
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality o f this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Tailoring R outer Architectures to Perform ance
Requirem ents in Cut-Through N etworks

by

Jennifer R exford

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Com puter Science and Engineering)

in The University of Michigan
1996

D octoral Committee:
Professor Kang G. Shin, Chair
Associate Professor Richard B. Brown
Associate Professor Farnam Jahanian
Professor Toby Teorey

UMI Number: 9635593

UMI Microform 9635593
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

© Jennifer Rexford 1996
All Rights Reserved

To my parents.

ii

A C K N O W LED G EM EN TS

There is really no such creature as a single individual; he has no more a life of
his own than a cast-off cell marooned from the surface of your skin.

- Lewis Thomas

The support of enthusiastic and dedicated mentors, colleagues, and friends has immeasur­
ably enriched my graduate school experience. In particular, I would like to thank

• Professor Kang Shin, my advisor, for exposing me to a broad range of exciting issues
in communication networks, parallel computing, and real-time systems. His emphasis
on combining “theory and practice” has shaped the direction of my thesis, as well as
my future research endeavors.

• Professors Toby Teorey, Farnam Jahanian, and Richard Brown for serving on my the­
sis committee. Thanks especially to Farnam Jahanian for his many valuable insights
into research, teaching, and advising, and to John Meyer for serving on the commit­
tee for my thesis proposal and for sharing his views on performance evaluation and
communication networks.

• A lbert Greenberg for his mentorship throughout my research projects a t AT&T Bell
Laboratories and his guidance in improving my technical writing.

• Ashish, Jim , Anees, Wu-chang, Scott, S tuart, and Dave for creating an office environ­
ment full of comradeship, humor, and caffeine. Thanks especially to Jim Dolter for
his philosophical musings and invaluable guidance and to Ashish Mehra for his many
years of friendship and candor, as well as numerous enjoyable technical discussions.

• My other close friends in Ann Arbor, including my roommates who endured many bad
puns during my first three years in Ann Arbor. Thanks to Sujatha for her friendship
and kooky sense of humor and to Carlos for the many evenings of delicious food and
good conversation. Special thanks also to Tris and Farnam for welcoming me into
their home, to B.J. Monaghan for being both a friend and a mom-away-from-home,
and to Zakia for her engaging phone calls to the office.

• Casper for his patience, support, and humor over many enjoyable visits and count­
less late-night phone conversations about topics ranging from research and education
to literature and life. Thanks also to Yvonne for her uncanny understanding and
infectious laughter.

• John and Susan Rexford, my parents, for their love and support, especially during
the final stretch.

• The Office of Naval Research, AT&T Bell Laboratories, the Rackham School of G rad­
uate Studies, and Intel Corporation for the fellowship and grant funds th a t enabled
me to pursue my thesis work.

TABLE OF C O N T E N T S

D E D I C A T I O N .. ii

A C K N O W L E D G E M E N T S ... iii

L IS T O F T A B L E S .. vii

L IS T O F F IG U R E S .. viii

C H A P T E R S

1 IN TR O D U C T IO N ... 1
1.1 Cut-Through R o u te rs .. 1
1.2 Structure of the T h e s is .. 4

2 M ULTICOMPUTER ROUTER A R C H IT E C T U R E 6
2.1 M ulticomputer Communication W o rk loads.. 6
2.2 M ulticomputer Interconnection N etw orks... 8

2.2.1 Network Topology ... 8
2.2.2 Routing A lg o r ith m ... 9
2.2.3 Switching S chem e.. 11
2.2.4 V irtual C h a n n e ls .. 12
2.2.5 Buffer Architecture and Link A rb itra tio n 13

2.3 Cut-Through Router Designs ... 14
2.3.1 Wormhole R o u te r s .. 14
2.3.2 V irtual Cut-Through R o u te r s .. 15
2.3.3 Hybrid R o u te r s ... 17

3 ANALYTICAL MODELS OF CUT-THROUGH R O U T IN G 19
3.1 Router M o d e l ... 20

3.1.1 Queueing T h e o r y .. 20
3.1.2 Routing A lgorithm s... 22
3.1.3 Traffic Pattern ... 23

3.2 Analysis for Cut-Through P ro b ab ility .. 24
3.2.1 Random and Dimension-Ordered Adaptive R o u tin g 24
3.2.2 Diagonal Adaptive R o u t i n g .. 26
3.2.3 Performance C om parison... 27

3.3 Simulation Results ... 29
3.3.1 Uniform T ra f f ic ... 29
3.3.2 Non-Uniform T r a f f i c ... 30

iv

3.4 Inter-Node D ependencies.. 33
3.4.1 Cut-Through C orrelation .. 34
3.4.2 Traffic M ix in g 36

3.5 Conclusions and Future W o r k ... 39

4 FLEXIBLE SIMULATION MODELS FOR EVALUATING ROUTER AR­
CHITECTURES 42

4.1 Simulator S tru c tu re .. 43
4.2 V irtual Router M o d el... 46

4.2.1 Router M o d e l ... 46
4.2.2 Router Components .. 48

4.3 Routing and Switching A lg o r ith m s ... 51
4.3.1 Routing-Switching In s tru c t io n s .. 51
4.3.2 V-Router H an d le r... 52
4.3.3 Routing-Switching A lgorithm s.. 54

4.4 Workload and Topology Support .. 56
4.4.1 Communication W o rk lo a d .. 56
4.4.2 Network Topology ... 60

4.5 Routing E x p erim en ts ... 62
4.5.1 Routing E x p e r im e n t .. 62
4.5.2 Tailoring E x p erim en t.. 64

4.6 Conclusions and Future W o r k .. 66

5 SWITCHING POLICIES IN REAL-TIME M U L T IC O M PU T E R S 69
5.1 Evaluation of Switching Schemes .. 70

5.1.1 Average L a t e n c y ... 71
5.1.2 P re d ic ta b il i ty ... 72
5.1.3 Packet Scheduling... 74

5.2 Router Architectures for Traffic M ix in g .. 75
5.2.1 Tailoring Switching Schem es... 75
5.2.2 Programm able Routing Controller .. 77

5.3 Performance Evaluation of Traffic M ixing.. 78
5.3.1 Traffic Mixing on the P R C .. 78
5.3.2 Tighter Bounds for Time-Constrained P a c k e ts 82

5.4 Conclusions and Future W o r k .. 83

6 REAL-TIM E ROUTER A R C H ITEC TU R E.. 86
6.1 Mixing Best-Effort and Time-Constrained T r a f f i c 88

6.1.1 S w itc h in g .. 88
6.1.2 A rbitration ... 89
6.1.3 R o u t i n g ... 90
6.1.4 Buffer A rc h ite c tu re ... 91

6.2 Real-Time Channels ... 93
6.3 Real-Time S u p p o r t .. 96

6.3.1 Control I n te r f a c e ... 96
6.3.2 Scheduling L o g i c ... 97
6.3.3 Handling Clock R o llo v e r.. 99

6.4 Implementation and E v a lu a tio n 100

v

6.4.1 Chip D e s ig n ... 101
6.4.2 E x perim en ts ... 102
6.4.3 Reducing Scheduler C om plex ity .. 103

6.5 C onclusion ... 106

7 CO NCLU SIO N S... 109
7.1 Research C on tribu tions .. 109
7.2 Avenues for Future W o rk .. I l l

BIB L IO G R A PH Y ... 113

vi

15
16
17
18
22
25
56
57
59
90
94
96

101
102

LIST OF TABLES

Wormhole ro u te rs ...
Pipelined circuit-switched ro u te r s ...
V irtual cut-through r o u t e r s ...
Hybrid cut-through r o u t e r s ...
Idealized network and workload param eters for queueing model
Selection functions for adaptive, minimal r o u t in g
Examples of routing-switching schemes in p p -m ess-s im
Traffic patterns in pp-mess-sim ...
History-list da ta collection routines in p p -m e ss -s im
Architectural param eters in real-time router d e s ig n
Link scheduling queues in real-time channels m o d e l....................
Control interface co m m an d s...
Router specification ..
Components of chip area for real-time r o u t e r

vii

LIST OF FIGURES

F ig u re
1.1 Router in a mesh network with a 4 x 4 grid of processing n o d e s 2
2.1 M ulticomputer to p o lo g ie s .. 9
3.1 Conceptual model of a cut-through n e tw o rk .. 21
3.2 Ring of destinations h — 3 hops from the source node (0 , 0) 23
3.3 Internal and border nodes along minimal paths to node (4 , 3) 24
3.4 Cut-through probability pc as a function of load p 28
3.5 Cut-through probability pc as a function of hop-count h 29
3.6 Analytical and simulation performance for h = 5 .. 31
3.7 Simulation performance of routing algorithms (h = 1 2) 32
3.8 Simulation performance under non-uniform, “hot-spot” t r a f f ic 33
3.9 Random oblivious routing in a 16 X 16 torus (h = 12) 34
3.10 Conditional cut-through probability in a 16 x 16 torus (h — 1 2) 35
3.11 Cut-through correlation for k -ary n-cube topologies (h = 6) 36
3.12 Dimension-ordered routing under bit-reversal traffic .. 37
3.13 Performance of Hamiltonian cycle routing (h = 1 2) ... 38
3.14 Hamiltonian-cycle routing in a 4 x 4 torus n e tw o rk ... 39
4.1 Structure of pp-m ess-sim ... 44
4.2 Example simulation sp ec ifica tio n .. 45
4.3 V-router m o d e l ... 47
4.4 Internal components in the v-router N o d e m o d e l .. 48
4.5 N o d e state machines .. 49
4.6 Arbiter class in pp-mess-sim N o d e m o d e ls ... 50
4.7 R a lg routines for interacting with the N o d e model 51
4.8 V-router interaction with R a l g ... 53
4.9 Sequence of routing-switching in s tru c tio n s ... 55
4.10 W o rk lo ad Task model ... 58
4.11 Internal components in the N e t c lass ... 61
4.12 Comparing routing algorithms under wormhole switching and bit-complement

t r a f f i c ... 63
4.13 Average latency under traffic m ix in g ... 65
5.1 Average packet la te n c y .. 71
5.2 Variability of packet latency (5-hop p ack e ts).. 73
5.3 Programmable Routing C o n tro l le r ... 77

viii

5.4 Average latency of time-constrained and best-effort traffic sharing a single
virtual channel on each l i n k ... 79

5.5 Average latency of time-constrained and best-effort traffic sharing two virtual
channels on each l i n k ... 80

5.6 Average latency of time-constrained and best-effort traffic on separate virtual
channels on each l i n k ... 81

5.7 Standard deviation of packet latency for time-constrained traffic 81
5.8 Average wormhole latency under different packet switching l o a d s 83
6.1 Bandwidth regulation and packet scheduling for connections a , /3 , .. .w . . . 87
6.2 Real-time router a rc h i te c tu re ... 89
6.3 Link encoding in real-time r o u te r ... 91
6.4 Packet formats in real-time router ... 92
6.5 Buffer architecture for time-constrained tra ffic ... 93
6.6 Link-scheduling algorithm in the the real-time r o u te r 95
6.7 Sorting key for time-constrained p a c k e ts ... 98
6.8 Com parator tree for run-time scheduling ... 99
6.9 Handling clock rollover with an 8-bit c lo ck .. 100
6.10 Time-constrained and best-effort s e rv ic e ... 103
6.11 Com parator tree with logic sharing amongst su b tre e s 104
6.12 Comparison of com parator tree architectures with group size k 105

ix

C H A P T E R 1

IN T R O D U C T IO N

Message-passing parallel machines have emerged as a cost-effective platform for exploit­

ing concurrency in a variety of applications. In these multicomputer systems, fast message

exchange enables efficient, fine-grained cooperation between processing elements. No longer

the purview of tightly-coupled parallel machines, m ulticomputer components are also find­

ing new uses in local area networks and real-time systems. While m ulticomputer systems

have traditionally targetted a relatively narrow range of applications in scientific com put­

ing, emerging networks must support diverse applications such as file and video servers,

databases, scientific visualization, and process control. These application domains impose

a broader range of communication characteristics and performance requirements on the

underlying interconnection network. To address these performance challenges, this thesis

presents techniques for designing and evaluating new multicomputer router architectures

th a t tailor network policies to application characteristics.

1.1 Cut-Through R outers

Maximizing system performance requires matching application communication patterns

with a suitable network design. M ulticomputer networks employ a wide range of topologies,

routing algorithms, switching schemes, and flow-control policies. Application characteris­

tics directly impact these design decisions by determining the distribution of traffic in the

1

■SH

Router

A
to/from

x . . . P r 9 c e s s ° r

F ig u re 1.1: R o u te r in a m e sh n e tw o rk w ith a 4 x 4 g r id o f p ro cess in g n o d es

network. End-to-end performance metrics, such as throughput and latency, are extremely

sensitive to the network policies implemented in the router hardware th a t connects an in­

dividual processing node to the interconnection fabric and manages traffic flowing through

the node en route to other destinations; for example, Figure 1.1 shows a router in a 4 x 4

square mesh. To communicate with another node, a processor injects a packet into its

router; then, the packet travels through one or more intermediate routers before reaching

the reception port of the router a t the destination node.

To address the requirements of emerging applications, router designs should tailor their

policies to application traffic patterns and performance metrics. In particular, the net­

work’s switching scheme can greatly influence communication performance by determining

w hat link and buffer resources a packet consumes a t the nodes in its route. Traditional

packet switching requires an arriving packet to buffer completely before transmission to a

subsequent node can begin. In contrast, cut-through switching schemes, such as virtual cut-

through [65] and wormhole [28] switching, attem pt to directly forward the incoming packet

to an idle output link. If the packet encounters a busy outgoing link, virtual cut-through

switching buffers the packet. On the other hand, a blocked wormhole packet stalls in the

network, holding the earlier links in its route until the outgoing link becomes free.

Although first-generation multicomputers employed packet switching, most contempo­

rary research and commercial routers utilize cut-through switching for lower latency and

reduced buffer space requirements [7,99,127]. For example, the Intel iPSC /1, nCube/3200,

and Ametek/14 implemented store-and-forward packet switching, with each processing node

2

interrupting application tasks to buffer and forward incoming packets [127]. Due to ad­

vances in VLSI technology, these commercial vendors were able to incorporate dedicated

router hardware for cut-through switching in subsequent m ulticomputer systems, such as the

iPSC /2 [89], nCube/6400 [45], and Ametek/2010 [109], during the late 1980s. Keeping with

this trend, companies like Intel, IBM, Thinking Machines, and Cray Research developed new

multicomputer systems based on wormhole-switched networks [25,59,76,85,95,114,115]

during the first half of the 1990s. Similarly, most research m ulticomputer networks employ

virtual cut-through or wormhole switching, or hybrid schemes, as discussed in Chapter 2.

Although cut-through switching schemes have the potential to improve communication

latency and throughput, most existing local and wide area networks employ packet switch­

ing to reduce flow-control requirements and simplify operation over a range of different

link speeds. Still, wormhole and virtual cut-through switching are viable options in more

homogeneous, tightly-coupled domains, such as workstation clusters and high-speed switch

designs. As a result, several new systems incorporate m ulticomputer routers to achieve

low-latency, high-bandwidth communication in local area networks. The Atomic [24] and

Shrimp [13] research projects dem onstrate the power of this paradigm, which has been

incorporated in commercial products such as Sun Microsystem’s S-Connect [88] and Myri-

com’s Myrinet [14]. In addition, researchers are investigating the use of cut-through routers

as building blocks for constructing larger ATM (asynchronous transfer mode) switches for

use in large-scale networks [82,123,124].

Compared to traditional parallel machines, high-speed switches and local area networks

impose a wide range of communication characteristics and performance requirements on

m ulticomputer routers. In addition, multicomputer components are increasingly used for

multimedia and real-time applications, such as scientific visualization, process control, and

video-on-demand servers. These applications require predictable communication perfor­

mance, in addition to low latency and high throughput. Initially, real-time multicomputer

applications have employed existing interconnection networks, such as the Intel Paragon [12,

52] and the nCube/3 [20], with no explicit support for time-constrained communication.

3

However, on many existing multicomputer systems, worst-case packet latency can theoret­

ically be as large as several days [69]. As a result, real-time and multimedia applications

m ust under-utilize the network to achieve predictable performance. To address this prob­

lem, several recent projects consider new router architectures th a t can guarantee end-to-end

communication performance in multicomputer networks [10,69,77,83,91,108,119,122].

1.2 Structure o f th e Thesis

This thesis presents effective techniques for the design and evaluation of router ar­

chitectures th a t accommodate the performance requirements of emerging multicomputer

applications. Chapter 2 surveys related work on multicomputer networks and application

workloads, with a classification of the routing, switching, queueing, and arbitration policies

in existing router designs. Focusing specifically on the impact of routing on the perfor­

mance of cut-through networks, Chapter 3 compares several routing algorithms based on

both analytical models and simulation experiments. The analytical models perm it an ef­

ficient evaluation of large networks, while comparisons with simulation results reveal the

effects of the simplifying assumptions in the analysis. Based on this comparison, we provide

a precise characterization of the unique dependencies between adjacent nodes in realistic

cut-through networks.

These results facilitate more accurate performance models, as well as novel routing algo­

rithm s th a t capitalize on inter-node dependencies to improve communication performance.

To evaluate a wider range of network policies, Chapter 4 presents a configurable router model

and simulation environment. This flexible and extensible simulation framework enables ex­

perim entation with a variety of routing, switching, queueing, and arbitration schemes under

diverse traffic patterns and performance metrics. Unlike existing tools for evaluating mul­

ticom puter networks, this simulator can model emerging router architectures th a t support

multiple coexisting routing-switching schemes, tailored to different communication charac­

teristics and performance requirements. Chapter 5 capitalizes on these novel features to

investigate router architectures th a t tailor their switching schemes and arbitration policies

4

to the performance requirements of parallel real-time systems.

Real-time applications typically handle a m ixture of time-constrained and best-effort

communication, where time-constrained packets require bounds on latency and through­

pu t, while best-effort traffic settles for good average performance [6,54,112,113]. Based

on simulation experiments, Chapter 5 proposes effective techniques for mixing the time-

constrained and best-effort packets w ithout sacrificing the performance goals of either traffic

class. C hapter 6 employs these policies to develop a new router architecture th a t bounds

end-to-end delay and throughput for time-constrained traffic, while ensuring low average

latency for best-effort packets. The chapter presents a single-chip im plementation of the

router th a t minimizes complexity by sharing buffer space and arbitration logic amongst the

multiple outgoing links. Chapter 7 concludes the dissertation with a recapitulation of the

research contributions and possible avenues for future work.

5

C H A PT E R 2

M U L T IC O M PU T E R R O U T E R A R C H IT E C T U R E

M ulticomputer performance hinges on the subtle interaction between application traffic

patterns and the router policies in the underlying network. This chapter reviews the com­

munication workloads and architectural param eters in modern multicomputer networks.

Section 2.1 describes the diverse range of packet sizes, interarrival times, and destination

distributions in parallel applications, while Section 2.2 provides an overview of architec­

tu ral issues. Based on this discussion, Section 2.3 classifies and compares existing router

architectures to highlight current trends in multicomputer network design.

2.1 M ulticom puter Com m unication W orkloads

M ulticomputer applications consist of a collection of tasks th a t communicate by ex­

changing messages. At the source node, the sending task submits the message to the

communication subsystem for transmission to receiving tasks on one or more destination

nodes. For efficiency reasons, the source node may decompose a message into a collection

of smaller packets th a t proceed through the interconnection network and are reassembled

into a message a t the destination node. As a result, multicomputer routers typically co­

ordinate communication a t the packet level, where each packet consists of a header field

followed by one or more bytes of data. The packet header often includes information such

as a task identifier, message number, and packet sequence number to aid the destination

node in delivering the reconstructed message to the receiving task. In addition, the header

6

typically includes additional fields to assist the routers in shepherding the packet through

the interconnection network.

Parallel applications generate a wide range of communication workloads depending on

the application’s granularity and mapping across multiple nodes, as well as the policies

employed by the interconnection network. Scientific computations, parallel databases, and

real-time applications generate distinct distributions for message/packet lengths, interar­

rival times, and target destination nodes [27,57,77,107]. Multi-user systems exacerbate

these effects since different applications may run simultaneously; these applications may

execute on different parts of the network or even time-share the same processing elements.

These diverse traffic patterns significantly impact the suitability of certain router architec­

tu ra l features, such as switching and routing schemes, as well as the accuracy of network

performance models.

Analytical studies of multicomputer networks have typically modeled packet arrivals

as a Poisson process, with exponentially-distributed interarrival times. This assumption

was made, in part, due to the analytical tractability of such models and the lack of more

realistic data. However, detailed measurements of multicomputer applications have led to

more sophisticated message generation models. In particular, recent studies show th a t ap­

plications typically generate bursty network traffic [27,57], due to multi-packet messages

and fine-grain interaction between cooperating nodes. Similarly, many parallel applications

invoke multicast operations tha t send a message to a collection of destination nodes, inject­

ing multiple copies of each packet into the interconnection network. These traffic models

have significant im pact on network design and evaluation.

Like interarrival distributions, message and packet sizes depend on several factors. Some

router architectures or communication protocols impose strict upper and lower bounds on

packet length, or perm it just a few different sizes or formats. Although fixed-length packets

or exponentially-distributed lengths simplify analytic performance models, recent studies

show th a t real multicomputer applications often generate a mixture of large da ta transfers

and small request/acknowledgement packets [27,57]. W ithout careful support in the router

7

architecture, these bimodal length distributions can seriously degrade average latency by

forcing short packets to queue behind long packets for access to link and buffer resources [67].

In addition, the presence of large packets can introduce greater variability in end-to-end

communication delay, particularly for short packets [68].

Message/packet destination distributions vary a great deal depending on the network

topology and the application’s mapping onto different processing elements. Although many

analytical and simulation studies evaluate a uniform random distribution of destination

nodes, this model does not accurately represent the traffic patterns th a t arise in many

multicom puter applications. To reduce link load and communication latency, many parallel

applications place cooperating tasks near each other in the underlying network, introducing

spatial locality. In addition, many applications exhibit temporal locality, where a node

sends several messages to the same destination over a small time interval. Also, parallel

algorithms introduce specific non-uniform traffic patterns. For example, many scientific

applications generate communication workloads th a t correspond to the m atrix-transpose

(dimension-reversal), bit-complement, and bit-reversal perm utations [23,32,66,98]. O ther

application communication constructs, such as synchronization or multicast operations, may

induce hot-spots of heavily-utilized nodes and links [17,36,98].

2.2 M ulticom puter Interconnection Netw orks

2.2.1 N etw ork T opology

By defining the connections between processing nodes, the network topology determines

the number of communication links a t each node and how far a packet must travel to reach

its destination [47,100]. As a result, the choice of a topology im pacts both the complexity

of network wiring and the achievable communication bandwidth in the system [2,33]. Mul­

ticom puter networks vary from bus or ring topologies to fully-connected configurations, as

shown in Figure 2.1. Connecting processors on a single bus provides an inexpensive solution

th a t provides sufficient link bandwidth to support a small number of nodes; in contrast, a

fully-connected network has a dedicated link between each pair of nodes, a t the expense of

8

9 9 9 9
(a) Bus (b) Ring (c) Hypercube

o — o —o —o

o —o —o —o

o —o —o —o

O-HD-HD—O
(e) Square mesh (f) Torus(d) Fully connected

Figure 2.1: Multicomputer topologies

increased implementation complexity. As a result, most systems attem pt to strike a careful

balance between implementation cost and achievable performance.

Most existing multicomputers have direct networks, which consist of point-to-point links,

while other indirect networks connect processors through multiple stages of switches. Many

systems employ the fc-ary n-cube family of topologies, with k nodes along each of n dimen­

sions [33]; Figures 2.1(b) and 2.1(f) show a 6-ary 1-cube and a 4-ary 2-cube, respectively.

To restrict wiring complexity, some systems omit the wrap-around links in each dimension,

turning a homogeneous toroidal topology into a mesh network, such as the 4 x 4 square mesh

in Figure 2.1(e). Unlike earlier hypercube (2-ary n-cube) multicomputers, most contempo­

rary parallel machines have low-dimensional topologies, such as two and three dimensional

meshes and tori, to allow wider inter-node links and reduced wiring costs.

2.2.2 R ou ting A lgorithm

These topologies simplify the selection of a packet’s path through the network by al­

lowing the routing header to include the relative address of the destination node(s). For

example, in a two-dimensional mesh or torus, the header can consist of x and y offsets

th a t represent the distance the packet must travel in each direction; the offsets reach zero

9

when the packet arrives a t its destination node. When a new header arrives on an incoming

link, the router inspects these fields to determine which outgoing Mnk(s) should handle the

incoming packet. Oblivious routing generates a single, deterministic outgoing link for an in­

coming packet. Many multicomputer networks employ dimension-ordered (e-cube) routing,

an oblivious scheme which routes a packet completely in one dimension before proceeding

to the next dimension, as shown by the shaded nodes in Figure 1.1.

In contrast, adaptive schemes can incorporate prevailing network conditions into the

routing decision. By considering multiple outgoing links, adaptive algorithms can balance

network load and decrease packet latency by avoiding busy nodes and links. Under adap­

tive routing, packets from a single message may follow different paths through the network;

this can cause out-of-order packet arrival, which complicates message processing a t the des­

tination node [64]. Opportunities for adaptive routing vary depending on the underlying

topology and communication pattern . Although most oblivious routing algorithms gen­

erate only minimum-hop routes between the source and destination nodes, some adaptive

schemes consider non-minimal routes in the hope of circumventing congested or faulty links.

In the last few years, researchers have proposed a wide variety of minimal and non-minimal

adaptive routing algorithms, with different degrees of adaptivity and im plem entation com­

plexity [4,17,46,53,87,98].

W hen a routing algorithm must select from multiple output links a t a node, the actual

route chosen depends on a selection function th a t determines the order in which the al­

gorithm considers these candidate finks. For example, if a packet is traveling from node

(4 ,3) to node (6,10) in a square mesh, a dimension-ordered selection function would favor

the positive x-direction over the positive y-direction, if both links are idle. Alternatively,

the router could rank outgoing links according to how much further the packet m ust travel

in each direction; in the example, this selection function would favor the y-direction, since

the packet still has 7 hops to travel. This link ordering improves the packet’s chance of

considering multiple outgoing links a t future nodes in its route [8,39]. Communication

performance can be extremely sensitive to how the selection function interacts with the

10

application workload to create traffic patterns in the interconnection network [50,104].

2.2 .3 Sw itching Schem e

The switching scheme impacts performance by determining the link and buffer resources

a packet consumes a t a given node in its route. Traditionally, multi-hop networks employ

either a circuit-switched or store-and-forward model of communication. The classic example

of a circuit-switched network in the Plain Old Telephone Service, which creates a dedicated

connection between the source of a call and the desired destination. Once the network

establishes a circuit, the call has guaranteed access to the link bandwidth, which limits

delay and obviates the need for buffering; however, circuit switching statically allocates link

bandwidth, which can be wasteful for transporting bursty traffic. To avoid this problem,

most multicomputer networks coordinate link access a t the message or packet level by using

store-and-forward switching schemes.

First-generation multicomputer networks employed packet switching , which requires

each incoming packet to buffer completely before transmission to a subsequent node can

begin, as discussed in Section 1.1. Even in the absence of network congestion, packet switch­

ing incurs delay proportional to the product of packet size and the length of the route. In

contrast, cut-through switching schemes, such as virtual cut-through [65] and wormhole [28]

switching, try to forward an in-transit packet directly to an idle output link, based on the

routing header and prevailing network conditions. In a lightly-loaded network, communica­

tion latency under cut-through switching is proportional to the sum of packet size and the

length of the route, since the packet only incurs a small delay for processing the routing

header a t each node. As a result, most contemporary routers utilize cut-through switching

for lower latency and reduced buffer space requirements [127].

If the outgoing link is busy, virtual cut-through switching buffers the packet, effectively

degrading to packet switching. In contrast, a blocked wormhole packet stalls pending ac­

cess to the outgoing link. Instead of storing entire packets, a wormhole router can simply

include small flit (flow control unit) buffers to hold a few bytes of the incoming packet;

when this buffer is full, inter-node flow control halts further transmission from the pre­

11

vious node. Wormhole switching can achieve low latency, particularly in a lightly-loaded

network; however, a stalled wormhole packet can block other traffic from accessing the

outgoing links. This limits network throughput and complicates the effort to avoid packet

deadlock. Wormhole networks can improve throughput by including additional flit buffers

or by incorporating logical lanes on each link to enable other traffic to bypass a blocked

packet, as discussed below in Section 2.2.4.

Several routers employ pipelined circuit switching, which blurs the distinction between

between wormhole and circuit switching. Unlike traditional circuit switching, pipelined

circuit switching dynamically reserves network resources on a per-packet basis; however,

unlike traditional wormhole switching, the router does not transm it the d a ta portion of the

packet until the header successfully reaches the destination node. This variant on worm­

hole switching can simplify deadlock-avoidance, since the small header can typically fit in

a single flit buffer and can backtrack when it encounters congestion, if necessary; after

route establishment, the data portion of the packet does not encounter any link contention.

However, reserving the packet’s path in advance incurs additional overhead, particularly

in a lightly-loaded network. The router can amortize this overhead by temporarily main­

taining the channel reservations, since subsequent packets may reuse the route in the near

future [56].

2.2 .4 V irtual Channels

For additional routing and switching flexibility, a multicomputer can extend its under­

lying physical topology by dividing each link into multiple virtual channels [31]. Although

the router allocates these logical links on a per-packet basis, each link interleaves its virtual

channels a t the flit level. As a result, the link can service any virtual channel th a t has a

flit to send, as long as the downstream router has sufficient buffer space. By supporting

multiple virtual channels on each link, a router can allow incoming traffic to bypass stalled

packets on different virtual channels. This can substantially improve the achievable network

throughput of wormhole switching. In addition, virtual channels play an im portant role in

avoiding packet deadlocks, particularly in wormhole networks [29,87].

12

Deadlock arises when a chain of packets stall in the network, with each packet blocking

the forward progress of another packet. A router can preclude such circular dependencies by

restricting the order in which packets can access virtual channels. For example, the square

mesh topology has no cycles within a dimension, due to the absence of wrap-links; coupled

with dimension-ordered routing, packets also cannot develop cycles between directions, since

each packet routes in the x-direction before proceeding in the y-direction. However, in a

torus topology a chain of blocked packets can halt all forward progress in a particular

row or column of the network. To avoid potential packet deadlocks, the router can divide

each link into two virtual channels and break the circular dependencies in the underlying

topology [29]. Additional virtual channels permit the construction of adaptive routing

algorithms with deadlock-avoidance guarantees [44]; typically, the more flexible adaptive

routing algorithms require more virtual channels to prevent deadlock [17,87,98].

M ulticomputer networks can also use virtual channels to logically segregate traffic with

different characteristics or performance requirements. For example, a router could employ

separate virtual channels to separate short and long packets [67,68,73] or control and da ta

packets [30,35]. By assigning separate logical resources to each set of packets, the router

effectively limits the interaction between the traffic classes. This can improve performance

by limiting the number of long da ta packets th a t can receive service ahead of a short control

packet. Although virtual channels improve router flexibility, they also affect network speed

and im plementation complexity, since each virtual channel requires arbitration logic as well

as a small flit buffer [4].

2.2.5 Buffer A rchitecture and Link A rbitration

Careful selection of a routing algorithm reduces packet contention, improving a packet’s

chance of cutting through interm ediate nodes. However, if two incoming packets route to

the same outgoing link, one packet must be blocked and incur delay. The simplest buffering

scheme places a first-in first-out (FIFO) queue a t each input link to store packets unable

to access their chosen output link. Unfortunately, a blocked packet a t the head of an input

FIFO detains any other packets in th a t buffer, even if the routing algorithm would assign

13

these packets to other (possibly idle) output links. This head-of-line blocking significantly

reduces achievable network throughput [55,92,116].

Alternatives to input queueing avoid this artificial contention a t the expense of increased

hardware complexity. Partitioned input-queueing replaces the single input FIFO with mul­

tiple queues to separate traffic destined for different outgoing links [92,116]. In contrast,

output queueing places packet buffers at the outgoing links, requiring the buffers to si­

multaneously accept packets from multiple input links. The router may provide separate

buffers for each output queue or allow the outgoing links to share a central packet mem­

ory. While shared packet buffers enable higher memory utilization, separate queues can

effectively insulate a link from other, heavily-loaded links.

If an output link services multiple virtual channels or packet queues, the arbitration

scheme coordinates access amongst competing traffic. The simplest approach statically

assigns link bandwidth to each queue or virtual channel, but demand-driven arbitration

schemes better utilize the available network bandwidth. Priority-based schemes may im­

prove performance by favoring longer queues or packets with stricter end-to-end delay re­

quirements [31,77,120]. However, most multicomputer routers implement demand-driven,

round-robin arbitration to divide bandwidth fairly amongst the competing traffic. O ther

arbitration policies, such as fair queueing algorithms, dispense bandw idth in proportion to

a set of weights [5,125,126]. These schemes ensure a minimum bandwidth to each channel,

independent of the traffic on other channels.

2.3 Cut-Through R outer D esigns

2.3.1 W orm hole R outers

Many contemporary research and commercial routers employ wormhole switching or

pipelined circuit switching, as shown in Table 2.1 and Table 2.2. These tables highlight the

network topology, routing algorithm, and virtual channel support in these router designs.

The last column describes how the router arbitrates amongst multiple virtual channels

contending for the same outgoing link; the Mesh Routing Chip, IMS C104, iPSC /2 Direct-

14

R o u te r T opology R o u tin g V -ch an s A rb itr a t io n
Mesh Routing Chip [110] 2-D mesh e-cube 1 —
Network Design Frame [30] 2-D mesh e-cube 2 priority
Message-Driven Processor [35] 3-D mesh e-cube 2 priority
Torus Routing Chip [28] 2-D torus e-cube 2 fair
Reliable Router [34] 2-D mesh adaptive 5 fair
IMS C104 Switch [117] flexible interval routing,

universal routing
1

T ab le 2.1: W o rm h o le ro u te r s

Connect, and the NCube 6400 do not require channel arbitration, since each link has only

one virtual channel. Most of the wormhole routers use dimension-ordered (e-cube) routing

for deadlock-free communication with low implementation complexity. W ith dimension-

ordered routing and an unwrapped mesh topology, a router requires only one virtual channel

per link to avoid deadlock, as in the Caltech Mesh Routing chip; the Network Design Frame

and the Message-Driven Processor include a second virtual channel to separate user and

system messages (at different priority levels). In contrast, the torus topologies require two

virtual channels per link, coupled with e-cube routing, to prevent communication deadlocks.

Some recent wormhole routers employ adaptive routing to circumvent network conges­

tion. The Reliable Router includes five virtual channels on each link to support adaptive

routing in a 2-D mesh, even allowing non-minimal routes when a packet must avoid a faulty

link. The IMS C104 switch uses interval routing, which associates each output link with

a programmable range of node identifiers; as a packet arrives, the routing algorithm deter­

mines which output links cover the packet’s destination node. To further reduce congestion,

the C104 supports universal routing, which sends a packet to a random node before routing

to its ultim ate destination. While this randomness balances network traffic load, it forces

packets to travel through more intermediate nodes before reaching their destinations.

2.3 .2 V irtual C ut-T hrough R outers

While wormhole switching stalls blocked packets, virtual cut-through routers include

packet buffers to remove these packets from the network. As shown in Table 2.3, virtual

15

R o u te r T opology R o u tin g V -ch an s A rb i t r a t io n
iPSC /2 Direct-Connect [89] hypercube e-cube 1 —
NCube 6400 [45] hypercube e-cube 1 —
V irtual Channel Router [56] hypercube e-cube 2 fair
Ariadne [3] 2-D torus adaptive 3 fair

T ab le 2.2: P ip e lin e d c irc u it-sw itc h e d ro u te r s

cut-through routers support a diverse range of topologies, routing algorithms, and queue

architectures. The Mayfly Post-Office router, designed for hexagonal mesh topologies, im­

plements adaptive routing and queues blocked packets in a central, shared buffer. W hen a

packet has shortest-path links in multiple dimensions, the Post-Office favors the direction

with the most remaining hops; this increases the packet’s likelihood of having multiple rout­

ing options a t later nodes in its route. When the packet cannot route to a shortest-path

link, the Post-Office considers links tha t leave the packet no farther away from its desti­

nation. When these links are unavailable, non-minimal routing allows the packet to travel

away from its destination.

The Chaos router also allows non-minimal routing to prevent buffer deadlock in the

network. If an arriving packet cannot proceed to a shortest-path output link, the Chaos

router stores the packet in a small central packet buffer. When blocked packets exhaust

this buffer the router transm its one of the blocked packets in a non-minimal direction to

free space for arriving traffic. Deflecting packets from their ultim ate destination can cause

livelock, where a packet continually travels in the network without reaching its destination,

but Chaos routing is probabilistically livelock-free [74].

O ther virtual cut-through routers allow flexible construction of routing algorithms and

network topologies through routing tables. The DEC AN1 switch has an adjustable routing

table. W hen faulty links or nodes change the underlying network topology, this software

autom atically reconfigures each switch’s routing table. While the DEC AN1 has flexible

routing support, FIFO input buffers limit network performance, since a blocked head-of-line

packet prohibits other traffic from utilizing idle output links. In contrast, the ComCoBB

switch avoids head-of-line blocking by separating packets destined for different ou tpu t links.

16

R o u te r T opo logy R o u tin g Q u e u e in g
Mayfly Post-Office [39] wrapped hexagonal adaptive shared output
Chaos Router [15] 2-D torus non-minimal adaptive shared pool
DEC AN1 [94] flexible table look-up, adaptive input
ComCoBB [116] flexible table look-up partitioned input
Artie Router [18] multistage static input pools

T ab le 2 .3 : V ir tu a l c u t- th ro u g h ro u te r s

While each input link has a single packet buffer, this memory includes a separate logical

FIFO for each output link [116].

Instead of constructing separate logical queues, the Artie routing chip allows every

buffered packet to contend for access to the output links. Since each Artie input link can

buffer a t most three packets, the implementation connects each packet buffer to a crossbar

port. Although this provides an efficient queue architecture for Artie, the approach is not

scalable to routers with larger buffer sizes due to the implementation cost of large crossbar

switches. Artie prevents buffer overflow through a handshake protocol between adjacent

routers. Although the Artie chip implements static routing, the system can exploit multiple

paths in the network by assigning different packet routes a t the source node.

2 .3 .3 H ybrid R outers

Recognizing the benefits of wormhole and virtual cut-through switching, some recent

router designs support both switching schemes, as shown in Table 2.4. These architectures

implement wormhole switching, bu t also provide sufficient buffer space to remove some

blocked packets from the network. This combination relieves network congestion while

preserving the low buffer requirements of wormhole switching. The Cray T3D router imple­

ments wormhole switching, with two pairs of virtual channels ensuring separate deadlock-

avoidance for request and response messages. Each virtual channel has enough buffer space

to store a small packet, while longer packets spread across multiple nodes. Since multicom­

puter applications typically generate a mixture of short and long packets [27,67], router

support for these two traffic classes can significantly improve performance.

17

Router Topology Routing V-chans Queueing
Cray T3D Router [90] 3-D torus e-cube 4 input
Segment Router [73] — — 2 shared output
IBM Vulcan [114] multistage static 1 shared output
PRC [38] flexible programmable 3 software-controlled

Table 2.4: Hybrid cut-through routers

Short packets incur large end-to-end latency when forced to wait behind long packets for

access to the network links [49,67]. The Segment router addresses this problem by assigning

the two traffic classes to separate virtual channels with different switching schemes; long

packets use wormhole switching to limit buffer-space requirements, while short packets use

virtual cut-through switching to reduce channel contention. The router queues a blocked

short packet in a central output buffer pending access to its output link, freeing the incoming

channel for other short packets. The IBM Vulcan also reduces network congestion through

a shared output buffer. This central queue dynamically buffers blocked wormhole packets

in 8-flit chunks.

Since wormhole and virtual cut-through switching performance varies with the applica­

tion workload, the PRC (Programmable Routing Controller) router can implement micro-

programmable routing-switching schemes in small, custom processors close to the physical

links. These processors execute low-level routing-switching algorithms, tailored to the appli­

cation traffic patterns. This enables the PRC to implement wormhole, virtual cut-through,

and packet switching, as well as hybrid schemes, each under variety of routing algorithms.

In addition, the router can support multiple routing-switching schemes simultaneously, as

discussed further in Section 5.2.2. This flexibility can significantly improve application

performance, particularly in multi-user systems.

18

C H A PT E R 3

A N A LY TIC A L M ODELS OF C U T -T H R O U G H R O U T IN G

Cut-through switching schemes, coupled with effective routing algorithms, significantly

reduce end-to-end packet delay. As networks grow larger, scalable performance requires

packets to cut through as many nodes as possible; fortunately, larger networks also pro­

vide more opportunities for adaptive routing algorithms. Effective analytical models can

predict the behavior of large networks and help weigh the cost-performance trade-offs of

various oblivious and adaptive routing algorithms. However, analytical models require cer­

tain simplifying assumptions about the underlying interconnection network and application

traffic patterns, for the sake of tractability. Simulation studies can characterize the effects

of these assumptions to determine when analytical models overestimate or underestim ate

actual router performance.

Performance evaluation of cut-through schemes began with the work in [65], which

presented a mean-value analysis of end-to-end latency for virtual cut-through switching

under oblivious routing, derived from a queueing theory model for packet-switched net­

works. O ther work extends this M /M /1 analysis to consider delivery-time distributions [41]

and fixed-length packets [1]. Extensions of virtual cut-through switching address specific

error recovery mechanisms [58] and partial cut-throughs [1,124]. In addition, using vir­

tua l cut-through switching within multistage ATM switches introduces new communication

characteristics and performance requirements [82,123,124], including bursty traffic with

delay constraints. However, these analytical models do not address the im pact of routing

19

algorithms on cut-through switching performance.

Using both analytical models and simulation experiments, this chapter compares sev­

eral shortest-path routing strategies in homogeneous virtual cut-through networks, such as

tori and other fc-ary n-cube topologies; in particular, the performance evaluation considers

influence of the selection function used to rank candidate outgoing links. Adaptive routing

schemes th a t dynamically select from multiple outgoing links best capitalize on cut-through

switching, particularly when the selection function strives to increase a packet’s routing op­

portunities a t subsequent nodes in the the route. The simulation model illustrates tha t

virtual cut-through switching introduces unique inter-node dependencies th a t affect the ac­

curacy of the analytical model; novel routing algorithms can capitalize on these effects to

improve network performance.

3.1 R outer M odel

A basic queueing-theory model of cut-through performance can decompose the inter­

connection network into a collection of independent links and queues. An arriving packet

can cut through a node if its outgoing link is idle; otherwise, the packet buffers in a service

queue, as shown in Figure 3.1. The various routing algorithms differ in how they affect

the cut-through probability pc, which depends on the number of candidate output links a

packet can consider a t each node in its route.

3.1.1 Q ueueing T heory

As in packet-switched networks, an M /M /1 model can accurately represent the service

queue a t each link, if queue size is not restricted and packet lengths and interarrival times

are exponentially distributed [71]; in this framework, each source node generates packets as

a Poisson process with rate A, as shown in Table 3.1. W ith sufficient mixing of traffic from

different sources, Kleinrock’s independence assumption enables the analysis to decouple the

packet length and interarrival distributions a t each node [70]. In effect, a packet receives a

new length a t each node in its route, perm itting the analysis to model the network links as

20

cut-through

Source

no cut-through

cut-through

Destination

no cut-through

Figure 3.1: Conceptual model of a cut-through network

independent exponential servers operating a t rate 1/1, where I is the average packet length.

Under this assumption, a m ixture of sources with Poisson arrivals produces a Poissonian

ou tpu t stream for the link [21]; this link, in turn, forms the traffic source for an input link

to an adjacent node. W ith sufficient randomization of packet routes, the Poissonian traffic

perm its a product-form solution th a t separately analyzes each link in a packet’s route,

by Jackson’s theorem [60]. Since the network links are independent, a packet traveling

h hops has h — 1 independent opportunities to cut through intermediate nodes, resulting

in a binomial distribution for the number of cut-throughs [65]. Based on this binomial

distribution, analytical models can determine other higher-level metrics, such as average

latency or delivery-time distributions, for cut-through networks.

For example, a packet traveling h hops has average delay

YZ~p ~ Pc(h ~ !)?»

where p < 1 is link utilization [65]. The first term is the average delay in a packet-switched

network, where the packet encounters h independent M /M /1 queues, each with mean service

rate 1 f l \ in an M /M /1 queue, customers spend average time £ / (l — p) in the system [71].

The second term captures the performance benefit of employing cut-through switching.

W hen an arriving packet routes directly to an idle link, the router avoids buffering the

packet, so the average packet reduces its latency by 1 whenever it cuts through one of the

h — 1 interm ediate nodes in its route. To include header processing delay a t each router,

the pc(h — 1)1 term reduces to pc{h — l) (f — r) , for a header of length r , but r is typically

small in comparison to 1.

21

P a ra m e te r S e ttin g
Switching scheme V irtual cut-through switching
Buffer architecture Infinite packet FIFO for each output link
Routing algorithm Random, oblivious routing
Network topology Homogeneous network
Packet arrival Poissonian packet generation (rate A)
Packet destination Uniform traffic load
Packet length Exponentially distributed (mean I)

Table 3.1: Idealized network and workload parameters for queueing model

3.1 .2 R outing A lgorithm s

Routing algorithms impact communication performance by affecting the cut-through

probability pc. Oblivious routing directs an incoming packet to a single outgoing link,

selected randomly or according to a static ordering; hence, under the assumptions in the

analytical model, an arriving packet encounters an empty service queue with probability

pc = 1 — p. However, adaptive routing algorithms are more difficult to analyze, since the

cut-through probability depends on the number of links a packet can consider a t each hop

in its route. For example, cut-through probability increases to 1 — p2 if two links lie along

minimal paths to the destination node, since the arriving packet can establish a cut-through

unless both outgoing links are busy; if neither link is available, we assume th a t the packet

enters a single service queue to await transmission.

In a two-dimensional torus (A;-ary 2-cube), the average cut-through probability depends

on the likelihood P2 th a t a packet has two routing options at an interm ediate node. T hat

is,

Pc = (1 - p2)P2 + (1 - p)(1 - P2) = (1 - p)(1 + pP2),

with link utilization p = A h l / 4 , where packets travel an average of h hops in the network;

the h i term represents the average bandwidth consumed by a packet, while the denomina­

tor corresponds to the four links emanating from each node. The probability P2 depends on

the routing algorithm, as well as the relative position of the source and destination nodes;

although an empirical approach can tabulate P2 for a specific topology and routing algo­

rithm [84], analytical expressions allow efficient prediction of communication performance,

22

• (0,3)

(-3

(0,-3)

Figure 3.2: Ring of destinations h = 3 hops from the source node (0,0)

particularly in large networks.

3 .1 .3 Traffic Pattern

To study uniform traffic loads, we assume tha t a source node is equally likely to commu­

nicate with any destinations th a t are h hops away; this hop-uniform traffic pattern generates

rings of destination nodes within a fixed distance of the source node, which can represent

spheres of communication locality, as shown in Figure 3.2. The node-uniform traffic pattern ,

which selects each node with equal probability, is a special case of the hop-uniform distri­

bution. The hop-uniform traffic, coupled with the homogeneous network topology, perm its

the analysis to focus on a single source node (0,0) and a “quadrant” of destination nodes

(0, h) , (l , h — 1) , . . . , (h — 1,1) in the torus network. Each of these destinations corresponds

to a unique collection of possible shortest-path routes; the likelihood of selecting each path

depends on the routing algorithm and the traffic load p.

To determine P2 , consider a packet tha t travels to destination node (x , y) , with x , y > 0

and x + y = h. Any nodes (i , j) with 0 < i < x and 0 < j < y may lie a shortest-path

route. Nodes (i , j) with i < x and j < y have two outgoing links on minimal paths to

the destination node, as shown in Figure 3.3. These internal nodes have greater routing

flexibility than the remaining border nodes [8]. The next section analyzes various adaptive

routing algorithms by deriving

5 ^ ^ = P[packet visits n internal nodes], n = 0 ,1 , . . .h — 1

in traveling x hops in the x-direction and y-hops in the y-direction, where h = x -\-y. After

23

destination
(4,3)

©— ©— Q Q Q

- i t

- i t

6 — ®*
(0,0)

source

-Q
O border node
• internal node

-O

F ig u re 3 .3 : In te rn a l a n d b o rd e r n o d es a lo n g m in im a l p a th s to n o d e (4 ,3)

defining recurrences for the analysis computes P2 by averaging across a quadrant

of destinations th a t are h hops away from the source node. Determining P2 as a function

of h facilitates comparisons between the different routing algorithms based on cut-through

probability and average packet latency.

3.2 A nalysis for C ut-Through Probability

The analysis evaluates three adaptive, minimal routing algorithms in a torus network

to study the influence of selection functions on communication performance, as shown in

Table 3.2. In contrast to the random and dimension-ordered selection functions, the diagonal

adaptive algorithm actively strives to improve a packet’s chance of having multiple routing

options a t interm ediate nodes. This can significantly improve the average cut-through

probability pc, particularly in large networks.

3.2.1 R andom and D im ension-O rdered A daptive R ou ting

By considering the likelihood of traveling in the x and y directions, the analysis can

determine S™x for each of the routing algorithms. When x = 0 or y = 0, a packet is a t a

border node and, hence, can only consider one direction, resulting in

S <x,y) ~
1 n = 0

0 n > 0.

If both x and y are non-zero, define a as the probability th a t a packet travels in the re­

direction; if a packet cannot establish a cut-through on either link, we assume th a t the

packet joins the service queue for its first-choice direction. Under the random selection

24.

S e lec tio n F u n c tio n R a n k in g o f x a n d y links
Random Select x and y links with equal probability
Dimension-ordered Prefer x link over y link
Diagonal Prefer direction with most hops remaining

T ab le 3 .2 : S e lec tio n fu n c tio n s fo r a d a p tiv e , m in im a l ro u tin g

function, a = 1/2, since neither direction has preference over the other. However, the

dimension-ordered selection function routes a packet in the a:-direction, unless the x link is

busy and the y link is idle, resulting in a = 1 — p (l — p).

W hen both x and y are non-zero, the source node is an internal node; any other internal

nodes also appear in the routes for (x — 1, y) and (x, y — 1). Thus, for x , y > 0,

!0 if n = 0

a S (x-l,y) + C1 - a)5 (" ,i- i) otherwise-

To average S*x across the quadrant of destination nodes, let S% be the sum of S(Xty^n for

x = 0 ,1 , . . . , h — 1, where h = x -f y. For n > 0,

i= 1 x = \ a : = l
y = h —x

(A - l) - l h - 1

= “ E + (! - «) E s & y
x = 0 x = l

y —(h—l) —x y = : (h - l) - x

If n = 1, both summations evaluate to 1 because S^0y ̂ = 5 '^q) = while all o ther terms

are zero, resulting in S \ = 1. W hen n > 1, = 0, so both sums range over

a; = 1 , . . . , (h — 1) — 1. Thus, for n > 1,

s i = a s ; : ,1 + (i - a) s ; : ; = s ; : } .

Hence, S% = £ £ - 1 = ■ • • = S^_n . Since 5° = 1 for all h > 0, this implies = 1,

for 0 < n < h. Thus, for h-hop packets, routes with 0,1 1 internal nodes are

encountered with equal probability 1/h.

However, note th a t includes the source whenever it is an internal node, even

though a packet cannot actually cut through the source node. Any route with one or more

25

internal nodes has the source as one of these nodes. Removing the source node yields

P[N = n internal intermediate nodes] =

\ if n = 0

£ if n = 1 ,2 , . . . , h — 2

0 if n = h — 1.

Note th a t each packet has a t least one intermediate node on the border, since the packet

has only one routing option for its final hop. Averaging over the intermediate nodes,

h- 1
P 2 = ^ 2 n ■ P[N = n] = | ~ for h > 2 .

n = 0

Hence, the cut-through probability simplifies to

which approaches pc = (1 —p)(l+ p /2) fo r large h. Considering a second outgoing link, when

possible, increases the cut-through probability by nearly a factor of p /2 over the oblivious

routing algorithms. It is interesting to note th a t P2, and hence pc, does not depend on

a. This suggests th a t choosing the first-choice link randomly (instead of using a static

strategy, such as dimension-order routing) does not necessarily improve the likelihood of

encountering internal nodes; on average, both approaches lead the packet to a border node

in the same number of hops.

3.2 .2 D iagonal A daptive R outing

As seen in the previous subsection, capitalizing on multiple shortest paths improves the

likelihood of cut-throughs. Oblivious routing ignored this opportunity, while the random

and dimension-ordered adaptive schemes capitalize on it. To further improve communi­

cation performance, diagonal routing actively creates such opportunities by favoring the

x-direction when x > y and the p-direction when y > x\ when x = p, we assume th a t the

router breaks ties in favor of the x-direction1. Let a equal the likelihood of traveling in the

preferred direction. The packet travels in the alternate direction only when the preferred

Ht can be shown that this assumption does not affect the outcome of the derivation.

26

link is busy and the alternative link is idle, so 1 — a = p(1 — p); since p € [0,1], a > 3 /4 ,

ensuring th a t packets travel in the preferred directions at least three-fourths of the time.

As in the previous section, if x = 0 or y — 0, = 1 and = 0 for all n > 0. For

x ,y > 0,

0 if tc = 0

a S (x,y~l) + (! - y > x , n > 0

. a S (x~-l,y) + (! - a)S (x,}-1) X > V ’n > 0 •

Except for destination (0, h), all destination nodes in the quadrant have at least one internal

node; hence, only the (0 ,h) destination contributes to 5°, resulting in S° = = 1. For

n > 0 and even h,

h —1
n n X "' o n

h — 2 ^ (x,y)
X = 1

y = h —x

^-1 2
= E {“ « < « - .) + (i - «) S (V - ,u) }

X=1
y = h —x

x = h / 2
y = h —x

This simplifies to

Sk = a (ShZi + ^ , , 1 ,) + (1 - - s (T _ ll?)) •

A similar expression holds for odd h , resulting in

S? =
S h -i + (2a ~ i) ^ - i M for even h \ 2 *2 /

+ (2a - l)E V /i ,,_i for odd h .
\ 2 ' 2 >

Note th a t when a = 1/2 these two recurrences both reduce to the analysis for random and

dimension-ordered adaptive routing. Since diagonal routing has a > 3 /4 , the algorithm

increases S% for larger n, since routes with a larger number of internal nodes become more

likely. These recurrences can be used to generate P 2 , as in the previous section.

3.2 .3 Perform ance Com parison

The analytical expressions for pc enable performance comparisons between the oblivious

and adaptive routing algorithms. Figure 3.4 shows the performance of the three algorithms

1.0
O— 0 D ia g o n a l
□ — B P a s s iv e
G — O O bliv ious0.8

-g 0.6

2 0 .4

0.2

0.0
0.0 0.2 0 .4 0.6 0.8 1.0

1.0
O— © D ia g o n a l
□ — B P a s s iv e
G — 0 O bliv ious0.8

■S 0.6

2 0 .4

0.2

0.0
0.8 1.00.2 0 .4 0.60.0

P

(a) h = 5 (b) h = 20

F ig u re 3.4: C u t- th ro u g h p ro b a b ility pc a s a fu n c tio n o f load p

with I = 64 under changing load p, with h = 5 and h = 20 respectively; the “passive”

curve corresponds to the random and dimension-ordered adaptive routing algorithms. At

low loads, packets almost always cut through intermediate nodes, so pc is nearly unity;

in this situation, transmission delay is the main component of packet latency, so all three

algorithms would exhibit similar end-to-end performance. As load increases, the adaptive

schemes outperform the oblivious algorithm by increasing pc.

In Figure 3.4(a), diagonal routing operating at p = 0.5 achieves the same cut-through

probability th a t oblivious routing does a t just p = 0.4. The benefit of diagonal routing is

most evident when the packets travel a large number of hops, as in Figure 3.4(b). To further

illustrate this effect, Figure 3.5 compares the three routing algorithms as h increases, for

fixed values of p. Since cutting through intermediate nodes significantly shortens packet de­

lay, even small increases in pc can translate into significant reductions in end-to-end latency.

Adaptive routing, and especially diagonal routing, can significantly improve performance,

particularly for large networks; these effects are particularly dram atic under non-uniform

traffic patterns, as shown in the next section.

28

1.00
0 — O D ia g o n a l
□ — □ P a s s iv e
G — O O bliv ious0 .9 0

| 0 .6 0

0 .5 0

0 .4 0
2 5

h

1.00
G— G D ia g o n a l a d a p t iv e
B — 0 P a s s iv e a d a p t iv e
G — G O bliv ious0 .9 0

S 0 .8 0

■S. 0 .7 0

0 .6 0

0 .5 0

0 .4 0 20 2 5

h

(a) p = 0.3 (b) p = 0.5

F ig u re 3.5: C u t- th ro u g h p ro b a b ility pc as a fu n c tio n o f h o p -c o u n t h

3.3 Sim ulation R esults

The analytical expressions for pc and average latency estim ate the routing performance,

but some low-level design decisions and inter-node dependencies are difficult to capture

mathematically. Experiments with a discrete-event simulation model provide deeper insight

into the interaction between routing and cut-through switching. To verify the analytical

model, the initial experiments evaluate the router under idealized traffic assumptions; subse­

quent experiments consider how well the routing algorithms perform under the non-uniform

traffic patterns tha t can arise in realistic multicomputer applications.

3.3.1 U niform Traffic

To enable comparisons with the analytical model, the simulation experiments evaluate

a crossbar switch connecting the input ports to unbounded output queues, using the sim­

ulator presented in Chapter 4. Each packet has a one-byte routing header to identify the

destination node in a 16 x 16 torus (16-ary 2-cube) network; hence, the analytical expres­

sions slightly underestimate average at low loads, since the analysis does not include header

processing delay a t each node. The simulation model describes the flow of each packet

through the network, capturing contention for access to the outgoing links and the port to

the local processor. In these preliminary experiments, each node independently generates

29

packets with exponentially distributed inter-arrival times (with I — 64 bytes) and uniform

random selection of destination nodes, following the workload assumptions in Table 3.1.

Figure 3.6 compares the analytical models to the simulation results for packets traveling

live hops in a 16 x 16 torus network. The analytical models closely matches the simulation

results. In Figure 3.6(a), oblivious routing performs slightly better when a router selects

outgoing links in dimension order, choosing the x-direction over the y-direction. Under

dimension-ordered routing, a packet entering a node in one direction generally exits the

node traveling in the same direction. This reduces the likelihood tha t packets from different

incoming links contend for the same output port. As a result, dimension-ordered routing

has a higher cut-through probability and lower average latency, although the analytical

model predicts tha t the dimension-ordered and random selection functions should have the

same performance.

As shown in Figure 3.7, the benefit of dimension-order routing becomes more significant

for larger values of h, since packets travel through more nodes in each direction, changing

dimensions only once [2,106]. In contrast, Figure 3.6(b) shows little difference between the

dimension-ordered and random selection functions under adaptive routing, since the ex tra

routing flexibility is sufficient to resolve these link conflicts. The diagonal algorithm exhibits

the best performance by actively increasing the number of routing options, particularly at

later nodes in a packet’s route; however, diagonal routing does not significantly outperform

the other two adaptive algorithms under uniform traffic loads, as seen in Figure 3.7.

3.3 .2 N on-U niform Traffic

While the analytical model considers a uniform network load, common m ulticomputer

constructs, such as synchronization or multicast operations, induce “hot-spots” of heavily-

utilized nodes and links. Figure 3.8 compares the performance of the three routing algo­

rithm s in a simulated 16 X 16 torus network under non-uniform load. A single “ho t” node

receives 5% of the traffic, while the remaining packets select a destination at random; the

“normal” uniform traffic loads the network to 20% capacity, with the non-uniform traffic

30

800
G— Q D im e n sio n -o rd er ed (sim u la tion)
B — 0 R a n d o m (s im u lation)
 A nalytical

6 0 0

4 0 0

200

0
1.00 .4 0.6 0.80.0 0.2

1.0

0.8

S 0.6

0 .4

G — 0 D im e n sio n -o rd er ed (sim u lation)
G— 0 R a n d o m (sim ulation)
 A nalytical

0.2

0.0 0.8 1.00 .4 0.60.0 0.2
P

(a) Cut-through probability and average latency for oblivious routing

8 0 0

G — 0 D im e n sio n -o rd er ed (s im u lation)
□ — 0 R a n d o m (sim ulation)
 A nalytica l

6 0 0

4 0 0

200

0
0 .40.0 0.2 0.6 0.8 1.0

0.8

« 0.6

0 .4

G— 0 D im e n sio n -o rd er ed (sim u lation)
□ — 0 R a n d o m (sim ulation)
 A nalytical

0.2

0.0,
0.6 0.80.0 0.2 0 .4

P

(b) Cut-through probability and average latency for passive adaptive routing

8 0 0

G— 0 D ia g o n a l (s im u lation)
 A nalytical

6 0 0

§ 4 0 0

< 200

00.0 0.2 0 .4 0.6 0.8 1.0

0.8

•g 0.6

0 .4

G— G D ia g o n a l (s im u lation)
 A nalytical

0.2

0.0 1.00.0 0 .4 0.6 0.80.2
P

(c) Cut-through probability and average latency for diagonal adaptive routing

Figure 3.6: Analytical and simulation performance for h = 5

3000
0 — 0 D ia g o n a l a d a p tiv e
G — G D im e n sio n -o rd er ed a d a p tiv e
13— o R a n d o m a d a p tiv e
• — • D im e n sio n -o rd er ed ob liv iou s
■ — ■ R a n d o m ob liv io u s

-5- 2250

5 1500

00 0.4 0.6 1.00.2 0.8

0.8

■8 0 6

I 0.4
O— © D ia g o n a l a d a p tiv e
G — O D im e n sio n -o rd er ed a d a p tiv e
□ — □ R a n d o m a d a p t iv e
• — O D im e n sio n -o rd er ed ob liv iou s
■ — ■ R a n d o m ob liv io u s

0.2

0.0 0.80.2 0.4 0.6 1.00.0
P

(a) Cut-through probability (b) Average latency

F ig u re 3 .7 : S im u la tio n p e rfo rm a n c e o f ro u tin g a lg o ri th m s (h = 12)

generating a congested region near the hot-spot node. The plots in Figure 3.8 show average

end-to-end latency for packets traveling h hops. For low values of h, normal packets do not

experience significant delay, since most packets do not encounter the congested region.

However, for dimension-ordered oblivious routing, average delay rises steeply as packets

travel further in the network. In contrast, the plots for adaptive routing stay relatively

flat, since packets reduce their average latency by circumventing busy links and nodes. As

h increases, the adaptive algorithms have more routing flexibility, since packets typically

have more internal nodes. This improves the scalability of virtual cut-through switching as

network sizes and packet distances increase. Diagonal routing performs especially well in this

context, since it preserves routing flexibility even as packets near their destination nodes,

clearing congestion near the hot-spot region. Packets destined for “norm al” destinations

avoid the nodes and links near the hot spot, significantly reducing the delay for hot packets

th a t must enter the congested region.

The random and dimension-ordered selection functions exhibit quite different perfor­

mance under hot-spot traffic, in contrast to the expectations of the analytical model. For

the “norm al” traffic, dimension-ordered routing has lower average latency, since packets ar­

riving on different incoming links tend to head to different outgoing links, as in Figure 3.7.

However, the random routing algorithms significantly outperform dimension-ordered routing

for the “ho t” traffic. This occurs because dimension-ordered routing forces most hot-spot

32

320
■ — n R a n d o m ob liv io u s
• — • D lm -ordor o b liv io u s
o — □ R a n d o m a d a p tiv e
<3— O D im -ordor ad a p t iv e
O— O D ia g o n a l a d a p t iv e *

280

W 240
§ 200

§ 160

S? 1 2 0

40

h

140
■ — ■ R a n d o m o b liv io u s
• — • D im -order o b liv io u s
G— □ R a n d o m a d a p t iv e
0 — G D im -order a d a p t iv e
O— O D ia g o n a l a d a p t iv e

120

j8 100

20

h

(a) “Normal” packets (b) “Hot” packets

F ig u re 3 .8 : S im u la tio n p e rfo rm a n c e u n d e r n o n -u n ifo rm , “ h o t- s p o t” tra ffic

packets to enter the hot-spot node on one of the y-direction links; this results in heavy

congestion on the two y-directions links, even though the a;-direction links have a relatively

light load. In constrat, the random selection function better balances the traffic load across

the various links near the hot-spot node. This suggests th a t multicomputer networks could

benefit from support for multiple coexisting routing schemes, each tailored to a specific type

of traffic.

3.4 Inter-N ode D ependencies

Although the simulation results match the expectations of the analytical model fairly

well, the plots in the previous section show consistent performance differences. Unlike

the analytical expressions, the simulation experiments capture the effects of dependencies

between adjacent nodes in the network. This section isolates the effects of the independence

assumption through a detailed study of the analytical and simulation models under oblivious

routing algorithms. Additional experiments show th a t realistic router architectures and

application workloads exacerbate the effects of inter-node dependencies.

33

4.0
■* Simulation

Analytical

£ 3 .0

S 2.0

o.o
1.00.6 0.80.2 0 .40.0

P

0.25

0.20

i g ' 0 .1 5
!o
CO

X >
o£ 0.10

0 .0 5

0.00

Simulation
Analytical

(a) Variance in number of cut-throughs

J M
0 1 2 3 4 5 6 7 8 9 1 0 11

Number of cut-throughs

(b) Number of cut-throughs (p = 0.535)

Figure 3.9: Random oblivious routing in a 16 x 16 torus (h = 12)

3 .4 .1 C ut-T hrough C orrelation

To characterize the impact of the independence assumption, Figure 3.9 considers the

performance of random oblivious routing under the architectural and workload param eters

in Table 3.1. While Figure 3.7 plotted the average values for the cut-through probability

and communication latency, Figure 3.9 considers the distribution of the number of cut-

throughs. As discussed in Section 3.1, the number of cut-throughs should obey a binomial

distribution, where a packet has cut-through probability 1—p a t each of the h—1 intermediate

nodes in its route. As a result,

/
P[c cut-throughs] =

h - 1
(1 ~ P) CPc -h—1—c c = 0 ,1 , . . . , h — 1,

\

with a variance of p(1 — p)(h — 1) in the number of cut-throughs. Instead, the simulated

network experiences greater variability, particularly for moderate values of p. As shown

in Figure 3.9(b), the simulated network has a flatter distribution for the number of cut-

throughs, with heavier tails than the analytical model would suggest.

As a result, the simulated network has more packets th a t experience a large number

of cut-throughs or a small number of cut-throughs. This, in turn , translates into greater

variability in end-to-end packet latency [106], even for an idealized router model. A closer

look a t the simulation d a ta reveals the cause of this variability. Figure 3.10(a) shows

34

1.0
P(cut I cut)

0.8 g o P(cut I buffer)'

o 0.6

g 0.4

0.2

0.0
0.0 0.2 0.4 0.8 1.00.6

G E) P(CUt I cut)

0.8 g— o P(cut I buffer)'

g 0.4

0.2

" 0.0
0.0 0.2 0.4 0.6 0.8

P

(a) Random oblivious routing (b) Dimension-ordered oblivious routing

F ig u re 3 .10: C o n d itio n a l c u t- th ro u g h p ro b a b ility in a 16 X 16 to ru s (h = 12)

the packet cut-through probability, conditioned on the switching decision a t the packet’s

previous hop. In theory, the likelihood of cutting through an interm ediate node should be

independent of the packet’s experience at previous hops in its route. However, Figure 3.10(a)

shows significant variation in the cut-through probability, depending on whether or not

a cut-through occurred on the packet’s previous hop; the middle curve is effectively the

weighted average of the two conditioned plots.

A prior cut-through encourages an additional cut-through, while buffering a packet is

more likely to lead to future packet bufferings. As a result, some packets cut through several

nodes in a row, while other packets consistently buffer at intermediate nodes. At low loads,

this phenomenon increases the likelihood of cut-throughs, since the frequent cut-throughs

perpetuate themselves, while the reverse occurs at high loads. Hence, for small p, the

simulated packets consistently experience slightly more cut-throughs than the analytical

model predicts, while the opposite is true for large p, as seen in Figure 3.6(a). This type of

dependency seems unusual, since random oblivious routing considers exactly one outgoing

link a t each node, irrespective of a packet’s past history.

Correlation in the cut-through probability occurs because in an actual system, as in the

simulator, nodes are not truly independent. In a real network, if a packet buffers a t one

node, then it eventually exits the router behind at least one other packet. This increases

the likelihood th a t the packet’s next outgoing link is busy, too. Likewise, if a packet cuts

35

0.20
*----- * 16-ary 2-cube
©-----© 8-ary 3-cube
g— o4-ary 4-cube

ifc 0 .1 5

Q- 0.10

3 0 .0 5

o.oo
1.0o.o 0.2 0 .4 0.8

P

0.20
*----- * 16-ary 2-cube
o----- © 8-ary 3-cube
g— o4-ary 4-cube

0 .1 5

Q- 0.10

R 0 .0 5

o.oo 0.8 1.00.2 0 .4 0.60.0
p

(a) Random oblivious routing (b) Dimension-ordered oblivious routing

F ig u re 3.11: C u t- th ro u g h c o rre la tio n fo r k -a ry rc-cube to p o lo g ies (h = 6)

through a node, then the link it uses has been idle for some length of time, increasing the

likelihood th a t the packet encounters a light load a t the subsequent node. Although such

inter-node correlations also affect packet-switched networks, the performance of cut-through

networks is much more sensitive to the probability of encountering idle outgoing links. As

shown in Figure 3.10(b), the dependencies between nodes are even more pronounced under

dimension-ordered routing, due to the tighter coupling between incoming and outgoing links

in the same dimension of the network.

3.4 .2 Traffic M ixing

In addition, modern cut-through networks typically employ low-dimensional topologies

th a t limit the mixing of incoming traffic streams; a larger number of incoming and out­

going links would ensure more traffic mixing, reducing the dependencies between adjacent

nodes [70]. Figure 3.11 illustrates this effect by comparing cut-through correlation in three

k-ary n-cube topologies with different dimensions n. The graph plots the difference

P[cut-through | cut-through on previous hop] — P[cut-through | buffering on previous hop]

for packets traveling 6 hops in the simulated networks. In the absence of inter-node de­

pendencies, this metric should equal zero, independent of network load. While the metric

consistently exceeds zero for all three topologies, the 16-ary 2-cube network exhibits a much

36

B B P(CUt I CUt)
g— o P(cut I buffer)

0.8

o 0.6

2 0 .4

0.2

0.0
0 .3 00.10 0 .1 5

P
0.20 0 .2 50.00 0 .0 5

Figure 3.12: Dimension-ordered routing under bit-reversal traffic

stronger dependence on past packet history, particularly under dimension-ordered routing.

Similarly, many common communication patterns, such as scientific perm utations, limit

the interaction of traffic from different incoming links. Figure 3.12 shows the cut-through

performance of dimension-ordered routing under a bit-reversal perm utation, where a packet

travels to the destination node whose binary address is the reverse of the source identifier;

for example, in a 16 x 16 torus, node (3,10) communicates with node (12,5). This generates

a non-uniform traffic load2 as seen by the small peak link utilization in Figure 3.12. Under

this traffic pattern , nodes in a common row (same y coordinate) of the torus communicate

with destinations in the same column (same x coordinate), and vice versa. Consequently,

packets th a t contend for the same outgoing link tend to share several links in common

during the remainder of their routes; as a result, a blocked packet must repeatedly buffer

behind other traffic, significantly reducing the cut-through probability, even a t low network

loads.

The performance of dimension-ordered routing, under uniform and non-uniform commu­

nication workloads, suggests tha t routers can improve network performance by restricting

the mixing of traffic from different incoming links. To illustrate this effect, Figure 3.13

shows the performance of a routing algorithm tha t associates each input link with exactly

one ou tput link, effectively requiring each packet to travel in a single “dimension” for its

entire route. This Hamiltonian-cycle routing decomposes the network topology into link-

2 Since the various parts of the network experience different traffic loads, the experiment focuses on a
single pair of adjacent links; other link pairs show similar cut-through correlation effects.

37

1800
 *----- * Random oblivious
o-----o Dimension-ordered
 •-----• Hamiltonian-cycle

1500

S ' 1200

900

600

300

0.0 0.4 0.6 0.802
P

1.0

0.8

p 0.6

g 0.4

• — • Hamiltonian-cycle
o— o Dimension-ordered
*----- * Random oblivious

0.2

o.o 0.8 1.00.2 0.4 0.60.0
p

(a) Cut-through probability pc (b) Average packet latency

F ig u re 3 .13: P e r fo rm a n c e o f H a m ilto n ia n cycle ro u tin g (h = 12)

disjoint cycles th a t include every node in the system; for example, a 4 x 4 torus (4-ary

2-cube) has four disjoint, unidirectional Hamiltonian cycles, as shown in Figure 3.14. For

the results in Figure 3.13, each packet travels on the cycle with the shortest path to the

destination.

By routing traffic on disjoint cycles, two packets th a t arrive on different incoming links

never compete for access to the same outgoing link; likewise, two packets arriving on the

same incoming link never route to different outgoing links. Consequently, this routing

algorithm has a significantly higher cut-through probability, and much lower latency, than

random and dimension-ordered routing, for the same value of p. In addition, Hamiltonian-

cycle routing facilitates an efficient router implementation by restricting the complexity

of the switch th a t connects the incoming and outgoing links. The reduced connectivity

between links also simplifies the buffer architecture for storing blocked packets, perm itting

the router to place packet queues a t the incoming links without introducing contention

between traffic headed to different outgoing links.

However, Hamiltonian-cycle routing can significantly increase the distance a packet must

travel to reach its destination, unless communicating tasks are mapped to nodes th a t are

near each other in one of the cycles; in Figure 3.13, the Hamiltonian-cycle algorithm has

a much smaller A value than the other two routing schemes, for the same value of p. To

reduce bandw idth requirements, a network could implement a hybrid routing scheme tha t

38

(a) Four unidirectional cycles

outgoing
links

incoming
links

injection -=► reception

(b) Two-dimensional router

Figure 3.14: Hamiltonian-cycle routing in a 4 x 4 torus network

employs dimension-ordered routing for source-destination pairs th a t would have long routes

under Hamiltonian-cycle routing. Alternately, to reduce the length of packet routes, the

application could place communicating tasks on nodes th a t are near each other on one of

the underlying Hamiltonian cycles. Hybrid routing algorithms, coupled with effective task

allocation schemes, could significantly improve cut-through performance and reduce router

complexity by restricting traffic mixing.

3.5 Conclusions and Future Work

This chapter compares oblivious and adaptive routing algorithms with different selec­

tion functions, based on both analytical and simulation models. The analysis determines

packet cut-through probability in torus networks, based on the likelihood th a t a packet has

two routing choices at intermediate nodes in its route. Due to the natural dependencies be­

tween neighboring nodes, analytical performance models can consistently underestim ate or

overestimate cut-through probability and, in turn , other metrics like the mean and variance

of end-to-end packet latency. Modern multicomputer networks employ router architectures

and application workloads th a t exacerbate these correlation effects. This chapter introduces

several research contributions:

39

• Analytical models for k-ary 2-cube topologies: The analysis in Section 3.2 facilitates

the study of routing performance in large torus (k-ary 2-cube) networks common in

modern multicomputers. To determine average cut-through probability, the analysis

exploits the concept of internal and border nodes to formulate a recursion for com­

puting the likelihood th a t a packet has two routing options at intermediate nodes. To

model higher-dimensional topologies, the analysis could extend this notion to represent

nodes th a t have i = 0 ,1 , . . . ,n — 1 routing choices. Although the analysis for diagonal

routing may be intractable, it may be possible to derive the cut-through probability

for random and dimension-ordered adaptive routing in k-ary rc-cube networks.

• Characterization o f inter-node dependencies: The results in Section 3.4 dem onstrate

th a t cut-through switching introduces unique dependencies between adjacent nodes.

By comparing analytical and simulation results, the section characterizes these corre­

lation effects under different routing algorithms, network topologies, and communica­

tion workloads. The simulation experiments show tha t the network policies and traffic

patterns in modern multicomputer exacerbate these dependencies by limiting traffic

mixing. These results can motivate the development of novel routing algorithms and

flow-control policies tha t exploit the natural dependencies between neighboring nodes,

as discussed in Section 3.4.2.

• Task mapping and processor allocation: This chapter shows th a t communication per­

formance depends on the likelihood th a t packets have multiple routing options at

interm ediate nodes, as well as the effects of inter-node dependencies. These observa­

tions, and the quantitative results, can guide the development of new task mapping

algorithms. For example, a packet has greater routing flexibility when its has to travel

one or more hops in each dimension of the underlying topology, instead of traveling

in a single direction; to improve performance, processor allocation schemes can place

communicating tasks on nodes with this issue in mind. Similarly, the task mapping

scheme can exploit inter-node dependencies by placing tasks to minimize traffic mixing

under a given routing algorithm.

40

By comparing analytical and simulation results, this chapter isolates the effects of inter­

node dependencies and characterizes how the independence assumption interacts with real­

istic network topologies, routing algorithms, switching schemes, and traffic patterns. This

chapter focuses on an idealized router model tha t facilitates direct comparisons between

analytical and simulation results. Although this is im portant for verifying the analyti­

cal model, and characterizing the effects of the simplifying assumptions, modern routers

have other architectural features th a t affect performance. More detailed studies of realistic

networks requires greater flexibility in specifying and evaluating router models. The next

chapter presents a flexible and extensible simulation environment for evaluating practical

router architectures under a wide range of communication workloads and network policies.

41

C H A P T E R 4

FLEXIBLE SIM ULATIO N M ODELS FOR EVALUATING

R O U T E R A R C H IT E C T U R E S

Although performance modeling provides a cost-effective way to explore router design

issues, analytical models often require simplifying assumptions th a t degrade the accuracy

of the evaluation. To overcome these limitations, several researchers have developed mul­

ticom puter simulators in the past few years. In contrast to toolkits for evaluating local

and wide area networks [75], these simulators a ttem pt to capture the unique characteris­

tics of m ulticomputer applications and interconnection networks. Execution-driven simula­

tors [11,40,93] typically model the instruction-level operation of applications on particular

parallel machines. O ther simulation tools emphasize multicomputer network architectures,

allowing users to evaluate routing algorithms and switching schemes under various synthetic

traffic patterns [16,62,81]. However, these simulators do not capture the subtle relationship

between router architecture and application communication requirements.

To address the traffic patterns and performance requirements of modern m ulticomputer

networks, this chapter presents a flexible router model and simulation environment th a t can

evaluate systems th a t tailor network policies to application communication workloads. The

pp-mess-sim (point-to-point message simulator) environment provides an extensible, object-

oriented framework for evaluating multicomputer routers [42,102,104]. Implemented in

C + + , pp-mess-sim separates its m ajor components into different classes, representing the

network topology, application workloads, routing-switching algorithms, and the router ar­

42

chitecture. The simulator includes a router model th a t decouples routing, switching, queue­

ing, and arbitration policies to facilitate multifactor experiments th a t can independently

vary each design param eter. This “virtual” router (v-router) model consists of d a ta struc­

tures th a t represent architectural components, as well as simulation events th a t capture

low-level network policies and timing details.

To allow the user to augment the simulator, each pp-mess-sim module consists of a gen­

eral base class and an extensible collection of derived classes. Clean, well-defined boundaries

between the components allows users to extend one pp-mess-sim module w ithout altering

the internal representation of other classes. The sim ulator’s structure facilitates experimen­

tation with flexible router architectures th a t can support multiple classes of traffic sim ul­

taneously. At run time, the simulator can instantiate unique communication workloads,

performance metrics, and routing-switching schemes for each traffic class. The routing al­

gorithm class defines a powerful language which can be used to write a large number of

routing-switching algorithms, independent of the timing characteristics of the underlying

router model. By associating these algorithms with collections of packets, instead of the

router model, the simulator is able to support multiple routing algorithms and switching

schemes simultaneously, with different traffic patterns and performance metrics.

4.1 Simulator Structure

As shown in Figure 4.1, pp-mess-sim’s structure reflects the im portant architectural is­

sues outlined in Chapter 2. The main components are a set of C + + classes supporting: net­

work topologies (N e t) , communication patterns and da ta collection routines (W o rk lo a d),

routing and switching policies (R alg), and particular router models (N o d e), as shown in

Figure 4.1. The arrows in the figure highlight the interaction between the pp-mess-sim com­

ponents. Although network design param eters interact in subtle ways, pp-mess-sim defines

clean and powerful interfaces between the main simulation components, w ithout restricting

the flexibility of the tool. Thus, the simulator can easily incorporate new topologies, routing

43

target node
channel idsWorkload ̂

packet
reception
(data collection)

adjacent
nodes & channels / r o u t in g -

lds of

switching
option

packet
creation
(traffic generation)

node status
(success/failure)

Figure 4.1: Structure of pp-mess-sim

algorithms, router models, traffic patterns, and d a ta collection routines.

The simulator also defines a specification language for composing complex experiments,

with a variety of traffic patterns and network policies. In order to evaluate diverse network

architectures, under complex traffic patterns, pp-mess-sim interprets a high-level language

th a t can represent a wide range of simulation experiments, as shown in Figure 4.2. Input

specification is supported by a lexical analyzer generator and a parser generator, which

generate code th a t is linked with the rest of the simulator during compilation. The input

gram m ar includes blocks for selecting the experiment param eters for each of the other

pp-mess-sim modules. For example, Figure 4.2 specifies an 8-ary 2-cube (8 x 8 torus) with

three virtual channels on each link, carrying a m ixture of two traffic classes with different

communication characteristics, network policies, and performance metrics.

The sim ulator’s W o rk lo a d module encapsulates the details of the traffic generation

and da ta collection by handling all functions related to packet creation and reception. To

construct a wide variety of traffic patterns, pp-mess-sim generates packets from a collection

of independent “tasks,” which are mapped onto individual nodes in the network to represent

application behavior. For example, lines 8-15 of Figure 4.2 instantiate uniform background

traffic (line 20) and a many-to-one “hot-spot” pattern (line 33), with node 0 receiving ex tra

packets from each of the other nodes in the network. For the background traffic class, each

node generates packets from a Poissonian arrival process and a bimodal length distribution;

70% of packets are short (16 bytes), while the remaining 30% are long (512 bytes). The

hot-spot traffic is periodic, with each node generating a 32-byte packet every 300 time units.

44

l - top o lo g y b eg in 26 - p ack ets 2000;
2 - s e l e c t kary-ncube; 27 - drop 200;
3 - s i z e 8; 28 - end
4 - dim ension 2; 29 -

5 - ch an nels 3; 30 - ta sk h o t_ sp o t b eg in
6 - end 31 - a r r iv a l U n iform (300 ,300);
7 - 32 - le n g th U niform (3 2 ,3 2);
8 - node d e fa u lt b eg in 33 - ta r g e t D e s t D is c r e te (1 .0 ,0) ;
9 - ta sk s 2; 34 - rou tin g_sp ec b eg in
io - s e l e c t ta sk h ot_sp ot 1; 35 - r o u tin g w h _ o b liv io u s (0 ,1);
li - end 36 - order dimorder;
12 - 37 - end
13 - node 0 b eg in 38 - h is to r y h is to g r a m (0 ,1000 ,50);
14 - ta sk s 1; 39 - p a ck ets 2000;
15 - end 40 - drop 200;
16 - 41 - end
17 - ta sk d e fa u lt b eg in 42 -
i s - a r r iv a l N eg a tiv eE x p n tl(4 0 0 .0 0); 43 - g en era l b eg in
1 9 - le n g th D is c r e te (0 .7 ,1 6 ,0 .3 ,5 1 2) ; 44 - random seed 1353625084;
20 - ta r g e t NodeUniformO ; 45 - output m ix. o u t ;
21 - rou tin g_sp ec b eg in 46 - er ro r s m ix. e r r ;
22 - ro u tin g w h _ad ap tive(0 ,1 ,2); 47 - r e s u l t s m ix .r e s u lt s ;
23 - order d ia g o n a l; 48 - debug m ix.debug;
24 - end 49 - end
2 5 - h is to r y la te n c y ;

Figure 4.2: Example simulation specification

Flexible composition of tasks can generate complex network workloads, with multiple

traffic classes, while flexible data collection allows the user to define different performance

metrics for each class. The simulator computes end-to-end latency statistics (line 25), such

as the mean, variance, and confidence intervals, for the background traffic, while maintaining

a histogram of packet delay for the hot-spot tasks (line 38). Since the performance of

routing and switching policies vary significantly depending on application communication

characteristics, each task can select from the various routing-switching schemes in the Ralg

module. The hot-spot packets employ dimension-ordered wormhole routing on two virtual

channels (lines 35-36), while the background traffic uses adaptive routing, the diagonal

selection function, and an ex tra virtual channel (lines 22-23) to circumvent congested regions

of the network.

Together with the Workload and Ralg classes, the pp-mess-sim N et module insu­

late the N ode’s event flow from the details of application characteristics and the network

configuration. For example, the Net class encapsulates the specific network topology, by

45

providing an interface for other modules to identify and translate node, link, and virtual

channel identifiers; currently, pp-mess-sim supports k -ary n-cube topologies, square meshes,

and wrapped hexagonal meshes. When a pending N o d e event sends da ta or a flow-control

acknowledgement across an outgoing link, N e t functions spawn the corresponding reception

event in the adjacent router. Each router, then, receives new packets from the W o rk lo a d

and in-transit packets from adjacent nodes, with no dependence on the network topology,

communication patterns, or internal router policies a t other nodes.

4.2 V irtual R outer M odel

By defining strict interfaces between individual parts of the code, pp-mess-sim insulates

the N o d e module from the N e t , R a lg , and W o rk lo a d modules. W ithin this framework,

the v-router (virtual router) N o d e model introduces several useful abstractions for repre­

senting flow control and resource arbitration.

4.2 .1 R ou ter M odel

Figure 4.3 shows the high-level architecture of the v-router; Figure 4.4 shows the corre­

sponding class definition in pp-mess-sim. A packet enters the router from the local injection

port or one of the n incoming links and departs through the reception port or one of the n

outgoing links, where n depends on the network topology. Each physical link multiplexes

traffic for c v irtual channels a t the granularity of a flit cycle, while the injection and reception

ports handle packets on behalf of the nc outgoing and incoming virtual channels, respec­

tively. Although every router design implements its internal policies in different ways, each

device proceeds through common operations to service an incoming packet. The v-router

model decouples these phases to allow simulation experiments to independently vary the

internal routing, switching, queueing, and arbitration policies.

Upon receiving the header flits of an incoming packet, the receiver (RX) decides whether

to buffer, stall, or forward the packet, based on the routing and switching policies and pre­

vailing network conditions. By treating outbound virtual channels as individually reservable

46

input
links

output
links

reception
~port

injection
port

TXRX

PACKET

Figure 4.3: V-router model

resources, the model can invoke a variety of routing and switching schemes through flexible

control over reservation policies. The routing algorithm generates candidate outgoing vir­

tual channels, while the switching scheme determines whether or not an incoming packet

waits to acquire a selected outgoing virtual channel or buffers instead. If the switching

decision requires the packet to buffer a t the current node, the router submits the arriving

packet into the queue.

The d a ta structures in the queue model determine the admission and scheduling of the

buffered packets. When the router tries to enqueue a packet, the queue module either ac­

cepts or rejects this request, depending on the current buffer space and the size of the packet.

Separate from the enqueueing mechanism, the queue model ranks competing packets, de­

term ining which buffered packets can contend for access to the physical links. The v-router

module currently implements first-in first-out queueing at each output link; extensions can

consider other policies, based on packet length, priority, or age, as well as alternative ar­

chitectures, such as input queueing. Separate arbitration policies enable each outgoing link

to select packets from the heads of competing queues. Once a packet reserves an outgoing

virtual channel, it contends with other virtual channels for access to the physical link (TX)

through an arbitration policy, independent of the queue architecture. The model includes

several arbitration policies, including round-robin and priority-driven schemes.

47

class v_router : public Node ■[
// Sizes and identifiers
Nodeld id; // Identifier of node
Devld max_dev_id; // Number of virtual channels

// Virtual channels
VCRX* vc_rx; // Incoming virtual channels (c * n)
VCIN* vc_in; // Injection virtual channels (c * n)
VCTX* vc_tx; // Outgoing virtual channels (c * n)

// Internal interconnections
RXBus rxbus; // Reception bus (c * n slots)
TXBus txbus; // Transmission bus (c * n slots)
CTBus ctbus; // Cut-through bus (2 * c * n slots, for RX and TX)

> ___
Figure 4 .4 : Internal components in the v-router Node model

4 .2 .2 R outer C om ponents

Similar to behavioral hardware description languages, the v-router represents each router

component as a sta te machine, where simulation events trigger each sta te transition. For

example, Figure 4.5(a) shows a sta te machine for an incoming virtual channel. The channel

remains idle until the incoming link signals the arrival of the header flits for a new packet.

After receiving the full packet header, the channel must make a routing-switching decision,

with the help of the Ralg module; this may require the channel to reserve buffer space or

an outgoing virtual channel, as discussed in Section 4.3. Once these resources are available,

the channel can forward the accumulated header bytes, followed by the remainder of the

packet, before returning to the idle state.

Flow Control

Visiting each sta te involves the passage of simulation time, represented by one or more

simulation events. At a lower level, some operations require the virtual channel to interact

with other router components, such as an incoming or outgoing link. A separate sta te m a­

chine can encapsulate the low-level flow control a t each interface, as shown in Figure 4.5(b).

For example, an incoming virtual channel (v ijrx) waits for arriving da ta before forward­

ing the new word to an outgoing virtual channel (or the reception port). However, this

transfer cannot occur until the slave device (v i_ tx) has sufficient buffer space; then, the

idle

| (first header word)

(last header word)

receive_header
data_wait

acquire_resources

(decide to buffer)(decide to cup. (slave /
ready y submit

/b u s cycle

(bus cycle
done) /

(slave not
\ ready)forward_header buffer_header

(done)(done)

buffer_dataforward_data
(slave ready)

(done)(done) submit bus cycle

(a) Receiver sta te machine (b) Bus interface control

Figure 4.5: Node state machines

v i_ rx can request a slot on the bus to forward the word to the v i_ tx . Similarly, the v i_ tx

model consists of a small sta te machine for transm itting words and awaiting flow-control

acknowledgements from the adjacent router.

The simulator models the flow control between router components using a wake-up

queue interface, hiding the internal details of each module. For example, Figure 4.5(b)

shows how an incoming virtual channel remains in the ready_w ait sta te until its slave

device becomes available. To encapsulate the details of the slave device, the v-router allows

the incoming channel to register a pending simulation event in the outgoing channel’s wake-

up queue. Once the outgoing channel becomes available, the simulator drains the wake-up

queue and inserts the entries into the main event queue; then, the simulation event can

execute and notify the incoming channel tha t the slave device has become available, allowing

the channel to transition to the bus_grant_w ait state. The simulator uses a similar wake-

up queue mechanism to notify waiting packets when an outgoing channel becomes eligible

for reservation.

49

class Arbiter {
// Counter variables
short chans_requested; // Total number of channels sharing the resource
short pending_requests; // Number of channels awaiting access to resource
short cycle_time; // Time unit for resource allocation and scheduling

// Registered events
EventPtr* requests; // Array of queued events (size chans_requested)
void submit(ArbitrationId,EventPtr); // Enqueue event and schedule arbitration
void process_events(); // Dequeue and invoke event(s)

1________ I_ _
Figure 4.6; Arbiter class in pp-mess-sim Node models

Resource Arbitration

Similarly, the v-router N o d e model incorporates useful abstractions for representing ar­

bitration for shared internal resources, such as buses. When multiple modules can compete

for access to a resource, each module’s state transitions and delays depend on the arb itra­

tion policy. To insulate each module from these details, the v-router associates an arbiter

with each shared resource. To access to the shared resource, a module registers its pending

simulation event with the arbiter model, instead of the sim ulator’s main event queue; the

arbiter class includes an array r e q u e s ts of pending events, as shown in Figure 4.6. For

example, in Figure 4.5(b), an incoming virtual channel requests access to the bus by sub­

m itting its bus-cycle event to the arbiter; the channel remains in the bus -g ra n t _wait sta te

until the bus arbiter triggers execution of the bus-cycle event.

Separate from the other components, each arbiter schedules arbitration events a t regular

intervals, depending on the speed of the unit; if no virtual channels are awaiting access to the

shared resource, the next subm it operation spawns the next arbitration event. The event

handler p ro cess_ ev en ts implements the arbitration policy, determining which registered

events should be transferred to the main event queue for subsequent execution. This flexible

framework allows users to extend the v-router to include new arbitration policies without

affecting the other simulation modules. In particular, the v-router can instantiate several

different arbiter models, including various demand-slotted buses, physical crossbars, and

virtuai-channel crossbars. Crossbar models can transfer multiple events to the sim ulator’s

event queue in a single arbitration cycle, in contrast to bus models th a t active a single event

50

class Ralg 1
// Construct packet’s initial routing instruction at source or intermediate node
void i_inject_init(PacketPtr, NodePtr, Devld);

// Construct new routing instruction in response to feedback from Node
void incomplete(PacketPtr, NodePtr, Devld);

// Commit final routing-switching decision
void i_commit(PacketPtr, NodePtr, Devld);

>

class Routerlnstr {
RouterOp op; // Candidate switching decision
DevOp* devop; // Ordered list of virtual channels and their status
short num_devops; // Number of devices (virtual channels) to attempt

1___
F ig u re 4 .7 : R a lg ro u tin e s fo r in te ra c t in g w ith th e N o d e m o d e l

in each arbitration cycle. By changing the order the arbiter scans the array of pending

events, the v-router can also evaluate priority-based arbitration schemes.

4.3 R outing and Switching A lgorithm s

Tuning a network design requires evaluating routing and switching schemes under a

variety of arbitration, queueing, and flow-control policies. The simulator facilitates such

experimentation by decoupling the router models (N o d e) from the routing-switching algo­

rithm s (R alg), as shown in Figure 4.1. This functional separation allows the user to easily

prototype new routing-switching algorithms without changing the N o d e models, addi­

tional support in the N e t module insulates the algorithms from the details of the network

topology, as discussed in Section 4.4. By associating a routing-switching algorithm with

each W o rk lo ad task, pp-mess-sim can allow multiple policies to coexist in the simulated

network.

4.3.1 R outing-Sw itch ing Instructions

Although m ulticomputer routers implement routing and switching in various ways, every

router proceeds through common operations to service an incoming packet, as shown in

Figure 4.5(a). W hen a packet arrives from a host injection port or an incoming link the

51

router parses the header flits to make a routing-switching decision. The R a lg module

decouples this decision-making process from the simulation event flow in the N o d e model.

Invoked after packet header collection, the R a lg module interacts with the N o d e using

a series of instructions (R o u te r ln s tr) until they agree upon a suitable routing-switching

decision. This allows the high-level routing-switching algorithm to make its decisions based

on feedback from the N o d e , w ithout low-level knowledge of the router architecture.

Similarly, while the router model must accept commands from the routing algorithm,

the N o d e does not need to know how this algorithm selects the sequence of operations.

The R a lg instruction set embodies basic primitives for constructing routing-switching al­

gorithms. Each instruction consists of a candidate switching decision and an ordered list

of outgoing virtual channels, as shown in Figure 4.7. The list of virtual channels encapsu­

lates the routing options generated by the algorithm, while the candidate switching decision

helps the router decide whether to buffer, stall, drop, or forward the packet. The N o d e

examines each instruction and determines whether or not the output channel(s) can satisfy

the request. The algorithm and the router model continue this request-response handshake

until they agree on a common routing-switching decision.

4.3 .2 V -R ou ter H andler

N o d e simulation events distinguish the architectural and timing details in different

router models. Between successive interactions with R alg , the N o d e may try to reserve

channel or buffer resources to successfully complete the operation; this process may involve

multiple simulation events and, perhaps, advancement in simulation time. For example,

the v-router includes a routing-algorithm handler tha t coordinates interaction with R a lg ,

as shown by the pseudocode in Figure 4.8. An arriving packet invokes this routine in three

scenarios. First of all, when the incoming link receives the packet’s last header flit, the

v-router executes the handler and invokes the R a lg i_ in je c t_ in i t () routine. Then, the

handler executes again when the R a lg returns a new routing-switching instruction upon

invocation of the i_com plete routine.

52

if (packet header has just arrived)
call i_inject_init for the packet;

handler:
// Process instruction
switch (op)

Cut:
// Sequence through the candidate virtual channels
for (i=0; i<num_devops; i++)

if (channel devop[i] is not reserved)
reserve channel devop[i] and register success;
break;

if (all channels are reserved)
register failure;

call i_complete for the packet;
goto handler;

Wait:
// Sequence through the candidate virtual channels
for (i=0; i<num_devops; i++)

if (channel devopCi] is not reserved)
reserve channel devopCi] and register success;
cancel any registered wake-up events for this packet;
call i_complete for the packet;
goto handler;

// All channels are busy, so packet must block waiting for wake-up event
if (all channels are reserved)

register failure;
submit a wake-up event to each candidate channel;
break;

Buffer:
// Sequence through the candidate virtual channels
for (i=0; i<num_devops; i++)

register success;
call i_complete for the packet;
goto handler;

Commit:
// Ralg and Node have agreed on a routing-switching decision
cancel any registered wake-up events for this packet;

______ submit simulation event to start forwarding the packet to buffer or link;
Figure 4.8: V-router interaction with Ralg

53

The third scenario arises when an incoming packet stalls waiting for an outgoing virtual

channel to become available. As discussed in Section 4.2.2, the packet blocks by registering

an event in the virtual channel’s wake-up queue. Later in simulation time, the channel

completes the transmission of its current packet, causing the v-router to drain the wake-up

queue and invoke the handler for the blocked packet. The generality of the R a lg instruction

set allows pp-mess-sim to include other N o d e models with different tim ing properties. For

example, while the v-router model allows a packet to “instantly” reserve an idle virtual

channel, other router architectures may incur delay or contention in acquiring a channel.

These timing details are completely encapsulated in the N o d e , allowing other models to

include additional simulation events to capture internal delays w ithout affecting the routing-

switching algorithms in the R a lg class [102].

4.3 .3 R outing-Sw itch ing A lgorithm s

Using the R a lg instruction set, pp-mess-sim can easily incorporate additional routing

algorithms and switching schemes, without altering the N o d e models. For example, Fig­

ure 4.9 shows a shortest-path routing algorithm th a t tries to buffer a packet when its

outgoing links are busy; if the buffers are full, the incoming packet waits for a link to be­

come available (similar to wormhole switching). To implement this algorithm, R a lg first

asks the N o d e to establish a cut-through along outgoing channel 0 or 1. Upon receiving

the cut instruction, the N o d e module first tries to reserve outgoing channel 0, resorting to

channel 1 if the first link is busy. To acquire a channel, the N o d e module may invoke one

or more simulation events to model internal router delays. If neither a ttem pt is successful,

the R a lg responds with another instruction, asking the router to buffer the packet for later

transmission on channel 0.

The router’s queue architecture determines if the node can accommodate the new packet;

if the router cannot store the incoming packet, the N o d e rejects the buffer instruction. Ul­

timately, the R a lg requests th a t the packet wait until channel 0 becomes available. Even­

tually, a simulation event frees the channel 0, allowing the N o d e to reserve the outgoing

54

destination

source

L buffer,
wait.....

Instructions
•Cut { 0 , 1 }
• B u f f e r {0}
•W ait {0 }

Figure 4.9: Sequence of routing-switching instructions

channel and successfully complete the wait instruction; then, the packet begins transm is­

sion to the next node in its route. The R a lg instruction set enables pp-mess-sim to model

a wide range of routing-switching algorithms, as shown in Table 4.1. The buffer instruction

implements packet switching algorithms, while virtual cut-through schemes employ a com­

bination of cut and buffer, wormhole switching schemes utilize the wait instruction, where

the underlying N o d e model determines the flow-control and arbitration policies.

In addition to traditional switching schemes, sequences of R a lg instructions can gener­

ate hybrid algorithms th a t incorporate aspects of both virtual cut-through and wormhole

switching, such as the example in Figure 4.9. These hybrid switching schemes dynamically

balance the use of channel and memory resources for “storing” blocked packets. For ex­

ample, the h-hop hybrid algorithm in Table 4.1 allows a blocked packet to stall (using the

wait construct) only if the packet spans fewer than h links; otherwise, the blocked packet

buffers a t the interm ediate node, releasing any channel resources [111]. This algorithm

limits channel contention, while still restricting the use of packet buffers.

The R a lg instructions can also implement various routing algorithms by generating

different lists of candidate virtual channels. As shown in Table 4.1, pp-mess-sim includes

several oblivious and adaptive routing algorithms for the different switching schemes. The

sim ulator uses D uato’s theory [44] to construct deadlock-free adaptive routing algorithms

under wormhole switching. Each algorithm requires a minimum number of virtual channels

55

S w itch in g R o u tin g
Packet switching Minimal oblivious

Minimal adaptive
V irtual cut-through Minimal oblivious

Minimal adaptive
Non-minimal adaptive

Wormhole Minimal oblivious
Minimal adaptive
Non-minimal adaptive

Hybrid (h-hop) Minimal oblivious

T ab le 4 .1 : E x a m p le s o f ro u tin g -sw itc h in g sch em es in pp-mess-sim

for deadlock-free routing; the algorithm uses any additional channels to improve network

throughput. The specification file determines how many and which virtual channels are

assigned to the routing algorithm, as shown in lines 22 and 35 of Figure 4.2. The routing

instructions provide flexibility and extensibility, allowing pp-mess-sim users to add new

routing-switching algorithms and experiment with a mixture of policies in the simulated

network.

4.4 W orkload and Topology Support

In multicomputer networks, communication performance hinges on the subtle interac­

tion of routing-switching algorithms with the application traffic pattern and the network

topology. To facilitate a wide range of experiments, pp-mess-sim supports the flexible com­

position of complex communication workloads, with distinct router policies and performance

metrics, on different network topologies.

4.4 .1 C om m unication W orkload

The W o rk lo a d module generates packets from a collection of independent tasks, which

are mapped onto individual nodes in the network to represent application behavior, as

shown in the example in Figure 4.2. Since the performance of routing and switching poli­

cies vary significantly depending on application communication characteristics, each task

56

D is tr ib u t io n D efin itio n
Negative exponential (A) Exponential distribution with mean A
Uniform (a, b) Select integers between a and b with equal probability
Discrete ({p ;,^}) Select l{ with probability pi
Normal (p,cr) Normal distribution with mean p, and standard deviation a
Two-stage normal
(p, /tl,CTi,/X2,02)

Select from normal distribution (/ i i ,o i) with probability p;
otherwise, select from normal distribution (p,2 , 0 2)

(a) P a c k e t le n g th a n d in te ra r r iv a l d is tr ib u tio n s

D is tr ib u t io n D e sc rip tio n
DimensionReversai Source (w , x , . . . , z) selects destination (z , . . . , x , w)
BitComplement Destination node id is the bit-complement of the source id
Bit Reversal Destination node id is the bit-reversal of the source id
HopUniform ({p,}) Select a destination i hops away with probability p,-
NodeUniform Uniform random selection of destination node
Discrete ({rat',Pt}) Select “hot spot” destination node rct- with probability p;

(b) D e s tin a tio n n o d e d is tr ib u tio n s

T ab le 4 .2 : Traffic p a t te r n s in pp-mess-sim

can select from the routing-switching schemes in the R a lg module. In order to simu­

late realistic workloads, pp-mess-sim provides a rich set of packet length, interarrival time,

and destination node distributions1, as shown in Table 4.2. The simulator can generate

complex, non-uniform workloads by selectively mapping tasks onto particular nodes in the

network. Flexible task specification and mapping, combined with diverse traffic models,

enable pp-mess-sim to impose a wide range of communication patterns on the underlying

network.

The W o rk lo a d module has a simple interface to the event flow in the N o d e , facilitating

extensions th a t incorporate new packet generation models. The simulator encapsulates

packet length, interarrival, and destination node distributions through generic functions,

as shown in Figure 4.10. W o rk lo a d schedules one packet creation event for each task on

each node, with the event handler employing the nex t_packet_ tim e() function to submit

1 Each task on each node requires access to random number streams to generate packet lengths, interar­
rival times, and destination nodes. The simulator extends the additive congruential generator (ACG) [72] in
the GNU libgH—I- libraries to provide a multi-threaded generator with a separate random number streams for
each stochastic process in each task. Starting with a single input seed (e.g., line 44 in Figure 4.2), pp-mess-sim
divides the resulting random number stream into consecutive chunks, assigning a separate chunk to each
stochastic process. This significantly reduces correlation between the processes by generating multiple non­
overlapping random number streams [61]. If a process exhausts its chunk, the next unused chunk is allocated
from the original stream.

57

class Task ■[
Taskld id; // Task identifier
Nodeld node; // Node identifier

Random* arrival; // Stochastic process for interarrival times
MTACG* arrivalacg; // Random number stream for arrival times
delta_time next_packet_time(); // Return next packet arrival time

Random* length; // Stochastic process for packet lengths
MTACG* lengthacg; // Random number stream for packet lengths
PacketLength next_packet_length(); // Return next packet length

NodeldRand* target; // Stochastic process for destination node
MTACG* targetacg; // Random number stream for destination node
Nodeld next_packet_target(); // Return next packet destination

unsigned int generated; // Number of task’s packets generated
unsigned int delivered; // Number of task’s packets delivered
unsigned int collected; // Number of task’s packets collected
RoutingAlgPtr r_prog; // Pointer to routing algorithm
HistCollect* history; // History list for data collection

1
Figure 4.10: Workload Task model

the next creation event. Since pp-mess-sim isolates creation times in the task model, the

user can incorporate new packet generation schemes, including m ulti-state models, w ithout

affecting the rest of the simulator. Using these generic functions, pp-mess-sim can easily

be extended to run in a trace-driven mode by simply writing functions which read packet

arrival times, packet lengths, and packet destinations from a file containing application

traces rather than generating the values from distributions.

The simulator provides effective data collection by associating performance metrics with

the task construct, as shown in Figure 4.10. This allows the user to specify a different metric

for each task, as shown in Figure 4.2, to evaluate traffic with diverse performance require­

ments. Since the behavior of the simulated network changes over time, performance metrics

are extremely sensitive to the interval of da ta collection. Accurate measures of steady-state

performance require both a sufficient warm-up period and a reasonable averaging interval.

To prime the network, each task on each node must deliver a certain minimum number of

packets to their destinations before any da ta collection commences. The user may configure

a different number of “warm-up” packets for each type of task through the “drop” field in

58

M e tr ic D e sc rip tio n
Latency Mean, max, variance, and confidence intervals for packet latency
H istogram (a, 6, c) Histogram of packet latency with c bins over range [a, b\
Cut-through statistics Histogram of packet cut-through history
NuH No data collection

T ab le 4 .3 : H is to ry - lis t d a ta co llec tio n ro u tin e s in pp-mess-sim

the task specification (as in lines 27 and 40 of Figure 4.2).

After all tasks have completed their required “warm-up” packets, each task accumulates

performance da ta until the required number of its packets have completed service (as spec­

ified in lines 26 and 39 of Figure 4.2); the task continues to generate packets until every

task in the network has completed data collection. During the d a ta collection phase, each

task accumulates performance statistics as its packets reach their destinations. The sim­

ulator provides an extensible mechanism for collecting packet statistics for each task. As

a packet travels through the simulated network, the router model maintains a history list

th a t records significant events during the packet’s journey. For example, if a packet cuts

through an interm ediate node, the location, time, and event (e.g., c u t) are appended to the

history list. When the packet arrives at its destination node, the data collection routine

processes the list to extract the desired performance metrics.

W ith help from the N o d e modules, the data collection routines can accumulate a wide

variety of performance statistics, as shown in Table 4.3. The tim estam ps on the history

records indicate the end-to-end latency of the packet, as well as the components of this

delay. Logging the event type allows the collection routines to evaluate the routing and

switching decisions th a t occurred for each packet. Existing history collection routines cap­

tu re end-to-end delay statistics, packet cut-through probabilities, and latency histograms.

For example, in Figure 4.2 the ho t_spo t tasks capture a histogram of latency d a ta to esti­

m ate the probability distribution of packet delay (line 38), while the d e f a u l t tasks collect

basic latency metrics (line 25), including the mean, max, variance, and confidence intervals.

Since performance may vary with communication distance, these routines also maintain

separate statistics based on the number of hops a packet travels. Tasks may also select

59

a null collection routine; this avoids accumulating unnecessary performance da ta for any

“background” traffic in the system. The history collection mechanism also allows for simple

extensions for additional performance metrics to study specific research issues. For example,

Chapter 3 used statistics on packet cut-through history to investigate the effects of inter­

node dependencies on the performance of virtual cut-through switching. Adding customized

entries to the history list can create a fairly detailed list, allowing the collection routines to

reconstruct the behavior of the packet and the network.

4.4 .2 N etw ork Topology

While some routing algorithms depend on a particular topology, most schemes require

only high-level information about the various output links a t each node. To facilitate

simulation experiments th a t vary network topology, the pp-mess-sim N e t class, as shown in

Figure 4.11, includes functions which encapsulate the labeling scheme used to num ber each

node, link, and virtual channel in the network; derived classes implement the numbering

schemes for the k -ary n-cube, square mesh, and hexagonal mesh topologies. To decouple the

routing-switching algorithms from the network topology, the N e t class includes functions

th a t generate a list of possible directions for a packet to travel. For example, given the

current node and the packet’s destination, N e t identifies which output links lie on a minimal

path; in Figure 4.9, N e t returns the link set {0,1}. Alternatively, N e t can determine which

outgoing links would deflect a packet away from a shortest-path route.

Since routing performance often depends on the order the router considers the output

links, N e t includes functions for ranking the candidate outgoing links. These selection

functions , coupled with the R a lg routing-switching instructions, enable pp-mess-sim and the

v-router to model a wide range of communication policies on different network topologies.

For example, in line 36 of Figure 4.2, the ho t_spo t traffic is assigned dimension-ordered

routing, whereas the d e f a u l t traffic employs the diagonal selection function, as described

in Table 3.2. In addition to these two options, and the random selection function, N e t can

rank outgoing links according to network congestion, giving preference to links w ith fewer

60

class Net {
unsigned int total_nodes; // Total number of nodes
unsigned int chan_per_link; // Number of virtual channels per link
unsigned int diameter; // Diameter of the topology
Dimension edge_dimension; // Dimension of the topology
Direction max_direction // Number of links per node
OffsetVec* get_offset(NodeId,Nodeld); // Compute relative address of a node
Nodeld** hops; // Table for HopUniform distribution

// Selection functions
Direction* dimension_order(), random_order(), min_congestion(), diagonal(),

nonmin_dim_order(), nonmin_random(), nonmin_min_congestion();

// Neighbor and direction functions
Nodeld neighbor_via_dir(Nodeld, Direction), neighbor_via_dev(Nodeld, Devld);
Devld neighbor_dev_via_vnet_and_dir(Nodeld, VNet, Direction);
Devld neighbor_dev_via_dev(NodeId,Devld);
Direction dir_via_dev(Devld), reverse_dir_via_dir(Direction);

// Destination node distributions
Nodeld bit_reverse(NodeId), bit_complement(Nodeld), node_uniform(),

dimen_reverse(Nodeld), dimen_rotate(NodeId, unsigned int);
1___

Figure 4.11; Internal components in the Net class

busy virtual channels [32]; this balances traffic load amongst the outgoing links, reducing

contention and packet delay.

In addition to supporting routing-switching algorithms, N et also insulates the Node

and Workload modules from the details of the network topology. As shown in Figure 4.11,

Net includes a set of neighbor functions to identify adjacent nodes. W hen a pending Node

event sends d a ta or a flow-control acknowledgement across an outgoing link, these neighbor

functions identify the node, link, and virtual channel th a t should receive this information, as

shown in Figure 4.1; this allows a transmission event in one node to spawn the corresponding

reception event in the adjacent router. Coupled with the support in Ralg, these mapping

functions decouple the Node models from the labeling scheme in the N et class. This

facilitates simulation experiments tha t evaluate a router design under different network

topologies.

In addition to the neighbor and direction functions, the Net module includes rou­

tines th a t assist Workload in generating traffic patterns. M apping parallel applications

across multiple nodes results in unique communication workloads th a t depend on the net-

61

work topology. In order to capture the communication behavior of scientific applications,

pp-mess-sim can select packet destination nodes from several common perm utations, such as

m atrix-transpose (dimension-reversal), bit-complement, and bit-reversal, as shown in Ta­

ble 4.2(b). Since these distributions depend on the underlying numbering scheme for each

topology, the N e t class includes functions to compute a packet’s destination, based on the

source node. For example, W o rk lo a d can invoke N e t ’s dimens io n jre v e rs e () function to

return the id of the node whose dimension coordinates are the same as the given node, but

in the reverse order. The N e t module also includes a hops table, used by the W o rk lo a d

model to construct a the hop_unif orm distribution.

4.5 R outing Experim ents

The flexibility of the v-router model and the pp-mess-sim environment facilitate a wide

range of simulation experiments evaluating multicomputer router designs. This paper

presents an experiment th a t dem onstrates the utility of flexible routing by comparing obliv­

ious and adaptive routing under two traffic patterns. A second experiment capitalizes on

the sim ulator’s flexibility to evaluate a network th a t supports two routing algorithms si­

multaneously. Chapter 3 and Chapter 5 include additional experiments evaluating routing

and switching, respectively.

4.5.1 R ou ting E xperim ent

Traffic patterns significantly im pact the performance of routing algorithms, as shown

in Figure 4.12. This experiment evaluates an 8 X 8 square mesh of v-router N o d e s carry­

ing 16-flit packets. The plots compare the performance of oblivious and adaptive routing

under wormhole switching and the dimension-ordered selection function; experiments with

virtual cut-through switching show the same qualitative trends. The adaptive algorithm is

a fully-adaptive minimal-path routing scheme tha t requires two virtual channels per link

to prevent network deadlocks [44]; in these experiments, both routing algorithms employ a

pair of virtual channels to enable fair performance comparisons. The oblivious dimension-

62

150.0
© — O W orm hole DimOrder
□ — □ W orm hole MinPath

■o 100.0

50.0

0.0,
0.60.0 0.2 0.4

Unk Utilization
0.8

150.0
O— © W orm hole DimOrder
□ — ©W orm hole MinPath

■O 100.0

50.0

o-e-

0.0,
0.60.2 0.4

Unk Utilization
0.0

(a) Poisson arrival process (b) Bursty arrival process

Figure 4.12: Comparing routing algorithms under wormhole switching and
bit-complement traffic

order routing algorithm uses the ex tra virtual channel to reduce contention between packets

traveling on the same link [31].

Contrary to intuition, oblivious routing consistently outperforms adaptive routing in

Figure 4.12(a). In an 8 X 8 square mesh, the bit-complement perm utation requires source

node (c, d) to communicate with node (7 — c, 7 — d). As a result, all packets must eventually

cross both the middle row and the middle column of the mesh, irrespective of the routing

algorithm. Dimension-order oblivious routing tends to avoid the center of the network,

where the middle row and column meet, by exhausting the rc-direction before routing a

packet in the y-direction. In contrast, adaptive algorithms try to avoid the heavily-congested

middle column (or row) by routing packets to more lightly-loaded rows (or columns); this

ultimately pushes traffic closer to the congested center of the network. A local decision at

one node causes a packet to travel a lightly-loaded link into a more congested region.

In addition, the ex tra routing flexibility provided by adaptive algorithms allows source

nodes to inject more packets, further increasing contention a t the middle of the network.

Hence, in some situations, restricted routing flexibility can effectively limit the overuse of

network resources. However, this effect varies with the network load and the underlying

63

traffic pattern , as shown in Figure 4.12(b). This experiment considers bursty traffic, in con­

trast to the traditional Poissonian packet arrival process in Figure 4.12(a). The source nodes

generate bursty traffic using a two-stage normal distribution of packet interarrivals [57].

Packet interarrivals stem from two independent normal distributions, with different means,

as shown in Table 4.2(a); sources randomly select 80% of interarrivals from the distribution

with the small mean.

In Figure 4.12(b), the applied traffic load (x-axis) changes by varying the large mean,

keeping the small mean fixed at 10 cycles. This generates relatively small packet interarrival

times within a burst to capture the transmission of a multi-packet message or a handful

of related messages. Figures 4.12(a) and (b) exhibit similar trends at high loads, but

bursty traffic limits the effectiveness of static routing at low network loads since packets in

a burst are queued awaiting transmission. The adaptive algorithm helps dissipate bursts

by capitalizing on multiple paths between each source and destination, thus reducing the

queueing delay at the sending node.

4.5 .2 Tailoring E xperim ent

The sim ulator’s R a lg instructions and N e t selection functions enable multi-factor ex­

periments th a t study the interaction of routing algorithms and selection functions [50,105].

For routers which support multiple routing schemes, these results can serve as a guide

for selecting an appropriate routing algorithm based on the application workload. In a

multi-user environment, where multiple applications execute a t the same time, supporting

multiple routing schemes simultaneously can significantly improve performance. For exam­

ple, Figure 4.13 plots results from an experiment th a t mixes bit-reversal and bit-complement

traffic in an 8 X 8 square mesh with wormhole switching. To protect the traffic classes from

each other, the network devotes two virtual channels to each traffic class on each link; this

ensures th a t heavy load in one class does not deny service to packets in the other class.

The graphs show average packet latency for both traffic patterns, under increasing bit-

complement load; the bit-reversal pattern remains fixed a t a link load of 0.12. As shown

64

200.0
G — ©Tailored
□ — □ Both Static
0 — 0 Both Adaptive

~ 150.0

1 100.0

50.0

0.0
0.400.10 0.20 0.30

Link Utilization

400.0
G— ©Tailored
□ — □ Both Static
0 — 0 Both Adaptive

350.0

~ 300.0

& 250.0

B 200.0

S’ 150.0

100.0

50.0

0.0 *—
0.10 0.30

Unk Utilization
0.40

(a) Bit-reversal traffic (b) Bit-complement traffic

F ig u re 4 .13: A v e ra g e la te n c y u n d e r tra ffic m ix ing

in Figure 4.13(a), the bit-reversal traffic has poor performance when both tasks are forced

to use the static routing algorithm. Bit-reversal performance improves significantly when

both tasks employ diagonal minimal-path routing, but this configuration degrades the bit-

complement performance, as shown in Figure 4.13(b). The bit-complement traffic has low

average latency under static dimension-ordered routing, independent of the algorithm as­

signed to the bit-reversal traffic. The network performs best when it tailors the routing

policies to the application traffic patterns.

The cooperation between the pp-mess-sim components facilitates experiments th a t per­

mit multiple routing-switching schemes to coexist in the underlying network. The R a lg

support enabled packets to invoke different routing and switching schemes while the W o rk ­

lo ad module generated the communication patterns and collected the performance statis­

tics. Run-time construction of the internal N o d e policies enabled the v-router to vary the

number of virtual channels and the routing algorithms, while the N e t transparently handled

the details of the square-mesh topology. This synergy results in a flexible and extensible

environment for specifying and evaluating modern multicomputer router architectures.

65

4.6 Conclusions and Future Work

Evaluating multicomputer router designs requires a flexible simulation framework. The

object-oriented pp-mess-sim environment provides a toolkit for studying different network

topologies, routing-switching policies, and router models, under a variety of communica­

tion workloads. Although every router design implements its internal policies in different

ways, each device proceeds through common operations to service an incoming packet.

The v-router model decouples these phases to allow pp-mess-sim experiments to indepen­

dently vary the internal routing, switching, queueing, and arbitration policies. This chapter

presents several research contributions:

• Simulation o f flow-control and arbitration policies: The v-router N o d e module intro­

duces useful abstractions for representing flow control and resource arbitration policies

in router architectures. The v-router models the flow control between router compo­

nents using a wake-up queue interface, hiding the internal details of each module.

This is particularly useful for modeling wormhole switching, which requires a blocked

packet to wait for an outgoing virtual channel to become available. Similarly, the

v-router supports multiple link arbitration policies by representing shared resource

with an arbiter model th a t can register pending simulation events; a separate handler

invokes an arbitration policy to determine which event(s) to activate.

• Routing-switching instructions: To decouple network policies from the router model,

the R a lg module represents routing-switching algorithms as a sequence of instruc­

tions, independent of the timing details of the N o d e model. This policy-mechanism

split facilitates the development of new routing-switching algorithms, as well as fair

comparisons between different router models, as discussed in Section 4.3.

• Task model and workload composition: The simulator introduces a novel task con­

struct th a t associates routing-switching policies and performance metrics with the

underlying traffic patterns, instead of the router model. To represent the commu­

nication characteristics of multicomputer applications, tasks can invoke a variety of

66

distributions for selecting packet lengths, interarrival times, and destination nodes, as

described in Section 4.4.1. Flexible task specification and mapping, combined with

diverse traffic models, enable pp-mess-sim to impose a wide range of communication

patterns on the simulated network.

• History-list data collection: To support a wide variety of performance metrics, the

simulator introduces an extensible mechanism for accumulating packet statistics for

each task, as described in Section 4.4.1. W ith basic support from the N o d e model,

the W o rk lo a d module maintains a history list th a t records significant events during

a packet’s journey. W hen a packet arrives a t its destination node, the d a ta collection

routine processes the list to extract the desired performance metric(s) for the task.

• Performance evaluation o f router architectures and network policies: The v-router

model and the pp-mess-sim environment enable a broad range of experiments th a t eval­

uate m ulticomputer router designs. As a result, several studies have used pp-mess-sim

to evaluate N o d e models under various routing-switching schemes, network topolo­

gies, and application workloads. In particular, recent research work exploits the sim­

ulato r’s ability to model networks th a t support multiple routing-switching schemes

simultaneously [48-50,103,104,107]. In addition to experiments with the v-router

N o d e model [50,102,104,107], pp-mess-sim has been instrum ental in evaluating the

Programm able Routing Controller [42,48,49,103, 111], described further in C hapter 5.

The sim ulator’s flexibility and extensibility stem from a careful definition of the N e t,

W o rk lo a d , R alg , and N o d e modules, as shown in Figure 4.1. These components en­

capsulate im portant design param eters in multicomputer networks, while the interfaces

represent the subtle interaction between network topologies, communication workloads and

performance metrics, routing-switching algorithms, and particular router models. The four

main components, and their well-defined interfaces, result in an extensible environment

th a t enables independent enhancements to the simulator. Capitalizing on this flexibility,

the next chapter investigates router architectures th a t tailor routing-switching policies and

67

arbitration schemes to address the requirements of emerging real-time applications.

68

C H A P T E R 5

SW ITC H IN G POLICIES IN REAL-TIM E

M U LTIC O M PU TER S

Although m ulticomputer router design has traditionally emphasized providing low-latency

communication, modern parallel applications require additional services from the intercon­

nection network [24,27]. M ultimedia and real-time applications, such as scientific visual­

ization and process control, necessitate control over throughput, worst-case latency, and

delay variance (jitter) [51,122]. While time-constrained traffic necessitates deterministic or

probabilistic bounds on throughput or end-to-end delay, best-effort service often suffices for

the remaining traffic. For example, control or audio/video messages may m andate explicit

performance guarantees, while d a ta transfer may tolerate delay variability in exchange for

improved average latency.

Handling this m ixture of disparate traffic classes affects the suitability of architectural

features in multicomputer routers. While the router alone cannot satisfy application per­

formance requirements, design decisions should not preclude the system from providing

necessary guarantees. Servicing time-constrained traffic requires control over network ac­

cess time and bandwidth allocation, so the router should bound the influence best-effort

packets have on these param eters. The software, or even the hardware, can then utilize these

bounds to satisfy quality-of-service requirements through packet scheduling and resource al­

location for communicating tasks. Additionally, the design should not unduly penalize the

performance of best-effort packets.

69

Research in networking considers techniques for the effective mixing of multiple traffic

classes in a communication fabric [5,9]. However, the design trade-offs for parallel m a­

chines differ significantly from those in a heterogeneous, distributed environment. The

shorter, wider communication links in most parallel machines result in much lower packet

transmission delays, compared to distributed systems. These low-latency channels broaden

the spectrum of flow-control schemes th a t can be implemented efficiently. Although multi­

com puter routers can employ low-level flow control and cut-through switching schemes to

reduce average delay, these techniques often impinge on control over packet scheduling and

bandw idth allocation. O ther multicomputer router features, such as FIFO queueing and

adaptive routing, further complicate the effort to provide predictable or guaranteed service.

Using the v-router model and pp-mess-sim environment from Chapter 4, this chapter

investigates how switching schemes affect the network’s ability to accommodate the perfor­

mance requirements of time-constrained and best-effort traffic. W ith a careful selection of

routing-switching policies, coupled with fine-grain link arbitration, multicomputer routers

can provide low average latency for best-effort packets without compromising the pre­

dictability of time-constrained communication [103,107]. To realize this scheme, the chap­

ter considers the design and evaluation of a Programmable Routing Controller [38,42,103]

th a t can implement packet switching for time-constrained traffic and wormhole switching

for best-effort packets, with separate virtual channels for each traffic class. Additional ex­

periments with the v-router model consider the utility of priority-based link arbitration to

further insulate time-constrained traffic from best-effort packets.

5.1 Evaluation o f Switching Schemes

In defining how packets flow through the network, the various switching schemes use

different resources a t nodes along a packet’s route. This section evaluates the ability of

wormhole, virtual cut-through, and packet switching to meet different performance require­

ments in multicomputer routers. Each switching scheme is best-suited for certain traffic

classes with particular characteristics and performance requirements. To effectively sup-

70

400

| 200

< 100
G— © W o r m h o le sw itch in g
□ — □ P a c k e t sw itch in g
A — A Virtual cu t-th rou gh

0 1— 0.000 0 .0 0 5 0.010 0.0200 .0 1 5

A pplied load p er n o d e (p a c k e ts /c y c le)

Figure 5.1: Average packet latency

port multiple traffic classes, the router should bound both network access time and the

service rate for time-constrained packets. These bounds provide necessary abstractions for

the scheduling and mapping of communicating tasks. Best-effort packets, on the other hand,

may forego these restrictions in exchange for lower latency and reduced buffer requirements.

5.1.1 A verage Latency

The usage of memory and link resources determines both average packet latency and

the influence an in-transit packet can have on other network traffic. Figure 5.1 shows the

average end-to-end packet latency for the three switching schemes as a function of the packet

injection rate. Using pp-mess-sim’s v-router model, the experiment evaluates an 8 X 8 torus

(8-ary 2-cube) network with dimension-ordered routing, where each node generates 16-flit

packets with exponentially distributed interarrival times and uniform random selection of

destination nodes. Virtual cut-through and packet switching utilize one virtual channel for

each physical link and store buffered packets in output queues in the router. Wormhole

packets employ deadlock-free routing on a pair of virtual channels [29] with demand-driven,

round-robin arbitration amongst the virtual channels; each virtual channel can hold a single

flit pending access to the output link.

Even with this small amount of memory resources, wormhole switching performs well

a t low loads, slightly outperforming virtual cut-through switching. At high loads, virtual

71

cut-through and packet switching performance gradually merge, since high network uti­

lization decreases the likelihood th a t an in-transit packet encounters an idle output link.

By removing blocked packets from the network, virtual cut-through and packet switching

consume network bandwidth proportional to the offered load. In contrast, a blocked worm­

hole packet stalls in the network, effectively dilating its length until its outgoing channel

becomes available. As a result, wormhole networks typically utilize only a fraction of the

available network bandwidth [31,86], as seen by the early saturation of the wormhole plot

in Figure 5.1. At higher loads, this effect enables packet switching to outperform wormhole

switching, even though packet switching introduces buffering delay a t each hop in a packet’s

route.

Although including additional virtual channels can improve the throughput of a worm­

hole network [31], channel contention still creates dependencies amongst packets spanning

multiple nodes. The sensitivity of wormhole networks to slight changes in load, includ­

ing short communication bursts [32], complicates the use of wormhole switching for time-

constrained traffic. Still, wormhole switching is particularly well-suited to best-effort pack­

ets, due to its low latency and minimal buffer space requirements. While flow-control costs

limit the utility of wormhole switching in distributed systems, parallel machines can dy­

namically transfer or stall wormhole flits w ithout complicating buffer allocation for other

traffic. Section 6.1 describes how, with effective flow-control and arbitration schemes, best-

effort packets can employ wormhole switching without compromising the performance of

the guaranteed traffic.

5.1 .2 P red ictab ility

While the router should provide low average latency for best-effort packets, guaranteed

communication requires predictable network delay and throughput. Figure 5.2(a) shows

the coefficient of variation for packet latency for the three switching schemes, where the

coefficient of variation measures the ratio of the standard deviation to the mean [61]. Since

latency characteristics vary depending on the distance between source-destination pairs, the

graph shows results only for packets traveling a fixed distance in the network. While each

72

200

1 5 0
co
To
©? 100
c5TJe
3u*
{? 5 0
©

3 G — G W o rm h o le sw itc h in g
□ — □ P a c k e t sw itc h in g
A — A Virtual cu t-th rou gh

0.0200 .0 0 5 0 .0 1 0 0 .0 1 5

A p plied lo a d p e r n o d e (p a c k e ts /c y c le)
0.000

1.2
G -— €> W o rm h o le sw itch ing
□ — 0 P a c k e t sw itch in g
A — A Virtual cu t-through

s 0.9

0.6

S 0 .3

0.0
0.0200.010 0 .0 1 50 .0 0 5

A p plied lo a d p e r n o d e (p a c k e ts /c y c le)
0.000

(a) Coefficient of variation (b) Standard deviation

F ig u re 5.2: V a ria b ility o f p a c k e t la te n c y (5 -hop p a c k e ts)

source generates traffic with uniform random selection of destination nodes, data collection

for Figure 5.2 includes only packets traveling exactly five hops. Hence, the plots illustrate

the variability in end-to-end latency, indicating the potential for jitte r in a stream of packets

w ith a common source and destination.

Across all loads, packet switching incurs the least variability since packets deterministi-

cally buffer at interm ediate nodes. Coupled with static routing, a packet-switched transfer

utilizes deterministic memory and channel resources a t fixed nodes and links along the

route. This greatly simplifies the allocation and scheduling of resources throughout the

interconnection network. In contrast, virtual cut-through switching im parts variable load

on memory resources a t intermediate nodes by basing the buffering decision on the status

of the ou tpu t links. A t high loads, virtual cut-through and packet switching merge, as in

Figure 5.1, due to the decreasing likelihood of packet cut-throughs.

Wormhole switching, though conceptually similar to virtual cut-through, has quite dif­

ferent characteristics. Since a blocked wormhole packet never buffers, it im parts no memory

demands on interm ediate nodes, bu t instead consumes unpredictable amounts of channel

bandw idth. In Figure 5.2(a), wormhole latency variation increases dramatically with rising

load, even under a moderate injection rate below the saturation throughput. Below the sa t­

uration load, wormhole switching results in a low average latency, as seen in Figure 5.1, but

73

a portion of the traffic incurs much larger delay due to pockets of channel contention and the

small am ount of buffer resources. In addition to a large coefficient of variation, wormhole

traffic suffers a large standard deviation of packet latency, as shown in Figure 5.2(b).

Depending on the number of active virtual channels at each link, flits within a single

wormhole packet may encounter different service rates. Demand-driven arbitration for

access to the physical links, while im portant for low average latency, complicates the effort

to export a predictable flit or packet service ra te to a static or run-time scheduling algorithm.

Although adding virtual channels can reduce contention [31], and hence average latency,

additional virtual channels also increase the potential variability in the number of flits

awaiting access to each physical link, further complicating the flit service rate. Hence,

although wormhole switching can provide low average latency a t low cost, bounding worst-

case delay for time-constrained packets requires additional mechanisms.

5.1 .3 Packet Scheduling

The router must have control over packet scheduling and bandwidth allocation to en­

sure th a t time-constrained packets meet their latency and bandwidth requirements. Vir­

tual cut-through and packet switching generate physical queues in each node, facilitating

priority-based scheduling amongst competing packets. In contrast, stalled wormhole pack­

ets form logical queues spanning multiple nodes. These decentralized queues complicate

packet scheduling. Still, a wormhole router can influence resource allocation through its

virtual channel reservation and arbitration policies. Priority assignment of virtual channels

to incoming packets improves predictability; adaptive arbitration policies can further reduce

variability by basing flit bandwidth allocation on packet deadlines or priority [31,77,78,120].

While assigning priorities to virtual channels provides some control over packet schedul­

ing, this ties priority resolution to the number of virtual channels. If packets a t different

priority levels share virtual channels, the application must account for blocking time when

a lower priority packet holds resources needed by higher priority traffic. Although adding

more virtual channels can improve priority resolution, this also incurs increased latency

74

overhead and im plementation complexity for the router [4], In addition, the router must

enforce the multiple priority levels a t its injection and reception ports to avoid unpredictable

stalling at the network entry and exit points.

Providing separate buffers for each priority level is effective for coarse-grain priority

assignment, bu t this approach incurs significant cost for fine-grain resolution. W ith packet

queues a t each node, the router can effectively utilize fine-grain priorities, such as deadlines,

to assign access to ou tpu t links [5,63]. By buffering packets a t each node, packet switching

enables the router to schedule traffic to provide latency or bandwidth guarantees [63], as

shown by the router architecture in Chapter 6. For example, suppose a time-constrained

packet enters an interm ediate node well in advance of its deadline. The router may wish

to detain this packet, even if its outgoing link is available, to avoid unexpectedly overload­

ing the subsequent node. The next section considers mechanisms for supporting packet

switching for time-constrained traffic, while perm itting best-effort packets to capitalize on

low-cost, low-latency cut-through switching schemes.

5.2 R outer A rchitectures for Traffic M ixing

Best-effort and time-constrained traffic have conflicting performance goals th a t compli­

cate interconnection network design. The effective mixing of time-constrained and best-

effort traffic hinges on controlling the interaction between these two classes. In particular,

best-effort packets cannot consume arbitrary amounts of link or buffer resources while time-

constrained packets await service. Fine-grain arbitration between the traffic classes allow

time-constrained and best-effort packets to share network bandwidth without sacrificing the

performance of either class.

5.2.1 Tailoring Sw itching Schem es

As seen in Section 5.1, wormhole and packet switching exercise complementary resources

in the interconnection network, with wormhole switching reserving virtual channels and

packet switching consuming buffers in the router. Hence, the combination of wormhole

75

switching for best-effort traffic and packet switching for time-constrained communication

enables an effective partitioning of router resources. However, since the traffic classes share

network bandwidth, the router m ust regulate access to the physical links to control the

interaction between the two classes. Otherwise, a blocked wormhole packet can delay the

advancement of time-constrained traffic, even when the time-constrained traffic does not

share any links with the stalled packet.

The router can regulate the interaction between traffic classes by assigning best-effort

and time-constrained packets to separate logical networks. In this approach, the router

divides each physical link into multiple virtual channels, where some virtual channels carry

best-effort packets and the rest accept only time-constrained traffic. V irtual channels pro­

vide an effective mechanism for reducing the interaction between packets while still allowing

traffic to share network bandwidth [30,35,43,73,95]. Exporting the virtual channel abstrac­

tion to the injection and reception ports further prevents intrusion between packets a t the

network entry and exit points [43,67,95]. This ensures th a t time-constrained and best-

effort traffic have separate logical resources through the entire path from the source to the

destination node.

V irtual networks, coupled with appropriate policies for each traffic class, enable the

router to limit the resources consumed by best-effort communication to ensure sufficient

buffer space and link bandwidth for time-constrained packets. By tailoring the routing,

switching, and flow-control policies for each virtual network, multicomputer routers can sup­

port traffic classes with conflicting performance requirements. Packets on separate virtual

networks interact only to compete for access to the physical links and ports. Under fine-

grain multiplexing of virtual channels, this bounds network access time for time-constrained

packets, independent of the am ount or length of best-effort packets. The communication

software, or hardware, can then build on these underlying abstractions to provide various

services, such as connection-oriented communication with latency or bandwidth guarantees.

Fine-grain flow control on the wormhole virtual network enables best-effort flits to capitalize

on slack link bandwidth left unclaimed by time-constrained packets.

76

Programmable Routing Controller Network InterfaceHost interface

C R C

Unit
Routing
EngineMemoryBuffer

Memory

(1 MByte) 3 NIRXs
(\ 4 links)

Memory
R e serv a tio n
S ta tu s U n it

Control
Interface

Time
Stamp

Unit C R C

UnitControl

3 TFUs
(x 4 links)

3 NITXs
(x 4 links)To/from host (via VM E bus)

Figure 5.3: Programmable Routing Controller

5 .2 .2 Program m able R ou ting C ontroller

W ith proper hardware support, real-time systems can capitalize on multicomputer

switching schemes and flow-control policies to accommodate the performance requirements

of time-constrained and best-effort traffic. For example, the Programmable Routing Con­

troller (PRC) [37,38,42,43,103], shown in Figure 5.3, is designed to implement programmable

routing-switching schemes for best-effort traffic, while facilitating host control over schedul­

ing and resource allocation for time-constrained communication. Designed to reside on the

host processor’s private memory bus, the PRC has direct access to a packet buffer and

provides the host with a memory-mapped control interface. The PRC architecture has

been implemented as an application-specific integrated circuit using the Verilog hardware

description language and the Epoch silicon compiler [37,38].

The router coordinates bidirectional communication with up to four neighboring nodes,

with three virtual channels on each unidirectional link, with transparent support for times-

tam ping and CRC (cyclic redundancy code) error detection. The PRC exploits concurrency

amongst the virtual channels and provides fair, fine-grain arbitration a t the memory and

network interfaces. The twelve NITXs (network-interface transm itters) provide low-level

control of packet transmission, while the twelve NIRXs (network-interface receivers) coor­

dinate packet reception. The host transm its a packet by feeding page tags to one of the

77

twelve TFU s (transm itter fetch units), where each page tag includes a memory address

and the number of words to transm it. Similarly, the host processor supplies each NIRX

with pointers to free pages in the buffer memory for use by arriving packets. The network

interface components communicate over the CTBUS (cut-through bus), a demand-slotted,

time-divisioned multiplexed bus th a t provides fair service to the incoming and outgoing

v irtual channels.

For flexibility in selecting network policies, each incoming link has a dedicated pro­

gram m able routing engine for implementing routing-switching policies for in-transit traffic.

The PRC trea ts the outbound virtual channels (NITXs) as individually reservable resources,

allowing the device to support a variety of routing and switching schemes through flexible

control over channel allocation policies. Upon receiving the header bytes of an incoming

packet, the routing engine decides whether to buffer, stall, forward, or drop the packet.

The microprogrammable routing engine bases its routing-switching decision on the incom­

ing virtual channel, the arriving header, and prevailing network conditions. By downloading

different microcode routines for each NIRX, the routing engines can tailor the low-level com­

m unication policies of each virtual channel to address the requirements of best-effort and

time-constrained traffic.

5.3 Perform ance Evaluation o f Traffic M ixing

The pp-mess-sim environment includes a cycle-level model of the PRC th a t captures the

details of flow control, resource arbitration, and microcode execution [102,104]. Experi­

ments with the PRC model show th a t segregating best-effort wormhole traffic from time-

constrained packet-switched traffic can accommodate the performance requirements of both

classes. Additional experiments with the v-router model consider the effects of using priority

arb itration to improve the predictability of the time-constrained communication.

5.3 .1 Traffic M ixing on th e PR C

Figure 5.4 shows the interaction of time-constrained and best-effort packets in an 8 X 8

square mesh of PRCs. Both traffic classes generate 16-flit packets with a node-uniform dis-

78

4000
G— o Wormhole switching
b— 0 Packet switching

w 3 0 0 0

| 2000

< 1000

0 .0 0 0 2 0 .0 0 0 4
A p plied w o r m h o le lo a d (p a c k e ts /c y c le)

0 .0 0 0 60.0000

4000
G -----o Wormhole switching
□-----a Packet switching

•5T 3 0 0 0

o 2000

< 1000

0 .0 0 0 60 .0 0 0 4
A p plied w o r m h o le lo a d (p a c k e ts /c y c le)

0.00020.0000
A p plied w o r m h o le

(a) Packet-switching period of 1000 cycles (b) Packet-switching period of 1500 cycles

Figure 5.4: Average latency of time-constrained and best-effort traffic shar­
ing a single virtual channel on each link

tribution of destination nodes and dimension-ordered routing. The best-effort packets have

exponentially distributed interarrival times, while time-constrained packets are generated

in a periodic fashion. Figure 5.4 plots the average latency of the best-effort and time-

constrained traffic when both classes share a single virtual channel on each physical link.

The graphs plot the average latency for both traffic classes as a function of best-effort traffic

load for a fixed injection rate for time-constrained packets; Figure 5.4(a) and Figure 5.4(b)

consider time-constrained traffic with periods of 1000 and 1500 flit cycles, respectively.

The increase in best-effort load has deleterious effects on the time-constrained traffic, since

stalled best-effort packets block the forward progress of time-constrained packets.

The intrusion of the best-effort traffic is particularly noticeable in Figure 5.7, which

plots the standard deviation of packet latency for the time-constrained traffic as a function

of the best-effort wormhole load. The router can improve performance by increasing the

number of virtual channels on each link, as shown in Figure 5.5. W ith a pair of virtual

channels, bo th the best-effort and time-constrained traffic can achieve higher throughput

and lower delay variance, since the additional virtual channel provides ex tra flexibility for

bypassing blocked best-effort packets. As a result, both traffic classes achieve a much higher

79

4000
e — o Wormhole switching
ta— a Packet switching

w 3 0 0 0

<5 2 0 0 0

< 1000

0.0000 0 .0 0 0 5 0 .0 0 1 0 0 .0 0 1 5
A p plied w o r m h o le lo a d (p a c k e ts /c y c le)

4000
g o Wormhole switching
B— □ Packet switching

§ 2000

< 1000

0 .0 0 0 5 0 .0 0 1 0
A p plied w o r m h o le lo a d (p a c k e ts /c y c le)

0 .0 0 1 50.0000

(a) Packet-switching period of 1000 cycles (b) Packet-switching period of 1500 cycles

Figure 5.5: Average latency of time-constrained and best-effort traffic shar­
ing two virtual channels on each link

peak throughput in Figure 5.5 than in Figure 5.4. Still, under heavy best-effort load, the

time-constrained traffic has high average latency and delay variance.

In contrast, time-constrained packets have much better performance under heavy best-

effort load when the network partitions the traffic classes onto separate virtual channels,

as shown in Figure 5.6. In this configuration, channel contention on the best-effort virtual

network does not impede the forward progress of time-constrained packets, since blocked

wormhole packets temporarily stall in their own virtual network instead of depleting physi­

cal link or buffer resources. This permits the time-constrained packets to have low average

latency and delay variance, even when the best-effort virtual channels are saturated. How­

ever, segregating access to the virtual channels can hurt best-effort performance, as shown

by the lower peak throughput for the wormhole traffic in Figure 5.6, relative to Figure 5.5.

Still, separating the traffic classes significantly improves the predictability of the time-

constrained communication, while perm itting best-effort traffic to capitalize on any excess

link bandw idth.

80

4000
g— e Wormhole switching
g— a Packet switching

•s- 3 0 0 0

<5 2 0 0 0

< 1000

0 .0 0 0 0 0 .0 0 0 2 0 .0 0 0 4 0 .0 0 0 6 0 .0 0 0 8 0 .0 0 1 0 0 .0 0 1 2

4000
g— o Wormhole switching
o— □ Packet switching

3 0 0 0

2000

1000

0 ■ 1 ■ 1 1 ■ 1 ■ 1 ■---
0 .0 0 0 0 0 .0 0 0 2 0 .0 0 0 4 0 .0 0 0 6 0 .0 0 0 8 0 .0 0 1 0 0 .0 0 1 2

A p plied w o r m h o le lo a d (p a c k e ts /c y c le) A p plied w o r m h o le lo a d (p a c k e ts /c y c le)

(a) Packet-switching period of 1000 cycles (b) Packet-switching period of 1500 cycles

Figure 5.6: Average latency of time-constrained and best-effort traffic on
separate virtual channels on each link

1200
o— © Sharing 1 channel I
A— A Sharing 2 channels
* - — * Separate channels& 9 0 0

6 0 0

3 0 0

0.0000 0 .0 0 0 4 0 .0 0 0 8 0.0012 0 .0 0 1 6

&

atn

1200
©— © Sharing 1 channel
A— A Sharing 2 channels
* * Separate channels

9 0 0

6 0 0

3 0 0

0 ---
0.0000 0 .0 0 0 4 0 .0 0 0 8 0.0012 0 .0 0 1 6

A p plied w o r m h o le lo a d (p a c k e ts /c y c le) A p plied w o r m h o le lo a d (p a c k e ts /c y c le)

(a) Packet-switching period of 1000 cycles (b) Packet-switching period of 1500 cycles

Figure 5.7: Standard deviation of packet latency for time-constrained traffic

81

5.3.2 T ighter B ounds for T im e-C onstrained Packets

Although the separate virtual networks limit the interaction between the traffic classes,

the arbitration for access to the physical link still permits an active best-effort virtual

channel to increase delay for time-constrained packets. In Figure 5.6 and Figure 5.7, this

is seen by the increase in the mean and standard deviation of latency for packet-switched

traffic in the presence of a heavier load of wormhole traffic; for example, in the bottom

curve in Figure 5.7(b), the standard deviation varies from 92.7 cycles (under low best-effort

load) to a high of 218.6 cycles (when the best-effort virtual network is saturated). More

significantly, round-robin arbitration amongst the virtual channels varies the service rate

for the time-constrained packets; in the worst case, time-constrained traffic receives only

half of the link bandwidth.

The router can further minimize the intrusion on time-constrained traffic by imposing

priority arbitration between the virtual networks, where time-constrained packets always

receive service ahead of best-effort packets. For a time-constrained packet, this effectively

provides flit-level preemption of best-effort traffic across its entire path through the network.

In contrast to the results in Figures 5.4- 5.7, assigning priority to time-constrained traffic

removes any sensitivity to the best-effort load. As a result, a time-constrained packet travels

a t the same rate through each link in its journey, independent of the number of active best-

effort virtual channels. Building on this abstraction, a higher-level scheduling algorithm can

allocate resources based only on the worst-case requirements of the time-constrained traffic,

while still allowing best-effort traffic to dynamically consume any unused link bandwidth.

However, priority arbitration can exact a heavy toll on the best-effort packets, particu­

larly a t higher loads, as illustrated by Figure 5.8 which evaluates an 8 x 8 torus of v-router

nodes carrying 16-flit packets with separate virtual channels for the two traffic classes.

This graph shows the average latency of best-effort wormhole packets in the presence of

three different packet-switching (PS) injection rates under both round-robin and priority

arbitration for the physical links. In contrast to Figure 5.8(a), Figure 5.8(b) shows signif­

icant degradation in the performance of best-effort packets, since the strict priority-based

82

400
G — 0 0 . 0 0 0 P S lo a d
O— 0 0 .0 1 0 P S lo a d
* — * 0 . 0 1 5 P S lo a d

3 0 0

5 200

< 100

0.0100.002
A p plied w o r m h o le lo a d p er n o d e (p a c k e ts /c y c le)

0 .0 0 4 0 .0 0 6i 0 .0 0 8
(p a c k e ts /c y c le)

0.000

400
G— 0 0 . 0 0 0 P S load
O 0 0 . 0 1 0 P S load
* — * 0 . 0 1 5 P S load

•ST 3 0 0

© 200

< 100

0 .0 0 2 0 .0 0 4 0 .0 0 6 0 .0 0 8
A p plied w o r m h o le lo a d p er n o d e (p a c k e ts /c y c le)

0.0100.000

(a) Round-robin arbitration (b) Priority arbitration

F ig u re 5.8: A v e rag e w o rm h o le la te n c y u n d e r d iffe re n t p a c k e t sw itc h in g loads

scheme restricts the forward progress of wormhole traffic. Even in the absence of livelock,

lengthy blocking of wormhole flits increases contention and delay in the best-effort virtual

network. Chapter 6 addresses this problem by perm itting best-effort traffic to claim link

bandwidth ahead of some time-constrained traffic, as long as each time-constrained packet

is still guaranteed to receive service by its deadline.

5.4 Conclusions and Future Work

Emerging parallel real-time and multimedia applications impose diverse communica­

tion requirements on multicomputer interconnection networks. The conflicting performance

goals of best-effort and time-constrained traffic affect the suitability of routing, switching,

and flow-control schemes. Traditionally, real-time systems have employed packet switching,

coupled with packet scheduling algorithms, to achieve predictable communication perfor­

mance; however, in tightly-coupled parallel machines, this approach unduly penalizes the

best-effort traffic. As shown in this chapter, low-level control over routing and switch­

ing, coupled with fine-grain arbitration, enables m ulticomputer routers to effectively mix

time-constrained and best-effort communication. This chapter introduces several research

contributions:

83

• Characterization o f switching schemes: The simulation experiments and discussion

in Section 5.1 characterize wormhole, virtual cut-through, and packet switching, in

term s of their ability to support the performance requirements of best-effort and

time-constrained communication. Packet switching, combined with static routing,

consumes predictable bandw idth and buffer resources, making the scheme well-suited

to time-constrained traffic. In contrast, wormhole packets can stall in the network,

consuming an unpredictable amount of link bandwidth while blocking the advance­

ment of other traffic. Still, the small average latency and minimal buffer requirements

make wormhole switching ideal for best-effort communication.

• Traffic mixing with virtual networks: To address the conflicting performance require­

ments of best-effort and time-constrained communication, Section 5.2 proposes a

scheme th a t perm its best-effort traffic to employ wormhole switching, w ithout com­

promising the predictability of time-constrained communication. By separating best-

effort and time-constrained traffic onto separate virtual channels, a router can insulate

time-constrained traffic from the contention between best-effort packets. Fine-grain,

demand-driven arbitration for each link and injection/reception port, ensures th a t

both traffic classes can capitalize on the available bandwidth resources.

• Evaluation o f router arbitration policies: The Programmable Routing Controller, with

its flexible support for multiple routing-switching schemes, provides an effective p la t­

form for evaluating the proposed scheme. The experiments in Section 5.3 dem onstrate

the benefits of assigning best-effort wormhole traffic and time-constrained packet-

switched traffic to separate virtual channels. W ith priority arbitration, the router can

completely insulate time-constrained packets from the best-effort communication, at

the expense of increasing average latency for the best-effort traffic. C hapter 6 ad­

dresses this lim itation by allowing best-effort traffic to receive service ahead of some

time-constrained packets, when possible.

84

The effective mixing of best-effort and time-constrained traffic requires a combination of

low-level hardware support and higher-level protocols. This chapter has investigated effec­

tive switching schemes th a t enable the development of such higher-level protocols. Effective

arbitration and flow-control policies enable the router to export bounded values for network

access delay, packet service time, and throughput for time-constrained traffic, even in the

presence of best-effort flits. Hardware or software protocols can then build on these abstrac­

tions to allocate communication resources and schedule time-constrained packets. The next

chapter presents a router architecture tha t integrates low-level routing-switching policies

with packet scheduling to provide end-to-end performance guarantees for time-constrained

traffic.

85

C H A PT E R 6

R EAL-TIM E R O U T E R A R C H IT E C T U R E

Time-constrained and best-effort traffic have conflicting performance goals th a t com­

plicate network design. To improve predictability for time-constrained packets, router ar­

chitectures can isolate the two traffic classes and prioritize access to network resources,

as discussed in C hapter 5, However, this can significantly degrade the average perfor­

mance of best-effort packets and does not necessarily provide explicit end-to-end delay

guarantees for time-constrained packets. Ultimately, bounding worst-case latency requires

prior reservation of link and buffer resources, based on the application’s anticipated traffic

load [5,125,126]. Under this traffic contract, the network can provide end-to-end per­

formance guarantees through effective link-scheduling and buffer-allocation policies. This

chapter presents a real-time router design th a t handles a wide range of throughput and delay

requirements by implementing the real-time channel [63] abstraction for packet scheduling.

A real-time channel is a unidirectional virtual connection between two nodes, with a

source traffic specification and end-to-end delay bound; separate param eters for delay and

bandwidth perm it the model to accommodate a wider range and larger number of connec­

tions than other disciplines [125], a t the expense of increased implementation complexity.

At run-tim e, the network guarantees end-to-end performance through a combination of

bandw idth regulation and deadline-based packet scheduling a t each link, as shown in Fig­

ure 6.1. W hen a connection temporarily exceeds its traffic contract, the router delays the

early time-constrained packets to avoid buffer overflow at the next node in the route. In

8 6

Bandw idth Regulation Deadline-Based Scheduling
iCC

,co

early packets

m

a

earliest
deadline

first

on-tim e packets

Figure 6.1: Bandwidth regulation and packet scheduling for connections
a , w

addition, bandwidth regulation of the time-constrained traffic permits best-effort packets

to access the link ahead of any early time-constrained traffic. This can significantly im­

prove average best-effort performance without compromising the worst-case latency of the

time-constrained packets.

Implementing bandwidth regulation and deadline-based scheduling in software would

impose a significant burden on the processing resources at each node and would prove too

slow to serve multiple high-speed links. This software would have to sort packets by deadline

for each outgoing link, in addition to scheduling and executing application tasks. W ith

high-speed links and tight timing constraints, real-time parallel machines require hardware

support for communication scheduling. An efficient, low-cost solution requires a design

th a t integrates this run-time scheduling with packet transmission. Hence, we present a

chip-level router design th a t handles run-time packet scheduling, while relegating non-real-

tim e operations (such as admission control and route selection) to the protocol software.

In contrast to existing designs, the real-time router tailors network routing, switching,

arbitration, and flow-control policies to the conflicting requirements of best-effort and time-

constrained traffic, as discussed in Section 6.1.

Section 6.2 describes the real-time channel model for communication in point-to-point

networks, while Section 6.3 discusses the router’s support for run-time scheduling of time-

constrained packets. To reduce hardware complexity, the architecture shares packet buffers

and sorting logic between the router’s multiple output links. The router overlaps commu­

87

nication scheduling with packet transmission to maximize utilization of the network links.

The design limits the complexity of the link scheduler by bounding the range of packet

deadlines and handling the effects of clock rollover. Section 6.4 describes the router imple­

m entation, using the Verilog hardware description language and the Epoch silicon compiler.

Verilog simulations dem onstrate th a t the design satisfies the performance goals of both tra f­

fic classes in a single-chip solution. Section 6.5 concludes the chapter with a discussion of

future research directions.

6.1 M ixing Best-Effort and Tim e-C onstrained Traffic

Best-effort and time-constrained traffic have conflicting performance goals th a t compli­

cate network design, as discussed in Chapter 5. As a result, the real-time router architecture

has separate control and data path for the two traffic classes, as shown in Figure 6.2; solid

lines denote the flow of packet data , while dashed lines indicate control information. To

insulate the local processor from packet scheduling, the design has separate injection ports

for time-constrained and best-effort traffic, while the router coordinates access to a shared

reception port and the four outgoing links. Careful selection of router policies, coupled

with fine-grain link arbitration, enables time-constrained and best-effort packets to share

network bandwidth without sacrificing the performance of either class.

6.1 .1 Sw itching

To ensure th a t time-constrained packets meet their delay requirements, the router must

have control over bandwidth and memory allocation. In most real-time systems, time-

constrained communication consists of 10-20 byte exchanges of command or sta tus infor­

mation [97]. Consequently, our design restricts time-constrained traffic to small, fixed-size

packets, as shown in Table 6.1; this bounds network access latency and buffering delay while

simplifying memory allocation in the router. To ensure predictable consumption of link and

buffer resources, time-constrained traffic employs store-and-forward packet switching. By

buffering packets at each node, packet switching allows each router to independently sched-

8 8

ule packet transmissions to satisfy per-hop delay requirements, as discussed in C hapter 5.

However, this approach unduly penalizes the performance of best-effort traffic. Most

modern parallel machines employ cut-through switching schemes for lower latency and re­

duced buffer space requirements. In the real-time router, best-effort traffic employs worm­

hole switching switching for low latency and reduced buffer space requirements. Instead of

storing entire best-effort packets a t intermediate nodes, the router simply includes small flit

buffers to hold a few bytes of a packet from each input link; inter-node flow control stalls

further transmission of the packet until this buffer space is available. This perm its best-

effort traffic to use variable-size packets, to reduce or even avoid packetization overheads,

without increasing buffer complexity in the router.

6 .1 .2 A rbitration

By cutting through interm ediate nodes, best-effort packets can avoid unnecessary buffer­

ing delay. However, these wormhole packets can stall in the network for an unpredictable

am ount of time, delaying the advancement of other packets heading for different destina­

tions. The effective mixing of time-constrained and best-effort traffic hinges on control­

ling the interaction between these two classes, as discussed in C hapter 5. In particular,

best-effort packets should not consume arbitrary amounts of bandw idth resources while

89

best-effort

time-constrained

Packet
Memory

; Connection ;
. T a b l e . J

A
control! interface

Scheduling
Logic :

- -> —>

—>

Figure 6.2: Real-time router architecture

T im e- C o n s tra in e d B e s t-E ffo rt
S w itch in g Packet switching Wormhole switching
P a c k e t size 20 bytes Variable length
L in k a r b i t r a t io n Deadline-driven Round-robin on input links
R o u tin g Table-driven multicast Dimension-ordered unicast
B u ffe rs Shared output queues Flit buffers a t input links
F low c o n tro l Rate-based Flit acknowledgements

Table 6.1: Architectural parameters in real-time router design

time-constrained packets await service. To control the interaction between the two traffic

classes, the real-time router divides each link into two virtual channels; a single bit on each

link differentiates between time-constrained and best-effort packets, as shown in Figure 6.3.

Each link also includes an acknowledgement bit for flow control on the best-effort virtual

channel.

In contrast to the PRC architecture in Section 5.2.2, the real-time router incorporates

arbitration policies th a t address the performance requirements of best-effort and time-

constrained traffic. Each wormhole virtual channel performs round-robin arbitration on

the input links to select an incoming best-effort packet for service. By sequencing through

the incoming links, round-robin arbitration ensures th a t arriving packets receives service in

a fair and timely manner; in addition, round-robin schedulers are relatively simple to imple­

ment. For time-constrained traffic, the packet-switched virtual channel schedules on-time

packets based on their deadlines, as discussed in Section 6.2. Priority arbitration amongst

the virtual channels tightly regulates the intrusion of best-effort traffic on time-constrained

packets. This effectively provides flit-level preemption of best-effort traffic whenever an

on-time time-constrained packet awaits service, while perm itting wormhole flits to consume

any excess link bandwidth. The link transm its best-effort flits ahead of any early time-

constrained packets.

6 .1 .3 R outing

As part of establishing a real-time channel, the network reserves link bandw idth and

buffer space along a fixed path between the source and destination nodes; the chosen route

depends on the resources available at various nodes and links in the network. Consequently,

90

data b y te \ ------->■
strobe/enable--------- s- \ \—1-/~—=»-

virtual channel i d H»- J j A"3*"
flit acknowledgement J M -------- / -

Figure 6.3: Link encoding in real-time router

the real-time router maintains a routing table, indexed on the connection identifier of the

arriving time-constrained packet, as shown in Figure 6.4(a); Section 6.3 describes how the

controlling processor can edit this table as part of a connection establishment protocol. Since

a node may wish to send information to a collection of destination nodes (i.e., m ulticast),

the router can forward an incoming time-constrained packet to multiple outgoing links; this

facilitates efficient, timely communication between a set of cooperating nodes.

In contrast, best-effort traffic does not require resource reservation along packet routes.

Instead, the real-time router implements dimension-ordered routing, a shortest-path scheme

th a t completely routes a packet in the ^-direction before proceeding in the y-direction to the

destination. Dimension-ordered routing avoids packet deadlock in a square mesh [29] and

also facilitates an efficient im plementation based on x and y offsets in the packet header,

as shown in Figure 6.4(b); the offsets reach zero when the packet has arrived a t its desti­

nation node. The router could improve best-effort performance by implementing adaptive

wormhole routing, with additional virtual channels to avoid deadlock, at the expense of

increased implementation complexity [4,87]. In particular, non-minimal adaptive routing

would enable best-effort packets to circumvent links with a heavy load of time-constrained

traffic.

6.1 .4 Buffer A rchitecture

The real-time router includes a packet memory for storing time-constrained traffic await­

ing access to the outgoing links; in contrast, blocked best-effort packets stall in the network.

The router queues time-constrained packets a t the output ports to avoid the throughput

lim itations of input queueing [118]; this permits each output link to select a packet for trans­

mission amongst all time-constrained traffic buffered in the router. The reception port and

91

x offset
connection id

y offsetl{m) + d
length

d a ta bytes (18)
data bytes

(a) Time-constrained (b) Best-effort

F ig u re 6 .4 : P a c k e t fo rm a ts in re a l- tim e r o u te r

four ou tpu t links share a single packet memory to maximize usage of the available buffer

space. To accommodate the aggregate bandwidth of the live input and live output ports,

the router stores packets in 10-byte chunks, with demand-driven round-robin arbitration

amongst the ports, as shown in Figure 6.5. As shown in Figure 6.2, each port includes

n o m inal buffer space to avoid stalling the flow of da ta while waiting for bus access to the

packet memory. Similarly, each port includes two small flit buffers to perm it continuous

transm ission of wormhole packets in the absence of link contention.

Similar to many shared-memory switches in high-speed networks [118], the router main­

tains a pool of unused memory locations to assign to arriving time-constrained packets.

Initially, this idle-address FIFO includes every location in the memory. An incoming packet

retrieves an address from this FIFO; upon packet departure, the router returns the location

to the idle-address pool. To avoid buffer overflow or packet loss, a real-time channel reserves

sufficient buffer slots a t each node in its route, as described in Section 6.2. Although the

ou tpu t ports share a single packet memory, the connection establishment procedure can

logically partition the memory by limiting the number of packet buffers dedicated to con­

nections on each outgoing link; otherwise, one link could reserve the bulk of the memory

slots, limiting the chance of establishing real-time channels on the other outgoing links.

By implementing a physically shared memory, the router permits the protocol software to

balance the trade-offs between buffer partitioning and complete sharing to enhance future

channel admissability.

92

idle-address FIFO
 <=-

input
ports

address^

data

packet memory

10 bytes

output
ports

F ig u re 6.5: B u ffe r a rc h i te c tu re fo r tim e -c o n s tra in e d tra ffic

6.2 R eal-T im e Channels

Real-time communication requires reservation of bandwidth and buffer resources, cou­

pled with packet scheduling a t the network links. The real-time channel model [63] provides

a useful abstraction for bounding end-to-end network delay for time-constrained packets,

under certain application traffic characteristics, w ithout compromising the performance of

best-effort packets.

T raffic p a ra m e te r s : A real-time channel is a unidirectional virtual connection th a t tra ­

verses one or more network links. Since time-constrained communication is typically peri­

odic, or nearly periodic, in real-time systems, each connection is characterized by its mini­

mum tem poral spacing between messages (lmin) and maximum message size (5max bytes).

To perm it some variation from purely periodic traffic, a connection can generate a burst

of up to B max messages in excess of the periodic restriction Im-m. Together, these three

param eters form a linear hounded arrival process [26] th a t governs a connection’s traffic

generation at the source node.

E n d - to -e n d d e lay b o u n d : In addition to these traffic param eters, a connection has a

bound D on end-to-end message delay, based on the minimum message spacing lmin- At

the source node, a message mj generated at time ft- has a logical arrival time

ti if i = 0

m ax {4 (m ,_ i) + I ^ n , f,} if i > 0.

By basing performance guarantees on these logical arrival times, the real-time channels

93

Traffic D a ta S tru c tu r e
Q u e u e 1 On-time time-constrained packets Priority queue (by deadline £(m) + d)
Q u e u e 2 Best-effort packets First-in-first-out queue
Q u e u e 3 Early time-constrained packets Priority queue (by logical arrival time £(m))

T ab le 6 .2 : L ink sch ed u lin g q u eu es in re a l- tim e ch an n e ls m o d e l

model limits the influence an ill-behaving or malicious connection can have on other traffic in

the network. The run-time link scheduler guarantees th a t message mi reaches its destination

node by its deadline £o(mi) + D.

P e r -h o p d e lay b o u n d s : The network does not admit a new connection unless it can

reserve sufficient buffer and bandwidth resources without violating the requirements of

existing connections [63,129]. A connection establishment procedure decomposes the con­

nection’s end-to-end delay bound D into local delay bounds dj for each hop in its route

such th a t dj < Imm and J2j dj - Based on the local delay bounds, a message m; has a

logical arrival time

£j(m{) = t j - i (m i) + d j - i for j > 0

a t node j in its route, where j = 0 corresponds to the source node. Link scheduling ensures

th a t message m i arrives a t node j no later than time f?j_i(m,) + dy-i, the local deadline

a t node j — 1; however, message m,- could reach node j earlier, due to variations in delay at

previous hops in the route.

R u n - t im e link sch ed u lin g : Each link schedules time-constrained traffic based on logical

arrival times and deadlines in order to bound message delay without exceeding the reserved

buffer space a t intermediate nodes. The scheduler, which employs a multi-class variation

of the earliest due-date algorithm [80], gives highest priority to time-constrained messages

th a t have reached their logical arrival time (i.e., £j(m{) < t), transm itting the message

with the smallest deadline £j(m{) + dj, as shown in Table 6.2. If Queue 1 is empty, the

link services best-effort traffic from Queue 2, ahead of any early time-constrained messages,

thus improving the average performance of best-effort traffic w ithout violating the delay

requirements of time-constrained communication; in the real-time router, Queue 2 is a

logical queue of wormhole packets th a t may span multiple nodes. Queue 3 holds early time-

94

S chedu ling A lg o rith m
if (queue_l is non-empty)

transm it packet from head of queue.l (minimum I + d)\
else if (best-effort flits await service)

transm it best-effort flits;
else if ((queue-3 is non-empty) and (head has £ — t < h))

transm it packet from head of queue_3 (minimum £)',
else

do not transm it any packet;

F ig u re 6.6: L in k -sch ed u lin g a lg o rith m in th e th e re a l- t im e r o u te r

constrained traffic, effectively absorbing variations in delay a t the previous node; upon

reaching its logical arrival time, a message moves from Queue 3 to Queue 1.

B u ffe r r e q u ire m e n ts : By postponing the transmission of early time-constrained traffic,

the link scheduler avoids overloading the buffer space at the downstream node [63,125]. If

the first two scheduling queues are empty, the link can transm it early time-constrained traffic

from Queue 3, as long as these messages are within a small distance h > 0 of their logical

arrival time; Figure 6.6 summarizes the router’s link-scheduling algorithm. Incorporating

this horizon param eter improves average latency and bandwidth utilization, a t the expense

of increased buffer requirements a t the downstream node. A connection’s local delay bound,

coupled with the incoming link’s horizon param eter, limits the required buffer space a t the

next node in the route. Node j can receive a message as early as l j (m i) — (hj - 1 - M j- i), if the

incoming link has horizon h j - 1 ; the node can hold a message until its deadline £j(mi) + dj.

If messages arrive as early as possible, and depart as late as possible, then node j could

have to store as many as
(hj -1 + d j - 1) + dj

-Imin

messages from this connection a t the same time. Although each connection could conceiv­

ably have its own horizon value, employing a single h param eter allows the link to transm it

early traffic directly from the head of Queue 3, w ithout any per-connection d a ta structures.

95

W rite C o m m a n d F ie ld s
Connection param eters outgoing connection id

local delay bound d
bit-mask of output ports
incoming connection id

Horizon param eter bit-mask of output ports
horizon value h

Table 6.3: Control interface commands

6.3 R eal-T im e Support

Supporting time-constrained communication in a single chip requires careful consider­

ation of the interface to the controlling protocol software. The real-time router perm its

flexible software control of connection establishment, while implementing efficient run-time

packet scheduling on the outgoing ports.

6.3.1 C ontrol Interface

Establishing a real-time channel requires the application to specify the traffic param eters

and performance requirements for the new connection. Admitting a new connection, and se­

lecting a multi-hop route with suitable local delay param eters, is a computationally-intensive

procedure [5,63,129]. Fortunately, channel establishment typically does not impose tight

timing constraints; in most cases, the network can create the required channels before data

transfer commences. To perm it a single-chip solution, the real-time router relegates these

non-real-time operations to the protocol software. Software control also permits greater

flexibility in route selection and buffer allocation policies.

As part of establishing a new real-time channel, each node in the connection’s route

writes control information into a table in the router. Indexed off the connection identifier,

the table stores the channel’s local delay bound d and a bit mask for routing incoming

packets to the appropriate ou tpu t port(s); to simplify the design, a multicast connection

uses the same value of d for any outgoing ports a t the node. To minimize the number of

pins on the chip, the controlling processor updates the connection table as a sequence of

four write operations, as shown in Table 6.3. When a time-constrained packet arrives, the

96

router reads the deadline and routing information and assigns a new connection identifier

for use at the next node in the packet’s route. The router also assigns the packet’s local

deadline, based on the delay param eter d and the logical arrival tim e £(m), as shown in

Figure 6.4(a).

The packet deadline a t one node serves as the logical arrival time a t the downstream

node in the route. Carrying these logical arrival times in the packet header implicitly

assumes tha t the network routers have a common notion of time, within some bounded

clock skew. Although this is not appropriate in a wide-area network context, the tight

coupling in parallel machines minimizes the effects of clock skew. Alternatively, the router

could store additional information in the connection table to compute £ j (r r i i) from a packet’s

actual arrival time and the logical arrival time of the connection’s previous packet [128];

however, this approach would require the router to periodically refresh this connection state

to correctly handle the effects of clock rollover.

In addition to the connection table, the router maintains a separate horizon param eter

h for each outgoing port. As discussed in Section 6.2, these horizon values perm it the router

to transm it a time-constrained packet in advance of its logical arrival time, when no on-time

packets or best-effort flits await service. The local processor can write the horizon registers

through the control interface, as shown in Table 6.3. Larger horizon values perm it earlier

transmission of time-constrained packets, but require connections to reserve more buffer

space at the downstream node. If necessary, the protocol software could reduce a p o rt’s

horizon param eter as more connections are established, to free downstream buffer space for

reservation by the new connections.

6 .3 .2 Scheduling Logic

The real-time router schedules time-constrained traffic for transmission based on logical

arrival times and deadlines, as well as the link horizon param eters. To maximize link uti­

lization and channel admissability, the router overlaps run-time communication scheduling

with packet transmission on each of the five output ports. As a result, packet size deter-

97

O n -tim e : 0 0 t(m) + d — t

E a rly : 0 1 £(m) — t

Ine lig ib le : 1

F ig u re 6.7: S o r tin g k ey fo r t im e -c o n s tra in e d p a c k e ts

mines the acceptable worst-case scheduling delay, limiting both the maximum number of

time-constrained packets and the size of the sorting keys [96]; to facilitate a single-chip

solution, our design efficiently handles a m oderate number of packets. Since packet sorting

can introduce considerable hardware complexity [19,22,79,96,105,121], particularly when

connections have a wide range of delay and bandwidth param eters, the real-time router

shares the scheduling logic amongst the early and on-time packets headed for any of the

five outgoing ports.

Table 6.2 suggests th a t each outgoing port requires separate priority queues for early

and on-time packets. However, implementing two priority queues for each link would incur

significant hardware cost and would require logic to transfer packets from the early queue to

the on-time queue; also, multiple packets can reach their logical arrival times simultaneously,

further complicating movement between the two priority queues, as shown in Figure 6.1.

Hence, the real-time router does not attem pt to store time-constrained packets in sorted

order; instead, the router employs a tree of comparators to select the packet with the

smallest key. The base of the tree computes a key for each packet, based on the packet

s ta te and the current time f; a bit in the packet key differentiates between early and on-time

traffic, as shown in Figure 6.7.

For on-time traffic, the lower bits of the key represent packet laxity , the time remaining

till the local deadline expires, whereas the key for early traffic represents the time left before

reaching the packet’s logical arrival time. Normalizing the packet keys, relative to current

tim e t , allows the rest of the tree to perform simple, unsigned comparison operations, even

in the presence of clock rollover. To avoid replicating the scheduling logic, all five outgoing

ports share access to a single com parator tree th a t arbitrates amongst all time-constrained

packets, as shown in Figure 6.8. Pipelining the com parator tree provides the necessary

98

key address

horizon
parameter

e a r jy /
o n -tim e

(Z>t)
e lig ib le /

in e lig ib le

(c h ec k
p o r t '
select
mask ____

MUX
comparators /

adder
logicb it m a sk (/+ d)-t

adder
logicZ + d

w rite e n ab le
(from decode)

Figure 6.8: Comparator tree for run-time scheduling

throughput to overlap run-time scheduling with packet transmission on each outgoing port.

This also permits the ports to conveniently share the same packet memory. Although this

buffer memory stores the actual packet data, the base of the com parator tree maintains a

small amount of per-packet sta te to coordinate run-time scheduling.

As shown in Figure 6.8, each leaf in the tree stores a logical arrival time l (m), a deadline

£(m)+d, and a bit mask of outgoing ports, assigned a t packet arrival based on the connection

state. The bit mask determines if the leaf is eligible to compete for access to a particular

outgoing port. When a port transm its a selected packet, it clears the corresponding field in

the leaf’s bit mask; a bit mask of zero indicates an empty packet leaf slot and a corresponding

idle slot in the packet memory. The base of the tree also determines if packets are early

(£(m) > t) or on-time (£(m) < t) and computes the sorting keys based on the current value

of t. At the top of the sorting tree, an additional com parator checks to see if the winning

packet is early traffic th a t falls within the link’s horizon param eter; if so, the link transm its

this packet, unless best-effort flits await service.

6.3 .3 H andling Clock R ollover

The number of bits in the sorting keys directly affects the latency and implementation

complexity of the com parator tree. However, by limiting the size of the keys, the router

also restricts the range of local delay bounds d th a t can be selected by time-constrained

connections. To formalize this trade-off, consider a connection traversing consecutive links

99

128

Figure 6.9: Handling clock rollover with an 8-bit clock

j — 1 and j , with local delay param eters dj- 1 and d j , respectively, and a horizon param eter

h j - 1 a t link j —1. A packet can arrive as much as h j- i+ d j - i time units ahead of its logical

arrival time £j(m), if link j — 1 transm its the packet as early as possible. Similarly, link

j m ust transm it the packet by its deadline £j(m) + dj. Hence, a t time t and link j , any

packets from this connection have logical arrival times £j(m) G [t — dj, t + (h j - 1 -f d j - 1)].

This property permits the router to limit the size of the packet sorting keys, as well

as the required number of bits in the on-chip clock, where the clock ticks once per packet

transmission time. The router can correctly interpret logical arrival times and deadlines,

even in the presence of clock rollover, as long as each connection has h j - i + d j - i and dj

values th a t are less than half the range of the on-chip clock register. For example, Figure 6.9

shows a range of £j(m) values for different connections under an 8-bit clock, with a range of

256 time units. A packet with £(m) = 80 would be considered early traffic (since t—80 > 128),

while a packet with l(m) = 210 would be considered on-time traffic (since t—210 < 128). This

enables the leaves of the sorting tree to compute the normalized keys, relative to current

time t, using modulo arithmetic.

6.4 Im plem entation and Evaluation

To dem onstrate the feasibility of the architecture, a prototype of the router chip has

been designed using the Verilog hardware description language and the Epoch silicon com­

piler from Cascade Design Automation. This framework facilitates a detailed evaluation of

the implementation and performance properties of the architecture and suggests possible

mechanisms for improving the router design.

100

P a ra m e te r V alue
Connections 256
Time-constrained packets 256
Clock (sorting key) 8 (9) bits
Com parator tree pipeline 2 stages
Flit input buffer 10 bytes

P a ra m e te r V a lu e
Process 0.5/im 3-metal CMOS
Signal pins 123
Transistors 905,104
Area 8.1 mm x 8.7 mm
Power 2.3 w atts

(a) Architectural param eters (b) Chip complexity

T ab le 6 .4: R o u te r sp ec ifica tio n

6 .4 .1 Chip D esign

The Epoch tools compile the structural and behavioral Verilog models to generate a chip

layout and an annotated Verilog model for timing simulations. Using a three-m etal, 0.5/xm

CMOS process, the 123-pin chip has dimensions 8.1 mm x 8.7 mm for an im plementation

with 256 time-constrained packets and up to 256 connections, as shown in Table 6.4. Manual

intervention in the layout process significantly reduced the chip area and increased the

achievable clock speed. The link-scheduling logic accounts for the m ajority of the chip area,

with the packet memory consuming much of the remaining space, as shown in Table 6.5.

O perating a t 50 MHz, the chip can transm it or receive a byte of da ta on each of its ten

ports every 20 nsec; this closely matches the access time of the 10-byte-wide, single-ported

SRAM for storing time-constrained traffic.

Since time-constrained packets are 20-bytes long, the scheduling logic must select a

packet for transmission every 400 nsec for each of the five output ports. To achieve the

necessary throughput, the com parator tree consists of a two-stage pipeline, where each stage

requires approximately 50 nsec; the boundary between the two pipeline stages consists of a

set of latches across a row of comparators. Although the tree could incorporate up to five

pipeline stages, the two-stage design provides sufficient throughput to satisfy the output

ports. This suggests th a t the link scheduler could effectively support a larger number of

packets or additional output ports, for a higher-dimensional mesh topology.

101

Unit Area Transistors
Priority queue 34.02 mm5 555025
Memory and control 5.97 mm2 268161
Best-effort support 1.55 mm2 45352
Connection table 0.65 mm 2 20966
Idle-address pool 0.35 mm 2 15600

Table 6.5: Components o f chip area for real-time router

6.4 .2 E xperim ents

Verilog simulations were used to test a single router chip under a variety of traffic

patterns. A preliminary experiment tests the baseline performance of best-effort wormhole

packets. To study a multi-hop configuration, the router connects its links in the x and y

directions. The packet proceeds from the injection port to the positive x link, then travels

from the negative x input link to the positive y direction; after reentering the router on the

negative y link, the packet proceeds to the reception port. In this test, a 6 byte wormhole

packet incurs an end-to-end latency of 30+6 cycles, where the link transm its one byte in each

cycle. This delay is proportional to packet length, with a small overhead for synchronizing

the arriving bytes, processing the packet header, and accumulating five-byte chunks for

access to the rou ter’s internal bus. In contrast, packet switching would introduce additional

delay to buffer the packet a t each hop in its route.

An additional experiment illustrates how the router schedules time-constrained packets

to satisfy delay and throughput guarantees, while allowing best-effort traffic to capitalize on

any excess link bandwidth. Figure 6.10 plots the link bandwidth consumed by best-effort

traffic and each of three time-constrained connections with the following param eters, in

units of 20-byte slots:

d Trnin
0 8 9
1 5 7
2 3 4

All three connections compete for access to a single network link with horizon param eter

h = 0, where each connection has a continual backlog of traffic. The time-constrained

102

500

400

best-effort

300

connectioi
■ $ 200

connection 1 f
100 f —

■/ connection 0

800 1000200 400 600
Tim e (ciock c y c le s)

Figure 6.10: Time-constrained and best-effort service

connections receive service in proportion to their throughput requirements, since a packet

is not eligible for service till its logical arrival time. Similarly, the link transm its each packet

by its deadline, with best-effort flits consuming any remaining link bandwidth.

6 .4 .3 R educing Scheduler C om plexity

As discussed in Section 6.4.1, the com parator tree is the main source of complexity in

the real-time router architecture. Extensions to the architecture can reduce this complexity

by sharing logic amongst groups of packets. To handle n packets, the scheduler in Figure 6.8

has a to ta l of 2+lg n stages of logic, including the operations a t the base of the tree as well

as the com parator for the horizon param eter. In terms of im plem entation cost, the tree

requires n comparators and n leaf nodes, for a to ta l of 2n elements of similar complexity;

for large n, the number of leaf nodes can have a significant influence on the bus loading at

the base of the tree. To reduce the logic complexity and bus loading, the router could share

logic between leaves in the same subtree; in effect, this collapses some of the large layers of

logic a t the bottom of the tree, as shown in Figure 6.11.

In this approach, the router combines several leaf units into a single module with a

small memory (e.g., a register file) to store the deadlines and logical arrival times for k

packets, where k is a power of two. At the base of the tree, each of the n /k modules can

sequentially compare its k sorting keys, using a single com parator, to select the packet with

the minimum key; this incurs k stages of delay. Then, a smaller com parator tree finds the

103

horizon
parameter

lg(n/k)
levels

packets

Figure 6.11s Comparator tree with logic sharing amongst subtrees

smallest key amongst n /k packets. As a result, the scheduler incurs

(* + D + l g (j f)

stages of delay; note th a t, for k = 1, this reduces to the 2 + lg n stages of logic in the

architecture in Figure 6.8. For larger values of fc, the scheduler has larger arbitration

delay but reduced im plementation complexity; the architecture in Figure 6.11 has 2n /k

com parators, as well as a lighter bus loading of n /k elements a t the base of the tree.

Figure 6.12 highlights the cost-performance trade-offs of logic sharing, based on Epoch

implementations and Verilog simulation experiments.

For example, the implementation described in Table 6.4 has n = 256 and k = 1, for a

to ta l of 512 logic elements and 10 stages of delay, with 256 units on the bus a t the base of

the tree. The router could reduce scheduler complexity by grouping packets in sets of four

(i.e., k = 4). This would result in ju st 128 logic elements, with 64 units a t the base of the

tree, a t the expense of ju st three ex tra stages of delay. Since latency in the com parator tree

is not the bottleneck in the implementation, the router could reduce scheduler complexity

without affecting the operating speed. Future work can investigate other mechanisms for

reducing the cost of the scheduling logic, including schemes th a t relax the accuracy of

packet sorting to perm it a cheaper and faster design [79,101]. Such approxim ate schemes

may prove necessary for implementing real-time packet scheduling algorithms in emerging

104

o— o Area of tree

40

f 20

128 256
k (group s iz e)

1600
g— o Power dissipation

1200

1<0
S

E
CD

I
CL

400

126 256
k (group s iz e)

0 — o Scheduling latency

to
T3
C

801
&c
CD

3

128 256
k (grou p s iz e)

o — o Number of transistors
500000

8 400000

300000

200000

100000

64 128 256
k (grou p s iz e)

Figure 6.12: Comparison of comparator tree architectures with group size k

high-speed networks.

6.5 C onclusion

Parallel real-time applications impose diverse communication requirements on the un­

derlying interconnection network. The real-time router design supports these emerging

applications by bounding packet delay for time-constrained traffic, while ensuring good

average performance for best-effort traffic. Low-level control over routing and switching,

coupled with fine-grain arbitration at the network links, enables the router to effectively

mix these two diverse traffic classes. Sharing the scheduling logic amongst the multiple

ou tpu t ports significantly reduces implementation complexity, while careful handling of

clock rollover enables the router to support connections with diverse delay and through­

put param eters with small packet sorting keys. This chapter introduces several research

contributions:

• Router architecture that supports best-effort and time-constrained traffic: Based on the

results from Chapter 5, this chapter presents the architecture and implementation of a

router th a t supports the conflicting performance requirements of best-effort and time-

constrained traffic, as described in Section 6.1. The router employs bandwidth regula­

tion and deadline-based scheduling, with packet switching and table-driven multicast

routing, to bound end-to-end delay and avoid buffer overflow for time-constrained

traffic. In contrast, best-effort traffic uses wormhole switching, dimension-ordered

routing, and variable-length packets for low average latency and reduced buffer space

requirements.

• Sharing o f scheduling logic amongst links and early/on-time packets: To perm it a

single-chip solution, the real-time router architecture shares the bandwidth regula­

tion and link scheduling logic amongst the multiple output ports, as described in

Section 6.3. In contrast to the model in Figure 6.1, the router integrates the band­

w idth regulation and packet scheduling units to both avoid the replication of complex

106

sorting logic and the expensive movement of packets between two separate priority

queues. Sharing sorting logic and packet buffers amongst the five output ports permits

a single-chip solution th a t handles up to 256 time-constrained packets simultaneously,

as seen in Section 6.4.

• Handling o f clock rollover in link scheduling: To handle the effects of clock rollover,

Section 6.3.3 derives the relationship between the range of the clock and the permissi­

ble delay and horizon param eters in the real-time channel model; this relates directly

to implementation complexity and scheduling delay by determining the number of bits

in the packet sorting keys in Figure 6.7. Given an upper bound on the possible delay

and horizon param eters, the analysis can derive the minimum number of bits for the

router’s real-time clock and the packet sorting keys. Similarly, for a given clock size,

the analysis can determine the required restrictions on the values of d and h.

• Formalization o f space/time trade-offs in comparator trees: Figure 6.8 and Figure 6.11

propose a com parator tree architecture for run-time packet scheduling in the real­

time channel model. Section 6.3.2 and Section 6.4.3 propose several techniques for

balancing the trade-offs between the implementation complexity, throughput, and

latency of the scheduler. Section 6.3.2 suggests pipelining access to the shared data

structure, to overlap packet transmission with run-time scheduling on each outgoing

port. To reduce implementation complexity, Section 6.4.3 presents a mechanism tha t

trades time for space by reusing logic at the base of the com parator tree. For a given

packet size and number of outgoing ports, the analysis in Section 6.4.3 can determine

the maximum possible value of k (degree of logic sharing).

The real-time router tailors low-level routing, switching, arbitration, and flow-control

policies to the conflicting demands of time-constrained and best-effort traffic. The rou ter’s

delay and throughput guarantees for time-constrained packets, combined with low average

latency for best-effort packets, can efficiently support a wide range of communication perfor­

mance requirements. As a result, the single-chip solution can serve as an effective building

107

block for constructing multicom puter networks, or large high-speed switches, th a t support

the quality-of-service requirements of emerging real-time and multimedia applications.

108

C H A PT E R 7

CO NCLUSIO NS

The performance of multicomputer routers hinges on the subtle interplay between ap­

plication workloads and network policies, such as switching, routing, queueing, flow control,

and resource arbitration. This thesis investigates the subtle interplay between cut-through

switching and other architectural param eters to improve the design and evaluation of mul­

ticom puter routers.

7.1 Research Contributions

Chapter 2 provides a classification of m ulticomputer router architectures, highlighting

the diversity of existing designs. Focusing on the influence of routing, C hapter 3 develops

analytical models for several cut-through routing algorithms with different degrees of adap-

tivity, based on a recurrence th a t computes the number of internal and border nodes in

an /i-hop route. The analytical models can help weigh the cost-performance trade-offs of

implementing adaptive routing algorithms, particularly in large multicom puter networks.

The detailed comparisons with simulation results reveal the unique dependencies between

adjacent nodes in cut-through networks. Modern multicomputer systems employ network

topologies, routing algorithms, and application workloads th a t exacerbate these correla­

tion effects. Based on these results, the chapter introduces a new routing algorithm th a t

capitalizes on inter-node dependencies to improve network performance.

109

To facilitate broader comparisons between different network architectures, C hapter 4

presents a general router model (v-router) and a simulation testbed (pp-mess-sim) for eval­

uating m ulticomputer networks. The objected-oriented pp-mess-sim and v-router frame­

work decomposes multicomputer network and router design into separate components with

well-defined interfaces. The development of this simulation environment introduces sev­

eral new techniques for evaluating router architectures th a t support multiple coexisting

routing-switching schemes, tailored to different traffic patterns and performance metrics.

In particular, the simulator includes an abstract language for representing routing-switching

algorithm s, independent of the low-level timing details in the underlying router model. Ad­

ditionally, the framework incorporates effective mechanisms for simulating flow-control and

arbitration policies, a flexible history-list da ta collection scheme, and an extensible task

model for composing complex communication workloads to evaluate a m ixture of traffic

classes.

Drawing on these novel features, Chapter 5 investigates architectural features th a t allow

time-constrained and best-effort traffic to share access to network resources in parallel real­

time systems. Simulation experiments dem onstrate tha t packet switching, coupled with

static routing, can support predictable communication for time-constrained packets, while

wormhole switching can provide low average latency for best-effort traffic. M ulticomputer

routers can support both traffic classes by partitioning best-effort and time-constrained

packets onto separate virtual channels. Fine-grain, demand-driven arbitration for each link

and injection/reception port can ensure th a t each traffic class can capitalize on the available

bandw idth resources, as shown by simulation experiments with the v-router mode, as well

as an implementation of the Programmable Routing Controller.

These results motivate a new router architecture th a t bounds worst-case latency for

time-constrained traffic, while ensuring good average latency for best-effort packets, as dis­

cussed in Chapter 6. The router implements deadline-based scheduling, with packet switch­

ing and table-driven multicast routing, to bound end-to-end delay for time-constrained

traffic, while allowing best-effort traffic to capitalize on the low-latency routing and switch­

110

ing schemes common in modern parallel machines. To limit the cost of servicing time-

constrained traffic, the router shares packet buffers and link-scheduling logic between the

multiple output ports and implicitly handles the effects of clock rollover in computing packet

deadlines. Tailoring the low-level routing, switching, arbitration and flow-control policies

to the conflicting demands of each traffic class results in a single-chip implementation th a t

can serve as a building block for constructing real-time multicomputer systems.

7.2 A venues for Future Work

This thesis presents analytical, simulation, and architectural techniques for the design

and evaluation of cut-through routers th a t tailor network policies to application perfor­

mance requirements. These results motivate future research on more accurate analytical

and simulation models th a t capture the interaction of application workloads and router

architectures. Further simulation experiments could evaluate cut-through correlation ef­

fects under a wider range of router architectures and application workloads. The precise

characterization of inter-node dependencies can guide the development of more accurate

performance models, as well as novel network architectures and task allocation schemes

th a t exploit the natural dependencies between neighboring nodes.

To study more diverse architectures, further work on pp-mess-sim and the v-router model

can address the interplay between switching schemes and buffer architectures. W ith exten­

sions to the R a lg instruction set, the simulator could interact more closely with the queueing

models in the v-router N o d e model. This would facilitate experimentation with a wider

range of schemes for avoiding packet deadlock in modern cut-through networks. Specific ex­

tensions to the v-router model could broaden the collection of arbitration and buffer models

to construct a more comprehensive set of candidate router designs. For example, this would

enable the simulator to evaluate a mesh network based on the real-time router architecture.

These simulation experiments could also compare the real-time router design with other

techniques for supporting time-constrained and best-effort communication in multicomputer

networks. Future research on the real-time router can also include further investigation of

111

scalable techniques for arbitrating between packets. High-speed multicomputer and local-

area networks, coupled with the emergence of real-time and multimedia applications, moti­

vate the need for effective hardware support for regulating bandwidth and scheduling traffic

for a large number of connections with diverse delay and throughput requirements. Ulti­

mately, these modern applications demand effective router architectures th a t tailor network

policies to performance requirements.

112

BIBLIOGRAPHY

113

BIBLIOGRAPHY

[1] S. Abraham and K. Padm anabhan, “Performance of multicom puter networks under
pin-out constraints,” Journal o f Distributed Computing, pp. 237-248, 1991.

[2] A. Agarwal, “Limits on interconnection network performance,” IE E E Transactions
on Parallel and Distributed Systems, vol. 2, no. 4, pp. 398-412, October 1991.

[3] J. D. Allen, P. T. Gaughan, D. E. Schimmel, and S. Yalamanchili, “Ariadne: An
adaptive router for fault-tolerant multicomputers,” in Proceedings o f the International
Symposium on Computer Architecture, pp. 278-288, April 1994.

[4] K. Aoyama and A. Chien, “Cost of adaptivity and virtual lanes in a wormhole rou ter,”
Journal o f VLSI Design, vol. 2, no. 4, pp. 315-333, 1995.

[5] C. M. Aras, J. F. Kurose, D. S. Reeves, and H. Schulzrinne, “Real-time communication
in packet-switched networks,” Proceedings o f the IEEE, vol. 82, no. 1, pp. 122-139,
January 1994.

[6] K. Arvind, K. Ram am ritham , and J. A. Stankovic, “A local area network architecture
for communication in distributed real-time systems,” Journal o f Real-Time Systems,
vol. 3, no. 2, pp. 115-147, May 1991.

[7] W. Athas and C. Seitz, “Multicomputers: Message-passing concurrent com puters,”
IE E E Computer Magazine, pp. 9-24, August 1988.

[8] H. G. Badr and S. Podar, “An optimal shortest-path routing policy for network com­
puters with regular mesh-connected topologies,” IE E E Transactions on Computers,
vol. C-38, no. 10, pp. 1362-1370, October 1989.

[9] J. J. Bae and T. Suda, “Survey of traffic control schemes and protocols in ATM
networks,” Proceedings o f the IEEE, vol. 79, no. 2, pp. 170-189, February 1991.

[10] S. Balakrishnan and F. Ozguner, “Providing message delivery guarantees in pipelined
flit-buffered multiprocessor networks,” in Proceedings o f the Real-Time Technology
and Applications Symposium, pp. 120-129, June 1996.

[11] R. C. Bedichek, “Talisman: Fast and accurate m ulticomputer simulation,” in Pro­
ceedings o f A C M SIG M ETRICS/Perform ance, pp. 14-24, May 1995.

[12] F. Blitzer, “Militarized touchtone program,” in Proceedings o f the IE E E National
Aerospace and Electronics Conference, pp. 137-143, 1993.

114

[13] M. A. Blumrich, K. Li, R. A lpert, C. Dubnicki, E. W. Felten, and J. Sandberg, “Vir­
tual memory mapped network interface for the SHRIMP m ulticom puter,” in Proceed­
ings o f the International Symposium on Computer Architecture, pp. 142-153, April
1994.

[14] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, and W.-K.
Su, “Myrinet,: A gigabit-per-second local area network,” IE E E Micro, pp. 29-36,
February 1995.

[15] K. Bolding, S.-C. Cheung, S.-E. Choi, C. Ebeling, S. Hassoun, T. A. Ngo, and R. Wille,
“The Chaos router chip: Design and implementation of an adaptive router,” in Pro­
ceedings o f the IF IP International Conference on VLSI, pp. 311-320, September 1993.

[16] K. Bolding, S.-E. Choi, and M. Fulgham. The Chaos Router Simulator. Presentation
a t the Parallel Computer Routing and Communication Workshop, May 1994.

[17] R. Boppana and S. Chalasani, “A comparison of adaptive wormhole routing algo­
rithm s,” in Proceedings o f the International Symposium on Computer Architecture,
pp. 351-360,1993.

[18] G. A. Boughton, “Artie routing chip,” in Proceedings o f the Parallel Computer Routing
and Communication Workshop, pp. 310-317, June 1994.

[19] P. E. Boyer, F. M. Guillemin, M. J. Servel, and J.-P. Coudreuse, “Spacing cells
protects and enhances utilization of ATM network links,” IE E E Network Magazine,
pp. 38-49, September 1992.

[20] R. Buck, “The Oracle media server for nCUBE massively parallel system,” in Pro­
ceedings o f the International Parallel Processing Symposium, pp. 670-673, April 1994.

[21] P. J. Burke, “The output of a queueing system,” Operations Research, vol. 4, pp.
699-704, 1956.

[22] H. J. Chao, “A novel architecture for queue management in the ATM network,” IE E E
Journal on Selected Areas in Communications, vol. 9, no. 7, pp. 1110-1118, September
1991.

[23] S. C hittor and R. Enbody, “Performance evaluation of mesh-connected wormhole-
routed networks for interprocessor communication in multicomputers,” in Supercom­
puting, pp. 647-656, November 1990.

[24] D. Cohen, G. G. Finn, R. Felderman, and A. DeSchon, “The use of message-based
m ulticomputer components to construct gigabit networks,” Computer Communication
Review, vol. 23, no. 3, pp. 32-44, July 1993.

[25] Cray T3D System Architecture Overview, Cray Research, Inc., 1993.

[26] R. L. Cruz, “A calculus for network delay, part I: Network elements in isolation,”
IE E E Transactions on Information Theory, vol. 37, no. 1, pp. 114-131, January 1991.

[27] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina, “A rchitectural requirements
of parallel scientific applications with explicit communication,” in Proceedings o f the
International Symposium on Computer Architecture, pp. 2-13, May 1993.

115

[28] W. J. Dally and C. L. Seitz, “The torus routing chip,” Journal o f Distributed Com­
putingf, vol. 1, no. 3, pp. 187-196, 1986.

[29] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multiprocessor in­
terconnection networks,” IE E E Transactions on Computers, vol. C-36, no. 5, pp.
547-553, May 1987.

[30] W. J. Dally and P. Song, “Design of a self-timed VLSI m ulticomputer communication
controller,” in Proceedings o f the IE E E International Conference on Computer Desiqn,
pp. 230-234,1987.

[31] W. Dally, “Virtual-channel flow control,” IE E E Transactions on Parallel and Dis­
tributed System s, vol. 3, no. 2, pp. 194-205, March 1992.

[32] W. Dally and H. Aoki, “Deadlock-free adaptive routing in m ulticomputer networks
using virtual channels,” IE E E Transactions on Parallel and Distributed System s, vol.
4, no. 4, pp. 466-475, April 1993.

[33] W. J. Dally, “Performance analysis of k-ary n-cube interconnection networks,” IEEE
Transactions on Computers, vol. 39, no. 6, pp. 775-785, June 1990.

[34] W. J. Dally, L. R. Dennison, D. Harris, K. Kan, and T. Zanthopoulos, “The reli­
able router: A reliable and high-performance communication substrate for parallel
com puters,” in Proceedings o f the Parallel Computer Routing and Communication
Workshop, pp. 241-255, June 1994.

[35] W. J. Dally, J. A. S. Fiske, J. S. Keen, R. A. Lethin, M. D. Noakes, P. R. Nuth,
R. E. Davison, and G. A. Fyler, “The Message-Driven Processor: A multicomputer
processing node with efficient mechanisms,” IE E E Micro, pp. 23-39, April 1992.

[36] S. Dandamudi and D. Eager, “Hot-spot contention in binary hypercube networks,”
IE E E Transactions on Computers, vol. 41, no. 2, pp. 239-244, February 1992.

[37] S. Daniel, Flexible Router Architectures fo r Point-to-Point Networks, PhD thesis,
University of Michigan, May 1996.

[38] S. Daniel, J. Rexford, J. Dolter, and K. Shin, “A programm able routing controller
for flexible communications in point-to-point networks,” in Proceedings o f the IE E E
International Conference on Computer Design, pp. 320-325, October 1995.

[39] A. L. Davis, “Mayfly: A general-purpose, scalable, parallel processing architecture,”
Lisp and Symbolic Computation, vol. 5, no. 1/2, pp. 7-47, May 1992.

[40] P. M. Dickens, P. Heidelberger, and D. M. Nicol, “Parallelized network simulators for
message-passing parallel program s,” in Proceedings o f the International Workshop on
Modeling, Analysis, and Simulation o f Computer and Telecommunication System s,
pp. 72-76, 1995.

[41] J . W. Dolter, P. Ram anathan, and K. G. Shin, “Performance analysis of virtual cut-
through switching in HARTS: A hexagonal mesh m ulticomputer,” IE E E Transactions
on Computers, vol. 40, no. 6, pp. 669-680, June 1991.

116

[42] J. Dolter, A Programmable Routing Controller Supporting Multi-Mode Routing and
Switching in Distributed Real-Time Systems, PhD thesis, University of Michigan,
September 1993.

[43] J. Dolter, S. Daniel, A. M ehra, J. Rexford, W. Feng, and K. Shin, “SPIDER: Flex­
ible and efficient communication support for point-to-point distributed systems,” in
Proceedings o f the International Conference on Distributed Computing Systems, pp.
574-580, June 1994.

[44] J. Duato, “A new theory of deadlock-free adaptive routing in wormhole networks,”
IE E E Transactions on Parallel and Distributed Systems, pp. 1320-1331, December
1993.

[45] T. H. Dunigan, “Performance of the Intel iPSC/860 and Ncube 6400 hypercubes,”
Parallel Computing, vol. 17, no. 10/11, pp. 1285-1302, December 1991.

[46] S. Felperin, L. Gravano, G. Pirarre, and J. Sanz, “Routing techniques for massively
parallel communication,” Proceedings o f the IEEE, vol. 79, no. 4, pp. 488-503, April
1991.

[47] T.-Y. Feng, “A survey of interconnection networks,” IEEE Computer Magazine, vol.
14, no. 12, pp. 12-27, December 1981.

[48] W . Feng, J. Rexford, S. Daniel, A. Mehra, and K. Shin, “Tailoring routing and switch­
ing schemes to application workloads in multicomputer networks,” Computer Science
and Engineering Technical Report CSE-TR-239-95, University of Michigan, May 1995.

[49] W. Feng, J. Rexford, A. M ehra, S. Daniel, J. Dolter, and K. Shin, “Architectural sup­
port for managing communication in point-to-point distributed systems,” Technical
Report CSE-TR-197-94, University of Michigan, March 1994.

[50] W. Feng and K. Shin, “Im pact of selection functions on routing algorithm performance
in multicomputer networks,” Computer Science and Engineering Technical Report
CSE-TR-287-96, University of Michigan, March 1996.

[51] D. Ferrari, “Client requirements for real-time communication services,” IE E E Com­
munication Magazine, pp. 65-72, November 1990.

[52] R. Games, A. Kanevsky, P. Krupp, and L. Monk, “Real-time communications schedul­
ing for massively parallel processors,” in Proceedings o f the Real-Time Technology and
Applications Symposium, pp. 76-85, May 1995.

[53] P. Gaughan and S. Yalamanchili, “Adaptive routing protocols for hypercube inter­
connection networks,” IE E E Computer Magazine, pp. 12-23, May 1993.

[54] A. G upta and D. Ferrari, “Resource partitioning for real-time communication,”
IE E E /A C M Transactions on Networking, vol. 3, no. 5, pp. 501-508, October 1995.

[55] M. G. Hluchyj and M. J. Karol, “Queueing in high-performance packet switching,”
IE E E Journal on Selected Areas in Communications, vol. 6, no. 9, pp. 1587-1597,
December 1988.

117

[56] J.-M. Hsu and P. Banerjee, “Hardware support for message routing in a distributed
memory multicomputer,” in Proceedings o f the International Conference on Parallel
Processing, pp. I-508-I-515, 1990.

[57] J.-M. Hsu and P. Banerjee, “Performance measurement and trace driven simulation
of parallel CAD and numeric applications on a hypercube m ulticom puter,” IE E E
Transactions on Parallel and Distributed Systems, vol. 3, no. 4, pp. 451-464, July
1992.

[58] M. Hyas and H. T. M ouftah, “Towards performance improvement of cut-through
switching in computer networks,” Performance Evaluation, vol. 6, pp. 125-133, July
1986.

[59] Paragon X P /S Product Overview, Intel Corporation, 1991.

[60] J. R. Jackson, “Networks of waiting lines,” Operations Research, vol. 5, no. 4, pp.
518-521, August 1957.

[61] R. Jain, The A rt o f Computer Systems Performance Analysis, John Wiley & Sons,
Inc., 1991.

[62] J. R. Jum p and S. Lakshmanamurthy, “NETSIM: A general-purpose interconnec­
tion network simulator,” in Proceedings o f the International Workshop on Modeling,
Analysis, and Simulation o f Computer and Telecommunication System s, pp. 121-125,
January 1993.

[63] D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-time communication in multihop
networks,” IE E E Transactions on Parallel and Distributed Systems, vol. 5, no. 10, pp.
1044-1056, October 1994.

[64] V. Karamcheti and A. A. Chien, “Software overhead in messaging layers: W here does
the time go?,” in Proceedings o f the International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 51-60, October 1994.

[65] P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer communication
switching technique,” Computer Networks, vol. 3, no. 4, pp. 267-286, September 1979.

[66] J. H. Kim and A. A. Chien, “An evaluation of planar-adaptive routing (PAR),” in
Proceedings o f the International Symposium on Parallel and Distributed Processing,
1992.

[67] J. H. Kim and A. A. Chien, “Evaluation of wormhole routed networks under hy­
brid traffic loads,” in Proceedings o f the Hawaii International Conference on System
Sciences, pp. 276-285, January 1993.

[68] J. H. Kim and A. A. Chien, “The impact of packetization in wormhole-routed net­
works,” in Proceedings o f Parallel Architectures and Languages, Europe, 1993.

[69] J. H. Kim and A. A. Chien, “Rotated combined queueing (RCQ),” in Proceedings o f
the International Symposium on Computer Architecture, pp. 226-236, May 1996.

[70] L. Kleinrock, Communication Nets: Stochastic Message Flow and Delay, McGraw-
Hill, New York, 1964.

118

[71] L. Kleinrock, Queueing system s, volume I: Theory, John Wiley & Sons, 1975.

[72] D. E. K nuth, The A rt o f Computer Programming, Vol 2: Seminumerical Algorithms,
Addison Wesley, 1969.

[73] S. Konstantinidou, “Segment router: A novel router design for parallel com puters,” in
Proceedings o f the Symposium on Parallel Algorithms and Architectures, June 1994.

[74] S. Konstantinidou and L. Synder, “The Chaos router,” IE E E Transactions on Com­
puters, vol. 43, no. 12, pp. 1386-1397, December 1994.

[75] A. M. Law and M. G. McComas, “Simulation software for communications networks:
The state of the a rt,” IE E E Communication Magazine, pp. 44-50, March 1994.

[76] C. Leiserson, Z. Abuhamdeh, D. Douglas, C. Feynman, M. Ganmukhi, J. Hill, W. D.
Hillis, B. Kuszmaul, M. St. Pierre, D. Wells, M. Wong, S.-W. Yang, and R. Zak,
“The network architecture of the connection machine CM-5,” in Proceedings o f the
Symposium on Parallel Algorithms and Architectures, pp. 272-285, June 1992.

[77] J.-P. Li and M. W. Mutka, “Priority based real-time communication for large scale
wormhole networks,” in Proceedings o f the International Parallel Processing Sympo­
sium, pp. 433-438, April 1994.

[78] J.-P. Li and M. W. Mutka, “Real-time virtual channel flow control,” in Proceedings o f
the Phoenix Conference on Computers and Communication, pp. 97-103, April 1994.

[79] J. Liebeherr and D. Wrege, “Versatile packet multiplexer for quality-of-service net­
works,” in Proceedings o f the IEEE International Symposium on High Performance
Distributed Computing, pp. 148-155, August 1995.

[80] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard
real-time environment,” Journal o f the ACM, vol. 20, no. 1, pp. 46-61, January 1973.

[81] P. K. McKinley and C. TVefftz, “MultiSim: A simulation tool for the study of large-
scale multiprocessors,” in Proceedings o f the International Workshop on Modeling,
Analysis, and Simulation o f Computer and Telecommunication Systems, pp. 57-62,
January 1993.

[82] T . D. Morris and H. G. Perros, “Approximate analysis of a discrete-time tandem
network of cut-through queues with blocking and bursty traffic,” Performance Eval­
uation, vol. 17, no. 3, pp. 207-223, 1993.

[83] M. W. M utka, “Using rate monotonic scheduling technology for real-time communi­
cations in a wormhole network,” in Proceedings o f the IE E E Workshop on Parallel
and Distributed Real-Time Systems, pp. 194-199, April 1994.

[84] W. A. N ajjar, A. Lagman, S. Sur, and P. K. Srimani, “Modeling adaptive routing in
A;-ary ft-cube networks,” in Proceedings o f the International Workshop on Modeling,
Analysis, and Simulation o f Computer and Telecommunication Systems, pp. 120-125,
1994.

[85] nCUBE-3: The Scalable Server Platform, nCube Corporation, March 1995.

119

[86] J. Ngai and C. Seitz, “A framework for adaptive routing in m ulticomputer networks,”
in Proceedings o f the Symposium on Parallel Algorithms and Architectures, pp. 1-9,
June 1989.

[87] L. Ni and P. McKinley, “A survey of wormhole routing techniques in direct networks,”
IE E E Computer Magazine, pp. 62-76, February 1993.

[88] A. Nowatzyk, M. Browne, E. Kelly, and M. Parkin, “S-connect: From networks
of workstations to supercomputer performance,” in Proceedings o f the International
Symposium on Computer Architecture, pp. 71-82, June 1995.

[89] S. F. Nugent, “The iPSC /2 direct-connect communications technology,” in Proceed­
ings o f Hypercube Concurrent Computers and Applications, pp. 51-60, January 1988.

[90] W. Oed, The Cray Research Massively Parallel Processor System: Cray T3D , Novem­
ber 1993.

[91] Y. Ofek and M. Yung, “The integrated M etaNet architecture: A switch-based mul­
timedia LAN for parallel computing and real-time traffic,” in Proceedings o f IE E E
INFOCOM, pp. 802-811, 1994.

[92] Y. Oie, T. Suda, M. M urata, D. Kolson, and H. M iyahara, “Survey of switching
techniques in high-speed networks and their performance,” in Proceedings o f IEEE
INFOCOM , pp. 1242-1251, June 1990.

[93] E. Oik, “PARSE: Simulation of message passing communication networks,” in Pro­
ceedings o f the Annual Simulation Symposium , pp. 115-1245, April 1994.

[94] S. S. Owicki and A. R. Karlin, “Factors in the performance of the AN1 computer
network,” in Proceedings o f A C M SIG M ETRIC S, pp. 167-180, June 1992.

[95] C. Peterson, J. Sutton, and P. Wiley, “iW arp: A 100-MOPS LIW microprocessor for
multicomputers,” IE E E Micro, pp. 26-29,81-87, June 1991.

[96] D. Picker and R. D. Fellman, “Scaling and performance of a priority packet queue
for real-time applications,” in Proceedings o f the Real-Time System s Symposium , pp.
56-62, December 1994.

[97] R. S. Raji, “Smart networks for control,” IE E E Spectrum , vol. 31, no. 6, pp. 49-55,
June 1994.

[98] S. Ramany and D. Eager, “The interaction between virtual channel flow control and
adaptive routing in wormhole networks,” in Proceedings o f the International Confer­
ence on Supercomputing, pp. 136-145, July 1994.

[99] D. Reed and R. Fujimoto, Multicomputer Networks: Message-Based Parallel Process­
ing, MIT Press, 1987.

[100] D. A. Reed and D. C. Grunwald, “The performance of m ulticomputer interconnection
networks,” IE E E Computer Magazine, vol. 20, no. 6, pp. 63-73, June 1987.

[101] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong, “Scalable architectures for inte­
grated traffic shaping and link scheduling in high-speed ATM switches,” in submission
to IE E E Journal on Selected Areas in Communications, May 1996.

120

[102] J. Rexford, J. Dolter, W. Feng, and K. G. Shin, “PP-MESS-SIM: A simulator for
evaluating multicomputer interconnection networks,” in Proceedings o f the Annual
Simulation Symposium, pp. 84-93, April 1995.

[103] J. Rexford, J. Dolter, and K. G. Shin, “Hardware support for controlled interaction
of guaranteed and best-effort communication,” in Proceedings o f the IE E E Workshop
on Parallel and Distributed Real-Time Systems, pp. 188-193, April 1994.

[104] J. Rexford, W. Feng, J. Dolter, and K. G. Shin, “PP-MESS-SIM: A flexible and ex­
tensible simulator for evaluating multicomputer networks,” to appear in IE E E Trans­
actions on Parallel and Distributed Systems.

[105] J. Rexford, A. Greenberg, and F. Bonomi, “Hardware-efficient fair queueing architec­
tures for high-speed networks,” in Proceedings o f IE E E INFOCOM, March 1996.

[106] J. Rexford and K. G. Shin, “Shortest-path routing in homogeneous point-to-point
networks with virtual cut-through switching,” Computer Science and Engineering
Technical Report CSE-TR-146-92, University of Michigan, November 1992.

[107] J. Rexford and K. G. Shin, “Support for multiple classes of traffic in multicomputer
routers,” in Proceedings o f the Parallel Computer Routmgland Communication Work­
shop, pp. 116-130, May 1994.

[108] A. Saha, “Simulator for real-time parallel processing architectures,” in Proceedings o f
the Annual Simulation Symposium, pp. 74-83, April 1995.

[109] C. L. Seitz, W. C. Athas, C. M. Flaig, A. J. M artin, J. Seizovic, C. S. Steele, and W.-K.
Su, “The architecture and programming of the Ametek series 2010 m ulticomputer,” in
Proceedings o f Hypercube Concurrent Computers and Applications, pp. 33-36, January
1988.

[110] C. L. Seitz and W. Su, “A family of routing and communication chips based on the
Mosaic,” in Proceedings o f the Symposium on Integrated Systems, 1993.

[111] K. G. Shin and S. Daniel, “Analysis and implementation of hybrid switching,” in
Proceedings o f the International Symposium on Computer Architecture, pp. 211-219,
June 1995.

[112] K. G. Shin and Q. Zheng, “Mixed time-constrained and non-time-constrained com­
munications in local area networks,” IE E E Transactions on Communications, pp.
1668-1676, November 1993.

[113] J. A. Stankovic, “Distributed real-time computing: The next generation,” Technical
Report COINS 92-01, University of M assachusetts, A m herst, January 1992.

[114] C. Stunkel et al., “SP2 high-performance switch,” IB M System s Journal, vol.'34, no.
2, pp. 185-204, 1995.

[115] D. Talia, “Message-routing systems for transputer-based m ulticomputers,” IE E E M i­
cro, pp. 62-72, June 1993.

[116] Y. Tamir and G. Frazier, “Dynamically-allocated multi-queue buffers for VLSI com­
munication switches,” IE E E Transactions on Computers, vol. 41, no. 6, pp. 725-737,
June 1992.

121

[117] P. Thompson, “Concurrent interconnect for parallel systems,” The Computer Journal,
vol. 36, no. 8, pp. 778-784, 1993.

[118] F. A. Tobagi, “Fast packet switch architectures for broadband integrated services
digital networks,” Proceedings o f the IEEE, vol. 78, no. 1, pp. 133-167, January 1990.

[119] K. Toda, K. Nishida, E. Takahashi, N. Michell, and Y. Yamaguchi, “Design and
implementation of a priority forwarding router chip for real-time interconnection net­
works,” International Journal o f M ini and Microcomputers, vol. 17, no. 1, pp. 42-51,
1995.

[120] B. Tsai and K. G. Shin, “Sequencing of concurrent communication traffic in a mesh
m ulticomputer with virtual channels,” in Proceedings o f the International Conference
on Parallel Processing, pp. I-126-I-133, August 1994.

[121] E. Wallmeier and T. W orster, “The Spacing Policer, an algorithm for efficient peak
bit ra te control in ATM networks,” in Proceedings o f the International Switching
Symposium, pp. 22-26, October 1992.

[122] L. R. Welch and K. Toda, “Architectural support for real-time systems: Issues and
trade-offs,” in Proceedings o f the International Workshop on Real-Time Computing
System s and Applications, pp. 145-152, December 1994.

[123] I. W idjaja, A. Leon-Garcia, and H. T. M ouftah, “The effect of cut-through switching
on the performance of buffered Banyan networks,” Computer Networks and ISD N
Systems, vol. 26, pp. 139-159,1993.

[124] Y. S. Youn and C. K. Un, “Performance analysis of an integrated voice/data cut-
through switching network,” Computer Networks and ISD N Systems, vol. 21, no. 1,
pp. 41-51,1991.

[125] H. Zhang, “Providing end-to-end performance guarantees using non-work-conserving
disciplines,” Computer Communications, vol. 18, no. 10, pp. 769-781, October 1995.

[126] H. Zhang, “Service disciplines for guaranteed performance service in packet-switching
networks,” Proceedings o f the IEEE, vol. 83, no. 10, pp. 1374-1396, October 1995.

[127] X. Zhang, “System effects of interprocessor communication latency in multicomput­
ers,” IE E E Micro, pp. 12-15, 52-55, April 1991.

[128] Q. Zheng, K. G. Shin, and C. Chen, “Real-time communication in ATM,” in Proceed­
ings o f the Annual Conference on Local Computer Networks, pp. 156-164, October
1994.

[129] Q. Zheng and K. G. Shin, “On the ability of establishing real-time channels in point-
to-point packet-switched networks,” IE E E Transactions on Communications, vol. 42,
no. 2-4, pp. 1096-1105, February/M arch/A pril 1994.

122

