Structuring host communication software for quality-of-service guar antees

Mehra, Ashish

ProQuest Dissertations and Theses; 1997; ProQuest

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STRUCTURING HOST COMMUNICATION SOFTWARE
FOR QUALITY OF SERVICE GUARANTEES

by

Ashish Mehra

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1997

Doctoral Committee:
Professor Kang G. Shin, Chair
Associate Professor Farnam Jahanian
Assistant Professor Sugih Jamin
Dr. Dilip Kandlur
Professor Toby Teorey
Assistant Professor Kimberly Wasserman

| rRieproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9811143

Copyright 1997 by
Mehra, Ashish

All rights reserved.

UMI Microform 9811143
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Ashish Mehra 1997
All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my mother
and
the precious memories of my father.

For me you were the guilding light
The radiance of a humble soul
The glitter of a golden heart
My precious jewel that fate stole.

Nay, the jewel’s there [realize
Studded on the canvas of time
The life you sketched now emits a glow
Illuminating the past we left behind.

=4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I write this dissertation with a heavy heart, for it marks the culmination of a crucial
phase in my career and life. Much has happened during the years that I have been in
graduate school. Besides experiencing the struggle faced by many doctoral students, I had
to endure the tragic and untimely loss of my father, Late Dr. Satish Narain Mehra, who
departed for his heavenly abode on May 30, 1994. A humble and honest man, he was and
remains my deepest inspiration. It was my heartfelt desire to have him by my side when I
graduate; now that desire must remain a dream.

This dissertaticn is my tribute to him, fond memories of our togetherness, his unflinching
faith in me, and his never-ending pursuit of excellence. Wherever you are, Papa, may your
soul rest in eternal peace. This dissertation is also a tribute to my mother, Mrs. Uma
Mehra, who has endured this loss with great strength, and to my sister Bharti Kakkar and
my wife Neelu Mehra, for their exemplary courage in weathering the shock of losing Papa
when he suddenly breathed his last.

It was my advisor, Prof. Kang Shin, who seven years ago gave me the opportunity to
attend the University of Michigan as a member of RTCL, and I will always be indebted to
him for that. I owe my deepest gratitude to him for his enormous patience towards me while
[selected a dissertation topic, and for the complete freedom he gave me to pursue research
ideas and take them to fruition. His constant encouragement, support and guidance has
played a big role in this dissertation.

[would like to express my sincere thanks to Dr. Dilip Kandlur for serving on my
committee and for giving me the opportunity to spend two summers with his group at
the IBM T. J. Watson Research Center. I learnt a great deal during those summers and
truly enjoyed my interaction with researchers at Watson. I would like to thank Prof. Toby
Teorey, Prof. Farnam Jahanian, Prof. Sugih Jamin, and Prof. Kimberly Wasserman for
agreeing to serve on my committee despite a tight schedule. A special note of thanks to
Prof. Farnam Jahanian for being a friend and colleague all these years. I will always
cherish your friendship, collaboration, and sense of humor. I gratefully acknowledge the
support provided for my study by Office of Naval Research, National Science Foundation,
and Defense Advanced Research Projects Agency.

A number of individuals have contributed towards this dissertation in one way or the
other. My collaboration with Atri Indiresan laid the foundation for the ideas explored in
this dissertation. Since then I have collaborated with Anees Shaikh, Tarek Abdelzaher,
and Zhiqun Wang and truly benefitted from this interaction. It would be difficult to find
a more caring and conscientious group of individuals who are always so willing to help,
learn, and accommodate. Special thanks to Tarek and Zhiqun for their help during the
final stages of my dissertation work. I have also had the pleasure of working closely with
Tsipora Barzilai and Debanjan Saha at the IBM T. J. Watson Research Center, and I look
forward to continuing that collaboration.

Throughout graduate school I have been fortunate to have had very considerate and
supportive officemates who often played a crucial role as friends and peer advisors. These

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

include Tom Tsukada, Nigel Hinds, Chao-ju Hou, Jim Dolter, Stuart Daniel, Frank Lei
Zhou, Jennifer Rexford, Scott Dawson, Todd Mitton, Wu-chang Feng, Tarek Abdelzaher.
and Anees Shaikh. Special thanks to Jim Dolter for sharing with me his expertise and
experience in software and hardware design, and to Jennifer Rexford for being a wonderful
colleague and close friend all these years. Nothing is more important in graduate school
than a hot steaming cup of gourmet coffee first thing in the morning. Accordingly, my
most caffeinated gratitude to Scott Dawson for playing the role of “ultimate provider” to
perfection. I will surely miss his friendship, technical expertise, and our frequent discussions
on anything that came to mind after a sip of gourmet coffee. I will also miss my dear
“dost” (friend) Anees Shaikh for the good times spent cooking delicious Indian dishes and
for patiently listening to my distorted renditions of popular Indian and Western songs.
Graduate work was made that much more enjoyable and hassle-free by the friendship and
affection of Beverly J. Monaghan, the RTCL administrative assistant. I will miss her sense
of humor and affectionate laughter.

My long stay in Ann Arbor was enriched greatly by wonderful friends, some who have
since moved on and some whom I am leaving behind. I have numerous fond memories of
time spent with Santanu Paul, Raghu Mani, Raja Sengupta, Amit Misra, Aditi Dubey,
Bishnu Gogoi, Arindam Chatterjee and Krishnendu Chakraborty. For the past three years
or so, I have been able to actively pursue my interest in music in the company of several
friends. Mrs. Shubhangi Deshpande taught me Hindustani classical vocal and participated
in some memorable musical evenings. I will always be indebted to her for exposing me to
a whole world of creative beauty and graceful precision. My heartfelt thanks to Sushila
Subramanian and Kavita Goverdhanam for participating in the weekly music sessions when
we could forget everything else and indulge in music, and for the few mausical performances
we gave together. A special note of thanks to Maninder Singh for always finding time for
these performances; for me his amazing skills with the Tabla were both a source of musical
pleasure as well as inspiration. My indulgence in Indian music was further facilitated by
Pramila and Sushil Birla, who invited me to numerous musical gatherings and dinners.

In recent times my circle of friends has grown to include some very special and caring
couples: Sushila Subramanian and Dan Kiskis, Kavita Goverdhanam and Uday Nandan,
Janani Janakiraman and Karthik Ramamoorthy, Rohini and Atri Indiresan, Zakia and
Anees Shaikh, Seemeen Naushaba and Mubashir Mohiuddin, Deepika and Chetan Ahuja,
and Neeta and Saryu Goel. A special note of appreciation for Seemeen and Mubashir, and
Neeta and Saryu, for their genuine affection and considerable help during the time that
I was busy writing the dissertation. Needless to say, leaving behind such nice friends is
perhaps the saddest part of moving on to life after graduate school.

Finally, no measure of gratitude and love is enough towards my wife, Neelu, for her
friendship and patience while I struggled to wrap up graduate school. Her support, care
and encouragement gave me much-needed strength and hope during a demanding phase.
Without her this little achievement of mine would not be as meaningful.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

DEDICATION ittt e e i ii
ACKNOWLEDGEMENTS o iii
LISTOF TABLES ix
LISTOF FIGURES X
CHAPTERS
1 INTRODUCTION i 1
1.1 QoS Issues in End-to-End Communication 3
1.1.1 General Scenario 3
1.1.2 Integrated Services on the Internet 6
1.2 Dissertation Focus and Problem Statement T
1.3 Primary Contributions 11
1.4 Dissertation Overview 14
2 HOST SUPPORT FOR QUALITYOFSERVICE 16
2.1 Application QoS Requirements 17
2.2 Communication Subsystem Overview 19
2.3 Factors Affecting Performance 2]
23.1 APISemanmtics 22
2.3.2 Protocol Stack Execution 23
2.3.3 Multiprogramming and Network Load 25
24 Efficient Protocol Architectures and Implementations 27
24.1 Performance optimizations for efficient data transfer 28
24.2 Network Interface Design. 31
2.4.3 Parallel Protocol Implementations 33
2.5 QoS-Sensitive Communication and Computation 35
2.5.1 Dynamic QoS Negotiation and Adaptation 36
2.5.2 Communication Architectures forQoS 37
2.5.3 Multimedia/Real-Time Operating Systems 40
3 A QOS-SENSITIVE COMMUNICATION SUBSYSTEM 43
3.1 Imtroduction 43
3.2 Architectural Requirements for Guaranteed-QoS Communication . 46
3.2.1 Software Structure for QoS-Sensitive Data Transport 48
\2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.2 Real-Time Channels: A Model for Guaranteed-QoS Commu-

mication 50
3.2.3 Performance Related Considerations 52
3.3 QoS-Sensitive Communication Subsystem Architecture 53
3.3.1 Salient Features 55
3.3.2 Accounting for CPU Preemption Delays and Overheads .. 59
3.4 Prototype Implementation 62
3.4.1 Architectural Configuration 62
3.4.2 Realizing a QoS-Sensitive Architecture 63
3.4.3 System Parameterization 66
3.5 Experimental Evaluation 69
3.5.1 Methodology and Metrics 69
3.5.2 Efficacy of the Proposed Architecture 7
3.5.3 Need for Cooperative Preemption 72
354 Discussion 73
3.6 Summary and Future Work 74
4 ADMISSION CONTROL EXTENSIONS FOR END HOSTS s
4.1 Imtroduction T
4.2 Managing CPU and Link Bandwidth 79
42.1 Implementation Issues 80
4.2.2 Performance Implications 84
4.3 Worst-Case Service and Wait Times 86
4.3.1 Estimating Service Time 87
4.3.2 Estimating Wait Time 90
4.3.3 Experimental Validation 91
4.4 Channel Admissibility_ 92
4.4.1 Channel Admissibility in O1 93
4.4.2 Channel Admissibility in 02 94
4.5 Admission Control Extensions for Receiving Hosts. 95
4.5.1 Reception Issues and Assumptions 95
4.5.2 PureReception 98
4.5.3 Simultaneous Send and Receive 104
46 Summary 105
5 GUARANTEED-QoS COMMUNICATION SERVICES 107
5.1 Imtroduction 107
5.1.1 Goals, Approach and Assumptions 108
512 Outline. 110
5.2 Real-Time Communication Service 111
3.21 Goalsand Paradigm 111
5.2.2 Service Architecture 111
5.3 Service Components and Their Interaction 113
5.3.1 Service Invocation via RTCAPI. 113
5.3.2 RTCOP-based Signalling and Resource Reservation 117

5.3.3 CLIPS-based Resource Scheduling for Data Transfer 120

3.4 Prototype Implementation: Environment and Configuration 124
3.4.1 Testbed and Implementation Environment 124
vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.2 OSF Path Framework: Implications and Extensions 125

5.4.3 Server Configuration: Prosand Cons 127
544 CORDS-based Service Protocol Stack 129

5.5 Realization of the Service Architecture 130
5.5.1 Service Library: librtc 131
5.5.2 RTC API Anchor Implementation 132

5.5.3 RTCOP and RTROUTER Implementation 135
5.5.4 CLIPS Implementation 138

5.6 System Profiling and Parameterization 139
5.6.1 Profiling the RTC APl Anchor 140
5.6.2 Profiling the Protocol Stack 142
5.6.3 Profiling Link Input/Qutput 144

5.7 Accounting for API Overheads and Threads 145
5.7.1 Admission Control Enhancements 145
5.7.2 Architectural Enhancements 147

5.8 Experimental Evaluation, 149
5.8.1 Trafficenforcement 149

5.8.2 Trafficisolation_.... 151

59 Summary 155
6 SELF-PARAMETERIZING PROTOCOL STACKS 158
6.1 Introduction 158
6.2 Motivation and Problem Statement 160
6.2.1 Nature of System Parameters, Costs and Overheads 160
6.2.2 Infeasibility of Detailed Manual Profiling 161
6.2.3 Automated Approach to Performance Profiling 162

6.3 Related Work 163
6.3.1 Protocol Stack Performance 163
6.3.2 Protocol Benchmarking 164
6.3.3 Operating System Performance and Resource Monitoring . . 165

6.4 Design Approach for Self-Parameterization 166
6.4.1 Overall Architecture_ ... 166
6.4.2 Structuring the Admission Control Module 169

6.5 Minimizing Perturbation 170
6.5.1 Placement and Control of Profile Points 170
6.5.2 Deferred Sample Processing and Parameter Tuning 173

6.6 Implementation and Evaluation 174
6.6.1 Modules, Parameters and Sample Collection 174
6.6.2 Message Generation 175
6.6.3 Parameter Tuning and Update 176
6.6.4 ExperimentalResults 177

6.7 Summary and Future Work 180
7 QOS SUPPORT IN TCP/IP PROTOCOL STACKS 182
71 Imtroduction 182
7.2 RSVP and Integrated Services: An Overview 185
72.1 RSVP:AnEnd-to-End View. 185
722 ServiceClasses 186

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 Architectural Overview and QoS Components 188

73.1 Control Functions 189

732 DataTransfer 190

7.4 Efficacy of the QoS Architecture. 193

7.4.1 User-Level Performance Measurements 193

7.5 QoS Component Overheads 197

7.5.1 Kernel Instrumentation and Measurement Methodology .. 199

7.5.2 Component Overheads 200

7.5.3 Effective Overhead 201

7.6 Performance Implications 202

7.6.1 Accommodating variations in the shaping latency 203

7.6.2 QoS-Sensitive CPU Scheduling 205

7.7 Summary and Fature Work 206

8 INTEGRATION WITH HOST OPERATING SYSTEM 208

8.1 Protocol Processing Architectures 208

8.2 Realizing Application-Level QoS Guarantees 212

83 Summary 215

9 CONCLUSIONS ANDFUTUREWORK 216

9.1 Primary Contributions 216

9.2 Future Research Avenues 218

BIBLIOGRAPHY i, 220
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table
3.1
3.2
3.3
4.1
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
6.1
6.2
6.3
6.4
6.5
6.6
7.1
7.2
7.3
74
8.1

LIST OF TABLES

Routines constituting the real-time channel APL. 62
Available policies in the prototype implementation. 67
Workload used for the evaluation._..... 7T

[mportant system parameters. 87
Routines comprising RTC API.. 114
RTCOP functional requirements. 117
CLIPS functional requirements. 120
Data transfer overheads in RTC API anchor (in gs). 140
Application-level send and receive latencies (in us). 141
Protocol stack latencies for send and receive paths (in us).. 143
Link scheduler packet transmission latencies (in ps). 144
CORDS device input thread overhead (in us). 145
Communication resources and their cost components. 160
Modules and parameters in the prototype implementation. 174
API routines exported by the self parameterization (SP) core. 176
Anchor: comparison of manual and self parameterization (in ps). 177
Protocol stack: manual and self parameterization (in pus). 178
Link driver: comparison of manual and self parameterization (in ps). 179
Control path latencies. 195
Data path performance. 196
Overheads of different QoS components (inus). 201
Data path latencieson tapti (in ps). 202
Protocol processing architectures. 209

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure
1.1
1.2
1.3
2.1
22
3.1
3.2
3.3
34
35
36
3.7
38
3.9
3.10
3.11
3.12
3.13
4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.1
5.2
5.3
5.4
5.5
5.6

LIST OF FIGURES

End-to-end communication across multiple nodes.
Focus of dissertation research.

Interaction between protocols and resource management functions
Desired overall software architecture.

Proposed communication subsystem architecture.
Channel state maintained at host.

Important system parameters in the proposed architecture.
Real-time communication protocol stack (z-kernel).
EDF CPU scheduler layered above native z-kernel scheduler.
Processing done by the link scheduler.
Implementation environment.
Maintenance of QoS guarantees when traffic specifications are honored.

Maintenance of QoS guarantees under violation of Rpgz- - - - -
Violation of QoS guarantees with cooperative preemption disabled.
Throughput as a function of packets processed between preemption points
(packetsize 4 KB).
Throughput as a function of packet size and link speed.
Protocol processing and link transmission overlap in O1.
Protocol processing and link transmission overlap in 02.
Comparison of measured (m) and predicted (p) throughput P=4).
Effect of P and S on channel admissibility in O1.
Effect of P and S on channel admissibility in 02.
Link reception and protocol processing overlap in interrupt mode input. . .
Link reception and protocol processing overlap in polled mode input.
Real-time communication service architecture.
RTCOP internal structure and interfaces.
CLIPS internal structure and interfaces.
Experimental testbed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-1

(v 2]

6.3

7.1
7.2
7.3
74
7.5
7.6
8.1

Traffic enforcement on a single real-time channel. 150

Traffic isolation between two real-time channels. 152
Traffic isolation between real-time and best-effort traffic. 153
Traffic isolation and unused capacity utilization. 154
ARMADA middleware and real-time communication services. 156
Architecture for self-parameterizing protocol stacks. 167
On-line construction of system parameter database.. 168
Internal structure of admission control procedure. 169
Prologue and epilogue processing for profile sample generation. 171
PATH and RESV messagesin RSVP.. 187
Protocol stack architecture and QoS extensions. 189
Best effort and QoS datapaths., 191
Data path throughqosmGr. 192
Experimental testbed for prototype implementation. 194
Timeline of events and associated overheads during shaping. 198
Integrated QoS-sensitive computation and communication subsystems. . . . 213
xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

The advent of high-speed networks and the WWW has generated an increasing demand
for a new class of distributed applications that require certain quality-of-service (QoS) guar-
antees on end-to-end communication across the underlying network. In general, these QoS
guarantees may be specified in terms of parameters such as the end-to-end delay, delay jit-
ter, and bandwidth delivered on each connection; additional requirements regarding packet
loss and in-order delivery may also be specified. Examples of such applications include
distributed multimedia applications (e.g., video conferencing, video-on-demand, digital li-
braries) and distributed real-time command/control systems. The need for QoS guarantees
on communication is also evidenced by the rapid proliferation of on-line multimedia content
on the WWW, the shortcomings of the “best-effort” service provided by today’s Internet,
and the efforts by the Internet Engineering Task Force (IETF) to address these shortcomings
by developing protocols and standards for Integrated Services on the Internet [20,22,65].

To support such a.pplicatioﬁs, all hardware and software components involved in trans-
ferring application data from one host to another across the network must be designed to
be QoS-sensitive, i.e., to provide QoS guarantees. Such components include the end host
operating system that controls application execution and manages host resources, the net-
work adapter that interfaces the host to the network, and network elements such as routers
that manage network resources to forward traffic through the network. A QoS-sensitive
operating system, for example, would ensure that applications exchanging QoS-sensitive
data are scheduled for execution so as to satisfy the desired end-to-end QoS guarantees on
communication. There have been numerous proposals for QoS-sensitive provisioning of net-

work resources such as transmission bandwidth and buffers (8,188], and host computation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resources such as CPU cycles [71,165, 179]. However, not much attention has been paid to
the interface between the applications and the network, i.e., the communication subsystem
at end hosts, for provision of QoS guarantees. While communication subsystems have been
extensively studied to improve the performance of traditional best-effort traffic, several sig-
nificant design and implementation issues must be considered when handling QoS-sensitive
traffic.

This dissertation focuses on the host communication subsystem and examines various is-
sues involved in structuring communication software at end hosts to provide per-connection
QoS guarantees. For the most part it is assumed that the network provides appropriate
support to establish and maintain guaranteed-QoS connections. That is, we focus on QoS-
sensitive allocation and management of communication resources at end hosts. The primary
thrust of the dissertation is on identifying and addressing key issues involved in realizing
deterministic QoS guarantees on real computer systems. These issues include bridging
the gap between theory and practice in resource management for guaranteed-QoS commu-
nication to account for implementation overheads and constraints, exploring mechanisms
that facilitate development of portable QoS-sensitive communication software, and assess-
ing the nature and performance impact of architectural enhancements needed in traditional
TCP/IP protocol stacks to support an Integrated Services Internet. Of paramount concern
is the integration of a QoS-sensitive host communication subsystem with the host operating
system to provide application-level QoS guarantees.

The contributions made by this dissertation are applicable to a variety of host and
network architectures for provision of QoS. Further, the issues identified and addressed,
as well as the insights gained, are of significance to other QoS models, approaches to QoS
provisioning, and resource reservation strategies. While the dissertation focuses on provision
of QoS in unicast communication, the results and approach adopted are relevant to provision
of QoS in multicast communication as well. Our research methodology is primarily geared
towards experimental realization of QoS-sensitive communication subsystems. Thus, we
have implemented and evaluated all the architectural solutions outlined in this dissertation.
As such, our contributions are also of significance to designers and practitioners of operating
systems and networks.

The rest of this chapter is organized as follows. The next section gives a brief overview

of QoS in end-to-end communication. Subsequently, we identify the primary research fo-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cus of this dissertation and relate it to the overall goal of providing QoS in end-to-end
communication. The following section summarizes the primary contributions made by this
dissertation. Finally, we conclude the chapter with a brief organizational description of the

dissertation.

1.1 QoS Issues in End-to-End Communication

Provision of QoS in end-to-end communication is complex, requiring significant new func-
tionality to be provided at end hosts and the network elements forming the communication
fabric. It is important, therefore, to develop the necessary taxonomy and put the primary
focus of this dissertation in context. We first outline the general issues involved in provi-
sion of QoS in end-to-end communication, followed by a brief description of related efforts

towards realization of an Integrated Services Internet.

1.1.1 General Scenario

Figure 1.1 depicts a scenario in which an application on node S (source or sender) sends
data to an application at node D (destination or receiver). § sends data to D through the
network via one or more intermediate nodes denoted by I; S and D are referred to as end
hosts while all the intermediate nodes are referred to as routers. As the data generated at
S traverses the network, it may get buffered and queued at host S, at each of the network
routers, and at host D before being delivered to the receiving application. This buffering
and queueing occurs due to contention for communication resources such as CPU and link
bandwidth. For example, at intermediate nodes traffic from several other nodes may need
to be simultaneously forwarded to one or more nodes.

The end-to-end QoS delivered to the application is a fanction of the extent of resource
contention at S, D, and the intermediate nodes I, which is in turn determined by the nature of
buffering, queueing, and processing of the application’s data packets. The delivered QoS can
be measured in terms of one or more QoS parameters such as the end-to-end packet delay,
delay jitter, and throughput. Uncontrolled resource contention may result in unbounded
packet delays, high delay jitter (i.e., significant variability in packet delay), insufficient
availability of bandwidth, and even packet loss due to buffer overflows, especially under

high load. An example of uncontrolled resource contention is traffic handling on a first-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S: source node I: intermediate node D: destination node

== --> data transfer
——= gignalling

Figure 1.1: End-to-end communication across multiple nodes.

in-first-out basis, in which traffic from all nodes is multiplexed together in an uncontrolled
fashion.

In general, provision of QoS guarantees on end-to-end communication requires appropri-
ate support in the network routers and end hosts to prevent uncontrolled resource contention
and maintain per-connection QoS guarantees [8]. The application provides a per-connection
QoS specification, which defines its QoS requirements for each QoS parameter, and also
provides a traffic specification, which defines its traffic generation characteristics on that
connection against which the QoS guarantees are to be given. QoS guarantees can be deter-
ministic such that no QoS violations are permitted even in the worst case, or statistical (i.e.,
probabilistic) such that QoS violations may be permitted to a limited extent in the worst
case, as long as the application conforms to its traffic specification. In the following, we
assume a deterministic QoS specification, although much of the discussion is also applicable
to statistical QoS guarantees.

The application’s QoS and traffic specifications must be communicated to each node
involved in end-to-end data transfer so that each node can allocate sufficient resources
for the connection. This communication is performed via end-to-end reliable signalling,
which can be either sender-initiated or receiver-initiated. Before signalling can commence,
however, the communication subsystem must select the best route from source to destination
via QoS routing. As shown in Figure 1.1 (depicting sender-initiated signalling), signalling
requests are sent from S to D via the intermediate nodes; replies are delivered in the reverse
direction from D to S.

Each node examines the signalling request and performs authentication and policy con-

trol to verify the request and admission control to check availability of communication

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resources (such as CPU cycles, connection state and buffers, and link bandwidth) for the
new connection. If sufficient resources are available at a node, it performs resource reserva-
tion to set aside the necessary communication resources for this connection, and forwards
the request to the next node along the chosen route. If D accepts the request, it returns a
reply with a success indication; this reply is propagated back to S through the intermediate
nodes after committing the reserved resources for this connection. I sufficient resources
are unavailable at a node, the node returns a reply with a failure indication, which is also
propagated back to S after performing resource reclamation on any resources reserved at
intermediate nodes.

If the connection is successfully established, data sent by S to D on this connection will
be serviced according to the corresponding QoS guarantees. Consider the handling of traffic
arriving at an intermediate node. To determine how this traffic should be serviced, the node
performs traffic classification using information contained in packet headers to determine
the associated connection. Since the QoS guarantees are given relative to the connection’s
traffic specification, the node performs traffic enforcement via policing and/or shaping to
enforce the traffic specification. While policing ascertains whether the traffic is conformant
or not, shaping buffers non-conformant traffic until conformance as per the traffic specifi-
cation. Each node also implements a QoS-sensitive queueing policy which determines the
nature of queueing at the node, and a service discipline (8, 188] which determines the order
in which packets are scheduled for service, e.g., processing and transmission to the next node
along the chosen route. Example service disciplines include Weighted Fair Queueing [50],
also known as Packet-by-Packet Generalized Processor Sharing [144], and Rate-Controlled
Static-Priority Queueing [187]. In addition to servicing (QoS-sensitive) traffic according to
the associated QoS guarantees, the service discipline also determines the treatment of best.-
effort traffic at the node. Note that the service discipline may also determine the admission
control procedure employed at the node. When done, the sender closes the connection so
that resources allocated to this connection can be reclaimed for reuse.

The above description outlines an example scenario for QoS in unicast end-to-end com-
munication using sender-initiated signalling for resource reservation. A similar scenario can
be constructed for receiver-initiated signalling of unicast connections. Provision of QoS in
end-to-end multicast communication adds significantly higher complexity during QoS rout-

ing, signalling, as well as data transfer. While we haven’t mentioned it explicitly, nodes may

ot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also have to provide support for fault-tolerance, i.e., reclaim resources and/or re-route traffic
in the presence of processor and link failures. Finally, instead of deterministic or proba-
bilistic guarantees, even looser forms of QoS may be provisioned for applications that can
adapt to variations in the delivered QoS. Proposals for predictive (or best-effort) real-time
communication, such as FIFO+ [39] and Hop-Laxity [156], fall in this category.

1.1.2 Integrated Services on the Internet

Significant efforts are being made by the IETF to enhance the service model of the Internet
to support integrated services for voice, video, and data transport [22,39]. Similar to the
general scenario described above, to support integrated services on the Internet, the network
routers and end hosts need to be enhanced to perform traffic classification on a per-flow
basis, create and maintain flow-specific soft reservation states, and handle data packets from
different flows in accordance with their QoS requirements [22]. Towards that end, the [ETF
is developing a set of protocols and standards for integrated services (20,65, 149, 189].

In the IETF’s vision, applications request and reserve resources, both in the network
and at the attached hosts (clients or servers) using an end-to-end receiver-initiated Resource
ReSerVation Protocol (RSVP) [23,189]. Resource management is performed via per-flow
traffic shaping and scheduling for various classes of service [22], such as guaranteed ser-
vice [159] that provides guaranteed delay, and controlled load service [183] that has more
relaxed QoS requirements. The guaranteed service is intended for applications requiring
firm guarantees on loss-less on-time datagram delivery. The controlled load service, on the
other hand, is designed for the broad class of adaptive real-time applications (such as vic,
vat, nevot, etc.), in active use on the Internet today, that are sensitive to network overload
conditions.

In addition to the above services, looser forms of QoS may also be provided via services
such as predictive service [85], which performs measurement-based admission control. In
the context of integrated services, the expected QoS requirements of applications and issues
involved in sharing link bandwidth across multiple classes of traffic are explored in [65, 158].
Much support being provided on the Internet is geared towards realizing efficient multicast
communication and accommodating the heterogeneity of receivers. RSVP, in particular,
has been designed to support multicast communication between heterogeneous receivers. In

contrast to RSVP, which initiates reservation setup at the receiver, an alternative approach

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.2: Focus of dissertation research.

to signalling is adopted by the ST-II protocol [49], which initiates reservation setup at the
sender. The issues involved in providing QoS support in [P-over-ATM networks [149] are

also being explored [20].

1.2 Dissertation Focus and Problem Statement

As mentioned, the primary focus of this dissertation is host communication subsystem design
to request and obtain per-connection QoS, assuming availability of appropriate network sup-
port. As Figure 1.2 illustrates, we are concerned with signaling and resource management
services at end hosts, for a given service discipline. In particular, we are interested in the
issues and problems encountered in practice when managing host communication resources
according to the relative importance of the connections requesting service. These problems
arise in the context of unicast as well as multicast communication, for both sender-initiated
and receiver-initiated signalling.

Thus, provision of QoS in the network, including issues in QoS routing, and authentica-
tion are beyond the scope of this dissertation. We do not propose a new service discipline
either; instead, we focus on providing new architectural components and mechanisms to re-
alize an existing service discipline on actual hardware and software systems. Towards that
end, besides run-time resource management, we consider the issues involved in supporting
signaling, admission control, and resource reservation services within host communication

subsystems.

-4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[APPLICATIONS j

user
kernel
PROTOCOL STACK LAYE
L DEVICE DRIVER j
software
hardwareffirmware

L NETWORK ADAPTER]

Figure 1.3: Communication subsystem at end hosts.

Figure 1.3 depicts the typical communication subsystem at end hosts. Applications
running in user space interact with the protocol stack layers residing in the kernel, or
at user level, to transmit and receive data. The protocol layers interact with each other
to perform protocol processing (such as header encapsulation and removal, fragmentation
and reassembly, and various other services) on the application’s data. The device driver,
which is the bottom layer in the protocol stack, interacts with the external network through
the network adapter residing in the host. While Figure 1.3 illustrates a kernel-level stack,
similar interactions occur even when the protocol stack executes in user space. For a sending
host, communication resources include CPU bandwidth for protocol processing (e.g., header
encapsulation and fragmentation), link bandwidth for packet transmissions, and buffer space
for outgoing traffic. Similarly, for a receiving host communication resources include protocol
processing bandwidth (e.g., header removal and reassembly), reception bandwidth of the
network adapter, and buffer space for incoming traffic.

Several key problems must be addressed in order to enable QoS-sensitive management of
communication resources in practice. The first of these is the determination of the appropri-
ate architectural components required within the communication subsystem to provide and

maintain QoS guarantees. In addition to these architectural components, the gap between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

theory and practice of communication resource management must be bridged by capturing
important implementation-related aspects that affect communication performance. The
architectural tradeoffs involved in building a full-fledged guaranteed-QoS communication
service for use by applications must be explored and resolved.

A significant concern in realizing such services in practice is the development of mecha-
nisms that enhance the portability of the constituent QoS-sensitive communication subsys-
tem software. The ubiquity of hosts attached to the Internet makes it important to identify
the nature and performance impact of designing host communication subsystems to support
integrated services on the Internet. Finally, realization of application-level QoS guarantees
necessitates that approaches to integrate a QoS-sensitive communication subsystem within

the host operating system be explored. We expand on each of the above problems below.

o Architectural components for QoS Guarantees: Most existing communication subsystems
are designed with resource management policies geared towards statistical fairness and/or
time-sharing. Such policies can introduce excessive interference between different connec-
tions, thus degrading the delivered QoS on individual connections. The unpredictability
introduced and excessive delays due to interference between different connections may even
result in QoS violations. Accordingly, new architectural components are needed within the
communication subsystem to eliminate such performance degradation via: (i) conformance
of QoS guarantees, (ii) overload protection via per-connection traffic enforcement, and (iii)
fairness to best-effort traffic. These requirements together ensure that per-connection QoS
guarantees are maintained even as the number of active connections grows or per-connection

traffic load increases.

o Gap between theory and practice in communication resource management: Satisfying the
above requirements requires QoS-sensitive management of communication resources. This
in turn necessitates admission control and resource scheduling policies to ensure that each
connection receives, at least, its required QoS. These policies are typically formulated using
idealized models of the resources being managed. For example, it may be assumed that
a given resource is immediately preemptible or the cost of preemption is negligible. More
importantly, it may be assumed that a required set of resources can be accessed, and hence
allocated, independent of one another. However, the above assumptions can be violated

when implementing resource management policies, since the performance characteristics of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the hardware and software components employed can deviate significantly from those of the
idealized resource models. Thus, these policies must be extended to make them useful in

practice.

o Guaranteed-QoS communication services on microkernel operating systems: Microkernel op-
erating systems play an increasing important role in today’s PC, workstation, and server
markets, as evidenced by the growing popularity of Windows NT [45]. Realization of
guaranteed-QoS communication services on contemporary microkernel operating systems
presents additional challenges that affect the structuring and performance of communica-
tion software. Further, the architectural components and mechanisms developed for QoS
guarantees must be appropriately mapped to resource management support already avail-
able within the communication subsystem and/or the operating system. Moreover, resource
management policies may need to be suitably enhanced to accommodate additional con-
straints imposed by the operating system or implementation environment available. In-
sights into such issues can only be developed through actual realization and deployment of

guaranteed-QoS services on a contemporary microkernel operating system.

o Portability of QoS-sensitive communication software: Provision of QoS guarantees is highly
platform-specific (i.e., depends on the CPU and network capacities, as well as the operat-
ing system, of a platform), especially for deterministic guarantees. Realizing QoS-sensitive
communication software requires that the host communication subsystem be parameter-
ized accurately to capture processing costs and overheads that comprise the abstraction
of the underlying communication subsystem. The architectural framework and methodol-
ogy adopted for designing QoS-sensitive communication software should be applicable to
a variety of host platforms and networking technologies. This is necessary in order to re-
target the admission control procedure and run-time management support to a given host
platform and/or networking technology. Accordingly, mechanisms must be developed to
facilitate and enhance portability of QoS-sensitive communication software, which is crucial

for large-scale cost-effective deployment.

o Performance impact of supporting QoS in TCP/IP stacks: For wide spread deployment
of the service model envisioned by the IETF, it is imperative that the TCP/IP protocol
stacks running at Internet hosts be enhanced with appropriate architectural mechanisms to

support integrated services. These enhancements must not only preserve the structure of

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

existing sockets-based Unix-like communication subsystems, but also be compatible with
the semantics of the sockets API. Even with availability of these architectural enhance-
ments, such a service model will be widely deployed and utilized only if they do not impose
significant overheads relative to the traditional best-effort data path. Therefore, it is impor-
tant to ascertain the potential performance impact of supporting integrated services within

the traditional TCP/IP protocol stacks running at Internet hosts.

o Delivering QoS to applications: For application-level QoS guarantees, resource manage-
ment within the communication subsystem must be integrated with that for applications.
The architectural components, mechanisms, and extensions developed to realize a QoS-
sensitive communication subsystem should neither preclude nor be rendered infeasible by
such an integration. Accordingly, the issues and tradeoffs involved in realizing such an

integration must be explored.

1.3 Primary Contributions

This dissertation makes several key contributions towards the practical realization of QoS-
sensitive communication subsystems. The following contributions address each of the prob-
lems identified in the preceding section, thus advancing the state of the art in the provi-

sioning of host resources to enable end-to-end QoS.

¢ QoS-sensitive communication subsystem architecture: We have designed, imple-
mented, and evaluated a QoS-sensitive communication subsystem architecture for end hosts
that satisfies the requirements of providing per-connection QoS guarantees, isolating traffic
between different connections, and ensuring fairness to best-effort traffic. While this archi-
tecture is applicable to a wide variety of service disciplines for providing QoS guarantees,
it is validated by implementing real-time channels [63,92], a paradigm for guaranteed-QoS

communication in packet-switched networks proposed by other researchers.

Key features of the architecture include a process-per-channel model for protocol pro-
cessing, QoS-sensitive CPU scheduling of per-channel protocol processing, QoS-sensitive
link scheduling of packet transmissions, multiplexing of the CPU amongst channels via
cooperative preemption, overload protection on each channel via traffic enforcement (polic-

ing and shaping), and per-channel buffer management. Qur approach in essence decouples

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

protocol processing priority from that of the application.

¢ Admaission control eztensions for end hosts: We develop admission control exten-
sions to account for various implementation-related aspects not previously considered in the
literature. These include the overlap between CPU protocol processing and link transmis-
sion or reception, the relative speed (capacity) of the CPU and the link, and the incorpo-
ration of various implementation overheads (e.g., context switching, cache misses, interrupt
handling, packet classification). We also consider two distinct mechanisms for implement-
ing link scheduling of packet transmissions, namely, thread-based and interrupt-based, at
sending hosts. Similarly, for receiving hosts we consider two distinct mechanisms for packet
input, namely, polled mode and interrupt mode. These extensions are then refined for hosts

simultaneously engaged in transmission as well as reception of QoS-sensitive traffic.

The issues of simultaneous management of CPU and link bandwidth for real-time com-
munication are of wide-ranging interest. The above-mentioned extensions are applicable
to other proposals for real-time communication and QoS guarantees [8, 188], and to other
host and network architectures. In particular, Internet servers running TCP/IP protocol
stacks supporting integrated services, especially the guaranteed service class [159], can also
benefit from these extensions. Similarly, Internet routers can apply these extensions when
incoming packets must be fragmented before forwarding in order to reconcile the different

MTUs of the attached networks.

¢ Guaranteed-QoS communication services: Based on the above-mentioned architec-
ture and extensions, we have realized a full-fledged guaranteed-QoS communication service
on the Mach MK 7.2 operating system from Open Software Foundation (OSF). This has
been done in the context of the ARMADA (A Real-Time Middleware Architecture for Dis-
tributed Applications) project, a collaborative effort between the Real-Time Computing

Laboratory at the University of Michigan and Honeywell Technology Center.

The communication subsystem constituting this service features a new service archi-
tecture that makes extensive use of OSF’s CORDS framework [172]. This service architec-
ture integrates three components: an API for specifying and obtaining QoS guarantees, a
sender-based reliable end-to-end signalling protocol, and enhanced mechanisms and policies
for admission control, resource reservation, and run-time resource management. We de-

velop architectural and admission control enhancements that capture additional constraints

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

imposed by our implementation configuration. The efficacy of these enhancements are eval-
uated via experiments performed between Pentium-based PCs running OSF Mach MK 7.2

and CORDS-based servers implementing our service architecture.

¢ Self-parameterizing protocol stacks: As mentioned earlier, it is highly desirable to
enhance the portability of QoS-sensitive communication software, which is inherently de-
pendent on the performance characteristics of the underlying hardware and software com-
ponents. To address this concern, we have designed self-parameterizing protocol stacks that

are designed with the ability to parameterize themselves appropriately during data transfer.

We retarget our guaranteed-QoS communication service to utilize a self-parameterizing
protocol stack, and evaluate our CORDS-based implementation to demonstrate the feasibility
of our approach. Qur design and implementation methodology strives to minimize the
overheads and perturbation induced in the data transfer path, while supporting relatively
fine-grain performance profiling and system parameterization. Constructing communication
subsystems using self-parameterizing protocol stacks is a promising way to design portable

QoS-sensitive communication software.

¢ QoS support in TCP/IP protocol stacks: In collaboration with researchers at the
IBM T. J. Watson Research Center, we have developed an RSVP-based QoS architecture for
TCP/IP protocol stacks supporting an integrated services Internet [13]. This architecture
represents a major functional enhancement to the traditional sockets-based communication
subsystem [108]. One of the key features of this architecture is the transparent accommo-
dation of network interfaces with differing QoS capabilities, ranging from traditional LANs,
such as Token Ring, to ATM networks with a high degree of QoS support.

Using our prototype implementation on RS/6000 based servers running AIX 4.2, we
demonstrate the efficacy of our QoS architecture in providing the desired QoS to individual
connections exchanging data across an ATM network. Via detailed kernel profiling we mea-
sure the overheads imposed by various QoS support components provided in form of traffic
policing, traffic shaping, and buffer management. Based on these overhead measurements,
we derive key implications for the performance impact of adding QoS support components

to TCP/IP protocol stacks.

o Integration with the host operating system: We highlight the issues involved in, and

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

outline strategies for, integration of a QoS-sensitive communication subsystem with oper-
ating system resource management policies for application-level QoS. Such an integration
must ensure that the protocol processing priority of a connection is derived from the QoS
requirements, traffic characteristics, and run-time communication behavior of the appli-
cation on that connection. We argue that the features and mechanisms provided in our
architecture neither preclude nor are rendered invalid with such an integration, and are also

applicable to other protocol processing architectures.

1.4 Dissertation Overview

The rest of the dissertation is organized as follows. In the next chapter we present a survey of
related work in host support for QoS in computation and communication, and compare and
contrast these efforts with our contributions. The related work surveyed includes the nature
of application QoS requirements, factors that affect communication subsystem performance.
communication subsystem design for high performance networking, and other proposals for
host support for QoS-sensitive communication and computation.

Chapter 3 presents the proposed QoS-sensitive communication subsystem architecture
for end hosts, motivating and justifying the choice of the various architectural components
provided. An z-kernel-based prototype implementation of this architecture in a standalone
configuration is described and evaluated to demonstrate the effectiveness with which QoS
guarantees are maintained. This architecture and prototype implementation realizes a sub-
set of the admission control extensions described in Chapter 4.

Chapter 4 motivates and develops admission control extensions to bridge the gap be-
tween the theory and practice in resource management for real-time communication. We
first develop extensions for hosts engaged only in transmission of QoS-sensitive data (e.g.,
servers). We then develop similar extensions for hosts engaged purely in reception of QoS-
sensitive data (e.g., clients). Finally, we develop suitable extensions for hosts simultaneously
engaged in QoS-sensitive data transmission and reception.

Chapter 5 explores realization of a guaranteed-QoS communication service on the OSF
Mach MK 7.2 microkernel operating system utilizing the CORDS framework. We first mo-
tivate and describe the service architecture and its components, followed by details of the

prototype implementation. We then present results from a detailed profiling of the com-

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

munication subsystem. Subsequently we present significant modifications to the resource
management policies and service architecture to address the performance implications of our
implementation configuration. Finally we present results from an experimental evaluation
of our prototype implementation.

Chapter 6 presents the design and implementation of self-parameterizing protocol stacks
for guaranteed-QoS communication. Drawing upon our experiences with the guaranteed-
QoS communication service, we argue that for large-scale cost-effective deployment, it is
crucial to develop mechanisms to enhance the portability of QoS-sensitive communication
software. We then propose and describe the design of self-parameterizing protocol stacks,
and compare and contrast them with related work. The guaranteed-QoS communication
service described in Chapter 5 is then retargeted to work with a self-parameterizing protocol
stack. Subsequently, we present experimental results demonstrating the feasibility of self-
parameterizing protocol stacks.

Chapter 7 explores the performance impact of QoS support in TCP/IP protocol stacks.
We begin with a brief overview of RSVP and integrated services on the Internet, followed by
a description of our QoS architecture and enhancements to the sockets based communication
subsystem. The efficacy of these enhancements are illustrated via user-level experiments
on RS/6000-based hosts running AIX 4.2 and communicating across an ATM network. We
then report measurements of QoS component overheads obtained via detailed kernel-level
profiling, and discuss their performance implications.

Chapter 8 discusses the issues involved in, and possible strategies for, integrating a
QoS-sensitive communication subsystem with the rest of the host operating system.

Chapter 9 concludes the dissertation by summarizing its contributions and outlining
avenues for further research in designing QoS-sensitive communication subsystems and op-

erating systems, and realizing application-level QoS guarantees.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

HOST SUPPORT FOR QUALITY OF SERVICE

In this chapter we highlight the issues involved, and survey related work, in host support
for quality of service in communication. By quality of service, we refer to the performance
delivered on one or more of the QoS parameters an application considers important. For
example, networked interactive applications are often sensitive to data transfer latency,
while typical multimedia streaming applications are sensitive to data transfer throughput
(or rate). Factors that affect the delivered (application-level) QoS on communication include
not only the raw performance of the communication subsystem, but also the policies adopted
to schedule the processes/threads that constitute the communicating application.

From an application’s perspective (Figure 1.3), the communication subsystem consists
of the application programming interface (API) through which applications request and
receive communication services, the communication software that provides these services
through one or more communication protocols and necessary resource management, the
operating system that forms the glue between the communication software and hardware,
and the (hardware) network adapters that interface hosts to the communication network.
Numerous research efforts have focused on optimizations and design strategies to improve
the average performance of each of these components, mostly in the context of traditional
best-effort traffic, for latency as well as throughput. Besides leveraging such performance
optimizations and design approaches, significant additional efforts are necessary to realize
“value-added” communication subsystems that can support guaranteed-QoS communication
while providing high performance to traditional best-effort traffic.

The policies used to schedule the communicating applications, the typical sources and

sinks of data, also has a significant impact on the delivered QoS on communication. Applica-

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tion scheduling determines the degree and nature of resource (i.e., CPU) sharing within the
host computation subsystem, and hence the extent of resource contention and the resulting
resource acquisition (queueing) delays. This directly affects the generation of network data
at a sending host, and consumption of data at a receiving host, which in tarn affects the dy-
namics of the communication subsystem. QoS-sensitive scheduling policies provide greater
control over processor allocation, thus minimizing the above-mentioned effects. However,
realization of application-level QoS guarantees necessitates that such policies be consistent
with the policies and mechanisms employed for QoS-sensitive data handling within the
communication subsystem.

In the next section we discuss the nature of QoS requirements imposed by emerging
networked multimedia applications. We then present a brief overview of the structure and
functionality of a typical host communication subsystem. Next we discuss the factors and
tradeoffs that have a significant effect on communication subsystem performance, and hence
the QoS delivered to applications. Following this we survey related work in efficient protocol
architectures and implementations to improve the average performance of host communi-
cation subsystems. The general implications of, and related work in, QoS-sensitive data
handling within communication subsystems are outlined next. Finally, we present related
work in QoS-sensitive data handling within communication subsystems and operating sys-

tem support for multimedia and real-time systems.

2.1 Application QoS Requirements

The quality of service required by an application corresponds to that application’s sensitivity
or tolerance to certain QoS parameters. QoS parameters include, for example, the end-
to-end communication delay, the delay jitter or variance, the communication throughput,
and packet loss. A given application may exhibit varying degrees of tolerance to only a
single QoS parameter or a combination of multiple QoS parameters. Networked multimedia
applications integrating various media such as audio, video, and text, exhibit a wide range
of QoS requirements on communication [62]. Examples of such applications include high-
definition television, medical imaging, scientific visualization, full-motion video, multiparty
video conferencing, and collaborative workspace [35,145,148].

The QoS requirements of multimedia applications differ significantly from those of tra-

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ditional data transfer applications such as remote login, electronic mail, and file transfer.
The latter are primarily loss-sensitive and hence need reliable communication, would per-
form better with low latency or high throughput, and are largely tolerant to communication
delays and jitter. QoS requirements of multimedia applications, on the other hand, reveal
a broad spectrum of sensitivity to multiple parameters. For example, full-motion video re-
quires guaranteed high bandwidth which may be highly variable, but may tolerate limited
amounts of packet loss; audio, on the other hand, requires low delay jitter and is sensitive
to packet loss [145].

Similarly, multiparty video-conferencing and collaborative workspace applications re-
quire multicast capabilities with temporal synchronization between the audio and video
streams; this necessitates additional inter-stream QoS dependencies in addition to the
above-mentioned intra-stream QoS requirements. In general, one can identify several grades
(or levels) of QoS that the network may provide to support emerging applications. Note that
since the QoS requirements are specified in terms of end-to-end performance, the sending
and receiving hosts must also be cognizant of, and provide support for, these requirements.

The sensitivity of distributed applications to QoS parameters determines the support
needed in the communication subsystem for various grades of QoS. Strict deterministic QoS
guarantees on bandwidth, delay, delay jitter, and packet loss may be necessary for hard real-
time applications and multimedia applications such as medical imaging. This necessitates
new policies and approaches for network design (8] in which messages or packets have
deadlines associated with them. A message arriving at its destination after its deadline has
expired is practically useless to the application; such messages are considered lost and are
discarded. Prior resource reservation with specification of the desired QoS guarantee and
traffic characteristics is required to isolate the needed resources for these applications. The
guaranteed service [159] being standardized by the IETF for an integrated services Internet
supports deterministic guarantees on loss-less on-time data delivery.

There are a large class of emerging applications, however, that can adapt to fluctuations
in the delivered QoS through additional buffering and/or adjusting their rate of consumption
and generation of network data. Such adaptive applications, also called soft real-time,
may be sensitive to QoS parameters such as end-to-end communication delay, but can be
designed to be accommodate delay jitter and packet loss. By providing additional buffers

and adaptively controlling the rate at which packets are consumed at the receiver, these

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

applications can adapt to existing network conditions (8,39, 145]. The destination buffers
serve to restore the spacing between successive data samples and buffer out variations
in network delay. A study on packet video transport [91] illustrated the effectiveness of
using network feedback about load conditions to modulate the frame transmission rate of
video sources. The feasibility of adapting frame transmission rates to the available network
bandwidth was also demonstrated in [86].

For such applications it suffices to provide statistical performance bounds on end-to-end
communication delay and packet loss, which could also be computed using the measured
performance of the network [85]. In general, adaptive applications allow the network to trade
off strict QoS guarantees for simpler network design, higher network utilization, and looser
QoS guarantees supplemented with additional intelligence and resources at the senders and
receivers. The QoS delivered by the communication subsystem directly influences the type
and design of applications that can be supported effectively. For example, for adaptive
applications that can adjust to existing network load conditions, the delivered QoS may
determine the amount of buffering needed for acceptable performance. Recent studies using
voice conferencing indicate that the delivered QoS determines the degree and exact nature
of adaptivity required in the application [145]. The controlled load service [183] being
standardized by the IETF for an integrated services Internet is intended for such adaptive

real-time applications.

2.2 Communication Subsystem Overview

Before discussing the factors affecting communication subsystem performance, we present
a brief overview of typical host communication subsystems. The communication subsystem
can be viewed as a pipeline, comprising several stages formed by the different modules
that participate in network communication. Application data is shepherded between the
application task and network through this pipeline. Figure 2.1 shows the generic structure
of such a communication pipeline.

Application tasks generate communication requests by invoking the appropriate proce-
dures in the application programming interface (API). On transmission, the API forwards
the requests to the communication software, possibly after performing some protection

checks and/or buffering. The communication software, which includes the communication

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COMMUNICATION COMMUNICATION
SOFTWARE HARDWARE

. J . y

) () 4)
A
P
1

OXOP

ADVOE—mMz

Figure 2.1: Communication subsystem as a pipeline.

protocols that constitute the protocol stack, processes these requests by invoking the spec-
ified protocol(s) that constitute the protocol stack. After creating appropriate protocol
data units, the communication software issues appropriate commands to the communica-
tion hardware to transmit the data on the network. Communication hardware is comprised
by one or more network adapters.

For reception, the API may block the requesting task if the requested data has not
arrived. On reception of a datum, the communication hardware “interrupts” the commu-
nication software, thus initiating processing of the received datum. After processing the
datum is passed to the API, which passes it on to the waiting (destination) task, possibly
after some buffering (if the destination task is not waiting) and/or protection checks. In a
multi-stage pipeline such as this, the slowest stage determines the throughput and latency of
communication, and hence the performance delivered to the application. Similarly, variable
per-packet delay (e.g., due to uncontrolled first-in-first-out queueing) incurred at a stage
may introduce significant amounts of jitter in the observed end-to-end delay.

During protocol processing and data transfer, the protocols may invoke various oper-
ating system resource management functions such as timer services, buffer management,
and device management (i.e., interrupt servicing and low-level device operations), as shown
in Figure 2.2. Depending upon the protocol architecture, kernel architecture, and process
architecture [152], other resource management functions such as process management and
scheduling may also occur during data transfer. On multiprocessor hosts, processor allo-
cation may also occur in addition to the above. An extensive survey of transport system
architecture services and implementation strategies in a variety of operating systems such

as System V UNIX, BSD UNIX, z-kernel, and Choices is presented in [152].

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application tasks

r Resource Management ji——)(* AP1 j

Buffer management ‘ Protocol Stack

Scheduling l
J’w allocation J Network Adapter
L) I

Network

Figure 2.2: Interaction between protocols and resource management functions

2.3 Factors Affecting Performance

As mentioned, communication subsystems provide applications with a range of communi-
cation services through a variety of communication protocols, management of the necessary
communication resources, and interaction with network devices for data transmission and
reception. With slower networks, packets (or messages) were generated and consumed at
a slower rate, and therefore the host was generally not the bottleneck. Gigabit networks
have shifted the bottleneck from the transmission media to the end hosts (145,161]. For
the designers of the communication subsystem, therefore, the primary challenge has been
realization of high-throughput and low-latency communication.

The performance of communication subsystems is primarily determined by three factors:

o the semantics of the API, which determines the cost of moving data to/from the

communication subsystem,

o the overhead of protocol stack execution, including the protocol processing performed
by individual protocols and the numerous QS resource management services invoked

during execution, and
e the multiprogramming and network input load on the host, that determines the extent

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of resource contention experienced by communicating tasks and within the communi-

cation subsystem.

We do not consider factors that affect end-to-end communication performance, such as the
traffic characteristics and contention in the network, and the network topology. Contention
can occur for resources such as processing capacity, network buffers, and network links, and
may occur inside the sending as well receiving hosts. We discuss each of the above-mentioned

factors in detail next.

2.3.1 API Semantics

The location and data passing semantics [25] of the API affects communication perfor-
mance in a variety of ways. Typically the API is implemented by the kernel (e.,g. BSD
Sockets [108]), or by a trusted server at user level, and the overhead of crossing protec-
tion domains (e.g., the user-kernel boundary) during data transfer degrades communica-
tion throughput. Splitting the API into data transfer and control parts, with the data
transfer part implemented as a library at user level, was shown to improve throughput
substantially [112]. The amount of buffering available at the API also affects the protocol
dynamics of end-to-end protocols. An application transferring large amounts of data may
be blocked if enough socket buffers are not available. Similarly, the amount of buffer space
available is used by protocols such as TCP to invoke flow control and congestion control
mechanisms [84].

Existing APIs such as BSD Sockets have traditionally provide applications no control
over resource management for communication-related activities. Thus, for the application
the communication subsystem is a “black box,” accepting requests for data transmission
or reception and informing the application upon completion. There can be wide variation
in the application-generated traffic patterns presented to the communication subsystem.
These patterns include bulk data transfers, short, interactive request-response style com-
munication, and the sustained access patterns of applications supporting continuous media.
Together with the size of the transfers, the time between successive communication requests
(the “think time”) reflects the grain of the application and determines how often the appli-
cation performs network data transfer. For an application performing uni-directional video

transfer, for example, frames of varying sizes may be generated at periodic (33 ms) intervals.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The access pattern might be significantly different for interactive multimedia applications.

Knowledge of such application patterns may benefit communication subsystems, which
could employ resource management policies significantly different from those used for com-
putation. The scheduling schemes for messages and packets, the priorities assigned to them,
and the management of protocol threads can then be tuned to the characteristics of net-
work communication and QoS requirements of applications. In addition, this allows protocol
processing to be scheduled via thread scheduling schemes distinct from those developed for
application threads, especially for multimedia applications (6,70].

In recent years, resource management for computation has moved towards giving more
control to the applications, e.g., user-level threads [113], scheduler activations [7], and
application-kernel coordination to dynamically vary the degree of active parallelism in sci-
entific computing applications [174]. Providing applications with similar control over thread
management and scheduling within the communication subsystem can potentially improve
performance by exploiting locality, improving resource utilization, and reducing context
switching and scheduling overheads.

In general, the API can be extended to allow application-specific resource management.
This flexibility allows the application to manage its own computation and communication
resources. However, leaving resource management entirely up to the application may not
suffice for QoS-sensitive management of resources. Alternately, applications and operating
systems can be designed to cooperate with one another to perform QoS negotiation and
adaptation to maximize service accessibility and continuity [2,33,104]. A novel way to
realize application-specific policies in networking is via installing of application code directly
in the kernel [64]. We note that requiring applications to specify their traffic characteristics
and desired QoS levels also realizes application-specific resource management, in that the
communication subsystem and the operating system are made aware of, and undertake to

allocate and manage resources in accordance with, application QoS requirements.

2.3.2 Protocol Stack Execution

Once application data is handed to the communication subsystem, it is processed by all the
protocols constituting the protocol stack. For outgoing data, this may involve fragmentation
and header encapsulation, while for incoming data this may involve packet classification.

header removal, and reassembly. Additional computationally-intensive functions such as

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

checksum computation, encryption, coding and compression may also be performed. For
example, growing concerns of security and privacy on the Internet have led to the develop-
ment of a number of security standards such as the Secure Socket Layer (SSL) and Secure
HTTP.

The execution performance of protocol stacks depends on a number of factors. The
first and foremost is the processing cost imposed by each layer in the protocol stack. This
cost depends on the particular function performed by the corresponding protocol, which
in turn may depend on the type of the data to be processed. The aggregate processing
cost of the protocol stack depends on the depth of the protocol stack, i.e., the number of
protocols comprising the stack. Recent trends in the development of WWW point to the
increasing prevalence of deeper protocol stacks which enhance the functionality provided
by the communication subsystem.

One of the primary factors determining communication subsystem performance is the
number of times data is copied during processing. Excessive data copying has been identified
as one of the main reasons behind the relatively smaller improvements in the performance of
networking software compared to the advances made in networking hardware [142]. While
data copying primarily impacts data transfer throughput, protocol processing latency is
significantly affected by the complex, protocol-specific cache behavior of network proto-
cols [16,133].

Finally, protocol stack execution performance is significantly affected by operating sys-
tem overheads such as context switching and device interrupts [163]. The number of context
switches incurred during protocol processing are a function of the protocol architecture em-
ployed [152], while the number of interrupts is a function of the design of the network
adapter and the packet input mechanism adopted [151,173]. Further, since the communi-
cation subsystem typically shares processing resources with application threads, additional
scheduling and context switching overheads, and associated cache misses [124], may be in-
curred. Additional sources of overhead include buffer management, timer management, and
error-recovery mechanisms such as retransmissions. As highlighted in the remaining chap-
ters of this dissertation, support for QoS-sensitive handling of data imposes new overheads
and demands on communication subsystem performance.

With faster networks, acceptable application-level throughputs and latencies cannot

be achieved without a substantial investment in managing the communication subsystem

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resources efficiently. As described in Section 2.4, this has fueled significant redesign, opti-

mization, and exploitation of parallelism within the communication subsystem.

2.3.3 Multiprogramming and Network Load

There are two primary aspects to multiprogramming and network load as it relates to com-
munication performance: (a) a task engaged in network I/O may compete for host resources
with other purely computational tasks, and (b) it may compete with other tasks also si-
multaneously engaged in network I/0. In both cases the background load and operating
system scheduling policy together determine the frequency and duration of execution of the
task. Scenario (a) disrupts the execution profile (and hence the packet input or output rate)
of the network task due to uncontrolled contention for the CPU. Scenario (b) introduces
additional uncontrolled contention for communication resources such as output queues and
link bandwidth.

For a sending task, scenario (a) can arbitrarily lower network utilization or produce
bursty traffic on the network, thus introducing significant jitter in the packet transmission
profile and even incurring substantial packet loss. For a receiving task, delays in receiving
arrived messages (possibly due to contention from other higher priority tasks) may result
in dropped packets due to buffer overflow. Since the task is unable to receive data from
the socket buffers, flow control mechanisms in protocols like TCP may stall the sender
until the received data is acknowledged. Both these effects lower throughput drastically
and also increase the end-to-end communication delay. QoS degradation can occur with
asynchronous sends as well; because of limited socket buffer space, the sender may be
blocked if the previous network transmission requests were pending, or the excess data may
get dropped inside device driver or adapter queues.

Scenario (b) is similar to scenario (a) in that the tasks still experience QoS degradation
due to uncontrolled contention for the CPU. However, due to multiple tasks performing
network input/output, the order of packet processing and transmission is also arbitrary.
This interference manifests itself in higher, variable queuning delays for protocol processing
and transmission/reception, and hence unpredictable degradation in the delivered QoS. Due
to higher total aggregate traffic, the likelihood of packet loss is also significantly higher and
unpredictable. Once again, the packet transmission profile is rendered extremely bursty,

which may increase network load and hence further QoS degradation in downstream routers

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or the receiving host.

For example, the receiving host may be unable to keep up with the packet arrival rate.
which is now higher becaunse of a bursty sender. A persistent burst of packet arrivals at
the receiver can result in receive livelock [151]. Receive livelock is a phenomenon in which,
under network input overload, a host or router is swamped with processing and discarding
arriving packets to the extent that the effective throughput of the system falls to zero. We
highlight strategies to prevent or eliminate receive livelock in Sectjon 2.4.

Experimental and analytical studies

Several studies have attempted to study the effects of multiprogramming on communication
performance experimentally as well as analytically.

An in depth study of the effect of background load on communication performance
for the 4.2 BSD TCP/IP protocol stack is reported in [31]. The delivered end-to-end de-
lay and throughput for TCP and UDP traffic is measured against background load for a
range of message sizes. The effect of background Ethernet load on TCP and UDP perfor-
mance is studied in [21]. More recently, the effect of background load on the performance
of SunOS inter-process communication (IPC) mechanisms and TCP/IP protocol stack is
studied in [143], for an artificial CPU-intensive workload as well as a real distributed appli-
cation. The study highlights the negative influence of UNIX scheduling mechanisms on IPC
performance; delays in scheduling processes engaged in network I/O interferes with the flow
control mechanisms of the communication protocols coordinating the data transfer, causing
an increase in end-to-end delay and a substantial drop in throughput.

Useful insights into the subtle effects of multiprogramming and network input load on
packet reception time are provided by Danzig [47]. He constructs a performance model of
protocol processing in UNIX [108] to capture the effects of multiprogramming and limited
socket buffers. The model accounts for protocol processing overhead and the variability
introduced by interrupt servicing, scheduling latency, and memory contention, in the time
taken by a destination process to receive arriving packets. This study provides ample
evidence that both multiprogramming and network load introduce subtle degradations in
the delivered QoS.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implications for CPU scheduling

Provision of guarantees on the delivered QoS necessitates appropriate operating system
support to schedule applications. While we describe possible approaches to QoS-sensitive
CPU scheduling in Section 2.5, here we describe the results from an interesting study done
by Mogul [126]. He argues that communication delays in a multiprogrammed system may
be reduced through “dallying”. Dallying, or latency-sensitive scheduling, is a scheduling
strategy in which the CPU scheduler allows a process waiting for network input to busy-wait
on the CPU for some additional time in the current quantum, instead of blocking it and
selecting another process to run. The tradeoff is between busy-waiting (and avoiding later
contention from background load) and excessive context switching,.

Mogul’s observations are based on the presence of locality between communicating pro-
cesses resident on distinct hosts connected by a local area network. He observes high
per-process locality such that three quarters of all packets arriving at a host are for the
same process that received the previous packet, while one quarter to two thirds of incoming
packets are for the process that most recently sent a packet. Clearly, the effectiveness of
dallying largely depends on the heuristics used for predicting the delay until the next packet
arrival based on the history of packet arrivals for the process. We note that provisioning
QoS guarantees on end-to-end communication allows such packet arrival characteristics to
be readily constructed from the traffic and QoS specifications supplied by applications.

assuming bounded traffic distortions through the network.

2.4 Efficient Protocol Architectures and Implementations

To reap the benefits of the advances made in networking technology, and translate them to
good application-level performance (i.e., high throughput and low latency), it is necessary
to minimize transmission and reception overheads within the communication subsystem via
careful implementation. The techniques employed to improve the delivered throughput and

latency of communication protocols include [61]

¢ minimization of data-copying within the communication subsystem and across the

API [52,181],

¢ optimization of protocol implementations, such as hand-optimized critical paths [40].

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and integrated layer processing [1,41],
e appropriate network interface design for high performance [161], and,
e exploitation of concurrency and parallelism within the communication subsystem [152].

We discuss each of these techniques and their compatibility with, and implications for,

QoS-sensitive communication subsystem design.

2.4.1 Performance optimizations for efficient data transfer

A wide variety of performance optimizations have been applied to communication subsys-
tems. The most significant of these are briefly described below.

Buffer management for data copy elimination: Elimination of unnecessary data copy-
ing via appropriate buffer management has been the focus of numerous research efforts in
recent years. Proposals to achieve high-bandwidth data transfer across protection domains
(e.g., between the kernel and an application) include restricted virtual memory remap-
ping [175], container shipping [147], and Fbufs [54]. Support for in-kernel device-to-device
data transfers for multimedia applications is described in [60,93]. An extensive taxonomy of
the software and hardware tradeoffs involved in data passing and performance comparison
of different buffering semantics is provided in [25], and two copy avoidance techniques eval-
uated in [27]. Network adapter support for checksummed, multiple-packet communication
in an ATM network is explored in [26].

Protocol stack optimization: A number of research efforts have focused on the optimiza-
tion of protocol stack execution latency. These include protocol-specific optimizations for
TCP [40] and UDP [146], improving data tonching overheads of checksumming for UDP /IP
stacks [97], and exploring the non-data touching processing and related operating system
overheads in TCP/IP stacks [96]. A detailed study of factors affecting end-to-end commu-
nication latency in LAN environments is described in [170]. ILP, first proposed in [41] and
subsequently implemented and evaluated in [1], reduces the number of accesses to network
data by effectively collapsing protocol layers and executing them in an integration fashion
for each data word accessed. Several recent efforts have also focused on optimizing the
protocol processing latency in TCP/IP protocol stacks [16,129,176].

User-level protocol processing: Several research efforts have focused on increasing com-

munication subsystem throughput via user-level handling of network data [57,112,167]. In

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

addition to data copy minimization compared to a server-based implementation, user-level
protocol processing offers significant flexibility in developing and debugging communication
protocols. With appropriate support in the network interface and the operating system, it
is possible to grant applications full access to the network interface, thereby bypassing the
operating system completely [28,55].

Application-specific networking: Recently there has been much interest in OS extension
technologies, in which trusted application code is installed for execution within the OS. This
allows operating systems to be customized or “extended” to implement application-specific
policies. Plexus [64] and application-specific handlers in the Aegis kernel [180] are two
examples of approaches to realize application-specific networking via OS extensions.
Packet classification: Packet filters provide general and flexible classification (i.e., demul-
tiplexing) of incoming packets to application end-points, at the lowest layer of the protocol
stack. They were first proposed primarily to enable user-level network capture for devel-
oping new protocols without kernel modifications [127], but are increasingly being utilized
for realizing protocols such as UDP and TCP as user-level libraries. Successive implemen-
tations of packet filters have reduced classification overhead significantly, e.g., BPF [114],
MPF [186], and PATHFINDER [11]. While all of these filter designs perform classification
via interpretation, more recently dynamic code generation techniques have been applied to
realize very efficient packet filters, as in DPF [59]. Packet filters are necessary for packet
classification in connectionless networks, such as the [Pv4-based Internet. Further, they
may also be needed in native ATM networks that aggregate multiple end-to-end connec-
tions over virtual circuits [11].

Receive livelock elimination: Besides optimizing the receive data path through the
communication subsystem, efforts have also been made to address another key problem
associated with data reception, namely, receive livelock [151]. Receive livelock has been
addressed at length in [125] via a combination of techniques (such as limiting interrupt
arrival rates, fair polling, processing packets to completion, and regulating CPU usage for
protocol processing) to avoid receive livelock and maintain system throughput near the
maximum system input capacity under high load. Lazy receiver processing (LRP) [53],
while not completely eliminating it, significantly reduces the likelihood of receive livelock
even under high input load. In LRP, an incoming packet is classified and enqueued, but

not processed, until the application receives the data. We have studied adapter support for

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

receive livelock elimination using the END [81].

“Paths” through the communication subsystem: The Path abstraction realized in
the Open Software Foundation’s CORDS framework [172] provides a rich framework for
development of real-time communication services for distributed applications. Using this
abstraction, unique paths can be defined through the communication subsystem, and path-
specific allocation performed for resources such as packet buffers, input packet queues,
and input shepherd threads. Similarly, the Scout operating system from the University
of Arizona proposes the use of explicit paths as an important abstraction in operating
system design to improve performance [128]. However, while paths in [172] are envisioned
primarily as a static, relatively coarse-grain mechanism, paths in [128] are not associated

with communication resources and assigned deadlines or priorities via admission control.

Implications for QoS-sensitive protocol processing

With the exception of paths, most of the optimizations and design strategies described
above are geared primarily towards traditional best-effort traffic with the primary goal of
increasing data transfer throughput or reducing latency. As such these efforts are comple-
mentary to our work, which focuses on provision of QoS guarantees for communication.
Moreover, these optimizations continue to be applicable in our proposed QoS-sensitive ar-
chitecture as well as the enhancements made to TCP/IP stacks for integrated services.
[n constrast, we examine the overheads imposed by new data-handling components in the
protocol stack. We adapt and extend the notion of paths in [128,172] to obtain QoS guaran-
tees and communication resources via admission control, and perform fine-grain path-based
resource management to maintain QoS guarantees.

While packet filters were designed primarily to classify incoming packets, they can also
be used to classify outgoing traffic at network routers. However, traffic classification for
provision of QoS guarantees imposes additional requirements on the classification function,
and as such may require more elaborate functionality [178]. Regarding receive livelock
elimination, while approaches such as LRP work well for best-effort traffic, appropriate OS
support is needed to ensure the application is scheduled to run in a QoS-sensitive fashion.
Moreover, architectural support similar to that presented in this dissertation is needed to

multiplex resources across multiple connections originating from the same application.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.2 Network Interface Design

With network bandwidth increasing faster than processor and memory bandwidth, efficient
hardware support may be provided for low-level communication protocols, thus relieving
the burden on the communication subsystem software. By migrating frequent and time-
consuming communication fanctions into hardware, the available network bandwidth can
be utilized effectively. Since the network adapter defines the communication primitives
available to the communication software, flexible support for network I/O necessitates a
careful division of functionality between the adapter and the host processor [89,164]. Net-
work adapters either facilitate flexibility in supporting different protocols through simple
designs [46,103, 120], or restrict flexibility, and hence improve performance, by supporting
specific communication protocols and resource management strategies [37,90].

In general, the overhead of host-adapter interaction and unnecessary data movement
across the system bus can limit the amount of useful concurrency between the software
and hardware portions of the protocol stack, thus affecting communication subsystem per-
formance. The design of high-speed network adapters, their performance characteristics,
and implications for protocol stacks in uniprocessor workstation environments has received
significant attention recently, for FDDI [151] as well as ATM [48, 173] networks.
Uniprocessor front-ends and network adapters: With dedicated network front-ends,
the network adapter operates under control of a front-end communication processor which
handles all communication-related functions including network interrupts. Data exchange
between the host and the communication processor is performed either by explicit data
copying or through shared memory. Not only does this permit special tuning of the func-
tionality desired and significantly reduce the number of interrupts delivered to the host, it
also permits exploitation of available concurrency through pipelining of the transmission
and reception datapaths [90].

More importantly, it permits management of the communication subsystem by a sep-
arate executive designed for communication-related operations, such as the z-kernel [76].
The VMP NAB [90] and Nectar CAB [120] are two examples of this functional partitioning.
For example, the Nectar CAB [10,120] off-loads all protocol processing functions from the
host processor, freeing it from adapter handshake overheads and permitting greater overlap

between useful computation and communication processing.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Multiprocessor front-ends: Multiprocessor front-ends may be designed using special-
purpose or general-purpose hardware. Special-purpose designs facilitate efficient interaction
with the host and the network interface unit [82,83], while general-purpose designs must
explicitly coordinate accesses to these interfaces (14,138,182]. More processing power in
the front-end can improve the quality of service provided to the applications, by reducing
queuing delays within the communication subsystem.

Network interfaces for multicomputers: Network interface design for multicomputer
environments presents unique opportunities and cost-performance tradeoffs. In dedicated
multicomputers, network interface designs are typically tightly coupled with the processor,
and as such can exploit attributes of such a tight coupling. For example, the Hamlyn [30]
network interface performs sender-controlled data transfer, in which the sender controls
the memory location at the receiver where data will be deposited. Similarly, the network
interface for the SHRIMP multicomputer [18] realizes direct writes to remote memory via
virtual memory mapped communication [56]. This requires specialized network interface

hardware that maintains virtual to physical addressing mappings.

Implications for QoS-sensitive transmission/reception

Neither of these approaches are feasible for QoS-sensitive communication between workstation-
type clients and servers across WANs. For example, unlike these approaches, clients and
servers do not trust one another. Moreover, the operating system cannot be bypassed;
instead, it must explicitly validate remote accesses and, at the very minimum, schedule
packet transmissions and receptions. Further, all application data must be processed using
appropriate protocols, thus necessitating CPU involvement during data transfer.

Most of the network adapter design tradeoffs highlighted above have been explored
primarily in the context of best-effort network traffic. That is, while these design opti-
mizations improve data transfer throughput, no explicit guarantees are given; furthermore,
improvements in throughput may be obtained at the expense of low, predictable latency.
For example, FIFO queueing in the network adapter allows successive packet transmissions
to be pipelined, thereby improving throughput; however, it exacerbates packet transmis-
sion latency while making it more unpredictable. Appropriate queueing and scheduling
support is needed on network interfaces to support QoS-sensitive traffic. We have studjed

the implications of network adapter characteristics for real-time communication on a Fibre

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Channel adapter manufactured by Ancor Communications [77]. As highlighted in Chap-
ter 4, QoS-sensitive handling of network data also requires appropriate support on network

adapters.

2.4.3 Parallel Protocol Implementations

While we do not consider multiprocessor hosts or parallelized communication subsystems
in this dissertation, it is important to understand the issues and tradeoffs in exploiting and
managing communication parallelism. Multiprocessor hosts are increasingly be adopted
as workstations or servers. Accordingly, our design for a QoS-sensitive communication
subsystem should, at the very least, permit extension to multiprocessor hosts. Moreover.
we have derived the basic structure for the architecture described in Chapter 3 from the
proposed architectural approaches to manage communication parallelism, as outlined below.

With the advent of high-speed networks, uniprocessor protocol implementations (on
the host or the network interface) are often unable to keep up with, or fully utilize, the
network [83], resulting in performance bottlenecks within the communication subsystem.
This performance degradation is all the more pronounced for multiprocessor hosts due
to a higher rate of message generation and consumption. The pursuit of application-level
gigabits-per-second has prompted recent efforts to develop faster communication subsystems
through the exploitation of parallelism.

In general, communication subsystems employ one or more processes (or threads) to
implement a protocol graph [76]. Depending upon the allocation of work to these processes.
communication subsystems can be classified into horizontal or vertical process architec-
tures [152]. In horizontal architectures [182], each process implements a specific layer of a
protocol graph; at most two processes can be assigned to each layer, one each for transmis-
sion and reception. In vertical process architectures [14, 76,83], on the other hand, processes
are assigned to active entities such as connections or messages and each process implements
one path through the protocol graph. This approach significantly reduces context switches
and message buffering that are unavoidable in horizontal process architectures.

Grains of parallelism: Several grains of parallelism can be exploited within both these
approaches [152]. These grains roughly correspond to the mapping between the process
architecture and the available processing resources. Finer grains of parallelism can be

exploited for vertical process architectures. A relatively coarse-grain technique, connectional

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parallelism, associates a processor with each active connection. All messages belonging to
a connection are handled by the associated processor. Relatively fine-grain techniques
include message parallelism and packet parallelism. With message parallelism a processor
is associated with each message generated or consumed at the host.

Packet parallelism, on the other hand, associates a processor with each arriving or de-
parting packet [83]. Various combinations of these approaches are also possible. Fine-grain
techniques provide more scalable parallelism and hence potentially greater performance
gains. In practice, though, synchronization constraints, resource contention, and load bal-
ancing requirements limit the speedups, and hence the message throughputs, observed.
Overheads of managing parallelism: The techniques used in [14] to parallelize z-
kernel [76,141] and the protocols, including the locking mechanisms used and dedication
of special z-kernel functions to specific processors, suggest that special synchronization
paradigms and processor allocation mechanisms are needed to manage communication paral-
lelism effectively. Synchronization and contention overheads may seriously limit the amount
of parallelism that can be exploited effectively in practice. As shown in [14], parallel imple-
mentations of contemporary transport layer protocols like TCP are synchronization-limited
because these protocols retain a significant amount of connection state that must be main-
tained conmsistently. In comparison, the results obtained for UDP show higher speedups
since UDP maintains significantly less state than TCP.

This limitation is in part due to the fact that protocols such as TCP were not designed
with parallel implementations in mind. Large connection state and the requirement of
in-order delivery of packets to applications are two examples of features that limit perfor-
mance in parallel implementations. Increased parallelism is likely to be a feature of the
next generation of communication protocols [150,191]. Recent results have shown that
connectional parallelism delivers comparatively more scalable performance than message
parallelism [134,153,154].

Protocol processing in SMMPs: Similar problems arise when implementing protocol
processing in shared-memory multiprocessors (SMMPs), where the approaches adopted es-
sentially lie on two extremes. In one approach, each processor executing a process also
performs protocol processing for messages transmitted by that process [169]. In this model,
protocol processing is treated as work strictly local to each processor, resulting in an implicit

sharing between the computation and communication subsystems. An alternative approach

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

treats protocol processing as global work that can be scheduled uniformly on any available

processor [67,99]; this results in explicit sharing between the two subsystems.

Implications for QoS-sensitive protocol processing

These approaches to exploiting communication parallelism may not suffice for QoS-sensitive
protocol processing since they introduce unpredictability in the availability and allocation
of processing resources, and complicate global coordination for network access. A process-
per-message model seems unsuitable for QoS-sensitive protocol processing. Assuming that
each message’s shepherd process is independently scheduled on the protocol processors,
simultaneous processing of multiple messages from the same connection would lead to out-of-
order consumption of protocol processing and transmission bandwidth. Further, shepherd
processes handling messages belonging to the same connection must now synchronize to
maintain consistent connection state.

With potentially several connections mapped to the same processor, it becomes more
expensive to coordinate handling of messages on a connection and between connections. Ac-
cordingly, the process-per-connection model, with appropriate extensions, seems the most
suitable candidate for QoS-sensitive protocol processing. We have proposed an architec-
ture for QoS-sensitive protocol processing on SMMPs that maps and schedules protocol
processing for different guaranteed-QoS connections on a dedicated set of protocol proces-
sors [119], with each connection handler mapped to exactly one processor. Our approach of
statically partitioning the processing resources is similar to multiprocessor front-ends [138],
except that a set of processors within the host are dedicated for protocol processing and
communication-related functions, as in [14]. Accordingly, the architecture described in

Chapter 3 is based on the process-per-connection model of protocol processing.

2.5 QoS-Sensitive Communication and Computation

The preceding section focused on techniques that improve the average performance of com-
munication subsystems, and hence the application-level throughput and latency realized.
However, these techniques do not attempt to perform QoS-sensitive data handling. In
this section we survey related work in QoS-sensitive communication and computation, and

compare and contrast it with the contributions made by this dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A number of approaches are being explored to realize QoS-sensitive communication and
computation in the context of distributed multimedia systems. An extensive survey of
QoS architectures is provided in [32], which provides a comprehensive view of the state
of the art in the provisioning of end-to-end QoS. In the discussion below, we highlight a
subset of these approaches, focusing on enhancements and the associated implications for
end hosts. We first discuss approaches to QoS negotiation and adaptation, then highlight
communication architectures for QoS, followed by related work in multimedia and real-time

operating systems.

2.5.1 Dynamic QoS Negotiation and Adaptation

Since a broad class of multimedia applications are soft real-time in nature, i.e., can tolerate
limited fluctuations in the delivered QoS, several research efforts have explored the issues
involved in supporting QoS negotiation and adaptation functions at end hosts. The AQUA
system [104] is one such effort which has developed QoS negotiation and adaptation support
for allocation of CPU and network resources. Similarly, a QoS adaptive transport system is
described in [33] that incorporates a QoS-aware API and mechanisms to assist applications
to adapt to fluctuations in the delivered network QoS. A scheme for adaptive rate-controlled
scheduling is presented in [184].

A dynamic QoS control scheme using optimistic processor reservation and application
feedback is described in [135]. This system, which is implemented in RT-Mach [171], re-
serves processing capacity based on average processing usage of applications and provides
notifications to applications to adjust QoS levels. QoS negotiation and adaptation support
has also been developed for real-time applications [2], which provides support for specifica-
tion of QoS compromises and supports graceful QoS degradation under overload or failure
conditions.

The negative effects of the scheduling variability introduced by the UNIX operating
system on audio playback is highlighted in [102]. Application-level support to adapt to
such QoS variations and its realization in a real-time audio tool is also described.

While we do not consider dynamic QoS negotiation and adaptation in this dissertation,
most of the architectural mechanisms and enhancements can be utilized for such scenarios.
For example, the architectures proposed in Chapters 3 and 7 provide mechanisms to enforce

application traffic contracts and generate notifications in response to which applications

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can adapt. Future incarnations of the guaranteed-QoS service described in Chapter 5 will

include support for dynamic QoS negotiation.

2.5.2 Communication Architectures for QoS

Architectural support for QoS in communication includes network and protocol support for
signaling and data transfer, appropriate QoS architectures for host communication subsys-
tems, run-time support to manage QoS-sensitive traffic, and appropriate design of network
adapters. Related work in each of these areas is described below.

Network and protocol support for QoS: The DASH project [4,5] explored provision
of performance guarantees for unicast sessions in [P networks. It argued that bounded pro-
cessing delays and overheads within the communication subsystem can be achieved through
appropriate priority-based scheduling [6]. The Tenet real-time protocol suite [12] is one of
the first implementations of real-time channels [63] on wide-area networks (WANs), and
supports both deterministic and statistical service guarantees. In addition to providing
protocol support for end-to-end signalling, support is provided for QoS-sensitive packet
scheduling at hosts and routers via Rate-Controlled Static-Priority Queueing [187).

However, the Tenet project does not consider incorporation of protocol processing over-
heads into the network-level resource management policies. In particular, it has not ad-
dressed the problem of QoS-sensitive protocol processing inside hosts. Further, they do
not consider incorporation of implementation constraints and overheads, and simultaneous
management of CPU and link bandwidth for transmission and reception. While they also
develop architectural enhancements for a sockets based communication subsystem, the pro-
tocol suite adopted does not conform to IETF standards for integrated services. Moreover,
they do not provide support for network interfaces with widely differing capabilities.

In the context of integrated services on the Internet, much support being provided
on the Internet is geared towards multicast communication, in contrast with our primary
focus on unicast real-time channels. We note that the architectural approach, mechanisms,
and extensions developed in this dissertation are applicable to unicast as well as multicast
sessions, for both sender-initiated and receiver-initiated signalling.

QoS architectures: The OMEGA [132] end point architecture provides support for end-
to-end QoS guarantees. In this architecture, application QoS requirements are translated

to network QoS requirements by the QoS Broker [131], which negotiates for the necessary

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

host and network resources. The OMEGA approach assumes appropriate support from
the operating system for QoS-sensitive application execution, and the network subsystem
for provision of transport-to-transport layer guarantees. The primary focus of OMEGA is
development of an integrated framework for the specification and translation of application
QoS requirements and allocation of the necessary resources.

QoS-A [34] is a layered architecture focusing on provision of QoS within the communica-
tion subsystem and the network. It provides features such as end-to-end admission control,
resource reservation, QoS translation between layers, and QoS monitoring and maintenance.
QoS-A specifies a functionally rich and general architecture supporting networked multime-
dia applications. Practical realization of QoS-A, however, would necessitate architectural
mechanisms and extensions similar in flavor to the ones demonstrated in this dissertation.

We have designed and implemented an RSVP-based QoS architecture supporting inte-

grated services in TCP/IP protocol stacks, running on legacy (e.g., Token Ring and Ether-
net) LAN interfaces as well as high-speed ATM networks [13], as described in Chapter 7. A
native-mode ATM transport layer has been designed and implemented in [3], and enhanced
with QoS support for a user space implementation [75]. Similar to our RSVP-based QoS
architecture, traffic policing and shaping is performed while copying application data into
kernel buffers; the application is blocked if it is violating its traffic specification. However,
our design is applicable to general TCP/IP protocol stacks, including legacy LAN and ATM
interfaces. Further, whether shaping is performed on traffic associated with a reservation
is determined from the service class that reservation belongs to.
Support for QoS-sensitive communication: The design of a QoS-controlled communi-
cations system for ATM networks is described in [43]. However, implementation overheads
and constraints are not incorporated in the resource management policies. Moreover, no
performance impact of supporting QoS in communication is reported.

Real-time upcalls (RTUs) [68] are a mechanism to schedule protocol processing for net-
worked multimedia applications via event-based upcalls [38]. Protocol processing activities
are scheduled via an extended version of the rate monotonic (RM) scheduling policy [111].
Similar to our approach, delayed preemption adopted to reduce the number of context
switches. Qur approach differs from RTUs in that we use thread-based execution model
for protocol processing, schedule threads via a modified earliest-deadline-first (EDF) pol-

icy [111], and extend resource management policies within the communication subsystem

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to account for a number of implementation overheads and constraints.

Similar to our approach, rate-based flow control of multimedia streams via kernel-based
communication threads is also proposed in [185]. In contrast to our notion of per-connection
threads, however, a coarser notion of per-process kernel threads is adopted. This scheme is
clearly not suitable for an application with multiple QoS connections, each with different
QoS requirements and traffic characteristics. Mechanisms for scheduling multiple commu-
nication threads, and the issues involved in reception side processing, are not considered.
More importantly, the architecture outlined in [185] does not consider provision of signaling
and resource management services within the communication subsystem.

Communication support for efficient messaging in distributed real-time environments is
provided in FLIPC [15]. FLIPC exploits programmable communication controllers to realize
low latency message transfer. Similar to our approach, arriving messages are not processed
in interrupt context, but processed by a thread that is in turn scheduled for execution.
However, FLIPC does not provide any explicit QoS guarantees on the end-to-end message
delivery. The CORDS path abstraction [172], which is similar to Scout paths [128], provides
a rich framework for development of real-time communication services for distributed ap-
plications, as demonstrated with the guaranteed-QoS communication service in Chapter 5.

As mentioned earlier, while LRP [53] works well for receive-livelock elimination for best-
effort traffic, the architectural approach outlined in this dissertation is needed to extend
it to accommodate QoS-sensitive traffic. Similar to LRP, our approach also utilizes early
demultiplexing and channel-specific queueing of incoming packets. However, packet pro-
cessing and message reassembly is performed in a QoS-sensitive fashion via EDF scheduling
of channel handlers, as and when communication capacity is made available. Demultiplex-
ing incoming packets early and absorbing bursts in distinct per-connection queues is an
attractive way to prevent receive livelock, an observation also made in the context of paths
in Scout [128]. Our architectural approach facilitates provision of QoS guarantees while
preventing receive livelock.

Network adapter design: The MNI [17] is a network interface unit designed specifically
for continuous media applications. It supports functions for full end-to-end multimedia
communication in addition to protocol processing, and is capable of moving data directly
between I/O devices and the network via device-to-device communication. The Credit Net

ATM network interface [101] provides appropriate buffer management and flow scheduling

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

support suitable for connections engaged in guaranteed-QoS communication.

We have examined the impact of adapter characteristics on the ability to support real-
time communication effectively [77], and have explored QoS support on network adapters
for point-to-point and shared networks [80]. We have designed SPIDER [51], an adapter
supporting real-time communication in point-to-point networks. Other adapter features
that facilitate provision of QoS guarantees include allowing the communication software to
exercise fine-grain control over packet transmissions, and the ability to efficiently examine

packet headers and selectively discard packets, if needed, on reception.

2.5.3 Multimedia/Real-Time Operating Systems

A number of commercial and research efforts have focused on the development of muitimedia
and real-time operating systems, as described below.

Commercial and research operating systems: Govindan and Anderson [70] first pro-
posed scheduling and IPC mechanisms for operating systems supporting continuous media.
Key abstractions proposed and implemented were a split-level scheduling architecture fea-
turing an EDF [111] kernel scheduler and an application-level scheduler for efficient real-
time scheduling. The application-level and kernel-level schedulers communication with each
other via shared memory.

Support for continuous media in the Chorus microkernel is described in [42] which
utilizes the IPC and scheduling techniques proposed in [70]. Nemesis [109] is a multime-
dia operating system design from scratch. While many aspects of operating system design
have been considered, not much attention has been given to QoS issues in communication
subsystem design. The Rialto operating system [87,88] combines minimum-laxity and fair
scheduling policies to realize integrated scheduling of real-time and non real-time processes.
The primary unit of execution in Rialto is an activity, which is a time-constrained sec-
tion of code which can adapt to overload conditions. The focus of Rialto is primarily on
QoS-sensitive application scheduling, and issues in QoS-sensitive communication subsystem
design are not considered.

Real-Time Mach (RT-Mach) [171] provides processor capacity reserves [123], a2 mecha-
nism to allow applications to reserve processing capacity for execution of its threads. Re-
serves are independent of application threads and can account for execution of a thread in

multiple protection domains. While capacity reserves are useful for applications with a pri-

+0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ori knowledge resource requirements, they are also useful in environments requiring dynamic
QoS control [106]. Virtual memory management for interactive multimedia applications has
also been realized in RT-Mach [136].

Modifying an existing operating system to support multimedia and real-time appli-
cations is typically a major undertaking and prone to subtle timing issues. Commercial
operating systems such as Solaris have been enhanced with some support for real-time ap-
plications, such as fixed priorities and priority inheritance [99]. However, such mechanisms
have been found to be insufficient in a dynamic execution environment [104]. Extensions
to Windows NT to support dynamic real-time applications are described in [162]. Support
for real-time processes, admission control, and detecting and managing overrun is provided.
However, as stated by the authors, they have not yet accounted for implementation over-
heads and constraints. Moreover, the issues and tradeoffs involved in realizing QoS-sensitive
communication subsystems are not considered.

Modeling of multimedia/real-time operating systems: A number of recent efforts
have attempted to bridge the gap between theory and practice for real-time systems and mul-
timedia computing [29,69,95,98]. The admission control extensions developed in Chapter 4
are geared towards the real-time communication needs of distributed systems, and hence
complement these efforts. The implications of priority inversion due to non-preemptible
critical sections was studied in [121]; however, preemption costs such as context switches
and cache misses, and the resulting degradation in useful resource capacity, were not con-
sidered. We take these costs into account when developing the admission control extensions
described in Chapter 4.

OS support for QoS-sensitive communication: The need for scheduling protocol pro-
cessing at priority levels consistent with those of the communicating application was high-
lighted in [6], and some implementation strategies demonstrated in [70]. More recently,
processor capacity reserves in RT-Mach [123] have been combined with user-level protocol
processing [112] for predictable protocol processing inside hosts [107]. Operating system
support for multimedia communication is explored in [73], where the focus is on provision
of preemption points and EDF scheduling in the kernel, and in (177], which also focuses on
the scheduling architecture.

None of these approachees provide support for traffic enforcement or decoupling of pro-

tocol processing priority from application priority. Our design approach decouples the

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

protocol processing priority from that of the application, allowing the former to be derived
from the traffic characteristics and run-time behavior of the application.

QoS-sensitive CPU scheduling: Recently several QoS-sensitive CPU scheduling poli-
cies have been proposed recently [66,71,165,179]. Scheduling algorithms for integrated
scheduling of multimedia soft real-time computation and traditional hard real-time tasks
on a multiprocessor multimedia server are proposed and evaluated in [94]. These schemes do
not directly consider support for QoS guarantees on communication-related CPU process-
ing; however, the architecture and extensions described in this dissertation can be integrated

with these policies for application-level QoS, as outlined in Chapter 8.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

A QOS-SENSITIVE COMMUNICATION SUBSYSTEM

3.1 Introduction

In this chapter, we propose and evaluate a QoS-sensitive communication subsystem architec-
ture for guaranteed-QoS connections. Our primary focus is on the architectural mechanisms
for run-time traffic management within the communication subsystem to satisfy the QoS re-
quirements of all connections, without undue degradation in the performance of best-effort
trafficc. While the proposed architecture is applicable to other proposals for guaranteed-
QoS connections [8,188], we focus on real-time channels, a paradigm for guaranteed-QoS
communication services in packet-switched networks [63,92].

Consider the problem of servicing several guaranteed-QoS and best-effort connections
engaged in network input/output at a host. The data to be transmitted over each con-
nection resides either in an input device (such as a frame-grabber) or in host memory; the
computation subsystem prepares outgoing data in a QoS-sensitive fashion before handing
it to the communication subsystem. Each guaranteed-QoS connection has traffic-flow se-
mantics of unidirectional data flow, in-order message delivery, and unreliable data transfer.
That is, on each channel, data is transferred from the source to the destination, successive
messages on a channel are delivered in the order they were generated, and data that suffers
loss of QoS guarantees within the network is unusable and hence not retransmitted. Gen-
erally speaking, these connection semantics are applicable to a large class of multimedia
and real-time command/control applications. Best-effort traffic (i.e., traffic with no QoS
guarantees) does not require in-order delivery, but may require retransmissions to ensure

loss-free data transfer.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Protocol processing for large data transfers, common in multimedia applications. can be
quite expensive. Resource management policies geared towards statistical fairness and/or
time-sharing can introduce excessive interference between different connections, thus de-
grading the delivered QoS on individual connections. Since the local delay bound at a node
may be fairly tight, the unpredictability and excessive delays due to interference between
different connections may even result in QoS violations. This performance degradation can
be eliminated by designing the communication subsystem to provide: (i) maintenance of
QoS guarantees, (ii) overload protection via per-connection traffic enforcement, and (iii)
fairness to best-effort traffic. These requirements together ensure that per-connection QoS
guarantees are maintained as the number of connections or per-connection traffic load in-
creases.

The proposed architecture features a process-per-channel model for protocol processing
on each channel, coordinated by a unique channel handler created on successful estab-
lishment of the channel. While the service within a channel is FIFO, QoS guarantees on
multiple channels are provided via appropriate CPU scheduling of channel handlers and
link scheduling of packet transmissions. Traffic isolation between channels is facilitated
via per-channel traffic enforcement and interaction between the CPU and link schedulers.
Channels violating their traffic specification are prevented from consuming processing and
link capacity either by blocking the execution or lowering the priority of the corresponding
handlers relative to the well-behaved channels. Protocol processing can be work-conserving
or non-work-conserving, with best-effort traffic given processing and transmission priority
over “work ahead” real-time traffic. The architectural framework adopted autilizes an ab-
straction of the underlying communication subsystem in terms of various processing costs,
overheads, and policies, which are used for admission control [116] and run-time resource
management.

We have developed a prototype implementation of the proposed architecture using a
communication executive derived from z-kernel 3.1 [76] that exercises complete control over
a Motorola 68040 CPU. This configuration avoids any interference from computation or
other operating system activities on the host, allowing us to focus on the communication
subsystem. We evaluate the proposed architecture under varying degrees of traffic load, and
demonstrate the efficacy with which it maintains QoS guarantees on real-time channels and

provides fair performance for best-effort traffic, even in the presence of ill-behaved real-time

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

channels.

While the proposed architecture is designed to handle both incoming and outgoing
traffic, this paper focuses primarily on run-time communication resource management for
outgoing traffic. The issues involved in QoS-sensitive handling of incoming traffic and the
associated admission control extensions are presented in Chapter 4. Based on the proposed
architecture and admission control extensions, we have designed, implemented, and evalu-
ated a full-fledged guaranteed-QoS communication service on Open Software Foundation’s
MK 7.2/CORDS framework, as described in Chapter 5.

For end-to-end guarantees, resource management within the communication subsystem
must be integrated with that for applications. The architecture proposed and analyzed in
this chapter is directly applicable if a portion of the host processing capacity can be reserved
for communication-related activities [107,123]. The proposed architectural extensions can
be realized as a server with appropriate capacity reserves and/or execution priority. Our
prototype implementation is indeed such a server executing in a standalone configuration.
More importantly, our approach decouples protocol processing priority from that of the
application. We believe that the protocol processing priority of a connection must be
derived from the QoS requirements, traffic characteristics, and run-time communication
behavior of the application on that connection.

We note that the proposed architecture and the admission control extensions described
in Chapter 4 are also applicable to application-level framing [41] and user-level protocol
processing architectures explored in recent efforts [55,112, 167] to improve data transfer
throughput in high-speed networks. In our design approach we have not made any specific
assumptions about the location of the protocol stack, which could reside in the kernel or in
user space. Architectural features such as CPU scheduling of channel handlers and cooper-
ative preemption can be utilized irrespective of the address space and protection domain.
With user-level protocol processing, however, allocation of communication resources is cou-
pled directly with allocation of computation resources, and as such the admission control
and run-time resource management must be more comprehensive. Regardless of the location
of the protacol stack, realization of QoS guarantees in practice necessitates architectural
mechanisms and admission control extensions similar in nature to the ones considered in
this and the next chapter, respectively. The issues and mechanisms for integrating the

proposed architecture with QoS-sensitive application scheduling and/or processor capacity

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reserves are discussed in Chapter 8.

The architectural framework and methodology we have adopted can be applied to other
host platforms and networking technologjes. Since provision of QoS guarantees is platform-
specific, specific instances of this architecture depend on the CPU and network capacities of
a platform. Implementing this architecture requires that the host communication subsys-
tem be parameterized accurately to capture overheads and processing costs that comprise
the abstraction of the underlying communication subsystem. The admission control exten-
sions and run-time management support can then be re-targeted for a given host platform
and/or networking technology. Chapter 6 addresses the issues of portability and accurate
parameterization of QoS-sensitive communication subsystems. While we have implemented
the architecture on an z-kernel platform, the architecture and the implementation do not
utilize any features specific to this platform. The underlying resource management policies
can be supported on any operating system platform.

The remainder of this chapter is organized as follows. We first discuss the architectural
requirements for guaranteed-QoS communication and provides a brief description of real-
time channels. Next we present a QoS-sensitive communication subsystem architecture
realizing these requirements followed by a description of our prototype implementation
of this architecture. We then present results demonstrating the efficacy of the proposed
architecture via an experimental evaluation of the implementation. Finally, we conclude
the chapter after summarizing the key contributions and highlighting some directions for

future work.

3.2 Architectural Requirements for Guaranteed-QoS Com-

munication

For guaranteed-QoS communication, we consider unidirectional data transfer, from source
to sink via intermediate nodes, with data being delivered at the sink in the order in which
it is generated at the source. Corrupted, delayed, or lost data is of little value; with a
continuous flow of time-sensitive data, there is insufficient time for error recovery. Thus, we
consider data transfer with unreliable-datagram semantics with no acknowledgements and
retransmissions. To provide per-connection QoS guarantees, host communication resources

must be managed in a QoS-sensitive fashion, i.e., according to the relative importance of

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the connections requesting service. Host communication resources include CPU bandwidth
for protocol processing, link bandwidth for packet transmissions and reception, and buffer
space.

A QoS-sensitive communication subsystem must provide services for the two related
aspects of guaranteed-QoS communication [8], namely, traffic specification and resource
management. Figure 3.1 illustrates a generic software architecture for guaranteed-QoS
communication services at the host. The components constituting this architecture are
briefly discussed below.

Application programming interface (API): The API must export routines that can be used
to specify traffic and QoS requirements, set up and teardown guaranteed-QoS connections,
and perform data transfer on these connections.

Stignalling and admission control: A signalling protocol is required to establish/tear down
guaranteed-QoS connections across the communicating hosts, possibly via multiple network
nodes. The communication subsystem must keep track of communication resources, per-
form admission control on new connection requests, and establish connection state to store
connection specific information.

Network data transport: Protocols are needed for nnidirectional (reliable and unreliable)
data transfers, including fragmentation (reassembly) of application data into (from) smaller
units (packets) for network transmission (reception).

Traffic enforcement: Traffic enforcement forces an application to conform to its traffic spec-
ification and provide overload protection between established connections. This is required
at the session level, and may be required at the link level depending on the nature of the
traffic violation; link level traffic enforcement may be required at receiving hosts.

Link access scheduling and link abstraction: Link bandwidth must be managed such that
all active connections receive their promised QoS. This necessitates abstracting the link
in terms of transmission delay and bandwidth, and scheduling all outgoing packets for
network access. The minimum requirement for provision of QoS guarantees is that packet
transmission time on the link be bounded and predictable.

Assuming support for signalling, our primary focus in this chapter is on the compo-
nents involved in data transfer, namely, traffic enforcement, protocol processing and link
transmission. In particular, we study architectural mechanisms for structuring host com-

munication software to provide QoS guarantees. Issues in admission control are dealt with

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l APPLICATION PROGRAMMING INTERFACE j

l

LINK ABSTRACTION]

Figure 3.1: Desired overall software architecture.

in Chapter 4.

3.2.1 Software Structure for QoS-Sensitive Data Transport

In Figure 3.2, an application presents the API with data (messages) to be transported on
a guaranteed-QoS connection. The API must allocate buffers for this data and queue it
appropriately. Data that is conformant (as per the traffic specification) is forwarded for
protocol processing and transmission.
Maintenance of per-connection QoS guarantees: Protocol processing involves, at
the very least, fragmentation of application messages, including transport and network
layer encapsulation, into packets with length smaller than a certain maximum (typically
the MTU of the attached network). Additional computationally intensive services such as
coding, compression, or checksums may also be performed during protocol processing. QoS-
sensitive allocation of processing bandwidth necessitates multiplexing of the CPU amongst
active connections under control of the CPU scheduler, which must provide deadline-based
or priority-based policies for scheduling protocol processing on individual connections.
Non-preemptive protocol processing on a connection implies that the CPU can be real-
located to another connection only after processing an entire message, resulting in a coarser
temporal grain of multiplexing and making admission control less effective. More impor-
tantly, admission control must consider the largest possible message size (maximum number

of bytes presented by the application in one request) across all connections, including best-

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APl ENTRY/EXIT 1 (uwer)
E (buffering, quensing) J (kernel)
L TRAFFIC ENFORCEMENT
p data
essages) feedhach
) suspendiyieid
PROTOCOL PROCESSING
L (w'gaw-
J
(_ Tearmicenvorcement R
packets
CPU SCHEDULER
~ [W procesiag) 1
LINK 1
L (pocket transmissions) J signal
initiation of
packet transmission .
L PA(CKB'I' TIANSMISSI)ON J
pocket completion

Figure 3.2: Software structure for QoS-sensitive data transmission.

effort traffic. While maximum message size for guaranteed-QoS connections can be derived
from application-level attributes such as frame size for multimedia applications, the same
for best-effort traffic may not be known a priori. Accordingly, mechanisms to suspend and
resume protocol processing on a connection are needed. Protocol processing on a connection
may also need to be suspended if there are no packet buffers available for that connection.
The packets generated via protocol processing cannot be directly transmitted on the
link as that would result in FIFO (i.e., QoS-insensitive) consumption of link bandwidth.
Instead, they are forwarded to the link scheduler, which must provide QoS-sensitive policies
for scheduling packet transmissions. The link scheduler selects a packet and initiates packet
transmission on the network adapter. Notification of packet transmission completion is
relayed to the link scheduler so that another packet can be transmitted. The link scheduler
must signal the CPU scheduler to resume protocol processing on a connection that was
suspended earlier due to shortage of packet buffers.
Overload protection via per-connection traffic enforcement: As mentioned earlier,
only conformant data is forwarded for protocol processing and transmission. This is nec-
essary since QoS guarantees are based on a connection’s traffic specification; a connection
violating its traffic specification should not be allowed to consume communication resources

over and above those reserved for it. Traffic specification violations on one connection should

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not affect QoS guarantees on other connections and the performance delivered to best-effort
traffic. Accordingly, the communication subsystem must police per-connection traffic; in
general, each parameter constituting the traffic specification (e.g., rate, burst length) must
be policed individually. An important issue is the handling of non-conformant traffic, which
could be buffered (shaped) until it is conformant, provided with degraded QoS, treated as
best-effort traffic, or dropped altogether. Under certain situations, such as buffer overflows,
it may be necessary to block the application until buffer space becomes available, although
this may interfere with the timing behavior of the application. The most appropriate policy,
therefore, is application-dependent.

Buffering non-conformant traffic till it becomes conformant makes protocol processing
non-work-conserving since the CPU idles even when there is work available; the above dis-
cussion corresponds to this option. Alternately, protocol processing can be work-conserving,
with CPU scheduling mechanisms ensuring QoS-sensitive allocation of CPU bandwidth to
connections. Work-conserving protocol processing can potentially improve CPU utilization.
since the CPU does not idle when there is work available. While the unused capacity can be
utilized to execute other best-effort activities (such as background computations), one can
also utilize this CPU bandwidth by processing non-conformant traffic, if any, assuming there
is no pending best-effort traffic. This can free up CPU processing capacity for subsequent
messages. In the absence of best-effort traffic, work-conserving protocol processing can also
improve the average QoS delivered to individual connections, especially if link scheduling is
work-conserving.

Fairness to best-effort traffic: Best-effort traffic includes data transported by conven-
tional protocols such as TCP and UDP, and signalling for guaranteed-QoS connections.
Best-effort traffic should not be unduly penalized by non-conformant real-time traffic, es-

pecially under work-conserving processing.

3.2.2 Real-Time Channels: A Model for Guaranteed-QoS Communica-

tion

Several models have been proposed for guaranteed-QoS communication in packet-switched
networks [8]. While the architectural mechanisms proposed in this paper are applicable
to most of the proposed models, we focus on real-time channels [63,92], using the model

proposed and analyzed in [92]. A real-time channel is a simplex, fixed-route, virtual con-

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nection between a source and destination host, with sequenced messages and associated
performance guarantees on message delivery. It therefore conforms to the connection se-
mantics mentioned earlier. A real-time channel can be viewed as a pipe between a data
source and a data sink, with unidirectional data flow from the source to the sink.

An application requests a real-time channel by specifying its QoS requirements and
traffic characteristics, as outlined in Chapter 1. During admission control, the resources
required to satisfy the application’s request are computed based on the specified worst-
case traffic, and the request accepted if sufficient resources can be reserved for it. A local
bound, which determines the worst-case transit delay seen by a packet on this channel
plus a certain slack, is assigned to each node. Once the channel is successfully established,
the communication subsystem and the network maintain QoS guarantees via appropriate
resource management and traffic enforcement policies. When the application requests that
the channel be destroyed, all resources allocated for the channel are released by the network
and the communication subsystems at the source and destination hosts.

Traffic and QoS Specification: Traffic generation on real-time channels is based on a
linear bounded arrival process [4,44] characterized by three parameters: maximum message
size (M, bytes), maximum message rate (Rmaz messages/second), and maximum burst
size (Bmqr messages). In any interval of length &, the number of messages generated is
bounded by Bysz+6-Rmaz. Message generation rate is bounded by Rmez, and its reciprocal,
Irnin, is the minimum inter-generation time between messages. The burst parameter B,
bounds the allowed short-term variation in message generation, and partially determines
the buffer space requirement of the real-time channel. The notion of logical arrival time is
used to enforce a minimum separation I,;, = E;l..._:' between messages on the same real-time
channel. This ensures that a channel does not use more resources than it reserved at the

expense of other channels. The logical arrival time, £(m), of a message m is defined as:
{me) = to

{(m;) maz{({(mi-1) + Lnin), t:},

where ¢; is the actual generation time of message m;; €(m;) is the time at which m; would
have arrived (generated) if the Ry, constraint was strictly obeyed.
The QoS on a real-time channel is specified as the desired deterministic, worst-case

bound on the end-to-end delay experienced by a message. ;the delay bound is, therefore,

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specified independent of the desired bandwidth. If d is the desired end-to-end delay bound
for a channel, message m; generated at the source is guaranteed to be delivered at the sink
by time £(m;) + d. See [92] for more details.
Resource Management: As with other proposals for guaranteed-QoS communication [8],
there are two related aspects to resource management for real-time channels: admission
control and (run-time) scheduling. Admission control for real-time channels is provided by
Algorithm D_order [92], which uses fixed-priority scheduling for computing the worst-case
delay experienced by a channel at a link. When a channel is to be established at a link,
the worst-case response time for a message (when the message completes transmission on
the link) on this channel is estimated based on non-preemptive fixed-priority scheduling
of packet transmissions. The total response time, which is the sum of the response times
over all the links on the route of the channel, is checked against the maximum permissible
message delay and the channel established only if the latter is greater. A local delay bound
is derived from the worse-case response time and the specified end-to-end delay bound.
The priority assignment algorithm ensures that the new channel does not affect the QoS
promised to existing channels. D_order assumes that the worst-case delay at each link for
any channel does not exceed its message inter-arrival time. The total end~to—end delay.
however, can exceed the message inter-arrival time of the channel.

Contrary to the approach for admission control, run-time link scheduling is governed by
a variation of the multi-class earliest-deadline-first (EDF) policy [111]. The above approach
only accounts for management of link bandwidth at the host. As shown in [116], and

discussed in the next chapter, it cannot be applied directly to CPU bandwidth management.

3.2.3 Performance Related Considerations

To provide deterministic QoS guarantees on communication, all processing costs and over-
heads involved in managing and using resources must be accounted for. Processing costs
include the time required to process and transmit a message, while the overheads include
preemption costs such as context switches and cache misses, costs of accessing ordered data
structures, and handling of network interrupts. It is important to keep the overheads low
and predictable (low variability) so that reasonable worst-case estimates can be obtained.
An important performance metric is scalability, i.e., the number of guaranteed-QoS con-

nections that can be serviced at the host. Resource management policies must maximize

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the number of connections accepted for service. In addition to processing costs and im-
plementation overheads, factors that affect admissibility include the relative bandwidths of
the CPU and link and any coupling between CPU and link bandwidth allocation. In the
next chapter we study the extent to which these factors affect admissibility in the context

of real-time channels.

3.3 QoS-Sensitive Communication Subsystem Architecture

In the process-per-message model [152], a process or thread shepherds a message through the
protocol stack. Besides eliminating extraneous context switches encountered in the process-
per-protocol model [152], it also facilitates protocol processing to be scheduled according
to a variety of policies, as opposed to the software-interrupt level processing in BSD Unix.
However, the process-per-message model introduces additional complexity for supporting
per-channel QoS guarantees.

Creating a distinct thread to handle each message makes the number of active threads a
function of the number of messages awaiting protocol processing on each channel. Not only
does this consume kernel resources (such as process control blocks and kernel stacks), but it
also increases scheduling overheads which are typically a function of the number of runnable
threads in dynamic scheduling environments. More importantly, with a process-per-message
model, it is relatively harder to maintain channel semaantics, provide QoS guarantees, and
perform per-channel traffic policing. For example, bursts on a channel get translated into
“bursts” of processes in the scheduling queues, making it harder to police ill-behaved chan-
nels and ensure fairness to best-effort traffic. Further, scheduling overhead becomes unpre-
dictable, making worst-case estimates either overly conservative or impossible to provide.

Since QoS guarantees are specified on a per-channel basis, it suffices to have a single
thread coordinate access to resources for all messages on a given channel. We employ a
process-per-channel model, which is a QoS-sensitive extension of the process-per-connection
model [152]. In the process-per-channel model, protocol processing on each channel is
coordinated by a unique channel handler, a lightweight thread created on successful estab-
lishment of the channel. With unique per-channel handlers, CPU scheduling overhead is
only a function of the number of active channels, those with messages waiting to be trans-

ported. Since the number of established channels, and hence the number of active channels,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APLENTRY/EXIT

=] FEle o oo o o

(a) Source host (b) Destination host
Figure 3.3: Proposed communication subsystem architecture.

varies much more slowly compared to the number of messages outstanding on all active
channels, CPU scheduling overhead is significantly more predictable. As we discuss later.
a process-per-channel model also facilitates per-channel traffic enforcement. Further, since
it reduces context switches and scheduling overheads, this model is likely to provide good
performance to connection-oriented best-effort traffic.

Figure 3.3 depicts the key components of the proposed architecture at the source (trans-
mitting) and destination (receiving) hosts; only the components involved in data transfer
are illustrated. Associated with each channel is a message queue, a FIFO queue of messages
to be processed by the channel handler (at the source host) or to be received by the appli-
cation (at the destination host). Each channel also has associated with it a packet queue, a
FIFO queue of packets waiting to be transmitted by the link scheduler (at the source host)
or to be reassembled by the channel handler (at the destination host).
Transmission-Side Processing: In Figure 3.3(a), invocation of message transmission
transfers control to the API. After traffic enforcement (traffic shaping and deadline as-
signment), the message is enqueued onto the corresponding channel’s message queue for
subsequent processing by the channel handler. Based on channel type, the channel handler
is assigned to one of three CPU run queues for execution (described in Section 3.3.1). It

executes in an infinite loop, dequeneing messages from the message queue and performing

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8)
Application requirements Admission control
Traffic specification (" Relative channel priority
QoS specification | Local delay bound
Buffer management Protocol processing
{
Message quene Handler: id
Message quene semaphore g"’m
Packet queve "
Packet queue semaphore B oRmoriority
-)

Figure 3.4: Channel state maintained at host.

protocol processing (including fragmentation). The packets thus generated are inserted
into the channel packet queue and into one of three (outbound) link packet queues for the
corresponding link, based on channel type and traffic generation, to be transmitted by the
link scheduler.

Reception-Side Processing: In Figure 3.3(b), a received packet is demultiplexed to the
corresponding channel’s packet queue, for subsequent processing and reassembly. As in
transmission-side processing, channel handlers are assigned to one of three CPU run queues
for execution, and execute in an infinite loop, waiting for packets to arrive in the channel
packet queue. Packets in the packet queue are processed and transferred to the channel’s
reassembly queue. Once the last packet of a message arrives, the channel handler completes
message reassembly and inserts the message into the corresponding message queue. The
application retrieves the message from the message queue by invoking the API’s receive
routine.

At intermediate nodes, the link scheduler relays arriving packets to the next node along
the route. In the following discussion, we focus on transmission-side processing at the
sending host. Much of this discussion is also applicable to reception-side processing. The
issues involved in QoS-sensitive handling of incoming traffic are discussed in Chapter 4, and

implementation of the receive-side architecture considered in Chapter 5.

3.3.1 Salient Features

Figure 3.4 illustrates a portion of the state associated with a channel at the host upon
successful establishment. In addition to application requirements, channel state includes

parameters associated with admission control, data structures associated with buffer man-

o
1]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

messages (rom application

channe! message queue
message processed completely

r inherit message deadline
if message early
suspend until message current

initiate message processing
initialize block count)

dequeue message

\—

message not processed complietely

7N

process packet

if packet buffers available
enquene packet

suspend until buffer space available
decrement block count

)
enqueuve packet ~

A

if block count zero
If yield condition true, yield CPU

else reset block count
continue
else J

continue
l ’ channel packet queue

link packet quenes

Figure 3.5: Execution profile of a channel handler.

agement, and attributes associated with protocol processing. Each channel is assigned a
priority relative to other channels, as determined by the admission control procedure. The
local delay bound computed during admission control at the host is used to compute dead-
lines of individual messages. Each handler is associated with a type, and execution deadline
or priority, and execution status (runnable, blocked, etc.). In addition, two semaphores
are allocated to each channel handler, one to synchronize with message insertions into the
channel’s message queue (the message queue semaphore), and the other to synchronize with
availability of buffer space in the channel’s packet queue (the packet queue semaphore).

Channel handlers are broadly classified into two types, best-effort and real-time. A best-
effort handler is one that processes messages on a best-effort channel. Real-time handlers
are further classified as current real-time and early real-time. A current real-time handler
is one that processes on-time messages (obeying the channel’s rate specification), while an
early real-time handler is one that processes early messages (violating the channel’s rate
specification).

Figure 3.5 shows the execution profile of a channel handler at the source host. As long

as messages are available, the handler executes in an infinite loop processing messages one

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at a time. When initialized, it simply waits for messages to process from the message
queue. Once a message becomes available, the handler dequeues the message and inherits
its deadline. If the message is early, the handler computes the time until the message will
become current and suspends execution for that duration. If the message is current, the
handler initiates protocol processing of the message. After creating each packet, the handler
checks for space in the packet queue (via the packet queue semaphore); it is automatically
blocked if space is not available and is woken up when space becomes available subsequently.

The packets created are enqueuned onto the channel’s packet queue, and if the queue was
previously empty, the link packet queues are also updated to reflect that this channel has
packets to transmit. That is, only the head packet from the channel’s packet queue resides
in the ordered link packet queues at any given time. When a packet from this channel com-
pletes transmission, another packet is transferred from the channel packet queue to the link
packet queues. This design incurs a worst-case packet enqueueing overhead proportional to
the number of active channels, instead of the total number of packets outstanding on all ac-
tive channels. The overhead of managing per-channel packet queues is, therefore, minimal.
assuming that the device driver can classify a packet (i.e., identify the corresponding chan-
nel packet queue) without any extra overhead. This is true in our architecture since only
one packet is kept outstanding on the network adapter. The preemption model employed
for handler execution is one of cooperative preemption; the currently-executing handler re-
linquishes the CPU to a waiting higher-priority handler after processing a block of packets,
as explained below.

While the above suffices for non-work-conserving protocol processing, a mechanism is
needed to continue handler execution in the case of work-conserving protocol processing.
Accordingly, in addition to blocking the handler as before, a channel prozy is created on
behalf of the handler. A channel proxy is a thread that simply signals the (blocked) channel
handler to resume execution. It competes for CPU access with other channel proxies in the
order of logical arrival time, and exits immediately if the handler has already woken up.
This mechanism ensures that the handler is made runnable if the channel proxy obtains
access to the CPU before the handler becomes current. Note that an early handler must

still relinquish the CPU to a waiting handler that is already current.

[V}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Maintenance of QoS guarantees

Per-channel QoS guarantees are provided via appropriate preemptive scheduling of channel
handlers and non-preemptive scheduling of packet transmissions. While CPU scheduling can
be priority-based (using relative channel priorities), we consider deadline-based scheduling
for channel handlers and proxies. Execution deadline of a channel handler is inherited
dynamically from the deadline of the message to be processed. Execution deadline of a
channel proxy is derived from the logical arrival time of the message to be processed.
Channel handlers are assigned to one of two run queues based on their type (best-effort
or real-time), while channel proxies (representing early real-time traffic) are assigned to a
separate run queue. The relative priority assignment for handler run queues is such that
on-time real-time traffic gets the highest protocol processing priority, followed by best-effort
traffic and early real-time traffic in that order.

Provision of QoS guarantees necessitates bounded delays in obtaining the CPU for
protocol processing. As shown in the next chapter, immediate preemption of an executing
lower-priority handler results in significant overheads due to context switches and cache
misses; channel admissibility is significantly improved if preemption overheads are amortized
over the processing of several packets. The maximum number of packets processed in a
block is a system parameter determined via experimentation on a given host architecture.
Cooperative preemption provides a reasonable mechanism to bound CPU access delays while
improving utilization, especially if all handlers execute within a single (kernel) address space.

Link bandwidth is managed via multi-class non-preemptive EDF scheduling with link
packet queues organized similar to CPU run queues. Link scheduling is non-work-conserving
to avoid stressing resources at downstream hosts; in general, the link is allowed to “work

ahead” in a limited fashion, as determined by the link horizon [92].

Overload protection

Per-channel traffic enforcement is performed when new messages are inserted into the mes-
sage queue, and again when packets are inserted into the link packet queues. The per-
channel message queue absorbs message bursts on a channel, preventing violations of B,q
and R, on this channel from interfering with other, well-behaved channels. During dead-

line assignment, new messages are checked for violations in M maz and Rp,... Before insert-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing each message into the message queue, the inter-message spacing is enforced according to
Iin- For violations in Moqz, the (logical) inter-arrival time between messages is increased
in proportion to the extra packets in the message.

The number of packet buffers available to a channel is determined by the product of
the maximum number of packets constituting a message (derived from M,,,-) and the
maximum allowable burst length B,,,.. Under work-conserving processing, it is possible
that the packets generated by a handler cannot be accommodated in the channel packet
queue because all the packet buffers available to the channel are exhausted. A similar
situation could arise in non-work-conserving processing with violations of M,,,.. Handlers
of such violating channels are prevented from consuming excess processing and link capacity,
either by blocking their execution or lowering their priority relative to well-behaved channels.

Blocked handlers are subsequently woken up when the link scheduler indicates availabil-
ity of packet buffers. Blocking handlers in this fashion is also useful in that a slowdown in
the service provided to a channel propagates up to the application via the message queue.
Once the message queue fills up, the application can be blocked until additional space
becomes available. Alternately, messages overflowing the queue can be dropped and the
application informed appropriately. Note that while scheduling of handlers and packets
provides isolation between traffic on different channels, interaction between the CPU and

link schedulers helps police per-channel traffic.

Fairness to best-effort traffic

Under non-work-conserving processing, early real-time traffic does not consume any re-
sources at the expense of best-effort traffic. With work-conserving processing, best-effort

traffic is given processing and transmission priority over early real-time traffic.

3.3.2 Accounting for CPU Preemption Delays and Overheads

The admission control procedure (D.order) must account for CPU preemption overheads,
access delays due to cooperative preemption, and other overheads involved in managing
resources. For each new channel to be admitted, D_order computes message service lime,
the worst-case time for which the CPU and link must be allocated to the channel for
processing a message, and wait time, the worst-case time spent waiting for a lower-priority

handler to relinquish the CPU and link. Accordingly, it must also account for the overlap

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Csw time to switch contexts between channel handlers (EDF)

Cem penalty due to cache misses resulting from a context switch

C,** | CPU processing cost for the first packet

(48 CPU processing cost for packets other than the first packet
G per-packet link scheduling cost

P number of packets processed between preemption points

S maximum packet size in bytes

Lz(s) | packet transmission time for packet size s

Figure 3.6: Important system parameters in the proposed architecture.

between CPU processing and link transmission, and hence the relative bandwidths of the
CPU and link. The deadlines assigned to messages are derived from the worst-case service
and wait times computed by D_order. The next chapter presents extensions to D_order to
account for the above-mentioned factors.

These extensions are derived in terms of certain system parameters that together com-
prise the abstraction of the underlying communication subsystem. These system parame-
ters represent the overheads and processing costs of the target implementation platform.
Of these parameters, only P and S can be explicitly configured up to a certain extent. The
other parameters relate to the host CPU and memory architecture, and hence are fixed
for a given platform, protocol stack, and operating system. P determines the granularity
at which the CPU is multiplexed between channels, while S determines the multiplexing
granularity of the link; the choice of these parameters therefore determines channel admissi-
bility at the host, as demonstrated in the next chapter. Below we briefly discuss the factors
that influence determination of P and S. We also discuss determination of £, since we are
interested in exploring the relationship between CPU and link bandwidth.

Packets between preemptions: Selection of P is governed by the architectural charac-
teristics of the host CPU, as captured by the parameters listed in Table 4.1. For a given
message (and packet) size, small values of P imply a higher number of preemptions, in-
creasing the total overhead incurred and reducing the CPU bandwidth available to channel
handlers; this in turn reduces channel admissibility. Large values of P, on the other hand,
increase the temporal granularity at which the CPU is multiplexed between channel han-

dlers and hence the window of non-preemptibility. This may also reduce the number of

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

channels admitted for service. For a given host architecture, P can be selected such that
channel admissibility is maximized while delivering reasonable data transfer throughput.
Packet size: S can be selected either using end-to-end transport protocol performance
or host/adapter design characteristics. End-to-end protocol performance has been used to
determine packet size in IP and IP-over-ATM networks for optimum TCP performance.
However, since data transfer on real-time channels is unidirectional and unreliable, end-to-
end protocol performance may not be the best guide for selection of S. A particular choice
for S determines the number of packets constituting a message, and hence total CPU and
link bandwidth required to process and transmit it. In general, the latency and throughput
characteristics of the adapter as a function of packet size can be used to pick a packet
size that minimizes L. (see below) while delivering reasonable data transfer throughput.
However, the value chosen for § must be less than the MTU of the attached network. Note
that in channels spanning heterogeneous networks, S can be different at each hop, as long as
the cost of additional fragmentation within the network is accounted for when determining
end-to-end delays.

Packet transmission time: For a typical network adapter, the transmission time for a
packet of size s, £(s), depends primarily on the overhead of initiating transmission and the
time to transfer the packet to the adapter and on the link. The latter is a function of the
packet size and the data transfer bandwidth available between host and adapter memories.
The data transfer bandwidth itself is determined by host/adapter design features such
as pipelining, on-board queueing on the adapter, and the raw link bandwidth. If C; is the
overhead to initiate transmission on an adapter feeding a link of bandwidth B; bytes/second.

L:(s) can be approximated as

s
Lz(s)=C-+ m,

where B is the data transfer bandwidth available to/from host memory. B is determined
by factors such as the mode (direct memory access (DMA) or programmed I0) and efficiency
of data transfer, and the degree to which the adapter pipelines packet transmissions. C;
includes the cost of setting up DMA transfer operations, if any. Our experience with adapter

design and the implications for packet transmission time are highlighted in [77).

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Routines | Invoked By Function Performed

rtc_init receiving task | create local queue to receive messages

rtc.create | sending task | create real-time channel with given parameters
to remote end point (queue); return channel ID

rtc._send sending task | send message on the specified real-time channel

rtc_recv receiving task | receive message from real-time message queune

rtcclose | sending task | close specified real-time channel

Table 3.1: Routines constituting the real-time channel API.

3.4 Prototype Implementation

We have implemented the proposed architecture using a communication executive derived
from z-kernel (v3.1) [76] that exercises complete control over a 25 MHz Motorola 68040
CPU. Accordingly, CPU bandwidth is consumed only by communication-related activities.
facilitating admission control and resource management for real-time channels.! z-kernel
(v3.1) employs a process-per-message protocol-processing model and a priority-based non-
preemptive scheduler with 32 priority levels; the CPU is allocated to the highest-priority
runnable thread, while scheduling within a priority level is FIFO.

3.4.1 Architectural Configuration

Real-time communication is accomplished via a connection-oriented protocol stack in the
communication executive (see Figure 3.7). The API exports routines for real-time chan-
nel establishment, channel teardown, and data transfer (see Table 3.1); it also supports
routines for best-effort data transfer (not shown here). Network transport for signalling
is provided by a (resource reservation) protocol layered on top of a remote procedure call
(RPC) protocol derived from z-kernel’s CHAN protocol. Network transport for data is
provided by a fragmentation (FRAG) protocol, which packetizes large messages so that
communication resources can be multiplexed between channels on a packet-by-packet basis.
The FRAG transport protocol is a modified, unreliable version of z-kernel’s BLAST protocol

with timeout and data retransmission operations disabled. The protocol stack also provides

'Implementation of the reception-side architecture is a slight variation of the transmission-side
architecture.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLICATIONS

Application Programming Interface
L L

Name Service RTC Signalling & Traffic Enforcement

T
RPC

.

Clock
FRAG Synchronization

1 I
Network Layer

Link Access Layer
NETWORK ADAPTER

Figure 3.7: Real-time communication protocol stack (z-kernel).

protocols for clock synchronization and network layer encapsulation. The network layer
protocol is connection-oriented and provides network-level encapsulation for data transport
across a point-to-point communication network. The link access layer provides support for
link scheduling and includes the network device driver.

Our choice of protocols was based on the perceived requirements for guaranteed-QoS
communication. An alternative approach would be to utilize the TCP /IP suite of protocols
used on the Internet. Most TCP/IP stacks do not provide a sequenced, unreliable message
transport protocol that supports fragmentation. TCP is a reliable byte-stream protocol
while UDP does not fragment outbound messages or support message sequencing. Thus,
while TCP is suitable for transporting best-effort traffic, it is not suitable for guaranteed-
QoS communication. Further, IP is a connectionless protocol and would require either
modifications to make it connection-oriented or mechanisms to classify packets. Note that
the proposed architecture does not preclude employing TCP to transport best-effort traffic,

but this would require IP as the network layer.

3.4.2 Realizing a QoS-Sensitive Architecture

Process-per-channel model: On successful establishment, a channel is allocated a chan-
nel handler, space for its message and packet queues, and the message and packet queue

semaphores. If work-conserving protocol processing is desired, a channel proxy is also allo-

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cated to the channel. A channel handler is an z-kernel process (which provides its thread
of control) with additional attributes such as the type of channel (best-effort or real-time),
flags encoding the state of the handler, its execution priority or deadline, and an event
identifier corresponding to the most recent z-kernel timer event registered by the handler.
In order to suspend execution until a message is current, a handler utilizes z-kernel’s timer
event facility and an event semaphore which is signaled when the timer expires. A chan-
el proxy is also an z-kernel process with an execution priority or deadline. The states
of all established channels are maintained in a linked list that is updated during channel
signalling.

We extended z-kernel’s process management and semaphore routines to support han-

dler creation, termination, and synchronization with events such as message insertions and
availability of packet buffers after packet transmissions. Each packet of a message must in-
herit the transmission deadline assigned to the message. We modified the BLAST protocol
and message manipulation routines in z-kernel to associate the message deadline with each
packet. Each outgoing packet carries a global channel identifier, allowing efficient packet
demultiplexing at a receiving node.
QoS-sensitive CPU scheduling: Two policies are available for scheduling channel han-
dlers on the CPU: (i) multi-class EDF scheduling and (ii) fixed-priority scheduling with 32
priority levels. The following discussion applies to (i). Three distinct run queues are main-
tained for channel handlers, one for each of the three classes mentioned in Section 3.3.1.
similar to the link packet queues. Q1 is a priority queue implemented as a heap ordered
by handler deadline while Q2 is implemented as a FIFO queue. Q3, utilized only when the
protocol processing is work-conserving, is a priority queue implemented as a heap ordered
by the logical arrival time of the message being processed by the handler. Channel prox-
les are also realized as z-kernel threads and are assigned to Q3. Since Q3 has the lowest
priority, proxies do not interfere with the execution of channel handlers.

The multi-class EDF scheduler is layered above the z-kernel scheduler, as illustrated in
Figure 3.8. When a channel handler or proxy is selected for execution from the EDF run
queues, the associated z-kernel process is inserted into a designated z-kernel priority level
for CPU allocation by the z-kernel scheduler. To realize this design, we modified z-kernel’s
context switch, semaphore, and process management routines appropriately. For example,

a context switch between channel handlers involves enqueuing the currently-active handler

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cument besteffot earty context switch

ogo =
U;,.,. Un el et i

Figure 3.8: EDF CPU scheduler layered above native z-kernel scheduler.

in the EDF run queues and picking another runnable handler, before invoking the normal
z-kernel code to switch process contexts. To support cooperative preemption, we added
new routines to check the EDF and z-kernel run queues for waiting higher-priority handlers
or native z-kernel processes, respectively, and yield the CPU accordingly.

QoS-sensitive Link scheduling: In order to support real-time communication, network
adapters must provide a bounded, predictable transmission time for a packet of a given
size. Since network adapters are typically best-effort in nature, their design is optimized for
throughput and may be unsuitable for real-time communication, even with a bounded and
predictable packet transmission time. Even when explicit support for real-time communi-
cation is provided, on-board buffer space limitations may necessitate staging of outgoing
traffic in host memory, for subsequent transfer to the adapter.

To support real-time communication on these adapters, link scheduling must be provided
in software on the host processor. In our implementation, packets created by channel
handlers are scheduled for transmission by a non-preemptive multi-class EDF link scheduler.
The implementation can be configured such that link scheduling is performed:

Option 1: via a function call by the currently executing handler or in interrupt context,
Option 2: by a dedicated process/thread, or

Option 3: by a new thread created after each packet transmission.

As shown in the next chapter, option 1 gives the best performance in terms of throughput
and sensitivity of channel admissibility to P and S; accordingly, we focus on option 1 in

the discussion below.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Mark the link as busy.

2. Examine Q3; transfer (via pointer manipulations) all packets that are
current to Q1.

3. Transmit packet at head(Q1) if Q1 non-empty, else transmit packet at
head(Q2).

4. If Q1 and Q2 are both empty, and packet at head(Q3) is not current,
mark the link as idle, and register wakeup event with z-kernel for the
time head(Q3) becomes current.

Figure 3.9: Processing done by the link scheduler.

The organization of link packet queues is similar to that of handler run queues, except
that Q3 is used for early packets when protocol processing is work-conserving. After insert-
ing a packet into the appropriate link packet queue, channel handlers invoke the scheduler
directly as a function call. If the link is busy, ie., a packet transmission is in progress, the
function returns immediately and the handler continues execution. If the link is idle, the
processing shown in Figure 3.9 is performed. Scheduler processing is repeated when the
network adapter indicates completion of packet transmission or the wakeup event for early
packets expires. Additional packets can be kept outstanding on the network adapter as long
as packet transmission time is bounded and predictable.

Per-channel traffic enforcement: A channel’s message queue semaphore is initialized to
Bnaz; messages overflowing the message queue are dropped. The packet queue semaphore
is initialized to Bpngz - NMpits, the maximum number of outstanding packets permitted on
a channel. Upon completion of packet transmission, the corresponding channel’s packet
queue semaphore is signalled to indicate availability of packet buffers and enable execution
of a blocked handler. If the overflow is due to a violation in M 142, the priority (or deadline)
of the handler is degraded in proportion to the extra packets in its payload, so that further
consumption of CPU bandwidth does not affect other well-behaved channels. Table 3.2

summarizes the policies and options available in the implementation.

3.4.3 System Parameterization
Figure 3.10(a) lists the system parameter settings for our implementation, determined via

detailed performance profiling. Selection of P and S is based on the tradeoff between

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Category Available Policies

Protocol processing model | process-per-channel

work-conserving | non-work-conserving
CPU scheduling fixed-priority with 32 priority levels
multi-class earliest-deadline-first

Handler execution cooperative preemption with configurable
number of packets between preemptions

Link scheduling multi-class EDF (options 1, 2 and 3)

Overload protection block handler, decay handler deadline,

enforce Iinin, drop overflow messages

Table 3.2: Available policies in the prototype implementation.

available resource capacity and channel admissibility [116], as discussed in the next chapter.
To use the model of packet transmission time presented in Section 3.3.2,C; and B, must
be determined for a given network adapter and host architecture. This in turn involves
experimentally determining the latency-throughput characteristics of the adapter.

Using our implementation, a parameterization of the networking hardware available to us
revealed significant performance-related deficiencies such as poor data transfer throughput
and high, unpredictable packet transmission time [77]. Since these deficiences were due
to adapter design, they severely limited our ability to demonstrate the capabilities of our
architecture and implementation. Given our primary focus on unidirectional data transfer,
it suffices to ensure that transmission of a packet of size s takes Lz(s) time units. This
can be achieved by emulating the behavior of a network adapter such that Lz(s) time
units are consumed for each packet being transmitted. We have implemented such a device
emulator, referred to as the null device, that can be configured to emulate any desired packet
transmission time £ for a given packet size.

The device emulator is a thread that, once signalled, tracks time by consuming CPU
resources for £(s) time units before signalling completion of packet transmission (see Fig-
ure 3.10(b)). This emulator is implemented on a separate processor that is connected via
a backplane system bus to the processor implementing the communication subsystem (the

host processor). Upon expiration of £.(s) time units (i.e., completion of packet trans-

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Symbol | Value | Unit
csw 55 s
HOST NULL
Cem 90 us PROCESSOR DEVICE
Cp"" 420 us Delay
G 170 us v
G 160 us Deiay Completion
Notification
P 4 packets
S 4096 | bytes
L=(S) 245 ns
(a) System parameters for implementation (b) Null network device

Figure 3.10: Implementation environment.

mission) the emulator issues an interrupt to the host processor, similar to the mechanism
employed in typical network adapters. We experimentally determined C, to be x 40us.
For the experiments reported in the next section, we select min(By, B;) to correspond to a
link (and data transfer) speed of 50 ns per byte. This corresponds to an effective packet
transmission bandwidth (for 4KB packets) of 16 MB/s.

While the emulator allows us to study a variety of tradeoffs, including the effects of
the relationship between CPU and link bandwidth, it is not completely accurate since no
packet data is actually transferred from host memory. If packet data were transferred from
host memory via DMA, there would be additional contention for the system bus and main
memory, resulting in somewhat higher packet processing time and cache miss penalties
upon resumption of execution after preemption. This would result in slightly optimistic
estimates of the message service and wait times, and hence channel admissibility. However,
a performance degradation of this nature would affect all real-time channels and best-effort
traffic more or less equally, for option 1 as well as option 2.

Therefore, while the absolute performance observed may not be entirely accurate, the
observed trends and performance comparisons reported continue to be valid. Also, it may
be possible to extend the message service time computation to accurately account for the
potential perturbation caused by the DMA transfers via careful analysis [74]. We note that

at least two other efforts have employed such artificial sources and sinks of data, namely,

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the virtual network device in [14] that resides on a separate processor, and the “in-memory”

network device used in [134].

3.5 Experimental Evaluation

We evaluate the efficacy of the proposed architecture in isolating real-time channels from
each other and from best-effort traffic. The evaluation is conducted for a subset of the
policies listed in Table 3.2, under varying degrees of traffic load and traffic specification vio-
lations. In particular, we evaluate the process-per-channel model with non-work-conserving
multi-class EDF CPU scheduling and non-work-conserving multi-class EDF link scheduling
using option 1 (Section 3.4.2). Overload protection for packet queue overflows is provided
via blocking of channel handlers; messages overflowing the message queues are dropped.

The parameter settings given in Figure 3.10(a) are used for the evaluation.

3.5.1 Methodology and Metrics

Using the null device, the performance of the proposed architecture is compared with and
without features such as cooperative preemption and traffic enforcement. We choose a
workload that stresses the resources on our platform, and is shown in Table 3.3. Similar
results were obtained for other workloads, including a large number of channels with a wide
variety of deadlines and traffic specifications. Message size is fixed at 60 KB; experiments
with other message sizes reveal that our architecture is insensitive to message size. However,
if we relax any of the constraints of our architecture, larger messages tend to introduce
greater QoS violations. Three real-time channels are established (channel establishment
here is strictly local) with different traffic specifications. Channels 0 and 1 are bursty while
channel 2 is periodic in nature. Best-effort traffic is realized as channel 3, with a variable
load depending on the experiment, and has similar semantics as the real-time traffic, i.e., it
is unreliable with no retransmissions under packet loss.

Messages on each real-time channel are generated by an z-kernel process, running at
the highest priority, as specified by a linear bounded arrival process with bursts of up to
Brmar messages. Violations in the specified rate (Rq.) are realized by generating messages
at rates that are multiples of Rps.. The best-effort traffic generating process is similar, but

runs at a priority lower than that of the real-time generating processes and higher than the

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Traffic Specification
Channel Type M er Briazr Raz Imin | Deadline
(KB) | (messages) | (KB/s) | (ms) (ms)
0 real-time (RT) 60 12 1200 50 40
1 real-time (RT) 60 8 2000 30 25
2 real-time (RT) 60 1 2000 30 30
3 best-effort (BE) | 60 10 variable ~ -

Table 3.3: Workload used for the evaluation.

z-kernel priority assigned to channel handlers. Each experiment’s duration corresponds to
the transmission of 32K packets; the first 2K and last 2K packets are ignored so that the
evaluation is based on steady-state behavior. All the results are obtained after averaging
over multiple runs; different runs consistently gave similar results, and hence low standard
deviation.

Our evaluation focuses on the efficacy of the proposed architecture and the need for
cooperative preemption. All the experiments reported here have traffic enforcement and
deadline-based CPU and link scheduling enabled. We use the following metrics measuring
per-channel performance. Throughput refers to the service received by each real-time chan-
nel and best-effort traffic. It is calculated by counting the number of packets successfully
transmitted within the experiment duration. Message lazity is the difference between the
transmission deadline of a real-time message and the actual time that it completes transmis-
sion. Deadline misses measures the number of real-time packets missing deadlines. Recall
all packets of a message inherit the deadline of the message. Deadline misses are detected
by checking the actual transmission time of a real-time packet against its deadline. Finally,
Packet drops measures the number of packets dropped for both real-time and best-effort
traffic. Deadline misses and packet drops account for the QoS violations on individual

channels.

3.5.2 Efficacy of the Proposed Architecture

Figure 3.11 depicts the efficacy of the proposed architecture in maintaining QoS guarantees
when all channels honor their traffic specifications. Figure 3.11(a) plots the throughput

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4096 =~ %0
T T T T T T T T T T
3 E
x > A--=4 AT Channel 0 (min)
§, ‘ x 3 +=<~+ AT Channel 0 (Mmean)
,§ 0 p~ =-—-Z RT Channel 1 (min) ~
om - ’-——-C - x-——ux AT Channel 1 (mean)
3 3 < ==G RT Channel 2 (min)
L s x —=x RT Channel 2 (Mean)
o-——— - L i S e~ - 0~]
o x"'] Foe——- e Rl T T,
- T ce——— -
=" a-=-=4 RT ChO (meesured)
+=~=+ RT Ch 0 (expected) 20 ~
= == RT Ch 1 (measured) o I -
s12p- < »* ——x RTCh 1 (expected) | Merrme—es e mnm e e omimoe e .
C-—=C RT Ch2 (measured) a ‘:r-.&"::‘:‘\?ﬂﬁ"’"-‘:"‘"’:‘"_‘_
x-——=x RT Ch 2 (expacted) wl-* Ot el e 2 x- < SO~
» - BE Ch 3 (messured) 32
261 .
X L. I L 41 Py 1L 1 A L
8 s12 102¢ 2048 4006 8152 258 512 1024 2048 4006 8102
Best-effort load (KB/s) Best-affort load (KB/s)
(a) Throughput (b) Message laxity

Figure 3.11: Maintenance of QoS guarantees when traffic specifications are
honored.

received by each real-time channel and best-effort traffic as a function of (offered) best-
effort load. Several conclusions can be drawn from the observed trends. First, all real-
time channels receive their desired level of throughput; since no packets were dropped (not
shown here) or late (Figure 3.11(b)), the QoS requirements of all real-time channels are
met. Increase in offered best-effort load has no effect on the service received by real-time
channels. Second, the service received by best-effort traffic continues to increase linearly
until the system capacity is exceeded. That is, real-time traffic (early as well as current) does
not deny service to best-effort traffic. Third, even under extreme overload conditions, best-
effort throughput saturates and declines slightly due to packet drops. However, performance
of real-time traffic is not affected.

Figure 3.11(b) plots the message laxity for real-time traffic, also as a function of offered
best-effort load. As can be seen, no messages miss their deadlines, since minimum laxity is
non-negative for all channels. In addition, the mean laxity for real-time messages is largely
unaffected by an increase in best-effort load, regardless of whether the channel is bursty or
not.

Figure 3.12 demonstrates the same behavior even in the presence of traffic specification

violations by real-time channels. Channel 0 generates messages at a rate faster than specified

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

g T T T L T T 30000 T T T T T ~T
5 Y
T g
Q gm - Kd -
§‘=°" hammm s SEB S = 2 2
g 2 -
20000 p— ”, —
e T . T SO, A ommmme * 2 Rl
1024 - 7 g d
215000 |- A ~
a--~& RT Ch 0 (messured) ”
+~-=+ RT Ch 0 (expecied) R
= =-=Z RT Ch 1 (messured) g
sizf- x —-x ATCh1 fm = 1oma = o rmas
< -=—0 AT Ch 2 (measured) e P RTCh2
X -==x AT Ch 2 (expected) . e : BEChI
2 -3 BE Ch 3 (measured) 5000 ~ < A ~
+ -+ BE Ch 3 (expected) S’
26 |- - L
J 1 L 1 L L olar i, L L 1 A L
1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000
Offered load (Ch 0} (KB/s) Offered load (Ch 0) (KB/s)
(a) Throughput (b) Number of packets dropped

Figure 3.12: Maintenance of QoS guarantees under violation of R,,..

while best-effort trafficis fixed at ~ 1900 KB/s. In Figure 3.12(a), not only do well-behaved
real-time channels and best-effort traffic continue to receive their expected service, channel
0 also receives only its expected service. The laxity behavior is similar to that shown in
Figure 3.11(b). No real-time packets miss deadlines, including those of channel 0. However,
as can be from Figure 3.12(b), channel 0 overflows its message queue and drops excess

messages. None of the other real-time channels or best-effort traffic incur any packet drops.

3.5.3 Need for Cooperative Preemption

The preceding results demonstrate that the features provided in the architecture are suf-
ficient to maintain QoS guarantees. The following results demonstrate that these features
are also necessary.

In Figure 3.13(a), protocol processing for best-effort traffic is non-preemptive. Even
though best-effort traffic is processed at a lower priority than real-time traffic, once the best-
effort handler obtains the CPU, it continues to process messages from the message queue
regardless of any waiting real-time handlers. That is, CPU scheduling is QoS-insensitive.
As can be seen, this introduces a significant number of deadline misses and packet drops.
even at low best-effort loads. The deadline misses and packet drops increase with best-
effort load until the system capacity is reached. At this point, all excess best-effort traffic is

dropped, while the drops and misses for real-time channels decline. The behavior is largely

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1---2 RTCh O (@roppeq)

iim s -~ 16384 |— lv--a H‘Hgm(«nplpod)
S mez2f~ *---* (iate) ~ sz} *~-=+ ATChO(ate) z .
S I ---= ATCh 1 {dropped) © = =—~Z AT Ch 1 (dropped) 5
Em-x--nmcmam) = ~ Em-x—--m'cmam) 7 -
= 2048}~ < —=< RTCh2 (dropped) K - = 2048} S ——C RT Ch 2 (sropped) —
2 X —-x RTCh2 (lats) 2 x-—=x RT Ch2 (ats) H
@ R : BECh 3 (dropped) __ 10241 :: BE Ch 3 (dropped) N
§ s12p—~ = si2f-
a s :
R I et 3 = I
3 roafe=T A 128 e -
é Pt e e e X
é o JPtad 3 (2] o ,.’ \ —
2fr-"] PN \i 1
. Pl N 3
- Beecae. - - -" ‘~~ "v_ < -
16 2] R 7 . -a_.,‘,——f\
s s — s~ K - i\ .
+ ; . o+ VN
;s (4 ! N \ N,
L g o _ g AN %\
: 41'! 1 o 1 2 o1 l;' 1 T W K
Ve s12 1024 2048 4008 s V%s s12 102¢ 2048 4086 s192
Best-effort load (KB/s) Best-effort load (KB/s)

(a) Non-preemptive best-effort processing (b) Non-preemptive real-time processing

Figure 3.13: Violation of QoS guarantees with cooperative preemption dis-
abled.

unpredictable, in that different real-time channels are affected differently, and depends on
the mix of channels. Further, this behavior is exacerbated by an increase in the amount of
buffer space allocated to best-effort traffic; the best-effort handler now runs longer before
blocking due to buffer overflow, thereby increasing the window of non-preemptibility.
Figure 3.13(b) shows the effect of processing real-time messages with preemption only at
message boundaries. In addition, early handlers are allowed to execute in a work-conserving
fashion but at a priority higher than best-effort traffic. Note that all real-time traffic is still
being shaped since logical arrival time is enforced. As before, we observe significant deadline
misses and packet drops for all real-time channels. In this case, best-effort throughput also
declines due to early real-time traffic having higher processing priority. This behavior
worsens when the window of non-preemptibility is increased by draining the message queue

each time a handler executes.

3.5.4 Discussion

The above results demonstrate the need for cooperative preemption, in addition to traffic
enforcement and CPU scheduling, for access to the CPU. While CPU and link scheduling

were always enabled, CPU access by real-time channels was also shaped due to traffic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

enforcement. If traffic was not shaped, one would observe significantly worse real-time and
best-effort performance due to non-conformant traffic. We also note that a fully-preemptive
kernel is likely to have larger, unpredictable costs for context switches and cache misses. This
is because preemption due to unrelated, even lower priority, activities can occur frequently
and at arbitrary instants.

Not only does this result in loss of CPU capacity to unnecessary context switches, it
also increases the likelihood of disturbing the footprint in the cache [124], unless the cache
is suitably partitioned [110]. This is particularly true for preemption caused by external
events such as network interrupts. One can account for the cache miss penalty due to
preemption via careful schedulability analysis [105], but frequent preemption still degrades
available CPU capacity, as also observed in [69].

Moreover, an important implication of arbitrary preemption for the proposed architec-
ture is that a handler may get preempted just before initiating transmission, even though
it had finished preparing a packet for transmission, thus idling the link. Cooperative pre-
emption, on the other hand, provides greater control over preemption points, which in turn
improves utilization of resources that may be used concurrently. With cooperative preemp-
tion, a handler can initiate transmission on the link before yielding to any higher priority

activity.

3.6 Summary and Future Work

In this chapter we have proposed and evaluated a new QoS-sensitive communication subsys-
tem architecture for end hosts that supports guaranteed-QoS connections. The architecture
provides varjous services for managing communication resources, such as admission control,
traffic enforcement, buffer management, and CPU & link scheduling. Using our imple-
mentation of real-time channels, we demonstrated the efficacy with which the architecture
maintains per-channel QoS guarantees and delivers reasonable performance to best-effort
traffic. While we demonstrated the need for specific features and policies in the architecture
for a relatively lightweight stack, such support will be even more important if computation-
ally intensive services such as coding, compression, or checksums are added to the protocol
stack. The usefulness of these features also depends significantly on the relationship between
CPU and link bandwidths.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our work assumes that the network adapter (i.e., the underlying network) does not
provide any explicit support for QoS guarantees, other than providing a bounded and pre-
dictable packet transmission time. This assumption is valid for a large class of networks
prevalent today, such as FDDI and switch-based networks. Thus, link scheduling is real-
ized in software, requiring lower layers of the protocol stack to be cognizant of the delay-
bandwidth characteristics of the network. A software-based implementation also enables
experimentation with a variety of link sharing policies, especially if multiple service classes
are supported. For example, alternative approaches such as setting aside a certain minimum
CPU and link bandwidth for best-effort traffic can be explored [65]. The architecture can
also be extended to networks providing explicit support for QoS guarantees, such as ATM.
However, the communication software may need to track adapter buffer usage in order to
schedule the transfer of outgoing packets to the adapter.

The architectural framework and methodology we have adopted is applicable to other
host platforms as well. This requires that the host communication subsystem be parame-
terized accurately to capture overheads and processing costs that comprise the abstraction
of the underlying communication subsystem. While we have implemented the architecture
on an z-kernel platform, the architecture and the prototype implementation do not utilize
any features specific to this platform. We argue that the underlying resource management
policies can be supported on any operating system platform and communication subsystem.
Chapter 5 demonstrates this by developing a guaranteed-QoS communication service based
on this architecture, but for a completely different software and hardware platform.

For true end-to-end QoS guarantees, scheduling of channel handlers must be integrated
with application scheduling. Chapter 8 examines the issues involved in realizing such an
integration. The proposed architecture can be extended in several directions. We have
extended the null device into a sophisticated network device emulator, called END, providing
link bandwidth management [78]. Using END, we can explore additional issues involved
when interfacing to adapters with support for QoS guarantees. In addition to the nature
of QoS guarantees, various alternatives for adapter support for buffer management can be
explored [101,130].

While we have focused on per-channel QoS guarantees, this architecture can be easily
extended to allow aggregation of multiple connections on the QoS “pipe” provided by a

channel. This would then provide effective support for adaptive applications which are built

-}
]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with a certain degree of tolerance for QoS violations. Various elements of this architecture
can also be utilized to realize statistical real-time channels [63]. Statistical QoS guarantees
can potentially be useful to a large class of distributed multimedia applications. Finally.
we have extended this architecture to realize a QoS-sensitive communication subsystem for
shared-memory multiprocessor multimedia servers [119]. However, numerous issues involved

in managing parallelism while providing QoS guarantees need to be explored.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

ADMISSION CONTROL EXTENSIONS FOR END HOSTS

4.1 Introduction

The previous chapter focused on architectural components within the communication sub-
system to realize QoS guarantees. This chapter focuses on bridging the gap between theory
and practice in the management of host CPU and link resources for real-time communi-
cation. Using our implementation of real-time channels, we illustrate the tradeoff between
useful resource capacity, which is the proportion of the raw resource capacity that can be
utilized effectively, and channel admissibility. In the context of real-time channels, useful
resource capacity determines the number and type of real-time channels accepted for service
and the performance delivered to best-effort traffic.

A channel requires a portion of the available CPU bandwidth to process each generated
message and packetize it. Similarly, on a sending host it requires a portion of the available
link bandwidth to transmit each packet on the link. Since these two resources typically differ
in their performance characteristics, they present different tradeoffs for resource manage-
ment. Assuming that both the CPU and link can be reallocated only at packet boundaries,
allocating the link to transmit a packet from another channel usually has no additional
overheads associated with it. However, allocating the CPU to perform protocol processing
for another channel incurs significant overheads in the form of context switches and cache
misses. Excessive CPU preemption, therefore, reduces available resource capacity, effec-
tively increasing the resource usage attributed to a channel. Limiting preemption, however.
increases the temporal window of priority inversion for CPU access, potentially reducing

channel admissibility. Correspondingly, if packet size is increased, the total CPU bandwidth

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

required to process a given message is reduced. However, this is accompanied by an increase
in packet transmission time, and hence in the temporal window of priority inversion for link
access; again, this potentially impacts channel admissibility negatively.

We demonstrate that the above-mentioned tradeoffs are affected significantly by the
choice of implementation paradigms and the (temporal) grain at which CPU and link re-
sources are multiplexed amongst active channels. To account for this effect, we extend
the admission control procedure for real-time channels originally proposed using idealized
resource models. Our results show that, compared to idealized resource models, practical
considerations significantly reduce channel admissibility. Further, the optimum choice of
the multiplexing grain depends on several factors such as resource preemption overheads.
the relationship between CPU and link bandwidth, and the interaction between CPU and
link bandwidth allocations.

Similar tradeoffs arise for message handling at a receiving host. In addition, the mech-
anism adopted for packet input must also be considered, since it affects performance and
hence channel admissibility significantly. In interrupt-mode packet input, the adapter in-
terrupts the host on each packet arrival. This may result in excessive overheads and leave
the host susceptible to receive livelock [151], a scenario in which the host is continuously
receiving and discarding arriving packets (due to queue overflow, say) such that effective
system throughput falls to zero. Polled-mode packet input, an alternative mechanism in
which the host periodically polls the network adapter for arrived packets, can be effective in
preventing receive livelock [125]. Packets can also be input using a hybrid mechanism com-
bining interrupts (under low network input load) with polling (under high network input
load). We develop admission control extensions for a receiving host under interrupt-mode
and polled-mode packet input, and for hosts that are both a source and destination of
real-time channels.

The issues of simultaneous management of CPU and link bandwidth for real-time com-
munication are of wide-ranging interest. Our present work is applicable to other proposals
for real-time communication and QoS guarantees [8,188]. Further, the proposed admis-
sion control extensions are general and applicable to other host and network architectures.
In particular, Internet servers running TCP/IP protocol stacks supporting Integrated Ser-
vices [22, 65], especially the guaranteed service class [159], can also benefit from these exten-

sions. Similarly, Internet routers can apply these extensions when incoming packets must

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be fragmented before forwarding in order to reconcile the different MTUs of the attached
networks.

While we only consider management of communication resources, the present work
can be extended to incorporate application scheduling as well. Our analysis is directly
applicable if a portion of the host processing capacity can be reserved for communication-
related activities, e.g., via capacity reserves [107,123]). Chapter 8 discusses applicability
of these admission control extensions to application-level framing and user-level protocol
processing architectures.

The rest of the chapter is organized as follows. The next section the issues involved
in managing CPU and link bandwidth at a sending host for QoS-sensitive protocol pro-
cessing and packet transmissions, respectively. The modifications required in the admission
control procedure to manage CPU and link bandwidth simultaneously are presented next.
The following section studies the tradeoff between useful resource capacity and channel
admissibility. Admission control extensions for receiving hosts, including hosts engaged
in simultaneous data transmission and reception, are developed subsequently. Finally, we

conclude the chapter with a summary of the key contributions and implications.

4.2 Managing CPU and Link Bandwidth

As mentioned earlier, Algorithm D_order [92] computes the worst-case response time for
a message. This response time has two components: the time spent waiting for resources
and the time spent using resources. At the sending host, the time spent using resources is
equal to the message service time, the time required to process and transmit all the packets
constituting the message. Similarly, at the receiving host the message service time includes
the time to receive and process all the packets constituting the message. To calculate the
time spent waiting for resources, one must consider the preemption model used for resource
access. The following discussion focuses on the sending host, but, much of the discussion is
also applicable to the receiving host. Specific issues affecting receiving hosts are discussed
in Section 4.5.

The real-time channel model presented in [92] accounts for non-preemptive packet trans-
missions, but assumes an ideal preemption model for CPU access, i.e., the CPU can be

allocated to a waiting higher-priority handler immediately at no extra cost. Under this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assumption, message service time is determined solely by the CPU processing bandwidth
required to packetize the message, and the link bandwidth required to transmit all the pack-
ets. The time spent waiting for resources is calculated by accounting for resource usage by
messages from all higher-priority channels, and the one-packet delay (due to non-preemptive
packet transmission) in obtaining the link. However, as explained below, implementation
issues necessitate extensions to the model to account for implementation overheads and

constraints.

4.2.1 Implementation Issues

Several implementation issues impact resource management policies. These include handler
execution requirements, implementation of link scheduling, and the relationship between

CPU and link bandwidth.

Handler Execution

Preemption of an executing process/thread comes with a significant cost due to a context
switch and the associated cache miss penalty. Preemption effectively increases the CPU us-
age attributed to a channel, which in turn reduces the CPU processing bandwidth available
for real-time channels; immediate preemption is thus too expensive. It is desirable to limit
the number of times a handler is forced to preempt the CPU in the course of processing a
message.

At the other extreme, non-preemptive execution of handlers implies that the CPU can
be reallocated to a waiting handler only after processing an entire message. This results
in a coarser (temporal) grain of channel multiplexing on the CPU and makes admission
control less effective. More importantly, admission control must consider the largest pos-
sible message size across all real-time and best-effort channels; maximum message size for
best-effort traffic may not even be known a priori. An intermediate solution is to preempt
the CPU only at specific preemption points, if needed. Since message processing involves
packetization, the CPU can be preempted after processing every packet. The important
parameter here is the number of packets processed between preemption points, which de-
termines the (temporal) grain at which the CPU can be multiplexed between channels.
Admission control must account for the extra delay in obtaining the CPU which may be

currently allocated to a lower-priority handler.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the absence of per-byte copying overheads, the total CPU time required to process a
message is directly proportional to the number of packets constituting the message. Clearly.
assuming that the communication subsystem does not copy message data unnecessarily
(true for our implementation), the CPU processing time will be minimum if a single packet
constituted the entire message, i.e., if the packet size was the same as the message size.
However, as explained below, the total time required to transmit a packet on the link is
determined primarily by the size of the packet, although initiation of transmission involves
non-zero per-packet overhead.

If the set of channels requesting service have identical traffic specifications, and hence the
same maximum message size, then single-packet messages maximize channel admissibility.
However, under a heterogeneous mix of real-time channels (with large and small messages).
a large packet size would significantly reduce the admissibility for channels with messages
smaller than the chosen packet size. Packet size, therefore, also plays a significant role in

determining channel admissibility.

Implementation of Link Scheduling

An assumption often made when formulating resource management policies for communi-
cation is that CPU and link bandwidth can be independently allocated to a channel. This
assumption may get violated in an implementation depending on the paradigm used to
implement link scheduling.

We consider three options for implementing link scheduling in software:

O1: Packets are scheduled for transmission either in the context of the currently-executing
channel handler (via a function call) or in interrupt context after each packet trans-

mission.

O2: Packets are scheduled for transmission by a dedicated process that executes at the

highest priority and is signalled via semaphore operations.

O3: Packets are scheduled for transmission either in the context of the currently-executing
channel handler or in the context of a new thread that is fired up after every packet

transmission.

O1 and 02 differ significantly in the implications for CPU and link bandwidth allocation.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

since with O2 the link scheduler must also be scheduled for execution on the CPU. Since
O3 presents tradeoffs similar to 02, we focus on O1 and O2 in the discussion below.

Selecting a packet for transmission incurs some overhead in addition to that of initiating
transmission on the link. Additional overhead may be involved if the link scheduler must
transfer packets between link packet queues [117]. In O1, the scheduler is frequently invoked
from the interrupt service routine (ISR) announcing completion of packet transmission.
Since the scheduling overhead involved can be substantial in the worst case, it is undesirable
to incur this penalty in the ISR, as this prolongs the duration for which network interrupts
are disabled. If the host is also receiving data from the network, there is now a greater
likelihood of losing incoming data.

02, on the other hand, does not suffer from this problem; since scheduler processing is
scheduled for execution, it is performed outside the ISR. In addition to keeping the ISR
short, this paradigm also has some software structuring benefits such as a relatively cleaner
implementation. However, because the link scheduler is itself scheduled for execution on
the CPU, there is now an additional overhead of a context switch and the accompanying
(instruction) cache miss penalty for each packet transmission. More importantly, allocation
of CPU and link bandwidth is closely coupled in 02. This coupling can potentially lower
the utilization of the link and, as demonstrated in Section 4.4, significantly reduces channel

admissibility and also makes it unpredictable.

Relationship Between CPU and Link Bandwidth

A conservative estimate of message service time can be obtained by adding the total CPU
processing time and the total link transmission time. However, this ignores the overlap
between CPU processing and link transmission of packets constituting the same message.
The extent of this overlap depends largely on the relationship between the CPU and link
bandwidth, i.e., on the relative speed of the two. To improve channel admissibility, message
service time must be calculated to account for this overlap. The extent of the overlap
also depends on the implementation option used for link scheduling. While O1 allows link
utilization to be kept relatively high, O2 can cause the link to idle even when there are
packets available for transmission. From another perspective, 02 forces link scheduling to
be non-work-conserving while O1 allows for work-conserving packet transmissions.

While admission control can utilize the overlap between CPU processing and link trans-

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@100 T ; T T T T 212000 1 T T T T T
11500 — 11500 - -
x i e x
Si000 - T - =100}~ -
gjosoo = o= 52=-0 Message Size = 4xB — 0800 |~ ©-~-0 Massage Size = 4KB -
w0 f- _-* x—x Message Size = 16KB - 10000 f— x—x Message Size = 16KB _
£ sl D -- MessageSizex6OKB | E wool _.omrrmrs, 1T MessageSeaseokB
m L — m : -\-\ —
as00 |- o 5 - = 8500 b~ "-‘ i -
2000 -~ i . soco [~ e -
7500 / i 1500 f - .,‘_
7000 |- - 7000 |- R
esoo b - 500§ -
L] R el P SAOD VD S o] SaRate ST TR SRR S SR S S
5500 |- - 5500 |~ .
so00 |- - s000 |- .
o0 |- - asoo |-
4900 e e] 4000 e — !
Packets between preemptions Packets between preemptions
(a) Option O1 (b) Option 02

Figure 4.1: Throughput as a function of packets processed between preemp-
tion points (packet size 4 KB).

mission of packets belonging to a message, it cannot do so for the potential overlap between
CPU processing and link transmission of packets belonging to different messages. Since mes-
sage arrivals serve as system renewal points, no a priori assumptions can be made about
the presence of messages in the system. This makes admission control slightly pessimistic,
but is necessary for provision of deterministic QoS guarantees.

Determination of £.: As mentioned earlier, the packet transmission time L(s) for a
packet of size s measures the delay between initiation and completion of packet transmission
on the network adapter. That is, it determines the minimum time between successive packet
transmission invocations by the link scheduler. Note that with non-preemptive packet
transmissions on the link, £(S) is also the delay experienced by a waiting highest-priority
packet to commence transmission, where S is the maximum packet size. In order to explore
the effects of the relationship between CPU and link bandwidth using the null device,
we select min(B;, B;) to conform to a desired link (and data transfer) speed, measured in
nanoseconds (ns) required to transfer one byte. On the null device, C; is determined by the
granularity of time-keeping and overhead of communication with the host processor; the

measured value of C; is & 40 us.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.2 Performance Implications

To illustrate the performance implications of some of the above-mentioned issues, we ran sev-
eral experiments using our real-time channel implementation to measure system throughput
(kilobytes(KB)/second) as a function of parameters such as the number of packets processed
between preemption points, the packet size, and link speed. For a given CPU processing
power, varying the speed of the link allows us to explore the relationship between CPU and
link bandwidth. In the experiments reported here, four best-effort channels were created and
messages generated on these channels continuously; each experimental run involved trans-
mission of over 25,000 packets. Multiple runs produced consistently repeatable results. The
results reported are representative in that similar trends were obtained with more channels
and other parameter settings. An experimental parameterization of our implementation
yielded the values listed in Table 4.1.

Figure 4.1 shows system throughput (useful resource capacity) as a function of the
number of packets processed between preemption points (PBP) for several message sizes.
The packet size is fixed at 4 KB and the link speed (LS) is set at 0 ns per byte, i.e., the link
is “fast” relative to the CPU. For O1 (Figure 4.1(a)), changing PBP has no effect when the
message size is 4 KB; this is expected for single-packet messages. As message size increases.
so do the number of packets and throughput increases until PBP equals the number of
packets in the message. After this point PBP has no effect on throughput. As can be seen.
for large messages an increase in PBP improves throughput significantly and consistently.

02 (Figure 4.1(b)) reveals the same behavior as O1 for small- to medium-sized messages.
However, for large messages throughput rises initially as throughput rises initially as PBP
increases. Subsequently, throughput starts falling sharply, in a non-linear fashion. The
decline in throughput is due to increasingly poor utilization of the link bandwidth and a
corresponding increase in the time to transmit all the packets belonging to the message.
The oscillations in throughput are due to subtle interactions between the CPU preemption
window and link transmission, as investigated in Section 4.3.

Figure 4.2 shows the measured system throughput as a function of packet size and link
speed. Three values of link speed are considered: 0 ns per byte (fast link), 50 ns per byte
(medium-speed link), and 100 ns per byte (slow link). For each link speed, we consider
two values of PBP, namely, 1 and 4. Message size is kept fixed at 32 KB and packet size is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F2000f s---i LS=0ns.PBP =1 M - S2000f &---4 LS=Ons. PBP=t | ' -
X *-ee-m LS=0ns, PBP =4 4 | LEEN % LS=0ns PBP =4
520000~ _— LS=50ns,PBP =1 & 520000~ - LS =50ns, PBP = 1 -
g S —=C LSx50ns, PBP = 4 2 S ==C LS=50ns, PBP =4
813000 ~ 0-==0 LS=100ns, PBP =1 T 18000~ ©O-—=C LS=100ns, PBP =1 <
E Pe==i LS=100ns.PBP=4, ' xs = Ie==: LS=100ns, PBP =4 P

16000 — -~ 5 - Eymo R —

14000 14000

12000 12000

10000 10000

8000 8000

6000 5000

<000 w0

N 1 1 I
2000 4 6 s 10 12 20007) s [] 10 12
Packet size (KB) Packet size (KB)
(a) Option O1 (b) Option 02

Figure 4.2: Throughput as a function of packet size and link speed.

varied from 2 KB to 12 KB.

Consider system throughput for O1 (Figure 4.2(a)). For a given packet size (i.e., fixed
CPU processing time), an increase in link speed results in higher throughput for Ol and
02, with O1 outperforming 02. We again notice that, with a fast link (when CPU is
the bottleneck), increasing PBP from 1 to 4 provides a significant gain in throughput.
For a given value of PBP and link speed, throughput increases with packet size since the
CPU processing time reduces due to a reduction in the number of packets constituting the
message. An increase in packet size from 8 KB to 10 KB does not change the number of
packets and the throughput remains unchanged. As the link becomes slower, however, there
is a saturation in the achieved throughput due to the link tending to become a bottleneck.
After a certain packet size, for a given link speed, link transmission time exceeds the protocol
processing time; thus any gains from a higher PBP cease to matter and the two curves
converge. From Figure 4.2(a), this occurs at a packet size of 8 KB for link speed of 50 ns
per byte and at 4 KB for link speed of 100 ns per byte.

Figure 4.2(b) shows the system throughput for 02. The trends are similar to those
observed when the link is either very fast (CPU is the bottleneck) or very slow (link is the
bottleneck) since CPU and link processing overlap almost completely. For a medium speed
link (CPU and link bandwidths are more balanced), however, throughput behavior is more

non-linear. Subtle interactions between CPU preemption window and link transmission

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time cause the link to idle until the next preemption point. This explains the drop in
throughput at a packet size of 6 KB and PBP of 1. Subsequently, throughput climbs
because link utilization improves and CPU requirements continue to decrease. This effect

is analyzed in Section 4.3.

4.3 Worst-Case Service and Wait Times

For a channel requesting admission, D_order can compute the worst-case message response

time (the system time requirement in [92]) by accounting for three components:
e the worst-case waiting time (7;,) due to lower-priority handlers or packets,
¢ the worst-case service time for the message (7;), and

¢ the worst-case waiting time due to message arrivals on all existing higher-priority

channels (7;%?).

We show below how T, and 7; can be estimated for a sending host to account for the
implementation-related issues highlighted above; ’I;"p can then be recomputed using 7.
Section 4.5 estimates 7T, and 7; for a receiving host.

Suppose the CPU is reallocated to a waiting handler, if needed, every P packets; that
is, up to P packets are processed between successive preemption points. Further, (see
Table 4.1) let the maximum packet size be S, context switch overhead between handlers
be Cyy (this includes scheduling overhead to select a handler for execution), cache miss
penalty due to a context switch be C.n, and packet transmission time be L:(S) for packet
size S. Per-packet protocol processing cost is C, and per-packet (link) scheduling overhead
of selecting a packet and initiating transmission is C;. C, includes the cost of creating a
new fragment, traversing the layers of the protocol stack performing header encapsulation,
and enqueueing the packet for transmission. In general, it may also include the cost of
copying data, computing checksums, and performing encryption. C; includes the cost of a
timestamp, accessing the link packet queues, invoking device driver transmit routines, and

fielding the transmission-completion interrupt.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Symbol Description Value
Csw time to switch contexts between channel handlers 55 us
Cem cache miss penalty due to a context switch 90 us
Cy first-packet CPU processing cost 420 ps
G per-packet CPU processing cost 170 us
C per-packet link scheduling cost 160 us
P number of packets processed between preemption points | 4

S maximum packet size 4 KB
L(S) link transmission time for packet of size S 245 us

Table 4.1: Important system parameters.

4.3.1 Estimating Service Time

Consider a message of size M bytes constituting N, packets, i.e., NV}, = I'LX.—'] packets, with
(NVp — 1) packets of size S and the last packet of size St = (M mod S) if (M mod S) # 0,
else S’ = S. Thus, link transmission time is L:(S) for all but the last packet and £.(S5'2%)
for the last packet. Protocol processing cost for the first packet is C;" while subsequent
fragments each incur a lower cost C,. C,* includes the fixed cost of obtaining the message
for processing, the cost of a timestamp, and the cost of preparing the first packet.! Both
C;" and G, include the cost of network-level encapsulation. We estimate 7, for O1 and 02
separately.

Option O1: Given the system parameters listed in Table 4.1, the worst-case service time
for O1 is given by

G+ LT +CM +Cpr if Cp < L(S)

7o -
o +C™ + L(S") +Cpr otherwise

where LT = (N, — 1)Lz(S) + L£(8'%) is the total link transmission time for the message,
CI™ = NpCy is the total link scheduling overhead for the message, Cp,r = I_Mﬁ,:ljcm is the
total cost of preemption during the processing of the message (Cesp = Cem + Csw), and
Cot = C* + (N, — 1)C, is the total protocol processing cost for the message. Protocol

processing and link transmission overlap in Ol is illustrated in Figure 4.3.

'Our fragmentation protocol traverses a slower path for messages larger than S bytes; the first packet
thus has a higher processing cost.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cPU
LINK |

(a) Cp < Lo(S)

LI

(b) Cp > L(S)

_ First packet processing time l—_—_] Packet transmission time
_ Other packets processing time l:l Link scheduling time

Figure 4.3: Protocol processing and link transmission overlap in O1.

If C, < £:(S), there is at least the cost of processing the first packet. Since the link
transmission time dominates the time to process subsequent packets (see Figure 4.3(a)),
message service time is determined by link transmission time for the message and the total
link scheduling and preemption overheads incurred. If Cp > L-(S) (Figure 4.3(b)), however,
message service time corresponds to the total protocol processing time for the message plus
the time to transmit the last packet, in addition to the total link scheduling and preemption
overheads.

Option 02: Calculation of the worst-case service time for 02 is done similarly; however,
we must now consider the processing of blocks of packets with each block comprising no
more than P packets. The number of blocks in a message with A}, packets is given by
Ny = I_A%——l] + 1. The protocol processing cost for the first block is given by Cist=Clt +
(min(N,, P) - 1)Cp, while the cost of processing the last block of packets is given by

Csy if (M, mod P) =0

céaat =
(Np mod P)Cp +C.sp otherwise

where C; = PCp + Cp, is the cost of processing the other blocks, if any. The worst-case

service time is given by

TA 4+ TO2P i C, < Lo(S)

TO2 -
k2
T8 otherwise

where 74 =C}*t 4 L™ 4 €/ and

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Co < L(S)

(b) Cs > L(S)

_ First block processing time D Packet transmission time
B otherblocks processingtime [| Link scheduling time

Figure 4.4: Protocol processing and link transmission overlap in 02.
T2 = CLo + (P = 1)Cp + Cenp + C,

with €] = | + Cyp. T8 is given by
T4 if N =1

7L + TF otherwise

T8 =

where 7.C = Cl*t+(N} ~2)Cp+max(C{e*t, £.(S)) and TE = (Np=MNB)LA(S)+ L(St)+Cm.
Protocol processing and link transmission overlap in 02 is illustrated in Figure 4.4.

If C, < L(S) (Figure 4.4(a)), each block will complete processing its packets before
a packet gets transmitted. This is because in 02, the link scheduler does not get to run
until the CPU is preempted. So the message service time simply corresponds to the time
to process the first block of packets and transmit each packet. However, the link scheduler
may now have to wait for time 7.0%P* to obtain access to the CPU and initiate packet
transmission; in the worst-case this wait penalty must be assumed for each packet that is
to be transmitted. If C, > L£.(S), however, the link transmission time is faster than the
time to process the packets in a block (Figure 4.4(b)). Except for the first block, each block
will overlap precisely one packet transmission. This implies that message service time is
determined by the processing time for all the blocks, the transmission time of (Np — N3)
packets, and the total link scheduling overhead. There is no wait time in this case because
the link scheduler is guaranteed to run next, even if the handler must preempt the CPU

to another handler. If the last block of packets is shorter than L(S), only the time to

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transmit the last packet contributes to the message service time; else the time to process
the last block must be considered.

Note that the analysis of O1 conservatively accounts for the link scheduling overhead
for each packet to be transmitted. As a result, the link is not being utilized fully even when
packets are ready for transmission, as is evident from F igure 4.3. This tends to reduce
channel admissibility in O1, especially when Cp > L(S), relative to 02, where we already
consider processing of blocks of packets. If N, > P, we only need to account for the link
scheduling overhead once every P packets, while still accounting for interrupt overhead per
packet. Between two successive yield points, the packet transmission order corresponds
to the packet generation order. This is because the packet transmission time is completely
overlapped with packet processing time, and a handler will not preempt the CPU before pro-
cessing P packets. The link scheduling overhead can be reduced further by pre-selecting the
packet to transmit next (thus overlapping with ongoing packet transmission) and recovering
from any potential priority inversions. Moving the link scheduling function to the adapter
improves performance significantly [80] by facilitating greater overlap between packet pro-
cessing and packet selection, and reducing context switches and cache perturbation, thus

increasing channel admissibility for both O1 and Q2.

4.3.2 Estimating Wait Time

To compute the total message wait time, we first consider the time spent waiting for a
lower-priority handler to relinquish the CPU, followed by the time spent waiting for the
link.

Option O1: The worst-case CPU time for a block of packets is CJ**% = C{*t + (P — 1)Cp,
during which up to [%g-(;)-] packets could complete transmission. Thus, the worst-case CPU
wait time is Cpo=
L:(S)

Now, consider the worst-case link wait time. A lower-priority transmission could be started

ToVePs = cpaz 4 [1C1 + Cesp.

in an ISR just before the currently executing handler makes a packet ready for transmission.
Due to non-preemptive packet transmission, the packet generated by the handler will have
to wait for the lower-priority packet to complete transmission. Therefore, the worst-case
link wait time is simply 701" = £.(S), and 70! = TOVePu 4 TOLkink_

Option O2: The worst-case CPU wait time equals the time to process up to P packets

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

:

@200 Y T T ’ T ! ™
a L——a LS=0ns{p)l _,_;.-" 2 a-—==a LS =0ns (p) N
£1p000 -5 -——% LS =0ns (m) g E10000 |-% ——% LS = 0ns (m) 4]
3 Z e LS = 5008 (p) & 3 T LS = 50ns (p) 5
a g
| x-x LS=SOns(m) memmaew” | [x - LS = 50ns (m) A
%‘m o—-0 LS=itOns(p) & ?m °~-oLS=t0mfp) N T
£ +—=-+LS=100sm ¥ £ + -+ LS=100ns(m) o7 §
14000 1~ K Sy e 14000 |- s _
" ..-n"' s . ?:
12000 |- _J:./)':' S 12000 |~ / -
= O
10000 |- F e - 10000 |~ &z * -
8000 2000
6000 000
4000 b= 4000 -
2005 6 0 10 12 200
Packet size (KB) Packet size (KB)
(a) Option O1 (b) Option 02

Figure 4.5: Comparison of measured (m) and predicted (p) throughput
(P = 4).

on a lower-priority channel followed by a context switch to the link scheduler, followed by

another context switch to the waiting handler. Thus,

TO%P* = " 4+ Co0p +C,

where C; = C;+Cpsp. Similarly, TO2/ink is derived as follows. If L(S) < o=, TO2link — g,
else TO¥ink = TO%epu_ If the link scheduler completed transmission before the first block
is processed, the next packet can be transmitted as soon as the handler yields the CPU.
In the worst case, a lower-priority handler begins processing a non-preemptive block of
packets, making the link scheduler wait for this block to end before it gets a chance to run
and transmit the next higher-priority packet. Thus, 70% = 79%u 4 T,02link_

4.3.3 Experimental Validation

Our implementation provides admission control based on the above estimates of service and
wait times. While these estimates are geared towards real-time guarantees, and therefore
are necessarily conservative, it is insightful to compare the throughput predicted by these
estimates and the best-effort throughput measured using the real-time channel implemen-

tation. For this purpose, we parameterized the communication subsystem, including the

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

protocol stack, extensively to determine the system parameter values listed in Table 4.1.
We validated the implementation as a function of packet size, for different values of link
speed; the main results are summarized below.

Figure 4.5 compares the predicted and measured throughputs as a function of packet
size, for three values of link speed (LS). Predicted throughput tracks measured throughput
well for O1 (Figure 4.5(a)) as well as 02 (Figure 4.5(b)). However, for O1 with medium
link speeds, the predicted and measured throughputs diverge significantly; we attribute this
to overly conservative estimates of C,,, and C.,,. The estimates are necessarily conservative
in accounting for worst-case times which, though necessary for real-time traffic, may be
relatively small on average.

These validation experiments reveal certain shortcomings in determining the system
parameter values listed in Table 4.1; part of the discrepancy stems from the unpredictability
introduced by caches. More refined experiments are necessary to select accurate values
for Cp, Cswy and Corm. It has been shown that the cache behavior of network protocols is
protocol-specific and that cache misses play a significant role in protocol stack execution
latency [16,133]. For partitioned caches, cache behavior can be made more predictable
under control of the operating system [110]. We examine some of the issues involved and

the difficulty of accurate parameterization in Chapter 6.

4.4 Channel Admissibility

In this section, we demonstrate that the tradeoff between resource capacity and channel
admissibility is influenced significantly by P, the number of packets between preemptions,
and S, the packet size. As expected, the mechanism employed to implement link scheduling
and the relationship between CPU and link bandwidth also have a profound effect on channel
admissibility. We studied channel admissibility for O1 and O2 for a range of link speeds,
message sizes, rates and deadlines. In the following, we present and compare the results for
a link speed of 50 ns per byte, message size of 32 KB, and message inter-arrival of 100 ms.

We admit as many channels as possible with deadline of 100 ms.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 T T T T T T

sp "_-_»-—-.0_--_6----5--‘

-

Number of Channels
i
]
]
A
L
\
\
Number of Channels

M - & & -----& Packet Size = 2B 7
----- Z-=~Z Packet Size = 4XB
1o +—~+ Packet Size = 8KB
0-=~0 Packet Size = 12KB
~—=1 Packet Size = 16KB
s 1 1 L L 1 1 s 1 A 1 L 1 1
1 2 3 4 5 [? 8 2 4 [] 10 12 14 16
Packets between preemptions Packet size (KB)
(a) Effect of P (PBP) (b) Effect of S

Figure 4.6: Effect of P and S on channel admissibility in O1.

4.4.1 Channel Admissibility in O1

From Figure 4.6, channel admissibility in O1 rises with both P and S due to the accompa-
nying reduction in protocol processing cost and work-conserving packet transmissions. As
P rises (Figure 4.6(a)), protocol processing costs decline, resulting in a small increase in
channel admissibility. As P continues to rise, the marginal benefits in protocol processing
costs decline. Due to an increase in the window of non-preemptibility, channel admissibility
either saturates or shows a small decline. Figure 4.6(b) shows that increasing S increases
channel admissibility substantially, since the reduction in the required CPU bandwidth
more than compensates for the increase in the non-preemptibility window.

The above results might suggest that arbitrary-sized packets (i.e., sending each message
as a single packet) are desirable to maximize channel admissibility: While this is true if
all channels carry same-sized messages, the same cannot be said for channels with smaller
(single-packet) messages. Increasing P and S arbitrarily only serves to increase the window
of non-preemptibility with no reduction in CPU requirements for small messages. Large
values of P and S lower admissibility for channels with small messages, especially those
with tight deadlines. Selection of P and S therefore depends on system parameters as well

as the targetted mix of communication traffic.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 v T T T T T T 2 % T T T T T y
g A -=wra Packet Size = 2KB § A s PBP=1
5 s =---= Packet Size = 4KB - = xl- -~=-Z PBP=2 -
g +-—-+ Packst Size = 8KB g +etr PBP =4
- 0-~=0 Packet Size = 12KB _) . - - PBP=8
£ ol :—-: PacketSize = 16KB § S 2 »l- p:
E 4 [3 g
3 I S 4
Z i e e et - NN 4 ,p—'—‘w.ﬂ"
-~ Pt O e 3PN,
s ,__,"\'.\\ ': - Py . - .::’.’,l N~
A - o AT
! 4 i P ' *
- ’ i i [",?? ,‘ s
 FA = 2 4
’ S ; A . R
e SR . e, o e
Dt S Tr—— T B e m o] i s . -
s T~ — 13 ol Lo BeeesE o
4% e
':_! _.__..’
ol N N N N N - o « -~
s 1 L L 1 L L s L 1 L 1 L 1
1 2 3 4 3 s 7] 2 4 s a 0 12 14 18
Packets between preemptions Packet size (KB)
(a) Effect of P (PBP) (b) Effect of S

Figure 4.7: Effect of P and S on channel admissibility in 02.

4.4.2 Channel Admissibility in 02

In contrast to O1, channel admissibility when using 02 to schedule packets is significantly
lower and the behavior is highly non-linear. This is explained easily using our preemption
model. Consider the effect of P on channel admissibility (Figure 4.7(a)) for 8 KB packets.
With the given link speed and P = 1, link transmission time is greater than protocol
processing time for a block of packets. The model in Figure 4.4(a) applies, making the
channel susceptible to long idle periods (Section 4.3). For P = 2, the transmission time for a
packet remains unchanged, but the processing time for a preemption block increases, making
it more than the link transmission time. This results in the scenario in Figure 4.4(b)), in
which the worst-case transmission time is reduced substantially, thereby increasing channel
admissibility.

As P increases further, the nature of overlap between CPU processing and link trans-
mission remains unchanged. Channel admissibility either remains unchanged or declines
slightly due to an increase in the window of non-preemptibility. This transition occurs
for all but the smallest packet sizes. In general, the larger the packet, the greater the P
that causes a change in the nature of overlap, namely, from packet transmission time being
slower to it being faster than the processing time for the longest block of packets.

Figure 4.7(b) presents the same information as a function of S. As packet size increases.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

there is an initial increase in admissibility due to reduced protocol processing load. At
a certain value of S, link transmission time becomes larger than block processing time,
changing the scenario from that in Figure 4.4(b) to that in Figure 4.4(a). Further increase
in packet size slowly increases channel admissibility due to reduced CPU bandwidth re-
quirements. As seen from Figure 4.7, the best operating point for 02 depends critically
on system parameters. Since a change in channel characteristics will significantly change
channel admissibility, a system parameterized and optimized for a particular workload is
unlikely to perform well under a heterogeneous workload.

Using a model of ideal resources, i.e., with no CPU preemption cost and an immediately
preemptible CPU, we found =~ 40% improvement in channel admissibility over and above
01 with P = 1. Thus, it is necessary to account for non-ideal characteristics (context switch

overhead, cache miss penalty) of real systems.

4.5 Admission Control Extensions for Receiving Hosts

The previous sections have considered admission control extensions for sending hosts. In
this section we illustrate how similar admission control extensions for communication re-
source management can be developed for receiving hosis as well. While the approach and
methodology adopted are the same, the analysis must take into account key differences
between sending and receiving hosts, as outlined in Section 4.5.1. We first consider a re-
ceiving host that serves as the destination for multiple channels, i.e., only handles incoming
data traffic (Section 4.5.2). Then, in Section 4.5.3 we consider simultaneous data trans-
mission and reception on different channels at a host. Since the tradeoffs are similar to
those considered previously for a sending host, we only present the analysis and admission
control extensions. A subset of these extensions, as well as the ones presented for sending

hosts, have been implemented in the guaranteed-QoS communication service described in

Chapter 5.

4.5.1 Reception Issues and Assumptions

Communication resource management at a receiving host differs from that at a sending host
in several ways. First, with heterogeneous hosts, the preemption overheads and CPU speed

of the receiver, and hence the granularity at which the receiver CPU multiplexes between

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

handlers, could be substantially different from that of the sender. Similarly, the CPU
capacity available (reserved) for communication processing at the receiver may also differ
from that at the sender. Further, the raw performance of the receive path may be different
from that of the transmission path, necessitating accurate parameterization of the costs
incurred during message reception. In addition to protocol processing overheads such as
message reassembly, a receiving host incurs the overhead of classifying arriving packets, i.e.,
determining which channels the packets belong to. Such support may be available directly
from the adapter (e.g., the VCI in ATM network adapters), or the necessary information
may be carried in link-level packet headers [172], in which case the host does not incur any
significant packet classification overhead. In the absence of such support, the receiving host
must rely upon efficient packet filters [59,186] to perform the packet classification. Note
that this overhead is not incurred at the sending host if the API directly associates outgoing
messages with channels. If this is not the case, some classification may be required, but
only on a per-message basis, since distinct channel handlers shepherd individual packets
down the protocol stack.

Second, the aggregate packet arrival rate at a receiving host may be significantly higher
than the aggregate message rate associated with the established channels. This is because
it could potentially receive best-effort traffic from other hosts as well, depending on the
configuration of the network. Note that the packet transmission rate of a sending host is
determined by the aggregate message generation rate of the channels (real-time or best-
effort) established at the host. The worst-case aggregate packet arrival rate at a receiving
host depends in part on the configuration of the network, i.e., multi-access or point-to-
point. In the worst case, a (possibly best-effort) packet could arrive every £,(Spin) time
units, where Sy,i, is the minimum packet size (determined from the network technology)
and L£,(Smin) is defined as before, i.e.,

Cf(Smin) = Cr + Smin

min(B;, B)”

Again, B, is the data transfer bandwidth available to host memory and B is the bandwidth
of the attached network link. C; includes the cost of setting up DMA transfer operations,
if any. We assume that the adapter signals packet arrival (via an interrupt, say) after
completing any DMA operations. Also implicit is the assumption that the attached network
link can be utilized maximally for back-to-back packet transmissions.

For a point-to-point network (our main focus), however, the aggregate packet arrival rate

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at the receiver is limited by the aggregate packet transmission rate at the sender attached
to the same network link, assuming the receiving host is single-homed. This sender would
likely be a router forwarding traffic to the receiver from multiple sending hosts. We assume
that the router performs admission control and QoS-sensitive packet forwarding as outlined
earlier, such that real-time traffic is serviced at a priority higher than best-effort traffic.
It follows that no best-effort traffic will arrive at the receiver during reception of a real-
time message. Further, at most one lower-priority real-time packet will arrive ahead of a
higher-priority real-time message. We compute the message service and wait times as per
the approach adopted in Section 4.3. Unlike the sending host, however, at the receiver we
must account for any packet arrivals on other channels (real-time or best-effort) during the
processing of a real-time message but after all the packets of this message have arrived.

Third, a persistent burst of packet arrivals at the receiver can result in receive live-
lock [125,151], as explained in Chapter 2. Receive livelock can occur even in a point-to-
point network with QoS-sensitive forwarding, especially when there is low real-time traffic
(which is subjected to admission control) but high, persistent best-effort traffic. One way
to prevent or eliminate receive livelock is to limit the rate at which the adapter interrupts
the host, and/or to schedule protocol processing of arrived packets at a priority that does
not starve other activities on the host.

As described in Chapter 3, in our QoS-sensitive architecture protocol processing for
received packets is explicitly scheduled via channel handlers once the device driver receives
the packet from the adapter and classifies it. Qur architecture, therefore, facilitates provision
of QoS guarantees while preventing receive livelock. We note that an alternative approach
is outlined in [53], in which receive livelock is prevented by deferring protocol processing of a
received packet until the receiving application is scheduled for execution. Besides coupling
protocol processing priority with application priority, this approach may not be able to
exploit the overlap between packet reception from the network and protocol processing on
the host, as discussed in Chapter 8.

We consider provision of QoS guarantees under two different mechanisms by which ar-
riving packets are handled by the host processor, namely, interrupt mode and polled mode.
Interrupt mode handling represents the traditional and most prevalent packet handling
mechanism in operating systems and network adapters. For a stable system, the overhead

to field an interrupt (denoted as C;) and demultiplex (i.e., classify) a packet to the corre-

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sponding channel packet queue (denoted as C,) must be sufficiently low compared to the
minimum packet interarrival time L£,.(Spiy); else, the host will be completely overloaded
under persistent packet arrivals regardless of how protocol processing is scheduled. Polled
mode handling is an alternative to interrupt mode handling that can be effective in pre-
venting receive livelock [125].

Fourth, in order to keep the analysis tractable, we must make additional assumptions
about the support available in the adapter for QoS guarantees, as outlined in the discus-
sion below. The nature of adapter support depends on whether the receiving host employs
interrupt mode or polled mode handling for packet input, with interrupt mode requiring
comparatively less adapter intelligence. These assumptions can be validated easily using the
END [78], a sophisticated network device emulator that was evolved from the null device
described in Chapter 3. We have used END as a tool to study design improvements in exist-
ing adapters [79], and explore adapter-based strategies for receive livelock elimination [81],
the details of which are beyond the scope of this dissertation. As for the sending host, we
assume that the entire capacity of the host is available for communication processing; our
results can be easily adapted for the case where only a certain fraction of the host capacity

is reserved for communication processing.

4.5.2 Pure Reception

Under the assumptions made above, we develop admission control extensions for a receiving
host that only handles incoming data traffic. That is, it does not generate any real-time or
best-effort traffic. Some of the extensions developed continue to apply even in the presence
of outgoing traffic, as discussed in Section 4.5.3. We first analyze interrupt mode packet

input, followed by an analysis of polled mode packet inpat.

Interrupt Mode

In this mode the adapter signals arrival of a packet by interrupting the host processor.
As part of handling the interrupt, the ISR examines packet headers (possibly via a packet
filter) to classify the packet, i.e., determine the channel it corresponds to, and enqueues the
packet in the channel’s input queue for subsequent processing by the corresponding channel
handler [117]. Note that the handler performs message reassembly after processing the last

packet of a message, and enqueues the message in the channel message queue for subsequent

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

retrieval by the application. Let C; denote the cost of processing a packet other than the
last packet of a received message, and C:,‘”‘" denote the time to process the last packet.
reassemble and deliver the message to the application. Then, Co'" = (Np = 1)Cp +Clastr is
the total protocol processing time for a message of size M comprising NV, packets. Assuming

cooperative preemption as before, the message service time at the receiving host is

Clastr + (N ~ 1)L, (S) + max(L,(S'#),CT + Cy)
M = FCatCHC HCT+Coi < Lo(S)
CoM™ + Lo(S) + NpCoi + C; +Cr. otherwise
where ;. = [J—VE—I-]CZ,p is the total cost of preemption during the processing of the message
(Cisp = CLn +C7,). If C; is the overhead of fielding a packet arrival interrupt (including
the associated preemption overhead), then N3Coi is the total message handling overhead for
fielding and servicing these interrupts, where C,; = C,+C;. C, includes the cost of classifying

the packet (e.g., via a packet filter), and enqueueing it in the channel input packet queue.

c: _ I‘m“(o'c;*'coi"Cr(s‘““))-{—c,',“""’
T Z Brmin)

maximal possible rate due to packets arriving after the arrival of all packets belonging

]Coi is the overhead of packet arrival interrupts at the

to the real-time message, but during the remaining CPU processing by the handler. The
worst-case scenario corresponds to minimum-sized best-effort packets arriving back-to-back.
Figure 4.8 illustrates link reception and protocol processing overlap in this case.

If C7 + Coi < L(S) (Figure 4.8(a)), packet input overhead and processing time is com-
pletely overlapped by packet reception time for all but the last two packets of the message.
While all packets arrive before processing of the last packet begins, processing of the preced-
ing packet only partially overlaps with the reception time of the last packet in the message,
which could be smaller than the other packets. If C; +Coi > L,(S) (Figure 4.8(b)), on the
other hand, packet input overhead and processing time completely overlaps packet reception
time for all but the first packet of the message.

C; can be reduced further if we assume that the adapter distinguishes between best-effort
and real-time traffic, and allows the host to selectively mask interrupts due to best-effort
traffic during the processing of a real-time message. With this assumption, a tighter bound
on packet arrival rate can be computed using the aggregate real-time traffic generation at
the sender (i.e., the immediately upstream host/router). Assuming that the sender per-
forms strict traffic shaping, the aggregate real-time packet arrival rate at the receiver is

doacA Rz [M%ﬂ] packets/second, where A is the set of real-time channels already es-

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ceu N NN BN _En BN W

LINK |

(8) €5 +Coi < Lo(S)

CPU
o —.E!:q:!:—_,

(b) € +Coi > £+(S)

- Last packet processing time [:l Packet reception time
B Otherpackets processingtime | | Interrupt and classification overhead

Figure 4.8: Link reception and protocol processing overlap in interrupt
mode input.

tablished between the sender and receiver. C; can then be computed using this aggregate
real-time packet arrival rate, which could be substantially less than the maximum possible
packet arrival rate C,.—(.SL,;;T’ expressed in packets/second. Without this assumption, how-
ever, worst-case best-effort packet arrivals must be assumed as above, since, in the absence
of any real-time traffic, best-effort traffic could completely consume unutilized resources at
the sender.

Computation of the worst-case CPU wait time due to a lower-priority handler must
consider the delay before the handler begins processing the first packet of the message

being considered, and is given by
max(0,Cf — min(| z#s5), Ny = 1)L(S))
cf(smin)

where C] = C,’,”‘”’-{-(’P' —1)C7 is the worst-case cost of processing a block of P* packets. The

TP =y + [1Coi +Cp,

second term corresponds to the best-effort packet arrival interrupts in the remaining time
that the lower-priority occupies the CPU, after accounting for the arrival interrupts due to
the rest of the packets of the (real-time) message whose CPU wait time we are considering.
Note that we only account for best-effort packet arrival interrupts if all packets of the real-
time message arrive before the lower-priority handler yields the CPU. As explained earlier,
the second term can be reduced further if appropriate interrupt masking is supported by

the adapter, and the aggregate real-time message rate is considered.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The total worst-case wait time can only be computed after accounting for any additional
queueing delays experienced by a incoming packet on the adapter. This was not an issue at
the sending host, where only one outgoing packet was allowed to reside on the adapter at
any time. For an adapter designed to handle QoS-sensitive traffic, an arriving packet would
have to wait for at most one maximum-sized lower-priority packet to be received by the
host. Thus, the worst-case “link” wait time is given by Tintrlink — ¢4 -;,%, assuming that
the adapter initiated the transfer of a lower-priority packet just before the arrival of the

higher-priority packet. As before, the total message wait time is Tp = Tintripu 4 Trintrlink

Polled Mode

In this mode the adapter does not interrupt the host processor; instead, the host processor
periodically polls the adapter to detect newly-arrived packets. Polling, which is sometimes
preferred over interrupts [173], helps amortize interrupt overhead over multiple packets per
polling cycle at the expense of increased packet reception latency. As mentioned before,
polling can be effective in preventing receive livelock [125]. We assume that polling is
realized via clocked interrupts [173] such that a polling timer expires periodically, and at
each polling instant inputs up to a certain number of packets (the quota in [125]). The quota
is determined by the host processing capacity allocated to servicing the polling timer and
inputing packets. We focus below on admission control extensions when packet reception is
performed purely via clocked interrupts with quotas. Qur analysis can be easily extended to
the case where polling is performed by an explicitly-scheduled polling thread, as described
in [125].

Suppose the host configures the polling timer to expire every Z,ou time units, and the
quota is g packets; that is, each time the polling timer expires, up to g packets are input
from the network adapter. To admit channels, admission control must use the host CPU
capacity available for handlers. Assuming the host has mechanisms to schedule a periodic
timer, our analysis directly accounts for the CPU capacity consumed by the polling timer
service routine. We assume that the adapter has some minimum intelligence to distinguish
(and maintain separate input queues for) incoming best-effort and real-time traffic, such
that the latter gets higher input priority.

Since arriving packets may have to wait for input by the polling timer, we also assume

that the adapter has sufficient per-channel buffers for arriving packets, as derived from

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the channel traffic specification. Further, the adapter must ensure (via appropriate QoS-
sensitive queueing) that the host can receive real-time packets from different channels in
the order in which the sender transmitted them. This was not an issue in interrupt mode
handling because arriving packets interrupt the host directly, and are immediately classified
and enqueued at the corresponding channel’s packet queue. Without the above assumptions
We cannot compute message service time for a channel in isolation, and bound the link wait
time (i.e., the queueing delay on the adapter).

The maximum number of packets of size S completing arrival at the adapter in a polling
period is ny = | é_z(’é'ﬂ For practical purposes 1 < ¢ < n; must hold, i.e., Z,on is chosen
such that at least q packets arrive and can be input without starving channel handlers. The
total link reception time for all the packets comprising a message is L], = (N, — 1)L.(S) +
L.(S'st), where N, is the number of packets in the message. While all the packets of the
message arrive over [f‘;%l-] polling periods, the total number of polling periods required to
input the message is I‘J{z]

Since nr > q, and hence [75;:':;] < [{Z], it follows that all the packets of the message
will arrive before the polling timer inputs all the packets and the channel handler finishes
processing them. Once a block of g packets are input and queued, the corresponding channel
handler processes them in time C, = s + |+ 1Cesp- The message service time can then
be shown to be

([%2] ~ 1)Zpou + (N, mod)(C, +CF) + (Clost — €T)
7l = +*e Bt ier, i€, < Tpou - oG
G +Cl +C, otherwise
It can be verified that the two expressions are the same when Cy = Zyou — qC,- Given our
assumption that n; > g, the above equation is valid for Np < nr as well as A, > ng.
Figure 4.9 illustrates link reception and protocol processing overlap in polled mode packet
input.

If C; < Zpou — qC, (Figure 4.9(a)), the processing of all the g packets input during a
polling period will be completed before the next polling period. Accordingly, the message
service time is determined by one less than the number of polling periods required to input
N, packets, and the time to input and process the remaining MV, mod q packets in the last
polling period. If C; > Z,on ~ qC, (Figure 4.9(b)), however, it suffices to account for the

time to input and process all the packets of the message.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

polling instant

Pl N
CPU
LINK | |
(2) Cq < Lpout — ¢C,
/polllng instant N\
CPU
LINK | i

(b) cq > zpoll - qco

— Last packet processing time I: Packet reception time
N Other packets processing time D interrupt and classification overhead

Figure 4.9: Link reception and protocol processing overlap in polled mode
input.

The worst-case message wait time is incurred when the first packet of the message arrives
at an empty adapter queue with the polling timer having just finishing polling; the arrived
packet must wait until the next expiration of the polling timer (as shown in Figure 4.9).
Further, a lower-priority handler could have been allocated the CPU just before the next
expiration of the polling timer. To compute the worst-case CPU wait time due to a lower-
priority handler, note that once the first packet of a message arrives, the corresponding
(waiting) handler is unblocked if it is not already running (the worst-case scenario). In
the absence of a higher-priority handler, the newly-awakened handler will be scheduled for
execution only after the polling timer service routine completes (i.e., relinquishes the CPU),
and the lower-priority handler that was preempted by the polling timer yields or completes
processing (whichever occurs first). Accordingly, the worst-case CPU wait time is given by
TRl = Toou+Cf +CZ,p- Note that the wait time in this case is not affected by the back-to-
back arrival of best-effort packets, since the host is not interrupted on packet arrival. Under
the same assumptions of adapter support as in Section 4.5.2, the worst-case link wait time is

Tpolllink — ¢ 4 B{" with the worst-case message wait time being 7], = TPellepu 4 Fpolllink

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.3 Simultaneous Send and Receive

We now consider admission control extensions for a host that is both a source and destination
for real-time channels, i.e., handles simultaneous outgoing and incoming traffic. We focus
on the option O1 for outgoing traffic and interrupt mode handling for incoming traffic;
appropriate extensions can also be developed for the other three possible configurations.
such as option O1 and polled mode handling.

To make the analysis tractable, we must make additional assumptions regarding the
support available on the adapter. We assume that the adapter isolates processing and
queueing of incoming and outgoing traffic. This is a valid assumption; many modern
high-performance adapters use separate processors and on-board logic for the transmit
and receive paths. We further assume that the link is full-duplex, so that concurrent data
transmission and reception can occur between two hosts on the (point-to-point) network
link. Lastly, we assume that the host system bus arbitrates fairly between incoming and
outgoing traffic, i.e., between the host and the adapter.

Under these assumptions, the message service times for outgoing and incoming messages
must account for the worst-case extra interrupts due to simultaneous outgoing and incoming

traffic. The worst-case message service time for an outgoing channel is given by

Ol
c,(sm)]

since minimum-sized packets could arrive back-to-back during the processing and trans-

:Z;Simul,Ol TOI + r

mission of an outgoing message. As before, this estimate can be improved by making
additional assumptions about adapter and host support for simultaneous handling of best-
effort and real-time traffic. For example, if the host does not allow any best-effort packets
to be received if an outgoing real-time message is being processed, then the second term
above can be reduced by considering the aggregate packet arrival rate Yoacar RE o [mas .s 1
(packets/second) for the set (denoted by A") of established channels with this host as the
destination.

Similarly, the worst-case message service time for an incoming channel is now

7’mtr
L2(Smin)

since minimum-sized best-effort packets could be transmitted back-to-back during the re-

Ts:mul,mtr —_ 7—mtr + l‘ "[cl,

ception and processing of an incoming message. Again, we can improve this estimate by

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assuming that the host does not allow any best-effort packet to be transmitted if an incom-
ing real-time message is being processed, The second term can be reduced by considering
the aggregate packet arrival rate 3", ¢ 4o R, .. [ﬂ%-“—] (packets/second) for the set (denoted
by A*) of established channels with this host as the source.

The message wait time due to lower-priority handlers of packets would also be different.

In particular, the worst-case CPU wait time would now be
Tmhrt = max(TZVw, Tinirre),

without changing the worst-case link wait time. Correct admission control necessitates that
outgoing and incoming channels be distinguished from each other, both in terms of the

corresponding system parameters and in the service and wait time computations.

4.6 Summary

[n this chapter, we focused on management of host communication resources for real-time
communication. In particular, we identified the issues involved in extending and implement-
ing resource management policies originally formulated using idealized resource models.
Using our real-time channel implementation, we extended the admission controi procedure
to account for protocol processing and implementation overheads for two implementation
paradigms realizing link scheduling at sending hosts. The extensions were validated against
measured performance of the implementation and used to study the implications for channel
admissibility. We also extended the admission control procedure at receiving hosts for two
distinct packet input mechanisms, namely, interrupt mode and polled mode, as well as for
hosts engaged in simultaneous data transmission and reception. The analysis and exten-
sions developed in this chapter are applicable to other proposals for guaranteed real-time
communication in packet-switched networks [8, 188].

Our main conclusions can be summarized as follows. In order to best utilize CPU and
link bandwidth, one must account for implementation overheads that reduce useful resource
capacity. Further, one must also consider the implications of the implementation paradigm
adopted to manage CPU and link bandwidth. For sending hosts, we studied two implemen-
tation paradigms that both realize link scheduling but differ significantly in performance.
Realization of the link scheduler as a dedicated thread degrades channel admissibility sig-

nificantly (due to conservative admission control) since it couples link bandwidth allocation

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with CPU bandwidth allocation.

Implementing link scheduling in interrupt context provides significant performance ad-
vantages in terms of higher channel admissibility and reduced sensitivity to system param-
eters such as packet size and number of packets processed between preemptions. However.
these advantages come at the expense of an unpredictable increase in the interrupt service
time, which could be highly undesirable in systems with stringent response-time constraints.
We note that the paradigm adopted for implementing link scheduling also depends on the
software configuration chosen. For example, with a microkernel operating system, a thread
based realization of the link scheduler becomes necessary if the QoS-sensitive communica-
tion subsystems is realized at user level.

While similar tradeoffs arise at receiving hosts, developing the admission control exten-
sions necessitates additional assumptions regarding the support available from the network
adapter. Without adequate adapter support, it would be almost impossible to provide QoS
guarantees on communication. Even with these assumptions, correct formulation of the
admission control extensions depends greatly on the QoS-sensitive mechanisms employed
by the host to handle simultaneous incoming and outgoing traffic.

These extensions have been further refined and implemented in the guaranteed-QoS
communication service described in Chapter 5, where we have considered additional over-
heads and constraints imposed by a microkernel operating system. Chapter 6 illustrates
how the communication subsystem software can be structured to allow these extensions to
work with self-parameterizing protocol stacks. Finally, Chapter 8 highlights the generality
and applicability of these extensions to other protocol processing architectures, and explores

their integration with QoS-sensitive application scheduling.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

GUARANTEED-QoS COMMUNICATION SERVICES

5.1 Introduction

The architecture described in Chapter 3 and the admission control extensions presented in
Chapter 4 were implemented and evaluated for a relatively restricted environment. The
communication executive exercised complete control over the processor, it was relatively
easy to extend the underlying resource management policies to be QoS sensitive, and the
APT exported by the communication subsystem was relatively primitive. While the re-
stricted environment allowed us to study subtle issues such as the relationship between
CPU and link bandwidth, it did not allow us to explore QoS-sensitive communication sub-
system design for contemporary operating systems.

A key issue then is to identify and resolve the challenges involved in realizing guaranteed-
QoS communication services on contemporary operating systems, using appropriate en-
hancements of the techniques proposed in Chapters 3 and 4. This chapter describes the
design, implementation, and evaluation of one such service for a microkernel operating
system. Microkernel operating systems continue to play an important role in operating
system design [45,100], and are being extended to support real-time and multimedia ap-
plications [162]. With the continued upsurge in the demand for networked multimedia ap-
plications on the WWW, it is important, therefore, to examine realization of QoS-sensitive
communication subsystems on contemporary microkernel operating systems. The issues and
techniques explored in this chapter are also relevant to contemporary monolithic operating
systems such as UNIX and its variants.

In this chapter we present our experiences in designing and implementing a guaranteed-

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

QoS communication service, also based on real-time channels, on OSF MK 7.2 [166]. a
microkernel operating system based on CMU Mach. Besides giving us access to full source
code, OSF MK 7.2 allows us to exploit the Path abstraction provided in OSF’s z-kernel-
based CORDS framework [172]. Such a service would provide the underlying end-to-end real-
time communication support to enable development of middleware services for distributed

real-time applications.

5.1.1 Goals, Approach and Assumptions

As mentioned earlier, our primary goal is to explore the architectural issues and implemen-
tation tradeoffs that arise when realizing guaranteed-QoS communication services on micro-
kernel operating systems. A complete service must export a QoS-aware API to applications
that, in addition to allowing the specification of traffic characteristics and QoS requirements,
also allows applications to indicate their intent to be recipients of QoS-sensitive traffic in
a generic fashion. Moreover, applications serving as destinations for QoS-sensitive traffic
must be allowed to participate in the end-to-end signalling for resource reservation. While
we do not consider dynamic QoS negotiation and adaptation, QoS-aware APIs may also
allow applications to specify a range of desired QoS levels and receive dynamic notifications
regarding overload conditions [2, 104].

The communication subsystem must interface to the applications via appropriate mech-
anisms such as application libraries, maintain additional state regarding applications and
active connections, and move data to/from applications as per the associated QoS require-
ments. Further, it must provide protocol support for end-to-end signalling and resource
reservation within the host communication subsystem, in addition to support for QoS-
sensitive data transfer. Depending on the implementation environment, this support may
need to export appropriate interfaces to other communication modules and map its func-
tionality to the appropriate local resource reservation facilities provided within the com-
munication subsystem, the underlying operating system, or both. For correct admission
control the costs imposed by any additional structuring constraints and overheads must
also be accounted for. The support provided must also be sufficiently modular and generic
to facilitate reuse for other middleware services and enable future extensions.

To examine the above-mentioned issues, we realize a new service architecture that ex-

tends the architecture and extensions presented in Chapters 3 and 4. This service architec-

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ture integrates three primary components: (i) RTCOP, a protocol that coordinates end-to-end
signalling, QoS-sensitive resource allocation and reclamation, (ii) CLIPS, a support library
that provides QoS-sensitive CPU scheduling for protocol processing and link scheduling of
packet transmissions, and (iii) RTC API, the programming interface exported to applica-
tions that wish to use the service. These three components together ensure QoS-sensitive
handling of network traffic at sending and receiving hosts.

We realize this service architecture as a user-level CORDS server running on the OSF
MK 7.2 microkernel. Even though server-based protocol stacks perform poorly compared
to user-level protocol libraries or in-kernel implementations [112,168], we choose a server
configuration for several reasons. A server configuration considerably eases software de-
velopment and debugging, particularly the location and correction of timing-related bugs.
More importantly, since several applications can establish multiple QoS connections, ad-
mission control and run-time resource management of these connections must be localized
within one resource management domain. For most contemporary operating systems, this
corresponds to a single protection domain and address space, in our case the CORDS server.

Further, in contrast with current trends in high-performance communication to transfer
data as fast as possible, a QoS-sensitive communication subsystem can transfer data only
as fast as appropriate as determined from the connection’s traffic contract and desired QoS.
In the worst case, an application can modify a buffer pending network transmission, forcing
the server or the user-level library to make a copy in order to maintain data integrity. To
build a guaranteed-QoS communication service, we must be conservative and account for the
worst-case overheads and processing costs. Once developed and debugged, the server can be
placed within the kernel to improve performance and hence relax conservative cost estimates.
We note that a server-based configuration is regarded as a reasonable approach to build
predictable communication services on microkernel operating systems [107]. Chapter ??
compares and contrasts various protocol processing architectures regarding the extent to
which they facilitate per-connection QoS guarantees.

The functionality provided by our CORDS-based server cannot be truly effective without
additional support from the underlying operating system. Such support could be in the
form of capacity reserves for the service [123] or appropriate system partitioning [19], and
would require proper integration of the QoS-sensitive communication subsystem with the

operating system for provision of application-level QoS guarantees. We believe that the

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

architectural support described in this chapter is complementary to the above support. and

as such, the tradeoffs and issues highlighted are of significant relevance.

5.1.2 Outline

We describe a service architecture that employs well-defined interfaces to integrate the
three components mentioned earlier and access local system resources. Using our prototype
implementation we illustrate how this service architecture extends and exploits the CORDS
framework to facilitate realization of guaranteed-QoS communication services. We highlight
implications of a server-based configuration for provision of QoS guarantees. For example,
link scheduling must be realized using option 2 (i.e., in thread context) specified in Chap-
ter 3; a colocated server could utilize option 1 instead. We also highlight the difficulties
faced and lessons learned in the course of the implementation.

We parameterize the CORDS-based communication subsystem via detailed profiling of the
send and receive data paths. Based on this parameterization, we highlight certain overheads
and constraints, imposed by the realization of RTC API in the CORDS server, that render the
communication subsystem QoS-insensitive. We then propose enhancements to the run-
time resource management architecture and admission control procedure to account for
these overheads and constraints. An experimental evaluation in a controlled configuration
demonstrates the efficacy with which QoS guarantees are maintained, under limitations of
the inherent unpredictability imposed by the underlying operating system.

The rest of the chapter is organized as follows. We first present the goals and architec-
ture of the real-time (guaranteed-QoS) communication service. The different components
constituting the service are described next, with an emphasis on their internal design and
interaction. The subsequent section describes our prototype implementation of the service
and the tradeoffs we faced in realizing the service architecture. System profiling and pa-
rameterization of the experimentation platform and our implementation is presented next,
followed by extensions to the service architecture to account for certain performance-related
deficiences. We then present the results of an experimental evaluation of our prototype im-
plementation to determine its efficacy in providing QoS guarantees. Finally, we conclude

the chapter with a summary of the primary contributions and directions for future work.

110

7Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Real-Time Communication Service

We first motivate the goals that our real-time communication service must satisfy. Sub-
sequently, we highlight key aspects of the service architecture that facilitate meeting the

stated goals.

5.2.1 Goals and Paradigm

Our primary goal is to provide applications and middleware with a service that can be
used to request and obtain (real-time) guaranteed-QoS unicast connections between two
hosts. Such a service must satisfy the three architectural requirements for guaranteed-QoS
communication highlighted in Chapter 3: (i) maintenance of per-connection QoS guarantees.
(ii) overload protection via per-connection traffic enforcement, and (iii) fairness to best-effort
traffic. A secondary, but very important, goal is to design the service in a way that permits
(a) constituent architectural components to be reused for other middleware services, and
(b) flexibility and reuse in realizing other QoS paradigms and service models.

The secondary goal is important because multiple middleware services may need to co-
exist and interoperate; reusing architectural components, whenever possible, makes service
integration relatively easier. In order to realize generic components, the service model must
be decoupled from the service architecture and its components. This in turn facilitates
extension of the service architecture to more relaxed QoS models such as statistical guaran-
tees, and QoS negotiation and adaptation [2]. To realize this service we adopt the real-time
channel paradigm and base the service architecture on the architectural mechanisms and

extensions described in Chapters 3 and 4.

5.2.2 Service Architecture

Figure 5.1 illustrates the software architecture of our guaranteed-QoS service at hosts; a
subset of this architecture also applies to intermediate nodes. The core functionality of
the service is realized via three distinct components that interact to provide guaranteed-
QoS communication: real-time communication API (RTC API), RTCOP, and CLIPS. While
applications use the service via the RTC API, end-to-end signalling for resource reservation
and reclamation is coordinated by RTCOP and run-time management of resources for QoS-

sensitive data transfer performed by CLIPS. As mentioned above, the run-time resource

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLICATIONS & MIDDLEWARE

(REAL-TIME COMMUNICATION API j
signalling data transfer

RTCOP , cug
[— FOSoOurce -

L LOWER PROTOCOL STACK LAYERS J
RTC SERVICE :

L NETWORK j

Figure 5.1: Real-time communication service architecture.

management in the service architecture is based on the architecture proposed in Chapter 3.
with significant enhancements to accommodate the specific requirements of a full-fledged
service and the available implementation environment. Below we give a brief overview of
the three components of our service architecture; Section 5.3 gives internal details of the
components and their interaction.

Invocation via RTC API: Applications establish and teardown guaranteed-QoS connec-
tions, and perform data transfer on these connections, by invoking routines exported by the
RTC API. The API can be viewed as comprising two parts. The top half interfaces to ap-
plications and is responsible for validating application requests and creating internal state.
The bottom half interfaces to RTCOP for signalling (i.e., connection setup and teardown),
and to CLIPS for QoS-sensitive data transfer. As described in Section 5.3, the design of the
APT has been significantly influenced by the structure of the sockets API in BSD Unix [108]
and its variants.

Signalling via RTCOP: End-to-end signalling and resource reservation is performed by
RTCOP to establish and teardown guaranteed-QoS connections across the communicating
hosts, possibly via multiple network nodes. RTCOP provides reliable datagram semantics for

signalling requests and replies between nodes, and performs consistent channel state man-

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

agement at each node. It interfaces to the admission control module (that keeps track of
available communication resources) to admit new connection requests, and establish appro-
priate connection state to store connection-specific information. Similarly, it interfaces to
the routing module to select a (unicast) path on which to perform the end-to-end signalling.
As shown in Figure 5.11, it interfaces to CLIPS and directly to local resources for resource
reservation functions.

Data transfer via CLIPS: CLIPS facilitates network data transport on established real-
time channels, providing services for management of CPU and link resources during data
transfer in order to maintain QoS guarantees. For example, it provides services for alloca-
tion of protocol processing resources and fragmentation of application data (messages) into
smaller units (packets) for network transmission. In addition to managing CPU resources
for protocol processing, CLIPS also performs link access scheduling to manage link band-
width such that all active connections receive their promised QoS. This involves abstracting
the link in terms of transmission delay and bandwidth, and scheduling all outgoing pack-
ets for network access. The minimum requirement for provision of QoS guarantees is that
packet transmission time on the link be bounded and predictable. CLIPS also performs traf-
fic enforcement on a per-channel basis, forcing an application to conform to the channel’s

traffic specification and provide overload protection between established connections.

5.3 Service Components and Their Interaction

We begin by describing the service API exported to applications and its internal functional-
ity. This is followed by the design of RTCOP and the various interfaces it exports and utilizes.
Finally, we present the design of CLIPS and how the three components interact with each

other to provide QoS guarantees.

5.3.1 Service Invocation via RTC API

The API exported to applications comprises routines for establishment and teardown of
real-time channels, message transmission and reception during data transfer on established
channels, and initialization and support routines. Table 5.1 lists the routines currently
available in RTC API.

The design of RTC API is based in large part on the well-known sockets API in BSD

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Routines Invoked By Function Performed
Miscellaneous
rtclnit sender, receiver | service initialization
rtcGetParameter sender, receiver | query parameter on specified real-time channel
Signalling
rtcRegisterPort receiver register local port and agent for signalling
rtcUnRegisterPort | receiver unregister local signalling port
rtcCreateChannel | sender create channel with given parameters
to remote endpoint ; return channel identifier
rtcAcceptChannel | receiver obtain the next channel already established
at specified local port
rtcDestroyChannel | sender destroy specified real-time channel
Data Transfer
rtcSendMessage sender send message on specified real-time channel
rtcRecvMessage receiver receive message on specified real-time channel

Table 5.1: Routines comprising RTC APT.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Unix. Each real-time channel endpoint is a 2-tuple (IPaddr, port) formed by the [P ad-
dress of the host (IPaddr) and an unsigned 16-bit port (port) unique on this host, similar to
an INET domain socket endpoint. In addition to unique endpoints for data transfer, an ap-
plication may use multiple endpoints to receive signalling requests from other applications.
Applications willing to be destinations of real-time channels are assumed to register their
signalling endpoints with a name service or use well-known ports. Applications wishing
to create real-time channels to receiving applications must first locate the corresponding
endpoints before signalling can be initiated.

Each of the signalling and data transfer routines in Table 5.1 has its counterpart in
the sockets API. For example, the routine rtcRegisterPort corresponds to the invocation
of bind and listen in succession, and rtcAcceptChannel corresponds to accept. Simi-
larly, the routines rtcCreateChannel and rtcDestroyChannel correspond to connect and
close, respectively. The key aspect which distinguishes RTC API from the sockets API is
that the receiving application ezplicitly approves the establishment and teardown of real-
time channels. This is unlike the establishment of a TCP connection, for example, which
is completely transparent to the peer applications. We note that extensions to the sockets
API have been proposed to support the requirements of QoS-sensitive traffic, most of these
realized via new socket options. The architecture described in Chapter 7 adopts a unique

control socket approach to realize a QoS-aware sockets layer [13].

Signalling Routines

rtcRegisterPort, rtcUnregisterPort: An application indicates its intent to receive
signalling requests for real-time channels by registering a signalling port with RTCOP via
rtcRegisterPort. The application also specifies an agent function that the service must
invoke in response to incoming signalling requests. This function, implemented by the re-
ceiving application, determines whether sufficient resources are available for the channel
being requested. One of the responsibilities of this function is to reserve resources (i.e.,
allocate CPU capacity, application buffers, etc.) for the new channel, if available, based on
the request received, the computation resource requirements, and resource availability. This
agent function may also perform authentication checks, if needed, based on the requesting
endpoint specified in the signalling request. Since communication resource management is

performed by the RTC service, the application need only be concerned with management

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of computation resources.

Note that the application can register multiple signalling ports and the corresponding
agent functions, allowing it to specify different agents for different classes of traffic. For
example, the application may register a signalling port for video traffic and a different one
for audio traffic. Clients (or senders) would then send signalling requests to the appropriate
receiver port. The application can “free” a signalling port previously registered by invoking
rtcUnregisterPort.
rtcCreateChannel, rtcDestroyChannel: Once the receiver registers its intent to re-
ceive, the sender invokes rtcCreateChannel to request establishment of a real-time channel
to a remote (receiving) endpoint. This endpoint corresponds to the signalling port regis-
tered by the receiver to receive signalling requests. Besides specifying the remote endpoint,
the sender must provide the traffic and QoS specification described in Section 5.2.1, and the
desired overload protection policy. The overload protection policy specifies the behavior un-
der violation of traffic specification on the corresponding channel, with the choice between
blocking the application, dropping the violating message in entirety, or simply returning an
error. If channel establishment is successful, 2 unique channel identifier is returned to the
application for later reference.

When the sender no longer needs an existing channel, it invokes rtcDestroyChannel
using the channel identifier returned earlier when the channel was established. If the channel
is successfully closed, all resources allocated to this channel are released and the channel
identifier reclaimed.
rtcAcceptChannel: The receiving application invokes rtcAcceptChannel to obtain the
next real-time channel established at a given signalling port previously registered with the
RTC service. We observe that the receiving application gets notified of incoming real-time

channels only after acceptance by the application’s agent function.

Data Transfer Routines

rtcSendMessage: The sender invokes rtcSendMessage to send a message buffer on an
previously-established channel. If the application is generating traffic as per the channel’s
traffic specification, this routine is non-blocking, i.e., returns after the message has been
copied in and enqueued for protocol processing, without waiting for the message to be trans-

mitted. Copying the message ensures that the application does not subsequently modify the

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RTCOP Requirements

Internals
network and transport layer functionality

best-effort, reliable signalling semantics

management of channe] state

simplicity, isolation of real-time channel information
Interfaces

interface to RTC API

interface to CLIPS

interface to admission control (internal)

interface to system resources for reservation

interface to routing engine to query routes

Table 5.2: RTCOP functional requirements.

contents of the message before it has been transmitted.! If the channel’s traffic specification
is violated, the RTC service may block the application, especially if communication buffers
overflow, if the application so specifies.

rtcRecvMessage: This routine receives the next message on a previously-established chan-
nel into an application buffer, and can be blocking or non-blocking. If no message is queued
for reception, and the call is non-blocking, the routine returns immediately indicating fail-
ure. If the call is blocking, the application is blocked until a message is queued for reception.

If a message is waiting, the routine retrieves the message and returns success.

5.3.2 RTCOP-based Signalling and Resource Reservation

Application requests to create and destroy channels are forwarded by the RTC API to RTCOP,
which performs end-to-end signalling, as mentioned in Section 5.2.2. Table 5.2 lists the
requirements that RTCOP must satisfy in order to meet the service goals outlined earlier,

and Figure 5.2 illustrates its internal structure and external interfaces.

!Later versions of the RTC implementation may explore buffer management techniques to eliminate
copying overhead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

External Interfaces

RTCOP exports an interface to RTC API for specification of channel establishment and tear-
down requests and replies, and selection of logical ports for channel endpoints. The RTC API
uses the latter to reserve a signalling port in response to an rtcRegisterPort request from
the application, for example. RTCOP also utilizes four external interfaces during signalling:
an interface to the routing engine, an interface to CLIPS, and an interface to local system
resources.

Interface to routing engine: Before initiating signalling for a new channel, RTCOP queries
an appropriate route via its interface to the underlying routing engine. In general, the rout-
ing engine would find a route that can support the desired QoS requirements, and RTCOP
would perform signalling on this route. The primary benefit of QoS-based routing is an
increased likelihood of channel establishment and satisfaction of application requirements.
However, for simplicity we use static (fixed) routes for channels since it suffices to demon-
strate the capabilities of our architecture and implementation. We note, however, that using
static routes may result in denial of service to an application if resources along the route
are insufficient. Development of QoS-based routing algorithms is beyond the scope of this
dissertation.

Interface to CLIPS: As described in Section 5.3.3 below, CLIPS performs run-time re-
source management and scheduling for messages transmitted or received on real-time chan-
nels, and exports an interface that can be used to avail of these services. RTCOP uses this
interface to request such services for each new channel to be established.

Interface to local system resources: In some situations the host operating system may
provide special resource management support for real-time communication. This may in-
clude support for QoS-sensitive buffer management and/or CPU scheduling. Such support
is generally platform-dependent and often non-standard, but may increase the utility and
performance of the service. For example, our prototype implementation (Section 5.4) real-
izes input packet queues and buffers for channels via the support available in the underlying
communication subsystem. RTCOP avails of the local system resources directly through the

available native interface.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[APPLICATION INTERFACE j

) create/destroy | RTCOP
CLIPS
data transfer J
—
system
‘ resource
J interface
requests/replies
/
(ROUTING ENGINE)
A

y
LLOWER PROTOCOL LAYERS j
A

[NETWORK]

Figure 5.2: RTCOP internal structure and interfaces.

Internal Structure

As illustrated in Figure 5.2, RTCOP is organized internally as three primary modules. The
request and reply handlers generate and process signalling messages, and invoke resource
reservation and reclamation operations as needed. When processing a new signalling re-
quest, the request handler performs a multi-step admission control procedure to decide
whether or not sufficient resources are available for the new request. It first checks with
the admission control module, which currently implements the extended D_order algorithm
to perform schedulability analysis for CPU and link bandwidth allocation. The admis-
sion control module decides if the new channel can be admitted and notifies RTCOP, which
continues processing the request as per the notification. Note that the admission control
module is functionally independent and need not be internal to RTCOP. However, we have
subsumed it in RTCOP since admission control is most closely associated with signalling.
RTCOP then requests CLIPS to allocate channel resources such as the message queue and
buffers, the channel handler and CPU bandwidth for protocol processing, and link band-

width for packet transmissions. As mentioned earlier, it obtains the input packet queue

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CLIPS Requirements
Internals

prioritized message communication with guarantees

generic preemptible CPU bandwidth allocation
generic link bandwidth allocation

independence from real-time channel semantics

independence from protocol stack

wide applicability (unicast, multicast or broadcast)
Interfaces
interface exported to RTC API and RTCOP

interface to system resources for reservation

Table 5.3: CLIPS functional requirements.

and buffers via the system resource interface. Consistent channel state management at all
nodes is an essential function of RTCOP.

The communication module handles the basic tasks of sending and receiving signalling
messages, as well as forward data packets to and from the applications. Signalling messages
are transported as best-effort traffic but delivered reliably using source-based retransmis-
sions. Reliable signalling ensures that a channel is considered established only if channel
state is successfully installed and sufficient resources reserved at all the nodes along the
route. Duplicate suppression ensures that multiple reservations are not installed for the
same channel establishment request. Similar considerations apply toward channel teardown

where all nodes along the route must release resources and free channel state.

5.3.3 CLIPS-based Resource Scheduling for Data Transfer

Application requests to send and receive messages are forwarded to RTC API, which interacts
with CLIPS to perform the desired data transfer. Table 5.3 lists the functional requirements
that CLIPS provides for and Figure 5.3 illustrates how CLIPS coordinates data transfer in
relation to the communication protocol stack.

CLIPS provides a generic mechanism for prioritized, time-bounded message processing
and communication at end hosts. The design of CLIPS has been motivated by the require-

ments of the different real-time communication and middleware services. For example. a

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[REAL-TIME COMMUNICATION API]

messages/
CLIPS
[Passive resources
fragments { ”mm lhmm'ds)
CPU allocation
-~) system
PROTOCOL [scheduler 3 interface
LAYERS -
Link allocation
packets)
link scheduler J
J

transmission/reception

L DEVICE DRIVER j

[NETWORK J

Figure 5.3: CLIPS internal structure and interfaces.

real-time multicast and membership service needs prioritized message scheduling to guaran-
tee receipt of messages by the corresponding destinations by the specified deadline. Though
modeled after the communication subsystem architecture described in Chapter 3, CLIPS is
applicable wherever a priority-based messaging mechanism is required. Being largely inde-
pendent from the semantics of a particular communication service, CLIPS provides generic
support for CPU and link bandwidth allocation. As explained below, this support can be

easily customized to manage data traversing real-time channels in a QoS-sensitive fashion.

Key Features

A connection endpoint requiring prioritized message communication must be registered with
CLIPS, which creates a clip between the (external) protocol stack and the local message
priority mechanisms at the specified communication endpoint. Note that a clip is similar
to traditional Unix socket that has been extended with the necessary reservation states, as
in [13]. However, compared to a socket a clip has more state and communication resources

associated with it, for both incoming and outgoing traffic. Associated with each clip is

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a message queue to buffer messages generated or received on the corresponding endpoint.
a communication handler thread to process these messages, and a packet queue to stage
packets waiting to be transmitted or received. Once a clip is created for a connection
endpoint, messages generated on the endpoint can be transferred in a prioritized fashion
using the CLIPS API. Messages sent via registered endpoints can be prioritized in accordance
with application semantics, with the priorities being set dynamically. Thus, two different
messages sent via the same endpoint need not have the same priority.
QoS-sensitive CPU allocation: The handler thread executes in a continuous loop either
dequeueing messages from the message queue and fragmenting them (at the source host),
or dequeueing packets from the packet quene and reassembling messages (at the destination
host). It inherits its execution priority dynamically from the priority of the message (or
packet) it processes. The handler starts execution within CLIPS, continues through the user-
defined protocol stack, and returns to CLIPS after processing each message/packet. Each clip
is assigned a CPU budget based on the message processing requirements of the associated
connection, estimated from the maximum number of packets constituting a message. The
budget is, therefore, specified as the maximum number of packets the handler is allowed to
process within a given time period, and is replenished periodically. The CPU bandwidth
consumed by a handler is estimated from the count of processed packets and charged against
the corresponding clip’s budget. Conformant messages (i.e., those that arrive while the
handler has non-zero budget), are served in the order of message priority.
Communication thread scheduling: The communication threads eligible for CPU al-
location are multiplexed on the CPU by a priority-based communication thread scheduler
which supports static as well as dynamic handler priorities. Recall that a handler inherits
the priority of the message it processes and has an invocation period associated with it.
This has two implications. One, the handler must explicitly reset its priority every time
it finishes processing one message and starts processing a new message due to excess pro-
cessing budget. This situation can arise, for example, when a burst of small messages is
generated on the corresponding connection. Two, each time the handler’s budget expires
and there are pending messages, the handler is rescheduled with the priority of the next
invocation, which corresponds to the priority of the next message to be processed.
Associating a budget with each handler facilitates traffic enforcement, i.e., appropri-

ate handling of non-conformant traffic on the corresponding connection. This is because

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a handler is scheduled for execution only when the budget is non-zero, and the budget is
not replenished until the next (periodic) invocation of the handler. These mechanisms to-
gether ensure that high-priority misbehaving connections do not consume excessive system
resources at the expense of lower priority connections. An executing handler also imple-
ments cooperative preemption by voluntarily yielding the CPU after processing a certain
number of packets. Thus, while processing messages, a handler may be rescheduled by the
communication thread scheduler either when the handler blocks due to expiration of its
budget, or it yields the CPU; this is illustrated in Figure 5.3.

QoS-sensitive link bandwidth allocation: At the source host, the packets generated
by a handler are scheduled for transmission by a dynamic-priority link scheduler, as shown
in Figure 5.3. The link scheduler, which implements the EDF scheduling policy using a
priority heap for outgoing packets, is invoked by events such as packet transmissions on an
idle link or completion of packet transmission. Packets on best-effort clips are maintained
in a separate packet heap and serviced at a lower priority than those on real-time clips.
Even though handlers execute and generate packets in priority order, packets need to be
explicitly scheduled for transmission to limit the extent of priority inversion in the device
driver and/or the network adapter.

Type of clips: CLIPS distinguishes between outgoing, incoming, or bidirectional connection
endpoints. Incoming and outgoing endpoints differ primarily in the execution behavior of
the corresponding message handler thread. At the source host (outgoing endpoint), the
handler thread dequeues buffered outgoing messages and shepherds them down the user-
defined protocol stack. At the destination side (incoming endpoint), the handler thread
shepherds arrived packets up the protocol stack and queues up received messages in a
priority heap for subsequent retrieval by the application. A bidirectional endpoint has two
handler threads, one for sending and one for receiving messages. However, their budget is
charged to the same capacity reserve. Each endpoint is further classified as real-time or
best-effort, with real-time endpoints given priority over the best-effort ones.

Generality of CLIPS: CLIPS has been designed for use with a variety of middleware
services and real-time communication paradigms, and hence is independent of the seman-
tics associated with real-time channels. CLIPS does not make any assumptions about the
composition of the user-defined protocol stack either. The protocol stack is treated as a

black box of bounded execution time, with the prioritized resource management in CLIPS

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

only considering handler execution time and priority to make scheduling decisions. Further,
CLIPS need not be aware of the type of communication (unicast, multicast or broadcast)
associated with application endpoints that are registered with it. CLIPS provides a priority
enforcement mechanism independent of the (external) policy for message priority assign-

ment.

Using CLIPS for real-time channels

We use CLIPS to provide real-time channel endpoints with QoS-sensitive allocation of CPU
and link bandwidths. During channel establishment at a host, RTCOP creates a clip for
the new channel using the CLIPS API. The priority of the clip (and hence of all the mes-
sages generated on this channel) is set to the local delay bound computed by D_order
during admission control. Similarly, the period for invocation of the communication han-
dler corresponds to I,;;,. The budget for the clip is set to the maximum number of packets
corresponding to a message of size M, bytes, derived using the maximum amount of data
bytes that would fit in the MTU of the attached network. The number of message queue

entries allocated for the clip corresponds to Bpqz.

5.4 Prototype Implementation: Environment and Configu-

ration

We have developed a prototype implementation of the service architecture described in
the preceding sections. Below we describe the experimental testbed and implementation
environment, followed by a description of the implementation approach adopted and the
CORDS-based service protocol stack. The myriad issues and tradeoffs we considered when

realizing the different service components are presented in Section 5.5.

5.4.1 Testbed and Implementation Environment

Our testbed (see Figure 5.4) comprises several 133 MHz Pentium-based PCs connected by
a Cisco 2900 100 Mb/s Ethernet switch, with each PC connected to the switch via 10 Mb /s
Ethernet. Each PC runs the MK 7.2 microkernel operating system from the Open Software
Foundation (OSF) Research Institute [166]. While not a full-fledged real-time OS, MK

7.2 includes several features that facilitate provision of QoS guarantees. Specifically, the

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.4: Experimental testbed.

7.2 release includes the CORDS (Communication Object for Real-time Dependable Systems)
protocol implementation environment [172] in which our implementation resides.

Our implementation approach is to utilize and extend the functionality and facilities
provided in OSF’s CORDS environment. CORDS is based on the z-kernel object-oriented
networking framework originally developed at the University of Arizona [76], with some
significant extensions for controlled allocation of system resources. The primary advantage
of using CORDS for our prototype implementation is the support for paths. As discussed in
Section 5.4.2 below, paths play a significant role in the realization of our service architecture
on this platform. Another advantage of using CORDS is the ease of composing protocol stacks
in the z-kernel networking framework, in which a communication subsystem is implemented
as a configurable graph of protocol objects. More details on the z-kernel can be found
in [76, 141].

5.4.2 OSF Path Framework: Implications and Extensions

While preserving the structure and functionality of the original z-kernel, CORDS adds two
abstractions, paths and allocators, to provide path-specific reservation/allocation of system
resources. System resources associated with paths include dynamically allocated memory,
input packet buffers, and input threads that shepherd messages up a protocol stack [172].

Paths, coupled with allocators, provide a capability for reserving and allocating resources

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at any protocol stack layer on behalf of a particular class of messages. With packet demul-
tiplexing at the lowest level (i.e., performed in the device driver), it is possible to isolate
packets on different paths from each other early in the protocol stack. Incoming packets are
stored in buffers explicitly tied to the appropriate path and serviced by threads previously
allocated to that path. Moreover, threads reserved for a path may be assigned one of several
scheduling policies and priority levels.

Paths facilitate realization of a connection-oriented protocol stack, since the knowledge
of paths is available at any layer in the protocol stack. While CORDS paths have been
crucial for our implementation, they have some drawbacks that we have circumvented where
possible, as described below.

Path-based packet classification: CORDS associates outgoing and incoming packets with
paths, thus requiring data link drivers to examine outgoing packets and add the appropriate
path identifier. While this is natural for networks supporting a notion of virtual circuit
identifiers (VCI) such at ATM, it is not so for traditional data link technologies such as
Ethernet. In the case of Ethernet, the CORDS driver adds a new path identifier to the data
link header. This creates a non-standard Ethernet header that would not be understood
by hosts not running OSF’s CORDS framework. Note that this problem does not arise with
the default path, which is used to transport traditional best-effort traffic, since there is no
change in the data link header.

Global path name space: Since real-time channels provide QoS guarantees on a per-
connectjon basis, it is natural to assign a distinct path to each channel. In order to realize
our end-to-end service architecture, however, traffic on a particular path must be serviced
consistently (i.e., according to the QoS associated with that path) by the communication
subsystem on all hosts and routers. This in turn requires that the path name space be
global across all hosts participating in the real-time communication service. To realize a
global path name space, we utilize globally unique host names to construct unique path
identifiers for real-time channels, as described later in Section 5.4.4.

Dynamic path creation/deletion: The CORDS framework envisions a relatively static
use of paths, with a single path for best-effort traffic and a few paths for different classes of
traffic. That is, there are never more than perhaps ten active paths, all of these long-lived
and preconfigured. Accordingly, the CORDS path library provides no support for path tear-

down or resource reclamation, operations which are necessary in a dynamic environment

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CORDS Server

Application

Application
librtc librte
MIG stubs Lpath filter | MIG stubs
user y \ 4 3 I N ’
‘\\-'1‘ : A 2 \\‘-,’
xmit path K f recv path
OSF Mach kemel. device driver
= :
1
network ‘ 5
Yy v

Figure 5.5: Service implementation as CORDS server.

in which paths are created and destroyed frequently. To facilitate a one-to-one association
between real-time channels and paths, we have extended the CORDS framework to support

path destruction and reclamation of resources associated with a path, as described in Sec-

tion 5.4.4.

5.4.3 Server Configuration: Pros and Cons

Figure 5.5 shows the software configuration for our service implementation using the CORDS
framework. As shown in Figure 5.5, applications link with a library, librtc, which imple-
ments RTC API and interfaces to the RTC service on behalf of the application, as described
in Section 5.5.1. While the CORDS framework can be used at user-level as well in the kernel,
we have developed the prototype implementation as a user-level CORDS server. There are
several reasons for this choice, as mentioned in Section 5.1 and also explained below. The
most obvious is the ease of development and debugging, resulting in a shorter development
cycle.

Another important reason is the infeasibility of the other alternative (pure in-kernel
development) available for implementation. CORDS allows an z-kernel protocol graph to
span address space (and protection) boundaries via prozies [58]. Thus, our implementation
could span user and kernel spaces, with portions of our implementation developed in user

space and moved into the kernel after debugging and testing. However, this was not feasible

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for two primary reasons: (i) strong inter-dependencies between the service components.
and (ii) interaction of CLIPS with multiple layers (especially the top and bottom anchors)
of the protocol stack. It was important, therefore, to keep all service components in one
address space, i.e., in the CORDS server. Moreover, use of proxies would force applications
to transparently link with various other z-kernel libraries, in addition to our service library,
resulting in needless code bloat and potentially degraded performance.

The final reason is related to performance. A server-based implementation is natural
for a microkernel operating system, but may perform poorly compared to user-level proto-
col libraries due to excessive data copying and context switching [112,168]. As mentioned
in Section 5.1, it seems appropriate to be conservative when building a guaranteed-QoS
communication service. It follows that in the worst case, compared to user-level libraries a
server configuration only suffers from additional context switches. While this has significant
implications for small messages, the relative degradation in performance is not as signifi-
cant for the large data transfers performed via the guaranteed-QoS communication service,
although it may affect connection admissibility.

A CORDS server-based implementation presents a number of significant problems for data
input and output in our service architecture. These problems are either easily circumvented
or simply do not arise for the in-kernel CORDS protocol stack or when the CORDS server is
colocated in the kernel. The bottom layer of the CORDS protocol stack interfaces with the
kernel device driver via a Mach device port each for input and output. As described in
Section 5.4.4, device output is initiated by the link scheduler that is implemented here, as
close as possible to the device driver without being in the kernel.

However, being in user space, the link scheduler cannot be invoked directly by the kernel
device driver in response to transmission completion interrupts since OSF MK 7.2 does not
support mapped device drivers or user-level upcalls. That is, link scheduling via option
O1 in Chapter 3 cannot be realized. However, since OSF MK 7.2 allows user-level threads
to perform synchronous device transfers, option O2 can be easily realized, as described in
Section 5.4.4. Another potential problem arises from the multiplexing of IP traffic from the
Unix server and traffic from the CORDS server into the same kernel interface queue.

Device input also presents significant challenges for QoS-sensitive handling of data. The
CORDS-enabled kernel device driver is capable of routing incoming packets associated with

a path to the corresponding pool of packet buffers and shepherd threads (if a pool has been

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— X-jernel paths -~

L OSF MACH KERNEL jL

Ethernet

Figure 5.6: CORDS-based service protocol stack.

allocated), as illustrated by the path filter in Figure 5.5. However, the path filter is only
applied for the in-kernel realization of CORDS; for the user-level CORDS server configuration.
incoming packets are delivered to the corresponding device input port on the basis of a
generic net filter set up when the server is initialized. Subsequent demultiplexing of packets
to paths is performed by a device input thread at the lowest layer in the CORDS protocol
stack. Besides making the packet classification a more expensive multi-step operation, such
a configuration also introduces a common point of FIFO queueing for all data destined for

the CORDS server. We discuss approaches to circumvent this later.

5.4.4 CORDS-based Service Protocol Stack

The CORDS-based protocol stack for our service is shown in Figure 5.6. Protocols comprising
this stack include RTC API ANCHOR, CLIPS, RTCOP, RTROUTER, IP, ETH, and ETHDRV. We
briefly describe these protocols below, and discuss the implementation of RTC API ANCHOR,
RTCOP and CLIPS at length in Section 5.5.

RTC API ANCHOR: The anchor protocol for RTC API is the top-level protocol config-
ured directly above RTCOP. It interfaces on the top with the applications via Mach Interface
Generator (MIG) stubs, translating application requests to specific invocations of operations

on RTCOP (for signaling) or CLIPS (for data transfer) at the bottom.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CLIPS: CLIPS spans several layers of the protocol stack, exporting an interface that is used
by RTC API, RTCOP, and ETHDRV. CLIPS provides a generic mechanism for prioritized, time-
bounded message processing and communication at end hosts. As described in Section 5.3.
it implements support for associating communication endpoints of a protocol stack with
clips, and allocating resources to each clip.

RTCOP: RTCOP is realized as an z-kernel transport protocol residing above a two-part
network layer composed of RTROUTER and IP. It exports an interface to RTC API for specifi-
cation of channel establishment and teardown requests and replies, and selection of logical
ports for channel endpoints. RTCOP utilizes four interfaces during signalling: an (internal)
interface to admission control, an interface to RTROUTER, an interface to CLIPS, and an
interface to local path-specific CORDS resources such as packet queues, buffers, and thread
pools.

RTROUTER: Real-time channels currently use the default IP routing. However, to keep
the routing interface independent of IP, RTROUTER is provided as a go-between protocol.
RTROUTER is intended to allow RTCOP to eventually work with more sophisticated routing
protocols that support QoS- or policy-based routing.

IP, ETH, ETHDRV: The IP, ETH, and ETHDRV protocols are standard implementations
distributed with the CORDS framework. ETH is a generic hardware-independent protocol
that provides an interface between higher level protocols and the actual Ethernet driver.
ETHDRV is specific to a particular user-level implementation of the CORDS server. It is an
out-of-kernel device driver that interacts with the network device driver in the Mach kernel

through system calls to a Mach device control port.

5.5 Realization of the Service Architecture

This section considers the realization of the service architecture, i.e., each of its constituent
components, on our prototype implementation environment and configuration. We concen-
trate primarily on resolving the challenges faced and the degree of functionality provided

by each component.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.1 Service Library: librtc

The librtc library implements the RTC API presented in Section 5.2. librtc is in turn
realized on top of MIG interface stubs which provide the necessary support for Mach IPC.
Each library routine translates to an IPC call to the top-level anchor protocol RTC API
ANCHOR in the CORDS server, which interacts with the service protocol stack on behalf of the
service library.

As mentioned in Section 5.3, each real-time channel endpoint is a 2-tuple (IPaddr, port)
formed by the IP address of the host (IPaddr) and an unsigned 16-bit port (port) that is
unique on this host. Ports for channel endpoints are maintained by RTCOP, as discussed in
Section 5.4.4. Transparent to the application, each channel endpoint is associated with a
Mach port allocated at the time of channel establishment. For an application establishing
a channel (i.e., a sender), the Mach port is allocated by the CORDS server, while for an
application accepting a channel (i.e., a receiver), the Mach port is allocated by librtc.

The following functions are performed by librtc to export the guaranteed-QoS com-

munication service to applications:

¢ Channel endpoint state management: librtc manages channel endpoint state
for each channel established or accepted by an application. This per-channel state
includes the source and destination RTCOP ports and IP addresses, the traffic specifi-
cation and QoS requirements for this channel, the local Mach port for this channel.
and a unique channel identifier allocated by librtc. This channel identifier is used
by applications to uniquely identify established channels.

¢ Signalling state management: In response to rtcRegisterPort, i.e., when the
application indicates its intent to receive signalling requests for channel establishment
on a particular RTCOP port, librtc first allocates 2 Mach port to receive signalling
requests on, and registers the Mach and RTCOP ports with the CORDS server, passing
it send rights to the Mach port. If the specified RTCOP port is currently “busy,”
a free RTCOP port is selected by the CORDS server, associated with the Mach port.
and returned to librtc. librtc then allocates a FIFQ incoming channel queue and

associates this queue and the specified signalling agent with the specified RTCOP port.

¢ Receiver queue management: Once a signalling agent accepts an incoming chan-

nel, information regarding the newly established channel (such as the channel identi-

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fies and source endpoint) is placed on the corresponding incoming channel queue until
the application explicitly accepts an incoming channel via rtcAcceptChannel. Since
this queue is also a “resource,” incoming signalling requests are not accepted by the

signalling agent if this queue fills up.

e Server death cleanup: During library initialization, librtc queries Mach name
service to identify the Mach port registered by the CORDS server for recejving signalling
requests. After obtaining the server Mach port, librtc requests the Mach kernel to
notify it if this port, and hence the server, dies. Upon receiving such a notification,
librtc reclaims all resources currently allocation to established channels, cleans up
all state associated with these channels, marks the service as unusable, and informs
the application subsequently. To allow the server to reclaim resources in case a sender
dies, 1librtc allocates a Mach port representing the sender, and registers it with the
CORDS server. This allows the CORDS server to request port death notifications on the
sender Mach port. Note that for a receiving application, this operation is performed

each time the application registers an RTCOP port to signal its intent to receive.

In the current implementation, the service library utilizes a single global lock to ensure
mutual exclusion between multiple application threads and an internal library thread. The
library thread receives and handles signalling requests from the CORDS server. All signalling

agents specified by a receiving application run in the context of the library thread.

5.5.2 RTC API Anchor Implementation

RTC API ANCHOR is the top-level anchor protocol in the CORDS protocol stack, and serves as
the interface between the rest of the protocol stack and 1ibrtc. The top half of RTC API
ANCHOR provides entry points for server-side MIG interface stubs, while the bottom half of
RTC API ANCHOR resembles an z-kernel protocol. RTC API ANCHOR performs the following
functions in its capacity as the go-between interfacing the service protocol stack to the

service library.

e Consistent association maps: RTC API ANCHOR maintains several mappings to
keep track of the association between client Mach ports, RTCOP ports, and RTCOP ses-
sions (z-kernel) for signalling as well as data transfer. These maps, implemented using

the z-kernel map library, are used, for example, to demultiplex incoming signalling

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

requests to the correct client Mach ports (at receivers), establish association between
Mach ports, RTCOP ports and RTCOP sessions for data transfer (at senders), and iden-
tify all associations belonging to a client (at senders and receivers). The maps are
updated each time a new channel is established or torn down, a client registers or
unregisters an RTCOP port, a client awaits message arrival on a particular channel, or

a client death notification is received.

¢ Signalling request and reply handling: RTC API ANCHOR relays signalling re-
quests and replies between librtc and RTCOP. When a receiver registers an RTCOP
port via rtcRegisterPort, RTC API ANCHOR first verifies with RTCOP that the spec-
ified port is free; if the port is not free, it requests RTCOP to allocate a free port. It
then performs a passive open for this port with RTCOP, and creates the appropriate

associations for later reference.

On invocation of rtcCreateChannel by a sender, first allocates a Mach port for the
new channel and creates a new API thread to wait in the server-side MIG interface
stub for rtcSendMessage invocations on this channel. Per-channel API threads are
necessary in order to support application blocking due to traffic specification viola-
tions, while allowing signalling and data transfers for other channels to proceed. As
discussed in Section 5.7, per-channel API threads are also necessary to bound priority

inversion within the CORDS server.

RTC API ANCHOR then triggers end-to-end signalling via RTCOP and, if channel es-
tablishment is successful, creates sender-specific state for the new channel. It also
associates a message dequeue callback function and a link scheduler callback function
with the clip allocated by CLIPS for this channel. While the message dequeue callback
function helps implement traffic enforcement, as described below, the link scheduler
callback function will be utilized for intelligent buffer management in future versions
of the implementation.

Remote channel establishment requests destined for a particular RTCOP port are re-
layed by RTCOP to RTC API ANCHOR if a passive open had been performed earlier on
this RTCOP port on behalf of a receiver. RTC API ANCHOR locates the corresponding
Mach port allocated by the receiver for signalling requests, and performs an RPC

to the receiver to complete signalling. If the receiver’s signalling agent indicates ac-

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ceptance, RTC API ANCHOR creates receiver-specific state for the new channel, and
associates a receive message callback function with the clip allocated by CLIPS for
this channel. It also requests port death notifications for the Mach port allocated by
the receiver for the new endpoint; as explained below, this allows RTC API ANCHOR
to perform client death cleanup. Signalling replies are generated by RTCOP as per the

signalling agent’s decision and returned to the sender.

Invocation of rtcDestroyChannel triggers a similar sequence of events, except that
channel resources are reclaimed and the channel-specific state freed by RTC API,
RTCOP, and CLIPS.

¢ Buffer management and data transfer handling: RTC API ANCHOR performs
buffer management and application data movement during data transfer handling
for outgoing as well as incoming messages. On invocation of rtcSendMessage by a
sender, RTC API ANCHOR looks up the corresponding RTCOP session and obtains the
clip associated with this session. It then creates an z-kernel message by allocating
a buffer from the path-specific memory pool associated with the session, and copies
the application message into this buffer. This z-kernel message is then handed to
CLIPS for subsequent processing and transmission. If CLIPS is unable to accept (i.e..
enqueue) the message due to queue overflow caused by a longer than specified burst,
RTC API ANCHOR transparently blocks the channel’s API thread, effectively blocking
the application thread. The API thread resumes execution when woken by the message
enqueue callback function. Instead of blocking the application, RTC APT ANCHOR can

also return an error indicating a traffic specification violation.

On invocation of rtcReceiveMessage by a receiver, RTC API ANCHOR first identifies
the RTCOP session and clip associated with the specified Mach port, and checks if a
message is pending reception in the CLIPS message queue associated with this clip.
If so, it obtains the z-kernel message from CLIPS, allocates a buffer from the path-
specific memory pool associated with the session, and copies the data portion into
this buffer. The newly allocated and filled buffer is then returned to the application.
If no message is pending reception, and the receiver has made a blocking call, RTC
API ANCHOR creates the appropriate state, updates its mappings to indicate that the

receiver is awaiting message reception on the specified Mach port, and blocks the API

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

thread. Upon subsequent receipt of a message on this channel, the receive message
callback function invoked by the input communication handler signals the blocked
API thread, which wakes up and completes the [PC call by copying out the received
message. Note that an alternative would be to perform call completion and message
copyout in the context of the receive message callback function. However, this would
closely couple execution of the input communication handler with the memory copying
bandwidth at the host and the size of the received message. By simply signaling the
blocked API thread, the handler can continue processing arrived packets as fast as

possible as per the QoS associated with the channel.

¢ Client death cleanup: As mentioned, RTC API ANCHOR maintains the appropriate
state required to locate all associations specific to a particular client port. This state
is initialized for each Mach port the client registers to receive signalling requests. If
the client dies subsequently, port death notifications are issued by the kernel to the
CORDS server for each Mach port for which such notifications were requested. RTC APT
ANCHOR then locates all the associations (i.e., mappings between Mach ports, RTCOP
ports and z-kernel sessions for data transfer) corresponding to this Mach port, releases
the resources allocated to these associations (e.g., it initiates channel tear down by

closing the corresponding z-kernel session), and cleans up any remaining client state.

In addition to the interface to local CORDS resources for path-specific buffer management,
RTC API ANCHOR utilizes the interfaces exported by RTCOP and CLIPS; these interfaces are
described next in the context of the implementation of RTCOP and CORDS.

5.5.3 RTCOP and RTROUTER Implementation

RTCOP is implemented as a protocol object in the CORDS framework, and is responsible for

a wide range of functions, including reliable end-to-end signalling, as outlined below.

¢ End-to-end signalling: RTCOP exports a set of z-kernel control operations that RTC
API ANCHOR uses to trigger end-to-end signalling for channel establishment and tear
down from a source to a destination host. It implements a state machine for reliable
end-to-end signalling via source-based timers, set when a request is first transmitted.
a certain fixed number of retries, and sequence numbers. Duplicate suppression is

performed to ensure that resources are consistently allocated at a single node.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Request and reply processing in the state machine ensures that either all nodes along
the route consider a particular channel established (if sufficient resources are available)
or none of them do. Before initiating channel establishment signalling at any node
(i.e., forwarding an establishment request to the next node), RTCOP first obtains the
necessary local resources via admission control and resource reservation. At destina-
tion hosts, channel establishment is immediately terminated if no receiver is listening

on the RTCOP port the signalling request is destined for.

¢ Globally unique path and channel identifiers: Path identifiers in CORDS must
fit within 2 bytes. While these identifiers can be easily made unique inside a host.
two hosts may unknowingly associate different channels with the same path identifier.
This makes it impossible for intermediate and destination hosts to classify packets from
different hosts (and channels) to unique paths. The limited length of the path identifier
precludes use of the IP address to construct globally unique paths. Accordingly, RTCOP
assumes a logical addressing scheme for hosts participating in our service. In this
scheme, each real-time host (RTHost) is assigned a unique RTHost number. Path
and channel identifiers are then constructed by concatenating the RTHost number of
the source host with a locally unique channel counter. The mapping between RTHost

addresses and IP addresses is maintained by RTROUTER, as explained later.

¢ Channel state management and path allocation: The state associated by RTCOP
with each channel includes globally unique channel and path identifiers. During re-
quest and reply processing at each node, RTCOP obtains a new channel identifier and
creates a new CORDS path for the new channel via the local CORDS resource inter-
face. Associating a unique path with each channel provides an isolated pool from
which buffers, queues and input threads may be allocated. Channel state is allocated
from this path-specific memory pool. Unlike unique per-channel paths, all best-effort
channels share the default path.

¢ Admission control and resource reservation: If these operations are successful,
RTCOP invokes admission control via an interface to the admission control module,
which implements D_order using the extensions outlined in Chapter 4. For a receiv-
ing host the extensions correspond to the interrupt mode packet input mechanism.

D_order only allocates sufficient CPU and link bandwidth for the new channel. Once

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

admitted by D_order, at a destination host RTCOP reserves path-specific resources
such as an input pool of packet buffers, a packet queue, and a thread that shepherds
packets arriving on the new channel’s path through the protocol stack (i.e., the input

communication handler).

RTCOP then obtains additional CLIPS resources such as message queues, reassembly
buffers (at destination hosts) and communication handlers (at source hosts) by creat-
ing a clip for the new channel, with the appropriate priority and attributes, via the
interface exported by CLIPS. After obtained all necessary communication resources.
RTCOP “forwards” the signalling request to RTC API ANCHOR for final acceptance by
the receiver, as described earlier. If the new channel is accepted, RTCOP computes
available channel slack and relaxes the assigned local delay bound, updating the pri-
ority of the channel’s clip in the process, before generating a successful signalling

reply.

¢ Port management: RTCOP manages the ports used to uniquely identify real-time
channel endpoints within a host. It exports an interface, implemented as z-kernel
control operations, to obtain a free port arbitrarily chosen by RTCOP, reserve an
application-specified port, and release a previously allocated port. This interface
is used by RTC API ANCHOR, for example, during the handling of rtcRegisterPort to
reserve the application-specified port, if any, or obtain a free port, before performing

a passive open on RTCOP.

¢ Callback function registration: RTCOP exports control operations to allow RTC
API ANCHOR at the source host to register the callback functions described earlier that

will be used with clips associated with real-time channel endpoints.

¢ Path deletion and resource reclamation: RTCOP extends the CORDS path library
to allow path deletion and resource reclamation on a path. This support, while limited
to the user-space realization of CORDS, provides an interface to destroy device driver
input pools consisting of input buffers and threads, as well as remove path state when
channels are destroyed or signalling is unsuccessful. We have made modifications to

the ETHDRV protocol to support extensions for resource reclamation on paths.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While implementing RTCOP, we resolved a minor limitation in the z-kernel uniform protocol
interface: the lack of a natural way to pass traffic and QoS parameters obtained from RTCOP
headers to RTC API ANCHOR. This is not a problem with protocols such as TCP in which a
connection at a host is defined solely by the endpoint IP addresses and ports, and z-kernel
participant lists are natural candidates for carrying this information between layers. Our
solution is to use another z-kernel feature, message attributes, to treat the traffic and QoS
parameters as attributes of an z-kernel message. This message is then demuxed to RTC APT
ANCHOR, which extracts the attributes and reconstructs the signalling request.

RTROUTER, which sits just below RTCOP currently performs the following functions: it (i)
specifies the connectivity of real-time channel hosts with its pre-configured topology tables,
(ii) provides a logical RTHost addressing mechanism for real-time channels, and (iii) handles

forwarding of RTCOP packets between source and destination RTHosts.

5.5.4 CLIPS Implementation

As shown in Figure 5.6, CLIPS effectively spans the entire protocol stack, interacting with
RTC API ANCHOR, RTCOP, and ETHDRV during signalling as well as data transfer. [t provides
support for associating a communication endpoint with a clip, and allocates CPU band-
width, link bandwidth, and message queues and buffers to each clip. It realizes QoS-sensitive

data handling via implementation of the following functions:

¢ Clips management: CLIPS exports an interface to create and destroy a clip, attach
it to a particular endpoint, and to set its priority. This interface is used by RTCOP and
RTC API ANCHOR during signalling. CLIPS distinguishes between incoming, outgoing,
and bidirectional clips.

¢ Message queue and reassembly buffer management: CLIPS associates a ordered
message queue with each clip created, sizing it according to a user-specified value. For
an incoming clip, CLIPS also allocates a buffer to reassemble messages destined for
the endpoint corresponds to this clip. Fully reassembled messages are placed on the

incoming message queue for subsequent retrieval by RTC API ANCHOR.

¢ Fragmentation and reassembly: CLIPS fragments (reassembles) outgoing (incom-
ing) messages whose size exceeds the maximum amount of user data that can be

carried in an MTU-sized packet. The fragmentation is performed by the output com-

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

munication handler, while the reassembly is performed by the input shepherd thread.
CLIPS associates a small header with each fragment for correct reassembly. After cre-
ating each fragment, CLIPS invokes a user-defined function to transport the fragment:

in our implementation, this function is an entry point into the RTCOP layer.

¢ CPU bandwidth allocation: CLIPS uses a user-level CPU scheduler to schedule
communication handlers. The deadlines of these handlers is derived from the period
and relative deadline (set by RTCOP at clip creation time) associated with the cor-
responding clip. The scheduler utilizes z-kernel semaphores to block handlers when
they yield the CPU and to wake them up subsequently.

¢ Link bandwidth allocation: The CLIPS link scheduler is realized as a separate
thread in the ETHDRV protocol. It runs at the highest z-kernel priority, serving packets
first from the real-time heap and then from the best-effort heap. Note that the link
scheduler does not run under control of the CLIPS CPU scheduler, and hence does not
need to hold the master z-kernel lock to run; it immediately preempts any executing

handler. This effectively realizes a modified version of the 02 option in Chapter 3.

5.6 System Profiling and Parameterization

We have performed a detailed profiling of our service implementation in order to parame-
terize it in terms of system costs and overheads. This parameterization permits the use of
the admission control extensions outlined in Chapter 4 correctly. More importantly, it helps
identify overheads not accounted for by our admission control extensions, and expose ar-
chitectural deficiencies that could potentially result in QoS-insensitive data handling within
the communication subsystem.

Our profiling methodology is to conduct all experiments and measurements on two
hosts in the testbed (see Figure 5.4), connected by an isolated Ethernet segment. This
isolation from the rest of the world is readily achieved by configuring the Ethernet switch
appropriately. The service library librtc and the CORDS protocol stack are instrumented
according to the desired measurements. Only one set of measurements are performed at a
time in order to minimize the perturbation induced by the profiling code.

Given our primary focus on run-time resource management, we concentrate on the data

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Anchor Message Size
Parameter Anchor Routine 1 byte | 1k bytes | 10k bytes | 30k bytes
{ Ca Send message 301 331 606 1191
I cov Receive message (waiting) 335 350 1097 2653
(g Receive message (none waiting) | 54 54 53 54
Cres Receive message callback 95 92 96 96

Table 5.4: Data transfer overheads in RTC API anchor (in us).

transfer performance of our platform and prototype implementation, for both incoming and
outgoing data. For all the results reported here, a single real-time channel is created from
a sending client on one host to a receiving client on another host. We first present profiling
results for RTC API ANCHOR, then present the results of profiling the protocol stack layers.
and finally present profiling results for link (i.e., network) input and output.

5.6.1 Profiling the RTC API Anchor

In this set of measurements, we profile routines in RTC APT ANCHOR that handle send and
receive requests from applications. Note that these routines are the entry points into RTC
API ANCHOR for the server-side MIG stubs. The time spent in these routines corresponds
to the time spent by API threads in RTC API ANCHOR. We also profile the receive message
callback function mentioned in Section 5.5.2. Time spent in this function corresponds to
the time an input communication handler thread spends in RTC API ANCHOR.

Table 5.4 lists the data transfer overheads of these anchor routines for messages of size
1 byte, 1K bytes, 10K bytes and 30K bytes. C, denotes the overhead incurred by the send
message routine, while C™ denotes the overhead of the receive message routine when a
message is already waiting at the time the application invokes the rtcRecvMessage library
call. Similarly, CI™* denotes the overhead of the receive message routine when there is
no message waiting and the application invokes a blocking receive call. Note that cm
only includes the time from entry into RTC API ANCHOR till the time that the application
thread is blocked waiting for a message to arrive. C3* denotes the overhead of the receive
message callback function invoked when a message arrives to an empty CLIPS queue. All
measurements reported are in microseconds (us).

For each routine, the measurements for a message size of 1 byte largely correspond

to the fixed overhead introduced by the routine. Consider the overhead incurred in the

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Message Size

Service Library Routine | I byte | 1k bytes | 10k bytes | 30k bytes
| rtcSendMessage 1170 | 1210 1480 2070
[rtcRecvMessage (waiting) | 870 894 1660 3210

Table 5.5: Application-level send and receive latencies (in ps).

Ca routine at the source host, averaged over 1000 messages. Over and above the fixed
overhead, the time spent in this routine increases with message size. This is because,
as mentioned in Section 5.5, RTC API ANCHOR copies application data into path-specific
message buffers in order to preserve application data integrity in the worst case. For our
platform, Imbench [115] reports a memory copy bandwidth of ~ 40 MB/second; the actual
copy bandwidth would be somewhat lower due to the overheads imposed by the z-kernel
copy routine. In any case, the increase in C, can be largely attributed to the time to copy
in application data.

An anomalous trend is observed for CI“. If the message is already waiting, it is dequeued
and copied into path-specific message buffers before returning it to the application. Once
again, the overhead increases with message size. For message sizes of 10K bytes and 30K
bytes, the overhead (averaged only over 500 and 300 messages, respectively, due to overflow
of path buffer space) cannot be attributed only to the cost of copying the message. We
believe this is partially due to the overhead introduced by the memory allocation primitive
provided in CORDS.

Completely consistent behavior is observed for Cz™, averaged over 500 messages. As
expected, C;"* is independent of message size, since RTC API ANCHOR effectively biocks the
application if no message is waiting, For the overhead measurements (averaged over 500
messages) are independent of message size. This is completely consistent since the receive
message callback function simply signals the blocked API thread, if there is one. Note that
the reported measurements correspond to the case when the application is already blocked
waiting for a message, which is the worst-case scenario for for Co<b. If the application is not

waiting, the receive message callback function performs minimal processing and returns.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application-level latencies

To validate some of these observed trends, we also measure application-level latencies for
the rtcSendMessage and rtcRecvMessage routines. These latencies include the cost of an
[PC call across the MIG interface and executing the corresponding anchor routine discussed
above. As shown in Table 5.5, the application-level latency for rtcSendMessage (averaged
over 1000 messages) follows a pattern similar to that of C,, except that the fixed overhead
is significantly higher. This extra overhead is the cost of a send IPC across the MIG stubs
to the CORDS server. Comparing rtcSendMessage latency to C,, the average extra overhead
is & 875 us.

From Table 5.5, a similar observation can be made for the rtcRecvMessage latency,
averaged over 500 messages, which follows a pattern similar to that of Cr¥. We observe
that the latency for rtcRecvMessage reveals an average extra overhead of ~ 563 pus. This
extra overhead is the cost of a receive [PC from the application to the CORDS server across
the MIG interface.

We note that while the RTC API ANCHOR overheads are relatively high, these measure-
ments are for an unoptimized implementation and can be improved substantially with care-
ful performance optimizations. With appropriate buffer management and API buffering
semantics [25,130] it may even be possible to completely eliminate the copying of data
within RTC API ANCHOR. However, more immediately we are concerned with ensuring that
the overheads incurred in RTC API ANCHOR do not result in QoS-insensitive handling of data.
We address this concern with appropriate admission control and architectural extensions
in Section 5.7. While the application-level latencies are also high, this is primarily due to
significant MIG IPC overhead, which we may be able to reduce with a colocated in-kernel
CORDS server. Moreover, in a QoS-sensitive operating system, this IPC overhead can be

accounted for in the application’s execution.

5.6.2 Profiling the Protocol Stack

We have also profiled the other layers of the service protocol stack, for both the send and
receive data paths. Since CLIPS is a separate component that performs fragmentation (on
the source host) and reassembly (on the destination host), we profile it separately. For the

other layers (RTCOP, RTROUTER, IP, ETH, ETHDRV) we only measure the aggregate overhead.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Packets in Message
Data Path Protocol Stack Layer First | Other
CLIPS message dequeue and fragmentation 53 30
Send RTCOP + RTROUTER + IP + ETH + ETHDRV 128 47
Other | Last
CLIPS reassembly and message enqueue 9 32
Receive CLIPS+ RTCOP + RTROUTER + IP 4 ETH + ETHDRV | 260 260

Table 5.6: Protocol stack latencies for send and receive paths (in us).

Table 5.6 lists the profiling results for all layers other than data link-level transmission and
reception, which is profiled separately in Section 5.6.3 below.

For the send path, we distinguish the measured overhead for the first packet of a message
from that for the other packets. The dequeue and fragmentation costs in CLIPS are averaged
over 200 messages. The aggregate protocol processing costs for the rest of the protocol stack
are averaged over 100 messages. Note that the aggregate protocol processing cost for the
first packet is significantly higher than that for the other packets. Recall that the output
communication handler fragments packets and shepherds them down the protocol stack in
a single loop. The difference in overhead between the first and other packets can be partly
attributed to cache effects, which have been shown to affect protocol stack execution latency
significantly [16,133].

For the receive path, on the other hand, we distinguish between the last packet of
a message and the other packets. This is because, while fragmentation cost is effectively
incurred on a per-packet basis as the message is processed, the entire reassembly cost is only
incurred during the processing of the last packet of a message. The receive path overheads
listed in Table 5.6, averaged over 1000 messages, reveal some surprising results.

Unlike the send path, all packets in the message incur the same aggregate protocol pro-
cessing cost. Moreover, since reassembly proceeds in a tighter loop than the fragmentation
loop in the send path, cache effects are even more significant, as evident from the signifi-
cantly lower reassembly cost compared to the fragmentation cost. Note that, some CLIPS
processing is performed each time a packet is put in the reassembly buffer, and hence is

included in the aggregate per-packet protocol processing latency.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Packet Size
ETHDRYV Layer 1 byte | 500 bytes | 1416 bytes
| Packet transmission by link scheduler | 673 1510 1775]

Table 5.7: Link scheduler packet transmission latencies (in us).

5.6.3 Profiling Link Input/Output

For a full parameterization of the communication subsystem, we also profile packet trans-
missions by the link scheduler at the sending host, and packet reception by the CORDS server
at the receiving host.

Table 5.7 lists the packet transmission latencies measured in the link scheduler as a
function of the packet size, averaged over 1000 packets for each packet size. Once again,
the latency measurement for 1-byte packets roughly corresponds to the fixed overhead of
performing synchronous user-level transmission via the Mach device control port. This
overhead includes the cost of a user-kernel context switch, invocation of the device driver
transmit routine, handling of the transmission-complete interrupt, delivering of an I/0-
complete notification to the Mach device control port, which in turn wakes up the waiting
link scheduler, and another context switch to resume execution of the link scheduler thread.
Since the measured latency includes the time to transmit the entire packet on the wire.
larger packets incur higher latencies.

Table 5.8 lists the overhead incurred by the CORDS device input thread to receive an
incoming packet from the device control port, classify it to determine its path, locate the
corresponding buffer pools, enqueue the packet in the path input packet queue, and signal
the CLIPS CPU scheduler to wake up the input communication handler associated with this
path. Note that the input overhead for the first packet is significantly higher than that for
the subsequent packets. We have verified that this is primarily due to the high overhead to
signal (i.e., wakeup) the handler.

This CORDS device input thread overhead does not include the in-kernel cost of fielding
the packet arrival interrupt, inputing the arrived packet, applying the generic net filter
and dispatching the packet to the appropriate device control port. Preliminary in-kernel

measurements reveal this overhead to be = 650 us for an Ethernet MTU-sized packet.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Packets in Message
ETHDRV Layer First | Other
| Packet input by CORDS device input thread | 120 | 20]

Table 5.8: CORDS device input thread overhead (in p138).

5.7 Accounting for API Overheads and Threads

The profiling results for RTC API ANCHOR indicate that the overheads induced by RTC API
ANCHOR can be significant and must be accounted for in the admission control procedure.

However, simply accounting for these overheads does not suffice for a number of reasons.

¢ Due to the copying performed by RTC API ANCHOR, the constituent anchor overhead
is directly proportional to the size of messages sent and received by applications. That

is, worst-case bounds on this overhead cannot be determined a priori.

¢ The API threads obtain access to the CPU in FIFO order. This is because their
execution is controlled by the CThreads library and the Mach kernel scheduler.

o Further, because all threads executing in the CORDS z-kernel framework must hold the

z-kernel master lock, these API threads effectively run to completion.

It follows, therefore, that substantial admission control and architectural enhancements are

needed to ensure that API threads execute in RTC API ANCHOR in a QoS-sensitive fashion.

5.7.1 Admission Control Enhancements

We first consider the necessary admission control enhancements to account for the anchor
parameters profiled in Section 5.6.

Referring to the system parameters defined in Chapter 4, note that the message service
time of the output communication handler remains unaffected by the anchor overheads.
However, because the API threads send and receive messages on a channel-specific basis,
the channel’s total message service time increases by C., plus an extra context switch. That
is,

T = 1% 4+ Co + Cenp
where 7@ is the message service time for a sending host as calculated in Chapter 4, and

Cesp is the context switch and cache miss penalty as before. The message wait time increases

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by the same amount as well, since a output handler may have to wait for an API thread to

finish executing the send routine in RTC API ANCHOR. Accordingly,
7.7 = max(T2",C, + Cesp),

where 7.2'¢ is the message wait time for a sending host as calculated in Chapter 4.

Similar admission control enhancements must be derived for receiving hosts as well. In
this case, however, we must consider the combined effect of Ci¥, Cr™and C7. An input
communication handler (i.e., the input shepherd thread) sees an increase in message service
time since, in the worst case, it has to execute the receive message callback function after
reassembling and enqueueing an incoming message. However, the total channel message
service time requirements increase by the execution overhead of the API threads as well.

Hence,
7-;r,ne1u =T old +(C;,w +c;.nw +C;'.cb) +c;p’

where 7.7°'4 is the message service time for a receiving host as calculated in Chapter 4. The

total channel message wait time is now
;™" = max(T) % + €%, v + Co™) + CL,

where 7794 is the message wait time for a receiving host as calculated in Chapter 4. This
is because, in the worst case, an incoming handler may have to wait for an API thread or
another incoming handler to complete execution.

As mentioned, these admission control enhancements alone do not suffice in ensuring
QoS-sensitive data handling within the communication subsystem. While the total message
service times account for the increased CPU requirements for a channel, the channel message
wait times are potentially unbounded since both C,and C;" increase with message size.
Moreover, there is the possibility of API threads executing on behalf of a particular channel
interfering with the execution of that channel’s communication handler. Not only is this
because API threads execute non-preemptively in FIFQO order, but also because API threads
could repeatedly execute the RTC API ANCHOR routines under a persistent burst of messages
on a channel, as long as there is space on the CLIPS message queue. Thus, substantial

architectural enhancements are also required to ensure QoS-sensitive data handling.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.7.2 Architectural Enhancements

In the ideal case, on invocation of a service routine by an application would result in
the API threads being scheduled to run on the CPU in the order of priority, with this
priority derived from the “priority” of the specified channel. However, that would require
appropriate support from the Mach IPC and scheduling subsystems in the kernel. In the
absence of such support, we cannot control the FIFO scheduling of API threads on the CPU
immediately after wake up in the server-side MIG interface stubs. However, we can exercise
control over the subsequent execution of API threads to ensure that they do not run to
completion non-preemptively and execute in RTC API ANCHOR in a QoS-sensitive fashion.
We achieve this via architectural enhancements to RTC APT ANCHOR and CLIPS, as described
below.

We place four requirements on the execution of API threads in relation to CLIPS com-

munication handlers.

I. While they are executing in RTC API ANCHOR, they must run under control of the
CLIPS CPU scheduler,

2. They must not prevent the timely execution of any commaunication handler or API

thread,

3. They must not be starved of CPU capacity since that would stall message generation

and consumption on a channel, and

4. They must be allowed to consume excess CPU capacity while being fair to best-effort

traffic.

To realize these requirements in practice, we make the following key observation. While
admission control (i.e., D_order) allocates CPU capacity to this channel according to the
total message service time calculated above, run-time resource management can be per-
formed such that a portion of that capacity is used by the API thread and the rest by the
communication handler.

Recall that CLIPS only associates a single communication handler with each clip. We
extend CLIPS to also associate an API thread with the same clip. An API thread explicitly
checks in with CLIPS on entry into any RTC API ANCHOR routine, and explicitly checks out

Just before exiting the routine. CLIPS utilizes these check-in and check-out calls to schedule

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the execution of the API threads. Any API thread that checks in on a given clip inherits
the priority/deadline associated with the handler, with the following restrictions. Commu-
nication handlers always have execution priority over the corresponding API threads. An
API thread that checks in when the handler is blocked for message or packet arrivals, is
assigned to the same execution class as the handler and runs at the handler’s deadline.

When the API thread checks out (after executing an RTC APT ANCHOR routine), CLIPS
lowers its execution class relative to al/l communication handlers, including those handling
best-effort traffic. On the next check in, the API thread executes in this lower class, com-
peting with other API threads in this class in the order of the logical arrival time of the
message it is transferring. During check in and check out, if the corresponding handler is
woken up (say if the API thread has enqueued a message for transmission), it is scheduled
for execution according to the deadline of the message to be processed next.

Upon expiry of the handler’s budget, which also marks the end of the handler’s execution
for the current invocation period, the execution class for an API thread is restored to that
of the handler. On a subsequent check in, since the handler is blocked, an API thread
executes in this class at the deadline of the handler. The above scenario then repeats.

These architectural enhancements to RTC API ANCHOR and CLIPS ensure that different
incarnations of API threads are scheduled for execution in a QoS-sensitive fashion relative
to other API threads and communication handlers. However, once scheduled the API
threads still run to completion in a non-preemptive fashion. To prevent this, the RTC API
ANCHOR routines have been modified to copy application data in well-defined chunks, and
cooperatively yield the CPU after processing each chunk. The chank size corresponds to
the amount of data copied before yielding the CPU; the execution time of a chunk can then
be ascertained from the chunk size and the memory copy bandwidth of the communication
subsystem.

With these changes, the preemption mechanism employed for an API thread closely
resembles cooperative preemption of a communication handler. Accordingly, both the mes-
sage service time and message wait time enhancements can now be stated differently. For
a sending host,

T = T4 ok [o

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where CZA*"¥ is the time to copy a chunk of data. Similarly,
7;1:10 - max(thld’ c:hunk + ccsp).

For a receiving host,
Cr,w cr,nw
T, = T7M 4 (C7Y + CT™ +CT%) + [-—"sz—]c&»

and the channel message wait time is

7u-r,.new = max(Twr,old + c;',cb’ c:,chunk) + C:sp'

5.8 Experimental Evaluation

In this section we present results from several experiments conducted to evaluate the efficacy
of our prototype implementation. The experiments demonstrate two key aspects of the QoS
support provided: traffic enforcement (i.e., policing and shaping) on a single channel, and
traffic isolation between mutiple channels. Traffic isolation in turn has two components,
namely, the isolation between different real-time channels and the isolation between real-
time and best-effort traffic.

The experiment- are conducted between two hosts communicating on a private segment
through the Ethernet switch shown in Figure 5.4. To avoid interference from the Unix server,
all ARP traffic between the two hosts is suppressed and the CORDS server is configured to
accept all incoming network traffic. This allows us to limit the background CPU load on each
host and accurately control network traffic between them. For each experiment reported
below, the corresponding channels are first created between Mach client tasks running at
the two hosts. Message traffic is then generated by threads running within the Mach client
task at the source host and consumed by threads running within the Mach client task at the
destination host. Our metric for evaluation is the per-channel application-level throughput

delivered to the receiving Mach task at the destination host.

5.8.1 Traffic enforcement

For this experiment, a real-time channel with traffic specification Bp,,z = 10, M. =
40 KB, R = 5 messages/second, and deadline of 200 ms, is established. This channel
then has a specified rate of 200 KB/s. The actual offered load on the channel is varied

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

250 T T - —
@
D
x
- 200 & - - == = 9
g =
§ v
S .
s ’
= 150 . e
2 &
§; -
g e
B 100} < — '
@ _ - O—0 specified throughput
3 » T ¥ - % measured throughput
o b

50 1 1. L 1
500 400 300 200 100 0

Inter-message generation time (offered load) (ms)

Figure 5.7: Traffic enforcement on a single real-time channel.

by changing the interval between generation of successive messages, ranging from 500 ms
to 0 ms (i.e., continuous traffic generation). Figure 5.7 illustrates the efficacy with which
traffic is enforced on a single real-time channel by measuring the delivered throughput as a
function of the offered real-time load.

As shown, the delivered throughput increases linearly with the offered load until the
offered load equals the specified channel rate. For example, at an offered load of 100 KB /s
(corresponding to a message generation interval of 400 ms), the delivered throughput is 100
KB/s. Similarly, at an offered load of 200 KB/s (message generation interval of 200 ms),
the delivered throughput is 200 KB/s. For offered loads beyond the specified channel rate,
however, the delivered throughput equals the specified channel rate. This continues to be the
case even under continuous message generation (message generation interval of ms). These
measurements show that the traffic enforcement mechanisms provided effectively prevent a
real-time channel from violating its specified rate. In the prototype implementation, this
is achieved by blocking the corresponding channel thread from generating messages at the

source host until additional space is made available in the channel message queues.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.8.2 ‘Traffic isolation

In addition to proper traffic enforcement, we demonstrate that our prototype implementa-
tion also ensures isolation between different QoS and best-effort connections, thus verifying
conformance with the real-time channel paradigm. We first consider traffic isolation between
multiple real-time channels under violation of traffic specification by a real-time channel.
We then consider traffic isolation between real-time and best-effort traffic under increasing

best-effort load.

Multiple real-time channels

For this experiment two real-time channels are established between the hosts, with one
representing a high-rate channel (channel 1) and the other representing a low-rate channel
(channel 2). The high-rate channel has the same traffic and deadline specification as before
(i.e.;, Bmor = 10, Mgz = 40 KB, Rpez = 5 messages/second, deadline = 200 ms) for
a specified channel rate of 200 KB/s. The low-rate channel has a traffic specification of
Brnaz = 10, Mgz = 15 KB, Rmar = 2 messages/second, and deadline of 100 ms, for a
specified channel rate of 30 KB/s. While message generation (and hence the offered load)
on channel 1 is continuous, message generation on channel 2 is controlled in order to vary
the offered load as in the previous experiment.

Figure 5.8 shows the delivered throughput on channels 1 and 2 as a function of the
offered load on channel 2. Once again, the delivered throughput on channel 2 increases
linearly with the offered load until the offered load equals the specified channel rate (200
KB/s). Subsequent increase in offered load has no effect on the delivered throughput which
stays constant at the specified channel rate. The delivered throughput on channel 1, on the
other hand, remains constant at approximately 30 KB/s (same as its specified channel rate)
regardless of the offered load on channel 2. That is, traffic violations on one channel (even

continuous message generation) have no effect on the delivered QoS for another channel.

Real-time and best-effort traffic

For this experiment we create an additional “best-effort channel” in addition to two real-
time channels. As before, one real-time channel (channel 1) represents a high-rate channel

and has traffic specification of Boz = 10, Mo,z = 20 KB, Rnma- = 10 messages/second and

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

300 T ¥ L] L
G—o© specified throughput (ch 1)
% - —¥ specified throughout (ch 2)
+--——measured throughput (ch 1)
O——< measured throughput (ch 2)

?

N
8
f
!
!
¢
|
I
i
A
!
!
|

Delivered throughput (KB/s)
g8 8

O

n

o (=]
——O—

1

O o o O P
7 < A4 T~
L

500 400 300 200 100 1)
inter—-message generation time (offered load) for Ch 1 (ms)

Figure 5.8: Traffic isolation between two real-time channels.

deadline of 200 ms, for a specified channel rate of 200 KB/s. The other real-time channel
(channel 2) represents a low-rate channel with a traffic specification of Byar = 10, M .r
= 5 KB, Rmer = 5 messages/second and deadline of 100 ms, for a specified channel rate
of 25 KB/s. Message generation on channels 1 and 2 is continuous, i.e., with a message
generation interval of 0 ms. The offered load on the best-effort channel (channel 3) is varied
from 50 KB/s to 350 KB/s by controlling the message generation interval as before.

Figure 5.9 plots the delivered throughput on each channel as a function of the offered
best-effort load. A number of observations can be made from these measurements. First,
the delivered throughput on channels 1 and 2 are roughly independent of the offered best-
effort load. That is, real-time traffic is effectively isolated from best-effort traffic, except
under very high best-effort loads as explained below. Second, best-effort traffic is able to
utilize any excess capacity not consumed by real-time traffic, as is evidenced by the roughly
linear increase in delivered throughput on channel 3 as a function of the offered best-effort
load. Once the system reaches saturation (beyond an offered load of approximately 250
KB/s), however, best-effort throughput declines sharply due to buffer overflows and the
resulting packet loss at the receiver.

Under very high best-effort loads, the delivered throughput on channel 1 declines slightly.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

300 ™
‘a Lo
a
X 200 = -©- - S 1
s - - =
=N
=3
(=]
)
e -
&
§ 100 L G—=©channel 1 (RT) i
% % - —% channel 2 (RT)
o + +channel 3 (BE)
l— ------- <« - — - — 3 o — s — - e £ - —
oL . .]
50 150 250 350

Offered load on best-etfort channe! 3 (KB/s)

Figure 5.9: Traffic isolation between real-time and best-effort traffic.

We believe that this is due to the overheads of receiving and discarding best-effort packets.
which have not been accounted for in the admission control procedure. These overheads
tend to impact the delivered throughput on high-rate channels more than low-rate channels.
as evidenced by the constant throughput delivered to channel 2 even under very high best-

effort load.

Utilization of unused real-time capacity

While the load offered by real-time channels in the previous experiments is persistent, i.e..
always greater than the reserved capacity, this experiment focuses on utilization of any
capacity not utilized by a real-time channel. It is desirable that this unused capacity be
utilized by best-effort traffic, as per our goal of fairness. That is, another real-time channel
must not be allowed to consume this excess capacity at the expense of best-effort traffic.
Two real-time channels and a best-effort channel are created as before; however, while the
offered load on channel 2 is continuous, channel 1 only offers a load of 100 KB /s even though
it is allocated a capacity of 200 KB/s. This is realized by generating 20 KB messages at
half the specified rate of 10 messages/second (case 1).

Figure 5.10 plots the delivered throughput on all the channels as a function of the offered

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i -
GO channel 1 (RT) -7
300 | |¥* - “¢channel 2 (RT) Pug -
+ -+channet 3 (BE): case 1 7
= 5~ — Elchannel 3 (BE): case 2 P
@ A&
1;., . -7 -
a L -
§ 200 = .
=3 e
£ e
3 =
'g a/, ~ o O o).
g 1 00 c '/H < <r <7 A= €)
-~
P
_ ~
13: ----- e e e o Y I s — - Ens
oL . . |
50 150 250 350

Offered load on best-effort channel 3 (KB/s)

Figure 5.10: Traffic isolation and unused capacity utilization.

load on the best-effort channel (channel 3). Compared to Figure 5.9, channel 1 receives a
constant 100 KB/s throughput independent of the offered best-effort load. Similarly, chan-
nel 2 only receives its allocated capacity of 25 KB/s. Channel 3, however, receives higher
throughput (case 1) with the delivered throughput increasing linearly with the offered load
until an offered load of 250 KB/s. Beyond this load, the delivered best-effort throughput
falls as before, but continues to be higher than that obtained in Figure 5.9.

Surprisingly, though, best-effort traffic is unable to fully utilize unused capacity on
channel 1. We suspect that this effect is primarily due to packet losses caused by buffer
overflow at the receiver, either in the adapter or in the Mach device port queue used by the
CORDS server to receive incoming packets. To validate this, we ran additional experiments
in which channel 1 offers a load of 100 KB/s by generating 10 KB messages at a rate of 10
messages/second (case 2), the results of which are also plotted in Figure 5.10. As can be
seen, the delivered best-effort throughput in this case continues to increase linearly beyond
250 KB/s and shows no decline even for a best-effort load of 350 KB/s. These results
suggest that best-effort traffic is able to fully utilize unused capacity when real-time traffic

is less bursty (i.e., has fewer packets in each message).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Discussion

Note that with the user-level CORDS server configuration, the receiving task is able to receive
packets at an aggregate rate of 450-500 KB/s (depending on the number of packets in a
message), even though the sender can send at a maximum rate of approximately 750 KB /s.
This discrepancy is most likely due to CPU contention between the receiving task and the
CORDS server and the resulting context switching overheads, and the high cost of IPC across
the client and server. Another important reason could be a seemingly unnecessary copy
performed by the lowest layer of the CORDS protocol stack every time packets from multiple
paths (i.e., channel) arrive in an interleaved fashion. Since such a scenario occurs very
frequently with multiple channels and under high traffic load, it is likely that this extra
copy is slowing down the receiver significantly; this extra copy can only be eliminated by
redesigning path buffer management in the CORDS framework. More importantly, none of
these effects are accounted for in the admission control procedure, and must be addressed
when the communication subsystem is integrated more closely within the host operating
system. We expect to see significant improvements in the base performance for an in-kernel

realization of our prototype implementation.

5.9 Summary

In this chapter we described our experiences with the design, implementation, and evalua-
tion of a guaranteed-QoS communication service based on the architecture and extensions
developed in Chapters 3 and 4. While our implementation was specifically geared towards
the OSF MK 7.2 microkernel operating system, the architectural and implementation ap-
proach adopted is applicable to other microkernel as well as traditional monolithic operating
systems. Our experimental results demonstrate that the architectural features provided in
the service are effective in providing QoS guarantees to individual real-time channels while
maintaining fairness to best-effort traffic. These results also reveal several deficiencies of a
server-based implementation especially at the receiving host, that could be largely resolved
by collocating the server in the kernel.

The guaranteed-QoS service described in this chapter is being utilized in the ARMADA
project [9], a collaborative effort between the Real-Time Computing Laboratory at the

University of Michigan and the Honeywell Technology Center. The project aims to develop

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[EI’ALUATION

TOOLS SERVICES
\ /\ API
¢
(_ J
REAL-TIME]
OSF MK 7.2
(kernel)

Figure 5.11: ARMADA middleware and real-time communication services.

and demonstrate an integrated set of techniques and software tools necessary to realize em-
bedded fault-tolerant and real-time applications on distributed, evolving computing plat-
forms. Figure 5.11 summarizes the structuring of the ARMADA environment and illustrates
the three complementary thrust areas, namely, real-time communication service using real-
time channels (described in this chapter), middleware services for embedded applications.
and dependability evaluation and validation tools.

The overall research approach lies in the development of a suite of composable and
reusable middleware services supporting a wide variety of embedded real-time and fault-
tolerant applications. Accordingly, the service described in this chapter would be utilized
by one or more middleware services such as real-time caching and real-time primary-backup
replication [118]. In the context of the ARMADA project, numerous research avenues are being
explored towards extending the guaranteed-QoS communication service to other models of

real-time communication, including QoS negotiation and adaptation.

Acknowledgements

Several individuals have contributed to the realization of the guaranteed-QoS communica-

tion service described in this chapter. We gratefully acknowledge the contributions of the

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

following individuals: Anees Shaikh for implementing RTCOP and RTROUTER, Tarek Abdelza-
her for implementing CLIPS, and Zhiqun Wang for performing the profiling experiments.
Special thanks to Anees and Tarek for incorporating numerous modifications/improvements
suggested from time to time, especially the CLIPS enhancements proposed in Section 5.7.
Special thanks also to Zhiqun for patiently repeating several profiling measurements to

verify correctness and/or identify consistent trends.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

SELF-PARAMETERIZING PROTOCOL STACKS

6.1 Introduction

As is evident from the preceding chapters, realizing a QoS-sensitive communication subsys-
tem requires that the host communication subsystem be parameterized accurately to create
an abstraction of the underlying communication subsystem. This abstraction of the com-
munication subsystem in terms of a set of system parameters greatly facilitates estimation
of the communication resource requirements for a connection requiring QoS guarantees.
Such an abstraction also serves to define the exact dependency between the admission con-
trol procedure and the perfor.nance characteristics of the underlying hardware and software
components.

However, there are two aspects that make the realization of such an abstraction, and
hence the design of a QoS-sensitive communication subsystem, extremely difficult. First,
significant efforts are needed to understand and profile various communication subsystem
(and operating system) overheads on sending and receiving hosts, and incorporating them
in the admission control procedure. While necessary for provision of deterministic QoS
guarantees, such an exercise is desirable for other classes of services as well, although not
to the same level of accuracy or detail. The two prototype implementations we developed
gave us first-hand experience with the difficulties of accurately profiling and parameterizing
the communication subsystem manually.

Second, provision of QoS guarantees is highly platform-specific (i.e., depends on the
CPU and network capacities, as well as the operating system, of a platform), especially for

deterministic guarantees. Although system parameterization makes the admission control

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

procedure more accurate and portable, full system parameterization must still be performed
for each host and operating system platform that deploys a QoS-sensitive communication
subsystem. The architectural framework and methodology adopted for designing QoS-
sensitive communication software should be applicable to a variety of host platforms and
networking technologies. This is necessary in order to retarget the admission control pro-
cedure and run-time management support to a given host platform and/or networking
technology.

Thus, for cost-effective large-scale deployment, appropriate architectural mechanisms
are needed to facilitate and enhance the portability of QoS-sensitive communication sub-
systems. We address this need by proposing self-parameterizing protocol stacks as the
basis for the design and development of QoS-sensitive communication subsystems. Self-
parameterizing protocol stacks extend traditional protocol stacks by providing support for
efficient on-line profiling to construct a database of the system parameters that form the
abstraction of the underlying communication subsystem and platform. To demonstrate
feasibility, we have realized a self-parameterizing version of the guaranteed-QoS communi-
cation service described in Chapter 5. Our design and implementation methodology strives
to minimize the overheads and perturbation induced in the data transfer path, while sup-
porting relatively fine-grain performance profiling and system parameterization. Given that
the only other alternative is manual profiling and parameterization, constructing commu-
nication subsystems using self-parameterizing protocol stacks is the most natural way to
design portable QoS-sensitive communication software.

In the rest of the chapter, we first motivate the need for self-parameterizing protocol
stacks for QoS-sensitive communication subsystems. We then compare and contrast with
related work in operating system performance measurements, benchmarking, and resource
monitoring. Subsequently we describe our design approach for self-parameterization of
protocol stacks, and then highlight key features that ensure minimal perturbation during
data transfer. Following this we describe our CORDS-based prototype implementation in the
context of the guaranteed-QoS communication service developed for ARMADA, and present

experimental evaluation results to demonstrate the feasibility of our approach.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Resources Cost/Overhead Components Attributes
CPU APT overheads degree of data copying
protocol stack latency protocol stack layers
context switches, cache misses CPU speed
scheduling overheads data structure efficiency
Memory buffers | buffer allocation/release buffer management
buffer copy bandwidth memory subsystem
DMA bandwidth I/O bus bandwidth
Link output | packet selection/dequeue link bandwidth
packet transmission adapter design
transmission complete interrupt | host support
input | packet input (interrupt/polling)
packet classification

Table 6.1: Communication resources and their cost components.

6.2 Motivation and Problem Statement

In this section we motivate the need for mechanisms and techniques that enhance the porta-
bility of QoS-sensitive communication subsystems. We first discuss the nature of system
parameters, costs and overheads that together constitute the communication subsystem
abstraction utilized by admission control. We subsequently argue that a detailed manual
profiling of the communication subsystem is not only complex and time-consuming, it may
also be insufficient due to its static nature. We then make the case for an automated

approach to profiling and parameterization.

6.2.1 Nature of System Parameters, Costs and Overheads

In developing the admission control extensions presented in Chapters 3 and 5, we identified a
number of important system parameters and overheads that must be determined accurately
for effective and correct admission control. Table 6.1 classifies various costs and overheads
according to the associated communication resource, and highlights the key attributes that
impact them. Note that one or more attributes may affect each cost component, i.e., no
one-to-one correspondence is implied.

Each component listed in Table 6.1 impacts communication subsystem performance sig-

nificantly and may be different for different host platforms. For example, the protocol stack

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

latency is determined in part by CPU speed and the degree of data copying during protocol
processing. A faster CPU or higher memory copy bandwidth would reduce protocol process-
ing latency. Similarly, different processor and cache architectures would generate different
context switching overheads and cache miss penalties, respectively. The cache performance
of communication subsystems is also determined in large part by the composition of the
protocol stack [133].

The I/O bus bandwidth in part determines the available DMA bandwidth to/from sys-
tem memory. Since this affects the time spent moving data between memory buffers and
the network interface, it also determines, along with link bandwidth, the transmission time
for outgoing packets. Similarly, the classification applied to arriving packets may scale with
CPU speed or benefit from specific demultiplexing support available on the network inter-
face. Moreover, the parameters defining the granularity at which communication resources
are multiplexed are typically platform dependent. Examples include the maximum packet
size (as derived from the MTU of the attached network and protocol stack headers) and the
number of packets processed between successive preemption points. These parameters can-
not be fixed a priori and must be determined for the attached network and host platform,
respectively.

It is clear from the above observations that the values taken by each of the system
parameters utilized in admission control is highly platform-specific. In addition to plat-
form dependencies, there can be workload dependencies as well due to variations in actual
resource usage and non-ideal characteristics of real hardware and software resources. For
example, cache miss penalties may show significant variation depending on the prevailing
workload and degree of preemption. Similarly, queuing overheads on ordered data struc-
tures, such as CPU scheduling and packet selection overheads, are a function of the workload
(e.g., the number of queued entries) as determined from the number of channels handlers

or the number of packets awaiting transmission, respectively.

6.2.2 Infeasibility of Detailed Manual Profiling

In order to re-target the proposed architectural mechanisms and admission control exten-
sions to other platforms, one could attempt to conduct a detailed profiling and parame-
terization of the communication subsystem, as we did for the prototype implementations

described earlier. However, there are several practical difficulties that make such an option

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

infeasible for large-scale deployment of QoS-sensitive communication subsystems across het-
erogeneous hosts and networks.

Detailed manual profiling requires intimate knowledge of the hardware and software
components comprising the communication subsystem, especially those components that
together provide QoS guarantees. Only the designers and developers of these components
can be expected to have this knowledge. Even with this knowledge, obtaining performance
traces manually and post-processing them is cumbersome and time-consuming. Further.
correct and accurate parameterization also requires a deeper understanding of the admission
control procedure employed in order to know what to profile within the communication
subsystem. More importantly, detailed profiling may not even be a feasible option unless
complete source code is available and instrumented carefully.

More importantly, the performance data thus generated may not even be correct, espe-
cially for workload-dependent system overheads, since the workload assumed for the profil-
ing might not bear any resemblance to that seen in practice. While static (i.e., one-time)
performance profiling suffices for most of the cost components listed in Table 6.1, workload-
dependent overheads must be computed dynamically, as and when the workload changes.
It follows that the static nature and complexity of detailed manual profiling makes it un-

suitable for the development and deployment of QoS-sensitive communication subsystems.

6.2.3 Automated Approach to Performance Profiling

The above-mentioned arguments favor an approach that provides transparent and auto-
mated (or semi-automated) performance profiling and parameterization of QoS-sensitive
communication software (and other components of the OS, in general). Self-parameterizing
protocol stacks represent one such promising approach, since they are designed and im-
plemented to allow system overheads and admission control parameters to be determined
on-line and, if needed, dynamically. Coupled with user-level performance profiling tools,
such an approach makes it relatively much easier to port QoS-sensitive communication
software to other host and operating system platforms.

Note that our focus is primarily on accurately determining the system overheads and
costs used in admission control. Accordingly, we do not consider mechanisms to reduce
or optimize these system overheads and costs; a number of such efforts were described in

Section 2.4 of Chapter 2.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Related Work

Before presenting our design approach towards self-parameterization, we compare and con-
trast self-parameterizing protocol stacks with related work in four areas: protocol stack
performance, protocol benchmarking, operating system performance measurements, and

resource monitoring in operating systems.

6.3.1 Protocol Stack Performance

As mentioned in Chapter 2, in recent years there have been numerous efforts to realize effi-
cient protocol architectures and implementations that can preserve gigabit network through-
puts at the application level. More germane to our focus, several recent efforts have also
focused on experimentally quantifying, and identifying factors that influence, protocol stack
performance.

A detailed study of the non-data touching processing overheads in TCP/IP protocol
stacks is presented in [96]. The factors contributing to these overheads include network
buffer management, protocol-specific processing, operating system functions, data struc-
ture manipulations, and error checking. This study reports an extensive breakdown of the
overheads incurred at each layer of the protocol stack for a DECstation 5000/200 running
the Ultrix 4.2a operating system. While very extensive in its overhead measurements and
classification, this study also demonstrates the complexities involved in profiling the com-
munication subsystem accurately. Moreover, since it is targeted for a specific host and OS
platform, it reinforces the need for mechanisms to ease the task of profiling and parameter-
izing protocol stacks across multiple platforms.

The negative impact of data-touching overheads such as checksumming has also been
studied extensively, and a number of techniques devised to improve data-copying perfor-
mance [1,97]. Similarly, much attention has been focused recently on appropriate buffer
management for data copy elimination [25,27,130]. In contrast, our goal is to explicitly
account for any copying cost incurred during data movement to/from applications, and
measure this cost via appropriate profiling.

A study of the cache behavior of network protocols such as TCP and UDP reports
widely variable effects on processing latency, depending on whether the cache is cold or

hot [133]. Similarly, the importance of cache performance for small messages such as those

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

found in typical signalling protocols is highlighted in [16]. This has significant implications
for system parameterization since it highlights the difficulty in measuring various process-
ing overheads accurately. Cache predictability may be improved via appropriate protocol
implementation and compilation techniques [129], or via cache partitioning and appropriate
OS support [110]. Any worst-case processing estimates are likely to be overly conservative.
We note that this problem relates to memory subsystem design for modern processors, and
is not related to the actual mechanism employed to profile communication subsystems.
All these efforts focus on quantifying protocol stack latency, identifying factors that
affect this latency, or applying techniques to improve it. However, in addition to platform-
specific performance evaluations, no information regarding the performance of the protocol
stack is maintained within the communication subsystem. In contrast, we propose that
traditional protocol stacks be extended to dynamically determine the performance of various

components and maintain this information in terms of well-defined system parameters.

6.3.2 Protocol Benchmarking

The notion of protocol benchmarks was proposed in [160] for a comparative evaluation of
different implementations of communication protocols and protocol stacks. To capture the
communication behavior of real applications, a three-level model is proposed that comprises
basic operations, basic applications, and compound applications. Basic operations are the
primitive operations that can be invoked at the API individually, such as connect, discon-
nect, and the setting of data transfer options. Basic applications are sequences of basic
operations, and can be used to model bulk transfers and request/response transactions.
Compound applications are composed from basic applications, and are used to model the
contention for resources such as the processor, memory, and access to the network; com-
pound applications can be used to generate background load in a controlled manner.

This model has been used in a tool to compare different protocols and protocol imple-
mentations for varying levels of background load. In particular, it has been used to evaluate
the performance of VMTP [36,140], FTP and SunRPC [72], and to compare the perfor-
mance of OSI TP4 and TCP [160]. This tool also allows specification of variable message
sizes and the delay between successive messages sent on a given connection.

The primary focus of such protocol benchmarks and the above-mentioned tool is to

compare the end-to-end performance of different protocols. As such, it is complementary

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to our focus on protocol stack performance and QoS-sensitive communication subsystem
design. However, the application-level traffic generation model is of interest to us, since we
also need appropriate traffic generators to trigger profiling and parameterization within the

communication subsystem.

6.3.3 Operating System Performance and Resource Monitoring

Several studies have been undertaken to benchmark the performance of different operating
systems with the goal of identifying performance bottlenecks. The first such study focused
on the reasons behind the failure of operating system performance improvements to track
performance improvements in hardware technology [142]. More recently, efforts have fo-
cused on developing a suite of portable operating system benchmarks for cross-platform
performance comparisons [115] as well as detailed system analysis [24]. In all these ef-
forts, however, the performance profiling is geared towards performance comparisons and
the impact of OS-hardware interactions on operating system primitives. As such, there
is no need to equip the operating system with information regarding the performance of
individual components and primitives, nor is the profiling geared towards on-line system
parameterization.

Self-parameterizing protocol stacks come closest in flavor to the idea of self-monitoring
and self-adapting operating systems [157), although the two differ greatly in goals, scope
and the approach adopted. It is proposed in [157] to perform continuous monitoring of
operating system activity to construct a database of performance statistics, classify this data
appropriately, and perform off-line analysis to construct a characterization of the system
under normal behavior and detect anomalous behavior. In contrast, we focus exclusively
on the communication subsystem, with the primary goal of parameterizing it via on-line
profiling and making this information available to the admission control module. Moreover,
due to the requirement of capturing constituent system overheads accurately, our on-line
profiling operates at a finer time scale and may be disabled once appropriate measurements
have been completed.

Several other efforts have also focused on operating system support for resource moni-
toring and application adaptation [104,122,135]. Such support becomes necessary in order
to accommodate inaccurate or changing estimates of application resource requirements, and

is geared primary towards adaptive multimedia applications. For our purposes, the iter-

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ative, well-defined nature of processing within the communication subsystem implies that
once the application’s QoS and communication requirements are known, its communication
resource requirements can be derived accurately. However, the above-mentioned support
for resource monitoring will be needed in the absence of an accurate specification. We note
that while our primary focus is on provision of deterministic guarantees, self-parameterizing
protocol stacks are desirable for provision of looser forms of QoS guarantees as well.
System support for automatic profiling and optimization of applications is described
in [190], where the focus is primarily on improving application execution performance
via statistical profiling and profile-based optimizations. We focus, instead, on accurate
instrumentation-based profiling of the communication subsystem for system parameteriza-

tion.

6.4 Design Approach for Self-Parameterization

In this section we outline our methodology and architecture for self-parameterizing pro-
tocol stacks to construct QoS-sensitive communication subsystems. We also highlight key
challenges posed by self-parameterization, both in terms of feasibility and implications for
admission control. As discussed in Section 6.5, the design approach adopted induces mini-

mal overhead and perturbation during data transfer.

6.4.1 Overall Architecture

Figure 6.1 depicts our overall architecture for self-parameterizing protocol stacks for the
realization of QoS-sensitive communication subsystems. The protocol stack is divided into
five aggregate modules: API data buffering, message classification and queueing, protocol
stack layers, packet classification and queueing, and link transmission and reception.

The API data buffering module refers to the API layer of the communication subsys-
tem, such as the RTC API ANCHOR described in Chapter 5. The message classification and
queueing module sits just below the API data buffering layer and corresponds to the per-
channel message queues processed by the communication handlers. The protocol stack
layers together comprise all the protocols that compose the protocol stack, except the bot-
tom anchor protocol or the network device driver. The packet classification and queueing

module corresponds to the outgoing packet queues processed by the link scheduler and the

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—
-
API DATA BUFFERING
) I F
MESSAGE CLASSIFICATION & QUEUEING
(! 1
PROTOCOL STACK LAYERS
{ I T -
PACKET CLASSIFICATION & QUEUEING:
I N . ‘
L LINK TRANSMISSION & RECEPTION }" : DECISION :
data transfer
-------- = performance profiling
— J

Figure 6.1: Architecture for self-parameterizing protocol stacks.

incoming packet queues processed by the communication handlers. The link transmission
and reception module corresponds to the network device driver.

Within each module, the communication subsystem designer identifies appropriate pro-
filing locations and puts appropriate tracing hooks at these locations for the send as well as
the receive path. During data transfer, these trace hooks generate profile samples that are
used to construct an in-memory system parameter database that resides within the commu-
nication subsystem. Other platform-specific system overheads not specific to the protocol
stack, such as context switch overhead and cache miss penalty, may also be determined via
on-line profiling. During the signaling performed for a new connection, admission control
looks up the appropriate system parameters from the system parameter database in order
to arrive at a decision.

A application-level test suite is used to perform data transfer through the protocol stack
and trigger the profiling and parameterization code for the send as well as receive path.
The on-line construction of the system parameter database is illustrated in Figure 6.2. As
the protocol stack executes in response to data transfer, the profile samples undergo the

following steps:
¢ Sample classification and processing: The incoming sample is first classified to deter-

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mw‘Heg:«“:g }/—i v H‘“?.::::’“

parameter update

Figure 6.2: On-line construction of system parameter database.

mine the module that generated it and then processed. The processing could be as
simple as storing the sample in the appropriate trace buffer for later reference during

parameter tuning, or may involve aggregation to determine averages subsequently.

¢ Parameter tuning: From the samples thus collected, parameter estimates are derived
for each of the system parameters maintained by the parameter database. This deriva-
tion could be based on simple averaging over all the samples collected, and may also

keep track of the minimum and maximum values observed after ignoring outliers.

A parameter update is then applied to the system parameter database to record the corre-
sponding value for the specified parameter. Note that parameter tuning would typically be
performed only after a desired number of samples have been taken for each parameter of
interest. However, the architecture allows parameter tuning to immediately follow sample
classification and processing; this may facilitate calculation of dynamic workload-dependent
overheads.

System parameters are represented in the database as unique parameter variables classi-
fied according to the protocol stack module associated with them. The parameter variables
are queried during admission control, as explained in Section 6.4.2. Note that separation
of parameter estimates from parameter updates, as shown in Figure 6.2, also helps isolate
the parameter variables, and hence admission control decisions. While this does not af-
fect the parameterization of workload-independent overheads, it has some implications for
workload-dependent overheads, as discussed later. Since a host could be the source as well
as destination of QoS-sensitive traffic, unique parameter variables are maintained for the

send and receive paths, respectively.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o) (] i) (o) (i) ()

Figure 6.3: Internal structure of admission control procedure.

6.4.2 Structuring the Admission Control Module

The admission control module within the communication subsystem has to be structured
appropriately in order to work correctly within the above architecture. Figure 6.3 illustrates
the internal structure of the admission control procedure for sending as well as receiving
hosts.

Upon invocation of admission control to admit a new request, D_order needs to calculate
the request processing time (i.e., the message service time) and the request wait time, as
explained in Chapter 4. The request wait time in turn is derived from the CPU wait time
and the link wait time. The request processing and wait times are computed according
to the extensions developed in Chapters 4 and 5. The type of the channel determines
whether the sender or receiver processing and wait times are computed. This computation
is performed using the parameter variables that constitute the system parameter database.

Querying the parameter database each time a request is processed ensures that the ad-
mission control procedure utilizes the most recent values calculated for the system param-

eters. Again, this has implications for dynamically computed system overheads that may

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vary with the resident workload on the host. Note that the system parameter database
resides in the admission control module. As such, it exports a simple interface to query and
update the parameter variables. Parameter variables may be queried during the parameter
tuning phase to verify the consistency and accuracy of the parameter estimate generated.

Parameter updates are issued only after this verification.

6.5 Minimizing Perturbation

Since profiling code actively resides in a self-parameterizing protocol stack, minimizing the
perturbation during data transfer is paramount. The perturbation introduced by detailed
profiling is a function of the placement of profile points, the cost of taking timestamps.
and the processing of profile samples to generate parameter estimates. Also important
is the degree of control exercised over the trace hooks placed at the appropriate profile
points. While the profile points are placed inside different modules, it is desirable to have
centralized control over the corresponding trace hooks; in our case this control resides within

the self-parameterization module that keeps track of the generated profile samples.

6.5.1 Placement and Control of Profile Points

Referring to Figure 6.1, each module traversed by application data (i.e., a packet or message)
will activate trace hooks at one or more profile points to generate profile samples. This
applies to incoming as well as outgoing data, the only difference being the order of generation
of the profile samples. However, without appropriate controls over the activation of trace
hooks, a single packet may trigger multiple profile samples, thus exacerbating the processing
latency experienced by that packet. We believe that per-packet perturbation should be
minimized such that each packet or message triggers at the most one trace hook, and hence
generates at most one profile sample, as it traverses the protocol stack. Multiple profile
samples are gathered over different messages and packets. Note that the application-level
test suite must be constructed to generate or consume sufficient number of messages sized

appropriately.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

prologue:
if (module_enabled)
module_prologue_timestamp = timestamp();
}
epilogue:
if (module_enabled)
module_epilogue_timestamp = timestamp();
value = module_epilogue_timestamp - module_prologue_timestamp;

profile_sample (module_number, parameter_name, value);

Figure 6.4: Prologue and epilogue processing for profile sample generation.

Number and location of profile points

Since the profile samples generated by each profile point must be stored until they can
be processed, the number of profile points assumes significance. The required number of
profile points is determined primarily by the granularity of overhead measurements required
to achieve the desired form of system parameterization. Further, since profile points are
placed in the code by the communication subsystem designer, increasing the number of
profile points also increases the burden on the designer.

To minimize the number of profiling points, we associate a single profile point with
each module wherever possible, for each direction of data transfer. We could instead have
associated a profile point with each layer comprising the protocol stack. However, besides
requiring each layer to be instrumented to add the profile points, per-layer profile points are
unnecessary for correct system parameterization. For example, we only need to measure the
time taken by a communication handler to process a single packet through all the protocol
stack layers, i.e., the aggregate measurement suffices. Since protocol stack layers form a
single module in Figure 6.1, it suffices to provide a single profile point each for outgoing
and incoming traffic. Note that another benefit of per-module profile points is that the
aggregate overheads measured include many of the cost components listed in Table 6.1,

largely obviating the need to profile these components individually.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frequency of profile sample generation

Even with per-module profile points as discussed above, it is important to exercise control
over profile sample generation by these profile points. That is, it should be possible to
individually enable/disable the module profile points and, when enabled, determine the fre-
quency at which samples are taken. Figure 6.4 illustrates the profile generation methodology
we adopt.

Each module that generates profile samples is assigned a unique module_number and a
module_enabled flag. The module_number is assigned from the set {1,2,...,num_modules},
where num_modules is the total number of modules generating profile samples. Each profile
point corresponds to a prologue and an epilogue. The prologue is placed before, and the
epilogue placed after, the cost component of interest. As data flows, the prologue for each
module that is enabled triggers a timestamp as shown in Figure 6.4. Since the module is
enabled, the epilogue takes another timestamp, computes the cost component, and generate
a profile sample for further processing.

The above approach for profile sample generation ensures that only one module gener-
ates profile samples at a time, for as long as it is enabled. Thus, the entire profile sample
collection for a given module is completed before enabling the next one. An alternate ap-
proach would be to enable all the modules for the entire duration of profile sample collection,
and make sure that successive modules in the communication subsystem are activated in
sequence by successive messages or packets. Thus, profile generation is performed by each
module in more or less round-robin fashion. However, the approach we adopt is likely to
have better cache performance since the corresponding trace buffer used to store samples
may remain resident in the cache across successive message or packets.

Note that with this approach, while the API buffering module generates profile samples
on a per-message basis, the protocol stack layers module generates profile samples on a per-
packet basis. This facilitates on-line profiling of API data transfer overheads as well as the
per-packet fragmentation and reassembly overhead incurred by the communication handlers.
For the latter, the necessary distinction between the first and last packets is performed
when classifying the profile samples, using the pre-defined message sizes generated by the

test suite.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Timestamp cost and resolution

Timestamp cost can constitute a substantial part of the total profiling and parameteriza-
tion overhead. High timestamp cost affects not just the profiling overhead, but also limits
the resolution of the real-time clock. For example, for our platform timestamps using the
real-time clock cost = 15 us. While this overhead is relatively high, it can be reduced dras-
tically by using hardware performance counters provided in several modern processors [24].
Hardware cycle counters provide timestamps with resolutions of the order of just a few
nanoseconds. The kernel-level profiling described in Chapter 7 is performed using such
hardware counters.

For platforms with significant timestamp cost, the generated profile sample must be
adjusted appropriately. For example, in Figure 6.4, the actual profile sample recorded
would be value — 7,, where 7, is the cost of taking a timestamp on the target platform.
We note that on-line profiling via timestamps is no worse than off-line profiling, where

timestamps must also be employed to measure individual cost components.

6.5.2 Deferred Sample Processing and Parameter Tuning

The profile samples generated by each module are classified and stored in appropriate in-
memory per-parameter sample buffers. The actual processing of these samples, however.
is only performed once a sufficient number of samples have been collected. This not only
ensures minimal perturbation during profile sample collection, but also allows relatively
sophisticated processing to be performed on the collected samples to obtain parameter
estimates and related statistics. These parameter estimates may then be further tuned,
e.g., made extra conservative, before updating the system parameter database. This process
completes when the database has been suitably updated for each system parameter.

The processing performed on the collected samples may include calculation of simple
averages and additional statistics such as the standard deviation. Often it is more accurate
to discard some of the highest and the lowest values before computing parameter statis-
tics [24]. This is true for us since the unpredictability of the underlying operating system
may introduce occasional preemption between the prologue and epilogue processing in each
module. An example of such preemption is the execution of the device input thread during

processing by a incoming communication handler, as described in Chapter 5. The collected

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Modules Parameters Cost(s) Represented

ANCHOR ANCHOR_SEND_MSG copy in and enqueue outgoing message

ANCHOR_RECV_MSG_NW | dequeue and copy out incoming message

ANCHOR.RECV_MSG_W | prepare to wait for incoming message

ANCHOR_RECV_MSG_CR | callback in response to incoming message

PROTSTACK | PROT_SEND_PROC fragment message and process outgoing packet

PROT_RECV_PROC process incoming packet and reassemble message

LINKDRIVER | LINK_OUTPUT_PKT dequeue and transmit outgoing packet

LINK_INPUT_PKT classify, enqueue incoming packet; signal thread

Table 6.2: Modules and parameters in the prototype implementation.

samples must be sorted to eliminate the “outliers” and consider only the remaining samples

for computing parameter statistics.

6.6 Implementation and Evaluation

In this section we describe our implementation and evaluation of a self-parameterizing ver-
sion of the guaranteed-QoS communication service described in Chapter 5. We demonstrate
experimentally that the mechanisms outlined in earlier sections suffice for self-parameterization
of the protocol stack. The feasibility of our approach is demonstrated by comparing the

system parameters thus computed with those obtained via manual profiling in Chapter 5.

6.6.1 Modules, Parameters and Sample Collection

The current implementation organizes the service protocol stack into three primary modules:
ANCHOR, PROTSTACK, and LINKDRIVER. As outlined in Table 6.2, ANCHOR encompasses the API
data buffering and message classification and queueing modules mentioned earlier, while the
packet classification/queueing and link transmission/reception modules are encompassed by
LINKDRIVER. PROTSTACK encompasses all the layers of the protocol stack except the top-
level anchor and the bottom-level device driver. All the functionality required for self
parameterization is contained within the selfparam core.

On initialization, each module explicitly registers with the selfparam core which in turn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

initializes appropriate state to ensure that profile samples generated by each module are
classified and stored properly. Each module is assigned a parameter name space which
uniquely identifies up to a certain number of parameters for which the module generates
profile samples. State associated with each module includes flags encoding whether the
module is registered or not, enabled or disabled, and the number of unique parameters
associated with this module. A module remains disabled after registration until explicitly
enabled by the test suite, as explained later. State associated with each parameter is more
elaborate. A parameter is classified as per-message if the corresponding profile samples are
generated once per message, or per-packet if the corresponding profile samples are generated
once per packet. A parameter is valid if at least one profile sample has been generated for
it.

Each parameter is associated with two timestamps, before and after, corresponding to
the prologue and epilogue for a profile sample, respectively. Profile samples computed from
these timestamps are stored in a trace buffer associated with each parameter. Note that
this trace buffer records a scalar sample for per-message parameters and a sample vector
for per-packet parameters; the sample vector keeps track of all per-packet samples for the
same message. As explained below, the sample vector also facilitates distinct tuning of the
first (or last) packet relative to the other packets of a message. Since parameters values
can be a function of data size, samples are generated for several message sizes ranging from
single-packet messages to messages with a relatively large number of packets, as explained
in Section 6.6.2.

Profile points are placed at appropriate locations in the protocol stack according to the
parameters utilized by admission control. Table 6.3 lists the interface the selfparam core
exports to the modules for registration and sample collection. Each profile point corresponds
to the invocation of SP_tstamp, with a flag indicating if this invocation constitutes a prologue
or an epilogue. If it is the latter, the selfparam core collects a sample, classifies it as per

the specified module and parameter, and stores it in the associated trace buffer.

6.6.2 Message Generation

Generation of profile samples is triggered by an application-level test suite that communi-
cates with the selfparam core via the API listed in Table 6.3. The test suite first creates a

best-effort (or real-time) channel from the sending to the receiving host, and then initializes

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interface | Routines Description

Modules | SP.register | register module with self parameterization core

SP_tstamp generate timestamp and, if epilogue, collect sample

Test Suite | SP_init initialize the self parameterization core

SP_continue | specify message size for generated messages

SP_reset disable current module and enable the next

Table 6.3: API routines exported by the self parameterization (SP) core.

the selfparam core by informing the latter of its role as a sender (at the sending host) or
a receiver (at the receiving host) via SP_init. Subsequently, at the sending host the test
suite simply cycles through several message sizes selected a priori, periodically generating
a pre-specified number of messages for each message size and sending them on the estab-
lished channel. At the receiving host the test suite simply consumes and discards incoming
messages on the channel. Each time a new message size is chosen, the selfparam core is
informed by invoking SP_continue.

When sufficient number of messages of all sizes under consideration have been sent. the
selfparam core is instructed via SP_reset to disable the current module and enable the next
module for profiling and parameterization. Once all modules have been profiled the self-
param core initiates parameter tuning and update, as discussed next. Note that, while the
API exported to the test suite is not essential, in that information could instead be shared
implicitly between the test suite and the selfparam core, an explicit API affords greater

flexibility in selecting an application-level traffic pattern for system parameterization.

6.6.3 Parameter Tuning and Update

The samples thus collected in the trace buffer are tuned to remove outliers and compute
sample statistics such as averages, etc. Estimates of the relevant system parameters are then
derived and the corresponding parameter variables updated to reflect the newly computed
estimates. For per-message parameters parameter tuning is performed in a single step. The
samples collected for each message size are sorted in decreasing order and the highest 20%
samples (the potential outliers) discarded. An average value is then computed from the

remaining samples and associated with the corresponding parameter.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Manual Self
Anchor Message Size Message Size
Parameter 1 byte | 10k bytes | 1 byte | 10k bytes
ANCHOR_SEND_MSG 301 606 290 580
ANCHOR RECV_MSG_NW | 335 1097 325 1079
ANCHOR RECV MSG W | 53 51 43 46
ANCHOR RECV_MSG.CB | 95 96 95 98

Table 6.4: Anchor: comparison of manual and self parameterization (in us).

Parameter tuning for per-packet parameters is performed in two steps. In the first step,
the sample vector for each message (i.e., samples associated with individual packets of a
message) is reduced to up to two sample estimates, one for the first or the last packet
of the message, and one for the average of the remaining packet samples. The first or
the last packet of a message are handled separately because the corresponding samples
represent costs or overheads not present in the other packets. For example, for the parameter
PROT-RECV_PROC the sample corresponding to the last packet of a message includes the cost of
reassembling the message. Similar considerations apply for the parameter PROT_SEND_PROC.
since the first packet of a message typically has a higher processing cost (e.g., due to
cold cache misses) compared to the subsequent packets. In the second step, once the
sample vector has been reduced to two sample estimates, these estimates are then averaged
across the collected samples and the average values thus computed associated with the
corresponding parameter.

Finally, appropriate estimates are computed for the system parameters used by admis-
sion control. Variables corresponding to parameters that are independent of data size are
updated directly using the estimates already obtained. However, for parameters that de-
pend on data size, such as ANCHOR_SEND_MSG which includes the time to copy in a message,
two components of the overhead represented are computed: a startup component and a per-
byte component. Given the message size, for example, admission control then computes a

cost value for the corresponding parameter using these two components.

6.6.4 Experimental Results

We performed several experiments on the testbed presented in Chapter 5 to compare manual

profiling and parameterization with self parameterization. Since the profiling mechanisms

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Manual Self
Protocol Stack Packets in Message | Packets in Message
Parameter First | Other First | Other
| PROT_SEND_PROC 181 | 77 178 |79
Other | Last Other | Last
PROT_RECV_PROC (10k bytes messages) | 260 360 320 415

Table 6.5: Protocol stack: manual and self parameterization (in us).

employed are essentially the same for both, the results produced via self parameterization
should be very similar to those obtained via manual profiling. While the quantitative mea-
surements should be mutually consistent, the qualitative benefits of self parameterization
should far out-weigh those of manual profiling.

Tables 6.4, 6.5, and 6.6 list the measured values of the various system parameters for the
ANCHOR, PROTSTACK, and LINKDRIVER modules, respectively. Resuits are shown for message
sizes of 1 byte and 10K bytes; experiments with other message sizes yield similar results.
The measurements for manual profiling are derived from the system profiling measurements
presented in Chapter 5. As expected, the values obtained via self parameterization are in
very good agreement with those obtained manually, typically within 5% of the latter, for
parameters representing each module. Even for PROT_RECV_PROC, where the discrepancy
between the two is unexpectedly higher, the measurements are very consistent if the total
reassembly and message enqueue cost (the difference between the processing cost of the last
and other packets of the message) is considered. While this cost is 100 ps (360 - 260) with
manual profiling, self parameterization gives a cost of 95 ps (415 - 320). For the most part
the discrepancy can be attributed to the differences in statistics computation for manual
and self parameterization.

From a qualitative perspective, manual profiling and parameterization pales in compari-
son to self parameterization. Not only does it require careful profiling of the communrication
subsystem ard knowledge of the system parameters used in admission control, the process of
obtaining profile samples and post-processing them is tedious. The time to complete system
parameterization before the service can be used typically ranges from several tens of hours
to several days, especially if the various protocol stack components must be understood in
order to place profile points.

Self parameterization, on the other hand, dramatically reduces this time to just a few

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Manual Self
Link Driver Packet Size Packet Size
Parameter 1 byte | 1.5k bytes | 1 byte [1.5k bytes
LINK OUTPUT _PKT | 673 1775 680 1789
Packets in Message | Packets in Message
First | Other First | Other
LINK_INPUT_PKT | 120 20 123 18

Table 6.6: Link driver: comparison of manual and self parameterization (in us).

minutes, depending on the number of samples desired, the number of message sizes consid-
ered for the profiling, and the number of modules in the protocol stack. For example, if the
message generation rate at the sender is 1 message/second, the number of modules is 3 (in
the present implementation), the number of message sizes considered is 4, and the number
of samples desired is 100, then the total time to system parameterization would be approx-
imately 20 minutes. These gains are only possible because self parameterization takes the
human out of the loop of profiling and parameterizing the communication subsystem.

In our experience, self parameterization has been extremely effective in keeping system
parameterization up-to-date with software changes, performance improvements, and bug
fixes. Once the profile points are in place, the designer can freely add new functionality to
the communication subsystem, or optimize critical paths, and then simply run the param-
eterization test suite so that the system parameters reflect the performance of the latest
version of the communication service. This, of course, assumes that the location of profile
points is relatively static and that changes to the existing code does not invalidate the
specified admission control procedure.

From the service designer’s point of view, self parameterization allows for rapid perfor-
mance testing of the service, thus facilitating an improved understanding of the performance
characteristics of the communication subsystem. From a service user’s point of view, self
parameterization hides details of the actual procedure and system parameters employed
for admission control. This allows rapid configuration of the service at the user’s site and
permits easy migration across various processing, memory, and networking hardware up-

grades.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.7 Summary and Future Work

In this chapter we addressed the issue of portability of QoS-sensitive communication sub-
systems, which require intimate knowledge of system parameters that together constitute
an abstraction of the communication subsystem. Towards that end we proposed self-
parameterizing protocol stacks that are designed with the ability to parameterize them-
selves appropriately during data transfer. Our design approach extends traditional proto-
col stacks with carefully placed and controlled profile points, in-memory trace buffers for
profile samples, procedures for computing per-parameter statistics, and an in-memory sys-
tem parameter database that records system parameters values utilized during admission
control.

Self-parameterizing protocol stacks are the most natural way to enhance the portability
of QoS-sensitive communication subsystems, especially for provision of deterministic QoS
guarantees. Note that self-parameterizing protocol stacks by themselves do not make a
communication subsystem portable across hetergeneous hardware and software platforms.
Instead, they are designed with the goal of easing the burden of porting a guaranteed-
QoS service, which involves not just the usual resolution of code incompatibilities, but also
requires intimate knowledge of the performance of the (hardware/software) components in-
volved. Such knowledge is best available with the service designer, who must consider system
performance as an important ingredient during QoS-sensitive communication subsystem de-
sign. This is in sharp contrast with the design of traditional (best-effort) communication
subsystems, where performance, while very important, is typically an after-thought.

There are several interesting directions in which this work can be extended. One of the
most obvious is to integrate mechanisms for self-parameterization more closely within the
protocol composition and path framework in CORDS. For example, it may be desirable to
specify modules in the protocol graph itself, allowing them to be automatically registered
when the appropriate z-kernel protocol is initialized. Similarly, the profile samples and as-
sociated trace buffers should be managed in a path-specific fashion. This is important since
different QoS connections may take different paths through the communication subsystem.
and hence incur different protocol processing costs. While we have focused primarily on
static on-line profiling and parameterization, self parameterization could also be employed

effectively to realize dynamic profiling and parameterization; with dynamic parameteriza-

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tion, the workload-dependent parameters are determined dynamically in response to work-
load fluctuations. Finally, for true end-to-end QoS guarantees, such self-parameterizing

protocol stacks must be integrated with any QoS monitoring functions provided in the

operating system.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

QOS SUPPORT IN TCP/IP PROTOCOL STACKS

7.1 Introduction

The preceding chapters have focused on architectural components and mechanisms to realize
new communication subsystems that are QoS-sensitive. The rapid shift of the WWW (and
the underlying Internet) from a text and graphics-oriented medium to one with live audio
and video content, as evidenced by the emergence of applications such as InternetPhone
and WebTV, has generated a significant demand for “better than best-effort” Internet
connectivity.

Significant efforts are being made by the Internet Engineering Task Force (IETF) to
enhance the service model of the Internet to support integrated services for voice, video.
and data transport [22]. This in turn implies that the ezisting communication subsystems
running TCP/IP protocol stacks in Internet hosts be modified for QoS-sensitive traffic
handling according to integrated services standards. In this chapter, we concentrate on the
design and implementation of QoS support on Unix-like (i.e., those supporting a sockets
based communication system) Internet servers, the typical sources of multimedia data on
the Internet.

In collaboration with researchers at the IBM T. J. Watson Research Center, we have
designed and implemented architectural extensions to the sockets-based communication
subsystem that enable RSVP-based integrated services infrastructure in the Internet [13].
One of the primary goals of our service architecture is to blend the QoS support with the
existing TCP/IP stack and socket API, preserving the structure of the Unix networking

subsystem. Applications not needing QoS support for communication should continue to

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

run as is, and yet the QoS extensions should allow new applications to benefit from QoS
enhanced network services.

Further, control overheads for QoS support should not have any detrimental impact on
data path throughput. Our design is also influenced by the observation that with the rapid
penetration of the Web, potentially any Internet site can be a content provider, and hence a
source of multimedia data. This implies a wide variation in the capabilities of the Internet
hosts and their connections to the Internet (network interfaces and links). Thus, the design
must scale from small to large number of connections and accommodate network interfaces
with widely differing capabilities. One of the primary goals of the architecture is to provide
better service for QoS traffic, but not at the expense of best-effort traffic.!

We have developed a prototype implementation of our QoS architecture on RS/6000
based servers running AIX release 4.2 and equipped with ATM and IEEE 802.5 token
ring adapters. Our prototype system supports RSVP-based QoS signaling and several ETF
defined QoS classes, described in Section 7.2, with appropriate enhancements to the com-
munication subsystems at the hosts (clients and servers) in the control as well as data planes
of the protocol stack. The hosts are connected via prototype routers based on ATM switches
enhanced for IP routing and IETF standards compliant QoS classes.

Given that the new service model will be widely deployed and utilized, it is important
to understand the extent and nature of overheads imposed relative to the best-effort data
path. That is, we are interested in ascertaining the performance impact on connections
using integrated services in TCP/IP protocol stacks at end hosts to obtain QoS. Our QoS
architecture has been carefully designed to have minimal impact on the default best-effort
data path, which must remain as efficient as possible to maximize application throughput.
The complexity and the overhead of supporting QoS is a critical factor that will ultimately
determine the future evolution of integrated services on the Internet. To the best of our
knowledge, there has been no experimental study that analyzes and measures the overheads
of offering such services.

The primary contributions of this chapter are threefold: we (i) present architectural
mechanisms for traffic policing, shaping, and buffer management at end hosts, (ii) quantify
the control and data path overheads introduced by various QoS components via detailed

kernel profiling, and (iii) discuss the performance implications of these overheads. We

'We are primarily concerned with servers, and hence the data transmission path.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

focus primarily on exacerbation of data path latency due to QoS overheads for a single
connection relative to the best-effort data path. The examination of similar effects in the
presence of multiple QoS connections is left for future work. We demonstrate the efficacy of
our architecture in providing QoS guarantees via application-level experiments. Our kernel-
level measurements reveal that traffic shaping presents the most challenges, if it needs to
be performed in software. This is primarily because of reliance on OS timer mechanisms
and possible interaction with the operating system CPU scheduler.

We achieve very efficient traffic classification on the outgoing path by carrying the
necessary information with each packet as it traverses the protocol stack. A key observation
is that traffic policing and shaping overheads are largely offset by gains due to shorter data
paths for QoS sessions relative to the best-effort sessions. These gains include (i) the savings
due to pre-allocation of per-session buffers, and (ii) for the ATM network, the savings due to
a faster path through the network interface layer. In the latter case the data path latency for
compliant packets can even be smaller than the latency of the default best-effort data path.
In effect, our architecture transfers some of the traffic classification and buffer management
overheads from the data path to the control path. To keep the overhead of packet queueing
and scheduling low, we use a very simple queueing structure or utilize hardware support if
available. Using the QoS component overheads as motivation, we identify the implications
of providing QoS support in TCP/IP stacks and possible approaches to mask and/or reduce
some of these overheads.

We note that the overhead incurred due to traffic shaping is a function of the frequency
with which an application generates non-compliant traffic, i.e., the extent of the mismatch
between the stated traffic specification and actual traffic generation. It seems desirable
that an application conforming to its stated traffic specifications receive better performance
compared to one that frequently violates its traffic specification. At the same time, due to
the difficulty associated with specifying meaningful traffic characteristics, occasional viola-
tion of traffic specifications should be tolerated. However, overheads incurred in preventing
persistently misbehaved applications from consuming excess resources may constitute a
significant loss of useful resource capacity. The scalability of the QoS architecture is, there-
fore, contingent in part upon the accuracy with which an application specifies its run-time
communication behavior.

Protocol stack performance and optimizations of existing implementations has been the

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

subject of numerous research articles, including some very recent ones [16,129, 176]. How-
ever, all of these studies focus on the traditional best-effort data path. Qur study assumes
significance in that it quantifies the performance penalty imposed by new data-handling
components in the protocol stack, and their impact on the best-effort data path. With the
popularity of networked multimedia applications on the Internet, the overheads imposed
by these components play an increasingly important role in communication subsystem and
operating system design. To the best of our knowledge, ours is the first study of its kind
to identify the performance impact of QoS support in TcP /1P protocol stacks While the
results reported here are for host protocol stacks, some of our findings are also applicable
to routers and switches participating in an integrated services Internet.

In the rest of the chapter, we first present a brief overview of RSVP and integrated
services, followed by an overview of our QoS architecture and components. We then present
results from application-level measurements, on our prototype implementation on Rrs/6000
based servers running Aix,? that demonstrate the efficacy of this architecture and the need
for the features provided. Using detailed kernel profiling of our implementation, we quantify
the data path overheads introduced by various QoS components. Based on these results, we
argue that traffic shaping presents the most challenges. We then identify the implications
of, and suggest approaches to mask and/or reduce, the overheads involved in traffic shaping.

Finally, we conclude with a summary of the main contributions of the chapter.

7.2 RSVP and Integrated Services: An Overview

Below we present a brief overview of the RSVP protocol and the service classes under
discussion in the IETF. A complete description of RSVP is provided in [23], while details

on different service classes can be found in [159, 183].

7.2.1 RSVP: An End-to-End View

Figure 7.1 shows an RSVP-based QoS architecture depicted data sources (S1, S2), destina-
tions (D1, D2, D3) and IP routers (R1, R2, R3). The sources as well as the destinations
run RSVP daemons that exchange RSVP messages (PATH and RESV) on behalf of their

hosts. In general reservations can be made on multicast sessions, as depicted in Figure 7.1.

2AIX is a BSD variant operating system.

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Senders S1 and S2 send PATH messages to the multicast group address comprising D1, D2.
and D3. The PATH messages travel through the network to all members of the multicast
group and PATH state is established at all RSVP-enabled routers in the multicast tree;
each of D1, D2, and D3 receives two sets of PATH messages. PATH messages arriving at
their intended receiver(s) are processed by the RSVP daemon.

The receiver D1 intends to make (possibly different) reservations on the flows originating
from S1 and S2, and sends RESV messages RESV1 and RESV?2 in response to PATH1
and PATH2, respectively. The receiver D2 wants to make a reservation only on the flow
originating at S1 and sends RESV message RESV1. The receiver D3 on the other hand
decides not to make any reservations and does not send any RESV messages in response
to the PATH messages from S1 and S2. As RESV messages from the receivers traverse
upstream to the senders, they are intercepted by RSVP-enabled routers and if sufficient
local resources are available, reservation soft state is established in the routers.

The RESV messages are also merged at the appropriate merging points. An end-to-
end reservation is successfully established when the RESV message reaches the sender and
is successfully processed by the local RSVP daemon. Eventually, a reservation tree is
established with the senders as the root and the receivers requesting reservations as the
leaves. Note that PATH and RESV messages are independent of the data flow from the
sender to the receivers although they follow the same route through the network. Hence, a
reservation can be established before or any time after the data flow starts.

Additional details of refreshing PATH and RESV states and handling route changes are
provided in [23]. An RSVP flow is uniquely identified by the five-tuple <protocol,src
address,src port,dst address,dst port>. Filters are set up at routers and hosts to
classify packets belonging to an RSVP flow and treat them in accordance with the reserva-
tion made on the flow. Note that, RSVP is just a signaling protocol that establishes reser-
vation soft states at the end-hosts and routers. Honoring the reservations requires, among
other things, resource and traffic management at the hosts and routers. The resource and

traffic management mechanisms depend heavily on the service classes supported.

7.2.2 Service Classes

Two important service classes currently under standardization by IETF are (i) guaranteed

service [159], and (ii) controlled load [183] service. Guaranteed services is targeted at provid-

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

| PATH2 pATHI
——— e

D3

e e

RESV2 RESVI

Figure 7.1: PATH and RESV messages in RSVP.

ing applications with a mathematically provable end-to-end delay bound using appropriate
buffer and bandwidth reservation at all network elements. It guarantees that datagrams will
arrive at the receiver within the guaranteed delivery time and will not be discarded due to
queue overflows, provided the flow’s traffic stays within its specified traffic parameters. This
service is intended for applications that need firm guarantees on loss-less on-time datagram
delivery. Some interactive audio/video applications and applications with hard real-time
requirements fall in this category.

On the other hand, the controlled load service is designed for adaptive applications that
do not need any specific quality of service, but can exploit the increased predictably in
network performance. The end-to-end behavior provided to an application by controlled
load service closely approximates the behavior visible to applications receiving best effort
service under unloaded network conditions. Controlled load service is intended for the
broad class of adaptive real-time applications (such as vic, vat, nevot, etc.) developed for
today’s Internet that are sensitive to overload conditions.

To avail these services, a connection has to specify a traffic envelope, called Tspec, that
is carried in the PATH message and includes a long term average rate, a short term peak
rate, and the maximum size of a burst of data generated by the application. An application
generating MPEG coded video could specify the average rate to be the long term data rate,

peak rate to be the link bandwidth, and burst size to be the maximum size of a frame.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tspec also specifies the maximum and minimum packet sizes to be used by the application.
For guaranteed service, traffic should be shaped to conform to the traffic specification. For
controlled load traffic shaping at the source is not mandatory. Violating packets belonging
to a controlled load session are allowed to pass the conformance check as best effort traffic.
In addition to Tspec, guaranteed session specifies an Rspec containing the required rate of
service and a slack term. The required rate of service should be at least as large as the long
term average rate specified in the Tspec. The slack term signifies the difference between
desired delay and delay obtained with the specified rate of service, and can be utilized by
the network to reduce the reservation level of the flow. For controlled load service, there is
no separate Rspec. Each controlled load session is guaranteed a rate of service equal to the
long term mean rate specified in its Tspec. A session may receive better service if there is

spare capacity in the system.

7.3 Architectural Overview and QoS Components

We now give an overview of the RSVP-based QoS architecture for end hosts, and the
components that comprise this architecture. Additional details on the internals of the
architecture can be found in [13]. Figure 7.3 shows the software architecture of an RSVP
enabled host. In this example, a number of applications are using RSVP signaling for resource
reservation. The applications use an RSVP APl (RAPI) library to communicate with the
RSVP daemon running on the host. The rRsvP daemon is responsible for translating the
RAPI calls into RSVP signaling messages and local resource management function calls. For
local resource management, the RsvP daemon interacts with the QOSMGR over an enhanced
socket interface.

QoS extensions to the protocol stack are spread across both control and data planes. The
QOSMGR is the key component in our architecture. It plays a critical role in the control plane,
and also in the data plane, of the protocol stack. It is entrusted with managing network
related resources, such as network interface buffers and link bandwidth. It is also responsible
for maintaining reservation states and the association between the network sessions and
their reservations. Moreover, it performs traffic policing and shaping for sessions directed
to network interfaces that do not perform these functions in hardware, a category that covers

an overwhelming majority of present-day LAN interface adapters. Besides the introduction

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Applications

U
‘\
% RSVP Daemon [S::
- R
.......................... ,-----.‘:.l,-----
[SOCKET LAYER : j
" K
E—anrs)
' N
| IENET]]E
8 NDD H)
’
Data Path ————— Control Path ---- - -

Figure 7.2: Protocol stack architecture and QoS extensions.

of QOSMGR, the enhancements to the protocol stack also include extensions to the socket layer.
network interface drivers (IFNET), and (NDDs) for classification of network bound datagrams

to the sessions they belong to, and handling them in accordance with the reservation.

7.3.1 Control Functions

The control plane is responsible for creating, managing, and removing reservations associ-
ated with different data flows. When a reservation is requested by an application, the QOSMGR
computes and pre-allocates the buffer space required by the application on a session-specific
basis. Buffers are maintained as a chain of fixed-size mbufs, the traditional memory buffers
used by Unix networking software, with the buffer size derived from the advertised traffic
specification in the application’s reservation request. In cooperation with the network de-
vice drivers and the network interface layer, the QOSMGR also reserves network bandwidth
commensurate with the reservation.

The QOSMGR is also responsible for binding the data socket with a connection-specific
QoS handle. This handle, which directly identifies the associated reservation, reduces the
task of packet classification to a single direct lookup, and is used subsequently and correctly

handle traffic originating on the data socket. The traffic classification function is thus a

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

statically compiled packet filter, as opposed to a dynamically generated one [59].

7.3.2 Data Transfer

During data transfer on a QoS connection, the socket layer interacts with QOSMGR to obtain
a buffer for each packet generated by the application. The QOSMGR performs traffic enforce-
ment (policing and/or shaping) relative to the reservation identified by the QoS handle.
as explained below, and returns a buffer to the socket layer. The socket layer copies the
corresponding amount of application data into this buffer before initiating further protocol
processing.

In general, policing determines whether a packet is compliant or not. To perform traffic
policing, QOSMGR maintains two auxiliary variables, t,, and t,, for each reservation. Infor-
mally, ¢, is used to check whether the application is conforming to the long term average
rate specified in the Tspec; ¢, is used to enforce the short term peak rate. A transmission
request is non-compliant if current time ¢ is less than maz(tn,t,) (which represents the
time to compliance); otherwise the request is compliant. For compliant requests, QOSMGR
allocates a buffer from the associated reservation’s pre-allocated buffer pool, and returns
this buffer to the socket layer. A non-compliant request, on other hand, is handled in one
of several service specific ways: marked and transmitted at a lower priority, or delayed
until compliance (shaping). If transmitted at a lower priority, QOSMGR allocates a best-effort
buffer for the packet and marks it appropriately for correct handling by lower layers of the
protocol stack.

If the service specification so mandates, QOSMGR must shape (i.e., delay) non-compliant
traffic until compliance. Our architecture supports two mechanisms for traffic shaping:
session-level shaping and datalink-level shaping, the two being differentiated by their re-
spective position in the protocol stack. In session-level shaping (effectively performed at the
session layer), QOSMGR blocks the corresponding application thread for § = maz(tm,t,) — ¢
time units. This is transparent to the socket layer, which essentially sees a delay in the
allocation of a buffer to that packet. Session-level shaping is not required if the network
interface has the capability to perform datalink-level shaping, as in ATM networks, or such
capability is provided in the NDD, as is possible with other LAN technologies. In datalink-
level shaping, the NDD buffers packets until compliance before transmitting them into the

network. In this mode, QOSMGR simply manages the reserved buffers and flow-controls the

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application RSVP

—a
SOCKET LAYER
best-eff A
data path l dets 9.&-’ Qos_allocO '°°“"°' path 7
TRANSPORT Policing/Shaping l
(TCP/UDP, IP) QOSMGR
l l . ‘
' -
IFNET LAYER

]

NETWORK DEVICE DRIVER (NDD)

—— date tiow
- controf flow

Figure 7.3: Best effort and QoS data paths.

send thread based on the availability of buffers for that connection. Hence, while session-
level shaping controls execution of application threads, datalink-level shaping controls the
transmission of packets.

The support required for link bandwidth management depends greatly on the capa-
bilities of the attached network interface controller (NiC). For an ATM NIC no software
support for traffic shaping and scheduling is required since these functions are supported
in hardware. If the attached Nic does not support QoS functions, as in legacy Ethernet
and Token Ring networks, NDD extensions are required to support per-connection QoS via
packet queueing and scheduling [13].

Figure 7.3 shows best effort and QoS data paths, while Figure 7.4 illustrates the data
path through QOSMGR. For a packet associated with a reservation, the socket layer obtains a
buffer by calling qos_alloc(), which transfers control to the QOSMGR. It first checks whether
the application has enabled policing for that reservation (by setting the police flag) (step
1). If the associated reservation does not have the police flag set, QOSMGR checks if a buffer
is available for the reservation (step 2), and, if one is available, returns it to the socket layer
after setting the buffer priority according to the type of reservation (step 3). Otherwise, if
the application’s send call is blocking (step 4), it blocks the calling thread until a buffer is

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7.4: Data path through QosMGR.

freed (step 5). Instead, if the application’s send call is non-blocking, it returns ENOULDBLOCK
to the socket layer (step 6).

On the other hand, if the application has enabled policing on the associated reservation.
QOSMGR applies the policing function to determine if the packet is compliant (step 7). For a
compliant packet, QOSMGR checks if a buffer is available (step 8) and returns a pre-allocated
buffer if one is available (step 9), with the appropriate priority set so that the interface layer
can service the packet appropriately. Unavailability of buffers for compliant packets is an
exception condition since a compliant packet must always have buffers available, assuming
that the reservation and policing computation is correct; in this case QOSMGR returns ENOBUFS
to the socket layer (step 10).

If the packet is non-compliant, QOSMGR checks if the shape flag is set for the reservation
(step 11). If not, it returns a best-effort buffer allocated using the traditional mbuf allocation
calls (step 12). If the shape flag is set, but the application’s send call is non-blocking (step
13), QOSMGR returns ENOULDBLOCK to the socket layer (step 6). However, if the application’s
send call is blocking, QOSMGR shapes the non-compliant packet (and hence traffic on the
associated connection) by blocking the calling thread until its compliance time (step 14).

After transmitting a packet, the NDD notifies QUSMGR of a free buffer. The QOSMGR

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

returns the freed buffer to the corresponding session-specific buffer pool and wakes up one
of the session threads blocked waiting for buffers. Only one thread is woken up since only
one buffer has been made available for consumption; this keeps the data path efficient by
avoiding unnecessary thread wakeups and subsequent context switches. The thread thus
woken up returns to the socket layer after obtaining the newly-freed buffer, and continues
execution, i.e., processing the packet, through the protocol layers.

Note that in our architecture, applications output packets to the socket layer. Thus, our
architecture is naturally suited to techniques such as application-level framing [41] and can
be used with protocols such as RTP [155]. For example, it supports user-level fragmentation
and protocol processing performed in the application’s address space. Accordingly, it is well-
suited to multi-threaded multimedia applications that have distinct data generator and data
ezporter threads. While the data generator threads produce multimedia objects (e.g., video
frames) for network output, the data exporter threads may fragment these large objects

into packets and transport them via UDP on QoS connections established by the QOSMGR.

7.4 Efficacy of the QoS Architecture

In this section we demonstrate the efficacy of our QoS architecture in providing applica-
tions with the requested QoS. We have implemented the QoS architecture described in
the previous section on RS/6000 based servers running AIX release 4.2 and equipped with
ATM and IEEE 802.5 token ring adapters. For the rest of the paper we focus on the ATM
network implementation, although much of the discussion is also applicable to the token
ring implementation. Since our ATM adapters provide QoS support in the form of VC
setup/teardown, traffic policing and scheduling, traffic shaping is performed by the QoS
Manager, if needed, in addition to traffic policing to guide buffer allocation. Most of this

supported is needed for the token ring adapters as well.

7.4.1 User-Level Performance Measurements

As a first step, we measure user-level performance of the control and data paths in the
prototype system. These experiments stress the functional aspects of the system by exer-
cising the various data paths through the QOSMGR. For our experiments we have extended

the netperf [137] program to interact with the QOSMGR and create QoS sessions. We have

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TISTA

TURBOWAYS100

3

IBM 8260
ATM SWITCH

Figure 7.5: Experimental testbed for prototype implementation.

instrumented netperf to permit the creation of sessions with different options for local
traffic control collect user-level statistics for packet transmission time. The traffic control
options provided allow setting up reservations with or without policing and/or shaping.
This allows us to incrementally assess the efficacy of each traffic control function performed
by QOSMGR.

All our experiments are performed between two machines — (1) tapti - RS/6000 model
42T with 120MHz PowerPC 604 CPU, and (2) tista ~ an RS/6000 model 530 with a 33.4
MHz POWER CPU. Both machines run AIX version 4.2 and are equipped with 100Mb/s
Turboways100 ATM adapters connected by an IBM 8260 ATM switch, as shown in Fig-
ure 7.53. The purpose of using the RS/6000 model 530 is to observe the impact of the new
communication architecture on the vast existing base of older and slower servers. Although
the POWER machine runs at a much lower clock speed, its overall performance is not
proportionately worse than that of the PowerPC machine. The POWER and PowerPC
CPUs are architecturally different and the differences in their clock speed are not directly

reflective of their relative processing power.

Control Path Latency

Table 7.1 shows the application level latencies in creating (ADDRESV) and removing (DEL-
RESV) a reservation between tapti and tista. The latency involved in creating a reser-

vation includes the time taken to create local reservation states as well as perform signaling

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Machine | ADDRESV | DELRESV

tapti 16.50ms 0.27ms
tista 27.00ms 3.40ms

Table 7.1: Control path latencies.

across the ATM network to setup a VC for the RSVP flow. The removal of a reservation
includes cleaning up the local reservation state and tearing down the VC associated with the
RSVP flow. However, the latency seen by an application in DELRESV does not include the
time taken to tear down the VC across the ATM network. This explains the large difference
between the latencies in ADDRESV and DELRESYV. Note that the most significant part of
ADDRESYV latency is contributed by ATM signaling overhead.

Data Path Performance

As mentioned earlier, we use netperf to measure application-level UDP performance be-
tween tapti and tista across the ATM switch, for different packet sizes and traffic control
options. Table 7.2 shows the results from four experiments with tapti as the traffic source
and tista as the traffic sink.

Experiment I: Table 7.2 shows the number of packets transmitted and received without
any reservations, i.e., on a best effort connection (the baseline performance). These packets
traverse the best-effort path through the system and are carried on the best-effort ATM
VC between the two systems. The default settings for the best-effort VC are set to UBR
with a peak transmission rate of 50Mb/s.

These results reveal very low goodput, as measured by the number of packets that are
successfully received by the receiver. This is because the receiver is unable to cope with
the unrestrained transmissions by the sender and is overrun. One expects the goodput to
increase once the sender’s transmission rate is enforced (policed).

Experiment II: In this experiment, a controlled load reservation is created with a average
traffic rate corresponding to 1000 pkts/s (the rate varies with packet size when expressed
in bytes/s). To illustrate the effects of traffic policing, the peak rate for the session is also
set to correspond to 1000 pkts/s, while the bucket depth is set to correspond to 10 pkts.
The reservation results in the creation of a new QoS VC between tapti and tista with

the appropriate traffic parameters expressed in terms of ATM cells.

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Message Size (in bytes)

Expt. Connection Type 1400 | 2000 | 4000

I Best Effort Transmit | 35294 | 27481 | 25526

Receive | 32 19 13713

I Reserved Transmit | 45941 | 38985 | 29614
Receive | 9838 | 10027 | 9973

I | Reserved with Transmit | 28306 | 22803 | 19174
Policing Receive | 653 5494 | 6723

IV | Reserved with Transmit | 10315 | 10243 | 10158
Policing and Shaping | Receive | 9821 | 10025 | 9972

Table 7.2: Data path performance.

In this experiment, traffic policing is disabled in the QOSMGR and no packet-level policing
is performed. Hence, the generated traffic is all directed to the QoS VC by the [FATM
network layer. The results show that ATM level traffic policing is performed on this session
and packets in excess of the requested traffic rate are dropped at the source. The receiver
thus receives packets at a lower rate (as compared to that in Experiment I and is able to
process the packets, resulting in higher goodput relative to that observed in Experiment I,
as shown in Table 7.2. However, the goodput still does not match the packet transmission
rate at the sender.

Experiment III: In this experiment, the same reservation as in Experiment II is created.
but with traffic policing enabled in the QOSMGR. This corresponds to the recommended
behavior for the controlled load service [183]. In this case, the QOSMGR performs packet level
policing for the session and transmits all excess (i.e., non-compliant) traffic as best effort,
i.e., it does not shape non-compliant traffic. The results show that the number of packets
successfully transmitted (the goodput) is higher than that in Experiment I but lower than
that in Experiment II. The sender still overruns the receiver since the excess best-effort
traffic is being sent to the receiver over the default best-effort VC.

Experiment IV: In this experiment, both traffic policing and traffic shaping are enabled in
the QOSMGR. This corresponds to the recommended behavior for the guaranteed service [159],
and may also be applied to the controlled load service. In this case, the QOSMGR performs
packet level policing and blocks the application thread whenever it tries to transmit data
in excess of the associated reservation. As shown in Table 7.2, the number of packets

transmitted (goodput) closely matches the reservation (sending rate). This rate is within

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the capabilities of the receiver, which is now able to receive most of the packets that are

transmitted (on the QoS VC).

7.5 QoS Component Overheads

The results of the previous section demonstrate the efficacy of the QoS architecture in
providing QoS to applications. However, as mentioned earlier, due to the expected wide-
scale deployment of such QoS support, it is essential to identify the overheads imposed by
the QoS support provided relative to the best-effort data path. Clearly, excessive overhead
would limit the scalability of the QoS architecture and discourage use of the new service
model. In this section we identify the overheads associated with the QoS components
and experimentally quantify them using our prototype implementation. The next section
discusses techniques to reduce or mask some of these overheads.

Figure 7.6(a) illustrates the timeline of events as a packet passes through the QOSMGR.
An outgoing packet “arrives” at the QOSMGR at time ;. The packet’s time-to-compliance
(A¢) is computed as part of the policing function and by time ¢, it is known whether the
packet is compliant or not; the overhead incurred due to the policing function is A,. For a
non-compliant packet (and hence one that needs to be shaped) a shaping timer is started
at time {3, incurring an overhead A,. Subsequently, the calling thread is blocked on a
semaphore, incurring an overhead Ap; at time ¢, the CPU can be reallocated to another
thread.

At time t5, after a delay of A, from time instant {3, the shaping timer expires, and an
overhead of Ay is incurred by the kernel in searching for the timer block and invoking the
corresponding handler. The handler simply delivers a wake-up to the blocked thread and
exits. Waking up a thread incurs an overhead of A, and at time ¢; the thread is residing
in the CPU run queue, i.e., has been made runnable. The operating system’s CPU scheduler
allocates the cpu to this thread (i.e., schedules the thread for execution) at time tg after a
scheduling delay of A,y. The thread first stops the shaping timer, which incurs an overhead

Ac, and continues processing the now-compliant packet from time tg onwards.

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s Tl 1 1
: —Qp! “Api P
— Ay AL~
e i T Daa o
— Ac —
—) time
f1 ' % g % % % s %
(a) Timeline of events in QOSMGR data path
Time Event Description Symbol Overhead Component]
t; packet arrival A, policing overhead
ta time to compliance computed A, overhead to start shaping timer
3 shaping timer set A overhead to block thread
[thread blocked Aee time-to-compliance of this packet
ts shaping timer expires Ap overhead to handle shaping timer
ts shaping timer handler invoked Ay overhead to wake up blocked thread
ty blocked thread woken up Agq delay in scheduling thread
ts thread scheduled to run A, overhead to stop shaping timer
iy shaping timer cancelled
>ty thread continues processing packet

(b) Time instants and corresponding events (c) Overheads associated with shaping

Figure 7.6: Timeline of events and associated overheads during shaping.

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.5.1 Kernel Instrumentation and Measurement Methodology

We have instrumented the network subsystem of the modified AIX kernel for detailed pro-
filing of the data path of reserved sessions using the native tracing facility. Measurements
reported here are from both tapti and tista. The trace facility captures a sequential
flow of time stamped system events, providing a fine level of detailed system activity. A
trace event can take several forms, and consists of a hookword, optional data words, and
an optional time stamp. The hookword is used to identify the specific event being traced.
To minimize tracing overhead, our event records use only the hookword and timestamp.
Timestamps are taken by reading a real-time clock. The real-time clock is an integral part
of POWER and PowerPC CPUs used in RS/6000s, and can be read directly from the kernel
as well as from the applications. We use a two-instruction assembly language routine to
read two 32-bit clock registers with minimal overhead. The timestamps are of microsecond
granularity.

Referring to Figure 7.6, we measure Ap, Ay, Ay, and A, by taking timestamps before
and after the corresponding kernel calls, computing the difference, and averaging over a large
number of invocations. For this purpose, we utilized the functionality of the QOSMGR (which
is realized as a protocol module, as mentioned earlier) to send it appropriate user-level
commands and triggering our profiling code in the kernel. Computation of A is slightly
more involved. Suppose a timer is set for § time units, where a time unit corresponds to
the duration of the system timer tick. If ¢ is the timestamp taken before starting the
timer, and ¢, is the timestamp taken immediately upon entry into the timer handler, then
ta —ty = 6 + Ap holds, and A can now be computed.

Note, however, that for this computation to be correct, the system must correctly count
6 timer ticks from the time the timer is set. Since the time instant when the timer is
started can fall anywhere within one timer tick, the timer ticks counted would not be
accurate unless the timer was synchronized with the beginning of a timer tick. To achieve
this synchronization we set two timers instead of one. The first timer is used to synchronize
the setting of the second timer with the beginning of a timer tick; the second timer is started
for 6 timer ticks from within the handler for the first timer. This works because the expiry
of a timer is always synchronized with the end of a timer tick, and hence the beginning of

the next timer tick.

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A final concern is the computation of A, the overhead to block a thread in the kernel. As
such, since the call to block a thread returns only when the thread is awakened in the future.
it is not possible to determine the overhead incurred to block the thread via timestamps
or the timer mechanisms discussed above; the overhead would completely overlap with an
outstanding timer. Therefore, we approximate A in terms of A, as follows. A, equals
the time to remove a thread from the wait queue and enter it into the CPU run queues. Ay
equals the time to save the thread’s context, enter it into the appropriate wait queue, remove
a thread from the CPU run queues and restore its context. Assuming that enqueueing a
thread costs the same as dequeueing a thread, and if A, is the overhead to switch contexts

between two threads, we have Ay = A, + A,.

7.5.2 Component Overheads

Table 7.3 lists the measured values of these component overheads on tapti and tista. The
policing overhead (A,) includes the cost of retrieving the appropriate session state variables,
computing the timestamps, and checking whether a packet is compliant by comparing its
expected arrival time with the current system time. The current implementation uses two
4-byte words to represent each timestamp, one for the seconds field and the other for the
nanoseconds field. The policing computation can be further optimized by using ounly the
nanoseconds field for comparing and manipulating timestamps, and handling the (rare) roll
over as a special case.

The overheads of shaping non-compliant packets can be broken up into timer opera-
tions (A,: set timer, A,: handle timer, A.: cancel timer) and thread operations (As: block
thread, A,: wakeup thread). For a modern machine such as tapti, timer operations are
reasonably small relative to the base best-effort (upp) path latency. The timer overheads
correspond to the case with only one shaping timer outstanding, with perhaps a few system
(kernel) timers active concurrently. For good scalability with the number of active connec-
tions, the OS timer support must scale well with the number of active timers. It is observed
that the overhead of blocking threads is significant, notwithstanding faster processors, with
context switching being the dominant component.

Allocation of buffers (for non-compliant packets) from the shared mbuf pool (overhead
Ab) is significantly more expensive than allocation of buffers (for compliant packets) from

the pre-allocated session-specific reserved pool (overhead A]). Thus, the savings in buffer

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Component Overheads tapti | tista

Policing | A, | compute compliance time | 16.0 | 23.0

Buffer A7 | allocate reserved buffer [6.0 | 18.5

management 2 free reserved buffer 15.0 | 33.0

A, | allocate best-effort buffer | 18.0 | 35.0

Timer A, | set timer 74 14.0

operations A | handle timer 7.1 30.1
A, | cancel timer 6.5 9.6

Thread A; | block thread 374 | 78.8

operations A, | wakeup thread 14.4 | 23.8

ARP search | A,,, | search for ARP entry 10.0 | 17.0

Table 7.3: Overheads of different QoS components (in us).

allocation serves to offset some of the overheads of traffic policing and shaping. Likewise.
the cost of freeing a best-effort buffer is significantly higher than the cost of freeing (i.e..
returning to the session-specific buffer pool) a pre-allocated buffer. In effect, our architecture

keeps the data path efficient while increasing the control path latency slightly.

7.5.3 Effective Overhead

Both policing and shaping increase the data path latencies for reserved connections over
that of the best-effort data path. One would therefore expect to see higher data path
latencies for reserved paths over that of the best-effort data path. However, the best-effort

path differs from the reserved data path in that

e it uses the standard mbuf allocator for the packet, as opposed to using a pre-allocated

private pool of buffers, and

e it incurs a search for the ARP (Address Resolution Protocol) entry in the ARP cache
(Qarp); in the reserved path, the session handle maps directly to the appropriate

virtual connection identifier, thereby eliminating this search.

As revealed by the measurements listed in Table 7.3, these differences taken together con-
stitute a significant reduction in the data path latency for the reserved path, and partially
offset the overheads due to policing and shaping.

For high-function NICs that perform traffic shaping, the only overheads incurred are

those of traffic policing and buffer management, which are necessary to support the different

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Conunection Type Message Size (in bytes)

64 | 128 | 256 | 512 | 1024 | 2048 | 4096
Best Effort 133 1 137({163 189|215 | 223 | 288
Reserved 159 |1 162 | 172 | 186 | 217 | 231 | 298

Table 7.4: Data path latencies on tapti (in us).

service classes such as controlled load. If Cy,,, represents the base latency of the best-effort
path, the latency seen by a compliant packet is = Cj,e + A, - (AL —-Ar) - Aarp, and that
seen by a non-compliant packet is Cyzse + Ap. For tapti Ag,, = 10us (Table 7.3) for an
entry that is resident in the cache. Thus, the effective increase in data path latency for a
compliant packet is =~ -6 us, i.e., the data path is slightly faster. Similarly, the reduction
in data path latency on tistais ~ 10 us.

Table 7.4 shows application-level latency measurements for UDP traffic on best-effort
and reserved data paths for a range of message sizes. These results indicate that for 512-
byte packets, compliant packets do experience a slight (=~ 1.6%) decrease in latency. The
same experiments also reveal that for other packet sizes, compliant packets see an increase
in latency. While additional experiments are needed to investigate this further, we suspect
this is primarily due to cache and os related effects. A non-compliant packet experiences a
latency increase of =~ 12.5% since it incurs the policing overhead and uses best-effort buffers.

Session-level traffic shaping incurs significant additional overheads in the form of timer
and thread operations. Further, session-level shaping may also incur a variable (cpru load de-
pendent) delay in scheduling a blocked thread on the cpu (Asa). The next section discusses
the performance implications of using session-level shaping, and also outlines techniques to

reduce or mask some of the shaping overheads and delays.

7.6 Performance Implications

In this section we discuss various performance implications of session-level traffic shaping
and alternatives such as datalink-level shaping. We note that, in order to realize application-
level QoS, the mechanisms provided in the architecture need to be integrated with QoS-
sensitive CPU scheduling policies within the operating system. However, the architectural
mechanisms presented and evaluated in preceding sections are needed regardless of the

particular CPU scheduling policy employed.

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.6.1 Accommodating variations in the shaping latency

With session-level shaping, in the absence of other background activity a blocked thread
would be allocated the CPU immediately after it is made runnable, i.e., Asy = 0 ignoring
context switching overheads. However, the presence of other CPU-intensive background
activity can introduce additional, variable delays. Before the thread can get to run to

consume the buffers now available, there is

o the latency of making the thread runnable and dispatching the CPU scheduler to
select a thread (the scheduler dispatch latency), and

o the latency due to competition with other runnable threads/processes for access to

the CPU.

The additional delays imply that the thread in question gets blocked longer than that
required as per the time to compliance (the desired shaping latency). That is, A,y is
non-zero and a function of the background load.

Before considering alternatives to “absorb” variations in the shaping latency, we note
that shaping occurs only when an application generates non-compliant traffic relative to the
stated traffic specification. Accordingly, the frequency of occurrence of shaping by QOSMGR is
largely a function of the likelihood of the application exceeding its traffic specification. This
in turn is related to the ability of the application to accurately “predict” its run-time com-
munication behavior. While this is possible for relatively simple multimedia applications,
such as video playback (via lookahead or on-line smoothing), it may be extremely difficult
for more complicated mixed-media applications. Assuming that an application correctly
estimates its run-time communication behavior, the performance degradation due to traffic
shaping would not be substantial.

In other situations, the exacerbation in shaping latency may result in a QoS connec-
tion losing credits for access to the network, if it is unable to send compliant data even
when buffers are available. Further, since the shaping latency is partly determined by the
background load on the CPU, unpredictable variations in shaping latency must also be
accounted for. For provision of QoS, the scheduler dispatch latency Ay;s must be bounded
in the worst case. If so, one can account for the extra delay of AT:3* by only shaping for
Atc — ALS* time units, assuming a worst-case scenario for scheduler dispatch; the average

value of Ag;; may be significantly smaller than AR, The second latency component, the

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

delay waiting for CPU access, can be accounted for via measurement and adaptation. If
the desired shaping delay is A, and the thread actually gets delayed by Ager (> Ayc), then
it lost credits for (Agee — Ay.) time units. A lost credit implies that the thread could have
utilized the available buffers for outgoing packets and utilized its share of link bandwidth.
if it had been able to run as per the desired shaping delay.

Since guarantees are provided on the long-term rate as well, one can envision a scheme
where the shaping delay applied adapts according to fluctuations in the background load.
Thus, if the thread got delayed by an extra delay Acze(t) = Agct(t) — Aec(t) at shaping
instant ¢, it is only blocked for max(A;(#) ~ Aeze(t),0) time units at the next shaping
instant ¢’. Qur policing computation keeps track of these lost credits and accounts for
any extra shaping delay by subsequently treating more packets as compliant. However.
adapting to shaping latency in this fashion has implications for the buffer management
performed by QOSMGR; a QoS connection may need to over-provision buffers to allow longer
bursts of packets through compared to the connection’s traffic specification. Coupled with
an appropriate buffer management policy, the variations in the scheduling delay can also
be accommodated.

As mentioned in Section 3.3, for legacy NICs with appropriate queueing and schedul-
ing supported by the NDD, datalink-level shaping serves as an alternative to session-level
shaping [13]. With datalink-level scheduling, the packet scheduler operates in a non work-
conserving fashion, injecting compliant packets into the network either in the context of
an executing application thread, or on receipt of a transmission-complete interrupt notifi-
cation for the previous packet transmission. Since the packet scheduler is mostly invoked
in interrupt context, the coupling between CPU scheduling and transmission of compliant
packets is greatly reduced. Since threads are blocked only due to buffer shortages, the over-
heads incurred with datalink-level shaping are lower than those incurred in session-level
shaping. While saving some thread-related overheads (block and wakeup, context switch),
datalink-level shaping still incurs the overheads of timer operations.

Note that due to the need to support different service classes, traffic policing and buffer
management must always be performed by QOSMGR, thereby necessitating the need for thread
blocking and wakeup mechanisms regardless of the shaping mechanism employed. One sig-
nificant drawback of datalink-level shaping is that it does not provide efficient mechanisms

to give immediate notification to applications violating their traffic specification. Such

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mechanisms allow adaptive applications to react to such notifications by invoking appropri-
ate traffic adaptation functions. Further, these mechanisms are also useful in controlling the
allocation of CPU cycles to individual connections, as discussed in Section 7.6.2. Session-
level shaping provides such efficient and immediate feedback to applications on a per-packet
basis, allowing misbehaving applications to be notified or blocked at the earljest.

The scheduling delay associated with session-level shaping can be largely eliminated (or
at least made predictable) by employing QoS-sensitive CPU scheduling policies, as discussed

next.

7.6.2 QoS-Sensitive CPU Scheduling

Recently several QoS-sensitive scheduling policies such as stride scheduling [179], propor-
tional share [165], and hierarchical scheduling [71] have been proposed. These policies
ensure that the CPU is allocated to individual threads in the order of their associated QoS
requirements and at the granularity of a certain quantum, i.e., each thread executes at the
most for a quantum each time it is selected to run. Similarly, real-time operating systems
typically provide support for periodic fixed-priority and dynamic priority CPU scheduling,
such as rate monotonic (RM) and earliest deadline first (EDF), respectively [111].

While such QoS-sensitive CPU scheduling policies suffice for computation activities.
the granularity of the CPU scheduling quantum may be too coarse for accurate scheduling
and traffic shaping of application data exporter threads. The execution priority of a data
exporter thread must be derived from the application’s requested QoS and communrication
behavior on the corresponding connection. Consider a scenario where a higher-priority
thread from one application waits for a lower-priority thread from another application to
relinquish the CPU at the end of a quantum. However, the above situation implies that in
the worst-case, the higher-priority thread must wait for an entire quantum before continuing
to process and transmit compliant packets. The corresponding connection therefore loses
credits and may even experience QoS violations. Further, since fragmentation is performed
by the data exporter in the application’s address space, the lower-priority thread may
continue to send non-compliant network data, consuming shared best-effort buffers unfairly
and even starving best-effort traffic.

This suggests that the data exporter threads, i.e., those performing fragmentation and

other processing of network data, be scheduled for execution using fine-grain preemption.

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Such fine-grain multiplexing of communication threads has been adopted and analyzed
in [68,69] for RM scheduling, and in [116,117] for EDF scheduling, respectively. The archi-
tecture described in [116], which was presented in Chapter 3 decouples protocol processing
priority from application priority, deriving the former from the traffic and QoS specification
on each connection. Accurate traffic shaping is realized via EDF scheduling of protocol
processing threads.

The data generator (i.e., computation) threads may still be scheduled via the quantum-
based CPU scheduling policies mentioned above. Some strategies for integrated scheduling
of data generator and data exporter threads are outlined in Chapter 8. The above sce-
nario highlights another advantage with session-level shaping: a mechanism to introduce a
scheduling point by blocking application threads until the traffic is compliant. This is not
possible with datalink-level shaping, in which packet generation and hence buffer consump-

tion becomes work-conserving under the constraint of availability of buffers.

7.7 Summary and Future Work

In this paper we have studied the performance impact of supporting QoS communication in
TCP/IP protocol stacks. This study was conducted on a prototype implementation of a new
QoS architecture for an Rsvp-based integrated services Internet. We believe this is the first
study that quantifies the performance impact of QoS support in TCP/IP protocol stacks. [t
also complements other recent efforts to understand and improve protocol processing and
data transfer performance for best-effort traffic in high-speed networks. The significance of
our study stems from the expected large-scale deployment of the new service model being
defined by the IETF for an integrated services Internet.

Our main conclusions can be summarized as follows. Of the different QoS overheads
considered, traffic shaping presents the most challenges due to its interaction with the OS
CPU scheduler. Traffic policing and shaping overheads are partially offset by savings due
to pre-allocation of per-session buffers. Further savings can be obtained for ATM networks
due to a faster path through the network interface layer. While policing overheads can be
further optimized in a straightforward manner, reducing traffic shaping overheads would
require improvements in OS timer and thread operations. Potential load-dependent varia-

tions in the actual shaping latency can be accommodated via appropriate adaptation and

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

buffer management, or largely eliminated via integration with QoS-sensitive CPU scheduling
policies.

Our work complements recent work on QoS-sensitive CPU scheduling of applications [71,
165,179] and protocol processing [68,69, 116,117] at end hosts. While these efforts focus
on CPU scheduling, our primary focus is on the QoS support architecture exported to
sockets based applications. With appropriate CPU scheduling support, our QoS architecture
enables new and legacy applications to utilize end-to-end QoS on communication.

For future work, this study can be extended to explore the performance impact in the
presence of multiple simultaneous QoS connections. This might shed additional light on the
scalability of OS timer and thread operations, including synchronization and mutual exclu-
sion overheads. We are also interested in examining the issues involved in QoS overheads

imposed on the data reception path in TCP/IP protocol stacks.

Acknowledgement

We gratefully acknowledge the contributions of Tsipora Barzilai, John Chu and Isabella
Chang at the IBM T. J. Watson Research Center, and Satya Sharma, Steve Wise, William
Hymas, and Dan Badt at IBM Austin.

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8

INTEGRATION WITH HOST OPERATING SYSTEM

In this chapter we identify the issues involved in, and outline strategies for, integrating
a QoS-sensitive communication subsystem within a QoS-sensitive operating system for
application-level QoS guarantees.

We believe that application-level QoS guarantees can be realized by appropriately in-
tegrating the architecture and admission control extensions proposed in this dissertation
with QoS-sensitive application scheduling policies. Furthermore, the architectural mecha-
nisms, admission control extensions, and guaranteed-QoS service developed in Chapters 3.
4, and 5 respectively, remain applicable regardless of the protocol processing architecture
and location, i.e., in the kernel or at user level. Many aspects of the proposed architecture,
such as cooperative preemption and exploitation of overlap between CPU processing and
link transmission/reception can and must be preserved when integrating with QoS-sensitive
application scheduling policies. Our approach to QoS-sensitive communication subsystem
design greatly facilitates such an integration.

We first compare and contrast the different protocol processing architectures proposed
in the literature, primarily from the perspective of provision of QoS guarantees on commu-
nication. Subsequently we discuss some approaches towards realization of application-level

QoS guarantees.

8.1 Protocol Processing Architectures

In this section we discuss how our proposed architecture compares to other protocol process-

ing architectures, and argue that extending these architectures to support QoS guarantees

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| Type Architecture Protocol processing
[Traditional in-kernel (monolithic) system call or interrupt driven
I1 User-level trusted server (microkernel) | IPC driven
I User-level application libraries system call and upcall driven
v Lazy receiver processing system call or interrupt driven;
process when application receives

Table 8.1: Protocol processing architectures.

would necessitate features similar in nature to the ones proposed in our architecture. Fur-
thermore, regardless of the protocol processing architecture employed, realization of QoS
guarantees in practice necessitates admission control extensions along the lines of the ones

considered in this dissertation.

Architectural Overview

Table 8.1 lists the protocol processing architectures proposed in the literature.

Type I: corresponds to traditional in-kernel communication subsystem present in BSD
Unix [108] and its derivatives. Protocol processing in this architecture is performed at
system call time or subsequently in response to a network device or timer interrupt. The
architectural enhancement described in Chapter 7 were applied to a Type I architecture.
As mentioned, these enhancements are geared towards fragmentation for large data trans-
fers being performed in the application’s address space by one or more data exporter (or
communication) threads.

Type 1I: corresponds to a contemporary microkernel configuration in which a trusted user-
level server implements the communication subsystem, as exemplified by the guaranteed-
QoS communication service described in Chapter 5. Protocol processing is thus triggered
via [PC between the application and the trasted server on the one hand, and between the
server and the kernel on the other.

Type III: also corresponds to a user-level protocol processing configuration, on a micro-
kernel operating system [112,168] or otherwise [55], with the difference that data transmis-
sion and reception is performed by threads executing in communication subsystem libraries
linked with the application; control operations such as setting up connections are performed
by the user-level trusted server or the kernel. Protocol processing for transmission is per-

formed at system call time, while protocol processing for reception is triggered via an upcall

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

into the application’s address space.

Type IV: Lazy receiver processing (LRP) [53] is similar to the traditional in-kernel config-
uration, except that the processing of receiving packets is performed mostly in the context
of. and at the priority of, the receiving application when it actually receives the data. Un-
der some scenarios for TCP, a dedicated kernel process performs asynchronous protocol
processing for incoming TCP packets. Arriving packets are directly demultiplexed onto the

corresponding socket queue and excess traffic is discarded early.

Provision of QoS Guarantees on Communication

For provision of QoS guarantees on communication, each of the above architectures requires
appropriate support to multiplex communication resources between connections. The na-
ture of such support depends on the location of the communication subsystem, i.e., in the
kernel, in a user-level server, or in application libraries. The location of the communication
subsystem is important because it partly determines the manner in which host communi-
cation resources are shared between connections belonging to different applications as well
as connections associated with the same application.

If the communication subsystem resides in a single address space, such as in the kernel
(TypeI) or in a trusted server (Type II), centralized control can be exercised over allocation
of communication resources to connections, irrespective of the associated application. Our
architecture is naturally geared towards such a structure, which also facilitates a clean
separation between the computation subsystem and the communication subsystem. In our
architecture and analysis we have not made any specific assumptions about the location of
the protocol stack, which could reside in the kernel or in user space.

On the other hand, if the communication subsystem is split between address spaces,
e.g., between the application and the kernel (Type III), centralized management of commu-
nication resources becomes difficult, if not impossible. Note that such a split architecture
can also be realized between the application and the kernel (Type I) if the communication
subsystem in the kernel does not provide fragmentation services, or application libraries are
utilized to extend the functionality of the communication protocol stack.

Two observations can be made regarding provision of QoS guarantees in this case. One,
the kernel must still provide architectural support to manage shared communication re-

sources, such as CPU cycles, communication buffers, and link bandwidth, across different

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

applications. Two, since a substantial amount of protocol processing is performed via
threads in application-level libraries, appropriate architectural mechanisms are required to
multiplex these threads on the CPU as per the QoS requirements and traffic specification
on the associated connections. Qur architecture can be directly utilized for such fine-grain
multiplexing of CPU cycles allocated to the application; cooperative preemption can be
used safely since all threads execute in the same address space and protection domain. This
is especially true for an application that is a source or sink for multiple QoS connections.

Similarly, the proposed admission control extensions are also applicable to such archi-
tectures. This is because since protocol processing is performed, and data transmission
initiated, during the application’s currently allocated quantum, the overlap between pro-
tocol processing and link transmission still exists and can be exploited. Further, on data
reception, the communication threads in the application library are immediately scheduled
for execution [107]; thus, the overlap between data reception and protocol processing can
be exploited as well with appropriate scheduling of these communication threads. With
user-level protocol processing via application-level libraries, however, allocation of commu-
nication resources is coupled closely with allocation of computation resources, and as such
the admission control must be more comprehensive.

Similar observations apply to a Type IV architecture (i.e., LRP) for data transmission
and data reception, with data reception presenting additional challenges. Delaying the
processing of received data till the application actually does a receive has significant impli-
cations for provision of QoS guarantees on communication. Not only does this tie protocol
processing priority to the priority of the application, it is also unable to exploit the overlap
between link reception and CPU processing. In contrast, our architecture utilizes early
demultiplexing to immediately schedule protocol processing, deriving protocol processing
priority from the QoS and traffic specification of the application while exploiting CPU and
link processing overlap. Even with LRP, the architectural mechanisms provided by our
architecture would be required to determine the order in which the application processes
data received on multiple sockets.

Note that a Type III protocol processing architecture can be used in conjunction with
processor capacity reserves [123] to realize predictable protocol processing [107]. Unlike our
approach, the approach outlined in [107] does not derive the protocol processing priority

from a connection’s QoS and traffic specifications, nor does it exploit the overlap between

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

protocol processing and link transmission/reception. Moreover, only a single communica-
tion library thread is associated with an application; data arriving on multiple connections
associated with the application are all processed by this thread. Besides processing incom-
ing packets strictly in FIFO order, this makes it harder to perform service differentiation.

i.e., handle packets from different connections according to the respective QoS guarantees.

8.2 Realizing Application-Level QoS Guarantees

In the previous section we argued that for provision of QoS guarantees on communication,
our architecture and admission control extensions are applicable to a variety of protocol
processing architectures. In this section we discuss integration of the architecture and
extensions with QoS-sensitive application scheduling policies for realization of application-
level QoS guarantees.

We believe that an integration of a QoS-sensitive communication subsystem within a

QoS-sensitive operating system should satisfy the following requirements:

o The protocol processing priority of a connection should be decoupled from execu-
tion priority of the associated application; instead, it should be derived from the
QoS requirements, traffic specification, and observed communication behavior of the

connection.

¢ Mechanisms such as cooperative preemption should be employed to multiplex CPU

cycles for protocol processing between connections.

¢ It should be possible to exploit the overlap between CPU protocol processing and
link transmission/reception, as this maximizes the number of connections that can be

admitted for service.

We outline next one possible approach towards such an integration and discuss the issues
that arise in that context.

Figure 8.1 illustrates one possible integration scenario. As depicted, we distinguish be-
tween the computation subsystem and the communication subsystem. The communication
subsystem comprises all threads that participate in transmitting data and processing re-
ceived data from the network. The computation subsystem, on the other hand, comprises

all application processes and threads that perform activities other than communication

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

02066 ®00e

Appiication threads Memory buffers Communicstion threads
J and queues

J

Figure 8.1: Integrated QoS-sensitive computation and communication subsys-
tems.

processing. The two subsystems exchange network data through appropriate buffers and
queues in memory. The available CPU resources are shared between the two subsystems
via appropriate CPU partitioning and multiplexing, as discussed later.

We assume that each communication thread is associated with a single connection. As we
have demonstrated, associating a communication thread with each application connection
provides a natural mechanism to allocate CPU resources to that connection. Per-connection
threads also permit traffic enforcement and allow traffic low on the connection to be con-
trolled via appropriate CPU scheduling policies. While the communication threads are
associated with the communication subsystem, they need not be associated with a single
address space and protection domain. As per the discussion in Section 8.1, these commu-
nication threads could reside in the kernel, in a trusted user-level server, or in application
libraries.

Note that the key requirement is that the communication threads be associated with
the communication subsystem. The exact location of communication threads may affect

data transfer performance, but does not matter as long as the threads are scheduled by

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the communication subsystem. If all communication threads reside in a user-level server,
then these threads are by default associated with the server protection domain. Similarly,
if all communication threads reside in the kernel, then these kernel threads are by defauit
associated with the kernel protection domain. Thus, we are effectively suggesting that
regardless of their default protection domain, communication threads be associated with
the communication resource management domain.

With the above framework, all commaunication threads are multiplexed on the CPU
under control of the communication subsystem. The communication subsystem in turn
must share CPU resources with the computation subsystem. For QoS guarantees, the
communication subsystem must be allocated CPU capacity so as to limit (or bound) the
interference from the computation subsystem; this capacity in turn determines the realiza-
tion of application-level QoS guarantees on communication. There are two approaches to
capacity allocation between the two subsystems.

In one approach, a portion of the host processing capacity can be reserved for the
entire communication subsystem via capacity reserves [123]. Note that the reserves model
proposed in [123] associates reserves with individual threads and allows multiple threads
to subscribe to the same reserve. However, as such this model may need to be extended
to support a capacity reserve for the entire communication subsystem: for a server-based
incarnation of the communication subsystem, this would correspond to a reserve for the
server’s execution.

A similar approach that partitions the CPU to support co-resident general-purpose and
real-time operating systems has been proposed and analyzed in [19]. In this approach, a
certain capacity is set aside for execution of the real-time operating system and the re-
maining capacity is allocated to the general-purpose operating system. Schedulability tests
for real-time tasks are suitably modified to consider only the available real-time capacity.
This scheme can be extended to partition the CPU between the computation and commu-
nication subsystems by applying suitable modifications to the admission control procedure
(D-order). Instead of just considering the wait times due to higher and lower priority
channels, D_order must now consider the “wait time” due to the computation subsystem.

Another approach is to realize the entire communication subsystem as a class with an
appropriate share in the recently proposed QoS-sensitive scheduling policies (71,139,165,

179]. These policies ensure that threads execute on the CPU in the order of their associated

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

QoS requirements and at the granularity of a certain quantum. Each thread executes for
al most a quantum each time it is selected to run. An appropriate choice of a class and/or
share would guarantee the necessary CPU capacity to the communication subsystem.

The capacity thus allocated to the communication subsystem can be further allocated
to individual connection threads as per the mechanisms described in this dissertation. Our
analysis and admission control extensions are directly applicable as long as D_order (or
any other admission control procedure employed) accounts for the portion of CPU capacity
allocated to the computation subsystem. Note that the CPU and link processing overlap
captured in the message service time computations of Chapter 4 continues to apply even
when the communication subsystem is allocated a fraction of the CPU capacity. This implies
that in addition to cooperative preemption to other communication threads, a communica-
tion thread is also preempted by “service outages” during which one or more application
threads occupy the CPU. However, these outages are guaranteed to be bounded by the CPU
partitioning and multiplexing mechanism (Figure 8.1), and are accounted for by D_order

when admitting QoS connections.

8.3 Summary

The above scenario only outlines one possible way to integrate a QoS-sensitive communi-
cation subsystem within a QoS-sensitive operating system. Numerous architectural and
implementation challenges must be overcome when realizing this integration in practice.
While we have highlighted sharing of CPU capacity between the two subsystems, other re-
sources such as memory buffers and queues must also be sized and managed appropriately
to facilitate such an integration while ensuring high performance.

Further exploration of the challenges involved in integrated resource management for
application-level QoS guarantees is beyond the scope of this dissertation. As we have
argued, our approach to QoS-sensitive communication subsystem design greatly facilitates
this integration. The issues highlighted and practical design tradeoffs considered in this
dissertation represented an important step towards practical realization of application-level

QoS guarantees on communication.

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

This dissertation focuses on provision of QoS guarantees at the interface between the appli-
cations and the network, namely, the host communication subsystem. In particular, we have
examined various issues involved in structuring host communication software to provide per-
connection QoS guarantees. Qur research approach centers around the implementation of a
given service discipline, in our case real-time channels, on real computer systems. Accord-
ingly, this dissertation makes several key contributions towards the practical realization of
QoS-sensitive communication subsystems. All the architectural components, mechanisms.
and extensions proposed in this dissertation for QoS-sensitive communication subsystem de-
sign have been prototyped and evaluated experimentally. We believe that the contributions
made by this dissertation advance the state of the art in the provision of host resources for
application-level QoS guarantees.

In the next section we summarize the primary contributions made by this dissertation.
We conclude with a discussion of the various avenues possible for future research, and

highlight some of the key problems that must be addressed for each.

9.1 Primary Contributions

In this dissertation we have made the following primary contributions:

o We have designed, implemented, and evaluated a QoS-sensitive communication subsys-
tem architecture that manages communication resources on the basis of three design princi-
ples: maintenance of per-connection QoS guarantees, overload protection via per-connection

traffic enforcement, and fairness to best-effort traffic. This architecture strives to maximize

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

useful resource capacity by reducing preemption and other implementation overheads, while
isolating each QoS connection to the maximal extent possible. It also supports a number of
policies for overload protection, the best policy being largely application-dependent. While
designed primarily for provision of deterministic QoS guarantees, it can be readily extended

to support more relaxed forms of QoS guarantees and adaptive applications.

e In the context of the above architecture, we have proposed and implemented admission
control extensions to bridge the gap between the theory and practice of communication re-
source management. This gap arises because theoretical resource management policies are
typically formulated using idealized resource models; the assumptions thus made may get
violated in practice due to the non-ideal performance characteristics of real hardware and
software components, or the cost-performance tradeoffs often encountered during implemen-
tation. We extend such policies by identifying and accounting for a number of factors that
impact communication subsystem performance significantly at sending and receiving hosts.
Without these extensions, it would be impossible to use theoritical resource management
policies in practice. While developed specifically for real-time channels, these extensions

are general in nature and can be similarly developed for other service disciplines.

e Much additional insight can be gained in the complexity of QoS-sensitive communication
subsystem design by exploring and resolving the challenges posed by contemporary oper-
ating systems. Accordingly, we have realized a complete guaranteed-QoS communication
service on a microkernel operating system. This service further enhances the architecture
and extensions mentioned above to realize a new integrated service architecture comprising
a QoS-aware API, signalling and resource reservation services, and generic support for QoS-
sensitive data transfer. We further enhanced the resource management policies to account

for additional overheads imposed by the API and the implementation environment.

¢ One of the primary difficulties in QoS-sensitive communication subsystem design is ac-
curate profiling and parameterization of the communication subsystem. We address this
concern by proposing self-parameterizing protocol stacks to enhance the portability of QoS-
sensitive communication subsystems. Self-parameterizing protocol stacks perform on-line
profiling to construct a database of system parameters that form the abstraction of the
underlying communication subsystem and platform. We believe that extending traditional

protocol stacks with efficient profiling mechanisms and system parameter databases is a

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

promising way to realize portable QoS-sensitive communication subsystems.

o Internet hosts represent an important class of end systems that will increasingly utilize
the QoS support offered by an integrated services Internet. Of immediate relevance to these
hosts is the enhancement of the existing sockets based communication subsystem to request
and obtain QoS across the Internet. Any such support within the communication subsystem
must not only maintain the performance of the default best-effort path, it must also not
incur excessive overhead in order for integrated services to be widely utilized. Using the
RSVP-based QoS architecture developed in collaboration with researchers at the IBM T. J.
Watson Research Center, we explored and assessed the performance impact of QoS support

in TCP/IP protocol stacks.

9.2 Future Research Avenues

Our work can be extended in several interesting directions which are briefly discussed below.

o Integration of QoS-sensitive subsystems: While Chapter 8 presented strategies for
integrating a QoS-sensitive communication subsystem with QoS-sensitive application schedul-
ing, many issues remain in the actual realization of such an integration. Several subsystems
within the host operating system, such as the file system, I/O devices, etc., must be inte-
grated appropriately and efficiently for true end-to-end application QoS provisioning. For
example, contrary to current trends in high-performance communication to transfer (trans-
mit and receive) data as fast as possible, a QoS-sensitive communication subsystem must
transfer data only as fast as appropriate as determined by the connection’s traffic contract

and desired QoS.

o Interplay between privacy, authentication and QoS: In this dissertation we have
focused exclusively on provision of QoS guarantees, ignoring issues in privacy and authenti-
cation. However, support for privacy and authentication must be integrated with provision
of QoS guarantees in order for multimedia communication across the Internet to be a com-
mon feature. This is because of the innate human need to have privacy in all forms of
meaningful communication in which she is an active participant, and the desire to validate
the identity and intentions of the other participants. One of the concerns here is the impact

of encryption and associated processing requirements on communication subsystem perfor-

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mance at end hosts, and another is the ability of network routers to identify and classify

flows.

o Communication support for Web-based multimedia applications: There are two
related aspects to communication support for Web-based multimedia applications: the
paradigms adopted for Web-based Internet “computing”, and the elements of that com-
putation, i.e., multimedia data (such as audio and video) and its associated temporal con-
straints. Examples of emerging paradigms include interactive multi-way communication via
virtual reality engines (exemplified by Internet gaming) and video computation. The nature
of QoS support in communication subsystems at Web clients and servers that would suffice

for such Web-based applications is an open question.

o Adaptive resource management: As mentioned in Chapter 2, a large class of multi-
media and other soft real-time applications are adaptive in nature, i.e., they can be de-
signed to adapt to fluctuations in the delivered QoS on communication, especially if the set
of communicating participants or the traffic load changes dynamically. For these applica-
tions, reserving resources based on a traffic specification and desired QoS may not be the
appropriate service model. It would be interesting to explore algorithms and policies for
resource management that can intelligently adapt to traffic fluctuations transparently while

still providing acceptable QoS to individual connections.

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[1] M. B. Abbott and L. L. Peterson, “Increasing network throughput by integrating
protocol layers,” IEEE/ACM Trans. Networking, vol. 5, no. 1, pp. 600-610, October
1993.

[2] T. Abdelzaher, E. Atkins, and K. Shin, “QoS negotiation in real-time systems and
its application to automated flight control,” in Proc. Real-Time Technology and Ap-
plications Symposium, pp. 228~238, June 1997.

(3] R. Ahuja, S. Keshav, and H. Saran, “Design, implementation, and performance of a
native mode ATM transport layer,” in Proc. [EEE INFOCOM, pp. 206~214, March
1996.

[4] D. P. Anderson, S. Y. Tzou, R. Wabhbe, R. Govindan, and M. Andrews, “Support for
continuous media in the DASH system,” in Proc. Int’l Conf. on Distributed Computing
Systems, pp. 54-61, May 1990.

(5] D. P. Anderson, “Metascheduling for continuous media,” ACM Trans. Computer Sys-
tems, vol. 11, no. 3, pp. 226~252, August 1993.

(6] D. P. Anderson, L. Delgrossi, and R. G. Herrtwich, “Structure and scheduling in real-
time protocol implementations,” Technical Report TR-90-021, International Com-
puter Science Institute, Berkeley, June 1990.

[7] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy, “Scheduler activa-
tions: Effective kernel support for the user-level management of parallelism,” ACM
Trans. Computer Systems, vol. 10, no. 1, pp. 53-79, February 1992.

[8] C. M. Aras, J. F. Kurose, D. S. Reeves, and H. Schulzrinne, “Real-time communication
in packet-switched networks,” Proceedings of the IEEE, vol. 82, no. 1, pp. 122-139,
January 1994.

[9] ARMADA Homepage. http:/ [www.eecs.umich.edu/RTCL/armada/.

[10] E. A. Arnould, F. J. Bitz, E. C. Cooper, H. T. Kung, R. D. Sansom, and P. A.
Steenkiste, “The design of Nectar: A network backplane for heterogeneous multicom-
puters,” in Proc. Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems, pp. 205~216, April 1989.

[11] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and P. Sarkar, “PATHFINDER:
A pattern-based packet classifier,” in Proc. of ACM SIGCOMM, pp. 115-123, August
1994.

221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[12] A. Banerjea, D. Ferrari, B. Mah, M. Moran, D. C. Verma, and H. Zhang, “The Tenet
real-time protocol suite: Design, implementation, and experiences,” [EEE/ACM
Trans. Networking, vol. 4, no. 1, pp. 1-11, February 1996.

(13] T. Barzilai, D. Kandlur, A. Mehra, D. Saha, and S. Wise, “Design and implementation
of an RSVP-based quality of service architecture for integrated services Internet,” in
Proc. Int’l Conf. on Distributed Computing Systems, May 1997.

(14] M. Bjorkman and P. Gunningberg, “Locking effects in multiprocessor implementations
of protocols,” in Proc. of ACM SIGCOMM, pp. 74-83, September 1993.

(15] D. L. Black, R. D. Smith, S. J. Sears, and R. W. Dean, “FLIPC: A low latency
messaging system for distributed real-time environments,” in Proc. USENIX Winter
Conference, January 1996.

[16] T. Blackwell, “Speeding up protocols for small messages,” in Proc. of ACM SIG-
COMM, pp. 85-95, October 1996.

(17] G. Blair, A. Campbell, G. Coulson, F. Garcia, D. Hutchison, A. Scott, and D. Shep-
herd, “A network interface unit to support continuous media,” IEEE Journal on
Selected Areas in Communications, vol. 11, no. 2, pp. 264-275, February 1993.

(18] M. A. Blumrich, C. Dubnicki, E. W. Felten, and K. Li, “Protected, user-level DMA
for the SHRIMP network interface,” in Proc. International Symposium on High-
Performance Computer Architecture, February 1996.

[19] G. Bollella and K. Jeffay, “Supporting co-resident operating systems,” in Proc. Real-
Time Technology and Applications Symposium, pp. 4-14, June 1995.

[20] M. Borden, E. Crawley, B. Davie, and S. Batsell, “Integration of real-time services in
an IP-ATM network architecture,” Request for Comments RFC 1821, August 1995.
Bay Networks, Bellcore, NRL.

[21] A. Braccini, A. D. Bimbo, and E. Vicario, “Interprocess communication dependency
on network load,” IEEE Trans. Software Engineering, vol. 17, no. 4, pp. 357-369,
April 1991.

(22] R. Braden, D. Clark, and S. Shenker, “Integrated services in the Internet architecture:
An overview,” Request for Comments RFC 1633, July 1994. Xerox PARC.

(23] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation
Protocol (RSVP) - version 1 functional specification,” Internet Draft draft-ietf-rsvp-
spec-12.tzt, May 1996. ISI/PARC/USC.

[24] A. Brown and M. Seltzer, “Operating system benchmarking in the wake of Imbench:
A case study of the performance of NetBSD on the Intel x86 architecture,” in Proc.
of ACM SIGMETRICS, pp. 214-224, June 1997.

[25] J. C. Brustoloni and P. Steenkiste, “Effects of buffering semantics on I/O perfor-
mance,” in Proc. USENIX Symp. on Operating Systems Design and Implementation,
pPp- 277-291, October 1996.

222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[26] J. C. Brustoloni and P. Steenkiste, “Copy emulation in checksummed, multiple-packet
communication,” in Proc. [IEEE INFOCOM, November 1997.

[27] J. C. Brustoloni and P. Steenkiste, “Evaluation of data passing and scheduling avoid-
ance,” in Proc. Intl. Workshop on Network and Operating System Support for Digital
Audio and Video, May 1997.

[28] V. Buch, T. von Eicken, A. Basu, and W. Vogels, “U-Net: A user-level network
interface for parallel and distributed computing,” in Proc. ACM Symp. on Operating
Systems Principles, pp. 40~53, December 1995.

[29] A. Burns, K. Tindell, and A. Wellings, “Effective analysis for engineering real-time
fixed priority schedulers,” IEEE Trans. Software Engineering, vol. 21, no. 5, pp. 475-
480, May 1995.

(30] G. Buzzard, D. Jacobson, M. Mackey, S. Marovich, and J. Wilkes, “An implementa-
tion of the Hamlyn sender-managed interface architecture,” in Proc. USENIX Symp.
on Operating Systems Design and Implementation, pp. 245-259, October 1996.

[31] L. F. Cabrera, E. Hunter, M. J. Karels, and D. A. Mosher, “User-process communi-
cation performance in networks of computers,” IEEE Trans. Software Engineering,
vol. 14, no. 1, pp. 38-53, January 1988.

(32] A. T. Campbell, C. Aurrecoechea, and L. Hauw, “A review of QoS architectures,”
Multimedia Systems Journal, 1996.

[33] A. T. Campbell and G. Coulson, “QoS adaptive transports: Delivering scalable media
to the desktop,” IEEE Network Magazine, pp. 1827, March/April 1997.

[34] A. T. Campbell, G. Coulson, and D. Hutchison, A quality of service architecture,”
Computer Communication Review, April 1994.

[35] C. E. Catlett, “In Search of Gigabit Applications,” IEEE Communication Magaczine,
pp. 42-51, April 1992.

[36] D. R. Cheriton and C. L. Williamson, “VMTP as the transport layer for high-
performance distributed systems,” [EEE Communication Magazine, pp. 37-44, June
1989.

[37] G. Chesson, “XTP/PE overview,” in Proc. Conference on Local Computer Networks,
October 1988.

(38] D. D. Clark, “The structuring of systems using upcalls,” in Proc. ACM Symp. on
Operating Systems Principles, pp. 171-180, 1985.

(39] D. D. Clark, S. Shenker, and L. Zhang, “Supporting real-time applications in an
integrated services packet network: Architecture and mechanism,” in Proc. of ACM
SIGCOMM, pp. 14-26, August 1992.

(40] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An analysis of TCP processing
overhead,” IEEE Trans. Communications, pp. 23-29, June 1989.

223

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[41] D. D. Clark and D. L.Tennenhouse, “Architectural considerations for a new generation
of communication protocols,” in Proc. of ACM SIGCOMM, pp. 200-208, September
1990.

[42] G. Coulson, G. S. Blair, and P. Robin, “Micro-kernel support for continuous media in
distributed systems,” Computer Networks and ISDN Systems, vol. 26, pp. 1323-1341.
1994.

[43] G. Coulson, A. Campbell, P. Robin, G. S. Blair, M. Papathomous, and D. Shepherd,
“The design of a QoS-controlled ATM-based communications system in Chorus,”
IEEE Journal on Selected Areas in Communications, vol. 13, no. 4, pp. 686-699, May
1995.

[44] R. L. Cruz, A Calculus for Network Delay and a Note on Topologies of Interconnec-
tion Networks, PhD thesis, University of Illinois at Urbana-Champaign, July 1987.
available as technical report UILU~-ENG-87-2246.

[45] H. Custer, Inside Windows NT, Microsoft Press, One Microsoft Way, Redmond.
Washington 98052-6399, 1993.

[46] C. Dalton, G. Watson, D. Banks, C. Calamvokis, A. Edwards, and J. Lumley, “Af-
terburner,” IEEE Network Magazine, pp. 36-43, July 1993.

[47] P. B. Danzig, “An analytical model of operating system protocol processing including
effects of multiprogramming,” in Proc. of ACM SIGMETRICS, pp. 11-20, May 1991.

[48] B. Davie, “The architecture and implementation of a high-speed host interface,” [EEE
Journal on Selected Areas in Communications, vol. 11, no. 2, pp. 228-239, February
1993.

(49] L. Delgrossi and L. Berger, “Internet stream protocol version 2 (ST-2) protocol specifi-
cation - version ST2+,” Request for Comments RFC 1819, August 1995. ST2 Working
Group.

[50] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing
algorthm,” Proc. of ACM SIGCOMM, pp. 3-12, September 1989.

[51] J. Dolter, S. Daniel, A. Mehra, J. Rexford, W. Feng, and K. Shin, “SPIDER.: Flexible
and efficient communication support for point-to-point distributed systems,” in Proc.
Int’l Conf. on Distributed Computing Systems, pp- 574-580, June 1994.

[52] P. Druschel, M. B. Abbott, M. Pagels, and L. L. Peterson, “Network subsystem design:
A case for an integrated data path,” IEEE Network Magazine, pp. 8-17, July 1993.

(53] P. Druschel and G. Banga, “Lazy receiver processing (LRP): A network subsystem ar-
chitecture for server systems,” in Proc. USENIX Symp. on Operating Systems Design
and Implementation, pp. 261-275, October 1996.

[54] P. Druschel and L. L. Peterson, “Fbufs: A high-bandwidth cross-domain transfer fa-
cility,” in Proc. ACM Symp. on Operating Systems Principles, pp. 189-202, December
1993.

224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[55] P. Druschel, L. L. Peterson, and B. S. Davie, “Experiences with a high-speed network
adaptor: A software perspective,” in Proc. of ACM SIGCOMM, pp- 2-13. August
1994.

[56] C. Dubnicki, L. Iftode, E. W. Felten, and K. Li, “Software support for virtual memory-
mapped communication,” in Proc. International Conference on Parallel Processing,
April 1996.

[57] A. Edwards, G. Watson, J. Lumley, D. Banks, C. Clamvokis, and C. Dalton, “User-
space protocols deliver high performance to applications on a low-cost Gb/s LAN,”
in Proc. of ACM SIGCOMM, pp. 14~24, London, UK, August 1994.

[58] Edwin F. Menze Il and F. Travostino, The CORDS Book, OSF Research Institute,
September 1996.

[59] D. Engler and M. F. Kaashoek, “DPF: Fast, flexible message demultiplexing using
dynamic code generation,” in Proc. of ACM SIGCOMM, pp. 53-59, October 1996.

[60] K. Fall and J. Pasquale, “Exploiting in-kernel data paths to improve I/O throughput
and CPU availability,” in Proc. USENIX Winter Conference, January 1993.

[61] D. C. Feldmeier, “A survey of high performance protocol implementation techniques.”
in High Performance Networks: Technology and Protocols, A. N. Tantawy, editor, pp.
29-50, Kluwer Academic Publishers, 1994.

(62] D. Ferrari, “Client requirements for real-time communication services,” IEEE Com-
munication Magazine, pp. 65-72, November 1990.

[63] D. Ferrari and D. C. Verma, “A scheme for real-time channel establishment in wide-
area networks,” IEEFE Journal on Selected Areas in Communications, vol. 8, no. 3,
pp- 368-379, April 1990.

(64] M. E. Fiuczynski and B. N. Bershad, “An extensible protocol architecture for
application-specific networking,” in Proc. USENIX Winter Conference, January 1996.

[65] S. Floyd and V. Jacobson, “Link-sharing and resource management models for packet
networks,” I[EEE/ACM Trans. Networking, vol. 3, no. 4, pp. 365-386, August 1995.

[66] B. Ford and S. Susarla, “CPU inheritance scheduling,” in Proc. USENIX Symp. on
Operating Systems Design and Implementation, pp- 91-105, October 1996.

[67] A. Garg, “Parallel STREAMS: A multiprocessor implementation,” in Winter 1990
USENIX Conference, pp. 163~176, January 1990.

[68] R. Gopalakrishnan and G. M. Parulkar, “A real-time upcall facility for protocol pro-
cessing with QoS guarantees,” in Proc. ACM Symp. on Operating Systems Principles,
p- 231, December 1995.

[69] R. Gopalakrishnan and G. M. Parulkar, “Bringing real-time scheduling theory and
practice closer for multimedia computing,” in Proc. of ACM SIGMETRICS, pp. 1-12,
May 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[70] R. Govindan and D. P. Anderson, “Scheduling and IPC mechanisms for continuous
media,” in Proc. ACM Symp. on Operating Systems Principles, pp. 68-80, October
1991.

[71] P. Goyal, X. Guo, and H. M. Vin, “A hierarchical CPU scheduler for multimedia
operating systems,” in Proc. USENIX Symp. on Operating Systems Design and [m-
plementation, pp. 107-121, October 1996.

(72] P. Gunningberg, M. Bjorkman, E. Nordmark, S. Pink, P. Sjodin, and J.-E. Stromquist,
“Application protocols and performance benchmarks,” IEEE Communication Maga-
zine, pp. 30-36, June 1989.

(73] O. Hagsand and P. Sjodin, “Workstation support for real-time multimedia communi-
cation,” in Winter USENIX Conference, pp. 133-142, January 1994.

[74] T.-Y. Huang, J. W. Liu, and D. Hull, “A method for bounding the effect of DMA
I/0 interference on program execution time,” in Proc. 17th Real-Time Systems Sym-
posium, pp. 275-285, December 1996.

[75] J.-F. Huard, “kStack: A user space native-mode ATM transport layer with QoS
support,” Technical Report CU/CTR TR 463-96-29, Center for Telecommunications
Research, Columbia University, October 1996.

[76] N. C. Hutchinson and L. L. Peterson, “The z-Kernel: An architecture for implement-
ing network protocols,” I[EEE Trans. Software Engineering, vol. 17, no. 1, pp. 1-13.
January 1991.

[77] A. Indiresan, A. Mehra, and K. Shin, “Design tradeoffs in implementing real-time
channels on bus-based multiprocessor hosts,” Technical Report CSE-TR-238-95, Uni-
versity of Michigan, April 1995.

78] A. Indiresan, A. Mehra, and K. Shin, “The END: An Emulated Network Device for
evaluating adapter design,” in Proc. 3rd Intl. Workshop on Performability Modeling
of Computer and Communication Systems (PMCCS3), pp. 9094, September 1996.

[79] A. Indiresan, A. Mehra, and K. G. Shin, “The END: A network adapter design tool,”
RTCL Technical Report, University of Michigan, June 1997.

[80] A. Indiresan, A. Mehra, and K. G. Shin, “Exploring QoS support in adapters via an
Emulated Network Device,” Submitted for publication, May 1997.

[81] A. Indiresan, A. Mehra, and K. G. Shin, “Receive livelock elimination via dynamic
interrupt rate control,” RTCL Technical Report, University of Michigan, June 1997.

[82] M. R. Ito, L. Takeuchi, and G. Neufeld, “A multiprocessor approach for meeting the
processing requirements for OSI,” IEEE Journal on Selected Areas in Communica-
tions, vol. 11, no. 2, pp. 220-227, February 1993.

[83] N. Jain, M. Schwartz, and T. R. Bashkow, “Transport protocol processing at GBPS
rates,” in Proc. of ACM SIGCOMM, pp. 188-199, September 1990.

[84] R. Jain, “Congestion control in computer networks: Issues and trends,” IEEFE Network
Magazine, pp. 24-30, May 1990.

226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[85] S. Jamin, P. Danzig, S. Shenker, and L. Zhang, “A measurement-based admission con-
trol algorithm for integrated services packet networks,” in Proc. of ACM SIGCOMM.
pp. 2-13, August 1995.

[86] K. Jeffay, D. L. Stone, T. Talley, and F. D. Smith, “Adaptive best-effort delivery of
digital audio and video across packet-switched networks,” in Lecture Notes in Com-
puter Science, volume 712, pp. 3-14, Springer-Verlag, 1993.

[87] M. Jones, P. Leach, Joseph Barrera III, and R. Draves, “Support for user-centric
modular real-time resource management in the Rialto operating system,” in Proc. Intl.
Workshop on Network and Operating System Support for Digital Audio and Video,
pp. 55-65, April 1995.

(88] M. B. Jones, Joseph S. Barrera III, A. Forin, P. J. Leach, D. la Rosu, and M.-C.
Rosu, “An overview of the Rialto real-time architecture,” in ACM SIGOPS European
Workshop on System Support for Worldwide Applications, September 1996.

(89] H. Kanakia, “Host interface architecture: Key principles,” in Proc. of the IFIP TC6
Int’l Conf. on Local Area Networks (INDOLAN), pp. 7997, January 1990.

[90] H. Kanakia and D. R. Cheriton, “The VMP network adapter board (NAB): high-
performance network communication for multiprocessors,” Proc. of ACM SIGCOMM,
pp- 175-187, August 1988.

[91] H. Kanakia, P. P. Mishra, and A. Reibman, “An adaptive congestion control scheme
for real-time packet video transport,” in Proc. of ACM SIGCOMM, pp. 20-31,
September 1993.

[92] D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-time communication in multi-hop
networks,” I[EEE Trans. on Parallel and Distributed Systems, vol. 5, no. 10, pp. 1044—
1056, October 1994.

(93] D. D. Kandlur, D. Saha, and M. Willebeek-LeMair, “Protocol architecture for mul-
timedia applications over ATM networks,” IEEE Journal on Selected Areas in Com-
maunications, vol. 14, no. 7, pp. 1349-1359, September 1996.

[94] H. Kaneko, J. A. Stankovic, S. Sen, and K. Ramamritham, “Integrated scheduling of
multimedia and hard real-time tasks,” in Proc. 17th Real-Time Systems Symposium,
Pp. 206-217, December 1996.

[95] D. Katcher, H. Arakawa, and J. K. Strosnider, “Engineering and analysis of fixed
priority schedulers,” IEEE Trans. Software Engineering, vol. 19, no. 9, pp. 920-934,
September 1993.

(96] J. Kay and J. Pasquale, “The importance of non-data touching processing overheads
in TCP/IP,” in Proc. of ACM SIGCOMM, pp. 259-268, September 1993.

[97] J. Kay and J. Pasquale, “Measurement, analysis, and improvement of UDP/IP
throughput for the DECstation 5000,” in Proc. USENIX Winter Conference, pp.
249-258, January 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(98] K. A. Kettler, D. I. Katcher, and J. K. Strosnider, “A modeling methodology for
real-time/multimedia operating systems,” in Proc. of the Real-Time Technology and
Applications Symposium, pp. 15-26, May 1995.

[99] S. Khanna, M. Sebree, and J. Zolnowsky, “Realtime scheduling in SunOS 5.0.” in
Winter USENIX Conference, pp. 375390, January 1992.

[100] D. G. Korn, “Porting UNIX to windows NT,” in Proc. USENIX Winter Conference,
January 1997.

[101] C. Kosak, D. Eckhardt, T. Mummert, P. Steenkiste, and A. Fisher, “Buffer manage-
ment and flow control in the Credit Net ATM host interface,” in Proc. Conference on
Local Computer Networks, pp. 370-378, October 1995.

[102] I. Kouvelas and V. Hardman, “Overcoming workstation scheduling problems in a
real-time audio tool,” in Proc. USENIX Winter Conference, January 1997.

[103] A. Krishnakumar and K. Sabnani, “VLSI implementations of communication proto-
cols — a survey,” IEEF Journal on Selected Areas in Communications, vol. 7, no. 7,
pp- 1082-1090, September 1989.

(104] L. Krishnamurthy, AQUA: An Adaptive Quality of Service Architecture for Distributed
Multimedia Applications, PhD thesis, University of Kentucky, 1997.

[105] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, and
C. S. Kim, “Analysis of cache-related preemption delay in fixed-priority preemptive
scheduling,” in Proc. 17th Real-Time Systems Symposium, pp. 264-274, December
1996.

[106] C. Lee, R. Rajkumar, and C. Mercer, “Experiences with processor reservation and
dynamic QOS in Real-Time Mach,” in Proc. of Multimedia Japan, March 1996.

[107] C. Lee, K. Yoshida, C. Mercer, and R. Rajkumar, “Predictable communication proto-
col processing in Real-Time Mach,” in Proc. Real-Time Technology and Applications
Symposium, pp. 220-229, June 1996.

[108] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The Design and
Implementation of the 4.3BSD Uniz Operating System, Addison Wesley, May 1989.

[109] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Faribairns,
and E. Hyden, “The design and implementation of an operating system to support
distributed multimedia applications,” IEEE Journal on Selected Areas in Communi-
cations, vol. 14, no. 7, pp. 1280-1297, September 1996.

[110] J. Liedtke, H. Hartig, and M. Hohmuth, “OS-controlled cache predictability for real-
time systems,” in Proc. Real-Time Technology and Applications Symposium, pp. 213—
223, June 1997.

[111] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in hard real-
time environment,” Journal of the ACM, vol. 1, no. 20, pp. 46-61, January 1973.

(112] C. Maeda and B. N. Bershad, “Protocol service decomposition for high-performance
networking,” in Proc. ACM Symp. on Operating Systems Principles, pp. 244-255.
December 1993.

228

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[113] B. D. Marsh, T. J. LeBlanc, M. L. Scott, and E. P. Markatos, “First-class user-level
threads,” in Proc. ACM Symp. on Operating Systems Principles, pp. 110-121, October
1991.

[114] S. McCanne and V. Jacobson, “The BSD packet filter: A new architecture for user-
level packet capture,” in Proc. USENIX Winter Conference, pp. 259-269, January
1993.

[115] L. McVoy and C. Staelin, “Imbench: Portable tools for performance analysis,” in
Proc. USENIX Winter Conference, pp. 279-295, January 1996.

[116] A. Mehra, A. Indiresan, and K. Shin, “Resource management for real-time commu-
nication: Making theory meet practice,” in Proc. of 2nd Real-Time Technology and
Applications Symposium, pp. 130-138, June 1996.

[117] A. Mehra, A. Indiresan, and K. Shin, “Structuring communication software for quality
of service guarantees,” in Proc. [7th Real-Time Systems Symposium, pp. 144-154,
December 1996.

[118] A. Mehra, J. Rexford, H.-S. Ang, and F. Jahanian, “Design and implementation of a
window-consistent replication service,” in Proc. Real-Time Technology and Applica-
tions Symposium, pp. 182-191, June 1995.

[119] A. Mehra and K. Shin, “QoS-sensitive protocol processing in shared-memory multi-
processor multimedia servers,” in Proc. of 3rd IEEE Workshop on Architecture and
Implementation of High-Performance Communication Subsystems, pp. 163-169, Au-
gust 1995.

(120] O. Menzilcioglu and S. Schlick, “Nectar CAB: A high-speed network processor,” in
Proc. Int’l Conf. on Distributed Computing Systems, pp- 508-515, May 1991.

(121] C. W. Mercer and H. Tokuda, “Preemptibility in real-time operating systems,” in
Proc. Real-Time Systems Symposium, December 1992.

(122] C. W. Mercer and R. Rajkumar, “An interactive interface and RT-Mach support for
monitoring and controlling resource management,” in Proc. Real-Time Technology
and Applications Symposium, May 1995.

[123] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves for multimedia
operating systems,” in Proc. of the IEEE International Conference on Multimedia
Computing and Systems, May 1994.

[124] J. Mogul and A. Borg, “The effect of context switches on cache performance,” in
Proc. Int’l Conf. on Architectural Support for Programming Languages and Operating
Systems, pp. 75-85, April 1991.

[125] J. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in an interrupt-driven
kernel,” in Winter USENIX Conference, January 1996.

(126] J. C. Mogul, “Network locality at the scale of processes,” ACM Trans. Computer
Systems, vol. 10, no. 2, pp. 81-109, May 1992.

229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[127] J. C. Mogul, R. F. Rashid, and M. J. Accetta, “The packet filter: An efficient mecha-
nism for user-level network code,” in Proc. ACM Symp. on Operating Systems Prin-
ciples, pp. 39-51, November 1987.

[128] D. Mosberger and L. L. Peterson, “Making paths explicit in the Scout operating
system,” in Proc. USENIX Symp. on Operating Systems Design and Implementation.
pp- 153-167, October 1996.

[129] D. Mosberger, L. L. Peterson, P. G. Bridges, and S. O’Malley, “Analysis of techniques
to improve protocol processing latency,” in Proc. of ACM SIGCOMM, pp- 73-84.
October 1996.

(130] B. Murphy, S. Zeadally, and C. J. Adams, “An analysis of process and memory models
to support high-speed networking in a UNIX environment,” in Proc. USENIX Winter
Conference, January 1996.

(131] K. Nahrstedt and J. M. Smith, “The QoS broker,” IEEE Multimedia, vol. 2, no. 1.
pp- 53-67, Spring 1995.

[132] K. Nahrstedt and J. M. Smith, “Design, implementation and experiences of the
OMEGA end-point architecture,” IEEE Journal on Selected Areas in Communica-
tions, vol. 14, no. 7, pp. 1263-1279, September 1996.

[133] E. Nahum, D. Yates, J. Kurose, and D. Towsley, “Cache behavior of network proto-
cols,” in Proc. of ACM SIGMETRICS, pp. 169-180, June 1997.

(134] E. M. Nahum, D. J. Yates, J. F. Kurose, and D. Towsley, “Performance issues in
parallelized network protocols,” in Proc. USENIX Symp. on Operating Systems Design
and Implementation, pp. 125-137, November 1994.

[135] T. Nakajima, “A dynamic QOS control based on optimistic processor reservation,” in
Proc. Intl. Conf. on Multimedia Computing and Systems, 1996.

[136] T. Nakajima and H. Tezuka, “Virtual memory management for interactive continuous
media applications,” in Proc. Intl. Conf. on Multimedia Computing and Systems, June
1997.

[137] Netperf Homepage. http:// www.cup.hp.com/netperf/NetperfPage.html.

[138] A. N. Netravali, W. D. Roome, and K. Sabnani, “Design and implementation of a
high-speed transport protocol,” IEEE Trans. Communications, vol. 38, no. 11, pp.
2010-2024, November 1990.

(139] J. Nieh and M. S. Lam, “The design, implementation and evaluation of SMART: A
scheduler for multimedia applications,” in Proc. ACM Symp. on Operating Systems
Principles, October 1997.

(140] E. Nordmark and D. R. Cheriton, “Experiences from VMTP: How to achieve low
response time,” in Protocols for High-Speed Networks, H. Rudin and R. Williamson,
editors, pp. 43-54, North-Holland, 1989.

[141] S. W. O’Malley and L. L. Peterson, “A dynamic network architecture,” ACM Trans.
Computer Systems, vol. 10, no. 2, pp. 110-143, May 1992.

230

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[142] J. K. Ousterhout, “Why aren’t operating systems getting faster as fast as hardware?.”
in Summer USENIX Conference, pp. 1-10, June 1990.

[143] C. Papadopoulos and G. M. Parulkar, “Experimental evaluation of SUNOS IPC and
TCP/IP protocol implementation,” IEEE/ACM Trans. Networking, vol. 1, no. 2, pp.
199-216, April 1993.

[144] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow
control in integrated services networks — the single node case,” in Proc. IEEE INFO-
COM, pp. 915-924, May 1992.

[145] C. Partridge, Gigabit Networking, Addison Wesley, One Jacob Way, Reading, Mas-
sachusetts 01867, 1994.

[146] C. Partridge and S. Pink, “A faster UDP,” [EEE/ACM Trans. Networking, vol. 1,
no. 4, pp. 429-440, August 1993.

[147] J. Pasquale, E. Anderson, and P. Muller, “Container shipping: Operating system
support for I/O-intensive applications,” IEEE Computer, vol. 27, no. 3, pp. 84-93,
March 1994.

(148] B. Pehrson, P. Gunningberg, and S. Pink, “Distributed multimedia applications on
gigabit networks,” IEEE Network Magazine, pp. 26-35, January 1992.

(149] M. Perez, F. Liaw, A. Mankin, E. Hoffman, D. Grossman, and A. Malis, “ATM
signaling support for IP over ATM,” Request for Comments RFC | 755, February
1995. ISI, Fore, Motoral Codex, Ascom Timeplex.

[150] T. F. L. Porta and M. Schwartz, “The MultiStream Protocol: A highly flexible high-
speed transport protocol,” IEEE Journal on Selected Areas in Communications, vol.
11, no. 4, pp. 519-530, May 1993.

[151] K. K. Ramakrishnan, “Performance considerations in designing network interfaces,”
IEEE Journal on Selected Areas in Communications, vol. 11, no. 2, pp- 203-219,
February 1993.

(152] D. C. Schmidt and T. Suda, “Transport system architecture services for high-
performance communications systems,” IEEE Journal on Selected Areas in Com-
munications, vol. 11, no. 4, pp. 489-506, May 1993.

(153] D. C. Schmidt and T. Suda, “Measuring the performance of parallel message-based
process architectures,” in Proc. IEEE INFOCOM, pp. 624-633, April 1995.

(154] D. C. Schmidt and T. Suda, “The performance of alternative threading architectures
for parallel communication subystems,” Journal of Parallel and Distributed Comput-
ing, 1997. To appear.

(155] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A transport pro-
tocol for real-time applications,” Request for Comments RFC 1889, January 1996.
GMD/Precept Software/PARC/LBNL.

(156] H. Schulzrinne, J. Kurose, and D. Towsley, “An evaluation of scheduling mechanisms
for providing best-effort, real-time communication in wide-area networks,” in Proc.
IEEE INFOCOM, June 1994.

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[157] M. Seltzer and C. Small, “Self-monitoring and self-adapting operating systems,” in
Proc. Workshop on HoTOS, May 1997.

[158] S. Shenker, D. Clark, and L. Zhang, “A scheduling service model and a scheduling
architecture for an integrated services packet network,” Working Paper, August 1993.
Xerox PARC.

(159] S. Shenker, C. Partridge, and R. Guerin, “Specification of guaranteed quality
of service,” Internet Draft draft-ietf-intserv-guaranteed-svc-05.tzt, June 1996. Xe-
rox/BBN/IBM.

(160] P. Sjodin, P. Gunningberg, E. Nordmark, and S. Pink, “Towards protocol bench-
marks,” in Protocols for High-Speed Networks, H. Rudin and R. Williamson, editors.
pp- 57-67, North-Holland, 1989.

[161] J. M. Smith and C. B. S. Traw, “Giving applications access to Gb/s networking,”
IEEE Network Magazine, pp. 44-52, July 1993.

(162] S. Sommer and J. Potter, “Operating system extensions for dynamic real-time appli-
cations,” in Proc. I7th Real-Time Systems Symposium, pp. 45-50, December 1996.

[163] P. Steenkiste, “Analyzing communication latency using the Nectar communication
processor,” in Proc. of ACM SIGCOMM, pp. 199-209, August 1992.

[164] P. A. Steenkiste, “A systematic approach to host interface design for high-speed net-
works,” IEEE Computer, pp. 47-57, March 1994.

[165] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E. Gehrke, and C. G. Plax-
ton, “A proportional share resource allocation algorithm for real-time time-shared
systems,” in Proc. 17th Real-Time Systems Symposium, pp. 288-299, December 1996.

[166] The Real-Time Group, OSF RI MK7.2 Release Notes, OSF Research Institute, Oc-
tober 1996.

[167] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. Lazowska, “Implementing network
protocols at user level,” in Proc. of ACM SIGCOMM, pp. 64-73, October 1993.

(168] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. Lazowska, “Implementing network
protocols at user level,” IEEE/ACM Trans. Networking, vol. 1, no. 5, pp- 554-5635,
October 1993.

[169] C. A. Thekkath, D. L. Eager, E. D. Lazowska, and H. M. Levy, “A performance
analysis of network I/O in shared-memory multiprocessors,” Computer Science and
Engineering Technical Report 92-04-04, University of Washington, April 1992.

[170] C. A. Thekkath and H. M. Levy, “Limits to low-latency communication on high-speed
networks,” ACM Trans. Computer Systems, vol. 11, no. 2, pp. 179-203, May 1993.

[171] H. Tokuda et al., “Real-Time Mach: Towards a predictable real-time system,” in
Proc. USENIX Mach Workshop, pp. 73-82, 1993.

[172] F. Travostino, E. Menze, and F. Reynolds, “Paths: Programming with system re-
sources in support of real-time distributed applications,” in Proc. IEEE Workshop on
Object-Oriented Real-Time Dependable Systems, February 1996.

232

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[173] C. B. S. Traw and J. M. Smith, “Hardware/software organization of a high-
performance ATM host interface,” IEEE Journal on Selected Areas in Communi-
cations, vol. 11, no. 2, pp. 240-253, February 1993.

[174] A. Tucker and A. Gupta, “Process control and scheduling issues for multiprogrammed
shared-memory multiprocessors,” in Proc. ACM Symp. on Operating Systems Prin-
ciples, pp. 159-166, December 1989.

[175] S.-Y. Tzou and D. P. Anderson, “The performance of message-passing using restricted
virtual memory remapping,” Software — Practice and Ezperience, vol. 21, no. 3, pp.
251-267, March 1991.

[176] R. van Renesse, “Masking the overhead of protocol layering,” in Proc. of ACM SIG-
COMM, pp. 96-104, October 1996.

[177] C. Vogt, R. G. Herrtwich, and R. Nagarajan, “HeiRAT: The Heidelberg resource
administration technique design philosophy and goals,” Research Report 43.9213.
IBM Research Division, IBM European Networking Center, Heidelberg, Germany,
1992.

[178] I. Wakeman, A. Ghosh, J. Crowcroft, V. Jacobson, and S. Floyd, “Implementing real-
time packet forwarding policies using Streams,” in Proc. USENIX Winter Conference,
1995.

[179] C. Waldspurger, Lottery and Stride Scheduling: Flezible Proportional-Share Resource
Management, PhD thesis, Technical Report, MIT/LCS/TR-667, Laboratory for CS.
MIT, September 1995.

[180] D. Wallach, D. Engler, and M. F. Kaashoek, “ASHs: Application-specific handlers for
high-performance messaging,” in Proc. of ACM SIGCOMM, pp- 40-52, August 1996.

[181] R. W. Watson and S. A. Mamrak, “Gaining efficiency in transport services by appro-
priate design and implementation choices,” ACM Trans. Computer Systems, vol. 5.
no. 2, pp. 97-120, May 1987.

[182] C. M. Woodside and R. G. Franks, “Alternative software architectures for parallel
protocol execution with synchronous IPC,” IEEE/ACM Trans. Networking, vol. 1.
no. 2, pp. 178-186, April 1993.

[183] J. Wroclawski, “Specification of controlled-load network element service,” Internet
Draft draft-ietf-intserv-ctri-load-svc-03.tzt, June 1996. MIT.

[184] D. K. Y. Yau and S. S. Lam, “Adaptive rate-controlled scheduling for multimedia
applications,” in Proc. of ACM Multimedia, November 1996.

[185] D. K. Y. Yau and S. S. Lam, “An architecture towards efficient OS support for
distributed multimedia,” in Proc. IST/SPIE Multimedia Computing and Networking,
January 1996.

[186] M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss, “Efficient packet demulti-
plexing for multiple endpoints and large messages,” in Proc. USENIX Winter Con-
ference, January 1994.

233

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[187] H. Zhang and D. Ferrari, “Rate-controlled static-priority queueing,” in Proc. [EEE
INFOCOM, pp. 227-236, June 1993.

(188] H. Zhang, “Service disciplines for guaranteed performance service in packet-switching
networks,” Proceedirgs of the IEEE, vol. 83, no. 10, , October 1995.

[189] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A new resource
ReSerVation Protocol,” IEEE Network, pp. 8-18, September 1993.

[190] X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and M. D. Smith, “Operating system support
for automatic profiling and optimization,” in Proc. ACM Symp. on Operating Systems
Principles, October 1997.

[191] M. Zitterbart, B. Stiller, and A. N. Tantawy, “A model for flexible high-performance
communication subsystems,” [EEE Journal on Selected Areas in Communications.
vol. 11, no. 4, pp. 507-518, May 1993.

234

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STRUCTURING HOST COMMUNICATION SOFTWARE
FOR QUALITY OF SERVICE GUARANTEES

by

Ashish Mehra

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1997

Doctoral Committee:
Professor Kang G. Shin, Chair
Associate Professor Farnam Jahanian
Assistant Professor Sugih Jamin
Dr. Dilip Kandlur
Professor Toby Teorey
Assistant Professor Kimberly Wasserman

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

STRUCTURING HOST COMMUNICATION SOFTWARE
FOR QUALITY OF SERVICE GUARANTEES

by
Ashish Mehra

Chair: Kang G. Shin

This dissertation addresses several issues involved in structuring communication software
at end hosts to provide per-connection quality of service (QoS) guarantees. Qur primary
thrust is on realizing deterministic QoS guarantees in an ezperimental setting.

We design a novel QoS-sensitive communication subsystem architecture that provides
components and mechanisms to manage communication resources in a QoS-sensitive fashion.
This architecture is based on three key design principles: maintenance of QoS guarantees,
overload protection via per-connection traffic enforcement, and fairness to best-effort traffic.
We demonstrate the efficacy of the architecture via experiments using our z-kernel-based
prototype implementation.

We develop admission control ezxtensions to capture important implementation-related
aspects not considered by theoretical resource management policies proposed in the lit-
erature. Communication performance is significantly affected by implementation-related
aspects such as preemption overheads and constraints, simultaneous management of CPU
and link bandwidth, link scheduling paradigms at sending hosts, and packet input mecha-
nisms at receiving hosts.

We build a full-fledged guaranteed-QoS communication service on a contemporary mi-
crokernel operating system using a new service architecture integrating a QoS-aware appli-
cation programming interface, a reliable signalling and resource reservation protocol, and
QoS-sensitive data transmission and reception. We develop architectural and admission
control enhancements that capture new overheads and constraints imposed by a microker-
nel server configuration. The service is implemented and evaluated on Pentium-based PCs
running OSF MK 7.2 and communicating across switched Ethernet.

To enhance the portability of guaranteed-QoS communication services, we design self-
parameterizing protocol stacks that profile and parameterize themselves appropriately dur-
ing data transfer. We experimentally evaluate a self-parameterizing guaranteed-QoS com-
munication service to demonstrate the feasibility of our approach. Self-parameterizing pro-
tocol stacks are a natural way to design portable QoS-sensitive communication software.

To provide “better than best-effort” Internet connectivity, the performance impact of
supporting integrated services in TCP/IP protocol stacks must be assessed. We have de-
signed, implemented, and evaluated an RSVP-based QoS architecture for TCP /TP protocol
stacks supporting an integrated services Internet. Using detailed kernel-based profiling of
R5/6000-based servers running AIX 4.2, we explore the performance impact of QoS support
in TCP/IP protocol stacks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We co?dude by ouj:lining strategies for integrating QoS-sensitive communication sub-
systems with QoS-sensitive application scheduling policies within host operating systems.

-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

