; the benefit of spare resource reservation comes

only when failures occur and are handled with the reserved spare resources.

5.2 Network-Triggered Performance QoS Adaptation

In this section. we present a QoS adaptation method which changes the performance

QoS of a connection according to the current network-load condition. We assume that the

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Source \ Destination
| A — N VR TV 8
et - / - —
QoS-update message

Figure 5.4: QoS-update procedure

source host of a real-time connection can adjust the traffic rate to its current QoS level

using such techniques as those in [532. 84].

5.2.1 Run-time QoS Adaptation

When a connection is first established. it receives its min-QoS. At run-time. each con-
nection claims excess resources and enhances its QoS level. so that if the network is under-
loaded and excess resources are abundant. most connections will receive their max-QoS.
The QoS of an existing channel may be upgraded. degraded. or preserved. as other channels
are added or torn down. When a new channel is established. no QoS degradation will occur
to existing channels. if there are enough excess resources to provide max-QoS to all channels
including the newly-established channel. Otherwise. the excess resources allocated to each
channel will be reduced. thus degrading the QoS of existing channels. As the network load
increases (i.e.. more channels are established), the amount of excess resources at each link
decreases until it becomes equal to the amount of spare resources at the link. Thus. at
a fully-reserved link. only spare resources can be used as excess resources. while all other
resources are reserved for min-QoS guarantees. Backup channel activation can cause QoS
degradation as well. since a newly-activated backup competes for excess resources in the
same way as a newly-established primary channel. The difference between these two is that
the network has already reserved resources for the min-QoS of the former. while the latter
needs to pass an admission test to reserve the needed resources. When a primary channel
is closed. its resources will be released and returned to the pool of excess resources. thus
allowing the QoS upgrade of some of the remaining channels. The closure of a backup chan-

nel does not directly increase excess resources. because spare resources are already included

in excess resources.3

The procedure of deciding the current QoS of a channel is depicted in Figure 3.4.
When a QoS-level change is possible (in case of QoS-upgrade) or enforced (in case of QoS-

degradation) at a link, a QoS-update message is generated carrying the new desired QoS

3The network’s capability of accommodating more channels will be enhanced by closure of backups.
because more resources become available for min-QoS guarantees.

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and sent to the source node of the channel. Then. the channel source sends this message
to the channel destination over the channel path. Upon arrival of this message. each link
(controller) checks if it can support the new QoS. If it can. the message is unchanged and
forwarded to the next hop. If not. the content of the QoS-update message is replaced by
the best-possible QoS (i.e.. lower than the original value) at the link before forwarding it.
In either case. excess resources necessary for new QoS are reserved at each link. When
the message arrives at the channel destination. it will contain the bottleneck QoS of the
channel. The QoS-update message is then sent toward the channel source. during which
the new QoS is confirmed and over-reserved excess resources. if any. are released.

The above QoS-update procedure has two implications. First. only the bottleneck links
can initiate QoS-upgrade. because QoS-upgrade at a link is meaningless unless at least the
same level of QoS is possible at all other links of the channel. Each link can tell whether
it is a bottleneck link by comparing the current QoS with its fair-share (i.e.. if both are
same. the link is a bottleneck). Second. there may exist an unstable period after starting
QoS adaptation. especially when releasing the over-reserved excess resources triggers the
QoS-adaptation procedure of other channels. QoS adaptation may also cause an oscillation.
That is. the QoS of a channel may fluctuate during a short time span. which can hurt the
overall performance of the network. Considering the nature of QoS adaptation. QoS-degrade

should be done quickly. while QoS-upgrade can be done slowly.

5.2.2 Evaluation

We first compared the performance of two excess-resource allocation policies through
simulation. The simulation network was an 8 x 8 torus with 200 Mbps link bandwidth. For
all connections. the single-backup configuration with multiplexing degree of ‘mux=3" was
used for simplicity.

[n the first simulation. QoS range was set to [1 Mbps. 2 Mbps] for all connections, but
two utility functions. u; and u,, were mixed.* Both u; and u, are linear utility functions
with different slopes. When the resource allocation unit é is 100 Kbps. the utility for 100
Kbps with u; is 0.01, and the utility for 100 Kbps with uz is 0.02. In Figure 5.5 (a), the
total utility sum after setting up 4032 connections is compared. Both allocation policies
yielded the same result because max-QoS could be provided to all channels under both
policies.

In the second simulation, the QoS range was set to [1 Mbps. 10 Mbps] for all connections.

*1f all connections use the same utility function. both policies will always generate the same result.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3200
3000
2800 +
2600
2400
2200
2000
1800
1600 t . —- : t

0 10 20 30 40 SO0 60 70 80 90 100
Percentage of u_2 connections

Utility sum

equal-share ——
local-max ------

L 1 2 L

(a)
7000 - T T T T T T T —

6500 |
g0t .

5500

5000

Utility sum

4500 +

equal-share

4000
local-max ---w---

3500

1 s 1 —_ s

3000 1 L L A
0O 10 20 30 40 S0 60 70 80 90 100

Percentage of u_2 connections

(b)

Figure 5.5: Comparison of excess-resource allocation policies

Now. the network cannot provide max-QoS for all connections. and each policy produced a
different result. Figure 3.5 (b) shows the simulation result. Essentially, the local-max policy
quickly accrued utilities and hit a plateau as the proportion of uy connections increased.
This can be explained as follows. When some channels use a steeper-slope utility function
than others. they will receive max-QoS under the local-max policy, and channels with a
flatter-slope utility function will get a very low bottleneck QoS, which can cause under-
utilization of other links. Thus unbalanced resource allocation can cause under-utilization
by giving more resources to high-utility channels to maximize the overall utility. The total
utility is determined by the gains from high-utility channels and the loss due to under-
utilization. As the proportion of u, connections increases, the gains by high-utility channels

were offset by under-utilization of the network.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

quual'-shar
local-max ---x---
1500 + b

1600 T T T T

1400 4

1300 1

Utility sum
]

1200w

% PR SO
e 1N

1100 + b

1000 | 1

L i i 2

900 A 1 'l i L
0 10 20 30 40 50 60 70 80 90 100

Percentage of u_3 connections

Figure 5.6: A case when the local-max policy flops

1600
1400 |+
1200
1000 +

800 |.°

Ulility sum

600

without backups ——
with backups --—-<---- |

400

L 1 L I i 1 — n

200 t
10 1S 20 25 30 35 40 45 50 55 60
Number of source nodes

Figure 5.7: The impact of spare resource reservation on network utilization

Nevertheless, the local-max policy outperformed the equal-share policy in most cases.
and when the proportion of higher-utility connections was over 30%. more than 90% of
maximal utility sum was always achieved with the local-max policy.?

However, the local-max policy is not always better than the equal-share policy. An
exception occurs when the difference between utility function slopes is very small. In such
a case, the factor of network under-utilization dominates the gain by the higher-utility
function. Figure 5.6 shows the simulation result when u; and u3 connections are mixed.
uz is a linear utility function mapping 100 Kbps to the utility of 0.0101. Thus, u3 offers
only 1 % higher utility than u, for each resource unit. Even in such an extreme case. the

local-max policy is still within 90% of the maximal utility sum.

*These numbers are meaningful only under the simulation setting used.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally. we analyzed how spare resource reservation affects network utilization. The
QoS range was set to [1 Mbps. 5 Mbps| and u; was commonly used as the utility function
for all connections. As in the previous simulations. a total of 4032 D-connections were
established using the single-backup configuration with ‘mux=3’. The simulation objective
is to compare the network utilization with and without backup channels.

When connections were evenly routed over the network. max-QoS was possible for all
channels. both with and without backups. This is because 4032 primary channels with
max-QoS consumed only. on average. 64% bandwidth of each link. so that no link suffered
under-utilization. To create bottleneck links. we restricted channel sources to be selected
among a certain set of nodes. while channel destinations were randomly chosen. Figure 5.7
plotted the result of this simulation. showing that the network with backups earned a larger
utility sum (thus, higher network utilization) than the network without backups. This is
because spare resource reservation reduces the degree of under-utilization at each link. Even
at the most congested link. there exist spare resources available as excess resources. while

there are no excess resources in the network without backups.

5.2.3 Discussion

The main idea is to make the reserved spare resources available to real-time traffic in
addition to their original intended use (i.e.. fast failure recovery) or for non-real-time traffic
which do not require resource reservation. This is achieved by including spare resources in
the pool of excess resources. thus making all resources available for real-time traffic. With
the range-QoS model, even if a lower min-QoS was used by the admission test (in which
spare resources are not accounted for the min-QoS guarantee). a real-time connection can
receive up to its max-QoS by utilizing spare resources. It is equivalent to setting its QoS
requirement to the max-QoS in the admission test. except that applications should agree
on possible QoS degradation in case of failures. Associating utility with QoS allows each
connection to control the certainty of obtaining its max-QoS. In this way. real-time traffic

can fully utilize the network capacity in a failure-free situation.

5.3 Application-Triggered Performance QoS Adaptation

Now, we present a QoS adaptation method which changes the performance QoS of a
connection according to its application’s demand. The capability of modifying existing QoS

at run-time is beneficial for some applications. For example, in many video applications,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Utility

Min QoS Max QoS

Utility

N

Min QoS Max QoS

Utility

Min QoS Max QoS

Figure 5.8: Utility function change for QoS-upgrade re-negotiation

the source rate changes significantly with scene changes (e.g.. a still scene to a quick-
motion scene. and vice versa) and they cannot be handled efficiently by smoothing or
buffering alone. It is because unlike short bursts. long bursts lasting for tens of seconds or
even minutes. Such long bursts are handled better® by using QoS re-negotiation at run-
time [18. 109. 76. 35]. For instance. it is shown in [35] that a piecewise CBR stream with
QoS re-negotiation requires 3 — 4 times less resources than the corresponding fixed-rate
CBR stream.

While the Qos re-negotiation approach can achieve high resource efficiency. a QoS re-
negotiation attempt for higher QoS may fail. If this chance (quantified as the re-negotiation-
blocking probability. RBP) is not maintained at a satisfactory level. the benefit of re-
negotiation will be seriously diminished. To bound this probability. the network has to
set aside some resources by restricting the admission of new connections even if there are
available resources.

In this section. we explore the conjunction of our failure-recovery scheme with QoS re-
negotiation. so that the shortcomings of both (i.e.. the re-negotiation blocking probability

and network capacity reduction for guaranteeing dependability) can be compensated for by

each other.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.1 Run-time QoS Re-negotiation

Under the range-QoS model. the network should change the min-QoS of a connection
to respond to the QoS re-negotiation request by the connection. While re-negotiation
for lowering min-QoS is straightforward. re-negotiation for increasing min-QoS requires a
new admission control: check the availability of resources for QoS enhancement. This
admission control is the same as that for the initial QoS negotiation. except that failure
in this admission control means the continuation of the original QoS. We do not consider
the option of changing an existing channel’s route to overcome the admission test failure.
because such a change may generate a domino effect. causing changes of other existing
channels’ routes. Instead. when QoS re-negotiation for enhancing min-QoS fails. a steeper-
slope utility function can be used as a secondary means of QoS re-negotiation. Under
the local-max excess-resource allocation policy, applications can receive higher QoS even
with the same min-QoS by using a steeper utility function. as more excess resources will
be allocated to them. Applications can control the margin of QoS-upgrade by setting the
max-QoS to the desired QoS. or by using a tiered utility function (see Figure 5.8)."

To prevent unsuccessful QoS-upgrade re-negotiation for existing connections. the net-
work should sometimes reject new connection requests even when enough resources are
available to accept them. [n general. it is impossible to derive an optimal admission control
for this purpose due to the inherent uncertainty in the generation of QoS-upgrade requests.
Only for playback applications with all changes of QoS requirements known in advance.
an optimal admission control will be possible. For interactive applications. only statistical
estimation based on a traffic-generation history has been used in [109. 35]. To avoid the
uncertainty and complexity of such statistical estimation, we exploit the spare resources.
Thus. RBP is maintained by relying on spare resource reservation instead of a separate
admission control.

In QoS-upgrade re-negotiation. the network keeps a record of the original min-QoS
value of a channel to be upgraded, while modifying its min-QoS. In a failure-free situation,
spare resources can be used for QoS-upgrade re-negotiation by increasing min-QoS. When
failures occur and backups are to be activated, the spare resources used for QoS-upgrade are
reclaimed for failure recovery. and the min-QoS of the channels affected by this reclaiming is
reset to their original min-QoS. The original min-QoS is also used for admission tests for new

connection requests. The reason for this is that the dependability of existing connections

®higher resource efficiency
‘However, this method does not guarantee QoS enhancement. For example. there will be no QoS en-
hancement when many connections opt to use the same steeper-slope utility function.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

may otherwise be compromised upon occurrence of failures.

5.3.2 Evaluation

We evaluated the effectiveness of our approach via simulation with real data.

The first factor which decides RBP is the characteristics of input source. For instance. if
there are only minor fluctuations in the input rate. QoS re-negotiation will be rarely needed
and will result in a low RBP. In the other extreme case. spare resource reservation may
not handle all QoS re-negotiation requests and a high RBP will result. In the simulation
experiment. we used a one-hour MPEG trace extracted from the Star Wars movie [31]. The
movie stream was decomposed into multiple segments with different data rates. so that QoS
re-negotiation may occur at the boundary of each segment.

We assume that the only knowledge the network has is the average rate of the original
data. which is used to determine the initial min-QoS of each channel during its setup. Both
the segmentation schedule (or time of re-negotiation) and the min-QoS associated with each
segment are heuristically determined at run-time by monitoring the input source. A variant
of the heuristic presented in [35] was used for this purpose. The QoS level of the next

segment is estimated as:
Fiqr = (I - T!)i + T—l(r,' + mal‘{b,‘ - Bh.O})

where r; is the actual traffic generation rate during time slot { of length T. and b, is the
buffer size at the end of slot i. and By is a high buffer threshold. The term. max{b; - By.0}.

ensures that buffer build-up more than B should be flushed by the end of the next slot.

Re-negotiation is triggered if
{bi > By N (Fig1 —Fi)>a} U {bi< By N (Fi = Fig1) > 3}

where By is a low buffer threshold. and a and J are QoS upgrade and degrade thresholds.
respectively. A segmentation process S is denoted by {T. By, B, a.3}.

The segmentation process has a significant impact on the resource efficiency of QoS
re-negotiation. We used two segmentation processes, S! = {1/6 sec, 250 Kbits. 0 Kbits, 50
Kbps. 50 Kbps} and $2 = {1/12 sec. 250 Kbits, 0 Kbits, 50 Kbps. 50 Kbps}, whose statistics
are given in Table 5.1. The banduidth efficiency is the ratio of the average rate of the
original data to that of segmentation results. Generally. a higher re-negotiation frequency
allows a higher bandwidth efficiency. but induces a larger re-negotiation overhead. Both

segmentations resulted in a data-loss rate less than 10~> due to buffer overrun, when each

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

average rate | bw-efficiency | re-negotiations/sec

S' il 367 Kbps 0.909 0.36
52 || 346 Kbps 0.964 0.84

Table 5.1: Statistics of two segmentations

channel source was assumed to have a dedicated buffer of 500 Kbps for traffic smoothing.®

A total of 2016 or 4032 D-connections were established in an 8 x 8 torus simulation
network. where each channel used a randomly time-shifted version of the movie data. The
initial min-QoS of each channel was set to 335 Kbps. the average rate of the original data be-
fore segmentation. The network link capacity was set to 30 Mbps considering the relatively
small bandwidth requirement of each channel.

We performed simulations while varying several factors:

e the input data segmentation process (S).

e the number of connections (N).

o the distribution of channel sources (D).

¢ the degree of backup multiplexing (BM).
S represents the segmentation characteristics. N and D portray the network-load condition.
and BM determines the amount of spare resources reserved. The metrics used are the
probability (P, ¢) that a re-negotiation attempt fails® and the ratio (R.f¢) of the duration that
the desired QoS was not provided to the total service duration. We measured these metrics
while allowing channels to use only spare resources for QoS re-negotiation, as opposed to
using all excess resources. In this way. we could simulate the worst-case behavior of our
scheme. In other words. the pure contribution of spare resources to RBP was measured.

The simulation results of five cases are summarized in Table 5.2. ‘Primary-load’ indicates
the ratio of the bandwidth consumed by primary channels to the total network capacity
at the initial setup. *Backup-load’ is the average amount of spare resources at each link
at the initial setup. *Uniform” means that channel sources and destinations were randomly
selected. where ‘congested’ means that channel sources were selected among a half of total
network nodes in order to generate bottleneck links. Two backup multiplexing degrees.

BM, (mux=3) and BM; (mux=3). were simulated.

8Usually, the larger buffer space is, the higher bandwidth efficiency is possible.
9In such a case, the previous QoS is maintained.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(S, N. D. BM) primary-load l backup-load Py R,y j
Case 1: (S'.4032 uniform,BM,) 42.88% 21.44% 0 0
Case 2: (5°.4032.uniform,BM,) 42.88% 21.44% 4.85e-04 | 1.99e-05
Case 3: (S'.4032.uniform.BMa) 42.88% 17.25% 2.79e-05 | 9.42e-07
Case 4: (S'.4032,congested,BM ;) 42.88% 20.58% 2.62e-02 | 1.91e-03
Case 5: (S*.2016.uniform,BM;) 21.44% 10.14% 3.89e-03 | 1.90e-04

Table 5.2: QoS re-negotiation results

The first observation comes from the comparison between Case 1 and Case 2: 52 resulted
in a higher P,s than S'. With the same amount of spare resources. the segmentation process
with a lower bandwidth efficiency offered a lower re-negotiation blocking rate than that with
a higher bandwidth efficiency. This somewhat counter-intuitive result comes from the fact
that the fluctuation of QoS requests by §2 was larger than that by S!. while. on average.
S? consumed less resources than S!.

Second. less spare resources led to a higher P,; (compare Case 1 and Case 3). Obviously.
more spare resources can deal better with QoS re-negotiation requests.

Third. the network with bottleneck iinks (Case +4) resulted in a higher P.; than the
balanced network (Case 1). while the amount of spare resources was similar for the following
reason. In Case 4, backups were routed by avoiding the bottleneck links on which primary
channels were concentrated. As a result. the ratio of spare resources to active resources
at bottleneck links decreased. Smaller spare resources compared to re-negotiation requests
means a larger P.; at bottleneck links.

Fourth. a smaller number of connections caused a higher P,; (compare Case 1 and
Case 5). because the multiplexing effect between QoS re-negotiation requests in Case 3
was smaller than in Case 1. [f there are more channels on a link. their QoS re-negotiation
requests will be more likely to be averaged out, i.e.. a higher multiplexing effect. Overall,
the duration of degraded services due to re-negotiation failures was kept below 1.9 x 10~3
for all cases of simulations, meaning that for 99.8% of total service time the applications

received the full QoS.

5.3.3 Discussion

When a sufficient number of connections are established in the network. the network
can keep a low RBP by using only spare resources. Even if there are only a small number

of connections in the network, RBP will not be high. because there will be abundant excess

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resources to supplement the small amount of spare resources. (In our simulation. other
excess resources than spare resources were not accounted for in QoS re-negotiation.) The
risk of a high RBP arises at only those links with many active channels which initiate QoS
re-negotiation but reserve only a small amount of spare resources (as in case 4 of Table 5.2).
To get around this problem. the degree of backup multiplexing may need to be determined

by considering the dependency between the amount of active and spare resources.

5.4 Conclusion

In this chapter. we presented an elastic QoS-control scheme which greatly enhances the
feasibility of deploying our scheme by eliminating the dependability cost in a failure-free
situation. We combined our failure-recovery scheme with two promising adaptive QoS-
control methods: network-triggered and application-triggered QoS adaption. The former
resembles the controlled-load service extended with the concept of utility. The latter is
close to the re-negotiation-based approach which is considered cost-effective for multimedia
applications. The common goal of both adaptive methods is to make the dependability
scheme transparent in a normal situation. while still providing predictable dependability

guarantees upon occurrence of a failure.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Future networks are expected to provide dependable real-time communication services
for many emerging business- and mission-critical applications. Considering the innate het-
erogeneity and large scale of the network. any dependability scheme should have a simple
and distributed architecture which is independent of the underlying communication services.
In addition. since only a subset of applications will require dependable services and different
applications/users will require different levels of dependability, the dependability level/cost
should be “customizable.” depending on the criticality /importance of applications.

In this thesis, a new approach is presented to make reservation-based real-time commu-
nication services dependable. Our approach is to cost-effectively provide a reasonable level
of fault-tolerance. Though it does not mask network failures so that failures are completely
transparent to the applications. its quick recovery allows the approach to be viable in many
real-time applications. In fact. there are many real-time applications which can tolerate
a short recovery time and do not require continuous availability. However. in a real-time
environment. unrecovered failures for a longer period than a tolerable time window can re-
sult in application failures. Hence. it is essential to put a certainty on the recovery latency
from failures. From the real-time communication perspective. pre-establishing a standby
connection is the only way to achieve fast recovery. because the re-establishment latency
of a real-time connection is unpredictable and usually long. Besides the predictable recov-
ery latency. other characteristics of our approach such as low overhead, implementation

neutrality, and flexible topological requirement will broaden its applicability.

6.1 Research Contributions

This thesis has made several important contributions.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First. we developed a client interface model for fault-tolerant real-time communicatijon.
The model provides two dependability QoS parameters: the probability of fast failure re-
covery and the estimated failure-recovery delay. These parameters are general enough to
be understandable to most applications. but if the direct exposure of these parameters to
end-applications is not appropriate. translation to application-specific QoS parameters may
be necessary. The definition of a failure in real-time communication is also included in the
client interface model. We allow each connection to choose a different semantic of failure.

Second. we devised a mechanism which guarantees the required dependability QoS with
a minimal fault-tolerance overhead. The essence of this mechanism is the establishment of
backup channels before failures actually occur. To minimize the resource overhead of backup
channels (i.e.. the low network resource utilization by reserved but unused resources for
backups). two types of backup multiplexing methods are developed. each of which provides
a different grain of dependability guarantees. The dependability for each connection is
controlled by adjusting the parameters of the backup establishment procedure. A two-step
routing method is also developed for backup route selection. It is shown that this routing
method is more effective than conventional routing methods. We evaluated the efficiency of
the backup-channel scheme through simulations and showed that with minor degradation
of the network’s capability of accommodating channels. a desired dependability QoS level
can be achieved.

Third. we developed a robust mechanism for run-time failure recovery. A special em-
phasis is placed on “fast’ recovery and “insulation” of healthy connections from the recovery
operation for faulty connections. The first step of run-time failure recovery is the detection
of failures. Qur failure-detection protocol uses two behavior-based techniques for low-cost.
quick. and perfect failure detection. Since these techniques do not require any special
hardware support. it is applicable to any network technology. The efficiency of our failure-
detection protocol was experimentally evaluated on a laboratory testbed. The next recovery
steps are failure reporting and channel switching. A special-purpose real-time channel is
used for robust and timely delivery of control messages associated with these recovery op-
erations. Once an injured connection is restored. resources are reconfigured to maintain the
dependability QoS of the connections affected by failures. This procedure is transparent to
applications unless network failures make it impossible to preserve all of the existing QoS
contracts. In such a case, the QoS of existing connections is gracefully degraded.

Finally, we presented an elastic QoS-control scheme which can virtually eliminate the

dependability overhead in a failure-free situation. In this new QoS control scheme, we

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

combined our failure-recovery scheme with two adaptive QoS-control methods: network-
triggered and application-triggered QoS adaption. Essentially. the resources reserved for
backup channels are utilized by active channels in a normal situation. so that active channels
can utilize the entire network resources. Through simulations. it is shown that our scheme
does not degrade the network utilization in a failure-free situation. while still providing

predictable dependability guarantees upon failure occurrences.

6.2 Future Work

This thesis presents an integrated solution which deals with almost all aspects of depend-
able real-time communication in multi-hop networks. While our work can be extended in
various directions for each aspect. here we discuss two issues which have not been elaborated
on in this thesis.

One is the implementation issue. The major challenge of our work is not in developing
a new real-time message scheduling discipline. We assume the presence of communica-
tion subsystems which can provide performance QoS guarantees deterministically. statis-
tically. or in some other manners. The role of the underlying communication subsystem
is to deliver messages within a specific time limit with some level of certainty. Therefore.
the performance-related nature of resultant dependable real-time communication service is
bound to the nature of the underlying communication subsystem.

A real-time channel service is usually implemented with two protocols: Real-time Net-
work Management Protocol (RNMP)and Real-time Message Transmission Protocol (RMTP).
The main function of RNMP is channel establishment and teardown. while that of RMTP
is run-time control such as traffic shaping and message scheduling. When a client requests
a real-time channel to be established, it has to specify its traffic parameters (e.g.. maximum
message rate) and QoS requirements (e.g.. message delay bound). Using this information,
RNMP performs an "admission test.” which checks the availability of the resources necessary
to meet the channel’s QoS requirement. RNMP reserves resources if the admission test is
positive. In RMTP, a traffic regulator is used to smooth (oftentimes bursty) packet arrivals,
and one or multiple output queues are serviced for message scheduling and transmission.
RMTP is closely related to RNMP, because the admission control of RNMP assumes a
certain message-scheduling policy used by RMTP.

Our scheme consists of two protocols which are Backup Channel Protocol (BCP) and

Failure Detection Protocol (FDP). Figure 6.1 depicts a general protocol configuration in

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application Protocol Interface

Dependable ——
real-time channel
protocol

RNMP RMTP < Real-time
! channel protocol
]

Datal.ink Protocol
Network

Figure 6.1: General protocol configuration

which the existing (unreliable) real-time channel protocol is augmented by our protocols.
The augmentation requires some modification in API (Application Protocol Interface). The
API of RNMP should be modified to include dependability QoS parameters which are
exported by BCP. The API of RMTP may also need to be changed to support seam-less
channel switching. i.e.. to make the switch of primary channels invisible to applications.
The design of our protocols does not assume a particular real-time communication scheme.
so this thesis does not address the details about the integration effort of BCP/FDP with
existing real-time communication protocols. In principle. our protocols can be placed on
top of any existing { possibly independently developed) real-time channel protocols.

The implementation of our scheme requires support for resource management from the
underlying communication subsystem. For instance, backup multiplexing and adaptive QoS
control will require the access and control of various resources (e.g.. computing bandwidth.
transmission bandwidth, or message buffer). A clean interface of the resource manager
which hides the system-dependent details is crucial for the efficient implementation of our
scheme. Thus. the resource manager should perform ‘resource abstraction’. by providing an
insulating layer between the (low-level) resources and the abstracted resources dealt with by

the upper-level protocols. This layer may or may not be straightforward depending on the

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.2: Fault-tolerant multicast using backup channels

OS kernel’s resource-management policy and the underlying real-time message scheduling
policy. Many interesting problems are expected to be found in the course of implementation
Oon various systems.

Another is the group communication issue. While we assumed one-to-one communica-
tion throughout this thesis. fault-tolerant one-to-many/many-to-many real-time connections
will be necessary and beneficial. particularly in multimedia networking. The key in apply-
ing the backup channel approach to multicast communication is the problem of determining
where to reserve resources for the fault-tolerance purpose. Some alternatives in establishing
backup channels for a multicast tree are illustrated in Figure 6.2. One way is to establish
an independent backup channel for each communicating peer as in Figure 6.2 (a). Another
way is to add a backup channel to each segment of multicast tree as in Figure 6.2 (b). The
third way is to build a different multicast tree of a backup connection as in Figure 6.2 (c).
Or. one can combine the second and third ways to build a SFI-like multicast tree as in
Figure 6.2 (d). Solid lines represent primary real-time channels and dotted lines backup
channels. Each method has advantages and shortcomings, and their performance may be
affected by the network topology. The compatibility with existing reservation protocols like

RSVP may be an interesting avenue of future research.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[l] Fibre Channel Physical and Signalling Interface (FC-PH). American National Stan-
dards Institute. rev. 3.0 edition. June 1992. Working draft.

(2] Y. Amir. P. Melliar-Smith. D. Agarwal. and P. Ciarfella. “Fast message ordering and
memebership using a logical token-passing ring.” in Proc. Int. Conf. on Distributed
Computer Systems. pp. 551-560. 1993.

{3] J. Anderson. B. Doshi. S. Dravida. and P. Harshavadhana. “Fast restoration of ATM
networks.” [EEE Journal on Selected Areas in Communications. vol. 12, no. 1. pp.
128-138. January 1994.

[4] C. M. Aras. J. F. Kurose. D. S. Reeves. and H. Schulzrinne. “Real-time communication
in packet-switched networks.” Proceedings of the [EEE. vol. 82, no. 1. pp. 122-139.
January 1994.

[3] J. Arlat. Y. Crouzet. and J.-C. Laprie. “Fault injection for dependability validation
of fault-tolerant computing systems..” in Proc. [EEE FTCS. pp. 348-355. 1989.

[6] A. Avizienis and G. Gilley. “The STAR computer: An investigation of theory and
practice of fault-tolerant computer design.” [EEE Trans. Computers. vol. 20. no. 11.
pp- 1312-1321. November 1971.

(v] J. Baker. ~A distributed link restoration algorithm with robust preplanning,” in Proc.
IEEE GLOBECOM. pp. 306-311. 1991.

[8] A. Banerjea. “Simulation study of the capacity effects of dispersity routing for fault
tolerant realtime channels.” in Proc. ACM SIGCOMAM. pp. 194-205. 1996.

[9] A. Banerjea. D. Ferrari, B. Mah, M. Moran. D. Verma. and H. Zhang, “The Tenet real-
time protocol suite: Design. implementation. and experiences.” IEEE/ACM Trans
Networking. vol. 4, no. 1, pp. 1-10. 1996.

[10] A. Banerjea. C. Parris, and D. Ferrari. “Recovering guaranteed performance service
connections from single and multiple faults.” Technical Report TR-93-066, UC Berke-
lev. 1993.

[11] P. A. Barrett, A. M. Hilborne, P. Verissimo, L. Rodrigues. P. G. Bond, D. T. Seaton,
and N. A. Speirs. “The Delta-4 extra performance architecture (XPA).” in Proc. IEEE
FTCS. pp. 481-488. 1990.

[12] A. Bestavro and G. Kim, “TCP Boston: A fragmentation-tolerant TCP protocol for
ATM networks,” in Proc. [EEE INFOCOM, 1997.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[13] K. P. Birman. “Replication and fault-tolerance in the ISIS system.” in Proc. ACM
Symp. on Operating Systems Principles. Orcas Island WA (USA). December 1985.

[14] S. Butner and R. Iyer. ~A statistical study of reliability and system load at SLAC.”
in Proc. [EEE FTCS. pp. 207-209. 1980.

[15] B. Chen. S. Kamat. and W. Zhao. “Fault-tolerant real-time communication in FDDI-
based networks.” in Proc. [EEE RTSS. pp. 141-150. 1995.

[16] R. Chillarege and N. S. Bowen. “Understanding large system failures — a fault injec-
tion experiment.” in Proc. [EEE FTCS, pp. 356-363. June 1939.

[17] R. Chillarege and R. Iver. “Measurement-based analysis of error latency.” [EEE
Trans. Computers. vol. 36. no. 5. pp. 529-337. May 1937.

[18] S. Chong. S. Q. Li, and J. Ghosh, “Predictive dynamic bandwidth allocation for
efficient transport of real-time VBR video over ATM.” [IEEE Journal on Selected
Areas in Communications. vol. 13. no. 1. pp. 12-23. January 1995.

[19] D. Clark. S. Shenker. and L. Zhang, ~Supporting real-time applications in an in-
tegrated services packet neworkl architecture and mechanism.” in Proc. ACM SIG-

COMAM. 1992.
[20] D. Comer. Internetworking with TCP/IP. Prentice-Hall. 1995.

[21] F. Cristian. “Synchronous atomic broadcast {or redundant broadcast channels.” The
Journal of Real-time Systems, vol. 2, no. 3. pp. 195-212. 1990.

[22] F. Cristian. B. Dancy. and J. Dehn. *Fault-tolerance in the advanced automation
system.” in Proc. [EEE FTCS. pp. 6-17, June 1990.

[23] S. Deering and R. Hinden. “Internet protocol. version 6 (IPv6) specification.” Tech-
nical Report Internet RFC 1883. December 1995.

[24] L. Delgrossi. C. Halstrick. D. Hehmann. R. Herrtwich. O. Krone. J. Sandvoss. and
C. Vogt. ~“Media scaling for audiovisual communication with Heidelberg transport
system.” in Proc. ACM Multimedia. pp. 99-104. 1993.

[25] A. Demers. S. Keshav. and S. Shenker. “Analysis and simulation of a fair queueing
algorthm.”™ Proc. ACM SIGCOMM, pp. 3-12, 1989.

[26] B. Dempsey. Retransmission-Based Error Control for Continuous Media Traffic in
Packet-Switched Networks, PhD thesis, University of Virginia. 1994.

[27] K. Echtle and M. Leu. “The EFA fault injector for fault-tolerant distributed system
testing,” in Workshop on Fault-Tolerant Parallel and Distributed Systems. pp. 28-35.
IEEE. 1992.

(28] D. Ferrari. “Multimedia network protocols: where are we?.” Multimedia Systems
Journal, vol. -4, pp. 299-304. 1996.

[29] D. Ferrari and D. C. Verma, “A scheme for real-time channel establishment in wide-
area networks,” [EEE Journal on Selected Areas in Communications. vol. 8. no. 3.
pp. 368-379, April 1990.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[30] H. Fujii and N. Yoshikai. ~Restoration message transfer mechanism and restration
characteristics of double-search self-healing ATM networks.” [EEE Journal on Se-
lected Areas in Communications. vol. 12. no. 1, pp. 149-1538, January 1994.

[31] M. W. Garrett. Contributions Toward Real-Time Services on Packet Switched Net-
works, PhD thesis. Columbia University. 1993.

[32] A. Gersht and S. Kheradpir. “Real-time bandwidth allocation and path restorations
in sonet-based self-healing mesh networks.” in Proc. [EEE ICC. pp. 250-255. 1993.

(33] J. Goldberg. M. W. Green. W. H. Kautz, K. N. Levitt. P. M. Melliar-Smith. R. L.
Schwartz, and C. B. Weinstock. “Developrient and analysis of the software imple-
mented fault-tolerance (SIFT) computer.” Contractor Report 172146. NASA Langley
Research Center. February 1984.

[34] S. J. Golestani. ~A stop-and-go queueing framework for congestion management.” in
Proc. ACM SIGCOMNM. pp. 8-18. 1990.

[35] M. Grossglauser. S. Keshav. and D. Tse. "RCBR: A simple and efficient service for
multiple time-scale traffic.” in Proc. ACM SIGCOMAM. pp. 219-230. 1995.

[36] W. Grover. “The selfhealing network: A fast distributed restoration technique for net-
works using digital crossconnect machines.” in Proc. [EEFE GLOBECOJM. pp. 1090-

1095. 1987.

[37] R. Guerin. H. Ahmadi. and M. Naghshineh. “Equivalent capacity and its application
to bandwidth allocation in high-speed networks,” IEEE Journal on Selected Areas in
Communications. vol. 9. no. 7. pp. 968-981, September 1991.

[38] U. Gunneflo. J. Karlsson. and .J. Torin. “Evaluation of error detection schemes using
fault injection by heavy-ion radiation.”™ in Proc. [EEE FTCS. pp. 340-347. 1989.

[39] S. Han and K. G. Shin. =A non-intrusive distributed monitoring support in fault
injection experiments.” in [EEE International Workshop on Evaluation Techniques
for Dependable Systems. October 1995.

[40] S. Han and K. G. Shin. ~Efficient spare-resource allocation for fast restoration of real-
time channels from network component failures.” in Proc. [EEE RTSS. pp. 99-108.

1997.

[41] S. Han and K. G. Shin. =Experimental evaluation of failure-detection schemes in
real-time communication networks,” in Proc. [EEE FTCS, pp. 122-131. 1997.

[42] S. Han and K. G. Shin. “Fast restoration of real-time communication service from
component failures in multi-hop networks,” in Proc. ACM SIGCOMM. pp. T7-88.
1997.

[43] S. Han and K. G. Shin. “On providing low-cost dependability by adaptive QoS control
in real-time communication services.”, 1998. Submitted for publication.

[44] S. Han. K. G. Shin, and H. Rosenberg, “DOCTOR: An integrateD sOftware fauit
injeCTiOn enviRonment for distributed real-time systems.” in Proc. [EEE IPDS. pp.
204-213. 1995.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[45] S. Han and K. G. Shin, ~A primary-backup channel approach to dependable real-time
communication in multi-hop networks.” [EEE Trans. Computers. vol. 47. no. 1. pp.

46-67. January 1998.

(46] M. Herzberg and S. Bye. ~An optimal spare-capacity assignment model for survivable
networks with hop limits.” in Proc. IEEE GLOBECOM. pp. 1601-1606. 199-.

[47] A. L. Hopkins, Jr.. T. B. Smith. III. and J. H. Lala. “FTMP-A highly reliable fault-
tolerant multiprocessor for aircraft.” Proceedings of the IEEE. vol. 66, no. 10. pp.
1221-1239. October 1978.

(48] C. Hou. ~Design of a fast restoration mechanism for virtual path-based ATM net-
works.” in Proc. IEEE INFOCOM. 1997.

(49] M. Hsueh. T. Tsai. and R. Iyer. ~Fault injection techniques and tools.” [EEE Com-
puter, pp. 75-82, April 1997,

{50] R. Iraschko. M. MacGregor. and W. Grover. “Optimal capacity placement for path
restoration in mesh survivable networks.” in Proc. [EEE ICC. pp. 1568-1574. 1996.

[51] S. Jamin. P. Danzig. S. Shenker. and L. Zhang, “\ measurement-based admission
control algorithm for integrated services packet networks.” in Proc. ACM SIGCOAMM.

pp. 2-13. 1995.

[52] H. Kanakia. P. Mishra. and A. Reibman. ~An adaptive congestion control scheme for
real-time packet video transport.” in Proc. ACM SIGCOMAM., pp. 20-31. 1993.

[33] G. Kanawati. N. Kanawati. and J. Abraham. "FERRARI: A tool for the validation
of system dependability properties.” in Proc. [EEE FTCS. pp. 336-344. [EEE, 1992.

[54] D. Kandlur and K. G. Shin, ~Traffic routing for multicomputer networks with virtual
cut-through capability.” [EEE Trans. Computers, vol. 41, no. 10. pp. 1257-1270.
October 1992.

[33] D. Kandlur. K. G. Shin. and D. Ferrari. “Real-time communication in multi-hop
networks,” IEEE Trans. Parallel and Distributed Systems, vol. 3. no. 10, pp. 1044-
1056. October 1994.

[56] B. Kao, H. Garcia-Molina. and D. Barbara, “Aggressive transmissions of short mes-
sages over redundant paths.” [EEFE Trans. Parallel and Distributed Systems, vol. 3.
no. 1. pp. 102-109. January 1994.

[57] W. Kao. R. Iyer, and D. Tang. “FINE: A fault injection and monitoring environment
for tracing the UNIX system behavior under faults,” I[EEE Trans. Software Engineer-
ing, vol. 19, no. 11, pp. 1105-1118. November 1993.

[58] R. Kawamura. K. Sato. and L. Tokizawa. “Self-healing ATM networks based on virtual
path concept,” IEEE Journal on Selected Areas in Communications, vol. 12, no. 1.
pp. 120-127, January 1994.

[39] D. Khun, “Source of failures in the public swithced telephone network,” IEEE Com-
puter, vol. 30, no. 4. pp. 31-36. April 1997.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[60] R. M. Kieckhafer. C. J. Walter. A. M. Finn. and P. M. Thambidurai. “The MAFT
architecture for distributed fault tolerance.” IEEE Trans. Computers. vol. 37. no. .

pp. 398-405. April 1988.

[61] H. Kopetz. A. Damm. C. Koza. M. Mulazzani. W. Schwabl. C. Senft. and R. Zain-
linger. ~Distributed fault-tolerant real-time systems: The MARS approach.” IEEE
Micro, pp. 25-40. February 1989.

(62] H. Kopetz and G. Grunsteidl. “TTP - a protocol for fault-colerant real-time systems.”
IEEE Computer, vol. 27. no. 1. pp. 14-23. January 1994.

[63] J. Kurose. “On computing per-session performance bounds in high-speed multi-hop
computer networks,” in Proc. ACM SIGMETRICS. pp. 128-139. 1992.

[64] J. Lala and L. Alger. “Harware and software fault tolerance: A unified architectural
approach.” in Proc. I[IEEE FTCS. pp. 240-245. 1988.

(65] J. H. Lala. R. E. Harper. and L. S. Alger. A design approach for ultrareliable real-
time systems.” [EEE Computer. vol. 24. no. 5. pp. 12-22. May 1991.

[66] H. lawson. “Cy-clone: An approach to the engineering of resource adequate cvclic
real-time systems.” Journal of Real-Time Systems. vol. 4. no. 1. . 1992.

[67] H. Madeira and J. Silva. ~Experimental evaluation of the fail-silent behavior in com-
puters without error masking.” in Proc. [EFE FTCS. pp. 350-359. 1994.

{68] S. McCanne, V. Jacobson. and M. Vetterli. “Receiver-driven layered multicast.” in
Proc. ACM SIGCOMAM. pp. 117~130. 1996.

[(69] J. McDonald, ~Public network integrity - avoding a crisis in trust.” [EEE Journal on
Selected Areas in Communications. vol. 12, no. L. pp. 5-12, January 1994.

(70] A. Mehra. A. Indiresan. and K. G. Shin. “Resource management for real-time com-
munication: Making theory meet practice.” in Proc. [EFE RTAS. pp. 130-138. 1996.

[71] S. Mishra. L. L. Peterson, and R. D. Schlichting. “Consul: A communication sub-
strate for fault-tolerant distributed programs.” Technical Report 91-32. University of
Arizona. November 1991.

[72] K. Murakami and H. Kim, “Near-optimal virtual path routing for survivable ATM
networks.” in Proc. [EEE INFOCOM, pp. 208-215. 1994.

[¥3] K. Murakami and H. Kim. “Comparative study on restoration schemes of survivable
ATM networks,” in Proc. IEEE INFOCQOAM. 1997.

[74] A. K. J. Parekh, A Generalized Processor Sharing Approach to Flow Control in Inte-
grated Services Networks, PhD thesis. MIT, February 1992.

[¥5] C. Parris and D. Ferrari, *A dynamic connection management scheme for guaranteed
performance services in packet-switching integrated services networks,” Technical Re-

port TR-93-005, UC Berkeley, 1993.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{76] C. Parris. H. Zhang. and D. Ferrari. “Dynamic management of guaranteed perfor-
mance multimedia connections.” Multimedia Systems Journal. vol. 1. no. 6. pp. 267-

283. 1994.

[77] L. L. Peterson. N. C. Hutchinson. S. W. O-Malley. and H. C. Rao. "The z-Kernel: A
platform for accessing internet resources.” [EEE Computer, vol. 23. no. 5. pp. 23-33.
May 1990.

(78] D. Powell. G. Bonn. D. Seaton. P. Verissimo. and F. Waeselynck. “The Delta-{ ap-
proach to dependability in open disributed computing syvstems.” in Proc. [EEE FTCS.
pp. 246-251. 1988.

[79] P. Ramanathan and K. G. Shin. ~Delivery of time-critical messages using a multiple
copy approach.” ACM Trans. Computer Systems. vol. 10. no. 2. pp. 144-166. May

1992.

[80] M. Rela. H. Madeira. and J. Silva. “Experimental evaluation of the fail-silent behavior
in programs with consistency checks.” in Proc. [EEE FTCS. pp. 394-403. 1996.

[S1] H. Sakauchi. Y. Nishimura. and S. Hasegawa. ~A self-healing network with an eco-
nomical spare-channel assignment.” in Proc. [EEE GLOBECOJM. pp. 438-443. 1990.

(82] H. Schulzrinne. S. Casner. R. Frederick. and V. Jacobson. "RTP: A transport protocol
for real-time applications.” Technical Report Internet RFC 13889. February 1996.

[83] Z. Segall et al.. “FIAT - fault injection based automated testing environment.” in
Proc. [EFEE FTCS. pp. 102-107, 1988.

[84] N. Shacham. ~Multipoint communication by hierarchically encoded data.” in Proc.
[EEE [NFOCOM. pp. 2107-2114. 1992.

[83] S. Shenker. C. Partridge. and R. Guerin. “Specification of guaranteed quality of ser-
vice.” Technical Report INTERNET-DRAFT draft-iet-intserv-guaranteed-svc-05.txt.

July 1996.

[86] K. G. Shin and H. Kim. ~Derivation and application of hard deadlines for real-time
control systems.” IEEE Trans. on System. Man. and Cybernetics. vol. 22. no. 6. pp.
1403-1413. November 1992.

[87] D. Sidhu. R. Nair. and S. Abdallah, “Finding disjoint paths in networks.” in Proc.
ACM SIGCOMM, pp. 43-51. 1991.

(88] D. Siewiorek. V. Kini, and H. Mashbura, “A case study of C.mmp. Cm*. and C.vmp:
Part i - experiences with fault-tolerance in mulitprocessor systems,” Proceedings of
the IEEE, vol. 66. no. 10, pp. 1178-1199, October 1978.

[89] J. Simmons and R. Gallager, “Design of error detection scheme for Class C service in
ATM.” I[EFE/ACM Trans Networking, vol. 2. no. 1, pp. 80-88. 1994.

(90] J. Stankovic. D. Niehaus, and K. Ramamritham. “Springnet: A scalable architecture
for high performance, predictable, and distributed real-time computing,” Technical
Report TR-91-74. University of Messachusetts. 1991.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[91] W. Stevens. TCP/IP lllustrated Volume . Addison-Wesley. 1994.

[92] A. Tanenbaum. Computer Networks. 3rd ed.. Prentice-Hall. Englewood Cliffs. New
Jersey, 1996.

3] L. M. Thompson. ~Using p or embedded real-time computing,” in Proc. M-
93] L. M. Th Usi SOS+ fi bedded real-ti ing.” in P coM
PCON. pp. 282-288. 1990.
4 . N. Toy. “Fault-tolerant design of AT&T telephone switching system processors.
94] W. N. Toy. “Fault-tol design of AT&T teleph itching -
in Reliable Computer Systems: Design and Evaluation. pp. 533-574. Digital Press.
1992.

(95] K. S. Trivedi. Probability and Statistic with Reliability. Queuing. and Computer Sci-
ence Applications. Prentice-Hall. 1982.

[96] B. Venables. W. Grover. and M. MacGregor. ~Two strategies for spare capacity place-
ment in mesh restorable networks.” in Proc. [EEE ICC. pp. 267-271. 1993.

[97] A. Vogel. B. Kerherve. G. Bochmann. and J. Gecsei. =Distributed muitimedia and
qos: A survey.” [EEE Multimedia. vol. 2. no. 2. pp. 10-19. 1995.

[98] R. Vogel. R. Herrtwich. W. Kalfa, H. Wittig, and L. Wolf. “QoS-Based routing of
multimedia streams in computer networks.” [EEE Journal on Selected Areas in Com-
munications. vol. 14. no. 7. pp. 1235-1244, September 1996.

[99] J. Whalen and J. Kenney. “Finding maximal link disjoint paths in a multigraph.” in
Proc. [EEE GLOBECOM., 1990.

[100] Z. Whang and J. Crowcroft. “Quality-of-Service routing for supporting multimedia
applications.” [EEE Journal on Selected Areas in Communications. vol. 14, no. 7. pp.

1228-123. September 1996.

(101] J. Wroclawski. ~Specification of controlled-load network element service.” Technical
Report INTERNET-DRAFT draft-iet-intserv-ctrl-load-svc-02.txt. June 1996.

[102] Y. Xiong and L. Mason. “Restoration strategies and spare capacity requirements in
self-healing ATM networks.” in Proc. [EEE INFOCOM, 1997.

[103] Xpress Transfer Protocol Specification. XTP Forum. revision 4.0 edition. March 1995.

[104] C. Yang and S. Hasegawa, "FITNESS: Failure immunization technology for network
service survivability.” in Proc. [IEEE GLOBECOM, pp. 1549-1554, 1988.

(105] L. Young and R. Iyer. “A hybrid monitor assisted fault injection environment.” Tech-
nical Report CRHC-92-04. University of Illinois, Urbana, March 1992.

[106] H. Zhang and D. Ferrari. “Rate-controlled static-priority queueing.” in Proc. [EEE
INFOCOM. pp. 227 - 236. 1993.

[107] H. Zhang and S. Keshav, “Comparison of rate-based service disciplines.” in Proc.
ACM SIGCOMAM. pp. 113-121. 1991.

[108] H. Zhang and E. Knightly. “Providing end-to-end statistical performance guarantee
with bounding interval dependent stochastic models,” in Proc. ACM SIGMETRICS.
pp. 211-220. 1994.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[109] H. Zhang and E. W. Knightly. “RED-VBR: A renegotiation-based approach to sup-
port delay-sensative VBR video.” Multimedia Systems Journal. vol. 3. no. 3. pp.

164~176. 1997.

[110] L. Zhang, “Virtual Clock: A new traffic control algorithm for packet-switched net-
works.” ACM Trans. Computer Systems. vol. 9. no. 2. pp. 101-124. May 1991.

[111] L. Zhang. S. Deering. D. Estrin. S. Shenker. and D. Zappala. "RSVP: A new resource
reservation protocol.” [EEE Network. pp. 8-18. September 1993.

(112] Q. Zheng and K. G. Shin. “Fault-tolerant real-time communication in distributed
computing systems.” in Proc. [EEE FTCS. pp. 86 - 93. 1992.

(113] Q. Zheng and K. G. Shin. ~Establishment of isolated failure immune real-time chan-
nels in HARTS.” [EEE Trans. on Parallel and Distributed Systems, vol. 6. no. 2. pp.
113-119. February 1995.

[114] Q. Zheng and K. G. Shin. ~On the ability of establishing real-time channels in point-
to-point packet-switched networks.” [EEE Trans. Communications. pp- 1096-1105.

1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IMAGE EVALUATION

. 9 . p 0
0,\,\.\««« z.v% v 4 . & \\A//\\//A/A »A%Av
N A SR ARV
///\\\ o/%\\ A/.\q \\\A%o&m
N \
5
L Hrinel s AN 243t :
% o = 3 D._______mm“"__ i
: S EE 4N |
P = = = 0 :
s <
A A
NP A
XA "G IN
S %Vw,vwo.vn,, //%VV/V\ vy \\\97/ L o, \\\0/
> 7z \\\&V/ \o.,\,v»\,,,ﬁ
N NG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

