Softwar e modeling for reconfigurable machine tool controllers

Birla, Sushil Kumar

ProQuest Dissertations and Theses; 1997; ProQuest

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Software Modeling for Reconfigurable Machine Tool
Controllers

by

Sushil Birla

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1997

Doctoral Committee:
Professor Kang G. Shin, Chair
Professor Yoram Koren
Assistant Professor Nandit Soparkar
Research Scientist C. V. Ravishankar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9721947

Copyright 1997 by
Birla, Sushil Kumar

All rights reserved.

UMI Microform 9721947
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Sushil Birla 1997
All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my family

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

This treatise is a tribute to the community of manufacturing engineering researchers,
developers, and practitioners, who recognized the issues and opportunities in machine tool
controls integration, and confronted the architectural design challenges. In this community,
key supporters of this work include the organizers and panelists of the Department of En-
ergy Integrated Manufacturing Fellowship Program, administered by the National Research
Council.

In 1986, Richard Jackson, the manager of Equipment Development at the Advanced
Engineering Staff (AES) of General Motors (GM) asked me to find a common approach to
the design of controllers for three challenging machines under development. Directors, John
Schwiekert, Ed Burke, and Roger Hiembuch endorsed the assignment. In January 1987,
Wayne Moore, CEO of Moore Special Tool Company, asked me for a requirements paper,
identifying machine tool technology needs, for presentation at a conference in June 1987,
co-sponsored by the Air Force Mantech Office, Dayton, Ohio and the National Center for
Manufacturing Sciences (NCMS), Ann Arbor, Michigan. Ron Haas, Vice President of GM
AES, endorsed my participation in this communal effort. During the conference, thought
leaders, Wayne Moore, Robert Hocken, Ray McClure, Richard Kegg, Ralph Taylor, and
Yoram Koren, encouraged me and joined hands in formulating a machine control archi-
tecture project that received the strongest recommendation from the conference. Ralph
Taylor, Jim Korein, Steve Patterson and others worked with me to produce the first re-
quirements document in November, 1987. A number of other industry representatives in the
NCMS worked with John Wagner and me to produce the second Requirements Definition
Document in 1990.

By then it had become clear that my assignment required profound knowledge that was
scarce in this industry. At that time, GM AES had the vision to rejuvenate the half-life
of engineers through a PhD program at the University of Michigan (UM). Coincidentally,
during the Winter 1991 term Professor Shin at UM asked me to make a presentation on
this subject in his graduate course, “Principles of real-time computing.” In the quest for
that knowledge, I proposed to GM AES management my participation in the GM-UM PhD
program. James Caie, Roger Hiembuch, and Gary Cowger recognized the value to the
business, and approved this venture. My wife, Pramila, and children, Jyoti, Asheesh, and
Preeti, stepped up to the challenge, bearing my share of the householder’s duties.

During my course work, my teachers, Professors Jahanian, Rundensteiner, Irani and
others patiently worked with me to answer questions of practical application. During my
research, my colleagues at GM Powertrain, Whitey Simon, Jerry Yen, Clark Bailo, Warren
Stanford, and others, provided ongoing encouragement.

Members of the doctoral committee, Professors Yoram Koren, Chinya Ravishankar, and
Nandit Soparkar, for their active discussions, questions, comments, suggestions, guidance,
and encouragement, and Professor Kang Shin, for accepting the role of advisor in a situation

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that presented many difficulties, involving multiple disciplines, an ill-defined field, and an
ill-conditioned student.

Members of the TEAM ICLP API working group provided critical reviews and inputs.
They include John Michaloski, Doug Sweeney, Rick Igou, Dave Uchida, George F. Weinert,
and Jerry Yen.

Members of the UM open architecture controller project group cooperated in building
the testbed, provided focused inputs, and conducted validation experiments with the ma-
chining process in the loop. They include Robert Landers, B. K. Min, Sung Chul Jee, J.
J. Park, Zbigniew Pasek, Yan Song Shan, Mark H Wu, Lei Zhou, and Professors Yoram
Koren and Galip Ulsoy.

UM students participating in the research experiment produced insights and encour-
agement through their prototyping work and extension of the testbed. They include Brett
Bandsma, Krisztian Flautner, Kevin Gudeth, Aimee Holdwick, Christopher Holtz, Jennifer
Kiessel, Yan Kit Lau, Aleksandr Oysgelt, Swee Ting Pan, Hiren Parikh, Jaehyun Park, Ofer
Ronen, Jigney N. Shah, Chi-to Shiu, Gabriel Tewari, Shige Wang, Michael Washburn, Ka
Fai Yau, and others.

Jennifer Braganza and Yasmin Ullah assisted in documentation to disseminate the in-
formation.

This architecture is still a child in its infancy. An unusually tenaceous community of
engineers and scientists has helped nurture it, and an unusually tolerant wife has nurtured
me. It takes more than a village ...

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

DEDICATION ittt et it it it it e v i ee e ii
ACKNOWLEDGEMENTS ittt ineee iii
LIST OF TABLES ittt ittt ieeee X
LIST OF FIGURES i ittt it ittt e i xi
LISTOF CLASSSTRUCTURES, xii
LIST OF APPENDICES i iie it xiv
CHAPTERS
1 Imtroduction it it ittt iennnn 1
1.1 Computer-organization of domain knowledge 1
1.2 Approach i e e e 2
1.3 Organization of the dissertation 3
2 Domain-specific modeling of machine control software 4
2.1 Examplescenariot it 4
2.1.1 Common difficulties in control retrofit and integration 4
2.1.2 Example reconfigurations 5
2.2 Characterizing reconfigurability requirements 9
2.3 Data flow in an example controller configuration. 11
2.4 Domain knowledge based organization of software 13
2.5 Researchmethod, 15
2.5.1 The experiment - a typical development cycle 15
2.5.2 Participants in theexperiment 18
2.5.3 Experimentaltestbed 19
2.6 The software engineering processo o ... 21
2.6.1 The perimeter of thedomain 21
2.6.2 Theinitialiteration 21
2.7 Underlying formalmodel, 23
2.8 Comparison of alternatives in modeling form & notation 23
2.9 Characterizing task interactionsspace 26
2.10 Architectural design granularity alternatives 26
2.10.1 Consideration of data transfer efficiency 29
2.10.2 Consideration of application design complexity 30
v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

211 SUMIMATY . .« « v o ot v o e e vt e et et n o e e e e 31
3 Axis motion software —staticaspects. o000 32
3.1 Overview of the axis motiondomain 32
3.2 Organization of axis control software 34
3.2.1 The servo control loop function 36
3.2.2 Checking preconditions 36
3.23 Statusreporting.t 36

3.3 Modularization of servo control software 37
3.3.1 Reconfiguring control strategies 38
3.3.2 Reconfiguring control lawsand rules 39

3.4 Software to facilitate axissetup 41
3.4.1 Setting operating limitsof anaxis., 41
342 Travellimits oo 43
3.4.3 Capacity and accuracy capabilities ofanaxis 44

3.5 Axiskinematics it i e 45
3.5.1 Lower kinematics model ofan Axis 45
3.5.2 Abstracting kinematic relations asgains 47
3.5.3 Example of velocity measurement 48

36 Axisdynamics o it ittt e e e e e e 49
3.7 Command setpoint inputstoan axis 50
3.8 Sensed inputs and status variables. 51
3.8.1 Other axis state information for monitoring 52
382 Novelty ittt 53

3.9 Axisoutputtoitsactuator 53
3.10 Subdomain of measuresand units 54
3.10.1 Evolving a software model of measures and units 54
3.10.2 Observations in developing software for measures 55

3.11 Subdomain of space and kinematics 57
3.11.1 Reusing resources for modeling a point in space 57
3.11.2 Representing frames for modeling kinematics 57
3.11.3 Modeling a physical kinematic structure 58
3.11.4 Upper Kinematics model ofan Axis. 59
3.11.5 Experimental observations in modeling space and kinematics 59

3.12 00 modeling of axis software — evaluation 60
3.12.1 Problems with over-decentralization and autonomy to objects 61
3.12.2 Difficulty with intra-process object interactions 61
3.12.3 Difficulty with inter-process object interactions 61
3.12.4 Polymorphism affects execution efficiency and repeatability 62
3.12.5 Encapsulation adds cost of indirection 62
3.12.6 Difficulty in specialization by restricting the domain of members 62

3.13 Evaluation of abstractions in thedomain 63
3.13.1 Alternatives in process control abstractions 63
3.13.2 Reconfigurability of servo control software 64
3.13.3 Controlled access to object members in an axis 66
3.13.4 Homing and jogging functions and axis boundary 66
3.13.5 Expanding domain boundary with extra features — tradeoffs 67
3.13.6 Contribution to requirements modeling process 67

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.13.7 Contribution to requirements model 69

3.14 Recapitulation e 70
4 Axis motion software — dynamicaspects 71
4.1 Patternsofexecutiono 72
4.2 Mapping execution patternsintotasks 73
4.2.1 A representative periodic task ~ theservoloop 74
4.2.2 Relation of servo loop to other periodic activities 76
4.2.3 Mapping required periods into execution periods 77
4.2.4 Responses requiring interruption of motion 78
4.2.5 Relation of servo loop to non-periodics 78
4.2.6 Architectural design space for task control mechanisms . . . 78

4.3 Structure of a periodic task for axiscontrol 80
4.4 Communication between processes 81
4.5 Specifying control flow in the FSM paradigm 84
4.5.1 Reconfigurability in behavior 84
4.5.2 Development effort for FSM class structure 85

4.6 Scheduling parameterso 87
4.7 Timing requirements and requests 89
4.8 Period timing service for a groupoftasks. 91
4.9 Task structure impact on reconfiguration effort 93
4.10 Assigning a task to processing resources 94
4.10.1 Weakness in traditional software development 94
4.10.2 Architectural constraints on axis control environments . . . 94
4.10.3 Constraint on processor utilization 95

4.11 Procedure to develop an application 96
4.11.1 Defining requirements specific to an application 96
4.11.2 Reuse and adaptation of library components 98
4.11.3 Creating the needed instances of class library components . 99
4.11.4 Initializing the created components 99

4.12 Evaluationofmodel o o oo 100
4.12.1 Scalability in number ofaxes 100
4.12.2 Scalability insensors oo oo 101
4.12.3 Closeness of interaction 102

413 Conclusion i it i e e e e e e e e e e e e 103
5 Multi-axis motion coordination L .. o o 106
5.1 Motion coordination by an axisgroup. 106
5.1.1 Strategy for reusability of motion specification software. . . 106
5.1.2 The primary function-move 108
5.1.3 Flexibility through proper modularization 108
5.1.4 Modeling issue of move parameters 109

5.2 Velocity profile generation 110
5.3 Path specification fromclient 111
5.4 Transforming workspace to axis space coordinates 113
55 Outputtotheaxes 113
5.6 Issues in exception handling 114
5.7 Integration of cross-coupling control 114

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58 Recapitulation i

6 ExternalInputsand Qutputs

6.1 Servosensorsand actuatorst

6.1.1 Overview of IO interfacing software

6.1.2 Devicemodels0. ...,

6.1.3 Device model development experiment

6.1.4 Device model extension experiment

6.2 Model of discrete control (on-off) devices

6.3 Generalization ofexternal IO

6.3.1 The messagingscheme

6.3.2 Improving message handling performance

6.4 Inputs from and display tousers

6.5 Manual data input for numerical controllers

6.6 Partprogram translation 0oL

6.7 Specifying controllogic o ...

6.8 Evaluationttt it

6.8.1 Execution overhead of OO IO-interfaces

6.8.2 Feasibility of OO multitasking

6.8.3 Generalization of external IO

6.8.4 Generalization of userinputs

6.9 Status of architecture for interfacing external IO

Overall work coordination and distribution

7.1 Role and responsibilities of the task coordinator

7.2 Coordinating a workstation

7.2.1 The organization of task coordinating software

722 Theflowofcontrol

7.3 Coordinating user interface.,

7.4 Specification of coordination logic

7.4.1 Reconfiguration for an evolving workstation.

7.4.2 Kinematic reconfigurations

7.4.3 Coordination of remote control interface

7.5 Coordination of process control

7.5.1 Dataacquisition:

7.5.2 Computation for force-constraint control:

7.5.3 Computations for broken tool detection:

7.54 Work distribution L o oo

7.6 Evaluation ittt e e

7.7 Status of architecture for coordinating tasks

7.71 Findings i e e

7.72 Futurework oo ittt e

8 Conclusiono i it i it e e e e e e e e e e

8.1 Research contributions

8.2 Futuredirectionsttt

APPENDICES e et e e e e e e e e e e e e e e e
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY e e it et e ee e e e

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table
2.1
2.2
2.3
2.4
2.5
2.6
3.1
3.2
3.3
3.4
3.5
3.6
3.7
4.1
4.2
4.3
4.4

4.5
7.1
Al

LIST OF TABLES

Notation used in example of reconfigurable machining workstation. 6
Stages of evolution of a reconfigurable machine tool - an example. T
Aggregation hierarchy of reusable class categories 14
Comparison of a formal modeling language with the object model 24
Comparison of interface modeling languages 25
Comparison of alternatives in architectural granularity 30
Motion process specific operating limits 42
Size statistics of measures subdomain 0., 55
Evolution of model for measures subdomain 56
Size statistics of space and kinematics subdomain 59
Evolution of model for space and kinematics subdomain 60
Tradeoff points in design space to alter servo control behavior 65
Analysis of effort in evolutionary changestoaclass 69
Task control mechanisms and their impact on timing disturbances 79
Size statisticsof fsmclassgraph 86
Effort to develop FSM related classes 87
Effort to develop a machine tool control application using FSM for control

BOW. . i i i e 88
Reconfiguration effort elements for common software changes. 105
Stages of developing test applications from class libraries. 134
Spatial span of control levels in a manufacturingcell 153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
3.1
3.2
3.3
3.4
4.1
4.2
5.1
5.2
5.3
6.1
6.2
Al
A2

LIST OF FIGURES

An evolvable machining workstation — an example RMS 5
Data flow through an example configuration 12
Experimental cycle of software development 16
Schematic block diagram of a distributed control system testbed. 20
Domain model based application development process 22
Characterization of task interactions by design complexity. 27
Command line style interaction across programs in execution 27
Modularization into coarse-grained executable components 28
Modularization into fine-grained executable components 28
Modularization into passive components 29
Overview of axis servo-control softwaremodel 33
Organization structure of the Axismodel 34
Object interactions in processing aservoloop 38
Schematic block diagram of a typical translational axis. 46
Specification of a period and time distance variation constraints 76
Structure of a hard real-time task with short periodicity — one-axis example 98
Velocity profile blending across two path elements. 112
Retrofit of cross coupling control as a separate process. 115
Safe, efficient, tightly-coupled integration of cross coupling control. 116
Message structuring and handling for efficiency 124
Efficient update of shared, yet encapsulated, objects in hard real-time control 126
Levels of control and tasks within alevel 153
Control hierarchy for an integrated manufacturingcell 153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF CLASS STRUCTURES

Class-structure

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
5.1
5.2
6.1
6.2
7.1
7.2
7.3
B.1
B.2

Interface of the Axis class ¢ o c i v i i i i ittt et e e
Interface of the CtrlCompt class
Interface of class AxisCtrl. i i i e e
Interface of class OperationalLimits.
Interface of class AxisError. i i i i
Interface of class DynamicLimits.
Interface of class AxisTravelLimits.
Interface of class TravelCapabilities.
Interface of class LowerKinematicModel.,
Interface of class ComponentConnection.
Interface of class AxisDynamics.
Interface of class AxisSetpoints. oo
Interface of class AxisSensedState.
Interface of class UpperKinematicModel.
Interface of class PeriodicTask.
Interface of class Port. o i i it it e e e e e e e e
Interface of class CommPortMQ.
Interface of class MsgCode.
Interfaceof class FSM. o i i i it i i e
Interface of class SchedParam..
Interface of class Priority. oo i it it
Interface of class ContProcTimeReq.
Interface of class PeriodSpec. i oo
Interface of class TickCounter. oo i v vt vt v e
Interface of class AxisGroup. o i i v ittt i e e e
Interface of class VelocityProfileGenerator.,
Interface of class MasterDevice. v i
Interface of class SlaveDevice. i i it i
Interface of class Machine. oot
Interface of class KinMechanism.,
Interface of class Connection. i,
Interface of class AxisActState. oo,
Interface of the TranslationalAxisclass

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.3 Interface of class AxisSetup. « « ¢« o o o it i i 160

B.4 Interface of class cartesian_point. 161
B.5 Interface of class CoordinateFrame., 161
B.6 Interface of class KinStructure.« . .o i i i it v o v 161
B.7 Interface of class AxisKinematics. 161
B.8 Interface of class AxisCompt. o it ittt it 162
B.9 Interface of class FeedbackSensor., 162
B.10 Interface of class PositionSensor. 163
B.11 Interface of class AngularPositionSensor. 163
B.12 Interface of class IncrementalRotaryEncoder. 164
B.13 Interface of class AnaloglO. 164
B.14 Interface of class XVMES00.t i i it i it e 165
B.15 Interface of class IP320. ¢« . i i i i it e e e e e e e 165
B.16 Interface of class DigitallO. 166
xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF APPENDICES

APPENDIX
A Assumptions about the industrial environment
B Supporting class structures00 oo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

Introduction

This thesis research is to establish that appropriate software modeling of an adequately de-
fined domain can improve reconfigurability of machine tool control software for a given level
of development effort. Reconfigurability considerations focus on hard real-time control func-
tions of machine tools, composed of servo-controlled kinematic devices. Development effort
considerations focus on issues that affect design complexity, especially factors that require
cycles of trial and error. It relies upon a software model of the domain as a reusable resource
in developing and reconfiguring machine control applications. The model is extensible to
support changes resulting from better understanding of original requirements, upgrades in
the physical equipment, extensions in functionality or versatility, and improvement in per-
formance. Such changes are also known as the maintenance phase of the software lifecycle.
The research is performed as a series of experimental steps in which the domain model is
developed incrementally and a test application is prototyped at each step to evaluate the
model and discover limitations.

1.1 Computer-organization of domain knowledge

The developed software model organizes application domain knowledge in a manner that
is natural to the domain. Thus, it can be used by control system developers, not merely by
experienced programmers.

Communication bridge: The software model bridges significant communication gaps
among manufacturing engineers and computer programmers [15], providing them a universe
of discourse.

Unifying basis for integration: The model is reusable across various types of auto-
mated functions for material processing, inspection, and material handling found in agile
manufacturing workstations — applications that have been historically treated by industry
as different. Thus, it provides a framework for their computer integration.

External validity — industrial relevance: The model is representative of real-world
industrial applications. It has been developed from a case study [5] for agile machining of
automotive powertrain components, and progressively improved through interactions with
groups of people experienced in developing software to control industrial automation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Relation to open modular architecture controllers: The software model defines an
architectural framework and external interfaces for fine-grained objects to be integrated in a
hard real-time control system. In contrast, recent and ongoing efforts to develop standards
for open architecture controls have focused on larger granularity [3,13,35,36]. Some of
these efforts [7,40,48] yielded a useful textual collection of needs and requirements, but
the results were not in an implementable form. The latest project [3] has demonstrated
working prototypes, but the degree of reconfigurability is limited to a standardization of data
interfaces focused on numerically controlled machines. It does not address reconfiguration of
hard real-time functions, and does not provide a unified programming paradigm for motion
control and discrete logic [34]. The model resulting from this research is a computer-
interpretable requirements specification — the interface specifications can be automatically
transformed into code in an implementation language. It provides a unified specification
for a sequence of service requests or operations given in a program written in the EIA RS
274-D standard for numerical control and a program written in a language conforming to
the IEC 1131-3 standard for programming controller programming languages. The same
specification paradigm may be used to specify the flow of control for hard real-time functions,
e.g., servo control of motion.

1.2 Approach

A reusable requirements-model offers very high payoff, but its development is a very complex
and difficult subject of long-range research. Freeman [19,46] identified two open research
issues pertinent to this study: (1) ways to bound the domain to obtain stability in its
requirements, and (2) a modeling technique that makes evolution easy.

This research explores the conjunction of the domain bounding and of the evolution ease
issues, scoping the domain at each stage in consideration of the incremental effort involved
in its evolution and the incremental gain in applications supported. Thus, it is a very
early stage in a field of complex long-term research. It primarily focuses on principles of
proper modularization. Secondarily, it develops rules and constraints to develop software
for servo-control of motion and similar hard real-time applications.

Completed analytical and experimental work: We bounded the manufacturing au-
tomation domain [5] to which the proposed research applies, defined the domain modeling
process [9], created a domain model including a number of subdomain models [8}, and
developed, as its context, a framework of a controller software development life cycle [6].
Objects based on this model have been used to construct prototype applications for con-
trolling a multi-axis machine tool. An experimental testbed and development tools have
been assembled.

The domain model has been built in stages following a defined process (Chapter 2).
The experimental steps are performed iteratively until an adequate validation is obtained.
Developer participants log effort applied and difficulties encountered at each stage. Other
influencing factors are kept as stable as possible. All experimental work has been conducted
on an industrial platform, consisting of well-supported components, e.g, a VMEbus-based
PC-compatible computer and input-output (I0) modules, and a commercial real-time op-
erating system, QNX. Software is developed with the aid of PC-compatible industrial-grade
tools, including C++ programming language compilers, an object-oriented CASE tool, and
a tool to build graphic user interfaces.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Organization of the dissertation

Chapter 2 introduces the reconfigurability problem through an example reconfigurable
machining system (RMS), describing a scenario of reconfigurations required and gaps be-
tween implied general needs and current control system capabilities. Given that all the
required reconfigurations cannot be described exhaustively, the architectural design must
be such that various configurations — unknown in advance, but within some known bounds
— may be realized. Chapter 2 describes a software development process to define and
bound the domain and to evolve a domain-specific software architecture. It starts the pro-
cess with a specific example case, representative of the needs to be met by this architecture,
but not fulfilled in current practice. Chapter 2 also describes the research method used to
validate this approach for its evolvability and reconfigurability. Chapters 3 and 4 describe
the modeling of software for one axis motion control. During this process, we identify sub-
domains that are applicable beyond single-axis motion control. Chapter 3 focuses on the
earlier stages of the software process, developing the static aspects of the model, whereas
Chapter 4 describes its dynamic and execution aspects, including architectural constraints
to facilitate application design. Chapter 5 shows how the same modeling principles, abstrac-
tions, and subdomains are reused and extended for software to coordinate multiple axes of
motion. Chapter 6 discusses extensions to the model to cope with the diversity found in
external inputs and outputs, including sensors, actuators, and the human machine interface.
Chapter 7 discusses extension of the model to coordinate different process, motion, and logic
control functions, again building on the same principles and framework. The concluding
chapter presents the results and evaluation of the project, summarizes the contributions,
and describes how this body of knowledge may be extended with future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

Domain-specific modeling of machine control software

How reconfigurable should a control system be? How is adequacy determined? How is it
assured? To understand these questions, we consider a scenario of a workstation (Figure 2.1
and Table 2.2), which epitomizes a reconfigurable machining system (RMS). Reconfiguration
issues are illustrated by tracing data flow through the most common case (Section 2.3). From
the example scenario, we generalize needs and requirements for reconfigurability following
Heuristics 1-5. It is not practical to anticipate all needed configurations, pre-design solutions
for them, and build the solutions in the initially supplied control system — the system should
be reconfigurable. However, there is little organized knowledge to describe or meet the
requirements of configurations or specific applications not known explicitly in the beginning.
Therefore, we have synthesized a process (Section 2.6) to develop a domain-specific software
architecture, based on two paradigms (Section 2.7) - object-orientation (OO) and the finite
state machine (FSM). The process is investigated experimentally, iterating a development
cycle from requirements definition to a working prototype, demonstrated in the control of a
machine tool. An organization for reconfigurability and efficient composability of machine
tool control software is described in Section 2.4.

2.1 Example scenario

A user envisions a future automated machining workstation (Figure 2.1) which can pro-
cess a prismatic workpiece completely to the required specifications, including reorientation
and repositioning of all surfaces to be machined. However, lacking the funds, skills, and
firm economic justification to exploit a technologically complex workstation, the user wishes
to evolve it in stages (Table 2.2), while minimizing obsolescence of initial equipment.

2.1.1 Common difficulties in control retrofit and integration

Historically, users have experienced many problems in retrofitting controls when up-
grading manufacturing automation in stages. Such retrofits are very costly. The retrofitter
is unable to add functionality not designed into the initial controller. A separate controller
has to be added for the additional functionality. The new functions cannot be closely cou-
pled in timing relationships with functions in the original controller. Other difficulties are
described in the example scenario (Section 2.1.2) in the form of general needs for reconfig-
urable controllers. These general needs are an early stage of evolving requirements, starting
from the example case and utilizing Heuristics 1. Generalizations are in terms of the variety

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(unloader)

T e TMH2

TC1l TC2

e e e =

21 | X1| Y1 82| Y2 |X2|Z2

‘E!!D WC1<€!E9

(loader)

Figure 2.1: An evolvable machining workstation — an example RMS

and number of controlled objects, their interrelationships, and interactions, e.g., coordina-
tion, concurrency, interlock, and temporal coupling. The needs are over-generalized on
purpose. Subsequent steps in the requirements definition process will address the extent of
generalization that would be appropriate.

2.1.2 Example reconfigurations

The initial configuration (Table 2.2 Stage R1) includes MC1 and the mechanical re-
sources (space, structure, interfaces, etc.) to allow physical expansion. MT1 operations
include facing and hole-working of surfaces accessible within the combined reach of units
X1, Y1, and Z1. The user expects corresponding modularity (structure and interfaces) in
the control system, with reconfigurability in software.

Compound rotation module: Unit A-B is retrofitted (Table 2.2 Stage R2) with a
provision for quick removal. Now the RMS can perform machining of faces and holes at
different angles within the combined reach of units X1, Y1, Z1, A and B, and the machining
of contoured surfaces curving in different planes. With current commercial control systems,
a higher initial investment in Stage 1 would be required (e.g. 5-axis contouring control

n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Symbol | Description
X:,Y:, Z; | Axes of translational motion (a type of machine tool element)

A Axis for rotational feed motion (axis vertical)

B Axis for rotational feed motion (mounted on A with axis horizontal)
S; Spindle (a type of machine tool element)

MT; Machine tool with elements X;,Y;, 21, S;

TM; Tool magazine

(a machine tool element that stores, retrieves and presents tools
for access by T'C;)

TC; Tool changer (a machine tool element that exchanges tools
between S; and TM;)
MC; Machining center consisting of MT;, TM;, TC;
WC, Workchanger to load or unload workpiece (part) or other fixtured object
HMI, Human machine interface unit
Basic usage:

- Normal operation and setup of closest mechanisms
Future usage:

- Remote control of any part of workstation;

- maintenance;

- tuning;

- programming control logic and other human interaction.

Table 2.1: Notation used in example of reconfigurable machining workstation.

system at the time of retrofit) or the initial 3-axis control system would have to be replaced
with a 5-axis control system. A separate 2-axis control system is required to pre-test the
compound rotation module before integration. If the original 3-axis system is retained,
and a separate 2-axis control system is procured with the compound rotation module, their
close coordination for contouring control is not feasible. Commercial CNC units allow only
simple kinematic relationships amongst coordinated axes of motion. For example, eccentric
rotations and non-orthogonal translational motions are either not controllable with high
precision or require extensive custom engineering. There is no uniformity in specifying the
kinematic relationships. The reconfiguration Stage R2 implies General Needs 1-3 for the
control system.

General Need 1 A control system must allow scalability in number of controlled objects,
e.g, azes of motion, azis groups, and on-off devices, (0 ... N) with different types of control
- discrete or continuous.

General Need 2 A control system must allow grouping of controlled objects by closeness
of their interaction (time interval between information ezchanges).

General Need 3 A control system must allow specification of a variety of kinematic con-
figurations or relationships and apply the specification to generate the required workpoint
trajectory.

Peripheral automation: In order to reduce non-value-adding time-cost of changing
tools, workpieces, or fixtures, high-speed peripheral automation (WC1, WC2, TC1, TM1)
is added (Table 2.2 Stage R3). Although the peripheral motions need not be coordinated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Stage | Change in configuration Implied
General Need
Rl Initial configuration: -

- Basic MT1;

- Mechanical structure for future additions.
R2 Retrofit compound rotary table (Unit A-B); 1-3
Continuous path control with 1-5 axes
R3 Peripheral automation to reduce cycle time: 1-2; 4-5
- Tool changer TC1;

- Tool Magazine TM1;

- Workchangers WC1, WC2.
R4 On-machine inspection to improve quality with minimum time loss: | 4-5, 6
- compensation for true location of part, fixture.
- high-speed, continuous path;

- retrofit sensor;

RS Concurrent machining with multiple units to reduce cycle time: 1,4,5
- retrofit MC2;

- increase concurrency;

- provide spatial mutual exclusion.
R6 Improved boring precision and flexibility: 45,7
- replace servo control law or rule;
- retrofit cross coupling control.
R7 Retrofit broken tool detection: 2,4,5,6
- stop motion in time;

- monitoring such other process conditions.

R8 Adaptive constraint control: 6, 7
- adjust feedrate to control process variable.
R9 Chatter control: 8

- adjust cutter path axially;
- adjust cutter path radially.
R10 | Geometric error correction: 3 extended
- specification of kinematic model including motion errors

Table 2.2: Stages of evolution of a reconfigurable machine tool — an example.

with the machining motions as closely as for contouring motion, their work zones over-
lap, and thus, concurrent access to the same space must be restricted. Current practice
does not exploit adequate concurrency in motion of peripheral mechanisms and machin-
ing mechanisms — it results in excessive idle time. The need to reduce this type of cycle
time loss (General Needs 4-5) is common in automotive operations that employ interacting
programmably controlled mechanisms. The example represents a class of applications that
reinforce General Needs 1-2.

General Need 4 A control system must allow specification of interactions across con-
trolled objects, e.g., sequence of operations, concurrency, mutual exclusion, in close temporal
coupling.

General Need 5 A control system must allow close interaction of continuous control and
discrete control objects within the latency tolerable between related events or measurements,
including discrete logic conditions.

it}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

On-machine inspection: To improve and verify quality during the machining process,
with minimal time loss, the user retrofits the ability to inspect dimensions of the workpiece,
while it is on the machine, before and after processing steps (Table 2.2 Stage R4). To mini-
mize idle time, measurement must be performed during continuous path motion, controlling
acceleration and velocity within limits allowed for the specified measurement accuracy. On-
machine inspection also allows compensation for variations in the workpiece ~ surfaces used
as location references and surfaces to be machined. First, in current control systems, retrofit
of new inspection devices or probes is very expensive. Second, run-time cost is also high, due
to a limitation in the achievable speed-to-accuracy ratio. Alternatively, special hardware is
required to capture probe-measurements and positions of machining axes within a bounded
time difference. Stage R4 — on-machine high-speed continuous path measurement — adds
General Need 6 and represents another class of applications reinforcing General Needs 4-5.

General Need 8 A control system must allow retrofit of sensors for high-speed measure-
ment of dimensions and other process variables during motion.

Machining concurrently from multiple directions: The objective is to reduce work
cycle time, by processing the workpiece from multiple directions concurrently, but without
collision between the two motion mechanisms. Therefore, another processing module MC,
is added on the opposite side of M C, (Table 2.2 Stage R5) ~ work zones of MC; and MC;
overlap. However, in current systems, it is not easy to specify and achieve high concur-
rency of operation without interference. Stage R5 represents another class of applications
reinforcing General Needs 1, 4, and 5.

Improved boring accuracy with flexibility: Servo-control of axes and their coordina-
tion must be improved for high-precision, flexible, boring operations. Planetary motions to
generate bores extend the diametral range of holeworking with a single multi-bladed boring
tool, without degrading accuracy (Table 2.2 Stage R6). The control algorithm may require
a change in the servo-loop sampling interval, but this change is not easy to implement in a
reconfigurable controller where multiple programs in execution (processes) share the same
computing resources. Current practice also does not allow retrofit of algorithms for different
tradeoffs in accuracy, performance, and cost. Stage R6 adds General Need 7 and represents
another class of applications reinforcing General Needs 4-5. .

General Need 7 A control system must allow retrofit or replacement of objects that specify
and apply control laws and rules.

Broken tool detection: When a tool fails, motion must be stopped before more damage
can occur. However, current control systems do not facilitate interaction within a short time
delay, commensurate with the physical reaction time. Without such protection, machining
rates in practice are very conservative, increasing machining time and reducing resource
utilization. If broken tool detection requires high-speed measurement of force or accelera-
tion, then sensor-integration costs are high, because of the separate processor, separate user
interface, and controller-specific communication interface. Table 2.2 Stage RT7 represents
class of real-time process monitoring applications that reinforce General Needs 2, 4, 5, and
6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Adaptive constraint control: Machining rates can be adjusted to satisfy some process-
ing constraint, e.g., within certain levels of machining forces, through change in feedrate,
i.e., an “outer” control loop to override programmed feedrate. However, retrofit of the outer
control loop is costly (as described above for the sensor) (Table 2.2 Stage R8). This example
implies a class of adaptive rate control applications that reinforce General Needs 6 and 7.

Chatter control: A more advanced form of adaptive control provides chatter-free ma-
chining by modifying depth of cut in order to maximize material removal rate without
chatter (Table 2.2 Stage R9). However, current numerical controllers do not support the
needed path modification during execution (General Need 8).

General Need 8 A control system must allow modification of motion path specifications,
e.g., azial and radial adjustments of the tool path, during motion.

Geometric error correction: Operational accuracy can be improved with the ability
to calibrate and compensate for geometric errors of motion, e.g., errors in squareness and
straightness of motion. (Table 2.2 Stage R10). However, there is no uniform way for the
user to describe the geometric errors of motion to a controller and no uniform way in
which a controller can integrate the information and apply the corresponding corrections
during execution. Major geometric errors may be viewed as kinematic relationships that
are arbitrarily different from the traditional kinematic relationships in machine tools (e.g.,
orthogonality; alignment) [17]. Thus, we treat this need as an extension of General Need 3
(Heuristics 1, Steps S5.1, §5.3, and S7).

Other upgrades that may be required: There are many other examples of useful
upgrades that are too expensive to retrofit and not available in commercial off-the-shelf
controllers. Unfortunately, users are not equipped to define and describe the required
degree of reconfigurability. An exhaustive enumeration of all the identifiable cases is not
economically usable — instead, there should be some compact requirements description
that can ease the development of software. Traditional software engineering approaches
and system design guidelines are inadequate. In Section 2.2, we introduce an approach to
characterize requirements, such that a larger number of configurations are possible from a
given set of specifications.

2.2 Characterizing reconfigurability requirements

Heuristic Heuristics 1-2 systematize the early steps of the process to develop architec-
tural specifications. Common cases, as described in the example scenario, initialize this
process. Steps S5-S6 yield a generalization that supports more configurations than the
initial cases, providing a larger coverage for a given level of specification development effort.
Step S7 seeks review guidance from experienced people.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Analyze each case as follows.
S1: Find whether the case is representative of many similar common cases.

S2: If commonalities are not obvious, defer search for genericity until more knowledge is
acquired about the domain. If yes, proceed further.

S3: Identify specific similar cases, their collection being a domain, D; where = iteration
number (i = 1 to denote the initial domain).

S4: Identify the common features (pertinent to the purpose) across D;.
S5: Search for key parameters for describing these features, trying the following approaches.

S5.1: Employ the underlying knowledge used for engineering the instances in D;.
S5.2: Search for analogies to specific examples outside D;.
$5.3: Search for structural similarities (isomorphic matches).

S5.4: Employ domain-independent computer science knowledge.

S6: Use the aggregation of these parametric features for a description of the domain, D;4,
at the end of this iteration.

S7: Review with knowledgeable persons and improve understanding of the domain.

S8: Iterate S3-S7.

Heuristics 1: Method to identify genericity across specific cases.

S1: Consider common features across common configurations of reconfigurable machinery.

S2: Identify classes of components (typically physical) from which these features were com-
posed while engineering the machinery.

S3: Recursively decompose these components, as in Step S2, until the conceptual primitives
of the domain are discovered.

S5: Model the conceptual primitives.

S6: Successively build the model of the aggregation hierarchy discovered during the de-
composition stage S2-S3.

Product of Steps S5, S6 = Specifications of component classes.

Heuristics 2: Method to identify common component hierarchies.

The design of a system is the specification of its elements in terms of their functions and
interfaces, their inter-relationships, given the functions of the whole system and its external
interactions and interfaces. The scope of system design issues in this research is limited to
application software systems, given a particular execution environment (hardware and soft-
ware platform) and given a particular development environment and tool-set. This research
is focused on issues of system design when a family of applications is not explicitly known.
Design for such a family of systems is also known as designing an application framework

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or a domain-specific software architecture (DSSA). In general, design is a combination of
art, craft, and science. This research transforms a portion of that art and craft into an
engineering science, in the domain of software for reconfigurable manufacturing automa-
tion. Its objective is to enable the realization of a variety of configurations, allowing for the
integration of a new element, while exploiting prior investment through reuse or extension
of existing elements.

Scope limited to resource-neutral cases: We exclude from the scope of this study
changes made to real-time software that increase the load on given resources. We assume
that either adequate resources are added, corresponding to the increased load, or the change
is neutral relative to the demand on resources. Examples of the latter case are replacement
(upgrade) of feedback sensors, drives, and other kinematic components, changes in control
parameters, increase in sampling and update intervals, and changes in calibration parameter
values.

2.3 Data flow in an example controller configuration

We describe the architectural approach and reconfigurability issues, explaining the ratio-
nale for software component boundaries, in the context of computer numerical controllers,
which have certain long-standing well-understood conceptual components with fixed paths
for the flow of data. Figure 2.2 shows a synthetic example data flow in a reconfigurable
machine tool controller, generalized from the traditional CNC. The machine tool in the syn-
thetic example includes an arbitrary number of objects, either under “continuous” control
or discrete control. Their discussion of continuous control is limited to motion objects, e.g.,
axis objects (which control individual axes of motion), axis-group objects (which coordinate
axes in that group), and objects that play a role in conveying instructions (service requests)
to axis-group objects and receiving status information from them.

Initial conditions of the example: Assume that the user makes a sequence of selections
which represent the most common, non-branching case of data flow. Furthermore, the
controller and the controlled machine tool have already been powered up, and the startup,
initialization, and diagnostic routines have been executed successfully. The Axis objects
(Chapters 3-4 are operational, i.e., they are processing their servo-loops cyclically, holding
their current positions.

Selections through user interface: The user selects a User Process Program to be
(translated or “compiled” and) run. The User Interface object (Chapter 6) resorts to
standard services of the file manager on a PC platform to retrieve the selected file object,
and converts it into a process program object, independent of the file format.

Process program translation: No single universally-adopted standard exists for the
input process program. The EIA RS274 standard is used for NC machining. A process
program in this form, a part program is prepared specifically for a selected machine tool. To
allow the scheduling flexibility of running the process program on any machine tool having
the required capability, the process program should be in a machine-independent form.
Therefore, the RS274 part program is transformed to a machine independent ControlPlan
object (Chapter 7) through a Translator. Currently, there is no consensus view on the nature

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

File
System

. Pile system - interf
interface ser interfaces

N [——] o
Process program

]

Process program
translator
Machine-independent

control plan

Plan transformer]

]

Machine-specific Task
control plan ?oordlnat%F
 — E— S
- 2 AxisGroup : Process
Discrete objects Controller
Controller l T | objects
m Axis objects
1 1 T ll f— l 11 f 1
! L [Motion Servo- Process
Inputs Outputs| | sensor actuator sensor
1 inputs outputs inputs

Figure 2.2: Data flow through an example configuration

of the ControlPlan, but in our concept, its generic structure allows for the specification of
all functions of all objects available in the control system, and the specification of a flow of
control through these functions. In the future, when a machine-independent ControlPlan
standard becomes popular, this step may be external to the controller, or may not be needed
at all.

Transformation from machine-independent to machine-specific plans: If the machine-
independent ControlPlan is to be run on reconfigurable machine tools and control systems,
there must be a transformation from the machine-independent ControlPlan to a machine-
specific ControlPlan which refers to the objects and functions available on that machine.
The Plan Transformer object performs this transformation. When multiple units of the
same workpiece have to be made, this transformation does not have to be repeated. There-
fore, the part program translation and transformation steps should be separated from its
execution.

Machine-specific configuration: The Plan Transformer must also be machine-independent,
but it must have access to the configuration of the machine on which the ControlPlan
is to be run. The kinematic configuration is provided through the MachineTool object

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Chapter 7). The software configuration information, e.g., identities of objects to be used,
is provided through the TaskCoordinator object (Chapter 7) at the time of startup and
initialization. Suppose that a machining workstation consists of multiple machine tools,
cycling independently and only loosely coordinated. Then, this coordination is provided
by a TaskCoordinator object at the workstation level. Furthermore, suppose that the user
provides each machine tool (loosely) coordinated under it with a separate RS274 program.
Then, there would be separate machine-specific objects for the corresponding translation
and transformation. On the other hand, suppose that the workstation shown in Figure 2.1
has motions that have to be coordinated more closely. The RS274 standard does not pro-
vide for the specification of closely-coupled motion of such a large number of axes. In the
example scenario, there could be nine AxisGroup objects operational in a configuration at
some instant in time, where the AxisGroup concept represents a group of axes whose motion
must be closely coordinated. The ControlPlan allows for the specification of their motion
parameters, the concurrency of their motion steps, and the conditions for the execution of
these motion steps.

Execution of specified work cycle: When the user selects “Start Cycle” for a particular
machine tool, execution of its machine-specific ControlPlan starts. This refers to a sequence
of services requested from various motion or discrete or process control objects, e.g., an
AxisGroup object (Chapter 5). An AxisGroup object in turn produces setpoint data for
the servo control loops of the Axis objects in its group. The Axis object acquires information
about the current state of the external world, e.g., position from an encoder object, and
sends the next state setpoint to the corresponding actuation object, e.g., PWM amplifier.

2.4 Domain knowledge based organization of software

Table 2.3 portrays the conceptual organization of reusable component software in the
form of class libraries from which machine control subsystems, and systems can be built.
Primitive data types and general purpose language libraries are shown at the bottom of
the hierarchy of architectural components — they provide the most generality, but building
computer programs from such primitives is very time consuming. Therefore, we conceive
an hierarchy of abstract data types with progressively increasing semantic content, but
reusable in correspondingly narrower application domains. The layer above primitives is
a category of classes for measures and units (consistent with ISO Standard 10103 Part
41 [22]), and matrices — it is useful in the domain of engineered electromechanical systems.
These classes are reusable assets, deployed to build a category of classes for space and
kinematics (consistent with ISO Standard 10103 Part 42 [22]), applicable to the domain of
rigid mechanical systems, e.g., workholding fixtures and other tooling. These reusable assets
are deployed to build class libraries for servo controlled motion components, e.g., sensors,
actuators, and control components. From a relatively small number of classes, it becomes
possible to compose a much larger variety of machine tool axis objects — the atomic,
independently controllable units of motion, from which the kinematic model of a machine
object is composed, consistent with ISO Standard 10103 Part 105 [33]. The same class
assets are reused to build the models of peripheral mechanisms, e.g., tool changers and work
changers and workstations with multiple machining mechanisms (e.g., Figure 2.1). Thus,
software is organized to mirror concepts used by machinery engineers and the real objects
of their creation. This organization localizes the effects of changes made by machinery

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reusable resources (classes, categories)
Application domain Data and functions Control flow
RMS with closely interacting Workstation ControlPlan
motion mechanisms Machinetool FSM
Automated motion mechanisms | KinMechanism ControlPlan
FSM
Multi-axis coordinated motion | AxisGroup FSM
KinematicPath; PathElement
Servo-controlled axis Axis FSM
Axis components AxisCompt NA
AnaloglO; DigitallO;
CtrTimerlO
ControlComponent
AxisCtrl; PIDctrl
Rigid mechanical systems KinStructure NA
(fixtures, cutters) CoordinateFrame
Point, Direction
Line, Circle
Engineered systems Measure; Unit; Matrix NA
All primitive data types NA
standard language libraries
container classes
NA: Not applicable

Table 2.3: Aggregation hierarchy of reusable class categories

engineers, whether to provide new functions to users, or to improve performance, or to
replace obsolete components in the machine.

Integrating a controller from software library assets: Our architecture facilitates
the composition of a wide range of controller configurations. Figure 2.4 is an example
of a control system composed of objects instantiated from the classes described above,
combined with platform software and hardware. The specifier or integrator of the system
determines its configuration — in particular, choice of components not available in the
domain model and choice of the implementation language. The system may consist of
one or more cooperating tasks (shown in Figure 2.4 as the vertical bars, where a task
represents the execution of a sequential program or a sequential component of a concurrent
program [21].

We will also refer to them as active objects, when contrasting with passive objects, or as
processes, where these programs run as OS-managed processes. They are reusable only in
a very similar organization of computational work, e.g., the same type of operating system
(0S) and platform configuration. Any of the active objects may have “glue” code that ties
together the services invoked from any of the reusable software component objects. Thus,
these active objects are not as reusable and not as portable as their components. The
processing nodes may be interconnected with any medium, e.g., networks or buses chosen
by the system specifier. Similarly, inputs and outputs (I0) may be interconnected to a
processor through a bus or network.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Separation of integration model from component models: The architecture allows
for the composition of an integrated workstation model in terms of its constituents and
their inter-relationships, e.g., their kinematic arrangement. It may be composed of machine
tools, axis groups, and axes. From a given number and type of constituent components, a
much larger number of configurations can be composed. Only the configuration information
containers are affected.

2.5 Research method

This work thesis has been validated experimentally, in a series of steps (Figure 2.3) to
evolve the domain model primarily, and to refine the model evolution process secondarily.
The initial process and model are based on existing body of knowledge, which by itself, not
sufficient to ease the development of reconfigurable software, i.e., it requires much greater
skills and effort than a “one-shot” application. Therefore, the purpose of the experiments is
to identify a domain-specific subset of knowledge that improves the development efficiency,
i.e., to identify the set of principles, rules, heuristics, procedures, and abstractions for evolv-
ing a domain-specific software architecture to ease the development and reconfiguration of
applications in this domain. The software development process is designed for industrial
use (Figure 2.3). It is synthesized and adapted from literature in real-time object-oriented
software engineering, and relies on the concept of domain engineering [2,46]. Model ab-
stractions have been derived from a combination of scientific knowledge, current practice,
and reconfiguration needs. Manufacturing-specific scientific knowledge has been obtained
from literature and experts in the field of manufacturing automation. Knowledge of generic
structures and interaction patterns has been synthesized and adapted from the field of com-
puter science. The validation and refinement process includes prototyping and evaluation
on a machine tool testbed, as well as reviews by domain experts (Figure 2.3, Groups A and
B), and feedback from participating developers (Figure 2.3, Group C), at each iteration in
the development process. In addition, this thesis shows how the developed model or its
extensions provide the required reconfigurability.

2.5.1 The experiment — a typical development cycle

A typical experimental cycle (Figure 2.3) begins with a formulation, reformulation, re-
vision or extension of requirements through systematic inquiry by the investigator (myself),
involving interaction with the two domain expert groups, A and B. Iteration steps, imple-
mented by Group C, are designed to evolve in scope and functionality, as elaborated in
Chapters 3-7. The evolving work product is an architectural framework in the form of class
graphs and interface specifications.

Group C members documented the class specifications using a CASE Tool, through
which they generated skeleton code in C++. Code in the generated function bodies was
added to the extent necessary to construct a prototype application for testing on the machine
tool. This code was based on similar prior implementations in the C language, supplied by
members of Groups A and B.

Based on these classes, Group C members constructed test applications for running test
motions on the machine tool. A key test move that revealed effects of timing variations was a
circular path. Results were compared in various task configurations, including a monolithic
task. in order to understand the impact of timing variations resulting from multi-tasking at
various levels of granularity.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inicial
requirements

use|

Prototype
application :

Test run)-SoActrol Machine tool

observations

Results

Figure 2.3: Experimental cycle of software development

Process for the software development experiment.
1. Obtain inputs from Groups A and B.
Model software for corresponding increment of functionality.
Review the software model with Groups A and B.
Incorporate the feedback in a revision of the model.
Prototype a test application from the model, adding test code.
Run test on a machine tool.
Analyze the results of the prototyping and test experience.

Improve the model.

© ®w N RN

Extend the model iterating the previous steps.

._.
e

Review and evaluate the software development process with the participants.

11. Improve the software process and guidelines correspondingly.

Modeling the domain: The investigator assimilates and transforms Group A-B inputs
into an information model, using the object and finite state machine paradigms (Section 2.7),
supplemented with other modeling principles and rules (Heuristics 1-5; Rules & Constraints
Set 4). The work product is a set of object class interface specifications that describe the
corresponding concept, physical object, component, functionality, interaction, or clusters
of these objects, including revisions to a prior iteration. For non-trivial behavior, a state
machine is created or extended. The model is a combination of the traditional analysis
and design phases of a software engineering process. It is developed, maintained, and

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

documented with the aid of a CASE tool, which also includes facilities to generate skeleton
C++ code, including default constructors, destructors, and accessor functions. C++ header
files are used as an alternate form of documentation of the class specifications. Group C
members are participants in the development and maintenance of the model.

Prototyping a class: When a non-trivial function is encountered, a Group C member
proceeds with a prototype implementation, by adding the body of the function to the

" C++ implementation file generated by the CASE tool. If it involves no additional domain

knowledge, a Group C participant creates the code. If domain knowledge is required,
the code for the body is derived from some prior implementation (typically a one-shot
application) in the C programming language, obtained through Group A or B. This code
typically requires significant reorganization to produce reconfigurable software. Group C
participants provide feedback of their experience to the investigator and the model or the
modeling process is revised as needed.

Prototyping and testing an application: When a logically self-contained cluster of
classes is sufficiently described to warrant further testing representative of a common use
case in a real-life controller, a participant from Group C develops a test application program
including the classes to be used. When enough class-level software is developed to warrant
testing with hardware in the loop, some prior offline test application program is extended
and tested. For example, in an early cycle, classes to interface with external IO are tested
with the external interfacing hardware in the loop. In a subsequent cycle, classes involved
in the control of one axis of motion are tested. Classes for coordinating multi-axis motion
are tested in a later cycle.

Evaluating test results: The investigator reviews the results and observations at the
end of a cycle with Groups A and C, and the implications on the model, with Group B,
obtaining feedback to plan the next cycle. The reviews address several general questions
about the effectiveness of the software development approach (Heuristics 3).

Q1: Is the process of extracting domain knowledge effective?
Q2: Is the process of generalization from specific initial information effective?

Q2.1: Is excessive genericity adding significant cost?
Q2.2 Is the generality adequate?

Q2.3 How is the degree of generality determined?
Q2.4 Is the model extensible?

Q3: Does the modeling paradigm suit the domain?

Q4: Do observations fit in well-established theory underlying software engineering?

Note: Effectiveness is evaluated as the degree to which general needs and requirements for
reconfigurability are met, relative to the associated design complezity, in comparison with
current alternatives.

Heuristics 3: Questions addressed in the evaluation step of the experiment.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Subsequent chapters provide evaluations relative to these questions and other issues
that were discovered to be significant during the experiment. Some evidence contradicts
prevailing theory-based or intuition-based beliefs.

External validity of the experiment: The research experiment is designed to be repre-
sentative of an industrial application and its development and implementation environment,
in order to make relevant factors dominate over other variables — development conditions
are controlled accordingly, extraneous variables, affecting the development effort, are con-
trolled within a range representative of conditions in industry (Appendix A), or kept at
more pessimistic levels, to ensure external validity. In this manner, sensitivity to extrane-
ous variables is reduced relative to the effect of the architecture and process.

2.5.2 Participants in the experiment

Evolution of the domain model is a process involving the investigator with three working
groups: A (motion and machining researchers at the University of Michigan), B (motion
control and other software developers at industrial research institutions including several
national laboratories), and C (computer science and engineering students at the University
of Michigan).

Groups A and B: They provided general information in several forms, including broad
statement of long-range goals in written form, objectives for a particular development cy-
cle, immediate implementation needs or issues to be resolved, and pre-conceptions of the
architecture in the form of references. Separate face-to-face meetings and discussions with
members of each group yielded more specific conceptual information about the role of some
software module and suggested interfaces.

Members of both groups had prior experience in prototyping control systems to meet
research and development needs specific to a project. None of the participants had at-
tempted to generalize software components or an architecture for use beyond a single ap-
plication. The members had varying degrees of belief and confidence in the realizability of
such genericity or reusablity. None of the original members was predisposed toward the ob-
ject paradigm — some had serious reservations about practical difficulties in using it, e.g.,
availability of integrated suite of tools, availability of skill pool, execution time cost and
uncertainty. When we proposed its use, one member with experience in applying the object
paradigm in non-real time applications using the Smalltalk language, was added in Group
B. Neither group was predisposed to adopt the FSM formalism for specifying behavior of
applications or composing them.

Group C: Members of Group C were responsible for documenting and maintaining the
class specifications, implementing the class libraries, constructing the test application pro-
grams, conducting the tests, and providing feedback of their development experiences, in-
cluding effort applied and difficulties encountered. The feedback was in the form of an
ongoing log, as well as interviews with the investigator. There were fourteen participants
in the experiment, distributed across different cycles. All the participants were college
students, not having prior professional work experience in the 0O paradigm, in the C++
programming language, or in applying the FSM formalism to specify software behavior.
Nine of them had taken a junior level course in data structures and algorithms, which ex-
posed them to C++ but did not provide a formal foundation of the OO paradigm. Five

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

participants had no prior OO exposure, and three of them had learned the C programming
language by themselves. The participants perfomed most of the experimental development
during academic semesters, mostly applying 8-10 hours per week distributed across 3 or
more work sessions. One participant applied an average of 15 hours per week. Five partic-
ipants also worked in the summer break, applying an average of 40 hours per week over a
4-month interval. The experiment was performed over a 30-month interval. One participant
was associated with the experiment for a duration of 24 months, one, for 20 months, and
eight, for 8 months, and the rest for 4 months or less. Thus, in comparison to industrial
conditions, the skill base and continuity factors in the experiment were lower, indicative of
over-estimation in the effort and difficulty reported.

2.5.3 Experimental testbed

The testbed is designed to be representative of the industrial environment (Appendix A),
in order to ensure external validity in the experiment. It consists of 2 hardware platform,
a software platform, application development resources , and a machine tool. The runtime
control testbed consists of elements used in industrial control systems. Each iteration of
the prototyped test application is tested on a real machine tool.

Platform hardware

An on-line testbed, connected to a machine tool (Section 2.5.3), consists of three computers
A, B, and C (Figure 2.4), interconnected with point-to-point ethernet links. A (Pentium
P100 based) supports the user interface, and various preparatory functions related to the
controlled machine and process. It is also used as a development platform and software
repository. It has two ethernet links — one connected to the local area network using
TCP/IP for non real-time communications outside the controller and one dedicated to
B, for soft real-time communications, either using TCP/IP or QNX's network messaging
service. B is a XYCOM XVME Intel-486 based processing module interconnected to various
input and output modules through a VMEbus as follows: a timer-counter module for input
from incremental position encoders, an analog input module for analog signals, e.g., tacho-
generator feedback, a digital output module for output to (PWM type) servo-amplifiers,
an ethernet link dedicated to connection with A and another ethernet link dedicated to
connection with C. B has 16 MB of main memory and a hard disk from which Computers
B and C may be booted. C is a XYCOM XVME Intel-486 based processing module,
interconnected through a VMEbus backplane to an analog input module for signals from
force dynamometers or accelerometers, and an ethernet link to B. C is diskless. The plug-in
IO modules have been replaced, removed, or added in various ways to arrive at different
test configurations.

In some current industrial applications, the roles of B and C in the run-time testbed are
served with modules that plug into the motherboard of A. Since the testbed configuration is
less efficient than a state-of-the-art industrial configuration, the resulting observations are
an under-estimation of the performance and an over-estimation of the difficulty reported.

Platform software

B and C run under a real-time microkernel-type operating system, QNX. A is set up to run
under one of several operating systems — QNX, Microsoft NT, Windows95, and DOS. A
commercial C++ class library (Rogue Wave Tools.h++) is available on each computer.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BROKEN
TOOL Moll SIGNAL
DETECTOR PREPROCESSOR
GUIdisplay L
SHM13
M3 m%z E l
Gux Me— M™MI ¢ (e
Output SHM1
1 MQ12 MQ11 N
e e——{«— —é—;
GUlinput HMT msg main SHM12 Supv Ha0L Msg Data
[Fd0—» 1mpuc —>T0—>| hdir pota Forc (<€ yar, Acq
MQ31 Q32 cerl SHMOL
E&D SHMIS SHM11
SHM21
| -
RS274 > 11—
Translator
Computer A Computer B Computer C

0 Mo Es&m

From outside
World
Figure 2.4: Schematic block diagram of a distributed control system testbed.

Resources for application development

Off-line development resources are similar to elements of the on-line testbed described
above. The environment on A is replicated on several personal computers to reduce the
dependence on availability of computing resources in the development process. The QNX
partition in A and other similar development machines have the WATCOM/C++ com-
piler, development environment, and C++ class libraries, and the TILCON graphical user
interface (GUI) development tool.

An object-oriented CASE tool, Rational/Rose/C++ is installed on each development
platform, for use under Microsoft Windows or NT operating systems. The analysis, design,
and part of the coding phase (generating C++ code header and body templates) of the
software lifecycle are performed on the CASE tool. Final stages of code development,
test-and-debug cycles, and tuning and testing of auxiliary programs, e.g., benchmarking,
profiling, and testing programs are performed under QNX. User modifications made in the
generated code can be reverse-engineered through this CASE tool, to update the design
model and documentation, provided the code-level modifications are not structural. The
graphic expression has helped participants understand class inter-relationships more easily
than code listings. The static part of the model can be automatically transformed into
the C++ language. This feature, combined with the dialog boxes and class diagrams, has
helped reduce mistakes and shorten the time to repair, evolve, and revise the model. Third
party C++ class libraries are integrated with our domain model, within the framework of
this tool.

Validation on a real machine tool

To validate developed test applications, a small, simple machine tool (named Robotool)
is used. It has been used by Mechanical Engineers in research on sensing and control. The
mechanical researchers were faced with the problem that a different control program was
required for each research project — it was not easy to integrate the ideas and results of

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the various researchers. Thus, the Robotool machine was selected as a testbed with two
objectives (i) to allow integration of local research results, and (ii) to evolve and validate
the architecture for wider application in future research, as well as in industry.

2.6 The software engineering process

The process developed in this thesis is a synthesis of existing guidelines on domain
engineering [52], iterative, incremental development [11], use case driven approach [26],
and other modeling and design methods [12,21,47,49]. The foundation for the developed
process is a set of organizing principles given in Heuristics 4. Additional rules, constraints,
and procedures have been developed specific to the domain of hard real-time systems for
the control of machine tools, e.g., Heuristics 1-5.

Rule 1 Compose a system from orthogonal elements, localizing effects of change, including local-
1zalion in time.

Rule 2 Correspond with objects and concepts in the application domain.
Rule 3 Use the scientific and engineering knowledge in the physical system.
Rule 4 Abstract commonalities in features across objects in the domain.
Rule 5 Organize commonalities into generalization hierarchies.

Rule 6 Organize concepls into larger logical units.

Rule 7 Seek the simplest representation of the real-world complezily.

Rule 8 Facilitate comprehension and learning, considering the available industrial skill pool.

Heuristics 4: Machine control software organizing principles, rules, and
constraints.

2.6.1 The perimeter of the domain

Rule 3 prescribes that the outer limits of the domain should be within the mature body of
engineering knowledge about computer controlled motion. This knowledge is available from
the perspectives of manufacturing [27], robotics [28], and computer science [21]. An early-
stage domain analysis of automotive machining automation had been performed (5,8,9],
serving as Step S1 of Heuristics 5. Results are also available from an earlier project to
develop specifications for an open systems architecture standard (7,35,36,40,48], serving
as a point of departure. However, those specifications were incomplete and not validated.

2.6.2 The initial iteration

The machine tool in the experimental testbed served as a specific initial case (Heuris-
tics 5, Step S2). This step, along with the reference architectures mentioned above, serves
as the “top down” aspect of a traditional software engineering cycle, seeking conceptual
integrity. However, even this initial case is not a single application in the traditional sense,

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Domain Engineering Applications Engineering

Case study:
A representative
application

]

Design System

Search library pr—
P

Generalize Design Components
ePund 1 D {fegzel i
sType/class hierarchies Specialize '
sAggregation hierarchies @ H
eInteraction patterns =
oClass qraphs SEW!E use lo!:wnrel
eState machines Izplement, Test

Design. Implement, ;
Test Application !

Specitic
clu:;ll.ibratv Controller
{Reus. e assets) Application

Figure 2.5: Domain model based application development process

S1: Proceed through the first iteration of identifying the domain, using Heuristics 1.
S1: Select a representative (possibly synthetic) application case.

S$2: Reduce the multiplicity of similar objects.

S3: Select the most common use case [26].

S4: Focus on the essential or critical functions.

S5: Proceed through a software development cycle from analysis to prototyping.

Heuristics 5: Initial iteration of domain engineering.

because it could have different physical configurations and different control configurations.
It is a case of “multiple tops” where all the tops cannot be identified initially. A strict “bot-
tom up” approach would require starting from a set of basic data types and instructions of
a typical computer system and building upward. However, how would a software engineer
determine the necessity and sufficiency of the “language” and architecture thus built-up?
Validation would require some concrete or abstract or simulated “top” (Heuristics 5, Step
S2). Since the scope of the functionality of the chosen case is still too large to tackle in one
iteration, a smaller initial iteration step is devised, using Heuristics 5, Steps 52-54. The
multiple-axis experimental machine tool case can be simplified to a single-axis system, since
an axis can be operated and tested independently, without requiring other axes. This is not
an unrealistic simplification, because a large number of real machines with only one axis
of motion exist in automotive manufacturing, e.g., stations in a flexible transfer line that
perform hole-working operations with a multiple-spindle head specific to each workpiece
hole-pattern. Referring to the data flow shown in Figure 2.2, the first iteration is focused
on developing the axis object. The other objects are rapid prototypes to obtain initial expe-
rience in the flow of data from the user interface to the axis — they could be thrown away.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One scaling-down criterion is to reduce the commitment of effort in the first iteration to the
smallest possible amount from which the major architectural concerns could be resolved.
Another scaling-down criterion is to avoid misleading distortion. An early concrete proof
of concept is needed, e.g., 2 physical demonstration of motion control, where performance
could be observed and discussed. With the concurrence of Group A, one axis of motion
is selected as a goal for the first iteration. It allows for the modeling and representative
prototyping of key issues in the overall architecture, as described in Chapters 3—4.

2.7 Underlying formal model

This project has used the object-oriented paradigm to express the domain model, based
on the rules and constraints of the OMG object model [42] and the notation of the C++
programming language.

The choice of the modeling form has been controversial for this application domain,
particularly for hard real-time controls. Criteria at one end of the spectrum, are logical
unambiguity and precision, driving toward a formal model, and criteria at the other end of
the spectrum are ease of comprehension and implementation, requiring a seamless transfor-
mation from a model to an implementation. There are no commercial tools available for
meeting these criteria economically in this application domain. Eztensibility of a specifica-
tion is another important criterion for adaptability to changes in requirements. Portablity
of the specification, or independence from an implementation language, or freedom to select
different implementation languages for different modules is also a consideration. It may be
evaluated in terms of the relative cost of porting the specification to different implementation
languages. Next is a review of the alternatives considered (summarized in Tables 2.4-2.5)
and a justification for selecting the object model for this application domain. Additional
evaluative insights gained through using the object paradigm in the experiment are reviewed
in Section 3.12.

2.8 Comparison of alternatives in modeling form & notation

The alternatives are narrowed down from both extremes — popularity and formality.
The most common language for communicating requirements specifications — the English
language ~ is inadequate, by itself, in meeting the criteria given above, because it is too
ambiguous. The most common programming language in real-time controls, C, is also inade-
quate — it makes an architectural specification more obscure than the English language, be-
cause of the low-level, implementation-oriented expression, rather than application-oriented
expression.

Formal specification languages leave semantic gaps between the real-world requirements
and the formal model and between the formal model and the implementation language.
In the first case, there is a loss of information and uncertainty in the transformation from
human expression to the formal language, because a formal specification language, by itself,
does not make it easier to capture and express concepts natural to the application domain. It
is difficult to validate the formal specification against the real requirements of the application
domain, without a number of implementation cycles. In the second case, uncertainty is
introduced in the transformation from the formal model to an implementation language. It
is difficult to establish that the transformation tool is more correct than the more popular
language compilers in commercial use, particularly, in the implementation-specific aspects

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the tool. With its much lower usage volume than the leading language compilers, the
transformation tool will inherently have a longer debug interval and higher amortized cost.

Reducing the semantic gap in modeling requirements

The object-oriented paradigm reduces the semantic gap between the model and the
engineering concepts used in the design of manufacturing machines.As shown in Table 2.3,
by applying this paradigm, we have built a domain model that provides more expressivity for
the specification of more complex concepts in the application domain. Thus, the domain
model serves as a specification language that requires fewer mental transformations and
fewer manual entries than the most popular programming language (C) used in this domain.

How formal is the object model?

One weakness of the OO model is its lack of a sound mathematical foundation. We
assess the relevance of this weakness by comparing our domain modeling paradigm with the
Z notation [53] — one of the more commonly accepted formal specification languages for
real-time software. The Z notation is based on first-order logic and set theory. It relies on
a combination of mathematical notation and prose. The notation is used to express types,
including a special type called schema, predicates on these types, a schema calculus for
defining schema expressions, and a description of state machines. The Z schema corresponds
to the C++ classes used to build our domain model. The Z schema inclusion corresponds to
specialization in the object model. The Z type is an extensional concept (set membership
of included elements), in contrast to the more compact and “pure” intensional concept in
the object model. Our domain model specification of the dynamics of behavior (flow of
control) follows an extended finite state machine model [24] (FSM). It identifies the state of
an object symbolically, but we do not have as compact a notation for the value of an object
after an operation. The object model also lacks as compact a notation as Z for expressing
predicates.

Z Notation Object model

Types, schema Classes

Type definition is extensional | Intensional

Schema calculus Generalization-specialization; aggregation
Predicates No constructs above programming language
FSM notation No constructs. Class structure built.

Table 2.4: Comparison of a formal modeling language with the object model

Other pertinent formal specification approaches include SDS [14] and ROOM [49]. Both
of them follow a similar approach, although with different notations and tools. They use
the object model for the static apsects and a finite state machine for the dynamic aspects
of an application. They use a graphic notation for convenience of human understanding.
They have the capability to transform the specification into C+4. They have been used in
building large real-time systems. They specify a number of explicit constraints on a system
architecture, in order to simplify correct application design. In this respect, they offer more
support than the Z notation for building practical systems.

Thus, considering the criterion of disambiguating requirement specifications, the foun-
dation of our domain model is comparable to the Z notation. Therefore, we do not consider

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

other formal modeling alternatives in further evaluation.

Implementability considerations

Although there are a number of modeling languages, model libraries are in formats pro-
prietary to the respective tool suppliers. They cannot be mixed in a single application. The
OMG’’s Interface Description Language (IDL) is intended to be a vendor-neutral medium,
but there are very few commercially available transformation tools. Rational Software Cor-
poration has proposed to the OMG and a group of other industries a Universal Modeling
Language (UML). We have converted to a recently released form of the UML in ~ur project,
using the Rational Rose/C++ object-oriented CASE tool. The UML model can also be
transformed into Java and IDL. Unfortunately, the CASE tool lacks model libraries needed
for building models of real-time systems similar to libraries available with SDS and ROOM.
Thus in our project we had to build our own models for such generic entities as finite state
machines, periodic processes, message ports on these processes, and interprocess commu-
nication mechanisms (IPCs) connecting ports between different processes. In exchanging
information for experiments in our project, Group B members (spread across multiple dis-
tant sites) found it easier to understand and evaluate the specifications in the form of C++
header files rather than the modeling language of the CASE tool. Group B members at one
site were able to transform the C++ class descriptions into IDL. Other group members at
a third site were able to transform the specifications from IDL into Java.

| Factor of comparison C|C++ |IDL| Z
Disambiguation of requirements L| ML | ML { ML
Transformation into implementation language | H H M L
Extensibility L H H H
Portability of specification L M MH | MH
Current use in real-time controls H M L L
Common knowledge H M ML | ML

Evaluation codes:
(L) Low (ML) Medium low (MH) Medium-High (H) High.

Table 2.5: Comparison of interface modeling languages

Extensibility considerations

Mature industrial practice in real-time controls relies upon the C programming lan-
guage for interface specifications. Operating system and network services also define their
interfaces through C. For compatibility and ease of integration with existing specifications,
development environments, and implementation environments, C was considered. However,
the extension and adaptation of a C interface is more costly than an interface described in
the object model form, because the latter supports a generalization hierarchy. For example,
a class can be specialized by restricting the domain of its members or the domain of its
member function parameters. A class can also be specialized by adding members. C++,
being a superset of C, serves as a good bridge between the legacy interfaces described in C
and the object model.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.9 Characterizing task interactions space

Based on existing knowledge, Figure 2.6 provides a characterization of the types of
inter-dependence that may be required in an application, and how these characteristics
affect design complexity. In the dimension of time-constraints on the completion of an
interaction, the application requirements become simpler as the allowed time increases and
the time-constraint becomes softer. Applications served by current controllers exhibit a
wide spectrum of time constraints on various interactions within the same system. At one
extreme are the servo-sensor loops with very short and strict sampling time intervals. At
the other extreme are queries from the human or a remote computer system, which could
be served on an “when time available” basis. This research is focused on the domain of
hard, short time-constraint cases. It develops architectural constraints to meet the needs
of these cases without unnecessary design complexity.

Considering the different types of interaction, we find that most of the functionality for
automated operation in current machine tool controllers falls into a very simple pattern of
single producer single consumer type of data transfer. Most of the other interactions can
be handled asynchronously. In the few cases where a chained dependency may be involved,
the dependency is sequential (serial). In this study, we have found that the general needs
identified in Section 2.1.2 can also be met within these interaction constraints. Therefore,
we exclude from the scope, more general interaction patterns that introduce more design
complexity.

2.10 Architectural design granularity alternatives

Given the requirements for closeness of interaction, reconfigurability in scale, and behav-
ior, what architectural granularity should be considered? Group B focused on application
(passive object) class specifications, independent of any execution model. In our archi-
tecture, we considered multiple levels of granularity, described next, in order to meet the
general needs identified earlier, without unnecessary increase in design complexity. It has
been a controversial issue in both Groups A and B. We describe the choices, with examples
from current practice, and clarify the issues next.

Command language interface: Examples of command language interfaces are the EIA
RS274D standard for numerical controllers, the VAL+ language for robots, and the FADL
being developed in the OSEC project in Japan. Command languages were intended for
application to a complete control system, known as a configuration in IEC 1131. If a
“complete” control system is viewed as a “component” of a larger multiple-controller system
(Figure 2.7), the command language serves as the universe of discourse (communication).
When the functionality of a system is decomposed into loosely coupled components, e.g.,
A, B, and C in Figure 2.7, each of these components would need to support only a subset
of the total vocabulary of the system. Such subsets may be devised specific to the needs of
an organization, a project, or an application.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Type of time-constraint on completion of interaction.

— Length
* Shorter [More complex]
* Longer [Simpler]
~ Strictness
* Hard time limits [More difficult]
* Soft time limits [Simpler]

Type of interaction.

— Asynchronous [Simplest]
— Synchronous
+ Single round
* Multiple rounds
- Lineaer sequence
- Acyclic graph
- Cyclic graph [Most complex]

Type of dependency.

— Sequential
— Acyclic graph
— Cyclic graph
Length of dependency chain, and variability in length. [Small => simplicity]

Number of inter-dependent items. [Small => simplicity]

Degree of exception handling and recovery.

— Stop; save state; shutdown. [Easier]

— Semi-automated return to system startup condition. [More difficult]

- Automated return to resume operation. [Very difficult]

Figure 2.6: Characterization of task interactions by design complexity.

transporter, e.g. Manufacturing Automation Protocol

[il

B:

command Tinei
interface ;

Figure 2.7: Command line style interaction across programs in execution

Data exchange interface: A component can produce or consume data in the specified
format, e.g., the ISO STEP standard to exchange product description data, or the com-
munication objects in the OSACA program. [EC 1131 describes it as a data acquisition
interface, which maps into ISO/IEC 9506-5 Read service Variable Access Specification and
Exchange Data service. However, components may be preprogrammed to alter their behav-

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ior (known as parametric control in IEC 1131), based on the value of the data, as possible
with the ISO/IEC 9506-5 Write service.

Major executable component interfaces: An example from the document processing
domain is the exchange of information across a wordprocessor, a spreadsheet package, and
a graphics tool. Each component is an independent thread of control. One component can
exercise limited control on another, e.g., for starting it, making it find a file, and making it
reformat and serve the information. The inter-component communication interfaces (Fig-
ure 2.8) are similar to the IEC/ISO 9506-5 Event Notification service and Program Invocation
and Event Enrollment objects. In the example figure, AA, AB, and AC can inter-operate in
closer temporal copuling than components A, B, and C of Figure 2.7.

transporter, e.g. r.p.c. for events or msgs

5 M A
AB

AC

Figure 2.8: Modularization into coarse-grained executable components

Fine-grained executable components: In the extreme case of designing for change
and maximizing scheduling flexibility, each function, particularly an 10 function, is placed
in a separate executable component, as in the Naval Research Laboratory Cost Reduction
Method [18,43,44]. Events are used for inter-component synchronization. As each compo-
nent, AAA-AAD does less work than the larger components, AA-AC, of the previous case,
their execution times tend to be smaller, interleaving in an execution schedule is easier, and
therefore temporal coupling can be closer.

Figure 2.9: Modularization into fine-grained executable components

Passive application objects: When an executable component, such as AA-AC men-
tioned earlier, employs the services of other objects, e.g., AAA-AAD in Figure 2.10 internal

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to it, the latter (known as passive objects) will be finer-grained than the executable compo-
nent using them. The ISO/IEC 9506-5 Named Variable object is a simple example and the
Event Enrollment object is a more complex example. As interaction amongst AAA-AAD
does not require inter-process communication services from the OS, their interaction design
process is simpler and their execution time is lower and predictable.

t

&
9Q
é

passive—"|
objects_|

N

Figure 2.10: Modularization into passive components

To0nr

Is the design freedom of structuring tasks detrimental, i.e., does the associated complex-
ity and cost outweigh the benefits? This question is analyzed next. Without this scope of
granularity, it would not be possible to meet General Needs 1-8 identified in Section 2.1.2.
Specific examples are given below, with an explanation of the supporting theory.

2.10.1 Consideration of data transfer efficiency

General need 2 is satisfied most efficiently when functions with close temporal coupling,
can be included in the same task. Consider three cases of data transfer across functions in
programs allocated to run on the same computer — intra-object; intra-process; inter-process.
Following is an order-of-magnitude comparison of the data transfer times and the variation
in these times for the three cases. The comparison given above shows that the time-penalty
of inter-process communication is significant. The secondary effect of variation in timing is
an even worse penalty, as discussed next.

c: Best case time to access a variable within the same object. [Approximately 1 memory
access cycle].

ve: Variation in ¢ over all accesses. [Insignificant].

cl: Best case time, as a multiplier of ¢, for data transfer through an accessor function of
another object in the same process. [Approximately 2].

vel: Variation in cl, as a multiplier of ¢, over all accesses. [Approximately 1].

c2: Best case time, as a multiplier of ¢, for sending data as a message or event to another
process ready to run on the same computer. [Approximately 100].

ve2: Variation in ¢2 over all accesses. [Approximately 100].

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.10.2 Consideration of application design complexity

When different objects interact in close temporal coupling, with their actions having
the same priority and periodicity, placing the objects in the same process (address space)
requires smaller and simpler interaction code — function calls within the same name space,
as opposed to remote procedure calls (rpc) or proxy object services.

Timing uncertainty: Furthermore, when temporal distance is closely constrained, as in
the case of servo control of high precision high speed motion, the additional timing variation
introduced by cross-address space interaction increases the complexity of the design process.

Type-checking: The current technology of programming languages supports automatic
checking and matching of user-defined data types within a single program, including pre-
compiled objects used in that program. This is a very useful and effective protection against
type mismatch errors, which are very common when modules are produced and supplied
by a variety of sources. Commercial compilers for the more commonly used languages, e.g.,
C++, are relatively inexpensive. However, there are no such commercial tools for type
checking and matching for data transferred across programs (i.e., name spaces or address
spaces). The supporting system services transport messages merely as sequences of bytes.
The application is responsible for the semantic validity of a transferred unit of information,
rendering the application more error prone and increasing the development cost. Thus, the
granularity approach in this architecture enlarges the configuration design space, for a given
level of design complexity and cost.

Level of granularity
Comparison factor 1 2 3 4 5
Integratable? yes yes yes yes yes
Function reconfigurability | low no medium high high
Design complexity low low medium high medium-high
Communication efficiency | low | medium-low | medium-low | medium-high high
Response speed low no medium-low | medium-high high

Level of granularity codes:
(1) Command-line

(2) Data exchange

(3) Coarse-grained executable
(4) Fine-grained executable
(5) Passive object

Table 2.6: Comparison of alternatives in architectural granularity

Application developers can limit granularity exposed: Suppose that the majority
of industrial applications will be satisfied with a much narrower configuration space, not
requiring interaction across modules in very close temporal coupling. Then, it would seem
that the overhead of learning how to use this architecture would burden all these applications
without adding value to them. However, users of this architectural model still have the
option of prepackaging larger modules, executable modules, and configurations, and limiting
the interface to suit their respective application domains.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.11 Summary

We have synthesized a process to develop a domain-specific software architecture for
reconfigurable machine tool controllers. The architecture-development process is based
on an emerging software development technique known as domain engineering, and the
architecture itself is based on two paradigms — OO, for modeling static aspects, and FSM,
for modeling the dynamic aspects. We supplemented the known techniques with additional
procedures, specific to the domain of machine tool control. Recognizing that the design
of machine tools and their controllers are based on established engineering principles, our
procedures systematize the process of extracting that knowledge and using it to organize
machine control software. Early stages of the process are exercised on a specific case,
synthesized to incorporate a number of long-standing needs. Our process deliberately over-
generalizes the requirements manifested in the synthetic case, in order to expand the domain
at the early stage and explore the implications on development effort and difficulty. This
exploration is performed by exercising the process in a series of software experiment cycles,
and recording experiential observations pertinent to evaluative questions (Heuristics 3).

Our generalization of needs and requirements is supported by studies conducted in
past projects, elsewhere, to develop specifications for open system architecture standards.
Several schools of thought in software research support the notion of starting a software
project with a wider base of requirements than it specific target, e.g., investment in front-
end analysis to identify the key classes or data types in a domain. The history of software
development clearly attributes “missed or changing requirements” as the most dominant
factor of cost and delay in the software lifecycle. Therefore, our approach attempts to stretch
the envelope. We assume that cost of computing resources is rapidly decreasing relative
to cost of reconfiguring control systems and lost-opportunity cost of delays (Appendix A).
However, the cost-effectiveness of the resulting wider scope has been controversial. The
software experiment is intended to identify the more significant issues underlying these
controlversies and to clarify them. The following chapters describe the evolution of the
architecture in several stages, and evaluate the development experience at each stage.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

Axis motion software — static aspects

The architecture for software to control a reconfigurable axis of motion is a microcosm
of architectonics required for a RMS. It is broadly driven by current controller functionality
and the reconfigurability needs identified in Chapter 2 (General Needs 1-8). Intermediate
evolution steps are defined by derived needs and requirements identified in the course of
evolving the axis software model. Prototyping cycles are designed for partial validation, or
resolution of some uncertainty. The model is grown in increments of relatively small steps.
The course of software development is reassessed and corrections made as a result of the
learning experience in each cycle (Figure 2.3). Research experiments (Section 2.5) track the
effort, difficulty, and progress in each cycle.

The early stages focus on the core function of an axis, but the model is designed for
extension, e.g., different types of control, monitoring, diagnostics, ease of setup, calibration,
tuning, and other forms of maintenance, without compromising the integrity and correctness
of the core function.

In spite of the long history of numerical control of machine tools (introduced in 1952) and
computer control of industrial robots (introduced in 1961) [27], this degree of extensibility,
reconfigurability, and customizability in axis control has not been possible, largely due to
concerns of losing integrity, timing correctness, and maintainability of the software.

Chapters 3 and 4 describe an evolvable software model for one axis motion control in
two parts. Chapter 3 focuses on the earlier stages of the software process, developing the
static aspects of the model, whereas Chapter 4 describes its dynamic and execution aspects,
including architectural constraints to facilitate application design. Section 3.1 introduces
the controlled axis of motion and a schematic of its basic control. A structural overview of
the axis model (Section 3.2) is followed by interfaces to describe the device (setup, kine-
matics, and dynamics) and interfaces for the servo control cycle (sensor interface, actuator
interface, and setpoints interface). Sections 3.10-3.11 describe subdomains (measures and
units; space and kinematics) discovered in the process of modeling these interfaces. Be-
ing more generic, these subdomain models, are more widely applicable. Sections 3.12-3.13
evaluate the application of the object paradigm and the domain-specific abstractions, and
Chapter 4 completes the evaluation and conclusion of axis software modeling.

3.1 Overview of the axis motion domain

An azis of motion is an element of a kinematic mechanism that provides motion with
precise continuous control of position and velocity in a single degree of freedom (DOF),

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where DOF refers to the minimum number of independent variables required to specify
completely the motion of a mechanical system. In the conventions of the righthand rect-
angular coordinate system, the six independent variables consist of the three translations
along the three axes of the coordinate system, X, Y, and Z, and rotation around each of
these axes respectively. Each axis of motion is independently controllable. There are two
kinds of motion commonly used in robots and machine tools — a translational azis pro-
vides and constrains motion to translation along a fixed axis, and a rotary azis provides
and constrains motion to rotation about a fixed axis.

The axis definition given above is synthesized from the conventions of common usage
in the field of programmably controlled kinematic mechanisms, since there is no explicit
common definition across the different types of manufacturing equipment, (NC machines,
various robotic mechanisms, inspection and measurement devices, handling mechanisms,
and combinations and specializations of these devices). For example, precision requirement
is left implicit in the usage context — it is assumed that a five-axis NC machine will follow
a specified continuous path more accurately than a robot with five articulated joints, and
this robot will move more accurately than a handling mechanism. Current standards make
no provision for explicit specification of the required accuracy of motion.

Despite the existence of mature knowledge in the field of manufacturing engineering,
there is no common basis to express this knowledge for an axis of motion in a form that
lends itself to computer automated exchange of information with semantic content about its
motion characteristics. Lack of a uniform language for describing motion in current practice
adds to the cost and difficulty of computer integration of different manufacturing devices.
Thereofore, an axis of motion must be described in a unified scheme that is more general
than the view in any single subfield of manufacturing equipment mentioned above.

Axis Software

] —C

Axis
Upstream Electromechanical
Software ~ - ’| AxisSetpoints ControlCompt Hardware

AxisSensedState @

FBP2

Figure 3.1: Overview of axis servo-control software model

Overview schematic of an axis: Figure 3.1 is a schematic block diagram of a servo-
control model, showing the key abstractions in servo-control of motion. The final output
of the axis is the translational motion of its work-point, depicted by the symbol, TO. The
ControlCompt object produces an output (reflected at the workpoint) to the AxisActState
object which converts it to the corresponding actuator signal units and sets the signal to
the actuator at Tl, a terminal for signal connection. Feedback signals from sensors, e.g.,
at terminals FBV, FBP1, and FBP2, are acquired into the AxisSensedState object which
converts them into the corresponding workpoint units for use by the ControlCompt object.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Organization of axis control software

Axis software (Figure 3.2) is organized in accordance with the approach described in
Section 2.4. The Axis model is not specific to any execution model. For example, an
axis of control may be set up as an independent periodic process, or as part of a process
that includes other axes, or as part of a process that also includes coordination of their
motion, and coordination of other tasks. To facilitate formulation of execution structures,
the specification of behavior and control flow, through a finite state machine (Figure 3.2,
axisFSM), is separated from the specification of the various service-providing objects (Fig-
ure 3.2, Resources) of an axis. Axis resources are organized around the axis object (Class
Structure 3.1), which aggregates software components that perform the control (control-
Compt), components that provide the device (physical axis) descriptions and settings, and
components that provide the interfaces for setpoints (axisSetpoints), feedback (axisSensed-
State), and output to the actuator (axisActState). The jogHome component transforms
user functions for jogging and homing moves into the corresponding sequence of axisSet-
point settings.

axisFSM
Resource
b ces
jogHome 0 axisSetpoints
A) -
Device descriptions
axis —0 [axisTravelCapabilities]
o) :] [axisKinematics] .
i axisDynamics
ctrlCompt : _ ;i
¢ [axisMaintenancd
|

[axisCtrl [

[axissensedstate]| | axis;\ctstate]

Figure 3.2: Organization structure of the Axis model

The Axis class is abstract — its members describe features common to all axes of motion

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in machine tools, robots and other programmable, servo-controlled motion devices, but no
instance is created from it.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
CtrlCompt *ctrlCompt

AxisCtrl *axisCtrl

AxisActState *axisActState

AxisSensedState *axisSensedState

AxisSetup *axisSetup

AxisTravelCapabilities *axisTravelCap

AxisKinematics axisKinematics

AxisDynamics axisDynamics

AxisMaintenance axisMaintenance

AxisFSM *axisFSM

Accessor functions for following data members:
CNTRL_MODE controlMode //enum - position,pos-vel; direct-force
MOT_OBJ motionObjective //enum - min-jerk, min-time

Other member functions:
void processServoLoop()
Boolean checkPrecondition()
Boolean checkInPosition()
void resetEmergency()

void resetHold()

Class-structure 3.1: Interface of the Axis class

The responsibilities common to all types of programmably controlled axes (Class Struc-
ture 3.1) are the flow of control through various modes (specified in AxisFSM), and, under
continuous automatic control, the most commonly used mode, to process the servo motion
control loop.

Classes Axis, CtrlCompt, AxisCtrl, AxisSetpoints, AxisSensedState, AxisActState (or
their specializations) participate in the continuous control of motion. AxisSensedState,
which is the designated state information server for the axis, also saves state information
for precondition-checking and recovery from an interruption. Other classes (Figure 3.2, de-
vice descriptions) support the main responsibility of the Axis class for some preparatory or
recovery step, as follows. Classes AxisSetup and AxisTravelCapabilities support the setup
of an axis. Classes AxisKinematics and AxisDynamics suppport configuration and initial-
ization of axis mechanics related information, including the plant model for axis control.
The AxisMaintenance class is intended for future extension of the model. External loads
and disturbances are not included in this axis model, but are treated to be a part of the
external process model. By distributing the responsibilities of the axis across members fo-
cused on different aspects of preparation and operation, the effect of a change is localized,
reducing the effort and likelihood of errors resulting from the change (Rule 1).

There are two main specializations of Axis — TranslationalAxis (Class Structure B.2)
for translational axes of motion and RotaryAxis for rotational axes. This specialization
is based on restricting the domain of the data supplied to, returned by, or processed by
various axis functions (Section 3.10). Instances are created from one of these two subclasses
or their specializations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1 The servo control loop function

The main function of an Axis is as follows: Given some setpoint(s), i.e., input(s) and the
current state of the controlled axis of motion, perform a transformation, which produces
some output (setpoint) for the actuator, to reach the setpoint. At this level of generality,
there is good agreement amongst users of various forms of single-axis motion control about
the core function of an axis, identified as processServoLoop() in the Axis class. It gets
the desired setpoints from axisSetpoints and the specified feedback, from axisSensedState,
supplies these parameters to the transform function of the selected CtrlCompt object (Class
Structure 3.2), receives the output from it and sets it in the axisActState object. In order
to perform continuous motion control, this function must be executed every servo loop
interval.

Novelty: The novelty of the model lies in its modularity - the function processSer-
voLoop() is a composition of five services, each of which isolates a change that can occur
independently. For example, if a different control mode is required, the corresponding Ctrl-
Compt is replaced. If 2 new servo-control algorithm is to be retrofitted, the axisCtrl object
is replaced. No change in processServoLoop() is needed. No such modularity exists in cur-
rent practice. Most commercial motion controllers do not even allow this level of access.
The few that allow changes at this level require more programming effort because they are
not adequately modularized.

3.2.2 Checking preconditions

The function checkPrecondition() is provided to test if all the preconditions for execution
of the next servo loop are satisfied, e.g., the axis must not have violated its travel limits.
An integrator-user may specify the condition to be evaluated by this function.

Contrast with current practice of precondition checking: CNCs have built in moni-
toring of certain abnormalities such as excess following error. Some of them allow the system
integrator to adjust the threshold values. However, no motion control product allows the
flexibility to define the preconditions that must be checked at every cycle of the servo loop.
This axis model is novel in isolating the function checkPrecondition() and supporting its
customization.

3.2.3 Status reporting

The function checkInPosition() tests if the axis has reached the position specified in
the previous setpoint or met the condition specified for successful completion of the move.
Position need not be explicitly specified. For example, if the move is specified as touch, i.e,
“move until contact is sensed”, then for that move inPosition is interpreied to mean that
the condition of completion of the move has been satisfied. It sets the result in the data
member inPosition in axisSensedState. The caller or client of the axis object can get the
inPosition state at the appropriate time to test if the axis has moved as specified.

Architectural advantage: The Boolean value reported by this function is compact,
processed knowledge about the state of the axis, in contrast to the traditionally reported
actual position, thus reducing the burden on the axis client. For example, in a point-to-

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

point move involving multiple axes, the motion coordinator checks this variable after issuing
the last setpoints of the move. When all axes under its coordination have reported that
they are in position, the coordinator deduces that the specified move has been completed.
If the motion coordinator were to compare actual position and setpoint (desired position)
for each axis, it would increase the volume of data and code handled by the coordinator.
Furthermore, this code would have to change when the coordinated axes change. In our axis
model, the responsibility is delegated to individual axes, where the code can be reusable
as part of the class library code. The function is provided in the Axis class rather than in
one of its members, because only the Axis class has visibility of setpoint information. The
result is set in the axisSensedState object.

Architectural issue: The function checkInPosition() and data member inPosition are
not useful in all types of motion, e.g., when continuously following an edge. Yet the cost of
carrying the interface definition and storing the data member is built into the architecture.
We justify their inclusion in the basic architecture with a qualitative evaluation of three cost-
benefit factors. First, motion in which position is controlled explicitly or implicitly is by far
the most common mode of usage — structural support is built in for the most common use
cases (without limiting extensibility to meet other needs), because the accumulated benefits
are large. Secondly, after the initial architectural design, the cost of carrying the design
definition and the data member is primarily the cost of on-line space and the effort required
to understand the design. These costs are insignificant in this case. Thirdly, maintaining
differences in architectures for different cases is much more costly, in off-line space, as well
as effort required to understand the architecture.

3.3 Modularization of servo control software

There are a number of control schemes and modes, e.g., position, velocity, acceleration,
and direct-force, in common use for axis motion control. The architectural support must
be quite generic to accommodate the more common cases. Yet, it should provide sufficient
constraints to minimize integration-stage effort, e.g., errors of interface mismatch. Servo-
level functions are also very sensitive to execution time costs and time variation. Thus,
there is a need to balance the tradeoffs across control design flexibility, integration cost,
and execution-time cost. The Axis class includes a polymorphic control component (Class
Structure 3.2) that can be specialized to provide the various control modes or schemes
mentioned above. It uses AxisCtrl — more reusable and polymorphic (Class Structure 3.3)
— to implement the control law, algorithm, or rules. Through specialization of the Axis
class multiple control components may be included. Figure 3.3 shows a simple case, with
one ctrlCompt and one axisCtrl object active in a particular configuration of axis software.
The axis— >processServoLoop() function calls the ctrlCompt— >transform(...) function,
supplying it references to the axisSetpoints, axisSensedState, and axisActState objects. The
ctrlCompt— >transform(...) function calls the axisCtrl— >calControlCmd(...) function,
supplying it references to the relevant objects, axisSetpoint, actualPosition, actualVelocity,
and axisQutput.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Axis

processServoLoop ()
controlMode
ctrlCompt — transform P R
axisSetpoints (i modal Input;
desiredPosition :
desiredVelocity ———
desiredAcceleration e)
i £ 1
desiredDirectLoad i
: v
i axisCtrl—»calContolCmd
actualPosition : current x H ; axisoutput -
actualVelocity current x -
. setpoint .
— output SO axisActState
axisSensedState e

)

Figure 3.3: Object interactions in processing a servo loop

3.3.1 Reconfiguring control strategies

The CtrlCompt class is abstract. To create an instance, the CtrlCompt class must be
specialized, by restricting the domains of its transform function parameters. For exam-
ple, in a control system requiring only a simple direct-force control component, the class
ForceCtrlCompt is created by specializing the parameters inputVector, stateVector, and
outputVector of the function transform — each parameter would have only one element of
class Force. A user selection of a particular control mode is mapped into the selection of
the appropriate ctrlCompt object.

The behavior of a servo control component may be adapted, tuned, or modified through
modallnput, which consists of a code number and a reference to the data associated with
that number, so that the CtrlCompt class can select and provide the appropriate response
using the given data. An example of using the modallnput object is to update the code
number to indicate a transition to the feedHold state; there is no data associated with
feedHold. Then, the ctrlCompt object can adjust control parameters (internal or in its
associated axisCtrl component) to stop motion expeditiously.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
AxisCtrl * axisctrl

PeriodSpec * periodSpec

Main member function:
virtual void transform(Modallnput &modallnput, MeasureVector &
inputVector, MeasureVector & stateVector, MeasureVector & outputVector)

Class-structure 3.2: Interface of the CtrlCompt class

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.2 Reconfiguring control laws and rules

The AxisCtrl class (Class Structure 3.3) models a basic single-input single-output servo-
controller to control a single variable, X. In the case of an axis of motion, X is its position.
However, the genericity of this class supports many other common single-input, single-
output servo-control applications. It provides access to data used or set by tools for system
identification or tuning. Although these tools are not specified in this architecture, the
data interfaces allow their on-line integration. The main function of this class is calCon-
trolCmd(...). Its caller supplies, as inputs, references to the feedback variables, setpoints,
and the output variable nextStateX in which to receive the result.

A reference to the member periodSpec (Class Structure 4.9) is set in CtrlCompt for use
by the control algorithm in the AxisCtrl class function calControlCmd(...).

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object member:
PeriodSpec * periodSpec

Accessor functions for following members:
double feedFwdFirstDerivGain
double feedFwdSecondDerivGain
double gainSetpoint

double gainSetpointFirstDeriv
double gainSetpointSecondDeriv
double offsetSetpointX

double offsetCurrentStateX

double offsetNextState

double gainSetpointOffset

double gainCurrentStateOffset
double gainNextStateOffset

double gainFeedforwardOffset
double compensatedX FollowingError

Other member functions:

void calControlCmd(

double& currentStateX,

double& currentVelocityX,

Setpoints& setpoints,

double& outputNextState)

double calcClosed LoopGain()

void closedLoopOperation(Boolean b)
void enableFeedforwardGains(Boolean b)
void enableOffsetSetpoint(Boolean b)
void enableOffset NextState(Boolean b)
void enableOffsetCurrentState(Boolean b)

Class-structure 3.3: Interface of class AxisCtrl.

The AxisCtrl class is abstract. It must be specialized according to a chosen control
algorithm, e.g., pid control or fuzzy logic control, for which the respective subclasses, Ax-
isCntrlPID and AxisCntrlFuzzy, have been provided as examples, where the only change
is the implementation of the function calControlCmd. Further specializations of AxisCtrl
could include real-time system identifiers and tuners as mentioned above.

Setting gains and offsets: The gains of the setpoint and its derivatives (gainSetpoint,
gainSetpointFirstDeriv, gainSetpointSecondDeriv) may be individually set. There is pro-

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vision to set offsets (offsetSetpointX, offsetCurrentStateX, offsetNextStateX) and offset
gains (gainSetpointOffset, gainCurrentStateOffset, gainNextStateOffset) for setpointX, cur-
rentStateX, and nextStateX respectively. Ideally, scaling or offset of output and feedback
should not be needed in a properly engineered and tuned servo-control system. However,
these adjustments have been available in hardware traditionally — primarily to help in the
initial startup and tuning or to compensate for changes in characteristics of the controlled
system. The AxisCtrl class provides the software-analog of those hardware adjustments.
It also provides functions to enable or disable offset of the setpoint (enableOffsetSetpoint),
offset of the output (enableOffsetNextState), and offset of the feedback (enableOffsetCur-
rentState). The need for such adjustments may be minimized by utilizing the information
provided online about the kinematics and dynamics of the axis. The dynamic character-
istics may be determined experimentally, utilizing the functions provided with its software
set to the appropriate mode of usage.

Initialization: A default initial state of the axisCtrl object is provided to suit the most
common cases, i.e., applications that do not use feedforward and applications that take
advantage of the facilities described above for adjusting gains and offsets in control param-
eters. The axisCtrl object has closed loop operation disabled, to avoid unexpected startup
action — the application program determines the sequence in which closed loop operation
is enabled. The default initial state may be provided by invoking the following functions in
the constructor of the axisCtrl object: enableFeedforwardGains(FALSE), enableOffsetSet-
point(FALSE), enableOffsetNextState(FALSE), enableOffsetCurrentState(FALSE), closed-
LoopOperation(FALSE). Values of the following data members are initialized to zero: feed-
FwdFirstDerivGain, feedFwdSecondDerivGain, gainSetpointFirstDeriv, gainSetpointSec-
ondDeriv, offsetSetpointX, offsetCurrentStateX, offsetNextState, gainSetpointOffset, gain-
CurrentStateOffset, gainNextStateOffset, gainFeedforwardOffset, compensated XFollowingEr-
ror.

Open or closed loop option: Modal settings are provided to reconfigure axisCtrl.
Closed loop operation may be enabled or disabled through the function closedLoopOp-
eration(...). For example, in the case of a machine tool spindle, preparatory to generate a
helical path, closedLoopOperation(TRUE) sets spindle for closed loop operation. To prepare
for ordinary machining, closedLoopOperation(FALSE) sets it for open loop operation. Feed
forward control may be enabled or disabled with the function enableFeedforwardGains(. ..).
The data member compensatedXFollowingError is informational output from AzisCtrl, cal-
culated as shown in Equation 3.1.

compensatedX FollowingError =
(SetpointX
+of fsetSetpointX * gainSetpointO f fset)
— (CurrentStateX
+of fsetCurrentStateX
xgainCurrentStateO f f set)

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Software to facilitate axis setup

The AxisSetup class provides services preparatory to normal operation of an axis, e.g.,
setting the home position, travel limits (TravelLimits class), and various operational limits
(OperationalLimits class) to be used by motion planning and coordinating clients of an
axis. Preparatory settings are separated from software used in continuous control of axis
motion (applying Rules & Constraints Set 4 Rule 1), for simplification. These facilities are
not available in current practice. Client software will be able to perform certain operational
setting changes automatically.

3.4.1 Setting operating limits of an axis

The OperationalLimits class (Class Structure 3.4) provides for online availability of key
operating limits of an axis, to facilitate the following types of functions, as examples. A near
real-time process planner or a motion control algorithm could optimize the performance-
cost relationship, monitoring software could detect “out of limit” conditions, exception
handlers could prevent damage from malfunctions, and maintenance and diagnostic software
could detect degradation trends. The operating limits are clustered in five attributes, three
of which (overshoot, underReach and followingError) provide monitoring limits, and the
remaining two objects (tolerances, dynamicLimits) provide operational limits for use by
axis clients. The data member “overshoot” is the amount by which the axis travels beyond
the specified target position), “underReach” is the amount by which the axis travel falls
short of the specified target position, and “followingError is the maximum amount by which
actual position is lagging the setpoint. These three attributes are of class AxisError (Class
Structure 3.5), which has three attributes, warningLimit that an application may use to
generate a warning, violationLimit at which the application may interrupt processing, and,
if this limit has been violated, then the amount by which the limit was exceeded. A violation
indicates that the axis is out of control. In normal operation of a properly tuned system, the
warning level would not be exceeded. The attribute dynamicLimits (Class Structure 3.6)
provides the limits of velocity, acceleration, deceleration, and jerk allowable for a particular
type of move.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
AxisError overshoot

AxisError underReach

AxisError followingError

AxisTolerances tolerances

DynamicLimits dynamicLimits

Class-structure 3.4: Interface of class OperationalLimits.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
measure warningLimit

measure violationLimit

measure amount

Class-structure 3.5: Interface of class AxisError.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
measure loadLimit

measure jerkLimit

measure accelerationLimit

measure decelerationLimit

measure velocityLimit

Class-structure 3.6: Interface of class DynamicLimits.

Most current motion control systems facilitate settings for following error only, either
preventing or ignoring “overshoot” and “under reach” during operation. However, a flexi-
ble machine tool may be used for different types of motion, requiring different constraints.
Current controllers over-constrain motion for less demanding moves or do not meet the
requirements for more demanding moves. We discuss how this architecture allows an appli-
cation to reduce the compromise.

Switching operating limits specific to type of motion process

Most moves in a machining application may be characterized as shown in Table 3.1 for
the purpose of constraining parameters of axis motion. There is significant performance
benefit in adjusting the operating limits corresponding to each type of move. The archi-
tecture facilitates this adjustment as follows. The application developer establishes the
operating limits for each type of move ahead of time. The application creates an object
of the OperatingLimits class corresponding to each type of move, initializes it with the
pre-established values, and makes these objects visible to the axis client. Since the client is
aware of the sequence of moves, the client sets the operatingLimits object in AxisSetup to
the object corresponding to the next move, before initiating the next move. Thus, motion
planning and control algorithms can use operating limits specific to the type of move to
optimize the performance-cost relationship.

Path Velocity | Accel | Jerk
Motion process deviation | deviation | limit | limit
Rapid traverse (rt) H +0 H MH
rt —rm M +0 MH M
Rough machining (rm) M +0,-6Vim | MH M
Finish machining (fm) ML +0,—6Vim | ML | ML
(rtUrm) — fm ML +0 ML | ML
Finished inspection (f) L +0 L L
(rtUrmuU fm) — fi L +0 L L
Jog M +0 L L
Feed hold M +0 M M
Emergency stop H +0 H H
Symbols:

(L) Low (ML) Medium low (MH) Medium-High (H) High.
—: Transition to

—6Vem: Decrease allowed for rough machining

—b8Vym: Decrease allowed for finish machining

Table 3.1: Motion process specific operating limits

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Traverse: A traverse is a motion process used for repositioning the axis to the next
working position rapidly. Since it is 2 non-value adding move, it is desirable to minimize the
time cost of this move. Path accuracy is not a consideration. In flexible machining systems
for automotive parts, the repositioning moves are a very large proportion of total move times.
The moves are relatively short, so that acceleration and deceleration times in these moves
dominate. The time cost of short traverses may be reduced by applying higher acceleration
and deceleration (switching to a corresponding dynamicLimits object), or by not requiring
precise arrival at the destination point before initiating the next move request (switching
to a corresponding tolerances object), or by tolerating “overshoot” and “underReach” and
possibly allowing a larger “followingError” (switching to the corresponding objects). An
operationalLimits object corresponding to traverse motion facilitates the change in settings.

Transitions to more constrained motion: When traverse is followed by machining
or machining is followed by inspection, the following move is sensitive to the resulting
uncertainty in the position of the end point. This problem has prevented the use of more
aggressive motion parameters in less constrained moves. To facilitate the solution of this
problem, a corresponding operatingLimits object may be selected for each type of transition.

Processing moves: Moves in which some process is being performed on the workpiece
have to be more constrained than idle traverses. For example, in a finish machining move, no
overshoot would be tolerated, precise positioning accuracy would be needed, and following
error may have to be limited. During rough machining, the operating limits could be looser.
In contrast, for inspection, the tolerances may be tighter and accelerations may be limited
to reduce structural vibrations.

3.4.2 Travel limits

The data member travelLimits (Class Structure 3.7) specifies three travel limits in each
direction of travel (forward and reverse) — the positions of the software overtravel limits,
“hardwired” overtravel limits, the absolute limit (“hard stop™) of the travel stroke in the
reverse direction (mechRevOTravelLim), and the total travel (maxTravel). Additionally,
a homePosition is defined. The value of mechRevOTravelLim is used as a reference for
all other values. Violation of the “hardwired” travel limits indicates an “out of control”
condition, triggering an emergency stop. The software limits may be used by some excep-
tion handler to trigger a “hard stop”, i.e., use of maximum deceleration. In a properly
programmed control system, “watchdog” software should prevent a programmed move that
violates the “software” limits. The “hardwired” and “hard stop” travel limits may be mea-
sured experimentally. With this information, the “soft” travel limits may be determined,
by calculating the needed stopping (deceleration) distance (to avoid reaching a “hardwired”
limit). The deceleration available may be derived using data available from other objects
in an axis model (TransTravelCapabilities, AxisDynamics, LowerKinematicModel). This
example illustrates that the availability of relevant axis data online allows better monitoring
and exception handling, and the modular organization eases the programming effort.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
length_measure maxTravel

length_measure mechRevOTravelLim

length_measure homePosition

length_measure softFwdOTravelLim

length_measure softRevOTravelLim

length_measure hardFwdOTravelLim

length_measure hardRevOTravelLim

Class-structure 3.7: Interface of class AxisTravelLimits.

3.4.3 Capacity and accuracy capabilities of an axis

The class TravelCapabilities serves information about the velocity, acceleration and load
capacity of an axis, and its accuracy capabilities. Referring to Figure 3.4, quasiStaticLoad-
Limit is the maximum force at TO — typically generated when the axis is standing still and
the input at TI is at the maximum value, zeroVelAccLim is the corresponding maximum
acceleration at TO, provided there is no external force applied at TO, and maxVelAccLim
is the maximum acceleration available at TO at the maximum velocity of the axis given
by the member velocityLimit in the class DynamicLimits. These four data members are
the basic capacity limits of the axis. They can be derived from the lower kinematic and
dynamic models of the axis.

The basic accuracy capability of the axis is characterized in industrial practice by re-
peatability of position, measured in point-to-point moves from zero-velocity to zero-velocity,
using normal operating limits of acceleration and jerk. Often, this value of repeatability
alone is not sufficiently indicative of the accuracy obtainable under actual operating condi-
tions. Therefore, we propose a set of metrics for positioning error, defined at the extreme
operating points of velocity and load fluctuation. These accuracy metrics are expressed
as ratios of the worst-case positioning error to the conventionally measured repeatability.
The data member posErrRatioldleStationary is the error at zero-velocity and no external
load, but in the presence of internal disturbance (static or quasi-static). The data member
posErrRatioldleMoving is the error at maximum velocity and no external load, but in the
presence of internal disturbance (static or quasi-static). The data member posErrRatio-
CutStationary is the error at zero velocity, when subjected to a unit step load at the work
point. The data member posErrRatioCutMoving is the error at maximum velocity, when
subjected to a unit step load at the work point. From these ratio measures, an application
program can estimate accuracy at a given operating velocity and expected load change. By
having this information on line as a part of the axis model, the user can use the information
during operation to adapt the work processing parameters. The accuracy metrics are deter-
mined experimentally; they also serve as metrics to monitor degradation, e.g., due to wear
and tear. The user can perform the experiments, at selected intervals and events, compare
the results with past performance, and store the maintenance history on line.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
measure quasiStaticLoadLimit

measure zeroVelAccLim

measure maxVelAccLim

measure velocity Limit

measure repeatability

ratio_measure posErrRatioldleStationary

ratio_measure posErrRatioldleMoving

ratio_measure posErrRatioCutStationary

ratio_measure posErrRatioCutMoving

Class-structure 3.8: Interface of class TravelCapabilities.

3.5 Axis kinematics

Kinematic information about an axis is maintained in the object axisKinematics (Class
Structure B.7), in two parts — the lowerKinematicModel object and the upperKinemat-
icModel object. The former represents kinematics internal to the physical axis, for the
purpose of servo control of the axis actuator (Figure 3.4). This model also supports infor-
mation needed for incorporating dynamics in the control of axis motion. The upperKine-
maticModel (Class Structure 3.14) represents the workspace view of axis kinematics, for the
purpose of multi-axis coordination to control the workpoint trajectory, served in the form
of a kinStructure object (Class Structure B.6) — useful in building the kinematic model of
a multiaxis mechanism. In this manner, the information model is built to serve the axis-
specific data needed to transform motion in the workspace into motion needed from a single
axis, and to transform that requirement into input to its actuator. The domain abstrac-
tions for both parts of the kinematic model are based on mature mechanical engineering
knowledge (Procedure 1, S5.1).

Architectural design rationale: In the most common cases, this type of information is
considered “constant™, and in current practice, much of this information is not accessible on
line in time to support control computations — some data is supplied at the time of configu-
ration, in the form of a “machine constants” file or equivalent. However, certain kinematic
attributes may change during operation, e.g., thermal deformation of the leadscrew. It is
not sufficient to ignore this variability when higher performance is required. In such cases,
axisKinematics also serves a role during operation. We discuss this further in the following
sections.

3.5.1 Lower kinematics model of an Axis

The model of an axis from the perspective of servo control of its actuator is labeled
“lower kinematic model.” It was introduced earlier (Figure 3.4) in terms of terminal TI
for its actuation input (the manipulated variable) and terminals FBV, FBP1, FBP2 for its
feedbacks, and a terminal TO for its output (the controlled variable).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IF = Interface to computer

- : External
O = terminal @*’ load

LINEAR-
PO JOINT-PAIR| " G5 POSITIO
WER —t ENCODER

MOTOR GEARI MM

AMPLIFIER
@-m—-@ (c2) Ol FO VM1 o
TACHO-GENERATOR

GEAR2

ClipCOmmEay

ROTARY POSITION

ENCODER
@ s

Figure 3.4: Schematic block diagram of a typical translational axis.

Referring to Class Structure 3.9, LowerKinematicModel serves the forward gain and the
feedback gains for position and velocity, and the associated offsets at terminals TI, FBV,
FBP1, FBP2 — the values that map to zero values of the corresponding variables at the
axis output (terminal TO). This technique reduces the effort and skill required to update
parameters of an axis affected by a change in some axis component, e.g., retrofit of a drive
or a motion feedback sensor.

We represent the “lower kinematic model” as a directed acyclic graph (DAG) (Proce-
dure 1, S5.4), where the components (axisKinCompts) are the nodes and their intercon-
nections (componentConnections) are the directed arcs. AxisKinCompts and Component-
Connections are container classes, providing the services of insertion, removal, and update
for each contained member (Procedure 1, $5.4). The container axisKinCompts has objects
derived from class AxisCompt (Class Structure B.8), so that the property of the respec-
tive component can be obtained from each object. Each component has a single input
and a single output connection. The connection of the output of one component to the
input of another component is an identity transformation, i.e., the two quantities are of
the same type and have the same value. The container componentConnections has objects
of class ComponentConnection (Class Structure 3.10). Each object represents a directed
arc in terms of the connected components, which the user identifies by user-supplied in-
tegers, fromNodeNum and toNodeNum, and a computer program identifies by references,
fromNodeRef and toNodeRef. The user supplies the DAG information to create the objects

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for the lower kinematic model ahead of startup time, as persistent information, identifying
each component with an integer code. At startup and initjalization, the function setCom-
ponentReferences() of the LowerKinematicModel class sets the component object references
in each of the objects in componentConnections.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
ComponentConnections componentConnections
AxisKinCompts axisKinCompts

gain_measure openLoopFwdGain

gain_measure velFeedBackGain

gain_measure posFeedBackGainl

gain_measure posFeedBackGain2

int inputOffset

int velFeedbackOffset

int posFeedbackOffsetl

int posFeedbackOffset2

Other member functions:
setComponent References()

void calcOpenLoopGain()

void calcVelocityFeedbackGain()

void calcPositionFeedbackGainl()

void calcPositionFeedbackGain2()

measure output inOutTransform(int input)
int input outInTransform(measure output)

Class-structure 3.9: Interface of class LowerKinematicModel.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
int fromNodeNum

int toNodeNum

StringL32 connectionType

int connectionNum

AxisKinCompt fromNodeRef

AxisKinCompt toNodeRef

Class-structure 3.10: Interface of class ComponentConnection.

3.5.2 Abstracting kinematic relations as gains

The transformation %:—;"jf of a component, a subsystem of components, or the
whole axis is known as its gain, and in the case of a static input, it is known as static gain.
This well-known concept in control systems (Procedure 1-S§5.1) provides a unifying abstrac-
tion for the variety of components described in the example above. From the viewpoint of
the controller of an axis, the corresponding abstractions are its open loop forward gain
and feedback gains under static conditions, defined in Equations 3.1-3.4 for the example
of Figure 3.4. Their values may be supplied manually or derived from the lower kinematic

model, using the respective functions.

) outputChangero
F = .
openLoopForwardGain inpuiChangers 3.1)
velocity FeedbackGain = value.Changepgv (3.2)
velocityChangeto
47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

valueChangergp

111 inl = .
position FeedbackGainl displacementzo (3:3)
. . valueChangergp2
position FeedbackGain2 = —- (3.4)
displacementro

The forward gain and feedback gains can be different from one physical configuration of an
axis to another. These relationships affect how computer software must interpret the various
signals. Over the useful life of a machine tool, servo drives and feedback sensors may be
replaced several times. Software integration corresponding to these retrofits must be made
easy. As these changes can occur independently, their effects must be isolated (Rule 1).
A software model of the interconnections of these components would allow isolation of a
change in any component. Such a model would also be useful in providing on-line support
for calibration, tuning and diagnosis.

Example application to a translational axis

Consider the example lower kinematic model of a translational axis, shown in Figure 3.4
and described next, beginnning from terminal TI and following the components and inter-
connections. Each component performs a linear transformation of its single input to its
single output. Power amplifier (G1) transforms the input signal at TI into an electromotive
force (emf), which is connected to the input of the motor (G2), which transforms the emf
input into mechanical rotation (angular velocity). Gearl (G3) transforms this angular ve-
locity into another angular velocity, which is transformed by the leadscrew (G4) into a linear
velocity. The output of G4 is transformed by the joint-pair (G5) — a unity transformation
~ into linear velocity of the workpoint (TO). The output of G2 is also connected to sensing
devices that feed back velocity and position for servo-control of axis motion. A tacho-
generator (H1) transforms the angular velocity of the motor output into an analog emf.
The interfacing A/D converter (IF2), transforms this analog signal into a digital number
output at FBV. Gear2 (H3) transforms motor output rotation (plane-angle) into another
rotation (plane-angle). The output of H3 is transformed by a rotary position encoder (H4)
into a sequence of electrical pulses. The interfacing counter (IF3) transforms this sequence
of pulses into a digital number output at FBP1. Similarly, the output of H2 is transformed
into a digital number output at FBP2.

3.5.3 Example of velocity measurement

Referring to Figure 3.4, the computer control system sees velocity measurement at ter-
minal FBV as an integer value, but a client of velocity measurement needs the value in SI
units (meters per second) as observable at terminal TO. Equation 3.2 describes the trans-
formation relationship, velocityFeedbackGain. In an application not subject to change in
this relationship, manually input value of velocity feedback gain could suffice. However,
if an axis is reconfigured with progressive upgrades, the information model should make
it easier to change the velocityFeedbackGain. The objects, componentConnectiosn and
axisKiCompts and their constituents allow the user-integrator to describe the appropriate
axis component characteristics and their interconnections. The function, calcVelocityFeed-
backGain(), derives the velocity feedback gain automatically. When an axis component is
changed, the user-integrator changes its characteristic values in the corresponding object,
and invokes this function to update the velocity feedback gain.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Axis dynamics

There is mature engineering knowledge to abstract the dynamic properties of an axis
of motion, in the case of linear systems, and these abstractions have been used in robotic
control [37]. However, there is no uniformity for the purpose of automated data exchange.
Even if the main properties of a particular type of axis component, e.g., D. C. servo motor,
could be described in a uniform way for data exchange, there are variations in the properties
of a complete axis, dependent on the types of components in it and their interconnection
topology. We isolate this dependency by referring to the lower kinematic model (Class
Structure 3.11), and model the dynamics-specific attributes, in 2 manner that allows the
same interface to be applied to all axis topologies. We arrive at this uniformity in the
abstractions by reflecting all quantities to the interface with the digital computer, using
the equivalent circuit notion from electrical engineering (Procedure 1-55.2). These values
are interpreted through the referenced lowerKinematicModel object. The dynamics model
(Class Structure 3.11) is described next.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
time_measure timeConstant

time_measure riseTime

int eqvtOvershoot

DampingCoefficient damping

int eqvtRunFriction

int eqvtStaticFriction

int eqvtDeadband

int eqvtBacklash

ratio_measure eqvt WorstStiffness

ratio.measure eqvtSteadyStifiness
LowerKinematicModel lowerKinematicModel

Other member functions:
void injectStepInput(int stepsize)
void measureEqvtStiction()

void measureBacklash()

void stepResponse(int stepsize)

Class-structure 3.11: Interface of class AxisDynamics.

Key dynamic characteristics: The attributes for modeling axis dynamics are explained
as follows, referring to Figure 3.4 and Class Structure 3.11. The data member timeConstant
is the time taken for the output, axis velocity, at terminal TO to reach 63.21 percent of
its maximum value corresponding to a step input at terminal TI; and riseTime is the time
taken for the output to change from 10 percent to 90 percent of its final value corresponding
to a step input. These members reflect the inertia effects in an axis. The data member
eqvtOvershoot is the equivalent of the overshoot (i.e., the maximum amount by which the
output exceeds its final value, in response to a step input), as calculated at the terminal
for feedback of velocity FBV. The value at FBV is an integer, related to the value at
TO by Equation 3.2. The data member eqvtRunFriction is the value at TI required to
sustain steady state velocity of the axis, when there is no external load. It is a measure
of the steady state “resistance” to motion, including electrical resistance in the electrical
components and friction in the mechanical components. Since this abstraction captures
the damping properties of an axis, it suffices for normal operation. However, if mechanical

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

friction need be isolated for diagnostics, it can be derived from eqvtRunFriction, given the
relevant values of the electrical component parameters (e.g., electrical resistance) in their
corresponding software objects (e.g., motor). Similarly, eqvtStaticFriction is the minimum
value at TI required to start motion of the axis — it reflects the combined “stiction” or
“breakaway” friction effect resulting from all parts of an axis, typically observed when
attempting to move an axis after it has been standing still. Defining backlash or lost
motion in an axis as the maximum displacement at its actuator output upon reversal of
its motion, before motion occurs at TO, its equivalent, as calculated at FBP1, is labeled
eqvtBacklash, in the case where FBP1 is the feedback for servo-control. The data member
eqvtDeadband is the change in input at TI, an integer value, upon reversal of its direction,
for which no change is observed in the output at TO. It includes the effects of stiction
and backlash. Defining stiffness of an axis as the change in actuator load corresponding
to unit displacement at its output when motion at TO is prevented, let the load change
at TI be deltalnput, an integer, and the corresponding displacement change at FBP1 be
deltaPosition, also an integer; then ﬁ%’ﬁ%’% is the equivalent stiffness in the model. Its
worst case value eqvtWorstStiffness is typically found at the reversal of actuation (the value
could be as low as zero). Its steady value eqvtSteadyStiffness is found upon unidirectional
increase of actuator load until stiffness is observed to be constant.

Functions to characterize axis dynamics: The function injectStepInput(stepsize) sets
the value at TI to stepsize — it is equivalent to “force an output to a given value”, as spec-
ified in IEC 1131. The user may invoke this function in a test program, along with other
functions to collect position and velocity data. The function measureEqvtStiction() injects
a sequence of step inputs starting from zero, in unit increments, until measurements at
the feedback terminals indicate the start of motion. Then, stepsize is decremented to zero.
It calculates and sets the value of eqvtStaticFriction. The function measureBacklash() in-
vokes measureEqvtStiction() and upon stoppage of motion, invokes it again with stepsizes
in the opposite direction, while measuring response at the feedback terminals. It calculates
and sets the value of eqvtBacklash. If there is backlash, eqvtWorstStiffness is set to zero.
The function stepResponse(stepsize) invokes injectStepInput(stepsize) and captures the re-
sponse at the available feedback points, e.g., FBV, FBP1, FBP2, and calculates riseTime,
timeConstant, eqvtOvershoot, and eqvtRunFriction.

Generalization achieved: Thus, we have generalized representations for key attributes
of axis dynamics, e.g., friction (force or torque), stiffness (torsional or linear), inertia (mass
or rotational moment), backlash (plane angle or length), overshoot (linear velocity or an-
gular velocity). The data types of these quantities are integer or ratio_measure, thereby
allowing use of the same interface for all kinds of axes that behave as linear systems.

Extensibility: The functionality of AxisDynamics may be extended by specialization.
For example, the function stepResponse(...) may be specialized to calculate and set eqvt-
SteadyStiffness also. Other test functions, e.g., for sinusoidal response may be added.

3.7 Command setpoint inputs to an axis

The responsibility of AxisSetpoints (Class Structure 3.12) is to hold client-supplied set-
points of controlled variables, for normal repetitive operation, e.g., desiredPosition, desired-

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Velocity, desiredAcceleration, desiredForce. Here, the term “client” refers to the software
unit supplying the setpoints, e.g., in this architecture, an AxisGroup object that coordi-
nates motion of one or more axes. The rationale for clustering client-supplied setpoints in
one object is to facilitate communication. A client needs to be given closer visibility only
to this object, rather than the whole Axis object. If a client and the Axis object were in
different address spaces and had to be closely coupled (a common case), the axisSetpoints
object could be mapped in shared memory.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following members:

measure desiredPosition

measure desiredVelocity

measure desiredAcceleration

measure desiredLoad

Class-structure 3.12: Interface of class AxisSetpoints.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
measure actualPosition

measure actualVelocity

measure positionFeedback1l

measure positionFeedback2

measure velocity Feedback

measure interrupted Position

AxisKinematics * axisKin (private)

AxisSetup * axisSetup (private)

Accessor functions for following members:
Boolean inPosition

Boolean enablingPrecondition
Boolean softFwdOTravel
Boolean hardFwdOTravel
Boolean soft RevOTravel
Boolean hardRevOTravel
Boolean followingErrorWarn
Boolean followingErrorViolation
Boolean overShootViolation
Boolean overShootWarn
Boolean underReachViolation
Boolean underReachWarn

Other member functions:
calcActualPosition()
calcActualVelocity()

Class-structure 3.13: Interface of class AxisSensedState.

3.8 Sensed inputs and status variables

AxisSensedState (Class Structure 3.13) is responsible for updating real-time sensed data
about the state of its axis and serving corresponding derived data in terms meaningful to
the axis of motion. The class serves axis position (actualPosition) and axis velocity (ac-
tualVelocity) as calculated by its functions calcActualPosition() and calcActualVelocity(),
respectively, at the output of the axis (Figure 3.4, TO). These calculations require values of

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the respective feedback gains, positionFeedbackGainl, positionFeedbackGain2, and veloc-
ityFeedbackGain, obtained from the axisKin object. The axisSensedState object receives
a reference to the axisKin object at the time of construction. It obtains the values of the
various feedback gains from axisKin during the startup and initialization procedure. Thus,
it is able to serve axis state data in terms most meaningful to clients external to the axis.
Feedback gain information has to be maintained at only one place.

3.8.1 Other axis state information for monitoring

In addition to current position and velocity, AxisSensedState also holds interrupted Po-
sition — the position of the axis when hold or emergency is activated. This is useful for
recovery, e.g., resumption of motion after a hold from the point at which motion was in-
terrupted, or withdrawal of the axis to a safe position after an emergency. It is also useful
for analysis and diagnosis, as in the case of flight recorder type data. AxisSensedState is
also the server for the state of various logical and physical switches associated with the axis
described next.

Overtravel

The typical servo-controlled machine tool axis has limit switches to detect overtravel
in the forward and reverse directions. Their states are maintained in the data members,
hardFwdOTravel and hardRevOTravel, respectively. Actuation of either limit switch is an
indication that the system is out of control, i.e., further intervention by the computer control
system cannot be trusted. The required response is a hard-wired emergency stop, which also
removes power from the actuators. Recovery from this emergency response is costly in time
and skill required. Therefore, it is also customary to provide soft travel limits. The class
AxisTravelLimits holds these limits — the values are determined manually at setup time.
AxisSensedState is given a reference to the corresponding object, travelLimits, at the time
of its construction. During the startup and initialization procedure, it obtains the values of
the soft overtravel limits in the forward and reverse directions. In every execution cycle, it
checks currentPosition against these limits. If there is a violation, it sets softFwdQTravel
or softRevOTravel respectively.

Following error and overshoot

AxisSensedState monitors following error, the difference between currentPosition and
desiredPosition, and overshoot, the amount by which currentPosition exceeds desiredPo-
sition in the direction of travel. It obtains the limits from the operationalLimits object.
In every execution cycle it performs the necessary checks against these limits and sets fol-
lowingErrorWarn or followingErrorViolation or overShootViolation accordingly. If any of
the limits mentioned above is violated, AxisSensedState sets enablingPrecondition FALSE.
AxisCtrl checks this value in every execution cycle, and proceeds accordingly. One of its
actions may be to send an appropriate message to its client, and in this manner, information
about the malfunction is propagated upward in the client chain until it reaches the user
interface.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.8.2 Novelty

There are several novelties in the design of this class. First, all the state information
about one axis is clustered in one object, including on-off hardware switches and similar log-
ical variables, to facilitate valuable quick interaction amongst these variables. In traditional
practice, the limit switch signals of an axis are not connected to its servo-control software.
The discrete signals are processed in a separate discrete logic control system, which does not
have close interaction with the servo-control subsystem, and therefore, these signals do not
lead to quick response. Secondly, the services of the axisSensedState object may be used by
other clients too, e.g., for near real-time monitoring, post-failure diagnosis, or setup time
instrumentation, calibration, and tuning. These clients do not have to access the hardware
interfaces directly. AxisSensedState encapsulates details of a particular physical configu-
ration of an axis of motion, specific to its feedback devices, and the manner in which the
information is transported from the feedback devices. Thirdly, where performance warrants
it, a reference to the whole axisSensedState object may be shared with a client, without
placing other parts of an Axis object in jeopardy or contention by such sharing. Thus, this
organization of information simplifies the serving or accessing of commonly used axis state
information in ways not foreseen nor explicitly engineered in the initial application. Ap-
plication developers may extend the AxisSensedState class through specialization, to add
other less commonly used sensors, e.g., the axis drive current.

3.9 Axis output to its actuator

AxisActState is a root class, providing an interface to the axis actuator, while encapsu-
lating details specific to the physical configuration of the axis, including the characteristics
of its actuator. AxisActState is given a reference to the object IKin at startup, so that it
may obtain the axis-specific transformation data during the initialization procedure. Thus,
this root class is applicable to all types of servo-controlled axes. Its main function out-
put(...) takes, as a parameter, the next state of the controlled variable, sets the data
member axisOutput to that value, computes the corresponding value of actuatorSetpoint
using the function IKin— >outInTransform(...), and assigns this value to actuatorSetpoint.
The transfer of the value from actuatorSetpoint to the external actuator is implementation-
specific. The transferring function may be included within the responsibility of a special-
ization of the AxisActState class. For example, a reference to the appropriate device driver
may be given to it, and the function output(...), redefined so that it also performs the
transfer to the device driver by calling its appropriate function. Alternatively, the system
integrator may choose an independent scheme to transfer the signal to the external actuator.

Flexibility by decoupling source and destination: By setting the data members
axisOutput and actuatorSetpoint, we allow decoupling of the source from the destination,
thereby providing flexibility of choices in data communication and system integration. Tak-
ing an example from the preparatory stages of a system, one may replace the connection to
the external actuator with a software unit that performs simulation or diagnosis or assists
in setup and tuning. To take an example from run-time configurations, consider the case
where the hardware interfaces for the inputs and outputs are interconnected to the com-
puting platform processing axis control software through a serial time-division multiplexing
network. In that case direct access to the actuator hardware interface is not possible. Sec-
ondly, the moment at which a fresh value of actuatorSetpoint is available may not coincide

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with the time window in which the network can receive it, necessitating decoupling in tim-
ing. Therefore, some software intermediary is needed. The AxisActState class provides the
communication decoupling. The subject of external communication is further discussed in
Chapter 6.

3.10 Subdomain of measures and units

Since the specification of axis setpoints should also include, in some way, the unit of
measurement, we apply Procedure 1 and discover the domain of measures. Applying Step
S1, it can be seen that a single axis of motion has other measurement data. Applying Step
S3, within the scope of the case of Figure 3.4, the search results in the discovery that there
could be more data of the same types of measurements resulting from conversions of the
raw measurements. The collection of these measurements, D;, forms an initial domain of
measurements. Applying Step S4 (intuitively applied so far), it is observed that the specific
measurements in D, are instances of several types of measurement: length, plane angle,
and angular velocity. In accordance with Step S5.1, we discover the underlying engineering
knowledge, namely, the knowledge of measures and units. The equivalent of Steps 55.2 and
$5.3 were subsumed in the organization of this knowledge in the field of physics, and this
organization has matured in the form of an international standard, the SI system. It is
readily found that all the standardized measures are organized into a common structure,
with the common features of a unit of measurement, dimensions of the measure in terms
of fundamental units of measure, a label or name, and a symbol. Thus, from the initially
identified domain, D;, we identify a generalized domain, D, consisting of all measures
standardized in the SI system. A second iteration of Procedure 1 reveals at Steps S1 and
S5.1 that there may be other measures, not included in the SI system. Some of these
measures may apply to other data in the example of Figure 3.4. However, we defer the
effort of further search, in accordance with Step S2 of the next iteration of Procedure 1.
Thus, we observe that the investigation about the data type in a specific case leads to the
discovery of a domain of measures. We summarize this discussion by formulating General
Need 9 in the software requirements modeling process.

General Need 9 Specify measurement type and unit for data that represent measurements.

Within the first iteration of modeling one data input item for one use case of a single axis
of motion, a sub-domain of measures and units is discovered. From Rule 3, it is evident
that this sub-domain has wider application than a single axis of motion — it is likely that
this sub-domain will pervade other parts of the machine control software. Table 2.3 shows
the concept of using measures and units to support higher level constructs.

3.10.1 Evolving a software model of measures and units

A search for engineering information about software standards concerning measures
and units reveals that a scheme has already been organized by the International Standards
Organization (ISO) in STEP [22], the Standard for Exchange of Product information. This
scheme is used as a guideline to organize software to specify measures and units. However,
only some parts of this scheme are in common use in the engineering of mechanical products
— other aspects are not familiar to the machine control industry. Thus, Rules 2 and 8 are
only partly satisfied.

Additional modeling uncertainty is expressed in terms of the following questions:

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Question 3.10.1 Does additional semantics about measures and units impose significant
run-time overhead in accessing the measurement in a servo-loop?

Question 3.10.2 If so, can the run-time cost of the semantics of measures and units be
avoided without compromising compile-time type-checking?

Deferring search for the answers to these questions to a later iteration, only a small part of
this scheme is implemented initially, with the expectation that the overall structure would
be reusable and the model would be extensible later. Parameters of motion (e.g., length,
velocity) are expressed as the amount or magnitude of the measured quantity (type-defined
as double, instead of the whole measure object). Thus, we bypass strict compile-time type
checking in the initial iteration. This incremental iterative process raises Questions 3.10.3—
3.104.

Question 3.10.3 Would the effort in the initial increments of model development be wasted
upon later discoveries of data types?

Question 3.10.4 If so, could improvements in the modeling process be devised through this
ezperience of incremental development?

Metric Number
Classes 49
Data members 70
Function members 381
(excl accessors, default constructors, destructor)

Functions with more than two parameters 0
Functions implemented 365
Class graphs 3
Depth of generalization-specialization tree 3
Embedded pointers to objects 28

Table 3.2: Size statistics of measures subdomain

3.10.2 Observations in developing software for measures

The model of the measures subdomain (size statistics summarized in Table 3.2) was
developed and implemented in seven stages M1-M7, as shown in Table 3.3, with the expen-
diture of almost 400 hours of effort, applied by five participants, spread over a 20-month
duration, interspersed with several changes in the tools and the development environment.
Since it was a foundation domain, typically a revision in measures was the first assignment
to a new participant. Therefore, this effort also includes initial costs of learning and famil-
iarization with the development tools and environment. Most of the participants had no
direct interaction related to this subdomain.

Observations about skill requirements:

The fundamentals of the OO paradigm were easy to understand, and the mechanical
aspects of using the CASE tool to model a simple class were also easy to learn — it was
found that high-school level knowledge of science and Pascal programming were sufficient.

v
wn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Stage | Description Item hours | Stage hours |

Structural model of physical quantities: - 80
- performed by non-engineering student;
- includes time to learn OO modeling.
M2 Partial alignment with ISO model: - 60
- only amount data member
- units not implemented

M3 Implemented units using polymorphism: - 61
- only si_unit implemented;

- overloaded operator “=" for si_measure classes.

=

M4 Familiarization time for a new worker. 4
Learning time to use static members 4
Using static instead of polymorphic unit members; 22
copy constructors not implemented; 3 33

warnings added.
M5 Implemented ISO derived_unit_elements,

reusing library class for data structure 30

reorganization of library files 12 42
M6 Transition to new workers

prior worker assisting new workers; 4

new worker familiarization; 12

fixing modeling errors and issues 34

adding converted units model 7

adding gain measures 13 70
M7 Learning time for new worker 30

Overloaded arithmetic operators;
implemented copy constructors;

implemented destructors 130
ALL | Total spread across 5 workers 476

Table 3.3: Evolution of model for measures subdomain

These observations were confirmed through separate experiments (not included in Table 3.3)
with two high school students and two business school students. Participants were given
an opportunity to learn the concepts through tutorials. However, typically after an average
of eight hours of tutorial, they felt ready to do some useful work. Of course, their learning
process continued throughout the work assignments. The high-school skill level was also
sufficient to understand the basic entity model of individual measures and units defined in
the ISO standard, and to construct an OO model using the CASE tool. However, there
were several cases where transformation of the entity model into an OO model could not
be performed with the direct application of the transformation guidelines given to the
participants. The difficulty increased with more involved entity relationships. The skill
level of a computer science senior was needed to resolve these difficulties. A comparison
of the effort in Stage M6 with the overall effort, and interviews with the participants show
that the OO paradigm and tool were very helpful to a new participant in understanding
the model, repairing its weaknesses, and extending it. Although previously generated code
files were also available to the participant, working with code only was more difficult and
costly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Observations about efficiency of evolution:

To address Question 3.10.3, we analyze the total effort in three components — learn-
ing, familiarization, and transition to different workers; extension; improving genericity,
and rework of previously modeled elements (primarily units of measure). The successive
improvements and corrections at each stage also included learning experiences. Given the
skill level of a novice at the start, some form of learning iteration would have been required
even if we had set the goal to arrive at the Stage M7 model directly. We make several obser-
vations relevant to Question 3.10.4. First, six transitions were made successfully, without
requiring any stage to “start from scratch”, i.e., there was significant reuse of prior results.
Secondly, the evolution inefficiency is attributed mostly to changes in personnel and long
breaks between iterations. Thirdly, the bigger cost of evolution in the measures model was
its impact on the classes that used measures — this cost is discussed in the respective model
evolution sections.

3.11 Subdomain of space and kinematics

Further application of Procedure 1 Steps S1 and S4 to axis software modeling reveals
that the concept of a coordinate frame is fundamental to kinematics in computer controlled
motion of a manufacturing machine — useful well beyond the scope of controlling a single
axis. Applying Step S5, we find that there is mature domain knowledge well-documented in
the form of an international standard [22]. Thus, in the process of modeling a single axis,
we discover a subdomain of geometry and spatial relationships.

3.11.1 Reusing resources for modeling a point in space

Adopting the abstractions from ISO STEP and building on the model of measures
and a commercial class library class for a vector, we begin modeling the subdomain of
space with the model of a cartesian point (Class Structure B.4). A mismatch between the
STEP specification and the commercial vector class in the indexing convention requires
additional work for adaptation. The cartesian_point class provides an interface to get or
set the coordinates of the point in the form of a three-element vector of pointers to three
length_measure objects, accessed where the indices 1, 2, and 3 correspond to the x, y, and
z coordinates, respectively. If the application is restricted to 2-dimensional space in the
XY-plane, the z-coordinate is initialized to 0. Functions are also provided to get or set a
single coordinate, consistent with the STEP standard. The function distance(...) returns
the distance of the point specified in the argument from the point on which the function is
invoked.

3.11.2 Representing frames for modeling kinematics

Applying Step S5.1, we find that machine tool design does not employ coordinate trans-
formation mathematics explicitly to describe motion or spatial relationships, and there is
no uniformity in the modeling of data for exchange of information. Applying Step 55.2, we
find that the related field of robotics describes motion in terms of coordinate frame trans-
formations, and searching further, we find that the concepts are more commonly used in
software for simulation of kinematic motion, but there is no uniformity for data exchange.
The model of space must include a coordinate frame, but there are several modeling alter-

(3]}
-~

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

natives, discussed next.

Coordinate frame modeling choices and design tradeoff: A search of international
standards [33] reveals several choices of abstractions for modeling a coordinate frame. How-
ever, the alternative of the homogeneous transform matrix representation (Class Struc-
ture B.5) is chosen for the following reasons, exemplifying salient architectural design prin-
ciples. First, the homogeneous transform matrix representation is more commonly under-
stood (Rule 8). Secondly, it allows incorporation of emerging knowledge for representing
errors of motion, including thermal deformation [17]. Thirdly, the generality allows appli-
cation to both, translational and rotational axes. Fourthly, commercially available software
for matrix mathematics could be reused. The tradeoff for these benefits is that the entries of
the matrix have to be of the data type double which is not sufficiently specific and descrip-
tive in itself — additional semantics about the entries must be specified outside the matrix.
Therefore, in addition to the usual matrix operations inherited from HomogeneousTrans-
formMatrix, we specify operations rotate, translate, and transform, including more specific
and restrictive parameters data types, length_measure and plane_angle_measure.

Tradeoff in reuse through a layered architecture: Thus, we have a model of carte-
sian space, built up to the extent needed to support the modeling of kinematic transfor-
mations. Almost all of the code for the constructor, destructor, and accessor functions has
been generated automatically. Most of the code for matrix and vector mathematics has
been inherited from commercial class libraries. The result is a solid foundation framework
consistent with the STEP standard. Such a layered architecture approach often results
in a tradeoff of execution time for reusability and composability of foundation resources.
Run time cost deters the adoption of such approaches in real-time systems. However, these
specifications only affect interfaces for information exchange — the implementation internal
to a module may use a different organization of the software. Secondly, on closer examina-
tion of an individual axis application, we find that the functions dependent on this model
are required only at the time of startup, initialization, and setup, when there is no servo
controlled motion. Thus, there is no penalty of time cost in the servo loop. The nominal
increase in space cost is justified through more efficient setup.

3.11.3 Modeling a physical kinematic structure

The science of kinematics (Procedure 1 Step S5.1) describes kinematic relationships
in terms of coordinate frames and their transformations. We model this concept in the
KinStructure class (Class Structure B.6). It has two CoordinateFrame attributes (Class
Structure B.5) — the baseFrame is the reference (or base) coordinate frame of the physical
kinematic entity, relative to which the placementFrame is defined, and the placementFrame
is the coordinate frame relative to which we may define the location and orientation of some
physical object attached to it. For example, it may be used as a reference for specifying
the location of TO (Figure 3.4). The data in the axis placementFrame follow the D-H
convention from robotics [16], used to model a robotic joint pair. In the case of a machine
tool spindle — treated as a special type of rotational axis of motion — its placementFrame
is located at the intersection of the spindle axis with the gage-plane of the surface on which
the tool or chuck would be mounted. Kinematic errors of motion may be included as a part
of this model, consistent with the scheme devised at NIST [17].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.11.4 Upper Kinematics model of an Axis

Continuing with the application of the layered architecture paradigm illustrated in Ta-
ble 2.3, we build the external or upper kinematic model of an axis (Class Structure 3.14) to
the extent needed for describing the kinematics of a multi-axis machine. The properties of
an axis or joint (Figure 3.4- G5), are abstracted using the D-H convention from robotics [16]
(Procedure 1, S5.1). The key parameters are a, d, alpha, and theta. The abstraction holds
for translational, as well as rotational axes — the (controlled) joint variable is d in the case
of a translational axis, and theta in the case of a rotational axis, with the other parame-
ters being nominally constant. UpperKinematicModel also includes models of the joint-pair
components, fixedLink and movingLink. Their data type, Link. has only one attribute,
frame, of class CoordinateFrame. However, application developers may specialize Link to
add other attributes, e.g., to model inertia related properties, as needed.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
KinStructure kinStructure

Link fixedLink

Link movingLink

length_measure a

length_measure d

plane_angle_measure alpha

plane_angle_measure theta

Class-structure 3.14: Interface of class UpperKinematicModel.

3.11.5 Experimental observations in modeling space and kinematics

The model of the space and kinematics subdomain was developed and implemented
in four stages SK1-SK4 with the expenditure of almost 70 hours of effort, applied by
five participants, spread over a 20-month duration, as shown in Table 3.5. Most of the
participants had no direct interaction related to this subdomain. Stages SK1 and SK2
produced only draft specifications — no impementation — through separate effort by two
workers who did not continue with the project. Stage SK3 produced usable results. Table 3.2
shows size statistics of the model.

Metric Number
Classes 26
Data members 22
Function members 20
(excl accessors, default constructors, destructor)

Functions with more than two parameters 4
Functions implemented 9
Class graphs 10
Maximum depth of generalization-specialization tree 10
Embedded pointers to objects 10

Table 3.4: Size statistics of space and kinematics subdomain

Observations about the development effort: Although the semantic content of
the classes in space is much greater than a typical class in measures, the development effort

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| Stage | Description Item hours | Stage hours |
SK1 | Initial model of space
- worker previously trained in using tools 10
SK2 | Kinematics domain (new worker)

- worker not skilled in tools or domain

- study, search commercial classes for reuse 10
- add KinStructure class 1
- other classes started 15

SK3 | Space model revised by 2 different workers:
Workers previously trained in tools

Study of ISO standard (one worker)
Revision to use revised measures model
Implement consistent with ISO STEP

- reuse of commercial container classes
SK4 | Kinematics domain (new worker)

- worker trained in tools, not in domain

- corrections to previous model

- upper kinematic model for axis 1
ALL | Total spread across 5 workers 66

&R oo

41

Table 3.5: Evolution of model for space and kinematics subdomain

is smaller, primarily because of layering (from length_measure and plane_angle classes to
CoordinateFrame class to KinStructure class to UpperKinematicModel of an axis). Sec-
ondly, addressing Question 3.10.3 the change in the measures model is costly — 20 percent
of the effort in Stage SK2 and 12 percent of the total development effort. Although in itself
this is not a large amount of labor, we observe that in a layered architecture the cost of a
change at a lower layer is magnified by the number of instances of its use in a higher layer.

Lesson learned about the modeling process: The space modeling experiment also
indicates a change in the order of model development steps, addressing Question 3.10.4,
formalized in Rule 9. For a given amount of resources, the implication is a delay in the
first working prototype, which might deprive the developers the learning benefit of insights
obtained from a working prototype, i.e., the second order benefits of applying effort in a
sequence that yields a working prototype earliest.

Rule 9 To minimize cumulative model development effort, lower layers in an architecture
should be developed more thoroughly before implementing higher level layers — a “bottom-
up” approach.

3.12 OO modeling of axis software — evaluation

We experienced difficulties in using the object model, when interactions with other ob-
jects was involved. However, the associated cost and comlexity appear to be a worthwhile
tradeoff for the many well-recognized advantages of organizing functions and knowledge in
the object model: modularization, encapsulation, uniformity of interfaces, and compaction
and extensibility of the model through generalization-specialization hierarchies and poly-
morphism.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.12.1 Problems with over-decentralization and autonomy to objects

Modularization and decentralization allow reconfiguration of applications with reduced
modification to some “central” program, but indiscriminate decentralization can lead to
unwanted side effects and loss of integrity. Consider an object A of TransaxisSensedState
class, intended to be a server of axis state to an unknown number of clients There could be
several sources to update values of a data member, say velocityFeedback, in A. In addition
to a device driver for a tachogenerator signal, there could be other objects in an axis appli-
cation, say B, C ...that derive axis velocity from axis position, using different algorithms
for different conditions. Normally, in the OO paradigm, each of B, C ...would have a refer-
ence to A. Then, B can affect the state of A without the awareness of C and vice versa. To
prevent against unexpected state changes, some architectural constraint is needed, e.g., in a
particular system configuration, only one object should be allowed to update the state of a
particular member, say, A.velocityFeedback. The accessor function to set_velocityFeedback
has to be accessible to a source, say B, of its updates. If set_velocityFeedback is publicized
in the external interface of A, then any other object in the system, e.g. C, having a reference
to A could also use the function A->set_velocityFeedback. This is possible in a decentral-
ized style of OO application design, where objects are may be added to work autonomously
without central control. To prevent C from updating velocityFeedback directly, OO ex-
perts recommend that A be equipped with different interfaces to for B,C There are
n different sources of update, this scheme would require n interfaces of A. As the number
of interfaces increases, the base cost of creating and maintaining the architectural model
increases. Secondly, this scheme (with n external interfaces of A) introduces a coupling
between the design of A’s class and how it will be used, defeating the very purpose of “de-
centralization”, and limiting the durability and stability of A’s class design. Therefore, the
n external interfaces should not be a part of A’s class for highly reconfigurable systems with
low volume of usage of each configuration. Within a single program, the flow of control,
e.g., for updates, should be explicitly specified in its FSM, and the program designer should
assure the correctness of updates. For interaction with other programs, access to a “set.”
function should be limited to only one source, e.g., using the restrictive external interfaces,
mentioned earlier. For example, if the device driver for axis overtravel limit switches is exe-
cuting in a separate process, it may be “connected” to AxisSensedState through an external
interface object consisting of the Boolean data members hardFwdOTravel and hardRevO-
Travel with only this device driver performing thréeir “set_” operations. The utility of such
external interface objects may be limited to a particular application.

3.12.2 Difficulty with intra-process object interactions

Although interaction of an object with changeable objects in the same address space is
facilitated by providing it their identity (references), a change in the referent is required,
whenever the identity of any of those objects changes. These changes have to be performed
manually, leaving opportunities for lapses. Resulting inconsistencies become difficult to
trace and debug. This problem was a significant source of unpredictable delays and costs
in our project.

3.12.3 Difficulty with inter-process object interactions

When object interaction, communication, or transfer occurs in a distributed system,
particularly across heterogeneous computer systems, there is significant development effort

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and difficulty associated with objects that contain references to other objects, particularly
when polymorphism is used. This issue is exacerbated due to lack of compatibility and
integration of development tools across platforms. This problem added significant cost and
delay to this project when interfacing the real-time axis motion control software with a user
interface running on another computer.

3.12.4 Polymorphism affects execution efficiency and repeatability

Polymorphism across many levels of inheritance introduces corresponding levels of indi-
rection, and requires corresponding number of dereferencing operations. For example, our
project employed polymorphism in device drivers, applying a set of common abstractions
to interface different types of buses, networks, and sensor and actuator IO from different
sources. As a result, the average time for each access was 100 microseconds approximately.
By dereferencing at the time of initialization and storing the pointers, the access time was
reduced to 35 microseconds approximately. The reduction was significant to the applica-
tion, considering that the total execution time of a pid control algorithm was less than 100
microseconds. This approach required trading off dynamic reconfigurability in exchange for
execution efficiency.

3.12.5 Encapsulation adds cost of indirection

Another efficiency question about the OO paradigm was the cost of inter-object “mes-
saging.” The increase in execution time due to the indirection added when the state of an
object is accessed through its accessor functions — corresponding to a single indirection -
is constant in the order of a microsecond on the platform used in the testbed -insignificant
relative to the total execution time of a servo-loop (in the order of 100 microseconds). In
contrast, the time-cost and variation associated with OS services was much larger, e.g.,
inter-process communication (IPC) using “messaging” in the conventional sense. The vari-
ability and cost associated with IPC via the OS’ messaging service (POSIX mq service)
affected the servo loop interval beyond tolerance. Therefore, it became necessary to devise
a technique to prevent the cost penalty without compromising the encapsulation provided
by the messaging paradigm. The AxisTask was equipped with conceptual Port objects that
encapsulate CommPort (IPC) objects, which can be specialized into POSIX mq or shared
memory. An object in each communicating process is mapped into the shared memory.
Within each process, accessor functions of the object are used, e.g., in a producer process,
to set_ values, and in a consumer process, to get. values. Thus, the time-cost is the same
as for object interaction within the same process. The [PC-configuration required excessive
effort (4 hours per instance) and training (3 days), in earlier development stages. With the
support of the polymorphic CommPort class, an instance of IPC may be set up in an hour
or so, after a day of training in its use.

3.12.6 Difficulty in specialization by restricting the domain of members

In a generalization-specialization hierarchy, a very common need is to specify a larger
domain of a member of a superclass, deriving various specialized classes by restricting the
domain of that member. In the modeling and implementation languages used in this project,
there was no compact way of specifying specialization by domain-restriction. For example,
consider AxisSetpoints (Class Structure 3.12) - it is a vector of measure objects. In a special-

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ization for translational axes, the domains of the setpoints are restricted to length_measure,
LinearVelocity, LinearAcceleration, and Force, and in a specialization for rotational axes,
the domains are restricted to plane._angle_measure, AngularVelocity, AngularAcceleration,
and Torque. In each subclass, at each occurrence of an input within the producer and con-
sumer of AxisSetpoints, the domain of the variable must be manually specified, i.e., all the
affected data members and function members must be explicitly redefined. A conceptually
simple domain restriction (which could be compactly specified in first-order logic or the Z
notation) explodes into a much larger number of specification change items, increasing the
labor and the risk of error in manual entry. In the superclass and each of the subclasses, the
affected data members must be specified as pointer variables, which makes it more difficult
to review the code, and to transfer or copy objects. The application-building labor is also
increased when such objects are members of larger objects. The pointers to these object
members must be manually assigned to the corresponding pointers in the superclass, in-
creasing the application-building labor, and making the application code less intuitive and
more difficult to understand.

3.13 Evaluation of abstractions in the domain

In almost every field of software application, one of the most severe problems with qual-
ity (as reflected in satisfaction of requirements), cost (as reflected in effort) and delivery
(as reflected in duration) is rooted in inadequate requirements modeling. Although formal
specification languages provide the mathematical constructs to describe the requirements
unambiguously, these languages provide little assistance in formulating the abstractions
that represent the real requirements faithfully. The focus of this project has been to reduce
this semantic gap in the specific domain of control of a machine tool axis of motion. We
evaluate the resulting domain model through the question, “Are the abstractions an im-
provement on existing ones (published or in use)?” Interface improvement criteria are as
follows: reusability across many applications (size of the domain of applicability), support
for checking correctness of the interface, extensibility and adaptability of the interface, com-
posability of different applications, effort required to use the interface correctly, and skill
level and effort required to familiarize with the model. We begin with an evaluation of the
axis servo control model by comparing it with various generic process control models found
in literature.

3.13.1 Alternatives in process control abstractions

There are many alternatives to organize the servo-control loop software. If continuous
control were the only mode of using an axis, the need for explicit user access to the func-
tion processServoLoop() might have been argued, i.e., this function could have been hidden
internally. However, other modes of operation might require other services of an axis. For
example, in the maintenance mode, for diagnosis or calibration, it would be helpful to have
a function to test the open-loop step response of the axis, known from existing practice
(Rule 3). In that case, the servo loop is not required. Therefore, processServoLoop() would
not be the appropriate function. By providing a named function processServoLoop() cor-
responding to continuous control operation, the model allows for the possibility of adding
functions to support other modes of usage which are distinct and different from the contin-
uous control mode, and are not required at the same time (Rule 1). A second alternative
is to provide a higher-level user interface in place of processServoLoop(), e.g., a selection at

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

some human-machine interface (HMI) to start or to run the servo-loop of an axis. However,
it is well-known that the form of the HMI might vary across applications and might change
in successive revisions to a particular application, even if the axis were the same in all cases.
Applying Rule 1, a selection from a HMI must be mapped into a function specific to an
axis, say run() or start(). That function would be equivalent to processServoLoop().

Shaw [50] treats process control as one of the major architectural patterns of organizing
software, characterized by the types of components and the special relations amongst them.
At a macro-level, [50] observes a data flow architectural pattern, with an asymmetry in the
data flow (controller and the controlled system), a cyclic topology (feedback of the monitored
variable from the controlled system to the controller), and continuous update of the setpoints
and monitored variables (we interpret “continuous” as its sampled-data system equivalent).
Our axis model (Figure 3.2) corresponds to this architectural pattern, at the interface
objects axisSetpoints, axisSensedState, and axisActState, where axisSensedState includes
the feedback of the monitored variables and axisActState includes the manipulated variable.
The process definition in [50] approximates to the device description in Figure 3.2, and
the control algorithm corresponds to the controlComponent objects including the axisCtrl
objects.

The axis domain model (Figure 3.2) adds precision to the architectural pattern identified
in [50] by including a timing specification, periodSpec, for discretizing the continuous
control system. By being specific to the domain of axis motion control, it is a larger
reusable resource. The model in [50] includes sensors, but does not mention the counterpart
actuators. The Booch model [11] shows both sensors and actuators, explicitly, including
the signal interfacing devices. Our model clearly excludes both from the basic axis control
software, limiting its scope to the sensed variables in axisSensedState and the controlled
variable in axisActState. By this exclusion, the basic axis control software is sheltered from
changes in the external I0. Secondly, it makes it easier to run the external IO functions in
a separate process.

In the RCS architecture [1], its level 1 corresponds to axis control in function and timing
specification. The RCS world model includes many types of state information and device
knowledge placed in global memory, whereas our architecture subdivides the different types
of information into different objects axisSensedState, axisActstate, axisDynamics, axisK-
inematics ..., based on usage relationships with other objects, for better maintainability
of the software. RCS specifies access paths to world models at each level broadly in terms
of levels in the architecture corresponding to time granularity. The axis model refines
that specification for the RCS level 1 functionality, to assist in meeting the hard real-time
requirements.

3.13.2 Reconfigurability of servo control software

Given that the external interface of an axis provides the function processServoLoop(),
the control algorithm could be embedded in this function (as done in our evolution stage C1).
However, different control algorithms or laws would be required to meet different require-
ments (e.g., robustness, run-time cost, accuracy) and different applications would require
different types of control (e.g., position, velocity, acceleration, direct-force or even some
combination of these controlled variables). Therefore, software affected by such changes
should be replaceable without affecting other software (Rule 1) — we facilitate this recon-
figurability by isolating the software in separate objects.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ability to alter or replace control law: Several means are provided to alter the
behavior of the servo motion controller, offering different points in the design space. The
tradeoff factors (Table 3.6) are as follows: software skill needed, control engineering skill
needed, and functional flexibility.

For a given set of ctrlCompt and azisCtrl objects, an axis control application developer
can program the function axis.processServoLoop() to select the appropriate object and set
appropriate parameters, e.g., various gains, based on values of the various axis mode or
state parameters, e.g., aggressive gains when hold is TRUE, very aggressive gains when
emergency is TRUE, lower gains when in manual mode and jogging. Thus, a set of pre-
engineered solutions are packaged to respond to the most common cases requiring alteration
of servo control behavior. Modal parameters can also be extended by specialization, to
extend the range of pre-engineered solutions offered. This approach provides moderately
high functional flexibility, without requiring specialized skills in the field — it is a relatively
simple and safe way to alter servo control behavior.

A very commonly occurring need is the adjustment of the servo control behavior to
match changing characteristics of the controlled axis (plant), either due to wear or due to
change in the axis components. The needed adjustments may be performed by directly
adjusting the servo control parameters. Technicians rely on experience, intuition, trial and
error in such adjustments. By making the axis dynamics and internal kinematics model
available on line, we provide systematic means of deriving, calibrating, and applying the
plant model information, reducing the need for intuition, trial and error.

Any of the pre-constructed CtriCompt and AxisCtrl objects brought on line at startup
can be programmably replaced. It does not require additional software skills, provided
the design value of the worst case execution time is honored in all cases. However, cor-
rect replacement requires extra-ordinary control engineering skills, because the theoretical
foundation for dynamic switching of control laws is not strong.

Additional control objects can be introduced by further specialization of the Axis class,
e.g., feedforward control, and filtering of the feedback. However, it requires a higher level of
skill to develop the software components, and to perform the capacity validation analysis.

Behavior altering feature | Engineering skills needed in field | Functional flexibility
Software engrg Ctrl engrg

Mode or state based None None Moderately high

Plant model calibration None Minor Limited

Adjusting control params | None Moderate Limited

Replace control law Minor High High

Add new components High High Very high

Table 3.8: Tradeoff points in design space to alter servo control behavior

Control law replacement experiments: The feasibility and ease of replacement of
the AxisCtrl object has been established in two different experiments. In one experiment,
the AxisCtrl interface was used to design axis control independently on two different sites
by different personnel — one at the University of Michigan, Real-Time Computing Lab
(UM/RTCL), and the other at the National Institute of Standards and Technology, Manu-
facturing Engineering Lab, Intelligent Systems Division (NIST/MEL/ISD). An implemen-
tation of the AxisCtrIPID subclass, developed at UM/RTCL was supplied to NIST and
successfully integrated in NIST’s axis control prototype without any communication be-

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tween the UM developer of the component and its NIST integrator. Software design issues
discovered in the experiment are reported in a later section.

3.13.3 Controlled access to object members in an axis

Members that are instances of non-primitive classes are known as complex objects —
their access is more involved than for variables of primitive or simple data types. Accessor
functions to set (assign values) to the complex object members are given read-only references
of the corresponding objects. Accessor functions to get (obtain values) from the complex
object members return read-only references to the objects. The read-only access through
references provides safety, reduces the information exchanged, and, in cases where the same
data is forwarded many times, it also provides efficiency in time and space usage.

3.13.4 Homing and jogging functions and axis boundary

Should the boundary of an axis model be the axisSetpoints interface between higher
functions in the control system and the servo control loop? Or, should it also include jog-
ging and homing functions? The latter functions may be abstracted as transformation of
motion requested between two points in in one-axis space into a series of axisSetpoints.
This transformation requires the generation of a velocity profile. Thus, the jogging and
homing functions are similar to multi-axis motion coordination functions constrained to
one-axis space. The common abstraction and the common output interface (axisSetpoints)
suggest that jogging and homing functions be grouped with multi-axis motion coordination
functions (satisfies Rules 1-5). This grouping partitions the domain knowledge needed in
designing the components — a specialist in servo control can focus on the servo control
components sensitive to timing variations, and a specialist in motion profile or trajectory
generation can focus on the jogging, homing, and multi-axis coordination functions, which
are not as sensitive to timing variations. Thus, modularization along domain knowledge
boundaries allows focused leveraging of specialized knowledge, potentially realizing better
value in the components. In the overall aim of the architecture — ease of reconfiguration,
Rule 2 suggests that reconfiguration will be easier if software objects correspond to physical
objects and their inter-relationships. Applying this principle to an axis, we find that the
design of reconfigurable machine tools and robots is typically modularized at the physi-
cal axis (or joint) level — the objective is to facilitate the assembly, testing, maintenance,
and upgrade of each physical axis independently. In support, the control system should
be correspondingly modular. Testing, maintenance, and setup of an axis requires the func-
tions of jogging and homing. Therefore, these functions should be available even when
multi-axis coordination is not needed. This requirement provides the rationale to separate
jogging-homing functions from multi-axis coordination and including them in single axis
control software. Thus, we have a design conflict. The two lines of argument, applying the
same principles, seemingly suggest that a JogHome object be in two different groupings.
Our architectural approach resolves this conflict through its finer granularity, separating
design decisions of the definition of individual objects from their grouping into executables
(task structures). The JogHome class can be supplied by the same specialist that supplies
multi-axis coordination software, using the same velocity profile generating knowledge. A
JogHome object is packaged with axis servo control software (Figure 3.2), as a later stage
decision, satisfying the requirements of standalone axis control.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.13.5 Expanding domain boundary with extra features — tradeoffs

We have chosen to include as many of the well-known requirements of axis motion control
in machine tools as fit well in a basic organization of functions and data. For example,
AxisSetpoints includes setpoints for position, velocity, acceleration, and direct-force control,
and a provision is made for ControlComponent objects to manipulate the corresponding
variable. However, in most common applications, only one or two of these setpoints are used.
Similarly, AxisSensedState includes data members holding values sensed by two position
sensors, a velocity sensor, and overtravel signals, even though not all members will be needed
in most applications. Our approach burdens all applications with the space cost of carrying
the extra “baggage.” A component provider and application buider are also burdened
with the responsibility to document the members that are supported, and to ensure that
the unused members do not result in any undesirable side effect. The IEEE 1003.1b and
1003.1c standards have set a precedent for this style of specification. The approach of
embedding extra features not needed in all applications has become common in electronic
products, because the cost of extra materials is considered to be insiginificant in comparison
to the cost of maintaining engineering changes and specializations to accommodate a variety
of requirements, or in comparison to the cost of application opportunities lost. We also
considered the alternative of establishing a base class with only the most essential members,
and various subclasses to add various members. However, the extra members are needed in
various combinations in actual industrial applications. If we include all combinations known
to be useful, we are faced with a combinatorial explosion of subclasses, increasing the time
required to comprehend the architecture. If we include only a few cases initially, there
will be a number of followon architectural changes or specializations, adding to the cost of
maintaining the architecture, and rendering early adopters obsolete. The first alternative
was chosen in keeping with the cited precedents, which indicate lower expected life cycle
cost.

Extensible boundary - an example: The Axis class includes “place-holder” provisions
for objects that will evolve over time, e.g., AxisMaintenance, which is modeled as a container
of containers whose contents will be defined at the time of specialization. When reusable
patterns emerge, it is expected that features will be generalized and moved up from a
specialized class to a more general class.

3.13.6 Contribution to requirements modeling process

We systematized a process to model requirements for a domain of axis motion con-
trol applications, where the initial requirements and potential future reconfigurations and
extensions are only partially specified at the beginning of the software life cycle. Require-
ments specification is not a well-developed science even for single-shot applications. For
reconfigurable, extensible families of applications, it is an area of long-term research.

Evolving from specific case to general model: Application of the developed process
has demonstrated that a software model for a general domain of one-axis motion control
applications could be evolved, starting from a specific case study. Although very experienced
engineers who are very knowledgeable in the application domain, as well as in software
engineering, intuitively apply various elements of their knowledge, the intellectual process
is considered to be an art. The experiment has shown, through three cycles of evolution,

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that systematic analysis of a specific common case (not the most comprehensive case),
yielded a general model applicable to a family of potential applications.

Discovery of subdomains: The procedure suggests decomposition of the case under
study into conceptual primitives. Identification of the conceptual primitives of the represen-
tative case study and their parameterization leads to the discovery of various subdomains,
serving as a foundation for a general model of the application domain. The process of an-
alyzing a single-axis control application leads to the discovery of several subdomains, e.g.,
measures and units, kinematics of motion components, dyramics of motion components,
and closed-loop control of a continuous process. The discovery process and the discov-
ered subdomains are not unique to the specific case studied. The conventional software
engineering process does not lead to the systematic modeling of these subdomains. On
the contrary, conventional software project management, supported with recommendations
from experts [51] guards against the inclusion of requirements beyond the specific, concrete
requirements of a particular application.

Mining domain knowledge: We have demonstrated that a software modeler can acquire
subdomain knowledge without extensive domain expertise. For example, in the subdomains
of measures and units and coordinate geometry, only “high school level” academic prepa-
ration is needed to extract the pertinent knowledge from available international standards
documents. It is recognized that acquiring knowledge about a domain is one of the most dif-
ficult and challenging activities in software engineering — sometimes described as “mining.”
Ordinarily, the study of a previous implementation, without additional knowledge about the
application domain, does not lead to the needed generalization. Although domain experts
are an obvious resource, they are not readily available. In the case of software to con-
trol machinery, the knowledge used in engineering the machinery is a key resource, which
our procedure utilizes for parameterization of variables found in a specific case. Utilizing
published knowledge , e.g., textbooks and standards, knowledge about the subdomains is
acquired with reduced dependency on domain experts.

Conclusions about the iterative process to evolve the software model: Although
software engineering practice accepts that the first few prototypes of an application have to
be “thrown away”, we did not have to abandon concepts captured in an earlier version of
the model. As different participants in the experiment performed different stages of revision
of a class hierarchy, they reported that the previous stage model made it easier to learn
about the application subdomain described in the class hierarchy and the modeling issues.

Renaming classes and their members is a commonly occurring activity. Changes within
the class graph could be made efficiently. In a case where a class name was not referenced
in any member, the routine aspect of the effort averaged two minutes per name change
— the database of the CASE tool assured consistency in all parts of the model. In cases
where the name was referenced in some member, and the length of the chain of references
was one, average effort required in a name change was within fifteen minutes per change
— additional effort was required to check consistency and correct for oversights. With a
longer chain of references, the effort was greater and less predictable. Moving members from
one class to another in the CASE model took an average within two minutes per change
where a member was not referenced anywhere. Changes in function signatures required an
average effort within two minutes per parameter, in a case where the change was a name

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

change or a data type augmentation. However, if the change involved the creation of a new
data type (enriched semantics), the effort could exceed an hour.

| Type of change Relative effort |

Class name L
Member name

Member data type

Function parameter name

Function parameter data type

Function return value type

Creation of new data type

Secondary effect on embedded reference
Eval codes: (L) Low (ML) Medium low (MH) Medium-High (H) High.

[ssli=

Table 3.7: Analysis of effort in evolutionary changes to a class

3.13.7 Contribution to requirements model

A significant result of this research is a software architecture specification for the domain
of axis motion control. The architecture describes an organization of software services that
typefy a library of software objects, modules, building blocks, or components, their inter-
relationships, objects that inter-connect software components, and rules and constraints on
their configuration, interaction and execution. Conformance to this architecture will ease
integration, reconfiguration, upgrade, extension, and adaptation of applications (different
types of axis motion control subsystems), where ease is defined as relative reduction in
required skill level, effort, and duration to produce a correct application.

The Axis domain model covers all levels of granularity described in Section 2.10, as
illustrated in the following examples. Functions provided in the JogHome class correspond
to a command language interface (Figure 2.7) applicable to an axis. The AxisSetpoints class
corresponds to a data ezchange interface for data flowing into the axis, and AxisSensedState
class, for data flowing out of the axis. The eventPort of an AxisTask corresponds to an
ezecutable component interface. Our model does not preclude other compositions of a task,
e.g., multiple axes and their coordination being controlled in the same task, an example
of a larger grain-size (Figure 2.8), or separating the servo |0 activity into a separate task,
an example of a smaller grain size (Figure 2.9). To provide this flexibility, the domain
model specifies passive application object classes, e.g., CtrlCompt and system service selection
classes, e.g., Port, CommPort which can be specialized and custom-composed to suit the
needs of specific applications.

Although the architecture is domain-specific, the axis motion control domain services are
specified as compositions of more general subdomains, e.g., measures, servo control, sensors,
actuators, and other kinematic transformers or transducers. The genericity and soundness
of the architecture results from its scientific underpinnings — it integrates knowledge from
a number of disciplines, including servo control of motion, mechanical engineering, machine
tool design, real-time computing systems, and computer science. The scientific foundation
of its structural specifications is the object model, and of its behavioral specifications,
the finite state machine model. The scientific foundation of domain abstractions is the
knowledge used in the engineering of the controlled system.

Elements of the architecture have been prototyped and tested in a series of evolution-

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ary steps, integrated into prototype axis control subsystems at various stages, and suc-
cessively refined. Multiple axes have been concurrently operated in a laboratory machine
tool testbed. Control abstractions and the architectural pattern for the control loop have
been reviewed with a group of domain experts from a variety of research institutions. In
an inter-changeability experiment between this project and a remote site, where two differ-
ent axis control applications were being developed, our implementation of the most critical
software element, the servo control law, was successfully integrated into the application at
the remote site by an individual not involved in our implementation.

3.14 Recapitulation

The basic functionality required in axis control, including monitoring, setup, and con-
figuration, is well covered in our model. The primary purpose of modularization was to
provide controlled access to data produced in the control of an axis, or data used by it,
including parameter settings, so that the application could be extended with less time-
critical functions requiring access to that data. It is expected that the organization of these
functions will continue to evolve with usage experience. Further studies will be needed to
evaluate how well the initial architecture facilitates reorganization.

Excessive application level data typing?

A key premise of our software modeling approach is that data exchanged between
software objects should be semantically self-sufficient (self-defining) through user-defined
(domain-oriented) data types. The class descriptions make the semantics explicit, so that
different interacting objects developed by different sources at different times in different
places may be designed to interact with the same intent. Data exchanged by interacting
objects in the same program are checked for type-match at compile-time, allowing early
detection of mismatch problems. On the other hand, strict data typing increases effort in
maintaining the architectural specifications and effort required in the early stage of appli-
cation development. A near term study is needed to validate the efficacy of the data type
restrictions specified in this architecture.

Extra members in classes an excessive burden?

The extra members in classes, i.e., members not needed in all applications, require
some form of automated configuration control. The life cycle cost implications need further
study. There is a similar issue in data packaging (aggregation) to suit the needs of various
applications, i.e., the combinatorial explosion in aggregation combinations.

Exceptions and their handling

Additions are needed in the architecture to specify the most common exceptions and
their treatment. OMG CORBA [41] provides a reference model and major implementa-
tion languages (C++, ADA) provide exception handling mechanisms. However, additional
study is needed to document the commonly occurring errors or exception conditions, and
new exception conditions that will arise as a result of the reconfigurability features of this
architecture, and to develop a uniform style and state transitions to handle these conditions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

Axis motion software — dynamic aspects

The static aspects of the axis model introduced in Chapter 3 correspond to a conven-
tional object-oriented information model. Class libraries conforming to those specifications
serve as a foundation of reusable resources for application builders. The conventional in-
formation model does not concern itself with execution aspects, tasking models, process
scheduling, and interprocess communication. The OMG [42] architectural approach is also
based on the premise that a distributed application may be viewed as a single program in
which remote objects are represented by local proxies, hiding externalization-internalization
issues and interprocess communication. This view, a form of orthogonal decomposition
(Rule 1, Section 2.6), simplifies the design process internal to a particular program in a
distributed application. However, it does not reduce the skilled effort required in compos-
ing multi-tasking hard real-time applications. The general needs identified in (Section 2.1)
require close temporal coordination of a cooperating set of tasks, most of which perform
computations for continuous processes that are discretized at short intervals. The closeness
of interaction and shortness of task periods are relative to the response time of basic sys-
tem services. When below some critical limits, they cause extraordinary complexity in the
application design process, involving many trial and error cycles. These observations were
confirmed in early iterations of the experiment (Section 2.5.1). In subsequent iterations, the
static model of an axis was extended to include dynamic aspects in this chapter. Section 4.1
identifies general execution patterns for various real-time axis control features, as charac-
terization of the dynamic aspects of the requirements space. At this level of generality, this
characterization also applies to other aspects of real-time monitoring and control functions
in machine tools. Section 4.2 maps these execution patterns (or the execution requirements
space) into a set of constraints on the architectural design space for controlling concurrent
units of execution, including constraints on interactions with other software in a control
system. Section 4.3 provides a structure to the architectural design space for periodic tasks,
which account for most of the work and most of the design issues in axis motion control. It
develops a complement of classes for structuring periodically executable tasks, and specify-
ing their control flow, scheduling parameters, and inter-task communications. Section 4.8
describes a group of classes for a period timing service to improve timing accuracy of a task
with reduced overhead of system services (Section 4.8). To further simplify the design of axis
control tasks, constraints are specified on the allocation and interaction of system resources
(Section 4.10). Given the domain model and architectural specifications, we describe the
process of developing an application (Section 4.11).

Section 4.12 evaluates the model. We show that the model addresses the general needs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

described in Chapter 2, and that it is extensible. It also discusses controversial and unre-
solved issues. Section 4.13 summarizes the contributions made in the software process and
the axis model, remaining issues to be resolved, and promising directions of future research
in modeling axis software.

4.1 Patterns of execution

The various monitoring and control functions of an axis (Section 3.2) require execution
at different times in the axis lifecycle, with different frequencies or intervals and different
timing constraints. Therefroe, these functions may be teated as being decoupled in the
temporal dimension. By decomposing and analyzing software functions in this manner
(Rule 1, Section 2.6), we find that execution sequences fall into the following five patterns,
assimilated from [50,54] and specialized to develop the architecture for machine tool con-
trol in the OO paradigm: A startup procedure, aperiodic event-driven execution, periodic
execution, state-based event driven responses to abnormalities, and a shutdown procedure.
This analysis approach was used in [54]; we have developed it further for machine tools.

Creation: Upon startup of the application, including restart after an emergency shut-
down, each participating object is created, in an orderly sequence, by invocation of its
constructor, thus allocating memory for the functions and state for each object. Objects
that may be repeatedly required over the life of the application (i.e., until shutdown) are
created at startup and destroyed only at shutdown. Using the knowledge that these objects
may be required later, we minimize dynamic allocation and deallocation of memory to min-
imize risk of errors and ill side effects in a time-critical and safety-critical concurrent unit
of execution, trading off some extra memory. During early software development, without
using this guideline, we have repeatedly experienced two types of errors in software that is
executed periodically. One type of mistake is the repeated creation of objects serving the
same purpose, but not followed by it sdestruction at the end of every usage, resulting in
failure due to excessive consumption of memory. A second type of mistake is the unexpected
destruction of objects created in certain copy operations, resulting in failure due to point-
ers left invalid. The sources of these failures were difficult to diagnose. These experiences
support the value of static memory allocation for repeatedly used objects.

Configuration: After the creation of all the basic objects in the startup process, the
specified configuration is created. It may include locating objects that must interact, and
establishing their “connections”, e.g., setting up the inter-process communication (IPC).
The architecture does not preclude reconfiguration at some point in the work cycle when
useful external work may be safely interrupted.

Initialization: Either at the time of creation or upon configuration “constants” and other
initial values associated with the object may be supplied explicitly in its constructor or
through a persistent object, or through the execution of an auxiliary program, possibly
with user interaction.

Setup and other manual interaction: Most of the setup activities result in setting
data values, some of which are determined through a (re)calibration procedure. Setup may
be performed interactively and may involve reconfiguration. It is performed at some point in

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the work cycle when directly productive work may be interrupted, i.e., a more time-critical
activity is not competing with the setup activity for resources. Setup activities are infre-
quent and manually initiated; so we treat these activities, and other manual interactions,
as aperiodic event-driven patterns of execution.

Initial calibration: Functions associated with initial calibration, e.g., determination of
the various travel limits of an axis, are typically performed interactively. Some functions,
e.g., determination of the home position may include a semi-automated sequence of func-
tions, involving motion and measurement. Initial calibration includes activities that are
performed after some maintenance activity that affects the original calibration, or when the
electromechanical system is first placed in operation. The results of initial calibration are
treated as persistent data, because they hold valid across multiple startups, executions, and
shutdowns of the control system.

Recalibration: Certain initially calibrated data may vary over time due to change in
operating temperatures, wear, etc. These changes are slow and the resulting kinematic and
dynamic characteristics of an axis hold valid for some interval much longer than the current
execution cycle. These changes may be compensated through recalibration procedures,
which may be (semi-)automated. Recalibration is performed when directly productive work
may be interrupted, i.e., a more time-critical activity is not competing with it for resources.
In view of the long and often non-uniform intervals between its activations, a recalibration
procedure is treated as event-driven.

Cyclic periodic activities: The core responsibility of an axis, namely, servo control of
motion, requires an execution pattern that meets the constraints on the discretization of
the continuous control process. The function, axis— >processServolLoop(), and the functions
on which it is dependent, must be run repeatedly at the specified time interval. The time
interval between successive readings of the feedback sensor(s) must be uniform and the
time interval between successive setpoint outputs to the actuator must be uniform. These
requirements are formalized in Section 4.2.1. The periodic activity of reporting the axis state
is treated at a lower priority than servo control of motion. There may be other periodic
activities, e.g., measurement of axis load through its drive current, that are not required
for primary servo control of axis motion, but ar eneeded for some monitoring activity.

Abnormal events: The axis model provides two modal states, hold and emergency, a
transition into which provides appropriate responses. In these states, the requirement for
quick stoppage overrides normal constraints on spatial accuracy of motion.

Shutdown: A procedure associated with shutdown is invoked only once in a “lifetime”
of a concurrent unit of execution. It results in a systematic release of resources, including
unlinking. The destructors of all the existing objects are invoked. The shutdown procedure
also saves persistent state information.

4.2 Mapping execution patterns into tasks

Focusing on the main responsibility of an axis, servo control of motion, we examine
how other application functions may be accommodated without disruption of the servo

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

control task. In the process of mapping application functions into executable tasks, we
limit the architectural design space to choices in real-time operating system (RTOS) services
conforming to IEEE standards 1003.1b and 1003.1c for portable operating system interfaces,
henceforth labeled POSIX [25]. The available choices are evaluated in Section 4.2.6 for
suitability in the subdomain of axis control and related tasks.

4.2.1 A representative periodic task — the servo loop

In order to arrive at a model of a servo control loop task, we consider the general case
of a continuous process, discretized for execution in a periodic task. We consider the gen-
eral model of timing aspects of a periodic task, p, developed by Xu and Parnas [55] as a
quadruple (ry, ¢p, dp, prd,),
where, referring to the task p but dropping the suffix p
prd = Task period; prd,, = Start time of the ith perio;.
es = Earliest time at which execution of the task can start;
le = Latest allowable time by which execution of the task must be completed;

r = es — prds;
¢ is the worst case execution time of the task;
d=le—prd,;

prd,, =0, i.e., the start of absolute time measurement;

We extend this model for application to continuous process control by adding an explicit
constraint (Equation 4.1) on the uniformity required in the task period. Then, we define
the servo control loop as a specialization of continuous process control as follows. A servo
control loop is a special class of continuous processes whose discretization is a task, s/,
described as a recurring sequence of steps (or cycle) in Procedure 6:

S1 Acquire the setpoints.

S2 Acquire the current state from the feedback sensors.
S3 Convert the raw readings into typed data.

S4 Check for enabling preconditions.

S5 Process the control law.

S6 Convert the output to match the actuator interface.
S7 Set the output to the actuator.

Heuristics 6: Servo control cycle

Atomicity of this cycle can simplify the design and maximize its performance for a given
algorithm. However, there may be other system constraints requiring that direct accesses
to the 10 be in another process, e.g., the |0 may be batch-accessed and batch-transferred
along with other 10, possibly from a remote location, using a network. Since atomicity
of the whole cycle could be too restrictive, excluding many practical cases, we limit it to
Steps S3-56 requiring run to completion semantics, and specify explicit constraints on the
timing relationships with Steps S2 and S7, through Rule 10, which includes Equations 4.1~
4.3. Limits on variations of the timing relationships (var, var Adj, dis) are specified as ratios
of the period, prd, to the respective variation. These limits are related to the accuracy
performance required from the control loop, the robustness of the control algorithm, the

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variability in the controlled motion and external process, and the sensitivity of the controlled
system to external variations. Ratiometric parameters are chosen to allow reuse of the
parameter values when the same axisCtrl object is used in different applications, in which the
value of prd could vary with the value of axisDynamics.timeConstant (Class Structure 3.11).

Rule 10 Ezecution of a servo loop task must assure timing uniformity within specified limits
(normalized to the nominal servo loop period) on the variation in the interval at which the
output is updated (Equation 4.1), the variation in the interval between successive samplings
of the feedback (Equation 4.2), and the variation in the time distance between sampling the
input and setting the output (Equation 4.3).

Vi : doney, — doneg, — prdy * (i — 1) < prdy/var (4.1)
Vi : sampledy; — sampled,;,_, < prds/varaq; (4.2)
Vi : doney, — sampledy; < prdy/dis (4.3)

where

sl;: ith iteration of the servo loop task si,

doney,: time when the output to the actuator is set,

sampledy,: time when the feedback is sensed,

var: the ratio of the period, prdy, to its variation across all iterations,

vargg;: the ratio of the period, prdy, to its variation between successive sampling times,
dis: the ratio of the period, prd,, to the variation in the time distance between sampling
the feedback and setting the next output.

Figure 4.1 illustrates the time distance variation problem if these constraints are not
specified, as in conventional deadline-based scheduling approaches. It shows three successive
servo-loop cycles over intervals ¢ — 1, ¢, and i + 1, of nominal length prd. Cycle i — 1 starts
at time ts(i — 1), runs to completion, and ends at time te(i — 1). The next cycle, i, starts
at ts(i), but some higher priority task pre-empts it. It is resumed later and completed at
time te(%), still meeting the traditional deadline for cycle i. The following cycle, (i + 1),
starts soon afterwards, at time ts(i + 1), runs to completion, and ends at time te(i + 1).
The time elapsed between the output of cycle i — 1 and the input of cycle i, 0id(i), is much
larger than o0id(i + 1). The variation could be as large as the difference between the period,
prd, and the best-case execution time of the servo loop processing cycle. Similarly, ood, the
time-distance between two successive outputs, could vary by the same amount. Thus, the
traditional deadline constraints do not assure conformance to Rule 10.

Stringency of servo loop period: The constraints of Rule 10 are difficult because
the servo loop period is short, relative to the execution of basic system services. These
timing constraints become even more stringent when such execution patterns run in a
reconfigurable, flexible, multi-tasking computing environment. To our knowledge, these
constraints for servo loop tasks have not been formalized nor are they applied explicitly,
in practice. Research to develop solutions satisfying such constraints has been limited [23]
because of difficulties in the general case. Systematic application of these constraints in
practice has been limited because the cost in relation to immediate benefit has been very
high. Commercial control systems do not provide reconfigurability at the level of the servo
loop task, except for tuning of certain gain parameters to match the characteristics of the

=1
(1]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= iteration number
= start time
te = end time
ood = distance between successive outputs
oid = distance between input and output

s _ t 3
ts(1-1) s(1) te (i) te(i+l)
prd ood(i+1)J
te(i-1) .
00d (1) ts(1i+1)
oid(i+1l)

—oid(i)——

«—pre-emption

0.

o— O- Q .
<«—interval (i-1)—# «—interval (i+1)—-
: «——interval (i)—>

Lstart of cycle(i-1) For all i,j:
ood(i+l) - ood(i) < prdvarAdj
max(ood(i)) - min(ood(j)) < prdvar
max(oid(i)) - min(oid(j)) < prdDis

Figure 4.1: Specification of a period and time distance variation constraints

controlled system. The resulting achievable processing rate, accuracy, and rate-to-accuracy
relationship are accepted as the operating limits of the system. To achieve and assure a
certain level of performance (in speed and accuracy), servo loop tasks are typically run in an
embedded environment with little variation in the control flow and little reconfigurability.

4.2.2 Relation of servo loop to other periodic activities
Following are some other common periodic tasks associated with monitoring and control
of axis motion:

1. Acquisition of additional sensory information, e.g., axis load. The period may range from 0.05
to 1.0 of prd,;. Values of var, dis, var,4 may be of same order as for the servo task if injected
directly in the servo loop, or less stringent, if data acquisition is followed by filtering.

2. Filtering of sensed data. The period may be of same order as prd,;. Values of var, dis, var,q4
may be comparable to or less stringent than for the servo task.

3. Parameter estimation. The period may be N = prd,;, where N is a positive integer. Values of
var, dis, vargqs may be less stringent than for the servo task.

4. Reporting. The period may be N*prd,, where N is a positive integer. Values of var, dis, var,g;
are less stringent than for the filtering task.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Logging. The period is N * prd,;, where N, an integer, is larger than N for reporting. Values
of var, dis, vareq are much larger than for the reporting task.

Allowances of execution time and variations in the respective communication and data
transfer are treated as part of the time and variation budget for each task.

4.2.3 Mapping required periods into execution periods

Multiple periodic tasks on the same computer with period values having non-integer
relationships result in a long scheduling cycle and may result in unacceptable irregularities
in the execution intervals from one period to the next. This problem can be alleviated with
some modification to the specified periods. By specifying shorter periods than required, the
application designer can choose period values prd; for all tasks j in the application such that
are integer multiples of the shortest interval prdr timed by the basic timing service in the
system (Equation 4.4). This reduces the execution timing error resulting from “rounding
effects”. In the case of tasks k£ in a dependency chain, the overall scheduling cycle is
simplified if task periods are the same or if the period of a subsequent task is an integral
multiple of the period of the task on which it is immediately dependent (Equations 4.5-4.6).
Further simplification of the scheduling cycle is possible by applying a similar constraint
on the periods of all tasks (Equations 4.7-4.8). When execution periods are different from
specified task periods, parameters of the associated algorithms, e.g., gains in the control
law, must be adjusted accordingly by the controls engineer. For example, consider a simple
case of an axis object, x (Class Structure 3.1), with the x - ctrlCompt object, set to operate
under the position control mode, using the x - ctrlCompt - axisctrl object, specialized from
the AxisCntrlPID class, to process its control law. Then, in the simple case, for small
adjustments in the value of the period, the new value may be determined by maintaining
the same value of the gain/period ratio, R, determined from the previous values of the

pertinent data members as follows:
R= z-ctriCompt-azrisctrl-gainSetpoint
- r-periodSpec-period-amount . . X . L.
The constraints on task period relationships trade off execution time for timing accuracy,
repeatability, determinism, and scheduling simplification. We formalize these constraints in

Rules 11-12.

Rule 11 Periods of tasks with dependencies should be chosen to reduce non-uniformity
across successive cycles, by satisfying the conditions in Equations 4.5-4.6

Rule 12 Periods of other tasks should also be chosen to reduce non-uniformity across suc-
cessive cycles, by satisfying the conditions in Equations 4.7-4.8.

Vj:prdj/prdr = N (4.4)
Vk :prdi[prdi., = N (4.5)
where Vk : prdy,,, < prdk-1,,, (dependency order)
Vk : prdk S prdkreq (4'6)
Vj:prd;/prdj.1 = N (4.7)

T

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where Vj : prd;,,, > prd;_,,, (ascending order)
Vj - prd] S prdjreq (4'8)

where

N, j, k are positive integers,

prdr is the shortest interval of the basic timing service,
prdy. is the chosen period for task k,

prdg,,, is the required period for task &,

prd;, ., is the required period for task j.

4.2.4 Responses requiring interruption of motion

Abnormal events requiring interruption of motion receive attention at the periodic in-
terval axisCtrl.timestep — the response is state-based rather than event-driven (transitions
to state hold or emergency). There are three reasons to justify not responding to the event
any sooner. First, the axis may not respond significantly faster, because of the relatively
large value of its axisDynamics.timeConstant. Secondly, it would require significant addi-
tional engineering effort to develop a response algorithm and its parameter values to avoid
damage to the axis from shock. Thirdly, it would require significant additional engineering
effort in scheduling the response correctly, i.e., without detriment to other functions in the
system. Since the ratio of the incremental benefit to the incremental cost is not favorable,
we justify the design simplification, and formulate Rule 13.

Rule 13 Attend to an asynchronous event affecting change in control flow of the servo loop
task at the nezt occurrence of the task.

Although experts do not hold this belief in the general case of hard real-time systems [20],
Xu and Parnas [55] support this position. Rule 13 does not preclude application developers
from pursuing quicker responses to abnormal events affecting an axis. It only guards against
increased design complexity.

4.2.5 Relation of servo loop to non-periodics

Other executions requiring responses that do not affect the servo control of motion
immediately, are treated at a lower priority than the servo loop task, and they may be
pre-empted. The startup and shutdown cases are not discussed, because the system is not
responsible for any external action or service during those stages.

4.2.6 Architectural design space for task control mechanisms

The design space for controlling the various concurrent units of execution associated
with an axis consists of a number of choices adapted from [29], as shown in Table 4.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Control mechanism Disturbance in Timing

No execution control mechanism Low
Standard operating system process | Medium-low

POSIX thread Medium-low
Event handler Medium-high
Interrupt service routine High

Table 4.1: Task control mechanisms and their impact on timing disturbances

No execution control mechanism: An application with no control over the various
concurrent units of execution described above is a simple feasible solution under the limited
conditions where it is possible to construct a fixed sequence of executions such that there
is never any contention for any resource. The application need not be a single module — it
can be a collection of cooperating modules that are run at a fixed period in a fixed sequence.
It may be possible to construct such a sequence if the processor utilization, T (also known
as the time-loading factor [30, pg 14}), is low. Providing excess capacity for this purpose
may be an economic alternative in an application which requires little reconfigurability and
which will have a small number of copies used over its life, such that the amortized cost
per use may be more significant than the cost of processing and communication hardware.
However, such programs become more difficult to maintain, in case many reconfigurations
are needed, where tasks contend for resources and differ in activation frequencies and timing
accuracies, as in the application domain targeted in this research. Therefore, we consider
other options that provide control over various concurrent units of execution.

Interrupt servicing routines and event handlers: As discussed above, no applica-
tion level task or function identified in the axis model directly uses an interrupt service.
External IO for servo control is accessed periodically, in accordance with the requirement
for discretizing a continuous process. Other external inputs, e.g., state of an overtravel limit
switch, are also sampled periodically in time for use during the following execution of the
servo loop task. There is no added benefit of acquiring the state-change information any
sooner. Therefore, interrupt-driven execution is not needed. Acquisition of such inputs is
part of a preplanned schedule, simplifying the scheduling and improving temporal determin-
ism in the application. An interrupt from a hardware timer, or equivalent external source,
is needed for the basic interval timing service. From the basic interval timer, multiples
can be derived for timing larger intervals without requiring additional hardware interrupts.
Interval timers trigger their client processes through POSIX (real-time) signals — this is
the most frequent use of events in axis control. Interactions with the user for setting various
data values, when an axis is disabled or not ready for motion, are treated as event driven.
An event handler could be used for each type of interaction, e.g., corresponding to each
object in the axis, but it is not necessary. The application developer could also use POSIX
threads or a single process with a switch case statement (one case for each type of input
event).

Processes and threads: One or more aperiodic processes or threads could be used for
user interactions during configuration, initialization, and setup. Setting data values in vari-
ous objects through independent processes requires the programming burden of transferring
the object to the process that will do the actual work, e.g., execution of the servo loop or IO.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Threads reduce this burden by sharing the address space. Our architectural design reduces
the likelihood of conflicting accesses to same addresses in several ways. First, only threads
cooperating toward a common integrated goal need to share the same address space. Sec-
ondly, objects shared across threads are encapsulated, i.e., access is provided only through
accessor functions. Thirdly, the design minimizes the exposure for concurrent access of an
object by appropriate modularization, e.g., a thread accessing an object for setup would not
be active during motion control. The application domain architecture does not force the
selection between a process and a thread, deferring the choice to a specific application de-
sign. For example, most of the user interactions could be incorporated in the same process
that the servo control task is running, but with state-based and event-based flow control
preventing conflicts. The domain architecture focuses on design criteria for execution of
the periodic tasks, several of which may be concurrent. The requirements and constraints
specified in Rules 10, 11, and 12 drive the choices or selections in the management of a
periodic task, including the source of its stimulus, its interactions with other tasks, the
system services, and communication with external input and output. Therefore, the archi-
tectural design space must be constrained appropriately to minimize variations in the servo
loop task execution timings. Since the choices in system support services are limited to
services specified in the [EEE standards 1003.1b and 1003.1c, the only available scheduling
policy pertinent to hard real-time systems is the priority-based preemptive scheduling, with
a first-in-first-out (FIFO) policy within a particular priority level. We will refer to this as
the FIFO scheduling policy, for brevity. As discussed in Section 4.2.1, this policy is not
adequate for meeting the strict timing relationships required in a servo loop. Therefore,
specifications must be developed for additional support to the application.

Example sources of timing variations are asynchronous events and tasks, contention for
resources required by the servo loop, a high processor utilization, 7, the resulting context
switches, and variations in sizes of various queues in which data or processes wait. These
issues are addressed in the next section.

4.3 Structure of a periodic task for axis control

There is considerable repetitious effort involved in setting up a task even after being
given a complete complement of implemented classes described in Section 3.2. The recurring
patterns in a periodic computational task for continuous process control are modeled as
the PeriodicTask class (Class Structure 4.1) to reduce and subdivide the effort involved
in creating applications for 'he most common cases. A PeriodicTask class is organized as
an aggregation of software objects in four groups, as follows: the resources that perform
useful work in the application the fsm (Section 4.5) that specifies state-based and event-
based flow of control through various functions of the resources, the ports (Section 4.4)
that specify the protocol and provide the mechanism for inter-task communication, and
schedParam (Section 4.6), that stores and provides parameters and data for scheduling.
This decomposition allows the effort to be spread and decisions to be committed at different
phases in the design process. By decoupling decisions that have to be made at different
phases, we reduce the complexity of the design process. The decomposition also localizes
the effects of changes in any of these decisions to separable units of program code. In this
manner, we facilitate reconfiguration of control software.

For brevity of explanation, generalizations in the hierarchy above the PeriodicTask class
are omitted. Functions of the PeriodicTask class, e.g., init(), execute() ...are specialized for

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each application; other data members may also be added to meet the specific needs of that
application.

Constructor-destructor functions:
PeriodicTask(const StringL32 “taskName”)
virtual PeriodicTask()

Accessor functions for following object members:
StringL32 taskName

Resources resources

SchedParam schedParam

FSM fsm

finite state machine Ports ports

Other member functions:

virtual void init()

virtual void clear()

virtual void execute()

virtual void finish()

virtual void reset()

void setPriority(const int prio)

const StringL32 getTaskName() const return(taskName);

Private member:
int namelID // The ID assigned by the (QNX) OS name server

Class-structure 4.1: Interface of class PeriodicTask.

Objects performing useful application-level work, covered in the term, resources, were
introduced in Chapter 3. For example, consider a task with the responsibility for only
the control of one translational axis of motion. Its resources might be the objects axisX,
positionCtriCompt, axisCtrIPID, jogHome, axisSensedState, and axisSetpoints.

4.4 Communication between processes

Communication between processes is much more complex than communication between
objects in the same name space or address space. Object and function identifiers made
meaningful through a programming language compiler in one name space do not hold mean-
ing in another name space. Similarly, the facilities of the OO paradigm to add semantic
content to an object and to control state change within one program are not available
across programs in execution. Setting up IPC mechanisms correctly requires experience.
In early stages of our software development, we found this to be a significant problem.
Participants (see Section 2.5.2, Group C) who had taken a senior-level course in operating
systems required approximately three days to become familiar with OS services for shared
memory and message queues, after which it took them approximately three hours to set
up an IPC instance. The resulting code added clutter in the program, and made it more
difficult to understand. According to their consensus, the repeated effort of setting up
IPCs could be reduced with the aid of classes encapsulating the IPC code. Furthermore,
we needed a technique to preserve, communicate, and reuse the semantic content of an
object when communicating across address spaces, described by OMG [42] as the process
of externalization-internalization. In order to reduce these repetitious elements of effort, we
adopted the well-known motif, Port (Class Structure 4.2), as an abstraction for communi-
cation between processes, in parallel to the semantic constraints defined in ROOM [49].

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We use the term ports to denote the (zero or more) port objects that provide the com-
munication interfaces with other tasks. Typically, the number of ports will be specific to the
needs of a particular application. A port is either designated for incoming communication
(direction=INCOMING) or for outgoing communication (direction=OUTGOING). The set
of messages that can be sent or received through a port, i.e., its protocol, is defined in
the member msgCodes. All messages in the system are assigned an integer code, which is
associated with a priority number and an integer code for the class of the data in the mes-
sage. Interacting tasks are given at least a relevant subset of these encoding objects, thus
eliminating th need to pass all the information explicitly withe each message, and thereby
improving execution efficiency. Given the data class, the data object can be unmarshalled.
The structure of a data class parallels the sequence of parameters of the function that will
use the data, thus simplifying the transfer of the extracted variables to parameter sequences
of the responding functions. Given the message code objects (Class Structure 4.4) in the
container, msgCodes, the size of each message, and thus the largest message size, can be
determined for buffer sizing.

The data member, bufferingOption, is an application level abstraction of the type of IPC,
selected as a system design decision, and set as part of a system initializing step. When
bufferingOption value immediate is selected, the receiver shares the sender’s data structure
directly — this is only possible if both are in the same address space. When the value is
shared, the receiver shares the sender’s buffer directly — possible only if both are on the
same processor. The option of direct buffering means that the buffer is transferred directly
from the sender to the receiver. The option of buffered transfer means that the supporting
service provides the intermediate buffer — this is necessary if transferring across different
nodes. In the allocated option of buffering, the sender allocates the buffer dynamically, and
the receiver frees it after consuming the transferred data. We strive to avoid this option
in a hard real-time task with a short time period, in order to minimize the variability in
timing associated with dynamic allocation and release of buffers. Corresponding to the
selected value of bufferingOption, the bind(...) function links the port to one of the three
communication mechanisms specified in the standard IEEE 1003.1. Shared-memory is used
for the shared buffering option and a message queue for the options direct and buffered.
When the communication is only a signal without data, a real-time signal may be used. We
refer to each communication mechanism as a commPort. Thus, depending on the selected
buffering option, a corresponding type of commPort object is created and supplied as a
parameter to the bind function. Thus we have shown that this abstraction simplifies the
design process and allows reuse of the encapsulated code. The abstraction holds for tightly
coupled communication between tasks within the same address space, by selecting the
immediate option, as well as for communication across different processors, by selecting the
buffered option.

The experiment in constructing the CommPortMQ, CommPortSM, and CommPort
classes have confirmed that subtle errors could creep in under different usage conditions.
The classes have required several iterations of improvements, indicated by tests under dif-
ferent usage conditions.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constructor-destructor functions: Omitted for brevity

Accessor functions for following object members:

MsgCodes msgCodes

Accessor functions for following data members:

DIRECTION direction //enum, values: INCOMING, OUTGOING

BUFF_OPT bufferingOption //enum, values: IMMEDIATE, SHARED, DIRECT, ALLOCATED,
BUFFERED

CommPort * commPort

Other member functions:

bind(CommPort & commPort)

unlink(CommPort & commPort)

connect(...)

disconnect(. ..)

init()

transfer(...) //if direction==0UT, send; if direction==IN, receive.

Class-structure 4.2: Interface of class Port.

Example abstraction of an IPC mechanism — message queues: Class Struc-
ture 4.3 describes the interface to the [EEE 1003.1 message queue service. The user specifies
the parameters in the public data members explicitly or indirectly through a program that
calculates the parameter values from data provided by the user elsewhere in the system,
e.g., in the definition of the ports and the message codes.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following public data members:
StringL32 connectionName

int maxMsgs //program assigns as needed.

int maxMsgsize //program assigns, calculating from msgCode
Boolean flagO_RDONLY //init TRUE

Boolean flagO_CREAT //init TRUE

Boolean NONBLOCK //flag; init FALSE

int accessPermissions //init to 0664

int exceptionCode

int msgPriority //init to 0; assign value for msgCode

int msgSize //program calculates from the msgCode

Private data members:
struct mq.attr mqAttributes
mqd._t mgID

Other member functions:
connect()

disconnect()

init()

send(...)

receive(. ..)

Class-structure 4.3: Interface of class CommPortMQ.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following data members:

int eventCode

ParameterListStructure *data //the structure containing the data.

Class-structure 4.4: Interface of class MsgCode.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Specifying control flow in the FSM paradigm

The task is modeled as an extended finite state machine [24], consisting of a state tran-
sition table, stTable, specialized to suit each application, and an application-independent
engine, fsmsupp, to process external events and corresponding transitions using stTable.
The fsmsupp object updates the current state, currState, of the task after procesing each
event and transition.

Constructor-destructor functions:
FSM(&port)
FSM()

Accessor functions for following object members:

FSMsupport fsmsupp

STtable stTable

ProcessState currState //in top level reset, preparing, ready, ezecuting.

Other member functions:

init()

reset()

getEvent(Port &port) //port->receive(...) ...
void processEvent(int eventNum)

Class-structure 4.5: Interface of class FSM.

A task has only one top-level fsm, constructed at the time the task is created, with
a parameter, port, from which it will fetch events, initially. The task starts in the reset
state, with the fsm accessing the given port at the beginning of every period. The only
eligible event in the reset state is the one that requests the init function, which it initializes
the task, i.e., creates objects needed in the task but not previously created in the task
constructor, assigns initial values, locates (finds) interacting software units external to the
task, establishes the necessary connections with them, and exchanges initial data needed.
During this process, the task is in the preparing state. Upon successful completion of the
init function, the task transitions to the ready state, when a subordinate fsm object becomes
effective, with its designated set of ports. In the case of an axis to be run as an independent
task, this subordinate fsm is the axisFSM which uses the axisSTtable, specialized from the
STtable class through the specification of certain states required in all axes. The top level
fsm transitions to the erecuting state when its execute function is envoked. It performs an
execution cycle (Procedure 7), with run to completion semantics, as required for atomicity
of the servo loop (Section 4.2.1). In the top level fsm’s ezecuting state, an event for the
finish function may be called, when the subordinate fsm is in its appropriate state. The finish
function is used for orderly unlinking and release of various resources (e.g., connections and
internal objects) that were secured for the task. The reset function may be called in any
state, to be used only when some error or exception is encountered for which no action is
defined. It places the task in the reset state.

4.5.1 Reconfigurability in behavior

The axisFSM specifies behavior through the axisSTtable which is specialized for a par-
ticular application, through the addition or modification of a transition. Reconfiguration
through the axisFSM allows change in behavior at a granularity of the task period, because
an event is sampled only at the start of each periodic cycle. For example, some axis motion

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S1 Fetch an event from its designated port;

S2 Check if a transition for that event is defined in the current state;
S3 Check if the precondition is satisfied;

S4 Perform the corresponding transition;

S5 Evaluate and update preconditions for the next cycle;

S6 Set the next state in the fsm as the currentState.

Heuristics 7: Execution cycle of a finite state machine controlling a periodic
task

inhibiting event, e.g., feedHold directs the axis to stop motion expeditiously. A change in
behavior at a finer granularity of time requires a change in a setting in some component or
a replacement of the component — these provisions are explained next.

Switching to different behavior modes: Lozano, in his view of a closed loop model [32],
characterizes automotive welding robot control as open-loop, because of its alleged inability
to switch to different behavior modes, when confronted with disparate discrete events. The
Axis model corrects this deficiency by providing for mode change explicitly. It provides for
the input of discrete events in several ways. If sensed through hardware switches, e.g., over-
travel, the signal is stored in axisSensedState. It also detects abnormal conditions (internal
discrete events), deriving the information from various sensed variables and thresholds. If
an axis control is running as an independent OS-managed process and some other process
generates a discrete event signal, e.g., emergency stop or feed hold, the signal is introduced
through the eventPort shown in Figure 4.2. To respond to such discrete events, the Axis-
FSM class includes the transition which specifies the appropriate stopping action and mode
change.

Closely coupled interaction across discrete-continuous control: The architecture
provides two ways to introduce discrete event signals into the continuous control of axis
motion. In both cases, event handling is delayed till the next occurrence of the servo loop
cycle, per C4 in Heuristics 8, following from the justification given in Section 4.2.6. If the
response required from the axis is a change of state, e.g., hold or emergency, to stop motion
aggressively, the corresponding message is set at the eventPort of the task in which the
axis control is being executed. The axisSensedState object includes data members for some
common events corresponding to malfunctions within the axis, e.g., overtravel and excess
following error. Other axis-related events may be added by class specialization. If further
motion is to be prevented, the expression for the axisSensedState.enablingPrecondition is
modified to include the additional variable.

4.5.2 Development effort for FSM class structure

The top-level FSM (size statistics summarized in Table 4.2) was developed with a total
effort of 225 person-hours (Table 4.3), spread over an eleven week period, involving three

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

participants. Its development was initially assigned to one participant, who prototyped and
tested the idea in three weeks, constructing a minimal prototype application. The partici-
pant experienced difficulty implementing the transformation of an action indentifier (used
in a state transition) into a pointer to the function to be executed. For ease of reconfig-
uration, it was expected that the action identifier encoding-decoding would be performed
through some commercial-off-the-shelf (COTS) container such as a pointer list. Due to the
difficulty experienced, two other participants were assigned to work on this aspect of the
problem. However, the issue could not be resolved by the conclusion of this phase of the

experiment.
Metric Number
Classes 10
Data members 7
Function members 30

(excl accessors, default constructors, destructor)
Functions with more than two parameters 0
Functions implemented 30
Class graphs 1
Depth of generalization-specialization tree 2
Embedded pointers to objects 7

Table 4.2: Size statistics of fsm class graph

The prototyped FSM was used in several versions of a multi-axis motion control program,
in which the motion control process was running periodically at an interval of 0.010 seconds,
in a multitasking environment, using message-passing IPC. Execution time for the same
application functionality was measured before and after applying the FSM. Although, in
theory, we expected an increase in execution time due to the multiple level of indirection
introduced through the FSM, we could not isolate any significant increase in execution time
or its variability attributable to the FSM — probably because it was masked by the large
timing-variability resulting from the IPC using message queues.

Limitation on reconfigurability of transitions: The current implementation of the
FSM requires application-specific encoding-decoding of the action identifiers (packaged in
the TaskActionSet class), used in the transition objects. A near-term development effort is
required to improve the reconfigurability of the TaskActionSet.

Reconfigurability of a state transition table: A user interface program was developed
to assist the application developer in specifying the states and transitions for a FSM. The
user inputs are converted into a form that can be used in the initialization stage of a task to
create the STtable object (including objects of the classes StateRecord, ProcessState, and
Transition). Concept-evaluation experiments indicate that this process requires approxi-
mately two hours to build a set of ten or less state transitions. Alternatively a spreadsheet
form has also been investigated to obtain user inputs of initialization data for objects. The
spreadsheet form of input is also workable and practicable.

Effort to build an application-specific FSM: An experiment was conducted to eval-
uate the effort required (Table 4.4) for developing a small machine control application using

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| Description Hours
[Familiarization 17
Modeling 33
Trying pre-existing building blocks 19
Coding FSMsupport 20
Testing FSMsupport 5
Coding action code to function decoder 7
Testing action code decoder 15
Miscellaneous coding and testing 44
Upgrade of FSM 40
User interface to create stTable 24
Test usage of user interface program 2
Documentation 10
Total spread across 3 workers 225

Table 4.3: Effort to develop FSM related classes

the FSM to modularize flow of control in the program. The measured effort excludes concep-
tual design of the FSM. Approximately 24 person-hours of effort are required to implement
a program where the number of functions is less than eighteen and the number of states
is less than ten. All the functions used in the action of a transition are invocations upon
pre-existing objects. We can conclude that this form of modularization of control flow is
workable and practicable. However, we also conclude that the amount of effort required in
building transitions should be reduced as discussed above.

4.6 Scheduling parameters

The scheduling of a hard real-time task is based on run to completion semantics [49].
Class Structure 4.6 describes the scheduling parameters as an aggregation of the scheduling
policy, specified through the enumerated variable, schedPolicy, (default value = FIFO),
the priority of the task relative to other tasks, specified through the object, priority (Class
Structure 4.7), and the timing requirements and requests, specified through the object,
timereq (Class Structure 4.8).

Constructor-destructor functions: Omitted for brevity

Accessor functions for following object members:
SCHED_POLICY schedPolicy //typedef SCHED_POLICY enum; values
FIFO, ROUND_ROBIN, USER-POLICY. Default FIFO

Priority priority

ContProcTimeReq timeReq

Class-structure 4.6: Interface of class SchedParam.

The total effort required to develop the SchedParam and Priority classes is approxi-
mately 20 hours, including integration into an application task and testing.

Priority: In a priority-based pre-emptive system, the servo loop task and secondary ac-
tivities upon which it is dependent, should be assigned a sufficiently high priority level to
assure allocation of resources when needed. However, events that require interruption of
motion and tasks that require repetition at shorter time periods must also be executed

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Phase | Description of effort element ‘| Hours
Task-control level (5 functions):
Design | Get states, transitions, eventCodes and actionList 2
Draw state transition diagram 2
Implem | Create state-transition table 4
Revise code 4
Test 4
Overall machine tool control logic level (18 functions):
Design | Get states, transitions, eventCodes and actionList 6
Draw state transition diagram 2
Implem | Create state-transition table 2
Revise code 4
Test Regular test (test this FSM alone) 4
Integration test (test with other level FSM) 4
Process program level FSM (18 functions):
Design | Get states, transitions, eventCodes and actionList 6
Draw state transition diagram 2
Implem | Create state-transition table 2
Revise code 4
Test Regular test (test this FSM alone) 4
Integration test (test with other level FSM) 4

Table 4.4: Effort to develop a machine tool control application using FSM
for control flow.

satisfactorily. One common example is a periodic data acquisition activity with a shorter
sampling interval than axisCtrl.timestep (Class Structure 3.3). If executing on the same
processor, it requires a higher priority, in order to assure its timely execution [31].

Constructor-destructor functions: Omitted for brevity

Accessor functions for following data members:

int priorityOffset

OFFSET_FROM offsetFrom //typedef OFFSET_FROM enum values (MAX,MIN)

Other member functions:
int getMaxPriorAvail()
int getMinPriorAvail()

Private data members:
int maxPriority
int minPriority

Class-structure 4.7: Interface of class Priority.

Referring to Class Structure 4.7, the user should specify the priority for each O.S.-
managed process, as an offset priorityOffset from the minimum value available or from the
maximum value available, selecting the former case by setting offsetFrom = MIN, or se-

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lecting the latter case by setting offsetFrom = MAX. The value of the minimum priority
available, minPriority is obtained through the function getMinPriorAvail(), and the value of
the maximum priority available, maxPriority, is obtained through the function getMaxPri-
orAvail(). The range may be the full range of the O.S.-supported priority levels for the
selected scheduling policy, except that the highest limit may be restricted, in order to re-
serve higher priorities for critical O.S.-management processes. The priority specified by the
user is checked for validity with respect to the allowable values, e.g., 1 < priority < 29 for
the QNX operating system.

4.7 Timing requirements and requests

It is difficult to assure uniformity of the servo loop period when implementing the control
in a multi-tasking computer system, as illustrated from the following example. Consider
the common case of current automotive machining applications,
where 0.040 < azisDynamics - timeConstant < 0.10 seconds.

When less common cases of smaller time constants are considered, and allowing for stability
margins, values of the sampling interval, periodSpec.period, found in practice are in the range
0.002 < periodSpec.period < 0.020 seconds.

In comparison, basic system services such as context switching and interrupt handling times
are in the range of 5-10 microseconds and the scheduler consumes 25-35 microseconds
per cycle, when using a commercial real-time operating system on an Intel 486-50 MHz.
Considering the worse values in the ranges, periodSpec.period values could be as low a
multiple as 200 of basic system service timings. In order to keep the period variation, dis,
(Equation 4.3) insignificant (i.e., less than 1% in common design practice), the allowable
variation is of the same order as basic system service execution timings. This observation
indicates a need for a thorough analysis of the application requirements and a need for
predictability in system services called by the application. It poses a much higher level of
design complexity requiring prototyping and testing for validation.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following data members:
PeriodSpec prdSpec

TICK execTimeWC //execution time - worst case.

TICK execTimeAvg //execution time - average.

TICK offset //offset of the start of execution.

Other member functions:

Boolean countDown() // increments and tests (prd==+currentTicks)
int arm()

inline int disarm()

void resetCurrentTicks() //sets currentTicks to zero.

Private member functions:
pid_t proxy

TICK currentTicks

Boolean armed

Class-structure 4.8: Interface of class ContProcTimeReq.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Specifying time periods: One of the sources of variation controllable in application de-
sign is the mapping of many task time periods — real numbers — into ordinals for scheduling.
A second source of error is the rounding effect when the specified periods are not integral
multiples of the timing resolution. In common applications where the task time period is
much larger than the period timing resolution, these errors are assumed to be insignificant,
and the tasks and their designers are unaware of them. However, in axis motion control
applications, these errors result in a mismatch between the actual time period at which a
task is executing and the nominal time period (servo update interval) for which its control
algorithm is designed. The errors from these sources can be reduced by making the mapping
of real numbers to integers explicit when the timing requirements are specified, as shown
in Class Structures 4.8—4.10. Initially, the system designer makes a global decision about
the resolution, sysRes, of the timing signal from the hardware timer that will be used for
the set of tasks, taskSet, that have a close temporal inter-relationship. The task can obtain
the value of sysRes through the function tickCounter->getSysResolution() or by directly
using a system service. The least count or resolution, prdRes, of the software timing service
TickCounter is set to be an integral multiple, n, of sysRes, such that it is smaller than the
smallest variation limit amongst the constraints of all the cooperating tasks, specified as
follows:

Vk : prdDisy = m+n | m > 2;taskSet = {Taski} (4.9)

where m, n, k are positive integers.

The value of periodSpec.period is adjusted to the closest integral multiple of n, typically
resulting in a period, prd, smaller than the original specified value. Then, the user adjusts
the control law parameters, e.g., gains, to match this period. Thus, this technique elim-
inates the two systemic sources of timing error mentioned above. The time period and
its accuracy requirements are specified through the class PeriodSpec. Execution time and
offset are specified in the class ContProcTimeReq, as integral multiples of prdRes. The offset
parameter is provided for a potential application-level pre-scheduler, to compute and store
the task release time offsets that meet the task sequencing requirements with the shortest
overall repeatable scheduling cycle. In the future, other conditions of sequencing may be
added. Values of execTimeWC, execTimeAvg are obtained from the task, typically deter-
mined through offline tests prior to start of operations. The timing information may be
used by an application-level pre-scheduler or by some simulation tool that tests whether
the requirements can be met. The function countDown() is used by the TickCounter to test
if the interval count has reached the specified period. If so, it signals the client task. The
function, arm() is used to start the interval timing and signaling cycle for a particular client
task, and the function, disarm(), to stop it. The request is initiated by the client task and
executed in the TickCounter class.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constructor-destructor functions:

PeriodSpec()

PeriodSpec (const time_measure period, const time_measure
periodResolution, const int var, const int varAdj, const int dis)
PeriodSpec(const TICK prd, const TICK prdVar, const TICK
prdVarAdj, const TICK prdDis)

PeriodSpec()

Accessor functions for following data members:

time_measure period

int var //ratio of period to allowed variation

int varAdj //ratio of period to allowed variation in adjacent periods

int dis //ratio of period to allowed variation in distance between input and output

TICK prd //typedef TICK int where its unit = prd Res. Conversion of period into prdRes units.
TICK prdVar //prd - amount /var Ratio rounded down to nearest prdRes unit.

TICK prdVarAdj //prd - amount/varAdj Ratio rounded down to nearest prdRes unit.

TICK prdDis //prd - amount /disRatio rounded down to nearest prdRes unit.

Class-structure 4.9: Interface of class PeriodSpec.

4.8 Period timing service for a group of tasks

Many hard real-time tasks such as a servo-motion control loop require close temporal
relationship with other tasks such as servo-sensor IO accesses, and their interaction patterns
fall into repeating sequences. It is very difficult to provide the required temporal relationship
when the tasks are released to run periodically under individual timers, as in traditional
RTOS management, as explained next.

Weakness in traditional scheduling of periodic tasks: In traditional real-time sys-
tems, every periodic task acquires its own software interval timer from the operating system
services. The timer has the same priority as the task. Over the course of time, as the OS in-
terleaves tasks of higher priority, including its own services, the signal of interval-expiration
is handled at a non-uniform interval. In one technique used to circumvent the OS-induced
variations, each task sets up its own timer, triggered by an interrupt from the hardware
timer. However, this technique increases the number of interrupts in the system in propor-
tion to the number of periodic tasks. Interrupts increase the system overhead. Moreover,
since this overhead occurs whenever the interrupt occurs, it consumes its time slice irregu-
larly, introducing more variability in the task timings.

Design approach to coordinate period timing service: By taking advantage of the
predictable arrival pattern of these closely related tasks [55], denoted as a taskSet here,
we can control their release more accurately and efficiently. As an early stage step in
that direction, we have developed a coordinated period timing service, denoted as the
TickCounter class (Class Structure 4.10) to serve the taskSet. It supplies the tasks in the
set with release time signals at the intervals and offsets specified in their respective timeReq
objects. Upon receipt of the signal, each task in the group starts its execution cycle (execute
function). The TickCounter uses only one hardware timer interrupt for a taskSet, reducing
its overhead without loss of accuracy. By setting the TickCounter process at a sufficiently
high priority, we also reduce variability in the time it triggers a signal. Thirdly, as mentioned
earlier, by explicit specification of timing in integer multiples of sysRes, rounding-off error
is eliminated.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Setting up the timing service: The system startup procedure makes the TickCounter
object operational in a special independent process before any of its client tasks, supplying
it the values of the maximum number of clients for which it must be setup and the number
of sysRes units in a prdRes unit. The TickCounter provides an incoming message queue (mq)
communication interface to be used by all clients for initial registration, and an outgoing
interface to signal the release time to each client.

Client registration: When the function registerClients(...) is invoked, the TickCounter
prepares and waits to receive registrations from a number of tasks specified in clients,
for a time limit specified in sysResCnt. If it reaches the time limit before all the clients
are registered, it throws an exception. Each client registers by sending a copy of its
timeReq object, which includes its timing requirements. When all the clients are registered
(clientsRegistered==clients), the TickCounter is ready.

Starting and stopping the timing cycle: When the function, startCountCycle(), is
invoked, TickCounter arms all the timeReq objects, i.e., enables their signaling, and starts
its counting cycle for the group of tasks. The function stopCountCycle() stops the counting
and signaling cycle. This facility allows the starting and stopping of tasks in a taskSet in
the proper sequence.

Constructor-destructor functions:
TickCounter(int maxClients, int prdRes2sysRes)
TickCounter()

Accessor functions for following object members:
CommPortMQ mqg4Clients

Accessor functions for following data members:
int prdRes2sysRes //number of sysRes units in one prdRes
int maxClients //maximum number of clients registers.

Other member functions:

registerClients(int clients, int sysResCnt)
connectSysResCounter() //attach interrupt handler
disconnectSysResCounter()

startCountCycle() //countDown for all clients
stopCountCycle()

getSysResolution()

Other private members:

sysResCounter() //interrupt handler: counts sysRes interrupts.
setPrdResSignal() //obtains ID of signal from sysResCounter
ContProcTimeReq timeReq[maxClients]

int clientsRegistered //init 0; increment as each client

Data members in space shared with interrupt handler:
int sysResCnt //current count of sysRes units; init 0

int prdRes2sysRes //number of sysRes units in one prdRes
pid-t prdResSignal //ID of signal from sysResCounter.

Class-structure 4.10: Interface of class TickCounter.

Connecting to the hardware timer: When the function connectSysResCounter() is
invoked, the hardware timer in the computer is set up to provide an interrupt at every sysRes

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interval, which is received and counted by the interrupt handler named sysResCounter()
The function disconnectSysResCounter() stops the hardware timing service and releases its
connection with the sysResCounter(). The function setPrdResSignal() acquires from the OS
the identifier of the signal to be sent to it by sysResCounter().

4.9 Task structure impact on reconfiguration effort

The organization of software to structure a task results in 2 decomposition of application-
reconfiguration effort elements. This decomposition and associated relative costs are sum-
marized in Table 4.5. Only changes within one program are considered. There are four types
of configuration changes in the table, sectioned in order of increasing difficulty. Reconfig-
uration effort elements are subdivided in five groups, corresponding to the whole program
and its four parts, introduced in Figure 4.2: resources, fsm, schedParam, and ports. Each
effort element is rated for its contribution to the cost of reconfiguration relative to other
effort elements. The rating is based upon a combination of traditional effort metrics such
as lines of code, number of object interfaces involved, observations during the development
experience, and interviews with the developer participants. Next we describe these task
elements and explain the cost rating assigned to each element.

Reconfiguring control flow: A change in the flow of control is most commonly expected
during the early stages of 2 new physical configuration of the controlled system, as initial
usage provides learning experience. Such changes may be viewed as “rewiring the logic”,
while all external inputs and outputs remain unchanged. The response to a particular event
may be a different sequence of functions, which is defined in the action object, or it may be a
different enabling condition, which is defined in a condition object. Their object identifiers,
coded as integers, have to be added to the corresponding decoding tables. The response to
an event may also be a transition to a different pre-defined state. The changes are specified
in a transition object. These additions and changes require recompilation of the affected
decoding tables and the stTable object (affected state transition table). Since the change
may alter the task execution time, the processor utilization, 7, must be rechecked. The
re-engineering effort depends upon the magnitude of 7 and system overhead, Toh,, relative
to critical limits.

Replacing resource object: In response to general needs identified in Section 2.1.2,
suppose that the control strategy has to be changed and several new CtrlCompt objects and
AxisCtrl objects have to be added in the application program, given that these components
exist in the class library. Then, the code in this application program must be modified to
include these classes and to instantiate these objects — relatively easy activities. Then,
the new object must be initialized to the proper values — an activity that may require
some study. Availability of persistent objects would allow this effort to be applied ahead of
time, reducing the intellectual work-load at integration time. The object-function encoding-
decoding tables have to be updated, requiring a number of well-defined activity steps.

Adding external service: If the function of some object existing in the program, or some
composition of such functions, has to be made visible as an external service of the program,
then a corresponding msgCode object is added to the protocol of the port through which
the service is offered. If the service requires a new data structure, then it must be derived

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from the ParameterListStructure class, instantiated, and initialized, requiring a number of
well-defined activity steps. Secondly, the fsm - stTable is extended with the needed event,
condition, action, and transition objects. These steps involve higher intellectual activity
than the extension of a port protocol.

Adding IPC: If an additional inter-process communications port is required, e.g., to
connect to a new program, then the Port class is specialized and instantiated, and the
object is initialized. This includes the creation and initialization of a CommPort object and
the msgCodes that define the protocol of that port. The intellectual effort is greater than for
extension of the fsm described above. The addition of an IPC could increase communication
workload, increasing the design difficulty, depending upon the type of IPC used.

4.10 Assigning a task to processing resources

Task assignment is treated as part of an implementation stage in a traditional applica-
tion development cycle. However, a new task assignment involves significant development
cost, and implies significant recurring implementation and maintenance costs. Much of the
development cost in a new task assignment occurs after a prototype is constructed. One of
the main cost factors is the failure to meet timing requirements, forcing late-stage changes
in the design and “implementation.” The high cost and associated uncertainties discourage
changes in the task assignment. In a hard real-time subsystem, it is fixed for a narrow
family of applications in a particular organization, limiting reconfigurability.

4.10.1 Weakness in traditional software development

The classic software engineering approach favors hardware independence and software
flezibility, and defers “optimization” for performance to a later stage. When poor perfor-
mance results in failure to meet the timing and ordering required in a hard real-time sub-
system, the design is also a failure in correctness. We need constraints on the “fexibility” in
the system design space to avoid late-stage failures in timing correctness. The constraints
must not increase hardware dependencies, i.e., not require services beyond those specified in
[EEE 1003, and must also not require code optimization. It should also be possible to apply
some of these constraints in early stages of system design. Experienced system architects
constrain their design space intuitively. Some of these constraints are made explicit next.

4.10.2 Architectural constraints on axis control environments

Heuristic rules and constraints on the execution environment of an axis control related
taskSet reduce problems in the later stages of a software development cycle. These con-
straints reduce timing uncertainty by excluding from the hard real-time subsystem those
activities that introduce unpredictable timing variations. We justify this approach from
Section 4.2.1, deriving Rule 14 from it (also used as an architectural design premise in
ROOM [49]).

Rule 14 Support run to completion semantics.

However, the IEEE 1003 standard does not specify run to completion semantics. Therefore,
the priority pre-emptive scheduling policy of the OS must be supplemented with constraints
in the appication design, i.e., the OS should not be required to pre-empt a hard real-time

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

task. Since one reason for pre-emption is non-availability of some needed resource, Rule 15
is formulated to eliminate this source of pre-emption.

Rule 15 Secure all necessary resources before releasing a task for ezecution.

Rule 15 implies C1-C4 in Rules & Constraints Set 8 on the design and assignment
of a taskSet. It also implies need to minimize dependence on OS services that introduce
significant timing variations, as expressed in Rule 16.

Rule 16 When the processor utilization, T, is high, limit dependencies on OS services, such
that the task management and synchronization overhead (e.g., scheduling, contezt switching,
synchronization, mutual ezclusion), Toh,, affecting a closely coupled task set is below a
significant (critical) proportion, R, of the total execution time, c;, of all tasks in this set,
i.e., Toh¢/ct < Rer.

For an application that falls within the constraints described in Section 2.10, a static
task execution and communication pattern emerges during normal across. operationhen,
Toh;/c; < 0.01, is insignificant. When Toh;/c; is insignificant, the design decision to use the
0S services may be made within the design of the taskSet subsystem. If not, an application-
wide analysis is needed. Increased design effort and skill are required, as the value of Toh¢/c;
increases, because Toh; will also increase as other tasks are added, even though these tasks
may be of a lower priority. It extends the dependency chain and introduces cycles in the
design process, thus increasing the complexity, skill requirements, cost, and duration of the
design process.

Heuristics 8 are specified to limit the complexity and cost of the design process. Rule 16
implies C5~-C6 in Rules & Constraints Set 8. In traditional design of computer imple-
mentations of axis control, these constraints are honored by dedicating a set of processing
resources to axis control only — interactions with other subsystems is very limited and
use of OS services is minimal. Qur architectural constraints allow static reconfiguration.
However, the processor utilization, 7, must be within safe design limits, as discussed next.

C1 The taskSet should be serializable.

C2 Execution in the taskSet should not be dependent upon retrieval of data from mass storage
devices.

C3 No paging should be required (needed pages should be locked in memory).

C4 Asynchronous requests to a task, e.g., keyboard inputs, should not be serviced until the task is
activated at its normal period.

C5 The task configuration and assignment should be static. There should be no dynamic creation
and destruction of tasks within the time critical task set.

C6 Other types of dynamic allocation and release of memory should be minimized, e.g., all objects
rec}uired in a cycle of the task set should be created in the initialization stage, and destroyed
only in the finishing stage. The design should strive toward a static object map in the execution
stage.

Heuristics 8: Constraints on an axis control task set and its environment

4.10.3 Constraint on processor utilization

The total workload of all tasks and OS activities on a processor should be well within
the capacity of the processor. If all tasks are periodic, their schedulability to meet their

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

period deadlines can be estimated by using rate monotonic analysis [31]. If some task is not
periodic, its shortest (worst-case) inter-arrival time is used as its period for the purpose of
this analysis. At the stage of architectural design, neither the application execution timings
nor the platform characteristics are known well enough to perform a definitive analysis.
However, by making pessimistic assumptions about load and capacity, feasibility questions
can be addressed. A preliminary rate monotonic analysis is useful, even though POSIX
does not specify a rate monotonic algorithm and it is not available on commercial real-time
operating systems for the Intel X86-family processers. Based on this anaylsis, a feasibility
criterion for the limiting processor utilization, 7., is chosen (Rule 17).

Rule 17 Limit the processor utilization: T < Tcy

where 1. = 0.69 under a rate monotonic scheduling algorithm, with all tasks may be treated
as periodic, and no other resource constraint erists. If worst-case ezecution times cannot
be determined accurately at the time of conceptual design, then apply a reserve factor in
proportion to the uncertainty.

4.11 Procedure to develop an application

Given the domain model for software to control an axis of motion, Procedure 9 is applied
to design a specific axis control application. This procedure is derived from the overall
domain engineering based process shown in Figure 2.5. We will use the example introduced
in Section 3.1 and Figure 3.4 to define the requirements. In this example, the domain
architecture will be specialized (Procedure 9), primarily by specializing the constituents.

Define specific requirements of the application.

Specialize domain architecture to derive architecture specific to the application.
Identify components reusable from the class library.

Adapt library components, as needed.

Create the needed instances of class library components.

Initialize or configure the created components.

Design and construct additional application-specific components as needed.

P NS G

Evaluate application-specific components for broader use across the domain.
If promising, propose their evolution into a class library asset.

9. Test new components individually.
10. Integrate components into subsystems (tasks and task sets) and test.

11. Integrate system and test.

Heuristics 9: Procedure to develop an axis control application.

4.11.1 Defining requirements specific to an application

The axis control application is analyzed in terms of the controlled plant, the servo control
scheme, and interactions with other software units that use its services (clients) or provide
services to it (servers).

Controlled plant: An analysis of this example shows that the controlled axis (in general,
known as the plant) is a translational axis driven by input to a pulse-width modulated power

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

amplifier, equipped with multiple feedback sensors (a linear incremental position encoder, a
rotary incremental position encoder, and a tacho-generator). There are no overtravel limit
switches. The time constant of the axis is in the range of 0.040-0.050 seconds.

Servo control scheme: The axis employs the position control mode using only a position
reference setpoint, along with a pid control algorithm. The motion (acceleration) objective
is minimum jerk. There is no feedforward control. A servo loop interval of 0.010 second
is specified. Only one position feedback is used for servo control. There is no filtering,
correction, compensation, or other preprocessing of the feedback signals. This represents a
common case in industrial applications.

Computation to communication time ratio: In this baseline case, the pure compu-
tational time for the pid control is of the same order of magnitude as the time to transfer
data, e.g., to access external 10 associated with its computation.

Requirements of client software units: It is acceptable to respond to mode change
requests, e.g., emergency stop, at the beginning of the next servo loop cycle, but further
delay is not acceptable. Reporting of position and velocity is required for display at intervals
of approximately 0.1 seconds in which a variation of 0.050 seconds is quite acceptable and
occasional larger variations are also acceptable.

Future requirements of clients: Reporting of position history (sequence) will be re-
quired for analysis after a motion segment is completed. In a future reconfiguration, the
feedback may be used closer to real time, e.g., in an outer control loop that adjusts set-
points to improve multi-axis coordination, or in a parameter estimating procedure, or in a
monitoring procedure. Feedback signals from the two position sensors, the velocity sensor,
and, later, feedback of current may be required in a temporally correlated manner, for more
advanced monitoring and control. The control scheme may require modification for quicker
response to signals that require mostion stoppage.

Interactions with related functions: During earlier stages of the development cycle,
it should be possible to test the physical axis by itself with minimal dependence on the rest
of the control system. This requirement implies collocation of axis control software and the
device drivers to interface its sensors and actuators. The position sensors produce pulse
trains that are counted by a pulse counting device, counter, the velocity sensor produces
an analog voltage signal that is sampled and digitized by an analog input device, analogin,
and the power amplifier requires an 8-bit digital signal, interfaced through a digital output
device, digitalQut. The devices are interconnected to the processor through a shared bus,
transferDevice, employing memory-mapped |0 to transfer data between the IO-interfacing
devices and the processor on which the axis control software will be executed. Setpoints for
motion control are updated at every servo loop interval.

Other reconfigurations required: Later, several coordinated axes may be in the same
subsystem. The motion coordinating software and outer control loops may also be in the
same subsystem. The IO-interfacing devices may be in a different subsystem for efficiency
through batching multiple IO accesses. The interfacing and transfer hardware may be

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

replaced in the future. The processor may also be replaced in the future; however, the OS
and development tools will present the same software interfaces to applications.

4.11.2 Reuse and adaptation of library components

We review and select library classes in an outside-to-inside sequence. The PeriodicTask
class is specialized to the AxisTask class (Figure 4.2). The functions are specialized to refer
to the axis-specific objects. Amongst its constituents, the SchedParam class is used without
specialization, and the classes, Resources, FSM, and Ports, are specialized to the classes,
AxisResources, AxisFSM, and AxisPorts, respectively, as described next.

CommPortSM
eventPort (IN) setPort (IN)
N 7
775 Eﬁ% timeRegPort (OUT)
msgCode axisSetpoint
. ommPortMQ
axisTask
schedParam timereq
Resouzces)) ¢
axisSensedState \\ :
axisAct%Fate signalPort (IN)
== [
L~ ~
fbPort (IN) actPort (OUT)
CommPortSM

Figure 4.2: Structure of a hard real-time task with short periodicity — one-
axis example

Axis resources: The main work-performing objects included in the AxisResources class
are axisX (TranslationalAxis class), pidCtrl, counter, analogln, digitalOut, and transferDe-
vice.

Ports: A single axis task requires four types of interactions, supported with a Port object
dedicated to each of these interactions — an incoming port, fbPort, for axis feedback, an
outgoing port, actPort, for axis output, an incoming port, setptPort, for setpoints to the
axis, and an incoming port, eventPort, for events affecting control flow in the axis. The
fbPort may also be used to communicate axis sensed state to some monitoring, logging,
or status reporting tasks, running at a lower priority with read-only access, so that these
secondary tasks do not interfere with the primary work of the axis.

Finite state machine to control an axis: The axisTask - fsm structure remains un-
changed, because the functions and their control flow logic are the same as for the Period-

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

icTask class. The next-level fsm (within the AxisTask->execute() function) requires a state
transition table specific to the functions of an axis.

4.11.3 Creating the needed instances of class library components

The TranslationalAxis constructor is also responsible for creating objects directly refer-
enced in it, namely, axisSetpoints (TransaxisSetpoints class), axisSensedState (Transaxis-
SensedState class), and axisActState (AxisActState class). Other objects in Translation-
alAxis, included by value, are created without further explicit coding.

The fbPort object is set up with the shared buffering option, and its commPort is in-
stantiated from a specialized class, CommPortSM, which provides a shared memory mech-
anism for interprocess communication. The msgCode objects correspond to the functions,
get.axisSensedState, get_actualPosition, get_actualVelocity. ..to be exposed.

The actPort object is set up similarly, where the msgCode objects correspond to the
functions, set_axisActState, set_axisOutput ... A similar shared memory link is set up for
transferring motion setpoints to the axis control task, through an incoming port, setptPort,
with the msgCode objects corresponding to the functions, get_axisSetpoints ...These three
ports provide an efficient interprocess communication for the main operation processSer-
voLoop(). A fourth port, eventPort, is used for events affecting control flow in the axis
software. This port is also used for various setup and configuration changing functions.

4.11.4 Initializing the created components

Since most of the created objects are configurable by assignment of data member values,
the next step is to provide the values for these assignments.

Assignment of pointers to abstract objects: Polymorphism has been used in several
cases in the Axis model through inheritance hierarchies, in order to defer the selection of
the specific object subclass that will provide the service offered in the superclass interface.
For example, the pointer to pidCtrl is assigned to the axisCtrl object pointer which was
automatically generated within the axisX object. Similarly, we assign pointers to the I0-
interfacing device drivers.

Means of value assignment: Application-specific “constants” may be assigned to the
corresponding data members in several ways. A technique that maximizes reuse is to initial-
ize the created objects from corresponding persistent objects. In the absence of persistent
object services in the suite of development tools, an alternative technique is to store the
persistent data in a file. This technique requires additional programming specific to each
application. In case the number of reuse applications is too small to justify the creation of
persistent objects, a third technique is to include the data in the code for the AxisResources
class. This technique requires the least development cost, but the initialization code is the
least reusable.

Axis control software may be configured by data value assignments. For example, when
the motion objective, xAxis - motionObjective, is assigned the value, minimum_jerk, a cor-
responding algorithm is selected. Similarly, when xAxis cdot controlMode is assigned the
value, position, the position control strategy is selected.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Limited reusability of an AxisTask object: The xisTask object is reusable only for
a particular configuration of the software components in it. Its class will be changing fre-
quently because it is affected whenever any of its constituents is changed, even though
changes may be minor. Secondly, its reuse is limited to the case when axis control is an in-
dependent task. Similarly, its constituent classes, AxisPorts, AxisResources, and AxisFSM,
also have limited reuse. A future axis control may require a different number and type of
ports, thus affecting the AxisPorts class, or may have a different AxisCtrl object or different
device drivers, affecting the AxisResources class. The stTable component for the fsm within
the execute function of AxisTask is slightly more reusable than AxisResources because of
polymorphism (Section 4.11.4).

In general, we make two observations. First, larger scale aggregations will be less widely
reusable than their component classes. Secondly, specialized component classes will be less
widely reusable than their generalizations.

The model is evaluated relative to General Needs 1-8 identified in Chapter 2 and derived
General Need 9.

4.12 Evaluation of model

The developed model is evaluated for its effectiveness relative to general needs identified
earlier, considering the following general evaluative questions. Are these needs supported
satisfactorily? How does it compare with alternatives considered? Is this model an improve-
ment over existing models? If there are tradeoffs, what is the rationale (justification) for
the selected approach? The general needs are clustered and discussed in groups — reconfig-
urability in scale, closeness of interaction and reconfigurability in behavior. Correctness of
operation, including specified timing behavior or ordering of events and actions are treated
as directly implied requirements. Ease of (re)configuration and integration is an indirect
requirement.

A key architectural strategy for reconfigurability is to defer and separate the design
specification of building blocks (framework of reusable classes) from system design and
integration decisions such as the following:

1. Organizing function sequences into concurrent units of execution by identifying the
independence or degree of coupling from the application domain requirements.

2. Packaging these units into OS-managed tasks.
3. Assigning tasks to processing resources.

Next, we show that the architecture is scalable in number of similar axes and sensors
with incremental effort. The significant engineering cost in scaling is the validation analysis
for timing requirements.

4.12.1 Scalability in number of axes

General Needs 1 and 6 require that a control system be scalable in number of objects,
e.g., axes and sensors. Some closely implied requirements are scalability without degradation
of the required run-time performance of the system and its performance-to-cost ratio.

Consider the scale-up in number of similar axes of a system originally designed to imple-
ment one axis of control on dedicated processing resources. We evaluate the reusabiliy and

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adaptability of the software in the following cases, and show that the reusability is primarily
at the level of the building block classes, which are reusable in various reconfigurations for
scale-up.

Replication of physical resources: If adding identical processing resources for each
axis, there is no change in the software, originally packaged in an object of the AxisTask
class, except assignment of values specific to each axis, and specific to the communication
interfaces with the rest of the system. Analysis of inter-processor communication resources
required and available is also required. The latter is the larger engineering expense.

Replication of task on same processor: If replicating AxisTask objects running on the
same processor, the software changes are similar to the previous case, whether each axis is in
a separate OS process or whether each axis is in a separate thread with coordinated threads
running in the same OS process. In the latter case, the buffering option of immediate
may be used. However, an analysis of the processor utilization is required as described
in Section 4.10.3. Additional analysis of resource requirements in comparison to available
capacity is also required. The analysis is application-specific and its results are not widely
reusable. If the reserve capacity is low, this analysis may be a significant engineering
expense.

Coordinated axes in same task: If all the axes are in the same task (whether it is a
thread or a process), some modularity is given up for efficiency of system resource utilization
when motion of the axes is coordinated. There is slight additional software packaging cost
to add the resource, port and msgCode objects for the additional axes, and to augment
the state transition table in the fsm. However, no change is required in the software of the
Axis class hierarchy, except assignment of values specific to each axis. Analysis of resource
requirements and capacity is similar to the previous case. The expense of packaging is
application-specific and not reusable, except for some narrow family of applications in one
organization.

Mixed types of axes: If the original axis was a translational axis and a new axis is a
rotational axis, then the AxisTask object cannot be reused identically. If the classes for
rotational axes had not been constructed earlier, these classes have to be implemented
in addition to the changes noted in the previous case. However, the implementation of
rotational axes is similar to the translational axes. Once implemented, these classes are
reusable assets, amortizable over future applications.

4.12.2 Scalability in sensors

The model provides a generic class for the three basic types of transduced signals, an
analog waveform, a train of pulses, and a digital logic level (bit, or group of bits), and
the classes to transform the raw inputs into data types for every type of physical quantity
defined in the ISO standard for measures and units. Kinematic transform models are also
included for the common types of motion feedback sensors. In the case that the scale-up
employs the same types of device drivers, no additional code is needed to create instances
of common sensors. An instance of a previously modeled case is added by selecting and
instantiating the corresponding classes. We consider two common cases of adding sensors.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Axis state sensed at servo update interval: In order to add sensors closely coupled
to one axis, e.g., axis drive current, and sampled at the axis servo update interval, the
axisSensedState object is instantiated from a specialization of the TransaxisSensedState or
the RotaxisSensedState class. Since no new functions are needed, the effort is primarily the
labor of aggregation and assignment of values specific to the “constants” of the added sensor.
The software for the rest of the Axis classhierarchy remains the same. The software for the
AxisTask class is changed to add a new axisSensedState object and the device driver object
associated with the new sensor. The fsm object is also changed for the additional functions
(accesses and conversion) to be performed. The analysis of the processor utilization must
be revised to reflect the time-costs of the added functions. However, the re-calibration effort
is not significant when the device drivers are of the same type, because the time-costs are
predictable.

Sensing on same processor at period shorter than servo period: If the purpose
is data acquisition only, the basic building block classes are reusable. However, this type of
sensing function must be placed in a separate instance of the PeriodicTask class. Since its
time period is shorter than the servo control task, the sensing task must be assigned a higher
priority. A time-loading analysis must be performed. Since the data acquisition functions
are similar to other data acquisition in the axis software, the effort to obtain execution
time-cost of these functions is a predictable activity and not a significant cost. However, if
the processor utilization, 7, is high, the schedulability analysis becomes more complicated.
For example, sensors for force, acceleration, and acoustic emissions may require sampling
at an interval as low as 0.0001 seconds, and the execution time to acquire data may be in
the order of 0.000035 seconds on a common computer platform, in our experience, utilizing
35% of the capacity of an Intel 486-50 Hz processor, without considering system overhead.

Signal processing: Often, the data acquisition is followed by some processing of the
acquired signal. If the signal processing period, prd_sp, is smaller than or comparable
to the axisTask period, then the case is similar to the previous cases. If prd_sp is some
large multiple, N, of the axisTask period, then it is implemented in a separate instance
of PeriodicTask. The engineering effort may be reduced by decoupling it as follows. The
axisTask object is extended to produce a sequence (length M > N) of successive data values
and to make the sequence available in a separate port. Corresponding changes are required
in its constituents as follows: add a sequence building object, include its sequence-building
functions in the fsm - stTable object, add the port, and map the sequence object into that
port. The signal processing task is run at a lower priority. Since the acquired data is
buffered, its task period may be allowed a larger variation. The cost of the new sequence
building object, if designed as a class, is amortizable over future applications. The cost of
the processor utilization analysis is still application-specific, as in earlier cases.

4.12.3 Closeness of interaction

The architectural design separates the code for building blocks from the composition of
their functions into execution sequences, and subsequent packaging into executable tasks.
Thus, objects requiring interaction with axis control at the servo loop period may be in-
cluded in the same task as the axis or axes. This assures the desired execution order. It
requires a change in the composition of that task, but not in any of the building block
objects.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ability to specify close interactions across objects: The axisSensedState object is
updated at every servo loop interval for every axis of motion in a system. The architecture
allows other software objects read-only access to it. If a software object, e.g., cross-azis
coupling control must not only read the sensed state, but also adjust the axisSetpoints or
change its state, that object may be included in the same task. If the servo controllers for
the axes were prepackaged into an executable, the cross-azis coupling control would have to
run in a separate task at the same period — a less efficient alternative for several reasons.
First, its output would be applied with a delay of at least one servo loop cycle. Secondly,
a separate task would incur additional system services overhead.

4.13 Conclusion

The execution model that was developed for one-axis motion control yielded abstrac-
tions (class structures) that are applicable to continuous process monitoring and control
in general. The execution control flow structure (fsm) supports the integration of discrete
events with continuous process control. It may be applied to control the flow of any pro-
gram that fits in the fsm model. Secondly, it provides an organization of these abstractions
that facilitates reconfiguration and adaptation. The process used in developing this model
facilitates incremental evolution, as demonstrated through three iterations of development
and evaluation. Experiments with the use of this model showed that the associated ex-
ecution overhead was insignificant in comparison to system services overhead. It did not
increase execution time variations. It was acceptable for implementing the hard real-time,
short-duration, short time-period servo-motion control applications investigated.

Improvements in software productivity, timeliness, and quality in the domain of recon-
figurable hard real-time axis motion subsystems is a field of long-term research. Further
investigations in the single-axis application domain will help answer a number of research
questions in domain-specific software architectures for integration of multi-axis motion and
process control subsystems. Some promising near-term research issues are reviewed below.

Configuration rules: While the configuration rules and constraints given in our model
make application development easier, further study is needed in two directions. In the near-
term, additional rules should be developed to further simplify the application design process.
Longer term research is also needed to develop less constraining rules and a well-defined
design process for applications that can tolerate larger timing variations. The architecture
does not support dynamic installation of new software components. In addition to unknowns
in computer science, there are also unknowns in control theory when discontinuities arise
due to dynamic reconfigurations.

This architecture provides the basic framework for timing specifications and studies
which will be needed for the suggested research.

Application development tools: After the design process and configuration rules are
well developed, tools should be developed to automate the routine aspects of the procedure,
in order to reduce the cost of configuration, integration, and quality assurance. Setting up
an application composed of a number of processes distributed across several computers has
been much more difficult than constructing the passive objects and running them in a single
program. By difficulty, we mean that the required skill level, effort, and duration were rel-
atively higher. The difficulty could be reduced with domain-specific tools for configuration,

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

integration, and verification of distributed control systems.

Persistence: A number of parameters, e.g., equipment characteristics remain unchanged
for relatively long periods of operation. The traditional approach is to specify their values
in a file containing configuration parameters. Additional coding is required to transform
the ASCII contents of files into data for a program. This cost could be reduced by providing
persistent objects to hold these values across different runs of the application.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Software Group | Reconfiguration effort element | Cost

Type of change: Modify the control flow logic in an ezisting program,
No new state, condition, event, object, function.

FSM Create, add condition or action object M
Create transition object; add to stTable ML
Remove unwanted transition from stTable ML
schedParam Calibrate and update execution time M
Whole system Analyze time-loading tactor ML
If increased, re-engineer as needed. ?
Example cases: -
- < 0.25, TOhg/Cg < 0.01 L
-17>0.6, Tohy/c; > 0.3 H
Type of change: Substitule or replace work-performing resources.
Resources Include class; add instance of class L
Initialize the object M
FSM Add object functions to decoding table M
Type of change: Add external service; no new state, object, function.
Ports Create msgCode object; add to protocol of existing port ‘ML
Create, add ParameterListStructure object ML
FSM Create, add event, condition, actions objects M
Type of change: Add IPC to existing program.
Ports Create, add Port objects, M
- incl. CommPort objects MH
FSM (Top-level) modify initialization to apply new port M
(Executing-level) add fsm/state/transition to use new port | M
Whole system Analyze communication overhead -
-shared memory L
-event signaling M
-messaging MH

Notes:

Effort elements add to previously listed elements incrementally for each type of change.
Cost is rated relatively as follows.

(L)=low; (ML)=medium low; (M)=medium; (MH)=medium high; (H)=high.
(?)=unknown.

Assumptions:

The needed classes exist.

Application conforms to the given architectural rules.

Development and execution environments are less constraining

than the limits described in Appendix A.

Table 4.5: Reconfiguration effort elements for common software changes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

Multi-axis motion coordination

The most common form of coordinated motion in conventional machine tools and robots
is the coordination of independently driven axes of motion which are in a kinematic con-
figuration that controls the motion of a work point (e.g., center of a cutting tool). We
denote the group of axes “bound together” to produce a specified work point trajectory as
an AxisGroup.

As in the case of single-axis subsystems (Chapters 3-4), the terminology in industry is
inconsistent across different types of manufacturing automation due to differences in their
dominant applications and nature of motion coordination. Coordination of motion must
be described in a unified scheme that is more general than the view in any single field.
The AxisGroup model (Class Structure 27) provides the needed generality, reusablity, and
extensibility as explained in the next section.

The model builds on the subdomains identified and formalized in Chapters 3-4. In con-
clusion, we summarize the reconfigurability and reusability achieved, and further research
issues identified.

5.1 Motion coordination by an axis group

The primary function of an AxisGroup is to transform the input motion specification
into a series of setpoints (AxisSetpoint objects) for each of the axes in that group, equi-
spaced at the update intervals of the axis control loops. This transformation is performed
by the move(...) function (Section 5.1.2), supported with a number of preparatory or setup
functions.

5.1.1 Strategy for reusability of motion specification software

An executable specification of motion to process a part (workpiece) is prepared signif-
icantly in advance of execution time. This specification is known as a part program (in
numerically controlled machine tools), a robot program, a process program, or a motion
process plan. As a result of executing this specification, a manufacturing system should be
able to produce a part within the specified tolerance at the programmed rates within allow-
able variation, and, if needed, correcting or compensating for the dynamics and kinematics
specific to the kinematic mechanisms involved in its execution.

Traditionally, a (non-executable) motion process plan (typically specification of a path
and rate along that path, e.g., output of APT or APT-like output from CAD/CAM sys-

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constructor-destructor functions: Omitted for brevity

Accessor functions for following object members:
VelocityProfileGenerator * VPG

CoordinateFrame * baseFrame //in which moves are specified.
Coordinated Axes coordinated Axes

KinStructure * kinStructure //transformation between

axis coordinates and workspace coordinates.

ToolPart Transforms * toolPartTransforms

AxisSetpointsArray *axisSetpointsArray //size=num of axes in group.

Accessor functions for following data members:

int qSize

LinearVelocity feedrate //Tangential feedrate for linear moves.
ratio_measure feedrateVariationHi

ratio_measure feedrateVariationLo

LinearVelocity traverseRate

double feedrateOverride

LinearJerk jerkLimit

Boolean inPosition //Set when inPosition TRUE for all axes
Boolean newMotionRequest //Set TRUE when client supplies new ...
ACC_MODE accMode //enum

time_measure axisUpdatelnterval

Other member functions:

void feedHold()

void feedResume()

void estop()

void move(KinematicPath *kinematicPath, LinearVelocity *vel)
void traverse(KinematicPath *kinematicPath)

void setNextSetPoint(length_measure *dist)

Class-structure 5.1: Interface of class AxisGroup.

tems) is prepared independent of the machine tool on which it may be executed. A post
processor is used off line, ahead of time, to transform the machine-independent process
plan to a machine-specific part program. This early binding or commitment limits late-
stage flexibility in its allocation to processing equipment, or, conversely, renders the post-
processing investment obsolete if the required equipment is not available and the work has
to be assigned to some other machine. The accumulated lifetime cost of application soft-
ware obsolescence is far greater than the lifetime cost of the corresponding machine tool
controllers. Secondly, it forces use of conservative equipment parameters, or conversely
adds near-run time cost to “fine tune” the part program. Thirdly, it increases the risk
of producing a specification that exceeds the capabilities of the selected machine, because
similar machine tools differ in performance due to differences in aging and in the variety of
controllers typically retrofitted at different stages in the life of these machine tools. Again,
the cumulative lifetime costs of these compromises is far greater than the lifetime cost of
the controllers. Therefore, it is desirable to perform machine-specific transformations of a
machine-independent process plan at the machine tool itself. For example, to maintain the
specified tolerances, “overshoot” and “underReach” (Class Structure 3.4) must be limited
e.g., by modifying feedrates, calculating the distances for acceleration and deceleration.
This need was recognized decades ago, initially with the idea of performing post-
processing of APT or APT-like motion process plans at the processing equipment itself,
culminating in efforts to establish a new standard. However, its adoption and implementa-
tion was hampered, in part, by the limitation of the prevailing standards and conventions of

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

input interface to a numerical controller (EIA RS-274), the lack of a more suitable motion
specification interface, and the inability of prevalent machine tool controllers to execute such
specifications. The AxisGroup model specifies the needed interfaces between the controller
and the motion process plan. We introduce this specification with the move(...) function
of the AxisGroup class.

5.1.2 The primary function - move

The move(...) function (Class Structure 5.1) may be invoked after the appropriate
setup or preparatory functions have been executed. It sets its computational result in the
member axisSetpointsArray. It uses the KinematicPath parameter (Section 5.3) for geometric
interpolation and the vpg object (Section 5.2), for calculating the velocity profile. The
traverse() function calls the move() function with the traverse-rate as the LinearVelocity
argument. The move() function also causes invocation of the initAccDecProfile() function
specific to the type of kinematicPath.

The data members to be set before using the move(...) function are as follows:

coordinated Axes. The identifiers of the coordinated axes, set as part of the initial con-
figuration.

baseFrame. The coordinate frame relative to which the KinematicPath is specified, given
through the motion specification program or through a user interface.

kinStructure. The transformation between axis coordinates and workspace coordinates,
set as part of the initial configuration, and obtained from the machine tool model.

toolPartTransforms. Pointers to the three kinematic transforms (nominal, quasi-statically
calibrated, and dynamically compensated) between the tool center (work point) and
the baseFrame.

VPG. A pointer to the VPG object to be used, set as part of the initial configuration.

axisSetpointsArray. The size of the array is equal to the number of axes in the group
to hold a pointer to the axisSetpoints object for each axis — these pointers are set as
part of the initial configuration.

Rate parameters. The AxisGroup object must be initialized with safe or common-case
default values of jerkLimit, accMode (trapezoidal), traverseRate (0.0), feedrate (0.0),
feedrateOverride (1.0) feedrateVariationHi (0.0), and feedrateVariationLo (1.0). After
initialization, values specific to a move must be set before the move is initiated — the
values persist until explicitly changed.

Status variables. Various status type data members must also be initialized — inPosition
(TRUE), newMotionRequest (FALSE).
5.1.3 Flexibility through proper modularization

The role of the historic interpolators used in robots and machine tools is distributed
across a number of objects, in order to support reconfigurability through the least number
of changes necessary for a particular configuration. This reduction in number of items
to be changed is afforded through the use of Rule 1 (Chapter 2). Although a simple

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

numericaily controlled machine tool treats all axes to be coordinated at all times, in the
case of reconfigurable machine tools, the particular axes of a kinematic mechanism that
are coordinated for a move are not always the same. For this reason, we have modeled
the kinematic mechanism and the coordinated azes as two separate concepts. For example,
consider three cases of a machine tool with a reconfigurable spindle axisS as follows. In
case 1 (most common use case), axisS may be performing motion under velocity control
only, independent of other axes participating in the same tool-to-workpiece mechanism.
The spindle may be considered to be a group by itself. In case 2 (helix machining case),
axisS may be performing motion under position control and velocity control coordinated
with other axes in the same mechanism. The spindle is a part of this group only for the
interval that helical path generation is required. In case 3 (relocatable spindle), a spindle
may be indexed to a different location and become part of another group of axes moving in
coordination. At appropriate safe points in the work cycle, the group membership of axisS
may be changed by manipulating the coordinatedAxes member, and setting proper values
of other data members in the corresponding AxisGroup object. The application of Rule 1 to
other forms of modularization is discussed in Sections 5.3-5.5.

5.1.4 Modeling issue of move parameters

Should a move(...) function have self-sufficiency in its parameters, so that it does not
depend upon prior state information (statelessness strategy)? This approach is taken in the
NIST RCCL. Or, should it include the minimum number of parameters (only the ones that
change), depending upon prior specified values as default values (statefulness strategy)?
EIA RS-274 economizes on data transmission using the latter approach. These questions
are representative of a generic modeling issue.

The statelessness strategy makes it easier to implement the function — it makes the
external data used by the function explicit, minimizes the dependency on the class design,
and makes it easier to switch to other objects dynamically. The parameter data items have
to be stored and managed outside the AxisGroup object somewhere else in the application,
or they have to be retransmitted with each function invocation. The statefulness strategy
reduces the size of the function signature, which makes it easier to understand, and reduces
the likelihood of data entry mistakes in programming the application. It also reduces the
traffic volume in function parameter objects or their references. In both approaches, the
number of data items used by the function and the transformation performed by it remain
the same. In that respect, the design of the function is equivalent and there is no significant
difference in its execution efficiency.

We adopted the statefulness strategy for the following reasons. It clearly simplifies
the development of a common case application which does not require dynamic change
of AxisGroup objects. The parameterization used in the AxisGroup class design is based
on a mature motion engineering foundation (Rule 3), as discussed below. Therefore, we
expect these concepts to be stable. The immature aspect of the model is the grouping of
these concepts in the particular classes in our model. The model needs further validation
through actual usage. Further refinement and reorganization may be required. However,
the cost of moving data members from one class to another is not significant, as shown in
the development of the single-axis model (Chapter 3).

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Velocity profile generation

Given the velocities at the start and end of a path element and the required nominal
velocity and acceleration profile (ACC_.MODE) along the path element, the velocity profile
generator (Class Structure 5.2), computes the target tangential velocity at each point F;
along a path element Vi : 1 < i < n, where n is the number of axis servo loop intervals
occurring during the motion across the path element, i = 1 corresponds to the start of the
path element, and 7 = n corresponds to its end. A vpg object uses services and data from
a number of other objects in performing this computation, as described in the following
sections. Following Rule 1, it does not have within it any hard-coded computational knowl-
edge of various types of path elements, acceleration profiles, axis dynamic limits, and the
kinematic model of the machine.

Constructor-destructor functions: Omitted for brevity

Accessor functions for following object members:
AccDecProfile * accDecProfile

LinearVelocity Vi //initial velocity along the KinematicPath
LinearVelocity Vf //desired nominal velocity along the KinematicPath
LinearVelocity Ve //final velocity along the Kinematic Path

Private members:

length_measure instantX

length_measure instantY

length_measure instantZ

LinearVelocity instantVelocity

int step

time_measure samplingTime //Sampling time of the servo loops.

Class-structure 5.2: Interface of class VelocityProfileGenerator.

Motion rate parameters and limits: The FSM executing the functions of the Axis-
Group object sets the parameters corresponding to the type of process being executed, prior
to each move. The move function uses its velocity parameter and the preset values (e.g.,
feedrate override), and computes the parameters for the vpg. Recall that the Axis setup
model provided for setting dynamic limits, e.g., force, jerk, acceleration, deceleration, ve-
locity, (Chapter 3, Class Structures 3.4-3.6, B.3). Section 3.4.1 described how these limits
may be changed corresponding to the type of process being performed in a particular move
or sequence of moves. The FSM that executes functions of the AxisGroup object assigns
references to the appropriate// dynamicLimits, tolerances, and axisError objects for each
axis, thus applying motion constraints corresponding to the needs of the process, e.g., lib-
eral limits for idle traverse, conservative limits for machining, more conservative limits for
inspection, and so on. The vpg has references to these objects as well as the axisTravelCap
object (Class Structure 3.8), and uses the limits specified in them to calculate the velocity
profile of a move. The AxisGroup object must also check that the travel limits are not
violated in the requested move (remain within the soft travel limits in reverse and forward
directions). For this purpose, it also has a reference to the travelLimits object for each axis
(Class Structure 3.7).

Evolution of velocity profile generation The model has been prototyped and tested
for the trapezoidal acceleration mode. Other acceleration modes have to be programmed
and tested to evaluate the reusability of existing functions. The base class, VelocityProfile-

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generator, is directly usable for the one-axis case, as well as a multi-axis case. For example,
the same class is used in the JogHome class to jog or home an individual axis. Our proto-
type implementation has tested the model only for the case where velocity can be reduced
to zero. Blending velocity across path elements requires looking ahead to process the next
path element, an additional velocity profile generator object, changing the association of a
path element and a velocity profile generator object, and requiring additional exchange of
information across velocity profile generator objects. The model provides these capabilities.
However, ease of application has to be evaluated.

5.3 Path specification from client

The path of the work point is specified in the work space coordinate system, in a manner
consistent with the STEP entity kinematic path [22] (KinematicPath class in our model),
where the path is a chain of path elements, each of which includes its shape and accuracy
specification. As specified in STEP, a kinematic path may a composite path (CompositePath
class) or a single path element (PathElement class), and the latter may be specialized to
describe a point to point move (PointToPointPath class), a straight line move with velocity
in each dimension proportioanl to the distance moved along the line (LinearPath class), or
a circular arc (CircularPath class). Other specializations of PathElement may be added
in the future, for other path shapes. KinematicPath may be specialized for non-uniform
rational B-splines (NURBS) by adding the additional parameters specific to NURBS. Then
the function move(...) will receive a reference to a NURBS object as a parameter, and
perform the computations for the complete NURBS path specified. Thus, the move function
specification allows a very compact specification of motion along a free form path or a section
through a sculptured surface, e.g., in machining or inspecting dies, molds, aerofoil surfaces,
and blends across different surfaces of a turbine blade.

Special features of the path model: We extend the STEP model of a kinematic path
by adding functions for path-geometry related calculations along the path, so that it can
perform the geometric aspects of traditional interpolation. The function length() calculates
the length of the path. Given the total length of the path, the vpg (Section 5.2) calculates
the number of servo loop intervals, n, required for the move, and the displacement along the
path in each interval. The nextPoint(length_measure dist) function of the path element object
computes P;, Vi : 1 < i < n, given the cumulative displacement dist. This modularization
localizes shape-specific knowledge to the respective path class. For example, when a new
path shape is to be specified, a corresponding subclass is developed, with the functions
length() and nextPoint(...) specialized to that subclass. In the same manner, functions
related to velocity profile do not have to be implemented in the path class hierarchy.

Blending In the case where a sequence of moves consists of discontinuous path elements
and the nominal velocities in each element are different, compromises between the velocity
and path specifications are required at the juncture of adjacent path elements. These
adjustments in the move specification require a look ahead at the specification of the next
move. Consider the example of Figure 5.1 showing two successive moves: path element,
Ip1, from point, P1, to point, P2, at nominal velocity vfl, and path element, 1p2, from, P2,
to point, P3, at nominal velocity, vf2. A separate vpg object, vpgl and vpg2, is associated
with each path element, lpl and Ip2, respectively — vpgl an dvpg2 use the respective

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specification of allowable deviation, d1 and d2, from the nominal path to compute the
initial velocities, vil and vi2, and final velocities, vel and ve2, respectively. The objects,
vpgl and vpg2, exchange information to arrive at the same values for the final velocity, vel,
for Ip1, and the initial velocity vi2, for Ip2. If specified constraints cannot be met, an error
is returned.

—

vil

move (lpl, v£fl)

move (1p2,vE2)

Figure 5.1: Velocity profile blending across two path elements.

Buffering input There are several reasons for buffering input to the AxisGroup, e.g., to
provide look-ahead for blending, to prevent starvation, and to loosen the temporal coupling.
The data member, gsize, is used to specify the buffer size.

Source of base coordinate frame for kinematic path In conventional numerical
control, there is no unified way to specify the reference coordinate frame. The value of
a variable, part origin (or equivalent name), is supplied through the user interface. EIA
RS 274 provides the format to specify three planes of rotation of the work coordinates.
Extensions also exist to specify lateral inversion (mirror-image) of the work coordinates. In
our model, the data member, baseFrame, is provided to capture and combine the results of
applying the specification of an origin, plane rotation, and lateral inversion. Thus, software
conforming to this model has a uniform interface with more generality through specification
of any combination of rotation and translation. The transformations from the different forms
of user input to the baseFrame (Figure 2.2) are external to this model. This uniformity
improves the reusability of user-specified process programs and plans and makes them more
compact. For example, when processing multiple workpieces in the same setup, but in
different locations, or multiple recurring patterns on the same workpiece, the corresponding
repeating sequence of moves may be packaged as a routine that may be repeated simply
with the change in the baseFrame value.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Transforming workspace to axis space coordinates

The information for the transformation of workspace coordinates to axis coordinates is
encapsulated in a KinStructure object (Class Structure B.6) for the kinematic mechanism
in which the axes of this AxisGroup are kinematically related. Once again it is shown that
basic concepts, represented in class structures identified in developing the Axis model, are
reused in the coordinated motion of multiple axes. In the simple case of a machine with
three orthogonal translational axes X, Y, and Z, the motion specification coordinate frame
(the baseFrame) may be aligned with the machine tool coordinate frame, i.e., when the axes
are at their home positions, the workpoint is at the origin of the workspace coordinates.
Then kinStructure is an identity transform matrix.

Offsets of part or tool: Even in the simple case described above, often the actual
location of the workpiece or the effective work point of a tool is slightly offset from the
nominal specification — traditionally known as part offset and tool offset respectively. If
multiple workpieces are processed in the same setup or if several different tools are used in
processing a workpiece, then an offset is associated with each of them. Information about
the particular part and tool offset involved in the process at any time is brought into use
through the ToolPartTransform object — the offsets are treated as a Coordinate transform
and described through a reuse of the CoordinateFrame class. Basic kinematic errors and
thermally induced errors of motion are treated in the same manner, consistent with the
scheme devised at NIST [17].

5.5 Output to the axes

Given a P;, Vil < i < n, computed by the KinematicPath object, the setNextSetPoint()
function of AxisGroup applies the inverseTransform function of the (compensated) Kin-
Structure object to produce a set of values for axisSetpoints objects, corresponding to each
servo loop update of each axis.

Buffering output: The AxisGroup has the information to produce a sequence of axis-
Setpoints objects for each axis well ahead of the axes’ consumption cycle. The decision
about the amount of buffering is left to the application design. When the AxisGroup set-
NextSetPoint() function sets the respective axisSetpoints object of each axis directly, the
data is used within one servo loop interval. When AxisGroup transfers axisSetpoints to
Axis through a shared buffering option, it introduces a delay of one servo loop interval.
Larger buffering costs extra space, and incurs a higher risk of wasted computation in case
a discrete event requires a change in plan. Larger buffering loosens the temporal coupling
between the producer and the consumers. However, extra software is required to transfer
from the buffer(s) to the axes synchronously.

Interruption of motion: An interruption of motion results in setting the effective feed-
rate to zero, forcing the AxisGroup to produce the next setpoints for the axes to be the same
as the current setpoints. The FSM executing the AxisGroup sets the appropriate state, e.g.,
hold or emergency, associated with the interruption. A corresponding state changing event
is also sent to the coordinated axes.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Issues in exception handling

The AxisGroup object should also check for status, e.g., inPosition or exceptions, posted
by each axis under its coordination. We created the AxisSensedState class for making axis
status information available to interested clients, leaving it to the client to check the state
information and favoring design simplification in the hard real-time part of the system by
minimizing the reporting burden and variability in the axis task. Exception signals may
be generalized as discrete events that the client FSM should process. In our model, we
have provided one FSM for each task, and in our prototypes, we have mapped each task
into an OS process. Each FSM has an Exception state. In our tests, the AxisGroup object
has not been run as an independent task — it was run in a program that also has overall
coordination software. Thus, there is only one FSM for the task — there is no distinct FSM
for the AxisGroup. There is no software within the AxisGroup class to handle exception
type discrete events.

Currently, our model does not have an assigned responsibility to handle specific excep-
tions generated by the axes — exception handling is left outside the scope of the AxisGroup
class. A common general rule is that the client of a service should receive and handle sta-
tus and exception information. Although an AxisGroup object is a source of data to the
axes, in a reconfigurable system, it may not be the only source of axisSetpoints data, e.g., a
cross-coupling controller may be the immediate source of data to the axes. At times, special
monitors may be assigned the responsibility of checking status and handling exceptions. If
the immediate source of data is to receive and handle the exceptions, then the exception
handling changes every time the immediate source of data to the axes changes. If left to be
application-specific, exception handling could amount to significant level of effort, and also
result in non-uniformity, which, in turn, could cause significant integration labor.

5.7 Integration of cross-coupling control

Control involving cross-axis coupling (CCC) requires input of an AxisSetpointsArray
object from the AxisGroup and AxisSensedState objects from the respective axes.The CCCs
output is a corrected set of axisSetpoint objects for the coordinated axes. The structural
support for the data input and output exists in the model. However, there are several
unresolved questions in ease of integration of CCC. One issue concerns ease of turning CCC
on or off — representative of switching any auxiliary controller in or out. It involves a
change in dataflow, which could be time-consuming, as discussed next.

CCC in separate program

If the AxisGroup is in a separate program from the axes and CCC is added as an ad-
ditional program, then dataflow connections across processes have to be changed. In our
model, each of these processes would be an instance of some class derived from a Periodic-
Task class, equipped with Port objects to facilitate set up of inter-process communications.
Port connections with hard real-time tasks, e.g., axes, are established as part of a static
configuration step performed at startup, in a special state for configuration. We have not
attempted a switch to a configuration state from an execution state. In addition to a change
in port connections, it will require processing through an initialization step. In our exper-
imental prototyping, we have found these steps to be error-prone — trial and error was
required, and the resulting solution was hard coded. If each axis is running in a separate

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process, another task management issue is created — the CCC task (a producer) and the
axis tasks (multiple consumers) must run in a cyclic sequence. There are two aspects to
the task management issue. First, switching the CCC in or out changes the task graph —
some task management outside the OS is required to make this easy. Secondly, correctness
of timing must be assured, when such controllers are switched in and out.

AxisGroup Task

axSeEﬁ//t:

ccc |

| x-axSetp | | y-axSetp | | z- axSetp |
= e (- b] = || |
A - ’ A g : — -
I 1 i — 1 -
rTll= i rFli=
X task § Y task g Z task

axSetup=axisSetpoints
pos=axisSensedState-actualPosition

Figure 5.2: Retrofit of cross coupling control as a separate process.
CCC in same program as axes

If the CCC and all the axes are to run in the same program, the task management issue
does not arise — timing and synchronization issues are simplified. However, a change is

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

required to an existing, working program, when the CCC is initially added. The disad-
vantage of touching an existing program is that errors may creep in when the change is
made. In this case, the change consists of two parts (a) adding the CCC object,which is
simplified when CCC is a predesigned prechecked class, the style used in our model, and (b)
modifying the state machine, which is with our FSM model simpler than with conventional
programming, but it still requires testing after a change.

ccec
O =

‘ ZeaxSetp
z

~——‘x-ax$etp P———
x

XeaxSsS yeaxss Z+axss

X+pos ‘ ys.pos " zepos .
pver] o] =oeoed

axSetp=axisSetpoints
axss=axisSensedState
pos=axisSensedState -actualPosition
Figure 5.3: Safe, efficient, tightly-coupled integration of cross coupling con-
trol.

5.8 Recapitulation

We have shown that the AxisGroup model supports a larger number of configurations
for a limited number of concepts (modeled in object classes) than the alternatives cur-
rently available. It provides much more generality, reusability, and extensibility than prior
approaches.

The software architecture for multi-axis coordinated motion needs further evaluation for
ease of application development, particularly in the synthesis of an application-specific FSM
incorporating a variety of discrete events, e.g., dynamic swapping of objects and exception
handling.

Concepts reused from axis model: We have shown that our domain model is evolv-
able. It reuses and builds on concepts established in evolving the single-axis model. The
mechanical engineering foundation of measures was formally modeled while developing a
single axis model. It was used to develop the model of space, in combination with classes
for fundamental mathematical structures of matrices and vectors. Based upon the model
of space, we built classes for kinematic structures and kinematic mechanisms.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Variety of kinematic configurations: It allows the formulation of new configurations
of coordinated axes — not possible in current practice.

Ability to modify motion path specs: The model specifies a uniform way of modifying
motion specifications, more general than the approaches used in practice.

Velocity profile generation: The model needs to be tested for ease of application to
cases where blending across path elements is specified with smaller allowable deviations in
path and velocity. Evaluation studies are also needed for programming various acceleration
modes, to understand the adaptability of software classes developed earlier.

Kinematic transformations: The model needs evaluation for ease of application to
more complex cases involving offsets and geometric and thermally induced errors of motion.
This investigation is coupled with a related task of integrating the calibration of errors of
motion and correction for thermally induced deformations.

Integration of other controller tasks: Research is needed to make it easier to inte-
grate, switch in, and switch out controller tasks closely coupled with axes and intervening
between the axes and their coordinating AxisGroup object, as discussed above. It requires
investigation in the state transition path from the execution state through the configuration
state, eventually returning to the execution state. It also requires development of a configu-
ration tool that sets up the appropriate task graph, and application level task management,
including pre-scheduling, which uses the task graph, for proper sequencing of task releases.

Exceptions and other discrete events: Where should exceptions generated by axes
(and, in general, other objects) be checked and handled? How should such discrete events
be integrated without causing detrimental effects on the timing of any task in the system?
How can the associated programming and integration effort be minimized in a reconfigurable
system? These questions are not easy to answer in a reconfigurable control system, as
discussed above. However, if investigated specific to motion coordination in the near term,
it is more likely that an economic solution will be found — it could be followed by a longer
term investigation to generalize the approach to a wider domain.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6
External Inputs and Outputs

Machine tool controllers have a wide variety of external inputs from sensors and switches
and outputs to actuators, e.g., solenoids and motor drives. There is also a wide range in
the required sampling and update rates or timing constraints, and the degree of coupling
with various tasks and data in the controller. In the quest for maximum reconfigurabilty
for a given level of cost and complexity, our architectural objective is to cover the most
common cases by organizing software in a manner that reduces the volume and variety of
information needed by a developer. Our approach toward this objective is to search for
abstractions that allow a compact organization of information favoring the common cases,
while allowing extension to cover other cases. The model should also make explicit and
support automated reasoning about the sensed parameters. It should also ease reconfigu-
ration through reduction of errors discovered at integration time, the amount of effort and
level of skill required, and the duration of the development.

There are conflicts and tradeoffs between degree and ease of reconfiguration, as in other
software discussed earlier. However, these issues are exacerbated in external IO. First, most
external inputs arrive as untyped data, i.e., the data has not been organized and typed in
the same paradigm with compatible tools. Secondly, current practice leaves the semantic
interpretation of external inputs implicit; it is typically hard-coded in the application pro-
gram using the inputs: Therefore, it is not easy to use the same input information for other
purposes in later configurations. User-defined abstract data types alleviate the issue, but
tend to increase the initial learning and application effort. The use of abstract data types
and encapsulaton might increase the execution time or variation in timing also.

We encountered all these difficulties in our experimental investigation. We review our
model and discuss observations on the development process in Sections 6.1-6.3, expand
the application of the same concepts to user interfaces in Sections 6.4—6.7, summarize the
evaluation in Section 6.8, and present the status and further research needs in Section 6.9.

6.1 Servo sensors and actuators

Providing flexibility and reconfigurability in machine tool control software is most chal-
lenging in external IO for a servo control loop, because of the short time period (Sec-
tion 4.2.1), constraints on variation in the period (Figure 4.1), time-distance constraints
coupling the input, control loop processing, and the output (Rule 10), the relatively large
amount of processor time consumed cumulatively due to the high frequency of sampling
and update, and the associated overhead of task switching (Rule 16).

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1.1 Overview of IO interfacing software

There are three common types of Axis IO interfaces: a continuous analog signal (e.g.,
output of a tachogenerator sensing angular velocity), a pulse train (e.g., output of an in-
cremental position encoder), and a digital bit-pattern, byte, or word (e.g., input to a pulse-
width modulating amplifier). A trivial case of the bit pattern is a single bit signal, e.g.,
output of a limit switch or input to a bistable solenoid. In each case, some signal interfacing
device converts an incoming signal into a group of bits that forms the minimum transferable
unit, e.g., byte or word or double word. Similar signal interfacing devices convert the output
from the computer control system to a signal of the electrical characteristics needed by an
external output device.

The interconnection between the processor and the external IO device may also vary with
the hardware implementation, e.g., the ISA bus, the VME bus, the PCI bus. The interfacing
software must allow easy adaptation to any of the common existing buses, and extension
to accommodate any future communication path to a passive device. Here we confine the
scope of our model to passive devices of the type that map IO into memory. Thus, the core
function of the interfacing software is to translate variable names and addresses between
the application process and the interfacing device via the protocol of the interconnection
medium.

To preserve the correctness properties obtained by encapsulation, the application soft-
ware must not use memory addresses directly to access the external IO. However, the
indirection must not introduce variability in execution timing, and should not compromise
execution efficiency. There is a conflict between the objectives of data protection and ease
of reconfiguration on the one hand and, execution efficiency, on the other hand.

6.1.2 Device models

The interfaces to external devices hide vendor-specific and device-specific differences;
therefore, they may be called device drivers. The interfaces are modeled in three parts: a
master device (Class Structures 6.1), a slave device (Class Structures 6.2) and an intercon-
necting bus. A master device can acquire the bus (become bus master) to access another
device, whereas a passive device can only be interconnected through the bus, but cannot
actively access its services.

The MasterDevice class hides implementations of device accesses specific to a processor,
operating system, and interconnection medium. A subclass, CPUboard, specializes it to
processors using bus interconnections with other devices. The class hierarchy to this level is
abstract. The CPUboard class is further specialized to a vendor-product specific concrete
subclass, e.g., XVMEG674, which also inherits from the subclass for the type of intercon-
necting bus, e.g., the VMEbus class. The function GetBus(...) is used to acquire the bus
at a priority level specified by nLevel (the data type byte is the same as an unsigned char).
The enumerated variable mMode may alternately be assigned the value for privileged bus
access. The function ReleaseBus() releases the bus for use by another master device, if any.
Since the access and release of a bus are time-consuming operations, a single master system
may be initialized to acquire the bus — a release during operation is not necessary. The
functions Peek(...) read and the functions Poke(...) write a byte, word, or dword from (or
to) a specified memory location. Their implementation is defined in the appropriate sub-
class, e.g., XVMEG674, specific to the platform access restrictions and permission protocol.
The function Inport(...) reads a byte of data from the specified hardware input port, and

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the function Outport(...) writes a byte of data to the specified hardware output port. The
function SetTimeConstant(word nValue) sets the duration after which the access operation
is treated as a failure. The function SetBerrTC(word nTC) is used to flag the error. The
data types word and dword are the same as unsigned short and long, respectively.

Constructor-destructor functions:
MasterDevice();
MasterDevice();

Public member functions:

virtual void GetBus(byte nLevel = 0, BUS_ACCESS.MODE mMode = STAN-
DARD_BUS_ACCESS) = 0;

void SetBerrTC(word nTC);

virtual void ReleaseBus() = 0;

virtual byte Peek(long nAddr) = 0;

virtual void Poke(long nAddr, byte nValue) = 0;
virtual word WPeek(long nAddr) = 0;

virtual void WPoke(long nAddr, word nValue) = 0;
virtual dword DWPeek(long nAddr) = 0;

virtual void DWPoke(long nAddr, dword nValue) = 0;
virtual byte Inport(long nAddr) = 0;

virtual void Outport(long nAddr, byte nValue) = 0;

Private member functions:
word GetTimeConstant();
void SetTimeConstant(word nValue);

Class-structure 6.1: Interface of class MasterDevice.

SlaveDevice, an abstract class, provides accessor functions for a pointer to the Master-
Device object that will access the slave device and the base address assigned to the slave
device, corresponding to the hardware setting. It is specialized into three abstract sub-
classes: AnaloglO, CntTmrlO, and DigitallO. As in the case of master devices, each is
specialized to a vendor-product specific subclass which also inherits from the subclass for
its interconnecting bus.

class SlaveDevice

{ public:

SlaveDevice();

SlaveDevice();

long GetBaseAddress();

void SetBaseAddress(long nValue);
void SetCPUPointer(CPUboard *ptr);
CPUboard * GetCPUPointer();

}

Class-structure 8.2: Interface of class SlaveDevice.

The AnalogIO (Class Structure B.13) has additional functions to configure and initialize
it, accessor functions for the software gain of each port on the board, and accessor functions
for the digital value in a port. There are accessor functions for the number of ports,
word length, hardware gain, range, maximum value, and conversion time constant, but the
hardware-dependent settings have protected access only.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1.3 Device model development experiment

In the first stage of the device modeling experiment, we developed a set of abstract
classes and a starter set of concrete classes for a VMEbus family of master and slave de-
vices: MasterDevice, CPUboard, and their concrete class, XVMEG674, the class, Bus and its
concrete class VMEbus, the class, AnalogIO and its concrete classes, XVMES500 for input,
and XVMES530 for outputs, the class, CntTmrIO and its concrete class , XVME203, and
the class, DigitallO and its concrete class, XVME201.

Purpose of developing device interfacing software

In addition to the original purpose of providing a vendor-neutral, platform-independent
interface to access slave devices, a performance-improvement reason emerged after trying
out the vendor-supplied library for our testbed platform running under QNX. In the vendor-
implemented client-server model, the time consumed in each access was in the order of 1
millisecond, whereas our objective was to support data acquisition at 100 microsecond
intervals. Would the object-oriented model allow the execution efficiency required? We
needed an investigation to answer this question. The first implementation, using virtual
functions with several levels of indirection, resulted in an average read-access time of 100
microseconds. Although an improvement over the vendor-supplied implementation, it was
still too high for the project needs. Peek and Poke functions were revised to use lower level
bus access functions — the result is an average read-access time less than 35 microseconds.

Evaluation of device model

Although this access time is still larger than direct access under DOS, it satisfied the
more common data acquisition needs. We conclude that it is a reasonable compromise
between execution efficiency and flexibility, in view of the trend of continually lowering
processing time costs and continually increasing software change costs. One aspect of the
compromise is the dependence of the XVMEG674 class on certain hardware addresses specific
to a version of the processor module — the hardware may change in the future. The cost
of the change is limited to a change in the XVMEG74 class. Slave devices are protected
against such changes. The XVME class also provides an alternative to use the vendor-
supplied library. If the lower performance is acceptable, no change to the XVMEG674 class
is required — only the vendor-supplied library has to be updated.

The total effort in developing the classes mentioned above, including integrated testing
and performance improvement, was approximately 400 person hours spread over a 3-month
duration, interspersed with other non-related work. The developer, PA, had considerable
experience in device driver software, the VME bus system, programming in C and C++,
and UNIX, but not in the QNX operating system.

6.1.4 Device model extension experiment

In the second stage of the prototyping experiment, another concrete specialization, [P320
class of the AnaloglO class, was implemented. Its primary developer, PB, had no prior ex-
perience or familiarity with device driver software, the VME bus system, the operating
system, and the application. However the person had good programming skills in C and
introductory working knowledge of C++. Due to difficulties encountered, a second per-
son, PC, with prior education and experience similar to PB, was assigned to assist in the

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

development of the IP320 class.

Purpose of model extension experiment

The purpose of the experiment was to evaluate the ease of extension of the initial model,
recognizing that the first concrete class XVMES500 had influenced the generalization in the
AnaloglO class. The original developer, PA, was not available during the development of
the IP320 class.

There were several differences in the hardware. The IP320 hardware does not support
assignment of a different gain value to each channel (labeled port in our model) ahead of
time; however, a gain value can be assigned for the port currently selected for reading. The
issue is circumvented by pre-storing a gain value for each channel in the IP320 object. When
a port is selected through the function GetPort(...), this function calls an IP320-specific
private function SetPresentGain(...) to access the pre-stored value for that port; it sets
the gain through the public function SetGain(...) included in the AnaloglO specification.
Similarly, the utility of the GetGain(...) function is limited to the currently selected port.
A second difference arose in byte swapping (an issue peculiar to the use of Intel processors
in a VME bus system) — the XVME500 required byte swapping in the bus master enabled,
whereas the IP320 required it to be disabled. Since this option was selected in the BIOS
settings, the difference did not become explicit in the class design.

In the process of developing the IP320 class, some other weaknesses of the AnaloglO
class structure were also discovered and noted for future improvement. The analog input
channels can be set up as single-ended inputs or differential inputs. This difference had
not been captured explicitly in a data member of the AnaloglO class. It had to be hard-
coded. The voltage range of the input was also not explicitly modeled in the AnaloglO class.
Although these data do not affect the coding to read channels on the card, their omission
does leave the information implicit and unavailable for future automated reasoning about
properties of the incoming signal. The code was found to be inconsistent with the class
design model.

Development cost

Participants,PB and PC, developing the IP320 class were given time to familiarize with
the original device model, separate it from other software models, and make the model
consistent with the code. This time was approximately 50 hours for the two participants
(approximately equally distributed). The total time specific to the IP320 class was approx-
imately 130 hours (approximately equally distributed) of which over 80 hours were spent
in integrated testing — mainly in the discovery of the byte swapping option setting in the
BIOS. The class design time was 2 hours and the initial coding and unit testing time was
approximately 14 hours.

Evaluation of the model extension

The model and implementation for the master device and the bus were totally reusable
(the Peek and Poke functions were reused with no modifications). Although PA had spent
significant effort in the platform-specific details hidden within these functions, PB and PC
did not have to spend time learning about these details. The reuse of this software will
be very helpful to future developers too. The application software previously using the
XVMES00 class required little change when the XVMES500 was replaced with the [P320

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object (declaration change). The time used in the IP320 class design, coding, and unit
testing was reasonable, considering the developer’s inexperience. The extraordinarily large
time spent in integrated testing and debugging was attributable primarily to the obscurity
of the byte swapping option set in the BIOS, and secondarily to implicit differences in the
hardware of the two analog input devices. The class design model and documentation were
not sufficient in avoiding this cost. Implicit hardware dependencies must be documented
explicitly — the only means we have is textual documentation.

The device model described above provides interfaces for passive IO devices, typically
used in a servo-motion control loop or a high speed data acquisition process. The passive
IO interfaces may also be used for other applications.

6.2 Model of discrete control (on-off) devices

There is a category of discrete (on-off) devices, e.g., limit switches of class Switch, where
the state changes much more slowly than in servo-IO devices; thus, the sampling or update
interval is large. Often, especially in automotive machine tools, the number of such devices
is large. Therefore, a satellite processor (or multiple processors) may be used to access the
I0. If this processor is on the same IO bus as the main processor, it may be treated as a
master device in the model shown in the next section. If the [O-interfacing processor is
connected to the main processor through a network, the case is discussed in Section 6.3,
where the IO interfacing model is integrated into a general networked interface model.

6.3 Generalization of external 10

When an external IO device is interfaced to the main part of the application through
a network service, the main application does not communicate with the real IO device di-
rectly. A protocol is needed to identify the device explicitly and associate the data with
it. This protocol must be economical in its use of run-time resources. Proprietary systems
that supply the IO bundled with the main application often utilize implicit assumptions
to economize on the amount of information transferred. This approach is not practical in
RMSs, where IO and application components must be integrated from multiple sources at
different times in the life of the RMS. At the other extreme is the totally self-contained
self-explanatory message packet, as in general-purpose networked communications. This
becomes unnecessarily voluminous and consumptive of resources. Given that in a real-time
RMS, all communicating objects and their class specifications are known at configuration
time, we use this knowledge to devise a compact yet explict and complete scheme, based
upon the idea of externalization-internalization of objects when communicating across pro-
cessors. Inputs from sensors or outputs to actuators fit in this scheme.

6.3.1 The messaging scheme

We describe the messaging aspect of the domain architecture with an example of a simple
external input update of some sensor state. (The messaging of outputs is symmetrically
opposite). Then, we show how the scheme is applicable to generalized external inputs and
outputs.

Referring to Figure 6.1, an application process, R, is configured to receive inputs from
remote sensors and switches at an incoming port, P, (Class Structure 4.2) with buffered

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PortP event decoding table
‘o FSM -
L Transporterﬂ l
SwitchGroupl
update() Port POE 1sl II
eventCode 1si :flsl .switchState| 15N
8 Ms
-SwMsg :
- > :
E object 1 1sN i [IsN.switchstat
M %
o
[0} CommPortSM
3] Process R Process A
< (receives remote (Shared memory) (hard
“SwMsg inputs) real-time
: Switsgs object N control)
Remote Node Local Node

Figure 6.1: Message structuring and handling for efficiency

option, which causes a message queue mechanism to be set up through the CommPortMQ
object (Class Structure 4.3). The remote process sending the sensed signals connects into it.
If the remote node is not compliant with the system architecture, its proxy agent performs
these roles on its behalf. Process R has an object corresponding to each sensed input it
is designed to receive. Consider the example of an overtravel limit switch on an axis of
motion, for which the object, Is1, of the Switch class is created. As a minimum, Isl has
the accessor functions for the last value of the sensed variable, say setSwitchState(Boolean)
and getSwitchState() which returns a Boolean value. The object, Isl, is the server of the
value of switchState to other objects in Process R requiring the information.

The message structure

Port P is initialized with the MsgCode objects (Class Structure 4.4) corresponding to
each external input intended for it. Each message transferred to Process R has a correspond-
ing structure. Let the MsgCode object, corresponding to Is1— >setSwitchState(Boolean)
be named swMsgl. Recall that MsgCode has two data members — an eventCode and a
pointer to an object derived from the class ParameterListStructure. Process R has a data
object corresponding to each msgCode defined in Process A.

Encoding event identifiers: Every incoming message must map into some function of
some object in Process R. Therefore, every <object identifier><function identifier> pair
in Process R is encoded as an eventCode. For example, <ls1><setSwitchState> may be
encoded as 4501.

Structures to receive data: The architecture specifies a specialization of the Param-
eterListStructure class for the data structure corresponding to the sequence of the pa-
rameters of each function of each class. In the case of the Switch class, for the function
setSwitchState(...), which has only one parameter of type Boolean, the structure (say

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Is1State) is of class BooleanStructure. Thus, swMsgl has a pointer to a data structure of
type BooleanStructure. The message receiving function in Process R (eventPort->transfer)
writes the value of switchState at the pointed location for this BooleanStructure object.

Processing a message

The FSM of Process R examines the eventCode (4501 in our example) and maps it into
Is1— >setSwitchState(ls1State). In the general case of functions with multiple parameters,
each member of the ParameterListStructure is mapped into the corresponding parameter,
in order. The function Isl->setSwitchState(ls1State) is executed in accordance with the
state transitions specified in the FSM of Process R. Although we chose a trivial example to
illustrate this procedure, it is is a general event processing scheme.

6.3.2 Improving message handling performance

If there is a large volume of simple data updates and the ultimate receiver of the data
is a time-critical process that requires economy in execution time, steps in the procedure
may be distributed across intermediary processes, employing two types of performance-
improvement techniques — batching or aggregating updates and mapping updates into
shared memory. These techniques fit in the pre-existing software framework, illustrated in
Figure 6.1, as described next.

Batching data transfer and update

Batching updates implies the processing of a “batch” of messages, say swMsgs, in one
step of the FSM of the destination process, say A. We offload pre-processing of the batch
to a subordinate FSM in a helper process R. Consider a case with a number of objects, N,
of class Switch that are logically, geographically, and temporally correlated (same sampling
and update interval, which is much larger than the update interval of A). Furthermore,
their readings are taken, and collected by a common processing node, which transmits the
readings in a batch, at every sampling interval, to the same receiving node. We illustrate
how this pattern fits into the general messaging scheme with the following example. At
the destination node, a receiving process R (of priority lower than that of process A) is
set up with a port having a MsgCode object, say processMsgList, an object, batchProces-
sor, of class, BatchProcessor, specialized from the class FSM, and a swMsgs object of a
specialization of the ParameterListStructure class.

Referring to Class Structure 4.4, let
processMsgList-eventCode = 0701, and
processMsgList— >data = swMsgs,
where the event code 0701 corresponds to the function, process(), of the BatchProcessor
class. This function processes the event 0701 by processing each message in swMsgs as in
the example of swMsgl given earlier. As a result, the switchState member of each Switch
object is updated. Since the execution time for receiving and processing the processMsgList
object occurs in a lower-priority process R, process A is not directly affected with the extra
overhead incurred in communicating with a remote node or traversing through a container
object. This example was a simple case of batching updates of Boolean objects. The same
scheme is readily usable for updating other types of objects, e.g., integer or double. The
framework described above also supports the batching of dissimilar messages. Since different
applications may require different types of batching, the number and variety of aggregations

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

could be large, and the reuse of each aggregated structure, relatively small. Therefore, such
aggregations for external communication, e.g., swMsgs object are not a part of the domain
model.

Shared memory for updating sensed state

To transfer the updates from process R to process A efficiently, a pair of port objects is
set up between R and A with the shared buffering option. This results in the set up of a
CommPortSM object (shared memory) between them. The Boolean data member, switch-
State, of each Switch object in process R is mapped into shared memory. A corresponding
switchState object in process A is mapped into the same shared memory. A shared Boolean
variable is also used as an application-level semaphore — process R sets it indicating “re-
freshed” and process A resets it indicating “stale.” If process R finds it reset, it will update
the shared object.

xyz AxesTask
(example)

x Y z

\\ ’,.

Z___(axisSensedState shared as in x)

-
x-axisSensedState

shared

[
x-axisSensedState-actualPosition actualposicion

y-axisSensedState.actualPosition H
z.axisSensedState-actualPosition shared

et
T e : A
positionFeedbach] : — T _value] DEVICE
i H DRIVERS
- :
xyz FeedbackPort : C
! (example)
:axes IDTask
busg/network

Figure 6.2: Efficient update of shared, yet encapsulated, objects in hard
real-time control

6.4 Inputs from and display to users

Our generalization of external inputs and outputs applies to human interaction as fol-
lows. First we consider simple manual signaling devices such as pushbuttons. We model
them as specializations of the Switch class, to allow for differences in processing the signals
from different types of pushbuttons, e.g., “momentary-type”, “maintained-position type”,
etc. In all cases, the signal from the switch is transformed into an event that maps into
the function setSwitchState(...), as for limit switches discussed above. There are different
types of manual signaling devices with similar semantic intent — our model focuses on the
common semantics, e.g., the Switch class hierarchy. Still, a controller must be interfaced

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with the different signaling devices and must localize and isolate their differences. So we
apply the same concept of device drivers as for other IO devices.

Let us consider a case where the equivalent of the pushbutton signal comes from a
graphical user interface (GUT). Treating the GUI as a device, the device-specific software is
isolated in a class named GUIinput (Figure 2.4). It encapsulates the functions for receiving
the signals from the GUI and for transforming them into local msgCode objects (Class
Structure 4.4). The HMIinput object transforms the local msgCode objects into global
msgCode objects. The task in which it runs has the port through which the msgCode ob-
jects are sent out. Thus, the HMIinput object has no knowledge of the GUI device-specific
signaling, and the GULinput object is not aware of the rest of the system (Rule 1). Histor-
ically, it is common to customize a user interface to the application. This customization is
localized between the GUlinput and the HMIinput objects.

Since the application is also reconfigurable in RMSs, the set of services available in
a particular application, i.e., machine, will vary, even for the same machine over its life.
These changes cause a change in the global msgCode objects. In order to shelter the
HMIinput object from these variations, the encoding of the global msgCodes is maintained
in a “lookup” resource, equivalent to a table. A configuration-specific “translation table” is
created for translating a local msgCode into a global msgCode. The difference between the
local and global msgCode objects is the eventCode — the ParameterListStructure object is
the same between the local and the global msgCode objects. The local eventCode objects
are specific to the particular choices made between the GUI and the HMIinput. Thus,
the GUI component design decision is decoupled from the application system design for a
particular RMS (machine).

Simple displays, e.g., values of variables, are handled in a similar manner through the
HMIoutput and GUldisplay objects. However, not all user inputs transform into simple
one-to-one mappings onto objects and functions defined in the domain model. One such
case is discussed next.

6.5 Manual data input for numerical controllers

One form of user input provided in CNC machines is called “manual data input™ (MDI),
a command line (ASCII string) conforming to the EIA RS274D format. When the user
makes the preparatory selections for MDI, the HMIinput is correspondingly prepared to
send the ASCII string to the RS274Translator (Figure 2.4), which in turn uses the services
of a “SingleLineTranslator” to transform the command line into a sequence of objects un-
derstandable in the domain model similar to the local msgCode objects mentioned above.
We assign a special name to this type of a MsgCode object, “ControlPlanStep.” At this
stage, the eventCode is “local”, i.e., machine-independent. The sequence may be of length
one, in the simpler cases. The SingleLineTranslator hides details specific to the RS274
grammar (Rule 1). Then the local eventCode in a ControlPlanStep is translated into a
global code using the translation table mentioned above, resulting in a machine-dependent
ControlPlanStep. The task in which the RS274Translator runs has the port through which
the sequence of ControlPlanStep objects is sent out.

User inputs may be batched in a “script”, which may then be viewed as a stored sequence
of user instructions, known as a “part program.” Next we describe the transformation of
the part programming format specified in the EIA RS274D specification. Assume that the
user has made a sequence of selections that places the controller in the state appropriate

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for selection and translation of a RS274D part program.

6.6 Part program translation

Referring to Figures 2.2 and 2.4, when the user specifies a filename, the HMIinput recog-
nizes that the msgCode from the GUlinput is a request for a local service. The file system is
accessed and the contents (the part program) are transformed into a user ProcessProgram
object, which is a sequence (doubly linked list) of STRING80 (80-character string) objects.
Thus, subsequent processing steps do not use any code specific to the file system (reuse
of the principle of device independence and Rule 1). The ProcessProgram and STRINGS80
classes are derived from a third party class library — navigation and manipulation functions
are inherited and reused.

If the next user input is a request for the translation of the whole part program, the
HMIinput invokes the services of the RS274Translator, supplying it the reference to the
ProcessProgram object and the local to global translation table mentioned above. Using
its SingleLineTranslator, it produces a sequence (doubly linked list) of ControlPlanStep
objects, as in the case of MDIL.

The RS274Translator builds a machine-independent ControlPlan, consisting of the Con-
trolPlanStep objects and other data members that are “constants” for the whole ProcessPro-
gram. The ControlPlan serves as a FSM subordinate to the FSM invoking its services Thus,
the architectural pattern matches batched updates of external inputs described above. The
ControlPlan provides functions for controlling the flow through the ControlPlanStep ob-
jects, e.g., single-stepped sequence, iteration, and branching.

A ControlPlan may include subordinate ControlPlan objects, generalizing the “canned
cycle” feature in EIA RS274.

The combination of nesting and iteration compacts the specification of processing iden-
tical workpieces (parts) sequentially at different locations in the workspace, or the specifi-
cation of multiple machining passes on the same workpiece at different depths of cut, by
interjecting a change in the baseFrame value. Branching allows on-machine adaptation of
the ControlPlan. A branching condition may be based on the current state of the manu-
facturing process, which, in its simplest form, could be the value of some sensed variable,
and, more practically, some value derived from sensed variables and other data in the RMS
controller. First we consider some quasi-static applications of this feature. The decision
about the number of passes to mill a surface could be based upon the amount of excess stock
determined by sensing the surface before processing it. Similarly, the final pass specification
(depth of cut) could be determined by sensing the surface before the finishing pass.

There is no uniform means of specifying these manufacturing processes in currently
available formats for user inputs. However, since the specifications are static or quasi-
static, users devise indirect techniques either through additional machine control logic given
in the language of the programmable controller and executed by it, or through macros for
an EIA RS274 program that are pre-processed in another computer, or a combination of
these techniques. The ControlPlan allows users to specify the manufacturing process in a
uniform manner in one “program.” It also allows the specification of branching conditions
to be applied dynamically during machining, e.g., stoppage of motion upon sensing a broken
tool. In general, the ControlPlan is a construct that allows the specification of the order
and conditions for execution of any of the functions supported in a given RMS, i.e., all the
functions of all the objects in a particular controller. Its FSM allows the specification of

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

state-based constraints on allowable functions.

The nesting feature of the FSM also allows the specification of upper levels of the FSM
at earlier stages of application-development, progressively reducing the number of choices
available (and thus the likelihood of mistakes) at lower ControlPlan objects, specified at
the operational stages. At the operational stages, this feature may be used for “family of
parts progamming” — a techniques in which the structure of a part program for a family
of parts, is specified in an earlier stage ControlPlan and part-specific values are provided in
a later stage ControlPlan. A higher level FSM may also serve as the machine control logic
for the RMS, as discussed next.

6.7 Specifying control logic

It is common practice in CNC machining centers, turning centers, workstations, and cells
to execute the control logic for basic discrete on-off functions in a programmable controller,
commonly an entity distinct and separate from the numerical controller. Some reasons for
the historic separation were mentioned above. The discrete logic is “fixed” across all NC
part programs that will be executed on the machine. The traditional part program does not
require very close dynamic interaction between motion control functions and discrete logic
functions on the machine. However, the traditional separation has required two different
forms of programming paradigms, translation software, and execution hardware on the same
machine. The structure of the FSM does not distinguish between discrete logic functions and
continuous motion functions. Specifications in the IEC 1131-3 standard for programmable
controllers can be translated into the FSM, although we have not developed an IEE 1131-3
Translator.

Additionally, motion control and discrete logic can be integrated more closely. For
example, consider the case of the “tool is broken” signal S. It is integrated by adding the
necessary transition in the EXECUTING state for the event S.The effect of S is to execute
the specified action sequence and change state to BROKEN_TOOL. At the early stages of
evolution, the action sequence may be as simple as a single function of AxisGroup feedHold().
A later upgrade may replace it with a function that executes more aggressive stoppage of
motion.

6.8 Evaluation

Experiments in the development of software for interfacing external IO addressed several
questions. Does the OO paradigm and its use with fine granularity assist in the reconfigura-
bility and extensibility of I0-interfacing software? Can this approach support hard real-time
specifications of the servo-sensor loop?

6.8.1 Execution overhead of OO IO-interfaces

The experiments for the development of software to access signal-interfacing hardware
showed that the approach yielded reusable 10-access software, which allowed less experi-
enced personnel to develop extensions. The experiments also showed that there was an
execution time penalty. Further experiments were conducted with various task configura-
tions on the project testbed (an Intel486-50 MHz processor running under the QNX 4.23
operating system in a VME bus) to understand the impact of the larger execution time.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Software for external IO access was not the major contributor to the time-loading factor.
In one experimental setup, motion control software for three axes of control, including their
IO, was run in one process at a period of 10 milliseconds, with the system timing resolution
set at 50 microseconds. The timer interrupt handling accounted for a time-loading factor
of 0.35 approximately. The process execution time was between 150 and 300 microseconds
per axis depending upon the control algorithm used, accounting for a time-loading factor
under 0.1. Thus the total known time-loading factor was approximately 0.45. The load
from various OS processes could not be measured. In contrast, the time-load contributed
by the IO accesses (6 inputs, 3 outputs) was estimated to be under 300 microseconds per
10 millisecoad period, i.e., a time-loading factor of 0.03 — less than 8 percent of the total
known load on the processor. Under these conditions, the variation in the periodicity of
the task was limited to 1 unit of resolution almost half of the time, to 2 units, most of the
time, and to 3 units in the worst case. Thus, this experiment showed that a basic three-
axis motion control could be run successfully, utilizing well encapsulated, fine granularity
software for accessing external I0. The tradeoff between reconfigurability and extensibility
on the one hand and execution time penalty on the other hand was reasonable.

6.8.2 Feasibility of OO multitasking

In an extension of this experiment, a data acquistion process was added, running at a
period of 1 millisecond, with execution time estimated to be at least 50 microseconds, i.e., a
time-loading factor of 0.05 at least. A supervisory force-constraining control process running
at a 40 millisecond process was also added — its time-loading factor was significantly lower
than the other processes on the computer. The worst case variation in the periodicity of the
motion control process remained the same; however, the distribution became a little worse.
We estimate that the time-loading factor was approaching a critical limit. This experiment
demonstrated the feasibility of running multiple application tasks, composed with fine-
grained object-oriented software, cycling with different time periods, and managed by a
general-purpose real-time operating system.

6.8.3 Generalization of external IO

The concept of external IO is generalized to treat any external event as an external
input. A messaging scheme adapts more general techniques to provide timing economy and
predictability. This messaging scheme and the concept of device independence in software
are then applied to human machine interfaces (HMI). It shows scalability and flexibility in
the HMI application and reuse of the same architectural constructs.

6.8.4 Generalization of user inputs

The notion of HMI is extended to include scripts, part programs, and machine control
logic specifications provided by different types of users at different times in the lifecycle
of a RMS. A unified construct, the ControlPlan, is introduced for the various forms of
user programs. An RS274Translator has been developed and demonstrated. The resulting
ControlPlan has been used as input to the motion control subsystem.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.9 Status of architecture for interfacing external IO

We have developed specifications and demonstrated prototype implementations of in-
terfaces to the basic types of external input and output signals. Applications designed to
these specifications are protected against changes in the underlying operating system, pro-
cessing hardware, communication bus, and the signal-interfacing hardware. Software for
the processing and communication hardware and software for a signal-interfacing device
are independent of each other, i.e., the effect of a change is localized. This modularization
increased execution time cost; however, it was still possible to run a number of cooperating
processes in different task configurations, with task periods ranging from 1 millisecond to 10
milliseconds. We have demonstrated extension of the passive device model — inexperienced
developers were able to reuse prior software and add a specialization, without interaction
with an expert in device driver development.

Efficiency and flexibility in messaging: A messaging specification has been developed
for interfacing remote IO through a “foreign™ I0-process. This specification is generic — it
may be used to invoke any function defined in the domain model and the application. The
novelty in the messaging scheme is the balance between flexibility and execution efficiency
appropriate for the domain of machine tool control.

Improvements in the abstraction of signal-interfacing hardware are needed. First, depen-
dencies on hardware and BIOS configurations need to be made explicit. Secondly, emerging
patterns in on-board functions should be investigated and corresponding abstractions of
data and function members should be developed, so that cost of future specializations may
be reduced.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

Overall work coordination and distribution

Should a machine tool controller have a central overall source of coordination? The
answer is not clear from general software organization theory or practice. At one extreme
is the “decentralization school”, which claims benefits of maximum flexibility, reconfigura-
bility, and extensibililty. A new program may be added to the system without modifying
any other program. The new program in execution (we will call it an active object) fol-
lows some protocols specified in the architecture that allows it to find other active objects
and exchange messages with any of them. If the new active object cannot find or obtain
the resources it needs, it will not run. Each active object is designed to maintain its own
correctness, integrity, and communication with its activator (ultimately, the user). This
architectural concept is very attractive for RMSs.

However, can correctness of the overall operation be assured, even if each active ob-
ject assures its own correctness? Here, we define correctness as meeting overall system
requirements (which, by its very nature, is a centralized unit of information). How should
the overall system requirements be specified so that conformance can be evaluated? How
should these requirements be transformed into an overall system design so that confor-
mance to these requirements may be assured or evaluated? Similarly, how can a system
design be transformed into component design, e.g., design of the active objects, to assure
conformance? These are long-standing long-term research questions.

Since the addition of a new active object amounts to a change in the system, it must
be preceded by some change in the overall system requirements (a centralized unit of infor-
mation). We argue that the overall system design process is simplified by transforming the
centralized requirements into a centralized system design. The latter may be transformed
into decentralized components that conform to the centralized system specifications, includ-
ing protocols, and operate under central coordination, i.e., a single root of control.

We have formalized this concept in the form of a TaskCoordinator class — Section 7.1
introduces its role and responsibilities. It balances centralization and decentralization. Sec-
tions 7.2-7.5 describe its role in the control, coordination, and integration of a multi-machine
workstation, a simple machine, a user interface local to a machine, remote control, process
control, and discrete control. These coordination roles show how the task coordination con-
cept supports extensibility of the architecture. Then, we evaluate this coordination concept
by comparing it with the total decentralization alternative (Section 7.6). We will show
through counter-examples how the total decentralization concept increases design complex-
ity. In conclusion, we summarize the discoveries made in the software development process
(Section 7.7), and issues yet to be resolved (Section 7.7).

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Role and responsibilities of the task coordinator

The TaskCoordinator, a specialization of the Task class, coordinates all other tasks in
a single machine tool controller, e.g., motion, sensing, and various event-driven control
processes. Its main role is to manage overall control flow, through its FSM (Class Struc-
ture 4.5). In order to help in the integration of a control system, the TaskCooordinator
provides a unified systematic means of specifying and interleaving a discrete control action
and a continuous motion control action through its FSM. Procedure 10 summarize the role
of a top-level task coordinator (T'Ciep).

o Startup (possibly delegating to an agent).
Directly or indirectly:

— Create the next level of objects needed in the integrated control system, including
other tasks.

— Cause inter-task connections to be established.

— Set up all software resources needed in the system.

— Initialize objects, e.g., from persistent objects.

— Start all other tasks.

— Maintain overall system state and control flow:

* Receive “external” events:
- From human-machine interface (HMI) directly, or
- From user script or control plan initiated from a HMI.
* Process the events and transitions.
* Track system state.
— Control scheduling of tasks indirectly through their release.

o Shutdown (possibly delegating to an agent)

o Handle exceptions as a handler of last last resort.

Heuristics 10: Responsibilities of a top-level task coordinator.

Relationship to IEC 1131: A task coordinator corresponds to the root of a2 config-
uration in the IEC1131-3 software model [39, Section 1.4.1, Figure 1]. In an application
consisting of very loosely coupled subsystems, corresponding to a resource in IEC1131-3,
one or more such subsystems may have their own task coordinator, TC,ub. Some TC,ub
may have no motion control under it; it may have only discrete inputs, discrete outputs,
and Boolean conditions under its sphere of control. Then, it corresponds to the root of a
signal processing unit that specializes in logic control [38, Section 4.2].

Scalability and evolvability of a task coordinator: When the control system is sim-
ple, e.g., it consists of only one task, it is constructed as a TCy,p. All the software resources
for the system are created, initialized, and placed into execution within TCp.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When another task is added to the system, adding new functions (not moving any
functions from T'C;,p to it), then two types of modifications to TC}op are needed — additional
resources, e.g., a port or addition of msgCode objects to an existing port, and corresponding
transitions in its FSM.

A rudimentary task coordinator was added to the experimental prototype in Stage S6
(Table 7.1). It received external events from the user interface, as well as from a translated
user part program. In Stage S7 of the prototype, T'Cyp includes the capability to startup
other tasks and to cause inter-task connections to be established. With the improved Task
class, its FSM provides the framework to initiate orderly stoppage (pause) or shutdown and
to handle exceptions passed to it by other tasks. Other tasks, derived from the same Task
class, also have the same FSM structure, with an EXCEPTION state to handle exceptions
locally. If a particular task is unable to handle some exception, it notifies the exception
to the task coordinator as a message with the event code for that exception. When the
task coordinator receives this message, it performs the necessary action(s) and enters the
EXCEPTION state.

Stage | Change in configuration Effort
(hours)

S1 One-axis motion;

Wrapper around old pid control law;
Objectified IO interfaces;

3 persons learning, prototyping, debugging 300
S2 Multiple one-axis motions;

- Periodic task, incl Posix timer;

- GUI on separate computer, linked with ftp.

Learning time for new participant 145

Understand, port code from prior program 60

Code and debug motion program 90

Code GUI program; connect to motion program 44
S3 Multi-axis coordinated linear motion;

Fine-grained separate processes;
Wrapper around old interpolator;
IO drivers in separate processes;
shared memory IPC.

Total effort 325
S4 All motion-related functions in one MC process;
Multi-axis coordinated motion objectified

- wrappers around old interpolators;

Total effort 150
S5 Rudimentary task coordinator with FSM added;
Force data acquisition process integrated;
Force-constraining outer control loop integrated;
POSIX mq atop QNX messaging service inter-node;
Shared memory IPC intra-node.

Total effort 140
S6 Force data acq process on third computer; 16
FSM classes improved. 110
ST Changes resulting from changes in class lib 220

(Not run on machine tool successfully).

Table 7.1: Stages of developing test applications from class libraries.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Coordinating a workstation

Referring to the example workstation (Figure 2.1) and its stages of evolution (Sec-
tion 2.1.2), we show how the various functions in this workstation are coordinated. The
physical functions of the workstation, in its last configuration, are decomposed into five
parts, considering the degree of coupling, namely MC1, MC2, A-B, WC1, and WC2. A-B
is treated as a separate unit, because it may be coordinated with either MC1 or MC2 or
WC1 or WC2.

7.2.1 The organization of task coordinating software

Task coordinators are set up in a hierarchy as follows, so that each coordinated unit may
function by itself in some earlier-stage configuration. The whole workstation has a top-level
task coordinator, T'C,,, which has “direct software connections” with task coordinators,
TCme, for MC1, T'Cpe2, for MC2, TC,y, for A-B, TCre, for WC1, and TCpey, for WC2.
At the next level, TCpc has “direct software connections” with task coordinators TCpms
for MT1, TC:s for TC1, and TCym for TM1. Task coordination for MC2 is similarly
organized. The concept of static task configuration implies that, after proper initialization,
a task coordinator has information about the task configuration “downstream” of it — when
it receives a request for service (event), it does not have to perform an external search for
the server (provider of the service).

7.2.2 The flow of control

Our concept of control hierarchy means that the task coordinator controls the flow of
control for responses to received requests for service (events), through its FSM. For example,
in a particular state, it may cause redirection of all further events from a source to some
other task coordinated by it (delegation). Thus, a control hierarchy of chain-length L does
not necessarily imply a data flow path of length L (number of transmissions in the flow of
every message).

The delegate (task) can service only those events defined in its eventPort. If the delegate
receives an unrecognized message, its FSM raises or throws an exception which is caught
by its coordinating TC. The delegate’s FSM must have an exit state, in which control is
returned to its coordinating TC through a message.

7.3 Coordinating user interface

Let us consider how user inputs fit into the concept of organizing work in a machine
tool MT1. An example task configuration is shown in Figure 2.4, where the controller has
one task coordinator T'Cy,;; running in the process named “mainMotnCtrl.” In Figure 2.4,
HMIinput on Computer A performs the transformation of a user input into a message
as described in Section 6.4. The message is received at the eventPort of TCy,; causing
the occurrence of an “event.” The FSM of T'Cy,;; processes the event. In certain states,
e.g., configuration of a coordinated task “SupvForcCtrl”, the FSM of TCp,y redirects the
subsequent messages to the eventPort of SupvForcCtrl. When the user signals termination
of this configuration mode, an event occurs at SupvForcCtrl, which sends a corresponding
message to TCme; whose FSM exits that configuration state.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.4 Specification of coordination logic

Suppose that the workstation integrator provides its overall coordination logic conform-
ing to the [EC 1131-3 standard. Then, an IEC1131-3 Translator converts it to a state
transition table (STtable object) for the workstation-level FSM, say, ST,. If the control
logic for each of the coordinated machining centers and mechanisms is also provided in the
same form, then, the same translator converts that logic to respective STtable objects, say,
STme1s STme2s STap, STwer, and STyco. Similarly, the control logic for the machine tools
and mechanisms in MC1 and MC2 is transformed into STtable objects STn1, STme2, STtc1s
S8Ti2, STtmi1, and STymo. Starting from ST, the integrator may define a transition that
directs the flow of control to the next immediate subordinate task coordinator.

7.4.1 Reconfiguration for an evolving workstation.

Since the STtable is an aggregation of StateRecord objects, each of which is an aggrega-
tion of Transition objects, a static reorganizaton of functions and responsibilities is effected
by moving the respective Transition objects from one task coordinator to another. In the
example of the workstation (RMS) shown in Figure 2.1, in an early stage of its evolution,
there is only one task coordinator, T'C1, With the machine control logic defined in STy
— it serves as T'C,p. When the RMS is upgraded from a simple MT1 to MC1, TCp is
added, and the transitions associated with the role of T'Cy,p, are removed from STy, mod-
ified as necessary, and added to $Ty,.1- Upgrade of the RMS to the level of the complete
workstation involves similar changes.

7.4.2 Kinematic reconfigurations

An evolving RMS not only requires additional objects for sensors, actuators, controllers,
and coordinators, but also knowledge or description of its kinematic configuration. However,
there is no accepted definition of the functional, spatial, and kinematic boundaries of a
machine tool or workstation or cell. The term machine tool has been used for a complete
multi-station transfer line, as well as for a single-spindle, three-axis mechanism.

In the context of this research, we restrict the scope of a RMS to an automated machine
tool defined as a kinematic arrangement of devices that cooperate to process one or more
workpieces (parts) autonomously, using one or more tools to shape surfaces of the workpiece,
and, optionally, measure them to assure conformance to specifications, through unified
relative motion between a set of tools and a set of workpieces, as specified in a unified
process plan or program.

By “process ...autonomously”, we mean that, under normal circumstances, an auto-
mated machine tool performs the assigned processing of a part independently. Interaction
or coupling with other units of automation in the factory is loose. Due to the immense vari-
ation in such units of automation — the degree of “intelligence” in them, the capabilities
aggregated in any unit, and the kinematic configurations — there is limited commonality
across organizations and applications. As a starting point, this information model pro-
vides a base class Machine (Class Structure 7.1), with a minimal “device description level”
interface, from which various specialized classes may be derived, without losing the base
commonality.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Modeling a machine tool: We show how the knowledge about a Machine is represented,
building on concepts introduced earlier in Class Structure B.7. Referring to the definition
of an automated machine tool, given above, the ControlPlan is the “unified process plan or
program”, and the “kinematic arrangement” is formalized in the class KinMechanism. By “a
kinematic arrangement of devices that cooperate...” and “unified relative motion ...”, we
mean that a single “tool to part relationship” is being transformed. If toolA works on partA
and toolB works on partB and the two relationships 10oraTP*"*4 and ¢oo8TP*"8 are being
transformed independently of each other, the relationships are represented as two objects
of the basic Machine class. For more complex cases, the Machine class is extended to add
the members necessary to describe the kinematic relationships of the physical system.

The Constituents object is a container of objects in a machine (other than kinematic
objects included in kinMechanism), whose services may be invoked in a (machine-specific)
control plan. As a root of an aggregation tree, it allows compact identification of all the
needed objects.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
Constituents constituents

KinMechanism kinMechanism

ToolPartTransforms toolPart Transforms

Class-structure 7.1: Interface of class Machine.

Modeling a kinematic mechanism: The class KinMechanism (Class Structure 7.2)
models a kinematic mechanism as a network of other kinematic mechanisms identified in
the container kinMechanisms and their interconnections are modeled as Connection objects
(Class Structure 7.3), identified in the container connections. A connection identifies the
two connected KinMechanism objects (nodeFrom, nodeTo) and the kinematic transform
(placement) through the connection object. This network model is a generalization of the
D-H model [16] which is limited to a serial chain. The purpose of providing this detail
on line is to allow the specification of on-line kinematic reconfiguration. In the example
workstation of Figure 2.1, the unit A-B may be part of four different kinematic mechanisms
at different intervals of the workcycle: (X1, Y1, Z1, A, B) (X2, Y2, Z2, A, B), (WCl1,
A, B), and (WC2, A, B). In each configuration, the resultant kinStructure model (Class
Structure B.6) may be derived from the connectivity model. The container kinMechanisms
also includes the workholding and toolholding devices, the workpiece and the tool, so that
the same model is used to account for their offsets, when any of these objects in a kinematic
relationship is changed during the workcycle. These dynamic reconfigurations are specified
through a control plan for execution by the FSM of a particular task coordinator.

Corrections and compensations through the kinematic model: The ToolPart-
Transforms class allows for additional compensations to the kinematic model, e.g., when
the true position of the tool or the workpiece is known.

7.4.3 Coordination of remote control interface

A machine tool may be controlled remotely by a human or higher level automation in
the factory. The remotely accessible functionality is a subset of the functionality available
at the local user interface. TC},p (representing the machine tool) must be in a state in

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
KinMechanisms kinMechanisms

Connections connections

Connection connection

KinStructure kinStructure

Class-structure 7.2: Interface of class KinMechanism.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
KinMechanism nodeFrom

KinMechanism nodeTo

CoordinateFrame placement //transform

//from nodeFrom kinStructure_placementFrame

//to nodeTo. kinStructure.baseFrame

Class-structure 7.3: Interface of class Connection.

which “remote input” is allowed. The machine tool can be placed in this state only from a
local HMI, which is also authorized to remove the machine tool from that state.

Consider a case where the remote control unit is not conforming to this information
model. Then, remote input is represented by a task (OS-level process), say RCI, which may
be connected to TC;,p only in the proper state. If TCyop is in the state to accept remote
input, RCI checks the validity of the remote input, transforms it into a message conforming
to the application architecture, and sends it to T'Cip. If TCtop is not in the state to
accept remote input, RCI sends the appropriate reply to the remote control unit. TCip
accepts only one source of user input for initiating action at a time. Stopping commands
are accepted from a local source at any time.

7.5 Coordination of process control

We consider two cases of process control (Figure 2.4) where some computations are
performed on continuous signals at periods different from the motion control task period.
Therefore, these computations are set up in separate OS-processes.

7.5.1 Data acquisition:

The external signals (analog of one or more components of Force or Torque) are sampled
in Process DataAcq on Computer C at very short intervals in the order of a millisecond.
The raw data is given to two different data reduction computations. One computation is
very short and requires the current and previous readings only; therefore, it is performed
in Process DataAcq itself. The other computation requires a sequence of readings and its
processing time is longer; therefore, it is performed in a separate process named SignalPre-
processor. Process DataAcq places the raw values and the result of the quick computation
in shared memory to minimize the communication load on it and the resulting variation in
its timing.

7.5.2 Computation for force-constraint control:

The result of the quick computation is used by a force-constraint controller that has to
be run periodically at a longer interval; therefore, it is set up in a separate process named

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ForcCtrl. At every execution period, Process ForcCtrl has access to state information from
the Process MotionCtrl, and supplies to it the overriding motion parameter, e.g., feedrate
override, to maintain the machining forces within the process control limits. Processes Forc-
Ctrl and MotionCtrl communicate through shared memory to minimize the communication
load and resulting timing variation in the time-critical Process MotionCtrl. This compu-
tation may be viewed as a continuous process control loop operating as an outer loop for
motion control. It modifies a motion parameter, but does not alter the flow of control.

7.5.3 Computations for broken tool detection:

Process SignalPreprocessor reduces sequences of raw data to some compact form, e.g.,
parameters of a time series model and forwards the results to the Process BrokenToolDetec-
tor. The latter process uses this data in combination with other state information obtained
from the motion control process (through shared memory) and performs a computation to
determine if the tool is broken. If so, it produces a resulting message, e.g., STOP. This
message has a very high priority. The motion control process checks for this message at the
beginning of every execution period. If the message is found, it executes the corresponding
transition to stop motion quickly and switches to the appropriate state. The broken tool
detection and motion stoppage may be viewed as a form of discrete event control — it alters
the flow of control in the MotionCtrl process.

7.5.4 Work distribution

The decision about placing various computations in the same task or different tasks is
left to the particular application. However, we can draw some guidelines applicable to the
domain, using the example shown in Figure 2.4. These guidelines are applications of the
workload characterization in Section 4.2.2, Rules 11, 12, 16, and 17, and Constraints 8

In the example of Figure 2.4, Rule 16 is applicable. Task periods are small relative
to the system services overhead Toh;. The time-loading factor is high. Allowable timing
variation is low. In this context, we derive the following Rule 18.

Rule 18 When the time-loading factor and system services overhead Toh; are significantly
high, distribute computational work across tasks in a manner that reduces the overhead
Toh,, while meeting other application requirements and constraints.

All periodic closely-interacting computations that require the same time period should
be executed in the same task. Where computation intervals differ only slightly, application
re-engineering should be explored to commonize them.

Time periods of repeating work: Discretization of continuous signals or control pro-
cesses results in specifications of sampling and update intervals, primarily dependent on the
characteristics of the physical process or phenomena (Section 4.2.1, and secondarily on the
algorithms. If the application requirements thus derived allow some range on the choice of
the time interval, for computational economy, the control engineer may specify the longest
intervals possible, without compromising robustness. The computer implementation cannot
increase the time intervals. However, if several different computations have intervals that
are only slightly different, it may be possible to select the shortest interval as the com-
mon interval for those computations, provided the algorithms or their parameters can be
adjusted to match the change.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IPCs and task allocation: Applying Rule 16, time-critical tasks interact with other
tasks through shared objects, and closely interacting tasks are located on the same processor.
Message-handling across processors is delegated to helper processes — even though process-
switching overhead is increased, it reduces the timing-variation of a time-critical task.

7.6 Evaluation

One aspect of this research investigated difficulties in developing, configuring, integrat-
ing and reconfiguring a multi-task application, composed from a given set of classes. The
purpose of this investigation was to discover the effectiveness of the chosen software devel-
opment approach, and to identify the gaps in reusable resources, e.g., class libraries. The
investigation was conducted through a series of experimental prototyping stages (Table 7.1).

The testbed evolved from a system that had only one application task (as an OS-process)
running while motion was operational (Table 7.1 Stage S1). One axis was moved under a
pid control algorithm, for which the code was obtained from a previous program used by
Group A, and “wrapped” with a C++ interface. The IO hardware and software was new.

In Stage S2, axes IO operations were executed in separate OS-processes. However,
timing relationships varied beyond acceptable limits (Rules 10). Also, a GUI task was added
on a separate computer (Figure 2.4, Computer A) because the capacity of one computer
was not sufficient for the additional GUI workload. Each task had to be started manually
separately.

In Stages S3 and S4, POSIX mq service was used for communication between the GUI
and the motion control subsystem. However, mq was not accessed during motion.

In Stage S5, processes for force data acquisition and force-constrained control were added
on Computer B with shared memory for IPC. Priority of the force data acquisition process
had to be lowered (contrary to RMA guidelines) to allow the motion process to run properly.
The larger variation in the sampling interval of force data acquisition was more tolerable
than variation in servo loop intervals. A reconfigurable FSM was introduced in the main
motion control process.

In Stage S6, force data acquisition was located on Computer C. POSIX mq service was
used for all IPC. However, mq accesses were associated with unacceptable period timing
variations in the motion control process and in the force data acquisition process. A rudi-
mentary task coordinator was added, and the FSM was improved. However, other tasks
were still started manually. The additional run-time overhead of adding a reconfigurable
FSM was not significant in relation to the system services overhead and total time for IO
accesses.

In Stage S7, there were significant revisions in the classes related to measures, space,
kinematics, and axis control. Coding defects in measures and space related classes resulted
in memory leaks, which prevented a successful run on the machine tool.

Setting up tasks and IPCs is costly: The development experience in Stages S3-S6
showed that setting up each task and the IPC involved much more effort than the coding of
the functions that performed the main work. Learning to set up a task took several days.
Learning to use each IPC (mq or shared memory or signaling) took several days. Setting
up an instance of an [PC mechanism took half a day. The development effort was measured
as follows. After several participating developers had already performed these steps, and
reported acceptable “ease of use”, a new participant was given the assignment of setting

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

up additional tasks and IPCs (mq and shared memory). The participant was a computer
engineering senior undergraduate student, ranking high academically, who had previously
taken courses in operating systems, data structures and algorithms and C++/C program-
ming languages. The participant had been programming in the testbed environment of
this project for several months. The participant was supplied all the documentation and
reference software produced previously. After several rounds of setting up different periodic
and aperiodic tasks and instances of IPCs, the participant was asked to note the develop-
ment effort required in setting up a correctly working task and an IPC instance. Then, the
participant was asked to analyze the main issues requiring effort, and suggest improvements
in the development process, resources, etc. Two leading consumers of effort were identified:
(1) setting up the IPCs, and (2) investigating timing problems. As a result, the Task class
structure was revised, classes were added for IPCs, and period timing specification and
service. The task coordinator was evolved to the next stage to assist in setting up IPCs.

Defects in classes for measures and space: Group A attributed the defects to inad-
equate, off-line pre-testing of the changed code. This pre-testing would have also required
test suites simulating the real applications. Further analysis revealed that objects were
multiplying unnecessarily, i.e., a new object would be created in every cycle unnecessarily.
The code was revised to eliminate this problem. In consideration of safe design, and in
the interest of eliminating timing variations due to memory allocation and deallocation, a
guideline was given to create all the needed objects at startup and initialization, limiting
dynamic creation and destruction only where necessary for the application.

Comparison with the decentralized alternative: It may be argued that an addition
to an application would be simplified if a top-down, centralized style were not used. We
contend that this “saving” only pushes the effort downtream, and support our contention
with the following example case.

There is a style of organizing software (from the Smalltalk model), in which every object
in the system has the functions to display or “present” itself and interact with the user.
This style reduces the labor of building and maintaining a user interface. Whenever a new
object is added, it “knows” how to present itself — no effort is required to build a “central”
user interface program. This style is not suitable in a hard real-time control system for a
number of reasons, discussed next.

Objects executing in hard real-time cannot be burdened with arbitrary addition of GUI
workload — a premise well accepted in machine tool controllers (this project has supporting
evidence too).

Secondly, the hard real-time processes and the user interaction processes may be op-
erating under different environments on different platforms, requiring externalization and
internalization of objects.

Thirdly, all functions of an object should not be made accessible to all users. Many
functions are provided for diagnosis and debug of the control system, reconfiguration, setting
servo-control parameters, etc. intended only for qualified personnel under restricted modes
of access. Application-developers may wish to restrict access further. Qur messaging scheme
and protocols defined for each port of each process address these needs.

Fourthly, the user requires a presentation limited to the focus of attention, an arrange-
ment that follows the flow of control, and timely intervention in the display by critical
events. Self-displaying objects do not assure that the user’s requirements will be met. An

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

integrated (top-down) user interface design is needed.

Event registration service: Another aspect of the decentralized style is dynamic event
announcement and registration. Every process “advertises what it has to offer.” “Inter-
ested” processes register with the advertiser for delivery of the produced information or
notification of future events. This approach simplifies IPC design significantly. However,
it imposes an unpredictable workload. Therefore, this architecture does not use this style
during hard real-time operation. An event registration service is provided for startup and
initial setup. The same building blocks may be used for future consumers of information
produced by the hard real-time system, to modify static configurations. However, after all
clients are registered the performance of the system should still be evaluated to assure that
time-critical operations meet their speciifcations.

7.7 Status of architecture for coordinating tasks

When computations in a machine tool controller are distributed across several programs,
the application system design becomes a much more complex activity, requiring signifi-
cant application-specific engineering effort, much of which is spent in testing, “tuning”,
reworking, and debugging issues associated with inter-process communication, correctness
of process sequencing, and timing. In order to support a variety of requirements (function-
ality, scalability in performance and cost ...), the application-design stage should have the
flexibility of distributing work across a variable number of processes and processors.

7.7.1 Findings

General guidelines of work distribution are not adequate in reducing the effort and du-
ration required to develop a hard real-time system, such as the one described in Figure 2.4.
The use of “prefabricated” components (class libraries) for machine control domain-specific
functions in building applications has also not been adequate in reducing the application de-
velopment effort, because a larger proportion of the development time was spent in building,
testing, tuning, and debugging the application programs.

When the control system is in the execution state, ready for regular operation, the
inter-process communication protocols are simple — mostly of the single producer-single
consumer pattern, and in some cases, of the single-producer multiple-consumer pattern.
Yet, the programming of interprocess communication functions and the debugging of timing
problems has been a time-consuming process, especially when the time-loading factor is high
and a significant proportion of this load is associated with the use of system services.

During normal motion and machining operations in traditional machine tool controllers,
there is little change in control flow. The domain architecture developed in this project pro-
vides systematic means of intervention in the execution of process programs when warranted
by process state conditions sensed in real time, e.g., tool breakage. This intervention avoids
the use of disruptive system services such as interrupts, in order to simplify the timing
issues of application design.

7.7.2 Future work

Additional research is required to develop rules, guidelines, and tools that make it easier
to assure correct timing and ordering of execution in a multi-tasking system.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Determination of event-processing order: When external inputs arrive into a process
from multiple sources, how should their order of processing be determined? The underlying
IEEE 1003.1b services only provide priority-based FIFO ordering for message queues and
for scheduling processes. Domain-specific rules should be developed to specify the ordering.
An application-level service should be developed to enforce the specification.

Priority assignment for periodic processes on same node: A related issue is the
assignment of priorities to periodic processes with different time periods. RMA suggests that
the process with the shortest period be assigned the highest priority and progressively assign
lower priorities to other processes in the ascending order of their periods. Although this
guideline simplifies process scheduling, it does not always reflect application requirements
properly. We found a counter-example. The servo-process must run at a period of 10
milliseconds, with very little tolerable variation. A force data acquisition process has to run
at a 0.5 millisecond period, but a larger variation is tolerable. Under RMA guidelines, we
should assign a higher priority to the data acquistion process, but it causes unacceptable
variation in the servo-control loop timing. RMA does not allow us to take advantage of
the larger timing tolerance of the data acquisition process. This is a common case where
the data acquisition process serves secondary monitoring needs, or the data is subjected to
filtering, smoothing, or other reduction process, or where the reduced data is used in an
outer longer-period processing loop.

Assuring run-to-completion semantics: IEEE 1003.1b does not explicitly specify a
scheduling policy that will assure run-to-completion semantics. Some applicaton-level ser-
vice should be developed that can work with commercially supplied POSIX-compliant
scheduling policies, to assure run-to-completion semantics for time-critical processes, in-
cluding processes that use shared memory resources.

Time cost model of OS-services: For specific (static) task configurations and repetitive
(cyclically constant) workload, a time-cost model of OS-services would help in reducing the
time to develop and validate a particular controller configuration.

The time cost of a service determined experimentally in isolation is not adequate, be-
cause it tends to be the best-case value, which increases substantially when the OS has
multiple requests pending for service. A general model is not feasible, because of a multi-
tude of dependencies on the application conditions. However, a characterization is possible
for a particular configuration pattern. In this manner several common patterns for machine
control could be characterized.

Exception handling: Even after developing the technology to design and validate sys-
tems for the normal case, a major gap remains in designing for the impact of exception con-
ditions. When changes in control flow are required in multiple FSMs in multiple processes
on multiple computers, assuring correctness of results is very difficult. These problems re-
quire research in several time horizons. In the near-term laboratory experiments are needed
to identify the dominant factors. In the mid-term, field research is needed to characterize
common cases and patterns. In the longer term, theoretical models should be developed
and validated for use in future system design.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Software lifecycle economics: Long-term studies are needed to evaluate the efficacy
of an architecture that supports reconfiguration, and to determine the boundary of the
domain of applications or configurations that can be economically supported in a domain
architecture.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8

Conclusion

Emerging reconfigurable manufacturing systems require reconfigurable control systems.
With the technology of controller software design in practice today, the needed reconfig-
uration is very difficult, i.e., the process is error-prone and the required effort, skill level,
and duration amount to a prohibitively large and unpredictable cumulative cost. Most
commercial control systems would require substantial re-engineering to satisfy the general
needs identified in this project. We investigated an extensible domain-specific architectural
model to ease of reconfiguration. Application of this approach to machine tool controllers
is novel, and to hard real-time systems, in general, is a very early stage effort in a field
requiring long-term research.

8.1 Research contributions

This project demonstrates a process of developing requirements specification for an
application domain by generalization from a specific case. Chapter 2 introduces a synthetic
case study to describe reconfigurations required in the evolution of a highly automated
machining workstation. The case is synthesized to be representative of similar needs in
many manufacturing systems in current use. Each reconfiguration need is over-generalized
to include many other similar applications.

Section 2.2 formalizes a method to systematically derive reconfigurability requirements
from a specific case. The method takes advantage of the property that machine tools are
engineered systems, whose design is based on a mature body of engineering knowledge.
The method draws upon domain-independent mathematical and computational structures
and organizing principles for analysis, abstractions, and clustering. These generalizations
are evolved iteratively into subdomain models, which are reviewed with domain experts.
The domain and subdomain models are expressed in the object-oriented paradigm, in the
form of classes and class graphs that capture interaction patterns. A key architectural
modeling decision is to separate task structuring as a later stage of the software engineering
cycle. Chapters 3-4 apply the requirements and modeling principles to an axis of motion in
several iterations. In the process, several generic subdomains are discovered and modeled.
Chapter 5 builds upon these models and applies the same principles to organize software
for coordinating multi-axis motion. Chapter 6 focuses on external inputs and outputs
for machine control and generalizes the model to other human machine interaction and
information exchanges across independent programs. Chapter 7 extends earlier organizing
principles and models and applies them to distribution and coordination of computational

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

work in an integrated control system.

Interface specifications for software components are developed on the scientific founda-
tions of the object model, for the structural and static aspects, and the finite state machine,
for dynamic aspects. Software conforming to these specifications has been prototyped and
demonstrated in software development experiments with over twelve participants in the con-
struction of the class design model, its implementation, unit testing, integrated application
testing, and demonstration of motion control on a machine tool testbed.

It was demonstrated that participants with very limited domain knowledge and software
development experience could develop and maintain software for the library classes. The
class-level modularization and organization of information reduced the learning time for
new participants. However, the class model or application programming interfaces (APIs)
by themselves were not sufficient information for other participants to apply the classes
independently. Additional textual documentation and example applications were required.

Test applications were structured as a set of cooperating tasks for ease of reconfigura-
tion. However, significant amount of effort was required in setting up the task structures,
inter-process communications, message structures, and timing relationships. Although the
0O and FSM model of software organization made application reconfiguration easier, these
paradigms and general software engineering principles were not sufficient in making the
application development process simple and predictable. Additional heuristic guidelines,
rules, and constraints developed in this research were helpful in further reducing the diffi-
culties of application development and reconfiguration. Considerable more effort is needed
before advanced hard real-time machine tool control applications can be developed and re-
configured reliably and economically from software modules sourced from diverse providers
at different stages in the application lifecycle. Some research requirements found in this
project, representative of the early stages of a development cycle, are described next.

8.2 Future directions

Our experiments in the development of software modules and applications using these
modules in various configurations have revealed a number of opportunities for improvements
in the efficiency of the development cycle. A combination of near-term, mid-term, and
long-term research endeavors are needed to reduce the cost of composition, customization,
reconfiguration, and integration. Two common threads run through the various aspects of
further research. First, the research testbed should be upgraded with incremental exten-
sions and refinements of the software class library, to evaluate ideas that reduce application
development effort, increase reconfigurability through multi-sourced software modules and
platform services, and scalability in functions, performance, and cost. Secondly, there
should be careful record-keeping of the development experience at each stage - effort, du-
ration, and difficulties encountered. The logged records should be analyzed to evaluate the
efficacy of various modularization ideas in providing end-use economic benefits, reusability
and extensibility of the modules, the necessity, sufficiency, and testability of their specifi-
cations, and the transferability of the knowledge required to build reconfigurable machine
tool controllers. This is a long-term, multi-disciplinary research thrust, including field re-
search to continue the monitoring and evaluation of reconfigurable controllers over their
technologically and economically useful life. Some specific research issues are summarized
next.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initialization of information specific to a machine tool: Support for persistent
objects for data that is constant from run to run can reduce the amount of effort required to
initialize an application. Current practice uses a “configuration file.” The user supplies the
persistent data as ASCII strings in this file. The application code converts the strings into
values for its corresponding data variables. A modest development effort is needed in string-
to-object and object-to-string conversion functions. Ease of configuration research issues in
the near-term include determination and validation of the most cost-effective approach to
provide persistence — types of tools and forms of user input (e.g., spread sheet templates),
tools to convert the user input into persistent objects (e.g., custom stand-alone program or
an object-oriented database management system with an application program), and tools
to transfer the objects from the user-friendly environment to the hard real-time subsystem
(e.g., classes encapsulating rpc services specific to this domain, or more general services
such as CORBA, or environment-specific services such as OLE).

Automated accessibility to interface specifications: A related near-term research
issue is the accessibility of the class models (interface specifications) to application software,
e.g., the OMG Interface Repository. It would help reduce the effort required in building
message structures — our architecture specifies inter-process message structures that corre-
spond to object-function signatures. The process of building the message structures requires
user entries of information that is substantially a duplication of information provided in the
class descriptions. In addition to the expenditure of effort, the process also leaves room for
inadvertent errors in mismatches in the order or type of the parameters. This process could
be semi-automated if class descriptions created in our model were accessible to message-
structure building software — in current technology, class specifications (e.g., C++ header
files) are economically accessible only by the compiler. Such a database could also be used
by configuration tools. The research issue is the determination and validation of the most
cost-effective form of this database — some candidate alternatives are the database of a
CASE tool with an application program to query the database and an OODBMS with
application programs to create, update and query the database.

Completeness of configuration specifications: What are the specifications on a con-
figuration that can assure an implementation with correct performance under the manage-
ment of OS services conforming to the IEEE 1003.1b? Although the specifications developed
in this thesis reduce the configuration development effort, this question is not answered.
Within the capabilities specifiable through IEEE 1003.1b, OS services do not guarantee the
semantics of time-distance relationships required by data acquisition and continuous pro-
cess control applications. Existing techniques to analyze schedulability focus on meeting
deadlines — they do not assure time-distance relationships (upper, as well as lower bounds
on latencies).

Domain-specific pre-scheduling: A near-term research project should develop the ca-
pability to construct an application-level precomputed fixed schedule and task release-
control, focused on the inter-process interaction patterns identified in this thesis.

Interprocess interaction patterns: [teratively and incrementally, this capability should
be extended, with related research that identifies more inter-process interaction patterns
commonly found in the hard real-time subsystems of this application domain and provision

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of correspondingly specialized IPC objects. While our basic producer-consumer pattern of
a fixed sequence cycle is required in many cases, it is overly restrictive in other cases where
slight latency is tolerable. To take advantage of the decoupling afforded, one enabling near-
term development is a circular buffer in shared memory with a monitor on the consumer’s
lag, which could allow efficient IPC and catch a violation of the latency limits. The cost
of creating such an object could be amortized over many applications by designing it as a
reusable, adaptable resource, i.e., a generalized circular buffer class with a built-in monitor.

Time cost model of basic OS services: Unfortunately, monitoring the lag of a con-
sumer process for latency only catches a failure — it does not prevent the problem. The fixed
sequence precomputed schedule and release time control can only take limited advantage
of the allowable latency. To take advantage of any more scheduling flexibility, a perfor-
mance model of the OS services (e.g., time cost modeling of interrupt servicing, signaling,
messaging, semaphores, process scheduling) is needed. When focused on the configuration
and communication patterns specific to this application domain, the OS performance char-
acterization is a mid-term research endeavor. In general, broadening the domain to allow
for more involved communication patterns, extends the OS performance characterization
problem into a long-term research issue.

Composing and reconfiguring state machines: A key factor in easing reconfiguration
is the user-specifiability of control flow. A number of open architecture controller projects
have focused on APIs, and some include fixed state machine specifications for the behavior
of certain functions. However, we have discovered that considerably more effort is spent
in composing and reconfiguring applications, even with a full complement of library com-
ponents in hand. To facilitate the composition of applications, we have developed library
classes to build user-reconfigurable state machines. Further research is needed to evaluate
this approach for development efficiency, execution efficiency, and testability for confor-
mance to user requirements. Accomplishment of the ease of reconfiguration objectives at
the motion coordination level is a mid-term research effort, and, at the servo-sensor level,
it is a longer-term effort.

Reconfiguration studies in the field: While a laboratory research testbed is very useful
in controlling conditions of the experiment, they offer limited utility in external validation.
Therefore, instrumented prototype control systems should be placed in the field in working
conditions more representative of a real controller life cycle, so that costs and benefits may
be understood better, and new requirements may be discovered.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDICES

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

Assumptions about the industrial environment

Following are the assumptions made about the industrial context in which the control
development process and architecture fits. Factors affecting machine control software pro-
ductivity in industry are characterized in terms of Boehm’s cost drivers [10], i.e, computer
(development platform) attributes, project attributes, and personnel attributes (profile of
the developers), the number of potential applications, product attributes (typical applica-
tion functions).

A.1 Computer attributes

Boehm uses this term for the development platform. The PC is the predominant plat-
form for development, formerly under DOS, predominantly under Microsoft Windows, and
rapidly being replaced by NT. The hardware platform for development is not a constraining
factor. Therefore, we assume that a developer has access to a PC with ample memory, when
needed. The main issue in development is the software environment, discussed next.

A.2 Project attributes

Following is an assessment of the state of practice in software development, given in
terms of software process maturity, programming language, tools, and work scheduling
patterns.

A.2.1 Modern programming practices

The software process in the controller supplier industry is at Level 2 of the Capability

Maturity Model (CMM) [45]. Additions and integration in the field, e.g., to retrofit sensors,
are at Level 1 of the CMM.
Software targeted for specialized processors is typically developed under correspondingly
specialized tools. The C programming language has been the de facto standard in this
industry. Specialized libraries are used for software to run on specialized processors. Device
drivers are typically interfaced in an assembler language. C++ is being used increasingly, at
least as a better C. Java is being introduced in the non real time functions of a controller.
Little investment is made beyond the engineering of the current project — software is
typically designed for the current product only. Due to budgetary constraints, requirements
for the future are not well-engineered into the design for the current product.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Issue: Compilers that run on the PC and produce code to run on a specialized processor
under a specialized operating system are available from limited sources only; their capability
is limited.

A.2.2 Use of software tools

Typically CASE tools are not used in this industry. There is little support beyond the
programming language and associated standard libraries.

A.2.3 Required development schedule

Short delivery times continue to be a serious constraint on the software developers.
Product enhancements are implemented over a 3-6 month period. New products are typi-
cally targeted for an 9-18 month development period. Frequent interruptions of work are
common during every phase of program-development, an influencing factor not isolated in
Boehm’s model.

A.3 Personnel attributes

The control system developer is typically an organization and work team distinct and dis-
tanced from the machine builder, who, in turn, is typically distinct and distanced from the
user and maintainer. Thus there is very poor communication of end-user needs to the control
developer. As a result, costs and lead time to satisfy new control-related user requirements
are very high. The control system supplier organization also partitions its work force into
hardware, platform software, and application software teams. This compartmentalization
further reduces the quality and rate of communication, and thus, innovation. The current
generation of software developers has grown under pressure to minimize the use of run-time
hardware resources. As a result, their software is closely optimized for the target hardware
with significant dependencies on it. In general the mindset of the developers does not favor
encapsulation, isolation, modularization, portability, extensibility, or flexibility. “Real-time
executives” have been “home-made” in this personnel-environment. On the other hand, the
commercial hardware-independent real-time operating systems typically have high licensing
costs and yet do not provide the specialized features the developers seek. The developer of
the home-made “real-time executives” in automation controllers is less skilled in software
engineering than the modern operating system developer, but is more knowledgeable about
the application, although not adequately informed (see Application ezperience below).

Analyst capability: Control software development activities are not partitioned along
Boehm'’s factors. Typically, the person is designated as a machine-control-engineer, automation-
control-engineer, or equivalent, responsible for all phases of development. The person has
many assignments in various phases of the project lifecycle. A senior engineer typically
performs the role of requirements analysis and high-level design.

Applications experience: There is also a very large variation in the individual’s un-
derstanding of the application domain. The industrial control engineer is typically viewed
as a limited-service-provider to the overall mission of the manufacturing system or ma-
chine. The person seldom has a direct understanding of the physical processes and system,
but rather depends on others to provide the system requirements and specifications. This

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

communication is typically incomplete, ambiguous, and iteratively clarified.

Programmer capability: There is a wide variation in education and experience. Older
employees may have experience up to 30 years, but may not have a college degree. Newer em-
ployees are degreed, typically in mechanical or electrical engineering. Only a small fraction
of the workforce has formal education in computer engineering. An even smaller fraction
is formally educated and trained in software engineering. A person formally educated or
trained in real-time systems is rare.

Programming language experience: The industrial control software developer is not
a full-time professional computer programmer. Coding is a small and infrequent part of the
person’s activities. C is the most commonly understood language. Very few people know
C++ and even fewer know how to use it properly.

Virtual machine experience: Most people perform their development work on a PC-
compatible machine. In the past, the target machine has been some vendor-specific product
and its programming interface (equivalent of virtual machine) is a vendor-specific higher-
level language for programming machine control logic or motion control. Thus, user appli-
cation programs are written in some vendor-specific higher-level language for programming
machine control logic or motion control.

A.4 Number of potential applications:

The total number of industrial automation systems being developed in the U.S. is esti-
mated to be a few thousand units a year, of which only a few hundred demand agility, i.e.,
high flexibility, extensibility, reconfigurability, and performance. Thus, relative to commer-
cial application of computer systems, the number of potential applications is very small. As
a result, the cost of supporting the less common requirements has not been affordable.

A.5 Product attributes

The application domain targeted in this study is servomotion-based equipment for manu-
facturing a mix of relatively high volume components for the automotive industry. Normal
automatic operation of equipment is highly cyclic and predictable. The scope of the typical
application functions is bounded within the functions of a manufacturing cell [5]. Table A.1
shows these functions, organized by levels of spatial span, which correspond to a reference
model architecture, shown in Figures A.1-A.2 [1].

A.5.1 Required data reliability

Very high reliability is needed in timely updates at the servo-sensor level (Chapter 4,
Figures A.1-A.2, Level 1). If the sensory data stream at this level is interrupted, physical
operation must be stopped immediately. The consequential costs of such failures are many
times greater than the cost of the control system. Such failures could endanger human
safety. Most of the application software cost lies in handling exceptions, error conditions,
and failures of various types and degrees. These failures present opportunities for advanced
sensors to monitor condition of machine elements and cutting tools [4].

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Level | Role Spatial span

6 [Cell functions Several workstations

5 Workstation functions | Intra-workstation

4 Equipment functions | Multiple basic-machines
3 Machine-moves Multiple axis-groups

2 Tool/workpiece moves | Individual axis-group

1 Servo-commands Individual joint/axis

Table A.1: Spatial span of control levels in a manufacturing cell

level 6: cell
3: workstation
level 4: equipment
level 3: basic-machine
level 2: axis-group
| level 1: axis (or joint)
command
boundary of level 1= — = — = — = — = I-
Evaluate (Rulebase) Assign
(Database) Plan
. Execute
Perceive Model World
Detect WM ™
SP h
T R e - =boundary of level 1
A 4
|S¢mcr P:r_-.r:.ci Acnmnrl
in external world

leveln —_ -
- - - - -——— -

~ “NON REAL-TIME"§ N
Q—F[In{omm Base I \\
— 2

U W
]

_1

[}
[}
1
1
\

N\

~

Figure A.2: Control hierarchy for an integrated manufacturing cell

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.5.2 Database size

Real-time data for control of motion and related discrete functions is small enough to
keep the last sixty milli-seconds of data in main memory, when implemented on a PC
platform (midrange, mainstream). For example, the number of objects involved in one axis
of servo-motion control (Chapter 3, Figures A.1-A.2, Level 1) is in the order of ten. Each
axis may has a number of data members - in the order of thirty. The number of axes
in an axis group (Figures A.1-A.2, Level 2) may be in the order of ten, but over 90% of
the applications have three axes or less, and over 40% have only one axis per group. The
number of data items exchanged per period within an axis group is in the order of ten. The
period at Level 2 may be longer than at Level 1 (multiple greater than 2). Time periods
and their accuracy constraints at higher levels are progressively looser in a similar manner.
Historic data can be condensed into abstracted parameters. The history-abstracts can be
saved to persistent storage at intervals of thirty milli-seconds or larger. Real-time data may
be forwarded to a different processor for persistence service. No such history is saved in
current controllers.

A.5.3 Product complexity

Section A.5.7 describes the scope of functionality. Machine tools requiring multi-axis
coordinated motion predominantly use computer numeric controllers (CNCs). Historically,
CNCs and more sophisticated multi-axis motion controllers have been complex because of
tight coupling: use of shared memory, global variables, pointer-access to data, and lack of
adequate modularity, especially within the real-time executive. These practices stemmed
from the concern to limit cost and size of hardware (processing capacity, storage, power
supply), and cost and overhead of commercial real-time operating systems. Controllers were
not designed for flexibility due to limited budgets and time. On the contrary, functionality
was limited to serve the mainstream market, precluding customization to lower-volume
customer needs.

As industry emerges from this environment, at the initial stage, industry will not be seek-
ing dynamic reconfiguration of tasks or other runtime changes that change the workload
significantly.

Multi-axis precision motion controllers are typically systems with multiple, often dissimi-
lar, processors, interconnected with different buses. As an example, we describe a three-
processor system, consisting of a platform for servo-motion control, a platform for other
real-time functions, and a platform for non-real-time functions. Note that, in contrast to
this heterogeneous environment, much of the research in multi-computer systems has been
in a regular homogeneous environment, i.e., a group of identical or very similar processors
or computers.

A.5.4 Platform for servo-motion control

Referring to Figures A.1-A.2, functions of Level 1 are mapped onto this platform. Out-
puts to power-amplifiers and inputs from position sensors are typically interfaced on a
specialized processor, e.g., a digital signal processor (DSP) board — 8 sets per board is
common. The DSP runs cyclic tasks, with no operating system on it — it provides hard
real time guarantees to these tasks. Cycle times may be in the order of a millisecond.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Trend: Hardware that integrates a processor and interfaces to sensors and actuators is
emerging for applications in the automobile (e.g., the Intel 80196CA chip), wireless com-
munication, and multi-media consumer electronics. The lowest level of processing may be
embedded in such hardware. Its output will be interconnected to higher levels in the control
system through a real-time network, e.g., the Controller Area Network (CAN). Application-
level protocol standards are emezging for interfacing to such networks.

Issue: Due to the limited and specialized software development environment for spe-
cialized hardware, only stable or relatively fixed functions are likely to be embedded on
specialized processors. This environment is not conducive to rapid innovation in software.

A.5.5 Platform for other real-time functions

Referring to Figures A.1-A.2, functions of Level 2 are mapped onto this platform. Typ-
ically, it is a conventional processor on the DSP board (Section A.5.4), with a dual-ported
memory shared between the two processors. Often, a “home-made” real-time executive
manages the tasks and resources on this conventional processor. The real-time subsystem
is often tight in resources. Modifications are very difficult. It is difficult to add new devices,
e.g., sensors, within the real-time subsytem. Only the original equipment manufacturer
(OEM) is able to provide such modifications, and, then, at great expense. Users could add
sensors on the more accessible bus of the non-real-time platform (Section A.5.6), but their
temporal correlation with events on the real-time subsystem is not close enough. This limits
the rates of innovation in user factories.

Trend: Economics are driving these functions on to a target environment that enjoys high
volume of usage in other fields, e.g., the PC platform.

Issues:

1. Developers desire some flexibility in the placement of real-time functions between the
specialized servo-control platform and the conventional real-time platform.

2. There is no real-time operating system that has the maturity and popularity of DOS
or UNIX. Some users and developers are hoping that NT will suffice. However, it is
unclear if NT can provide adequate determinacy. The most mature real-time operating
systems for the PC (Intel x86 hardware set) are Intel’s iRMX and Quantum’s QNX.
Software development tools on these operating systems are not as abundant and cheap
as tools available on Microsoft Windows/DOS, and not as powerful as tools available
on Unix. Thus, the iRMX and QNX environments are also somewhat limited and not
very conducive to rapid innovation.

A.5.6 Platform for non-real-time functions

The real-time subsystem is connected, through another more accessible bus, to a third
processor that performs such functions as interfaces to the user and to a network external
to the local machine control system. These more general services are provided under a
more general-purpose operating environment, e.g. DOS, UNIX or Microsoft Windows or
NT. Additional I/O, e.g., storage devices, when needed, are interconnected through the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I/O bus on the PC. Additional non-real-time computing capacity is loosely coupled and
interconnected through the external network, e.g., a “thin-wire ethernet”.

Trends: Certain soft-real-time functions can be placed on the non-real-time platform un-
der NT or on the real-time platform. Some users and developers are seeking a uniform
platform-interface for real-time functions and non-real-time functions and some flexibility
in placement of tasks/processes between these platforms. More users are seeking a uniform
software interface between the (non-real-time) controller platform and other shop-floor com-
puters in the typical computer-integrated-manufacturing (CIM) environment. These shop-
floor computers are typically UNIX workstations or PCs with NT gradually replacing DOS.

Issues:

1. Commercial off the shelf software packages, e.g, GUI tools, CASE tools, and compilers,
available for DOS, Unix, and Windows cannot be run on current real-time operating
systems.

2. It is costly and difficult to keep personnel proficient in multiple development environ-
ments.

A.5.7 Scope of functionality required in the future

The next generation of manufacturing automation requires more agility, i.e., changeover
to new products and processes should take less time. Changing products and processes will
introduce run to run variability and varying mix of products made on the same equipment
will also increase cycle to cycle variability. To cope with this variability, more sensor-based
initelligence will be required. Controller tasks may be viewed in the categories, as follows.
Monitoring tasks are the most common. Control tasks are tasks required for control, in
addition to the monitoring tasks. Cognitive tasks are additional tasks required to exhibit
intelligent behavior.

Monitoring tasks
1. Acquire value of some variable sensed in the controlled system.

2. Collect a prescribed time-history of such values.

3. Reduce this time history to some meaningful parameter, in accordance with some
prescribed procedure, possibly using equipment models.

4. Compute the expected value of the sensed or derived parameter, possibly using equip-
ment models.

. Compare the sensed or derived value with its corresponding expected value.

wn

. Compare the difference or deviation with allowable or prescribed limit.

. Trigger prescribed action upon reaching or crossing such limit.

0 =~ o

. Store the intermediate computational results as prescribed. The prescription may
include further reduction procedures and the maintenance of a time history. These
reduction procedures may use equipment models.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Control tasks

1. Acquire value of some controlled variable or parameter from prescribed plan of exe-
cution (typically decomposed from a program for processing workpieces).

2. Decompose or transform this acquired value to values of variables or parameters to be
controlled by execution agents. These transformations would use equipment models.

3. Distribute or transfer the values to these execution agents. The ultimate resulting
values are set as outputs to some controlled actuators in the manufacturing equipment.

Cognitive tasks

Current manufacturing automation controllers provide little support for cognitive tasks,
i.e., the less structured knowledge-acquiring computational tasks. One type of such tasks
is machine learning. Here the scope of machine learning is limited to the fitting of parame-
ter values in previously prescribed models, using prescribed model-fitting procedures. The
purpose is to support the tasks of monitoring, control, prognostics, preventive maintenance,
diagnostics, corrective maintenance, and enhancement or engineering improvements. The
data for such machine learning may come from operational data or from controlled cali-
bration tests, performance-evaluation tests, or other engineering experiments. The domain
model and architecture should provide the structure of the models needed for such machine
learning. Generally the exact values of parameters in the causal laws of engineering are not
known. However, these values can be estimated with a combination of controlled calibra-
tion experiments and operational data. The given causal laws also allow estimation of the
reaction time needed for each physical function to be serviced and the response time needed
by the physical serving mechanism.

The domain models and architecture should also support learning about perception. Most
of the time the perception is not at the point of interest, but at some remote location. Thus,
feedback is correspondingly distorted and contains systemic errors, uncertainty and noise
of measurement, in addition to similar deviations from the monitored process. Established
causal laws and quantitative information do not allow clear isolation of these factors. The
scope of the cognitive processes is to learn about the perception-model-parameters from
operational data by applying available knowledge, and to generate and signal an alarm
when it crosses some prescribed threshold of “ability to learn”. Over the course of time,
human review of the history of automated operation and learning is expected to yield
improvements in these processes, thus changing the limits of “ability to learn”.

Cognitive processes also support simplification and selection of models of other processes
by association with the contexts and by limiting the accuracy to what is needed for the
purpose. For example, consider the case of heating or cooling. The following different
reasons for cooling impose progressively more difficult modeling and computation:

1. Maintain safe temperatures (easiest).
2. Avoid degradation of machine elements and fluids.
3. Maintain operational accuracy (most difficult).

Appropriate estimations of heat-generation and heat-transfer rates are needed to design
cooling capacity in the system. For operational accuracy, on-line control of temperature

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

would also be beneficial. Feedback control is not sufficient, because of the long time-
constants in temperature-changes. Therefore, some degree of predictive control is required.
Some of the same engineering information that is needed for the design of the cooling
system capacity could be used in predictive control, along with on-line information about
the different operational speeds and loads that affect the heat-generation rate in various
parts of the machine. This collective information makes it possible to regulate cooling and
active heating to minimize the fluctuation of temperatures. Merely balancing heat-gain
and heat-removal could reduce much of the fluctuation. The initial models should provide
the knowledge to predict and account for such first-order effects. The modeling framework
should also provide the facilities to improve upon these models as experience is gained.
While there are other examples of “higher intelligence” in maufacturing automation, there
is little reusability of the real-time control software. Therefore, in this project we have
limited the scope to the basic cognitive tasks described abaove.

Modularity of a control system

Modularity should support a desired change, in any external characteristic of the overall
system, at a low enough cost to allow the change to be performed economically. The change
and its effects should be localized, i.e., there should be no ripple effects and side effects in
other parts of the control system. It implies that modularity in the control system should
support and map the modularity of the controlled system.

1. It should be easy to reconfigure, extend, and enhance the initial system. The smaller
the cost-threshold or granularity of improvement allowed to the user, the higher will
be the value or degree of openness of the system.

2. The roles of the replaceable components of a system and their inter-relationships
should be clearly and completely documented and verifiable, through well-known pro-
cedures.

3. Compatibility and compliance information must be well-defined, at the level of com-
ponent granularity necessary to implement the desired reconfiguration, enhancement,
or extension. For examples, see cost factors enumerated in Section A.5.7. This infor-
mation must include the following:

the services of each replaceable component,

the performance-specification of the component,

its external interface, and

e verification procedures

4. The compatibility and compliance information should be sufficient for third party
vendors to become component-providers economically, without further dependence
on the original control system supplier.

(1]

. Costs of licensing components should be insignificant, i.e., not preclude the economics
of the desired enhancement or extension of the manufacturing system.

Some example situations follow.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 1: A portion of a user-display screen is to be revised due to some change in a
sensor. Can this change be made without causing any other change in the user interface?

Example 2: A user discovers that scanning certain inputs more frequently and others
less frequently would increase benefit for the same computational resources. How many
software units will require a change? The user attaches value to products that allow such
improvements in small increments of cost and that allow users to perform such improvements
by themselves or through third parties. The user envisions a supply chain in which its direct
supplier is a system integrator, who, in turn, would procure and integrate component wares,
analogous to building a personal computer system. A modular architecture would enlarge
the pool of suppliers , especially for after-market supply of retrofittable components.

Cost drivers for modular control systems

Users are seeking open control systems to minimize life cycle cost-to-benefit ratio as-
sociated with controls, while obtaining initial installed cost lower than current costs for
equivalent functionality. Some factors affecting lifecycle economics, roughly ordered by
importance, are as follows:

1. Cost of training personnel in operation, maintenance, programming, updating and
upgrading. Costs are spread across the life in service. These costs are increased
significantly, because these personnel have to cope with differences across controllers
in use. By the time personnel return to work with the same controller, they have
forgotten necessary details about it. Such costs should be minimized, e.g., through
standard interfaces.

2. Cost of wiring, interconnections, associated errors. These costs occur initially and
also at time of equipment reconfiguration and changes in sensors and actuators.

3. Cost of IO devices, their installation, and their integration other than wiring. These
devices include discrete 10 as well as power-amplifiers and feedback devices for servo-
drives.

4. Associated cost of opportunity lost when users avoid upgrading economically obsolete
components.

Ability to reconfigure the control system as easily as reconfiguring a PC (personal
computer):

[V}

(a) Ability to reuse and integrate easily and efficiently previously developed and
proven components. For example, such IO devices as sensors and actuators and
such human interface components as status indications, command inputs, icons.

(b) Ability to use and integrate or temporarily deploy previously developed and
proven tools and aids. For example, screen-building tools, programming inter-
faces, debugging aids, performance monitoring tools.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

Supporting class structures

B.1 Axis related class structures

Constructor-destructor functions: Omitted for brevity
Accessor functions for following members:

measure axisQutput

int actuatorSetpoint

LowerKinematicModel *IKin (private)

Other member functions:
void output(measure outputNextState)

Class-structure B.1: Interface of class AxisActState.

Superclass: Axis

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
TransaxisSensedState *axisSensedState

TransaxisSetpoints *axisSetpoints

TransaxisSetup *axisSetup

TransTravelCapabilities *axisTravelCap

length_measure retractPos

Other member functions:
Boolean checkOTravel()
Boolean checkInPosition()

Class-structure B.2: Interface of the TranslationalAxis class

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
OperationalLimits operationalLimits

AxisTravelLimits travelLimits

Class-structure B.3: Interface of class AxisSetup.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.2 Class structures pertaining to space and kinematics

Constructor-destructor functions: Omitted for brevity
Other member functions:

const CoordinatesPtrVector get_coordinates() const

void set_coordinates(const CoordinatesPtrVector value)
length_measure * get_coordinates(int index)

void set_coordinates(int index, length_measure *value)
length_measure * distance(cartesian_point p)

Class-structure B.4: Interface of class cartesian_point.

Superclass: HomogeneousTransformMatrix
Constructor-destructor functions: Omitted for brevity
Other member functions:
void rotate(
plane_angle_measure roll,
plane_angle_measure pitch,
plane_angle_measure yaw,
CoordinateFramed: newFrame)
void translate(

length_measure x,
length_measure y,
length_measure z,
CoordinateFrame& newFrame)
void transform(
plane_angle_measure roll,
plane_angle_measure pitch,
plane_angle_measure yaw,
length_measure x,
length_measure y,
length_measure z,
CoordinateFrameé& newFrame)

Class-structure B.5: Interface of class CoordinateFrame.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
CoordinateFrame baseFrame

CoordinateFrame placementFrame

Class-structure B.68: Interface of class KinStructure.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
UpperKinematicModel upperKinematicModel
LowerKinematicModel lowerKinematicModel

Class-structure B.7: Interface of class AxisKinematics.

B.3 Modeling axis components

Section 3.5.1 had introduced the primary purpose for an on-line model of axis compo-
nents — deriving the lower kinematic model of an axis. Therefore, each component is viewed
as a kinematic transformer. We also include related attributes for dynamics, operating lim-
its, and life expectancy. All axis components are derived from the root class AxisCompt.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As in the case of the lower kinematic model of an axis, the main abstractions are the input,
output, and the corresponding domain of the input and output, their transformation re-
lationship (staticGain) and the functions inOutTransform(...), outinTransform(...) (Class
Structure B.8). The component model also includes operating limits on the environment of
the component, e.g., temperature range, relative humidity, acceleration, and jerk. It also
provides a data member for the current or estimated operating temperature, which affects
operating characteristics, as well as life.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
measure input

measure inputLowerLimit

measure inputUpperLimit

measure output

measure outputLowerLimit

measure outputUpperLimit

gain_measure staticGain

LinearAcceleration vibrationLimit

measure jerkLimit

thermodynamic_temperature_measure operatingTemperature
measure relativeHumidity
thermodynamic_temperature_measure temperatureUpperLimit
thermodynamic_temperature_measure temperatureLowerLimit
time_measure ratedLife

Other member functions:
measure output inQutTransform(int input)
int input outInTransform(measure output)

Class-structure B.8: Interface of class AxisCompt.

AxisCompt is specialized into four subclasses of axis components — FeedbackSensor,
Actuator, Drivetrain, JointPair. We explain the specialization approach next, using feedback
sensors as an example.

B.3.1 Modeling feedback sensors

The most common feedback sensors for controlling precise motion are sensors for position
and velocity Figure 3.4). Using (Procedure 2-1), we generalize to a common superclass
FeedbackSensor (Class Structure B.9). As the model evloves in the future, other features
common to all feedback sensors may be added to this class.

Constructor-destructor functions: Omitted for brevity
Other member functions:
void configurelnterface(byte nPort, SlaveDevice *value, int mode)

Class-structure B.9: Interface of class FeedbackSensor.

Position sensors. Position measurement in most computer controlled machine tools
for machining is done with incremental pulse encoders (Figure 3.4). However, occasionally,
e.g., in the case of rotational axes limited to one revolution of rotation, an absolute encoder
may be used. Other types of position measurement devices, e.g., laser interformeters, ul-
trasonic sensors, may also be used, depending upon the precision required, ease of retrofit,
and other application-specific considerations. Therefore, we set up a generalized class for

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

position sensors (Class Structure B.10). The function configurelnterface(...) inherited from
FeedbackSensor is redefined to allow application-specific implementation. The function get-
Value() is provided to access the device driver and obtain the current sensor reading from
it.

Constructor-destructor functions: Omitted for brevity
Other member functions:

void configurelnterface(byte nPort, SlaveDevice *value, int mode)
virtual measure getValue()

Class-structure B.10: Interface of class PositionSensor.

Angular position sensors. Position sensors may be rotary or linear — we find both
cases in Figure 3.4. Rotary sensors have some common characteristics. They require some
means of signaling the start or completion of a rotation, i.e., an angular reference marker.
They can be applied to rotary axes directly. Since they measure a plane angle, the data
type can be restricted to plane_angle_measure. Therefore, we provide accessor functions for
the position measured by the sensor, served in radians — the SI unit of plane_angle_measure.
Through specialization of this function, corrections and compensations specific to an im-
plementation may be added. Other features common to angular position sensors may be
added in the future as the model evolves.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following object members:
plane_angle_measure position

Other member functions:
void configurelnterface(byte nPort, SlaveDevice *value, int mode)
virtual measure getValue()

Class-structure B.11: Interface of class AngularPositionSensor.

Incremental rotary encoders. The incremental rotary encoder is the most common
type of position measurement device in an axis for precision machinery. It generates a pulse
corresponding to a certain increment of motion between two elements of the transducer.
The size of the increment varies with specific devices. In order to sense direction of mo-
tion, typically there are two such transduction channels within the same device, producing
waveforms, say A and B, at quadrature to each other. If the condition “ A leading B”
corresponds to the positive direction, then the condition “ B leading A" corresponds to
the opposite direction. The pulses from channel A are counted as additive (counting up)
and the pulses from channel B as subtractive (counting down) from some initial reference
count corresponding to the designated origin or home position of the axis. Some devices
come equipped with this up and down counting and provide a net count, corresponding to
the position of the axis, i.e., they have built-in quadrature decoding. Other devices require
external quadrature decoding. This distinction can be specified in the parameter mode of
the function configurelnterface, which is redefined in this class.

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constructor-destructor functions: Omitted for brevity
Accessor functions for following data members:
int port

Other member functions:
void configurelnterface(byte nPort, SlaveDevice *value, int mode)
virtual measure getValue()

Class-structure B.12: Interface of class IncrementalRotaryEncoder.

B.4 Interfaces to external IO

class AnalogIO : public SlaveDevice

public:

AnaloglIO();

AnaloglO();

virtual void SetGain(byte nPort, word nGain) = 0;

virtual word GetGain(byte nPort) = 0;

virtual void Reset() = 0; //resets HW into power-on state.
virtual void Configure(byte nPort) = 0;//cfg 1 port/channel
virtual void Initialize(byte nPort) = 0;//init if output
virtual word GetPort(byte nPort) = 0;//reads dig val if input
virtual void SetPort(byte nPort, word nValue) = 0;//writes if output
double GetValue(byte nPort);

void SetValue(byte nPort, double dValue);

byte GetNumPort();//num of ports on board

byte GetWordLength();//word length

word GetTimeConstant();

word GetHardGain();

double GetRange();

protected: //hardware specific settings

void SetNumPort(byte nValue);

void SetWordLength(byte nValue);

void SetTimeConstant(word nValue);

void SetHardGain(word nValue);

void SetRange(double dValue);

void SetMaxValue(word nValue);

private:

byte nNumOfPort;

byte nWordLength;

word nTimeConstant;

word nHardGain;

word nMaxValue;

double dRange;

b

Class-structure B.13: Interface of class AnaloglIO.

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

class XVMES500 : public VMEbus, public AnaloglO

public:

XVMES500();

XVMES500(CPUBoard *Cptr);
XVMES500(CPUBoard *Cptr, long nBase);
XVMES500();

void CheckBoard(long nBase = 0);
void Configure(byte nPort);

void Initialize(byte nPort);

void Reset();

word GetPort(byte nPort);

void SetPort(byte nPort, word nValue);
word GetGain(byte nPort);

void SetGain(byte nPort, word nGain);

3

Class-structure B.14: Interface of class XVMES00.

// Driver for the Industrial I/O Pack (IP) Series IP320 module.

// 12-bit, 20 differential or 40 single ended analog input channels.

class IP320 : public AnaloglO, public VMEbus

{ public:

1P320();

//Cptr: pointer to the cpu board which uses ip320 services. //nBase: base address of ip320
IP320(CPUBoard *Cptr, long nBase = 0);

IP320();

void Configure(byte nPort);

void Initialize(byte nPort);

void Reset();

word GetPort(byte nPort);//read converted value from nPort

word GetGain(byte nPort);//nPort must be currently selected for read.
void SetGain(byte nPort, word nGain);//SW gain (val 1,2,4,8 only).

private:

void ControlWrite(word value);//Write to the control register.
word ControlRead(); //Read the control register.

void TriggerConversion();//start conversion.

void SetPresentGain(word value);

//set presentGain’ to 'value’ 1, 2, 4 or 8; recalibrate ip320
//called by GetPort only when necessary; no intended for user.
//Data integrity is maintained by the function SetGain.

// Set control register for next read to be from 'port’ with gain ’gain’.
void SetControl(byte port, word gain);

word CorrectData(word data); // Correct read value with calibration info.

private:

int gainArray[40];

int presentChannel;

double voltCalHi; //Used in data correction. Dependent on 'presentGain’
double voltCalLo; //Used in data correction. Dependent on ’presentGain’

//Count values calculated during calibration; used for data correction.
word countCalHi; // Count value for 'voltCalHi’.
word countCalLo; // Count value for 'voltCalHi’.

Class-structure B.15: Interface of class IP320.

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

class DigitallO : public SlaveDevice

public:
DigitalIO();
DigitallO();

/ /reads byte value from the input port specified by nPort
//and returns the boolean value of the bit position

/ /specified by nBitNo - an integer from 1 to 8

virtual Boolean GetBitValue(byte nPort, byte nBitNo) = 0;

/ /writes bValue to the bit position nBitNo of output port nPort.
virtual void SetBitValue(byte nPort, byte nBitNo, Boolean bValue) = 0;

virtual void Reset() = 0;//resets HW to power-on state.
virtual void Initialize(byte nPort, byte nValue) = 0; //init nPort with nValue.

// reads byte from input port specified by nPort, masked bit-wise masked by nMask, and result
returned.
virtual byte GetByteValue(byte nPort, byte nMask) = 0;

// writes nVlaue to nPort; nMask specifies the bit masked position
virtual void SetByteValue(byte nPort, byte nMask, byte nValue) = 0;

//configures port identified by nPort to mDirection enumerated as follows. IN_DIR: input direction.
OUT.DIR: output direction. BI_DIR: bidirectional.
virtual void Configure(byte nPort, DIRECTION mDirection) = 0;

virtual byte GetByteValue(byte nPort) = 0; //reads byte from nPort.
virtual void SetByteValue(byte nPort, byte nValue) = 0; //writes to nPort.

word GetNumPort(); //returns the number of ports on the board.
word GetPortWidth(); //returns the number of bits on a port.

protected: //hardware specific settings
void SetNumPort(word nValue);
void SetPortWidth(word nValue);

private:
word nNumOfPort;
word nPortWidth;

b

Class-structure B.16: Interface of class DigitallO.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[1] J. S. Albus, “RCS: A reference model architecture for intelligent control,” Computer,
vol. 25, no. 5, pp. 56-59, May 1992.

[2] G. Arango, “Domain analysis methods,” in Software Reusability, W. Schafer, R. Prieto-
Diaz, and M. Matsumoto, editors, Ellis Horwood, 1994.

[3] J. Baer, J. Barg, E. Beck, C. Hardenbusch, P. Lutz, J. Muller, M. Novo, J. Pietchmann,
M. Sozi, and W. Sperling, “Open system architecture for controls within automated
systems, phase ii, access to man machine control, motion control, and logic control,”
Technical Report EP 9115 Work package 4 Deliverable D 2422, Esprit III, April 1996.

[4] S. K. Birla, “Sensors for adaptive control and machine diagnostics,” in Technology
of Machine Tools — Machine Tool Controls, R. V. Miskell, editor, number UCRL-
52960-4 in Technology of Machine Tools, chapter 7.12, pp. 1-70, Lawrence Livermore
Laboratory, University of California, Livermore, California 94550, October 1980. A
survey of the state of the art by the Machine Tool Task Force.

[5] S. K. Birla, “Conceptual modeling of manufacturing automation,” Technical Report
CSE-TR-220-94, University of Michigan, Real-Time Computing Laboratory, Depart-
ment of Electrical Engineering and Computer Science, College of Engineernig, 2220
EECS Building, Ann Arbor, Michigan 48109-2122, 1994.

[6] S. K. Birla, H. Egdorf, R. Igou, J. Michaloski, D. Sweeney, G. Weinert, D. Uchida, and
C. J. Yen, “An open architecture model of system development,” in Proceedings of the
ASME Dynamic Systems and Controls Division, K. Danai, editor, volume DSC-Vol.
58, pp. 277-282, 1996.

[7] S. K. Birla, J. Korein, et al. Nezt Generation Workstation/Machine Controller (NGC),
November 1987.

[8] S. K. Birla and K. G. Shin, “Intelligent control of manufacturing automation: Making
it affordable and maintainable,” in Proceedings of the 27th CIRP International Seminar
on Manufacturing Systems Design, Control And Analysis of Manufacturing Systems,
pp- 49-55, Ann Arbor, Michigan, May 1995.

[9] S. K. Birla and K. G. Shin, “Software engineering of control systems for agile machining:
An approach to lifecycle economics,” in Proceedings of the 1995 IEEE International
Conference on Robotics and Automation, Nagoya, Japan, pp. 1086-1092, May 1995.

[10] B. Boehm, Software Engineering Economics, Englewood Cliffs, 1981.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[11] G. Booch, Object Oriented Analysis and Design with Applications, The Ben-
jamin/Cummings Publishing Company, 390 Bridge Parkway, Redwood City, California
94065, 1993.

[12] R. Braek and O. Haugen, Engineering Real Time Systems, Prentice Hall, UK, 1993.

[13] J. Bruhl, “Open system architecture for controls within automated systems, phase
ii, support for application configuration,” Technical Report EP 9115 Work package 3
Deliverable D 2322, Esprit ITI, April 1996.

[14] Specification and Description Language SDL Recommendation Z.100, CCITT, Geneva,
1993.

[15] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software design process for
large systems,” Communications of the ACM, vol. 31, no. 11, pp. 1268-1286, 1988.

[16] J. Denavit and R. Hartenberg, “A kinematic notation for lower-pair mechanisms based
on matrices,” Journal of Applied Mechanics, pp. 215-221, June 1955.

[17] M. A. Donmez, C. R. Liu, and M. M. Barash, “A generalized mathematical model for
machine tool errors,” in Modeling, Sensing, and Control of Manufacturing Processes,
K. Srinivasan et al., editors, ASME Press, 1988.

[18] S. Faulk and D. Parnas, “On synchronization in hard real-time systems,” Communi-
cations of the ACM, March 1988.

[19] P. Freeman, “Reusable software engineering: A statement of long-range research ob-
jectives,” Technical Report TR-159, University of California, Irvine, ICS Dept., 1980.

[20] B. O. Gallmeister, Programming for the Real World, O’Reilly Associates, Inc, Se-
bastopol, CA, U.S.A., 1995.

[21] H. Gomaa, Software design methods for concurrent and real-time systems, Addison
Wesley, Reading, Mass, U.S.A., 1993.

[22] H. Mason and PMAG, “ISO 10303 Industrial automation systems and integration -
Product data representation and exchange — Part 1 Overview and fundamental prin-
ciples,” Technical report, International Standards Organization TC 184/SC4/PMAG,
September 1992.

[23] C. C. Han, K. J. Lin, and C. J. Hou, “Distance-constrained scheduling and its appli-
cations to real-time systems,” IEEE Transactions on Computers, vol. 45, no. 7, pp.
814-826, July 1996.

[24] D. Harel et al., “On the formal semantics of statecharts,” in Proceedings of the Second
IEEE Symposium on Logic in Computer Science, pp. 54-64, New York, 1987, IEEE

Press.

[25] Portable operating system interface (POSIX)—Part 1: Application Program Interface
(API) [C Language]—Amendment: Realtime Ertensions, Institute of Electrical and
Electroics Engineers, 1994.

[26] 1. Jacobson et al., Object-oriented software engineering - a use case driven approach,
Addison-Wesley, 1992.

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[27] Y. Koren, Computer Control of Manufacturing Systems, McGraw-Hill, 1983.
[28] Y. Koren, Robotics for Engineers, McGraw-Hill, 1985.

[29] T. Lane, “Studying software architecture through design spaces and rules,” Technical
Report CMU/SEI-90-TR-18, Carnegie Mellon University, 1990.

[30] P. A. Laplante, Real-Time Systems Design and Analysis, IEEE Press, 445 Hoes Lane,
PO 1331, Piscataway, NJ 08855-1331, 1993.

[31] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard
real-time environment,” Journal of the ACM, vol. 20, no. 1, pp. 46-61, January 1973.

[32] T. Lozano-Perez, Autonomous Robot Vehicles, chapter Foreword, Springer-Verlag,
1990.

[33] A. Ludwig and WG3, “ISO 10303 Industrial automation systems and integration
- Product data representation and exchange - Part 105 Integrated application re-
source: Kinematics,” Technical Report 265, International Standards Organization

TC 184/SC4/WG3, November 1993.

[34] P. Lutz. Presentation and discusssion of OSACA. Private communication with P. Lutz,
ISW, Stuttgart, Germany, March 1997. OSACA/TEAM-API Workshop - see (3, 13].

[35] Next Generation Controller Specification for an Open Systems Architecture Standard-
Overview, Manufacturing Technology Directorate Wright Laboratory, September 1994.
WI-TR-94-8032.

[36] Nezt Generation Controller Specification for an Open Systems Architecture Standard,
Manufacturing Technology Directorate Wright Laboratory, September 1994. WI-TR-
94-8033.

[37] D. J. Miller and R. C. Lennox, “An object-oriented environment for robot system
architecture,” IEEFE Control Systems, vol. 11, no. 2, pp. 14-23, 1991.

[38] Programmable controllers - Part 1: General information, National Electrical Manu-
facturers Association, December 1994. approved as an ANSI Standard, December,
1994.

[39] Programmable controllers - Part 3: Programming languages, National Electrical Man-
ufacturers Association, December 1994. approved as an ANSI Standard, December,
1994.

[40] Nezt Generation Workstation/Machine Controller (NGC) Requirements Definition
Document (RDD), 1989.

[41] Object Management Group, CORBA: Common Object Request Broker Architecture
and Specification, Object Management Group, Framingham, MA, 1995.

[42] Object Management Group, The Object Management Architecture Guide, Object Man-
agement Group, Framingham, MA, June 1995.

[43] D. Parnas and P. Clements, “A rational design process: how and why to fake it,” IEFE
Transactions on Software Engineering, vol. SE-12, no. 2, pp. 251-257, February 1986.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[44] D. Parnas, P. Clements, and D. Weiss, “The modular structure of complex systems,”
Proceedings of the Seventh IEEE International Conference on Software Engineering,
pp. 408-417, March 1984.

[45] M. Paulk et al., “Capability maturity model for software version 1.1,” Technical Report
CMU/SEI-93-TR-24, Software Engineering Institute, Pittsburgh, 1993.

[46] R. Prieto-Diaz and G. Arango, Domain Analysis and Software Systems Modeling, The
IEEE Computer Society Press, Los Alamitos, California, 1991.

[47] J. Rumbaugh et al., Object-Oriented Modeling and Design, Prentice Hall, Englewood
Cliffs, New Jersey 07632, 1991.

[48] R. Schappell et al. Nezt Generation Workstation/Machine Controller (NGC) Needs
Analysis, February 1990.

[49] B. Selic, G. Gullekson, and P. Ward, Real-Time Object-oriented modeling, Wiley, 1994.

[50] M. Shaw and D. Garlan, Software architecture — Perspectives on an Emerging Disci-
pline, Prentice-Hall, 1996.

[51] C. U. Smith, Performance engineering of software systems, Addison-Wesley, 1988.
[52] Reuse-driven software process guidebook, Software Productivity Consortium, 1993.
[53] J. Spivey, The Z notation: A reference Manual, Prentice Hall, 1989.

[54] D. Stewart, R. Volpe, and P. Khosla, “Design of dynamically reconfigurable real-time
software using port-based objects,” Technical Report CMU-RI-TR-93-11, Carnegie
Mellon University, July 1993.

[53] J. Xu and D. Parnas, “On satisfying timing constraints in hard real-time systems,”
IEEFE Transactions on Software Engineering, vol. 19, no. 1, pp. 70-84, January 1993.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

