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C H A P T E R  1

IN T R O D U C T IO N

Message-passing parallel machines have emerged as a  cost-effective platform for exploit­

ing concurrency in a  variety of applications. In these multicomputer systems, fast message 

exchange enables efficient, fine-grained cooperation between processing elements. No longer 

the purview of tightly-coupled parallel machines, m ulticomputer components are also find­

ing new uses in local area networks and real-time systems. While m ulticomputer systems 

have traditionally targetted  a relatively narrow range of applications in scientific com put­

ing, emerging networks must support diverse applications such as file and video servers, 

databases, scientific visualization, and process control. These application domains impose 

a broader range of communication characteristics and performance requirements on the 

underlying interconnection network. To address these performance challenges, this thesis 

presents techniques for designing and evaluating new multicomputer router architectures 

th a t tailor network policies to  application characteristics.

1.1 Cut-Through R outers

Maximizing system performance requires matching application communication patterns 

with a suitable network design. M ulticomputer networks employ a wide range of topologies, 

routing algorithms, switching schemes, and flow-control policies. Application characteris­

tics directly impact these design decisions by determining the distribution of traffic in the
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F ig u re  1.1: R o u te r  in  a  m e sh  n e tw o rk  w ith  a  4 x 4 g r id  o f  p ro cess in g  n o d es

network. End-to-end performance metrics, such as throughput and latency, are extremely 

sensitive to the network policies implemented in the router hardware th a t connects an in­

dividual processing node to  the interconnection fabric and manages traffic flowing through 

the node en route to  other destinations; for example, Figure 1.1 shows a router in a 4 x 4 

square mesh. To communicate with another node, a processor injects a packet into its 

router; then, the packet travels through one or more intermediate routers before reaching 

the reception port of the router a t the destination node.

To address the requirements of emerging applications, router designs should tailor their 

policies to  application traffic patterns and performance metrics. In particular, the net­

work’s switching scheme can greatly influence communication performance by determining 

w hat link and buffer resources a packet consumes a t the nodes in its route. Traditional 

packet switching requires an arriving packet to  buffer completely before transmission to  a 

subsequent node can begin. In contrast, cut-through switching schemes, such as virtual cut- 

through [65] and wormhole [28] switching, attem pt to  directly forward the incoming packet 

to  an idle output link. If the packet encounters a  busy outgoing link, virtual cut-through 

switching buffers the packet. On the other hand, a blocked wormhole packet stalls in the 

network, holding the earlier links in its route until the outgoing link becomes free.

Although first-generation multicomputers employed packet switching, most contempo­

rary research and commercial routers utilize cut-through switching for lower latency and 

reduced buffer space requirements [7,99,127]. For example, the Intel iPSC /1, nCube/3200, 

and Ametek/14 implemented store-and-forward packet switching, with each processing node
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interrupting application tasks to  buffer and forward incoming packets [127]. Due to  ad­

vances in VLSI technology, these commercial vendors were able to incorporate dedicated 

router hardware for cut-through switching in subsequent m ulticomputer systems, such as the 

iPSC /2 [89], nCube/6400 [45], and Ametek/2010 [109], during the late 1980s. Keeping with 

this trend, companies like Intel, IBM, Thinking Machines, and Cray Research developed new 

multicomputer systems based on wormhole-switched networks [25,59,76,85,95,114,115] 

during the first half of the 1990s. Similarly, most research m ulticomputer networks employ 

virtual cut-through or wormhole switching, or hybrid schemes, as discussed in Chapter 2.

Although cut-through switching schemes have the potential to  improve communication 

latency and throughput, most existing local and wide area networks employ packet switch­

ing to  reduce flow-control requirements and simplify operation over a range of different 

link speeds. Still, wormhole and virtual cut-through switching are viable options in more 

homogeneous, tightly-coupled domains, such as workstation clusters and high-speed switch 

designs. As a result, several new systems incorporate m ulticomputer routers to achieve 

low-latency, high-bandwidth communication in local area networks. The Atomic [24] and 

Shrimp [13] research projects dem onstrate the power of this paradigm, which has been 

incorporated in commercial products such as Sun Microsystem’s S-Connect [88] and Myri- 

com’s Myrinet [14]. In addition, researchers are investigating the use of cut-through routers 

as building blocks for constructing larger ATM (asynchronous transfer mode) switches for 

use in large-scale networks [82,123,124].

Compared to  traditional parallel machines, high-speed switches and local area networks 

impose a  wide range of communication characteristics and performance requirements on 

m ulticomputer routers. In addition, multicomputer components are increasingly used for 

multimedia and real-time applications, such as scientific visualization, process control, and 

video-on-demand servers. These applications require predictable communication perfor­

mance, in addition to low latency and high throughput. Initially, real-time multicomputer 

applications have employed existing interconnection networks, such as the Intel Paragon [12, 

52] and the nCube/3 [20], with no explicit support for time-constrained communication.
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However, on many existing multicomputer systems, worst-case packet latency can theoret­

ically be as large as several days [69]. As a  result, real-time and multimedia applications 

m ust under-utilize the network to  achieve predictable performance. To address this prob­

lem, several recent projects consider new router architectures th a t can guarantee end-to-end 

communication performance in multicomputer networks [10,69,77,83,91,108,119,122].

1.2 Structure o f th e Thesis

This thesis presents effective techniques for the design and evaluation of router ar­

chitectures th a t accommodate the performance requirements of emerging multicomputer 

applications. Chapter 2 surveys related work on multicomputer networks and application 

workloads, with a  classification of the routing, switching, queueing, and arbitration policies 

in existing router designs. Focusing specifically on the impact of routing on the perfor­

mance of cut-through networks, Chapter 3 compares several routing algorithms based on 

both analytical models and simulation experiments. The analytical models perm it an ef­

ficient evaluation of large networks, while comparisons with simulation results reveal the 

effects of the simplifying assumptions in the analysis. Based on this comparison, we provide 

a  precise characterization of the unique dependencies between adjacent nodes in realistic 

cut-through networks.

These results facilitate more accurate performance models, as well as novel routing algo­

rithm s th a t capitalize on inter-node dependencies to improve communication performance. 

To evaluate a wider range of network policies, Chapter 4 presents a configurable router model 

and simulation environment. This flexible and extensible simulation framework enables ex­

perim entation with a variety of routing, switching, queueing, and arbitration schemes under 

diverse traffic patterns and performance metrics. Unlike existing tools for evaluating mul­

ticom puter networks, this simulator can model emerging router architectures th a t support 

multiple coexisting routing-switching schemes, tailored to  different communication charac­

teristics and performance requirements. Chapter 5 capitalizes on these novel features to 

investigate router architectures th a t tailor their switching schemes and arbitration policies

4



to  the performance requirements of parallel real-time systems.

Real-time applications typically handle a m ixture of time-constrained and best-effort 

communication, where time-constrained packets require bounds on latency and through­

pu t, while best-effort traffic settles for good average performance [6,54,112,113]. Based 

on simulation experiments, Chapter 5 proposes effective techniques for mixing the time- 

constrained and best-effort packets w ithout sacrificing the performance goals of either traffic 

class. C hapter 6 employs these policies to develop a  new router architecture th a t bounds 

end-to-end delay and throughput for time-constrained traffic, while ensuring low average 

latency for best-effort packets. The chapter presents a  single-chip im plementation of the 

router th a t minimizes complexity by sharing buffer space and arbitration logic amongst the 

multiple outgoing links. Chapter 7 concludes the dissertation with a  recapitulation of the 

research contributions and possible avenues for future work.
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C H A PT E R  2

M U L T IC O M PU T E R  R O U T E R  A R C H IT E C T U R E

M ulticomputer performance hinges on the subtle interaction between application traffic 

patterns and the router policies in the underlying network. This chapter reviews the com­

munication workloads and architectural param eters in modern multicomputer networks. 

Section 2.1 describes the diverse range of packet sizes, interarrival times, and destination 

distributions in parallel applications, while Section 2.2 provides an overview of architec­

tu ral issues. Based on this discussion, Section 2.3 classifies and compares existing router 

architectures to  highlight current trends in multicomputer network design.

2.1 M ulticom puter Com m unication W orkloads

M ulticomputer applications consist of a collection of tasks th a t communicate by ex­

changing messages. At the source node, the sending task submits the message to the 

communication subsystem for transmission to receiving tasks on one or more destination 

nodes. For efficiency reasons, the source node may decompose a  message into a collection 

of smaller packets th a t proceed through the interconnection network and are reassembled 

into a  message a t the destination node. As a  result, multicomputer routers typically co­

ordinate communication a t the packet level, where each packet consists of a header field 

followed by one or more bytes of data. The packet header often includes information such 

as a task  identifier, message number, and packet sequence number to  aid the destination 

node in delivering the reconstructed message to  the receiving task. In addition, the header
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typically includes additional fields to  assist the routers in shepherding the packet through 

the interconnection network.

Parallel applications generate a wide range of communication workloads depending on 

the application’s granularity and mapping across multiple nodes, as well as the policies 

employed by the interconnection network. Scientific computations, parallel databases, and 

real-time applications generate distinct distributions for message/packet lengths, interar­

rival times, and target destination nodes [27,57,77,107]. Multi-user systems exacerbate 

these effects since different applications may run simultaneously; these applications may 

execute on different parts of the network or even time-share the same processing elements. 

These diverse traffic patterns significantly impact the suitability of certain router architec­

tu ra l features, such as switching and routing schemes, as well as the accuracy of network 

performance models.

Analytical studies of multicomputer networks have typically modeled packet arrivals 

as a  Poisson process, with exponentially-distributed interarrival times. This assumption 

was made, in part, due to  the analytical tractability of such models and the lack of more 

realistic data. However, detailed measurements of multicomputer applications have led to 

more sophisticated message generation models. In particular, recent studies show th a t ap­

plications typically generate bursty network traffic [27,57], due to multi-packet messages 

and fine-grain interaction between cooperating nodes. Similarly, many parallel applications 

invoke multicast operations tha t send a message to a collection of destination nodes, inject­

ing multiple copies of each packet into the interconnection network. These traffic models 

have significant im pact on network design and evaluation.

Like interarrival distributions, message and packet sizes depend on several factors. Some 

router architectures or communication protocols impose strict upper and lower bounds on 

packet length, or perm it just a few different sizes or formats. Although fixed-length packets 

or exponentially-distributed lengths simplify analytic performance models, recent studies 

show th a t real multicomputer applications often generate a mixture of large da ta  transfers 

and small request/acknowledgement packets [27,57]. W ithout careful support in the router
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architecture, these bimodal length distributions can seriously degrade average latency by 

forcing short packets to  queue behind long packets for access to  link and buffer resources [67]. 

In addition, the presence of large packets can introduce greater variability in end-to-end 

communication delay, particularly for short packets [68].

Message/packet destination distributions vary a  great deal depending on the network 

topology and the application’s mapping onto different processing elements. Although many 

analytical and simulation studies evaluate a uniform random distribution of destination 

nodes, this model does not accurately represent the traffic patterns th a t arise in many 

multicom puter applications. To reduce link load and communication latency, many parallel 

applications place cooperating tasks near each other in the underlying network, introducing 

spatial locality. In addition, many applications exhibit temporal locality, where a  node 

sends several messages to  the same destination over a small time interval. Also, parallel 

algorithms introduce specific non-uniform  traffic patterns. For example, many scientific 

applications generate communication workloads th a t correspond to  the m atrix-transpose 

(dimension-reversal), bit-complement, and bit-reversal perm utations [23,32,66,98]. O ther 

application communication constructs, such as synchronization or multicast operations, may 

induce hot-spots of heavily-utilized nodes and links [17,36,98].

2.2 M ulticom puter Interconnection Netw orks

2.2.1 N etw ork T opology

By defining the connections between processing nodes, the network topology determines 

the number of communication links a t each node and how far a packet must travel to  reach 

its destination [47,100]. As a result, the choice of a topology im pacts both the complexity 

of network wiring and the achievable communication bandwidth in the system [2,33]. Mul­

ticom puter networks vary from bus or ring topologies to fully-connected configurations, as 

shown in Figure 2.1. Connecting processors on a single bus provides an inexpensive solution 

th a t provides sufficient link bandwidth to  support a  small number of nodes; in contrast, a 

fully-connected network has a dedicated link between each pair of nodes, a t the expense of

8
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Figure 2.1: Multicomputer topologies

increased implementation complexity. As a result, most systems attem pt to  strike a  careful 

balance between implementation cost and achievable performance.

Most existing multicomputers have direct networks, which consist of point-to-point links, 

while other indirect networks connect processors through multiple stages of switches. Many 

systems employ the fc-ary n-cube family of topologies, with k nodes along each of n  dimen­

sions [33]; Figures 2.1(b) and 2.1(f) show a 6-ary 1-cube and a 4-ary 2-cube, respectively. 

To restrict wiring complexity, some systems omit the wrap-around links in each dimension, 

turning a homogeneous toroidal topology into a  mesh network, such as the 4 x 4  square mesh 

in Figure 2.1(e). Unlike earlier hypercube (2-ary n-cube) multicomputers, most contempo­

rary parallel machines have low-dimensional topologies, such as two and three dimensional 

meshes and tori, to  allow wider inter-node links and reduced wiring costs.

2.2.2 R ou ting  A lgorithm

These topologies simplify the selection of a packet’s path  through the network by al­

lowing the routing header to  include the relative address of the destination node(s). For 

example, in a  two-dimensional mesh or torus, the header can consist of x and y offsets 

th a t represent the distance the packet must travel in each direction; the offsets reach zero
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when the packet arrives a t its destination node. When a new header arrives on an incoming 

link, the router inspects these fields to determine which outgoing Mnk(s) should handle the 

incoming packet. Oblivious routing generates a single, deterministic outgoing link for an in­

coming packet. Many multicomputer networks employ dimension-ordered (e-cube) routing, 

an oblivious scheme which routes a  packet completely in one dimension before proceeding 

to  the next dimension, as shown by the shaded nodes in Figure 1.1.

In contrast, adaptive schemes can incorporate prevailing network conditions into the 

routing decision. By considering multiple outgoing links, adaptive algorithms can balance 

network load and decrease packet latency by avoiding busy nodes and links. Under adap­

tive routing, packets from a single message may follow different paths through the network; 

this can cause out-of-order packet arrival, which complicates message processing a t the des­

tination node [64]. Opportunities for adaptive routing vary depending on the underlying 

topology and communication pattern . Although most oblivious routing algorithms gen­

erate only minimum-hop routes between the source and destination nodes, some adaptive 

schemes consider non-minimal routes in the hope of circumventing congested or faulty links. 

In the last few years, researchers have proposed a  wide variety of minimal and non-minimal 

adaptive routing algorithms, with different degrees of adaptivity and im plem entation com­

plexity [4,17,46,53,87,98].

W hen a routing algorithm must select from multiple output links a t a  node, the actual 

route chosen depends on a selection function  th a t determines the order in which the al­

gorithm considers these candidate finks. For example, if a packet is traveling from node 

(4 ,3 ) to  node (6,10) in a  square mesh, a  dimension-ordered selection function would favor 

the positive x-direction over the positive y-direction, if both links are idle. Alternatively, 

the router could rank outgoing links according to how much further the packet m ust travel 

in each direction; in the example, this selection function would favor the y-direction, since 

the packet still has 7 hops to travel. This link ordering improves the packet’s chance of 

considering multiple outgoing links a t future nodes in its route [8,39]. Communication 

performance can be extremely sensitive to how the selection function interacts with the
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application workload to  create traffic patterns in the interconnection network [50,104].

2.2 .3  Sw itching Schem e

The switching scheme impacts performance by determining the link and buffer resources 

a packet consumes a t a  given node in its route. Traditionally, multi-hop networks employ 

either a circuit-switched or store-and-forward model of communication. The classic example 

of a  circuit-switched network in the Plain Old Telephone Service, which creates a  dedicated 

connection between the source of a call and the desired destination. Once the network 

establishes a circuit, the call has guaranteed access to  the link bandwidth, which limits 

delay and obviates the need for buffering; however, circuit switching statically allocates link 

bandwidth, which can be wasteful for transporting bursty traffic. To avoid this problem, 

most multicomputer networks coordinate link access a t the message or packet level by using 

store-and-forward switching schemes.

First-generation multicomputer networks employed packet switching , which requires 

each incoming packet to buffer completely before transmission to  a subsequent node can 

begin, as discussed in Section 1.1. Even in the absence of network congestion, packet switch­

ing incurs delay proportional to the product of packet size and the length of the route. In 

contrast, cut-through switching schemes, such as virtual cut-through [65] and wormhole [28] 

switching, try  to  forward an in-transit packet directly to an idle output link, based on the 

routing header and prevailing network conditions. In a  lightly-loaded network, communica­

tion latency under cut-through switching is proportional to  the sum  of packet size and the 

length of the route, since the packet only incurs a  small delay for processing the routing 

header a t each node. As a result, most contemporary routers utilize cut-through switching 

for lower latency and reduced buffer space requirements [127].

If the outgoing link is busy, virtual cut-through switching buffers the packet, effectively 

degrading to  packet switching. In contrast, a blocked wormhole packet stalls pending ac­

cess to  the outgoing link. Instead of storing entire packets, a  wormhole router can simply 

include small flit (flow control unit) buffers to  hold a  few bytes of the incoming packet; 

when this buffer is full, inter-node flow control halts further transmission from the pre­
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vious node. Wormhole switching can achieve low latency, particularly in a  lightly-loaded 

network; however, a stalled wormhole packet can block other traffic from accessing the 

outgoing links. This limits network throughput and complicates the effort to  avoid packet 

deadlock. Wormhole networks can improve throughput by including additional flit buffers 

or by incorporating logical lanes on each link to  enable other traffic to  bypass a blocked 

packet, as discussed below in Section 2.2.4.

Several routers employ pipelined circuit switching, which blurs the distinction between 

between wormhole and circuit switching. Unlike traditional circuit switching, pipelined 

circuit switching dynamically reserves network resources on a per-packet basis; however, 

unlike traditional wormhole switching, the router does not transm it the d a ta  portion of the 

packet until the header successfully reaches the destination node. This variant on worm­

hole switching can simplify deadlock-avoidance, since the small header can typically fit in 

a  single flit buffer and can backtrack when it encounters congestion, if necessary; after 

route establishment, the data  portion of the packet does not encounter any link contention. 

However, reserving the packet’s path  in advance incurs additional overhead, particularly 

in a  lightly-loaded network. The router can amortize this overhead by temporarily main­

taining the channel reservations, since subsequent packets may reuse the route in the near 

future [56].

2.2 .4  V irtual Channels

For additional routing and switching flexibility, a  multicomputer can extend its under­

lying physical topology by dividing each link into multiple virtual channels [31]. Although 

the router allocates these logical links on a per-packet basis, each link interleaves its virtual 

channels a t the flit level. As a result, the link can service any virtual channel th a t has a 

flit to  send, as long as the downstream router has sufficient buffer space. By supporting 

multiple virtual channels on each link, a router can allow incoming traffic to  bypass stalled 

packets on different virtual channels. This can substantially improve the achievable network 

throughput of wormhole switching. In addition, virtual channels play an im portant role in 

avoiding packet deadlocks, particularly in wormhole networks [29,87].
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Deadlock arises when a chain of packets stall in the network, with each packet blocking 

the forward progress of another packet. A router can preclude such circular dependencies by 

restricting the order in which packets can access virtual channels. For example, the square 

mesh topology has no cycles within a  dimension, due to  the absence of wrap-links; coupled 

with dimension-ordered routing, packets also cannot develop cycles between directions, since 

each packet routes in the x-direction before proceeding in the y-direction. However, in a 

torus topology a  chain of blocked packets can halt all forward progress in a  particular 

row or column of the network. To avoid potential packet deadlocks, the router can divide 

each link into two virtual channels and break the circular dependencies in the underlying 

topology [29]. Additional virtual channels permit the construction of adaptive routing 

algorithms with deadlock-avoidance guarantees [44]; typically, the more flexible adaptive 

routing algorithms require more virtual channels to prevent deadlock [17,87,98].

M ulticomputer networks can also use virtual channels to  logically segregate traffic with 

different characteristics or performance requirements. For example, a router could employ 

separate virtual channels to  separate short and long packets [67,68,73] or control and da ta  

packets [30,35]. By assigning separate logical resources to  each set of packets, the router 

effectively limits the interaction between the traffic classes. This can improve performance 

by limiting the number of long da ta  packets th a t can receive service ahead of a short control 

packet. Although virtual channels improve router flexibility, they also affect network speed 

and im plementation complexity, since each virtual channel requires arbitration logic as well 

as a small flit buffer [4].

2.2.5 Buffer A rchitecture and Link A rbitration

Careful selection of a routing algorithm reduces packet contention, improving a  packet’s 

chance of cutting through interm ediate nodes. However, if two incoming packets route to 

the same outgoing link, one packet must be blocked and incur delay. The simplest buffering 

scheme places a first-in first-out (FIFO ) queue a t each input link to  store packets unable 

to  access their chosen output link. Unfortunately, a blocked packet a t the head of an input 

FIFO detains any other packets in th a t buffer, even if the routing algorithm would assign
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these packets to other (possibly idle) output links. This head-of-line blocking significantly 

reduces achievable network throughput [55,92,116].

Alternatives to  input queueing avoid this artificial contention a t the expense of increased 

hardware complexity. Partitioned input-queueing replaces the single input FIFO with mul­

tiple queues to  separate traffic destined for different outgoing links [92,116]. In contrast, 

output queueing places packet buffers at the outgoing links, requiring the buffers to  si­

multaneously accept packets from multiple input links. The router may provide separate 

buffers for each output queue or allow the outgoing links to  share a central packet mem­

ory. While shared packet buffers enable higher memory utilization, separate queues can 

effectively insulate a link from other, heavily-loaded links.

If an output link services multiple virtual channels or packet queues, the arbitration 

scheme coordinates access amongst competing traffic. The simplest approach statically 

assigns link bandwidth to  each queue or virtual channel, but demand-driven arbitration 

schemes better utilize the available network bandwidth. Priority-based schemes may im­

prove performance by favoring longer queues or packets with stricter end-to-end delay re­

quirements [31,77,120]. However, most multicomputer routers implement demand-driven, 

round-robin arbitration to  divide bandwidth fairly amongst the competing traffic. O ther 

arbitration policies, such as fair queueing algorithms, dispense bandw idth in proportion to  

a  set of weights [5,125,126]. These schemes ensure a  minimum bandwidth to each channel, 

independent of the traffic on other channels.

2.3 Cut-Through R outer D esigns

2.3.1 W orm hole R outers

Many contemporary research and commercial routers employ wormhole switching or 

pipelined circuit switching, as shown in Table 2.1 and Table 2.2. These tables highlight the 

network topology, routing algorithm, and virtual channel support in these router designs. 

The last column describes how the router arbitrates amongst multiple virtual channels 

contending for the same outgoing link; the Mesh Routing Chip, IMS C104, iPSC /2  Direct-
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R o u te r T opology R o u tin g V -ch an s A rb itr a t io n
Mesh Routing Chip [110] 2-D mesh e-cube 1 —
Network Design Frame [30] 2-D mesh e-cube 2 priority
Message-Driven Processor [35] 3-D mesh e-cube 2 priority
Torus Routing Chip [28] 2-D torus e-cube 2 fair
Reliable Router [34] 2-D mesh adaptive 5 fair
IMS C104 Switch [117] flexible interval routing, 

universal routing
1

T ab le  2.1: W o rm h o le  ro u te r s

Connect, and the NCube 6400 do not require channel arbitration, since each link has only 

one virtual channel. Most of the wormhole routers use dimension-ordered (e-cube) routing 

for deadlock-free communication with low implementation complexity. W ith dimension- 

ordered routing and an unwrapped mesh topology, a router requires only one virtual channel 

per link to  avoid deadlock, as in the Caltech Mesh Routing chip; the Network Design Frame 

and the Message-Driven Processor include a second virtual channel to  separate user and 

system messages (at different priority levels). In contrast, the torus topologies require two 

virtual channels per link, coupled with e-cube routing, to prevent communication deadlocks.

Some recent wormhole routers employ adaptive routing to  circumvent network conges­

tion. The Reliable Router includes five virtual channels on each link to  support adaptive 

routing in a  2-D mesh, even allowing non-minimal routes when a packet must avoid a faulty 

link. The IMS C104 switch uses interval routing, which associates each output link with 

a programmable range of node identifiers; as a packet arrives, the routing algorithm deter­

mines which output links cover the packet’s destination node. To further reduce congestion, 

the C104 supports universal routing, which sends a packet to  a random node before routing 

to  its ultim ate destination. While this randomness balances network traffic load, it forces 

packets to  travel through more intermediate nodes before reaching their destinations.

2.3 .2  V irtual C ut-T hrough R outers

While wormhole switching stalls blocked packets, virtual cut-through routers include 

packet buffers to  remove these packets from the network. As shown in Table 2.3, virtual
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R o u te r T opology R o u tin g V -ch an s A rb i t r a t io n
iPSC /2  Direct-Connect [89] hypercube e-cube 1 —
NCube 6400 [45] hypercube e-cube 1 —
V irtual Channel Router [56] hypercube e-cube 2 fair
Ariadne [3] 2-D torus adaptive 3 fair

T ab le  2.2: P ip e lin e d  c irc u it-sw itc h e d  ro u te r s

cut-through routers support a diverse range of topologies, routing algorithms, and queue 

architectures. The Mayfly Post-Office router, designed for hexagonal mesh topologies, im­

plements adaptive routing and queues blocked packets in a  central, shared buffer. W hen a 

packet has shortest-path links in multiple dimensions, the Post-Office favors the direction 

with the most remaining hops; this increases the packet’s likelihood of having multiple rout­

ing options a t later nodes in its route. When the packet cannot route to  a shortest-path 

link, the Post-Office considers links tha t leave the packet no farther away from its desti­

nation. When these links are unavailable, non-minimal routing allows the packet to  travel 

away from its destination.

The Chaos router also allows non-minimal routing to prevent buffer deadlock in the 

network. If an arriving packet cannot proceed to a  shortest-path output link, the Chaos 

router stores the packet in a small central packet buffer. When blocked packets exhaust 

this buffer the router transm its one of the blocked packets in a non-minimal direction to 

free space for arriving traffic. Deflecting packets from their ultim ate destination can cause 

livelock, where a packet continually travels in the network without reaching its destination, 

but Chaos routing is probabilistically livelock-free [74].

O ther virtual cut-through routers allow flexible construction of routing algorithms and 

network topologies through routing tables. The DEC AN1 switch has an adjustable routing 

table. W hen faulty links or nodes change the underlying network topology, this software 

autom atically reconfigures each switch’s routing table. While the DEC AN1 has flexible 

routing support, FIFO input buffers limit network performance, since a blocked head-of-line 

packet prohibits other traffic from utilizing idle output links. In contrast, the ComCoBB 

switch avoids head-of-line blocking by separating packets destined for different ou tpu t links.

16



R o u te r T opo logy R o u tin g Q u e u e in g
Mayfly Post-Office [39] wrapped hexagonal adaptive shared output
Chaos Router [15] 2-D torus non-minimal adaptive shared pool
DEC AN1 [94] flexible table look-up, adaptive input
ComCoBB [116] flexible table look-up partitioned input
Artie Router [18] multistage static input pools

T ab le  2 .3 : V ir tu a l  c u t- th ro u g h  ro u te r s

While each input link has a  single packet buffer, this memory includes a  separate logical 

FIFO  for each output link [116].

Instead of constructing separate logical queues, the Artie routing chip allows every 

buffered packet to  contend for access to  the output links. Since each Artie input link can 

buffer a t most three packets, the implementation connects each packet buffer to  a  crossbar 

port. Although this provides an efficient queue architecture for Artie, the approach is not 

scalable to  routers with larger buffer sizes due to the implementation cost of large crossbar 

switches. Artie prevents buffer overflow through a  handshake protocol between adjacent 

routers. Although the Artie chip implements static routing, the system can exploit multiple 

paths in the network by assigning different packet routes a t the source node.

2 .3 .3  H ybrid  R outers

Recognizing the benefits of wormhole and virtual cut-through switching, some recent 

router designs support both switching schemes, as shown in Table 2.4. These architectures 

implement wormhole switching, bu t also provide sufficient buffer space to remove some 

blocked packets from the network. This combination relieves network congestion while 

preserving the low buffer requirements of wormhole switching. The Cray T3D router imple­

ments wormhole switching, with two pairs of virtual channels ensuring separate deadlock- 

avoidance for request and response messages. Each virtual channel has enough buffer space 

to  store a  small packet, while longer packets spread across multiple nodes. Since multicom­

puter applications typically generate a  mixture of short and long packets [27,67], router 

support for these two traffic classes can significantly improve performance.

17



Router Topology Routing V-chans Queueing
Cray T3D Router [90] 3-D torus e-cube 4 input
Segment Router [73] — — 2 shared output
IBM Vulcan [114] multistage static 1 shared output
PRC [38] flexible programmable 3 software-controlled

Table 2.4: Hybrid cut-through routers

Short packets incur large end-to-end latency when forced to  wait behind long packets for 

access to the network links [49,67]. The Segment router addresses this problem by assigning 

the two traffic classes to  separate virtual channels with different switching schemes; long 

packets use wormhole switching to  limit buffer-space requirements, while short packets use 

virtual cut-through switching to reduce channel contention. The router queues a  blocked 

short packet in a central output buffer pending access to its output link, freeing the incoming 

channel for other short packets. The IBM Vulcan also reduces network congestion through 

a shared output buffer. This central queue dynamically buffers blocked wormhole packets 

in 8-flit chunks.

Since wormhole and virtual cut-through switching performance varies with the applica­

tion workload, the PRC (Programmable Routing Controller) router can implement micro- 

programmable routing-switching schemes in small, custom processors close to  the physical 

links. These processors execute low-level routing-switching algorithms, tailored to  the appli­

cation traffic patterns. This enables the PRC to implement wormhole, virtual cut-through, 

and packet switching, as well as hybrid schemes, each under variety of routing algorithms. 

In addition, the router can support multiple routing-switching schemes simultaneously, as 

discussed further in Section 5.2.2. This flexibility can significantly improve application 

performance, particularly in multi-user systems.
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C H A PT E R  3

A N A LY TIC A L M ODELS OF C U T -T H R O U G H  R O U T IN G

Cut-through switching schemes, coupled with effective routing algorithms, significantly 

reduce end-to-end packet delay. As networks grow larger, scalable performance requires 

packets to  cut through as many nodes as possible; fortunately, larger networks also pro­

vide more opportunities for adaptive routing algorithms. Effective analytical models can 

predict the behavior of large networks and help weigh the cost-performance trade-offs of 

various oblivious and adaptive routing algorithms. However, analytical models require cer­

tain  simplifying assumptions about the underlying interconnection network and application 

traffic patterns, for the sake of tractability. Simulation studies can characterize the effects 

of these assumptions to  determine when analytical models overestimate or underestim ate 

actual router performance.

Performance evaluation of cut-through schemes began with the work in [65], which 

presented a  mean-value analysis of end-to-end latency for virtual cut-through switching 

under oblivious routing, derived from a queueing theory model for packet-switched net­

works. O ther work extends this M /M /1  analysis to  consider delivery-time distributions [41] 

and fixed-length packets [1]. Extensions of virtual cut-through switching address specific 

error recovery mechanisms [58] and partial cut-throughs [1,124]. In addition, using vir­

tua l cut-through switching within multistage ATM switches introduces new communication 

characteristics and performance requirements [82,123,124], including bursty traffic with 

delay constraints. However, these analytical models do not address the im pact of routing
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algorithms on cut-through switching performance.

Using both  analytical models and simulation experiments, this chapter compares sev­

eral shortest-path routing strategies in homogeneous virtual cut-through networks, such as 

tori and other fc-ary n-cube topologies; in particular, the performance evaluation considers 

influence of the selection function  used to  rank candidate outgoing links. Adaptive routing 

schemes th a t dynamically select from multiple outgoing links best capitalize on cut-through 

switching, particularly when the selection function strives to  increase a  packet’s routing op­

portunities a t subsequent nodes in the the route. The simulation model illustrates tha t 

virtual cut-through switching introduces unique inter-node dependencies th a t affect the ac­

curacy of the analytical model; novel routing algorithms can capitalize on these effects to 

improve network performance.

3.1 R outer M odel

A basic queueing-theory model of cut-through performance can decompose the inter­

connection network into a  collection of independent links and queues. An arriving packet 

can cut through a node if its outgoing link is idle; otherwise, the packet buffers in a service 

queue, as shown in Figure 3.1. The various routing algorithms differ in how they affect 

the cut-through probability pc, which depends on the number of candidate output links a 

packet can consider a t each node in its route.

3.1.1 Q ueueing T heory

As in packet-switched networks, an M /M /1  model can accurately represent the service 

queue a t each link, if queue size is not restricted and packet lengths and interarrival times 

are exponentially distributed [71]; in this framework, each source node generates packets as 

a Poisson process with rate  A, as shown in Table 3.1. W ith sufficient mixing of traffic from 

different sources, Kleinrock’s independence assumption enables the analysis to  decouple the 

packet length and interarrival distributions a t each node [70]. In effect, a  packet receives a 

new length a t each node in its route, perm itting the analysis to  model the network links as
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Figure 3.1: Conceptual model of a cut-through network

independent exponential servers operating a t rate 1/1, where I  is the average packet length.

Under this assumption, a  m ixture of sources with Poisson arrivals produces a Poissonian 

ou tpu t stream  for the link [21]; this link, in turn, forms the traffic source for an input link 

to  an adjacent node. W ith sufficient randomization of packet routes, the Poissonian traffic 

perm its a  product-form solution th a t separately analyzes each link in a packet’s route, 

by Jackson’s theorem [60]. Since the network links are independent, a  packet traveling 

h hops has h — 1 independent opportunities to cut through intermediate nodes, resulting 

in a binomial distribution for the number of cut-throughs [65]. Based on this binomial 

distribution, analytical models can determine other higher-level metrics, such as average 

latency or delivery-time distributions, for cut-through networks.

For example, a  packet traveling h hops has average delay

YZ~p ~  Pc(h ~  !)?»

where p < 1 is link utilization [65]. The first term is the average delay in a  packet-switched 

network, where the packet encounters h independent M /M /1 queues, each with mean service 

rate  1 f l \  in an M /M /1  queue, customers spend average time £ / ( l  — p) in the system [71]. 

The second term  captures the performance benefit of employing cut-through switching. 

W hen an arriving packet routes directly to  an idle link, the router avoids buffering the 

packet, so the average packet reduces its latency by 1 whenever it cuts through one of the 

h — 1 interm ediate nodes in its route. To include header processing delay a t each router, 

the pc(h  — 1)1 term  reduces to  pc{h — l) ( f  — r ) ,  for a  header of length r ,  but r  is typically 

small in comparison to  1.
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P a ra m e te r S e ttin g
Switching scheme V irtual cut-through switching
Buffer architecture Infinite packet FIFO for each output link
Routing algorithm Random, oblivious routing
Network topology Homogeneous network
Packet arrival Poissonian packet generation (rate  A)
Packet destination Uniform traffic load
Packet length Exponentially distributed (mean I)

Table 3.1: Idealized network and workload parameters for queueing model 

3.1 .2  R outing A lgorithm s

Routing algorithms impact communication performance by affecting the cut-through 

probability pc. Oblivious routing directs an incoming packet to  a  single outgoing link, 

selected randomly or according to  a static ordering; hence, under the assumptions in the 

analytical model, an arriving packet encounters an empty service queue with probability 

pc =  1 — p. However, adaptive routing algorithms are more difficult to  analyze, since the 

cut-through probability depends on the number of links a  packet can consider a t each hop 

in its route. For example, cut-through probability increases to  1 — p2 if two links lie along 

minimal paths to the destination node, since the arriving packet can establish a cut-through 

unless both outgoing links are busy; if neither link is available, we assume th a t the packet 

enters a single service queue to  await transmission.

In a  two-dimensional torus (A;-ary 2-cube), the average cut-through probability depends 

on the likelihood P2 th a t a  packet has two routing options at an interm ediate node. T hat 

is,

Pc = (1 -  p2)P2 + (1 -  p)( 1 -  P2) =  (1 -  p)( 1 +  pP2),

with link utilization p =  A h l / 4 ,  where packets travel an average of h hops in the network; 

the h i  term  represents the average bandwidth consumed by a packet, while the denomina­

tor corresponds to the four links emanating from each node. The probability P2  depends on 

the routing algorithm, as well as the relative position of the source and destination nodes; 

although an empirical approach can tabulate P2  for a specific topology and routing algo­

rithm  [84], analytical expressions allow efficient prediction of communication performance,
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Figure 3.2: Ring of destinations h =  3 hops from the source node (0,0)

particularly in large networks.

3 .1 .3  Traffic Pattern

To study uniform traffic loads, we assume tha t a source node is equally likely to  commu­

nicate with any destinations th a t are h hops away; this hop-uniform  traffic pattern  generates 

rings of destination nodes within a fixed distance of the source node, which can represent 

spheres of communication locality, as shown in Figure 3.2. The node-uniform traffic pattern , 

which selects each node with equal probability, is a special case of the hop-uniform distri­

bution. The hop-uniform traffic, coupled with the homogeneous network topology, perm its 

the analysis to  focus on a single source node (0,0) and a “quadrant” of destination nodes 

(0, h ) , ( l , h — 1 ) , . . . ,  (h — 1,1) in the torus network. Each of these destinations corresponds 

to  a  unique collection of possible shortest-path routes; the likelihood of selecting each path  

depends on the routing algorithm and the traffic load p.

To determine P2 , consider a packet tha t travels to destination node (x , y ) ,  with x , y  > 0 

and x  +  y = h. Any nodes ( i , j )  with 0 < i < x and 0 < j  < y may lie a  shortest-path 

route. Nodes ( i , j )  with i < x  and j  < y have two outgoing links on minimal paths to 

the destination node, as shown in Figure 3.3. These internal nodes have greater routing 

flexibility than  the remaining border nodes [8]. The next section analyzes various adaptive 

routing algorithms by deriving

5 ^  ^  =  P[packet visits n internal nodes], n = 0 ,1 , . .  .h  — 1 

in traveling x  hops in the x-direction and y-hops in the y-direction, where h = x -\-y. After
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defining recurrences for the analysis computes P2  by averaging across a  quadrant

of destinations th a t are h hops away from the source node. Determining P2  as a function 

of h facilitates comparisons between the different routing algorithms based on cut-through 

probability and average packet latency.

3.2 A nalysis for C ut-Through Probability

The analysis evaluates three adaptive, minimal routing algorithms in a torus network 

to  study the influence of selection functions on communication performance, as shown in 

Table 3.2. In contrast to  the random  and dimension-ordered selection functions, the diagonal 

adaptive algorithm actively strives to  improve a  packet’s chance of having multiple routing 

options a t interm ediate nodes. This can significantly improve the average cut-through 

probability pc, particularly in large networks.

3.2.1 R andom  and D im ension-O rdered A daptive R ou ting

By considering the likelihood of traveling in the x  and y directions, the analysis can 

determine S™x for each of the routing algorithms. When x  =  0 or y  =  0, a packet is a t a 

border node and, hence, can only consider one direction, resulting in

S <x,y) ~
1 n = 0 

0 n > 0.

If both x  and y are non-zero, define a  as the probability th a t a packet travels in the re­

direction; if a packet cannot establish a  cut-through on either link, we assume th a t the 

packet joins the service queue for its first-choice direction. Under the random selection
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S e lec tio n  F u n c tio n R a n k in g  o f  x  a n d  y links
Random Select x  and y links with equal probability
Dimension-ordered Prefer x  link over y link
Diagonal Prefer direction with most hops remaining

T ab le  3 .2 : S e lec tio n  fu n c tio n s  fo r a d a p tiv e , m in im a l ro u tin g

function, a  =  1/2, since neither direction has preference over the other. However, the 

dimension-ordered selection function routes a packet in the a:-direction, unless the x  link is 

busy and the y link is idle, resulting in a  = 1 — p (l  — p).

W hen both x  and y  are non-zero, the source node is an internal node; any other internal 

nodes also appear in the routes for (x — 1, y) and (x, y — 1). Thus, for x , y > 0,

!0 if n = 0

a S (x-l,y) +  C1 -  a )5 (" ,i- i)  otherwise- 

To average S*x across the quadrant of destination nodes, let S% be the sum of S(Xty^n for 

x  =  0 ,1 , . . . ,  h — 1, where h = x  -f y. For n  > 0,

i= 1  x = \  a : = l
y = h —x

( A - l ) - l  h - 1

=  “  E  +  ( ! - « )  E  s & y
x = 0  x = l

y —(h—l ) —x  y = : ( h - l ) - x

If n  =  1, both summations evaluate to 1 because S^0y  ̂ =  5 '^q) = while all o ther terms 

are zero, resulting in S \  =  1. W hen n  > 1, = 0, so both sums range over

a; =  1 , . . . ,  (h — 1) — 1. Thus, for n  > 1,

s i  =  a s ; : ,1 +  ( i  -  a ) s ; : ;  =  s ; : } .

Hence, S% = £ £ - 1  =  ■ • • =  S^_n . Since 5° =  1 for all h > 0, this implies =  1,

for 0 <  n < h. Thus, for h-hop packets, routes with 0,1 1 internal nodes are

encountered with equal probability 1/h.

However, note th a t includes the source whenever it is an internal node, even

though a packet cannot actually cut through the source node. Any route with one or more
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internal nodes has the source as one of these nodes. Removing the source node yields

P[ N = n  internal intermediate nodes] =

\  if n = 0

£ if n  =  1 ,2 , . .  . , h — 2 

0 if n = h — 1.

Note th a t each packet has a t least one intermediate node on the border, since the packet 

has only one routing option for its final hop. Averaging over the intermediate nodes,

h- 1
P 2 =  ^ 2  n ■ P[N = n] =  |  ~  for h > 2 .

n = 0

Hence, the cut-through probability simplifies to

which approaches pc =  (1 —p )( l+ p /2 ) fo r  large h. Considering a second outgoing link, when 

possible, increases the cut-through probability by nearly a factor of p /2  over the oblivious 

routing algorithms. It is interesting to  note th a t P2, and hence pc, does not depend on 

a. This suggests th a t choosing the first-choice link randomly (instead of using a static 

strategy, such as dimension-order routing) does not necessarily improve the likelihood of 

encountering internal nodes; on average, both approaches lead the packet to a  border node 

in the same number of hops.

3.2 .2  D iagonal A daptive R outing

As seen in the previous subsection, capitalizing on multiple shortest paths improves the 

likelihood of cut-throughs. Oblivious routing ignored this opportunity, while the random 

and dimension-ordered adaptive schemes capitalize on it. To further improve communi­

cation performance, diagonal routing actively creates such opportunities by favoring the 

x-direction when x > y and the p-direction when y > x\ when x  =  p, we assume th a t the 

router breaks ties in favor of the x-direction1. Let a  equal the likelihood of traveling in the 

preferred direction. The packet travels in the alternate direction only when the preferred

Ht can be shown that this assumption does not affect the outcome of the derivation.
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link is busy and the alternative link is idle, so 1 — a  = p( 1 — p); since p € [0,1], a  > 3 /4 , 

ensuring th a t packets travel in the preferred directions at least three-fourths of the time.

As in the previous section, if x =  0 or y — 0, =  1 and =  0 for all n > 0. For

x ,y  > 0,

0 if tc =  0

a S (x,y~l) +  (! -  y > x , n >  0

. a S (x~-l,y) +  ( ! -  a )S (x,}-1) X > V ’n > 0 •

Except for destination (0, h),  all destination nodes in the quadrant have at least one internal 

node; hence, only the (0 ,h)  destination contributes to  5°, resulting in S°  =  =  1. For

n  > 0 and even h,

h —1
n n    X  "' o n

h — 2 ^  (x,y)
X = 1

y = h —x

^-1 2
=  E  {“ « < « - . ) +  ( i - « ) S ( V - ,u ) }

X=1
y = h —x

x = h / 2
y = h —x

This simplifies to

Sk = a (ShZi +  ^ , , 1 , )  +  (1 -  -  s (T _ ll? )) •

A similar expression holds for odd h , resulting in

S? =
S h -i +  (2a ~  i ) ^ - i  M for even h \ 2 *2 /

+  (2a  -  l)E V /i ,,_i for odd h .
\ 2 ' 2 >

Note th a t when a  =  1/2 these two recurrences both reduce to  the analysis for random  and 

dimension-ordered adaptive routing. Since diagonal routing has a  >  3 /4 , the algorithm 

increases S% for larger n, since routes with a larger number of internal nodes become more 

likely. These recurrences can be used to  generate P 2 , as in the previous section.

3.2 .3  Perform ance Com parison

The analytical expressions for pc enable performance comparisons between the oblivious 

and adaptive routing algorithms. Figure 3.4 shows the performance of the three algorithms
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with I  = 64 under changing load p, with h = 5 and h =  20 respectively; the “passive” 

curve corresponds to the random and dimension-ordered adaptive routing algorithms. At 

low loads, packets almost always cut through intermediate nodes, so pc is nearly unity; 

in this situation, transmission delay is the main component of packet latency, so all three 

algorithms would exhibit similar end-to-end performance. As load increases, the adaptive 

schemes outperform the oblivious algorithm by increasing pc.

In Figure 3.4(a), diagonal routing operating at p = 0.5 achieves the same cut-through 

probability th a t oblivious routing does a t just p =  0.4. The benefit of diagonal routing is 

most evident when the packets travel a  large number of hops, as in Figure 3.4(b). To further 

illustrate this effect, Figure 3.5 compares the three routing algorithms as h increases, for 

fixed values of p. Since cutting through intermediate nodes significantly shortens packet de­

lay, even small increases in pc can translate into significant reductions in end-to-end latency. 

Adaptive routing, and especially diagonal routing, can significantly improve performance, 

particularly for large networks; these effects are particularly dram atic under non-uniform 

traffic patterns, as shown in the next section.
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3.3 Sim ulation R esults

The analytical expressions for pc and average latency estim ate the routing performance, 

but some low-level design decisions and inter-node dependencies are difficult to  capture 

mathematically. Experiments with a discrete-event simulation model provide deeper insight 

into the interaction between routing and cut-through switching. To verify the analytical 

model, the initial experiments evaluate the router under idealized traffic assumptions; subse­

quent experiments consider how well the routing algorithms perform under the non-uniform 

traffic patterns tha t can arise in realistic multicomputer applications.

3.3.1 U niform  Traffic

To enable comparisons with the analytical model, the simulation experiments evaluate 

a crossbar switch connecting the input ports to  unbounded output queues, using the sim­

ulator presented in Chapter 4. Each packet has a one-byte routing header to  identify the 

destination node in a  16 x 16 torus (16-ary 2-cube) network; hence, the analytical expres­

sions slightly underestimate average at low loads, since the analysis does not include header 

processing delay a t each node. The simulation model describes the flow of each packet 

through the network, capturing contention for access to  the outgoing links and the port to 

the local processor. In these preliminary experiments, each node independently generates

29



packets with exponentially distributed inter-arrival times (with I  — 64 bytes) and uniform 

random selection of destination nodes, following the workload assumptions in Table 3.1.

Figure 3.6 compares the analytical models to  the simulation results for packets traveling 

live hops in a 16 x 16 torus network. The analytical models closely matches the simulation 

results. In Figure 3.6(a), oblivious routing performs slightly better when a router selects 

outgoing links in dimension order, choosing the x-direction over the y-direction. Under 

dimension-ordered routing, a  packet entering a node in one direction generally exits the 

node traveling in the same direction. This reduces the likelihood tha t packets from different 

incoming links contend for the same output port. As a result, dimension-ordered routing 

has a  higher cut-through probability and lower average latency, although the analytical 

model predicts tha t the dimension-ordered and random selection functions should have the 

same performance.

As shown in Figure 3.7, the benefit of dimension-order routing becomes more significant 

for larger values of h, since packets travel through more nodes in each direction, changing 

dimensions only once [2,106]. In contrast, Figure 3.6(b) shows little difference between the 

dimension-ordered and random selection functions under adaptive routing, since the ex tra 

routing flexibility is sufficient to  resolve these link conflicts. The diagonal algorithm exhibits 

the best performance by actively increasing the number of routing options, particularly at 

later nodes in a packet’s route; however, diagonal routing does not significantly outperform  

the other two adaptive algorithms under uniform traffic loads, as seen in Figure 3.7.

3.3 .2  N on-U niform  Traffic

While the analytical model considers a uniform network load, common m ulticomputer 

constructs, such as synchronization or multicast operations, induce “hot-spots” of heavily- 

utilized nodes and links. Figure 3.8 compares the performance of the three routing algo­

rithm s in a simulated 16 X 16 torus network under non-uniform load. A single “ho t” node 

receives 5% of the traffic, while the remaining packets select a destination at random; the 

“normal” uniform traffic loads the network to 20% capacity, with the non-uniform traffic
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generating a  congested region near the hot-spot node. The plots in Figure 3.8 show average 

end-to-end latency for packets traveling h hops. For low values of h, normal packets do not 

experience significant delay, since most packets do not encounter the congested region.

However, for dimension-ordered oblivious routing, average delay rises steeply as packets 

travel further in the network. In contrast, the plots for adaptive routing stay relatively 

flat, since packets reduce their average latency by circumventing busy links and nodes. As 

h increases, the adaptive algorithms have more routing flexibility, since packets typically 

have more internal nodes. This improves the scalability of virtual cut-through switching as 

network sizes and packet distances increase. Diagonal routing performs especially well in this 

context, since it preserves routing flexibility even as packets near their destination nodes, 

clearing congestion near the hot-spot region. Packets destined for “norm al” destinations 

avoid the nodes and links near the hot spot, significantly reducing the delay for hot packets 

th a t must enter the congested region.

The random  and dimension-ordered selection functions exhibit quite different perfor­

mance under hot-spot traffic, in contrast to  the expectations of the analytical model. For 

the “norm al” traffic, dimension-ordered routing has lower average latency, since packets ar­

riving on different incoming links tend to head to  different outgoing links, as in Figure 3.7. 

However, the random routing algorithms significantly outperform dimension-ordered routing 

for the “ho t” traffic. This occurs because dimension-ordered routing forces most hot-spot
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packets to  enter the hot-spot node on one of the y-direction links; this results in heavy 

congestion on the two y-directions links, even though the a;-direction links have a  relatively 

light load. In constrat, the random selection function better balances the traffic load across 

the various links near the hot-spot node. This suggests th a t multicomputer networks could 

benefit from support for multiple coexisting routing schemes, each tailored to  a specific type 

of traffic.

3.4 Inter-N ode D ependencies

Although the simulation results match the expectations of the analytical model fairly 

well, the plots in the previous section show consistent performance differences. Unlike 

the analytical expressions, the simulation experiments capture the effects of dependencies 

between adjacent nodes in the network. This section isolates the effects of the independence 

assumption through a detailed study of the analytical and simulation models under oblivious 

routing algorithms. Additional experiments show th a t realistic router architectures and 

application workloads exacerbate the effects of inter-node dependencies.
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3 .4 .1  C ut-T hrough C orrelation

To characterize the impact of the independence assumption, Figure 3.9 considers the 

performance of random oblivious routing under the architectural and workload param eters 

in Table 3.1. While Figure 3.7 plotted the average values for the cut-through probability 

and communication latency, Figure 3.9 considers the distribution of the number of cut- 

throughs. As discussed in Section 3.1, the number of cut-throughs should obey a binomial 

distribution, where a  packet has cut-through probability 1—p a t each of the h—1 intermediate 

nodes in its route. As a result,

/
P[c cut-throughs] =

h -  1
( 1 ~ P ) CPc -h—1—c c =  0 ,1 , . . . ,  h — 1,

\

with a variance of p( 1 — p)(h  — 1) in the number of cut-throughs. Instead, the simulated 

network experiences greater variability, particularly for moderate values of p. As shown 

in Figure 3.9(b), the simulated network has a  flatter  distribution for the number of cut- 

throughs, with heavier tails than the analytical model would suggest.

As a result, the simulated network has more packets th a t experience a large number 

of cut-throughs or a  small number of cut-throughs. This, in turn , translates into greater 

variability in end-to-end packet latency [106], even for an idealized router model. A closer 

look a t the simulation d a ta  reveals the cause of this variability. Figure 3.10(a) shows
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the packet cut-through probability, conditioned on the switching decision a t the packet’s 

previous hop. In theory, the likelihood of cutting through an interm ediate node should be 

independent of the packet’s experience at previous hops in its route. However, Figure 3.10(a) 

shows significant variation in the cut-through probability, depending on whether or not 

a  cut-through occurred on the packet’s previous hop; the middle curve is effectively the 

weighted average of the two conditioned plots.

A prior cut-through encourages an additional cut-through, while buffering a packet is 

more likely to lead to future packet bufferings. As a result, some packets cut through several 

nodes in a  row, while other packets consistently buffer at intermediate nodes. At low loads, 

this phenomenon increases the likelihood of cut-throughs, since the frequent cut-throughs 

perpetuate themselves, while the reverse occurs at high loads. Hence, for small p, the 

simulated packets consistently experience slightly more cut-throughs than  the analytical 

model predicts, while the opposite is true for large p, as seen in Figure 3.6(a). This type of 

dependency seems unusual, since random oblivious routing considers exactly one outgoing 

link a t each node, irrespective of a  packet’s past history.

Correlation in the cut-through probability occurs because in an actual system, as in the 

simulator, nodes are not truly independent. In a real network, if a  packet buffers a t one 

node, then it eventually exits the router behind at least one other packet. This increases 

the likelihood th a t the packet’s next outgoing link is busy, too. Likewise, if a packet cuts
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through a  node, then the link it uses has been idle for some length of time, increasing the 

likelihood th a t the packet encounters a  light load a t the subsequent node. Although such 

inter-node correlations also affect packet-switched networks, the performance of cut-through 

networks is much more sensitive to  the probability of encountering idle outgoing links. As 

shown in Figure 3.10(b), the dependencies between nodes are even more pronounced under 

dimension-ordered routing, due to  the tighter coupling between incoming and outgoing links 

in the same dimension of the network.

3.4 .2  Traffic M ixing

In addition, modern cut-through networks typically employ low-dimensional topologies 

th a t limit the mixing of incoming traffic streams; a larger number of incoming and out­

going links would ensure more traffic mixing, reducing the dependencies between adjacent 

nodes [70]. Figure 3.11 illustrates this effect by comparing cut-through correlation in three 

k-ary n-cube topologies with different dimensions n. The graph plots the difference

P[cut-through | cut-through on previous hop] — P[cut-through | buffering on previous hop]

for packets traveling 6 hops in the simulated networks. In the absence of inter-node de­

pendencies, this metric should equal zero, independent of network load. While the metric 

consistently exceeds zero for all three topologies, the 16-ary 2-cube network exhibits a  much
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stronger dependence on past packet history, particularly under dimension-ordered routing.

Similarly, many common communication patterns, such as scientific perm utations, limit 

the interaction of traffic from different incoming links. Figure 3.12 shows the cut-through 

performance of dimension-ordered routing under a  bit-reversal perm utation, where a packet 

travels to  the destination node whose binary address is the reverse of the source identifier; 

for example, in a  16 x 16 torus, node (3,10) communicates with node (12,5). This generates 

a  non-uniform traffic load2 as seen by the small peak link utilization in Figure 3.12. Under 

this traffic pattern , nodes in a common row (same y coordinate) of the torus communicate 

with destinations in the same column (same x coordinate), and vice versa. Consequently, 

packets th a t contend for the same outgoing link tend to  share several links in common 

during the remainder of their routes; as a result, a blocked packet must repeatedly buffer 

behind other traffic, significantly reducing the cut-through probability, even a t low network 

loads.

The performance of dimension-ordered routing, under uniform and non-uniform commu­

nication workloads, suggests tha t routers can improve network performance by restricting 

the mixing of traffic from different incoming links. To illustrate this effect, Figure 3.13 

shows the performance of a routing algorithm tha t associates each input link with exactly 

one ou tput link, effectively requiring each packet to  travel in a  single “dimension” for its

entire route. This Hamiltonian-cycle routing decomposes the network topology into link-

2 Since the various parts of the network experience different traffic loads, the experiment focuses on a 
single pair of adjacent links; other link pairs show similar cut-through correlation effects.
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disjoint cycles th a t include every node in the system; for example, a  4 x 4 torus (4-ary 

2-cube) has four disjoint, unidirectional Hamiltonian cycles, as shown in Figure 3.14. For 

the results in Figure 3.13, each packet travels on the cycle with the shortest path  to the 

destination.

By routing traffic on disjoint cycles, two packets th a t arrive on different incoming links 

never compete for access to  the same outgoing link; likewise, two packets arriving on the 

same incoming link never route to  different outgoing links. Consequently, this routing 

algorithm has a  significantly higher cut-through probability, and much lower latency, than 

random  and dimension-ordered routing, for the same value of p. In addition, Hamiltonian- 

cycle routing facilitates an efficient router implementation by restricting the complexity 

of the switch th a t connects the incoming and outgoing links. The reduced connectivity 

between links also simplifies the buffer architecture for storing blocked packets, perm itting 

the router to  place packet queues a t the incoming links without introducing contention 

between traffic headed to  different outgoing links.

However, Hamiltonian-cycle routing can significantly increase the distance a  packet must 

travel to  reach its destination, unless communicating tasks are mapped to  nodes th a t are 

near each other in one of the cycles; in Figure 3.13, the Hamiltonian-cycle algorithm has 

a  much smaller A value than  the other two routing schemes, for the same value of p. To 

reduce bandw idth requirements, a  network could implement a  hybrid routing scheme tha t
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Figure 3.14: Hamiltonian-cycle routing in a 4 x 4 torus network

employs dimension-ordered routing for source-destination pairs th a t would have long routes 

under Hamiltonian-cycle routing. Alternately, to  reduce the length of packet routes, the 

application could place communicating tasks on nodes th a t are near each other on one of 

the underlying Hamiltonian cycles. Hybrid routing algorithms, coupled with effective task 

allocation schemes, could significantly improve cut-through performance and reduce router 

complexity by restricting traffic mixing.

3.5 Conclusions and Future Work

This chapter compares oblivious and adaptive routing algorithms with different selec­

tion functions, based on both analytical and simulation models. The analysis determines 

packet cut-through probability in torus networks, based on the likelihood th a t a  packet has 

two routing choices at intermediate nodes in its route. Due to  the natural dependencies be­

tween neighboring nodes, analytical performance models can consistently underestim ate or 

overestimate cut-through probability and, in turn , other metrics like the mean and variance 

of end-to-end packet latency. Modern multicomputer networks employ router architectures 

and application workloads th a t exacerbate these correlation effects. This chapter introduces 

several research contributions:
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• Analytical models for k-ary 2-cube topologies: The analysis in Section 3.2 facilitates 

the study of routing performance in large torus (k-ary 2-cube) networks common in 

modern multicomputers. To determine average cut-through probability, the analysis 

exploits the concept of internal and border nodes to  formulate a recursion for com­

puting the likelihood th a t a  packet has two routing options at intermediate nodes. To 

model higher-dimensional topologies, the analysis could extend this notion to represent 

nodes th a t have i =  0 ,1 , . .  . ,n  — 1 routing choices. Although the analysis for diagonal 

routing may be intractable, it may be possible to derive the cut-through probability 

for random and dimension-ordered adaptive routing in k-ary rc-cube networks.

• Characterization o f inter-node dependencies: The results in Section 3.4 dem onstrate 

th a t cut-through switching introduces unique dependencies between adjacent nodes. 

By comparing analytical and simulation results, the section characterizes these corre­

lation effects under different routing algorithms, network topologies, and communica­

tion workloads. The simulation experiments show tha t the network policies and traffic 

patterns in modern multicomputer exacerbate these dependencies by limiting traffic 

mixing. These results can motivate the development of novel routing algorithms and 

flow-control policies tha t exploit the natural dependencies between neighboring nodes, 

as discussed in Section 3.4.2.

•  Task mapping and processor allocation: This chapter shows th a t communication per­

formance depends on the likelihood th a t packets have multiple routing options at 

interm ediate nodes, as well as the effects of inter-node dependencies. These observa­

tions, and the quantitative results, can guide the development of new task mapping 

algorithms. For example, a packet has greater routing flexibility when its has to  travel 

one or more hops in each dimension of the underlying topology, instead of traveling 

in a single direction; to  improve performance, processor allocation schemes can place 

communicating tasks on nodes with this issue in mind. Similarly, the task mapping 

scheme can exploit inter-node dependencies by placing tasks to  minimize traffic mixing 

under a given routing algorithm.
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By comparing analytical and simulation results, this chapter isolates the effects of inter­

node dependencies and characterizes how the independence assumption interacts with real­

istic network topologies, routing algorithms, switching schemes, and traffic patterns. This 

chapter focuses on an idealized router model tha t facilitates direct comparisons between 

analytical and simulation results. Although this is im portant for verifying the analyti­

cal model, and characterizing the effects of the simplifying assumptions, modern routers 

have other architectural features th a t affect performance. More detailed studies of realistic 

networks requires greater flexibility in specifying and evaluating router models. The next 

chapter presents a  flexible and extensible simulation environment for evaluating practical 

router architectures under a wide range of communication workloads and network policies.
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C H A P T E R  4

FLEXIBLE SIM ULATIO N M ODELS FOR EVALUATING  

R O U T E R  A R C H IT E C T U R E S

Although performance modeling provides a  cost-effective way to  explore router design 

issues, analytical models often require simplifying assumptions th a t degrade the accuracy 

of the evaluation. To overcome these limitations, several researchers have developed mul­

ticom puter simulators in the past few years. In contrast to toolkits for evaluating local 

and wide area networks [75], these simulators a ttem pt to  capture the unique characteris­

tics of m ulticomputer applications and interconnection networks. Execution-driven simula­

tors [11,40,93] typically model the instruction-level operation of applications on particular 

parallel machines. O ther simulation tools emphasize multicomputer network architectures, 

allowing users to  evaluate routing algorithms and switching schemes under various synthetic 

traffic patterns [16,62,81]. However, these simulators do not capture the subtle relationship 

between router architecture and application communication requirements.

To address the traffic patterns and performance requirements of modern m ulticomputer 

networks, this chapter presents a flexible router model and simulation environment th a t can 

evaluate systems th a t tailor network policies to  application communication workloads. The 

pp-mess-sim (point-to-point message simulator) environment provides an extensible, object- 

oriented framework for evaluating multicomputer routers [42,102,104]. Implemented in 

C + + , pp-mess-sim separates its m ajor components into different classes, representing the 

network topology, application workloads, routing-switching algorithms, and the router ar­
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chitecture. The simulator includes a router model th a t decouples routing, switching, queue­

ing, and arbitration policies to facilitate multifactor experiments th a t can independently 

vary each design param eter. This “virtual” router (v-router) model consists of d a ta  struc­

tures th a t represent architectural components, as well as simulation events th a t capture 

low-level network policies and timing details.

To allow the user to  augment the simulator, each pp-mess-sim module consists of a  gen­

eral base class and an extensible collection of derived classes. Clean, well-defined boundaries 

between the components allows users to extend one pp-mess-sim module w ithout altering 

the internal representation of other classes. The sim ulator’s structure facilitates experimen­

tation  with flexible router architectures th a t can support multiple classes of traffic sim ul­

taneously. At run time, the simulator can instantiate unique communication workloads, 

performance metrics, and routing-switching schemes for each traffic class. The routing al­

gorithm class defines a powerful language which can be used to  write a large number of 

routing-switching algorithms, independent of the timing characteristics of the underlying 

router model. By associating these algorithms with collections of packets, instead of the 

router model, the simulator is able to  support multiple routing algorithms and switching 

schemes simultaneously, with different traffic patterns and performance metrics.

4.1 Simulator Structure

As shown in Figure 4.1, pp-mess-sim’s structure reflects the im portant architectural is­

sues outlined in Chapter 2. The main components are a set of C + +  classes supporting: net­

work topologies (N e t) , communication patterns and da ta  collection routines (W o rk lo a d ), 

routing and switching policies (R alg ), and particular router models (N o d e), as shown in 

Figure 4.1. The arrows in the figure highlight the interaction between the pp-mess-sim com­

ponents. Although network design param eters interact in subtle ways, pp-mess-sim defines 

clean and powerful interfaces between the main simulation components, w ithout restricting 

the flexibility of the tool. Thus, the simulator can easily incorporate new topologies, routing
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Figure 4.1: Structure of pp-mess-sim

algorithms, router models, traffic patterns, and d a ta  collection routines.

The simulator also defines a  specification language for composing complex experiments, 

with a  variety of traffic patterns and network policies. In order to  evaluate diverse network 

architectures, under complex traffic patterns, pp-mess-sim interprets a high-level language 

th a t can represent a  wide range of simulation experiments, as shown in Figure 4.2. Input 

specification is supported by a  lexical analyzer generator and a  parser generator, which 

generate code th a t is linked with the rest of the simulator during compilation. The input 

gram m ar includes blocks for selecting the experiment param eters for each of the other 

pp-mess-sim modules. For example, Figure 4.2 specifies an 8-ary 2-cube ( 8 x 8  torus) with 

three virtual channels on each link, carrying a m ixture of two traffic classes with different 

communication characteristics, network policies, and performance metrics.

The sim ulator’s W o rk lo a d  module encapsulates the details of the traffic generation 

and da ta  collection by handling all functions related to  packet creation and reception. To 

construct a  wide variety of traffic patterns, pp-mess-sim generates packets from a collection 

of independent “tasks,” which are mapped onto individual nodes in the network to  represent 

application behavior. For example, lines 8-15 of Figure 4.2 instantiate uniform background 

traffic (line 20) and a  many-to-one “hot-spot” pattern  (line 33), with node 0 receiving ex tra 

packets from each of the other nodes in the network. For the background traffic class, each 

node generates packets from a Poissonian arrival process and a  bimodal length distribution; 

70% of packets are short (16 bytes), while the remaining 30% are long (512 bytes). The 

hot-spot traffic is periodic, with each node generating a 32-byte packet every 300 time units.
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l -  top o lo g y  b eg in 26 - p ack ets  2000;
2 -  s e l e c t  kary-ncube; 27 - drop 200;
3 -  s i z e  8; 28 - end
4 -  dim ension 2; 29 -

5 -  ch an nels 3; 30 - ta sk  h o t_ sp o t b eg in
6 -  end 31 - a r r iv a l  U n iform (300 ,300);
7 - 32 - le n g th  U niform (3 2 ,3 2 );
8 - node d e fa u lt  b eg in 33 - ta r g e t  D e s t D is c r e te (1 .0 ,0 ) ;
9 -  ta sk s  2; 34 - rou tin g_sp ec  b eg in
io -  s e l e c t  ta sk  h ot_sp ot 1; 35 - r o u tin g  w h _ o b liv io u s (0 ,1);
li  -  end 36 - order dimorder;
12 - 37 - end
13 -  node 0 b eg in 38 - h is to r y  h is to g r a m (0 ,1000 ,50);
14 -  ta sk s  1; 39 - p a ck ets  2000;
15 -  end 40 - drop 200;
16 - 41 - end
17 - ta sk  d e fa u lt  b eg in 42 -
i s -  a r r iv a l  N eg a tiv eE x p n tl(4 0 0 .0 0 ); 43 - g en era l b eg in
1 9 -  le n g th  D is c r e te (0 .7 ,1 6 ,0 .3 ,5 1 2 ) ; 44 - random seed  1353625084;
20  - ta r g e t  NodeUniformO ; 45 - output m ix. o u t ;
21 -  rou tin g_sp ec  b eg in 46 - er ro r s  m ix. e r r ;
22 -  ro u tin g  w h _ad ap tive(0 ,1 ,2 ); 47 - r e s u l t s  m ix .r e s u lt s ;
23 -  order d ia g o n a l; 48 - debug m ix.debug;
24 - end 49 - end
2 5 -  h is to r y  la te n c y ;

Figure 4.2: Example simulation specification

Flexible composition of tasks can generate complex network workloads, with multiple 

traffic classes, while flexible data  collection allows the user to  define different performance 

metrics for each class. The simulator computes end-to-end latency statistics (line 25), such 

as the mean, variance, and confidence intervals, for the background traffic, while maintaining 

a histogram of packet delay for the hot-spot tasks (line 38). Since the performance of 

routing and switching policies vary significantly depending on application communication 

characteristics, each task can select from the various routing-switching schemes in the Ralg 

module. The hot-spot packets employ dimension-ordered wormhole routing on two virtual 

channels (lines 35-36), while the background traffic uses adaptive routing, the diagonal 

selection function, and an ex tra virtual channel (lines 22-23) to circumvent congested regions 

of the network.

Together with the Workload and Ralg classes, the pp-mess-sim N et module insu­

late the N ode’s event flow from the details of application characteristics and the network 

configuration. For example, the Net class encapsulates the specific network topology, by
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providing an interface for other modules to  identify and translate node, link, and virtual 

channel identifiers; currently, pp-mess-sim supports k -ary n-cube topologies, square meshes, 

and wrapped hexagonal meshes. When a pending N o d e  event sends da ta  or a flow-control 

acknowledgement across an outgoing link, N e t  functions spawn the corresponding reception 

event in the adjacent router. Each router, then, receives new packets from the W o rk lo a d  

and in-transit packets from adjacent nodes, with no dependence on the network topology, 

communication patterns, or internal router policies a t other nodes.

4.2 V irtual R outer M odel

By defining strict interfaces between individual parts of the code, pp-mess-sim insulates 

the N o d e  module from the N e t ,  R a lg , and W o rk lo a d  modules. W ithin this framework, 

the v-router (virtual router) N o d e  model introduces several useful abstractions for repre­

senting flow control and resource arbitration.

4.2 .1  R ou ter M odel

Figure 4.3 shows the high-level architecture of the v-router; Figure 4.4 shows the corre­

sponding class definition in pp-mess-sim. A packet enters the router from the local injection 

port or one of the n incoming links and departs through the reception port or one of the n 

outgoing links, where n  depends on the network topology. Each physical link multiplexes 

traffic for c v irtual channels a t the granularity of a flit cycle, while the injection and reception 

ports handle packets on behalf of the nc outgoing and incoming virtual channels, respec­

tively. Although every router design implements its internal policies in different ways, each 

device proceeds through common operations to service an incoming packet. The v-router 

model decouples these phases to  allow simulation experiments to  independently vary the 

internal routing, switching, queueing, and arbitration policies.

Upon receiving the header flits of an incoming packet, the receiver (RX) decides whether 

to  buffer, stall, or forward the packet, based on the routing and switching policies and pre­

vailing network conditions. By treating outbound virtual channels as individually reservable
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resources, the model can invoke a variety of routing and switching schemes through flexible 

control over reservation policies. The routing algorithm generates candidate outgoing vir­

tual channels, while the switching scheme determines whether or not an incoming packet 

waits to  acquire a  selected outgoing virtual channel or buffers instead. If the switching 

decision requires the packet to buffer a t the current node, the router submits the arriving 

packet into the queue.

The d a ta  structures in the queue model determine the admission and scheduling of the 

buffered packets. When the router tries to enqueue a packet, the queue module either ac­

cepts or rejects this request, depending on the current buffer space and the size of the packet. 

Separate from the enqueueing mechanism, the queue model ranks competing packets, de­

term ining which buffered packets can contend for access to the physical links. The v-router 

module currently implements first-in first-out queueing at each output link; extensions can 

consider other policies, based on packet length, priority, or age, as well as alternative ar­

chitectures, such as input queueing. Separate arbitration policies enable each outgoing link 

to  select packets from the heads of competing queues. Once a packet reserves an outgoing 

virtual channel, it contends with other virtual channels for access to  the physical link (TX) 

through an arbitration policy, independent of the queue architecture. The model includes 

several arbitration policies, including round-robin and priority-driven schemes.
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class v_router : public Node ■[
// Sizes and identifiers
Nodeld id; // Identifier of node
Devld max_dev_id; // Number of virtual channels

// Virtual channels
VCRX* vc_rx; // Incoming virtual channels (c * n)
VCIN* vc_in; // Injection virtual channels (c * n)
VCTX* vc_tx; // Outgoing virtual channels (c * n)

// Internal interconnections
RXBus rxbus; // Reception bus (c * n slots)
TXBus txbus; // Transmission bus (c * n slots)
CTBus ctbus; // Cut-through bus (2 * c * n slots, for RX and TX)

> ___________________________________________________________________________________
Figure 4 .4 : Internal components in the v-router Node model

4 .2 .2  R outer C om ponents

Similar to  behavioral hardware description languages, the v-router represents each router 

component as a  sta te  machine, where simulation events trigger each sta te  transition. For 

example, Figure 4.5(a) shows a  sta te  machine for an incoming virtual channel. The channel 

remains idle until the incoming link signals the arrival of the header flits for a new packet. 

After receiving the full packet header, the channel must make a routing-switching decision, 

with the help of the Ralg module; this may require the channel to  reserve buffer space or 

an outgoing virtual channel, as discussed in Section 4.3. Once these resources are available, 

the channel can forward the accumulated header bytes, followed by the remainder of the 

packet, before returning to the idle state.

Flow Control

Visiting each sta te  involves the passage of simulation time, represented by one or more 

simulation events. At a lower level, some operations require the virtual channel to  interact 

with other router components, such as an incoming or outgoing link. A separate sta te  m a­

chine can encapsulate the low-level flow control a t each interface, as shown in Figure 4.5(b). 

For example, an incoming virtual channel (v ijrx )  waits for arriving da ta  before forward­

ing the new word to  an outgoing virtual channel (or the reception port). However, this 

transfer cannot occur until the slave device (v i_ tx ) has sufficient buffer space; then, the
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v i_ rx  can request a  slot on the bus to  forward the word to  the v i_ tx . Similarly, the v i_ tx  

model consists of a  small sta te  machine for transm itting words and awaiting flow-control 

acknowledgements from the adjacent router.

The simulator models the flow control between router components using a  wake-up 

queue interface, hiding the internal details of each module. For example, Figure 4.5(b) 

shows how an incoming virtual channel remains in the ready_w ait sta te  until its slave 

device becomes available. To encapsulate the details of the slave device, the v-router allows 

the incoming channel to  register a pending simulation event in the outgoing channel’s wake- 

up queue. Once the outgoing channel becomes available, the simulator drains the wake-up 

queue and inserts the entries into the main event queue; then, the simulation event can 

execute and notify the incoming channel tha t the slave device has become available, allowing 

the channel to  transition to the bus_grant_w ait state. The simulator uses a  similar wake- 

up queue mechanism to notify waiting packets when an outgoing channel becomes eligible 

for reservation.
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class Arbiter {
// Counter variables
short chans_requested; // Total number of channels sharing the resource 
short pending_requests; // Number of channels awaiting access to resource
short cycle_time; // Time unit for resource allocation and scheduling

// Registered events
EventPtr* requests; // Array of queued events (size chans_requested) 
void submit(ArbitrationId,EventPtr); // Enqueue event and schedule arbitration
void process_events(); // Dequeue and invoke event(s)

1________ I_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Figure 4.6; Arbiter class in pp-mess-sim Node models

Resource Arbitration

Similarly, the v-router N o d e  model incorporates useful abstractions for representing ar­

bitration for shared internal resources, such as buses. When multiple modules can compete 

for access to  a resource, each module’s state transitions and delays depend on the arb itra­

tion policy. To insulate each module from these details, the v-router associates an arbiter 

with each shared resource. To access to the shared resource, a module registers its pending 

simulation event with the arbiter model, instead of the sim ulator’s main event queue; the 

arbiter class includes an array r e q u e s ts  of pending events, as shown in Figure 4.6. For 

example, in Figure 4.5(b), an incoming virtual channel requests access to  the bus by sub­

m itting its bus-cycle event to the arbiter; the channel remains in the bus -g ra n t _wait sta te  

until the bus arbiter triggers execution of the bus-cycle event.

Separate from the other components, each arbiter schedules arbitration events a t regular 

intervals, depending on the speed of the unit; if no virtual channels are awaiting access to  the 

shared resource, the next subm it operation spawns the next arbitration event. The event 

handler p ro cess_ ev en ts  implements the arbitration policy, determining which registered 

events should be transferred to  the main event queue for subsequent execution. This flexible 

framework allows users to  extend the v-router to include new arbitration policies without 

affecting the other simulation modules. In particular, the v-router can instantiate several 

different arbiter models, including various demand-slotted buses, physical crossbars, and 

virtuai-channel crossbars. Crossbar models can transfer multiple events to  the sim ulator’s 

event queue in a single arbitration cycle, in contrast to  bus models th a t active a  single event
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class Ralg 1
// Construct packet’s initial routing instruction at source or intermediate node 
void i_inject_init(PacketPtr, NodePtr, Devld);

// Construct new routing instruction in response to feedback from Node 
void incomplete(PacketPtr, NodePtr, Devld);

// Commit final routing-switching decision 
void i_commit(PacketPtr, NodePtr, Devld);

>

class Routerlnstr {
RouterOp op; // Candidate switching decision
DevOp* devop; // Ordered list of virtual channels and their status
short num_devops; // Number of devices (virtual channels) to attempt

1_______________________________________________________________________________________
F ig u re  4 .7 : R a lg  ro u tin e s  fo r in te ra c t in g  w ith  th e  N o d e  m o d e l

in each arbitration cycle. By changing the order the arbiter scans the array of pending 

events, the v-router can also evaluate priority-based arbitration schemes.

4.3 R outing and Switching A lgorithm s

Tuning a network design requires evaluating routing and switching schemes under a 

variety of arbitration, queueing, and flow-control policies. The simulator facilitates such 

experimentation by decoupling the router models (N o d e) from the routing-switching algo­

rithm s (R alg ), as shown in Figure 4.1. This functional separation allows the user to  easily 

prototype new routing-switching algorithms without changing the N o d e  models, addi­

tional support in the N e t module insulates the algorithms from the details of the network 

topology, as discussed in Section 4.4. By associating a  routing-switching algorithm with 

each W o rk lo ad  task, pp-mess-sim can allow multiple policies to  coexist in the simulated 

network.

4.3.1 R outing-Sw itch ing Instructions

Although m ulticomputer routers implement routing and switching in various ways, every 

router proceeds through common operations to  service an incoming packet, as shown in 

Figure 4.5(a). W hen a  packet arrives from a host injection port or an incoming link the
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router parses the header flits to make a routing-switching decision. The R a lg  module 

decouples this decision-making process from the simulation event flow in the N o d e  model. 

Invoked after packet header collection, the R a lg  module interacts with the N o d e  using 

a  series of instructions (R o u te r ln s tr )  until they agree upon a suitable routing-switching 

decision. This allows the high-level routing-switching algorithm to make its decisions based 

on feedback from the N o d e , w ithout low-level knowledge of the router architecture.

Similarly, while the router model must accept commands from the routing algorithm, 

the N o d e  does not need to  know how this algorithm selects the sequence of operations. 

The R a lg  instruction set embodies basic primitives for constructing routing-switching al­

gorithms. Each instruction consists of a  candidate switching decision and an ordered list 

of outgoing virtual channels, as shown in Figure 4.7. The list of virtual channels encapsu­

lates the routing options generated by the algorithm, while the candidate switching decision 

helps the router decide whether to  buffer, stall, drop, or forward the packet. The N o d e  

examines each instruction and determines whether or not the output channel(s) can satisfy 

the request. The algorithm and the router model continue this request-response handshake 

until they agree on a  common routing-switching decision.

4.3 .2  V -R ou ter  H andler

N o d e  simulation events distinguish the architectural and timing details in different 

router models. Between successive interactions with R alg , the N o d e  may try  to  reserve 

channel or buffer resources to successfully complete the operation; this process may involve 

multiple simulation events and, perhaps, advancement in simulation time. For example, 

the v-router includes a  routing-algorithm handler tha t coordinates interaction with R a lg , 

as shown by the pseudocode in Figure 4.8. An arriving packet invokes this routine in three 

scenarios. First of all, when the incoming link receives the packet’s last header flit, the 

v-router executes the handler and invokes the R a lg  i_ in je c t_ in i t ( )  routine. Then, the 

handler executes again when the R a lg  returns a new routing-switching instruction upon 

invocation of the i_com plete routine.
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if (packet header has just arrived) 
call i_inject_init for the packet;

handler:
// Process instruction 
switch (op)

Cut:
// Sequence through the candidate virtual channels 
for (i=0; i<num_devops; i++)

if (channel devop[i] is not reserved)
reserve channel devop[i] and register success; 
break;

if (all channels are reserved) 
register failure; 

call i_complete for the packet; 
goto handler;

Wait:
// Sequence through the candidate virtual channels 
for (i=0; i<num_devops; i++)

if (channel devopCi] is not reserved)
reserve channel devopCi] and register success; 
cancel any registered wake-up events for this packet; 
call i_complete for the packet; 
goto handler;

// All channels are busy, so packet must block waiting for wake-up event 
if (all channels are reserved) 

register failure;
submit a wake-up event to each candidate channel; 
break;

Buffer:
// Sequence through the candidate virtual channels 
for (i=0; i<num_devops; i++) 

register success; 
call i_complete for the packet; 
goto handler;

Commit:
// Ralg and Node have agreed on a routing-switching decision 
cancel any registered wake-up events for this packet;

______ submit simulation event to start forwarding the packet to buffer or link;
Figure 4.8: V-router interaction with Ralg
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The third scenario arises when an incoming packet stalls waiting for an outgoing virtual 

channel to become available. As discussed in Section 4.2.2, the packet blocks by registering 

an event in the virtual channel’s wake-up queue. Later in simulation time, the channel 

completes the transmission of its current packet, causing the v-router to  drain the wake-up 

queue and invoke the handler for the blocked packet. The generality of the R a lg  instruction 

set allows pp-mess-sim to  include other N o d e  models with different tim ing properties. For 

example, while the v-router model allows a  packet to  “instantly” reserve an idle virtual 

channel, other router architectures may incur delay or contention in acquiring a  channel. 

These timing details are completely encapsulated in the N o d e , allowing other models to 

include additional simulation events to  capture internal delays w ithout affecting the routing- 

switching algorithms in the R a lg  class [102].

4.3 .3  R outing-Sw itch ing A lgorithm s

Using the R a lg  instruction set, pp-mess-sim can easily incorporate additional routing 

algorithms and switching schemes, without altering the N o d e  models. For example, Fig­

ure 4.9 shows a shortest-path routing algorithm th a t tries to  buffer a  packet when its 

outgoing links are busy; if the buffers are full, the incoming packet waits for a  link to  be­

come available (similar to  wormhole switching). To implement this algorithm, R a lg  first 

asks the N o d e  to establish a cut-through along outgoing channel 0 or 1. Upon receiving 

the cut instruction, the N o d e  module first tries to reserve outgoing channel 0, resorting to 

channel 1 if the first link is busy. To acquire a  channel, the N o d e  module may invoke one 

or more simulation events to  model internal router delays. If neither a ttem pt is successful, 

the R a lg  responds with another instruction, asking the router to  buffer the packet for later 

transmission on channel 0.

The router’s queue architecture determines if the node can accommodate the new packet; 

if the router cannot store the incoming packet, the N o d e  rejects the buffer instruction. Ul­

timately, the R a lg  requests th a t the packet wait until channel 0 becomes available. Even­

tually, a simulation event frees the channel 0, allowing the N o d e  to  reserve the outgoing
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destination

source

L buffer, 
wait.....

Instructions 
•Cut { 0 , 1 }  
• B u f f e r  {0}  
•W ait {0 }

Figure 4.9: Sequence of routing-switching instructions

channel and successfully complete the wait instruction; then, the packet begins transm is­

sion to  the next node in its route. The R a lg  instruction set enables pp-mess-sim to  model 

a  wide range of routing-switching algorithms, as shown in Table 4.1. The buffer instruction 

implements packet switching algorithms, while virtual cut-through schemes employ a  com­

bination of cut and buffer, wormhole switching schemes utilize the wait instruction, where 

the underlying N o d e  model determines the flow-control and arbitration policies.

In addition to traditional switching schemes, sequences of R a lg  instructions can gener­

ate hybrid algorithms th a t incorporate aspects of both virtual cut-through and wormhole 

switching, such as the example in Figure 4.9. These hybrid switching schemes dynamically 

balance the use of channel and memory resources for “storing” blocked packets. For ex­

ample, the h-hop hybrid algorithm in Table 4.1 allows a  blocked packet to  stall (using the 

wait construct) only if the packet spans fewer than  h links; otherwise, the blocked packet 

buffers a t the interm ediate node, releasing any channel resources [111]. This algorithm 

limits channel contention, while still restricting the use of packet buffers.

The R a lg  instructions can also implement various routing algorithms by generating 

different lists of candidate virtual channels. As shown in Table 4.1, pp-mess-sim includes 

several oblivious and adaptive routing algorithms for the different switching schemes. The 

sim ulator uses D uato’s theory [44] to  construct deadlock-free adaptive routing algorithms 

under wormhole switching. Each algorithm requires a  minimum number of virtual channels
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S w itch in g R o u tin g
Packet switching Minimal oblivious 

Minimal adaptive
V irtual cut-through Minimal oblivious 

Minimal adaptive 
Non-minimal adaptive

Wormhole Minimal oblivious 
Minimal adaptive 
Non-minimal adaptive

Hybrid (h-hop) Minimal oblivious

T ab le  4 .1 : E x a m p le s  o f  ro u tin g -sw itc h in g  sch em es in  pp-mess-sim

for deadlock-free routing; the algorithm uses any additional channels to  improve network 

throughput. The specification file determines how many and which virtual channels are 

assigned to the routing algorithm, as shown in lines 22 and 35 of Figure 4.2. The routing 

instructions provide flexibility and extensibility, allowing pp-mess-sim users to  add new 

routing-switching algorithms and experiment with a mixture of policies in the simulated 

network.

4.4  W orkload and Topology Support

In multicomputer networks, communication performance hinges on the subtle interac­

tion of routing-switching algorithms with the application traffic pattern  and the network 

topology. To facilitate a  wide range of experiments, pp-mess-sim supports the flexible com­

position of complex communication workloads, with distinct router policies and performance 

metrics, on different network topologies.

4.4 .1  C om m unication  W orkload

The W o rk lo a d  module generates packets from a collection of independent tasks, which 

are mapped onto individual nodes in the network to  represent application behavior, as 

shown in the example in Figure 4.2. Since the performance of routing and switching poli­

cies vary significantly depending on application communication characteristics, each task
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D is tr ib u t io n D efin itio n
Negative exponential (A) Exponential distribution with mean A
Uniform (a, b) Select integers between a and b with equal probability
Discrete ({p ;,^} ) Select l{ with probability pi
Normal (p,cr) Normal distribution with mean p, and standard deviation a
Two-stage normal 
(p, /tl,CTi,/X2,02)

Select from normal distribution ( / i i ,o i)  with probability p; 
otherwise, select from normal distribution (p,2 , 0 2 )

(a )  P a c k e t le n g th  a n d  in te ra r r iv a l d is tr ib u tio n s

D is tr ib u t io n D e sc rip tio n
DimensionReversai Source (w , x , . . . ,  z) selects destination ( z , . . . , x ,  w )
BitComplement Destination node id is the bit-complement of the source id
Bit Reversal Destination node id is the bit-reversal of the source id
HopUniform ({p,}) Select a destination i hops away with probability p,-
NodeUniform Uniform random selection of destination node
Discrete ({rat',Pt}) Select “hot spot” destination node rct- with probability p;

(b )  D e s tin a tio n  n o d e  d is tr ib u tio n s  

T ab le  4 .2 : Traffic p a t te r n s  in  pp-mess-sim

can select from the routing-switching schemes in the R a lg  module. In order to  simu­

late realistic workloads, pp-mess-sim provides a rich set of packet length, interarrival time, 

and destination node distributions1, as shown in Table 4.2. The simulator can generate 

complex, non-uniform workloads by selectively mapping tasks onto particular nodes in the 

network. Flexible task specification and mapping, combined with diverse traffic models, 

enable pp-mess-sim to  impose a  wide range of communication patterns on the underlying 

network.

The W o rk lo a d  module has a simple interface to  the event flow in the N o d e , facilitating 

extensions th a t incorporate new packet generation models. The simulator encapsulates 

packet length, interarrival, and destination node distributions through generic functions, 

as shown in Figure 4.10. W o rk lo a d  schedules one packet creation event for each task on

each node, with the event handler employing the nex t_packet_ tim e() function to  submit

1 Each task on each node requires access to random number streams to generate packet lengths, interar­
rival times, and destination nodes. The simulator extends the additive congruential generator (ACG) [72] in 
the GNU libgH—I- libraries to provide a multi-threaded generator with a separate random number streams for 
each stochastic process in each task. Starting with a single input seed (e.g., line 44 in Figure 4.2), pp-mess-sim 
divides the resulting random number stream into consecutive chunks, assigning a separate chunk to each 
stochastic process. This significantly reduces correlation between the processes by generating multiple non­
overlapping random number streams [61]. If a process exhausts its chunk, the next unused chunk is allocated 
from the original stream.

57



class Task ■[
Taskld id; // Task identifier
Nodeld node; // Node identifier

Random* arrival; // Stochastic process for interarrival times
MTACG* arrivalacg; // Random number stream for arrival times
delta_time next_packet_time(); // Return next packet arrival time

Random* length; // Stochastic process for packet lengths
MTACG* lengthacg; // Random number stream for packet lengths
PacketLength next_packet_length(); // Return next packet length

NodeldRand* target; // Stochastic process for destination node
MTACG* targetacg; // Random number stream for destination node
Nodeld next_packet_target(); // Return next packet destination

unsigned int generated; // Number of task’s packets generated
unsigned int delivered; // Number of task’s packets delivered
unsigned int collected; // Number of task’s packets collected
RoutingAlgPtr r_prog; // Pointer to routing algorithm
HistCollect* history; // History list for data collection

1
Figure 4.10: Workload Task model

the next creation event. Since pp-mess-sim isolates creation times in the task model, the 

user can incorporate new packet generation schemes, including m ulti-state models, w ithout 

affecting the rest of the simulator. Using these generic functions, pp-mess-sim can easily 

be extended to  run in a  trace-driven mode by simply writing functions which read packet 

arrival times, packet lengths, and packet destinations from a  file containing application 

traces rather than  generating the values from distributions.

The simulator provides effective data  collection by associating performance metrics with 

the task construct, as shown in Figure 4.10. This allows the user to  specify a different metric 

for each task, as shown in Figure 4.2, to  evaluate traffic with diverse performance require­

ments. Since the behavior of the simulated network changes over time, performance metrics 

are extremely sensitive to  the interval of da ta  collection. Accurate measures of steady-state 

performance require both a sufficient warm-up period and a reasonable averaging interval. 

To prime the network, each task on each node must deliver a certain minimum number of 

packets to  their destinations before any da ta  collection commences. The user may configure 

a  different number of “warm-up” packets for each type of task through the “drop” field in
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M e tr ic D e sc rip tio n
Latency Mean, max, variance, and confidence intervals for packet latency
H istogram (a, 6, c) Histogram of packet latency with c bins over range [a, b\
Cut-through statistics Histogram of packet cut-through history
NuH No data  collection

T ab le  4 .3 : H is to ry - lis t d a ta  co llec tio n  ro u tin e s  in  pp-mess-sim

the task specification (as in lines 27 and 40 of Figure 4.2).

After all tasks have completed their required “warm-up” packets, each task  accumulates 

performance da ta  until the required number of its packets have completed service (as spec­

ified in lines 26 and 39 of Figure 4.2); the task continues to  generate packets until every 

task in the network has completed data  collection. During the d a ta  collection phase, each 

task accumulates performance statistics as its packets reach their destinations. The sim­

ulator provides an extensible mechanism for collecting packet statistics for each task. As 

a packet travels through the simulated network, the router model maintains a history list 

th a t records significant events during the packet’s journey. For example, if a  packet cuts 

through an interm ediate node, the location, time, and event (e.g., c u t)  are appended to the 

history list. When the packet arrives at its destination node, the data  collection routine 

processes the list to  extract the desired performance metrics.

W ith help from the N o d e  modules, the data  collection routines can accumulate a  wide 

variety of performance statistics, as shown in Table 4.3. The tim estam ps on the history 

records indicate the end-to-end latency of the packet, as well as the components of this 

delay. Logging the event type allows the collection routines to  evaluate the routing and 

switching decisions th a t occurred for each packet. Existing history collection routines cap­

tu re  end-to-end delay statistics, packet cut-through probabilities, and latency histograms. 

For example, in Figure 4.2 the ho t_spo t tasks capture a histogram of latency d a ta  to  esti­

m ate the probability distribution of packet delay (line 38), while the d e f a u l t  tasks collect 

basic latency metrics (line 25), including the mean, max, variance, and confidence intervals.

Since performance may vary with communication distance, these routines also maintain 

separate statistics based on the number of hops a packet travels. Tasks may also select
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a null collection routine; this avoids accumulating unnecessary performance da ta  for any 

“background” traffic in the system. The history collection mechanism also allows for simple 

extensions for additional performance metrics to study specific research issues. For example, 

Chapter 3 used statistics on packet cut-through history to  investigate the effects of inter­

node dependencies on the performance of virtual cut-through switching. Adding customized 

entries to  the history list can create a fairly detailed list, allowing the collection routines to  

reconstruct the behavior of the packet and the network.

4.4 .2  N etw ork Topology

While some routing algorithms depend on a particular topology, most schemes require 

only high-level information about the various output links a t each node. To facilitate 

simulation experiments th a t vary network topology, the pp-mess-sim N e t class, as shown in 

Figure 4.11, includes functions which encapsulate the labeling scheme used to  num ber each 

node, link, and virtual channel in the network; derived classes implement the numbering 

schemes for the k -ary n-cube, square mesh, and hexagonal mesh topologies. To decouple the 

routing-switching algorithms from the network topology, the N e t class includes functions 

th a t generate a list of possible directions for a packet to travel. For example, given the 

current node and the packet’s destination, N e t identifies which output links lie on a  minimal 

path; in Figure 4.9, N e t returns the link set {0,1}. Alternatively, N e t can determine which 

outgoing links would deflect a packet away from a shortest-path route.

Since routing performance often depends on the order the router considers the output 

links, N e t includes functions for ranking the candidate outgoing links. These selection 

functions , coupled with the R a lg  routing-switching instructions, enable pp-mess-sim and the 

v-router to  model a wide range of communication policies on different network topologies. 

For example, in line 36 of Figure 4.2, the ho t_spo t traffic is assigned dimension-ordered 

routing, whereas the d e f a u l t  traffic employs the diagonal selection function, as described 

in Table 3.2. In addition to  these two options, and the random selection function, N e t  can 

rank outgoing links according to  network congestion, giving preference to  links w ith fewer

60



class Net {
unsigned int total_nodes; // Total number of nodes
unsigned int chan_per_link; // Number of virtual channels per link
unsigned int diameter; // Diameter of the topology
Dimension edge_dimension; // Dimension of the topology
Direction max_direction // Number of links per node
OffsetVec* get_offset(NodeId,Nodeld); // Compute relative address of a node
Nodeld** hops; // Table for HopUniform distribution

// Selection functions
Direction* dimension_order(), random_order(), min_congestion(), diagonal(),

nonmin_dim_order(), nonmin_random(), nonmin_min_congestion();

// Neighbor and direction functions
Nodeld neighbor_via_dir(Nodeld, Direction), neighbor_via_dev(Nodeld, Devld);
Devld neighbor_dev_via_vnet_and_dir(Nodeld, VNet, Direction);
Devld neighbor_dev_via_dev(NodeId,Devld);
Direction dir_via_dev(Devld), reverse_dir_via_dir(Direction);

// Destination node distributions
Nodeld bit_reverse(NodeId), bit_complement(Nodeld), node_uniform(),

dimen_reverse(Nodeld), dimen_rotate(NodeId, unsigned int);
1_______________________________________________________________________________________

Figure 4.11; Internal components in the Net class

busy virtual channels [32]; this balances traffic load amongst the outgoing links, reducing 

contention and packet delay.

In addition to supporting routing-switching algorithms, N et also insulates the Node 

and Workload modules from the details of the network topology. As shown in Figure 4.11, 

Net includes a  set of neighbor functions to identify adjacent nodes. W hen a  pending Node 

event sends d a ta  or a  flow-control acknowledgement across an outgoing link, these neighbor 

functions identify the node, link, and virtual channel th a t should receive this information, as 

shown in Figure 4.1; this allows a  transmission event in one node to  spawn the corresponding 

reception event in the adjacent router. Coupled with the support in Ralg, these mapping 

functions decouple the Node models from the labeling scheme in the N et class. This 

facilitates simulation experiments tha t evaluate a  router design under different network 

topologies.

In addition to the neighbor and direction functions, the Net module includes rou­

tines th a t assist Workload in generating traffic patterns. M apping parallel applications 

across multiple nodes results in unique communication workloads th a t depend on the net-
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work topology. In order to  capture the communication behavior of scientific applications, 

pp-mess-sim can select packet destination nodes from several common perm utations, such as 

m atrix-transpose (dimension-reversal), bit-complement, and bit-reversal, as shown in Ta­

ble 4.2(b). Since these distributions depend on the underlying numbering scheme for each 

topology, the N e t class includes functions to  compute a  packet’s destination, based on the 

source node. For example, W o rk lo a d  can invoke N e t ’s dimens io n  jre  v e rs  e ( )  function to 

return  the id  of the node whose dimension coordinates are the same as the given node, but 

in the reverse order. The N e t module also includes a hops table, used by the W o rk lo a d  

model to  construct a the hop_unif orm distribution.

4.5 R outing Experim ents

The flexibility of the v-router model and the pp-mess-sim environment facilitate a wide 

range of simulation experiments evaluating multicomputer router designs. This paper 

presents an experiment th a t dem onstrates the utility of flexible routing by comparing obliv­

ious and adaptive routing under two traffic patterns. A second experiment capitalizes on 

the sim ulator’s flexibility to evaluate a network th a t supports two routing algorithms si­

multaneously. Chapter 3 and Chapter 5 include additional experiments evaluating routing 

and switching, respectively.

4.5.1 R ou ting  E xperim ent

Traffic patterns significantly im pact the performance of routing algorithms, as shown 

in Figure 4.12. This experiment evaluates an 8 X 8 square mesh of v-router N o d e s  carry­

ing 16-flit packets. The plots compare the performance of oblivious and adaptive routing 

under wormhole switching and the dimension-ordered selection function; experiments with 

virtual cut-through switching show the same qualitative trends. The adaptive algorithm is 

a fully-adaptive minimal-path routing scheme tha t requires two virtual channels per link 

to  prevent network deadlocks [44]; in these experiments, both routing algorithms employ a 

pair of virtual channels to  enable fair performance comparisons. The oblivious dimension-
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Figure 4.12: Comparing routing algorithms under wormhole switching and 
bit-complement traffic

order routing algorithm uses the ex tra virtual channel to reduce contention between packets 

traveling on the same link [31].

Contrary to intuition, oblivious routing consistently outperforms adaptive routing in 

Figure 4.12(a). In an 8 X 8 square mesh, the bit-complement perm utation requires source 

node (c, d) to communicate with node (7 — c, 7 — d). As a  result, all packets must eventually 

cross both the middle row and the middle column of the mesh, irrespective of the routing 

algorithm. Dimension-order oblivious routing tends to  avoid the center of the network, 

where the middle row and column meet, by exhausting the rc-direction before routing a 

packet in the y-direction. In contrast, adaptive algorithms try  to  avoid the heavily-congested 

middle column (or row) by routing packets to more lightly-loaded rows (or columns); this 

ultimately pushes traffic closer to  the congested center of the network. A local decision at 

one node causes a packet to travel a  lightly-loaded link into a  more congested region.

In addition, the ex tra routing flexibility provided by adaptive algorithms allows source 

nodes to  inject more packets, further increasing contention a t the middle of the network. 

Hence, in some situations, restricted routing flexibility can effectively limit the overuse of 

network resources. However, this effect varies with the network load and the underlying
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traffic pattern , as shown in Figure 4.12(b). This experiment considers bursty traffic, in con­

trast to  the traditional Poissonian packet arrival process in Figure 4.12(a). The source nodes 

generate bursty traffic using a  two-stage normal distribution of packet interarrivals [57]. 

Packet interarrivals stem from two independent normal distributions, with different means, 

as shown in Table 4.2(a); sources randomly select 80% of interarrivals from the distribution 

with the small mean.

In Figure 4.12(b), the applied traffic load (x-axis) changes by varying the large mean, 

keeping the small mean fixed at 10 cycles. This generates relatively small packet interarrival 

times within a burst to capture the transmission of a  multi-packet message or a handful 

of related messages. Figures 4.12(a) and (b) exhibit similar trends at high loads, but 

bursty traffic limits the effectiveness of static routing at low network loads since packets in 

a burst are queued awaiting transmission. The adaptive algorithm helps dissipate bursts 

by capitalizing on multiple paths between each source and destination, thus reducing the 

queueing delay at the sending node.

4.5 .2  Tailoring E xperim ent

The sim ulator’s R a lg  instructions and N e t selection functions enable multi-factor ex­

periments th a t study the interaction of routing algorithms and selection functions [50,105]. 

For routers which support multiple routing schemes, these results can serve as a  guide 

for selecting an appropriate routing algorithm based on the application workload. In a 

multi-user environment, where multiple applications execute a t the same time, supporting 

multiple routing schemes simultaneously can significantly improve performance. For exam­

ple, Figure 4.13 plots results from an experiment th a t mixes bit-reversal and bit-complement 

traffic in an 8 X 8 square mesh with wormhole switching. To protect the traffic classes from 

each other, the network devotes two virtual channels to  each traffic class on each link; this 

ensures th a t heavy load in one class does not deny service to  packets in the other class.

The graphs show average packet latency for both traffic patterns, under increasing bit- 

complement load; the bit-reversal pattern  remains fixed a t a  link load of 0.12. As shown
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F ig u re  4 .13: A v e ra g e  la te n c y  u n d e r  tra ffic  m ix ing

in Figure 4.13(a), the bit-reversal traffic has poor performance when both tasks are forced 

to  use the static routing algorithm. Bit-reversal performance improves significantly when 

both  tasks employ diagonal minimal-path routing, but this configuration degrades the bit- 

complement performance, as shown in Figure 4.13(b). The bit-complement traffic has low 

average latency under static dimension-ordered routing, independent of the algorithm as­

signed to  the bit-reversal traffic. The network performs best when it tailors the routing 

policies to the application traffic patterns.

The cooperation between the pp-mess-sim components facilitates experiments th a t per­

mit multiple routing-switching schemes to coexist in the underlying network. The R a lg  

support enabled packets to  invoke different routing and switching schemes while the W o rk ­

lo ad  module generated the communication patterns and collected the performance statis­

tics. Run-time construction of the internal N o d e  policies enabled the v-router to  vary the 

number of virtual channels and the routing algorithms, while the N e t transparently handled 

the details of the square-mesh topology. This synergy results in a flexible and extensible 

environment for specifying and evaluating modern multicomputer router architectures.
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4.6 Conclusions and Future Work

Evaluating multicomputer router designs requires a flexible simulation framework. The 

object-oriented pp-mess-sim environment provides a toolkit for studying different network 

topologies, routing-switching policies, and router models, under a variety of communica­

tion workloads. Although every router design implements its internal policies in different 

ways, each device proceeds through common operations to  service an incoming packet. 

The v-router model decouples these phases to  allow pp-mess-sim experiments to  indepen­

dently vary the internal routing, switching, queueing, and arbitration policies. This chapter 

presents several research contributions:

• Simulation o f flow-control and arbitration policies: The v-router N o d e  module intro­

duces useful abstractions for representing flow control and resource arbitration policies 

in router architectures. The v-router models the flow control between router compo­

nents using a  wake-up queue interface, hiding the internal details of each module. 

This is particularly useful for modeling wormhole switching, which requires a  blocked 

packet to  wait for an outgoing virtual channel to  become available. Similarly, the 

v-router supports multiple link arbitration policies by representing shared resource 

with an arbiter model th a t can register pending simulation events; a  separate handler 

invokes an arbitration policy to  determine which event(s) to  activate.

• Routing-switching instructions: To decouple network policies from the router model, 

the R a lg  module represents routing-switching algorithms as a sequence of instruc­

tions, independent of the timing details of the N o d e  model. This policy-mechanism 

split facilitates the development of new routing-switching algorithms, as well as fair 

comparisons between different router models, as discussed in Section 4.3.

• Task model and workload composition: The simulator introduces a  novel task con­

struct th a t associates routing-switching policies and performance metrics with the 

underlying traffic patterns, instead of the router model. To represent the commu­

nication characteristics of multicomputer applications, tasks can invoke a variety of
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distributions for selecting packet lengths, interarrival times, and destination nodes, as 

described in Section 4.4.1. Flexible task specification and mapping, combined with 

diverse traffic models, enable pp-mess-sim to impose a  wide range of communication 

patterns on the simulated network.

•  History-list data collection: To support a  wide variety of performance metrics, the 

simulator introduces an extensible mechanism for accumulating packet statistics for 

each task, as described in Section 4.4.1. W ith basic support from the N o d e  model, 

the W o rk lo a d  module maintains a history list th a t records significant events during 

a packet’s journey. W hen a  packet arrives a t its destination node, the d a ta  collection 

routine processes the list to  extract the desired performance metric(s) for the task.

• Performance evaluation o f router architectures and network policies: The v-router 

model and the pp-mess-sim environment enable a broad range of experiments th a t eval­

uate m ulticomputer router designs. As a result, several studies have used pp-mess-sim 

to  evaluate N o d e  models under various routing-switching schemes, network topolo­

gies, and application workloads. In particular, recent research work exploits the sim­

ulato r’s ability to  model networks th a t support multiple routing-switching schemes 

simultaneously [48-50,103,104,107]. In addition to experiments with the v-router 

N o d e  model [50,102,104,107], pp-mess-sim has been instrum ental in evaluating the 

Programm able Routing Controller [42,48,49,103, 111], described further in C hapter 5.

The sim ulator’s flexibility and extensibility stem from a careful definition of the N e t, 

W o rk lo a d , R alg , and N o d e  modules, as shown in Figure 4.1. These components en­

capsulate im portant design param eters in multicomputer networks, while the interfaces 

represent the subtle interaction between network topologies, communication workloads and 

performance metrics, routing-switching algorithms, and particular router models. The four 

main components, and their well-defined interfaces, result in an extensible environment 

th a t enables independent enhancements to the simulator. Capitalizing on this flexibility, 

the next chapter investigates router architectures th a t tailor routing-switching policies and
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arbitration schemes to  address the requirements of emerging real-time applications.

68



C H A P T E R  5

SW ITC H IN G  POLICIES IN  REAL-TIM E  

M U LTIC O M PU TER S

Although m ulticomputer router design has traditionally emphasized providing low-latency 

communication, modern parallel applications require additional services from the intercon­

nection network [24,27]. M ultimedia and real-time applications, such as scientific visual­

ization and process control, necessitate control over throughput, worst-case latency, and 

delay variance (jitter) [51,122]. While time-constrained traffic necessitates deterministic or 

probabilistic bounds on throughput or end-to-end delay, best-effort service often suffices for 

the remaining traffic. For example, control or audio/video messages may m andate explicit 

performance guarantees, while d a ta  transfer may tolerate delay variability in exchange for 

improved average latency.

Handling this m ixture of disparate traffic classes affects the suitability of architectural 

features in multicomputer routers. While the router alone cannot satisfy application per­

formance requirements, design decisions should not preclude the system from providing 

necessary guarantees. Servicing time-constrained traffic requires control over network ac­

cess time and bandwidth allocation, so the router should bound the influence best-effort 

packets have on these param eters. The software, or even the hardware, can then utilize these 

bounds to  satisfy quality-of-service requirements through packet scheduling and resource al­

location for communicating tasks. Additionally, the design should not unduly penalize the 

performance of best-effort packets.
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Research in networking considers techniques for the effective mixing of multiple traffic 

classes in a  communication fabric [5,9]. However, the design trade-offs for parallel m a­

chines differ significantly from those in a  heterogeneous, distributed environment. The 

shorter, wider communication links in most parallel machines result in much lower packet 

transmission delays, compared to  distributed systems. These low-latency channels broaden 

the spectrum  of flow-control schemes th a t can be implemented efficiently. Although multi­

com puter routers can employ low-level flow control and cut-through switching schemes to 

reduce average delay, these techniques often impinge on control over packet scheduling and 

bandw idth allocation. O ther multicomputer router features, such as FIFO queueing and 

adaptive routing, further complicate the effort to  provide predictable or guaranteed service.

Using the v-router model and pp-mess-sim environment from Chapter 4, this chapter 

investigates how switching schemes affect the network’s ability to accommodate the perfor­

mance requirements of time-constrained and best-effort traffic. W ith a careful selection of 

routing-switching policies, coupled with fine-grain link arbitration, multicomputer routers 

can provide low average latency for best-effort packets without compromising the pre­

dictability of time-constrained communication [103,107]. To realize this scheme, the chap­

ter considers the design and evaluation of a Programmable Routing Controller [38,42,103] 

th a t can implement packet switching for time-constrained traffic and wormhole switching 

for best-effort packets, with separate virtual channels for each traffic class. Additional ex­

periments with the v-router model consider the utility of priority-based link arbitration to 

further insulate time-constrained traffic from best-effort packets.

5.1 Evaluation o f Switching Schemes

In defining how packets flow through the network, the various switching schemes use 

different resources a t nodes along a packet’s route. This section evaluates the ability of 

wormhole, virtual cut-through, and packet switching to meet different performance require­

ments in multicomputer routers. Each switching scheme is best-suited for certain traffic 

classes with particular characteristics and performance requirements. To effectively sup-
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Figure 5.1: Average packet latency

port multiple traffic classes, the router should bound both network access time and the 

service rate  for time-constrained packets. These bounds provide necessary abstractions for 

the scheduling and mapping of communicating tasks. Best-effort packets, on the other hand, 

may forego these restrictions in exchange for lower latency and reduced buffer requirements.

5.1.1 A verage Latency

The usage of memory and link resources determines both average packet latency and 

the influence an in-transit packet can have on other network traffic. Figure 5.1 shows the 

average end-to-end packet latency for the three switching schemes as a  function of the packet 

injection rate. Using pp-mess-sim’s v-router model, the experiment evaluates an 8 X 8 torus 

(8-ary 2-cube) network with dimension-ordered routing, where each node generates 16-flit 

packets with exponentially distributed interarrival times and uniform random selection of 

destination nodes. Virtual cut-through and packet switching utilize one virtual channel for 

each physical link and store buffered packets in output queues in the router. Wormhole 

packets employ deadlock-free routing on a pair of virtual channels [29] with demand-driven, 

round-robin arbitration amongst the virtual channels; each virtual channel can hold a  single 

flit pending access to the output link.

Even with this small amount of memory resources, wormhole switching performs well 

a t low loads, slightly outperforming virtual cut-through switching. At high loads, virtual
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cut-through and packet switching performance gradually merge, since high network uti­

lization decreases the likelihood th a t an in-transit packet encounters an idle output link. 

By removing blocked packets from the network, virtual cut-through and packet switching 

consume network bandwidth proportional to the offered load. In contrast, a blocked worm­

hole packet stalls in the network, effectively dilating its length until its outgoing channel 

becomes available. As a  result, wormhole networks typically utilize only a  fraction of the 

available network bandwidth [31,86], as seen by the early saturation of the wormhole plot 

in Figure 5.1. At higher loads, this effect enables packet switching to outperform  wormhole 

switching, even though packet switching introduces buffering delay a t each hop in a  packet’s 

route.

Although including additional virtual channels can improve the throughput of a  worm­

hole network [31], channel contention still creates dependencies amongst packets spanning 

multiple nodes. The sensitivity of wormhole networks to slight changes in load, includ­

ing short communication bursts [32], complicates the use of wormhole switching for time- 

constrained traffic. Still, wormhole switching is particularly well-suited to  best-effort pack­

ets, due to  its low latency and minimal buffer space requirements. While flow-control costs 

limit the utility of wormhole switching in distributed systems, parallel machines can dy­

namically transfer or stall wormhole flits w ithout complicating buffer allocation for other 

traffic. Section 6.1 describes how, with effective flow-control and arbitration schemes, best- 

effort packets can employ wormhole switching without compromising the performance of 

the guaranteed traffic.

5.1 .2  P red ictab ility

While the router should provide low average latency for best-effort packets, guaranteed 

communication requires predictable network delay and throughput. Figure 5.2(a) shows 

the coefficient of variation for packet latency for the three switching schemes, where the 

coefficient of variation measures the ratio of the standard deviation to  the mean [61]. Since 

latency characteristics vary depending on the distance between source-destination pairs, the 

graph shows results only for packets traveling a fixed distance in the network. While each
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source generates traffic with uniform random selection of destination nodes, data  collection 

for Figure 5.2 includes only packets traveling exactly five hops. Hence, the plots illustrate 

the variability in end-to-end latency, indicating the potential for jitte r in a  stream  of packets 

w ith a  common source and destination.

Across all loads, packet switching incurs the least variability since packets deterministi- 

cally buffer at interm ediate nodes. Coupled with static routing, a packet-switched transfer 

utilizes deterministic memory and channel resources a t fixed nodes and links along the 

route. This greatly simplifies the allocation and scheduling of resources throughout the 

interconnection network. In contrast, virtual cut-through switching im parts variable load 

on memory resources a t intermediate nodes by basing the buffering decision on the status 

of the ou tpu t links. A t high loads, virtual cut-through and packet switching merge, as in 

Figure 5.1, due to the decreasing likelihood of packet cut-throughs.

Wormhole switching, though conceptually similar to  virtual cut-through, has quite dif­

ferent characteristics. Since a  blocked wormhole packet never buffers, it im parts no memory 

demands on interm ediate nodes, bu t instead consumes unpredictable amounts of channel 

bandw idth. In Figure 5.2(a), wormhole latency variation increases dramatically with rising 

load, even under a moderate injection rate below the saturation throughput. Below the sa t­

uration load, wormhole switching results in a low average latency, as seen in Figure 5.1, but
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a portion of the traffic incurs much larger delay due to  pockets of channel contention and the 

small am ount of buffer resources. In addition to  a large coefficient of variation, wormhole 

traffic suffers a large standard deviation of packet latency, as shown in Figure 5.2(b).

Depending on the number of active virtual channels at each link, flits within a  single 

wormhole packet may encounter different service rates. Demand-driven arbitration for 

access to  the physical links, while im portant for low average latency, complicates the effort 

to  export a predictable flit or packet service ra te  to  a  static or run-time scheduling algorithm. 

Although adding virtual channels can reduce contention [31], and hence average latency, 

additional virtual channels also increase the potential variability in the number of flits 

awaiting access to each physical link, further complicating the flit service rate. Hence, 

although wormhole switching can provide low average latency a t low cost, bounding worst- 

case delay for time-constrained packets requires additional mechanisms.

5.1 .3  Packet Scheduling

The router must have control over packet scheduling and bandwidth allocation to  en­

sure th a t time-constrained packets meet their latency and bandwidth requirements. Vir­

tual cut-through and packet switching generate physical queues in each node, facilitating 

priority-based scheduling amongst competing packets. In contrast, stalled wormhole pack­

ets form logical queues spanning multiple nodes. These decentralized queues complicate 

packet scheduling. Still, a  wormhole router can influence resource allocation through its 

virtual channel reservation and arbitration policies. Priority assignment of virtual channels 

to incoming packets improves predictability; adaptive arbitration policies can further reduce 

variability by basing flit bandwidth allocation on packet deadlines or priority [31,77,78,120].

While assigning priorities to  virtual channels provides some control over packet schedul­

ing, this ties priority resolution to  the number of virtual channels. If packets a t different 

priority levels share virtual channels, the application must account for blocking time when 

a lower priority packet holds resources needed by higher priority traffic. Although adding 

more virtual channels can improve priority resolution, this also incurs increased latency
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overhead and im plementation complexity for the router [4], In addition, the router must 

enforce the multiple priority levels a t its injection and reception ports to  avoid unpredictable 

stalling at the network entry and exit points.

Providing separate buffers for each priority level is effective for coarse-grain priority 

assignment, bu t this approach incurs significant cost for fine-grain resolution. W ith packet 

queues a t each node, the router can effectively utilize fine-grain priorities, such as deadlines, 

to  assign access to  ou tpu t links [5,63]. By buffering packets a t each node, packet switching 

enables the router to  schedule traffic to  provide latency or bandwidth guarantees [63], as 

shown by the router architecture in Chapter 6. For example, suppose a time-constrained 

packet enters an interm ediate node well in advance of its deadline. The router may wish 

to detain this packet, even if its outgoing link is available, to  avoid unexpectedly overload­

ing the subsequent node. The next section considers mechanisms for supporting packet 

switching for time-constrained traffic, while perm itting best-effort packets to  capitalize on 

low-cost, low-latency cut-through switching schemes.

5.2 R outer A rchitectures for Traffic M ixing

Best-effort and time-constrained traffic have conflicting performance goals th a t compli­

cate interconnection network design. The effective mixing of time-constrained and best- 

effort traffic hinges on controlling the interaction between these two classes. In particular, 

best-effort packets cannot consume arbitrary  amounts of link or buffer resources while time- 

constrained packets await service. Fine-grain arbitration between the traffic classes allow 

time-constrained and best-effort packets to share network bandwidth without sacrificing the 

performance of either class.

5.2.1 Tailoring Sw itching Schem es

As seen in Section 5.1, wormhole and packet switching exercise complementary resources 

in the interconnection network, with wormhole switching reserving virtual channels and 

packet switching consuming buffers in the router. Hence, the combination of wormhole
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switching for best-effort traffic and packet switching for time-constrained communication 

enables an effective partitioning of router resources. However, since the traffic classes share 

network bandwidth, the router m ust regulate access to  the physical links to  control the 

interaction between the two classes. Otherwise, a  blocked wormhole packet can delay the 

advancement of time-constrained traffic, even when the time-constrained traffic does not 

share any links with the stalled packet.

The router can regulate the interaction between traffic classes by assigning best-effort 

and time-constrained packets to  separate logical networks. In this approach, the router 

divides each physical link into multiple virtual channels, where some virtual channels carry 

best-effort packets and the rest accept only time-constrained traffic. V irtual channels pro­

vide an effective mechanism for reducing the interaction between packets while still allowing 

traffic to share network bandwidth [30,35,43,73,95]. Exporting the virtual channel abstrac­

tion to  the injection and reception ports further prevents intrusion between packets a t the 

network entry and exit points [43,67,95]. This ensures th a t time-constrained and best- 

effort traffic have separate logical resources through the entire path  from the source to  the 

destination node.

V irtual networks, coupled with appropriate policies for each traffic class, enable the 

router to  limit the resources consumed by best-effort communication to  ensure sufficient 

buffer space and link bandwidth for time-constrained packets. By tailoring the routing, 

switching, and flow-control policies for each virtual network, multicomputer routers can sup­

port traffic classes with conflicting performance requirements. Packets on separate virtual 

networks interact only to  compete for access to  the physical links and ports. Under fine- 

grain multiplexing of virtual channels, this bounds network access time for time-constrained 

packets, independent of the am ount or length of best-effort packets. The communication 

software, or hardware, can then build on these underlying abstractions to  provide various 

services, such as connection-oriented communication with latency or bandwidth guarantees. 

Fine-grain flow control on the wormhole virtual network enables best-effort flits to  capitalize 

on slack link bandwidth left unclaimed by time-constrained packets.
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5 .2 .2  Program m able R ou ting  C ontroller

W ith proper hardware support, real-time systems can capitalize on multicomputer 

switching schemes and flow-control policies to  accommodate the performance requirements 

of time-constrained and best-effort traffic. For example, the Programmable Routing Con­

troller (PRC) [37,38,42,43,103], shown in Figure 5.3, is designed to  implement programmable 

routing-switching schemes for best-effort traffic, while facilitating host control over schedul­

ing and resource allocation for time-constrained communication. Designed to  reside on the 

host processor’s private memory bus, the PRC has direct access to a packet buffer and 

provides the host with a  memory-mapped control interface. The PRC architecture has 

been implemented as an application-specific integrated circuit using the Verilog hardware 

description language and the Epoch silicon compiler [37,38].

The router coordinates bidirectional communication with up to  four neighboring nodes, 

with three virtual channels on each unidirectional link, with transparent support for times- 

tam ping and CRC (cyclic redundancy code) error detection. The PRC exploits concurrency 

amongst the virtual channels and provides fair, fine-grain arbitration a t the memory and 

network interfaces. The twelve NITXs (network-interface transm itters) provide low-level 

control of packet transmission, while the twelve NIRXs (network-interface receivers) coor­

dinate packet reception. The host transm its a packet by feeding page tags to  one of the
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twelve TFU s (transm itter fetch units), where each page tag  includes a memory address 

and the  number of words to  transm it. Similarly, the host processor supplies each NIRX 

with pointers to  free pages in the buffer memory for use by arriving packets. The network 

interface components communicate over the CTBUS (cut-through bus), a demand-slotted, 

time-divisioned multiplexed bus th a t provides fair service to  the incoming and outgoing 

v irtual channels.

For flexibility in selecting network policies, each incoming link has a dedicated pro­

gram m able routing engine for implementing routing-switching policies for in-transit traffic. 

The PRC trea ts  the outbound virtual channels (NITXs) as individually reservable resources, 

allowing the device to  support a variety of routing and switching schemes through flexible 

control over channel allocation policies. Upon receiving the header bytes of an incoming 

packet, the routing engine decides whether to  buffer, stall, forward, or drop the packet. 

The microprogrammable routing engine bases its routing-switching decision on the incom­

ing virtual channel, the arriving header, and prevailing network conditions. By downloading 

different microcode routines for each NIRX, the routing engines can tailor the low-level com­

m unication policies of each virtual channel to  address the requirements of best-effort and 

time-constrained traffic.

5.3 Perform ance Evaluation o f  Traffic M ixing

The pp-mess-sim environment includes a cycle-level model of the PRC th a t captures the 

details of flow control, resource arbitration, and microcode execution [102,104]. Experi­

ments with the PRC model show th a t segregating best-effort wormhole traffic from time- 

constrained packet-switched traffic can accommodate the performance requirements of both 

classes. Additional experiments with the v-router model consider the effects of using priority 

arb itration  to  improve the predictability of the time-constrained communication.

5.3 .1  Traffic M ixing on th e  PR C

Figure 5.4 shows the interaction of time-constrained and best-effort packets in an 8 X 8 

square mesh of PRCs. Both traffic classes generate 16-flit packets with a node-uniform dis-
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Figure 5.4: Average latency of time-constrained and best-effort traffic shar­
ing a single virtual channel on each link

tribution of destination nodes and dimension-ordered routing. The best-effort packets have 

exponentially distributed interarrival times, while time-constrained packets are generated 

in a  periodic fashion. Figure 5.4 plots the average latency of the best-effort and time- 

constrained traffic when both classes share a single virtual channel on each physical link. 

The graphs plot the average latency for both traffic classes as a function of best-effort traffic 

load for a  fixed injection rate  for time-constrained packets; Figure 5.4(a) and Figure 5.4(b) 

consider time-constrained traffic with periods of 1000 and 1500 flit cycles, respectively. 

The increase in best-effort load has deleterious effects on the time-constrained traffic, since 

stalled best-effort packets block the forward progress of time-constrained packets.

The intrusion of the best-effort traffic is particularly noticeable in Figure 5.7, which 

plots the standard  deviation of packet latency for the time-constrained traffic as a function 

of the best-effort wormhole load. The router can improve performance by increasing the 

number of virtual channels on each link, as shown in Figure 5.5. W ith a  pair of virtual 

channels, bo th  the best-effort and time-constrained traffic can achieve higher throughput 

and lower delay variance, since the additional virtual channel provides ex tra  flexibility for 

bypassing blocked best-effort packets. As a result, both traffic classes achieve a much higher
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peak throughput in Figure 5.5 than  in Figure 5.4. Still, under heavy best-effort load, the 

time-constrained traffic has high average latency and delay variance.

In contrast, time-constrained packets have much better performance under heavy best- 

effort load when the network partitions the traffic classes onto separate virtual channels, 

as shown in Figure 5.6. In this configuration, channel contention on the best-effort virtual 

network does not impede the forward progress of time-constrained packets, since blocked 

wormhole packets temporarily stall in their own virtual network instead of depleting physi­

cal link or buffer resources. This permits the time-constrained packets to  have low average 

latency and delay variance, even when the best-effort virtual channels are saturated. How­

ever, segregating access to  the virtual channels can hurt best-effort performance, as shown 

by the lower peak throughput for the wormhole traffic in Figure 5.6, relative to  Figure 5.5. 

Still, separating the traffic classes significantly improves the predictability of the time- 

constrained communication, while perm itting best-effort traffic to  capitalize on any excess 

link bandw idth.
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5.3.2 T ighter B ounds for T im e-C onstrained Packets

Although the separate virtual networks limit the interaction between the traffic classes, 

the arbitration for access to the physical link still permits an active best-effort virtual 

channel to  increase delay for time-constrained packets. In Figure 5.6 and Figure 5.7, this 

is seen by the increase in the mean and standard deviation of latency for packet-switched 

traffic in the presence of a heavier load of wormhole traffic; for example, in the bottom  

curve in Figure 5.7(b), the standard deviation varies from 92.7 cycles (under low best-effort 

load) to  a high of 218.6 cycles (when the best-effort virtual network is saturated). More 

significantly, round-robin arbitration amongst the virtual channels varies the service rate  

for the time-constrained packets; in the worst case, time-constrained traffic receives only 

half of the link bandwidth.

The router can further minimize the intrusion on time-constrained traffic by imposing 

priority arbitration between the virtual networks, where time-constrained packets always 

receive service ahead of best-effort packets. For a time-constrained packet, this effectively 

provides flit-level preemption of best-effort traffic across its entire path  through the network. 

In contrast to  the results in Figures 5.4- 5.7, assigning priority to  time-constrained traffic 

removes any sensitivity to the best-effort load. As a result, a  time-constrained packet travels 

a t the same rate  through each link in its journey, independent of the number of active best- 

effort virtual channels. Building on this abstraction, a  higher-level scheduling algorithm can 

allocate resources based only on the worst-case requirements of the time-constrained traffic, 

while still allowing best-effort traffic to  dynamically consume any unused link bandwidth.

However, priority arbitration can exact a heavy toll on the best-effort packets, particu­

larly a t higher loads, as illustrated by Figure 5.8 which evaluates an 8 x 8 torus of v-router 

nodes carrying 16-flit packets with separate virtual channels for the two traffic classes. 

This graph shows the average latency of best-effort wormhole packets in the presence of 

three different packet-switching (PS) injection rates under both round-robin and priority 

arbitration for the physical links. In contrast to Figure 5.8(a), Figure 5.8(b) shows signif­

icant degradation in the performance of best-effort packets, since the strict priority-based
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scheme restricts the forward progress of wormhole traffic. Even in the absence of livelock, 

lengthy blocking of wormhole flits increases contention and delay in the best-effort virtual 

network. Chapter 6 addresses this problem by perm itting best-effort traffic to  claim link 

bandwidth ahead of some time-constrained traffic, as long as each time-constrained packet 

is still guaranteed to  receive service by its deadline.

5.4 Conclusions and Future Work

Emerging parallel real-time and multimedia applications impose diverse communica­

tion requirements on multicomputer interconnection networks. The conflicting performance 

goals of best-effort and time-constrained traffic affect the suitability of routing, switching, 

and flow-control schemes. Traditionally, real-time systems have employed packet switching, 

coupled with packet scheduling algorithms, to achieve predictable communication perfor­

mance; however, in tightly-coupled parallel machines, this approach unduly penalizes the 

best-effort traffic. As shown in this chapter, low-level control over routing and switch­

ing, coupled with fine-grain arbitration, enables m ulticomputer routers to  effectively mix 

time-constrained and best-effort communication. This chapter introduces several research 

contributions:
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• Characterization o f switching schemes: The simulation experiments and discussion 

in Section 5.1 characterize wormhole, virtual cut-through, and packet switching, in 

term s of their ability to  support the performance requirements of best-effort and 

time-constrained communication. Packet switching, combined with static routing, 

consumes predictable bandw idth and buffer resources, making the scheme well-suited 

to  time-constrained traffic. In contrast, wormhole packets can stall in the network, 

consuming an unpredictable amount of link bandwidth while blocking the advance­

ment of other traffic. Still, the small average latency and minimal buffer requirements 

make wormhole switching ideal for best-effort communication.

• Traffic mixing with virtual networks: To address the conflicting performance require­

ments of best-effort and time-constrained communication, Section 5.2 proposes a 

scheme th a t perm its best-effort traffic to  employ wormhole switching, w ithout com­

promising the predictability of time-constrained communication. By separating best- 

effort and time-constrained traffic onto separate virtual channels, a router can insulate 

time-constrained traffic from the contention between best-effort packets. Fine-grain, 

demand-driven arbitration for each link and injection/reception port, ensures th a t 

both traffic classes can capitalize on the available bandwidth resources.

• Evaluation o f router arbitration policies: The Programmable Routing Controller, with 

its flexible support for multiple routing-switching schemes, provides an effective p la t­

form for evaluating the proposed scheme. The experiments in Section 5.3 dem onstrate 

the benefits of assigning best-effort wormhole traffic and time-constrained packet- 

switched traffic to  separate virtual channels. W ith priority arbitration, the router can 

completely insulate time-constrained packets from the best-effort communication, at 

the expense of increasing average latency for the best-effort traffic. C hapter 6 ad­

dresses this lim itation by allowing best-effort traffic to  receive service ahead of some 

time-constrained packets, when possible.
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The effective mixing of best-effort and time-constrained traffic requires a  combination of 

low-level hardware support and higher-level protocols. This chapter has investigated effec­

tive switching schemes th a t enable the development of such higher-level protocols. Effective 

arbitration and flow-control policies enable the router to  export bounded values for network 

access delay, packet service time, and throughput for time-constrained traffic, even in the 

presence of best-effort flits. Hardware or software protocols can then build on these abstrac­

tions to  allocate communication resources and schedule time-constrained packets. The next 

chapter presents a router architecture tha t integrates low-level routing-switching policies 

with packet scheduling to  provide end-to-end performance guarantees for time-constrained 

traffic.

85



C H A PT E R  6

R EAL-TIM E R O U T E R  A R C H IT E C T U R E

Time-constrained and best-effort traffic have conflicting performance goals th a t com­

plicate network design. To improve predictability for time-constrained packets, router ar­

chitectures can isolate the two traffic classes and prioritize access to  network resources, 

as discussed in C hapter 5, However, this can significantly degrade the average perfor­

mance of best-effort packets and does not necessarily provide explicit end-to-end delay 

guarantees for time-constrained packets. Ultimately, bounding worst-case latency requires 

prior reservation of link and buffer resources, based on the application’s anticipated traffic 

load [5,125,126]. Under this traffic contract, the network can provide end-to-end per­

formance guarantees through effective link-scheduling and buffer-allocation policies. This 

chapter presents a  real-time router design th a t handles a wide range of throughput and delay 

requirements by implementing the real-time channel [63] abstraction for packet scheduling.

A real-time channel is a  unidirectional virtual connection between two nodes, with a 

source traffic specification and end-to-end delay bound; separate param eters for delay and 

bandwidth perm it the model to  accommodate a  wider range and larger number of connec­

tions than  other disciplines [125], a t the expense of increased implementation complexity. 

At run-tim e, the network guarantees end-to-end performance through a  combination of 

bandw idth regulation and deadline-based packet scheduling a t each link, as shown in Fig­

ure 6.1. W hen a  connection temporarily exceeds its traffic contract, the router delays the 

early time-constrained packets to  avoid buffer overflow at the next node in the route. In
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addition, bandwidth regulation of the time-constrained traffic permits best-effort packets 

to  access the link ahead of any early time-constrained traffic. This can significantly im­

prove average best-effort performance without compromising the worst-case latency of the 

time-constrained packets.

Implementing bandwidth regulation and deadline-based scheduling in software would 

impose a  significant burden on the processing resources at each node and would prove too 

slow to  serve multiple high-speed links. This software would have to  sort packets by deadline 

for each outgoing link, in addition to scheduling and executing application tasks. W ith 

high-speed links and tight timing constraints, real-time parallel machines require hardware 

support for communication scheduling. An efficient, low-cost solution requires a design 

th a t integrates this run-time scheduling with packet transmission. Hence, we present a 

chip-level router design th a t handles run-time packet scheduling, while relegating non-real- 

tim e operations (such as admission control and route selection) to  the protocol software. 

In contrast to  existing designs, the real-time router tailors network routing, switching, 

arbitration, and flow-control policies to the conflicting requirements of best-effort and time- 

constrained traffic, as discussed in Section 6.1.

Section 6.2 describes the real-time channel model for communication in point-to-point 

networks, while Section 6.3 discusses the router’s support for run-time scheduling of time- 

constrained packets. To reduce hardware complexity, the architecture shares packet buffers 

and sorting logic between the router’s multiple output links. The router overlaps commu­
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nication scheduling with packet transmission to maximize utilization of the network links. 

The design limits the complexity of the link scheduler by bounding the range of packet 

deadlines and handling the effects of clock rollover. Section 6.4 describes the router imple­

m entation, using the Verilog hardware description language and the Epoch silicon compiler. 

Verilog simulations dem onstrate th a t the design satisfies the performance goals of both  tra f­

fic classes in a  single-chip solution. Section 6.5 concludes the chapter with a discussion of 

future research directions.

6.1 M ixing Best-Effort and Tim e-C onstrained Traffic

Best-effort and time-constrained traffic have conflicting performance goals th a t compli­

cate network design, as discussed in Chapter 5. As a result, the real-time router architecture 

has separate control and data  path  for the two traffic classes, as shown in Figure 6.2; solid 

lines denote the flow of packet data , while dashed lines indicate control information. To 

insulate the local processor from packet scheduling, the design has separate injection ports 

for time-constrained and best-effort traffic, while the router coordinates access to  a  shared 

reception port and the four outgoing links. Careful selection of router policies, coupled 

with fine-grain link arbitration, enables time-constrained and best-effort packets to  share 

network bandwidth without sacrificing the performance of either class.

6.1 .1  Sw itching

To ensure th a t time-constrained packets meet their delay requirements, the router must 

have control over bandwidth and memory allocation. In most real-time systems, time- 

constrained communication consists of 10-20 byte exchanges of command or sta tus infor­

mation [97]. Consequently, our design restricts time-constrained traffic to  small, fixed-size 

packets, as shown in Table 6.1; this bounds network access latency and buffering delay while 

simplifying memory allocation in the router. To ensure predictable consumption of link and 

buffer resources, time-constrained traffic employs store-and-forward packet switching. By 

buffering packets at each node, packet switching allows each router to  independently sched-
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ule packet transmissions to  satisfy per-hop delay requirements, as discussed in C hapter 5.

However, this approach unduly penalizes the performance of best-effort traffic. Most 

modern parallel machines employ cut-through switching schemes for lower latency and re­

duced buffer space requirements. In the real-time router, best-effort traffic employs worm­

hole switching switching for low latency and reduced buffer space requirements. Instead of 

storing entire best-effort packets a t intermediate nodes, the router simply includes small flit 

buffers to  hold a  few bytes of a packet from each input link; inter-node flow control stalls 

further transmission of the packet until this buffer space is available. This perm its best- 

effort traffic to  use variable-size packets, to reduce or even avoid packetization overheads, 

without increasing buffer complexity in the router.

6 .1 .2  A rbitration

By cutting through interm ediate nodes, best-effort packets can avoid unnecessary buffer­

ing delay. However, these wormhole packets can stall in the network for an unpredictable 

am ount of time, delaying the advancement of other packets heading for different destina­

tions. The effective mixing of time-constrained and best-effort traffic hinges on control­

ling the interaction between these two classes, as discussed in C hapter 5. In particular, 

best-effort packets should not consume arbitrary amounts of bandw idth resources while
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T im e- C o n s tra in e d B e s t-E ffo rt
S w itch in g Packet switching Wormhole switching
P a c k e t size 20 bytes Variable length
L in k  a r b i t r a t io n Deadline-driven Round-robin on input links
R o u tin g Table-driven multicast Dimension-ordered unicast
B u ffe rs Shared output queues Flit buffers a t input links
F low  c o n tro l Rate-based Flit acknowledgements

Table 6.1: Architectural parameters in real-time router design

time-constrained packets await service. To control the interaction between the two traffic 

classes, the real-time router divides each link into two virtual channels; a  single bit on each 

link differentiates between time-constrained and best-effort packets, as shown in Figure 6.3. 

Each link also includes an acknowledgement bit for flow control on the best-effort virtual 

channel.

In contrast to  the PRC architecture in Section 5.2.2, the real-time router incorporates 

arbitration policies th a t address the performance requirements of best-effort and time- 

constrained traffic. Each wormhole virtual channel performs round-robin arbitration on 

the input links to  select an incoming best-effort packet for service. By sequencing through 

the incoming links, round-robin arbitration ensures th a t arriving packets receives service in 

a fair and timely manner; in addition, round-robin schedulers are relatively simple to  imple­

ment. For time-constrained traffic, the packet-switched virtual channel schedules on-time 

packets based on their deadlines, as discussed in Section 6.2. Priority arbitration amongst 

the virtual channels tightly regulates the intrusion of best-effort traffic on time-constrained 

packets. This effectively provides flit-level preemption of best-effort traffic whenever an 

on-time time-constrained packet awaits service, while perm itting wormhole flits to  consume 

any excess link bandwidth. The link transm its best-effort flits ahead of any early time- 

constrained packets.

6 .1 .3  R outing

As part of establishing a real-time channel, the network reserves link bandw idth and 

buffer space along a  fixed path  between the source and destination nodes; the chosen route 

depends on the resources available at various nodes and links in the network. Consequently,
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Figure 6.3: Link encoding in real-time router

the real-time router maintains a routing table, indexed on the connection identifier of the 

arriving time-constrained packet, as shown in Figure 6.4(a); Section 6.3 describes how the 

controlling processor can edit this table as part of a connection establishment protocol. Since 

a  node may wish to send information to a collection of destination nodes (i.e., m ulticast), 

the router can forward an incoming time-constrained packet to  multiple outgoing links; this 

facilitates efficient, timely communication between a set of cooperating nodes.

In contrast, best-effort traffic does not require resource reservation along packet routes. 

Instead, the real-time router implements dimension-ordered routing, a  shortest-path scheme 

th a t completely routes a  packet in the ^-direction before proceeding in the y-direction to  the 

destination. Dimension-ordered routing avoids packet deadlock in a square mesh [29] and 

also facilitates an efficient im plementation based on x  and y offsets in the packet header, 

as shown in Figure 6.4(b); the offsets reach zero when the packet has arrived a t its desti­

nation node. The router could improve best-effort performance by implementing adaptive 

wormhole routing, with additional virtual channels to  avoid deadlock, at the expense of 

increased implementation complexity [4,87]. In particular, non-minimal adaptive routing 

would enable best-effort packets to  circumvent links with a  heavy load of time-constrained 

traffic.

6.1 .4  Buffer A rchitecture

The real-time router includes a  packet memory for storing time-constrained traffic await­

ing access to  the outgoing links; in contrast, blocked best-effort packets stall in the network. 

The router queues time-constrained packets a t the output ports to  avoid the throughput 

lim itations of input queueing [118]; this permits each output link to  select a  packet for trans­

mission amongst all time-constrained traffic buffered in the router. The reception port and
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F ig u re  6 .4 : P a c k e t fo rm a ts  in  re a l- tim e  r o u te r

four ou tpu t links share a  single packet memory to maximize usage of the available buffer 

space. To accommodate the aggregate bandwidth of the live input and live output ports, 

the router stores packets in 10-byte chunks, with demand-driven round-robin arbitration 

amongst the ports, as shown in Figure 6.5. As shown in Figure 6.2, each port includes 

n o m inal buffer space to  avoid stalling the flow of da ta  while waiting for bus access to  the 

packet memory. Similarly, each port includes two small flit buffers to  perm it continuous 

transm ission of wormhole packets in the absence of link contention.

Similar to  many shared-memory switches in high-speed networks [118], the router main­

tains a  pool of unused memory locations to  assign to arriving time-constrained packets. 

Initially, this idle-address FIFO  includes every location in the memory. An incoming packet 

retrieves an address from this FIFO; upon packet departure, the router returns the location 

to  the idle-address pool. To avoid buffer overflow or packet loss, a real-time channel reserves 

sufficient buffer slots a t each node in its route, as described in Section 6.2. Although the 

ou tpu t ports share a  single packet memory, the connection establishment procedure can 

logically partition the memory by limiting the number of packet buffers dedicated to  con­

nections on each outgoing link; otherwise, one link could reserve the bulk of the memory 

slots, limiting the chance of establishing real-time channels on the other outgoing links. 

By implementing a  physically shared memory, the router permits the protocol software to 

balance the trade-offs between buffer partitioning and complete sharing to enhance future 

channel admissability.
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6.2 R eal-T im e Channels

Real-time communication requires reservation of bandwidth and buffer resources, cou­

pled with packet scheduling a t the network links. The real-time channel model [63] provides 

a useful abstraction for bounding end-to-end network delay for time-constrained packets, 

under certain application traffic characteristics, w ithout compromising the performance of 

best-effort packets.

T raffic  p a ra m e te r s :  A real-time channel is a unidirectional virtual connection th a t tra ­

verses one or more network links. Since time-constrained communication is typically peri­

odic, or nearly periodic, in real-time systems, each connection is characterized by its mini­

mum tem poral spacing between messages (lmin) and maximum message size (5max bytes). 

To perm it some variation from purely periodic traffic, a  connection can generate a burst 

of up to  B max messages in excess of the periodic restriction Im-m. Together, these three 

param eters form a linear hounded arrival process [26] th a t governs a  connection’s traffic 

generation at the source node.

E n d - to -e n d  d e lay  b o u n d : In addition to  these traffic param eters, a  connection has a 

bound D  on end-to-end message delay, based on the minimum message spacing lmin- At 

the source node, a message mj generated at time ft- has a logical arrival time

ti if i =  0

m ax {4 (m ,_ i) +  I ^ n ,  f,} if i > 0.

By basing performance guarantees on these logical arrival times, the real-time channels
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Traffic D a ta  S tru c tu r e
Q u e u e  1 On-time time-constrained packets Priority queue (by deadline £(m) + d)
Q u e u e  2 Best-effort packets First-in-first-out queue
Q u e u e  3 Early time-constrained packets Priority queue (by logical arrival time £(m))

T ab le  6 .2 : L ink  sch ed u lin g  q u eu es  in  re a l- tim e  ch an n e ls  m o d e l

model limits the influence an ill-behaving or malicious connection can have on other traffic in 

the network. The run-time link scheduler guarantees th a t message mi  reaches its destination 

node by its deadline £o(mi) +  D.

P e r -h o p  d e lay  b o u n d s : The network does not admit a new connection unless it can 

reserve sufficient buffer and bandwidth resources without violating the requirements of 

existing connections [63,129]. A connection establishment procedure decomposes the con­

nection’s end-to-end delay bound D  into local delay bounds dj for each hop in its route 

such th a t dj < Imm and J2j dj -  Based on the local delay bounds, a message m; has a 

logical arrival time

£j(m{) =  t j - i ( m i )  + d j - i  for j  > 0

a t node j  in its route, where j  =  0 corresponds to the source node. Link scheduling ensures 

th a t message m i arrives a t node j  no later than time f?j_i(m,) +  dy-i, the local deadline 

a t node j  — 1; however, message m,- could reach node j  earlier, due to  variations in delay at 

previous hops in the route.

R u n - t im e  link  sch ed u lin g : Each link schedules time-constrained traffic based on logical 

arrival times and deadlines in order to bound message delay without exceeding the reserved 

buffer space a t intermediate nodes. The scheduler, which employs a multi-class variation 

of the earliest due-date algorithm [80], gives highest priority to  time-constrained messages 

th a t have reached their logical arrival time (i.e., £j(m{) < t), transm itting the message 

with the smallest deadline £j(m{)  +  dj,  as shown in Table 6.2. If Queue 1 is empty, the 

link services best-effort traffic from Queue 2, ahead of any early time-constrained messages, 

thus improving the average performance of best-effort traffic w ithout violating the delay 

requirements of time-constrained communication; in the real-time router, Queue 2 is a 

logical queue of wormhole packets th a t may span multiple nodes. Queue 3 holds early time-
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S chedu ling  A lg o rith m
if (queue_l is non-empty)

transm it packet from head of queue.l (minimum I  +  d)\ 
else if (best-effort flits await service) 

transm it best-effort flits; 
else if ((queue-3 is non-empty) and (head has £ — t < h)) 

transm it packet from head of queue_3 (minimum £)',
else

do not transm it any packet;

F ig u re  6.6: L in k -sch ed u lin g  a lg o rith m  in  th e  th e  re a l- t im e  r o u te r

constrained traffic, effectively absorbing variations in delay a t the previous node; upon 

reaching its logical arrival time, a  message moves from Queue 3 to  Queue 1.

B u ffe r r e q u ire m e n ts :  By postponing the transmission of early time-constrained traffic, 

the link scheduler avoids overloading the buffer space at the downstream node [63,125]. If 

the first two scheduling queues are empty, the link can transm it early time-constrained traffic 

from Queue 3, as long as these messages are within a small distance h > 0 of their logical 

arrival time; Figure 6.6 summarizes the router’s link-scheduling algorithm. Incorporating 

this horizon param eter improves average latency and bandwidth utilization, a t the expense 

of increased buffer requirements a t the downstream node. A connection’s local delay bound, 

coupled with the incoming link’s horizon param eter, limits the required buffer space a t the 

next node in the route. Node j  can receive a  message as early as l j ( m i ) — (hj - 1  - M j- i ), if the 

incoming link has horizon h j - 1 ; the node can hold a  message until its deadline £j(mi)  +  dj. 

If messages arrive as early as possible, and depart as late as possible, then node j  could 

have to  store as many as
(hj -1 +  d j - 1) +  dj 

-Imin

messages from this connection a t the same time. Although each connection could conceiv­

ably have its own horizon value, employing a single h param eter allows the link to  transm it 

early traffic directly from the head of Queue 3, w ithout any per-connection d a ta  structures.
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W rite  C o m m a n d F ie ld s
Connection param eters outgoing connection id

local delay bound d
bit-mask of output ports
incoming connection id

Horizon param eter bit-mask of output ports
horizon value h

Table 6.3: Control interface commands

6.3 R eal-T im e Support

Supporting time-constrained communication in a single chip requires careful consider­

ation of the interface to the controlling protocol software. The real-time router perm its 

flexible software control of connection establishment, while implementing efficient run-time 

packet scheduling on the outgoing ports.

6.3.1 C ontrol Interface

Establishing a real-time channel requires the application to  specify the traffic param eters 

and performance requirements for the new connection. Admitting a  new connection, and se­

lecting a  multi-hop route with suitable local delay param eters, is a computationally-intensive 

procedure [5,63,129]. Fortunately, channel establishment typically does not impose tight 

timing constraints; in most cases, the network can create the required channels before data  

transfer commences. To perm it a  single-chip solution, the real-time router relegates these 

non-real-time operations to  the protocol software. Software control also permits greater 

flexibility in route selection and buffer allocation policies.

As part of establishing a  new real-time channel, each node in the connection’s route 

writes control information into a  table in the router. Indexed off the connection identifier, 

the table stores the channel’s local delay bound d and a bit mask for routing incoming 

packets to the appropriate ou tpu t port(s); to  simplify the design, a multicast connection 

uses the same value of d for any outgoing ports a t the node. To minimize the number of 

pins on the chip, the controlling processor updates the connection table as a sequence of 

four write operations, as shown in Table 6.3. When a time-constrained packet arrives, the
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router reads the deadline and routing information and assigns a  new connection identifier 

for use at the next node in the packet’s route. The router also assigns the packet’s local 

deadline, based on the delay param eter d and the logical arrival tim e £(m ), as shown in 

Figure 6.4(a).

The packet deadline a t one node serves as the logical arrival time a t the downstream 

node in the route. Carrying these logical arrival times in the packet header implicitly 

assumes tha t the network routers have a common notion of time, within some bounded 

clock skew. Although this is not appropriate in a  wide-area network context, the tight 

coupling in parallel machines minimizes the effects of clock skew. Alternatively, the router 

could store additional information in the connection table to  compute £ j ( r r i i )  from a  packet’s 

actual arrival time and the logical arrival time of the connection’s previous packet [128]; 

however, this approach would require the router to periodically refresh this connection state 

to  correctly handle the effects of clock rollover.

In addition to the connection table, the router maintains a  separate horizon param eter 

h for each outgoing port. As discussed in Section 6.2, these horizon values perm it the router 

to  transm it a  time-constrained packet in advance of its logical arrival time, when no on-time 

packets or best-effort flits await service. The local processor can write the horizon registers 

through the control interface, as shown in Table 6.3. Larger horizon values perm it earlier 

transmission of time-constrained packets, but require connections to  reserve more buffer 

space at the downstream node. If necessary, the protocol software could reduce a  p o rt’s 

horizon param eter as more connections are established, to  free downstream buffer space for 

reservation by the new connections.

6 .3 .2  Scheduling Logic

The real-time router schedules time-constrained traffic for transmission based on logical 

arrival times and deadlines, as well as the link horizon param eters. To maximize link uti­

lization and channel admissability, the router overlaps run-time communication scheduling 

with packet transmission on each of the five output ports. As a  result, packet size deter-
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O n -tim e : 0 0 t(m ) + d — t

E a rly : 0 1 £(m) — t

Ine lig ib le : 1

F ig u re  6.7: S o r tin g  k ey  fo r t im e -c o n s tra in e d  p a c k e ts

mines the acceptable worst-case scheduling delay, limiting both the maximum number of 

time-constrained packets and the size of the sorting keys [96]; to  facilitate a single-chip 

solution, our design efficiently handles a m oderate number of packets. Since packet sorting 

can introduce considerable hardware complexity [19,22,79,96,105,121], particularly when 

connections have a  wide range of delay and bandwidth param eters, the real-time router 

shares the scheduling logic amongst the early and on-time packets headed for any of the 

five outgoing ports.

Table 6.2 suggests th a t each outgoing port requires separate priority queues for early 

and on-time packets. However, implementing two priority queues for each link would incur 

significant hardware cost and would require logic to  transfer packets from the early queue to 

the on-time queue; also, multiple packets can reach their logical arrival times simultaneously, 

further complicating movement between the two priority queues, as shown in Figure 6.1. 

Hence, the real-time router does not attem pt to  store time-constrained packets in sorted 

order; instead, the router employs a  tree of comparators to  select the packet with the 

smallest key. The base of the tree computes a key for each packet, based on the packet 

s ta te  and the current time f; a bit in the packet key differentiates between early and on-time 

traffic, as shown in Figure 6.7.

For on-time traffic, the lower bits of the key represent packet laxity , the time remaining 

till the local deadline expires, whereas the key for early traffic represents the time left before 

reaching the packet’s logical arrival time. Normalizing the packet keys, relative to  current 

tim e t , allows the rest of the tree to perform simple, unsigned comparison operations, even 

in the presence of clock rollover. To avoid replicating the scheduling logic, all five outgoing 

ports share access to  a  single com parator tree th a t arbitrates amongst all time-constrained 

packets, as shown in Figure 6.8. Pipelining the com parator tree provides the necessary
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Figure 6.8: Comparator tree for run-time scheduling

throughput to  overlap run-time scheduling with packet transmission on each outgoing port. 

This also permits the ports to  conveniently share the same packet memory. Although this 

buffer memory stores the actual packet data, the base of the com parator tree maintains a 

small amount of per-packet sta te  to  coordinate run-time scheduling.

As shown in Figure 6.8, each leaf in the tree stores a  logical arrival time l ( m ), a deadline 

£(m )+d, and a  bit mask of outgoing ports, assigned a t packet arrival based on the connection 

state. The bit mask determines if the leaf is eligible to  compete for access to a  particular 

outgoing port. When a  port transm its a selected packet, it clears the corresponding field in 

the leaf’s bit mask; a  bit mask of zero indicates an empty packet leaf slot and a corresponding 

idle slot in the packet memory. The base of the tree also determines if packets are early 

(£(m) > t ) or on-time (£(m) < t ) and computes the sorting keys based on the current value 

of t. At the top of the sorting tree, an additional com parator checks to  see if the winning 

packet is early traffic th a t falls within the link’s horizon param eter; if so, the link transm its 

this packet, unless best-effort flits await service.

6.3 .3  H andling Clock R ollover

The number of bits in the sorting keys directly affects the latency and implementation 

complexity of the com parator tree. However, by limiting the size of the keys, the router 

also restricts the range of local delay bounds d th a t can be selected by time-constrained 

connections. To formalize this trade-off, consider a connection traversing consecutive links
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Figure 6.9: Handling clock rollover with an 8-bit clock

j  — 1 and j ,  with local delay param eters dj- 1  and d j , respectively, and a  horizon param eter 

h j - 1  a t link j —1. A packet can arrive as much as h j- i+ d j - i  time units ahead of its logical 

arrival time £j(m ), if link j — 1 transm its the packet as early as possible. Similarly, link 

j  m ust transm it the packet by its deadline £j(m ) +  dj. Hence, a t time t and link j ,  any 

packets from this connection have logical arrival times £j(m ) G [t — dj, t +  (h j - 1  -f d j - 1 )].

This property permits the router to  limit the size of the packet sorting keys, as well 

as the required number of bits in the on-chip clock, where the clock ticks once per packet 

transmission time. The router can correctly interpret logical arrival times and deadlines, 

even in the presence of clock rollover, as long as each connection has h j - i + d j - i  and dj 

values th a t are less than  half the range of the on-chip clock register. For example, Figure 6.9 

shows a  range of £j(m ) values for different connections under an 8-bit clock, with a range of 

256 time units. A packet with £(m) = 80 would be considered early traffic (since t—80 > 128), 

while a packet with l(m )  =  210 would be considered on-time traffic (since t—210 < 128). This 

enables the leaves of the sorting tree to  compute the normalized keys, relative to current 

time t, using modulo arithmetic.

6.4  Im plem entation and Evaluation

To dem onstrate the feasibility of the architecture, a prototype of the router chip has 

been designed using the Verilog hardware description language and the Epoch silicon com­

piler from Cascade Design Automation. This framework facilitates a detailed evaluation of 

the implementation and performance properties of the architecture and suggests possible 

mechanisms for improving the router design.
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P a ra m e te r V alue
Connections 256
Time-constrained packets 256
Clock (sorting key) 8 (9) bits
Com parator tree pipeline 2 stages
Flit input buffer 10 bytes

P a ra m e te r V a lu e
Process 0.5/im 3-metal CMOS
Signal pins 123
Transistors 905,104
Area 8.1 mm x 8.7 mm
Power 2.3 w atts

(a) Architectural param eters (b) Chip complexity

T ab le  6 .4: R o u te r  sp ec ifica tio n

6 .4 .1  Chip D esign

The Epoch tools compile the structural and behavioral Verilog models to generate a  chip 

layout and an annotated Verilog model for timing simulations. Using a  three-m etal, 0.5/xm 

CMOS process, the 123-pin chip has dimensions 8.1 mm x 8.7 mm for an im plementation 

with 256 time-constrained packets and up to 256 connections, as shown in Table 6.4. Manual 

intervention in the layout process significantly reduced the chip area and increased the 

achievable clock speed. The link-scheduling logic accounts for the m ajority of the chip area, 

with the packet memory consuming much of the remaining space, as shown in Table 6.5. 

O perating a t 50 MHz, the chip can transm it or receive a byte of da ta  on each of its ten 

ports every 20 nsec; this closely matches the access time of the 10-byte-wide, single-ported 

SRAM for storing time-constrained traffic.

Since time-constrained packets are 20-bytes long, the scheduling logic must select a 

packet for transmission every 400 nsec for each of the five output ports. To achieve the 

necessary throughput, the com parator tree consists of a two-stage pipeline, where each stage 

requires approximately 50 nsec; the boundary between the two pipeline stages consists of a 

set of latches across a row of comparators. Although the tree could incorporate up to  five 

pipeline stages, the two-stage design provides sufficient throughput to  satisfy the output 

ports. This suggests th a t the link scheduler could effectively support a  larger number of 

packets or additional output ports, for a higher-dimensional mesh topology.
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Unit Area Transistors
Priority queue 34.02 mm5 555025
Memory and control 5.97 mm2 268161
Best-effort support 1.55 mm2 45352
Connection table 0.65 mm 2 20966
Idle-address pool 0.35 mm 2 15600

Table 6.5: Components o f chip area for real-time router

6.4 .2  E xperim ents

Verilog simulations were used to test a single router chip under a variety of traffic 

patterns. A preliminary experiment tests the baseline performance of best-effort wormhole 

packets. To study a multi-hop configuration, the router connects its links in the x  and y 

directions. The packet proceeds from the injection port to  the positive x  link, then travels 

from the negative x  input link to  the positive y direction; after reentering the router on the 

negative y link, the packet proceeds to  the reception port. In this test, a  6 byte wormhole 

packet incurs an end-to-end latency of 30+6 cycles, where the link transm its one byte in each 

cycle. This delay is proportional to  packet length, with a  small overhead for synchronizing 

the arriving bytes, processing the packet header, and accumulating five-byte chunks for 

access to  the rou ter’s internal bus. In contrast, packet switching would introduce additional 

delay to  buffer the packet a t each hop in its route.

An additional experiment illustrates how the router schedules time-constrained packets 

to  satisfy delay and throughput guarantees, while allowing best-effort traffic to  capitalize on 

any excess link bandwidth. Figure 6.10 plots the link bandwidth consumed by best-effort 

traffic and each of three time-constrained connections with the following param eters, in 

units of 20-byte slots:

d Trnin
0 8 9
1 5 7
2 3 4

All three connections compete for access to a  single network link with horizon param eter 

h = 0, where each connection has a  continual backlog of traffic. The time-constrained
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Figure 6.10: Time-constrained and best-effort service

connections receive service in proportion to their throughput requirements, since a packet 

is not eligible for service till its logical arrival time. Similarly, the link transm its each packet 

by its deadline, with best-effort flits consuming any remaining link bandwidth.

6 .4 .3  R educing Scheduler C om plexity

As discussed in Section 6.4.1, the com parator tree is the main source of complexity in 

the real-time router architecture. Extensions to the architecture can reduce this complexity 

by sharing logic amongst groups of packets. To handle n  packets, the scheduler in Figure 6.8 

has a  to ta l of 2+lg n stages of logic, including the operations a t the base of the tree as well 

as the com parator for the horizon param eter. In terms of im plem entation cost, the tree 

requires n  comparators and n leaf nodes, for a to ta l of 2n  elements of similar complexity; 

for large n, the number of leaf nodes can have a  significant influence on the bus loading at 

the base of the tree. To reduce the logic complexity and bus loading, the router could share 

logic between leaves in the same subtree; in effect, this collapses some of the large layers of 

logic a t the bottom  of the tree, as shown in Figure 6.11.

In this approach, the router combines several leaf units into a  single module with a 

small memory (e.g., a register file) to  store the deadlines and logical arrival times for k 

packets, where k  is a  power of two. At the base of the tree, each of the n /k  modules can 

sequentially compare its k  sorting keys, using a single com parator, to  select the packet with 

the minimum key; this incurs k stages of delay. Then, a smaller com parator tree finds the
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Figure 6.11s Comparator tree with logic sharing amongst subtrees

smallest key amongst n /k  packets. As a result, the scheduler incurs

( * + D + l g ( j f )

stages of delay; note th a t, for k =  1, this reduces to  the 2 +  lg n  stages of logic in the 

architecture in Figure 6.8. For larger values of fc, the scheduler has larger arbitration 

delay but reduced im plementation complexity; the architecture in Figure 6.11 has 2n /k  

com parators, as well as a  lighter bus loading of n /k  elements a t the base of the tree. 

Figure 6.12 highlights the cost-performance trade-offs of logic sharing, based on Epoch 

implementations and Verilog simulation experiments.

For example, the implementation described in Table 6.4 has n = 256 and k = 1, for a 

to ta l of 512 logic elements and 10 stages of delay, with 256 units on the bus a t the base of 

the tree. The router could reduce scheduler complexity by grouping packets in sets of four 

(i.e., k =  4). This would result in ju st 128 logic elements, with 64 units a t the base of the 

tree, a t the expense of ju st three ex tra  stages of delay. Since latency in the com parator tree 

is not the bottleneck in the implementation, the router could reduce scheduler complexity 

without affecting the operating speed. Future work can investigate other mechanisms for 

reducing the cost of the scheduling logic, including schemes th a t relax the accuracy of 

packet sorting to perm it a  cheaper and faster design [79,101]. Such approxim ate schemes 

may prove necessary for implementing real-time packet scheduling algorithms in emerging
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high-speed networks.

6.5 C onclusion

Parallel real-time applications impose diverse communication requirements on the un­

derlying interconnection network. The real-time router design supports these emerging 

applications by bounding packet delay for time-constrained traffic, while ensuring good 

average performance for best-effort traffic. Low-level control over routing and switching, 

coupled with fine-grain arbitration at the network links, enables the router to effectively 

mix these two diverse traffic classes. Sharing the scheduling logic amongst the multiple 

ou tpu t ports significantly reduces implementation complexity, while careful handling of 

clock rollover enables the router to  support connections with diverse delay and through­

put param eters with small packet sorting keys. This chapter introduces several research 

contributions:

•  Router architecture that supports best-effort and time-constrained traffic: Based on the 

results from Chapter 5, this chapter presents the architecture and implementation of a 

router th a t supports the conflicting performance requirements of best-effort and time- 

constrained traffic, as described in Section 6.1. The router employs bandwidth regula­

tion and deadline-based scheduling, with packet switching and table-driven multicast 

routing, to  bound end-to-end delay and avoid buffer overflow for time-constrained 

traffic. In contrast, best-effort traffic uses wormhole switching, dimension-ordered 

routing, and variable-length packets for low average latency and reduced buffer space 

requirements.

•  Sharing o f scheduling logic amongst links and early/on-time packets: To perm it a 

single-chip solution, the real-time router architecture shares the bandwidth regula­

tion and link scheduling logic amongst the multiple output ports, as described in 

Section 6.3. In contrast to the model in Figure 6.1, the router integrates the band­

w idth regulation and packet scheduling units to  both avoid the replication of complex
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sorting logic and the expensive movement of packets between two separate priority 

queues. Sharing sorting logic and packet buffers amongst the five output ports permits 

a single-chip solution th a t handles up to  256 time-constrained packets simultaneously, 

as seen in Section 6.4.

•  Handling o f clock rollover in link scheduling: To handle the effects of clock rollover, 

Section 6.3.3 derives the relationship between the range of the clock and the permissi­

ble delay and horizon param eters in the real-time channel model; this relates directly 

to  implementation complexity and scheduling delay by determining the number of bits 

in the packet sorting keys in Figure 6.7. Given an upper bound on the possible delay 

and horizon param eters, the analysis can derive the minimum number of bits for the 

router’s real-time clock and the packet sorting keys. Similarly, for a given clock size, 

the analysis can determine the required restrictions on the values of d and h.

• Formalization o f space/time trade-offs in comparator trees: Figure 6.8 and Figure 6.11 

propose a  com parator tree architecture for run-time packet scheduling in the real­

time channel model. Section 6.3.2 and Section 6.4.3 propose several techniques for 

balancing the trade-offs between the implementation complexity, throughput, and 

latency of the scheduler. Section 6.3.2 suggests pipelining access to  the shared data  

structure, to  overlap packet transmission with run-time scheduling on each outgoing 

port. To reduce implementation complexity, Section 6.4.3 presents a mechanism tha t 

trades time for space by reusing logic at the base of the com parator tree. For a  given 

packet size and number of outgoing ports, the analysis in Section 6.4.3 can determine 

the maximum possible value of k (degree of logic sharing).

The real-time router tailors low-level routing, switching, arbitration, and flow-control 

policies to  the conflicting demands of time-constrained and best-effort traffic. The rou ter’s 

delay and throughput guarantees for time-constrained packets, combined with low average 

latency for best-effort packets, can efficiently support a wide range of communication perfor­

mance requirements. As a result, the single-chip solution can serve as an effective building
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block for constructing multicom puter networks, or large high-speed switches, th a t support 

the quality-of-service requirements of emerging real-time and multimedia applications.
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C H A PT E R  7

CO NCLUSIO NS

The performance of multicomputer routers hinges on the subtle interplay between ap­

plication workloads and network policies, such as switching, routing, queueing, flow control, 

and resource arbitration. This thesis investigates the subtle interplay between cut-through 

switching and other architectural param eters to  improve the design and evaluation of mul­

ticom puter routers.

7.1 Research Contributions

Chapter 2 provides a  classification of m ulticomputer router architectures, highlighting 

the diversity of existing designs. Focusing on the influence of routing, C hapter 3 develops 

analytical models for several cut-through routing algorithms with different degrees of adap- 

tivity, based on a  recurrence th a t computes the number of internal and border nodes in 

an /i-hop route. The analytical models can help weigh the cost-performance trade-offs of 

implementing adaptive routing algorithms, particularly in large multicom puter networks. 

The detailed comparisons with simulation results reveal the unique dependencies between 

adjacent nodes in cut-through networks. Modern multicomputer systems employ network 

topologies, routing algorithms, and application workloads th a t exacerbate these correla­

tion effects. Based on these results, the chapter introduces a  new routing algorithm th a t 

capitalizes on inter-node dependencies to  improve network performance.
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To facilitate broader comparisons between different network architectures, C hapter 4 

presents a  general router model (v-router) and a simulation testbed (pp-mess-sim) for eval­

uating m ulticomputer networks. The objected-oriented pp-mess-sim and v-router frame­

work decomposes multicomputer network and router design into separate components with 

well-defined interfaces. The development of this simulation environment introduces sev­

eral new techniques for evaluating router architectures th a t support multiple coexisting 

routing-switching schemes, tailored to different traffic patterns and performance metrics. 

In particular, the simulator includes an abstract language for representing routing-switching 

algorithm s, independent of the low-level timing details in the underlying router model. Ad­

ditionally, the framework incorporates effective mechanisms for simulating flow-control and 

arbitration policies, a flexible history-list da ta  collection scheme, and an extensible task 

model for composing complex communication workloads to  evaluate a  m ixture of traffic 

classes.

Drawing on these novel features, Chapter 5 investigates architectural features th a t allow 

time-constrained and best-effort traffic to  share access to  network resources in parallel real­

time systems. Simulation experiments dem onstrate tha t packet switching, coupled with 

static  routing, can support predictable communication for time-constrained packets, while 

wormhole switching can provide low average latency for best-effort traffic. M ulticomputer 

routers can support both traffic classes by partitioning best-effort and time-constrained 

packets onto separate virtual channels. Fine-grain, demand-driven arbitration for each link 

and injection/reception port can ensure th a t each traffic class can capitalize on the available 

bandw idth resources, as shown by simulation experiments with the v-router mode, as well 

as an implementation of the Programmable Routing Controller.

These results motivate a  new router architecture th a t bounds worst-case latency for 

time-constrained traffic, while ensuring good average latency for best-effort packets, as dis­

cussed in Chapter 6. The router implements deadline-based scheduling, with packet switch­

ing and table-driven multicast routing, to bound end-to-end delay for time-constrained 

traffic, while allowing best-effort traffic to  capitalize on the low-latency routing and switch­

110



ing schemes common in modern parallel machines. To limit the cost of servicing time- 

constrained traffic, the router shares packet buffers and link-scheduling logic between the 

multiple output ports and implicitly handles the effects of clock rollover in computing packet 

deadlines. Tailoring the low-level routing, switching, arbitration and flow-control policies 

to  the conflicting demands of each traffic class results in a single-chip implementation th a t 

can serve as a  building block for constructing real-time multicomputer systems.

7.2 A venues for Future Work

This thesis presents analytical, simulation, and architectural techniques for the design 

and evaluation of cut-through routers th a t tailor network policies to  application perfor­

mance requirements. These results motivate future research on more accurate analytical 

and simulation models th a t capture the interaction of application workloads and router 

architectures. Further simulation experiments could evaluate cut-through correlation ef­

fects under a  wider range of router architectures and application workloads. The precise 

characterization of inter-node dependencies can guide the development of more accurate 

performance models, as well as novel network architectures and task  allocation schemes 

th a t exploit the natural dependencies between neighboring nodes.

To study more diverse architectures, further work on pp-mess-sim and the v-router model 

can address the interplay between switching schemes and buffer architectures. W ith exten­

sions to  the R a lg  instruction set, the simulator could interact more closely with the queueing 

models in the v-router N o d e  model. This would facilitate experimentation with a  wider 

range of schemes for avoiding packet deadlock in modern cut-through networks. Specific ex­

tensions to  the v-router model could broaden the collection of arbitration and buffer models 

to  construct a more comprehensive set of candidate router designs. For example, this would 

enable the simulator to  evaluate a  mesh network based on the real-time router architecture.

These simulation experiments could also compare the real-time router design with other 

techniques for supporting time-constrained and best-effort communication in multicomputer 

networks. Future research on the real-time router can also include further investigation of

111



scalable techniques for arbitrating between packets. High-speed multicomputer and local- 

area networks, coupled with the emergence of real-time and multimedia applications, moti­

vate the need for effective hardware support for regulating bandwidth and scheduling traffic 

for a  large number of connections with diverse delay and throughput requirements. Ulti­

mately, these modern applications demand effective router architectures th a t tailor network 

policies to  performance requirements.
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