
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter free, while others may be
from any type o f computer printer.

The quality of this reproduction is dependent apon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zecb Road, Ann Aibor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EXPLORING QUALITY-OF-SEKVTCE ISSUES
IN NETWORK INTERFACE DESIGN

by

A tri Indiresan

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
1997

Doctoral Committee:
Professor Kang G. Shin, Chair
Assistant Professor Peter M. Chen
Associate Professor Famam Jahanian
Professor Toby J. Teorey
Assistant Professor Kimberley M. Wasserman

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9811104

Copyright 1997 by Indiresan, Atri
All rights reserved.

UMI Microform 9811104
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(c) Atri Indiresan 1997
All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents and Rohini.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I would like to thank everyone who supported and assisted me during my academic career

at the University of Michigan. First and foremost, I would like to thank my advisor,

Professor Kang G. Shin for his encouragement and support during my Ph.D. program. He

allowed me to pursue my own research interests, and was always available to discuss various

problems and provide feedback, hi addition to his role as an academic mentor, he was

always concerned about his students as individuals. I would like to thank Professors Peter

Chen, Faraam Jahanian, Toby Teorey and Kimberly Wasserman for serving on my thesis

committee and for their advice and support. A note of thanks to Professors Stuart Sechrest

and Anthony Woo for serving on my thesis proposal committee. I would like to extend

special thanks to Professors Famam Jahanian and John Meyer for discussions on research,

and their encouragement and friendship.

I would like to gratefully acknowledge the National Science Foundation and the Office of

Naval Research for providing financial support during the course of my graduate program.

Many people have contributed to this dissertation in one way or the other. I had a very

fruitful collaboration with Ashish Mehra, and our work together greatly contributed to this

thesis. I would like to thank everyone who collaborated with me and contributed to the

development of HARTS: DQip Kandlur, Jim Dolter, Harold Rosenberg, Seungjae Han and

Jaehyun Park.

The d ty of Ann Arbor and the University of Michigan gave me some of the best years

of my life, and it is with deep regrets that I take my leave. It is a beautiful and vibrant

place, but most important of all, it is where I met many wonderful people. I treasure

the friendship of fellow students in the RTCL, including Ashish Mehra, Chao-ju Hou, Dan

Kiskis, Dilip Kandlur, Harold Rosenberg, Jennifer Rexford and Sushil Birla. I will always

remember Beverly J. Monaghan, the RTCL administrative assistant, for her friendship and

many enjoyable conversations. Karen Liska, the EECS graduate secretary, always went

beyond the call of duty to be helpful.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I cherish the friendship of the people whom I met daring my stay in Ann Arbor. I

wish to thank John Lynn, Melora Goosey, S. Mohan, Raghu Mani, Sashila Sabramanian,

Vidyullata Waghnlde and many others for their friendship and hospitality.

The Shotokan Karate of Michigan has been an extremely important part of my life in

Ann Arbor. While I learned a lot from everyone in the do jo, my special thanks to John

Teramoto and to my instructors, Dean Askounis, Ravindra Prasad and Adam Liebowitz.

Sergej Roytman, Toni Guzzardo, Sandeep Rao, Mary Prasad, Michael Sandoval, Tracy

McComb, Tina Yee and many others - thank you for the wonderful times we had together,

both in and oat of the do jo.

My parents, Jayalakshmi and P.V. Indiresan, always taught me the importance of knowl­

edge, and encouraged me to acquire it and use it wisely. Their example and their Ph.D.’s

have always been an inspiration to me. I would like to thank them and my sisters, Nitya

and Gowri, for their love, patience and understanding over the long years of my Ph.D.

The last few months of my Ph.D. were the hardest, but my wife, Rohini, made it all

possible through her love and encouragement. She also spent endless hours reading multiple

drafts of my thesis and helping me improve the presentation. I truly owe her a debt of

gratitude for all that she has done for me.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

TABLE OF CONTENTS

D E D IC A T IO N .. ii

A C K N O W L E D G E M E N T S .. iii

LIST O F TABLES ... viii

LIST O F FIGURES .. ix

A B S T R A C T ... xi

C H A PT E R S

1 INTRODUCTION... I
1.1 Scope of the Research.. 3
1.2 Contributions of the D issertation... 5
1.3 Outline of the Dissertation... 6

2 COMMUNICATION SUBSYSTEM DESIGN ... 8
2.1 Real-time Communication... 9
2.2 Implementation of Real-time Communication Services 11
2.3 Network Adapter D esign.. 14

2.3.1 Adapter Design and Evaluation T echniques............................. 16
2.3.2 The Case for Device E m ulation .. 18

3 DESIGN TRADEOFFS IN IMPLEMENTING REAL-TIME CHANNELS 21
3.1 The Experimentation P la tfo rm .. 23

3.1.1 H ard w are ... 23
3.1.2 Softw are.. 25
3.1.3 Baseline System M easurem ents.. 27

3.2 Implementation of Real-time C hannels.. 28
3.2.1 Real-time Channel A P I... 28
3.2.2 Channel Establishment and T eardow n 29
3.2.3 Data Transfer... 31
3.2.4 Run-time Link Scheduler.. 32

3.3 Influence of Network Adapter Characteristics 34
3.3.1 CIM Performance Characteristics and Im plications............ 35
3.3.2 Desirable Adapter F e a tu re s .. 37

3.4 Overhead of Protocol Processing.. 38
3.4.1 Data-transfer Optimizations.. 39

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.2 Software Overhead and Protocol Thread Scheduling 40
3.4.2.1 Fragmentation and Link Scheduling Overhead . . . 40
3.4.2.2 Scheduling Protocol T h re a d s 42

3.4.3 End-to-end Performance... 43
3.5 Effectiveness of Link Access Scheduling... 43

3.5.1 Outline of Experiments.. 44
3.5.2 Effect of Best-effort Traffic Load on Real-time Traffic 45
3.5.3 Effect of Burstiness and Message Size on Delay Guarantees 46

3.6 Conclusions.. 47

4 THE END: A NETWORK ADAPTER DESIGN T O O L 49
4.1 Introduction.. 49
4.2 Network Adapter D esign... 51

4.2.1 Host-Adapter Interface.. 53
4.2.2 Adapter Internals... 54
4.2.3 Adapter-Network Interface .. 56

4.3 END Emulation A rchitecture.. 56
4.3.1 Host View of the N etw ork... 57
4.3.2 Emulator Com ponents... 58
4.3.3 Implementation... 60
4.3.4 Emulator O p era tio n ... 62
4.3.5 Two-way Communication Across the “Network” 64
4.3.6 Reception Modeling.. 65

4.4 Platform Considerations... 65
4.4.1 System Capacity A nalysis... 66
4.4.2 Overcoming the Limitations of the Platform 66

4.5 END Software Implementation ... 68
4.6 Related W o rk ... 70
4.7 Conclusions... 71

5 ADAPTER DESIGN USING END: A CASE STUDY................................... 72
5.1 Emulating the Ancor CIM 250 using E N D .. 72

5.1.1 Ancor CIM 250 ... 73
5.1.2 CIM Functional M odel... 75
5.1.3 CIM Performance Emulation ... 77

5.1.3.1 Arriving at an Accurate Base M odel..................... 77
5.1.3.2 Accounting for Concurrency and Contention . . . 79
5.1.3.3 Equivalence of the CIM and the END Model . . . 81

5.2 CIM Transmission Analysis and Optimization................................. 83
5.2.1 Reducing the Host-Adapter Interface O verhead.................... 83
5.2.2 Exploiting Increased Concurrency... 84
5.2.3 Performance of the Improved C I M .. 84

5.3 Discussion.. 86
5.4 Conclusions... 87

6 QUALITY-OF-SERVICE ISSUES IN ADAPTER DESIGN.......................... 88
6.1 A QoS-sensitive Communication Subsystem 89
6.2 Research Goals and A pproach.. 91

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

!

6.3 Point-to-point Network M odel.. 92
6.3.1 Experimental Configuration... 93
6.3.2 Evaluation W orkload... 94
6.3.3 Best-effort P erform ance... 94
6.3.4 Real-time Performance.. 96
6.3.5 Discussion... 96

6.4 Shared Network M o d el... 98
6.4.1 Network M o d e l.. 99
6.4.2 Experimental Configuration... 99
6.4.3 Evaluation W orkload... 101
6.4.4 Host and Emulator QoS S u p p o r t .. 102
6.4.5 Effect of CPU Capacity and Scheduling on Q o S 105

6.5 Conclusions.. 108

7 ELIMINATING RECEIVE LIVELOCK.. 110
7.1 Receive Livelock.. I l l
7.2 Avoiding Receive L ivelock.. 114

7.2.1 Implementation O verview .. 115
7.2.2 Host-based Policies.. 116
7.2.3 Adapter-based Policies.. 118

7.3 Evaluation... 120
7.3.1 Analysis of Receive Processing M echanism s........................ 121
7.3.2 Interrupt-based R eception.. 121
7.3.3 Continuous P o llin g .. 123
7.3.4 Timed Polling... 124
7.3.5 Explicit Interrupt M anagem ent... 125
7.3.6 Adaptive B ackoff... 126
7.3.7 Discussion... 127

7.4 Multiple Interrupt Sources.. 128
7.4.1 Host-based Solutions... 128
7.4.2 Adapter-based Solutions... 129
7.4.3 Experimental Evaluation... 130
7.4.4 Discussion... 132

7.5 Conclusions.. 135

8 CONCLUSIONS... 136
8.1 Research Contributions.. 136
8.2 Future W ork.. 139

B IB L IO G R A P H Y ... 141

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

LIST OF TABLES

Table
3.1 Baseline system perform ance... 27
3.2 The real-time channel A P I... 29
4.1 Configurable components of END.. 60
4.2 Portability of END... 69
5.1 Important CIM param eters .. 77
6.1 Experimental configurations and parameters... 94
6.2 Workload used for evaluating the point-to-point network................................ 95
6.3 Workload used for evaluating the shared network... 101
6.4 Traffic characterization of sample MPEG traces from [86]................................ 102
7.1 Adapter control commands... 117
7.2 Important system parameters... 121
7.3 Experimental configurations: Imin = 1 ms, l max = 20 ms. Note that

Qu o ta = 2s*b-.. 131

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

LIST OF FIGURES

Figure
1.1 Typical communication subsystem at end hosts.. 3
2.1 Performance evaluation techniques and tradeoffs...................................... 17
2.2 Trace-driven simulation vs. device emulation.. 19
3.1 Architecture of each HABTS n o d e ... 24
3.2 The x-kemel protocol stack in HARTOS.. 26
3.3 Channel establishment procedure - forward phase................................... 31
3.4 Performance of the Ancor CIM 250 network adapter. Note that in (a), both

axes have log scales, and in (b), only the x-axis has a log scale............... 36
3.5 Protocol processing performance with and without fragmentation (no CIM). 41
3.6 Protocol processing performance with fragmentation (with C IM) 44
3.7 Well-behaved real-time channels with variable best-effort lo a d 45
3.8 Ill-behaved real-time channels with variable best-effort l o a d 46
4.1 Generic network adapter architecture.. 51
4.2 END-based device emulation architecture.. 58
4.3 Emulator system configuration... 59
4.4 Transmission emulation for n-stage adapter operation............................. 63
5.1 Host-adapter interaction for data transmission... 74
5.2 Host-adapter interaction for data reception... 75
5.3 Outline of END model for transmission on the CIM............................. 76
5.4 Outline of END model for reception on the CIM................................... 76
5.5 Sources of delay in the model and their accuracy... 79
5.6 Inter-message overlap during CIM transmissions....................................... 80
5.7 Theoretical and measured mean message times... 81
5.8 Comparison of CIM and END 's transmission throughput. Note that the

graph uses a log-log scale, and throughput increases by as much as 50%
when maximum pipeline depth is increased from 1 to 2............................ 82

5.9 Comparison of CIM and END's transmission delay................................. 83
5.10 Transmission throughput for improved CIM models................................. 85
6.1 QoS-sensitive communication architecture.. 89
6.2 Best-effort performance... 96
6.3 Real-time performance... 97
6.4 Token management on END... 100
6.5 Performance summaries: Each data point corresponds to approximately 26,000

RT packets. The BE load varies... 104

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6 QoS summaries: no link scheduling on the host. Each data point corresponds
to approximately 26,000 RT packets. The BE load varies................................ 106

7.1 Range of possible behaviors of delivered throughput as a function of offered
load... 112

7.2 Host-adapter interaction for packet reception... 115
7.3 Outline of END model for reception for a generic adapter.............................. 116
7.4 Interrupt based packet reception behavior... 122
7.5 Continuous polling based packet reception behavior... 123
7.6 Timed polling based packet reception behavior... 124
7.7 Explicit interrupt management of packet reception behavior........................... 125
7.8 Adaptive backoff based packet reception behavior - backoff rate = 1.5, restore

rate = 0.8... 126
7.9 Emulator system configuration with one host and two network interfaces

(VME StopWatch is not shown).. 130
7.10 Adaptive backoff with two sources: Total reservation = 1500 packets/second. 133
7.11 Adaptive backoff with two sources: Total reservation = 1100 packets/second. 134

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

ABSTRACT

This dissertation examines the issues related to the design and implementation of com­

munication subsystems, in particular, of network adapters, for quality-of-service (QoS).

Applications with QoS requirements on communication (e.g., bandwidth, delay) are now

being made possible by the advent of high-speed networks and the development of mecha­

nisms for real-time communication. End-to-end communication performance is determined

by a variety of factors, such as the underlying network technology, the end-host operating

system, and the host-network interface. As network speeds increase, the performance bot­

tleneck shifts to the end hosts, especially to the hardware and software components of the

communication subsystem.

The tradeoffs involved in implementing communication services with QoS guarantees

are explored using the example of real-time channels (RTC), a mechanism for providing

guaranteed real-time communication services. RTCs were implemented using a commercial,

off-the-shelf, network adapter, the Ancor VME CIM 250 (CIM), which does not provide

support for QoS. Though it is demonstrated that this implementation does provide QoS

guarantees, the throughput achieved using the CIM is much less than the capacity of its

network link or the host’s memory bandwidth. This is due to poor design of the CIM,

including an excessively complicated host interface, and other architectural deficiencies.

An Emulated Network Device (END) is proposed and implemented to address the above

deficiencies. END is a tool that couples a representative executable model of an adapter

to a host and allows the host’s communication software to interact with this model in real

time. It is argued that END provides a sufficiently flexible environment for network adapter

design and evaluation. A case study of the CIM is performed to demonstrate how END

may be used to design and analyze network adapters before they are bnilt, thus helping

avoid costly design errors. A representative model of the CIM was built using END, and

this model was modified by simplifying the host-adapter interface and adding dual-ported

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

memory to the adapter. These design improvements increased the throaghpnt of the CIM

by up to 50%.

END is also used to study QoS issues in end-host communication subsystems by con­

structing models of adapters interfacing to point-to-point and shared networks. Various

adapter configurations are considered for each network architecture to examine how QoS

support may be divided between the host operating system and the network adapter. These

experiments establish, particularly for shared networks, that QoS support on adapters sig­

nificantly enhances delivered QoS.

Since a host can completely regulate data transmission, but does not have similar control

over incoming data, the issues surrounding data transmission and reception can be quite

different. In an interrupt-driven operating system, high packet arrival rates can result in

receive livelock, a situation where the host uses all of its capacity to receive incoming data,

and cannot usefully process any of it. Solutions to receive livelock typically involve exten­

sive modifications to the host operating system. A novel solution is proposed that makes

simple modifications to the device driver and network adapter, and does not require any

modifications to the host operating system. Its feasibility and advantages are demonstrated

by using END to compare it with various host-based solutions. This solution is sufficiently

general that it can handle multiple network interfaces simultaneously and also guarantee

minimum bandwidths to each interface even under extreme overload conditions.

The results obtained in this research demonstrate the versatility of END as a design and

analysis tool by showing how it may be used for: (a) construction of representative models

of existing adapters, (b) introducing and evaluating design improvements, (c) evaluating

the efficacy of QoS support on the host and/or adapter, and (d) studying reception issues

in interface design, in particular, the relative merits of host- and adapter-based solutions

for avoidance of receive livelock.

xu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

Recent advances in high-speed networking have made it possible to realize a new class of

real-time applications such as distributed multimedia services, remote medical diagnosis

and sensor-based control systems. These applications have quality-of-service (QoS) require­

ments on end-to-end com m unica tio n that are typically defined in terms of a desired mini­

mum bandwidth and a m avim um delay from the network; additional requirements on delay

jitter and packet loss may also be specified [9]. In general, these applications require high

data-transfer throughput and low, bounded, end-to-end delay. A high-speed network by

itself cannot guarantee high application-level throughput and/or bounded data-transfer de­

lays. In addition, precise characterization and control over system overhead in the end-host

communication subsystem is required for guaranteed QoS.

End-to-end communication performance between two end-hosts connected by a network

is largely a function of the end-host operating system, the interface between the host and the

network, and the underlying network technology. Each of these components must provide

support for QoS guarantees in order to meet application requirements. As network speeds

increase, the performance bottleneck tends to shift to the end-hosts, in particular to the

hardware and software components of the host’s com m unica tio n subsystem. The design of

the network adapter (the hardware component that connects the host to the network), and

the division of functionality between the adapter and the host communication software (the

software component that connects the network to the applications), can have a significant

impact on the performance delivered to applications.

There are several mechanisms for providing guaranteed real-time communication. In

the simplest form, applications may simply specify their peak bandwidth requirements,

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and reserve that capacity for the entire duration of the connection, as in circuit-switched

telephone networks. However, this can be very inefficient since real-time traffic is often

bursty, and bandwidth utilization will be low unless idle time can be utilized by non-

real-time traffic. Integrated services networks [19] are expected to carry a mix of traffic

with different requirements on QoS. These networks typically use packet- or cell-switching

technologies. In contrast to circuit-switched networks, due to statistical multiplexing of

traffic, unused portions of capacity reserved by real-time applications can be reallocated to

other applications.

Various service disciplines have been proposed that provide real-time guarantees in these

networks [9]. Desirable characteristics of such service disciplines include the ability to pro­

vide real-time guarantees, low latency and jitter, ability to mix real-time and non-real-time

traffic, scalability, low buffer utilization and high bandwidth utilization. In this disserta­

tion, we study real-time communication using real-time channels (RTC) [43,63], a service

discipline for packet-switched networks that provides end-to-end deadline guarantees to

real-time traffic, while minimising degradation of total bandwidth utilization or service to

best-effort traffic. RXCs include admission control, traffic policing and scheduling, and

buffer management techniques that ensure that real-time guarantees are met.

This dissertation deals with the issues involved in the design and implementation of

end-host communication subsystems. In particular, it studies various aspects of network

adapter design, and how its interaction with the host operating system influences delivered

QoS. It explores these issues via an Emulated Network Device (END), a tool that creates

a representative model of a network adapter and interfaces it to a real host. This permits

real applications to be executed on the host, and to evaluate their performance accurately

by capturing the overhead of the adapter-host interaction. This dissertation describes the

architecture and implementation of END, and argues that it provides a sufficiently flexible

environment to design and evaluate network adapters before building a prototype. The

versatility of END is demonstrated by using it for: (a) the construction of representative

models of existing adapters, (b) introducing and evaluating design improvements, (c) eval­

uating the efficacy of QoS support on the host and/or adapter and (d) studying reception

issues in interface design, in particular, the efficacy of host- and adapter-based solutions for

avoidance of receive livelock.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t

APPLICATIONS

UWf
kernel

PROTOCOL STACK LAYERS

Figure 1.1: Typical com munication subsystem at end hosts.

1.1 Scope of the Research

As mentioned earlier, end-to-end communication performance depends on a variety of fac­

tors, some attributed to performance bottlenecks in the network, and others attributed to

performance bottlenecks in the end hosts. Factors affecting performance in the network

(such as underlying network technology, network congestion, etc.) are beyond the scope of

this dissertation. Within end hosts, communication performance is largely determined by

the capacity of the software and hardware components to move data between applications

and the network (see Figure 1.1). Data transfer typically involves traversing a protocol

stack, moving data between the host memory and the network adapter, and between the

network adapter and the network itself. The software components that affect data-transfer

performance include the protocol stack, scheduling and synchronization mechanisms in the

host operating system, scheduling and synchronization mechanisms on the adapter, and the

adapter firmware. The hardware features that influence data-transfer performance include

the host CPU speed, the host-adapter interface, the host-adapter data-transfer bandwidth,

and the network bandwidth. For a given network and end host, the network adapter should

be designed such that its hardware and software components do not limit communication

performance.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Several researchers have studied many of the issues above [14,33,41,83,95], and com­

munication subsystems in general [38,39,89]. While many of these studies have influenced

this work, they are often constrained by their host and network adapter architectures, thus

preventing them from exploring novel architectural features. In contrast, our approach,

using END , permits us to build software models of arbitrary network adapter architectures,

and to study the behavior of applications as they interact with these models in real time.

This dissertation studies the interactions of the components of the communication sub­

system, focusing in particular on the network adapter and its interface to the end host (the

shaded region in Figure 1.1), and how they affect QoS. It is based on the premise that

the design of network adapters should not be performed in isolation, but in the context of

applications that require communication services and the architecture of the protocol stacks

and operating system software. This implies that the design process is as important as the

design itself.

The communication subsystem architecture also influences the implementation of ser­

vice disciplines for real-time communication. These service disciplines are usually based on

idealized theoretical models, and are not easily realizable on real systems, especially if it

is necessary to support multiple classes of traffic efficiently. Implementing real-time com­

munication services using commercial, off-the-shelf, hardware involves detailed analysis of

the performance of the hardware and software components of the platform. There may be

significant challenges and compromises involved in such an implementation since it is often

necessary to overcome limitations of the platform, in particular, to provide QoS guarantees

when the hardware does not provide explicit support for it. While there have been some

implementations of real-time communications services, they have been constrained in many

ways by their hardware and/or software characteristics. Some have been designed for par­

ticular classes of networks and are applicable in an extremely limited domain [66]. Others

have been more general [11,12], but did not consider how best to exploit the underlying

communication hardware. As a result, these implementations sacrifice either generality or

performance. These problems may be further exacerbated due to ad hoc design of system

components. The com m unica tio n subsystem architecture must be designed in an integrated

manner by considering the desired performance of the target system, and determining not

only the required functionality, but also the division of such functionality between the hard­

ware and software components, as well as their interface and interaction. Such a process is

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

called hardware/software codesign [21,44,96].

Various techniques may be used in the design process. It is desirable that these tech­

niques not only help solve the problem at hand, and for the given platform, but are also

sufficiently general to handle a wide range of design and performance analysis applications

for a variety of platform configurations. Further, these techniques must be easy to use

without sacrificing generality, performance or accuracy.

The above-mentioned needs motivated the following research goals:

• To study the issues involved in providing QoS support on real platforms.

• To design tools and techniques to help integrate the study of these issues with the

actual design and implementation of the communication subsystem.

• To demonstrate the versatility of these techniques by using them to study a variety

of problems in the design of communication subsystems.

1.2 Contributions of the D issertation

This dissertation makes several research contributions related to the design of communica­

tion subsystems.

Im plem entation o f real-tim e com m unication services: We describe the architecture

and implementation of real-time channels on HARTS [91,92], an experimentation testbed

for studying architectural and operating systems issues in distributed real-time systems.

We explore the tradeoffs between throughput and real-time behavior, and demonstrate how

the host software can overcome the limitations of a best-effort network adapter to provide

real-time communication guarantees.

N etw ork a d a p te r design: We show how hardware/software codesign may be used in the

development of network adapters using END, an emulation-based network adapter design

tool. END can capture low-level architectural details of network adapters, and interface

them to real hosts. This enables the study of network adapters in the presence of real hosts,

running real applications and protocol stacks. END-based models interact with the hosts in

real time and are sufficiently detailed to study communication subsystems while including

the effects of overhead like interrupts and cache behavior.

M odeling netw ork adap ters using E N D : A case study is performed using END to

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

improve the design of a real network adapter. Experiments with the improved model of the

adapter show thronghpnt improvements of np to 50%. Farther, most of the software used

in building the model of the network adapter can be reused for the real network adapter,

showing how significant pieces of software may be implemented and debugged, and their

performance evaluated, even before building the hardware that would either run or interface

to this software.

QoS issues in adapter design: END is used to build models of network adapters inter­

facing to point-to-point or shared networks. Various kinds of QoS support are implemented

and divided in different ways between the host software and the adapter firmware. We

establish that adapter-based QoS support significantly improves delivered QoS, especially

in shared networks.

Receive livelock: We study various techniques for the avoidance of receive livelock. We

propose a novel technique, adaptive backoff, that elim ina tes receive livelock without requir­

ing any modifications in the operating system scheduler; it only involves minor modifications

to the adapter’s firmware and device driver. This technique is very general, and works even

when the host is connected to multiple network interfaces. The host’s reception capacity

may be partitioned between the network interfaces by suitable parameter settings. This par­

tition of resources is not rigid, and a busy network interface can absorb reception capacity

that is not used by a temporarily idle interface.

1.3 Outline of the Dissertation

The rest of this dissertation is organized as follows:

Chapter 2 surveys related work in the areas of real-time communication and network

adapter design. In addition, it examines the pros and cons of various design and analysis

techniques that may be used in designing communication subsystems while keeping in mind

the goal of hardware/software codesign.

Chapter 3 describes our implementation of real-time channels on HARTS. The perfor­

mance of a best-effort network adapter is characterized, and tradeoffs involved in using it

to provide real-time guarantees are studied.

Chapter 4 addresses the problem of network adapter design using device emulation.

Using a model of a generic network adapter, it considers the issues involved in the design

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of each component, and its potential impact on QoS. It describes in detail the design and

implementation of END, an emulation-based network adapter design tool, and explains how

it may be used to build models of arbitrary adapters, and to study their performance when

interfaced to a real end host.

Chapter 5 uses END to study the performance of a real network adapter, the Ancor VME

CIM 250, by building a representative model of it. Some of the performance bottlenecks due

to the design of this adapter are identified, and the model is then modified to incorporate

suitable design improvements and study the potential performance improvement.

Chapter 6 revisits issues on QoS support in communication subsystems. It describes a

QoS-sensitive communication architecture that integrates CPU and link scheduling to pro­

vide QoS guarantees. END is used to build various models of network adapters interfacing

either to a point-to-point network, or to a shared network medium. Various configurations

of the host operating system, network adapter and networks are studied to determine how

delivered QoS for transmitted data depends on the level of QoS support provided by the

different components of the end-host communication subsystem.

While many of the issues in the design of transmission and reception parts of the com­

munication subsystem are quite similar, there are also significant differences on account of

the fact that the end host can completely control outgoing data, but it does not have similar

control over incoming data, which could arrive at the network interface at any time, from

one or more sources. Chapter 7 addresses some of these reception issues. In particular,

END is used to study the problem of receive livelock and demonstrate how this problem

may be solved by suitable modifications of the host scheduler and/or the network adapter.

Chapter 8 concludes this dissertation by recapitulating its contributions and suggesting

possible directions for future work.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

COMMUNICATION SUBSYSTEM DESIGN

This dissertation deals not only with the actual design of network adapters for QoS, bat

also with the process of designing them. Designing a network adapter involves studying its

architectural features, and how they interact with, the other components of the communica­

tion subsystem, and how these features support or hinder the implementation of real-time

communication services. Communication subsystems include host software like the protocol

stack, parts of the operating system and the device driver, and hardware like the network

adapter and its interface to the host. This chapter presents an overview of past research in

areas related to end-host communication subsystem design, in particular for implementing

QoS support. To provide appropriate QoS, it is not only necessary to select the appropriate

service discipline, bat also to implement them in a manner that minimizes their overhead

and maximizes the admissibility and performance of real-time traffic. Section 2.1 provides

a brief survey of various service disciplines for real-time communication, and Section 2.2 de­

scribes some implementations of real-time communication services and the issues addressed

by them. Section 2.3 describes other research efforts involving network adapter design. Sec­

tion 2.3.1 deals with various techniques that may be used in network adapter design, and

the advantages and disadvantages of those techniques. Finally, Section 2.3.2 highlights the

advantages of network device emulation as a design technique, and introduces END, which

was implemented in the course of this research.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

2.1 Real-tim e Communication

With, the rapid growth of the Internet and the Web, and servers being used as sources for

multimedia data, real-time communication services are becoming increasingly important.

Some of the issues involved in providing these services have been studied extensively in other

contexts like embedded systems and real-time CPU scheduling. Traditional packet switched

networks have p rim arily addressed issues of network throughput, whereas real-time applica­

tions require stringent guarantees with respect to delay, delay jitter, throughput and packet

loss. For instance, real-time applications obtain communication services from a network by

having resources allocated to them. Factors that have a significant impact on communi­

cation services include routing, buffer management and packet scheduling algorithms. In

addition, since the network has finite bandwidth, it must also enforce admission control

to provide any kind of service guarantee. An application requesting service must therefore

characterize its com m u n ica tio n traffic and specify its QoS requirements. The network com­

putes the resources required and can accept a connection if the resources are available. Once

a connection has been established, the network’s admission control policies preserves the

QoS of already accepted applications. Thus, real-time applications place stringent demands

on the com m unica tio n subsystem.

A detailed survey of various proposed techniques for real-time com m unica tion can be

found in [9]. Some of these techniques are presented here to provide an insight into the

variety of paradigms used, and the issues involved in selecting a scheme appropriate to

the system requirements. In rate-based methods, the requested QoS is translated into a

transmission rate or bandwidth. The rate determines the priority given to a connection, and

is used to determine the end-to-end delay bounds. Scheduler-based methods examine how

the packets of different connections interact, and if it is possible to find a feasible schedule in

which all packets meet their deadlines. Priorities are assigned dynamically for each packet

at run-time based on their deadlines. While rate-based schemes are usually simpler to

implement, the rate and data priority cannot be assigned independently. Scheduler-based

schemes are more complex to implement, but allow greater flexibility in independently

selecting bandwidth, deadlines and delay jitter.

Some of the notable rate-based schemes include Weighted Fair Queuing [36], Packet-by-

Packet Generalized Processor Sharing (PGPS) [82], Stop-and-Go [48], Hierarchical Round-

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Robin (HRR) [60], and Rate-Controlled Static-Priority Queuing (RCSP) [105]. Scheduler-

based schemes include the Real-time Channel (RIC) [43] and its variants and enhance­

ments [63,109,111]. While the schemes mentioned so far are for hard real-time commu­

nication, with strong guarantees, proposals have been made for predicted (or best-effort)

real-time communication, which provide some kind of statistical guarantees. These include

FIFO-1- [28] and Hop-Laxity [90]. The Internet Engineering Task Force (IETF) is examining

these issues in the context of providing integrated services on the Internet [19].

Generalized Processor Sharing (GPS) was first proposed as Weighted Fair Queuing

(WFQ) [36]. This is a work conserving scheme that guarantees bandwidth to applications

based on their average traffic rate. When combined with a leaky bucket admission scheme, a

generalized form of the packet-based GPS (PGPS) [82] provides performance guarantees in

a flexible environment. For leaky-bucket constrained sources, PGPS may be used to tightly

bound the end-to-end delay [81]. While GPS has been proven to be optimal, and PGPS is a

good approximation of it, these schemes are very complicated and hard to implement. Self-

Clocked Fair Queuing (SCFQ) [46] is somewhat simpler, with comparable performance, but,

in the worst case, does not guarantee fairness. These schemes often serve as a benchmark

to compare against the performance of simpler schemes [88].

The Stop-and-Go [47-49,97] queuing framework includes a packet admission policy at

the edge of the network, and a framing strategy at all nodes. This bounds the end-to-end

delay, and guarantees a low jitter. The main drawback is that the end-to-end delay is tied

to the sizes of frames, reducing the flexibility in satisfying different delay requirements.

VirtualClock [106,107] is a scheduler-based flow control mechanism that supports diverse

performance requirements by enforcing resource usage based on prior reservations. Though

the formulation of the algorithm is different, it is equivalent to the logical arrival time

method used for policing traffic in RTCs [43,63]. Unlike RXCs, this scheme only provides

guaranteed bandwidth for connections, but does not guarantee specific deadlines. However,

extensions of the VirtualClock scheme have been used to compute end-to-end delay bounds

as well [104].

Our approach to real-time communication is based on the real-time channel, a scheduler-

based scheme. Since we consider platforms that can support a mix of real-time and best-

effort traffic with a wide variety of QoS requirements, the advantages provided by the

flexibility of this scheme outweigh the complexity of its implementation. The RTC was first

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proposed by Ferrari aad Verma [43] as part of the Tenet project. RTCs provide end-to-end

guarantees by computing link deadlines for each link along the path for the message. This

method is valid under the assumption that the sum of all packet times is less than the

shortest period of any connection using that link. This restriction was removed by Kandlur

et al. [63]. They used a variant of the critical zone analysis used in the Rate Monotonic

algorithm [71] to assign static priorities to existing connections, and to check if introducing a

new connection would affect the guarantees of existing channels. Though static priorities are

used to test for admission of new connections, a multi-class Earliest Due Date algorithm [43]

is used for run-time scheduling. This scheduling scheme uses logical arrival lime to set

deadlines, and this provides flow control and also protects connections from one another.

The details of our implementation of this scheme are described in Chapter 3. RTCs have

also been adapted for other communication architectures. For example, extensions to the

RTC scheme have been proposed for local area networks and FDDI rings [109,110].

The examples selected here are not a comprehensive survey of real-time communication.

However, they do illustrate that there are many different schemes for admitting packets,

managing flow control and providing different kinds of guarantees for real-time packets.

2.2 Implementation o f Real-time Communication Services

While there are many theoretical models for real-time communication, there are signifi­

cant problems involved in actually implementing them. Most theoretical models of service

disciplines deal with scheduling algorithms for data in packet- or cell-switched networks.

Typically, they do not deal with issues like the implementation costs of such algorithms,

the required CPU resources, CPU preemptibility and preemption costs, effects of CPU and

cache behavior, protocol processing costs, the relationship between the memory and I/O

bandwidths, and the interaction between the CPU and network link scheduling algorithms.

Recently, there have been a few papers in the literature that address the issues related

to the constraints imposed by real systems, and how the admission control and run-time

scheduling of existing service disciplines need to be modified to provide QoS guarantees

under these circumstances [50,74,75]. Given below are a few examples of implementations

of real-time com m unica tion services, and how they address these issues.

The Time-Triggered Protocol (TTP) [66] is an integrated communication protocol for

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time-triggered architectures. It provides predictable delays, clock synchronization and fault-

tolerant communication on replicated broadcast channels using time-division multiplexing.

While this has been implemented successfully, it Is narrowly targeted towards embedded

systems which have workloads that can be precisely defined in advance. Though it is

interesting to study how the system is designed by considering the issues related to the

targeted application requirements and platform architecture, and their impact on fault-

tolerance and scheduling, TTP is not sufficiently flexible to be directly applicable to more

general systems.

The Session Reservation Protocol (SRP) [8] was proposed as a (compound) session es­

tablishment protocol for IP networks as part of the DASH project [5,6]. The Tenet real-time

protocol suite [11] is a successor to DASH, and is an advanced implementation of real-time

communication on wide-area networks (WAN). This protocol suite comprises the RCAP

channel administration protocol and the RTMP/RXIP transport and network layer proto­

cols, which implement unicast real-time channels [43] in Unix. Since Unix-based unipro­

cessor workstations are the implementation platform, the Tenet approach uses the socket

application programming interface (API) and implements the real-time channel scheduling

discipline for ordering packet transmissions. Tenet assumes that the network, rather than

the end-host CPU, is the bottleneck, and does not address the problem of making protocol

processing inside the host more predictable. While the Tenet implementation uses standard

network adapters, it does not consider the impact of adapter characteristics on the ability

to support real-time communication effectively. Though the effectiveness of these protocols

in providing and maintaining bandwidth and delay guarantees has been demonstrated [12],

delay jitter is quite large, probably due to the variance in the CPU processing delays.

The resource ReSerVation Protocol (RSVP) has been proposed for use in the Inter­

net [108]. While SRP and Tenet1 were geared towards unicast sessions with performance

guarantees, RSVP is geared more towards multi-point multi-party communication. RSVP

is a signaling protocol that permits resource reservation for real-time com m unica tio n in the

Internet. Currently, standards are being developed for two classes of traffic: (a) Guaranteed

service which provides end-to-end bandwidth and delay guarantees, provided the connection

does not violate the traffic parameters it provided, and (b) Controlled load service which

provides looser guarantees, but tries to ensure that most packets meet their deadlines.

1 Tenet Protocol Suite 2 [16,52] considers extensions for mnlti-point, molti-party communication.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An implementation of RSVP for Unix-based servers supporting Integrated Services [19]

has been described by Barzilai et al. [13]. It is an enhancement of traditional sockets-based

communications that preserves the API and binary compatibility of existing applications. It

supports a wide variety of network interfaces ranging from legacy LANs, like Ethernets and

Token Rings, to high-speed ATM interfaces. A key component of this implementation is a

software module, called the QoS Manager, that is responsible for connection management

as well as run-time shaping, buffer management and scheduling of traffic. Based on the QoS

support provided by the network adapter, the QoS Manager can provide different levels of

scheduling support needed for each connection. For example, the ATM adapter provides

shaping and scheduling, and does not need software support for QoS. On the other hand,

the Token Ring based network requires run-time support from the QoS manager since it

does not provide this on its own. This implementation of RSVP also assumes that CPU

resources are adequate, and does not provide any explicit CPU capacity reservation or

scheduling support for protocol processing.

A common feature of the implementations described above is that they concentrate

on implementing particular service disciplines and provide appropriate operating system

support (API and link scheduling) for them. An orthogonal requirement is making protocol

processing predictable within hosts. The need for scheduling protocol processing at priority

levels consistent with those of the communicating application is highlighted in [7] and some

implementation strategies demonstrated in [51]. More recently, processor capacity reserves

in Real-Time Mach [78] have been combined with user-level protocol processing [72] to make

protocol processing inside hosts predictable [79].

Some other implementations have used CPU scheduling to address some problems re­

lated to network interfaces [39,80], but not in the context of QoS. Our implementation of

real-time channels [56,74,75] is described in detail in Chapter 3. It discusses the efficacy of

link scheduling for our hardware and software architecture, and explicitly considers issues

related to the network adapter interface to the host. Chapter 6 presents a brief descrip­

tion of our QoS-sensitive communication architecture, and discusses how CPU and network

scheduling were integrated on this platform [74,75]. This prorides a basis for a detailed

examination of the issues involved in CPU and adapter support for QoS.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Network Adapter Design

The design and performance of network adapters, and communication subsystems in general,

have been studied with a view to optimize performance and minimize the overhead related

to the adapter-host interface. While early work was mainly targeted towards improving

throughput and reducing latency, more recently, adapters have been designed with explicit

support for QoS.

The Aurora project has studied the design and implementation of high-performance

ATM adapters. Early work [35,98] focused on the hardware aspects of the design, and

optimized performance by implementing fixed services like Segmentation and Reassembly

(SAR) in hardware, and allowing parallel operations for each com m unica tion channel. A

separate controller was provided for the transmit and receive directions, allowing a variety

of scheduling and SAR. algorithms to be implemented. Since ATM cells have a very small

payload (48 bytes), ‘‘blocking” may be used to process more than one cell at a time. Polling

for per-cell operations is also necessary since process contexts that need to be saved during

interrupts are often larger than the cell size. Some operations were further optimized by

using Programmable Logic Devices (PLD) for per-cell operations [34].

Later work on Aurora shifted the focus to software issues [38,93,99]. Per-cell operations

were now moved completely to hardware, and the software abstraction of the hardware was

that of a device that transferred arbitrary sized data between the host memory and the

network. Device-dependent parts of the software were encapsulated in a device driver, with

service primitives like sockets as the system entry points. Since operating systems typically

have multiple address spaces, and data needs to be moved across them, solutions were

proposed to m inim ize data copying. Other issues that were addressed were the interaction

of cache behavior with Programmed I/O (PIO) or Direct Memory Access (DMA) transfers,

and issues related to polling vs. interrupts, and hybrid solutions like clocked interrupts. This

line of research was further developed in the Osiris project [41], which considered software

issues from the perspectives of the adapter firmware, the operating system interface and

the applications. Application Device Channels (ADC) were proposed as a means to give

applications direct access to the network interface bypassing the overhead of the operating

system.

The Nectar project [10,29,94,95] was another significant effort in the design of high-

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performance network interfaces for heterogeneous multicomputers. This has now evolved

into the Gigabit Nectar project which focuses on network interfaces for supercomputers [54].

The Nectar CAB (Communications Accelerator Block) ensures high throughput and leaves

sufficient resources for applications by moving some of the protocol processing to the net­

work adapter. The design was influenced, by the bimodal nature of data (most packets are

either small, or are maximum sized), and appropriate optimizations were made for each

kind of packet. Software optimizations included eliminating unnecessary data copying, and

computation of checksums along with data movement.

Placing a network adapter on the system memory bus provides very tight coupling

between the host and the network. However, such adapters are typically found only for

very mature and ubiquitous technologies (e.g., Ethernet). Most other adapters lie on the

system I/O bus, allowing them to be designed independently of the CPU architecture. One

such network adapter for FDDI networks is described in [83]. It considers various design

alternatives for partitioning the functions between the network interface and host software

and proposes a simple model for predicting user-perceived throughput. It also demonstrated

that straight-forward design of the operating system and network interface makes the system

susceptible to receive livelock. Operating system modifications to avoid receive livelock are

proposed in [80]. Other (partial) solutions based on modifications to the network adapter

and/or operating system have also been proposed [39]. We study receive livelock and its

solutions in detail in Chapter 7.

Issues similar to those described above have been studied in the other network adapter

implementations including the Afterburner [33], Jetstream [42] and APIC [37]. QoS sup­

port in network interfaces has been studied in [18,30]. While most designs are qualitative

in nature with measurements to verify performance, quantitative studies predict network

performance based on the analysis of the system configuration and costs of individual com­

munication subsystem components [74,76].

The examples discussed in this section present an overview of the design of specific

network adapters and the design goals and issues addressed in each case. They illustrate

the increasing importance of integration of hardware and software for optimal performance.

However, in each case, the hardware was designed independently of the host software, and

the software issues were addressed after the hardware was built. Adapters like Osiris and

Nectar were built with programmable components specifically to permit software experi-

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mentation. While flexible designs like these are significantly more versatile, they are also

very expensive to build, and might still be constrained by their hardware architectures. The

rest of this section discusses the network adapter design process, and proposes our tech­

niques for hardware/software codesign that permit evaluation of a hardware architecture

even before it is built.

2.3.1 A dapter Design and Evaluation Techniques

A network adapter is a complex device whose design can have a substantial impact on com­

munication performance. The process of designing network adapters is often an important

part of meeting the design goals. In order to design a network adapter that meets desired

performance requirements, one must study design alternatives in a realistic setting, i.e.,

when the network adapter interacts with the communication software on the target host

platform. Building and testing hardware and interfacing to higher software layers in the

operating system is time consuming and expensive. Most adapters do not allow on-board

firmware to be modified or programmed to experiment with different design tradeoffs. More

importantly, more often than not, the hardware engineers designing network adapters are far

removed from the concerns of those writing communication software, resulting in a design

poorly integrated with the host operating system.

Several techniques may be used to design and evaluate network devices (I/O devices in

general): mathematical modeling, simulation, emulation and prototyping. Figure 2.1 shows

the cost-accuracy tradeoffs of these techniques, as explained below. The x-axis represents

the accuracy of the technique employed, and the y-axis represents the cost /complexity of

employing the technique.

Mathematical modeling is typically employed to study the queuing behavior of net­

work traffic. Though mathematical models are relatively inexpensive to develop for overly-

simplified systems, they rarely account for system overhead encountered in practice (such

as interrupt han d lin g and context switches). More detailed models capturing concur­

rency, contention, and dynamic component interaction have been constructed for some

systems [23,65], but these rapidly become intractable.

Another technique is simulation, which has several advantages [15]. Since a simulator

is built in software, it can be readily modified and augmented to test new features and

interfaces. Simulators are usually easier and cheaper to build than real systems. They can

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Accuracy (Representativeness)

Figure 2.1: Performance evaluation techniques and tradeoffs.

model “ideal” systems that are impossible to build, e.g., an infinitely fast network. However,

a simulator is typically an artificial device, i.e., no real system components are involved,

which has been accurately parameterized via performance measurements. Exceptions to

this do exist in approaches that execute actual software under control of the simulator [20].

However, while sufficient to study the network performance of communication protocols,

such approaches are not applicable when hardware components (such as the system I/O

bus, caches, device interrupts) must also be considered and hardware/software concurrency

and dynamic interaction captured in the evaluation. Further, simulation is typically much

slower than the execution of real systems. As seen in Figure 2.1, increasing the accuracy of

the simulation model increases its cost while slowing it down even further.

Prototyping a device and interfacing to higher software layers in the operating system is

time-consuming and expensive. While prototypes can be highly accurate (see Figure 2.1),

they are not easily modifiable. The on-board firmware may be modified to study differ­

ent design options [41], or one may employ programmable adapters [22], but the internal

hardware architecture is typically impossible to modify without developing a new proto­

type. More importantly, the hardware engineers designing network adapters are often far

removed from the concerns of those writing the communication software, and vice versa,

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resulting in a design poorly integrated with the host operating system.

A hybrid solution between simulation and prototyping is emulation. Device emulation

is a technique that permits hardware/software codesign, where adapter design tradeoffs can

be explored early in the design cycle. While simulating a complete system, it is necessary

to construct models of each component, and also capture all the interactions between these

components, hi contrast to a simulator, an emulator is a software module that interfaces

to a real host (Figure 2.2(b)), giving the latter the impression that it is interacting in real­

time with the actual subsystem being emulated. Device emulation shares the advantages

of simulation in that it is a flexible technique that allows rapid design and evaluation of

various interfaces and adapter design policies and/or algorithms. However, emulation is

simpler than simulation since it is only necessary to create a model of the component being

designed/evaluated, with the rest of the system comprising real components that already

exist. Further, this may be as accurate as a prototype since it interacts with the rest of the

system in the same way a real component /prototype would. As Figure 2.1 illustrates, device

emulation can provide reasonable accuracy at an acceptable cost /complexity. Due to these

advantages, emulation has been chosen as the design and evaluation technique used in this

dissertation. The rest of this chapter presents a more detailed discussion of the advantages

of emulation, and a comparison of END, the emulator used in this research, with other

emulators used for network evaluation.

2 .3 .2 T h e Case for D ev ice E m ulation

Hardware/software codesign involves identifying the various functions that need to be im­

plemented, and how to partition these functions between the hardware and software for

optimal cost and performance [21,44,59,96]. Typically, hardware models are built using

a hardware description language like VHDL, and simulating the software in conjunction

with these hardware models [25,67,101]. Emulation is another hardware/software codesign

technique, but, in contrast to the methods used in [25,67,101], instead of simulating the

hardware model with the software, the software runs on the target host, and interacts with

an executable model of the hardware in real time while capturing the details of the actual

hardware/software interface.

Like simulation, device emulation is a flexible technique that allows rapid evaluation of

various design alternatives. For a more accurate simulation, the target machine (for the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TARGET MACHNE

tracw

STORAGE

(a) Trace-driven simulation

(b) Device emulation

Figure 2.2: Trace-driven sim ulation vs. device em ulation.

device being designed/evaluated) may be instrumented to generate ran-time traces that are

later fed as input to the device simulator (Figure 2.2(a)). Not only must the host soft­

ware be instrumented to generate sufficiently detailed traces, but also the instrumentation

code may be intrusive enough to disturb the timing (and hence the sequence) of important

events. Further, the traces thus generated must reside on stable storage before being fed to

the device simulator. On the other hand, device emulation (Figure 2.2(b)) does not require

that the target machine be instrumented, as long as it has the necessary driver software

to communicate with the device emulator. Note that both simulation and emulation re­

quire construction of accurate parameterized device models that are typically derived from

existing devices [103].

In our case, END emulates a network adapter and interfaces with the target host, giving

the impression that the host communication software is communicating with a real network.

This has several significant advantages. Interfacing a device emulator to the target host

allows adapter design tradeoffs to be evaluated in the presence of applications, operating

system overhead, interrupts, etc. This helps identify design limitations and bottlenecks early

in the design cycle. Farther, since device emulation is carried out on the target platform,

it allows development and testing of host operating system software that interfaces to the

device, and rapid integration of the actual hardware device when it becomes available.

Emulation has been used before for network evaluation. For example, a transputer-based

network was used to emulate four hosts interconnected on a FDDI ring, and to evaluate a

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

multimedia network interface design [18]. A more general-purpose emulator, Hitbox [1] is a

layer just above the device driver in a network connected by Ethernets in a point-to-point

configuration. Hitbox can be programmed to insert delays and/or errors to emulate the

latency and noise characteristics of a WAN link. Of course, it can not be used to emulate

links with a bandwidth greater than that of the Ethernet, i.e., 10 Mb/s. Delayline [57] is

another WAN emulation tool. Here, an arbitrary WAN topology is superposed on a LAN

configuration, and the application code is intercepted to insert the appropriate queuing

delays. A single node of Delayline may be used to emulate more than one network host, or

even a set of hosts on a LAN, and can handle more complex topologies than Hitbox. One

of the disadvantages of Delayline is that it requires modification of the application code to

manage these intercepts. Dummynet [85] is very similar to Delayline. Here again, arbitrary

topologies are emulated on a LAN. A thin layer of code is added between protocol layers to

capture the delays of the emulated network, thus making it completely transparent to the

application code.

In each of the examples above, we see the advantages of emulation: using real compo­

nents and operating system and network code to examine the behavior of entire systems

that are different from the given platform in some aspect. However, they simply insert

high-level queuing and data-loss models into the platform. The advantage of END is that

it can not only be used in the same manner, but can also capture the low-level details of

the host-adapter interface. The architecture of END is described in detail in Chapter 4.

Examples of its use as a design and evaluation tool are presented in Chapter 5.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

DESIGN TRADEOFFS IN IM PLEM ENTING REAL-TIME

CHANNELS

The real-time channel (RTC) model [43,63] provides a paradigm for real-time communica-

tion services in packet-switched networks. In this model, an application requesting service

mast specify its traffic characteristics, including the rate at which data is generated and

QoS requirements, to the network. Since the network has finite bandwidth, it must per­

form admission control to provide any kind of service guarantees. The network computes

the resources required and accepts the request if sufficient resources can be reserved for it.

Once a requested RTC has been established, the network’s policing and enforcement policies

prevent an application from consuming more network resources than reserved, so as not to

affect the services offered to other applications. RTCs provide delivery-delay guarantees for

real-time traffic and, at the same time, allow reasonably good performance for best-effort

traffic.

This chapter examines design tradeoffs involved in implementing RTCs in end-hosts us­

ing commercial, off-the-shelf, adapter hardware for access to the network. With multiple

independent RTCs, it becomes important to minimize the interference between them, and to

isolate real-time traffic from best-effort traffic. This requires that system resources such as

memory bandwidth, protocol processing bandwidth, and network bandwidth be consumed

according to a (dynamic) global transmission/reception order as determined by the QoS re­

quirements and traffic load of the individual RTCs. The implementation of RTCs described

here is on a bus-based multiprocessor system. Although most of the design principles do

not depend on whether the end-hosts are uniprocessors or multiprocessors, cases where they

differ have been highlighted.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A hardware and software architecture for real-time communication is presented that

guarantees communication processing bandwidth by dedicating a processor for protocol

processing and link scheduling. The application programming interface (API) for accessing

communication services is split between this protocol processor and the other (application)

processors. Dedicating a processor for protocol processing has also been proposed by other

researchers [29] in order to offload all protocol processing from the application processors,

freeing them from adapter handshake overhead and permitting greater overlap between

useful computation and communication processing. In addition to these benefits, a dedi­

cated protocol processor enables global coordination between the active real-time channels

to schedule protocol processing, link access and data transfer bandwidth. To ensure that

protocol processing bandwidth is consumed in a global transmission/reception order, the

protocol processor provides priority-based scheduling of protocol threads. Similarly, access

to the link is regulated through link scheduling on the protocol processor. On a uniprocessor

system there is no need to coordinate between the activities of multiple processors. How­

ever, having a dedicated processor for network activities trivially guarantees a minimum

processing bandwidth for these activities. On a uniprocessor system, other approaches,

such as Processor Capacity Reserves [68,77], could be used to ensure that sufficient CPU

capacity is available for protocol processing. We optimize the data transfer path such that

there is no unnecessary data copying and bus bandwidth on transmission is consumed in the

link-access order determined by the link scheduler. Note that bus bandwidth is a concern on

uniprocessor hosts as well, since most network adapters are on the system 1/0 bus, rather

than on the CPU’s memory bus [83], and hence will need to share the bus with other I/O

activities.

Three aspects pertaining to the performance of real-time and best-effort traffic on our

hardware and software architecture are explored. For this, we use a VMEbus-based multi­

processor as the end host, with hosts connected by a network constructed using an Ancor

CXT 250 crossbar switch [4] and Ancor CIM 250 network adapters [3]. We highlight the

performance implications of the design features and interface characteristics of the network

adapter, especially for real-time communication. These observations are used to motivate

desirable features in network adapters to support real-time communication, and hence, the

implementation of real-time channels. Next, we consider the software overhead of protocol

processing and link scheduling on the (dedicated) protocol processor. When there is no

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

copying of data daring protocol processing, protocol-processing and link-scheduling over­

head is directly proportional to the number of fragments and the per-fragment processing

cost. Using the overhead as motivation, simple CPU scheduling mechanisms are proposed

to preserve QoS guarantees to real-time channels. Lastly, we study the effectiveness of

the link scheduler in preserving QoS guarantees on individual channels as well as servicing

best-effort traffic under varying traffic loads.

The rest of this chapter is organized as follows. Section 3.1 describes the hardware and

software organization of our experimentation platform and Section 3.2 gives an overview of

the real-time channel implementation on this platform. The implications of network adapter

characteristics, including data-transfer performance for real-time and best-effort traffic, are

discussed in Section 3.3, which also high ligh ts desirable features in network adapters to

facilitate real-time com m u n ica tion . Section 3.4 describes the optimizations we applied to

minimize/eliminate redundant data copying such that bus bandwidth is consumed in the

global transmission order determined by the link scheduler. The protocol-processing and

link-scheduling overhead of our implementation is presented next, along with CPU schedul­

ing mechanisms to preserve QoS guarantees. Section 3.5 evaluates the implementation of

the link scheduler controlling access to the network and demonstrates how the scheduler not

only insulates real-time traffic from best-effort traffic, but also insulates traffic belonging to

different real-time channels from each other. Section 3.6 concludes this chapter.

3.1 The Experimentation Platform

This section describes the hardware and software architecture of the experimentation plat­

form which is being developed as a part of the HARTS project [92]. The primary goal of

HARTS is to investigate architectural and operating system issues in distributed real-time

computing.

3 .1 .1 H ardw are

Each HARTS node (also referred to as end host) is a VMEbus-based multiprocessor with

2-4 processors, as shown in Figure 3.1. This multiprocessor configuration provides several

benefits over uniprocessor configurations. For example, many input/output devices and

controllers are available for the popular VMEbus. Hence, each processor can be dedicated

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T
H
E
R
N
E
T

Figure 3.1: A rchitecture o f each HARTS node

to control a different device on the VMEbus, enabling simultaneous control over the active

devices. The additional processors can also provide fault tolerance at each node. Bus-based

multiprocessor configurations are increasingly being used as multimedia servers and in desk­

top workstations. This architecture, therefore, allows us to derive important implications

for platforms likely to support real-time communication.

The available processors in each HARTS node are divided into Application Processors

(AP) and a Network Processor (NP); applications execute on APs while communication

protocols execute on the NP. Dedicating a processor to control the VMEbus-based com­

munication devices has several advantages. The NP offloads all communication processing

from the APs, frees the APs from device handshake overhead, and permits greater over­

lap between useful computation and communication processing1. Since the communication

device is located on the VMEbus, any processor can interact with it. However, device

handshake overhead is minimal if done by a designated processor. More importantly, with

real-time channels originating from multiple APs, a dedicated NP ensures that the channels

are serviced in a certain global (node-wide) order as determined by their traffic parameters.

Each processor is an Ironies IV-3207 card with a 25 MHz Motorola MC68040 CPU (Speclnt

1 Communication processing in general includes clock synchronization, group communication, and real­
time communication services in addition to protocol processing.

24

Ancor VMECIM2S0

communication subsystem
understudy

To
Ancor
CXT 250
Switch

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92 rating of 12.3); the NP has 16 MB of DRAM while each AP has 4 MB of DRAM.

In the current configuration, the HARTS interconnection network is constructed using

an Ancor CXT 250 crossbar switch [4] and Ancor VME CIM 250 network adaptors [3],

which implement the ANSI Fiber Channel 3.0 standard [2]. The CXT 250 crossbar switch

is fully connected, but may be used to embed various partially-connected point-to-point

topologies for studying multi-hop com m unica tio n . In addition to communication interface

hardware, the CIM has 8 MB DRAM, independent DMA controllers for data movement,

and an input/output processor that provides support for Fiber Channel operations. Though

the CIM has a general-purpose I/O processor, the on-board firmware is controlled by the

manufacturer and cannot be modified by the user. The NP exercises control over the CIM

only through command/response FIFOs.

3 .1 .2 Softw are

HARTOS [61,91], the operating system running on each HARTS node, provides a uniform

interface for application programs to access kernel and network services, and supports real­

time applications in a distributed environment. Figure 3.1 highlights the main HARTOS

components. The APs run the pS0S+m kernel [58] while the NP runs a protocol stack

based on the z-kemel [55]. Communication between the APs and the NP is provided via

the HARTOS API, a command/response interface that permits pSOS+m and ar-kemel to

provide network services to applications.

A P K ernel: pSOS+m is a real-time multiprocessor OS kernel and serves as the execu­

tive for each AP. Though pSOS+m can provide network services like TCP/IP that may be

used for remote communication with pSOS+m tasks on other HARTS nodes, these services

are not real-time and hence not suited for this platform. The real-time protocols could

have been implemented in pSOS+m using sockets as the real-time channel API, similar to

the approach adopted by the Tenet group [11]. However, this would have limited us to

uniprocessor configurations, with the accompanying process scheduling interference effects,

and the semantics and associated overhead of the socket API. More importantly, an ex­

pensive coordination amongst the APs may be necessitated to determine the (node-wide)

global transmission order. HARTOS extends pSOS+m to operate in the multicomputer

environment of HARTS. HARTOS provides a pSOS+m device that reads from and writes

to a command/response mailbox interface (HARTOS API) for services provided on the NP,

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pSOS*1" HARTOS DEVICE DRIVER

Name Service

FRAG

RPC

Clock
Synchronization

Reliable Datagram

Network M anager
(real-time channel)

HARTOS Protocol - Application Processor Interface

HNET Protocol - Network Layer and Device Drivers

PHYSICAL LAYER

F igure 3.2: T he x-kernel protocol stack in HARTOS.

snch as real-time communication and distributed name service. The HARTOS API is split

between the APs and the NP, with API stnbs marshaling call parameters implemented on

the AP and the interface mailboxes implemented on the NP.

N P Kernel: The NP employs a derivative of the x-kemel [55] as the communication exec­

utive. It employs a process-per-message2 model for protocol processing, in which a process

or thread shepherds a message through the protocol stack. This eliminates extraneous con­

text switches encountered in the process-per-protocol model [89]. A process-per-message

model also allows protocol processing for each message to be independently scheduled on

the processor based on a variety of scheduling policies, as opposed to the software-interrupt

level processing in BSD Unix [69]. This improves the traffic insulation between different

real-time channels.

Figure 3.2 gives an overview of the x-kemel protocol stack implemented in HARTOS.

The HARTOS protocol interfaces with the HARTOS device driver on the APs to imple­

ment the HARTOS API. The Name Service protocol provides facilities to register a name

locally, and to look up a name globally. Communication protocols include standard sup­

port like remote procedure call (RPC), reliable datagrams and fragmentation. The RPC

and fragmentation (FRAG) protocols are modified versions of x-kemel’s CHAN and BLAST

protocols, respectively. Our implementation of the Clock Synchronization protocol uses a

2In Chapter 6 we extend the process-per-message model to a process-per-channel model.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System Parameter Latency
context switching 20 fts
interrupt handling 28 fts
timer read (resolution) 22 (2) fts
NP PIO (4 KB bcopy) 330 ns per word
VME PIO (4 KB bcopy) 2040 ns per word
VME DMA (4 KB transfer - peak) 100 ns per word
CIM DMA (2 KB transfer) 1250 ns per word
CIM DMA (4 KB transfer) 2250 ns per word

Table 3.1: Baseline system performance

derivative3 of Cristian’s probabilistic clock synchronization algorithm [31], while the Net­

work Manager protocol is the resource reservation protocol for real-time channels. These

two protocols together support real-time com m unica tion services. The HNET protocol is

an unreliable datagram service with addressing support for the underlying network. The

HNET layer includes device drivers for the com m unica tion devices in a HARTS node (for

access to Ethernet or CIM/CXT network) and implements run-time packet scheduling for

network access.

3.1.3 Baseline System M easurements

Table 3.1 lists the baseline measurements on the NP, the VMEbus, and the CIM. The

memory bandwidth was measured using the bcopy4 operation, both within the NP and

across the VMEbus. The CIM has been reported to deliver a maximum throughput of

6 MB/second only for very large (« 3 MB) transfers [70]. While the throughput we obtained

for smaller packet sizes (< 16 KB) was similar to that obtained in [70], we could only obtain

a data transfer bandwidth of about 3 MB/second with 3 MB transfers.

3This implementation of dock synchronization is completely in software, bat it uses some ideas from
the Hardware Assisted Software d o ck Synchronization proposed by Ramanathan et al. [84] that help both
to rednce the synchronization error and to increase the probability of synchronization. Even without any
hardware assistance, the HARTS nodes maintain their docks within 1 millisecond of each other.

4 bcopy performs the transfer a word at a time, using programmed I/O . We designed the experiments
carefully to minimize cache effects and adjusted the measurements to account for call and loop overhead.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Im plem entation o f Real-time Channels

This section describes the implementation of real-time channels in HARTOS. First, the ap­

plication programming interface is described, followed by the required support for channel

establishment, and then the transfer of data from the sending AP to the destination AP

through the intermediate nodes. Next, the optimizations applied to the transmission and re­

ception paths throngh the z-kemel to minimize/eliminate data copies are discussed. Finally,

the implementation of the link scheduler that coordinates packet transmission/reception and

traffic enforcement at each node is presented.

3.2.1 R eal-tim e Channel A PI

Applications create and use real-time channels through the real-time channel API (Ta­

ble 3.2). The receiving task of a real-time channel invokes r tc _ in i t to create a local

pSOS+m message queue for storing incoming messages. The receiving task subsequently

registers the queue with the name service so that the sending task can locate it in order to

create the real-time channel. The sending task establishes a real-time channel by invoking

r tc -c re a te , specifying the traffic parameters for the message generation process and the

end-to-end delay bound desired on this channel. The traffic generation model is based on a

linear bounded arrival process [5,32], in which the arrival process has the following parame­

ters: maximum message size (S'maar bytes), maximum message rate (Rmax messages/second),

and maximum burst size (Bmax messages). In any time interval of length t, the number of

messages generated may not exceed Bvuus + t 'R max. Message generation is bounded by the

rate Rmaxt and its reciprocal, / mtn, is the minimum (logical) inter-generation time between

messages. The burst parameter, Bmax bounds the allowed short-term variation in message

generation, and partially determines the buffer space requirement of the real-time channel.

Non-periodic message generation can be represented in this model using an estimate of the

worst-case inter-generation time and the average rate of generation. To ensure that a real­

time channel does not use more resources than it reserved, this model defines the deadline

guarantees by forcing a message inter-arrival time of / mtn. This is achieved by defining the

logical generation/arrival time, f(m,-), for the Ith message, m,-, as:

£(n*o) = <o

f(m t) = max{(l(mi~i) -f Imin), U}.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R outines Invoked By Function P erform ed
r t c - i n i t receiving task create local pSOS+m queue to receive messages
r tc -c re a te sending task create real-time channel with given parameters

to remote task (queue); return channel ID
rtc -sen d sending task send message on the specified real-time channel
r tc -re cv receiving task receive message from real-time message queue
r tc .c lo s e sending task close specified real-time channel

Table 3.2: T h e real-tim e channel A P I

where U is the actual generation time of message mt. If d is the end-to-end delay bound for a

channel, the system guarantees delivery of message m,- by £(rrii) + d. The logical generation

time, l(m t), is the earliest time that m,- would have arrived if the maximum message rate

constraint were strictly obeyed.

The call to r tc -c re a te returns a local channel identifier on successful creation of the

real-time channel and an error indication otherwise. Data transfer on an existing real-time

channel is achieved by using the rtc-send and rtc_recv calls. The task invoking rtc_send

is blocked until the data has been transmitted into the network; rtc_ recv can be blocking or

non-blocking. The sending task can tear down the real-time channel by invoking r tc -d o s e

with the local channel identifier; all the resources allocated to the channel are released at

this point. This implementation splits the real-time channel API between the APs and

the NP. r tc _ in i t and rtc_recv execute entirely on the AP, which runs the receiving task,

while the rest of the calls execute partly on the AP and partly on the NP. This allows

serialization of channel establishment, data transfer and channel teardown on the NP, while

allowing APs to exploit as much concurrency as possible. The routines available for best-

efiort data transfer (not shown) include rdatajsend for transmission and rdata_recv for

reception, with the same blocking semantics as rtc_send and rtc_recv, respectively.

3 .2 .2 C hannel E stablishm ent and Teardown

Upon receiving a request for a real-time channel, the network’s channel establishment proce­

dure must reserve adequate link bandwidth, buffer space, and protocol processing bandwidth

from source to destination. This involves selecting a suitable path between the sending and

receiving nodes, checking if adequate network resources are available on each node on the

selected path, and reserving them along each such node. A channel is considered established

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if the necessary resources have been reserved at each node in the selected route, and the

sum of link delays along the channel’s path is less than the application-specified end-to-end

delay bound.

A scheme for channel establishment in point-to-point networks may be found in [62,63].

In this scheme, there is a global network manager that maintains information about the

network topology and resources and all established real-time channels. Applications send

requests for channel establishment to this network manager which decides the route and

reserves resources along the path of the real-time channel. The main advantage of a global

network manager is that it has total knowledge of the system’s resources and can potentially

allocate resources optimally. However, it can be a performance bottleneck, especially in a

large network, and it is also a single point of failure and is not suitable for fault tolerant

systems. These problems may be resolved by using some kind of a distributed network

manager. However, a distributed network manager may not be very efficient. If there are

many routes between a source and destination, it may be too time consuming to search

through all alternatives, and if all possibilities are not explored, it is possible to select a

non-optimal route, or even fail to find a route when one exists. A distributed network

manager that addresses these issues has been described in [27].

Our implementation uses a distributed network manager comprising network manager

protocols (NMP) ru n n in g on each node in the network. The NMP provides channel man­

agement services to establish and tear down real-time channels. Each NMP maintains

only information about the real-time channels passing through its node. Invocations of

rtc_ crea te transfer control to the NMP, which must now determine if the requested chan­

nel can be established or not. Each NMP computes the smallest delay it can guarantee to

this channel at the current node, and passes on the request to the next NMP along its route5

with the balance of the delay available for it. Each NMP reserves sufficient resources (link

and CPU bandwidth, network buffers) along the route to accommodate the channel’s timing

constraints. NMP uses the underlying RPC protocol (see Figure 3.2) to implement channel

management requests. The per-link data structures maintained by the NMP on each node

include a list of channels using the link and status information used in run-time scheduling

(see Section 3.2.4). Each channel in the list stores a unique network-wide channel identi­

fier (a <node_id, lo c a l _channel_Ld> tuple), traffic specification from the establishment

5The NMP does not address the problems of routing, and simply uses pre-computed, static rontes.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Select th e next link along the source-destination route.

2. Use algorithm D-Oxder [63] to compute the worst-case delay a t this link. Assign the channel the
highest possible priority th a t does not violate guarantees o f existing channels. Also com pute
and reserve adequate buffer and processing resources.

3. Check if th e link delay is less than the end-to-end delay. Reduce the end-to-end deadline by
the link delay.

4. Relay the channel establishment request to th e next node with the reduced deadline.

Figure 3.3: Channel establishm ent procedure — forward phase

request, the local link delay bound, and the local buffer requirements.

Channel establishment occurs in two phases: the forward phtise, which propagates the

establishment request towards the destination, and the reverse phase, which propagates

the establishment reply back to the source to commit or release resources at intermedi­

ate nodes, in case the establishment request succeeds or fails, respectively. Figure 3.3

outlines the forward phase of the channel establishment procedure. Given a particular

source-destination route, channel establishment is performed using a fixed-priority scheme

(algorithm D-Order [63]). We consider only static routes for real-time channels since it

is very difficult to provide any message-delivery delay guarantees for a channel based on

dynamic routing. Channel teardown is triggered by an r tc -d o s e call. The NMP sends a

teardown request containing the channel identifier along the path of the channel. At each

node along the path, all reserved resources are freed and made available for other channels.

3.2.3 D ata Transfer

Once a real-time channel is successfully established, the application triggers data transfer

on the channel by sending a message using rtc-send. Data transfer occurs only from

the source to sink since real-time channels are unidirectional in nature. Moreover, the

unreliable-datagram semantics of real-time channels imply that data is transferred without

retransmissions and acknowledgments. After the initial marshaling of call parameters on

the AP, control transfers to the NP which performs the protocol processing and subsequent

transmission of the packets belonging to this message. The transmitted packets are relayed

by each intermediate node into the network. Upon arrival at the destination node, the NP

reconstructs the message by reassembling the packets and deposits it into the appropriate

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

receive queue ou the destination AP. The receiving task subsequently invokes rtc_xecv to

retrieve the message.

The HARTOS API on the NP initiates transmission protocol processing by firing up

a protocol thread to shepherd the message down the protocol stack to the network. The

protocol thread is scheduled for execution by the x-kemel thread scheduler and runs non-

preemptively until completion of protocol processing. Protocol processing of messages in­

cludes assignment of deadlines and encapsulation by the NMP, packetization by the FRAG

protocol, and network-level encapsulation by the HNET protocol. Each packet is then

scheduled for transmission by the link scheduler. The message manipulation routines in

x-kemel are modified to associate the original message deadline with each packet, enabling

the link scheduler to correctly order the transmission of packets onto the network. The

sending task is blocked until the data has been successfully transmitted by the CIM. The

transmission protocol thread exits after handing the last packet of the message to the link

scheduler. The AP unblocks the sending task when the NP indicates that the data has been

transmitted into the network.

Protocol processing is initiated by a protocol thread on the destination NP when the

CIM announces receipt of a packet. The received packet is shepherded upwards through the

protocol stack by a protocol thread after stripping the CIM header. All but the last packet

of a message traverse up to the FRAG layer, which strips the FRAG headers and queues

the received packets for reassembly when the last packet arrives. The thread shepherding

the last packet continues non-preemptively through FRAG, NMP, and the HARTOS API

before delivering the message to the correct receive queue on the destination AP.

3 .2 .4 R u n -tim e Link Scheduler

Traffic management at each node involves run-time scheduling to order packet transmis­

sions such that the guarantees made to all established real-time channels passing through

that node may be met. Traffic enforcement is also a responsibility of run-time traffic man­

agement, which must take appropriate action when a real-time channel violates its traffic

specification. In general, the link scheduler must (a) maintain guarantees, i.e., ensure all

real-time packets meet their deadline as long as they do not violate their input specification,

(b) perform traffic policing, i.e., prevent channels that violate their traffic specifications from

affecting the performance of well-behaved channels, and (c) ensure fairness in the delay and

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

throughput delivered to best-effort traffic. The run-time link scheduler controls access to

the outgoing link and determines the order in which, packets depart from the node. At the

source NP, the transmission protocol thread deposits the packets of the outgoing message

into link scheduler queues and exits, as explained earlier. At intermediate nodes, the recep­

tion protocol thread relays the incoming packet to the link scheduler at the HNET layer6.

At destination nodes, received packets bypass the link scheduler completely.

The link scheduler is implemented as a special scheduler thread that is created at

system startup and runs at the highest possible priority in the x-kemel; each link has its

own scheduler thread. The link scheduler is invoked in two situations: (i) new packets are

deposited into the scheduler queues, and (ii) packets that had arrived early are now current.

Situation (i) is handled by controlling the execution of each scheduler with a scheduler

semaphore. Protocol threads depositing new packets in the scheduler queues perform a V

operation on this (counting) semaphore to trigger the execution of the scheduler. Since

it has the highest priority, the scheduler runs as soon as the currently executing protocol

thread either completes execution or blocks. Situation (ii) is handled by registering an event

with the x-kemel to wake up the scheduler at the correct time.

The link scheduler maintains three queues (Queue 1, Queue 2, and Queue 3) in which

outbound packets are inserted by protocol threads [63]. Queue 1 contains current real-time

packets (whose logical arrival time is less than the current clock time). Best-effort packets

are inserted in Queue 2. Queue 3 contains real-time packets which have arrived early,

either because of bursty message generation or because they encountered smaller delays at

upstream nodes. Packets in Queue 3 are transfered to Queue 1 as they become current.

The scheduling algorithm improves best-effort performance by giving Queue 2 priority over

Queue 3. Protocol threads delivering real-time packets to the scheduler insert the packets

into Queue 1 if they are current and signal the scheduler before exiting. If the packets are

early, they are inserted into Queue 3 and an event is registered with the x-kemel to signal

the scheduler when the packet at the head of Queue 3 is eligible for transmission. Not

signaling the scheduler immediately saves unnecessary context switches. Protocol threads

delivering best-effort traffic simply deposit the packets into Queue 2 before signaling the

scheduler. The scheduler semaphore’s count is incremented by one each time a packet is

6 Since this is a multicomputer platform, each node must also handle traffic passing through it. In general,
though, intermediate traffic would be handled by network gateways and/or switches.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inserted into the scheduler queues. Queue 1 and Queue 3 are implemented as priority heaps,

with Queue 1 ordered by packet link deadlines and Queue 3 ordered by the logical arrival

time. Queue 2, on the other hand, is implemented as a FIFO queue so that best-efiort

packets are transmitted in order of their arrival. Packets violating traffic specifications can

be buffered at the source node (effectively delaying them), or forwarded with their deadlines

relaxed so that they will be buffered longer at downstream nodes, or simply dropped.

On creation, the scheduler blocks on its associated semaphore, pending further packet

insertions. If it has packets to transmit, it continues execution and does a P operation on

the link’s write semaphore to obtain access to the link and initiate packet transmission.

The write semaphore is a counting semaphore associated with each link and limits the

number of outstanding packet transmissions (it is initialized to 2, as will be concluded in

Section 3.3.1). The scheduler blocks again if there are two or more outstanding packets

awaiting transmission on the CIM. Once it obtains access to the link, the scheduler first

examines Queue 3 and transfers all packets that have become current to Queue 1. It

transmits the packet at the head of Queue 1 if it is non-empty, else, it transmits the packet

at the head of Queue 2. If Queue 1 and Queue 2 are both empty, and the packet at the

head of Queue 3 has a logical arrival time beyond the link horizon7, the scheduler releases

the lin k ’s write semaphore and registers an event with the x-kemel indicating that it be

woken up when the head of Queue 3 is eligible for transmission.

3.3 Influence o f Network Adapter Characteristics

Transmission/reception performance is significantly affected by the design features and in­

terface characteristics of the network adapter. The characteristics of the interface exported

by the adapter directly determine the efficiency and flexibility with which data transfer

to/from the network can be initiated and coordinated. Interface characteristics, therefore,

have a significant impact on supporting real-time communication. An adapter’s interface

characteristics are partially determined by design features such as support for DMA and

provision of large on-board memory. Using the CIM as an example, we discuss the effect of

network adapter design features and interface characteristics on data transfer performance,

medium access latency, and packet handling on reception. Based on these insights, we

rThe link horizon [63] is a parameter that controls the extent to which the schednler is work conserving.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

highlight some desirable design, features for adapters to support real-time communication.

3.3.1 CIM Perform ance Characteristics and Im plications

Several experiments were performed to determine the performance characteristics of the

CIM, namely, the factors that affect data throughput and medium access latency (delay to

access and use the network link). Packet size for transmission/reception and the number

of outstanding packet transmissions (referred to as the pipeline depth) are two factors that

significantly affect the performance of the CIM. In the experiments performed, a test ap­

plication running directly above the HNET layer on one NP sends over 12,000 packets via

the CIM to a peer application on another NP as fast as possible, while limiting the number

of outstanding packet transmissions. The experiment is repeated for different packet sizes.

Figure 3.4(a) plots the achieved throughput, and Figure 3.4(b) plots the medium access la­

tency, as a function of packet size and pipeline depth. The medium access latency measures

the time between initiation of packet transmission by the application to the completion of

transmission.

As seen in Figure 3.4(a), with a single outstanding packet transmission (a pipeline depth

of 1), throughput increases almost linearly with packet size. For a pipeline depth of 2, the

throughput is always higher than before (by about 50%) but starts to saturate beyond a

packet size of 2 KB. Pipeline depths of more than 2 do not provide any further increase in

throughput; instead, the saturation in throughput is more severe than before. These results

can be explained by considering the characteristics of the interface exported by the CIM.

The interface between the NP and the CIM is in the form of a command/response FIFO.

Packet transmission/reception involves a complex, non-atomic sequence of five or more

commands and responses. The CIM polls the interface for commands from the NP, while,

in the interrupt mode of operation, each response from the CIM generates an interrupt

on the NP (the NP can also be configured to poll the interface for responses from the

CIM). The handshake overhead of setting up transmission/reception therefore degrades

performance, resulting in poor utilization of the link when the pipeline depth is 1. When

two packet transmissions are pipelined, the commands/responses corresponding to different

packets can be interleaved and overlapped, achieving higher utilization of the link. Beyond a

pipeline depth of 2, though, queuing delays inside the CIM begin to dominate, eliminating

any gains in throughput. For larger packets, the time to DMA the packets to the CIM

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\

*1
i1Q24

512

128

64
32

912
pacfeattanglt(by«a8)

(a) Throughput

• 3• 4
* 5

2048 4086 8192 183
p6cfeatlan«h(byiB6)

(b) Medium access latency

Figure 3.4: Perform ance o f th e Ancor CIM 250 network adapter. N ote that
in (a), both axes have log scales, and in (b), only th e x-axis has
a log scale.

begins to dominate and hence the increase in throughput diminishes, ultimately being

limited completely by the CIM’s DMA transfer bandwidth. Moreover, the transmission

time also increases with packet size. Note that the CIM achieves a rather low utilization of

the available DMA bandwidth on the VMEbus (see Table 3.1 in Section 3.1.3)8.

Referring to Figure 3.4(b), the medium access latency using the CIM remains roughly

constant for packet sizes up to 2 KB. For larger packets, the DMA overhead and the

transmission time both rise, increasing the medium access latency rapidly beyond a packet

size of 4 KB. The latency increases monotonically with pipeline depth since packets awaiting

transmission experience higher queuing delays in the CIM.

A better understanding of the behavior of the CIM was obtained by tracing all the

command/response interactions between the NP and the CIM and measuring the individual

components of the medium access latency. The results (not shown here) confirmed the

trends observed in Figure 3.4 but also revealed substantial unpredictability in the medium

access latency. More specifically, the delay between initiating a DMA on the CIM and

8 In all fairness to the manufacturer, we have learned that the new version o f the adapter addresses some
of these design weaknesses.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

getting the transmission-complete interrupt becomes highly unpredictable for packet sizes

larger than 4 KB and pipeline depths greater than 2. Both these effects are a direct

consequence of FIFO queuing inside the CIM. Once a packet’s transfer to CIM memory has

been initiated, its transmission cannot be preempted or “stalled” to allow a more urgent

packet to go through. If the adapter decouples packet transfer to the adapter memory from

transmission into the network, then the NP can exercise fine-grain control over the order of

packet transmissions. This also helps bound the medium access latency.

An unrestricted pipeline can introduce unacceptable delay jitter by introducing traffic-

dependent variations in medium access latency. Since real-time communication necessitates

low, predictable medium access latency, the pipeline depth and packet size on the CIM must

be limited for real-time traffic as well as best-effort traffic. For example, an upper bound

on pipeline depth is essential for jitter-sensitive applications like dock synchronization [31]

and real-time audio/video. Since the CIM does not distinguish between best-effort and

real-time traffic, the same pipeline depth and packet size must be used for both. In order

to achieve the highest possible throughput while keeping the medium access latency under

reasonable bounds, the pipeline depth was fixed at 2 and the packet size at 2 KB. This

provides good performance for a mix of real-time and best-effort traffic.

3.3.2 D esirab le A d ap ter Features

Several aspects of adapter design affect performance on packet reception. The received

packet could be in error or it may have violated its deadline. Deadline violations could

occur under high comm unication load in statistical real-time channels which employ resource

overbooking to improve utilization. Similarly, the received packet may have to be dropped

because of potential buffer overflow. The network adapter can facilitate intelligent packet

handling by allowing the NP to inspect packet headers efficiently and manage on-board

packet buffers. For example, limited lookahead could be used to receive the packets in

order of importance (real-time over best-effort, earliest deadline first, etc.). The provision

of large on-board memory on an adapter and the ability to consume packets in a non-FIFO

order determined by the NP allows less-urgent inbound data to be temporarily staged on the

NP while it consumes more-urgent data. Under deadline and/or buffer space violations, the

NP may choose to drop the received packet. However, a policy to discard packets cannot be

implemented without consuming additional host resources if the network adapter does not

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

facilitate selective reception of packets and/or efficient reuse of its on-board memory. By

forcing the NP to consume each received packet, even if it will be dropped later, the CIM

design does not facilitate optimizations in which packets can be dropped by the adapter

without wasting bus bandwidth and processing resources in the host. Additionally, since

the NP processes packet headers while data can move directly to the destination devices,

efficient examination of packet headers can improve packet reception performance. With

the CIM, the only way the NP can examine packet headers without consuming the packet is

by reading a sufficiently large number of bytes at the beginning of the packet and carefully

handling any data bytes read. This incurs substantial overhead, both in reading the header

bytes correctly and setting up the data transfer to the destination device. Note that many

of these problems arise because the CIM is on the system I/O bus, and the NP does not

directly control any of its operations. If the network adapter were on the NP’s memory bus,

it could potentially perform these functions efficiently. This has been done in the Nectar

project [29] by moving protocol processing operations to the network adapter.

Accordingly, the features we consider desirable for real-time communication using I/O-

bus-based adapters include:

• support for efficient network data transfer through simplified device interfaces, pro­

vision of large on-board memory to temporarily stage inbound (outbound) data, and

support for transferring data via DMA to (from) the processors and other sources

(sinks),

• full access to adapter memory for intelligent buffer allocation to inbound/outbound

data, efficient header inspection, and selective packet discard,

• enhanced predictability through bounded medium access latency and insulation be­

tween real-time and best-effort traffic, and

• enhanced preemptibility by decoupling data transfer to the adapter from the initiation

of transmission.

3.4 Overhead of Protocol Processing

The overhead involved in protocol processing on the NP significantly impacts the imple­

mentation of real-time channels and the ability to support real-time communication in

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

general. We consider two components of this overhead: the intervening copies of data as it

moves to/from the network and the execution of protocols that shepherd data between the

application and the network.

3 .4 .1 D ata-transfer O p tim ization s

The need to improve the delivered application-level throughput, especially in high-speed

networking environments, has made transmission/reception path optimizations indispens­

able. These optimizations have received significant attention in recent years [39-42,72,95].

The primary focus of these efforts has been to eliminate unnecessary copies of data as it

moves between the application’s address space and the network through the OS kernel.

The unreliable nature of data transfer on real-time channels obviates the need for error

detection (checksumming) and recovery (retransmissions) mechanisms, making it possible

to avoid unnecessary data copying. In order to optimize data transfer on real-time chan­

nels, however, it is necessary to consider other aspects besides improving the throughput

delivered on each real-time channel. Since several real-time channels may be active at a

given time, the data transfer during transmission should be optimized such that (a) node

bus bandwidth is consumed as late as possible on the transmission path and only when

absolutely necessary, and (b) node bus bandwidth is consumed by outgoing packets in an

interleaved fashion, in the order of packet deadlines. Thus, it is essential to optimize data

transfer, not only to minimize the incurred overhead for each real-time channel, but also to

control the interference amongst different real-time channels.

Copying the AP-resident data to the NP across the HABTOS API for protocol processing

and subsequent transmission results in FIFO consumption of bus bandwidth, overhead due

to an extra copy, and reduced bandwidth for other processors contending for the bus. This

degrades the performance of a given real-time channel and introduces interference between

real-time channels. The extra copy can be avoided by moving the entire data directly to the

CIM, but this cannot be done before protocol processing has been performed on the message

and it has been fragmented into packets. Besides, this approach still suffers from FIFO

consumption of bus and adapter/link resources. The absence of priority-based arbitration on

the VMEbus necessitates alternative mechanisms to ensure that bus bandwidth is consumed

in the global transmission order determined by the link scheduler. We achieve this by having

the protocol stack maintain remote references to the data being transmitted. Data transfer

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the CIM via DMA is initiated in the device driver using these remote references. Since the

link scheduler determines the order in which packets are transmitted, data moves directly

from the APs (or other devices) to the CIM without any intervening data copies, and in the

global transmission order determined by the link scheduler. Data transfer is thus decoupled

from the associated control, which occurs between the AP and NP through the HARTOS

API on the one hand, and between the NP and the CIM on the other.

3 .4 .2 Softw are O verhead and P ro to co l T hread Scheduling

With no data movement costs incurred during protocol processing on the NP, the overhead

of fragmentation by FRAG, encapsulation by HNET, and processing by the link scheduler

and CIM device driver becomes important. The fragmentation (and reassembly) overhead

is incurred only at the source and destination nodes while the HNET, scheduler and CIM

driver overhead is incurred at all the nodes along the route. For a given fragmentation

size and with no data copy, the software overhead is directly proportional to the number

of fragments and is therefore higher for larger messages. With several real-time channels

and best-effort traffic competing for NP’s processing bandwidth, scheduling of protocol

processing to consistently maintain QoS guarantees is critical.

3.4 .2 .1 Fragm entation and Link Scheduling Overhead

Figure 3.5 shows the latency of protocol processing and link scheduling as a function of

message length without the CIM, i.e., the device driver simply drops all packets, and there

is no data transmission. A test application running directly above the FRAG or HNET

layer (as applicable) on one NP sends a total of over 12,000 packets down the protocol

stack, under limitation of the pipeline depth. The pipeline depth is fixed at 2 and only

transmission-side overhead is presented; the fragment size for fragmentation is 2 KB.

With no fragmentation, the throughput and latency are independent of message size

since no data is copied within the protocol stack. In this case the message is processed as a

single packet. The per-packet processing time of the HNET layer, including insertion in the

scheduler queues, is about 100 [is (curve labeled without scheduler (no f ra g)) . With

the scheduler and CIM driver in the path, the per-packet processing time increases to 250 [is

(curve labeled w ith scheduler (no frag)). Of the additional overhead of 150 [is, about

60 [is is attributed to instruction cache misses due to context switching to the scheduler.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

la
o—o wtowlwiMyflHq)
o—-a wihautm*4ar(nofrag)
o— -o «V)«Mukr(|iofeafl|

& u -
tc

u
to
QJ
OS
0 4

•4 912
tw WQi lonqti (bytto)

Figure 3.5: Protocol processing performance w ith and w ithout fragmenta­
tion (no CIM).

The instructions comprising the test application’s send loop remain in the cache when the

scheduler is not invoked. The actual penalty incurred during protocol processing will be

lower since the (instruction) cache will improve performance when processing multiple frag­

ments between invocations of the scheduler. Since the scheduler always runs immediately

after the currently executing protocol thread, some cache misses will surely occur if and

when the thread resumes execution. The remaining difference is attributed to two context

switches, one timer read, the processing of packet queues by the scheduler, and transmit

processing in the CIM driver, including traversal of z-kemel’s message structure to correctly

set up commands to the CIM. Note that no transmission actually occurs on the CIM. The

latency measured with the scheduler and driver roughly corresponds to the processing over­

head of an outbound packet at an intermediate node, after it has been transferred to NP

memory via DMA, and the corresponding protocol thread has been scheduled for execution.

This information can be used in the delay computation during channel establishment.

With FRAG included in the transmission path (curve labeled without scheduler

(frag)) , the latency remains constant up to a message size of 2 KB since the fragment

size is 2 KB and data is not copied within the protocol stack. The FRAG protocol provides

a fast path for short (1-fragment) messages and a separate, relatively slow path for multi-

fragment messages. A 4 KB message triggers fragmentation, resulting in a significant jump

in latency. The extra cost of traversing the slow path (« 400 ps) dominates the incremental

cost of generating additional fragments (« 90 fis). This explains the sudden drop and sub­

sequent slow climb in throughput. Performance again degrades with the scheduler in the

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transmission path (carve labeled with, scheduler (frag)), with a per-fragment scheduler

processing overhead of « 200 fis- The degradation increases with the number of fragments

because of higher additional cost of fragmentation as well as an increase in the processing

done by the scheduler and the CIM driver.

3.4.2.2 Scheduling Protocol Threads

With several real-time channels and best-effort traffic active simultaneously, it is critical

that protocol threads be scheduled to consistently maintain QoS guarantees. The protocol-

processing bandwidth must be consumed in a global order consistent with the traffic pa­

rameters of the active channels. Straightforward FIFO scheduling of protocol threads can

introduce significant queuing delays, especially for large messages, as is evident from Fig­

ure 3.5. Bursts of long messages on individual channels and sudden rise in activity on

multiple real-time channels only tend to exacerbate these delays. Early message arrivals

due to bursts or violation of traffic specification should be prevented from consuming pro­

cessing bandwidth if the generated packets would be dropped later in the link scheduler.

This could be caused by insufficient packet buffer “slots,” where the number of buffer slots

available to a channel is determined by the maximum message size Smax (and the fragmenta­

tion size). The relative importance of protocol-processing overhead increases with redaction

in the medium access latency. The latency to obtain the CPU for protocol processing must

be bounded while utilizing the CPU as much as possible.

On HARTS, the CPU speed is relatively much faster than the network, and hence, the

CPU is not a critical component that needs to be scheduled carefully. In our experiments,

we found that it was sufficient to give a higher priority to real-time protocol processing than

to best-effort protocol processing, to ensure that the RTCs got adequate CPU bandwidth

even under very heavy best-effort traffic load. While this does not prevent interference

between protocol processing for RTCs, on this platform, the impact of this interference was

not enough to make a significant difference in real-time performance. We revisit this issue

in Chapter 6 and demonstrate that much more sophisticated CPU scheduling techniques

are necessary to maintain QoS guarantees in faster networks, where CPU capacity could be

a bottleneck.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s

3 .4 .3 E nd-to-end Perform ance

Figure 3.6 plots the end-to-end throughput and latency of message transfer between the

NPs on two nodes using the CIM, with fragmentation and link scheduling. Figure 3.6 can

be compared directly to Figure 3.4 to study the effect of fragmentation and link scheduling

on end-to-end performance. The effect of fragment size (and hence the number of frag­

ments/packets) is considered for different message sizes. For a given fragment size, the

achieved throughput remains roughly independent of message size once fragmentation has

set in. As the message size (and hence the number of fragments) increases, the latency to

send the message also increases due to higher processing and transmission delays, since each

fragment has to be transmitted as a separate packet. The incremental gain in throughput

(or reduction in latency) reduces as the fragment size increases from 1 KB to 2 KB, and

from 2 KB to 4 KB. With larger fragments, a smaller number of fragments need to be

created and transmitted, reducing fragmentation and transmission overhead and increas­

ing the throughput. However, as fragments become larger, the transmission throughput is

increasingly dominated by the DMA bandwidth available to transfer the data to/from the

CIM. Comparing Figures 3.4(a) and 3.6(a), for large messages (16 KB) fragmentation using

4 KB fragments reduces the achieved throughput from approximately 2.7 MB/second to

1.2 MB/second.

3.5 Effectiveness o f Link Access Scheduling

In this section, we evaluate the efficacy of the link scheduler in insulating real-time traf­

fic from best-effort traffic, and preventing ill-behaved channels (which violate their traffic

specification) from affecting the delay guarantees made to well-behaved channels. The ex­

periments evaluate the effect of traffic load (real-time and best-effort) on packet and message

latencies, slot occupancy (queuing delays), and packet loss rate. The performance of best-

effort traffic is measured by message latency and throughput, while that for real-time traffic

is determined by whether or not all messages complete transmission by their deadlines.

The deadlines and latencies of real-time traffic are measured with respect to the logical

arrival times of messages. For best-effort traffic, latencies are measured with respect to the

actual arrival time. The slot occupancy (or queuing delay) measures the actual time that

an outgoing packet occupied a packet slot (equivalent to a buffer) in the link scheduler.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

>1024

5U
2S4

64

2U

t&O

20

20

20

00
122 256 512 1024

(a) Throughput (b) Latency

Figure 3.6: Protocol processing performance w ith fragm entation (w ith CIM)

3 .5 .1 O utlin e o f E xp erim en ts

The communication traffic is generated by four sources: a bursty best-effort “channel” , a

bursty real-time channel, and two periodic real-time channels. Tasks generating real-time

and best-effort traffic execute on different APs. On the NP, protocol processing for real­

time traffic is performed a t a higher priority than that of best-effort traffic. This ensures

that under high best-effort load conditions, real-time traffic gets sufficient protocol process­

ing bandwidth. Besides keeping the experiments simple, this set up also helps appreciate

the need for CPU scheduling mechanisms discussed in Section 3.4.2. Note that, since all

real-time channels are given the same protocol processing priority, bursty or misbehaving

channels are expected to interfere with other well-behaved channels. Each real-time channel

generates 80 packets per second. The load generated by the best-effort source is varied from

80 to 480 packets per second (pps) in steps of 80. All the experiments were performed with

a packet size of 2 KB and a pipeline depth of 2, while the message length was fixed at 8 KB,

i.e., messages consist of 4 packets. The deadline for each real-time channel is set at 50 m s

and the link horizon is set at 0 ms, i.e., transmission is non-work-conserving. Figure 3.6(a)

shows that with a fragment size of 2 KB, the throughput for a single unconstrained source

saturates at 1 MB/second, or 500 pps. Each traffic source is allowed a maximum of 50 slots

(packets) in the scheduler queues at any time. Packets overflowing the scheduler queues

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

o — o RT(

HT i

•00 ■0

A — — A BC<
□——a RfT<
o*—- a RT<
o — o RTi
o—-o RTi
>— ■« RTi
*— RTi

I flOO tto 700 7 0olmdMfKMocI300

(a) Message latency (b) Slot occupancy (queuing delay)

F igure 3.7: W ell-behaved real-tim e channels w ith variable best-effort load

are dropped. If a packet from any message is dropped, the remaining packets in the mes­

sage are dropped as well. However, packets already inserted in the scheduler queues do get

transmitted.

3 .5 .2 E ffect o f B est-effort Traffic Load on R eal-tim e Traffic

Figure 3.7 shows the performance of well-behaved real-time channels under increasing best-

effort load. Real-time channels 1 and 3 carry periodic traffic while real-time channel 2 is

bursty. Each real-time channel generates the same total amount of traffic. Channel 0 is

best-effort with a bursty source which increases its packet generation rate from 80 pps to

480 pps. Figure 3.7(a) shows that the periodic and bursty real-time channels have very

similar average and worst-case performance that is independent of the total offered load,

and all real-time messages are transmitted and no real-time packet is dropped. Best-effort

throughput increases with offered load until the system capacity is reached, after which

most additional messages are dropped. Latencies also increase gradually with load, until

the system reaches saturation. Figure 3.7(b) shows how the behavior of bursty and periodic

real-time sources differs. Messages from periodic sources typically arrive near their logical

arrival times, and are eligible for transmission soon after they arrive. However, for the bursty

real-time source on Channel 2, many messages arrive much earlier and are not transmitted

before their logical arrival times. This ensures that real-time traffic arriving early does not

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a — a K d a n M l o f a M i a p)
a—a BEdm iofwowO
□— o RTdanmi 1 (M n p)

^ -

•00 im300 100

awn

sao TOO 790soo

(a) Message latency (b) Slot occupancy (queuing delay)

Figure 3.8: Ill-behaved real-tim e channels with variable best-effort load

adversely affect best-effort performance.

The experiment in Figure 3.8 is very similar to the previous one, except that a pe­

riodic real-time channel (Channel 3) generates traffic at twice its specified rate. While

Figure 3.8(a) looks almost identical to Figure 3.7(a), the excess packets on Channel 3 are

dropped once the buffers available to Channel 3 are exhausted. Note that, though real-time

traffic is assigned a higher priority than best-effort traffic, increasing the real-time load in

this manner does not significantly affect the performance of best-effort or real-time traffic.

In addition, the packets of Channel 3 that are delivered at all, are all delivered by their

deadlines. A comparison of Figure 3.8(b) with Figure 3.7(b) shows that queuing delays do

not increase for best-effort traffic, or the well-behaved channels. However, queuing delays

shoot up for Channel 3. Results of the same experiment with a bursty misbehaving source

are similar to the ones reported here.

3.5.3 Effect of Burstiness and Message Size on Delay Guarantees

As seen from the results so far, bursty sources have a greater slot occupancy time (larger

queuing delay) than periodic sources. We repeated the experiments with message sizes

from 4 KB-32 KB, while retaining the same total loads. Since each slot in the scheduling

queue corresponds to a packet, longer packet bursts are obtained with bursts of longer

messages. The probability of overflow in the scheduler queues increases with an increase in

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the burstiness. Even, though the average traffic generation rate did not exceed the traffic

specification, we observed some loss of real-time packets. The loss rate depended only

on the behavior of the bursty source and the effect of increase in total system load was

minimal. However, since real-time messages are processed at a higher priority, early real­

time messages can use CPU bandwidth out of turn. The high medium access latency of

the CIM masks out some of this effect. However, the degradation will be more pronounced

with adapters providing relatively fast access to the network. The delay jitter reduces with

a reduction in the burstiness of the sources, highlighting the need for the CPU scheduling

mechanisms discussed in Section 3.4.2.

3.6 Conclusions

In this chapter, we explored the design tradeoffs involved in supporting real-time com­

munication on bus-based multiprocessor hosts, which are increasingly being employed as

multimedia servers and workstations. As the vehicle for this study, we implemented and

evaluated real-time channels on the HARTS experimentation platform.

The main contributions are summarized as follows. A hardware and software archi­

tecture is presented that features a dedicated protocol processor, a split-architecture for

the application programming interface used to access real-time communication services,

and decoupling of data transfer and control in the communication protocol stack. We have

highlighted the implications of network adapter characteristics for real-time communication.

Since many commercial network adapters have features similar to the one we studied, these

implications are applicable in general. For adapter designs ill-suited for real-time communi­

cation, techniques were presented to handle undesirable features such as unrestricted FIFO

queuing in order to bound the medium access latency. To circumvent the lack of hard­

ware support for priority-based access to resources, data transfer optimizations, CPU- and

link-scheduling mechanisms to limit interference between different real-time channels were

presented . These techniques together ensure that shared host resources such as bus band­

width, protocol processing bandwidth, and link bandwidth are consumed in a global order

determined by the traffic characteristics of the active channels. Finally, the performance

and effectiveness of our real-time channel implementation through several experiments un­

der varying traffic characteristics was demonstrated.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It should be noted that the CIM’s throughput is much less than the capacity of the net­

work link or the bus bandwidth. This is partly due to its poor integration with the host op­

erating system software. For example, the overhead due to its complex command/response

interface has a significant impact on throughput. In Chapter 5, we revisit the design of the

CIM, and describe how network adapter emulation may be used as a design and analysis

tool to improve the design, and hence performance, of the CIM.

Relatively simple CPU scheduling was adequate to maintain QoS guarantees using the

CIM, since the network is very slow, and the CPU is not a bottleneck. In Chapter 6,

we show that for faster networks, more sophisticated scheduling is needed to provide QoS

guarantees, and examine various kinds of QoS support on the host and network adapter,

and study their impact in various (faster) network configurations.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

THE END : A NETW ORK ADAPTER DESIGN TOOL

In Chapter 3, we studied an Ancor CIM 250 based network, and demonstrated how real-time

channels were implemented on that platform. Our experiments revealed several performance

bottlenecks due to poor architecture and interface design. In this chapter, we describe END,

a network adapter design tool, that may be used to design and analyze network adapters

before they are built, thus helping avoid costly design errors.

4.1 Introduction

The experiments in Chapter 3 demonstrated that a high-speed network by itself cannot

guarantee high application-level throughput and/or bounded data-transfer delays. End-to-

end communication performance depends not only on the underlying networking technology,

but also on the end-host operating system as well as the interface between the host and the

network. As network speeds increase, the performance bottleneck tends to shift to the end

host, in particular to the hardware and software components of the host communication

subsystem.

While communication software primarily comprises the protocols and network device

driver, the communication hardware at a host primarily comprises the network adapter and

the interface between the host and the adapter. The design of the network adapter, and

the division of functionality between the adapter and the host communication software, can

have a significant impact on the performance delivered to applications. In order to design

network adapters that integrate well with the host communication software and deliver good

performance, one must study the impact of various design parameters in a realistic setting,

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i.e., when the network adapter is controlled and accessed by the communication software

on the target host platform. The performance evaluation methodology employed mast

consider the hardware components and overhead involved (such as the system I/O bus,

caches, device interrupts), and capture the hardware/software concurrency and dynamic

host-adapter interaction without excessive intrusion.

In Section 2.3.1, we proposed network device emulation as a mechanism to study the

hardware/software interface for com m u n ic a t io n subsystems, and to help design network

adapters that integrate well with the host operating system and applications. We now

present the Emulated jVetwork Device (END), a network adapter design tool that interfaces

to a real communication protocol stack on a host via the system I/O bus. Since most

network interfaces are on the system’s I/O bus instead of the private memory bus [83], this

configuration allows END to generate the same overhead as a real adapter. Further, END

can emulate all the operations of a network adapter without interfacing to a real network.

Instead, it uses a synthetic network model as a sink and source of traffic.

Designers can use END to experiment with network adapter design, including the parti­

tioning of functionality between the host communication software and the hardware/firmware

on the network adapter, before actually developing a prototype implementation of the

adapter. The experiments can be performed directly on the target host platform, with

END running concurrently on its own processor, thus accounting for overhead and host

architectural features that influence communication performance. END thus permits hard­

ware/software codesign, where integration of hardware and software, and adapter design

tradeoffs, can be explored early in the design cycle.

Despite these strengths, device emulation, as we envision it, has its limitations. To

construct a detailed emulation environment, the designer or performance analyst must be

intimately familiar with the hardware and software components involved in communication.

Some of this burden can be alleviated by providing libraries of models that the designer can

utilize to build the device emulator. Farther, the host must be equipped with at least two

processors so that the device emulator can execute concurrently with the host CPU. This is

not necessarily a problem because desktops equipped with at least two processors are now

readily available. More importantly, the overhead associated with detailed device emulation

may limit the performance of END, and hence, the adapters it can emulate. However, this

performance degradation can be reduced by using a processor faster than the host CPU.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SYSTEM I/O BUS

NETWORK LINK

Figure 4.1: Generic network adapter architecture

Overall, the ability to accurately capture both the network and the host behavior, and run

experiments in real time, outweigh the disadvantages.

The rest of the chapter is organized as follows. Section 4.2 describes the architecture of

a generic network adapter, and highlights some issues in network adapter design. The archi­

tectural framework and our implementation of END is presented in Section 4.3. Section 4.4

considers how the implementation platform may impose restrictions on the emulator, and

how some of these constraints may be overcome. Section 4.5 briefly describes the software

structure of END, and if and how each software module may be ported to other platforms

or modified to model different adapters. Section 4.6 discusses related work, and Section 4.7

concludes this chapter.

4.2 Network Adapter Design

In this section, we discuss various issues involved in network adapter design. Our goal is

to identify the architectural components that determine the mechanics and performance of

data transfer between the host and the network via the network adapter. In particular,

our goal is to determine how the various design options can affect QoS. The architectural

framework of END is based on these architectural components.

End-to-end communication performance depends on a variety of factors, some attributed

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to performance bottlenecks in the network and others attributed to performance bottlenecks

in the end hosts. Factors affecting performance in the network (such as underlying network

technology, network congestion, etc.) are beyond the scope of this dissertation. Within the

end hosts, communication performance is determined largely by the capacity of the soft­

ware and hardware components to move data between applications and the network. Data

transfer involves traversing a protocol stack, moving data between the host memory and the

network adapter, and between the network adapter and the network itself. The software

components that affect data-transfer performance include the protocol stack, scheduling and

synchronization mechanisms in the host operating system, scheduling and synchronization

mechanisms on the adapter, and the adapter firmware. The hardware components that

influence data-transfer performance include the host CPU speed, the host-adapter inter­

face, the host-adapter data-transfer bandwidth, and the network bandwidth. For a given

network and end host, the network adapter should be designed such that its hardware and

software components do not limit communication performance.

The focus of this chapter is on the design of the network adapter and how it interacts

with the host communication software through a device driver. Figure 4.1 illustrates the

generic architecture of a typical network adapter. There are five basic components that

comprise this architecture: the host-adapter interface, the data-transfer control module, the

transmission/reception queuing module, the buffer-management module, and the adapter-

network interface. Transmission and reception to/from host memory is accomplished via

interaction between all of these components, as discussed below. Note that most network

adapters are accessed by the host via the system I/O bus [83]. Network adapters can vary

significantly in complexity depending on their desired performance goals and the underlying

network technology. To manage this complexity in an efficient and flexible manner, adapters

may employ one or more general-purpose microprocessors (e.g., one for transmission and

one for reception) and some custom hardware under control of the adapter firmware.

Provision of QoS guarantees may add significant complexity and overhead in the manage­

ment of incoming and outgoing time-sensitive data. The design enhancements required de­

pend to a great extent on the particular performance parameters (such as delay, bandwidth

or loss) being targeted for provision of QoS. For example, packet transmission/reception

delay is significantly affected by the efficiency of the host-adapter interface, including the

cost of data-transfer and host-adapter handshake. Similarly, the raw data-transmission

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

bandwidth available is affected significantly by the efficiency of the available data-transfer

mechanism and the degree to which operations may execute concurrently on the adapter.

The QoS delivered to individual connections is dictated by the nature and extent to which

adapter resources are shared. Using shared buffers across all connections may, for example,

result in higher packet loss in the presence of a greedy connection, i.e., one generating ex­

cess traffic. In the discussion below, we describe each of the adapter components mentioned

earlier, with special emphasis on QoS support.

4 .2 .1 H ost—A dapter Interface

The host-adapter interface exports various operations to the host, including initiation of

packet transmission and reception, examining the status of pending transmissions, etc. It

is typically implemented by a device driver running on the host which communicates with

a companion “host driver” on the adapter. The two drivers exchange information via

command-response mailboxes or queues across the system I/O bus, and may synchronize

their operations either via interrupts, polling, or some combination of the two. Interrupts

allow immediate synchronization, a t the cost of increased overhead in handling an inter­

rupt and its resultant context switches and cache misses. Polling eliminates this overhead,

but, depending on the polling frequency, may reduce the responsiveness of the interface

significantly.

To minimize overhead, the interface must be as simple as possible. At the same time,

more complicated interfaces may be required for intelligent adapters with built-in pro­

grammability for enhanced flexibility. Depending on the degree of QoS support provided,

the host-adapter interface may include commands that carry information regarding the type

(e.g., class) of traffic or connection a packet belongs to, and the QoS level it requires for

transmission. In the absence of such information, the adapter may be incapable of providing

QoS-based service discrimination. In addition, multiple command/response mailboxes or

queues may be required to minimize interference between interface operations of different

classes of traffic. QoS support for reception may also need to perform host-controlled buffer

management and priority-based packet input, and to limit the rate a t which the adapter

interrupts the host.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 .2 .2 A dapter Internals

Referring to Figure 4.1, three modules provide the internal functionality of an adapter:

data-transfer control, transmission/reception queuing, and buffer management.

D ata-T ransfer C ontrol: Once packet transmission or reception is initiated via the host-

adapter interface, the packet is transferred between host memory and adapter buffers via

DMA or programmed I/O (PIO). The choice between DMA and PIO is a function of such

factors as the bandwidth of the system I/O bus and the size of the data transfer. With

DMA, the CPU is free to perform useful computation once it sets up the DMA correctly.

The DMA startup latency could be significant and data transfer may have to be suspended

several times due to simultaneous memory accesses by the host CPU. PIO, on the other

hand, has no startup latency but requires CPU cycles for the entire duration of transfer,

potentially limiting concurrency. A hybrid approach could employ PIO for small packets

and DMA for larger ones.

The tradeoff between PIO and DMA applies just as well to time-sensitive traffic as to

traditional best-effort traffic. However, with PIO, the host alone determines the ordering of

packet data transfers to/from the adapter. With DMA, on the other hand, the adapter may

have to perform data transfers to/from host memory according to the relative priorities of

the individual packets. The nature of adapter support required is also determined by the

capabilities of the system I/O bus such as priority-based arbitration and preemptable block

transfer DMA.

T x /R x Queuing and Service Discipline: Once packet transmission is initiated, or a

packet arrives from the network, the adapter must queue the packet until it can either be

injected into the network (transmission) or received by the host (reception). The queuing

policy and mechanisms employed, and the service discipline employed to serve the packet

queue(s), depend on the expected traffic mix. For example, for best-effort traffic it may

suffice to provide simple first-in-first-out (FIFO) queuing of packets, with deep pipelining of

operations on the adapter and a simple service discipline that selects and transmits packets

in FIFO order. This delivers high throughput by keeping the overhead of queuing and packet

selection low, and by exploiting the overlap between different operations, for instance, the

DMA transfer of one packet and network transmission of another. More sophisticated

queuing and scheduling algorithms may be required for real-time traffic in order to provide

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

per-connection QoS guarantees.

Pipelining allows the host and adapter to operate independently, rather than in lock

step. While this increases data-transfer throughput, it reduces host control over the order

of packet transmissions on the adapter. This in turn makes it difficult to provide QoS

guarantees to packets on a per-connection or per-flow basis, unless the adapter is designed

to be QoS-sensitive, i.e., cognizant of QoS guarantees. Note that when the pipeline depth

(i.e., the number of packets queued on the adapter) is 1, the host exercises complete control

over packet transmission order [75].

The queuing and packet selection policy used by the adapter is relevant whenever the

host generates data at a rate faster than the adapter can transmit. This could be either

because of a relatively faster host CPU, or an available link bandwidth that makes the

network link effectively slower than the host. At one extreme, the adapter could maintain

a single FIFO queue for all outgoing packets sent by the host. Alternately, the adapter can

provide superior service to real-time traffic by using two FIFO queues, one for real-time

traffic and one for best-effort, and serving the real-time queue at a higher priority. How­

ever, even if the host sends packets to the adapter in a QoS-sensitive order, subsequent

arrival of high-priority data may require transmission to be reordered on the adapter. The

adapter can exercise fine-grain control over packet transmission order by using a (dynam­

ically sorted) priority queue for real-time traffic, reaping the benefits of pipelining (i.e.,

higher throughput) without performance degradation or QoS violations. This, of course,

requires that the adapter be made cognizant of the QoS requirements of individual packets.

Since the adapter handles both incoming and outgoing data which share the same I/O bus

for transfers to/from the host, it is necessary to correctly order these operations as well.

Buffer M anagem ent: Buffer management plays an important role in packet transmission

as well as reception. In general, the adapter may need to provide buffers as a staging area

for incoming and outgoing best-effort and real-time traffic; the buffers may reside either in

adapter memory or in host memory. In the former case, the adapter must provide buffer-

management policies, such as reserving buffers for connections with QoS guarantees, as well

as handle buffer-overload conditions (which may result in packet loss) correctly. Sharing

buffers between connections, even with per-connection queues, simplifies buffer management

at the risk of unpredictable packet loss under high traffic loads. The adapter may also

exercise partial control over packet buffers on the host. For example, if buffer space on

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the adapter is low, it could potentially delay transfers between the host and adapter until

just before packet transmission. Expensive copying overhead can be avoided if the adapter

manages buffers such that packet headers are stored separately from packet data.

4 .2 .3 A d ap ter-N etw ork In terface

At the level closest to the network, the adapter transmits (receives) data to (from) the

network medium by copying data from (to) its buffers to (from) the network under control

of the medium access protocol of the attached network. As before, it can use either PIO

or custom DMA hardware for this operation. If packet buffers reside in host memory, the

adapter must inform the host on completion of packet transmission so that the host buffer

can be reused. This notification is not required if packet buffers reside on the adapter and

a similar notification is issued after copying the packet to the adapter. Similarly, on packet

reception from the network, the adapter must stage this data into on-board buffers and

subsequently transfer the data to the host.

For transmission, the adapter-network interface can implement two distinct network

models: a point-to-point network model and a shared network model. The point-to-point

network model is characterized by a continuously-available network, such that the adapter

can transmit on the link as soon as outgoing data is made available by the host. That is,

there is no waiting time associated with accessing the attached network. Examples of point-

to-point networks include various direct-connected topologies and switch-based networks

such as Fiber Channel, ATM, and Switched Ethernet. The shared network model, on

the other hand, is characterized by an intermittently-available network, implying that the

adapter can transmit on the link only a t certain epochs and for a limited duration. Various

token-based networks, such as IEEE 802.5 and FDDI, with specified deterministic token

rotation and holding times, fall into this category. Ethernet also falls into this category,

except that the availability of the network is probabilistic in nature, as determined by the

likelihood of collisions on the network.

4.3 END Emulation Architecture

In this section, we present the emulation framework for END in the light of the architectural

components described in Section 4.2. We first define the functional interface that END

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

must export to the host, followed by a description of the components constituting END.

We then describe our implementation of END and how it operates in response to host

commands, with an emphasis on network transmission. Finally, we discuss the END design

and implementation issues related to modeling end-to-end communication, or stand-alone

network reception.

4 .3 .1 H ost V iew o f th e N etw ork

A host interacts with the network via the network adapter, viewing it as a sink for data trans­

mission, and a source for data reception. Interaction with the adapter involves exchange

of commands and data, and the timing of these events is determined by the characteristics

of the network, as well as prevailing traffic conditions. In order to accurately emulate a

network adapter, END must export to the host the same “view” as, and have performance

characteristics similar to, that of a real adapter. That is, it must be integrated with the

host system using the same functional interface.

END interacts with a device driver on the host the same way as a real device; handling

commands, issuing responses, and synchronizing with the host via interrupts or polling.

Typically, when an application transmits data, the communication subsystem acknowledges

successful transmission after a delay determined by the size of data, and the system and

network load, and allows the application to reuse the data buffer. As long as the application

does not expect an acknowledgment from its peer receiving application, all it sees is data

being transmitted at a certain rate.

This scenario is applicable to many applications, like servers, that generate a largely

unidirectional flow of data. A transmitting application will not be able to distinguish

between END and a real network as long as END captures this timing behavior. Note

that this suggests the use of one packet transmission time as the basic measure of network

performance.

In contrast, for data reception, END can generate incoming traffic using either stochastic

models or traces of real network traffic. In this case, END is a source of network traffic,

and the host is a sink. Alternatively, in case of protocols that require two-way traffic (e.g.

TC P/IP), END may have a module that responds to outgoing traffic in the same way as a

peer application on another node. Otherwise, genuine two-way traffic may be generated by

connecting two or more END nodes using the system I/O bus (see Section 4.3.5). Further

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

H o c n

Umc program
OStmocolMik
EraHvdMlEtMNr

H0CI2

UnfpnyiMi

HflULATCMI

F igure 4.2: BND-based device em ulation arch itec tu re .

details regarding reception emulation and issues in data reception will be presented in

Chapter 7.

4 .3 .2 E m ulator C om ponents

Figure 4.2 shows our emulator-based architecture for studying issues in adapter design.

Each network “node” corresponds to a host processor board and an emulator processor

board (running END) on the same (system) I/O bus. As discussed in Section 4.3.1, certain

experiments may be performed using a single node. Two-way communication is accom­

plished via two or more such nodes on the same I/O bus, with the I/O bus serving as the

communication medium.

H ost N ode: The host node is precisely the target host. Communicating applications send

and receive data via the protocol stack in the operating system. At the bottom of the

protocol stack is the emulator device driver for the target network adapter. Though this

driver communicates with END, it handles the full functionality of a real device driver; i.e.,

it implements the actual host-adapter interface. This allows a developer to implement and

test a complete driver even while the network adapter is being designed or implemented, and

also helps ensure that observed performance of the driver is comparable for the emulator

and the real adapter.

N etw ork A dapter: The network adapter node is a general-purpose processor board with

a CPU and memory. Since its main function is to handle data transmission and reception

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HOST END
W E VME
DEVICE STOPWATCH

M ay Completion
 m*--

If UUIM iHUII

Figure 4.3: Emulator system configuration.

efficiently, it needs at most a minimal executive to provide process management and handle

interrupts.

Pure packet transmission can be modeled as a transmission-complete notification after

a suitable delay. This is quite accurate, except that, since data is not actually transferred,

the host CPU does not suffer the overhead of cycle stealing during DMA data transfers.

However, this feature is an advantage in that the system may be configured for arbitrary

network speeds, allowing it to evaluate the efficacy of different host and adapter algorithms

at different network speeds.

There are two aspects to packet reception: the model used to generate packet arrivals,

and the mechanism used to generate packet headers and data. Packet arrivals can be

generated either using a stochastic model, or using two-way, end-to-end communication. For

the purposes of studying adapter performance, the actual data content may be unimportant.

However since received data must traverse the protocol stack, packet headers must be

meaningful.

T im e Services: END needs time services to manage the time abstraction. This requires

an event manager to register desired delays, and notify the requesting node when the delay

expires, either with an interrupt or simply setting a completion flag that the adapter can

poll. If an event occurs on more than one node, aU nodes involved need to be notified

simultaneously. An example is the completion of a transmission. This event is initiated by

the transmitting node, but the reception node must also be notified that it has received a

packet.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Component Configuration Options/Parameters
Host/Adapter Interface number of interfaces relative priority of interfaces

types of interfaces mailbox, FIFO
synchronization poll, interrupt

Data Transfer and Control DMA fixed delay per block, delay per byte
programmed I/O delay per byte

Tx/Rx Queuing number of stages
number of queues FIFO/EDD, relative queue priority

Buffer Management allocation / freeing from a shared pool
overload behavior drop, block connection, priority based

Network Interface delay model setup cost, delay per byte
synchronization poll, interrupt

Table 4.1: Configurable components o f END.

4 .3 .3 Im p lem en tation

Figure 4.3 depicts the configuration of our implementation with one emulator node (for

each additional node, another host-END pair is required; the time device is shared by all

the nodes). The processor boards of each emulated node communicate with each other via

the VMEbus, as per the interactions shown in Figure 4.3. Emulation of transmission as

well as reception has been implemented in END. The internal structure of END comprises

an emulation core and several other components, summarized in Table 4.1. The emulation

core is a m inim al executive with support for threads, interrupt handling, and semaphores.

It is essentially a cyclic executive that polls the host for commands, executes them, and

notifies the host of completion of the commands. It has several sub-components that may

be configured and parameterized to realize any desired adapter behavior. The components

surrounding the emulation core are briefly described below.

H ost—em ulator interface: The host-emulator interface uses command/response queues

to exchange information. The queues are implemented as circular FIFOs. The exact in­

terface is determined by the actual commands and responses, and whether synchronization

uses interrupts, polling, or some combination of them.

D ata transfer control: Data transfer may be either via DMA or PIO. In our prototype,

there is no actual data transferred for pure transmission, although there is real data transfer

of headers for two-way traffic and pure reception. We supply generic time models for DMA

and PIO in order to capture the associated timing correctly. DMA has a fixed, non-zero

startup time for each block of memory, and an incremental cost per byte transferred, while

the PIO has little or no startup cost, but, typically, a higher incremental cost. In addition,

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for PIO, the emulator CPU is idled for the duration of the PIO, and not allowed to perform

any other functions, since it is supposed to be “busy” copying data.

Transmission and recep tion queuing: Packets can be queued for various operations

during transmission and reception. These queues are determined by the data type and the

operation, and queuing policies are selected independently for each queue. Two queuing

policies have been implemented, FIFO and Earliest Due Date (EDD), and the selection of

queues may either be round-robin or based on their relative priorities.

Buffer m anagem ent: Buffers are allocated for outgoing packets from a shared pool on

the host, while incoming packets are allocated buffers on the adapter. Packet buffers on the

host and/or adapter may also be reserved on a per-connection basis [75].

N etw ork interface: The network interface for data transmission is a pure delay model.

Data transmission may be synchronous (the emulator waits until the transmission delay

elapses), or asynchronous (the emulator performs other operations during the “data trans­

mission” delay). The delay services are provided by the time device, described below.

T im e device and V M E StopW atch: The time device is a processor board without any

OS support. It is a cyclic executive that simply reads delay requests from the emulator node

and inserts them into a priority queue ordered by their completion times. Delay requests

and responses are exchanged via a command/response FIFO. Each delay request has a

unique identifier, a completion time, resources used, a priority level, and a flag indicating

whether the emulator needs an interrupt in addition to the completion notification in its

response FIFO. If two timed activities contend for a shared resource, the lower priority

activity waits for the completion of the higher priority activity. If the higher priority event

has preemptive priority, the lower priority event is preempted, and its completion time is

adjusted accordingly. A completion function associated with each request is executed when

the emulator is notified of the expiry of the time interval. Time measurements are provided

by the VME StopWatch [53]1. It has a high resolution (25ns), 24-bit timer, that wraps

around about every 0.4s. Since the time device continuously polls the timer to determine

when an interval has elapsed, it also detects timer wraparound, and ensures that elapsed

time is measured correctly.

END models are implemented as multi-stage devices using the above components. Each

stage corresponds to an activity like data movement (e.g. copying, transmission) or trans­

l Many modern processors have high resolution clocks and will not need such external tuning support

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

formation (e.g., encoding, segmentation), and requires certain resources which are typically

shared (e.g., CPU, buffers, buses, network links). Messages on the device pass through one

or more stages, with a corresponding delay at each stage. Activities in different stages may

proceed concurrently as long as they do not contend for the same resources. If a stage has

more than one of its required resources, multiple messages can be processed at that stage

concurrently.

END's environment is determined by the platform on which it is implemented. In

particular, the host processor(s), the I/O bus and the operating system are typically fixed.

While END can accurately represent network performance on this platform, it can also

serve as an indication of performance on a different platform as long as the relative speeds

of the target host and network are maintained. However, to make END generally applicable,

portability is an important consideration. While the host-adapter interface would probably

change from one platform to another, as would the availability and mechanisms for DMA,

interrupts, clocks etc., most of the adapter services themselves will be fully portable - both

to other emulator platforms, as well as to real target adapters.

4 .3 .4 E m ulator O peration

Operation of the emulator is illustrated with the example of the transmission request proce­

dure shown in Figure 4.4 (numbers in the following description correspond to line numbers

in the figure). Each stage t has associated with it an initial function (stage,-^do (8)) and a

completion function (stage,-_done (18)). It has one or more queues (with different queuing

disciplines) to enqueue messages or operations (5, 12, 21), and selection of a particular

queue typically depends on the message type. Delay at each stage (15) depends on the mes­

sage, and it may be synchronous or asynchronous (e.g. for short messages, an adapter may

choose to use PIO to copy data, thus occupying the CPU, and preventing other operations

from proceeding; for larger messages, it may initiate a DMA and concurrently proceed with

other activities). When the activity of a stage has completed, stage,-Jlone is invoked. This

passes on the results of the current stage to the next stage (21-22), and then processes the

next object waiting for service at that stage. If it is the last stage (26), it sends a transmit

acknowledge indication to the host.

This structure is very general, and easily accommodates a variety of resources and

services including CPU, buses, buffers and data structures. It also captures contention

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Tran8mitRequestProcedure(me88age)
2. begin
3. / / Each stag* could hat* m ultip le queues. Selection o f the
4 . / / queue and queuing p o licy i s detexained by the sassage type.
5. q_insert(queuei, message.deadline, message.data, message.type)
6. stageijdoO
7. end

8. stagei_do()
9. begin
10. i f (stage,_free) / / there i s a free resource for th is stage
11. staget_free—
12. dequeue highest p r io r ity stage,- message
13. event .delay = stage,-.delay(message) / / compute delay
14. event. encLfunction = stage,-.done
15. delay(event, stage,--sync(message)) / / synchronous delay or not?
16. endif
17. end

18. stage,-_done()
19. begin
20. / / Message has completed stage,-. Insert i t into queue,
21. q-insert(queue,>i, message.deadline, message.data, message-type)
22. stage,-+ijdo() / / In it ia te stage,-+i function
23. stage,.free++ / / Free stage,- resource
24. stage,-jdo() / / process next message queued at stage,-
25. end

26. stage,, _done()
27. begin
28. / / Last stage — send acknovledgment, and process next message
29. send XMIT-ACK to host
30. stagen_f ree++
31. stagenjdo()
32. end

Figure 4.4: Transmission em ulation for n-stage adapter operation.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between different activities that share resources. For instance, transmission and reception

use the same resources, though in the reverse order. This flexibility is needed since different

network adapters might have different services and components, and also because END

may be extended to model other I/O devices with significantly different architectures (disk

controllers, frame grabbers). To define the operation of an adapter, one needs to determine

the stages, the resources, and instantiate the queuing and delay semantics for these stages,

resources and data types.

4 .3 .5 Tw o-w ay C om m unication A cross th e “N etw ork ”

For two-way communication, we use the system I/O bus as the “network”, with data be­

ing transferred from one adapter node to another (see Figure 4.2). Since bus contention

increases with the number of emulated nodes, the I/O bus bandwidth limits both the speed

of the network being emulated, as well as the number of nodes in the experimental config­

uration. However, this approach is still useful since it can be used to verify the correctness

of protocols and perform relative performance comparisons rather than evaluate absolute

performance. If the actual data transmitted is not important, it suffices to copy only the

packet headers as long as one accounts for the time to transfer the entire packet data. If

header lengths are small compared to the data, 1/0 bus contention can be reduced substan­

tially. This permits evaluation of adapter performance for a wide range of network speeds.

There is at least one other study that has evaluated protocol performance using the I/O

bus of a multiprocessor host as a high-speed network [45].

In order to support such two-way communication, the END model of the network

adapter was extended to support the commands for data reception, as well as for data

transmission. Further, the time device provides time services for more than one END

node, and synchronizes their activities when necessary. For example, when modeling data

transmission from one node to another, the time device simultaneously sends a transmit

completion notification to the source node, and a receive completion notification to the des­

tination node. Further, if, as in the case of the CIM, network transmission has preemptive

priority over DMA, it also ensures that DMA operations, if any, are preempted at both

the source and destination nodes during transmission. It also ensures that the entire data

(or simply the headers) is copied to the destination END node before sending a reception

completion notification. All this is accomplished in END by associating resource utilization

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and priority tags with, each delay request to determine which nodes are involved in the

operation, which operations can occur simultaneously, and which need to be preempted.

4 .3 .6 R ecep tio n M odeling

It is often desirable to perform experiments where there is no traffic source node, but a

destination node receives some kind of synthetic traffic. This could be either because we

wish to focus purely on reception issues, or simply because the experimental platform does

not have enough nodes to support end-to-end communication (in our implementation, a

minimal end-to-end configuration has five CPU cards - the source and destination hosts

and “adapters” (END), and the time device (Figures 4.2, 4.3)). In this case, END gen­

erates packets that are indistinguishable from those originating from a real source node.

The data and headers for such packets may be generated either by replicating the source

node’s application and protocol stack on END and composing packets on the fly, or using

stored packets. Depending on the applications and protocol stacks, it may or may not be

necessary to have real data, but correct headers are required to traverse the destination

host’s protocol stack. Packet arrivals are triggered by “reception complete” notifications

from the time device. The time device can be programmed to generate these arrivals based

on any stochastic function, real traces, etc.

4.4 Platform Considerations

In principle, END may be used to model arbitrary network and adapter configurations by

specifying the appropriate paradigms and performance parameters. However, implementing

such a model effectively necessitates that the implementation platform (more specifically,

the device emulator) have sufficient CPU capacity to model operations in an accurate and

timely manner. For instance, we cannot specify emulator delays smaller than the shortest

delay provided by the time services, or support data throughput at rates greater than what

the host can generate. In this section, we evaluate our platform and assess its capabilities.

We then describe how END may overcome some of the constraints placed on it by the

limitations of the platform.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 .4 .1 System C apacity A n alysis

The host on our experimental platform uses an Ironies IV3207 card, with a 25 MHz Motorola

MC68040 processor (Speclnt92 rating of 12.3). A detailed performance analysis of this

platform has been presented in [74]. To summarize, using the protocol stack in Figure 3.2,

this CPU can process about 2000-2750 best-effort packets per second, with the lower number

corresponding to single-packet messages, and the higher number corresponding to 15-packet

messages (Figure 1(a) in [74]). Since the maximum packet size is 4 KB, this corresponds to

throughputs of 8000-11000 KB/second. Protocol processing costs and scheduling overhead

are higher for real-time data, and with 15-packet messages, the host is able to process 1300

real-time and 675 best-effort packets each second (see Table 6.2 and Figure 6.2(a)). Hence,

we estimate that the mean CPU processing costs per packet (including scheduling overhead)

for best-effort and real-time traffic are about 364 fts and 580 fis, respectively.

The emulator and time device also use CPU cards identical to the host. When the

emulator “transmits” a packet, it must dequeue it (from a FIFO queue, or a priority heap

sorted by the packet deadline), issue a delay request to the time device, and handle the time

device interrupt at the end of the delay. Hi addition to the actual transmission delay, these

operations take about 66 fts and 122.5 fis for FIFOs and heaps, respectively. Assuming

that the requested delay is long enough, we can fetch the next packet for transmission while

the previous packet is being transmitted, thereby masking most of the cost of the dequeue

operations. In this case, the overhead is about 48 fts and 53 fis, masking a delay of about

18 fis and 70 fts for FIFOs and heaps, respectively. The remaining overhead is the cost

of issuing the delay request to the time device, and handling its response. This implies

that the emulator has the CPU capacity to transmit approximately 15000 best-effort or

8000 real-time packets per second. In practice, we can achieve less than half of this, since

the emulator must also use its processing capacity for other activities such as host-adapter

interface operations, enqueuing/dequeuing packets for DMA, modeling delays for DMA,

etc. In the next section, we see how END overcomes some of these limitations.

4 .4 .2 O vercom ing th e L im itation s o f th e P latform

One of the key advantages of emulation is that it enables accurate experiments with real

system components and overhead. However, it is also a disadvantage in that such modeling

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is restricted by the actual performance of the emulation platform, unlike simulations where

arbitrary times may be assigned for various system activities. There are various techniques

to get around some of these restrictions, in particular, to model networks that are faster

than the platform’s communication medium, and to model hosts that are faster than the

platform’s CPU. While these techniques (described below) permit us to model a wider range

of systems, they do distort the results since they cannot selectively scale the relative speeds

of different system components by different factors. For example, the technique for modeling

faster CPUs automatically scales the speed of the CPU processing and of memory access

by the same factor, which, in general, will not be the case. In spite of these limitations,

these are useful techniques, but the results should be interpreted with caution.

M odeling fast networks: Hosts in an emulation environment may communicate with

each other either via a real network (say, an Ethernet), or even pretend that the system bus

is the the network (see Section 4.3.5). The speed of the communication medium and the

contention for access to this medium limits the network speeds we can emulate. However, if

the actual data transmitted is not important (which is true for many performance evaluation

experiments), it suffices to transfer only the packet headers, and use arbitrary data at the

destination node. If the headers are small compared to the data, this not only reduces

contention, but allows us to model much faster networks. Let 7 \(h) and Tm(m) be the

times required to transfer a header of length h on the given communicating medium, and a

message of length m bytes on the target network, respectively. As long as I \(/i) < Tm(rn),

we can model such a network by inserting a delay of Tm(m) — Th{h) while emulating the

data transfer operation (since a delay of 2 \(h) will really be experienced while transferring

the header, we only need to account for the remaining amount of time).

M odeling fast CPU s: In addition to fast networks, we often need to model systems with

significantly higher CPU capacities. One solution is to port END to a faster platform but

this may not always be practical for reasons of cost and time. A simple solution arises

from the observation that it is not the CPU’s processing bandwidth alone that matters,

but how it compares with network bandwidth. If we wish to model a network with a given

bandwidth, and have a given workload, by slowing down both the network and the rate

at which data is generated by the same factor, the network utilization remains unchanged.

However, since the CPU itself is unchanged, it executes at the same speed in both cases,

making the CPU relatively faster than the network in the latter case. Thus, to give the

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

illusion of a faster CPU, it suffices to slow down the network. If the CPU speedup factor

is Csf, we need to slow down all system delays by the same factor. This implies increasing

time intervals such as message interarrival times, real-time message deadlines, and synthetic

delays2 by a factor of Caj . Consider modeling an operation that takes c units of CPU time

on our host, and has a synthetic delay of d, for a total delay of c -(- d. If we increase the

delay by a factor of Caf , the processing cost of the operation remains unchanged a t c, and

the total delay is now c + dCsf , making the CPU overhead relatively smaller by a factor of

CSf . Considering the effective system capacity utilization of this operation, we have:

d
Utilization = ----- (4.1)

c-f- o

After slowing down all delays by Ca/ , we have:

Utilization = dCaJ
c + dCaf

- (4 ' 2)

It follows that the experiments now take Csf times as long to rim, but we have effectively

built an environment where the CPU appears to be much faster. This feature must be

implemented carefully, since delays may be specified in various places in the operating

system and emulator. In our implementation, we have been able to localize these changes

so that applications need not be modified in any way. All programs used to analyze data

from the experiments also use Caj to normalize the results.

4.5 END Software Implementation

The implementation of END follows the structure in Figures 4.1 and 4.3. END is written

almost entirely in C (about 3000 lines of code; only the interrupt service routine wrappers

are written in assembly) and is easily portable. It requires a minima.] executive for services

such as process management and interrupt handling, which are readily available on almost

any platform. The manner in which interrupts are generated and handled depends on

the processor and bus controllers, and would need to be rewritten for different platforms.

However, this is a very small part of the code and is easily modifiable. Further, the interrupt

Synthetic delays are the delays nsed to model host and network activities that do not really take place
on END. For example, since data packets are not really transmitted, a synthetic delay is inserted into the
END model to account for the time taken by this operation.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Module Modifications required due
to change of:

Approximate size
for CIM model
(lines o f C code)Platform. Target adapter

Host-adapter interface:
device driver (on host)

minimal extensive 2000

Host-adapter interface:
host driver (on END)

minimal extensive 1500

Adapter-network inter­
face

m in im al m in im a l 300

Libraries minimal to none moderate variable, depends
on feature set

Time device m in im al m in im a l to none 1500

Table 4.2: P ortab ility o f END .

wrappers and interrupt generation code is localized, and does not need to be changed in

multiple locations. We now describe the various software modules, keeping in mind platform

dependencies and portability. Software modules may need to be modified either because

of changes in the platform, or changes in the adapter being modeled. A summary of the

nature and extent of changes required in the various modules is presented in Table 4.2. It is

clear from the table that while END can easily be ported to another platform, substantial

parts of the END model must be changed when we wish to model a different adapter.

H ost-adap ter interlace: This is completely determined by the adapter being modeled and

would need to be rewritten for each adapter. It comprises the device driver on the host, and

the host driver on END. The END model for a particular adapter can be ported from one

platform to another with little or no modification. Device drivers (and their corresponding

host drivers) are typically structured as actions triggered by particular commands. These

commands typically indicate initiation or completion of data movement across the I/O bus,

or completion of transmission/reception. It is possible that even dissimilar devices could

have similarly structured device drivers, perhaps permitting some code reuse.

A dapter-netw ork interface: The adapter-network interface allows for polling and/or

interrupts as the synchronization mechanism. It has a clean interface with the adapter

model. It is invoked by the adapter when a packet is ready for transmission, and it may

call adapter functions when packet transmission or reception completes. Other than these

entry points, no changes should be needed due to a change of platform or adapter model.

Libraries: Buffer management and queuing mechanisms are completely platform inde­

pendent and have been implemented as separate libraries. At present, adapter buffers are

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pre-allocated, fixed-size, shared buffer pools. Queuing support has been implemented for

FIFO and deadline-based priority heaps. Other buffer management policies, queuing mech­

anisms, or other services can readily be added to these libraries. Data-transfer control

provides for modeling PIO and DMA. This is supported by the Time Device, which allows

for synchronous and asynchronous delays, which are necessary to model PIO and DMA,

respectively. Libraries would need to be extended to model new adapter features (e.g., SAR,

protocol translation). However, these libraries would be usable by other adapters that have

similar features.

T im e Device: For time services, a high resolution clock is necessary; while we have used

the VME StopWatch, such clocks are now available on many modem microprocessors. The

time device is a separate module that uses no operating system support. It may be ported

to another platform by changing the dock source and its interrupt management mechanism.

It supports multiple END nodes, synchronizes with them using polling and/or interrupts,

and does not change at all from one adapter model to another.

4.6 Related Work

The present work was motivated by the need to find an accurate and flexible tool for

network adapter design, keeping in mind hardware/software codesign. Our work relates to,

and builds upon the following areas of research.

Communication subsystem design and performance: Several researchers have studied the

issues affecting the design and performance of network adapters [33,41,83,95], and com­

munication subsystems in general [38,89]. While many of these studies have influenced our

work, we have focussed as much on the design process, as the design itself.

Simulation-based evaluation: Performance evaluation via simulation can be conducted at

various levels of detail, and hence, accuracy. Recently, significant attention has been given

to accurate, low-level simulation to study machine architectures while capturing operating

system overhead [15,102]. Other efforts have focused on protocol-level simulation with the

ability to run the actual protocol stack during simulation [20], and network-level simulation

with a focus on routing and end-to-end protocol performance [64,73]. Most relevant to our

work is architecture-level and protocol-level simulation. Since END executes on its own

processor concurrently with the host, it avoids any intrusion on the host operating system

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Including the protocol stack) executing on the host CPU. More importantly, END utilizes

actual hardware resources on the host (system 1 /0 bus, interrupts) just as a real adapter

would. Capturing events at this low granularity in simulation models would require highly

accurate resource models and could render the simulation extremely slow.

Network adapter as source/sink o f data: Network adapters have been modeled as simple

data sources and sinks for parallel protocol implementations [17]. Interestingly, these models

are executed on a separate processor within the host. Besides modeling the source/sink

behavior of the network, our approach captures significantly more details of the adapter

design and its interactions with the protocol stack.

I/O device modeling: The issues involved in modeling disks have been studied by other

researchers [103]. While the focus of our work is network device emulation, our emulation

framework can be extended to emulate disks and interact with the file system layer in the

operating system. We believe that this would provide a reasonable mechanism to study

storage subsystem performance.

4.7 Conclusions

In this chapter, we proposed network device emulation as a performance evaluation tech­

nique and described the architecture and implementation of END, a tool for designing

network adapters. We described how END may be used in various configurations - with

true end-to-end communication between two nodes, or with only a source node sending

packets to a sink, or only a destination node with packets arriving from a synthetic source.

We also discussed issues related to how emulation is affected by limitations of the platform,

and how these may be overcome.

In the next three chapters, we demonstrate the versatility of END by using it to study

various problems in communication subsystem design. Chapter 5 uses END to construct

a representative model of a real network adapter, and to show how the adapter may be

redesigned to improve its performance. Chapter 6 describes how END is used to model

different network configurations and study QoS issues in the network adapter and the host

operating system and Chapter 7 uses END to study various host and adapter based solutions

to the receive Iivelock problem.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

ADAPTER DESIGN USING END: A CASE STUDY

Device emulation has been used before to model source/sink behavior of I/O devices (disks,

networks, sensors). Our contribution is in applying device emulation to capture the details

of network adapter design. END can be used in two ways: (i) to design a new network

adapter with special functionality (such as adding support for quality-of-service (QoS) in

communication), and (ii) to explore design alternatives that improve the performance of an

existing prototype. In this chapter, we use END to study adapter design by conducting a

case study for an existing device, the Ancor VME CIM 250 [3] (CIM) adapter, described in

Chapter 3. This is achieved by first building a representative model of the device, called the

base model, and implementing it using END. The base model is then modified to incorporate

design changes that improve communication performance for this device.

The rest of this chapter is organized as follows. Section 5.1 presents the case study of the

CIM network adapter and its emulation using END. Section 5.2 studies the performance of

the CIM to identify performance bottlenecks and uses END to evaluate design improvements

for data t r ansm ission. Based on this experience, the limitations of emulation and possible

improvements are discussed in Section 5.3. Section 5.4 concludes this chapter.

5.1 Emulating the Ancor CIM 250 using END

In this section, we conduct a case study of the Ancor CIM 250 and emulate it using END.

Recall that emulating an existing adapter represents one way of using END. Our experi­

ments with the CIM in Chapter 3 revealed several performance bottlenecks and potential

for improvement, making the CIM a suitable candidate for this study. The performance

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

characteristics of the CIM have also been studied in detail in [70]; some of those results

have been used in this study.

Our emulation methodology is to first construct a base model that is representative of

the device (in this case, the CIM). A model is said to be representative if it performs the

same functions, and has performance equivalent to that of the target device. Once the base

model is constructed and implemented using END, design changes can be directly incorpo­

rated in the END model. Performance changes observed in the modified model will then

be similar to those due to similar design modifications in the real adapter. As illustrated

below, constructing a representative model of an existing adapter requires systematic “black

box” performance analysis of the. device. Since END has been designed independently of

the CIM, its design is not biased towards that of the CIM; this study therefore serves as a

fair test of END’s ability to model real adapters. Since we focus on data transmission, the

experiments described in the rest of this chapter use END in a “transmit-only” configura­

tion, i.e., data transmission is modeled as a delay, and the transmitted data is not delivered

to any destination node. However, we did perform the same experiments in an end-to-end

configuration using two-way communication described in Section 4.3.5, and obtained nearly

identical results. We now describe the CIM, its data transmit and receive paths, and how

we emulate its behavior using END.

5 .1 .1 A ncor CIM 250

The Ancor VME CIM 250 [3] Communications Interface Module is a network adapter for

ANSI Fiber Channel 3.0 [2] networks. Besides communication interface hardware (an IBM

OLC266 Fiber Optic link card), the CIM has an NEC 32 MHz 70236 I/O processor, 8 MB

DRAM, independent DMA controllers for data movement, and VMEbus interface logic. The

CIM communicates with the host using command/response FIFOs. It supports commands

to initiate read/write operations, set up DMA between the host and adapter, and signal

the completion of DMA and network transmission. The CIM polls the command FIFO for

commands from the device driver, writes responses to the host via the response FIFO, and

then issues an interrupt to notify the host of the response. Note, in the descriptions below,

that each packet transmission or reception involves at least five commands - three from the

adapter to the host (possibly with an interrupt with each command) and two from the host

to the adapter.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P h a s e D ev ice d r iv e r V M E C IM 250
Initialization send w r i te — ► sta rt transm it sequence

«— send w r ite ack
«— Interrupt Request

DMA send a d d re s s l i s t — ► DMA list o f a d d re s s com m ands
into local memory
DMA da ta for list into local mem­
ory

<— send ad d ress ack
«— Interrupt Request

F iber Channel Transfer d a ta to F iber Channel
network interface

«— send tra n s m it ack
«— Interrupt Request

Figure 5.1: H ost-adapter interaction for data transm ission.

Transm ission: A simplified sequence of the events involved in CIM transmission is shown

in Figure 5.1. During the initialization phase, the host issues a w rite command, and the

adapter responds with a w rite ack. In the DMA phase, the host provides the addresses

and lengths of buffers to be transmitted via the address, address end and/or address

l i s t commands, and receives an address ack on completion of the DMA. Next, the Fiber

Channel (FC) phase starts transmitting the data, and sends a transm it ack to the host

on completion. The CIM interrupts the host each time it sends a response. Note that the

host may issue additional w rite commands before a previous one completes. This increases

concurrency since different CIM and host operations may now occur in parallel. We call

the number of incomplete w rite operations the pipeline depth on the CIM.

R eception: A simplified sequence of the events involved in CIM reception is shown in Fig­

ure 5.2. When a message arrives at the adapter, it notifies the host with a read command.

The host initializes its data structures and allocates buffers to receive the packet and re­

sponds with a read ack command that completes the handshake by giving the adapter the

host’s transaction identifier for this message. The host then sends an address command

with the packets destination address (or a scatter-gather address list of the buffers in an

address l i s t command for packets longer than the kernel page size). When the data has

been copied to the host, the adapter notifies it with an address ack command, and the host

sends more address commands, if needed. After the last of the data has been transferred

to the host memory, the adapter sends a read end command.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P h a s e N e tw o rk A d a p te r D e v ic e D r iv e r
Initialization store packet in buffer

initialize d a ta structures
send read
in terrup t host

—
initialize d a ta structures
complete host handshake
send read ack

DMA
DMA packet to host
send address ack

send address

in terrup t host — ► send address com m and, if needed
Completion send read end

in terrup t host _____► dem ux packet to protocol stack

Figure 5.2: H ost-adapter interaction for data reception.

5 .1 .2 CIM F unctional M odel

The END model and the CIM appear functionally identical to the host if both have the

same commands and responses. The main loop of END polls for commands from the host,

execntes them and sends appropriate responses to the host. The host-END interface is

almost identical to the host-CIM interface. It issues exactly the same commands, gets the

same responses, and interrupts the host at the same priority as the CIM. The only difference

in the interface is that the CIM has hardware support for command/response FIFOs, and

so the host writes commands to (and reads responses from) a fixed address in its I/O space.

In contrast, END writes commands to (and read responses from) circular FIFOs in END’s

memory. The host device driver is almost identical in both cases - less than 30 lines of code

changed in the device driver (out of over 2000 lines of C code).

Figure 5.3 shows an outline of the END model for the transmit operations of the CIM

(Figure 5.1) using the structure presented in Figure 4.4. Functions stage,_do() of END

are triggered by events such as a command from the host or the completion of the previous

stage. stage,--done() represents the action taken after the completion of the time delay (if

any) representing the action of that stage. Similarly, Figure 5.4 shows an outline of the END

model for the receive operations of the CIM shown in Figure 5.2. A key difference is that a

w rite sequence is triggered by the host, while a read sequence is triggered by a synthetic

packet arrival (in the case of a “receive-only” configuration of END), or a transmission

from another END node (in the case of true two-way communication). These functions are

adequate to completely define the host-END interface, i.e., this model interacts correctly

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S ta g e ; Trigger S ta g e f-d o S ta g e i-d o n e
Initialization u r i t e Init d a ta structures

send w r i te a c k
interrupt host

DMA a d d re s s l i s t read address list
enqueue segments for DMA
S tartD naX ferC){

dequeue segm ent;
async delay for DMA}

if (last segment copied)
enqueue message for xm it
X ait-doO
send ad d re ss ack

interrupt host
S ta r tD a a Z fe r()

Xmit
(Fiber Channel)

DMLdone dequeue message
async delay for transm it

send t r a n s a i t a c k
X a it.d o ()

Figure 5.3: O utline of END m odel for transm ission on the CIM .

Stage,- Trigger S tage,--do Stage,-_done
Initialization message arrival

from network
Initialize d a ta structures
send r e a d
in terrupt host

r e a d ack com plete host handshake
DMA a d d re ss enqueue packet for DMA

S ta r tD a a Z fe r (){
dequeue segment;
async delay for DMA}

send a d d re s s ack
interrupt host
S ta r tD a a X fe r()

Completion last buffer transferred send r e a d end
in terrupt host

Figure 5.4: Outline o f END m odel for reception on the CIM .

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Symbol Description Value
^fo n e rJea i fixed cost per message 1280 fts
"DtegMizt DMA segment size 256 bytes
Doverhead DMA overhead per segment 1.76 fts
Stm all size of small messages 4096 bytes

DMA time per byte (small messages) 0.42 fts
T t Z DMA time per byte (large messages) 0.31 fts
T fram etize FC frame size 2048 bytes
Ttnerhead FC message overhead 1350 fts
Tjram ciclay Transmit time per FC frame 79.75 fts

Table 5.1: Im portant CIM parameters

with the host device driver. To complete the model, it is necessary to ensure that it executes

with the same delays as the CIM.

5.1.3 CIM Performance Emulation

To accurately emulate the CIM using END, it is necessary to compute the delay functions

for the DMA and FC phases. We gathered information for these functions from three

sources: existing literature [70], our own measurements [56], and conversations with staff at

Ancor Communications, Inc. Lin et a/. [70] performed extensive experiments on the CIM

(using VMEbus probes) and characterized the delays of various components. As a first

approximation for our model, these delays deliver a performance significantly different from

our observations. This is attributed to the fact that the measurements in [70] were made on

a completely different platform with a different CPU, memory, protocol stack and operating

system. Accordingly, we used only the measurements corresponding to operations that are

strictly internal to the CIM, and hence, not affected by the change in platform. These

include the delays for setting up the DMA and the FC phase. The delays during DMA,

and other overhead, are computed from measurements made on our platform, as described

below.

5.1.3.1 Arriving at an A ccurate Base M odel

We construct an accurate base model for the CIM by computing Td m a > the time to DMA

a message (the DMA phase), and Tpc, the time for the FC phase. While Tpc is inferred

from the results reported in [70], Td m a must be computed via measurements since it is

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

platform-dependent. Tpc is given by

Tf c (S) = overhead + p (5.1)

where S is the message size, ôverhead, is the per-message overhead for the FC phase and

Fframcdclay is the delay for each FC frame of size T framenze- Given the values in Table 5.1,

Tf c can be computed for a given message of size S .

We compute T d m a as a function of S by experimentally measuring Tmfpipe;= i)» the

message transmission time on the CIM with a pipeline depth of 1, as follows:

where M o v e r h e a d is the message overhead, which corresponds to the cost of generating the

message, traversing a m inim al protocol stack, and crossing the host-CIM interface for the

entire message (but excluding the costs of the DMA and FC phases). Since the DMA delay

is emulated by END , we must measure Moverhead. on END. Using the same protocol stack,

we ran experiments transmitting 12000 messages of various sizes on END and measured

the average message transmission time for each message size, with the DMA and FC delay

functions set to zero. Table 5.1 lists the measured value for Moverhead as 1280 fts. To verify

that this was reasonable, we repeated the same experiments on the CIM using small (44

bytes including headers) messages and measured the average time till the address ack to

be 1240 fts, which yields an Moverhead value of approximately 1220 fts after accounting for

the DMA delay.

Td m a can now be computed as the only unknown in Eq. 5.2. One would expect Td m a

to be a linear function of S . However, our computed value for Td m a revealed that this is

not the case for the CIM. The incremental delay is a non-linear function of S , being much

higher for messages smaller than S mau (listed in Table 5.1), and lower for larger messages

(see Figure 5.5(a), also expanded in Figure 5.7(a)). As an approximation, we use a delay

function that is the combination of two linear functions (Figure 5.5(a)):

where Voverhcad is the fixed overhead per DMA segment, V segsize is the DMA segment

^m(pipe=l) G-*) = Moverhead + Tdm a(S) + Tpc(S), (5.2)

T 1 * ^overhead 4~ S X if S < S small

Td M a (S) ' r 1 ^overhead 4“ ^small X

4- (5 - S small) X V l" l e otherwise,

(5.3)

size used by the CIM, and Dffi*11 and Dl̂ e are the incremental costs per byte obtained

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s -

•10 -

Teel d * y oner, pipe * I
T o e id * y * io r .p ip e « 2

•000

1000 -

«i«e

(a) Breakup of message costs (b) Error in model

(x-axis has linear scale) (x-axis has log scale)

Figure 5.5: Sources o f delay in the m odel and their accuracy.

empirically. The values corresponding to these parameters are listed in Table 5.1. As

can be seen from Figure 5.5(b), the above approximation works well except for a small

region around S = 4K bytes, a t which point the DMA performance of the CIM diverges

significantly.

5.1 .3 .2 Accounting for Concurrency and Contention

The model described above is adequate when there is no contention for resources on the

CIM. This is a reasonable assumption as long as the CIM handles only one transmission

or reception at a time, hi general, this is not true since the host may send several w rite

requests to the CIM before completion of earlier requests, or have incoming data. In this

case, for example, Td m a of one message may (partially) overlap M overhead of another,

permitting some concurrency. However, not all operations can occur concurrently. Both

the DMA and FC phases use the CIM’s local memory bus. Hence, for pipeline depth of 2,

the DMA and FC phases occur successively, and may overlap with Moverhead• Since the

DMA and FC phases take longer than Moverhead, the average message delay with pipeline

depth of 2 may be estimated as:

%i(pipe=2)(S) = Tdma(S) + TFC(S) (5.4)

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

Mo Td F0 F(j
Menag»2 | ■ ■ ,■ = ==[
(Cm1) M0 T(j F0 rj
Menag«2 I I I r— ——ssa ss i_____ I_________ I I
(Cm 2) V V \ ^

Figure 5.6: Inter-m essage overlap during CIM transm issions.

This is illustrated in Figure 5.6, where M0, Td, Fa and Fd correspond to Moverhead> Td m a»

Toverhead and —- -----1 x F fTamedeiavi respectively. Eq. 5.2 corresponds to the time line
1 “ / r a m e i i i e J 9

for Message 1, while Eq. 5.4 corresponds to Message 2 Cease 1).

Note that the above analysis should always be optimistic with respect to the corre­

sponding END model (Figure 5.7(b)). This is because, in practice, perfect overlap between

Moverhead and other operations is unlikely and one must account for the cost of other oper­

ations on END. The measured performance on the CIM, on the other hand, is better than

that predicted by the above analysis, indicating that it does not account for some other

source of concurrency in CIM operations.

This analysis assumes that no part of the DMA and FC phases can overlap. However,

only the data transfer part of these two phases cannot overlap due to contention for the CIM

memory bus. Some or all of Toverheai may overlap with other operations. From empirical

observations, allowing \Foverhea& to execute concurrently with other operations yields good

agreement between the CIM and END performance. The revised equation is:

1 2
Tm(pipe=2)(S) = max(TDMA(S), 2 Toverhead) "t" ^Toverhead

£
1 X Tframedelay (5-5)

■'framesize
This corresponds to Message 2 (case 2) in Figure 5.6, where Td is split into two parts,

Tdt and Tj2. Tdx overlaps with FOJ after which the FC operations seize the bus and preempt

any further DMA transfer. This is because FC operations have higher priority than DMA.

The r em ain ing part, Trf2, resumes when Message 1 completes transmission.

Discussion: Figure 5.7(a) shows good agreement between the predicted and emulated

performance when pipeline depth is 1, and both are quite close to the real measurements

on the CIM. In Figure 5.7(b), for a pipeline depth of 2, we see that the theoretical delay

is always less than that measured using the same delay model in END, for reasons stated

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—a Mm iQHflma-g)acream (Eq>S4)
► M am gtftna-V ttorafcaf (Eq.515)

—* M*eegilm»-END(Ba.5u4)
- a l—nqi»iw»BC(B^&S)-o U M M g tfrm -C fti

10040 122M
Menag» Ste» (bytn)

o—o

6000

3000

»H— B0 7 tT 0(byf)

(a) Pipeline depth = 1 (b) Pipeline depth = 2

Figure 5.7: Theoretical and measured mean m essage tim es.

earlier. The END model (with Eq. 5.5) shows good agreement with the real CIM, though

not as good as with pipeline depth of 1. Note that we are able to construct reasonably

accurate theoretical models because the system has homogeneous traffic and is otherwise

idle. Under more complex traffic conditions, or with greater pipeline depth, or with other

applications r un n in g on the host, it will be very difficult to construct accurate theoretical

models. However, since END captures low level details, and interacts dynamically with a

real host, its behavior will track that of a real system. We should point out that FC and

DMA data transfers cannot occur simultaneously, and this knowledge suffices to construct

models capturing average behavior. However, the actual sequence of events is important to

measure delay jitter.

5.1.3.3 Equivalence o f the CIM and the END M odel

To show the equivalence of the CIM and its END model, throughput and delay were mea­

sured for various message sizes and various values of pipeline depth. Figure 5.8 shows

the mean throughput for the CIM and END (note that Figure 5.8(a) is the same as Fig­

ure 3.4(a)). The curves for pipeline depth of 1 are almost identical in both graphs (mean

error = 1.1%). The error increases to 3.3%, 6.5% and 7.9% for pipeline depths of 2, 3 and

4, respectively. The reason for this increase in error is that this model does not capture

all the details of the hardware interactions in the CIM, and these interactions increase as

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a* 3

S t2

291

129

MS 40W 6169 m v ms—Qs nm»w>

SIX

299

6 4 t a 2S6 512 1024 M 4098 8192 16394327
massage langVt (bytes)

(a) CIM throughput (b) END throughput

Figure 5.8: Com parison o f CIM and END*s transm ission throughput. N ote
that th e graph uses a log-log scale, and throughput increases by
as m uch as 50% when maximum pipeline depth is increased
from 1 to 2.

the number of messages increases. Figure 5.7 shows the mean message delays for pipeline

depths of 1 and 2. Since the real and emulated curves are on the same graphs, the accuracy

of the emulation is apparent visually.

Similar results are observed for message delays. Figure 5.9 shows the mean message

delays (note that Figure 5.9(a) is the same as Figure 3.4(b)). Note that while the mean

delays are almost identical, the standard deviations are quite different. The standard devi­

ations are comparable for pipeline depth of 1, but increase rapidly on the CIM, but remain

virtually unchanged on END. As before, this is due to the fact that END does not capture

all the interactions of the messages on the CIM which cause increased delay jitter.

However, it should be noted that all performance information regarding the CIM was

inferred purely from external measurements and without knowledge of the exact firmware.

When design ing a real network adaptor, knowledge of the exact firmware and hardware-

software interactions would help build even more accurate models. In such cases, it would

be possible not only to determine potential interactions, but, if such interactions were

considered undesirable, to redesign the architecture or firmware to minimize their impact.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£5000

[50000 • 1

20000

15000

5000

4000 »1«2 1C3M2ZK
« g « i an0h(bylM)

(a) CIM message delay

<56000

□ — -O O—O

18000

(b) END message delay

Figure 5.9: Comparison o f CIM and END1 s transm ission delay.

5.2 CIM Transmission Analysis and Optimization

In this section we demonstrate the nse of END as a design tool to explore and evaluate

design alternatives to improve the handling of outgoing traffic. In particular, we use END

to identify and correct performance bottlenecks in the CIM design. Since END emulates a

representative model of the CIM, we may reasonably conclude that performance enhance­

ments observed due to any changes in the END model of the CIM would be representative

of performance enhancements due to similar changes in the real CIM. We consider two main

design modifications to improve performance:

(i) simplification of the host-adapter interface to reduce overhead (Section 5.2.1), and

(ii) architectural changes to increase concurrency in CIM operations (Section 5.2.2).

The performance improvements due to these changes are described in Section 5.2.3.

5 .2 .1 R ed u cin g th e H ost-A dapter In terface O verhead

Figure 5.1 shows the host-adapter interface for CIM w rite operations. The host sends two

commands to the CIM, and gets three responses, each accompanied by an interrupt. In the

initialization phase, the host device driver and the CIM exchange identifiers to keep track

of the rest of the transaction. However, this phase really serves no useful purpose. The

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initiator of a transaction (the device driver for w rite and the CIM for read) can create

a unique transaction ID, which suffices to keep track of the progress of that transaction.

Further, the CIM sends a response and an interrupt to signal the completion of the DMA

and the FC phases. Again, this is not really necessary, and a user should be able to configure

the interface to decide whether the responses need to be sent after either or both of these

phases, as determined by the higher software layers. Note that the equations for delay in

this case will be almost identical to Eq. 5.2 and Eq. 5.5; only the value of Moverhead will

reduce.

5 .2 .2 E xp loitin g Increased C oncurrency

Though the CIM has dedicated hardware to move data between the host and the CIM’s

memory, and between the CIM’s memory and the network, these operations cannot proceed

in parallel since both use the same memory bus. Dual memory banks with independent

memory buses have been suggested as a cost effective technique to increase the memory

system’s bandwidth, as opposed to more expensive memory organizations like dual-ported

memory [87]. For general purpose applications, data placement is a problem in such an archi­

tecture, since it is hard to guarantee that simultaneous memory accesses will be from differ­

ent memory banks. The pattern of memory access is much simpler in network adapters and,

if alternate transfers are placed in alternate memory banks (similar to double-buffering),

most of the time it will be possible for the DMA and FC phases to proceed in parallel.

With a pipeline depth of 1, there is no benefit to having two buses. When the pipeline

depth is 2, however, the DMA and FC phases can proceed concurrently. As in Eq. 5.5, the

message overhead and copy time for the address list get completely overlapped with the

data transfer time, and the message delay is determined by the slower of the DMA or the

FC phases. This delay may be estimated as:

Tm(twobus,pipe=2)(N) = max(ToMAt Tf c) (5.6)

5 .2 .3 Perform ance o f th e Im proved CIM

We modified the END model of the CIM to reflect the changes described above. For the

changes in the interface, modifications were required both in the device driver and END. To

capture the performance with dual ported memory banks, it suffices to modify the model

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a - - - a FMtl (FI)

R ndD M B

maMag> langtt (bylM)

o —- o OutfftlMoiyl
♦ — + R an rfM B

tsoo

(a) Pipeline depth = 1 (b) Pipeline depth = 2

Figure 5.10: Transmission, throughput for improved CIM m odels.

so that the DMA and FC phases proceed in parallel, i.e., the FC phase no longer preempts

the DMA phase.

Figure 5.10(a) shows the performance improvements when the pipeline depth is 1. In

this case, since at most one message is being processed on the adapter at a time, there is no

memory contention and hence there is no benefit with dual memory banks; all performance

improvements arise from the faster interface. Throughput increases by 12-15%, with a

greater increase for smaller packets since, in these cases, the cost of the interface overhead

was more significant compared to the cost of transmission1.

Figure 5.10(b) shows the performance improvements when the pipeline depth is 2. In

this case, throughput rises significantly due to the dual memory banks. For small messages,

there is not much additional concurrency, and the throughput increases by about 8%. For

larger messages, the throughput increases by as much as 28%. For very large messages,

since the FC phase is much faster than the DMA phase, the cost of the DMA phase be­

gins to dominate again, and the improvements decline to about 17%. With both features

implemented together, throughput increases by 15-50%.

As expected, similar performance improvements were observed for measurements of

individual message delays. The fast interface has an additional benefit in that delay jitter

is reduced, especially for small messages. This is because the fast interface reduces the

1 The FC phase has a large setup cost, and this dominates the transmission time for very small messages.
This bounds the improvement in throughput.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of interactions with the host, and the resulting unpredictability. This effect is more

pronounced for small messages since the delay at the interface is a significant part of the

total transmission delay.

5.3 Discussion

In Section 5.1 we established that END could accurately emulate the behavior of a real

network adapter and in Section 5.2 we demonstrated how the model of the network adapter

could be modified to evaluate design alternatives. While this shows how END was used in a

particular instance, we now address issues of the general applicability of device emulation,

in particular, of END.

E N D as a P ro to type: As seen in Section 5.1, the device drivers for the real and emu­

lated adapters were almost identical. This high degree of code reusability allows software

development and testing to proceed in parallel with, or even ahead of, hardware design and

implementation. In addition, the END model itself can serve as a prototype for the adapter

firmware. All the algorithms and data structures used in END should be the same as those

used in the real firmware. Each call to the delay C) function corresponds to a hardware

activity, and can be replaced by code to program the particular hardware device. In END,

the s tag e t-_done() calls correspond to completion of a timed delay, and in real adapters,

they will be invoked on completion of a real hardware activity.

EN D as a Program m able Traffic Source: END can be configured as a special network

interface in the host operating system to act as a stochastic source of network traffic (END

is used in this manner in Chapter 7). Applications or higher software layers can open this

interface and “program” it to generate network traffic with characteristics such as a given

arrival distribution, source and destination addresses/ports, etc. This could be used by

desiguers to debug or evaluate protocol implementations.

L im itations o f END: One of the main advantages of END is that it operates in real time

and interacts with a real system, and hence, all overhead of the host operating system and

applications is real. However, the END model itself is essentially a real-time simulation,

and any study is only as accurate as the underlying simulation model. Since END rims

on a general purpose processor board, it may not have the same hardware components as

the target adapter. Consequently, it may not always be possible to represent all hardware

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interactions on an adapter. Farther, the accuracy of END is limited by emulation overhead

and several factors such as relative CPU speed, interrupt latency, and memory bandwidth

on END and the target device, and in relation to that on the host. However, some of these

can be circumvented by using a processor significantly faster than the host CPU.

Another potential limitation of END is scalability. Each END node needs at least

two (maybe 3) processor boards and, assuming that different nodes communicate over the

I/O bus, no more than 2-4 nodes would be possible in any configuration. As discussed

in Section 4.4.1, limitations due to contention for I/O bus bandwidth may be partially

addressed by using the bus only for sending message headers, rather than the entire data

payload. Also, faster CPUs may be modeled by slowing down other activities, so that the

CPU is now relatively faster. Scalability and contention limitations may also be addressed

by using WAN emulation in the style suggested by hitbox [1].

5.4 Conclusions

In this chapter, we used END to accurately model the behavior of a real network adapter,

the Ancor VME CIM 250, and modify both the hardware and software in its original design

to remove some performance bottlenecks. These design improvements yielded throughput

increases of 15-50%, depending on the hardware and software modifications and on the

traffic load. While we do not claim that the proposed modifications to the CIM are nec­

essary or even desirable, END helps a designer evaluate the various alternatives and their

corresponding price/performance tradeoffs. Farther, this evaluation may be made early in

the design cycle, without actually building prototypes, and before it becomes too expensive

to make significant modifications. We demonstrate that the the code for the device driver

for the END model is almost identical to that of the device driver for the real network

adapter. Farther, we claim that the structure of software in the END model itself would

be very similar to that of the network adapter firmware. Both these result in reuse of code,

thereby mminifaing wasted effort in the development of the END model.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

QUALITY-OF-SERVICE ISSUES IN ADAPTER DESIGN

In Chapter 3, we demonstrated how real-time channels were implemented using commer­

cial, off-the-shelf, network components that did not provide any explicit support for QoS.

This was achieved by limiting the number of packets queued on the network adapter, and

performing deadline-based link scheduling on the host. Other than link scheduling, the host

operating system had little QoS support, and simply assigned a higher priority to protocol

processing for real-time traffic, than for best-effort traffic.

While the admission control and scheduling policies described so far mainly consider link

scheduling as a critical requirement to guarantee deadlines, further analysis [74] revealed

that other system overhead could also critically affect system throughput and admissibility

of real-time traffic. However, in Chapter 3, even though we did not explicitly consider this

overhead, the relatively simple CPU scheduling was quite effective. The reason this worked

was that the network link was much slower than the CPU, ensuring that the protocol pro­

cessing completed before the previous packet transmission, thus making more sophisticated

CPU scheduling irrelevant. However, with faster networks, the CPU overhead can become

comparable to the network delays, or even become the bottleneck. In such a case, it is

necessary that not only the link, but the CPU resources as well, are consumed in an order

determined by the QoS requirements of individual applications.

In this chapter, we briefly describe a QoS-sensitive communication subsystem that in­

tegrates CPU and link scheduling [74,75]. We consider various configurations of the host

operating system, networks and network adapters with differing levels of QoS support. Us­

ing END, we examine how delivered QoS is affected by the level of QoS support provided

by the different components of the end-host communication subsystem. We consider two

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U m i —

(a) Source host (b) Destination host

Figure 6.1: Q oS-sensitive communication architecture.

different network models: a point-to-point network and a token-based shared network. Our

evaluation results show that adapter QoS support is essential for shared networks while

host QoS support may suffice for point-to-point networks, if the number of packets queued

on the adapter can be bounded.

The rest of this chapter is organized as follows. Section 6.1 presents a summary of our

QoS-sensitive communication software architecture implemented on HARTS [75]. Given

this architecture, and the QoS issues in adapter design discussed in Section 4.2, Section 6.2

outlines our research goals and approach. Sections 6.3 and 6.4 present results from perfor­

mance evaluation for point-to-point networks and shared networks, respectively, and also

compare and contrast the two. Finally, Section 6.5 concludes this chapter.

6.1 A QoS-sensitive Communication Subsystem

Figure 6.1 provides an overview of our QoS-sensitive communication architecture (see

[75] for details). This architecture provides a process-per-channel model of protocol pro­

cessing adapted from the process-per-message model provided by i-kernel. In this model, a

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

unique process, called a channel handler, is associated with each real-time channel to per­

form protocol processing for all messages generated on the channel. An important feature

of this architecture is that scheduling may be provided at two stages - CPU scheduling

for protocol processing, and link scheduling for packets queued at the network interface.

Considering transmission (Figure 6.1(a)), messages transmitted by applications are queued

at their channel handler’s message queue. The channel handler runs in an infinite loop (for

the lifetime of the channel), accepts these messages, performs protocol processing (includ­

ing packetization), and inserts the packets into a packet queue for its outgoing link. Before

a message is enqueued at its handler’s queue, the API may perform some traffic enforce­

ment, and assign the message a priority. The handler inherits this priority, and based on

the priority and the type of the message, the handler is assigned to the appropriate CPU

queue. Similarly, packets may be subject to further policing, and are assigned a priority

which determines their link queue. Reception is similar, but with events occurring in the re­

verse order. In this architecture, note that the policing, priority assignment, and scheduling

mechanisms for the CPU and the link queues may be configured independently.

In the implementation of real-time channels described in Chapter 3, policing and schedul­

ing support is provided for packets queued at the link. Policing of packets is performed by

assig n ing a logical arrival time and computing the corresponding packet deadlines, and using

a multi-class EDD scheduling algorithm based on these deadlines (Section 3.2). This helps

ensure that packets are transmitted in a QoS-sensitive order. This scheme is extended in

this QoS-sensitive communication architecture to ensure that all system resources, not just

link bandwidth, are consumed in a QoS-sensitive order. Channel handlers inherit message

deadlines, and are scheduled for execution using a similar multi-class EDD scheme. The

process scheduler is layered above the ar-kerael scheduler (which provides hxed-priority non-

preemptive scheduling with 32 priority levels). Since all channel handlers execute within

a single (kernel) address space, the preemption model employed for handler execution is

that of cooperative preemption. That is, the currently executing handler yields the CPU to

a waiting higher-priority handler after processing up to a certain (configurable) number of

packets (the preemption granularity). Besides bounding CPU access latency, this allows us

to study the influence of preemption granularity and overhead on channel admissibility [74].

Link scheduling decisions are made by calling a scheduling function either by the chan­

nel handler, or by the transmission-complete interrupt service routine (Option 1 in [74]).

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to support real-time communication, network adapters must provide a bounded,

predictable transmission time for a packet of a given size. Since network adapters are typ­

ically best-effort in nature, their designs are usually optimized for throughput and may

be unsuitable for real-time communication, even with a bounded and predictable packet

transmission time. Even when explicit support for real-time communication is provided,

on-board buffer space limitations may necessitate staging of outgoing traffic in host mem­

ory, for subsequent transfer to the adapter. To support real-time communication on these

adapters, link scheduling must be provided in software on the host processor. In our im­

plementation, packets created by channel handlers may be scheduled for transmission by a

non-preemptive multi-class EDD link scheduler, or, in case the adapter provides adequate

QoS support, may simply use FIFO scheduling.

The architecture above has been demonstrated to provide overload protection and fair­

ness, and maintain QoS guarantees [75]. Overload protection is provided by per channel

traffic enforcement, both for the CPU scheduling and link scheduling. It is also fair, since

early real-time traffic is delayed till its logical arrival time, and does not take away resources

from best-effort traffic. When combined with channel admission control [74], since the or­

der of CPU processing and link transmission is determined by message deadlines, this also

guarantees that all messages meet their deadlines.

6.2 Research Goals and Approach

In this chapter, we focus on some of the QoS issues highlighted in Section 4.2, namely,

the necessity and effectiveness of QoS support on the adapter, given various levels of QoS

support on the host. That is, we want to explore the need for, and the type of, QoS support

on the network adapter if the host provides each connection with its associated QoS for pro­

tocol processing. Our goals are to demonstrate that: (i) some form of adapter QoS support

improves performance, either by eliminating FIFO queuing (and hence, priority inversion)

on the network adapter, or by reducing host CPU load by offloading some functionality from

the host to the network adapter, or some combination of these factors; (ii) QoS support in

adapters interfacing to shared networks is necessary in order to keep link utilization high

and prevent QoS violations; and (iii) END-based device emulation provides a reasonably

accurate and rich framework to study these tradeoffs.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

Our approach is to evaluate different adapter configurations using END, with the QoS

support provided ranging from a single FIFO queue to a deadline-based priority queue.

For all these configurations, END implements suitably QoS-enhanced host-adapter and

adapter-network interfaces with shared packet buffers. The host QoS support we consider

is for real-time channels [63], in the form of QoS-sensitive protocol processing via deadline-

based CPU scheduling of channel handlers, as described in the previous section. In some

of the experiments, some of the CPU support may be relaxed. The workload used for the

evaluation comprises a mix of real-time channels, multiple channels generating traffic based

on MPEG traces [86], and best-effort traffic.

6.3 Point-to-point Network Model

Point-to-point networks such as switch-based and mesh-based topologies are characterized

by dedicated links between source and destination hosts such that a source host exercises

complete control over access to its attached link. There is no interference due to contention

from any other host. This implies that data transmission can begin on the link as soon as

the host generates a packet and submits it to the adapter. Even if the host sorts packets

in an order determined by their QoS requirements, there is potential for priority inversion

(i.e., an urgent packet arriving late is queued behind less urgent packets) if there is QoS-

insensitive queuing of packets on the network adapter. We use END to understand to what

extent such queuing or provision of QoS support affects the delivered QoS guarantees.

At one extreme, the host may treat the adapter as a black box, exercising complete

control over transmission order by initiating transmission of a packet only after the previous

one has completed. At the other extreme, the host does not limit the number of packets

it may queue on the adapter, and the adapter is responsible for data transmission order,

and sorts packets by a deadline supplied by the host. In between these two extremes, the

host exercises partial control over transmission order by sending a finite (small) number of

packets to the adapter for transmission. These packets are sorted by their deadlines before

being sent to the adapter, but, since the adapter transmits these packets in FIFO order, a

packet that arrives later, and with a tighter deadline, may suffer some priority inversion.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 .1 E xperim ental C onfiguration

Transmission is modeled as a two-step process - a DMA transfer from the host to

END followed by data transmission from END to the network medium. At any given

time, the “DMA transfer” and “network transmission” can occur simultaneously, but for

different packets (i.e., the network adapter has dual ported memory and dual buses to

permit such simultaneous operations). No more than one operation of each kind can occur

at a time, since each requires a shared resource like a system bus or network link. When

link scheduling is performed on END, the DMA transfers are ordered by packet deadlines

and the transmission is performed in FIFO order, i.e., the order of completion of DMA. If

link scheduling is performed on the host, END simply uses FIFO ordering.

We performed four sets of experiments, as shown in Table 6.1. Stage 1 represents DMA

of packets from host to adapter memory, and Stage 2 represents network transmission. Each

data point in the graphs corresponds to behavior measured over the transmission of over

30,000 packets. Experiments were repeated over several runs to confirm their validity, and

no significant differences were observed from one run to another. In the first experiment,

link scheduling is provided on the emulator, i.e., as soon as the host completes a packet’s

protocol processing, it issues a transmit command to END. In effect, the host does not

bound the maximum queue length on the emulator (in practical terms, it is bounded by

the relative speeds of the host and the “network” and by the buffer sizes on the emulator).

In the next three experiments, the host sorts the packets according to their deadlines, and

END transmits them in the order received. To bound potential priority inversion due to

FIFO queuing on END, the host limits the number of unacknowledged packets queued on

the emulator.

In these experiments, the DMA has a delay of 50 as/byte, and the network transmission

requires 40 as/byte. Since the worst case delay for any stage is 50 as/byte, given the overlap

of the two stages, we should expect the effective data transfer rate to correspond to a delay

of 50 as /byte, in addition to per packet overhead for queuing operations, network overhead,

interrupts etc. Note that similar experiments were performed for a large range of DMA and

network delays, and performance was determined largely by the greater of the two delays.

This is to be expected, since the slowest resource will always be the performance bottleneck.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experiment
Number

Link
Scheduling

Queuing Stages
(Type, Delay (ns/byte))

M ax. queue
length on

Stage 1 Stage 2 em ulator

1
On the
Emulator EDD, 50 FIFO, 40 __

2 On the FIFO, 50 FIFO, 40 2
3 Host FIFO, 50 FIFO, 40 3
4 FIFO, 50 FIFO, 40 6

Table 6.1: Experim ental configurations and param eters

6 .3 .2 E valuation W orkload

Table 6.2 lists the test workload comprising of traffic carried on a set of real-time channels

specified by their maximum message size, Smax, and the minimum interarrival time between

messages, /mtn. The long-term average data rate does not exceed Rmax (= Smaxflm.in),

but short-term bursts of up to Bmax messages may occur. The real-time channels were

established using the analysis and techniques presented in [74]. Using EDD scheduling for

protocol processing (with packets between preemption set to 4) and EDD link scheduling,

all real-time traffic is guaranteed to meet its deadline. All messages are 60 KB, and the

maximum packet size is configured as 4 KB. Traffic on channels 0 and 1 is bursty, while

channel 2 has strictly periodic real-time (RX) traffic. Channel 3 carries best-effort (BE)

traffic and its offered load varies from about 235 KB/s to 7500 KB/s. We study the

performance of the BE and RT traffic as a function of offered BE load.

6 .3 .3 B est-effort Perform ance

Figure 6.2 shows the throughput and mean delays achieved by BE Channel 3 as a function

of the offered load. Since the link stage is faster than the DMA stage, we would expect link

transmission time to be completely hidden by the DMA time of the next packet. Considering

DMA and network delays, and additional per packet overhead (Section 4.4.1), the network

capacity is limited to approximately 15 MB/s. We are unable to achieve this level because

the host CPU cannot generate data at that rate, i.e., the CPU is the bottleneck. For each

experiment, the delivered throughput rises with the offered load and eventually saturates,

at which point the average packet latencies rise rapidly. Saturation occurs significantly

later when link scheduling is performed on END (Experiment 1). Since protocol processing

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Channel T ype
Traffic Specification

Deadline
(ms)

S-max
(KB)

Bm ax
(messages)

Rmax
(K B /s)

1mm
H

0 real-time (RT) 60 12 1200 50 40
1 real-time (RT) 60 8 2000 30 25
2 real-time (RT) 60 1 2000 30 30
3 best-effort (BE) 60 10 variable - -

Table 6.2: W orkload used for evaluating th e po in t-to-poin t network.

is expensive, and the CPU is the bottleneck in this configuration, reducing the CPU load

simply by moving some of the scheduling operations to END has significant benefits since,

in this case, END performs relatively simple functions and has spare CPU capacity. Since

admission control for the real time channels included the cost of link scheduling, using

adapter based QoS reduces the CPU requirements and increases the admissibility of real­

time traffic. Having a faster CPU on the host may not be adequate because applications

will always compete with communication processing for the CPU. Since real-time traffic

has a higher priority, it continues to meet its QoS requirements independent of the BE load

(Figure 6.3). Hence, BE traffic only gets the remaining portion of the processing capacity,

and gets substantially affected by any reduction in it.

In Experiments 2-4, link scheduling is performed on the host and the maximum number

of packets queued on the adapter is bounded to control priority inversion. To use the

link capacity effectively, we need to ensure that at any given time, there are at least two

packets being processed concurrently on the adapter, one in the DMA phase, and another

in the transmission phase. Since END is not configured for more than two phases, there is

no further gain in concurrency or performance in Experiments 3 and 4. There is a small

increase in queue lengths on END, and hence, slightly higher delays. The graphs show a

small decline in performance at this point.

The main conclusions from these experiments are that performance may be optimized by

knowledge of the internal structure of the network adapter, and that the host operating sys­

tem must configure the number of packets it may pipeline on the adapter in order to exploit

the greatest possible concurrency between the host and the different stages of processing on

the adapter. Any further pipelining of packets will not increase concurrency, and hence has

little or no benefit, and may actually reduce system throughput while exacerbating priority

inversion.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1000

1000 OavotfBEtoatfQW

S tl -

as

a
5000 6000 7000 60C

09erodBEiood{KEU6)
1000

(a) BE Throughput (b) BE Delay

Figure 6.2: Best-effort perform ance.

6 .3 .4 R eal-tim e Perform ance

Figure 6.3 shows the mean laxity and jitter in laxity of a real-time channel. In all the

experiments, all real-time deadlines were met. Delay jitter was slightly lower (about 1 ms)

for Experiment 1 compared to Experiments 2-4 since the link scheduling decisions were

made closer to the transmission time, thereby reducing the chance of priority inversion.

In Experiments 2-4, not only does message latency increase as we increase the maximum

queue lengths on the adapter, but the jitter increases as well. However, at the configured

speed, a 4 KB packet gets transmitted in about 160 (is (plus the overhead), which is small

compared to the end-to-end delay bound and some other communication costs, and hence

any increase in priority inversion is quite small.

6 .3 .5 D iscussion

The CPU could optimize BE performance by matching the transmission request pipelining

to the pipelining of different stages on the adapter. This worked very well in our example

since all packets were the same size. Performance would almost certainly decline in the

presence of bimodal traffic, with a mix of very small and maximum sized packets, since

successive packets may no longer have the maximum possible overlap as the relative delays

of different stages on the adapter would vary with the size of the packets they are processing.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I
ie

1000 3000 5000

f

o

(a) Mean, real-time laxity (b) Standard deviations of real-time laxity

Figure 6.3: Real-tim e performance.

It would be desirable to have more packets queued on the adapter to maximize the chances

of using all stages to the maximum extent.

One would expect that with deadlines computed on the host, and longer queues on the

adapter, we would see greater delay jitter for real-time data due to the increased possibility

of priority inversion. However, this did not happen for several reasons: (1) since the link

was dedicated to a single CPU, there was no queue build up and delay due to contention

for the link; (2) the CPU was not fast enough to build very long queues on the adapter; (3)

transm ission delay for an individual packet is small compared to its deadline, thus limiting

the extent of worst case priority inversion; (4) the number of connections was quite small,

reducing the chances of interference; and (5) all data in this experiment had maximum sized

packets, and similar periods and deadlines.

If the CPU were fast enough to build up queues on the adapter, it might be argued that

it derives no advantage from queuing packets on the adapter, and it could restrict queue

lengths to a small number, and still keep all stages of the adapter as busy as possible, while

exercising greater control over transmission order. On the other hand, if the CPU is slower

than the link, it becomes the bottleneck and thus will not be able to build up any queues

on the adapter. Either way, it would appear that the host can keep tight control over jitter

without any special support from the adapter.

However, in networks without dedicated links (i.e., with shared links as in Ethernets,

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

token bnses, token rings, FDDI, etc.) mnltiple hosts contend for access to the link. While

the link is unavailable, the host can build long queues of packets on the network adapter,

which get drained in bursts whenever the adapter gets access to the network. In the next

section, we consider an adapter for such a network, and determine the nature and efficacy

of its QoS support.

6.4 Shared Network Model

Various schemes have been proposed to support real-time traffic over shared networks such

as FDDI [26] and Ethernet [100]. Typically, such schemes involve passing a token between

the nodes on the network, and permitting the host holding the token to transmit data.

The duration the host may hold the token (called the Token Holding Time (TH T)) is a

measure of the bandwidth made available to the host each time it receives the token. If

each host bounds its THT, it is possible to bound the time it takes for the token to rotate

through the network (called the Target Token Rotation Time (TTRT)). Since each node

has a m inim um bandwidth allocation and a worst case latency to receive that bandwidth,

it may use this to provide real-time guarantees to data connections originating on it.

D eterm in ing suitable values for TTRT and THT requires consideration of overhead

and QoS constraints. For each cycle of the token, the overhead includes network latency

(determined by the length of the network), token passing overhead, and the number of

nodes. We need to ensure that this overhead is not too great a proportion of the TTRT.

However, we cannot make TTRT too large either, since that would restrict the ability to

meet tight deadlines. Once TTRT is established, individual nodes may reserve bandwidth

for themselves by setting their value of THT.

As noted a t the end of the previous section, when the network link is not available

continuously, the host can build long queues of packets on the network adapter, which get

drained in bursts whenever the adapter gets access to the network. In such a situation, even

with careful scheduling of packets on the host, there is potential for significant queuing delays

and priority inversion if the adapter does not provide any QoS support. In this section,

we describe how END is used to model one such network, and the efficacy of different

approaches to solve this problem.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 .4 .1 N etw ork M odel

We use END to implement a model of a token-based shared network. This model is simi­

lar to the point-to-point model, but we need to add a token passing scheme, and different

scheduling strategies. A token is created and its behavior is specified in terms of its THT

and TTRT, whose values are specified at initialization time. An outline of the token pass­

ing and management is presented in Figure 6.4. On initialization, the token is released

immediately (ReleaseTokenO), and a request is issued to the time device that the func­

tion TokenArriveO be invoked after a delay of T T R T -T H T . TokenArriveO sets a flag

indicating that the token is at this node, requests that TokenExpireO be invoked after a

delay of THT, and then invokes the function Transmit C). As long as the token is at the

node, Transmit () transmits data, if available. If there is no data to transmit, it releases

the token immediately so that the next node in the sequence may get a chance to trans­

mit data. When TokenExpireO gets invoked (after a delay of THT), if it finds that the

token has already been released (because there was no data to transmit), it does nothing.

Otherwise, if the link is idle, it releases the token immediately, else it clears the token flag,

so that Transm it() will release the token as soon as it completes transmitting the current

packet. If the token expires during packet transmission, it is held till the completion of that

packet transmission, i.e., it is held for a little longer than THT. This problem is overcome

by noting the excess time the token was held, and reducing the THT by that amount the
THT1next time the token arrives. In this way, each node is guaranteed a fraction y jjg y of the

link bandwidth, and does not have to wait any longer than T T R T to receive the token.

6 .4 .2 E xp erim en tal C onfiguration

We used the above model of END to study the behavior of a mix of peak rate real-time

traffic, MPEG traces and best effort traffic on a shared 1 Gigabit per second network. Values

of TT R T and THT are chosen such that each node receives 10% of the link capacity, i.e.,

100 Mbps or 12.5 MB/s. As noted in Section 4.4.2, due to the system overhead, we cannot

use the full capacity made available to us. For example, the transmission time for a 4 KB

packet is about 32 fis, but with an overhead of 48 fis per packet, only 40% of the link

bandwidth is available to us. Since many MPEG frames are much smaller than 4 KB,

the utilization is even lower. Further, the host CPU is also too slow to generate data fast

99

Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.

No while(NetworkToken)
if there is data
transmit it

else
Releaseroken()

t e l a u d o k n O

NetworkToken = FALSE
DelayRequest(TokenArrive, TTRT-THT)

TokulirlTtO
NetworkToken - TRUE
DelayRequest(TokenExpire, THT)
Transmitt)

TokenExpire()
if (NetworkToken = FALSE)
do nothing

else
NetworkToken = FALSE
if(link is idle)
ReleaseToken ()

Figure 6.4: Token management on END.

enough to saturate this link. To ameliorate this problem, we used a CPU speedup factor

(Csf , see Section 4.4.2) of 12 to represent the behavior of a processor with a Speclnt92

rating of about 147.6 (roughly comparable to a 133 MHz Pentium, which has a Speclnt92

rating of 155). In this configuration, we found that we were able to utilize just over 89%

of the network capacity for purely best-effort traffic (compare this with 88.9% predicted by

Equations 4.1 and 4.2), and a little less for a mix of real-time and best-effort traffic (around

83% for our test workload). Also, most of our experiments used the optimizations described

in Section 4.4.1 that performed queue operations concurrently with the transmissions. For

some experiments, we contrast these results with those of the unoptimized system (marked

no opt in the graphs).

The host configuration is identical to that described in Section 6.1. As in Section 6.3, the

number of packets between preemption was set to 4, and the maximum packet size was 4 KB.

However, instead of reserving capacity for real-time traffic using real-time channels and

providing absolute deadline guarantees, we simply reserved bandwidth for each connection

and ensured that it was provided its data rate using the run-time mechanisms described

in [75]. For various configurations of the host and emulator, we evaluated the deadline

compliance of the various schemes.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Channel
Numbers

Channel
type

Bandwidth
Reservation (%)

Utilization
(%)

0-5 Real time 35.2 35.2
6 Best effort - residual

7-74 MPEG 64.8 36.8

Table 6.3: Workload used for evaluating the shared network.

6 .4 .3 E va lu ation W orkload

Table 6.3 shows a summary of the test workload and observed throughput behavior. We

used three distinct types of data sources: a best-effort channel with a variable load, 6

synthetic real-time channels, and 68 MPEG channels. We first reserved capacity for the

real-time channels, and then reserved the remaining capacity for MPEG channels based

on traces from 6 sources (Table 6.4). The traffic parameters for both the MPEG and the

real-time channels were specified using the same parameters as were used for the real-time

channels in Table 6.2. The synthetic real-time channels generate data at their peak rate.

Since the MPEG sources are extremely bursty, we over-reserved capacity for them, to the

extent of one standard deviation more than their mean data rate. This implies that even

though we reserved 100% of the link (of which only 83% is usable) there was still unused

bandwidth, which was absorbed by the best effort channel.

Many MPEG sources and their properties are described in detail in [86]. The frames are

384x288 pixels in a cycle of 12 with the frame sequence IBBPBBPBBPBB. We selected six

different traces, two each of movies, sporting events, and television news and talk shows,

and have summarized their properties in Table 6.4. We generated multiple instances of each

channel, and generated frames of the sizes given in the traces every 33 ms. To avoid problems

of correlations of frame sizes with multiple instances of the same trace, we staggered the

starting time within the trace by one minute for each instance. Since all the MPEG channels

have the same period, we randomized their starting times to reduce the probability of all of

them generating frames for t r ansm ission in rapid succession (when we did not randomize the

starting times, we observed significantly worse behavior for those channels that consistently

generated data just after two others).

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Name Type Frame Size (bits)
mifi max mean std. dev.

1 dino movie 880 119632 13078 14749
2 lambs movie 288 134224 7311 11195
3 atp sports 280 190856 21889 20408
4 race sports 4192 202416 30749 21167
5 news news/talk 16 194416 20664 25992
6 talk news/talk 2080 106768 14536 16519

Table 6.4: Traffic characterization o f sample M PEG traces from [86].

6 .4 .4 H ost and E m ulator Q oS Support

The host generates data from the 75 channels as described above and issues transmit com­

mands to the emulator. When the emulator does not have the network token, it performs

any necessary DMA and interface operations. However, when the token arrives at the net­

work, it dedicates its entire capacity to transmit any packets queued on it. With a TTRT

of 10 m s and a THT of 1 ms, we observed that during the THT, between 26 and 65 packets

were transmitted, depending on the sizes of the packets queued on the adapter. Clearly, in

order to ensure that the link is kept busy at all times, the emulator must ensure that it has

at least 65 packets queued for transmission. Without appropriate support, there is potential

for plenty of interference between packets of different real-time connections, and between

real-time and best-effort packets resulting in priority inversion and missed deadlines.

As in Section 6.3, the host used QoS-sensitive CPU scheduling for all protocol process­

ing. We studied three different approaches for determining the network transmission order,

identified in the graphs in Figure 6.5 using the labels below:

1. Emulator QoS (EQoS): The host issues transmit commands to the emulator as soon as

it completes protocol processing. The emulator enqueues BE packets in a FIFO queue,

and RT packets in a priority heap sorted by their deadline, and performs transfers

giving higher priority to RT packets. On completion of DMA, the RT packets are

inserted into another priority queue sorted by their deadlines, and the BE packets are

inserted into another FIFO queue, and transmitted using the same priorities as for the

DMA stage. EQoS, no opt is a similar configuration, but without the optimizations

described in Section 4.4.1.

2. Host QoS, 1 queue (HQoSl): The host determines the transmission order, and the

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

emulator uses a single FIFO for all the BE and RT packets (separate FIFOs for the

DMA and transmission).

3. Host QoS, 2 queues (HQoS2): The host determines the transmission order, and the

emulator uses two FIFOs for each operation to separate the BE and RT traffic. RT

packets are given higher priority than BE packets (separate FIFOs for the DMA and

transmission).

The performance of these configurations is summarized in Figure 6.5. Figure 6.5(a)

shows the throughput for real-time traffic as the offered BE load rises. In the case of EQoS

and HQoS2, the RT throughput is not affected by the increasing BE load since RT packets

always have a higher priority than BE packets. However, in the case of HQoSl, BE and RT

traffic share the same queues on the emulator, and the RT throughput starts to decline as

the system saturates. Expectedly, Figure 6.5(b) shows the opposite behavior for BE traffic.

As the system saturates, the BE throughput saturates for EQoS and HQoS2, but continues

to rise for HQoSl. Figure 6.5(c) shows the total system throughput in all three cases.

While the differences are small, they are readily apparent. The reason the throughput is

higher for HQoSl than EQoS is that the overhead for heap operations is 53 [is, compared

to 48 [is for FIFO operations. We also see that using the unoptimized emulator {EQoS,

no opt), throughputs are significantly lower. Since the system capacity is lower than the

offered RT load, the BE throughput drops to zero for this set of experiments.

Figure 6.5(d) provides an overview of the delivered QoS, as measured by deadline misses

for R.T packets and drops of BE packets. For EQoS, over 99% of the packets meet their

deadlines, and HQoS2 is almost as good, with just 3-4% of the packets missing their

deadlines. Note that the number of deadline misses does not increase with increasing BE

load. This is because of the isolation provided by having two queues on the adapter.

All deadline misses are due to priority inversion caused by interference between packets of

different RT channels. This effect gets magnified by having traffic with different periods and

deadlines. Repeating these experiments with only MPEG streams for RT traffic reduced the

deadline misses to almost zero, since now all packets have identical periods and deadlines.

For HQoSl, RT packets are not protected from BE packets, and as the BE load rises,

almost all the RT packets miss their deadlines. This happened because we did not bound

the queue lengths at all on the emulator. As in Section 6.3, we now bounded the pipeline

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a -----a EQoS
o --------g E Q oS . n o a(X
□ ------- a H Q oSl
o -------o H O oS2

1900 1000
O flond B n M t a t load (K Btac)

(a) Real-time throughput

0 — 0 HQ 06I
0 — 0 HQ0S2

- - o

500

800 1000 1800
Offered Best-eflort bo d (KB/iec)

2000

(b) Best-effort throughput

[10000

A-— a E Q oS
0— 0 E O o S » n o o p t
□ — - a H Q oSl
o — o HQ0S2

7000
800

Offered B M H a n W Q O fee)

(c) Total throughput

a ------ a EQoS-RTfets
a --------a H O oSi-R Tbio
O ------O HOoS2-RTItte
A ------ a EQoS-BEdrop
■ ------ • HQoSI-BEdrop
• ----- • HQoS2>B£drop

■ 2000

500

=̂Sl:1000 1800 2000 »
Offered Ben effert b e d (KBfeoc)

500

(d) QoS summary

Figure 6.5: Perform ance summaries: Each data point corresponds to ap­
proxim ately 26,000 RT packets. The BE load varies.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

depth to 60, and the RT performance improved dramatically for HQoSl, with only 15%

of the packets missing deadlines even under heavy BE load. To farther improve the RT

performance, we reduced the TTRT and THT to 1 ms and 0.1 ms, respectively, and fixed

the pipeline depth at 6. This reduced the maximum priority inversion to the order of a

few (1-3) milliseconds, rather than a few tens of milliseconds seen earlier, and a negligible

proportion (0.07%) of real-time packets missed their deadlines. However, due to increased

token processing overhead, the total system throughput declined slightly from 10.3 MB/s

to 9.8 MB/s. Though this looks like a simple and attractive solution, reducing the values

of TTRT and THT to very low levels may not be practical in real systems.

All the trends observed for the aggregate of real-time traffic were observed in individual

channels as well. Both MPEG and other real-time channels had similar laxities and delay

jitters. However, the tighter the deadline of a real-time channel, the more likely it was to

have packets missing deadlines.

6.4 .5 E ffect o f C P U C apacity and Sch ed u lin g on QoS

The above results demonstrate that queuing delays and priority inversion on the adapter

impact provision of QoS more in shared networks than in point-to-point networks. While

reasonable QoS behavior was observed simply by isolating RT from BE traffic, even better

results were observed by isolating individual channels from one another via deadline-based

scheduling of packets on the network adapter. The three queuing policies that we considered

differ significantly in their level of complexity, cost (i.e., overhead), and performance (i.e.,

ability to maintain QoS).

While comparing these alternatives, we note that their efficacy is strongly influenced

by the QoS support provided on the host [75]. Since the host sends (generates) packets

in order of their deadlines (due to QoS-sensitive CPU scheduling of channel handlers),

reordering of RT packets is required only for urgent packets that arrive subsequently. Since,

in our workload, the traffic was largely periodic with similar deadlines, simply isolating RT

traffic from BE (the HQoS2 configuration) was very effective. HQoSl also performed

reasonably well once maximum pipeline depth was enforced, since, even though RT traffic

is not completely isolated from it, the impact of BE traffic is limited. Further, the host also

policed and shaped traffic to ensure that no RT connection used more than the capacity

reserved, at the expense of other RT traffic. In the absence of such policing and shaping, even

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c£C■5
9000

2500

2000

1800

tooo

500

°0 500 tooo IOOO 2000 2900
o n m d BootoHM load (KUoe)

(a) Csf = 12

. ------------ 1------------ 1------------------- 1

— v / -

A ------ A H M C M .B 1 F
a ------ a FtaaCW .TW oQ
□ -------0 H T R I .H J F
■-------a A T PH. T a n a
0—0 U n r a g u h M .E 0 F
• ------• U m iQ d — H .T aoQ

-

— — -----

- -

4 ------4 n o a C ttT o o Q
O— - O H TPH , E O F

•000

•00•00 1200 1800
1C)

(b) Caf = 7

Figure 6.6: QoS summaries: no link scheduling on the host. Each data point
corresponds to approxim ately 26,000 RT packets. T he BE load
varies.

a single misbehaving RT connection conld cause other RT packets to miss their deadlines.

Under such circumstances, even EQoS would not be adequate unless it incorporates policing

and shaping functions. If the host could work ahead in a work-conserving fashion (i.e.,

generate packets not necessarily in strict order of deadlines), we would expect EQoS to be

much more effective than HQoS2.

In order to evaluate the impact of CPU support, additional experiments were performed

with reduced OS support for QoS. In all these experiments, link scheduling was removed

from the host, but execution order of channel handlers continued to be determined by packet

deadlines. The policing of channel handlers was configured in the following three ways:

1. FlowCtrli The OS provides all policing and scheduling as in the EQoS configuration.

Early RT packets are not processed until their conformance times.

2. R T Pri: Protocol processing is enabled for early real-time traffic, and has a higher

priority than BE traffic. Cooperative preemption remains enabled.

3. Unregulated: Cooperative preemption is disabled. A RT channel handler now drains

the entire queue before allowing other channels to run.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In each experiment, an OS configuration was selected on the host, and either EDF

or two queues (TwoQ) on the emulator, as shown in Figure 6.6. The experiments were

repeated for two different host speeds, Caj of 12 and 7. Note that FlowCtrl, EDF is the

same as EQoS. hi Figure 6.6(a), with FlowCtrl, TwoQ, the behavior is the same as that

of HQoS2 in Figure 6.5(d), i.e., host CPU scheduling seems to be adequate, and removal

of link scheduling on the host does not seem to matter. W ith reduced OS policing (RT Pri

and Unregulated) and EDF on the emulator, the number of late RT packets is negligible.

This is due to the fact that the RT handlers have a greater priority than BE handlers,

and this improved performance comes at the cost of BE throughput. However, with just

TwoQ on the emulator, the number of RT packets that are late increases significantly. Still,

just approximately 15% of the packets are late, which is much better performance than we

expected, based on our earlier experience [75]. The reason that QoS does not suffer very

much even with relatively weak CPU support is that the CPU is not a bottleneck, i.e., there

is enough CPU capacity to complete all the protocol processing on time.

To verify that CPU scheduling is needed, we repeated these experiments with a slower

CPU configuration, Csf = 7. Now, CPU capacity is barely adequate to process all the

packets, and we begin to see significant packet losses. Figure 6.6 shows that when both the

CPU and the link are close to saturation, packet transmission order becomes much more

important, and both host and adapter support are essential for QoS. With FlowCtrl, EDF,

only 10% of the RT packets are dropped or miss their deadlines, while as many as 80% of the

RT packets are late or dropped when we reduce the policing on the host even slightly. With a

slower CPU (Csf = 6), almost all packets missed their deadlines, regardless of the CPU and

adapter policies, and with a faster CPU (Ca/ = 8), performance was similar to that seen in

Figure 6.6(a). This demonstrates that the adapter and CPU scheduling policies are critical

as the system approaches saturation. We observed similar results with Caj = 12, by running

a high priority application that reduced the CPU capacity available for protocol processing.

Hence, for any kind of QoS guarantees, it is important that there be adequate link and

CPU capacity for communication, and suitable scheduling and policing be employed. We

note, further, that there were no ill-behaved real-time connections (those that generate

data in excess of their reserved capacity) in our experiments, and CPU policing is even

more important to protect well-behaved connections from such ill-behaved connections.

From the above discussion, it is clear that the nature of adapter QoS support required

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

depends not only on application requirements and network configuration, but also on the

extent to which QoS support is provided on the host. While adapter QoS support helps

provide better QoS compliance, as in the case of point-to-point networks, it also has a

secondary benefit of reducing the load on the host, allowing the latter greater capacity for

other tasks. Our approach also illustrates the flexibility END offers in exploring the most

effective partitioning of QoS support between the host and the adapter, taking into account

the actual cost-performance tradeoffs on the target platform.

6.5 Conclusions

In this chapter, we explored QoS support in network adapters for provision of QoS guaran­

tees. This study was performed on END, an emulated network device that we designed and

implemented to explore various QoS issues in network adapter design. END is capable of

representing the functionality of a network adapter at different levels of detail, with varying

degrees of support for QoS guarantees. Since it interfaces with a real host, END oper­

ates in real-time and can be quite effective in evaluating network adapter and host-adapter

interface designs early in the design cycle. Moreover, unlike simulation or mathematical

modeling, END provides the ability to accurately account for low-level system overhead

and concurrency, while retaining the flexibility of simulation and avoiding the complexity

of analytic models. The hardware/software codesign facilitated by END can help design

network adapters that integrate well with the host architecture and operating system.

Using END, we evaluated the necessity and effectiveness of QoS support on the adapter,

given sufficient QoS support on the host, for two distinct network access models, namely,

point-to-point networks and shared networks. Using a mix of synthetic and realistic real­

time traffic, we demonstrated that providing QoS support on the adapter using priority-

based packet ordering improves performance relative to the case when such ordering is

determined on the host. The efficacy of the QoS support provided is not as apparent for

point-to-point networks when the network bandwidth matches or exceeds host processing

capacity, since the host is unable to generate sufficient traffic to cause appreciable queuing on

the adapter. If the host processing capacity is significantly higher than network bandwidth,

the bottleneck will shift to the adapter, resulting in queue buildup, and hence the need for

QoS on the adapter. This effect is readily observed in the case of shared networks, where a

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

given host may utilize only a fraction of the available network bandwidth. For a fixed host

processing capacity, the effective network bandwidth is thus significantly lower, necessitating

provision of QoS-sensitive queuing and packet selection policies on the adapter.

END has provided us with a flexible and accurate environment to study adapter design

tradeoffs while capturing the effects of subtle interactions between the host communication

software and the network adapter. Accomplishing the same via simulation or modeling

would have been significantly more difficult, if not impossible, without an extensive analysis

of the host architecture, the operating system, the network adapter and system overhead.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

ELIMINATING RECEIVE LIVELOCK

The previous three chapters presented the overall architecture of END and demonstrated

how it could be used to model the data transmission and reception behavior of a real

network adapter. It was also used to explore QoS issues in network transmission for different

operating system configurations and network architectures. Since a host can completely

regulate data transmission, but does not have similar control over incoming data, the issues

surrounding data reception can be quite different from those pertaining to data transmission.

This chapter shows how END may be used to study the impact of reception issues on

network adapter design. In particular, it describes how receive livelock occurs under heavy

network load, and the kind of modifications to the operating system and network interface

that prevent its occurrence. Some of these solutions have been implemented and evaluated

using END. We propose a novel scheme that makes simple modifications to the network

adapter and its device driver and completely avoids receive livelock without requiring any

changes in the operating system kernel. This solution is general enough to simultaneously

handle multiple network interfaces and guarantee m inim um bandwidths to each interface

even under extreme overload conditions.

The rest of this chapter is organized as follows. Section 7.1 describes the receive livelock

problem and how it affects system throughput. Section 7.2 shows how the host and adapter

interrupt and scheduling policies may be modified to avoid receive livelock. It describes

various solutions to receive livelock, and how they are implemented using END. Section 7.3

proposes an analytic framework to predict the efficacy of these solutions when there is one

network interface, and presents experimental results that confirm the analysis. Section 7.4

discusses how these solutions would need to be modified when the host interfaces to mul-

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tiple interrupt sources, and demonstrates how the adapter-based scheme remains effective

without any modifications. Section 7.5 concludes this chapter.

7.1 Receive Livelock

A brief description of the receive livelock problem (summarized from [80,83]) is presented

below. Packets received at a host must either be forwarded to other hosts (as in the case

of a router), or to application programs where they are consumed. The delivered system

throughput is a measure of the rate a t which such packets are processed successfully. Fig­

ure 7.1 (adapted from [83]) demonstrates the possible behaviors of delivered throughput

versus offered input load. Ideally, every packet received is processed, no matter what the

packet arrival rate is. However, all practical systems have a finite capacity, and cannot re­

ceive and process packets beyond a maximum rate (determined by their processing capacity,

and the cost of receiving and processing the packet), called the Maximum Loss-Free Receive

Rate (M.C.TTVR) [83]. In poorly-designed communication subsystems, under network input

overload, a host can be swamped with receiving arriving packets to the extent that the ef­

fective system throughput falls to zero. Such a situation, where a host has not crashed but

is unable to perform useful functions such as processing received packets or running other

ready processes, is known as receive livelock. Similarly, under receive livelock, a router may

be unable to forward packets to the outgoing interface, resulting in transmit starvation [83].

The primary reason for receive livelock is that most traditional network adapters inter­

rupt the attached host for every arriving packet, and these hardware interrupts are handled

at a very high priority, e.g., higher than software interrupts (in BSD Unix-derived systems)

or input threads that process the packet further up the protocol stack. At lower packet

arrival rates, this design allows the host to consume a packet alm o s t immediately on ar­

rival, freeing up (limited) buffer space on the adapter for future packets. However, this

implies that the host must (at least) accept and process all incoming packets, regardless of

whether the host has sufficient processing capacity available to process them completely.

As a consequence, the host is driven into saturation with no useful work being performed;

the arriving packets get dropped due to queue overflows and other CPU-bound tasks do

not get to run due to the high priority assigned to packet arrival interrupts.

The problem of avoiding receive livelock has been addressed at length in [80]. The

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ideal
o>

MLFRR acceptable

livelock

Offered Load
Figure 7.1: Range o f possible behaviors o f delivered throughput as a func­

tion o f offered load.

authors’ goals in designing packet reception mechanisms and policies were to guarantee

acceptable system throughput, reasonable latency and jitter, fair allocation of resources,

and overall system stability. In particular, they used a combination of techniques to care­

fully schedule packet processing to avoid receive livelock and keep the system throughput

near the MCTWR. even under high loads. These techniques include limiting interrupt ar­

rival rates to shed overload, polling the transmit and receive interfaces to provide fairness,

processing received packets to completion, and explicitly regulating CPU usage for packet

processing. These techniques constitute significant kernel enhancements and may also need

to be customized based on the organization of the operating system, protocol stack and

communicating applications. In addition to the goals presented above, it is also desirable

that any techniques must be as general as possible and must minimize implementation

complexity.

A general solution is one that is applicable to a variety of operating systems and network

interfaces, and must not depend on the target application. It must also be easily adaptable

or parameterizable if the system configuration or goals are changed. For instance, the

mechanisms and policies must be able to accommodate additional network interfaces, or

optimize a particular aspect of performance (e.g., latency, jitter or throughput). Minimizing

implementation complexity implies that modifications to the operating system must be

minimized and localized and, as far as possible, applications should not be changed at all.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Further, reception mechanisms must be made as efficient as possible to lower the probability

of livelock and to increase the MCTTVR..

Another solution to receive livelock is lazy receiver processing (LRP) [39], which has

been implemented on Unix platforms with UDP/IP and TCP/IP based protocol stacks. As

seen in the discussion above, receive livelock occurs since reception protocol processing is

performed by the OS kernel at a very high priority. In the LRP paradigm, the network

interface demultiplexes incoming packets to their destination socket queue (as opposed to

a shared IP queue). In case of queue overflow, packets are simply discarded. Protocol

processing for arriving packets is performed at the priority of the receiving application,

rather than at interrupt priority. Now, the currently executing process is not interrupted,

and protocol processing occurs only when the receiving application requests data and is

scheduled to run. Since there are no unnecessary interrupts, and excess incoming data

is discarded without consuming host CPU resources, receive livelock is avoided. LRP is

also fair, since the CPU is allocated to various tasks based on the priorities computed by

the scheduler. Note that this solution assumes that the network adapter has adequate

intelligence to demultiplex packets directly to their destination sockets, i.e., it must have

a general-purpose processor, and the adapter firmware must be designed to specifically

interface with the host processor’s protocol stack. If that is not possible, a similar, but less

effective, solution maybe implemented, in software. In this case, the packets are assigned to

their socket queues in the receive interrupt service routine (ISR), and the rest of the protocol

processing proceeds as before. This solution is not entirely free of receive livelock, since,

under conditions of overload, the host must do some processing (handling the interrupt, and

demultiplexing the packet) even if the packet is discarded in case of socket queue overflow.

However, since the wasted CPU capacity is much less than in the case where the entire

protocol processing is performed in the ISR, the probability of receive livelock is greatly

reduced.

Note that prevention of receive livelock is facilitated by allowing the host to exercise

control over the packet arrival interrupts. This can be done either by eliminating device

interrupts entirely in favor of polling [99], or using a hybrid scheme [80] to limit the input

arrival rate. Pure polling imposes significant CPU overhead and tends to exacerbate the

average latencies seen by incoming packets, with the additional disadvantage that it is

difficult to choose the proper polling frequency. In the hybrid scheme of [80], interrupts

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are used only to initiate polling and are enabled only when the polling thread has finished

handling all the packets pending at an interface. Inpat handling is disabled (i.e., interrupts

are turned off and the polling thread not run) if the total CPU cycles spent processing

packets in the current polling period exceeds a certain threshold.

However, there are several problems with this hybrid scheme. Once the polling thread

starts to run, it handles all packets pending at an interface (each time servicing only quota

number of packets), until there are no pending packets or the time spent processing packets

exceeds the threshold. Under a burst of incoming packets, it is likely that the polling thread

may continue running until the capacity threshold is reached for that polling period. As

the authors of [80] also point out, this introduces additional latency for applications that

require received packets to be queued for processing by another thread. Farther, there is

also the question of selecting the polling timeout to re-enable interrupts on the attached

interface.

The above problems can be solved by extending the host-adapter interface to allow

the host to either directly specify the rate at which the adapter can generate interrupts

(based on the CPU bandwidth the host is willing to allocate to receive packets), or provide

the adapter with appropriate information so that it can adjust its interrupt rate to the

host’s load. In the following sections, we describe our implementations of variants of the

schemes described in the literature [80,83,99]. We then propose and implement a novel

adapter-based solution to avoid receive livelock and demonstrate how it achieves our goals

of performance, generality and simplicity. We realize these extensions using END, and

perform experiments to evaluate the relative efficacy of the various host- and adapter-

based schemes. In addition to demonstrating the flexibility provided by END to explore

design changes in a realistic setting, these experiments also illustrate that input traffic can

be generated locally on END without requiring another machine and a sufficiently fast

attached network.

7.2 Avoiding Receive Livelock

In this section, we present an overview of our implementation of the reception subsystem

and describe the modifications to the host and adapter scheduling and interrupt policies

required to avoid or reduce the effects of receive livelock.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Phase Network Adapter Device Driver
Initialization store packet in buffer

initialize data structures
send read — ►
interrupt host — ► initialize data structures

«— complete host handshake
«— send read ack

DMA <— send address
DMA packet to host — ►
send read end — ►
interrupt host — ► demux packet to protocol stack

Figure 7.2: Host—adapter interaction for packet reception.

7 .2 .1 Im p lem en ta tion O verview

The sequence of events following the arrival of a packet from the network are shown in

Figure 7.2. The same sequence of events is captured in an END model shown in Figure 7.3.

This is similar to, but simpler than, the CIM model described in Figures 5.2 and 5.41.

When a message arrives at the adapter, it buffers the packet, initializes some data struc­

tures, and notifies the host with a read command. The host then initializes its data struc­

tures and allocates buffers to receive the packet and responds with a read ack command.

This completes the initialization handshake by giving the adapter the host’s transaction

identifier for this message. The host then sends an address command with the packets

destination address. When the packet has been copied to the host, the adapter notifies it

with a re a d end command. Each packet reception involves four com m an d s - two from the

adapter to the host (possibly with an interrupt with each command) and two from the host

to the adapter.

Several changes were made to the host and to END to address the receive livelock

problem. Though all the implementations and experiments were performed using END, in

the rest o f this discussion, we shall refer to adapters, unless we wish to highlight a feature

of END that might not be necessary/possible to implement on a real adapter. The host-

adapter device driver was extended to add a control interface (see Table 7.1). While the

control interface uses the same command interface as the regular device commands (like

read, re ad ack, etc.), these commands are not directly involved in receiving or transmitting

data. All the commands are issued by the host to the adapter, and cause some action to

1 The END model and device driver for this adapter were derived from the END model for the CIM.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S tag e , Trigger Stage,-_do Stage,-_done
Initialization message arrival

from network
Initialize d a ta structures
send re ad
interrupt host

re a d a c k complete host handshake
DMA a d d re ss enqueue packet for DMA

S ta r t D aaZ ferO {
dequeue segment;
async delay for DMA}

send re a d end
in terrupt host
S ta rtD n aX fe rO

Figure 7.3: Outline o f END m odel for reception for a generic adapter.

b e p e rfo rm ed by END.

T h e Traffic Specification Commands a re used to m ake END c re a te a n d d estroy sy n th e tic

incom in g traffic s tream s w ith specified p aram ete rs (d is tr ib u tio n o f a rriv a l ra te and packet

s izes). T h ese arrival p a tte rn s m a y e ith e r b e co m p u ted a t ru n - tim e usin g pseudo-random

n u m b e r g en e ra to rs , o r by rep lay in g p re-com puted ran d o m processes. T h e advan tage o f

u sin g p re -com puted arriv a l p a t te rn s is th a t i t reduces th e co m p u ta tio n a l load on END.

H ow ever, th is app ro ach m ay b e lim ited by th e availab ility o f m em o ry o n END to s to re

th e se tra c e s , and also does n o t easily allow fo r ran d o m ev en ts th a t d ep en d on system

b eh a v io r t h a t can th e d e te rm in ed o n ly a t ru n tim e. W hen a n incom ing traffic s trea m is

c re a te d , END associates w ith i t a h an d le r function th a t g en e ra te s th e specified ty p e o f

m essage . I t th e n passes on th e a rriv a l d is trib u tio n p a ram ete rs to th e tim e device. T h e tim e

dev ice com putes th e packet a rr iv a l tim es, an d notifies END o f each “arriv a l” . END th en

tr ig g e rs th e hand ler fu n c tio n w hich c rea tes th e incom ing m essage, a n d th en proceeds in a

m a n n e r iden tical to th e arriv a l o f a re a l m essage. CTRL-CREATE-PERIODIC crea tes a periodic

p ac k e t a rriv a l process, a n d CTRL-CLEAR-PERIODIC te rm in a tes th e process. T h e Adapter

Mode Control Commands d e te rm in e th e in te rru p t policy across th e h o s t-a d a p te r in terface,

i .e ., w hen , if a t all, th e a d a p te r m ay issue in te rru p ts to th e h o s t. T h e various policies and

th e ir respective com m ands a re d iscussed in deta il below .

7.2.2 Host-based Policies

In h o st-b ased policies, th e h o s t o p e ra tin g system is m odified to e x e rt explicit contro l over

th e a d a p te r in te rru p ts an d th e h o s t so ftw are is m odified to carefu lly schedule th e sequence o f

o p e ra tio n s involved in netw ork recep tio n . T h e techniques p re sen ted h ere a re p a rtly derived

h o rn so lu tions proposed in [80,99].

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T ra ff ic Specification Commands

CTRLj CREATE-PERIODIC C rea te a p e rio d ic p ack e t g enera tion process

CTRL-CLEAR-PERIODIC T erm in a te a p e rio d ic p ack et g enera tion process

Adapter M ode Control Commands

CTRL-MODE-POLL Poll m o d e - a d a p te r do es n o t in te rru p t

CTRLJfODE-IHTR In te r ru p t m o d e (d e fau lt)

CTRL_HOST-IHTR_CTRL-OM H ost exp licitly en ab les a n d disables a d a p te r in te r ru p ts

CTRL-HOST-IHTR-CTRL-OFF A d a p te r decides w h en to in te rru p t (defau lt)

CTRL-BACKOFF-ENABLE E nable a d a p te r in te r ru p t backoff u n d e r overload

CTRLJBACKOFF-DISABLE D isable a d a p te r in te rru p t backoff

Table 7.1: Adapter control commands.

Interrupt-based Reception: T his is th e d e fau lt o p e ra tin g system kernel m o d e w h ere th e

a d a p te r in te r ru p ts th e h o st w ith every co m m an d (CTRLJfODE-IHTR). T hese in te r ru p ts a re

high p rio rity a n d p re em p t all o th e r h o s t p rocessing . C learly, in th is m ode, th e k ern e l is

susceptib le to receive livelock. In th e in itia l im p lem en ta tio n , m essages trav e rsed th e en tire

p ro toco l s ta c k in th e r e a d en d in te rru p t serv ice ro u tin e , an d would g e t d ro p p e d if th e

receiving ap p lica tio n h a d to o m uch o f a backlog a n d ra n o u t o f buffers, th e re b y w astin g

C P U cap acity b y p rocessing m essages th a t could n o t be consum ed by th e ap p lica tio n . A n

early drop po licy checks fo r availability o f ap p lica tio n buffers before accep tin g a pack et.

If a buffer is n o t available , i t sends a n e r ro r n o tifica tio n (ERR-NOBUFS) in th e r e a d a c k

com m and so t h a t th e a d a p te r d rops th e p ack et w ith o u t w asting any m ore h o s t cap ac ity .

Continuous Polling: In th is schem e, th e h o s t in s tru c ts th e a d a p te r n o t to in te r ru p t it

(CTRLJfODE-POLL), a n d continuously polls th e a d a p te r in terface fo r incom ing p ac k e ts . A

variable, p o l l_ q u o ta , determ ines th e m ax im u m n u m b er o f m essages th a t m ay b e accep ted

from th e in te rface consecutively before th e h o s t s ta r t s processing th e packets . W h ile th is

schem e wifi p e rfec tly ba lance th e incom ing p ack et r a te a n d th e packet processing r a te , i t is

no t a realistic o p tio n fo r m o st OSs since th is im plies th a t th e OS knows a ll sy stem ac tiv itie s

a priori an d s ta tic a lly schedules th em . H ow ever, i t is useful for co m p ara tiv e ev a lu a tio n as

a baseline s tra te g y since i t should prov ide o p tim a l perfo rm ance, an d all o th e r schem es m ay

be com pared w ith th is to m easure th e ir efficacy.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tim ed Polling: This is another polling scheme and the adapter does not interrupt the

host (CTRL-MODE-POLL). However, the host does not poll the adapter interface continuously,

but a polling process does so periodically, typically triggered by a dock interrupt. A timed

polling scheme is specified by the period of the dock interrupt and the value of poll-quota.

If the polling process executes for the entire period, it misses the next interval, thus ensuring

that it cannot absorb all of the CPU capacity on an extended basis. It shares some of the

advantages of continuous polling since it can regulate the maximum amount of time spent

receiving messages. Further, it can use its normal scheduler to handle all other CPU tasks

ensuring greater flexibility. However, sdection of the period and poll quota can be difficult,

and significantly impacts performance. A larger period can make the packet processing

latency large, and making the period too small may impose an unacceptably high interrupt

processing overhead. Further, the quota and period in effect fix the maximum CPU capacity

that may be used for receiving packets. H this bound is too low, under low application load,

and high data reception rates, the host will not be able to increase the reception rate even

if there is spare CPU capadty.

Explicit In te rru p t M anagem ent: In this scheme, the host explidtly controls when the

adapter may interrupt it (CTRL-HOST-IHTR_CTRL_OH). The adapter interrupts the host with

its first command, and then disables the host interrupts. The host then polls the interface

for up to p o lljq u o ta commands, and then allows the receiving application to execute. The

host re-enables interrupts either after a delay of In te rv a l milliseconds, or when the host

becomes idle, whichever comes first. With a lightly-loaded system, this has the effect of

enabling the interrupts as soon as possible, making it responsive. With a more heavily-

loaded system, the dday is likdy to complete before the host can re-enable interrupts,

resulting in behavior sim ilar to docked interrupts.

7 .2 .3 A d a p te r -b a se d Policies

Intelligent (programmable) adapters may also be used hdp avoid receive livdock. In

LRP [39], the adapter could determine the destination of a packet, and since it had access

to socket queues on the host, it could drop packets without interrupting the host. Similarly,

in DEFTA [24], the device driver ensures that the packets are dropped in the adapter when

the host is starved of resources to receive subsequent packets. The adapter may be tightly

integrated with the host OS and protocol stack, as in LRP, but, in general, in contrast to

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

host-based policies, it is possible to implement systems with little or no modification of the

OS when the adapter is responsible for avoiding receive livelock. The host needs to provide

some guidelines (either at initialization time, or during ran time) limiting the maximum

rate a t which the adapter is permitted to interrupt the host. If the host lim it s the number

of packets or commands processed in each ISR, it will bonnd the maximum CPU utilization

due to packet reception, thereby ensuring that packet processing and other applications can

progress. Conceptually, this is very similar to timed polling, but with the CPU utilization

for packet reception limited by the adapter, rather than the host. If the adapter’s maxi­

mum interrupt rate is fixed, it suffers the same shortcomings as timed polling, discussed in

the previous section. We now propose an adaptive scheme that addresses these limitations

while providing a solution that results in m in im a l changes to the OS.

A dap tive Backoff: In this scheme, the host provides some feedback to the adapter of its

current load, and the adapter decides its interrupt rate based on this information. Under

low loads, this scheme behaves like the normal interrupt-based adapter, i.e., it interrupts

the host on every command. When the host indicates to the adapter that its load is

increasing (and there is a backlog in the processing of incoming data or executing other

applications), the adapter reduces its interrupt rate. As the load on the host decreases,

the adapter increases its interrupt rate until it reverts to the normal interrupt mode. The

CTRL _BACKOFF_ENABLE command has four parameters: minimum backoff period, maximum

backoff period, backoff factor and restore factor. The first time the host indicates overload,

the adapter waits for at least the minimum backoff period before interrupting again. If the

adapter receives further indication of overload, it increases the backoff period by the backoff

factor, a real number greater than 1. In no case does it allow the backoff factor to exceed

the maximum backoff period. Each time the host indicates a lower load, the adapter reduces

the backoff period by the restore factor, a real number less than 1. When the backoff period

falls below the m inim um backoff period, the adapter reverts to the normal interrupt mode.

This scheme is similar to the algorithms for setting the window size for congestion control

in TCP to the extent that it adapts the interrupt rate in response to overload. However,

there are many differences, like the absence of acknowledgments and retransmissions and

the fine grain of time, that make it quite distinct.

The parameters of CTRL-BACKOFF-EHABLE may be selected based on performance require­

ments. The m inim um backoff period sets an upper bound on the CPU capacity used for

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

handling receive interrupts from that interface. The maximum backoff period determines

the worst case latency for the host to respond to the interface. The backoff and restore

factors bias an interface towards the maximum and minimum backoff periods, respectively.

A large backoff factor ensures that the interface sheds load rapidly due to overload, and a

small restore factor ensures that the interface reduces latency quickly as the offered load

declines. As we will show in Section 7.4, the maximum backoff period may be used in con­

junction with the interrupt quota to divide the hosts capacity amongst multiple interfaces

in a fair manner.

While the discussion above lays out the basic principles and mechanisms of the adaptive

backoff scheme, it does not specify how “low load” or “overload” is defined. This can be

done in various ways. In general, the load of the system may be measured in terms of the

progress of the host’s applications — if they do not receive enough of the CPU capacity to

complete their tasks (including processing incoming packets), the host could be considered

to be overloaded. Our measure of load was simply the buffer utilization - if the host runs out

of buffers to receive packets, clearly, the receiving application is not progressing fast enough

to process and free buffers. In our implementation, there are 128 receive buffers, and the

host sends a backoff indication when the buffer availability drops below 25%. This value was

chosen empirically by lowering the threshold until the host stopped dropping packets. This

depends on the number of available buffers, and the maximum packet arrival and processing

rate, and would need to be tuned for other platforms. The main requirements were that

the host could absorb temporary bursts of packets and avoid wasting resources. If too few

packets are permitted to be queued on the host, packets may be dropped unnecessarily on

the adapter, and if too many packets are queued before making the adapter back off, there

could be buffer overruns on the host. In addition, as soon as the host signals overload, it

exits the receive ISR, even if there are pending commands, and allows the application to be

scheduled.

7.3 Evaluation

We now propose an analytic framework to evaluate the various schemes proposed in the last

section, and compare our experimental results with the analytic predictions. Experiments

were performed for each of the configurations described in Section 7.2. END generates

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Csto context switch time 20 fts
Ccm cache miss penalty (worst case) 90 fts
Cintr interrupt overhead 28 fts
Cri receive processing time 400 fts
Cpp packet processing time

“Load = 1”
“Load = 1000”

73 fts
347 fts

A packet arrival rate variable
V packet processing rate variable
Q maximum ISR. quota variable
1 clock interrupt interval variable

Table 7.2: Im portant system param eters.

packets arriving periodically at rates ranging from 1000 to 5500 packets per second. Each,

arriving packet is “processed” by a test application and then discarded. This application

simply performs a dummy computation, either just increment the count of packets pro­

cessed, or additionally, execute an empty loop with 1000 iterations. These applications are

designated as “Load = 1" and “Load = 1000”, respectively. Figure 7.4 shows the perfor­

mance of both configurations, and all the remaining experiments were performed only with

the application “Load = 1000”. In each experiment, the number of packets processed is

measured, as well as the mean and standard deviations of the delay from the time of arrival

of the packet till it is processed and discarded.

7 .3 .1 A n alysis of R eceive P rocessin g M echanism s

Table 7.2 shows the measured values of important parameters of the reception subsystem

on HARTS. When the host receives a packet, it takes Cr{ time units to handle the reception

protocol processing, andCpp time units for the application to process the packet. In addition,

depending on the scheme used, there could be other costs like the overhead for interrupts,

context switches and cache misses. While parameters like Cw , Can, Cintr are determined by

the platform, Cri is determined by the protocol stack and Cpp depends on the application

processing the incoming data.

7 .3 .2 Interrupt-based R ecep tion

As described in Section 7.2.1, each incoming packet generates two interrupts from the

adapter. Ignoring cache behavior, the cost of processing each packet is approximately

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-a
Bv

1000

.1 4 0 0

1200

1000

8 0 0

000

4 0 0

200

nwMBfli arrival rata (msgs/sec)

Figure 7.4: Interrupt based packet reception behavior.

2 x Cintr + Cri + Cpp- Hence, the maximum rate at which the system can accept packets is

given by:

M C T n n = i V c ^ U ; + c „ (7-l)

As the arrival rate of packets rises, more and more of the capacity is used simply to handle

packet reception, and only the residual capacity is used to process packets, as shown below:

-p _ I — -A. X (2 X Cintr ~F Cri) ^ ^
Cpp

Further, it may be noted that livelock will set in when packets can no longer be processed,

i.e., when V = 0, which happens when A = 1/(2 x C,-ntr + Crt).

This behavior is shown in Figure 7.4. With loads 1 and 1000, the M CFlVRs are

about 1881 and 1242 packets/second, respectively, and livelock sets in when the arrival rate

exceeds 2183 packets/second. Note that at livelock, no packets are being processed at all,

and hence, the MCTTVTl is independent of the value of Cpp. With the early drop policy,

if, on receiving a read command, the host has no buffers, it tells the adapter to drop the

packet, avoiding the cost of the read end command, and of executing the receive protocol

stack. While this helps delay the onset of livelock, it does not prevent it, and neither does

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Interrupt Load = 1000

’1800

1000

,1400

1200

1000

000

000

400

200

meooage arrival rale (msgs/sec)

Figure 7.5: Continuous polling based packet reception behavior.

it raise the value of MCF1ZJL This is similar to what was observed using the early discard

policy in [39].

7 .3 .3 C ontinuous P o llin g

By polling the network interfaces (Instead of using interrupts), the OS can explicitly schedule

all activities (reception processing, packet processing and other applications), and thereby

control their CPU utilization. It is also possible to trade off some capacity with delay

jitter by varying the quota of the maximum number of adapter commands processed in

each iteration (3). At Q = 1, the delay per packet is very periodic, whereas increasing

Q increases the system capacity by reducing the number of context switches, as well as

potentially improving cache behavior, as estimated below:

M C F nV - ’ (7'3)

This implies that MCTTVR. varies between 1303 and 1334 packets per second as Q is

increased from 1 to 8. The experimental observations in Figure 7.5 show values of 1294 to

1447 packets per second. While the values agree very closely to the theoretical predictions

at lower values of Q, the observed behavior is much better for higher values. This is

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.2400

1400

1200

1000

000
600 a4f04>4f,̂ 14f10"0—<
400

200

• — • m m m . L o a d -1 0 0 0
a a Q u o ta -1
D O QUOU- 2
o — o Q uota-3
+ ------ 1- Q uota-4
■ ------ ■ O io ie « 6
x x Q u o tt-S

o»oo-a«-o-o—»-o—e— o— *--o
I - \

□ Q Q t n » ^ - o - Q - e - o - - » - e — a — -o - — a -------a

_l. o. _l_ _l_ _l_
1000 1500 2000 2S00 3000 3600 4000 4600 5000 5600 0000

m anage atdval tato (m agatac)

(a) 1 = 1 ms (b) I = 2 m s

Figure 7.6: Timed polling based packet reception behavior.

primarily because we do not estimate the increase in CPU capacity due to improvement in

cache behavior. Further, as expected, continuous polling completely eliminates the receive

livelock condition.

7 .3 .4 T im ed P olling

In timed polling, a periodic timer interrupt every I time units triggers a polling process

that handles up to Q commands. This represents the maximum capacity that may be used

for reception processing in any such interval. Since this bounds the CPU capacity used by

interrupts, it can also guarantee livelock-free behavior. Equation 7.4 below represents its

behavior:

1 O 1 — ^intrjH'iw
MCTnn = m in(- x - > (?■<)

In this scheme, each second there are 1 /J interrupts, and since each packet requires two

commands, no more than 1/1 x Q f2 packets may be received each second. Farther, for

each interrupt, capacity is used for the interrupt overhead and a context switch, leaving the

residual capacity for reception and packet processing and other applications.

Figure 7.6 shows the timed polling packet-reception behavior for intervals of 1 ms and

2 ms, i.e., 1000 and 500 interrupts per second, respectively. At lower values of Q (1 and 2

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

’• Load *1000

i * 2.3

1400

1000

000

400

200

1000 1500 2000 3000
i a n M r d i (M g « l ic)

(a) X = 1 ms

• ----- • MMTict Load >1000

□------□ Quota- 2
0 — 0 Quota- 3

.1400

400

200

i 4000 4600 SQ00 5500 VX
meoaaoa anfval rato (magrtec)

1000 1900

(b) I = 10 ms

Figure 7.7: Explicit interrupt management o f packet reception behavior.

for X = 1 ms, and 1-5 for I = 2 ms), the CPU capacity is not fully utilized, and only a

small number of packets can be processed (whatever the arrival rate) and the MUTTVR, is

determined by the first term of Equation 7.4, as confirmed in the figure. For larger values

of Q, the second term should determine the MCX'R.'R., yielding values of about 1274 and

1306 packets per second for X of 1 ms and 2 ms, respectively. However, this is not exactly

what we observe. One reason is that as Q increases, the CPU misses some of the timer

interrupts and hence avoids some of the context switches and possibly also improves the

cache behavior, resulting in better than expected throughput. However, when I = 1 ms

and Q = 4, and when 1 = 2 ms and Q = 8, we see that throughput actually declines. This

happens because the CPU frequently just misses the triggering of the timed polling process,

and remains idle for the rest of the period, resulting in wasted capacity. This behavior is

due to the relationship between the clock interrupt interval, the packet arrival rate and the

cost of the various CPU operations, and in general, is hard to predict.

7.3.5 Explicit Interrupt Management

The explicit interrupt management is a hybrid scheme that adapts itself to the system load.

It is similar to timed polling in that it processes Q commands, ensuring that other processes

also get to run, and hence avoids receive livelock. However, when the CPU is otherwise idle,

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• -----• Interrupt Loads 1000 -
a ----- a max backoff = 10ms
□------□ max backoff=20ms
o — o max backoff= 30ms

V2000

1000
1600

1200

1000

BOO

BOO

400

200

messaga arrival rate (mags/sac)

Figure 7.8: A daptive backoff based packet reception behavior — backoff rate
= 1.5, restore rate = 0 .8 .

it enables interrupts, and thus uses all available capacity. Due to its increased complexity,

it can have slightly higher overhead, bat, as shown in Figure 7.7, provides a fairly stable

throughput. Moreover, it does not suffer low throughput on an otherwise idle system, as in

the case of timed polling (Figure 7.6).

7.3.6 Adaptive Backoff

In adaptive backoff, the adapter continuously adapts its interrupt rate based on the hosts

load indications. This ensures that it can keep the host continuously busy, and never

overrun it. We performed experiments with a wide range of parameters, and found that the

throughput always adapted to provide the M.CTTVR, (Figure 7.8). hi fact, the only time

there was even a small amount of wasted capacity was when the maximum backoff was large

(30 ms), and the backoff rate was large (2.0) and the recovery rate was slow (0.9), creating

the situation where the host had drained its queue before the adapter’s next interrupt. In

addition, the overhead is relatively small, and the AACFTVR. of over 1500 packets per second

was the highest we observed for any scheme.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 .7 D iscussion

In Section 7.1, the goals of designing packet reception mechanisms and policies were iden­

tified to be to guarantee acceptable system throughput, reasonable latency and jitter, fair

allocation of resources, and overall system stability [80]. Further, we required that these

techniques be as general as possible and must minimize implementation complexity.

Host-based schemes are often very sensitive to parameter settings and the specific

scheduling paradigm. Even with a single source of interrupts, they have to be debugged

carefully and tuned for stability of performance. While this might be acceptable for special-

purpose systems like the routers described in [80], a more general approach is desirable.

Adaptive backoff performs as well as, if not better than, the host-based solutions on

all the performance criteria. While such a scheme does require some minor changes to the

adapter firmware, changes to the host OS are m inim al. All it requires is that the host have

some measure of overload that it conveys to the adapter, and leaves the rest up to the

adapter. This would typically involve minor modifications of the device driver, and the OS

scheduler can remain unchanged.

Other than the purely interrupt-based OS, all the other schemes met the requirements

of throughput, latency, jitter and stability. In fact, it is also possible to balance needs for

throughput and jitter, by varying the polling or interrupt processing quota. Fairness will be

discussed in Section 7.4, where we consider multiple network interfaces (or other sources of

interrupts). The host-based solutions have the advantage of being purely software changes.

The mechanisms described in Section 7.2.2 were implemented without directly modifying

the OS scheduler, but by setting process priorities appropriately, and using cooperative

preemption and controlling interrupts. This works on our x-kemel-based platform because

it runs entirely in kernel mode, and the kernel threads are not preemptable. Further,

all executing processes are known in advance, making it possible to schedule them in a

controlled manner. Of these solutions, only timed polling is quite general, since all it

requires is a periodic interrupt that triggers packet reception. The rest of the solutions are

not particularly general. Each has to be hand-crafted to solve the problem at hand, and

would need modifications based on any changes in the application mix.

A more general purpose OS (like Unix) would require complex changes to the OS sched­

uler, and other parts of the kernel, to meet the demands of the different executing tasks.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, the adaptive backoff solution would work well on other platforms since it simply

regulates the receive interrupt rate based on the progress of the processes that consume

received packets, and consequently make available buffers to receive more data. Hi the next

section, we demonstrate how adaptive backoff may also be used to regulate multiple network

interfaces, and divide CPU resources fairly amongst them.

7.4 M ultiple Interrupt Sources

Balancing the needs of multiple network interfaces further complicates implementation of

livelock-free kernels. Hi such a case, not only must the kernel be livelock-free, but the host

capacity must be divided amongst multiple network interfaces in a fair manner. Fairness

implies that each interface is guaranteed a pre-specified, minimum portion of the host’s

capacity. Hi addition, it is desirable that any capacity that is not used by one interface is

available to the other interfaces.

7.4.1 Host-based Solutions

Some of the host-based configurations for handling incoming data can be adapted to handle

multiple network interfaces. Any interrupt-based kernel will continue to be susceptible to

receive livelock. Explicit interrupt management is quite complicated with a single interface,

and gets even more complicated as the number of interfaces increase. In general, it is

impractical to turn interrupts on and off at the correct times when multiple interfaces are

involved.

The two polling-based solutions can be used to share capacity amongst different in­

terfaces, either by determining a polling sequence or by fixing the polling quota for each

interface in each polling cycle. The polling sequence or the quotas for each interface deter­

mine how reception capacity is divided amongst the various sources. However, it is not easy

to reallocate capacity from an idle interface to a busy one, since it would involve changing

the polling sequence or polling quotas on the fly. If different processes handle data from

different interfaces, the cost of rescheduling these processes may also be unacceptably high.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.4.2 Adapter-based Solutions

Adaptive backoff requires little or no changes to handle multiple interfaces. Under condi­

tions of overload, each interrupting source stays at its maximum backoff period, since the

arrival rate is greater than the processing rate, causing buffer overflows and hence, adapter

backoff. Note that each interface must have its own buffer pool, since, with a global buffer

pool, a relatively idle interface may back off since a busy interface could occupy all available

buffers. By setting a quota for the maximum number of packets the host may receive for

each interrupt, the capacity an interface may use on the host CPU is bounded, allowing

the OS to reserve any portion of its capacity for other applications. A minimum capacity

may be guaranteed for each interface by setting its backoff parameters appropriately. The

backoff parameters for different interfaces may be set independently, subject to total system

capacity. In addition, due to the backoff/restore mechanism, the backoff period gets mod­

ified continuously, ensuring that a busy device can readily absorb the spare capacity of a

temporarily idle device. Clearly, this is possible only if all the sources of interrupts comply

with the backoff policy; since the host provides no explicit protection, even one misbehaving

device can cause livelock.

Let each network interface be specified by the tuple < I min,Zmax, b ,r ,Q > , where I m,„

and Imax are the minimum and maximum interrupt intervals, respectively, 6 is the backoff

ratio, r is the restore ratio, and Q is the processing quota in each ISR. Even during overload,

an interface interrupts the host at least once every Z-max units, and can process up to Q

interface commands in each ISR. Since two commands are required to receive a packet, it

is guaranteed a packet reception rate of at least 2x^mai ’ 38 l°n£ 38 t îe total load offered

to the host is less than its capacity, i.e., the condition specified in Equation 7.5 below is

satisfied.

M C F K U > £ o v f " (7-5)
all interfaces Xwa*

Note that this condition is independent of the values of b and r, since, during overload, in

the steady state, each interface’s interrupt interval will remain at Zmax. Large values of

6 ensure that the interrupt rate falls rapidly during overload, and large values of r ensure

rapid restoration of the interrupt mode once the (transient) data burst ends.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

END 1 END 2HOST DEVICE

IMay

Figure 7.9: Em ulator system configuration w ith one host and tw o network
interfaces (VM E StopW atch is not show n).

7.4.3 Experim ental Evaluation

Figure 7.9 shows the emulator system configuration for experiments with two network in­

terfaces. The END device driver on the host node was modified to interact with multiple

interfaces. The END models only needed to be configured to interact with the appropriate

host node, and did not require any other modifications. Each network interface is allocated

128 reception buffers, with the backoff threshold set at 25% of the capacity. Messages

received from both interfaces are demultiplexed to the same application, which processes

them in FIFO order.

As seen in Section 7.3.6, using adaptive backoff, the M.LTTVR, is a little over 1500 pack­

ets/second. In each of the experiments below, END 2 generates traffic at a constant rate of

1000 packets/second, and END 1 gradually increases the rate at which it generates traffic,

starting at about 300 packets/second. 2m«n and Tmax are fixed at 1 m s and 20 ms, respec­

tively, for both END nodes, and Qi and Qi are modified to change the reservation levels.

The various experimental configurations are summarized in Table 7.3. In experiments 1-6,

a total of 1500 messages/second are reserved, and in experiments 7-12, only 1100 pack­

ets/second are reserved, allowing the balance to be used by either interface. In Figures 7.10

and 7.11, the graphs to the left have b = 2.00 and r = 0.99, and the corresponding graphs

to their right have the same load and quota parameters, but b = 1.50 and r = 0.80. Each

data point represents 10,000 packet receptions.

Figure 7.10 represents experiments 1-6, where the entire reception capacity of the host

(1500 packets/second) has been divided between the two interfaces. In each experiment,

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Expt.
Number

END 1 END 2
Quota

(pkts/sec)
b r Quota

(pkts/sec)
b r

1 300 2.00 0.99 1200 2.00 0.99
2 700 2.00 0.99 800 2.00 0.99
3 1000 2.00 0.99 500 2.00 0.99
4 300 1.50 0.80 1200 1.50 0.80
5 700 1.50 0.80 800 1.50 0.80
6 1000 1.50 0.80 500 1.50 0.80
7 100 2.00 0.99 1000 2.00 0.99
8 500 2.00 0.99 600 2.00 0.99
9 800 2.00 0.99 300 2.00 0.99
10 100 1.50 0.80 1000 1.50 0.80
11 500 1.50 0.80 600 1.50 0.80
12 800 1.50 0.80 300 1.50 0.80

Table 7.3: Experim ental configurations: Xmin — 1 ms, Jmax = 20 ms. N ote
that Quota =

since END 2 generates data at a constant rate of 1000 packets/second, and END 1 starts to

generate data a t 300 packets/second, initially, the offered load is less than the system capac­

ity, and hence there is no backoff. As END l ’s data rate increases, initially its throughput

rises linearly, till the M.CTTVR, is reached, and for some time beyond that as well. In fact,

as can be seen in Figures 7.10(a,b) (Experiments 1 and 4), it takes away significant amounts

of reserved capacity from END 2 for a small range of arrival rates. In Experiment 1, END 2

then recovers to 1000 packets/second, its packet generation rate (note that END 2’s quota

is greater than its arrival rate, and the unused capacity is used by END 1). This happens

because, at low loads for END 1, its buffers do not fill up, and hence, it does not back

off. At some point, the offered load from END 1 becomes high enough that it starts to

back off, and then the capacity gets shared roughly as predicted. Since the backoff interval

does not stay a t Tmax all the time, interfaces with lower reservations may get a larger share

since their mean interrupt interval may be somewhat less than I max- This is particularly

true when r is small (Figures 7.10(b,d,f)), since the interface rapidly reduces its interrupt

interval. In fact, for small values of r, capacity tends to get divided roughly equally between

the two interfaces. For r ss 1 (Figures 7.10(a,c,e)), once an interface reaches I max, it stays

close to that value until the offered load drops. In this case, capacity used by each interface

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is very close to the reserved value.

In contrast, Figure 7.11 represents experiments 7-12, where only part of the reception

capacity of the host (1100 packets/second) has been reserved for the two interfaces. In most

of these experiments, each interface gets its minimum reserved capacity (except when END 1

has not yet started to back off in experiments 7 and 10 (Figures 7.11(a,b)), for the same

reasons as explained for experiments 1 and 4). As before, when r « l (Figures 7.11(a,c,e)),

the excess capacity tends to be allocated roughly in proportion to the reservations of each

interface. When r is small (Figures 7.11(b,d,f)), the total capacity tends to be divided

roughly equally, typically, with a little more for the interface with the higher reservation.

7 .4 .4 D iscussion

The experiments described above show that the host’s capacity for receiving and processing

network data can be divided amongst multiple interfaces in a pre-specified proportion while

avoiding receive livelock. As in the case of a single interface, receive livelock was eliminated

for a wide range of parameters without compromising throughput or flexibility. However, the

exact proportion in which capacity was partitioned was very sensitive to various parameters,

in particular, the restore factor2, r.

Other factors would also affect the performance of this scheme. In this implementation,

there is a single thread processing data from both interfaces, and so, any received data is

handled at equal priority. However, if each interface (or even each network end-point (e.g.,

sockets)) had a distinct process associated with it, the load could be balanced better by

appropriate CPU scheduling. Buffer allocation could also be used to control the interface.

By allocating a fixed number of buffers for each interface based on its quota, and using a

global buffer pool for unallocated capacity, it would be easier to ensure that one interface

does not take more than its share of the CPU capacity. However, this also introduces new

problems, like how buffers may be temporarily reallocated to a busy interface when another

interface is idle. Analysis of these factors is, however, beyond the scope of the current work.

3 Experiments modifying the backoff factor, 6, showed that changing its value did not matter very much
since the interface reaches its maximum backoff interval, Tmal, quite rapidly, even for fairly small values of
b (unless 6 ~ 1).

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pr
oc

M
dn

g
ml

*
(m

*g
a/

M
a)

nw

ss
ag

*
pr

oc
es

sin
g

rat
a

(m
ag

</
M

c)

-.1600

[l400

Into

“i r01
 Quota 2

□-----□ TMougpputl
o —- o Tnraugpput2

1 1000

[aoof-

: OSO

400

200

_ ® p ^ o - o - e — e - — o — — e - — ■*

to '

EtaJ3-a—o—°—a —■Q--- ■o
£

1000 1800 2000 2800 3000 2800
IMNQO ORfMl tm * END 1 Qmagaftae)

(a) Experiment 1

— i------1---- 1—
 Quota t
 Quota 2

□----- a Throughput 1
o -----o Throughput 2

\ „ .®-o—o—e —_®<*<y —o*'

200

0
800 1000 1500 2000 2800 2000 2600

maaaaga arrival rata-ENOl(msgsfaac)

(b) Experiment 4

1600

14001-

1200

1000

800

600

400

200

0

I I ■ » I
 Quota 1
 Quota 2

□-----□ Throughput 1
o ----o Throughput 2

\

■ » » L _ L-----1
800 1000 1800 2000 2800 2000 2600

masaaga an** rata - END 1 (magafcac)

 Quota 2
□---- Q Throughput t
o ----o Throughputs

1000

800

600

200

1000 1800 2000 2800 2000 2600
moaaaga arrival rata * END l(magtfaac)

(c) Experiment 2 (d) Experiment 5

1600

 Quota 2
□----□ Throughput 1
o o Throughputs

1400

1000 & -o - e - - a - - -o

m/ 4>— (K..600

200

1500
maaaaga arrival rata - END i(magttac)

 Quota 2
□---- □ Throughput 1
o o Throughputs

1200

■00

200

1000 1500 2000 2500 2000 2S
maeaaga arrival rata-END l(magafe8c)

500

(e) Experiment 3 (f) Experiment 5

Figure 7.10: A daptive backoff w ith two sources: Total reservation = 1500
packets/second.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.1600

 Quota 2
a—-a Througtoutl
o — o Ttvougnpul2

'1400

1200

o - —
SBL1000

600

400

200

idmmqi antral mo - ENO l(pnagaftae)

(a) Experiment 7

>1200 -

 1 1 1--
— Quota 1
 Quota2

D a TTmugpputl
o — o Tfmu^pu2

<%>

* »■© s’ -~o O----

 B r

■*€> -
 B-

1000 1900 2000 2900 3000 3601
maaaaga antral ma-END Ifynagrtac)

(b) Experiment 10

.1600

 Quota 2
□— - a Thraugpputl
o -* -o T?raugpput2

'1400

51200

1000

* ̂ ^ - -O «.-■©—•d’— o—
600

400

200

1000 1900 2000900
irnm g* onto* rata - EN01 (magafrac)

 Quota 2
□— -Q Ttwougftwtl
O — o Throughput 2

'1400

1200

1000

600

400

900 1000 1900 2000
masaaga antral ma

3000 3600
masaaga antral ma - END i(magafeac)

(c) Experiment 8 (d) Experiment 11

t r
 Quota 1
 Quota 2

a-----□ Througpput i
o ----o TMougppul2

1000 1500 2000 2900 3000 3900
moaaage antoal rala - EN01 (magMac)

(e) Experiment 9

f 1400 -

t 1 r
 Quota 1
 Q U 0 U 2

□-----□ TTvougpput 1
o — o Througnput2

, aoo ——— — M S ',
-o--—-o-----e -

-

200

0 1000 1900 2000 2900 3000 3600
maaaaga antral ma - ENO t (magoflaac)

(f) Experiment 12

Figure 7.11: A daptive backoff w ith tw o sources: Total reservation = 1100
packets/second.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.5 Conclusions

This chapter studied the problem of receive livelock in interrupt driven operating systems.

It examined the causes of this problem, and analyzed and implemented various solutions

that eliminate receive livelock. Modifications to the host operating system include eliminat­

ing interrupts and using polling, or using hybrid solutions like polling triggered by periodic

interrupts, or explicitly controlling when the adapter can interrupt the host. While these

techniques do succeed in eliminating receive livelock, they require fairly complex modifi­

cations to the host operating system. In addition, they do not scale easily when multiple

interrupting sources are interfaced to the host.

We proposed and implemented a novel network-adapter-based technique, called adaptive

backoff, to avoid receive livelock. In this scheme, the host informs the adapter when its

load rises above a specified threshold, and the adapter backs off and reduces the rate at

which it interrupts the host. This scheme is very simple to implement since it does not

require any changes in the host OS (except that the device driver has to indicate when

it detects overload), and it performs as well as any of the host-based schemes. We also

demonstrate how this scheme could easily be extended to handle multiple interrupting

sources, and partition the host’s capacity amongst the multiple sources in a fair maimer.

We also showed how the backoff parameters determine the share of capacity available to

each interface, and how some of these parameters affect the fairness and stability of this

scheme under different load conditions.

All the adapter models in this chapter were implemented using END, once again demon­

strating its versatility in studying a wide variety of problems in communication subsystem

design in general, and network adapter design in particular.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8

CONCLUSIONS

Communication subsystems must be designed keeping in mind application requirements for

QoS in end-to-end communication. It is therefore necessary to design the components of the

communication subsystem such that the hardware and software components are integrated

well. This minimizes the overhead of the interactions between the host and the network

adapter, and between the network adapter and the network. Depending on the requirements

and capabilities of the platform, support for QoS must be suitably divided between the host

and the network adapter. Hardware/software codesign helps meet these goals by ensuring

that hardware is designed keeping software requirements in mind, rather than paying later

the cost of overcoming incompatibilities due to ad hoc design of hardware.

We now recapitulate the primary contributions of this dissertation, and suggest avenues

for future research.

8.1 Research Contributions

This dissertation examined various issues involved in designing and implementing communi­

cation subsystems with QoS requirements. In particular, it focused on the design of network

adapters, and their interface to end hosts. Network device emulation was proposed as a

useful technique for hardware/software codesign. Our network device emulation tool, END ,

is easy to implement and use, and can be highly accurate. Major contributions were made

in the following areas:

Im plem entation o f real-tim e communication services: We described the architecture

and implementation of a real-time communication subsystem, including the API, protocol

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

architecture for connection management, and run-time support for real-time channels. This

implementation used a commercial, best-effort network adapter to interface to a switched

network fabric. We demonstrated how such a network adapter must be characterized to be

able to adapt it for real-time communication, and explored the tradeoffs between best-effort

throughput and real-time performance.

N etw ork ad ap te r design: We presented the architecture and implementation of END,

a network adapter design tool. We examined how QoS is affected by the design of various

components of network adapters, and how such components may be designed and evaluated

using END. END is a highly versatile tool, and it can also be used to build arbitrary

network adapter models interfacing to different types of networks. It may be used to

evaluate the performance of com m u n ica tio n subsystems, considering either transmission or

reception in isolation, and also end-to-end, foil-duplex communication. A key advantage

of END is that it interfaces to real end hosts so that all experiments may be performed in

real time, in a realistic environment, with real host software (applications, communication

protocols, OS, etc.). However, this can limit END to only model systems that are similar

to the implementation platform. Some of these restrictions were overcome by implementing

techniques for modeling networks that are faster than the platform’s communication medium

and CPUs that are faster than END’s CPU.

M odeling netw ork adap ters using END'. A case study was performed by using END to

improve the design of a real network adapter, the Ancor VME CIM 250. We demonstrated

how END was used to build a representative model of the adapter. This model captured

both the functional interface of the adapter to the host, and also accurately modeled the

interactions of various architectural components of the adapter. This model had through­

put and latency behavior that was very similar to the real device. We identified some of

the performance bottlenecks due to the design of this adapter, and modified the model to

incorporate design improvements in the adapter architecture and host interface. For dif­

ferent configurations of the adapter (software modifications and/or additional hardware),

and different traffic patterns, the throughput of the modified adapter increased by 15-50%.

A designer may use these results to examine the price/performance tradeoffs of alternative

designs even before building a prototype network adapter.

The device driver that interfaced to the END model of the CIM was almost identical to

the device driver for the real CIM. We also claim that the structure of software in the END

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model of the CIM would be very similar to that of the real network adapter firmware. All

these factors demonstrate not only that END may be used to design and evaluate network

adapters before they are built, but also that a large part of the code used in building this

model may be reused for the final product, thereby ensuring that debugged and tested

code could be written even before the hardware was ready, minimizing wasted effort in the

development of the END model, and speeding up the design and production cycle.

QoS issues in ad ap te r design: END was used to build various models of network

adapters interfacing either to a point-to-point network, or to a shared network medium.

Various configurations of the host operating system, network adapter and networks were

studied to determine how they affected QoS. We demonstrated that for any continuously

available network medium, like in point-to-point networks, there is no need to build long

packet queues on the adapter, and the host can schedule network transmissions to help

provide QoS guarantees. On the other hand, in shared networks, the host has sporadic

access to the network and in order to maximize utilization of the network bandwidth, it

is necessary to buffer many packets on the network adapter, increasing the probability of

priority inversion for FIFO devices. For different levels of traffic policing and shaping in

the host OS, we studied various schemes to minimize the interference between the different

traffic streams and evaluated how effective they were in providing QoS guarantees for soft

real-time applications.

R eceive livelock: Certain issues in network interface design for data reception were also

studied. In particular, we addressed the problem of receive livelock and analyzed various

host and adapter based techniques to eliminate it. We proposed a novel adapter-based

solution, “adaptive backoff” , and demonstrated that it was at least as effective as host-

based solutions. In contrast to host-based solutions, adaptive backoff requires no changes

to the host OS, other than minor modifications in the device driver. In addition, this

solution is very general, and may be used in conjunction with any host scheduling policy.

We demonstrated how it was used to partition the host resources amongst multiple network

interfaces in a fair manner, and guaranteed each interface a minimum capacity during

reception overload. When an interface is temporarily idle, the resources it has reserved

are automatically made available to busy interfaces. Once again, all these studies were

performed using END.

To summarize, in this dissertation, we addressed various issues in the design of com-

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

munication subsystems for QoS. We not only proposed, implemented and analyzed specific

solutions, but also proposed and implemented useful design techniques and tools. In partic­

ular, we designed and implemented a network adapter design tool that uses device emulation

(END), and demonstrated the versatility of this tool by using it to (a) build a representative

model of an existing network adapter and improve its performance, (b) to study OS and

adapter based QoS for various network architectures, and (c) to study solutions to receive

livelock.

8.2 Future Work

This dissertation presented techniques for designing host communication subsystems, as

well as solutions to specific problems. We studied the design of communication subsystems

and identified how QoS may be provided for transmission of data. These techniques can be

extended to support QoS in data reception, including data-transfer optimizations, providing

early demultiplexing of messages, and supporting application-specific network interfaces.

END is a very general and versatile tool with potential for improvement. At present,

although. END has a well-defined structure that can accommodate various device config­

urations and significant code segments can be re-used from one model to the next, each

adapter model needs to be hand coded. It would be useful to develop a taxonomy for

various components of the communication subsystem, and use this to develop a language

and/or graphical interface. This may be used to configure network adapters, and build

their END models using automatic code generation tools and standard libraries for adapter

components, interrupt wrappers, schedulers, different types of queues, stochastic models for

traffic generation, etc. END can be adapted to emulate wide-area networks, and to study

the reliability of com m unica tio n protocols by using it to inject faults into the network data

stream. It may also be used to study other I/O devices like disks.

END has a well-defined, deterministic, interface with its network model. It could be

extended to incorporate models of networks that use statistical multiplexing (e.g., Ethernet),

and to capture the interactions between hosts connected by such a network. Such models

may be used to study the efficacy of schemes to provide probabilistic QoS guarantees in

these networks.

While END may be used to study various architectures for communication subsystems

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and predict their performance, this analysis should be combined with traditional hardware

design methodology to determine the feasibility and cost of actually implementing such an

architecture.

Adaptive backoff solved the receive livelock problem for multiple network interfaces.

However, in some configurations, and for some load patterns, it failed to provide each

network interface its reserved quota. It needs to be studied further to account for the

effects of other system parameters, such as buffer management, on resource reservation.

While all the proposed solutions for receive livelock were effective to various degrees,

they all simply discarded excess traffic. It is necessary to examine more sophisticated

schemes that discard excess traffic selectively, based on the data types and priorities. One

approach would be to attach tags to data packets that may be used to evaluate their relative

importance, both within a particular data stream, and across multiple data streams. This

would be necessary to provide QoS guarantees to selected high-priority applications even in

the presence of network overload. These schemes can be made to provide guaranteed service

to individual data streams by integrating the network interface management techniques with

host process scheduling.

All the issues discussed so far was in the context of communication-intensive hosts like

network servers. These paradigms should also be applied to other platforms, such as routers,

that need to deliver high-performance, highly reliable, network services.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[1] J. S. A in, P. B. Danzig, Z. Lin, and L. Yan, “Evaluation of TCP vegas: Emulation
and experiment,” in Proc. o f ACM SIGCOMM, pp. 185-195, October 1995.

[2] Fibre Channel Physical and Signalling Interface (FC-PH), American National Stan­
dards Institute, rev. 3.0 edition, June 1992.

[3] VME CIM 250 Reference/User’s Manual, ANCOR Communications, Inc., 1992.

[4] CXT 250 16 Port Sxoitch Installer’s/User’s Manual, ANCOR Communications, Inc.,
1993.

[5] D. P. Anderson, S. Y. Tzou, R. Wahbe, R. Govindan, and M. Andrews, “Support for
continuous media in the DASH system,” in Proc. Int’l Conf. on Distributed Computing
Systems, pp. 54-61, 1990.

[6] D. P. Anderson, “Metascheduling for continuous media,” ACM Trans. Computer Sys­
tems, vol. 11, no. 3, pp. 226-252, August 1993.

[7] D. P. Anderson, L. Delgrossi, and R. G. Herrtwich, “Structure and scheduling in real­
time protocol implementations,” Technical Report TR-90-021, International Com­
puter Science Institute, Berkeley, June 1990.

[8] D. P. Anderson, R. G. Herrtwich, and C. Schaefer, “SRP: A resource reservation pro­
tocol for guaranteed performance communication in the internet,” Technical Report
TR-90-006, International Computer Science Institute, Berkeley, February 1990.

[9] C. M. Aras, J. F. Kurose, D. S. Reeves, and H. Schulzrinne, “Real-time communication
in packet-switched networks,” Proceedings of the IEEE, vol. 82, no. 1, pp. 122-139,
January 1994.

[10] E. A. Araould, F. J. Bitz, E. C. Cooper, H. T. Hung, R. D. Sansom, and P. A.
Steenkiste, “The design of nectar: A network backplane for heterogeneous multi-
computers,” in Proc. Third Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, pp. 205-216, Boston, April 1989, ACM.

[11] A. Banerjea, D. Ferrari, B. Mah, M. Moran, D. C. Verma, and H. Zhang, “The Tenet
real-time protocol suite: Design, implementation, and experiences,” Technical Report
TR-94-059, International Computer Science Institute, Berkeley, CA, November 1994.

[12] A. Banerjea, E. W. Knightly, F. L. Templin, and H. Zhang, “Experiments with the
Tenet real-time protocol suite on the Sequoia 2000 wide area network,” in Proc. ACM
Multimedia 94, pp. 183-192, San Francisco, CA, October 1994. Also Tech. Rept.
TR-94-020, International Computer Science Institute, Berkeley, CA, April 1994.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[13] T. Barzilai, D. Kandlur, A. Mehra, D. Saha, and S. Wise, “Design and implementation
of an RSVP-based quality of service architecture for integrated services Internet,” in
Proc. In t’l Conf. on Distributed Computing Systems, pp. 543-551, May 1997.

[14] A. Bas, V. Bach, W. Vogels, and T. von Eicken, “U-net: A user-level network interface
for parallel and distributed computing,” in Proc. ACM Symp. on Operating Systems
Principles, pp. 40-53, December 1995.

[15] R- C. Bedichek, “Talisman: Fast and accurate multicomputer simulation,” in Pro­
ceedings of Sigmetrics 95/Performance 95, pp. 14-24, May 1995.

[16] R. Bettati and A. Gupta, “Dynamic resource migration for multiparty real-time com­
munication,” in Proc. In t’l Conf. on Distributed Computing Systems, pp. 646-656,
May 1996.

[17] M. Bjorkman and P. Gunningberg, “Locking effects in multiprocessor implementations
of protocols,” in Proc. o f ACM SIGCOMM, pp. 74-83, September 1993.

[18] G. Blair, A. Campbell, G. Coulson, F. Garcia, D. Hutchison, A. Scott, and D. Shep­
herd, “A network interface unit to support continuous media,” IEEE Journal on
Selected Areas in Communications, vol. 11, no. 2, pp. 264-275, February 1993.

[19] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture:
An Overview. Request for Comments RFC 1633, July 1994.

[20] L. S. Brakmo and L. L. Peterson, “Experiences with network simulation,” in Proceed­
ings o f ACM Sigmetrics 96, pp. 80-90, May 1996.

[21] K. Buchenrieder, “Hot topics: Hardware-software codesign: Codesign and concurrent
engineering,” Computer, vol. 26, no. 1, pp. 85-86, January 1993.

[22] R. K. Budhia, P. M. Melliar-Smith, L. E. Moser, and R. Miller, “Higher performance
and implementation independence: Downloading a protocol onto a communication
card,” in Proc. o f the Intl. Conf. on Comm., pp. 385-389, June 1995.

[23] A. Burns, K. Tindell, and A. Wellings, “Effective analysis for engineering real-time
fixed priority schedulers,” IEEE Trans. Software Engineering, vol. 21, no. 5, pp. 475-
480, May 1995.

[24] C.-H. Chang, R. Flower, J . Forecast, H. Gray, W. R. Hawe, A. P. Nadkarni, K. K.
Ramakrishnan, U. N. Shikarpur, and K. M. Wilde, “High-performance TCP/IP and
UDP/IP networking in DEC OSF/1 for Alpha AXP,” Digital Technical Journal of
Digital Equipment Corporation, vol. 5, no. 1, pp. 44-61, Winter 1993.

[25] M. Chiodo, P. Giusto, A. Jurecska, H. C. Hsieh, A. Sangiovanni-Vincentelli, and
L. Lavagno, “Hardware-software codesign of embedded, systems,” IEEE Micro, vol.
14, no. 4, pp. 26-36, August 1994.

[26] C.-C. Chou and K. G. Shin, “Statistical real-time video channels over a multiac­
cess network,” in Proc. High-Speed Networking and Multimedia Computing Sympo­
sium, IS&T/SPIE Symposium on Electronic Imaging Science and Technology, pp. 86-
96, February 1994.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[27] C.-C. Chou and K. G. Shin, “A distributed table-driven route selection scheme for
establishing real-time video channels,” in Proceedings of the 15th International Con­
ference on Distributed Computing Systems (ICDCS’95), pp. 52-59, Los Alamitos, CA,
USA, May 30-June 2 1995, IEEE Computer Society Press.

[28] D. D. Clark, S. Shenker, and L. Zhang, "Supporting real-time applications in an
integrated services packet network: Architecture and mechanism,” in Proc. o f ACM
SIGCOMM; pp. 14-26,1992.

[29] E. C. Cooper, P. A. Steenkiste, R. D. Sansom, and B. D. Zill, "Protocol Implementa­
tion on the Nectar Communication Processor,” in SIGCOMM Symposium on Com­
munications Architectures and Protocols, pp. 135-144, Philadelphia, PA, September
1990, ACM.

[30] G. Coulson, A. Campbell, P. Robin, G. Blair, M. Papathomas, and D. Shepherd,
"Design of a QoS controlled ATM based communications system in chorus,” IEEE
Journal on Selected Areas in Communications, vol. 13, no. 4, pp. 686-700, May 1995.

[31] F. Cristian, "Probabilistic clock synchronization,” Distributed Computing, vol. 4, no.
3, pp. 146-158,1989.

[32] R. L. Cruz, A Calculus for Network Delay and a Note on Topologies of Interconnec­
tion Networks, PhD thesis, University of Illinois at Urbana-Champaign, July 1987.
available as technical report U1LU-ENG-87-2246.

[33] C. Dalton, G. Watson, D. Banks, C. Calamvokis, A. Edwards, and J. Lumley, "Af­
terburner,” IEEE Network Magazine, pp. 36-43, July 1993.

[34] B. Davie, "The architecture and implementation of a high-speed host interface,” IEEE
Journal on Selected Areas in Communications, vol. 11, no. 2, pp. 228-239, February
1993.

[35] B. S. Davie, “A host-network interface architecture for atm,” in Proc. of ACM SIG­
COMM, pp. 307-315, September 1991.

[36] A. Demers, S. Keshav, and S. Shenker, "Analysis and simulation of a fair queueing
algorithm,” Proc. of ACM SIGCOMM, pp. 3-12, 1989.

[37] Z. D. Dittia, J. R. Cox, Jr., and G. M. Parulkar, “Design of the APIC: A high
performance ATM host-network interface chip,” in IEEE INFOCOM, pp. 179-187,
June 1995.

[38] P. Druschel, M. Abbott, M. Pagels, and L. Peterson, “Network subsystem design,”
IEEE Network Magazine, pp. 8-17, July 1993.

[39] P. Druschel and G. Banga, “Lazy receiver processing (LRP): A network subsystem ar­
chitecture for server systems,” in Proc. Second USENIX Symp. on Operating Systems
Design and Implementation, pp. 261—276, October 1996.

[40] P. Druschel and L. L. Peterson, “Fbufs: A high-bandwidth cross-domain transfer fa­
cility,” in Proc. ACM Symp. on Operating Systems Principles, pp. 189-202, December
1993.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[41] P. Druschel, L. L. Peterson, and B. S. Davie, “Experiences with a high-speed network
adaptor: A software perspective,” in Proc. o f ACM SIGCOMM, pp. 2-13, London,
UK, October 1994.

[42] A. Edwards, G. Watson, J. Lumley, D. Banks, C. Calamvokis, and C. Dalton, “User-
space protocols deliver high performance to applications on a low-cost Gb/s LAN,”
in Proc. of ACM SIGCOMM, pp. 14-23, London, UK, October 1994.

[43] D. Ferrari and D. C. Verma, “A scheme for real-time channel establishment in wide-
area networks,” IEEE Journal on Selected Areas in Communications, vol. SAC-8, no.
3, pp. 368-379, April 1990.

[44] D. W. Franke and M. K. Purvis, “Hardware/software codesign: A perspective,” in
Proceedings of the 13th International Conference on Software Engineering, pp. 344—
352, May 1991.

[45] A. Gokhale and D. C. Schmidt, “Measuring the performance of communication mid­
dleware on high-speed networks,” in Proc. o f ACM SIGCOMM, pp. 306-317, August
1996.

[46] S. J. Golestani, “A self-docked fair queueing scheme for broadband applications,” in
IEEE INFOCOM, pp. 636-646, June 1994.

[47] S. J. Golestani, “Congestion-free transmission of real-time traffic in packet networks,”
in IEEE INFOCOM, pp. 527-536. IEEE, June 1990.

[48] S. J. Golestani, “A stop-and-go queueing framework for congestion management,” in
Proc. SIGCOMM Symposium, pp. 8-18. ACM, September 1990.

[49] S. J. Golestani, “Congestion-free communication in high-speed packet networks,”
IEEE Trans. Communications, vol. 39, no. 12, pp. 1802-1812, December 1991.

[50] R. Gopalakrishnan and G. M. Parulkar, “Bringing real-time scheduling theory and
practice doser for multimedia computing,” in Proceedings of ACM Sigmetrics 96, pp.
1-12, May 1996.

[51] R. Govindan and D. P. Anderson, “Scheduling and EPC mechanisms for continuous
media,” in Proc. ACM Symp. on Operating Systems Principles, pp. 68-80, 1991.

[52] A. Gupta, W. Howe, M. Moran, and Q. Nguyen, “Resource sharing for multi-party
real-time communication,” in IEEE INFOCOM, pp. 1230—1237, June 1995.

[53] S. Han and K. G. Shin, “A non-intrusive distributed monitoring support in fault
injection experiments,” in IEEE International Workshop on Evaluation Techniques
for Dependable Systems, October 1995.

[54] M. Hemy and P. Steenkiste, “Gigabit I/O for distributed-memory systems: Architec­
ture and applications,” in Proc. of Conf. on Supercomputing, San Diego, CA, Decem­
ber 1995.

[55] N. C. Hutchinson and L. L. Peterson, “The r-Kemel: An architecture for implement­
ing network protocols,” IEEE Trans. Software Engineering, vol. 17, no. 1, pp. 1-13,
January 1991.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[56] A. Indiresan, A. Mehra, and K. Shin, “Design tradeoffs in implementing real-time
channels on bus-based multiprocessor hosts,” Technical Report CSE-TR-238-95, Uni­
versity of Michigan, April 1995.

[57] D. B. Ingham and G. D. Parrington, “Delayline: A wide-area network emulation
tool,” Computing Systems, vol. 7, no. 3, pp. 313-332, Summer 1994. The USENIX
Association.

[58] pSOS*-/ 68K User’s Manual, Integrated Systems Inc., version 1.2 edition, September
1992. Document No. KX68K-MAN.

[59] T. B. Ismail and A. Amine Jerraya, “Synthesis steps and design models for codesign,”
Computer, vol. 28, no. 2, pp. 44-52, February 1995.

[60] C. R. Kalmanek, H. Kanakia, and S. Keshav, “Rate controlled servers for very high­
speed networks,” in Proc. GLOBECOM, pp. 12-20, December 1990.

[61] D. D. Kandlur, D. L. Kiskis, and K. G. Shin, “HARTOS: A distributed real-time
operating system,” ACM SIGOPS Operating Systems Review, vol. 23, no. 3, pp. 72-
89, July 1989.

[62] D. D. Kandlur and K. G. Shin, “Design of a communication subsystem for HARTS,”
Technical Report CSE-TR-109-91, CSE Division, Department of EECS, The Uni­
versity of Michigan, October 1991.

[63] D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-time communication in multi-hop
networks,” IEEE Trans, on Parallel and Distributed Systems, vol. 5, no. 10, pp. 1044-
1056, October 1994.

[64] S. Keshav, “REAL : A network simulator,” UCB CS Tech Report 88/472, University
of California, Berkeley, December 1988.

[65] K. A. Kettler, D. I. Katcher, and J. K. Strosnider, “A modeling methodology for
real-time/multimedia operating systems,” in Proc. of the Real-Time Technology and
Applications Symposium, pp. 15-26, May 1995.

[66] H. Kopetz and G. Grunsteidl, “Ttp - a protocol for fault-tolerant real-time systems,”
IEEE Computer, vol. 27, no. 1, pp. 14-23, January 1994.

[67] S. Kumar, J. H. Aylor, B. W. Johnson, and W. A. Wulf, “A framework for hardware/
software codesign,” Computer, vol. 26, no. 12, pp. 39-45, December 1993.

[68] C. Lee, K. Yoshida, C. Mercer, and R. Rajkumar, “Predictable communication pro­
tocol processing in real-time mach,” in Proc. 2nd Real-Time Technology and Applica­
tions Symposium, pp. 220-229, June 1996.

[69] S. J. Leffler, M. K. McKusick, M. J . Karels, and J. S. Quarterman, The Design and
Implementation of the f.SBSD Unix Operating System, Addison Wesley, May 1989.

[70] M. Lin, J. Hsieh, D. H. C. Du, and J. A. MacDonald, “Performance of high-speed
network I/O subsystems: Case study of a fibre channel network,” in Proc. o f Conf.
on Supercomputing, pp. 174-183, November 1994.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[71] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard
real-time environment,” Journal o f the ACM, vol. 20, no. 1, pp. 46-61, January 1973.

[72] C. Maeda and B. N. Bershad, “Protocol service decomposition for high-performance
networking,” in Proc. ACM Symp. on Operating Systems Principles, pp. 244-255,
December 1993.

[73] S. McCanne and S. Floyd. NS (Network Simulator), 1995. Available via http://www-
nrg.eedbl.gov/ ns.

[74] A. Mehra, A. Indiresan, and K. Shin, “Resource management for real-time commu­
nication: Making theory meet practice,” in Proc. of 2nd Real-Time Technology and
Applications Symposium, pp. 130—138, June 1996.

[75] A. Mehra, A. Indiresan, and K. Shin, “Structuring communication software for
quality-of-service guarantees,” in Proc. of 17th Real-Time Systems Symposium, pp.
144-154, December 1996.

[76] H. E. Meleis and D. N. Serpanos, “Designing communication subsystems for high­
speed networks,” IEEE Network, pp. 40-46, July 1992.

[77] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves: Operating
system support for multimedia applications,” in Proc. IEEE International Conference
on Multimedia Computing and Systems, pp. 90-99, May 1994.

[78] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves for multimedia
operating systems,” Computer Science Technical Report CMU-CS-93-157, Carnegie
Mellon University, May 1993.

[79] C. W. Mercer, J. Zelenka, and R. Rajkumar, “On predictable operating system proto­
col processing,” Technical Report CMU-CS-94-165, Carnegie Mellon University, May
1994.

[80] J. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in an interrupt-driven
kernel,” in Winter USENIX Conference, pp. 99-111, January 1996.

[81] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow
control in integrated services networks: The multiple node case,” in IEEE INFOCOM,
pp. 521-530, March 1993.

[82] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow
control in integrated services networks - the single node case,” in IEEE INFOCOM,
pp. 915-924,1992.

[83] K. K. Ramakrishnan, “Performance considerations in designing network interfaces,”
IEEE Journal on Selected Areas in Communications, vol. 11, no. 2, pp. 203-219,
February 1993.

[84] P. Ramanathan, D. D. Kandlur, and K. G. Shin, “Hardware-assisted software clock
synchronization for homogeneous distributed systems,” IEEE Transactions on Com­
puters, vol. 39, no. 4, pp. 514-524, April 1990.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-

[85] L. Rizzo, “Dummynet: A simple approach to the evaluation of network protocols,”
Computer Communication Review, vol. 27, no. 1, pp. 31-41, January 1997.

[86] 0 . Rose, “Statistical properties of MPEG video traffic and their impact on traffic
modeling in ATM systems,” Institute of Computer Science Research Report Series
101, University of Wuerzburg, February 1995.

[87] M. A. R. Saghir, P. Chow, and C. G. Lee, “Exploiting dual data-memory banks in
digital signal processors,” in Proceedings o f the Seventh International Conference on
Architectural Support for Programming Languages and Operating Systems, pp. 234-
243, Cambridge, Massachusetts, October 1-5, 1996.

[88] D. Saha, S. Mukherjee, and S. K. Tripathi, “Carry-over round robin: A simple cell
scheduling mechanism for ATM networks,” in IEEE INFOCOM, pp. 630-637, March
1996.

[89] D. C. Schmidt and T. Suda, “Transport system architecture services for high-
performance communications systems,” IEEE Journal on Selected Areas in Com­
munications, vol. 11, no. 4, pp. 489-506, May 1993.

[90] H. Schulzrinne, J. Kurose, and D. Towsley, “An evaluation of scheduling mechanisms
for providing best-effort, real-time com m unica tio n in wide-area networks,” in IEEE
INFOCOM, pp. 1352-1361, June 1994.

[91] K. G. Shin, D. D. Kandlur, D. L. Kiskis, P. S. Dodd, H. A. Rosenberg, and A. Indire­
san, “A distributed real-time operating system,” IEEE Software, pp. 58-68, Septem­
ber 1992.

[92] K. G. Shin, “HARTS: A distributed real-time architecture,” IEEE Computer, vol. 24,
no. 5, pp. 25-35, May 1991.

[93] J. M. Smith and C. B. S. Traw, “Giving applications access to Gb/s networking,”
IEEE Network Magazine, pp. 44-52, July 1993.

[94] P. Steenkiste, “Analyzing communication latency using the Nectar communication
processor,” in Proc. of ACM SIGCOMM, pp. 199-209. ACM, ACM, New York, NY,
USA, August 1992.

[95] P. A. Steenkiste, “A systematic approach to host interface design for high-speed net­
works,” IEEE Computer, pp. 47-57, March 1994.

[96] P. A. Subrahmanyam, “Hot topics: Hardware-software codesign: Cautious optimism
for the future,” Computer, vol. 26, no. 1, pp. 84, January 1993.

[97] L. Trajkovic and S. J. Golestani, “Congestion Control for Multimedia Services,” IEEE
Network, pp. 20-26, Sept. 1992.

[98] B. Traw and J. Smith, “A high performance host interface for ATM networks,” in
Proc. of ACM SIGCOMM, pp. 317-325, September 1991.

[99] C. B. S. Traw and J. M. Smith, “Hardware/software organization of a high-
performance ATM host interface,” IEEE Journal on Selected Areas in Communi­
cations, vol. 11, no. 2, pp. 240-253, February 1993.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[100] C. Venkatramani and T. Chiueh, “Design, implementation, and evaluation of a
software-based real-time ethemet protocol,” in Proceedings o f the ACM SIGCOMM,
pp. 27-37, Angnst 1995.

[101] A. S. Wenban, J . W. O’Leary, and G. M. Brown, “Codesign of communication pro­
tocols,” Computer, vol. 26, no. 12, pp. 46-52, December 1993.

[102] B. Witchell and M. Rosenblum, “Embra: Fast and flexible machine simulation,” in
Proceedings o f ACM Sigmetrics 96, pp. 68-79, May 1996.

[103] B. L. Worthington, G. R. Ganger, and Y. N. Patt, “On-line extraction of SCSI disk
drive parameters,” in Proceedings o f Sigmetrics 95/Performance 95, pp. 146-156, May
1995.

[104] G. G. Xie and S. S. Lam, “Delay guarantee of a virtual clock server,” IEEE/ACM
Trans, on Networking, pp. 683-689, December 1995.

[105] H. Zhang and D. Ferrari, “Bate-controlled static-priority queueing,” in IEEE INFO­
COM, pp. 227-236, June 1993.

[106] L. Zhang, “VirtualClock: A new traffic control algorithm for packet switching net­
works,” in Proceedings o f the SIGCOMM Symposium, pp. 19-29. ACM, September
1990.

[107] L. Zhang, “Virtual Clock: A new traffic control algorithm for packet-switched net­
works,” ACM Trans. Computer Systems, vol. 9, no. 2, pp. 101-124, May 1991.

[108] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A new resource
ReSerVation Protocol,” IEEE Network Magazine, pp. 8-18, September 1993.

[109] Q. Zheng and K. G. Shin, “Real-time communication in local area ring networks,” in
Conference on Local Computer Networks, pp. 416-425, September 1992.

[110] Q. Zheng and K. G. Shin, “Synchronous bandwidth allocation in FDDI networks,” in
Computer Graphics (Multimedia ’93 Proceedings), pp. 31-38. ACM, Addison-Wesley,
August 1993.

[111] Q. Zheng and K. G. Shin, “On the ability of establishing real-time channels in point-
to-point packet-switched networks,” IEEE Trans. Communications, vol. 42, no. 2/3/4,
pp. 1096-1105, February/March/April 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

