
Flexible Router Architectures for Point-to-Point Networks

by

Stuart W illard D aniel

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
1996

Doctoral Committee:
Professor Kang G. Shin, Chair
Associate Professor Richard Brown
Associate Professor William Birmingham
Professor Trevor Mudge

UMI Number: 9635501

UMI Microform 9635501
Copyright 1996, by UMI Company. All rights reserved.

This microform edition Is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

© Stuart Willard Daniel 1996
All Rights Reserved

To Tami.

ii

A C K N O W L E D G E M E N T S

I would to acknowledge the contributions of many people:

• I am grateful to my graduate advisor, Dr. Kang Shin, for his support and guidance
throughout the long, and sometimes tortuous, process that has finally culminated in
this dissertation.

• I would also like to thank James Dolter, who provided most of the inspiration and
was, to a large extent, the driving force behind much of the PRC design. The strength
of his work can be seen by how much of it has lived on in the PRC through the many
design revisions.

• The other members of my dissertation committee, for their suggestions and feedback.
Dr. Brown deserves particular thanks for all of his advice on VLSI issues.

• Jennifer Rexford has assumed a critical role in the PRC project by providing me with
a sounding board for ideas both grandiose and mediocre.

• The PRC simulations in this work would not have been possible without the simulator
developed by Jim and later extended by Jennifer and Wu-chang Feng.

• Finally, the SPIDER board itself has been a group project, with notable contributions
from Ashish Mehra, Jaehyun Park, and Atri Indiresan.

TABLE OF C O N T E N T S

D E D IC A T IO N ... ii

A C K N O W L E D G E M E N T S .. iii

L IST O F TA B LES ... vii

L IST O F F IG U R E S ... ix

L IST O F A P P E N D I C E S .. xii

C H A P T E R S

1 In tro d u c tio n ... 1
1.1 Application D om ain.. 2
1.2 Application Requirements for Com m unication................................... 4
1.3 Application Traffic Patterns ... 6
1.4 Approach and C ontributions.. 7
1.5 Organization of the D issertation .. 8

2 Background ... 10
2.1 Low-level Router Policies.. 10

2.1.1 R o u t in g ... 10
2.1.2 S w itc h in g 13
2.1.3 Virtual Channels 14

2.2 Motivation for Flexible Routing and Switching.................................. 16
2.2.1 Header P a r s in g .. 17
2.2.2 Routing C o m p u ta tio n ... 18
2.2.3 S w itc h in g .. 19
2.2.4 Channel Allocation and A rbitration............................ 19

2.3 Summary 20

3 Microcontroller-Based Flexibility.. 21
3.1 An Architecture for a Flexible R ou ter.. 21
3.2 NIRX A rch itec tu re .. 23
3.3 Routing Engine A rchitecture.. 27

3.3.1 Header Parsing and Route C o m p u ta tio n 30
3.3.2 S w itc h in g .. 34
3.3.3 Flexible Use of Virtual C h a n n e ls 35

3.4 An Adaptive Wormhole Microprogram 36

iv

3.4.1 Algorithm O v e rv ie w ... 36
3.4.2 M icrocode.. 36

3.5 Routing-Switching Microprograms... 39
3.5.1 Table-Lookup R o u tin g .. 39
3.5.2 Multicast Routing 41
3.5.3 Source-list Routing ... 44

3.6 D iscussion ... 45

4 The Programmable Routing C o n tro lle r ... 49
4.1 PRC Architectural Overview... . 49

4.1.1 Network A rchitecture.. 49
4.1.2 Host In te rface .. 50
4.1.3 PRC O p e ra tio n 53

4.2 Network A rchitecture... 55
4.2.1 Reservations... 55
4.2.2 Internode L in k s .. 56
4.2.3 Intranode Flow Control ... 58
4.2.4 T im ing ... 58

4.3 Host A rchitecture... 59
4.3.1 Host In te rface 59
4.3.2 Memory In terface .. 63
4.3.3 Internal Memory A rchitecture................................ 66

4.4 PRC S t a t u s ... 68
4.5 Comparison to Other Router Architectures................................... 69

5 Hybrid S w itc h in g .. 73
5.1 Comparing Wormhole and Virtual Cut-through Switching 74

5.1.1 L a te n c y 75
5.1.2 In-transit L o a d ... 76
5.1.3 Maximum Achievable T h ro u g h p u t .. 77
5.1.4 Wormhole Switching with Large Buffers 78

5.2 Evaluating Hybrid Switching.................. 80
5.2.1 Hybrid S w itch ing .. 80
5.2.2 L a te n c y .. 81
5.2.3 In-transit L o a d ... 83
5.2.4 Maximum Achievable Throughput .. 84
5.2.5 Virtual C h a n n e ls .. 84
5.2.6 D iscussion... 87

5.3 C onclusions... 88
5.3.1 Related W o rk 88
5.3.2 S u m m a ry .. 88

6 Experiments in Flexible Routing and S w itc h in g ... 90
6.1 Non-uniform TVaffic L o a d s .. 90
6.2 Handling Bimodal Packet Lengths............................... 93

6.2.1 Uniform Routing/Switching Policies 95
6.2.2 Traffic P artitio n in g ... 97
6.2.3 S u m m a ry ... 99

v

6.3 Mixing Real-Time and Best-Effort TVaffic 101
6.4 Hot-Spot R o u tin g .. 104

6.4.1 Performance Comparison...................................... 106
6.5 D iscussion........................ 109

7 The ^-channel: A High-Performance Routing Engine 110
7.1 In troduction .. 110

7.1.1 M otivation... 110
7.1.2 Overview of the ^ -ch an n el.. I l l

7.2 Header Parsing and Route C o m p u ta tio n .. I l l
7.2.1 a:p-sign T a b le ... 113
7.2.2 2-checks .. 113
7.2.3 2-operations.. 117

7.3 Switching C on tro l.. 119
7.3.1 Routing In s tru c tio n s ... 121
7.3.2 Implementing Routing In stru c tio n s .. 121

7.4 E valuation........................... 123
7.4.1 Implementation Cost ... 124
7.4.2 A New PRC Routing E ng ine? ... 126

7.5 D iscussion............... 127

8 Conclusions .. 129

A P P E N D IC E S ... 132

B IB L IO G R A P H Y ... 170

vi

LIST OF TABLES

Table
2.1 Feature comparison of various multicomputer routers. 17
3.1 Major components of the routing primitive.. 24
3.2 Routing engine instruction set.. 27
3.3 Instruction capabilities necessary for external interface control...................... 29
3.4 Instruction capabilities for header parsing and route computation................ 32
3.5 Routing primitive as stored in registers.. 32
3.6 Instruction capabilities for switching decisions.. 34
3.7 Header word format for multicast routing example.. 42
3.8 Address mask format for source-list routing example....................................... 45
4.1 CTBUS command set... 55
4.2 Link encodings. . .. 56
4.3 Control interface capabilities.. 62
4.4 PRC specifications.. 69
4.5 Physical specification comparison.. 71
6.1 Notation for routing and switching schemes. ... 94
7.1 2-check examples... 115
7.2 2-operation examples............... 118
7.3 Comparison of routing latency (in cycles) for a packet arriving on a high

channel using WHA(Diag)-3.. 124
7.4 Formulas for determining 2-channel RAM sizes. 125
7.5 Sample memory sizes (in bits) for various 2-channel configurations............ 126
A.l TFU FIFO Tag Encodings.................................. 134
A.2 PCBUS Mode Writes... 135
A.3 TX Command Bus Commands... 136
A.4 CRC Generator Commands. ... 136
A.5 RXBUS Command Encodings.. 138
A.6 CTBUS commands.................................. 140
A.7 CTBUS Master encodings (c tm s t .) ... 141
A.8 Transmission order for data through a TAXI TX.. 142
B .l ALU Instruction Encoding.. 149
B.2 ALU Operand Selection Coding... 150
B.3 TTansfer Instructions... 151
B.4 Source and Destination Operand Coding.. 152
B.5 Flag Manipulation Instruction Encoding.. 153

vii

B.6 Wait Instruction Encoding... 154
B.7 Jump and Return Instruction Encoding. ... 155
B.8 Condition Code Selection Coding... 156
B.9 c ta d d r l and ctaddrO device mapping................ 158
D.l 2-checks in the example implementation... 167
D.2 2-operations in the example implementation. 168
D.3 General z-channel parameters... 168

viii

LIST OF FIGURES

Figure
1.1 A 4 x 4 unwrapped square mesh network.. 2
1.2 A generic router architecture... 4
1.3 Architecture of a HARTS node... 5
2.1 Example paths of routing algorithms... 12
2.2 Comparison of cut-through switching schemes.. 14
2.3 Virtual channels.. 15
3.1 Flexible router architecture for L = 4, showing the location of the routing

engines... 22
3.2 Simplified state machine for a reception channel. 25
3.3 NIRX architecture.......................... 26
3.4 Logic for checking and updating address masks... 26
3.5 Routing engine architecture... 28
3.6 Typical microprogram structure. 29
3.7 Implementation of a table-lookup routing algorithm....................................... 31
3.8 Multicast route and routing header.. 33
3.9 Example of parsing a multicast source-list header.. 33
3.10 Template for a “normal” switching operation ... 34
3.11 Address feedback example... 35
3.12 Pseudo-code implementation of diagonal-biased minimal-path adaptive rout­

ing a lg o rith m .. 37
3.13 Adaptive minimal path routing header fo rm at.. 39
3.14 Minimal-path adaptive routing example 40
3.15 Table-lookup routing microprogram... 41
3.16 Multicast routing example... 43
3.17 Source-list routing microprogram example.. 46
4.1 PRC Architecture... 50
4.2 PRC host interface.. 52
4.3 Example packet structure in memory. The shaded regions represent the

unused portion of each page... 53
4.4 Traffic flow in the PRC.. 54
4.5 Typical link transmission cycles.. 57
4.6 Typical CTBUS cycle... 59
4.7 Packet formats... 61
4.8 Sample code for transmitting a single-page packet... 64

ix

4.9 Memory interface architecture.. 65
4.10 Typical memory interface cycle... 65
4.11 RXBUS architecture.. 66
4.12 TXBUS architecture.. 67
4.13 TFU architecture.. 67
4.14 Floorplan of the P R C ... 70
4.15 1993 PRC architecture... 70
5.1 Packet delivery latencies for virtual cut-through and wormhole switching. . 75
5.2 Rate of in-transit packet arrival.. 76
5.3 Maximum throughput for wormhole switching under a hop-uniform traffic

load... 77
5.4 Average packet latency for “buffered” wormhole.. 79
5.5 Average packet delivery latencies for hybrid switching, compared to virtual

cut-through and wormhole switching... 81
5.6 Average packet delivery latency for hybrid switching, compared to “buffered"

wormhole switching... 82
5.7 In-transit packet load for virtual cut-through and hybrid switching........ 83
5.8 Maximum throughput under a hop-uniform traffic load............................ 85
5.9 Effects of increasing available virtual channels... 86
6.1 Comparison of wormhole routing algorithms under uniform destination traffic. 91
6.2 Comparison of wormhole routing algorithms under dimension reversal traffic. 92
6.3 Comparison of wormhole routing algorithms under bit-complement traffic. . 92
6.4 Comparison of average packet latency for 64-byte packets using WHO-3 un­

der uniform and bimodal packet length distributions................................. 94
6.5 Average packet latency of 256-byte packets with a bimodal packet length

distribution... 95
6.6 Comparison of VCA-1 and VCA-3. .. 96
6.7 Comparison of Segment router traffic partitioning with WHO-3 and WHA-3. 98
6.8 Comparison of oblivious wormhole and hybrid switching in the Segment scheme. 99
6.9 Comparison of Segment router traffic partitioning with VCA-3/WHA-3. . . 100
6.10 Interaction of guaranteed and best-effort traffic on shared channels........ 102
6.11 Interaction of guaranteed and best-effort traffic partitioned onto separate

virtual networks.. 103
6.12 Possible routing paths for dimension-ordered oblivious and adaptive routing

in the hot-spot. Each shaded region indicates the nodes that share a a single
link to the center... 105

6.13 Average latency comparison for hot-spot traffic only, with a dimension 5
hot-spot.. 107

6.14 Average packet latency for several routing schemes with a dimension 3 hot­
spot traffic pattern, with background traffic... 108

7.1 A simplified diagram of the z-channel.. 112
7.2 Header flit format... 112
7.3 Routing tables for dimension-ordered minimal path algorithms, indexed by

the signs of x and y ... 114
7.4 z-channel architecture.. 117

7.5 Dally and Aoki’s static dimension reversal routing algorithm, with no back­
tracking allowed 118

7.6 2-operation architecture.. 119
7.7 Routing instruction format.. 121
7.8 Address logic and controlling state machine.. 122
7.9 z-channel routing timeline, showing how the routing decision is made before

the entire header flit has arrived..................... 124
A.l Control interface read and write cycles... 143
B.l PRC routing engine internal architecture... 148
B.2 Partial structure of the address sequencing hardware of the RX................... 158
B.3 Simplified state diagram for microsequencer controller................................... 159

xi

LIST OF A P P E N D IC E S

A P P E N D IX
A PRC Internals... 133
B Routing Engine Internals .. 147
C The PRC M icro-A ssem bler....................................... 160
D A ^-channel Routing Engine... 167

xii

C H A P T E R 1

Introduction

“Our device conforms to all international standards for communications. ”

“In other words, it doesn’t do anything usefu l. . . ”

— Scott Adams’ Dilbert

In parallel and distributed systems, efficient communication is a major factor in en­

abling fine-grained cooperation between processing nodes. Maximizing system performance

requires matching application characteristics and performance requirements with a suitable

network design. However, parallel applications employ a wide variety of communication

paradigms that affect the quantity and frequency of communication between nodes. Since

most networks are fairly inflexible in their design, maximizing performance often requires

redesigning the application to utilize the network efficiently.

Rather than forcing the system to adjust its communication patterns to the network,

we wish to adapt the network to the system’s requirements and traffic workloads. Since

changing the actual network interface hardware is impractical, we introduce and evaluate

flexible communication hardware that allows network policies to be tuned to these diverse

characteristics. In particular, we will focus on the low-level policies implemented at the

router-level in the network. In this thesis, our discussion will focus on two complementary

themes: the performance benefit from a flexible network architecture, and the cost (in both

implementation and performance) of this flexibility.

1

y

X

Router

to/from \l processor

Figure 1.1: A 4 x 4 unwrapped square m esh network.

1.1 Application Dom ain

This thesis concentrates on the network policies used in message-passing multicomputers

with a point-to-point (or direct) network topology. In a point-to-point, every node has a

direct connection with several other nodes; these nodes are then connected to still others

to form a network topology. One such topology — a 4 x 4 square mesh with 16 nodes — is

shown in Figure 1.1; in this network, every node has a direct connection through its router

to up to four other nodes. Point-to-point networks, with their multiplicity of processors

and internode routes and scalable communication bandwidth, provide a natural platform

for applications that require both high performance and dependability [16, 29, 31, 43].

The particular policies we are examining have traditionally belonged within the parallel

computer domain, but we are also examining them from the context of a distributed system.

Parallel computing has been motivated primarily by the need for high-performance scientific

computing, resulting in regular interconnection networks and tightly-coupled processing

elements. Distributed systems, on the other hand, arose from the need for connectivity,

communication, and resource sharing between network-based machines. While parallel

computers and distributed systems have traditionally been employed in different application

domains, technological advances in VLSI, networking, and operating systems have expanded

the domain of distributed computing, facilitating the merger of these seemingly disparate

disciplines.

Many of the protocols used in point-to-point networks are also applied in other network

architectures. Many multistage networks, for example, use protocols originally developed

2

for direct networks inside the communication switches [41, 65, 68]. Even though nodes

usually have only one port into the switching fabric, there are several routes to each of the

other nodes within the network; this gives rise to many of the same issues of route selection

and competition for transmission links.

In this research, we will concentrate our attention on message-passing multicomputers.

In this context, a message is a unit of information that the application submits to the

operating system for transmission to some process on another destination node (or nodes).

The node where the message originates will be referred to as the source. For efficiency, the

source node often breaks larger messages into one or more packets. The largest unit handled

by the network, therefore, is the packet. At the destination, packets are reassembled into

messages before delivery to the application. Networks that deliver packets in the order in

which they were transmitted greatly simplify this task. In this research, we will focus on

supporting a wide range of packet sizes, which allows the operating system to choose the

packet size (or sizes) that are most appropriate to its needs.

Figure 1.2 shows a generic router. Several input and output ports connect the router to

the host processor, while the input and output channels constitute the internode commu­

nication links for that node. Packets are transferred over the internode channels one phit

(physical unit) at a time. In addition, packets are often subdivided into flits (flow control

units); a flit is the smallest unit used for flow control. Typical flit sizes range from as small

as a single phit up to as large as an entire packet. In this model, the router is tasked with

delivering packets that arrive at its input channels and ports to the appropriate output.

Much of this work has been done as part of the communication support for Hexagonal

Architecture for Real-Time Systems (HARTS) [31, 62], a point-to-point, distributed system

targeted for real-time applications. One goal in designing the HARTS communication sub­

system was to provide support for predictable, dependable communication while retaining

the flexibility to experiment with a variety of existing and future communication protocols

over several network topologies and under a variety of traffic characteristics. As part of this

work, we have designed and fabricated a router to show how this goal can be met through

a low-overhead, integrated solution which supports, but does not dictate, higher-level host

policies.

Figure 1.3 shows a typical node in HARTS. Each node consists of one or more application

processors (APs) and a network processor (NP) that executes the communication protocols.

3

Host

Injection|
Ports

Reception
Ports

Input
Channels Router

-► Output
Channels

Figure 1.2: A generic router architecture.

Internode communications are provided in the prototype system either through the Ethernet

connections on each processor board and a commercial fiber-channel interface, the Ancor

CIM. The final system will have internode communications provided by the SPIDER board,

which is built around the router presented in Chapter 4. pSOS+ [67], a commercial real-time

executive, provides system support to application threads within a node while x-kernel [28]

coordinates communication between nodes.

To support HARTS, the router described in this work needs several specific features.

Since it interacts directly with the x-kernel, support for variable packet sizes and header/data

separation are useful. In addition, support (via timestamping of packets on transmission

and reception) for a distributed clock synchronization algorithm [31] is required.

1.2 Application Requirements for Communication

Parallel applications vary in the quality-of-service that they require from the network.

Most parallel applications require low communication latency. Communication latency is

defined by Ni and McKinley as being the sum of three values: start-up latency, network

latency, and blocking time [46]. The start-up latency includes the delay from the operating

system handling the packet at both the source and destination nodes; the operating system

and the host-side interface provided by the network are crucial in determining this factor.

Network latency is defined as the time from the packet header entering the network at the

source to the tail exiting at the destination. The blocking latency covers all delays caused

4

Application
Processor
MC 68040
pSOS+m

MC68040
x-kemel

Network
Processor

Application
Processor
MC68040
pSOS+m

Ancor
CIM

Application
Processor
MC68040
pSOS+m

' -
• . * i■ < . >t

SPIDER

Figure 1.3: Architecture o f a HARTS node.

by competition for network resources such as links and buffers.

Another key performance metric is throughput, which is the sustained rate of data deliv­

ery given some applied load. The network throughput is equal to the applied load until the

network saturates (i.e., the throughput is less than the applied load). The actual load at

which the network saturates, and the throughput of the network for loads past this point,

determine both how often a network might saturate and whether it can recover from this

state. Since no application can execute efficiently with a continually-saturated network,

the network’s saturation point and how it degrades under these heavy loads are important

considerations for applications that need to transfer large amounts of data.

It is also becoming commonplace to use digital computers for real-time applications such

as fly-by-wire, industrial process control, computer-integrated manufacturing, and medical

life-support systems. These applications typically impose stringent timing requirements on

the computer network. Since these real-time applications often coexist with other appli­

cations, multiple classes of traffic with different requirements for predictability and perfor­

mance may require simultaneous service [60].

It is often difficult to improve one of these characteristics without impacting the others.

5

For example, network policies that improve latency may often lower the saturation point of

the network while also decreasing predictability. For this reason, a router architecture that

allows the system to select the policies that meet its needs is desirable.

1.3 Application Traffic Patterns

Parallel applications generate a wide range of communication workloads that vary ac­

cording to the application (or applications) running on the system and the mapping of

processes onto the systems nodes. Consequently, communication characteristics such as

message interarrival times, lengths, and target destinations vary substantially on modern

parallel machines [9, 25, 27].

M essage/packet arrival: Message arrivals have typically been modeled as a Poisson pro­

cess with exponentially-distributed interarrival times, due to the simplicity of the model

and the lack of more realistic data. Recent studies, however, have shown that applications,

due in part to packetization of longer messages, often communicate through bursty traf­

fic [9, 27]. In addition, group communications (such as barrier synchronization and global

reduction/combine operations) often send several copies of a single message to different

destinations at the same time, which suggests a need for multicast communication [51].

These traffic models have significant impact on network evaluation, since Poissonian arrival

processes typically yield overly optimistic performance results.

M essage/packet length: Message and packet lengths depend on several factors includ­

ing packet-size restrictions and the mixture of data and control messages. Although fixed-

length packets or exponentially-distributed lengths simplify analytic models, recent work

shows that real multicomputer applications typically generate bimodal packet-length distri­

butions [9, 27], where inter-node communication consists of large data transfers with small

request and acknowledgement packets.

M essage destination : Message destination distributions vary significantly, based on the

network topology and the mapping of processes onto nodes. Many studies use a simple uni­

form distribution of destination nodes, but this does not capture the characteristics of many

applications. Hop-uniform traffic distributions can represent spheres of spatial locality, but

these still do not capture the communication structure of specific parallel algorithms or

applications. In particular, many scientific programs generate permutation patterns such

as matrix-transpose (dimension-reversal), bit-complement, and bit-reversal [13, 56]. Other

6

application constructs, such as synchronization or multicast operations, may induce “hot­

spots” of heavily-utilized nodes and links [4, 56], Finally, dynamic models [27] can produce

variation in target destinations during the course of application execution.

1.4 Approach and Contributions

For routers in a point-to-point network (such as the one in Figure 1.2), the basic prob­

lem can be summed up: how do we move packets from the input ports and channels to

the outputs, while meeting the current network requirements for quality of service? This

movement is controlled by several low-level policies.

Addressing: Every router uses some addressing format to specify the destination (or set

of destinations) for a packet. The destination might be given as a node ID, as an

offset from the current location, and so on.

R outing: The routing policy for a network determines the path taken by a packet between

its source and its destination.

Selection: The selection scheme determines the order in which channels will be considered.

For example, a dimension-ordered scheme might prefer a link on the x-axis over one

on the y-axis.

Switching: The switching policy determines how data is moved between the input and

output ports of a node.

Queueing: The queueing scheme determines where packets are buffered — in a central

queue, at an output, or at the inputs.

Chapter 2 discusses these policies in more detail. We will examine how a single router

may support a wide range of addressing, routing, selection, and switching schemes. We will

neglect the queueing policy, as this reflects the actual location of the buffers in the router.

We will consider, however, methods for varying the decision on when to use these buffers.

A major theme of this research is that since no policy is best-suited for all situations,

the proper answer might be to support a number of policies and dynamically choose the

one best suited to the current workload. In meeting this goal, the thesis makes several

contributions:

7

• We analyze how routers typically handle packets, and use this to determine the func­

tions necessary for the desired degree of flexibility.

• To provide this flexibility, we develop two routing engines: a microcontroller-based

approach that maximizes flexibility, and a more limited architecture that stresses

performance.

• We also develop and evaluate a new switching scheme, hybrid switching, that allows

the system to balance resource consumption and improve overall performance.

• We have fabricated a prototype flexible router, the Programmable Routing Controller,

that meets the goals we have outline above.

1.5 Organization of the Dissertation

The remainder of this dissertation consists of seven chapters and four appendices. The

next chapter provides a background on low-level multicomputer network policies. In par­

ticular, an emphasis is placed on discussing the routing, selection, and switching schemes.

The chapter concludes with an examination of the major actions required to route a packet

from the inputs of a router to its outputs.

Drawing on this discussion, Chapter 3 introduces a microcontroller-based router archi­

tecture to support flexible routing and switching. Since the routing engine is an expensive

resource, we develop an architecture for sharing each routing engine amongst several input

channels without degrading performance. We then discuss in detail the microcontroller ar­

chitecture and functions necessary to support a wide range of routing and switching schemes.

To illustrate these functions, and to demonstrate the power of this routing engine, we also

present several routing and switching microprograms.

Chapter 4 introduces the Programmable Routing Controller (PRC), which combines

the routing engines of the previous chapter with a powerful host interface. Besides the

microcontroller-based routing engines, this ASIC has several features that distinguish it from

other multicomputer routers. The main data switch is based on a time-division multiplexed

bus, rather than the more common crossbar; this simplifies channel allocation and enables

multicast operations without impacting performance.

We then introduce a new switching scheme, hybrid switching, which combines aspects

8

of both wormhole and virtual cut-through switching by buffering a small fraction of blocked

packets and limiting the number of links that blocked packets can hold. Through cycle-level

simulations of a network of PRCs, we show that this switching scheme significantly reduces

the buffer requirements for in-transit packets when compared to virtual cut-through, while

providing higher maximum throughput than wormhole switching. In this manner, hybrid

switching bridges the performance gap between other cut-through switching schemes.

Through simulation, we also demonstrate how the PRC can be used to tailor network

policies to the application requirements. Four different case studies are performed that

compare routing, switching, and selection schemes under differing application workloads.

Through these simulations, we can observe the strengths and weaknesses of the PRC and

of our flexible router concept.

Drawing on these observations, Chapter 7 addresses the tradeoff between performance

and flexibility by developing the z-channel routing engine. Unlike the routing engine de­

scribed in Chapter 3, the z-channel limits its flexibility in order to match or exceed the

performance level of multicomputer routers using fixed network policies.

Chapter 8 concludes this dissertation with a brief summary of our contributions and fu­

ture directions for this research. The appendices provide additional implementation details

on the PRC and the routing engines.

9

C H A P T E R 2

Background

This next transparency is an incomprehensible jumble

of complexity and undefined acronyms

— Dilbert, in Scott Adams’ Dilbert

For point-to-point networks, application characteristics affect the performance of par­

ticular network policies [23, 26, 35, 36, 58]. Parallel applications often communicate via

message-passing, where a message is a unit of information submitted to the communication

subsystem for transmission to a process on another node (or nodes). Depending upon the

application, messages may have several different properties. The network designer should

account for messages with a range of sizes, priorities, and deadlines.

2.1 Low-level R outer Policies

The architecture of a router may generally be characterized by its routing, selection,

switching, and queueing policies. Since this research is focusing on providing flexible routing

and switching policies at the hardware level, we will consider the first three in more detail.

2 .1 .1 R o u tin g

The routing policy for a network determines the path taken by a packet between its

source and its destination. The route may be selected by the source node (source routing)

prior to transmission, or computed at every intervening node (distributed routing). Source-

routed schemes must carry information about the entire path in the header, which increases

the size of the packet. In addition, the route generally cannot be varied once the packet has

10

begun transmission.

Distributed routing schemes are divided into two general classes: oblivious and adaptive.

Oblivious routing schemes always use the same path between two nodes, irregardless of

network conditions, while adaptive schemes vary the path according to dynamic network

conditions such as channel contention and faulty links. Routing schemes generally try to

take a minimal-length path through the network from their source to the destination; every

link chosen for the packet will bring it closer to its destination. Algorithms that may choose

longer paths to circumvent congested links are termed non-minimal.

Finally, many applications and systems can benefit from hardware support for multicast

packets, where a single packet is sent to multiple destinations. While few routers currently

support multicast routing, it has benefits for many applications such as barrier synchro­

nization, broadcast, and distributed shared memory [31, 47]. A multicast path is shown

in Figure 2.1(d), where the source node S is transmitting a packet to two destinations,

nodes 11 and 13. Rather than separately transmitting two identical packets, a network that

supported multicast routing could transmit a single packet to node 9 and then “tee” it by

transm itting it in two directions simultaneously [31].

Figure 2.1 illustrates the differences amongst the various routing schemes and selection

functions. Figure 2.1(a) compares a dimension-ordered selection function, where links along

the x-axis are preferred, and a diagonal selection function that reduces the larger offset. If

the routing scheme is oblivious, it will always follow the route determined by this selection

function. Adaptive schemes, however, will try alternate links if the first choice is not

available. An adaptive minimal scheme is shown in Figure 2.1(b): once the packet reaches

node 2, it finds that the -f-x link to node 3 is busy. An oblivious routing scheme will then

wait for the link to become available, while adaptive schemes would use the +y link to node

6 instead. After forwarding the packet header to node 6, the link to node 7 is also found to

be busy; the adaptive scheme then continues in the +y direction to reach node 11. At this

point, only one link remains that will take the packet to its destination; if it is busy any

minimal scheme will be forced to wait. If an adaptive non-minimal scheme, however, may

find an unblocked path to the destination by routing the packet through nodes 14 and 15.

11

74) QD

CD— CD

Ei(C2)^EH(_3)

i' •
Dimension Order Diagonal

(a) Selection function

© © © 0

CD— CD— Cl

V w " i “ V

© i i s C D ^ O - - C D

Busy links

(b) Adaptive route around
congestion

14E^S115J

Busy links

(c) Non-minimal route
Before ‘tee’ After ‘tee’
(d) Multicast route

Figure 2.1: Exam ple paths o f routing algorithm s.

12

2.1 .2 S w itch in g

The switching scheme impacts performance by determining the link and buffer resources

a packet consumes at each node in its route. Packet switching requires an incoming packet

to buffer completely before transmission to a subsequent node can begin. In contrast,

cut-through switching schemes, such as virtual cut-through [33] and wormhole [10], try to

forward an incoming packet directly to an idle output link; if the link is busy, virtual cut-

through switching buffers the packet, whereas a wormhole packet stalls pending access to the

link. While first-generation multicomputers employed packet switching, most contemporary

routers utilize wormhole [10, 15, 53, 14, 61, 63, 71] or virtual cut-through [19, 20, 38, 66]

switching for lower latency and reduced buffer space requirements.

Virtual cut-through and wormhole switching differ in how they handle packets that

cannot immediately proceed to the next node because the appropriate output links are

busy with other traffic. Virtual cut-through switching buffers blocked packets at the local

node and releases the links currently held by the packet, but wormhole switching stalls the

packet in the network, while holding all links the packet has acquired. Since packets never

buffer at intermediate nodes with wormhole switching, nodes only receive those packets

destined for them. Stalling the packet in the network, however, consumes network resources

to “store" the packet, effectively dilating the packet’s length. Virtual cut-through, on the

other hand, minimizes the network bandwidth consumed by packets, but uses memory and

control resources at intermediate nodes to store blocked packets.

Figure 2.2 illustrates the difference between three cut-through switching schemes: cir­

cuit, wormhole, and virtual cut-through. The packets are shown as they would appear

when their forward progress is blocked by a busy link while trying to exit node C. Under

circuit switching, the header flit has been forwarded to node C, while the body of the packet

waits at the source until a circuit has been established between the source and the destina­

tion. This enables the header to easily backtrack if blocked. Wormhole switching, on the

other hand, forwards each data flit as soon as there is an empty buffer at the next node;

consequently, the blocked packet has a flit stored on each node. Since virtual cut-through

provides sufficient flit buffers at each node to buffer blocked packets, all of the flits of the

blocked packet are stored at node C. This frees the transmission links at the source, node

13

Available link

Stalled link

J Busy link B Header flit

SI Empty flit buffer (HI Data flit

I

Source Node B NodeCNode A

I

I

Circuit

Wormhole

Virtual Cut-through

Figure 2.2: Comparison o f cut-through switching schem es.

A, and node B for use by other packets.

One potential problem for wormhole-switched networks is deadlock, where packets may

be blocked forever in the network. This occurs when two or more packets in the network

form a cycle where each packet is holding resources (channels) and waiting for others.

Typically, networks deal with deadlock by either preventing it or recovering from it. The

most common solution is to prevent deadlock by restricting the routing algorithm to prevent

cycles from forming [11].

Recently, researchers have noted that deadlocks are an uncommon event, and the com­

mon technique of restricting routing to prevent deadlock may often require more resources

than recovering from the occasional deadlock [34, 70]. Recovery strategies typically use

some form of a timeout to detect when a packet is deadlocked, and then either discard the

packet or misroute it.

2 .1 .3 V ir tu a l C hannels

Wormhole-switched networks have also pioneered the use of virtual channels, where

several packets may simultaneously share a single physical link [11]. Figure 2.3(a) shows a

link with one channel, where link bandwidth is allocated on a per-packet basis; if the link

supports virtual channels (such as in Figure 2.3(b)), its bandwidth is allocated on a per-flit

basis. Thus, multiple packets may be transiting the physical link at any one time. Virtual

14

■ I I
■ I I I

I
(a) Single physical channel (b) Virtual channels

F igu re 2.3: V irtu a l channels.

channels have been used for several purposes:

D eadlock p reven tion : By adding virtual channels (and thus resources) to the network,

minimal-path routing schemes may create a network resource (channel) graph without

cycles [11]. This is sufficient to prevent deadlock in wormhole-switched networks.

Increasing th ro u g h p u t: By allowing packets to use link bandwidth that would otherwise

be wasted by blocked packets [12]. In Figure 2.3(a), if the first packet is stalled waiting

for another channel, it idles the link and prevents the other packets from proceeding.

The virtual channels in Figure 2.3(b) allow the other packets to bypass the blocked

packet and thus reclaim the link bandwidth.

Increasing adap tiv ity : Many routing schemes use virtual channels to increase the degree

of adaptivity within the network [4].

P a rtitio n in g traffic: By partitioning traffic classes with disparate characteristics or re­

quirements onto separate virtual networks, interference between the classes can be

reduced. In addition, the network policies for each virtual network can be tuned to

the needs of each class [36, 58].

When a router provides multiple virtual channels over a physical link, it must also de­

termine an arbitration policy that governs which channel may access the link. The simplest

schemes are first-come first-served and round-robin, but these are not always preferred.

Consequently, some routers implement some form of fixed priority arbitration, where link

bandwidth can be allocated to high-priority messages at the expense of low-priority mes­

sages.

15

2.2 M otivation for Flexible R outing and Switching

Existing multicomputer routers employ a variety of header formats, routing-switching

algorithms, and channel allocation policies, each with its own strengths and weaknesses.

Table 2.1 compares the major policies (routing, switching, virtual channels, queuing, topol­

ogy) of several existing multicomputer routers. From this table, we can note that existing

solutions are very diverse; no one scheme exists that is always chosen over the others. In

addition, existing solutions only support a single set of policies, or in some cases, a limited

set of policies.

Numerous researchers have examined the relative performance of these various routing

and switching schemes, and found that the best performer varies according to the applica­

tion’s traffic pattern [4, 13, 23, 35, 36, 70]. For example, adaptive schemes that generally

improve performance by routing around congestion may actually increase congestion under

certain traffic loads [23], and even when they reduce end-to-end delay out-of-order packet

arrival can complicate protocol processing at the receiving node [32]. Opportunities for

adaptive routing depend on the topology and the distance a packet must travel. Similarly,

wormhole switching achieves low latency without requiring packet buffers, but virtual cut-

through and packet switching may achieve better throughput at high loads. Packet size also

impacts network performance, since inter-node communication often consists of large data

transfers, coupled with small request and acknowledgement packets [9]. A flexible router

can accommodate this mixture by having long packets use wormhole switching to reduce

buffer space requirements, while allowing short packets to use virtual cut-through switch­

ing to reduce network contention [36]. The network topology also influences the relative

value of particular routing schemes: chaotic routing, for example, has been found to be

marginally better than oblivious schemes in mesh networks but significantly better in torus

topologies [3].

Based on this, we wish to provide support for a wide range of routing, switching, and

selection schemes, allowing the system to select which is appropriate for its needs. At the

same time, however, the performance costs of this flexibility should not exceed the gains from

this flexibility. Consequently, we will now examine how multicomputer networks implement

these policies to decide how to provide the desired flexibility. Although multicomputer

networks implement routing and switching in many different ways, every router proceeds

16

R o u te r Topology R outing V-chans A rb itra tio n
Mesh routing chip [61] 2-D mesh e-cube 1 —
Cray T3D router [49] 3-D torus e-cube 4 input
Message-driven processor [15] 3-D mesh e-cube 2 priority
Torus routing chip [10] 2-D torus e-cube 2 fair
iWarp router [53] 2-D torus static varies fair
Reliable router [14] 2-D mesh adaptive 5 fair
IMS C104 switch [68] flexible interval 1 —
Hnet switch [63] flexible table 1 __
SP1 Vulcan [65] multistage static 1 —
Mosaic [61] 2-D mesh e-cube 1 —

(a) Routers that use wormhole switching

R o u te r A ddress Topology R outing Q ueueing
Mayfly Post-office [19] offset hexagonal adaptive shared output
Chaos router [38] offset 2-D torus non-minimal shared pool
DEC AN1 switch [50] table look-up flexible adaptive input
ComCoBB [66] table flexible adaptive part, input
Arctic routing chip [6] source-list fat-tree static input pools
S-connect [48] table variable adaptive central
POSTECH [40] offset torus adaptive off-chip

(b) Routers that use virtual cut-through switching

Table 2.1: F ea tu re com parison o f various m ulticom puter rou ters .

through common stages in servicing a packet. With careful inclusion of flexible hardware

for each stage, multicomputer routers can support diverse network policies at a reasonable

cost and speed.

2.2.1 H eader P arsing

When a packet arrives from a host injection port or an incoming link, the router parses

the header bytes to make a routing-switching decision. Multicomputers can employ a wide

variety of header formats and sizes, depending on the routing algorithm and the underlying

network topology. Under source-list routing, the header explicitly specifies the packet’s

entire path through the network, while distributed routing algorithms allow intermediate

nodes to compute a routing decision based on the packet header and local conditions. This

routing header can include the physical or relative address of the packet’s destination node;

for example, offset-based routing represents the destination by its distance along each dimen­

17

sion of the network. Alternately, the packet header can include a connection identifier that

corresponds to a pre-established route, represented by tables in the intermediate routers.

To support efficient multicast routing, packet headers can specify a set of nodes or routes

in a variety of formats, depending on the number and location of the destinations. For ex­

ample, the header can represent destinations with an ordered list or a bit mask, as well as

more concise encodings that identify specific regions of the network or a tree of paths from

the source node [7]. In addition to destination information, the header may include the

packet type or priority to distinguish between various classes of traffic, such as control or

data communication, which may employ different network policies. Although most multi­

computer networks limit themselves to a single header definition, flexible hardware support

for logical and arithmetic operations would enable routers to manipulate almost any header

format.

2.2 .2 R ou tin g C om p u tation

After parsing the incoming header, the router generates one or more possible directions

for the packet to travel, based on the header fields and the routing-switching algorithm.

For example, given the current node and the packet’s destination, the router could compute

which outgoing links lie on a shortest-path route. When the packet can select from multiple

directions, a selection function must be used to order the output links. Communication

performance often depends on this ordering. Most mesh routers rank links in dimension

order, giving preference to outgoing links in lower dimensions of the network. Alternately,

the router could order the links according to how much farther the packet must travel in

each direction, improving a packet’s chance of considering multiple outgoing links at future

nodes in its route [2, 19]. To reduce network congestion and balance traffic load, the router

could favor links with fewer busy virtual channels [13].

Depending on the routing-switching algorithm, the router may also limit which virtual

channels are available to an incoming packet. For example, many wormhole routing algo­

rithms guarantee deadlock-avoidance properties by limiting which outgoing virtual channels

a packet can consider [11, 46], based on the incoming virtual channel. For a given number

of virtual channels, there is a variety of deadlock-free wormhole routing algorithms that

differ in how they restrict access to outgoing links and virtual channels. By improving link

throughput or increasing routing adaptivity, these various algorithms can significantly en­

18

hance communication performance, depending on the network traffic pattern [4, 56]. With

flexible hardware for assigning outgoing virtual channels, multicomputer routers could tai­

lor wormhole routing algorithms to application communication patterns. In addition, by

restricting access to certain virtual channels, routers can establish virtual networks that

dedicate link and buffer resources to different traffic classes [15, 36, 53, 59].

2.2 .3 Sw itch ing

The router eventually commits to a routing-switching decision for each packet, based on

the candidate virtual channels and prevailing network conditions. An ordered list of virtual

channels encapsulates the routing options generated by the algorithm, while the switching

policy determines whether the router should buffer, stall, drop, or forward the incoming

packet. By viewing virtual channels as individually reservable resources, a router can im­

plement a wide variety of routing-switching schemes through flexible control over channel

reservation policies. For example, a wormhole or virtual cut-through router attempts to re­

serve access to the highest-ranked idle virtual channel, to immediately forward an incoming

packet to the next node in its route. If all of the candidate virtual channels are reserved,

virtual cut-through switching buffers the incoming packet, while a wormhole router blocks

the packet until one of the channels becomes available.

2.2 .4 C hannel A lloca tion and A rb itration

When multiple packets await access to the same virtual channel, the router imposes a

scheduling policy to select the next outgoing packet for transmission. To reduce implemen­

tation complexity, most existing routers assign virtual channels on a first-come first-serve

basis; however, priority-based schemes have the potential to provide predictable perfor­

mance and isolate certain classes of traffic [42,44, 59,69]. Separate from channel assignment

strategy, the router arbitrates amongst the busy virtual channels to assign link bandwidth at

the flit level. In addition to random or round-robin arbitration, routers can base bandwidth

allocation on packet deadlines or priority to further enhance predictability [12]. Flexible

support for channel allocation and arbitration schemes would allow modern routers to han­

dle a wide variety of applications with different performance requirements.

19

2.3 Summary

As we have seen in this chapter, existing multicomputer routers employ a variety of

different header formats, routing-switching algorithms, and channel allocation policies. In­

stead of hardwiring network policies in the router design, Chapter 3 introduces a router

architecture that incorporates small, programmable devices for processing incoming packet

headers. This architecture permits multicomputer networks to handle a wide variety of

header formats, routing algorithms, and switching schemes at a reasonable cost.

20

CHAPTER 3

Microcontroller-Based Flexibility

I don’t know if I can face this mess.

— Shoe, in Jeff MacNelly’s Shoe

As shown in Section 2.2, current routers typically implement only a single, fixed policy

for routing and switching packets. This prevents applications from tailoring the network to

suit their current needs. Instead of hardwiring network policies into the router design, how­

ever, this chapter introduces a router architecture that incorporates small, programmable

devices for processing incoming packet headers. This architecture permits multicomputer

networks to handle a wide variety of header formats, routing algorithms, and switching

schemes at a reasonable cost.

A processor-based programmable architecture offers maximum flexibility for header

parsing and route computation. In addition, expressing routing and switching schemes

as assembly language instructions simplifies programming new schemes. Implementing this

flexibility implies that every incoming packet will require fast, efficient handling by some

highly programmable and flexible routing engine. At the same time, however, this should

be achieved at a reasonable cost, both in hardware and performance.

3.1 An Architecture for a Flexible Router

Figure 3.1 shows the architecture of a flexible router with 2L unidirectional links paired

to form L bidirectional links and C virtual channels per link. The channels are labeled using

the notation {l/0}|jnk,channel! thus h c denotes virtual channel c of the incoming link I. To

transmit a packet through an outgoing channel, the “master” (either a reception channel

21

o©

Switch
00 -* oc

Routing
Engine

Routing
Engine

XHost
nterfac;

Figure 3.1: F lexible ro u te r arch itec tu re for L = 4, showing th e location of
th e rou ting engines.

or the host interface) must first obtain a reservation of the “slave” channel from a central

controller on the node. Once the desired slave has been reserved, the master may forward

packet data to the slave through the switch. By providing programmable control over this

reservation process for every packet entering the router, different routing and switching

schemes may be implemented.

Packets enter the node either when injected by the local host or when received from a

neighboring node by an incoming channel. For packets injected through the host interface,

the routing policies can be provided by the host, which selects a transmission channel to

transfer the packet to a neighboring node. When the packet is received at the neighboring

node, the associated incoming channel is then responsible for parsing the header, computing

a route, and forwarding the packet.

The router could dedicate a routing engine to every incoming channel to completely de­

couple the processing of packets from each other. This approach, however, incurs significant

hardware costs for implementing L x C routing engines, each with its own control store,

22

registers, and control logic. This replication of resources is also somewhat unnecessary,

as the stages that require a routing engine usually constitute only a fraction of the time

required to receive and forward a packet.

By sharing each routing engine amongst several channels, utilization of the routing

engines may be increased while requiring fewer routing engines. Sharing a routing engine

between channels, however, means that channels need to compete for the routing engine.

As the ratio of channels to routing engines increases, the likelihood and number of channels

blocked while waiting for access to the routing engine increases. A shared routing engine

is also more complex, as it should be capable of implementing different schemes for each

channel it is supporting.

It may be noted, however, that several of these problems are alleviated if a shared

routing engine only handles packets for a single physical link. Since the link itself serializes

the arrival of packet headers, the arbitration scheme for access to the routing engine does

not need to take simultaneous packet arrivals into account. At the same time, there are

many commonalities among routing and switching schemes written for the same physical

link; these shared code segments do not need to be replicated, reducing the size of the

control store necessary. Finally, in a VLSI implementation of the router, grouping a routing

engine with the hardware required for handling a reception link enables creation of a single

module for handling all routing and switching on a link; this module may then be replicated

for every incoming link, resulting in an efficient use of space and reduction in design time.

Based on these observations, we have chosen to dedicate a single routing engine to each

incoming physical link. This reduces the total number of routing engines and increases their

utilization, while alleviating many of the problems of a centralized architecture.

3.2 NIRX Architecture

To share the routing engine efficiently between several virtual channels, time-consuming

tasks should be hardwired into the channel functionality whenever feasible. For simplicity,

we will refer to the incoming channel as the NIRX (network interface receiver). Thus,

the NIRX is responsible for all of the mundane aspects of data forwarding, as well as

intranode and internode flow control. The routing engine, on the other hand, provides

header parsing, route computation, and switching for each packets before “returning” them

23

Field Function
address
data

Bit mask of destination channels (hostjO^-^c-i-.Ooo)
Modified packet header

(a) Main components of the routing primitive

Flag Function
make _reservat ions
m ulticast

Signals whether channels are already reserved.
Selects either multicast (all of) or unicast (only one of) semantics

(b) Routing primitive control flags

Table 3.1; Major components of the routing primitive.

to the channels. After reserving the desired outgoing channel (s), the routing engine returns

control of the packet to the NIRX by issuing a routing primitive that configures the incoming

channel’s state machine for forwarding the packet. The routing primitive structure, shown in

Table 3.1, contains the modified packet header and an L x C+ 1-bit address mask specifying

the reserved Ojc.

This interaction is shown in Figure 3.2, which presents a simplified state machine imple­

menting the NIRX. Initially, the NIRX forwards incoming data to the routing engine. This

process continues until the routing engine issues a routing primitive to the NIRX. After the

arrival of the routing primitive, if the make reserv a tio n flag is false, the NIRX will shift

to the connected/data state and begin forwarding the body of the packet. The connection

is terminated by the arrival of the last flit of the packet; forwarding this flit frees the slave

NITXs and resets the NIRX to its idle state.

This interface, however, is complicated by wormhole-switched packets, which often need

to stall for an indefinite period of time while waiting to reserve a channel. If the routing

engine implements this stall, it will be unable to service the other NIRXs in a timely manner.

To prevent this, the routing engine offloads the actual stalling to the NIRX. As pointed out in

Section 2.2, routing a packet requires handling an ordered list of candidate channels, which

is expensive and impractical to implement for every /jc. A packet stalls, however, only

when no candidate is free; thus, the NIRX can simply reserve the first available candidate

channel. This greatly simplifies the implementation of the NIRX — the routing primitive

24

Data Arrival

Forward
Header

Idle

Routing Engine
Read

Rt Prim/
Reservety

Rl Prim/
W ait One

Rt Prim/
Wait All

Stall/
Multicast

Connect/
Data

All Selected
Channels

Available

>0 Selected
Channels

Available

Data
Forwarded

Data
Arrival .Fail Fail

Connect/
No Data

Reserve/
One

_ / Reserve/
Success^! ...\ Multicast

Figure 3.2: Sim plified sta te m achine for a reception channel.

simply specifies the set M of candidate virtual channels, but need not order them 1. A single

boolean flag, m ake_reservation, tells the NIRX that it needs to reserve one or more of the

channels selected by the address mask. The address mask S used for switch access is defined

by the function S = m sb(R nM), where R is the current reservation status mask. When the

m ake-reservation flag is set in a routing primitive, the NIRX moves to its re se rv e /o n e

state; when it detects that a selected Ojc is free, it attempts to reserve only that channel.

A successful reservation attem pt moves the NIRX to the connected state, while a failed

attem pt returns the NIRX to the re se rv e /o n e state. The NIRX checks the m u ltic a s t flag

to determine its next state.

Multicast routing schemes that utilize wormhole switching present a further complica­

tion; oftentimes, only some of the desired channels will be available while the routing engine

handles the packet. Once again, having the NIRX to wait on the entire set of channels spec­

ified by the address mask allows the routing engine to offload this stalling to the NIRX at

a reasonable cost. Multicast semantics are triggered by the m u ltic a s t flag in the routing

primitive, which shifts the NIRX to the s t a l l /m u l t i c a s t state. This state operates in a

similar fashion to re se rv e /o n e , but will only attem pt a reservation when all selected Ojc

‘in the unlikely event th a t multiple selected NITXs are available, a fixed priority scheme orders them.

25

Flow Control Acknowledgment

From
Link

From
Routing
Engine

Data to switch

Routing Engine

Header path

Routing primitive path

Data Transfer Path

Figure 3.3: N IR X architecture.

Address updating
and storage

Candidate
Address

Mask
(M)

Slave
Address

Mask
(S)

Address
to switch

one/all

To
Switch

Switch Status (R)
Figure 3.4: Logic for checking and updating address masks.

are available.

To summarize the operation of the NIRX, Figure 3.3 shows the paths taken by data

through the NIRX and the routing engine. These paths are shown in chronological order:

the header being forwarded to the routing engine is eventually followed by the return of the

routing header as part of the routing primitive. Once the primitive has been issued, data is

directly forwarded to the switch, bypassing the routing engine. Similarly, Figure 3.4 depicts

26

}

C om m and F unction
a lu
ldc
x fe r
f la g
jump
re tu rn
go n irx
go ctbus
w ait

boolean/arithmetic operation
load constant into register
copy register contents
set, clear, and copy flags
conditional branch
return from subroutine
trigger routing primitive
trigger CTBUS access
three-way, blocking branch

Table 3.2: R outing engine instruction set.

the logic used to compute the switch mask S from the candidate channel mask M .

3.3 R outing Engine A rchitecture

While the NIRX is responsible for handling data transfer, flow control, and executing

some switching functions, the routing engine implements the header parsing and route com­

putations for every incoming packet. To achieve this, the routing engine is subdivided into

several major functional blocks, as shown in Figure 3.5. The data input and output modules

provide the interface to the NIRXs, while the bulk of the computations are performed by

the CPU block, which consists of a small, 8-bit microcontroller with a 256-instruction2 con­

trol store for microprograms. W ithin the CPU block, integer-operation support is provided

by an 8-bit integer ALU that implements addition, subtraction, and boolean operations;

a 16-byte register file provides storage for constants and intermediate computations. The

host uses the control interface to download the microprograms during system initialization

and to adjust microcode operation at run time through the notification FIFOs. The switch

interface, on the other hand, allows the routing engine to read the current reservation sta­

tus of the NITXs without accessing the switch. Table 3.2 shows the major instructions

supported by the CPU block.

The data input and output modules constitute the interface between the routing engine

and the NIRXs. The interfaces are designed to move data and control instructions between

the routing engine and the NIRXs under high-level software control, while requiring a

minimal number of instructions and cycles. The data input module is also responsible for

transparently configuring the routing engine; this configuration sets internal flags within

3 Each instruction is 20-bits wide. Appendix B discusses the instruction form at in more detail.

27

Data OutputData Input

Data

CPU
Control

Address

Control
Store

Accumuh
Address
FeedbackRegister File

ALU

Switch StatusControl Interface

Figure 3.5: R outing engine architecture.

the routing engine that allow instructions to execute without regard to the identity of the

currently selected channel, encouraging code reuse.

The data input module is controlled by a special w ait instruction issued by the CPU

block3. The w ait instruction determines the priority of particular NIRXs. When a NIRX

signals that it has header data, the data input module transfers the data from the NIRX

to the local (nid) registers. Simultaneously, the CPU block will jump to the appropriate

microcode for the selected NIRX, and begin executing it.

The data output module has two primary functions: issuing routing primitives to the

selected NIRX and accessing the switch to reserve NITXs. After the header is processed

and a routing decision has been made, the data output module is used to transfer a routing

primitive (Table 3.5) to the virtual channel. Sharing these registers between the NIRX

interface and the switch interface reduces the total number of registers within the routing

engine and also reduces data movement; typically, the address mask used in a reservation

3The format of the wait instruction is as follows:
w ait < ch an > [,trap O (< ch an .lis t>)][, t r a p l(< c h a n _ l is t>)] ;

where priority runs from right to left. If no selected channel has data, the instruction stalls. If a channel
selected by the t r a p l list has header data, the da ta is transferred into the inbound da ta registers and the
routing engine jum ps to the location indicated by a special t r a p l register. The other trap works similarly;
if the first channel indicated is “selected” , the routing engine transfers the d a ta and proceeds to the next
sequential instruction.

28

1 init:
2 ldc cO.handler, trapO;
3 ldc cl.handler, trapl;
4 /* waits for a packet header */
5 wait c2, trapO(cl), trapl(cO);
6 c2_handler:
7 < header parsing for channel 2 >
8 < route computation >
9 < channel reservation >
10 ldc rtp.flags, ctctl, go rtp;
11 jump true, init;
12
13 c1.handler:
14 < header parsing for channel 1 >
15 < route computation >
16 < channel reservation >
17 ldc rtp.flags, ctctl, go rtp;
18 jump true, init;
19
20 cO.handler:
21 < header parsing for channel 0 >
22 < route computation >
23 < channel reservation >
24 ldc rtp.flags, ctctl, go rtp;
25 jump true, init;

Figure 3.8: Typical microprogram structure.

Category Functions Comments
Obtaining header transfer header

acknowledge header
arbitrate channels multiple headers may be waiting

Control flow code selection schemes are often channel-dependent
Routing primitive data transfer

signal channel almost always preceded by transfer op
Switch access data transfer

async control of access almost always preceded by transfer op

Table 3.3: Instruction capabilities necessary for external interface control.

29

access to the switch is identical to that used for the routing primitive.

Operation of the data output module is controlled by the CPU block through special

flags on data transfer instructions. This simplifies and speeds the microcode by eliminating

a separate strobe instruction. The go r tp suffix issues the routing primitive to the NIRX,

while the go ctbus suffix triggers a small finite state machine within the data output

module that controls switch access. The remainder of the switch access is controlled by the

data output module, freeing the CPU for other computations.

3 .3 .1 H eader P arsin g an d R o u te C o m p u ta tio n

The remaining modules of the routing engine constitute the “CPU” of the routing engine.

The functionality provided by the CPU block is determined by several goals: minimizing

microprogram size and execution time, coupled with the need to implement a wide range

of routing and switching algorithms. Consequently, most of the operators provided by the

CPU block are determined by its responsibility for implementing header parsing and route

computation. Table 3.4 summarizes these functions.

One basic requirement for implementing any algorithm is support for control flow; in

the CPU, this is provided by the jump instruction, which can alter the instruction sequence

based on boolean flags such as the ALU’s zero and ca rry bits as well as reservation status

flags for the NITXs. Several user-controlled flags are also available for temporary storage

of boolean conditions, and may be set, cleared, or loaded via the f la g instruction. For

example, an algorithm may save the result of a bit-mask or comparison operation on a

routing header; later, a jump instruction could branch based on these condition bits. When

a jump instruction includes the save qualifier, the routing engine stores the address of the

next microinstruction, so the micro-sequencer can r e tu rn to the main instruction flow later;

this restricted implementation of subroutines reduces microprogram size by enabling code

reuse.

The CPU block’s first task in routing a packet is to parse the packet’s routing header

to determine the destination of the packet, its type, priority, and any other necessary

information. As described in Section 2.2, packet headers may represent addresses in several

ways. Distributed routing schemes that compute a routing decision at each node often

employ offset-based addressing; updating and checking these requires integer and boolean

operators, as well as the ability to check the carry and “equal-to-zero” flags after these

30

'route:
check tlcO;
check 12c0;
buffer;

(a) Graphical depiction

wait niO, trapO(nil,ni2);
xfer nid2, trapl;
jump (trapl);

(nid2):
jump true, use_these_chaxmels;

use_these_channels:
< check channels in desired order >
< else block on all suitable channels >
jump true, init;

(b) Pseudo-code

F igu re 3.7: Im p lem en ta tio n o f a tab le-lookup ro u tin g a lgorithm .

operations. Routing schemes that use the physical address of the destination may also use

these functions to determine how to route packets.

After parsing a packet’s header, the routing engine may need to select one or more

channels for the packet to traverse. The functions required at this stage vary according

to the addressing scheme: offset-based addressing schemes such as in Appendix 3.5 require

integer addition and subtraction, along with comparison operations. The route computation

may also be trivial — source-list routed schemes, for example, often carry an address mask

specifying the next link(s) to traverse.

Table-based ro u tin g : Although offset-based routing algorithms are suitable for many

network topologies, other topologies (especially irregular ones) may require more flexible

routing schemes. To efficiently handle these topologies, routing tables are often used: each

packet carries a destination address in its header. To route the packet, the routing engine

simply looks up the destination in a table; the table entry instructs the routing engine

on which link(s) to forward the packet. Figure 3.7 shows a table-lookup routing scheme,

where a packet’s destination is encoded in the nid2 field of the routing header. Rather than

1
2
3
4
5
6
7
8
9

goto rout2;Packet Header

goto route jump route;
Destination

ID jump (ID);

goto routO;

31

Category Function Comments
Integer operations addition

subtraction
increment
decrement
carry flag

necessary for
offset-based schemes

Comparison operations less than
greater than
equal to
check for zero

used by almost
all schemes

Boolean operations AND
OR
XOR
NOT

bitwise and logical
needed; useful for
compacting info in
routing header

Data transfer load constant
register copy
variable storage

Control flow conditional branch
indirect jump
jump to subroutine

allows table-lookups
supports code reuse

Table 3.4: In s tru c tio n capabilities for header parsing an d ro u te com puta tion .

providing a separate memory for the routing table, however, the program uses an indirect

jump (line 3) to jump into a “table” in the control store; the table entry then directs the

routing engine to the appropriate routine for routing the packet. This approach has several

advantages: the existing control store is used for the table, avoiding the cost of a separate

RAM. In addition, having the table entries call a routing subroutine permits great flexibility

in specifying channel orderings.

M ulticast routing: The routing engine allows implementation of a broad spectrum of

multicast routing algorithms, under both wormhole and virtual cut-through switching. Fig-

R egisters Function
ctd3 — ctdO new header flit
c tad d rl selects memory, 020-032

c tad d rl selects 0oo-.012

c t c t l
resvd
all
crcflg

boolean control flags:
slaves already reserved
reserve all/one of slaves
include word in CRC

Table 3.5: R ou ting prim itive as sto red in registers.

32

Node 1 +X
Node 2 +Y,-Y
Node 3 +X
Node 4 Buffer
Node 5 +X
Node 6 Buffer

(a) Multicast path from S to nodes 4 and 6 (b) Routing header

Figure 3.8: M ulticast route and routing header.

1 < initialization code >
2 ldc our_node_id, reg2;
3
4 etrip_header:
5 wait ni2, trapO(nil), trapl(niO);
6 alu nid3 - reg2;
7
8
9

jump 'zero, strip.header;

route_packet:
10 alu nid2;
11 jump "zero, vh_routing;
12 < code for virtual cut-through >
13 wh_routing:
14 < code for wormhole >

Figure 3.9: Example of parsing a m ulticast source-list header.

ure 3.9 shows a sample multicast routing algorithm that employs either wormhole or virtual

cut-through switching, depending on the packet header. Each packet includes a tree of one-

word routing headers to encode the nodes in the tree and the routing-switching scheme at

each hop in the route, as shown in Figure 3.8. As the packet arrives at a node, the routing

engine discards header words until reaching a word tagged with its node identifier in nid3.

The next byte of the header word selects between virtual cut-through and wormhole switch­

ing, while the last two bytes determine where the receiver should forward the remainder of

the incoming packet. Under wormhole switching, the receiver reserves all of the selected

slaves devices before forwarding the packet, whereas the virtual cut-through scheme im­

mediately directs the incoming packet to any available slaves. Section 3.5.2 describes this

algorithm in more detail.

33

Category Function Comments
Reservation status boolean flags most efficient method for

most algs, when code specifies
destination channels

Address mask check for conflicts
update available channels
check for null mask

necessary for
source-list routed schemes
ensure updated mask is not null

Table 3.6: Instruction capabilities for switching decisions.

Cut-through
Store-and-
\ forward

Wormholi V irtual cut

<set ADDR to buffer>
cissue "reserved" RTP>

<load ADDR with wait-for mask>
<issue "wait-for-one" RTP>

jum p <first cand free>, resv_first;
jum p cnext cand free>, resv_next

•
jum p clast cand lree>, re sv ja s t; j

Figure 3.10: Template for a “normal” switching operation.

3 .3 .2 Sw itching

Once the routing engine has committed to a routing decision for a packet, it needs to

either reserve one or more NITXs or offload the packet to the NIRX. If this switching decision

is combined with the route computation, the reservation status flags are typically used to

trigger appropriate branches. Figure 3.10 shows a template for the switching operation,

where the microprogram checks candidate channels in descending order of priority; if no

candidate is available, the switching scheme determines the form of routing primitive issued

to the NIRX.

Unfortunately, parsing a bit-mask of one or more channels from a source-list routing

scheme is complicated and time-consuming. Accordingly, the switch status module allows

address masks to be checked with a single operation. As shown in Table 3.6, two address

mask operations are provided: a conflict check and an as-many-of update. Since the as-

many-of check can potentially return a null mask, a flag for this condition is also provided.

Figure 3.11 shows how the source-list multicast scheme described above employs the feed­

back registers to determine which selected channels are available, so that it may reserve

as many of them as possible. By reading the feedback registers and updating the address

34

1 get.update:
2 xfer nidi, ctaddrl;
3 xfer nidO, ctaddrO;
4 xfer ctfbl, regl; // Read address
5 xfer ctfbO, regO; // feedback reg.
6 xfer regl, ctaddrl;
7 xfer regO, ctaddrO, go ctbus;
8 jump "ack, get.update;
9 ldc rtp_resvd_nocrc, ctctl, go nirx;
10 jump true, init;

Figure 3.11: Address feedback example.

registers accordingly, the entire address can be updated in just four cycles. If the reservation

attempt fails because some other packet reserved one or more of the channels, the process

may be repeated again. Once the routing engine successfully reserves the virtual channels,

it triggers a routing primitive to relinquish control of the packet to the channel. Another

sample microprogram using the address checking module is shown in Section 3.5.3.

3.3.3 F lexib le U se o f V irtual C hannels

Although many microprograms implement the same routing-switching scheme on each

virtual channel, the routing engine may have different microcode routines for each NIRX.

The virtual channels provided by the receiver module design may be used to to implement

a variety of deadlock-free wormhole routing algorithms. These channels may also be used to

improve the throughput of static routing algorithms or to permit extra flexibility in adap­

tive schemes [12]. Either approach can significantly improve communication performance,

depending on the network traffic pattern [56, 57]. Through the routing engines, the appli­

cation (or the compiler) may configure the network to use its virtual channels for adaptive

routing or to reduce contention between packets traveling on the same link.

The routing engine’s flexibility also allows traffic partitioning — assigning different ap­

plications or traffic types to separate virtual networks with distinct routing-switching poli­

cies. For example, real-time messages could use packet switching and static routing for

predictable performance, while best-effort packets improve their average latency through

cut-through switching and adaptive routing; carrying these two types of traffic on different

virtual channels allows real-time communication to coexist with best-effort packets without

35

sacrificing the performance of either class [58]. Similarly, the router could separate short

control messages and long data packets onto different virtual channels, perhaps with differ­

ent switching policies [35, 36, 24]. These options enhance user control over the underlying

interconnection network to improve application performance.

3.4 An Adaptive Wormhole Microprogram

This section shows an example of a complete microprogram, implementing adaptive

minimal-path routing algorithm for regular networks, such as the square mesh. Unlike

dimension-ordered algorithms that prefer to route packets entirely in one dimension be­

fore using others, this algorithm tries to retain adaptivity by routing packets “diagonally”

through the network.

3.4.1 A lgorithm O verview

To avoid deadlock, the virtual channels on each link are partitioned into the “low”

and “high” channels: packets received on a low channel (channel 0) must use oblivious

dimension-ordered routing. Packets using the high channels (channels 1 and 2) use adaptive,

diagonal-biased routing: e.g., the routing engine tries to reduce the offset with the largest

magnitude first. A pseudo-code implementation of the adaptive algorithm is shown in

Figure 3.12.

3.4.2 M icrocode

Figure 3.14 shows a microcode implementation of this algorithm. The complete pro­

gram requires 143 instructions; no execution path, however, will actually access all of these

instructions. The minimal time to route the packet is 7 instructions in 8 clock cycles for

a packet arriving on channel 0 with x < 0. Packets using adaptive routing take longer to

route; for example, a packet with x < 0 and y = = 0 may be routed in 19 clock cycles, not

including the time required to access the switch to reserve a transmitter.

In itialization and header w ait: The i n i t routine initializes internal registers and waits

for a packet header to arrive. For example, line 2 sets a bit mask for checking the sign of the y

offset, used later to decide if the packet should travel in the positive or negative y-direction.

The i n i t routine then sets the tra p registers for the subsequent wait instruction; the

36

X = X + 1
if ((x !* 0) k k (y > 0)) then

if (abs(x) > abs(y)) then
route (+x, -y)

else
route (-y, +x)

else if ((x != 0) k k (y < 0)) then
if (abs(x) > abs(y)) then

route (+x, +y)
else

route (+y, +x)
else if ((x !“ 0) kk (y “ 0)) then

route (+x)
else if ((x == 0) k k (y > 0)) then

route (-y)
else if ((x *»= 0) kk (y < 0)) then

route (+y)
else /* x == 0 kk y *■ 0 * /

buffer;

Figure 3.12: Pseudo-code implementation of diagonal-biased minimal-path
adaptive routing algorithm

37

high channels (/21 and I22) use the adaptive handler, while the low channel must use the

dimension-ordered dimorder routine. Once a packet header arrives, the wait instruction

latches the header word into the n id registers and branches to the appropriate routine.

Finally, the y-offset is transferred to the output registers; since all later code branches

eventually need this step, it is performed first to minimize code size.

H eader parsing and rou te com putation: The next step is to parse the packet’s routing

header (Figure 3.13) using the algorithm in Figure 3.12. The handler first increments the

header’s x offset to reflect the packet’s previous hop before forwarding the header field to

the ctd2 register in the data output module. The next step (if x ^ 0) is to check the

y-offset. If both x and y are zero, they are compared to see which has the larger magnitude;

this determines which dimension to access first.

Switching: Once the routing engine has determined which channels the packet can use, it

begins checking which of these channels are free in the order of desirability; if a channel is

free, it attempts to reserve it before checking the next. How this process is implemented

varies according to the current needs of the program.

Packet buffering: The b u ffer .packet routine configures the NIRX to write to the mem­

ory interface. The routing engine sets the address mask to buffer the packet, and loads the

c t c t l field of the routing primitive. The go n irx qualifier in the ldc command triggers

the NIRX to handle the remainder of packet reception. Consequently, the next instruction

jumps to the initialization routine to reset the routing engine for the next arriving packet.

R eserving an N ITX : The get JLOcO routine tries to acquire Ooo by triggering a reservation

command (ctcmd_resv was set in in it) ; the other routines are similar. The routine first

loads the address registers to select Ooo, and triggers the reservation attempt (the command

register was set during initialization) with the go ctbus directive. The success of the

attempt is checked by the re tu rn instruction, which automatically blocks until the RESV

attempt completes. If some other device reserves the NITX first, the RESV command can

fail, as indicated by the ack flag; upon failure, the program returns to the calling routine.

Otherwise, the routing engine configures the NIRX to execute the cut-through operation

before jumping to in i t .

38

nid3 nid2 n id i nidO

Pad x offset y offset Pad
range —1 2 7 ,..1 2 7 range -1 2 7 .. .1 2 7

F ig u re 3.13: A d a p tiv e m in im a l p a th ro u tin g h e ad e r fo rm a t

3.5 R outing-Sw itch ing M icroprogram s

The PR C ’s routing engines can be used to tailor routing-switching policies to application

characteristics and performance requirements. Microprograms can parse a variety of header

formats, making the routing engines more flexible than table-lookup schemes. The sample

microprograms in this section are written for receiver module # 2 , which receives packets

traveling in the +x direction.

3 .5 .1 T ab le-L ook u p R o u tin g

Although offset-based routing algorithms are suitable for mesh networks, irregular net­

work topologies require more flexible routing schemes. To efficiently handle irregular topolo­

gies, the PRC can implement table-lookup routing for networks with a limited number of

nodes (less than 128 or so).

A lg o rith m overview : W ith this table-lookup scheme, every packet header contains a

one-byte value specifying its destination. At every intermediate node, the routing engine

uses this ID as an index into a table in its control store. Each table entry then provides a

pointer to a procedure implementing the desired routing scheme.

M icrocode: Figure 3.15 shows a table-lookup routing scheme, where a packet’s destination

is encoded in the n id2 field of the routing header. To construct a routing decision, the

routing engine uses the w ait instruction (line 3) to “trap” to the address indicated in nid2;

at this location, a jum p instruction points to the code segment that implements the routing

decision. In the sample microprogram, the use-1011 routine considers link 0, followed by

link 1, waiting for a free virtual channel if none are initially available.

D iscussion: The table-lookup algorithm is quite simple and fast — the header processing

time depends solely on how many channels the routing engine needs to check before finding

one that is available. If the first channel checked is available, the routing engine consumes

39

1 init: 52
2 ldc 0x80, regO; 53
3 ldc ctcmd.resv, ctctl; 54
4 ldc dimorder, trapl; 55
5 ldc adaptive, trapO; 56
6 /* now wait for a packet header * / 57
7 handler: 58
8 wait ni2, trapO(nil), trapl(niO); 59
9 xfer nidi, ctdl; 60
10 61
11 / * check x offset */ 62
12 alu nid2 + 1; 63
13 xfer acc, ctd2; 64
14 jump zero, y.only; 65
15 / * check y offset * / 66
16 alu nidi; 67
17 jump zero, x.only; 68
18 alu nidi ft regO; 69
19 jump zero, y_is_neg; 70
20 /* compare magnitudes; x<0,y>0 */ 71
21 xfer nidl.regl; 72
22 alu nid2 + regl; 73
23 alu acc ft regO; / * check sign * / 74
24 jump zero, y.first; 75
25 76
26 /♦ check +x link ♦/ 77
27 jump ~resvdl0c2, get_10c2, link; 78
28 jump 'resvdlOcl, get.lOcl, link; 79
29 /* check -y link */ 80
30 jump ~resvdl3c2, get_13c2, link; 81
31 jump ~resvdl3cl, get_13el, link; 82
32 /* check low channels */ 83
33 jump *resvdl3c0, get_13c0, link; 84
34 jump "resvdlOcO, get.lOcO, link; 85
35 block.1310:/* block on +x, -y links •/ 86
36 ldc ctaddr.10, ctaddrO; 87
37 ldc ctaddr_13, ctaddrl; 88
38 ldc rtp.wait.one, ctctl, go rtp; 89
39 jump true, init; 90
40 91
41 y.first: 92
42 /* check -y link */ 93
43 jump ~resvdl3c2, get_13c2, link; 94
44 jump ~reavdl3cl, get_13cl, link; 95
45 /* check +x link */ 96
46 jump *resvdl0c2, get_10c2, link; 97
47 jump 'resvdlOcl, get.lOcl, link; 98
48 /* check low channels */ 99
49 jump 'reBvdl3c0, get_13c0, link; 100
50 jump 'resvdlOcO, get.lOcO, link; 101
51 jump true, block.1310; 102

get.lOcO:
ldc 0x0, ctaddrl;
ldc ctaddr.lOcO, ctaddrO, go ctbua;
return ~ack;
ldc rtp.resvd.nocrc, ctctl, go rtp;
jump true, init;

buffer.packet:
ldc 0x0, ctaddrO;
ldc ctaddr.buff, ctaddrl;
ldc rtp.resvd.nocrc, ctctl, go nirx;
jump true, init;

x.only:
jump ~reBvdl0c2, get_10c2, link;
jump "resvdlOcl, get.lOcl, link;
jump 'resvdlOcO, get.lOcO, link;
ldc ctaddr.10, ctaddrO; /* block 10 */
ldc rtp.wait.one, ctctl, go rtp;
jump true, init;

y.only:
alu nidi;
jump zero, buffer.packet;
alu nidi ft regO;
jump zero, neg.y.only;

/* check +y link */
jump 'resvdllc2, get_llc2, link;
jump "resvdllcl, get.llcl, link;
jump "reBvdllcO, get.llcO, link;
ldc ctaddr.ll, ctaddrO; /* block 11 */
ldc rtp.wait.one, ctctl, go rtp;
jump true, init;

dimorder:
xfer nidi, ctdl;
alu nid2 + 1;
xfer acc, ctd2;
jump zero, dim_y;

dim.x:
ldc ctaddr.lOcO, ctaddrO;
ldc rtp.wait.one, ctctl, go rtp;
jump true, init;

dim_y:
alu nidi;
jump zero, buffer.packet;
alu nidi ft regO;
jump 'zero, dim.y.neg;
ldc ctaddr.llcO, ctaddrO;
ldc rtp.wait.one, ctctl, go rtp;
jump true, init;

Figure 3.14: M inim al-path adaptive routing exam ple

40

1 wait niO, trap0(nil,ni2);
2 xfer nid2, trapl;
3 wait fO, trapl(true);
4 use_1011:
5 jump "resvdlOcO, get_10c0, link;
6 jump "resvdlOcl, get.lOcl, link;
7 jump "resvdl0c2, get_10c2, link;
8 jump "resvdllcO, get.llcO, link;
9 jump "resvdllcl, get.llcl, link;
10 jump "resvdllc2, get_llc2, link;
11 ldc ctaddr.1011, ctaddrO;
12 ldc 0x0, ctaddrl;
13 xfer nid2, ctd2;
14 ldc rtp.wait.one, ctctl, go rtp;
15 jump true, init;
16 (nid2):
17 jump true, use.1011;

Figure 3.15: Table-lookup routing m icroprogram .

9 cycles (just over one flit transmission time) before issuing a reservation request. This

performance can be increased in some cases, however, when the desired channel ordering is

directly provided by the hardware and the packet is using wait-for semantics.

While written using wait-for (wormhole) switching semantics, this scheme is easily

adaptable to any switching scheme supported by the PRC. Its primary limitation is the

need for a table entry for every node in the network, which limits the maximum size of

the network to the available storage. This problem may be addressed by using a hierarchi­

cal addressing scheme, where packets are routed to “clusters” and then routed within the

cluster, although the performance of such a scheme has not been explored.

3 .5 .2 M u ltica st R o u tin g

In addition to unicast routing algorithms, many parallel and distributed applications

can benefit from low-level support for multicast communication. The CTBUS protocol,

combined with programmable header processing, allows the PRC to implement a broad

spectrum of multicast routing algorithms, under both wormhole and virtual cut-through

switching. Multicast header formats vary widely in size and format, depending on the set

of destination nodes [7]; for example, some multicast schemes embed a “tree” of routes in

41

R eg iste r F unction
nid3
nid2
n id i
nidO

Node identifier
Switching scheme (1 for wormhole, 0 for virtual cut-through)
7-bit address bit mask: host, O32 . . . O20

6-bit address bit mask: O12 • ■ ■ Oqq

T able 3.7: H ead e r w ord fo rm a t for m u ltica s t ro u tin g exam ple.

the packet header, while others use an address mask to encode destinations. Figure 3.16

shows an expanded implementation of the multicast routing algorithm discussed earlier,

which employs either wormhole or virtual cut-through switching, depending on the packet

header. This flexibility in switching has several benefits: since the switching mode is set on

a per-node basis, certain nodes can be selected to buffer the packet if blocked even while

others might be configured to stall the packet. This adds another method for breaking the

deadlocks among packets.

A lg o rith m O verview : Each packet includes a tree of one-word routing headers to encode

the nodes in the tree and the routing-switching scheme at each hop in the route; the format

of a single entry is shown in Table 3.7. As the packet arrives at a node, the routing engine

discards header words until reaching a word tagged with its one-byte node identifier. The

second byte of the header word selects between virtual cut-through and wormhole switching,

while the last two bytes determine where the receiver should forward the remainder of the

incoming packet. Under wormhole switching, the receiver reserves all of the selected slaves

devices before forwarding the packet, whereas the virtual cut-through scheme immediately

directs the incoming packet to any available slaves.

The routing algorithm consists of the following main routines:

In itia liza tio n : The first two instructions write the identifier of the local node into two

registers. Loading the local id into a general-purpose register allows an efficient comparison

operation later to determine which header flits are destined for this node. The microprogram

also preloads the next header flit by loading the appropriate outgoing data register, thereby

ensuring that subsequent nodes ignore the first header flit.

H ead e r s trip p in g : After initializing internal registers, the routing engine waits for a

packet header to arrive on one of the virtual channels. When a new packet arrives, lines

8-10 check the identifier field of each incoming word, discarding header information that

corresponds to other nodes. After removing unneeded header words, the routing engine uses

42

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

init:
ldc our.node.id, reg2; // prepare id check
ldc our.node.id, ctd3; // initialize new header
ldc ctcmd.resv, ctctl; // prepare for reservation attempt
ldc strip_header, trapO; // initialize wait

strip.header:
wait ni2, trapO(ni1,ni0);
alu nid3 - reg2;
jump "zero, strip.header; // discard any flits not for us

route_packet:
xfer nidi, ctaddrl; // extract address mask
xfer nidO, ctaddrO;
alu nid2; // check switching mode
jump zero, vc.mode;
ldc rtp_wait_all, ctctl, go nirx; // all-of is easy
jump true, init;

vc_mode:
xfer ctfbl, regl; // Read address feedback reg.
xfer ctfbO, regO;
xfer regl, ctaddrl; // Load new address
xfer regO, ctaddrO, go ctbus;
jump resv_zero, buffer.packet; // Vatch out for null mask
jump "ack, vc.mode;
ldc rtp.resvd.nocrc, ctctl, go nirx;
jump true, init;

Figure 3.16: M ulticast routing exam ple.

43

the ro u te .p ack e t routine to construct the routing and switching decision for the packet.

R ou ting-sw itch ing decision: Then, lines 12-13 load the packet’s candidate address mask

into the CTBUS address registers, to prepare for a later reservation request. The routing

engine selects the switching scheme by comparing nid2 to zero (lines 14-15). For wormhole

switching, the routing engine simply instructs the NIRX to reserve all of the selected virtual

channels (line 20); the CTBUS protocol and the routing primitive’s a l l bit allow the NIRX

to completely handle channel reservation and data forwarding for the packet.

V irtu a l cu t-th ro u g h sw itching: Virtual cut-through switching is more complicated,

since the packet does not wait for any busy outgoing channels to become available. In­

stead, the vc-mode routine employs address feedback registers (ctfbO and c tfb l) to check

the reservation status of the selected channels4. By reading the c tfb registers and updat­

ing the c tadd r registers accordingly, the entire address can be updated in just five cycles,

regardless of how many channels were selected. Lines 21-24 try to reserve these idle chan­

nels, branching back to vc_mode if the reservation request fails because some other packet

reserved one or more of the channels. Before issuing a reservation request, however, we

need to ensure that the new mask is not null — this is provided by the resv_zero flag

check of line 25. Once the routing engine successfully reserves the virtual channels, line

28 relinquishes control to the NIRX to forward the remainder of the packet to the selected

slave devices.

3 .5 .3 S ou rce-list R ou tin g

The microprogram in Figure 3.17 uses the switch status module to implement source-

list routing with virtual cut-through switching. For each node the packet will traverse, the

originating node computes a one-byte address mask (Table 3.8) specifying the channel to

be used at that node; these masks are then packed together to form the routing header for

the packet. As the packet traverses each node, the appropriate address mask is “stripped”

off and used to route the packet. At the final destination of the packet, the address mask

simply specifies the host interface to buffer the packet.

The switch status module aids this process by providing a quick means of checking

the address mask — rather than decoding the mask to determine which reservation status

4 Thus, if ctaddrO and ctaddrl select O 30 and O 1 0 , and only O 10 is available, reading ctfbO and ctfbl
returns a mask selecting only O 1 0 .

44

Bit Interpretation
7
6:0

Selects address register
Select destination
(host, O32..O20) or (O12..O00)

Null mask = — 0x0

Table 3.8: A ddress m ask fo rm at for source-list ro u tin g exam ple.

flag to use, the mask is transferred to the address registers. The switch status module

automatically sets the resvok flag to reflect whether all selected channels are currently

free.

Source-list routing schemes may use several different forms of addressing. Rather than

encoding a separate address mask in the header for every node the packet will traverse,

street-sign addressing [5] uses (node id , address mask) pairs. Each pair indicates a

node where the packet will change directions. To implement this scheme, each routing

engine checks the ID value of the header; if it matches the local node ID, the routing engine

will use the address mask and strip the pair from the header. If the IDs do not match, the

packet is sent in the same direction it was traveling (i.e., if the packet is traveling left-right,

it will be sent to the right) and the header forwarded unchanged. Street-sign addressing

significantly reduces the size of the routing header if a packet needs to make only a few

changes in direction.

3.6 Discussion

There are several common tasks within most routing and switching schemes. By devel­

oping an architecture for a flexible router controlled by small microcontroller-based routing

engines, we have created a unique platform for investigating and comparing routing and

switching schemes. Implementing these schemes as routing engine microprograms has had

two benefits:

• These schemes have influenced the design of the routing engine by showing which

functions were necessary and which needed hardware support.

• Highlighting operations common to one or more classes of routing and switching

schemes.

45

1 find_mask:
2 alu nid3;
3 jump “z e r o , got_mask_b3
4 alu nid2;
5 jump "zero, got_mask_b2
6 alu nidi;
7 jump 'zero, got_mask_bl
8 alu nidO;
9 jump 'zero, got_mask_bO;
10 wait nidata;
11 jump true, find.mask;
12
13 got_mask_b3:
14 alu nid3 k regO; /* regO - 0x80 */
15 jump 'zero, adl_mask_b3;
16
17 ad0_mask_b3:
18 xfer regl, ctaddrO;
19 jump 'resvok, buffer.packet;
20 ldc ctcmd_resv, ctaddrO, go ctbus;
21 ldc 0x0, ctd3;
22 xfer nid2, ctd2;
23 xfer nidi, ctdl;
24 xfer nidO, ctdO;
25 jump ~ack, buffer.packet;
26 ldc rtp.resvd.nocrc, ctctl, go nirx;
27 jump true, init;

Figure 3.17: Source-list routing microprogram exam ple.

46

For example, the w ait instruction shows how the routing engine architecture has been

influenced by writing these schemes. In its barest form, the w ait instruction simplifies and

(sometimes) speeds up the task of waiting for external events. Since all microprograms must

stall while waiting for packet headers, hardware support was desirable. While this could be

implemented as a sequence of individual checks, or as a single jump instruction based on a

common flag, the w ait instruction provides a more powerful and efficient implementation.

Compare three potential implementations of the entry sequence:
vait.loop: wait,loop: vait_loop:

jump niO, handle.cO; jump "nidata, wait_loop; wait niO, trapO(nil),
jump nil, handla_cl; trapl(ni2) ;
jump ~ni2, vait_loop;

(a) Channel-flag (b) Common-flag (c) Wait
The first implementation, which checks individual flags for each channel to see if one has

data, may take as many as five cycles to react to the arrival of header information. The

common-flag and wait schemes, on the other hand, while require at most two cycles. The

wait-based implementation may choose a different handler on the basis of the virtual chan­

nel, but the common-flag method cannot. The w ait instruction also allows consistent

prioritization among the virtual channels.

One significant omission from the routing engine instruction set as implemented in the

PRC (Chapter 4) is a condition code flag for checking the sign bit. While this check may

be implemented by a boolean AND operation and check for zero:
a lu regO ft x; /* regO con ta in s 0x80 * /
jump zero , x _ is_ p o s it iv e ;

which takes two instructions to execute, the same as
a lu x;
jump 'n eg , x _ is_ p o sitiv e ;

this structure is not as efficient when the same operand is also being checked for zero;

compare:
a lu x; /* regO con ta in s 0x80 * /
jump zero , x_is_zero;
a lu regO ft x; /* regO co n ta in s 0x80 * /
jump zero , x _ is_ p o sitiv e ;

to:
a lu x; /* regO con tains 0x80 */
jump zero , x_is_zero;
jump neg, x _ is_ p o sitiv e ;

47

This structure often arises in offset-based routing algorithms such as the adaptive scheme

in Section 3.4.

An alternative instruction set might include a three-way sign branch that would use a

single instruction to cover all three possibilities:
a lu x;
sign x _ is .n eg a tiv e , x . i a .p o s i t iv e ;
Ccode fo r x_is_zero>

With this instruction, the instruction specifies the locations to jump to if x is positive and

if x is negative; if x is zero, the next sequential instruction executes. While this instruction

would require at a minimum 20 bits to implement (16 for the two addresses, and four bits

to distinguish the major operation), it will require two separate ports from the control

store for transferring the selected address to the program counter. In addition, the current

routing engine instruction set does not have the “room’* for an additional major operation

without widening the instruction width to 21 bits. This extra cost is hard to justify for a

one-cycle savings. Instead, Chapter 7 presents a high-performance routing engine that uses

a different implementation of this sign function as the basis for its route computations.

48

C H A PTER 4

The Programmable Routing Controller

And now! Available at last! The IBM 4000 PCSr system . . .

But now featuring TINT CONTROL!

— Berke Breathed’s Bloom County

This chapter describes in detail the architecture of the Programmable Routing Con­

troller, which implements one variation on the flexible router architecture presented in

Chapter 3.

4.1 PRC Architectural Overview

The PRC couples the flexible network architecture of Figure 3.1 with a high-performance,

low-overhead host interface. The network interface of the PRC manages bidirectional com­

munication with four other nodes, with three virtual channels on each unidirectional link.

In terms of the OSI layer model, the PRC implements the physical and data link layers, as

well as parts of the network layer.

4.1.1 N etw ork A rch itectu re

In the PRC architecture, shown in Figure 4.1, each outgoing link is controlled by a

module containing three NITXs; each NITX implements a single outbound virtual channel.

Similarly, each incoming link is controlled by a receiver module (as described in Section 3.3)

containing a programmable routing engine and three NIRXs. Data is transferred between

the host interface, the NITXs, and the NIRXs via the cut-through bus (CTBUS). When the

host initiates packet transmission, the appropriate Transmission Fetch Unit (TFU) reserves

an outbound virtual channel (NITX) and forwards data to the reserved NITX across the

49

Control
Interface

Memory

Routing
Engine

3 NIRXs

Reservation
Status Unit

CTBUS
(x 4 links)

3 TFUs 3 NITXs

Figure 4.1: P R C A rchitecture.

CTBUS. Packet cut-through and reception, on the other hand, are controlled by the NIRXs

within the receiver modules by transferring data either to a reserved NITX (for cut-through)

or to the host interface (for reception).

4.1 .2 H ost Interface

The host interface of the PRC provides support for simplifying or eliminating all of the

host’s major communication overheads. Steenkiste [64] outlines four significant classes of

operations that are associated with sending and receiving packets: transport layer protocol

processing, context switching, data link protocols (dealing with the network interface), and

buffer management. In addition, there are per-byte overheads that vary according to packet

size for copying data and computing checksums. The relative importance of each overhead

depends on several factors, including the maximum size of packets and the relative speeds

of the CPU and memory bus. To this end, the PRC host interface provides support for

simplifying each of these tasks:

T ransport protocol processing: By allowing the host to select the packet sizes that best

meet its needs, the PRC can reduce the total number of packets needed to transmit

a message. This can also be used to eliminate the need for message reassembly by

avoiding packetization entirely.

50

Buffer m anagem ent: The PRC uses a simple outboard buffer [64] that is accessible to

the host either through DMA or direct memory reads and writes. The paging scheme

used for this buffer greatly simplifies the host’s tasks in maintaining the free list of

buffers.

C ontext switching: The PRC provides an event queue that logs packet-level events, al­

lowing it to operate without host intervention. Together with a control interface that

requires no handshaking, the host interface minimizes the number of interrupts and

context switches required to deal with the PRC.

D ata link protocol: The PRC uses a queue-based command interface that allows the host

to “fire-and-forget” packet transmission commands. Also, by avoiding any handshak­

ing and mapping all internal status registers into the VME address space, the PRC

simplifies the actual host protocols that interact with it.

D a ta copying: The PRC’s external buffer acts as an outboard buffer; since packet bodies

are copied directly (via DMA) from the application memory without being accessed

by the NP, data is only transferred once across the memory bus (the VME bus).

Checksumming: The PRC provides transparent error detection via end-to-end calculation

and checking of a cyclic redundancy code (CRC) for every packet it transmits. This

allows the NP to be completely bypassed during the main data transfer.

The host interface of the PRC supports a wide range of packet sizes and formats, while

implementing and/or simplifying other requirements. The twelve incoming and outgoing

virtual channels share access to the external buffer memory, interleaving at the word level.

Since the PRC does not include internal buffers for blocked packets, packets that buffer at

intermediate nodes are stored in this SRAM.

To reduce software protocol complexity, the PRC interacts with the controlling host

processor in terms of pages, with each packet consisting of one or more (possibly non­

contiguous) pages. To better accommodate different sizes, the PRC allows packets to consist

of either 256-byte or 1024-byte pages; larger pages allow the PRC to operate longer without

host intervention.

Figure 4.2 depicts the major components of the PRC’s host interface. The primary

interfaces accessed by the host are the transmitter page queues (one per outgoing virtual

51

(x 4 links)

address

Buffer
Memory
(4 MB
SRAM)

reception page tags

transmission page lags

Event
Queue (x 4 links)

Data
(DMA

transfer)
Control and
Status Information

VME Bus (to/from host)

Figure 4.2: P R C host interface.

channel), the receiver page queues, and a unified event queue. Each page queue is asso­

ciated with a particular channel, and specifies either the address and size of a page to be

transm itted (transmission page queues) or the address of a page where incoming packets

should be stored (reception page queues). The event queue keeps an ordered record of the

pages transm itted and received by the PRC. By logging multiple events before interrupting

the host for service, this reduces the host’s overhead for managing the PRC.

To illustrate the simplicity of the PRC to NP interface, we can consider an example

of how the NP controls the transmission and reception of a large message with over 1,024

bytes in its body. Figure 4.3 shows how the packet might be stored in the buffer memory;

a large (1024-byte) page is used to store the majority of the message. To transmit this

packet, the main steps are:

1. The host initiates a DMA transfer of the packet body from the AP to the buffer.

2. As the DMA transfer proceeds, the NP constructs the packet header in a separate

page via direct writes from the AP.

3. The NP then writes the page tags to the transmission page queue for the desired

channel if slots are available.

For reception, the interactions are also simple and fast:

52

MCB
(message
control
block)

M BUF M BUF MB LJF
NP
memory

/
64

words

\
Header / / Packet

256
words

\
Packet

Body
64

words

\
Body

PIO from NP DMA from AP DMA from AP

SPIDER
buffer
memory

F ig u re 4.3: E xam ple packet s tru c tu re in m em ory. T h e sh ad ed reg ions re p ­
re sen t th e unused p o rtio n o f each page.

1. The reception page queue has been “primed” with page tags telling the channel where

to store incoming packets.

2. After the packet has been received, the host reads the page tags from PRC event

queue.

3. The host then parses the routing header to determine where the packet should go.

4. Finally, the host initiates a DMA transfer of the packet body to the application.

In this scheme, the packet body is copied over the main bus only once at its source and

destination; the NP never actually examines it. The NP only interacts with the PRC via

a maskable interrupt and direct reads and writes of memory-mapped registers. Thus, most

of the major non-protocol operations have been entirely eliminated.

4 .1 .3 P R C O p eration

To illustrate the operation of the PRC, consider how a message is handled during trans­

mission from the source node, cut-through at an intermediate node, and reception at the

destination node, as shown in Figure 4.4.

T ransm ission: When an application requests the host to transmit a message to another

node, the host disassembles the message into multiple packets, where a packet consists of

one or more pages. Using the control interface, the host then instructs the appropriate TFU

53

TRANSMISSION
CRC generation

J C T B U S [

Memory
Interface

NITX

NIRX
CRC check

Memory
InterfaceNIRX

NITX

CUT-THROUGH RECEPTION

F ig u re 4.4: Traffic flow in th e P R C .

to transmit these pages. After the TFU reserves the NITX, the memory interface fetches

the data from each page, one 32-bit word at a time; during this transfer, the memory

interface accumulates a 32-bit CRC. After sending the last data word of the packet, the

TFU transmits a 32-bit timestamp, read from a counter on the PRC, followed by the CRC.

Using the CTBUS, the TFU transfers each word to the NITX, which transmits the data as

individual bytes to the subsequent node.

C u t-th ro u g h : Packet reception begins when data bytes arrive at an NIRX in the network

interface. Once the NIRX has received enough header data, the associated routing engine

formulates a routing and switching decision for the packet. If the packet is destined for a

subsequent node, the PRC can try to send the packet directly to the next node by reserving

an NITX. If the packet is able to establish a cut-through, the routing engine reconfigures

the NIRX to forward data directly to the reserved NITX, bypassing the rest of the PRC

entirely. When the packet has cleared the node, the NIRX automatically resets itself to

direct the next incoming packet header to the routing engine.

R ecep tio n /B u ffe rin g : Once the routing engine has decided to buffer a packet at the

local node, however, the NIRX simply forwards the incoming words across the CTBUS to

the memory interface. As each word flows to the buffer memory, the memory interface

reaccumulates the CRC. The PRC event queue logs the arrival of each page, noting the

address and size. At the end of the final page of the packet, the PRC appends the packet

54

C om m and F u n c tio n
DTX
MARK
EOP
FREE
RESV
HOLD
CHECK

Normal data transfer
End-of-page data transfer
End-of-packet data transfer
Relinquishes selected channels
Reserves selected channels
Host-initiated override for channel allocation
Reserves “held” channels

Table 4.1: C T B U S co m m an d se t.

with a receive timestamp and logs a packet-arrival event indicating the outcome of the CRC

check. If the packet has reached its destination, the host reassembles the pages into a packet

and the packets into a message. Otherwise, the host coordinates further transmission of

this packet by feeding a TFU with the appropriate page tags.

4.2 Network A rchitecture

The network interface of the PRC is centered on the CTBUS, which implements two

primary functions within the PRC: data transfer and channel allocation. As shown in

Table 4.1, the CTBUS protocol includes commands to transfer data and reserve/relinquish

NITXs. The DTX, MARK, and EOP commands “tag” data words to denote page and

packet boundaries, while the other commands control channel allocation.

As a data switch, the CTBUS combines high throughput with support for multicast

operations. The 32-bit time-slotted bus operates at twice the byte-transmission speed of

the internode links, matching the bandwidth of the eight unidirectional links. Since each

bus transaction can address the memory interface and any of the NITXs, a single CTBUS

transaction may spawn transmissions on several outbound virtual channels simultaneously;

this facilitates efficient broadcast and multicast algorithms [7, 30].

4 .2 .1 R eserva tion s

Access to the CTBUS, which is controlled by a demand-slotted binary priority-tree

arbiter that allocates bandwidth fairly amongst the active devices [21, 39], also implicitly

determines the PRC’s allocation policy for reserving NITXs. Any master needing to reserve

a NITX simply checks to see if the NITX is free; if so, it requests access to the CTBUS and

issues a RESV command when access is granted. Since CTBUS access is pipelined, another

55

Cycle 9 8 7 6 5 4 | 3 2 1 0 C om m and 1 0
0 Channel Data Byte 3 Null 1 1
1 Command Data Byte 2 AckO 1 0
2 CRC Ack2 Data Byte 1 Ackl 0 1
3 Ackl AckO Data Byte 0 Ack2 0 0

(a) 10-bit mode (b) 2-bit mode

Table 4.2: L ink encodings.

master may have reserved the NITX in the meantime. This is handled by the reservation

status unit — upon receiving a RESV command, the reservation status unit determines if the

requested NITXs are available. If all of the selected slaves are free, the NITXs are marked

as reserved and a success flag (ctack) set. Although all CTBUS devices have concurrent

access to the NITXs’ reservation status, the bus interconnect implicitly serializes reservation

requests, simplifying the design of the reservation status unit. Masters relinquish channel

reservations with the FREE command; any NITX slaves forward the FREE command to the

subsequent link(s) in the route to clear any downstream channel reservations. Although a

FREE typically follows an EOP, separate commands allow the PRC to establish connections

that outlive individual packets.

The HOLD command provides a simple mechanism for overriding the CTBUS access

arbitration when allocating NITXs; once a HOLD command has been issued for a NITX,

all subsequent RESV commands will fail. Since the HOLD may be issued while the NITX

is busy, this command guarantees the next reservation for the issuing master. The CHECK

command is used to reserve devices held by a HOLD command.

4 .2 .2 In ternode Links

Besides simplifying the implementation of the reservation status unit, the data serial­

ization provided by the CTBUS also simplifies the architecture of the NITXs controlling

the outbound links. Rather than providing a separate arbitration mechanism for the link

between virtual channels, data is simply transmitted in FIFO order.

The links may be implemented as either parallel or serial connections. For parallel

interconnect, each PRC’s output ports are directly connected to the input ports of its

neighbors. The same protocol may also be used to control AMD TAXI chips [1] for serial

communications over longer interconnect wires. This implementation is transparent to the

56

r
STRBEj"j__________ I

D A T A h y w i D E E X Hyw 2 N rtU w d ^ Byw I Byte i □ c Byi*0 Kyii 7 DC No! U»ed KyUi |

ATA ^ OnMldil> ^ NclUwd C»autiid r^Hjlwd ^^C H O A cId ^ Chrnrnrim ^ Acfcl/AckP ^ C K C /A c tT ^ N.*Ugd ^ AchlMUtl

N tH U M d N U LL y NuI U m) ^ A c k l ^ N r t U * d ^ N dI U m I ^ N ot U«©d ^ Nffl U h O N U U . ^ NoI U m I

r 1

■L_
- Unk A lnn im iU iw o n Jo fd ata"

Figure 4.5: Typical link transm ission cycles.

PRC internally. In both cases, either 10 bits or 2 bits of information is transmitted every

link cycle, as shown in Table 4.2. Transferring a word of data consumes four 10-bit cycles

to tag the data bytes with important control information.

The first data transfer identifies the outgoing virtual channel, while the second 10-bit

transaction tags the data with one of the first four commands in Table 4.1. The last two

10-bit transfers encode piggy-back acknowledgements for the three virtual channels and

indicate whether the outgoing word should be included in the packet’s CRC computation.

When no data transfers are pending, the link transmits a 2-bit flow-control acknowledgement

or a null command in each cycle. Each NIRX has buffer space to store two outstanding

words from an arriving packet; when the NIRX can accept another word, the paired NITX

transmits a flow-control acknowledgement back to the adjacent node. The NITX/NIRX

state machines, coupled with the CTBUS command set, handle the routine tasks of data

transfer, flow control, arbitration and channel reservation, allowing the routing engines

to focus completely on constructing intelligent routing-switching decisions for incoming

packets.

57

4 .2 .3 Intranode F low C ontrol

Intranode flow control is one of the primary responsibilities of the CTBUS. This flow

control could be handled using NACKs or tokens; using NACK-based flow control, masters

optimistically forward data to their slaves. If the slave cannot accept the data, it asserts a

NACK line to instruct the master to retry the transfer at some later point. This protocol,

however, consumes a precious resource (CTBUS bandwidth) for failed data transfers; at

heavy loads, this penalty increases at a time when it is least acceptable.

Under a token-based protocol, the master cannot forward data unless it has been given

at least one token by the slave; each data transfer consumes one token. A token based flow

control policy typically requires some means for transferring tokens from the slave to the

appropriate master. This mechanism can be fairly complex.

Instead, the CTBUS defines a simple intranode flow control mechanism based on a

variation of the token scheme. Each slave maintains a single input ready (IR) flag that

signals its willingness to accept at least one data flit. Before forwarding data to a slave,

masters are responsible for ensuring that any slave(s) are willing to accept data. Since all

IR signals are “broadcast” to every master, the checking is done locally by comparing the

targeted set of slaves with the set of slaves that are not willing to accept data; if this set

is not empty, the master cannot request CTBUS access. This policy prevents any excess

CTBUS traffic, while simplifying the design of both the masters and the slaves.

Since the CTBUS is pipelined and the slaves will require some amount of time to ac­

knowledge a data transfer, some means must be put in place to keep masters from sending

data to a slave that has not yet been able to lower its IR signal. Since the PRC already

requires a master to reserve a slave before using it to transmit data, no more than one mas­

ter will be monitoring a particular IR signal at any one time. By prohibiting this master

from forwarding data on consecutive CTBUS cycles, we prevent these overruns. There is no

performance penalty, either — each CTBUS transfer will require eight cycles to transmit

on the physical link, so the second data word should arrive before the first has completely

left the node.

4.2 .4 T im in g

To minimize the internal cycle time, the CTBUS is pipelined. Every CTBUS access

is divided into three major stages: arbitration, access, and resolution. Since each stage

58

CTBUS cycle

REQ

Figure 4.6: Typical CTBUS cycle.

operates concurrently with the others, three CTBUS “cycles” are always operative and any

individual access takes three cycles to complete1.

4.3 Host Architecture

The host interface of the PRC is unique in several ways. Unlike most routers, it pro­

vides a large number of channels between the host and the network. At the same time,

it is responsible for providing several services (e.g., error detection, paging, and interrupt

minimization) to the host; most multicomputer routers do not provide these services.

4.3.1 H o s t In te rfac e

The management of several, concurrently active, data channels has implications for

protocol processing, buffer management, packet scheduling, and interrupt handling. The

host must be able to handle a higher frequency of events, maintain distinct scheduling queues

for each channel, and service each channel in a fair and efficient manner. Although it is

possible to construct a point-to-point distributed system using replicated com m u n ica tio n

hardware at each node, cost and performance considerations necessitate an integrated, low

‘Exclusive of any delays during arbitration due to competition for the bus.

59

overhead design for the communication adapter.

To reduce software protocol complexity, the PRC interacts with the controlling host

processor in terms of pages, as shown in Table 4.3. Each packet consists of one or more

(possibly non-contiguous) pages. The host transmits a packet by feeding page tags to a

transmitter fetch unit (TFU); each page tag includes a memory address and the number of

words to transmit. Similarly, the host supplies each network interface receiver (NIRX) with

pointers to free pages in the buffer memory, for use by arriving packets. The twelve incoming

and outgoing virtual channels share access to the external buffer memory, interleaving at

the word level. Since the PRC does not include internal buffers for blocked packets, packets

that buffer at intermediate nodes are stored in this SRAM.

The PRC logs the transmission and reception of individual pages in an internal event

queue; the host processor reads this event queue to perform free-list maintenance and assem­

ble incoming packets. The page-level data transfer facilitates scatter-gather DMA between

the buffer memory and the network and also allows the host to construct packet headers

on a separate page from the data. Generating the header on a separate page avoids un­

necessary data copying, reducing the overheads of network data transfer. Since the PRC

does not restrict packet length, the application or protocol software can weigh the cost-

performance trade-offs for selecting packet sizes. Small packets reduce buffering delay and

allow fine-grain sharing of buffer space and link bandwidth, but also incur increased costs

for message fragmentation and reassembly. To better accommodate different sizes, the PRC

allows packets to consist of either 256-byte or 1024-byte pages; larger pages allow the PRC

to operate longer without host intervention.

When an application requests the host to transmit a message to another node, the

host disassembles the message into multiple packets, where a packet consists of one or

more pages. Using the control interface, the host then instructs the appropriate TFU to

transmit these pages. Each page tag includes a memory address and the number of words to

transmit. After a page tag has been placed in the queue, the PRC will reserve the channel,

transmit the page, and log its transmission in the event queue. The depth of the queues

represents an implementation tradeoff; deeper queues allow the PRC to operate without

host intervention for longer periods, but are costlier to implement. In addition, to maximize

scheduling flexibility, the host often restricts the number of packets (and/or pages) that are

queued in the PRC. The variable page size provides a solution to both fragmentation and

60

H words

H words

D words

Routing Packet Body
Header

(a) As retrieved from buffer memory

D words 1 word 1 word

Routing
Header Packet Body Transmit

Timestamp CRC

U words
Excluded from CRC

Included in CRC

(b) Transmitted over intemode links

H words D words 1 word 1 word

Routing
Header Packet Body Transmit

Timestamp
E D 9H K

Receive
Timestamp

(c) Stored at destination

Figure 4.7: Packet formats.

61

C ategory Functions
Data transfer page transmission

free page allocation
Status event retrieval

determine empty slots
in page-tag queues

timestamp access
Configuration interrupt masking

notification FIFOs
Initialization microcode download

Table 4.3: C ontrol interface capabilities.

overhead problems — larger data pages may be transmitted as a single 1024-byte page while

small header pages may be stored on the 256-byte pages. The simplicity of this interface is

illustrated by Figure 4.8, which shows the code necessary to transmit a single-page packet.

The reception queues provide each incoming channel with pointers to free pages in

the buffer memory, for use by arriving packets. The PRC event queue logs the arrival

of each page, noting the address and size. If the packet has reached its destination, the

host reassembles the pages into a packet and the packets into a message. Otherwise, the

host coordinates further transmission of this packet by feeding a TFU with the appropriate

page tags. The host then reads this event queue to perform free-list maintenance and

assemble incoming packets. During packet transmission and reception, the PRC preserves

the amount of data stored on each page. This simplifies the host’s buffer management and

reduces data copying, since the operating system header can be maintained on a separate

page and modified without affecting the main data portion of the packet.

To minimize software protocol processing overheads and increase reliability, the PRC’s

transmission and reception datapaths incorporate transparent error detection via cyclic

redundancy code (CRC) generation and checking. The PRC uses a single 32-bit parallel

CRC generator to compute the CRC for every outbound packet; similarly, a single checker

accumulates the CRC for incoming packets en route to the memory interface. When a

packet buffers at its destination or an intermediate node, the reception datapath checks

the CRC and logs the outcome in the event queue. Since some routing algorithms modify

packet headers at intermediate nodes, the PRC allows a packet’s first page tag to specify

a number of words to exclude from the CRC calculation. This allows subsequent nodes

to modify a packet’s routing header without invalidating the original CRC checksum; the

62

microprogrammable routing engines can enforce separate error detection or correction on

the packet header.

Many networks, such as the Scalable Coherent Interface (SCI) perform error-detection

checks after traversing every link, “stomping” the CRC value if an error is detected. This has

the advantage of earlier detection of errors, and allows noisy links to be quickly diagnosed.

In some cases (especially when the interconnect is serial) this also allows a much simpler

CRC generator and checker to be used. For a cut-through switched system, however, the

utility of this method is not as useful, since the majority of the packet has already moved on

through the network before the error is detected. By providing end-to-end error detection,

on the other hand, the integrity of the body of the packet may be verified; in the PRC, the

routing engine may provide limited error detection for the header if necessary.

In addition to error detection circuitry, the transmission and reception datapaths include

logic for timestamping packets. These timestamp values are useful for controlling clock

drift between nodes, as well as for performance measurements; using the control interface,

the host can adjust the PRC’s timestamp register in response to clock synchronization

protocols. By affixing timestamps close to the physical links, the PRC provides an extremely

accurate measure of when outgoing packets complete injection and when incoming packets

finish reception. This allows the host to guarantee tight bounds on clock skew between

nodes [31, 55].

The control interface also includes several configuration options, as shown in Table 4.3.

The cost of managing the PRC can be reduced by selectively masking interrupts; by dis­

abling all interrupts, the host processor can interact with the PRC through polling. Fur­

thermore, the host can amortize the cost of servicing the PRC by reading the entire event

queue during each interrupt or polling cycle. The host can influence low-level routing and

switching at run-time by accessing notification FIFOs, which provide bidirectional infor­

mation exchange with each routing engine. These FIFOs are used to diagnose and respond

to dynamic conditions, such as congestion or faulty links, allowing the host to adjust the

operation of the downloaded microcode.

4 .3 .2 M em o ry In terface

The Network Processor Bus Interface provides the PRC with a means of accessing the

host’s memory to store and retrieve packets. The architecture of the NPBUS interface is

63

int prc.xmit (buf, len) {
page.ptr buf;
int len;

ULONG status;
ULONG tag;

tag - (buf ft 0x007fff00) I CRC.MASK I LAST.PAGE I (len ft Oxfc);
status - PRC_TXO_PGSTATQ->status;
status ft- TXO_PG_MASK;
if (status > 0) {

PRC_TXO_PGQ->queue = tag;
>
else

queue.for.channel;

Figure 4.8: Sam ple code for transm itting a single-page packet.

depicted in Figure 4.9. The NPBUS interface essentially provides a single service to the

various channels: this service can best be described as data storage and retrieval without

need for worrying about addresses. The TXBUS and RXBUS simply present requests

for service to the NPBUS interface, which then fills that request. If both buses request

service simultaneously, they are serviced in a round-robin fashion; if only one bus is active,

however, the other may use any available memory cycles. Appendix A gives a more detailed

description of the operation of the memory interface.

Externally, the memory interface interacts with the buffer memory through a simple

synchronous interface. Rather than requesting access to the buffer from the outside con­

troller, the PRC simply waits until it is “granted” access by the controller. In turn, the

buffer controller allots every idle memory cycle to the PRC — if the PRC has no data to

transfer, it simply issues a read request. This one-way interface greatly simplifies the de­

sign of both the external controller and the PRC’s memory interface, while allowing much

faster operation. The memory controller sends three signals to the PRC: a 40 MHz clock

(np.clk, straight from the VME bus), a synchronizing signal that divides the main clock

into a two-phase, 20 MHz clock (np_sync), and an ownership signed (np.owner) tha t tells

the PRC when it may access the memory. Figure 4.10 shows a typical memory interface

64

RX Data

N PBU S

m i p jn t

ranp_req

npjM(2ft»)

Address 20;6
TX DUa Replies

P a a e O f f ic t t

TX Requesu

NP Contn»lRp̂ack

R XBUS

T X B U S

Figure 4.9: M em ory interface architecture.

NP_CL.lt

NP.OW HER■1

PRC Read Cycle-

Figure 4.10: Typical m em ory interface cycle.

65

C T

Bus

cycle.

4 .3 .3 In ternal M em ory A rch itectu re

The internal interface between the memory and network interfaces is segmented into

separate transmission and reception datapaths. The TXBUS transfers data between the

memory interface and the TFUs, which then forward it across the CTBUS, while the RXBUS

moves data from the CTBUS to the memory interface. Separating these paths simplifies

the implementation of both, while increasing throughput by reducing contention.

The Reception Bus (RXBUS), shown in Figure 4.11, transfers data between the CTBUS

and the memory interface. Its major functions include accumulating the CRC checksum

for error detection, affixing the receive timestamp to incoming packets, and controlling the

flow of data between the memory interface and the CTBUS. This intranode flow control

prevents data overruns within the memory interface. Flow control “acknowledgments” are

generated as each word is removed from the CTBUS FIFO by resetting that channel’s IR

flag.

The architecture and operation of the RXBUS is quite simple — it latches data and

commands from the CTBUS whenever addressed, and transfers them through the FIFOs

to the memory interface. The RXBUS only latches CTBUS transfers that are tagged with

a DTX, MARK, or EOP command — in other words, only those transfers that actually

carry data.

The Transmission Bus (TXBUS) transfers data between the memory interface and the

TFUs, providing a serialization point for data requests and access to the timestamp register

and the CRC generator. To allow concurrent requests and responses, the TXBUS is divided

into the two major buses as shown in Figure 4.12. These buses generally operate indepen­

dently: the TX Command Bus transmits requests for data from the TFUs to a request

FIFO in the memory interface, while the TX Data Bus transfers data from the data FIFO

T lm u U u n i

Unit

RX to NP FIFO

Memory
Interface

Figure 4.11: R X BU S architecture.

66

N P

Bus

CRC
Generator

Timeiiami
Unit

TX Dm Httponw FIFO

TX Data ButTX
Special TFU

TX Command ButTX Data Requeat FIFO

C T

Bus

Figure 4.12: TX BU S architecture.

TXAck
TX Grant
TX Request

/ \
TFU

r "n
TFU

TX Shift-in Shift-out CT
CTL

k. JI CTL J
tag_in

TX Data Bus

CT Request

CT Grant

TFU FIFO

Figure 4.13: TFU architecture.

tac out

CT Grant

to the TFUs.

Access to the command bus is determined by a binary priority-tree arbiter, similar

to that used for the CTBUS. The command bus implements three transactions: a data

request (which is queued in the request FIFO), and reads of the timestamp register and the

CRC register. The command bus operates independent of the data bus unless a command

accesses the timestamp register or the CRC generator, in which case a special request signal

is set. Setting this signal slaves the data bus to the command bus.

The data bus generally operates independently of the command bus: as data arrives

from the memory interface it is transferred to the appropriate TFU. Each transfer is tagged

as either normal data (DTX), end-of-page (MARK), or end-of-packet (EOP). These data

transfers are suspended, however, whenever a timestamp or CRC read is issued on the

command bus; the data bus then transfers the appropriate value to the TFUs.

The control of each of the outbound channels is centered on the Transmitter Fetch Units

67

(TFUs). Each TFU provides most of the logic necessary for controlling packet retrieval and

transmission; it monitors its page queue until a page tag is detected. The presence of a page

tag triggers two operations: a reservation request for the paired NITX and a data request

to the memory interface. As can be seen in Figure 4.13, the TFU consists of three major

components: two state machines and a FIFO for local storage of data. Each state machine

controls the TFU’s interactions with a specific bus. One FSM interfaces the TFU to the

TXBUS, and is responsible for retrieving data from the NP Interface via the TXBUS and

placing the data into the FIFO. The other FSM controls the TFU’s access to the CTBUS.

It reads the data tags from the output of the FIFO and then transmits data onto the

CTBUS. The asynchronous FIFO provides all of the communications between the FSMs,

allowing them to operate independently; if necessary, each can use a separate clock signal.

Appendix A gives a more detailed description of the operation of the TFU.

4.4 PRC Status

The PRC has been fully designed using the HP CMOS14 process and Epoch design tools

from Cascade Design Automation and is currently being packaged by MOSIS. The physical

and timing specifications of the PRC are shown in Table 4.4. As shown in Figure 4.14, the

memory interface consumes approximately one-third of the chip area, while the remaining

two-thirds is used by the network interface. Within the network interface, the NIRXs and

routing engines utilize two-thirds of the area, since these devices provide most of the PRC’s

flexibility. The memory interface, on the other hand, divides its area almost equally between

the datapath (for buffering, timestamping, and verifying data) and the address/control logic.

Verilog simulations were used to test a single PRC, with the outgoing links connected

to the reception ports, under random and contrived workloads. After fabrication, the PRC

will be tested using an HP 82000 tester, using scan chains to access the chip’s critical state

machines and the bus arbitration logic. In addition, the network interface’s design allows

the TAXI transmission lines to directly connect to the inputs from the TAXI receivers.

This allows a single PRC to transmit the packets it receives, greatly simplifying the external

circuitry required for testing. The routing engines will also play an important role in testing

the chip, since test microprograms can read and write various internal registers in the PRC,

reporting the results to the control interface through the notification FIFOs. Microprograms

can also generate test traffic on the CTBUS to verify the operation of the bus arbiter and

68

C om ponent C locking P eak b an d w id th
Transmitters
Receivers
Control interface
Memory interface
Internal switch

20 MHz, synch
20 MHz, asynch
10 MHz, asynch
20 MHz, synch
40 MHz, synch

200 Mbits/sec
200 Mbits/sec
N/A
80 MBytes/sec
160 MBytes/sec

P a ra m e te r Value
Size
Transistors
Power
Pins
Clock

9.0 x 7.3 mm
490.000
0.8 watts
256
40 MHz

(a) Physical specifications (b) Timing specifications

Table 4.4: P R C specifications

the reservation status unit.

4.5 Comparison to Other R outer A rchitectures

Due to its designed mission, the PRC architecture is unique when compared to other

router architectures.

P ro g ram m ab le R ou ting C on tro ller (Jam es D olter, 1093) [21]: The PRC, as pre­

sented in James Dolter’s 1993 Ph.D. thesis [21], had the same design goal as the current

PRC — to provide flexible routing and switching via programmable control of incoming

packets. While many elements of the earlier design are present in the current PRC, many

others have changed significantly.

Several major changes have been made in the architecture: the PRC now provides three

virtual channels for each link (as opposed to one previously). The PRC also incorporates the

entire network interface (save for the AMD TAXI transmitters) within the ASIC, instead of

requiring external FPGAs to implement the link control. The additional logic required for

controlling the links and doubling the number of channels necessitated several changes in

the PRC architecture. The most significant of these was disassociating the routing engine

from the incoming channel, and sharing each routing engine among several channels. In

addition, the routing engines moved from the host side of the CTBUS to be nearer the

links, shortening the critical delay path through the node. Performance was also improved

by hardwiring the data transfer and decreasing the internal cycle time relative to the links.

P o st Office (H P M ayfly) [19]: Perhaps the project which is closest to HARTS is the

Mayfly system developed at Hewlett-Packard. This system is intended as a back end pro­

cessor for LISP applications. Based on a hexagonal mesh similar to that used in HARTS,

69

TF U
U 12)

RECEIVER
MODULE

MEMORY
INTERFACE
(o u tb o u n d

daupon)

MEMORY
INTERFACE

(address logic)

Control Logic

N IT x l N1TX
(xft)

RECEIVER
MODULE

MEMORY
INTERFACE

(inbound
d iu port)

RECEIVER
MODULE

RECEIVER
MODULE

(a) PRC floorplan (b) PRC layout

F igure 4.14: F loorp lan o f th e P R C

Intor-davlca
Comrrunicttion

RAM

Cut
TTirauflh

Bui
RoMivatkm

Status Control
CRC Chock

Control

Thn* Stamp
Unit

CT Bui

Felch UnH
TFU Cut

Through
But

PRC Device Boundary Network Interface Boundary

F igure 4.15: 1903 P R C arch itec tu re .

70

Feature 1993 1996
CTBUS width 8 32
CTBUS speed 20 Mhz 40 Mhz
Network bandwidth 160 Mbit/sec 1.28 Gbit/sec
Routing engines 6 4
Connectivity 6 4
Virtual channels no 3/link
Link control off-chip on-chip
Transistors approx. 400,000 490,000
Die area 187.6 mm2 68.4 mm2
Feature size 1.0 fim 0.5/jm

Table 4.5: Physical specification com parison.

the Mayfly system is intended for use as a computational processor for a host machine. Its

communications support is realized through a device known as the Post Office. All commu­

nication is through 32-word packets with a fixed packet structure. This approach greatly

simplifies the hardware, as does the use of a single, universal routing scheme. No provision

is made in the packet format, however, for the inclusion of a checksum. Error detection and

handling therefore devolves upon the application processors. Packet construction is also the

task of the application processors. Thus, a significant amount of work related to commu­

nication processing is placed upon the processors which are also supposed to be executing

user code.

A rchetypal wormhole ro u te r: The original wormhole router was the Torus routing chip

[10], which focused on deadlock-free routing in k-ary n-cube systems. By splitting each

physical channel into two virtual channels, the designers were able to implement wormhole

switching for packets without fear of deadlock. Data flits are transferred between the inputs

and the output queues by a crossbar interconnect. Connections can be made efficiently

within each switch. As with the Mayfly system, the system supports only a single routing

and switching scheme. The Torus routing chip also does not provide an interface from the

nodes into the interconnect.

A daptive v irtua l cu t-th rough ro u te r (PO STEC H) [40]: The adaptive virtual cut-

through router developed at POSTECH explores the performance tradeoffs between virtual

cut-through and wormhole switching, focusing on the gains possible from adaptive routing.

It is implemented as a variation of the Torus router [10], but with only one virtual channel

per link. Similar to the PRC, the router buffers blocked packets at the local node. The

71

routing scheme is adaptive minimal-path with a dimension-ordered selection scheme, and

the authors show how performance is increased relative to the oblivious wormhole router at

a minimal cost in hardware.

CHAOS ro u te r U. W ashington [3, 37]: Another multicomputer router that uses adap­

tive virtual cut-through switching is the CHAOS router. Unlike the POSTECH router,

however, the CHAOS router provides a small multiqueue buffer for packets on-chip; if this

buffer fills up, packets are derouted down any available link. Its low-load performance is

comparable to the wormhole routers; under heavier loads the buffer prevents link bandwidth

from being wasted.

72

C H A P T E R 5

H ybrid Sw itching

Scientific progress goes “Boink”?

— Prom Bill W atterson’s Calvin and Hobbes

The effectiveness of a parallel or distributed system is often determined by its switching

scheme. The switching scheme directly affects the internode communication latency, and

is a primary factor in determining how the network’s bandwidth is utilized. This chapter

compares the impact of virtual cut-through and wormhole switching upon packet latency,

the maximum network throughput, and the resources required for buffering packets at

intermediate nodes. Based on this evaluation, this chapter then proposes and evaluate a

“hybrid” switching scheme that combines the salient features of both schemes.

Virtual cut-through and wormhole switching are shown to have their strengths and

weaknesses. Virtual cut-through switching provides better throughput and lower latencies

at heavy loads a t the cost of buffering blocked in-transit packets, while wormhole switching

only requires a few small flit buffers in the router and completely isolates nodes from in­

transit packets. One alternative to improving wormhole switching’s performance at higher

loads would be to selectively buffer blocked packets; this would free some network resources

sooner while still isolating nodes from much of the in-transit traffic.

V irtual cut-through and wormhole switching are both cut-through switching schemes,

but their performance may differ drastically under different traffic loads. For low traffic

loads, the latencies of both schemes are almost identical. This is because in a lightly-

loaded network the probability of blocking is very small and the latency is then determined

primarily by the length of the packet and the link transmission time. As the traffic load

increases, however, the probability of blocking increases, as does the likelihood of blocking

73

other packets. Consequently, networks that use wormhole switching generally saturate

from contention well before they exhaust their bandwidth [45, 12]. The effects of this

contention can be reduced by increasing the number of virtual channels per physical link [12].

Since either wormhole or virtual cut-through switching may yield shorter packet latencies,

depending on the network traffic and the number of hops the packet must travel, it is

advantageous to support both switching schemes in order to adapt to a wider range of

circumstances. Furthermore, a network which can dynamically switch from one scheme to

the other can respond to the offered traffic load and the needs of the system’s applications.

To address these tradeoffs, Section 5.2 introduces and evaluates a hybrid switching

scheme which balances the use of network resources against the use of memory resources

for storing blocked packets. This hybrid scheme decides whether to buffer or stall blocked

packets based on a field within the routing header; this field identifies the number of links

the packet can hold while stalling in the network. If this threshold is exceeded, the blocked

packet buffers.

Section 5.1 compares the performance of virtual cut-through and wormhole switching

operating on SPIDER. This comparison focuses on three metrics: the mean communica­

tion latency, the memory resources required by each scheme, and the maximum achievable

throughput of the network. Section 5.2 introduces hybrid switching and evaluates it rel­

ative to both virtual cut-through and wormhole switching. The chapter concludes with

Section 5.3, which summarizes the main contributions of this chapter and future direc­

tions.

5.1 Com paring W orm hole and V irtual C ut-through Switch­

ing

To more accurately compare the performance of the various routing and switching

schemes, and also to evaluate the performance of SPIDER we have developed a cycle-

level discrete-event simulator [21, 57]. Written in C + + , this simulator accurately models

the flow of the individual bytes of packets through SPIDER. This captures features such

as the low-level flow control, bus arbitration delays, and microcode execution time. While

the simulator does not model the actual protocol software executing on the host, it does

capture the effects of these protocols on packets that buffer at intermediate nodes.

74

15 0 0

o o Virtual cut-through
a & Wormhole

1250

jo
■§ iooo

i5 750
3
Ii 500
4

250

0.0 0.4 0.60.1 0.3
Link utilization

Figure 5.1: Packet delivery latencies for virtual cut-through and worm hole
switching.

This section presents the results of a set of experiments that vary the packet generation

rate while holding other parameters constant. At each node, the inter-arrival time of packets

for transmission conformed to a negative exponential distribution. Packet destinations

were uniformly distributed across all of the nodes (except where otherwise specified). The

simulations also used a fixed packet size of 64 bytes.

To focus the experiments on the switching scheme, all packets use a static, dimension-

ordered routing scheme [11]. Furthermore, most of the simulations use an unwrapped square

mesh topology where only one virtual channel per link is required to prevent deadlock under

wormhole switching. This allows the switching schemes to be compared with the same

number of virtual channels.

To collect the data, the network was first placed into a steady state and data collected

for 2000 packets at each node. For latency, the standard error of the mean is less than 5

cycles for the 95% confidence interval on all traffic loads. When the network is saturated,

however, this steady state cannot be achieved.

5 .1 .1 L aten cy

In Figure 5.1, the mean packet latency is shown as a function of the link utilization, which

75

0.010
 PACkttt deitfrm f forth# local nod#
n------1- Total packets buffered

0.008

0.006

1
0.004

0.002

0.000,
0.0 0.1 0.40.3

Link utilization

Figure 5.2: R ate of in-transit packet arrival.

is given as a percentage of the maximum capacity of the network’s physical links. When the

offered load is low, the average packet latency is the same under both switching schemes.

Wormhole, however, reaches saturation under lighter loads than virtual cut-through due

to contention for channels, resulting in a dramatic increase in the mean packet latency.

Saturation occurs at a link utilization of 0.2 in this experiment. Other experiments have

shown that these trends are not significantly affected by packet length or the topology of

the network.

5 .1 .2 In -tran sit Load

While virtual cut-through can support a greater traffic load than wormhole, it also

buffers packets at intermediate nodes. Each packet that buffers at a node consumes memory

resources for its storage and control resources to process the header. If packets are buffered

within the switch itself, the buffer space is necessarily limited in size. External buffers (such

as those used by the PRC), on the other hand, may be much larger but are generally slower.

In addition, managing these larger buffers requires either host interaction or more hardware

in the router.

The relative costs of the two schemes are illustrated for a node-uniform traffic load on an

unwrapped 8 x 8 square mesh in Figure 5.2. This figure shows the average rate (in packets

per cycle, per node) of packets buffering at a node using virtual cut-through switching.

76

0.015

0.012

H op*

Figure 5.3: M aximum throughput for wormhole switching under a hop-
uniform traffic load.

This rate is composed of two components: the “in-transit” rate and the “destination” rate.

The former is the average rate of packets that are destined for other nodes buffering at a

node, while the latter is the average rate of packets buffering at a node that are destined for

that node. The in-transit rate is the region between the destination rate (the lower curve)

and the total rate of packets buffering (the higher curve). At low loads, almost all packets

successfully cut through and the in-transit arrival rate is very low. As the load increases,

the probability of cut-through also drops, resulting in an increased in-transit packet arrival

rate. When the network is in or near saturation, the arrival rate of in-transit packets

surpasses the rate of packet generation. In this case, the load on the host for buffering and

rescheduling these packets is severe.

5 .1 .3 M axim um A chievab le T h rou gh p u t

Wormhole and virtual cut-through switching are affected differently by packet distance.

This can be directly shown by varying the average number of hops that packets travel. This

was accomplished through a hop-uniform destination mapping, where every packet travels

the same number of hops. In order to spread traffic uniformly through the network, a

wrapped 8 x 8 square mesh (torus) is used with two virtual channels per link (the minimum

to prevent deadlock under dimension-ordered routing).

77

Figure 5.3 shows the maximum throughput (in packets per cycle) of wormhole switching

as a function of the hop count of packets. Using wormhole switching, the network saturates

under a lighter link load as the packet distance increases. This is due to increased con­

tention: packets are traveling more hops, and thus stalling more links when blocked. This

has a snowball effect: blocked packets stall more links, and block other packets that may

then block still other links. The overall effect, therefore, is to degrade the maximum achiev­

able throughput. Virtual cut-through switching, on the other hand, does not exhibit this

behavior, as it uses memory resources and not network resources to stall blocked packets.

Its peak throughput is dependent upon the link load and not upon packet distance.

The maximum throughput of a network using wormhole switching can be increased by

adding virtual channels [12], or by significantly enlarging the number of flits buffered at

each node. Adding virtual channels on each link improves throughput by allowing packets

to “bypass" stalled packets. The primary cost is in the increased complexity of the crossbar

connecting the reception channels to the transmission channels — either the size of the

crossbar must be increased, or the arbitration becomes more complex [8]. Giving each

virtual channel a flit buffer large enough to hold one packet should significantly improve

throughput — each blocked packet only stalls a single link. Similarly, buffers capable of

holding half of a packet’s flits will prevent blocked packets from stalling more than two

links.

5 .1 .4 W orm hole S w itch in g w ith Large Buffers

The previous discussions and results have assumed that packets are sufficiently long, so

that their “tail” of reserved channels stretches from the current head of the packet back

to the source. By increasing the portion of the packet buffered at each node, however, the

length of the tail can be reduced.

Figure 5.4 shows the average packet latency for wormhole switching with up to 8 words

(half of a packet) buffered at the input of each node. This limits the maximum number

of links that a packet can hold while stalling to two. This reduction results in a signifi­

cant increase in performance — both the average packet latency (at higher loads) and the

maximum throughput of the network are increased when compared to wormhole switching.

The “buffered" wormhole scheme also provides a lower average packet latency at mid-range

loads than virtual cut-through. This is due to the design of the PRC — packets that buffer

78

1 5 0 0

o Virtual cut-through
6 Wormhole
+ Wormhole(b = 6)1250

1000

750&ffl
&
1 500
5

250

0.1 0.40.0 0.3 0.6
Link utilization

Figure 5.4: Average packet latency for “buffered” wormhole.

at an intermediate node under virtual cut-through switching must be completely buffered

prior to retransmission. Since packets are still in the network with the buffered wormhole

scheme, they can be forwarded to the next node as soon as the link comes free. The effect

is also exaggerated by the disparate speeds of the PRC’s memory and network interfaces.

One major drawback to providing such large buffers for packets at the inputs is the cost

of implementing them for larger packet sizes and higher numbers of virtual channels. Since

the cost is directly proportional to the largest packet size permitted in the network and the

number of virtual channels on each link, the next section will introduce a hybrid switching

scheme that uses a central (off-chip) buffer for packets that is cheaper to implement and

can be much larger in size.

There are significant differences in the performance of wormhole and virtual cut-through

switching under different traffic loads. Wormhole switching requires fewer buffers than

virtual cut-through, but its maximum throughput is relatively limited, dependent on packet

distance, and saturates under relatively light traffic loads. At heavy loads, virtual cut-

through (as predicted) outperforms wormhole, but the cost of buffering in-transit packets

can cancel out the performance gains. The following section presents a hybrid switching

scheme that addresses the shortcomings of both schemes.

79

5.2 Evaluating Hybrid Switching

This section examines how hybrid switching provides a level of performance that bridges

the gap between virtual cut-through and wormhole switching. We evaluate hybrid switch­

ing's performance relative to these schemes using the same metrics as the previous section.

5.2 .1 H ybrid Sw itch ing

A “hybrid” switching scheme dynamically combines wormhole and virtual cut-through

switching, using both network and memory resources to store blocked packets. There are

a number of potential hybrid switching schemes that meet this requirement. To implement

these schemes efficiently, however, the switching decisions should be based on information

available in the packet header or at the local node.

In Section 5.1.3, we saw that increasing the number of links held by packets degraded

the throughput achievable with wormhole switching. One method for improving wormhole’s

performance under heavier loads would be to relieve contention by buffering packets that

cannot advance yet are stalling several links behind them. This scheme would avoid the

long “tails” of stalled links held by blocked packets, reducing contention. Such a switching

scheme would dynamically combine virtual cut-through and wormhole switching to provide

improved packet latencies and a higher achievable throughput than wormhole alone, without

buffering packets as often as virtual cut-through.

The hybrid algorithm used in the remainder of this paper decides whether to buffer

or stall blocked packets based on a field within the routing header; this field identifies

the number of links the packet can hold while stalling in the network. If this threshold

is exceeded, the blocked packet buffers. The system can dynamically vary this threshold

depending on the packet’s needs or the current network load by changing the initial value

of this header field.

Implementing the scheme is simple: a field in the routing header is set to h when the

packet is generated and then decremented after every hop until it reaches 0. While h > 0,

the packet will stall if blocked. Once h = 0, the packet buffers when blocked. Buffering

the packet resets h to its initial value. Virtual cut-through and wormhole switching can

be viewed as special cases of this algorithm: wormhole switching is equivalent to hybrid

switching with h = oo, while hybrid switching with h = 0 effectively implements virtual

cut-through switching.

80

1500

1250

8
I 1000

I
© 750
<0
8)
2
$ 500
4

250

0

o O h = 0
J h = 1

o o h = 2
a — A h = In lln lly

0.0 0.1 0.3
Link utilization

0.4 0.6

Figure 5.5: Average packet delivery latencies for hybrid switching, com­
pared to virtual cut-through and wormhole switching.

The requirements for supporting hybrid switching are not much greater than those for

supporting wormhole or virtual cut-through switching alone. When a router receives a

packet, it must be able to determine how many hops the packet has traveled. If the link

reservation fails, the router can then choose to buffer the packet. Due to the reduced in­

transit load, the buffer requirements for hybrid switching are significantly reduced compared

to virtual cut-through switching.

In the following simulations, all packets use the same dimension-order routing as in

Section 5.1. As before, the simulations use a fixed packet size of 64 bytes, except where

indicated otherwise.

5.2 .2 L atency

In Figure 5.1, we saw that wormhole switching saturates from contention well before

virtual cut-through, resulting in dramatically increased latencies. By preventing blocked

packets from holding more than h links, hybrid switching decreases contention. The effects

are shown in Figure 5.5, which compares the average packet latencies for wormhole switch­

ing, hybrid switching with h = 1, hybrid switching with h = 2, and virtual cut-through

switching.

At very low loads, with a low probability of blocking, the mean latencies of the schemes

81

1600

1250

1000

750s
f t

g>
500

<

250

0.10.0 0.3 0.4 O.B
Link utilization

Figure 5.6: Average packet delivery latency for hybrid switching, compared
to “buffered” wormhole switching.

are similar. Once this probability rises, however, hybrid switching provides lower packet

latencies than wormhole switching. As h decreases, the network can handle a higher offered

load without saturating. Higher values of h will resemble pure wormhole switching more

closely — saturating at lower offered loads. These trends also hold over a range of packet

sizes and network topologies.

The effects of buffered wormhole switching (as discussed in Section 5.1.4) are similar to

hybrid switching, as both schemes limit the number of links a packet can hold while blocking

in the network. They differ in one main aspect — hybrid switching may completely remove

a packet from the network prior to its destination. This is both a plus and a drawback

— hybrid switching can use a large external buffer for packets, allowing larger packet

sizes to be supported. At the same time, use of this buffer may prevent packets from

being retransmitted until they have been completely received, depending on the router’s

implementation.

Figure 5.6 compares the buffered wormhole scheme with hybrid switching, for h = 1

and h = 2. As expected, all three schemes exhibit similar performance, although buffered

wormhole slightly outperforms both hybrid schemes at lower loads. As with virtual cut-

through, this difference may be attributed to the design of the PRC, which does not allow

82

o.ooe
o-— o Virtual cut-through
□ □ h = 1
o---- o h = 2

0.004

3

0.002
1

o.ooo.
0.0 0.3

Link utilization
04 0.6

Figure 5.7: In-transit packet load for virtual cut-through and hybrid switch­
ing.

packets that buffer to perform partial cut-throughs.

5.2.3 In-transit Load

One of the primary advantages of wormhole switching is that it completely insulates

nodes from in-transit traffic; the cost, however, is the consumption of network bandwidth

by blocked packets. Virtual cut-through switching utilizes the network’s bandwidth more

efficiently, but can require nodes to handle large amounts of in-transit traffic (as shown in

Section 5.1). By only buffering some blocked packets, hybrid switching significantly reduces

this load.

A comparison of the in-transit load for hybrid switching and virtual cut-through switch­

ing is shown in Figure 5.7. This graph shows the arrival rate of in-transit packets for a

range of offered loads. Even at low loads, with a very high probability of cut-through,

hybrid switching significantly reduces the rate of in-transit traffic when compared to virtual

cut-through. As the offered load increases, the probability of cut-through decreases and the

in-transit load increases. At high loads, virtual cut-through switching uses at least h + 1

times more memory resources than the hybrid scheme, since the hybrid algorithm allows

packets to buffer at most once every h + 1 hops. The actual reduction in buffering is often

83

larger. For example, a packet traveling five hops using virtual cut-through may buffer up

to four times, while hybrid with h = 2 will only buffer it at most once.

5 .2 .4 M a x im u m A ch iev a b le T h ro u g h p u t

Figure 5.8 shows the maximum achieved throughput (in packet-hops per cycle) as a

function of the number of hops traveled by each packet. As in Figure 5.3, the applied

traffic load is hop-uniform — every packet travels the same number of hops. The maximum

throughput is only shown for those distances greater than h — when each packet travels h

hops or less, hybrid switching is indistinguishable from wormhole switching.

Unlike wormhole switching and virtual cut-through, however, the maximum throughput

for hybrid switching increases with the number of hops packets travel. This phenomenon

can be explained by examining the proportion of packets in each case that have traveled

more than h hops without buffering. As the average number of hops traveled by each

packet increases, the percentage of packets that are willing to buffer if blocked increases.

This alleviates contention in the network, preventing early saturation.

5 .2 .5 V ir tu a l C h a n n e ls

Dally [11, 12] introduced virtual channels to prevent deadlock in wormhole switched

networks. Since then, virtual channels have been used to improve network throughput [12]

and to partition different traffic classes to minimize interactions [58].

Virtual channels improve network throughput in wormhole-switched networks by allow­

ing packets to bypass other blocked packets, thus utilizing otherwise idle network band­

width. Since hybrid switching may also idle links by stalling packets in the network, it can

also benefit from virtual channels. Figure 5.9 shows the effects of increasing the number

of virtual channels on the average packet latency and peak throughput of hybrid switch­

ing. Under lighter loads, increasing the number of channels has little impact on the mean

packet latency. The primary effect of increasing the number of channels is an increase in the

maximum throughput which the network may support. The decreasing benefit of higher

numbers of virtual channels is also seen for similar simulations using wormhole switching.

In wrapped topologies, many wormhole routing schemes will idle or under utilize vir­

tual channels to prevent deadlock. While packets that will stall when blocked must utilize

deadlock-free routing schemes, packets where h has reached 0 may take advantage of avail-

84

0.015

0.012

0.000
H o p s

(a) Hybrid, h = 1

0.015

0.012

S 0.009

Hops

(b) Hybrid, h = 2

Figure 5.8: M axim um throughput under a hop-uniform traffic load.

85

1 5 0 0

1200

1
900

600

<

300

0.0 0.4
Link utilization

0.2 0.6

(a) Hybrid, h = 1

1500

1200

\

I 600

300

0.0 0.4 0.6 0.6
U nk utilization

(b) Hybrid, h = 2

Figure 5.9: Effects o f increasing available virtual channels.

86

able channels without regard to preventing deadlock, since they will buffer if blocked. This

increases the probability of cut-through for packets by considering channels that could not

otherwise be used.

5 .2 .6 D iscu ssio n

The simulations in this paper did not restrict the number of buffers a t each node. When

the packet buffers axe implemented on the same die as the router, the number and size

of the buffers is restricted. By buffering fewer packets than virtual cut-through, hybrid

switching reduces the buffer space needed. In addition, hybrid switching schemes can take

the available buffer space into account when deciding whether to buffer or stall a blocked

packet. By buffering only packets that are currently holding several links and stalling others,

hybrid switching can effectively utilize limited buffers.

This section has evaluated only one variant of hybrid switching. Another promising

hybrid scheme uses a “credit” scheme to determine when to buffer a blocked packet. Under

this scheme, each packet header contains a field indicating the maximum number of times it

can be buffered — every time the packet buffers, the field is decremented. Once this value

reaches 0, the packet will stall in the network. This scheme allows packets to stall more

channels, but buffering other packets should prevent network congestion. The combination

of a restriction on the number of times a packet can buffer with /i-hop hybrid switching also

holds promise.

Hybrid switching also allows the system to dynamically determine (on a per-packet or

system-wide basis) whether network or buffer resources are used to store blocked packets.

This can be implemented by setting the initial value of h a t the source of the packet to

reflect whether the packet should consume more network or buffer resources when blocked.

For example, large packets that will be traversing a large number of links may initially use

larger values of h to reduce the number of times they buffer. On the other hand, systems

requiring high bandwidth can use smaller values of h to shift the load to the network’s

buffers.

Hybrid switching uses both network and memory resources to store blocked packets, ad­

dressing the shortcomings of other cut-through switching schemes. Using network resources

to store the packets can often have a snowball effect, creating contention throughout the

network that limits throughput. Schemes that use memory resources, on the other hand,

87

increase the system’s communication overhead. Through hybrid switching, we attem pt to

balance these concerns. Potentially, the switching decision could be also based on the dis­

tance still needs to travel, or the number of buffers available at the local node. In addition,

the decision could be time-based: packets could stall for some small amount of time if

blocked in the hopes of being able to cut through, and then buffer. Alternately, packets

that are blocked just short of their final destination could block in the network, while others

that are blocked near their source would buffer. This would keep packets from blocking in

the network more than once or twice.

5.3 Conclusions

The switching scheme used by a point-to-point network is a major factor in determining

the latency, throughput, and overhead of communication. The various cut-through switch­

ing schemes all improve latency over store-and-forward switching (unless the network is

saturated), but each has its strengths and weaknesses.

5 .3 .1 R e la te d W ork

One other cut-through switching scheme bears mentioning in this context. Wormhole

Intracluster Cut-through Intercluster (WICI) switching addresses the same performance

issues as hybrid switching by partitioning networks into clusters of nodes [52]. Within the

clusters, packets use wormhole switching; between clusters, they use virtual cut-through.

Thus, only nodes at the edges of clusters have buffers for blocked packets. The performance

of both schemes is similar; WICI switching only requires some nodes to have packet buffers,

but hybrid switching distributes the load more evenly and allows dynamic selection of

switching schemes.

5 .3 .2 S u m m ary

As shown in this chapter, virtual cut-through does not limit the achievable network

throughput but does impose a significant load on nodes for storing and retransmitting in­

transit packets. Wormhole, on the other hand, stalls blocked packets in the network and

does not require large buffers for blocked packets, it is cheaper to implement. Its maximum

throughput, however, is limited by contention for outgoing links.

This chapter has introduced the concept of hybrid switching, which dynamically chooses

whether to buffer or stall blocked packets in order to balance resource consumption and im­

88

prove network throughput. This scheme combines features of both wormhole and virtual

cut-through switching by buffering a small fraction of blocked packets and limiting the

number of links that blocked packets can hold. This significantly reduces the buffer require­

ments for in-transit packets when compared to virtual cut-through, while providing higher

maximum throughput than wormhole switching. In this manner, hybrid switching bridges

the performance gap between other cut-through switching schemes.

89

C H A PT E R 6

Experim ents in Flexible R outing and Switching

I ’m telling everyone the world will end in year the (sic) 2000.

My compelling logic is that 2000 is a big round number.

— Dogbert, in Scott Adams’ Dilbert

This chapter illustrates how the PRC’s flexibility may be used to address different

application needs. To show this, we will compare the relative performance of the different

routing and switching schemes on several different traffic patterns. As in Chapter 5, the

experiments were conducted with pp-mess-sim [21, 57] providing a cycle-level model of the

PRC.

6.1 Non-uniform Traffic Loads

Adaptive routing algorithms can improve network performance by basing their routing

decisions on local information. However, as shown in this section, these local decisions can

increase network congestion for some communication patterns. The graphs show average

latency for wormhole switching under both dimension-ordered and adaptive routing; vir­

tual cut-through experiments showed the same qualitative trends. The adaptive routing

algorithm is a fully-adaptive minimal routing scheme that requires two virtual channels per

link to prevent deadlocks [22]; in these experiments, both routing algorithms employ a pair

of virtual channels to enable fair performance comparisons. The dimension-ordered routing

algorithm uses the extra virtual channel to reduce contention between packets traveling on

the same link [12, 56].

Figure 6.1 compares the performance of the adaptive and oblivious schemes under a

90

1 5 0 0 .0

□— B Adaptive
G— G Oblivious

1200.0

1
900.0

8. 600.0

<
300.0

0.0
0.00 0.600.20 0.40 0.60

Applied load

Figure 6.1: Comparison o f wormhole routing algorithm s under uniform des­
tination traffic.

node-uniform destination traffic load. Due to the uniform nature of traffic, opportunities for

adaptive routing are relatively limited and the adaptive scheme is only slightly better than

the oblivious. Under a dimension reversal traffic load, where each node (c, d) communicates

only with node (d,c), the opportunities for adaptive routing are much better. This is

reflected in the improved packet latencies for adaptive routing relative to oblivious routing

in Figure 6.2.

This does not hold true for all non-uniform traffic loads, however. Figure 6.3 compares

these schemes under a bit-complement traffic load. In an 8 x 8 square mesh, the bit-

complement permutation requires source node (c, d) to communicate with node (7—c, 7—d).

As a result, all packets must eventually cross both the middle row and the middle column

of the mesh to reach their destinations, irrespective of the routing algorithm. Because

of this, many local routing decisions made by the adaptive scheme near the edges of the

mesh actually move packets closer to the center of the network. Since this is already the

most congested area in the network, the end-to-end latency is actually increased. Oblivious

dimension-ordered routing, on the other hand, forces many packets to travel along paths that

avoid the center of the network. Thus, it keeps the network traffic more uniformly spread

through the mesh, improving performance. In addition, the additional routes considered by

adaptive schemes source nodes to inject more packets into the network, further increasing

91

1 5 0 0 .0

o — a Adaptive
G— GOMMous

1800.0

I
I 900.0

a
Ia. 600.0

<
300.0

0.0
0.00 0.40 0.800.20 0.60

Applied load

Figure 6.2: Comparison o f wormhole routing algorithms under dim ension
reversal traffic.

1500.0

a — □ Adaptive
G— -QOblMous

1200.0

9000

eoo.o
I
I

300.0

0.0,
0.200.00 0.40

Applied load
0.60 0.80

Figure 6.3: Comparison of wormhole routing algorithm s under bit'
com plem ent traffic.

92

contention in the network. Hence, in some situations, restricted routing flexibility can

effectively limit the overuse of network resources [26].

6.2 Handling Bim odal Packet Lengths

This section evaluates the use of adaptive routing, cut-through switching, and virtual

channels to improve performance in a network that carries a mixture of short control packets

and long data packets; such bimodal length distributions are common in multicomputer

applications [9, 35, 36, 64]. The experiments consider an 8 x 8 torus network of PRCs with

three virtual channels on each physical link. Network traffic consists of an even mixture of

short, 64-byte packets and long, 256-byte packets; hence, small packets account for 20% of

the traffic load. Each node generates traffic independently, with uniform random selection

of destination nodes and exponentially-distributed interarrival times. For simplicity, we will

refer to the various schemes by the shorthand notations of Table 6.1.

Many systems want to support larger packet sizes, whenever possible, to reduce the

host overheads for packetization, context switching, and message reassembly. This often

results in a mix of small packets and maximum-size packets that significantly impact the

performance of the smaller packets. Figure 6.4 compares the average packet latency for

64-byte packets under two different packet length distributions. FYom this, we can observe

that the average packet latency — even for the same link utilization — is much higher with

the bimodal load than a uniform load of 64-byte packets. This is due to the small packets

being blocked behind the larger packets, thus incurring large delays.

Several researchers have proposed methods for handling these bimodal traffic patterns.

Kim and Chien [35] proposed adding virtual channels and adaptivity to eliminate the inter­

ference of long packets on short ones in wormhole-switched networks. Konstantinidou [36],

as part of his Segment router architecture, proposed dividing the network into two distinct

virtual networks, with distinct switching schemes for each. Short packets would use one

virtual network with virtual cut-through switching, while long packets employ wormhole

switching on the other virtual network. This allows short packets to avoid the long delays

incurred from blocking behind much longer packets, without requiring large buffers for stor­

ing blocked data packets. We will investigate how these schemes impact performance for

both traffic classes, and examine alternative methods as well.

93

Scheme Routing Selection Switch Channels

VCA-1 Adaptive Dimorder VC 1

VCA-3 Adaptive Dimorder VC 3

WHO-2 Oblivious Dimorder WH 2

WHO-3 Oblivious Dimorder WH 3

WHA-3 Adaptive Dimorder WH 3

HlO-2 Oblivious Dimorder Hybrid, h = 1 2

H20-2 Oblivious Dimorder Hybrid, h = 2 2

Table 6.1: Notation for routing and switching schemes.

1000.0

g g 64-byte packets only
a — o Mixed 64 and 256-byte packets

750.0
I

3
W 500.0

1
8.

<5 250.0

0.15 0.30
Applied load

0.45 0.50

Figure 6.4: Comparison o f average packet latency for 64-byte packets using
WHO-3 under uniform and bimodal packet length distributions.

94

2000.0

8̂
 1500.0

lflj
Z 1000.0

-o VCA-1
■u WHO-3
-o WHA-3

S.
I
§ 500.0
<1

0.00 0.40 0.B00.20
Applied load

Figure 6.5: Average packet latency of 256-byte packets w ith a bimodal
packet length distribution. The trends for 64-byte packets are
similar.

6.2.1 U niform R o u tin g /S w itch in g P olicies

This section examines how three different schemes perform under the bimodal traffic

load, with all packets using the same scheme. Figure 6.5 compares the average packet latency

for 256-byte packets for VCA-1, WHO-3, and WHA-3. Not surprisingly, the adaptive

routing schemes outperform the oblivious scheme, even though the virtual cut-through

scheme only uses a single virtual channel. Unfortunately, however, both of the adaptive

schemes penalize the smaller packets in the same manner as the oblivious wormhole scheme.

In addition, since the PRC has three virtual channels available for each link, we might

consider increasing the probability of packet cut-throughs under virtual cut-through switch­

ing by making all of the virtual channels available. The probability of cut-through has sig­

nificantly increased, as shown by the rate of packets buffering in Figure 6.6(a). Surprisingly,

however, the average packet latency for VCA-1 in Figure 6.6(b) is lower than for VCA-3!

This result is due to the increased network congestion resulting from the additional injection

ports of VCA-3; more packets can enter the network, even though the existing bandwidth

95

I
IJL
■g

i•O

•O VCA-1
« VCA-3

0.00 0.20 0.40 0.60 0.80
Applied load

(a) Buffer load

2000.0

O---- G VCA-1
u-----u VCA-3

a
1000.0

(0a .

g 500.0
<

0.00.0 - - - • 1 ■ ' • -*■■■
0.00 0.20 0.40 0.60 0.60

Applied load

(b) Average latency for 64-byte packets.

Figure 6.6: Com parison of VCA-1 and VCA-3.

96

is already taken.

6.2.2 Traffic P artitioning

Konstantinidou’s Segment router improves the performance of the short packets by seg­

regating them onto a separate virtual network using adaptive virtual cut-through; mean­

while, the long packets still use oblivious wormhole routing [36]. Thus, the short packets use

VCA-1, while the long packets use WHO-2 in the Segment router scheme. Figure 6.7 shows

how the performance of this scheme compares with networks using WHO-3 or WHA-3 for

all packets. The control packets obviously benefit from this partitioning: the average packet

latency is significantly lower than the non-partitioned schemes. Latency actually improves

somewhat when the long packets saturate their channels, freeing additional bandwidth for

the short packets. The drawback to this scheme, however, is the reduced saturation point

for the long packets; since these represent 80% of the applied load, many applications might

benefit more from adaptive routing than traffic partitioning.

Because of the flexibility of the PRC architecture, a wide range of other traffic parti­

tioning schemes can be contemplated and evaluated. By replacing the oblivious wormhole

routing used for long packets with HlO-2 or H20-2, as in Figure 6.8, we can raise the

saturation point of the long packets. The impact on the latency of short packets is minimal

unless the long packet network saturates; in these conditions, the additional buffer load

from the large packets buffering increases the average latency of the short packets.

Another possible method for improving the overall system performance would be to

differentiate the switching schemes used by the traffic classes without segregating them

onto different virtual networks. For example, we can have short packets employ adaptive

virtual cut-through on all 3 channels (VCA-3), while the long packets use WHA-3 to reduce

the buffer load. Figure 6.9 shows the relative performance of this VCA-3/WHA-3 scheme to

the Segment router scheme — the average packet latency for short packets is only slightly

higher even under heavy loads. The longer packets, on the other hand, benefit significantly

from the increased routing adaptivity and the extra virtual channel.

Other possible traffic partitioning schemes that have been evaluated include the follow­

ing:

W HA-3 short, W HO-2 long: By allowing short packets to use an extra virtual channel

and adaptive routing, this scheme improves their performance in a fashion similar to

97

750.0

3 -0 VCA-1/WHO-2
■ti WHO-3
-0 WHA-31

500.0I
1a
Si 250 0 fi
S <

0.0
0.00 0.15 0.30 0.45 0.60 0.75

Applied load

(a) 64-byte packets

2000.0

■Q VCA-1/WHO-2
■a WHO-3
-o WHA-3

S
IB

g 500.0
<

0.0
0.00 0.15 0.30 0.45 0.60 0.75

Applied load

(b) 256-byte packets

Figure 6.7: Com parison o f Segm ent router traffic partitioning w ith W H O -3
and W H A -3.

98

2000.0

« WHO-2
-u H10-2
o H20-2

1500.0
I

s$ 1000.0

s.
O)
§ 500.0

0.0
0.300.00 0.15 0.600.45 0.75

Applied load

F ig u re 6.8: C o m p ariso n o f ob liv ious w orm hole a n d h y b rid sw itch ing in th e
Segm ent schem e (average la ten cy for 256-byte packe ts).

the Segment scheme. Under heavy loads, however, the short packets are unable to

use the network bandwidth as well as under the Segment scheme. The long packets

see only a tiny improvement in latency.

V CA -3 sh o r t, W H O -3 long: This scheme differs from the VCA-3/WHA-3 scheme de­

scribed above only in using adaptive routing for the longer packets; its overall perfor­

mance is not as good under a uniform destination load.

V C A -3 sh o rt, W H O -2 long: This scheme improves slightly on the Segment scheme by

allowing short packets to route on any of the virtual channels; the performance of the

short packets is very slightly improved, without any discernable impact on latency for

long packets.

6 .2 .3 S u m m ary

This section has evaluated a number of routing, switching, and traffic partitioning solu­

tions for handling traffic loads with bimodal packet length distributions. Given the major

constraint of the PRC architecture — 3 virtual channels per link — the best performance

is found by using the VCA-3/WHA-3 scheme. If an additional virtual channel could be

added to each link, allowing a partitioned VCA-l/WHA-3 scheme, this performance dif-

99

750.0

g ----- o VCA-1/WHO-2 (Seg)
u fcj VCA-3/WHO-31

500.0

JS

ia
8, 250 0 &
1

0.151.00 0.30 0.45 0.60 0.75
Applied load

(a) 64-byte packets

2000.0

g g VCA-1/WHO-2 (Seg)
u — u VCA-3/WHO-3

az. 1000.0

1a
I| 500.0
<z

00 — 0.00 0.15 0.30 0.45 0.60 0.75
Applied load

(b) 256-byte packets

Figure 6.9: Com parison o f Segm ent router traffic partitioning w ith VCA-
3 /W H A -3 .

100

ferential might vanish. At the same time, previous results have shown that traffic loads

with non-uniform destination distributions can impact the suitability of the various routing

schemes. Thus, the flexibility of the PRC provides the best answer of all — the network

can be adapted to suit whatever traffic load it is currently handling.

6.3 M ixing R eal-T im e and B est-E ffort Traffic

Rexford and Shin [58] examined the interaction of traffic classes with disparate quality-

of-service requirements. Many real-time systems must handle guaranteed traffic from ap­

plications that require predictable, if not necessarily fast, service. Simultaneously, however,

they are responsible for best-effort packets that can tolerate variance in the quality-of-service

in exchange for lower communication latencies. Packet switching is shown to have the most

desirable qualities for handling guaranteed packets, while wormhole switching is better for

best-effort traffic [58, 60]. This section investigates the performance of this scheme on the

PRC, by simulating an 8 x 8 wrapped torus of PRCs.

Figure 6.10 shows the interaction of these two traffic classes in the PRC where both

traffic classes share a set of two virtual channels. Guaranteed packets are generated at

a regular 1000-cycle interval, while the interarrival times of the best-effort packets are

drawn from a Poisson distribution. The graphs show the impact of varying the best-effort

load on the mean latency for both classes, and the standard deviation of the latency of

the guaranteed traffic. From the rapid rise in the standard deviation of latency for the

guaranteed traffic(Figure 6.10(b)), we observe that the performance of the “guaranteed”

traffic is significantly affected by the best-effort traffic load.

To cope with this, Rexford and Shin partitioned the best-effort and guaranteed traffic

onto separate virtual networks. This partitioning minimized the impact of the best-effort

traffic on the latency and predictability of guaranteed packets [58]. Figure 6.11 repeats

the experiment of Figure 6.10, but partitions the traffic onto different virtual networks.

Surprisingly, however, while the standard deviation of the latency is reduced, it is still

strongly impacted by the amount of best effort traffic.

This discrepancy is a direct result of changes in the PRC architecture. In the PRC

architecture simulated by Rexford and Shin, which was similar to that in [21], no single

virtual channel could utilize the full bandwidth of a physical link. Thus, multiple channels

101

1500.0

□— o Worm hole
0 - 0 Packet ewttchlng

I 1000.0

1&
f 500.0

I

00000 0.0005 0.0010 0.0015 0.0020
Offered wormhole load per node (packala/cyde)

(a) Mean packet latency

500.0

O-----0 .0 1 0 PS load
----- .007 PS load

I
300.0

200.0

!
3

0.0005 0.0010 0.0015 0.0020
Applied wormhole load per node (packeta/cyde)

(b) Standard deviation of latency

Figure 6.10: Interaction o f guaranteed and best-effort traffic on shared
channels.

102

1 5 0 0 .0

Q— 0 Worm hole
o — -o Packet switching

1000.0

1
§■ 500.0

I

0.00.0000 0.0005 0.0010 0.0015
Offered wormhole load per node fpackels/cyde)

0.0020

(a) Mean packet latency

500.0

O——0 .0 1 0 PS load
----- .0 0 7 PS load

_ 400.0

300.0

200.0

100.0

6.0000 0.0005
Applied worm hols load per node (packeta/cyde)

0.0010 0.0020
node

(b) Standard deviation of latency

Figure 6.11: Interaction of guaranteed and best-effort traffic partitioned
onto separate virtual networks.

103

could be active on a link without impacting the bandwidth each received. This is not the

sole cause, however; in a later paper Rexford and Shin [60] repeated their earlier results in

examining a streamlined router architecture that allowed channels to consume all available

link bandwidth. Two other PRC changes, therefore, should be considered in this light.

The PRC redesign greatly increased network bandwidth, but not the memory bandwidth;

this disparity certainly accounts for some of the interference — the network may not be

saturated, but the memory interface might be. At the same time, the CTBUS also stands out

as another potential congestion point — as redesigned, it emphasizes network throughput

over predictability.

6.4 H ot-Spot Routing

The flexibility of the PRC can be used to tailor routing schemes to an application’s

traffic pattern. This section examines how the routing scheme may be tailored to improve

network performance under a hot-spot workload. In a hot-spot workload, a significant

fraction of the packets in the network are traveling to or from a single node. These traffic

patterns often arise from constructs such as global locks, centralized control, and data

combining [54, 17, 18]. We will refer to such a pattern as a hot-spot of dimension n, where

all nodes within n hops of the center of the hot-spot are communicating with the center,

and vice versa.

From the traffic flow for this workload, we can observe that virtual cut-through switching

is unlikely to provide any significant benefit over wormhole switching. Although a blocked

wormhole packet may restrict other traffic from entering a node, this traffic must ultimately

traverse the same links as the stalled packet. Buffering the blocked packet cannot alleviate

this contention. Consequently, we will restrict our attention to the routing and selection

schemes used for a wormhole-switched network.

Figure 6.12 compares the paths taken by packets in a dimension-3 hot-spot under obliv­

ious and adaptive routing schemes. From Figure 6.12(a), we observe that the oblivious

scheme will not uniformly distribute traffic among the links into the center node; the links

along the j/-axis receive three times as much traffic as the ar-axis links. However, a minimal-

path adaptive scheme can utilize alternate links to better distribute this traffic flow, as

shown in Figure 6.12(b).

104

(a) Oblivious (b) Adaptive

Figure 6.12: Possible routing paths for dimension-ordered oblivious and
adaptive routing in the hot-spot. Each shaded region indicates
the nodes that Bhare a a single link to the center.

One important feature of the traffic flow in Figure 6.12(b) is that it is acyclic: no

cycles of dependencies can exist among packets from this application. This has a major

implication: packets should be able to use any minimal-path channel without restriction.

Although a fixed-policy wormhole router will have already restricted the channel selections

to prevent deadlock, the PRC’s flexibility allows use of a tailored, hot-spot specific routing

scheme for hot-spots that removes all deadlock restrictions in computing the candidate links

and channels.

To illustrate this, we will examine the average packet latency for packets in an 8 x

8, unwrapped square mesh network of PRCs under a hot-spot traffic load and a mixed

load with packets from both hot-spot and uniform destination distributions. All network

traffic consists of fixed size, 64-byte packets; each node generates traffic independently, with

exponentially-distributed interarrival times. Each of the routing schemes uses 3 virtual

channels: the oblivious scheme uses all three for increasing throughput, while the adaptive

scheme has two adaptive (high) channels and a deadlock-free (low) channel. The tailored

hot-spot scheme uses all three virtual channels for adaptive routing; a random selection

function is used to prioritize the minimal-path links.

105

6.4.1 Perform ance C om parison

Figure 6.13 shows the latency for packets under three different routing schemes when

the only traffic is from a dimension-5 hot-spot (all nodes within 5 hops of the center). The

disparate link loads of oblivious routing causes the high latencies and early saturation of

packets trying to exit the hot-spot node in Figure 6.13(a). Since both of the other schemes

are adaptive, their performance is almost identical — the worst congestion for outbound

traffic occurs during the first hop. If we examine the average latency for packets traveling

to the hot-spot node (Figure 6.13(b)), oblivious routing again performs the worst, with the

network saturating before either of the adaptive schemes. The tailored hot-spot scheme

significantly outperforms both of the others, however, due to its better distribution of the

traffic and improved utilization of virtual channels.

In general, applications will not generate hot-spot traffic in isolation. Typically, some

percentage of the network traffic will be directed to the hot-spot node, while the remainder

of the traffic destinations are uniformly distributed [54]. Using the PRC, we can tailor the

routing scheme to suit each class of traffic: hot-spot packets use the tailored routing scheme

described above, while the background traffic uses a dimension-ordered routing scheme that

orders channels to prevent deadlock. To prevent deadlock, the hot-spot routing scheme is

restricted to use only two of the three available virtual channels.

Figure 6.14 compares the performance of the background and hot-spot traffic under

these schemes. For simplicity, the background load is varied while the hot-spot load is held

constant at a rate that utilizes 45% of the hot-spot node’s network bandwidth. Oblivious

routing performs quite poorly: packets are unable to avoid the congested hot-spot, which

further increases congestion and results in a low network saturation point. Adaptive routing

performs significantly better. The tailored hot-spot scheme, however, has an unexpected

benefit: by restricting hot-spot traffic from an entire virtual network, at least one channel

at every node (even in the hot-spot) is always available for use by background traffic. This

results in the relatively slow rise in latency for background traffic with the tailored hot-spot

schemes, without adversely impacting the latency of the hot-spot traffic.

106

750.0

g— © Oblivious
□---- a Adaptive
o -o Hotspot600.0

450.0
eg

3
300.0

§IS
$̂ 150.0

0.0
0.10 0.40 0.700.25 0.55

Inbound link utilization

(a) TYaffic out of the center

750.0

Q— e Oblivious
□-----a Adaptive
o o Hotspot

I
| 450.0

I
300.0

I&
J 150.0

0.0
0.10 0.25 0.40 0.55 0.70

Inbound link utilization

(b) Traffic into the center

Figure 6.13: Average latency comparison for hot-spot traffic only, with a
dimension 5 hot-spot.

107

BOO.O

600.0

IS 400.0

I
Ijg 200.0

0.0 1
6.0000 0.0005

g— 0 Oblivious
£3— - a Adaptive
o— e Hotspot

0.0010
1 / interarrival time (background)

(a) Background traffic

0.0015

>5 2000.0

1500.0

g — o Oblivious
Adaptive

o o Hotspot

500.0

o.o
6.0000 0.0005 0.0010

1 / Interarrival time (background)
0.0015

(b) Inbound hot-spot traffic

Figure 6.14: Average packet latency for several routing schemes with a di­
mension 3 hot-spot traffic pattern, with background traffic.

108

6.5 D iscussion

This chapter has examined how the PRC, through its support of multiple routing and

switching schemes that are selected on a per-packet or per-channel basis, can adapt its

performance to the traffic load. These examples have demonstrated several key benefits of

a flexible router architecture:

• No routing and/or switching scheme performed best for all workloads. Thus, a flex­

ible router architecture allows the router policies to be tailored to the underlying

application.

• Since many applications generate bimodal workloads with different quality of service

requirements, traffic partitioning combined with flexible policy selection is crucial to

meeting the needs of all the traffic.

109

C H A P T E R 7

The ^-channel: A H igh-Perform ance R outing Engine

I feel a need . . . a need for speed.

— from Top Gun

7.1 Introduction

The preceding chapters have shown the desirability of hardware support for flexible

routing and switching. While microcontroller-based routing engines provide an extremely

high degree of flexibility in selecting network policies, the cost in performance may outweigh

some of these benefits. In particular, the sequential nature of operations within these routing

engines leads to increased routing latencies. Consequently, this chapter addresses the issue

of raw performance by developing a new receiver architecture that preserves flexible selection

of routing and switching policies without compromising performance.

7 .1 .1 M o tiv a tio n

The microcontroller-based routing engine provides almost unlimited flexibility in routing

and switching packets by executing a sequential set of relatively primitive operations. As

a result, the lower bound on the number of cycles required to route a packet, reserve a

transmitter, and forward the packet header is approximately 16 cycles. In the PRC, this

routing latency (lr) corresponds to the time required to transmit two flits across a link.

If the microprogram requires more instructions to route the packet, the routing latency

increases accordingly. Using the example of the adaptive microprogram of Section 3.4, the

routing engine can take up to 19 cycles to issue a routing primitive; accessing the switch to

110

reserve a channel and forward the packet header will take at least another 8 cycles. Thus,

the routing latency for a packet is often closer to 3 or 4 flit cycles. By way of contrast,

routers that use fixed routing and switching policies typically route the packet in a single

flit cycle [37]. This routing latency is a major component of the overall network latency in

cut-through switching networks; the total network latency for a P-flit packet traversing D

nodes is lrD + P in the absence of contention. Thus, if a 16-flit packet traverses 10 nodes, its

total network latency is approximately 10 x lr + 16 flit cycles; if lr = 1, the network latency

is 26 flit cycles. If lr = 3, as often occurs with the PRC, the network latency would be

46 flit cycles. This is a large performance gap that cannot always be overcome via flexible

selection of network policies.

In reinventing the routing engine, therefore, our primary goal is to eliminate this perfor­

mance gap while providing relatively flexible routing, selection, and switching policies and

support for traffic partitioning. This means tha t our goal is a routing latency of one flit

cycle (8 cycles) or less. To achieve these goals, certain restrictions on the supported network

topologies, routing-switching algorithms, and packet formats will be necessary. Drawing on

insights from the preceding work, this chapter develops the 2-channel routing engine to

meet this goal.

7 .1 .2 O v erv iew o f th e 2-ch an n el

Instead of implementing low-level primitives in microcode, the 2-channel provides a

programmable method for selecting routing instructions from a table downloaded by the

host. Each routing instruction encapsulates the entire routing and switching decision for a

packet; Section 7.3 discusses the format and implementation of these instructions. Figure 7.1

shows a simplified view of the 2-channel architecture: the routing engine parses the packet

header to determine the address of the desired routing instruction in the table; the switching

control module then executes this routing instruction to reserve the desired channel.

7.2 H eader Parsing and R oute C om putation

The routing engine provides three of the four major phases of packet routing: header

parsing, route computation, and route selection. For efficiency in both time and implemen­

tation cost, the methods for selecting the appropriate routing instruction are necessarily

limited. Consequently, the 2-channel architecture restricts the header and addressing for-

111

Header Parsing
& Route

from link Computation

Header
R m m si . v ..."- M'j', Mf'

RTI

RTI

Switching
Control)

Method Selected by
Host

(Routing Instructions
Downloaded from Host

Reserves channel
Updates Header

Figure 7.1: A simplified diagram o f the 2-channel

Determine packet destination ^ Packet stater Passed directly to
switching control module

X-offset Y-offset Z-value Switch Ctl
(X) (Y) (Z) (H)

Example uses: Example format: \
Boolean flag Wormhole Flag

f Event counter 3-bit hybrid count

Figure 7.2: H eader flit format.

mat so that packet headers can be efficiently processed by a hardwired state machine.

Since the 2-channel fixes the addressing scheme, one should be chosen that scales well with

network size, and does not require lengthy calculations.

The traditional approach to table-lookup routing is to encode a numeric destination ID

in the header; to find the routing instruction for a packet going to the node with id N , the

router simply reads the routing table at address N [48, 63]. There are several drawbacks to

this approach, however. W ith the destination table-lookup, each router requires a routing

table with an entry for every node in the network. This limits the number of nodes in the

network to the size of the lookup tables. In addition, routing flexibility is conditioned solely

upon the current node and destination of the packet, and not on other factors such as the

current link(s) the packet holds, its current channel, and so forth. Adding support for any

of these would greatly increase the size of the table.

The addressing scheme that best meets our requirements for efficient implementation

and scalability is offset-based addressing. Using an offset-based addressing scheme, we can

use two 8-bit offsets to specify the packet destination in a 128 x 128 2-D topology; after

112

each hop, only one offset needs to be incremented or decremented. The remainder of this

section shows how we can develop an efficient, programmable architecture for mapping an

offset-based header (such as in Figure 7.2) into the correct routing instruction.

7 .2 .1 xy-sign T able

If we compare the pseudo-code for two minimal-path routing algorithms,1 a common

element is noted:

if (?x !- 0) kk (y > 0)) then
route (+*, -y) else if ((x !“ 0) fcfc (y < 0)) then
route (+x, +y) else if ((x !“ 0; M (y ““ 0)) then route (+x) else if <(x -« 0) tfc (y > 0)) then
route (-y)

else if ((x " 0) kk (y < 0)) then
route (+y) else /* x " 0 kk y »* 0 */ buffer;

Adaptive minimal path

Essentially, the route computation for both algorithms can be viewed as a case statement

predicated on the signs of x and y; the signs of the offsets indicate the general direction in

which the packet should travel.

To implement this case statement efficiently, we can define a function that maps the

signs of the offsets into a numeric index into the routing instruction table. Thus, if we

envision each table entry in Figure 7.3 as containing a routing instruction downloaded from

the host, we can implement each of these schemes by simply computing the signs of x and

y and reading the routing instruction. Support for traffic partitioning and virtual channels

is added by simply providing a separate table for every virtual channel at the link; since

each table contains only 8 entries2 the replication is certainly feasible.

7 .2 .2 2-checks

However, if we consider a more complicated routing algorithm, this scheme breaks down.

Consider the adaptive algorithm of Section 3.4, which uses a diagonal selection function to

1 Each implementation is written for routing a packet traveling along the + x axis.
2There are 9 possible combinations of the x and y sign values. We will assume the (x = 0, y = 0) entry

is hardwired to buffer the packet; thus, only 8 table entries are required.

if (x !” 0) then route C+x) else if (y < 0) then
route (+y)

else if (y > 0) then route <—y) else. „ buffer

Oblivious dimension-ordered

113

= 0
y

< 0 > 0 = 0
y

< 0 > 0

= 0 Buff O+y O -y = 0 Buff O+y O-y

x < 0 O + x O + x O + x x < 0 O+x O+xO+y O+xO—y

> 0 O -x O -x O - x > 0 O - x 0 —X0+y O -xO -y

(a) Oblivious (b) Adaptive

F igure 7.3: R ou ting tab les for d im ension-o rdered m in im al p a th a lgorithm s,
indexed by th e signs o f x and y.

retain adaptivity by reducing the larger offset first:

V
= 0 < 0 > 0
Buff O+y O -y

O+x
f O+xO+y i f | x [> | y | ,
\0 + „ 0 + x otherwise.

f O+xO-y i f | x | > | y | ,
\0 -y O + x otherwise.

O -x
f O-xO+y i f | x | > | y | ,
\ 0 + vO -x otherwise.

1 O -xO -y i f | x | > | y | ,
\0 ~ yO ~ x otherwise.

Essentially, we need to perform an additional check on the packet header before arriving

at the proper routing instruction. To handle this, the xy-sign table can indicate a function

(called the z-check) that computes the index into the routing instruction table. This 2-check

has two main functions: selection functions for link ordering, and/or an additional header

parsing stage. Many of the 2-checks center around a z value in the routing header format

of Figure 7.2, which is typically used as a boolean flag or an event counter. Table 7.1 shows

a number of potential z-checks, along with their suggested outcomes. To implement the

diagonal selection function described above, we would use the x — y magnitude comparison

z-check, which will return a different integer value for each possible outcome: |x| > |y|,

1*1 = ll/li or 1*1 < Ivl-
With the addition of the z-check, we can implement any offset-based routing scheme

that can be written in the following form, where the elements in angle brackets (< and >)

are downloaded by the host:

114

Check Outcomes
z sign check

z as event counter

z < 0
2 = 0
2 > 0

z boolean
boolean flag

2 ^ 0
2 = 0

null
random varies
x-y comparison

diagonal eel. fane. J2
.iL

J*

.
A

II
V

z-c comparison

useful fo r z as counter

\z\ > |c
\z\ = j c
|z| < |c

Minimum congestion

another set. func.

Prefer +x
Prefer — x
Prefer +y
Prefer — y

Check Outcomes
Diagonal 2b&(|a:| > |y|)

*&<l*i > \ y \)

zb&{\x\ < (y|)
zbk(\x\ < |y|)

Sign 2fe&(zc > 0)
Zb&c(zc > 0)
2(,&(2C = 0)
2ft&(2c = 0)

Constant Z6&(zc > c)
Zb&c(zc > c)
Zb&c(zc < c)
Zb&Z.(Zc < c)

Counter/Diagonal (zc > c)&(|*| > \y[)
(zc > c)&(j®| < \y\)
(zc < c)&(j*| > jyj)
(zc < c)&(|a:| < jyj)

(a) Single-valued z (b) Double-valued z

Table 7.1: z-check examples.

case (channel) of
0: case (sign(x),sign(y))

(x=0,y=0):
buffer;

(x>0,y>0):
case (<z-check>(z))

0 : <routing decision>;

Traffic partitioning and
per-channel schemes

General route computation

' Additional header parsing

<routing decision>;
endcase

endcase
Pass control back to
channel for switching

endcase

Essentially, the 2-channel implements a set of layered case statements. The first case

statement provides channel-specific routing, while the second parses the x and y offsets to

extract the general direction for the packet to travel. Further route selection and header

115

parsing may then be selected by the host, by specifying a z-check function that checks the

packet header to determine index of the final routing instruction.

More complex routing algorithms can be implemented by decomposing z into two sepa­

rate values: a single-bit boolean flag (zb) and an unsigned integer counter (zc). This ability

is particularly useful for implementing multiple routing algorithms on the same virtual chan­

nel when one (or both) of the schemes requires some state information in the header. Using

this “two-valued” z, zj, distinguishes which routing scheme to use for the packet, leaving zc

free for use as a counter or boolean flag by both schemes.

To summarize, the z-channel routing engine uses a sign check function on x and y as

its primary criterion in determining the routing instruction for an incoming packet. In

addition, a downloaded z-check further specifies which routing instruction to use. Thus, we

can now specify a general algorithm for the z-channel routing engine:

1. Update the x or y offset:

\x = x — 1 if link 0,
y = y — 1 if link 1,
x = x + 1 if link 2,
y = y + 1 if link 3,

2. Compute sign(x) and sign(y), where

sign(x) =
0 if x = 0,
1 if x < 0,
2 if x > 0.

3. If x = 0 and y = 0, buffer the packet at the local node.

4. Read the z-check from table entry at address Zxy = 3 x signfa:) + sign(y) — 1).

5. Compute the base address Zb — ZXy x ZT, where Zr is the maximum number of

outcomes for a z-check.

6. The z-check returns a value Zĉ k from 0, . . . , Zr — 1.

7. Read the routing instruction from the routing instruction table at address Zrti —

Zb + Zcftk

Despite the apparent complexity of some of these steps, they may be executed quite effi­

ciently. For example, if ZT is a power of 2, computing Zb and ZTn requires only concatenation

116

Address Check
Header Switching Mode

-checks Routing

Table
Update
Offsets

Switching Control

Reserved
Channel

Address

Sign(X) \ Zchk
Sign(Y) Table

^b~ Zxy Z1__
Header Parsing, Route Computation, and Selection

Figure 7.4: z-channel architecture.

operators with no actual logic. The other functions are somewhat more complex, but each

can easily be computed in a single cycle. Figure 7.4 shows the z-channel architecture,

which directly implements the above series of case statements. To reduce the implemen­

tation cost, all of the logic outside the z-check and routing instruction tables is shared

amongst the channels at the link.

7 .2 .3 z-op eration s

The final element needed to support flexible routing is the z-operation, which updates

the z value in the header to reflect the state of the packet after a routing primitive suc­

ceeds. Many routing schemes (especially non-minimal wormhole routing schemes) maintain

a limited state for the packet in the header. For example, this state might indicate whether

a packet has traversed any channels from a particular set or indicate the number of times a

packet has been misrouted. Since updating z for each of these applications requires knowl­

edge of which channel is reserved during the switching phase, we need to update z after the

switching control module has reserved the next channel for the packet.

Figure 7.5 shows how one such scheme, Dally and Aoki’s static dimension reversal rout­

ing algorithm [13], can be supported when z is updated after the switching control module

117

O]aeration
Zb Zc

Set Increment
Set Decrement
Set Pass

Operation Clear Increment
Increment z Clear Decrement
Decrement z Clear Pass

Pass z Pass Increment
Set z Pass Decrement

Clear z Pass Pass

(a) Single-valued 2 (b) Double-valued z

Table 7.2: 2-operation examples.

y
= o < o > o

Buffer
O n / pass z
Oqz+i / pass z
03*+1 / pass z

0 3z+1 / pass z
Ooz+i / pass 2

O n / pass 2
0o*+i / pass z
Ou / pass z
0 3z+1 / pass z

0o*+i / pass 2

O n / pass 2

03*+i / pass 2

Ooz+i / pass 2

03*+1 / pass 2

Oiz / pass z

N/A
G>iz / pass 2

Oqz+i / pass 2

03*+1 / pass 2

0 3z+i / pass 2

0o*+i / pass 2

O u / pass 2

(a) Routing table for channel Iiz, where z < r.

y
= 0 < 0 > 0

Buffer
O n / pass 2

Ooz+i / inc z
02*+i / inc 2

N/A

0O*+i / inc 2

Oiz / pass 2

02*+1 / inc 2

diz / pass 2

Ooz+i / inc 2

02*+i / inc 2

0o*+1 / inc 2

Oi* / pass 2

02*+1 / inc 2
02*+1 / inc 2

0U / pass 2

0O*+i / inc 2

O n / pass z
02*+1 / inc 2

Oo*+i / inc 2

02*+1 / inc 2

0iz / pass 2

Oo*+i / inc 2

(b) Routing table for channel / 3z, where z < r .

Figure 7.S: Dally and Aoki’s static dim ension reversal routing algorithm,
w ith no backtracking allowed.

118

Zop

F igure 7.6: z -operation a rch itec tu re .

has reserved a channel. In this scheme, the virtual channels of the network are partitioned

into r separate virtual networks. Packets are initially injected on the class-0 network with

the state variable z set to 0. They may be routed freely on any virtual channel in the class-0

network. If the packet is routed contrary to the dimension-ordering (i.e., from a channel on

the y-axis to a channel on the r-axis), z is incremented and the packet moves to the class-

z network. By making the class-r network strictly dimension-ordered and non-adaptive,

cycles (and thus deadlock) are prevented. To implement this scheme, we need to adjust

the value of z based on which channel is actually reserved when the routing instruction

executes, as in Figure 7.5.

Thus, for every candidate channel in the routing instruction, we also need to specify

a z-operation to execute if that channel is successfully reserved. Table 7.2 shows the z-

operations necessary to use z as a counter, boolean flag, or both. As seen in Figure 7.6,

z-operations are simple to implement, requiring only minimal changes to the switching

control module.

7.3 Switching Control

To make the z-channel feasible, however, we need to develop a routing instruction that

can compactly express almost any routing decision, and a simple hardware design capable

of executing this routing instruction. At a minimum, each routing instruction must be

119

capable of conveying both a candidate set of the desired channels, and some ordering of

these channels. In addition, every candidate channel will have some z-operation associated

with it that will update the packet state.

Typically, a routing decision takes a form similar to this example from the adaptive

wormhole microprogram of Section 3.4:
/* check -y high */

jump "resvdl3c2, get_13c2, link;
jump "resvdl3ci, get_13cl, link;

/ * check +x high */
jump "resvdl0c2, get_10c2, link;
jump "resvdlOcl, get_10cl, link;

/ * check low channels */
jump "resvdlScO, get_13c0, link;
jump "resvdlOcO, get_10c0, link;
jump true, block_1310;

In this example, the ordered candidate set of channels is (032,03i, 002, Ooi, 030,0oo).

While a bit-mask could easily convey the members of the set, expressing the ordering is

much more difficult. One approach would be to assign a unique ID to each channel, and

encode the candidate set as a bit string of these IDs. This approach offers the maximum

degree of flexibility, and is simple to encode and parse in hardware; the drawback, however,

is that it does not scale well. The PRC architecture, for example, includes 12 separate

transmission channels at each node; if we wished to express any ordering of these channels,

we would need 48 bits (4 bits per channel for 12 channels). Since we will need several bits

per channel to specify the z-operation, the actual instruction will be much larger.

Fortunately, however, most routing schemes partition the available virtual channels into

sets, where the channels in a set share common routing schemes. This notion of sets appears

in the switching code used in the microprograms presented in Chapter 3, where micropro­

grams often check several channels that are considered “equivalent” before proceeding to

check another set of channels. In the example above, the channels are partitioned into four

sets: the “high” channels on link 3 (O32 and O31), the high channels on link 0 (O02 and

Ooi), and a set for each low channel (O 3 0 and Ooo)- The order among channels within

each set is not important, but the sequence of the sets themselves may be crucial.3 Con­

sequently, we can simplify the problem by representing the candidate set as a sequence of

routing primitives, each specifying a set of equivalent channels.

3I.E. the routing algorithm doesn’t care whether 0 32 or 0 3J is checked first, as long as both are checked
before O 0 2 and Ooi.

120

Routing Primitive Routing Primitive Routing Primitive Switch

P.
1 1

P2
1 1

P3
t 1l 1

Link; Set : Z-op
1 1

Link; Set : Z-op
1 1

Link: Set : Z-op WH: H

Decreasing Priority

Figure 7.7: Routing instruction format.

7.3.1 R outing Instructions

Formally, we will define a routing instruction as an ordered sequence P1P2 . . . PdrH,

where each Pi is a routing primitive and H is some switching control flag. Each routing

primitive Pi specifies a set of candidate channels, while H indicates what action to take if

no routing primitive succeeds. A routing primitive succeeds if at least one of its candidate

channels is available and successfully reserved; if no selected channel is free or the reservation

fails, the routing primitive is deemed to have failed. To differentiate between the various

switching schemes, H specifies how to react when no channel can be reserved. For wormhole

switching, this requires that the routing instruction be reset and executed again; virtual cut-

through buffers the packet. Using this notation, the switching statement examined earlier

could be written as: Pi = 032031,^2 = 002001, *̂3 = 030, Pi = 0oo, H = block. Using

a routing instruction, we can express any possible routing decision that does not require

more than dr sets. For almost any routing scheme in a two-dimensional topology, dr = 4 is

sufficient.

7.3.2 Im plem enting R outing Instructions

Figure 7.7 shows one possible format of a routing instruction, where each routing prim­

itive specifies a composite channel mask and a z-operation. The composite address mask

consists of two components: an L-bit Link mask selecting the desired links, and a C-bit

mask (Set) specifying which channels to use on those links. For example, with a composite

address mask, if Link = OIIO2 and Set = IOI2, channels 022, 020, 012, and O\o would be

selected. Since this expansion can be implemented with a single level of logic, hardware

costs are minimal. While a full mask is simpler to process and allows the greatest flexibility

in selecting channels, a composite mask requires fewer bits to store. Since each routing

instruction contains several routing primitives, and storage for many routing instructions

121

Count

True if
Siicc Snot empty

Address
Expansion One of

^ Counter
> ■— Carry

Reduces
successful candidate

set to one entry

Latch

Succ & cany & W H / Buffer
Succ / count

S ucc / latchR outing Instructs A ck

R eserveIdle C heck C onnected

Ack

End o f packet

Figure 7.8: Address logic and controlling sta te m achine.

may be necessary, space considerations may often outweigh the slight performance gain of

a full mask.

In the .z-channel, the switching control phit H is taken directly from the routing header

of the packet. It consists of the current value of h (the hybrid switching counter) and a

wormhole-override flag w . If w is set, or h > 0, the packet will stall if blocked. Otherwise,

the packet buffers when blocked. Using this format of H, we can select wormhole, virtual

cut-through, or hybrid switching for any network size. Other formats of H are easily

possible.

Figure 7.8 shows the architecture and a simplified state machine for the switching con­

trol module. A counter controls the select inputs for a multiplexor; this selects the current

routing primitive to execute. After a routing primitive is selected, the address mask is

expanded and compared to the current reservation status to determine which (if any) se­

122

lected channels are available. If any channels are found, the success flag (succ) is set and a

hardwired function (one_of) is used to reduce the candidate channel set to only one entry.

The appropriate channel address is then latched and used for the reservation attem pt. If all

routing primitives fail, the carry flag is asserted when the counter overruns and the switch­

ing control tag checked to determine whether to execute the instruction again or “give up”

and buffer the packet.

7.4 Evaluation

The 2-channel illustrates the themes mentioned at the beginning of this thesis: there are

significant tradeoffs between the amount of flexibility provided and the utility of this flexibil­

ity, and the implementation and performance costs of this flexibility. The microcontroller-

based routing engine provides a maximal amount of flexibility with a reasonable implemen­

tation cost, but at a performance cost under certain conditions. The 2-channel, however,

restricts its application domain to certain network topologies and addressing schemes to

improve performance. The remainder of this section shows how the 2-channel actually

provides a useful degree of flexibility without paying a penalty in raw performance.

The performance of the 2-channel in routing a packet is shown by the simplified timing

diagram in Figure 7.9. Once the x and y phits have arrived from the link, the sign functions

and the initial offset can be computed in less than a single clock cycle. The 2-check can then

be read from the table in the next cycle, so that it will be stable by the time z arrives from

the link. The next cycle the 2-check executes, determining the final index (Zrti) into the

routing instruction table. The routing instruction is then read out of the table and is stable

by the time the switching tag H arrives. Thus, the header parsing, route computation, and

initial selection stages are completely finished by the time the routing header has arrived.

The only delay experienced by the packet is for the switching decision; i.e., the time nec­

essary to execute the routing instruction and reserve a channel. In the most common case,

the first routing primitive succeeds — this requires only a single cycle before a reservation

request is issued. In the PRC, the reservation request requires 3 cycles to complete; thus,

the minimum routing latency for the 2-channel architecture in the PRC is 3 cycles, or 3/8

of a flit cycle. This compares extremely well with other router architectures, which typi­

cally aim for a single flit delay for routing, and comes in well under our goal of a minimum

123

- H eader Flit Packet Body

(x X y X" z X~ h X byte 3 ^ byle 2 ^

Update
X or Y

Read
Zchk

Execute
Zchk

Read
RTI

Check
RTPl

Issue
Resv Ret]

CTBUS
Resv

CTBUS
Ack

CY C LE (8 cycles = I flit cycle)

Figure 7.9: z-channel routing tim eline, showing how th e routing decision is
m ade before th e entire header flit has arrived.

= 0
y

< 0 > 0 = 0
V

< 0 > 0

= 0 12 15 - 17 14 - 16 = 0 0 1 - 2 1 - 2

x < 0 12 - 14 18 - 22 17 - 22 x < 0 1 - 2 1 - 4 1 - 4

> 0 — — — > 0 — — —
(a) Microcontroller (b) z-channel

Table 7.3: Com parison o f routing latency (in cycles) for a packet arriving
on a high channel using W H A (D iag}-3.

routing latency of one flit cycle.

To illustrate the performance difference between the z-channel and the microcontroller

routing engines, Table 7.3 compares the routing latency for the adaptive diagonal-biased

wormhole routing scheme. Each entry gives the time (in cycles) required before issuing a

reservation request for a free channel; the first entry is for a channel in the first set checked

(highest priority) and the second is for a channel in the last set checked. For the z-channel,

the actual routing decision is made before the header has completely arrived; the only delay

encountered is that required to actually execute the routing instruction.

7 .4 .1 Im p lem en ta tio n C o st

The implementation cost of the z-channel routing engine is largely determined by the

size of the routing instruction tables. In turn, the size of these tables is largely dictated by

the number of virtual channels on each link and the number of outcomes of each z-check.

The following parameters determine the size of the z-check and routing instruction tables

124

Table Entries B its/Entry

z-check Table

Routing Ins. Table

Indirection Table

S(3d — 1) x [log2 Z„-\

S(3d - 1) riog2 Zr1 x dr(L + S + [log2Pn 1)

S(3d - 1) riog2 Zr 1 x flog2

Table 7.4: Formulas for determ ining .z-channel R A M sizes.

in a fc-ary n-cube topology.

Zn number of z-checks

Zr maximum number of outcomes for a z-check

L number of internode links

D number of dimensions in the topology (equal to n)

C number of virtual channels per link

S maximum number of channel sets. If S = C, every channel is a distinct set.

dr number of routing primitives in each outcome list

pn number of z-operations

Table 7-4 shows the size of the z-channel tables as a function of these parameters. Notice

that the cost of implementing the tables is dependent primarily on three main factors: the

maximum number of z-check outcomes Z rt the number of dimensions D in the topology

(which is not easily altered) and S , the maximum number of channel sets. The cost of

the tables may be dominated by the S 2 factor; if S = C, traffic routing and partitioning

flexibility is maximized, but at the cost of large tables.

There are several methods that could be used to reduce the size of these tables. The

first method divides the C channels at each link into S sets, where S < C. Each channel

within a set is treated identically by the actual routing engine; the switching control module,

however, can reserve individual channels from within a set. Thus, the additional virtual

channels can only be used to decrease the likelihood of blocking within a set. Table 7.5

shows the memory size of several possible configurations of the z-channel routing engine as

a function of ZT and S.

If we examine the routing algorithms implemented so far, we can observe that many of

the routing instructions are duplicated in several places. By sharing each routing instruction

between several entries in the routing table, we can reduce the implementation cost. This

125

5 = 3 5 = 8 C = 8 ,5 = 4, R = 32
Zr = 2 48 + 1920 128 + 7680 64 + 1568
Zr = 4 48 + 3840 128 + 15360 64 + 1728

PRC microcontroller routing engine: 5120 bit control store

Table 7.5: Sam ple m em ory sizes (in b its) for various 2-channel configura­
tio n s , w ith Z„ = 4, D = 2, dr = 4,pn = 5

can be done by introducing an indirection table between the 2-check and routing instruction

tables. The 2-check phase would execute normally, but the results would be used as the

index to the indirection table; this entry then points to the actual routing instruction in a

separate table with R entries. Table 7.4 gives the cost of the indirection table by itself.

7 .4 .2 A N e w P R C R o u tin g E ngine?

One implementation of the 2-channel router has been designed as a drop-in replacement

for the PRC’s microcontroller-based routing engines. This version provides the 2-checks and

2-operations necessary to use 2 as a single-valued unsigned integer counter or as a boolean

flag, which is sufficient for any of the offset-based schemes discussed in this work. More

details on this routing engine are given in Appendix D.

The routing engine is combined with a modified version of the PRC NIRX to create a

new receiver module that performs roughly the same functions as the existing PRC receiver

module. The 2-channel routing engine has three routing instruction tables (one per channel),

each holding sixteen 36-bit routing instructions. The combined 2-check table has twenty-

four 2-bit entries, for a total of 1,776 bits of RAM. In contrast to the PRC, the tables

are implemented using dual port RAMs, which increases their cost but allows the host to

dynamically modify their contents without interrupting router operation.

Designed under Epoch with the same parameters used for the PRC, the 2-channel re­

ceiver module requires 45,721 transistors in 3.39 square millimeters. The PRC receiver

module, on the other hand, has 65,639 transistors in 4.58 square millimeters. These figures

are also somewhat misleading, as they include a significant amount of logic in the NIRX

data queues themselves that is common to both the PRC receiver module and the 2-channel.

126

7.5 D iscussion

This chapter has introduced two innovations: the routing instruction and the z-channel

routing engine. The routing instruction allows routing decisions to be expressed and ex­

ecuted efficiently through a simple state machine, without restricting the switching tech­

niques. While this chapter has concentrated on supporting hybrid switching, the concept

can easily be extended to include other switching schemes or constrained to use only a single

switching scheme.

The degree of flexibility offered by the z-channel routing has several important benefits:

applications with knowledge of their communication patterns can tailor the routing and

switching schemes to distribute traffic evenly throughout the network. At the same time,

this flexibility also allows faulty links to be avoided and dynamic changes in the low-level

policies to adjust to the system’s current needs. The z-channel is capable of implementing

any distributed routing algorithm that meets certain criteria:

• Offset-based addressing in a regular or nearly regular topology

• Bases the routing decision only on the destination of the packet, the current channel,

the reservation status of local channels, and a state variable (z) in the header.

At the same time, the z-channel provides a unique level of performance: its routing latency

is equivalent to most fixed-scheme designs, while supporting a large number of hardware-

efficient unicast schemes.

There are several ways in which the z-channel architecture can be extended:

z-channel: Small irregular networks could bypass the z-channel routing engine by adding

a flag (either in the packet header or at each node) that would bypass the routing engine

and z-checks to directly access the routing instruction table with an index carried in the

header. This would provide a simple way to extend the capabilities of a single router

implementation. Other extensions to the z-channel architecture could be easily added in

the same manner. One example of this would be source-list routing: flagged packets would

carry a routing primitive directly within the header.

Further improvements in performance and cost may be gained at a minor loss in flex­

ibility by not specifying a separate z-check for every possible combination of sign(a;) and

sign(y). Instead, only one z-check would be specified for each channel. This would limit the

127

routing engine to those schemes that require only one z-check other than null. The benefits,

however, include eliminating one of the two RAM reads. In a system with very fast links,

this might make the difference between a routing latency lr = 1 and lr = 2.

R ou ting instructions: The switching decision time can be improved by executing several

routing primitives in parallel during each cycle. While an expanded architecture is costlier

to implement and may requires a longer clock cycle, it provides several benefits. When

routing primitives are checked sequentially, the potential exists for a low-priority channel

to be reserved even though a higher-priority channel has just been freed. Implementing the

routing primitive checks in parallel also allows the controller to reach low-priority channels

faster. The architecture also allows other potential organizations; for example, if each

routing instruction contained 4 primitives, 2 could be checked each cycle. This would

decrease the time required to cycle through the primitives while also requiring less logic

and allowing a faster cycle time than a fully parallel architecture. The actual method

chosen for executing routing instructions represents a tradeoff between performance and

implementation cost; the actual design may be optimized for any particular implementation.

Deadlock recovery may be added by specifying a maximum number of cycles through

the routing instruction. If this threshold is exceeded, the packet may be buffered locally,

misrouted, or aborted if the necessary reverse channel signaling is provided. Source-directed

deadlock recovery schemes (such as compressionless routing [34]) could also be supported

if the forward channel signalling is added.

128

CH APTER 8

Conclusions

This is the way the dissertation ends.

Not with a bang, but with future work.

— apologies to T.S. Eliot

In this work, we have explored both the benefits and costs of providing flexibility in

low-level network policies. While we have focused on multicomputer networks, many of the

results are applicable in other network domains, such as ATM and multistage networks.

In Chapter 2, we reviewed the major routing and switching schemes, and examined their

common properties. This analysis decomposed the general problem of packet routing into

four major steps:

H eader parsing: Extracting the packet destination from its routing header.

R ou te com putation: Determining which channels will bring a packet closer to its desti­

nation.

Selection: Ordering the candidate channels to reflect the routing scheme.

Switching: Executing the routing decision from the previous phases, and how to deal with

the case where a packet cannot immediately cut through.

Using this decomposition, we then proposed an architecture for a flexible router that in­

corporates small, programmable devices for processing incoming packet headers. To make

this scheme cost-effective, we provided programmable control of the shorter, more complex

steps that is shared amongst several channels; this also necessitated developing mechanisms

for offloading the time-consuming steps to channel-specific state machines.

129

In developing this architecture, we have made several contributions:

• R outing instructions. Section 3.2 introduced the routing primitive as a method

for communicating routing and switching decisions from an expensive shared resource

(the routing engine) to a much simpler, dedicated resource (the NIRX). This concept

was extended to the routing instruction, which incorporates ordered sets of channels

in Section 7.3; this allows the NIRX to implement the entire switching operation.

• M icrocontroller-based routing engine. Chapter 3 presented a microcontroller-

based routing engine architecture that offers maximal flexibility for selecting routing

algorithms, link selection functions, and switching schemes. Due to the relatively

high implementation cost of providing a routing engine for every incoming packet, we

devised a method for sharing this resource among several incoming packets without

significantly impacting performance.

• The Program m able R outing C ontroller combines the microcontroller-based rout­

ing engines with a powerful host interface, providing a uniquely adaptable platform

for point-to-point communications in distributed systems.

• The z-channel receiver addresses the issue of providing flexibility without compro­

mising performance. Rather than supporting as many routing and switching schemes

as possible, the z-channel focuses on providing flexible routing and switching for offset-

based routing schemes in regular topologies.

• H ybrid switching, a novel cut-through switching scheme that draws on a compar­

ative analysis of the performance of wormhole and virtual cut-through switching to

emphasize the better aspects of both.

To make a flexible network successful, support for accessing this flexibility must be

provided at any of several points:

• Allowing applications to directly specify network policies.

• Compile-time determination of the appropriate routing-switching scheme.

• Dynamic operating system support for recognizing situations and altering the network

schemes appropriately.

130

In addition, many topics still need further research within the area of providing flexible

point-to-point communication networks, including:

• R o u tin g -S w itch in g Schem e P e rfo rm a n ce . To fully utilize the flexibility of the

PRC and/or the 2-channel, we need to explore the performance of various routing-

switching schemes for a variety of application workloads. In particular, an emphasis

should be placed on examining realistic workloads.

• M u ltic a s t ro u tin g in s tru c tio n s . Extending the routing instruction format to in­

clude support for multicast schemes would allow the design of a simple, source-list

routed multicast network. Each header flit could carry a single routing instruction;

the routing engine itself would not require any logic other than tha t to execute the

instruction.

• M u ltic a s t ^-channel. Alternately, it would be interesting to consider the imple­

mentation of a path-based multicast router using the 2-channel concept. Rather than

branching packets down multiple outgoing links, the only multicast operation permit­

ted would be a simultaneous cut and buffer.

• z -channel h y b rid ro u te r . While Chapter 7 addressed many of the issues required

to provide a high-performance flexible router, many others still remain. Of particular

interest should be studies tha t assess the number of injection ports required (more

is not necessarily better), an appropriate queueing policy for on-chip buffers, and a

crossbar switch.

131

A P P E N D IC E S

132

A P P E N D IX A

PR C Internals

A .l Introduction

This appendix documents the internal architecture and details of the PRC, which was

presented in Chapter 4.

A .2 Transm itter Fetch U nits

A .2 .1 T X B U S Interface

The FSM tfu^tx-cntl (referred to as the T X F S M hereafter) controls the TFU’s inter­

actions with the TXBUS. The T X F S M is responsible for monitoring the status of the

channel’s page queue, retrieving data from the NPBUS whenever the local TFU FIFO has

space and there is a valid page tag in the page queue. The T X F S M is also responsible for

retrieving the timestamp and finally obtaining the CRC.

Normally, the T X F S M spins until it detects a page tag on the output of the page

queue. Upon seeing this, it places an SOP tag in the FIFO. After placing the SOP tag in

the FIFO, the T X F S M waits for the FIFO’s input ready to return to true. It then requests

the first longword of the message from the TXBUS. TX _R EQ is dropped when T X .G N T

is seen. Data will be latched into the FIFO when TX-A.CK rises. The T X F S M spins

in this mode until it receives a TX _A CK while T X JE O P is true. This signals that the

packet has finished. The T X F S M masks the tag such that a DATA tag goes into the FIFO

instead of an EOP tag. When space is again available in the FIFO, the T X F S M accesses

the TXBUS and retrieves the current timestamp. The next TXBUS access will retrieve

133

tag(l) tag(O) Meaning
0 0
0 1
1 0
1 1

Data
Mark
SOP
EOP

T able A .l : T F U F IF O T ag E ncodings.

the CRC. This longword is then marked with the EOP tag, signalling the CTBUS interface

that the packet is now complete. The T X F S M then returns to its normal wait state.

In order to avoid generating data requests to the TXBUS when there is not a valid tag

in the page queue, the T X F S M monitors the q rd y line, and uses this in combination with

the input ready of the local FIFO to decide when to request additional data.

A .2 .2 T F U FIFO

The FIFO in the TFU has two main functions: it provides local data storage for up to

four longwords at a time, and it also isolates the data retrieval functions of the TFU from the

data transfer functions. Thus, the TXBUS and CTBUS clocks need not be synchronized.

The area cost (versus a TFU implemented using two sets of transparent latches) is not

significant (on the order of 10 to 15 percent).

A .2.3 C T B U S In terface

The primary component of the CT Bus interface for the TFU is the FS M contained in

tfu.ct.ctl (hereafter referred to as the C T F S M . This C T F S M is responsible for monitoring

the output of the TFU FIFO and taking appropriate actions to deal with that output.

The C T F S M normally spins until an SOP tag appears on the output of the FIFO. At

this point, the C T F S M will reserve the associated C T T X . During the reservation process,

the C T F S M will shift out the SOP tag. Once the C T T X has been reserved, the C T F S M

will wait until a valid tag again appears at the output of the FIFO. If the tag is a DATA

tag, the C T F S M will simply access the CTBUS to the data. It will then shift the data

and tag out of the FIFO and wait until IR D A TA returns to true before transmitting more

data (if the data is available). If a M A R K tag appears on the output of the FIFO, the

C T F S M will first access the CTBUS to transmit a M ARK. This will then be followed

by the remainder of the data. Finally, the EOP tag is handled in a manner similar to the

134

pc-data(l) pc_data(0)
use-hold keep_resv

Table A .2: P C B U S M ode W rites.

M ARK tag, except that an EOP is transmitted on the CTBUS and the C T F S M will break

out of the main loop after transmitting the last byte. Once IRD A TA returns to true, the

C T F S M transmits a FREE command and waits for another SOP tag.

A .2 .4 P C B u s Interface

The TFU also possesses a simple interface from the PCBUS. This is a simple, write-only

interface whereby the IMU may write two flops within each TFU. These flops control how the

TFU obtains reservations and whether the TFU will keep a reservation after transmitting a

packet. These two variables are referred to as use_hold and keep_resv within the CTBUS

interface (the TXBUS interface never looks a t them). When use_hold is set, the TFU

will use the HOLD command to obtain reservations. If keep_resv is set, the TFU will

keep reservations after obtaining them. In addition, if the TFU is currently idle and does

not have a reservation, it will use HOLD to obtain one if both signals are set. Table A.2

describes the mapping between the bits of PC_DATA and the above signals.

A .3 Transmission Bus (T X B U S)

This section describes the TXBUS, shown in Figure 4,12. The TXBUS is divided into

two major buses: the TX Command Bus and the TX Data Bus. These buses may operate

independently. The TX Command Bus (TXCBUS) transmits requests for data from the

TFUs to the Command FIFO in the TX2NP interface. The TX Data Bus (TXDBUS) then

transfers data from the Data FIFO in the T X 2N P interface to the TFUs.

A .3.1 T h e T X C om m an d bus

The T F U s arbitrate for the TX Command Bus in the normal fashion. A binary priority

tree arbiter is implemented in txarbcntl.fin. Requests are expected to change with the rising

edge of CLK2, while the grant lines will change on the rising edge of CLK1. Along with the

normal request line associated with each T FU , there is also a special request line coming

135

tx_sp_req tx_cmd Command
0
1 0
1 1

Data Request
Timestamp read, accum CRC
CRC read, clear CRC

Table A.3: T X C om m and B us C om m ands.

crc_cmd(l) crc_cmd(0) Command
0 0
0 1
1 0
1 1

No Operation
Accumulate CRC
Clear CRC
Drive and Clear CRC

Table A.4: CRC G en era to r C om m ands.

from each T F U to the arbiter. A T FU that sets its special request line (tx_sp_req) is

indicating that it wishes to have control of both the Command and Data Buses during

the next cycle. This allows the T F U to execute timestamp and checksum reads during a

single bus cycle, without generating traffic in the NP Bus interface. Table A.3 describes the

commands available on the TX Command Bus. While other encodings are possible, they

are not used by the TFUs.

A .3.2 T he T X D ata bus

The TX Data Bus is responsible for removing data from the data FIFO and placing

it in the appropriate TFU . It has been designed to use a shadow register that reads out

the FIFO’s contents and then places these into the appropriate TFU . This allows the

TXBUS to potentially use every cycle available on the Data Bus. When tx_sp_req is set,

however, the TX Data Bus does not transfer data out of the FIFO. Instead, the TX Data

Bus becomes a slave to the Command Bus, allowing a T F U to read a timestamp or CRC

in a single bus cycle.

The TX Data Bus is controlled by the logic block in tx2np.tx.cntl. This block decodes the

channel id returned from the NPBUS interface through the data FIFO, sets the TXD_ACK

lines appropriately, and also generates the appropriate command to the CRC generator. It

also passes on the M ARK and EOP signals from the data FIFO to the TFU s. The CRC

commands are shown in Table A.4.

136

A .3 .3 N P B U S Interface

The NPBUS interface is fairly simple. The output ready of the command FIFO is used

as the NPBUS request. During the first phase of the NPBUS clock, the command FIFO is

shifted out, and the command stored in a shadow register. The stored crc_accum flag is

then saved into the data FIFO, along with the m ark and eop flags from the NPBUS. Note

that the channel ID reported to the NPBUS with a request is not that stored in the shadow

latch, but that coming from the command FIFO. The stored channel id is only used for

tagging the data as it goes into the data FIFO. The data FIFO is clocked off CLK2 from

the NPBUS.

A .3 .4 D esign N o tes

The TXBUS interface takes advantage of several properties of the TFU to simplify its

performance. It limits the T F U s to having only one outstanding request at a time. This

allows the TXBUS to ignore the input readies on the command and data FIFOs, since both

FIFOs contain a slot for each TFU. This does not affect the overall performance of the PRC,

since the CTBUS and NPBUS interfaces are much slower than the TXBUS. In simulations,

the TXBUS fills a T F U ’s FIFO faster than the CTBUS can empty it.

The TXBUS data FIFO’s output has probably been overdesigned. Since the NPBUS

cannot place a longword in the FIFO every cycle, it is unlikely that the capability of using

every cycle on the data bus will be used.

A.4 Reception B us (R X BU S)

The RXBUS is responsible for carrying data between the PRCRXs and the NPBUS

interface. The RXBUS is conceptually quite simple, as it consists of a CRC checker, logic

for accessing the timestamp register, and two FIFOs for storing data. The RXBUS unit

latches data and commands from the CTBUS whenever it is addressed, and transfers it

through the FIFOs to the memory interface. Table A.5 shows how the RXBUS command

lines are interpreted.

137

RXCMD
1 0 Function
0 0 Data (normal)
0 1 Mark
1 0 No operation
1 1 EOP

Table A .5: RX BU S C om m and Encodings.

A.5 M emory Interface

The Network Processor Bus Interface provides the PRC with a means of accessing the

host’s memory to store and retrieve packets. The architecture of the NPBUS interface is

depicted in Figure 4.9. The NPBUS interface essentially provides a single service to the

various channels: this service can best be described as data storage and retrieval without

need for worrying about addresses. The routing engine’s and TFU’s simply present requests

for service to the NPBUS interface, which then fills that request. The only break in this is

the inclusion of some control information for demarcating pages and packets.

N etw ork In terface O peration : The network interface of the PRC interfaces to eight

AMD TAXI (four each transmitters and receivers). To minimize the pin count of the PRC,

the transmitters are operated in a synchronous mode where data is transmitted each cycle.

Figure 4.10 shows a typical memory interface cycle. The external lines of the NPBUS

interface are summarized below:

np-clk: A 40 MHz clock used to clock the memory interface of the PRC.

np-owner-. Active-low grant line to PRC. This line is assumed to change with the falling

edge of np.clk, while npsync is active. Simulations assume the external signal changes

after some small (typically 4ns) delay from the falling edge of np.clk.

npsync : This active-high signal, when not active, denotes the first clock signal of a two-

cycle access. It should change on the falling edge of np.clk every clock cycle.

np.data(31:0): Bidirectional data bus. PRC will drive it on writes when it is the bus

owner. This bus takes less than 10 nsec to stabilize. Signals must be stable for 5 ns

before and after rising edge of np.clk and npsync. Pads are tristated the PRC is not

the bus master.

138

np.addr(20:0): Unidirectional address bus. The PRC will drive it whenever it is the bus

owner. Stabilizes within 10 ns of the rise of np.clk. The pads are tristated when the

PRC is not the bus master.

np.rw: Indicates a read or a write. (1 implies a write). This signal is driven to read

during idle periods, and is tristated when the PRC does not own the bus. Takes

approximately 5ns to stabilize.

In ternal Interface O peration: Internally, the NPBUS interface is based on a request-

grant paradigm with an implied two-phase clock. The RXBUS and TXBUS can make

requests independent of this clock, but the NPBUS will grant them coincident with the rise

of the first clock phase.

Page Tag Queues

The PRC maintains its page tags in this block. Page tags are written into the appropriate

queues by the host processor using the PCBUS. This unit provides bits 20 to 6 of the

np_addrfor small pages, bits 20 to 8 otherwise.

Page Offset R egisters

This unit consists of registers for each channel, incrementers, and length checks. It

provides bits 5 to 0 of the np_addrfor smalt pages and bits 7 to 0 for large pages, and also

generates the m ark signal. The unit looks at np-seiand drives the selected value into a

hold register at the rise of the first clock phase. The incremented value is latched back on

np.ctk2.

A .6 Cut-Through Bus (CTBUS)

The PRC and the Network Interface interact through the CTBUS. Access to the CTBUS

is dynamically determined by an arbitration unit in the PRC using a binary priority-tree

arbitration. The major lines of the bus include:

ct.data(31:0)‘. The data lines. These are driven by the current bus master. The value is

latched on the falling edge of CLK2 by the shadow registers.

139

Command Encoding Function
DTX 0x0 Data transfer
MARK 0x1 Indicates page fault following next data word
FREE 0x2 Reservation release
EOP 0x3 Indicates end-of-packet following next data work
RESV 0x4 Reservation request
HOLD 0x5 Place a “hold” on the next reservation of the addressed device(s)
CHK 0x6 Obtain reservation of “held” device(s)
NOOP 0x7 No operation

Table A.6: CTBUS commands.

ct.addr(12:0'): These lines determine which slaves are being addressed during the current

bus cycle. These lines are driven by the bus master as soon as possible after the grant

lines change.

ctjmst(3:0): These lines identify the current bus master. See Table A.7 for their interpre­

tation.

ext-req(ll:0): Active-high signals from the NIRXs requesting “mastery” over the CTBUS.

ext.gnt(ll:0): Active-high grant signals to the NIRX channels.

tfu.req(ll:0): Active-high CTBUS requests from the TFUs.

tfu.gnt(ll:0): Active-high CTBUS grant lines to the TFUs.

rx.req(3:0): Active-high CTBUS requests from the routing engines.

rx.gnt(3:0)\ Active-high CTBUS grants to the routing engines.

ctJr(23:0): Active-high signals from the slaves indicating they can accept data. These

lines are clocked by CLK2.

ct.ctl(2:0): Driven by the current bus master, these lines identify the type of transaction

being performed. Table A.6 shows the various command encodings. Similar to the

data lines, the control bus should be stable by the falling edge of CLK2.

cLack: Active-high acknowledgment of reservations; value changes on falling CLK1, is

read on rising CLK2 of the cycle following CTBUS access.

140

Master Encoding
NIRX Link 0 Channel 0 0000
NIRX Link 0 Channel 1 0001
NIRX Link 0 Channel 2 0010
NIRX Link 1 Channel 0 0100
NIRX Link 1 Channel 1 0101
NIRX Link 1 Channel 2 0110
NIRX Link 2 Channel 0 1000
NIRX Link 2 Channel 1 1001
NIRX Link 2 Channel 2 1010
NIRX Link 3 Channel 0 1100
NIRX Link 3 Channel 1 1101
NIRX Link 3 Channel 2 1110

Table A.7: C T B U S M aster encodings (ctm at.)

A .7 N etw ork Interface

The Network Interface provides parallel access from the PRC to eight AMD TAXI chips,

four each receivers and transmitters. To conserve on interface pins, two time-multiplexed

buses are used to communicate with the transm itters. To further reduce the pincount, the

strobe lines to the transmitters are also shared. The interface from the TAXI receivers to

the PRC is entirely asynchronous and driven by the receivers. The PRC simply latches the

command and data lines whenever receivers drive their strobe line, and then read them.

A .7 .1 E x te rn a l In terface

The network interface of the PRC has the following external pins. For all data, mode,

and command lines, values are stable for 10ns before and after the rise of the strobe. All

lines are active-high.

taxiclk: A 20 MHz, 33 percent duty cycle clock output by the PRC to drive the CLK input

of the TAXI transm itters and receivers.

taxi.rxstrb(3:0): STRBO lines from the TAXI RXs.

taxi-rx-mode(3:0): SI lines from TAXI RXs

taxi-nO-data(9:0): Data lines from TAXI RXO (+X)

taxi.rxl-data(9:0): D ata lines from TAXI RX1 (+Y)

141

Data Transfer Mode (mode = 1)
Cycle 9 8 7 6 5 4 | 3 2 1 0
0 CHN Data Byte 3
1 CMD Data Byte 2
2 C R C A c k 2 Data Byte 1
3 A c k L A c k O Data Byte 0

Channel 9 8
Channel 0 0 0
Channel 1 0 1
Channel 2 1 0

Command 9 8
DTX 0 0
MARK 0 1
FREE 1 0
EOP 1 1

Command mode (mode = 0)
Command 1 0
Null 1 1
AckO 1 0
Ackl 0 1
Ack2 0 0

Table A.8: Transm ission order for data through a TAXI TX.

taxi-rx2-data(9:0): Data lines from TAXI RX2 (-X)

taxLrx3-data(9:0): Data lines from TAXI RX3 (-Y)

taxi-rx0.cmd(1:0): Command lines from TAXI RXO (+X)

taxLrxl-cmdfl:0): Command lines from TAXI RX1 (+Y)

taxi-rx2-cmd(l:0): Command lines from TAXI RX2 (-X)

taxi.rx3.cmd(l :0): Command lines from TAXI RX3 (-Y)

taxi-txajmode: SI line to TAXI TXO (+X) and TX1 (+Y)

taxi-txb-mode: SI line to TAXI TX2 (-X) and TX3 (-Y)

taxi-txa.data(9:0): data lines to TAXI TXO (+X) and TX1 (+Y)

taxi-txb.data(9:0): data lines to TAXI TX2 (-X) and TX3 (-Y)

taxi-txa.cmd(l:0): command lines to TAXI TXO (+X) and TX1 (+Y)

taxi-txb.cmd(l:0): command lines to TAXI TX2 (-X) and TX3 (-Y)

taxi-txstrb(l:0): STRBO to TAXI TXs, strb(O) goes to TXO and TX2, strb (l) goes to

TX1 and TX3

142

PNC.9KJJCT r

r >

_ r
F ig u re A .l : C o n tro l in te rface re a d a n d w rite cycles.

A .8 Control Interface

The control interface of the PRC is a slave-only interface, with the external master

initiating all accesses. External should drive the preselect line low whenever the PRC is

not being accessed.

pc.addr(10:2): Address selects for the control interface. The bus is 9 bits wide, and as­

sumed to use bits 10 through 2 of the host interface (to avoid problems with unaligned

accesses). The six most significant bits are used to select an internal component, while

the other three carry a command. These lines must be stable at least 20ns before the

rise of pc.dstrb.

pc.data(31:0): Active-high data bus. These must be stable at least 20ns before pc.dstrb

during a write and held stable throughout that period. On a read, they will be stable

within 20ns of the address and select line stabilizing.

pc.dstrb: Active-low data strobe. It must be held active for a t least 25 ns during both

read and write cycles.

preselect: Active-low chip select. Must stabilize 20ns before the rise of pc.dstrb.

pc.rw: Signals a read or write access. A high (vdd) value signals a write. Must be stable

at least 20ns before the rise of pc-dstrb.

pre.intrpt: Active-low interrupt request line. Held low until cleared by a write to the

in tc tl register.

143

The control interface may also be used to monitor the CTBUS shadow registers by

reading the p c c td t and p cc tad registers. These registers Eire located at hex addresses

0xla8 and 0xla9 respectively. The registers are not clocked, so pc.dstrb is not required.

This capability is provided solely for testing purposes, and is not recommended for general

consumption — i.e., don’t try this at home!

A .9 Testing Logic

The following is an ordered list of components on the scan chain, beginning from the

scanin input. Thus, the last component in the list will be driving scanout.

1. RXBUS

(a) state(0:l): state of the ct2rx_ctl FSM.

2. NPINT

(a) state(0:2): state of the np_ctl FSM.

(b) rx.req.li latched RXBUS request for NP access

(c) clkl.en: latched NPCLK1 enable

(d) clkS.en: latched NPCLK2 enable

(e) txd.si.en: enables shift-in signal to TXD fifo

(f) nphaltJ: latched NPHALT

(g) tx.req.1: called SCANOUT, latched TXBUS NP request

3. TXBUS arbiter

(a) cycle(0:3): Used to determine current priority levels for the arbiter.

(b) tx.gnt(0:ll): The active-high grant signals to each TFU.

(c) txc.chan(0:3): The encoded channel id of the current bus master that will be

latched into the command FIFO.

(d) sp.req: An active-high signal that indicates the current cycle is a “special re­

quest" (either a timestamp or CRC read).

(e) tx.cmd.lat: Latched CMD bus signal

(f) tx.idle: An active high signal indicating that the current cycle is idle.

144

4. TFUSUPERBLK (TFUs 0-11) Each TFU has:

(a) fifo-foutJ: Stabilized IR for next slot from the FIFO.

(b) fifoJrJ : Stabilized input ready from the FIFO.

(c) qrdyJ: Stabilized output ready from the page queue.

(d) eop.tag: This flag used to drive an EOP tag into the FIFO, and is set by the

TXFSM.

(e) sopsi: This flag is used to generate a shift-in pulse into the FIFO for the SOP

page tag. It is set by the TXFSM.

(f) tx.ctLstate(0:2): The current state of the TXFSM.

(g) tx.req: The current request from the TFU for the TXBUS.

(h) fifo-orJ: Stabilized output ready from the FIFO.

(i) ct.state(0:3): Current state for the CTFSM.

(j) so,fig\ This flag is used to drive the shift-out signal to the FIFO.

(k) ctjreq: CTBUS request signal.

5. Reservation unit

(a) held(0:ll): Current held devices

(b) resvd(0:ll): Currently reserved devices

6. NITXO and NITX1

(a) state0(0:2): current state for NITX FSM 0

(b) state 1(0:2)'. current state for NITX FSM 1

7. CTBUS arbiter

(a) cycle(0:4): This value, which is the output from a counter, is used to determine

the priority of each channel.

(b) cLmsti(2:3): These lines indicate the current CTBUS master if it is an NIRX or

routing engine, but are inverted from the values shown in Table A.7.

(c) txct.en-bar: True when a TFU is granted

145

(d) nirx.wrt: True when a NIRX is granted

(e) ea:Lgnt(0:ll): The active-high grant lines for the NIRXs, these are sent to the

routing engines to allow them to drive the address lines.

(f) rx.gnt(0:3): The active-high grant lines for the routing engines.

(g) tfu-gnt(0:ll)'. The active-high grant lines sent to the TFUs.

(h) ct-idle: An active-high signal denoting the current bus cycle as idle. This signal

is only used within the arbiter.

8. NIRX blocks 0-3

(a) rxct.req: CTBUS request signal for the routing engine.

(b) ext.req(0:2): CTBUS request signal for the NIRXs.

146

A PPENDIX B

Routing Engine Internals

This appendix provides in depth information concerning the implementation of the

routing engine. This currently consists of the instruction encodings, sample instruction

timing diagrams, and some general figures used in the design of the RX.

147

NI
 C

ha
nn

el
 0

NI
 C

ha
nn

el
 t

NI
 C

ha
nn

el
 2

Status Flags
RESVZEROZERO

cfaO
RESVOKRegister File CARRY

chi
resvchk

ch2 B.READ

>ALUDT_IN ctaddrl

ctaddiOni2
A_READ

port_busnidinl

nil nidinO ctrtctl

31:24
ctdout3

23:16

15:8
ctdoull

7:0niO Control
Store

ctdoutO

PCDATA

Figure B .l: PRC routing engine internal architecture.

CT
DA

TA

C
TC

TL

ALU Operations
M (1 9) M (1S) M (1 7) M (1 6) M (15> M (1 4) M (1 3) M (1 2) M (U) M (1 0) M (9) M (8) M (7) M (6) M (5) M (4) M (S) M (2) M (l) M <0)

1 1 0 C * r ry
C o n tro l B Port Select A Port Select ALU Function Control

Carry Control
M (l6) M (1 5) ALU Carry Input

0 0 False (0)
0 1 Carry Flag
1 0 Zero Flag
1 1 Thie (1)

ALU Function Encodings
M (4> = 0

L ogie
F u n c t io n s

M (4) = IJ A r i th m e t ic O p e r a t io n s

M<3) M (2) M (l) M (O)
c a r r y in = 0
(n o c a r r y)

c a r r y in = 1
(w i th c a r r y)

0 0 0 0 A A minus 1 A
0 0 0 1 AB AB minus 1 AB
0 0 1 0 A + B AB minus 1 AB
0 0 1 1 1 minus 1 (2’s comp) zero
0 1 0 0 A + B A plus (A + B) A plus (A + B) plus 1
0 1 0 1 B AB plus {A + B) AB plus (A + B) plus 1
0 1 1 0 A® B A minus B minus 1 A minus B
0 1 1 1 A + B A + B (A + B) plus 1
1 0 0 0 AB A plus (A + B) A plus (A + B) plus 1
1 0 0 1 A © B A plus B A plus B plus 1
1 0 1 0 B AB plus (A + B) AB plus (A + B) plus 1
1 0 1 1 A + B (A + B) (A + B) plus 1
1 1 0 0 0 A plus A A plus A plus 1
1 1 0 1 AB AB plus A AB plus A plus 1
1 1 1 0 AB AB plus A AB plus A plus 1
1 1 I 1 A A A plus 1

Table B .l: ALU Instruction Encoding.

ALU Port A Select
M (9) M (S) M (7) M (6> M (5) Device Selected

0 0 0 0 0 Reg 0 (REGO)
0 0 0 0 1 Reg 1 (REG1)
0 0 0 1 0 Reg 2 (REG2)
0 0 0 1 1 Reg 3 (REG3)
0 0 1 0 0 Reg 4 (REG4)
0 0 1 0 1 Reg 5 (REGS)
0 0 1 1 0 Reg 6 (REG6)
0 0 1 1 1 Reg 7 (REG7)
0 1 0 0 0 Reg 8 (REG8)
0 1 0 0 1 Reg 9 (REG9)
0 1 0 1 0 Reg 10 (REG10)
0 1 0 1 1 Reg 11 (REG11)
0 1 1 0 0 Reg 12 (REG12)
0 1 1 0 1 Reg 13 (REG13)
0 1 1 1 0 Trap Reg 0 (TRAPO)
0 1 1 I 1 Trap Reg 1 (TRAP1)
1 0 1 0 0 PCBus FIFO In (PCDIN)
1 0 1 0 1 NI Data In 0 (NIDO)
1 0 1 1 0 NI Data In 1 (NIDI)
1 0 1 1 1 NI Data In 2 (NID2)
1 1 0 0 0 NI Data In 3 (NID3)
1 1 0 0 1 CTBus Resv Feedback 0 (CTFBO)
1 1 0 1 0 CTBus Data Feedback 1 (CTFBl)
1 1 1 1 0 Accumulator (ACC)

ALU Port B Select
M (L 3) M (1 2) M (l l) M (1 0) Device Selected

0 0 0 0 Reg 0 (REGO)
0 0 0 1 Reg 1 (REGl)
0 0 1 0 Reg 2 (REG2)
0 0 1 1 Reg 3 (REG3)
0 1 0 0 Reg 4 (REG4)
0 1 0 1 Reg 5 (REG5)
0 1 1 0 Reg 6 (REG6)
0 1 1 1 Reg 7 (REG7)
1 0 0 0 Reg 8 (REG8)
1 0 0 1 Reg 9 (REG9)
1 0 1 0 Reg 10 (REG10)
1 0 1 1 Reg 11 (REG11)
1 1 0 0 Reg 12 (REG12)
1 1 0 1 Reg 13 (REG13)
1 1 1 0 Trap Reg 0 (TRAPO)
1 1 1 1 Trap Reg 1 (TRAP1)

Table B.2: ALU Operand Selection Coding.

Load Constant
M (1 9) M (1 S) M (1T) M (I6) M (1 5) M (1 4) M (1 3) M (l2) M (l l) M (1 0) M (9) M (8) M <7) M (6) M (5) M (4) M (3) M (2) M (l) M (0)

1 0 1 RX CT Destination Select Immediate Data X

0
1

Do not trigger controller
Trigger controller

0
1

Do not trigger CTBUS interface
Trigger CTBUS interface

Transfer Operation
M {19) M (1B) M (1 7) M (1 6) M (1 5) M (1 4) M (1 3) M (1 2) M (l l) M {10) M (9) M (B) M (T) M (6) M (S) M (4) M (3) M<2) M (I) M (0)

1 0 0 RX CT Destination Select Source Select X X X X X

0
1

Do not trigger controller
Trigger controller

0
1

Do not trigger CTBUS interface
Trigger CTBUS interface

Table B.3: Transfer Instructions.

S o u rc e S e le c t F ie ld
M<9) M W M (7) M {6) M (6 D e v ic e S e lec te d

0 0 0 0 0 R e g 0 (R E G O)
0 0 0 0 1 R e g 1 (R E G 1)
0 0 0 1 0 R e g 2 (R E G 2)
0 0 0 1 1 R e g 3 (R E G 3)
0 0 1 0 0 R e g 4 (R E G 4)
0 0 1 0 1 R eg 5 (R E G 5)
0 0 1 1 0 R eg 6 (R E G 6)
0 0 1 1 1 R eg 7 (R E G 7)
0 1 0 0 0 R eg 8 (R E G 6)
0 1 0 0 1 R e g 9 (R E G 9)
0 1 0 I 0 R e g 10 (R E G 1 0)
0 1 0 1 I R e g 11 (R E G 1 1)
0 1 1 0 0 R e g 12 (R E G 1 2)
0 1 1 0 1 R eg 13 (R E G 1 3)
0 1 1 1 0 T r a p R eg 0 (T R A P O)
0 1 1 1 I T r a p R eg I (T R A P l)
1 0 1 0 0 P C B u i F I F O In (P C D IN)
1 0 1 0 1 N I D a ta In 0 (N ID O)
1 0 1 1 0 N I D a ta In 1 (N I D I)
1 0 1 1 1 N I D a ta In 2 (N 1D 2)
1 1 0 0 0 N I D a ta In 3 (N ID 3)
1 1 0 0 1 C T B u s R e sv F e e d b a c k 0 (C T F B O)
1 1 0 1 0 C T B u s R e sv F e e d b a c k 1 (C T F B l)
1 1 1 1 0 A c c u m u la to r (A C C)

| D e s t in a t io n S e le c t F ie ld |
D ev ice S e le c te d

0 0 0 0 0 R e g 0 (R E G O)
0 0 0 0 1 R e g 1 (R E G l)
0 0 0 1 0 R e g 2 (R E G 2)
0 0 0 1 1 R e g 3 (R E G S)
0 0 1 0 0 R e g 4 (R E G 4)
0 0 1 0 1 R e g 5 (R E G S)
0 0 1 1 0 R e g 6 (R E G S)
0 0 1 1 I R e g 7 (R E G 7)
0 1 0 0 0 R e g 8 (R E G S)
0 1 0 0 1 R e g 9 (R E G 9)
0 1 0 1 0 R eg 10 (R E G 1 0)
0 I 0 1 1 R e g 11 (R B G l l)
0 1 1 0 0 R e g 12 (R E G 1 2)
0 1 1 0 1 R e g 13 (R E G 1 3)
0 1 I 1 0 TVap R eg 0 (T R A P O)
0 1 1 1 1 T ta p R e g 1 (T R A P l)
1 0 1 0 1 C T B U S D a ta O u t R e g 0 (C T D O)
1 0 1 1 0 C T B U S D a ta O u t R e g 1 (C T D l)
1 0 I 1 1 C T B U S D a ta O u t R e g 2 (C T D 2)
1 1 0 0 0 C T B U S D a ta O u t R eg 3 (C T D 3)
1 1 0 0 1 C T B U S A d d re s s R e g 0 (C T A D D R O)
1 1 0 1 0 C T B U S A d d re s s R e g 1 (C T A D D R 1)
1 I 0 1 1 C T B U S C o n tro l R e g (C T C T L)
1 1 1 0 0 P C B U S F I F O o u t (P C D O U T)

Table B.4: Source and Destination Operand Coding.

Set Flag Operation
M (1 9) M (1S) M (1 7) M (1 6) M (1 5) M (1 4) M <13) M (I2) M (l l) M (1 0) M (9) M (8) M (7) M (6) M (5) M (4) M (3J M (2) M (l) M (0)

1 1 1 D a ta S a lec t X Flag Mask

Flag Select Mask
M (1 3) M (1 2) M (l l) M (1 0) M (9) M (8) M<7> M (6) M (5) M (4) M (3) M {2) M {1) M (0) Flag Modified

1 User Flag 0
1 - User Flag 1

1 - - User Flag 2
1 User Flag 3

1 User Flag 4
1 User Flag 5

1 Read NIO
1 Read Nil

1 Read NI2
Read selected NI

1 Set channel to NIO
1 Set channel to N il

- 1 Set channel to NT2
1 - Set channel to null

Data Select
M (1 6) M (1 5) Flag Input

0 0 False (0)
0 1 Carry Flag
1 0 Zero Flag
1 I True (1)

Table B.5: Flag Manipulation Instruction Encoding.

Wait Operation
M (1B) M (1 8) M (1 7) M (1 6) M (t5) M (H) M (1 3) M (1 2) M (1 1) M (1 0) M (9) M (8) M (7) M (6) M (5) M (4) M (3) M (2) M (l> M (0)

0 0 TVap Condition Select Trap 0 Mask Trap 1
Mask

Link
Enb

0
1

Evaluate conditions normally
Automatically jump to TRAPl address

Do not store return Link
Store return Link

0
1

Trap 0 Select Mask Trap 1 Select Mask
M (8) M (7) M (6) M (S) Trap Condition Prty M (4) M (3) M (2) M (l> Trap Condition Prty

* - - 1 CT Interface Busy 3 - - - 1 NI 0 data ready flag 1
- - 1 - NI 0 data ready flag 0 - - 1 - NI I data ready flag 2
- 1 - - NI 1 data ready flag 1 - 1 - - NI 2 data ready flag 3
1 - - - NI 2 data ready flag 2 1 - - - PCDIN OR flag 0

Table B.6: Wait Instruction Encoding.

Jump Operation
M (1 9) M (1B) M (1 7) M {16) M (1 5) M (1 4) M (1 3) M (1 2) M (l l) M (1 0) M (9) M (8) M (7) M (6) M (5) M<4) M (3) M (2) M (l) M {0)

0 1 0 Condition Select Target Address Link
Enb

Do not store return Link
Store return Link

0

1

Return Operation
M (1 9) M (1 8) M (1 7) M (1 6) M {1S) M (1 4) M (1 3) M (1 2) M (l l) M (1 0) M (9) M {8) M (7) M (6) M (5) M (4) M (3) M (2) M (l) M (0)

0 1 1 Condition Select X X X X X X X X 0

Table B.7: Jump and Return Instruction Encoding.

C o n d i t io n S e le c t P a r t I I
M (1G) M (1 5) M (1 4) M (I3) M (1 2) M (l l) M (1 0) M (9> C o n d i t io n S e le c te d

- - I 0 0 0 0 0 R e*v S t a t L in k 0 C h a n 0
- - L 0 0 0 0 1 R e tv S t a t L in k 0 O b a n 1
* I 0 0 0 X 0 R e tv S t a t L in k 0 C h a n 2
• - 1 0 0 0 1 1 R e tv S t a t L in k 1 C h a n 0
- - 1 0 0 1 0 0 R e tv S t a t L in k 1 C h a n 1
- - 1 0 0 1 0 1 R e tv S t a t L tn k 1 C h a n 2
- - L 0 0 1 1 0 R e tv S t a t L in k 2 C h a n 0
- - 1 0 0 1 1 1 R e tv S t a t L in k 2 C h a n 1
- - 1 0 1 0 0 0 R e tv S t a t L in k 2 C h a n 2
- - 1 0 1 0 0 1 R e tv S t a t L in k 3 C h a n 0
- - 1 0 X 0 1 0 R e tv S t a t L in k 3 C h a n 1
- - 1 0 1 0 X 1 R e tv S t a t L in k 3 C h a n 2
- - 1 0 X 1 0 0 A c k F la g
■ 1 0 1 1 0 1 P C D 1 N o u t p u t r e a d y
- - I 0 X X 1 0 P C D O U T in p u t r e a d y
- - 1 0 1 1 1 X R a n d o m B it
- - 1 1 0 0 0 0 U te r F la g 0
- 1 0 0 0 1 U te r F la g 1
• 1 1 1 1 0 U te r F la g 2
- - 1 1 0 0 1 X U te r F la g 3
- - 1 1 0 1 0 0 U te r F la g 4
- - 1 1 0 1 0 1 U se r F la g 5
- - I 1 0 1 1 0 R a w F e e d b a ck Z e ro F la g

- 1 I 0 1 1 1 N I 0 D R F la g
- - 1 1 1 0 0 0 N I 1 D R F la g
- - 1 1 1 0 Q 1 N I 2 D R F la g
- - 1 1 1 0 X 0 R e s e rv a tio n O K F la g
* - 1 I X 0 X 1 N b e l D R F la g
- - 1 1 X 1 0 0 C T In te r fa c e B u sy
• - 1 X 1 1 0 X N I C R C F la g
0 0 1 X 1 X 1 0 C h an n e lO F la g
0 1 1 1 1 I 1 0 C h a n n e l 1 F la g
1 0 1 1 1 X t 0 C h a n n e l2 F la g
0 0 1 1 1 1 X 1 F a lte
0 1 1 1 1 1 1 1 C a r ry F la g
1 0 1 1 1 1 1 1 Z ero F la g
1 i 1 [1 1 1 1 TVue

C o n d i t io n S e le c t P a r t I
M (1 6) M (1 5) M (I4) M (1 3) M (1 2) M (1 I) M (1 0) M (9) C o n d i t io n S e le c te d

- 0 0 0 0 0 0 R e tv S t a t L in k 0 C h a n 0
- . 0 0 0 0 0 1 R e tv S t a t L in k 0 C h a n 1
- - 0 0 0 0 1 0 R e tv S t a t L in k 0 C h a n 2
- * 0 0 0 0 1 1 R e tv S t a t L in k 1 C h a n 0
- - 0 0 0 1 0 0 R e tv S t a t L in k 1 C h a n 1
- - 0 0 0 X 0 1 R e tv S t a t L in k 1 C h a n 2
- - 0 0 0 X 1 0 R e tv S t a t L in k 2 C h a n 0
- - 0 0 0 X 1 1 R e*v S t a t L in k 2 C h a n X

- 0 0 1 0 0 0 R e rv S t a t L in k 2 C h a n 2
- 0 0 t 0 0 1 R e tv S t a t L in k 3 C h a n 0
- 0 0 1 0 I 0 R e tv S t a t L in k 3 C h a n 1
- . 0 0 1 0 1 1 R e tv S t a t L in k 3 C h a n 2
- - 0 0 1 1 0 0 A ck F la g

- 0 0 1 0 1 P C D 1 N o u t p u t r e a d y
- - 0 0 1 1 1 0 P C D O U T in p u t r e a d y
- . 0 0 1 1 1 1 R a n d o m B it
- - 0 1 0 0 0 0 U te r F la g 0
- - 0 1 0 0 0 1 U te r F la g X

- 0 1 0 0 X 0 U te r F la g 2
- - 0 1 D 0 1 L U te r F la g 3
- • 0 1 0 1 0 0 U te r F la g 4
- • 0 1 0 I 0 1 U se r F la g 3
- - 0 1 0 1 1 0 R e tv F e e d b a ck Z ero F la g
- - 0 1 0 1 1 1 N I 0 d a t a re a d y flag
* - 0 1 1 0 0 0 N I 1 d a t a re a d y flag
* - 0 1 1 0 0 1 N I 2 d a t a re a d y flag
• - 0 1 1 0 1 0 R e te rv a t io n O K F la g
- - 0 I 1 0 1 1 a e le c te d N I D R flag
- - 0 1 1 1 0 0 C T In te r fa c e B u ay
- - 0 1 1 1 0 1 N I C R C flag
0 0 0 1 1 t 1 0 C h an n e lO F la g
0 1 0 1 1 1 1 0 C h a n n e l 1 F la g
1 0 0 1 1 1 1 0 C h a n n e l2 F la g
0 0 0 1 1 X 1 1 F a lte
0 1 0 1 1 1 1 1 C a r r y F la g
1 0 0 1 I 1 1 1 Z ero F la g
1 1 0 1 1 1 1 X T ru e

Table B.8: Condition Code Selection Coding.

B .l Internal A rchitecture o f th e R X

The operation of the RX is managed by several cooperating state machines. Most

of these state machines are dedicated to control and operation of the external interfaces:

the inbound NI interface and the outbound CTBUS interface. The last state machine is

dedicated to instruction sequencing and the maintenance of user and status flags.

In describing the implementation of the RX we will first discuss the operation/control

of the major interface units and then describe the operation of the microsequencer which

controls all of these units under the direction of the downloaded microcode.

B .1 .1 D a ta o u tp u t m o d u le

The outbound CTBUS interface is intended to isolate the //sequencer from the details of

the CTBUS. The operations are complicated by the fact that the interface has to implement

the byte-level flow-control associated with the semantics of the IR D A TA lines on the

CTBUS transmitters when they are selected as slaves.

The outbound CTBUS interface contains four 8 bit registers that are addressable as the

target of a transfer. The c td register stores the data that will drive the ctdata lines of the

CTBUS during the next CTBUS transaction. The ctaddrO and c ta d d r l register store the

address mask used to select slaves during the next CTBUS transaction. The interpretation

of the values can be found in Table B.9. The c tc t l stores the CTBUS command that will

be issued.

This interface is also used to transfer routing primitives to the state machine that will

control the bulk of a packet’s movements.

Again, similar to the RXBUS, the CTBUS interface conveys its status with the c tb u sy

flags and is triggered with the C T G O line. The A C K flag will contain the value of the

C T B U S A C K as driven by the slave device or reservation status unit as appropriate.

B . l . 2 In stru ctio n seq u en c in g

Microinstruction sequencing and decoding is controlled by the state useq machine im­

plemented in the VSYN file $PROJECT_HOHE/verilog/useq.v and the registers shown in

Figure B.2.

157

6 5
c ta d d r l
4 3 2 1 0 5

ctaddrO
4 3 2 1 0

Device addressed

1 Local node (to buffer)
- 1 Link 3, channel 2

1 Link 3, channel 1
1 Link 3, channel 0

- - - - 1 - - - - - - Link 2, channel 2
- - - - - 1 - - - - - Link 2, channel 1

1 Link 2, channel 0
1 Link 1, channel 2

1 - Link 1, channel 1
- 1 Link 1, channel 0

- - - - - - - - 1 - - Link 0, channel 2
- 1 - Link 0, channel 1

1 Link 0, channel 0

Table B.9: ctaddrl and ctaddrO device mapping.

OUT IN
INCR

PCINC

LATCH LATCH

CLKUPC LINKENCLK

SEL UPC CLH UPC

Control Store
256 Words

20 bits

MIRENCLK

PBUS

MIR

Figure B.2: Partial structure o f the address sequencing hardware o f the RX.

158

download proactive 1 preactive2

blocked active load

F igure B.3: Sim plified s ta te d iag ram for m icrosequencer con tro ller.

159

A PPE N D IX C

The PRC M icro-Assembler

C .l Introduction

This appendix describes the input language grammar for the PRC’s micro-assembler

(prcmasm). This micro-assembler was originally written by James Dolter [21] and has been

updated to support the new structure of the PRC. The assembler is written to use the GNU

C+-1- compiler g+-1-, GNU Bison, and GNU Flex.

C.2 Object file format

The object file produced by prcmasm is a simple ASCII test file separated into two

sections, the preamble and the code. The preamble section, lines identified by having a

in column 1, provides information to assist the user in identifying the source of the

object code. The code section consists of a series of address-data number pairs separated

by a “/ ”. There is only one pair per line and only addresses containing data will be placed

in the code section. The numbers are in hexadecimal without a proceeding “Ox” and each

line is terminated with a

C.3 Input Grammar

Below is a pseudo BNF grammar abstracted from the bison input file used to produce

the parser section of the prcmasm. All non-terminals are bracketed by (/) and alternatives

are separated by |. This notation may cause a little confusion since | is also used in the

boolean OR operations in the a lu instruction.
(program) —> m icroprogram (identifier) ; (body)

160

(body) —> begin (statement.list> end

(const-1) —»> const (identifier) (int)

(statement.list) —► (statement-list) (statement) | (statement)

(statement) -*
(recv.decl) ; |
(const_l) ; |
(orgin) ; |
(instructJine) ; |
(label) (instructJine) ;

(int) —¥ (decint) | (octint) | (hexint)

(decint) —> (nzdigit) | (decint) (digit)
(octint) -»■ 0 (octdigit) -> (octint) (octdigit)
(hexint) ->> Ox (hexdigit) (hexint) (hexdigit)
(octdigit) - > 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

(digit) —»• (octdigit) | 8 | 9

(hexdigit) (digit) | a | b | c | d | e | f

(alpha) —►
a |b|c|d|e|flg|
h|i|j|k|l|mjn|
o|p|q|r|s|t|u|
v|w |x|y|z

(identifier) —>
(alpha) |
(identifier) (alpha) |
(identifier) (digit)

(label) (identifier) :

(orgin) -+ address (int)

(recv_decl) —► receiver (int)

(instructJine) —►
(noopJnstruct) |
(aluJnstruct) |
(ldcJnstruct) |
(xfer Jnstruct) |
(waitJnstruct) |

161

(jumpjnstruct) |
(retJnstruct) |
{set Jnstruct)

(noop Jnstruct) noop

(alu Jnstruct) -*■
alu (mux.select) , o p era tion (iiit) |
alu (alu-op)

(mux-select) —> false | carry | zero | tru e

(alu_op) -¥
(source) + (alu.b) |
(source) + (alu.b) + 1 |
(source) - (alu.b) - 1 |
(source) - (alu_b) |
(source) |
(source) + 1 |
(source) - 1 |
A (source) |
(source) | (alu.b) |
(source) | A (alu.b) |
A (source) | (alu.b) |
(source) & (alu.b) |
(source) & A (alu.b) |
A (source) & (alu_b) |
(source) exor (alu_b) |
(source) exnor (alu_b) |
-11
0 |
1

(ldc jnstruct) —>
ldc (int) , (dest) (goop) |
ldc (identifier) , (dest) (goop)

(goop) -»
, go r tp j
, go r tp , go c tbus |
, go c tbus |
, go c tbus , go r tp J
e

(dest) —►
regO |
re g l j
reg2 |

162

reg3 |
reg4 |
reg5 j
reg6 j
reg7 |
reg8 j
reg9 j
reglO |
r e g l l |
re g l2)
r e g l3 j
trapO |
t r a p l |
ctdO |
c td l j
ctd2 j
ctd3 j
ctaddrO |
c ta d d r l j
c tc tl |
pcdout

(source) —>
regO |
re g l |
reg2 j
reg3 j
reg4 |
reg5 |
reg6 j
reg7 j
reg8 j
regO j
reglO |
r e g l l j
r e g l2 j
r e g l 3 j
ctfbO |
c tfb l |
nidO |
n id i j
nid2 j
nid3 |
acc |
pcdin |
trapO J
t r a p l

163

regO |
re g l |
reg2 j
reg3 j
reg4 |
reg5 |
reg6 j
reg7 |
reg8 j
reg9 j
reglO |
r e g l l j
r e g l 2 j
r e g l 3 j
trapO |
t r a p l

(xfer_instruct) —> xfer (source) , (dest) (goop)

(wait_instruct) w ait (polarity) (condition) (trapO_handler) (trapl.handler)
(link_control)

polarity —> /-«_r | £

(trapO .handler) —» , trapO ((trapO_conds)) | e

(trapl .handler) —» , t r a p l ((trapl_conds)) | e

(trapO.conds) -> (trapO_conds) , (trapO_cond) J (trapO.cond)

(trapO-cond) -> A c tbusy [niO | n il | ni2

(trapl.conds) —> (trapl.conds) , (trapl_cond) | (trapl_cond)

(trapl.cond) —► pcinor | niO | n i l | ni2

(condition) —►
ack |
c tbusy |
ft) |
n|f2|
f 3 |
f 4 |
f t |
rsvstatO |
r s v s ta t l |

164

rsvstat2 |
rsvstat3 |
rsvstat4 J
rsvstat5 |
rsvstatfi |
rsvstat7 |
rsvstat8 |
rsvstat9 |
rsvstatlO [
rsv sta tll |
niO |
n il j
ni2 |
chO |
ch i j
ch2 |
nidata |
nicrc |
resvok |
resvzero |
random |
false |
carry |
pcinor j
pcoutir |
zero |
true

(jumpJnstruct) -4 jm p (polarity) (condition) , (identifier) (link_control)

(ret Jnstruct) -4 re t (polarity) (condition)

(link_control) -4 , link — e

(setJnstruct) -4
set (validJlags) |
clear (validJlags) |
flag (mux-select) , (validJlags)

(valid-flags) -4 (validJags) , (validJlag) | (validJlag)

(validJlag) -4
ro |
fi I
f2 j
f3 j
f4 |
f5 I

165

rdniO |
rdnil j
rdni2 |
rdnidata |
chO |
ch i |
ch2 |
chnull |
all

A P P E N D IX D

A 2-channel R outing Engine

This appendix describes the version of the 2-channel that was designed as a possible

replacement for the microcontroller-based routing engine in the PRC. This implementation

provides the 2-checks and 2-operations necessary to use z as a single-valued unsigned integer

counter or as a boolean flag, which is sufficient for any of the schemes presented in Chapter 7.

If necessary, the architecture could be easily modified to support a double-valued scheme;

this allows two routing schemes to coexist on the same channel when one or more of them

needs access to a separate state variable.

Several z-checks have been eliminated by subsuming them with other operations. For

example, the boolean z-check is identical to the z sign check for an unsigned value of 2,

2-check Outcomes Encoding Offset
2 sign check 2 > 0 01 1

2 = 0 01 0
x-y comparison 1*1 > Ivl 00 1

1*1 < \v\ 00 0
z-c comparison \z\ > \c\ 10 1

*\ < \c\ 10 0
random 11 1

11 0

T ab le D .l : 2-checks in th e ex am p le im p lem en ta tio n .

167

z-operation Encoding
Decrement z 00
Increment z 01
Pass z 10
Clear z 11

Table D.2: z-operations in the exam ple im plem entation.

Num z-checks Zn = 4
Max outcomes Zr = 2
Num links L = 4
Num dimensions D = 2
Channels per link C = 3
Channel sets 5 = 3
RTPs/RTI dr = 4
Num z-ops Vn = 4

Table D.3: General z-channel param eters.

no additional operator is necessary. In addition, no null check is required; this can be

implemented by using z-check and simply using the same routing instruction for every

outcome.

Table D.2 shows the necessary z-operations. One notable omission, at first glance, is

the set operation. This operation, however, is provided by the increment operator; for any

value of z save 255, incrementing it will result in a non-zero z. In addition, if we are setting

z at some node, we already know whether it is non-zero or not from the earlier z-check, and

can choose not to set it again if it is already set. Eliminating the set operation reduces the

number of bits required to specify the z-operator from 3 to 2, which reduces the overall size

of each routing instruction from 40 bits to 36 bits, a savings of 10 percent.

D .l O peration

The example z-channel closely follows the architecture presented in Figure 7.4, although

there are several minor changes. The PRC links have an internode flow control window of 2

168

flits; consequently, each receiver must be able to buffer two unacknowledged flits at any one

time. Thus, the data register in the switching control module is implemented as a two-deep

FIFO (for unacknowledged flits) and a separate data register for the (acknowledged) flit

that is waiting for the CTBUS. The actual z-channel routing engine operates almost en­

tirely asynchronously; the same state machine that removes data from the link FIFO issues

the routing instruction during the same cycle that it forwards the header to the flow-control

FIFO. To eliminate excess registers from the switching control module, each channel’s mod-
A

ule includes its own RAM for the routing instruction table; the routing instruction issue

simply reloads the address register for the RAM and sets a single buffer/cut flag. If the

buffer flag is set, the packet is automatically buffered.

A host-controlled runJoad signal is used to trigger or suspend full operation of the

z-channel routing engine; when it is cleared, any incoming packet will be buffered automat­

ically. This signal has two main uses: ensuring that packets will not be forwarded until the

routing tables have been initialized, and temporarily halting packet routing to download a

new routing-switching scheme(s).

169

BIBLIO G RAPH Y

170

BIBLIO G RAPH Y

[1] Am79168/Am79169 TAXI-275 Technical Manual, Advanced Micro Devices, ban-O.lm-
1/93/0 17490a edition.

[2] H. G. Badr and S. Podar, “An optimal shortest-path routing policy for network com­
puters with regular mesh-connected topologies,” IEEE Trans. Computers, vol. C-38,
no. 10, pp. 1362-1370, October 1989.

[3] K. Bolding, S.-C. Cheung, S.-E. Choi, C. Ebeling, S. Hassoun, T. A. Ngo, and R. Wille,
“The Chaos router chip: Design and implementation of an adaptive router," in Proc.
VLSI, September 1993.

[4] R. Boppana and S. Chalasani, “A comparison of adaptive wormhole routing algo­
rithms,” in Proc. In t’l Symposium on Computer Architecture, pp. 351-360, 1993.

[5] S. Borkar, R. Cohn, et al., “Supporting systolic and memory communication in iWarp,”
in Proc. In t’l Symposium on Computer Architecture, pp. 70-81, 1990.

[6] G. A. Boughton, “Arctic routing chip,” in Proc. Parallel Computer Routing and Com­
munication Workshop, pp. 310-317, June 1994.

[7] C.-M. Chiang and L. M. Ni, “Multi-address encoding for multicast,” in Proc. Parallel
Computer Routing and Communication Workshop, pp. 146-160, May 1994.

[8] A. A. Chien, “A cost and speed model for A>ary n-cube wormhole routers,” in Proc.
Hot Interconnects, August 1993.

[9] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina, “Architectural requirements of
parallel scientific applications with explicit communication,” in Proc. In t’l Symposium
on Computer Architecture, pp. 2-13, May 1993.

[10] W. J. Dally and C. L. Seitz, “The torus routing chip,” Journal of Distributed Comput­
ing, vol. 1, no. 3, pp. 187-196, 1986.

[11] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multiprocessor inter­
connection networks,” IEEE Trans. Computers, vol. C-36, no. 5, pp. 547-553, May
1987.

[12] W. Dally, “Virtual-chaniiel flow control,” IEEE Trans. Parallel and Distributed Sys­
tems, vol. 3, no. 2, pp. 194-205, March 1992.

171

[13] W. Dally and H. Aoki, “Deadlock-free adaptive routing in multicomputer networks
using virtual channels,” IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 4,
pp. 466-475, April 1993.

[14] W. J. Dally, L. R. Dennison, D. Harris, K. Kan, and T. Zanthopoulos, “The reliable
router: A reliable and high-performance communication substrate for parallel comput­
ers,” in Proc. Parallel Computer Routing and Communication Workshop, pp. 241-255,
June 1994.

[15] W. J. Dally, J. A. Piske, J. S. Keen, R. A. Lethin, M. D. Noakes, P. R. Nuth, R. E.
Davison, and G. A. Fyler, “The Message-Driven Processor: A multicomputer process­
ing node with efficient mechanisms,” IEEE Micro, pp. 23-39, April 1992.

[16] C. Dalton, G. Watson, D. Banks, C. Calamvokis, A. Edwards, and J. Lumley, “After­
burner,” IEEE Network Magazine, pp. 36-43, July 1993.

[17] S. P. Dandamudi and D. L. Eager, “The effectiveness of combining in reducing hot-
Spot contention in hypercube multicomputers,” in Proc. International Conference on
Parallel Processing, pp. 1-291 - 1-295, 1990.

[18] S. P. Dandamudi and D. L. Eager, “Hot-spot contention in binary hypercube networks,”
IEEE Trans. Computers, pp. 239 - 244, February 1992.

[19] A. L. Davis, “Mayfly: A general-purpose, scalable, parallel processing architecture,”
Lisp and Symbolic Computation, vol. 5, no. 1/2, pp. 7-47, May 1992.

[20] J. W. Dolter, P. Ramanathan, and K. G. Shin, “A microprogrammable VLSI routing
controller for HARTS,” in International Conference on Computer Design: VLSI in
Computers, pp. 160-163, October 1989.

[21] J. Dolter, A Programmable Routing Controller Supporting Multi-Mode Routing and
Switching in Distributed Real-Time Systems, PhD thesis, University of Michigan,
September 1993.

[22] J. Duato, “A new theory of deadlock-free adaptive routing in wormhole networks,”
IEEE Trans. Parallel and Distributed Systems, pp. 1320-1331, December 1993.

[23] W. Feng, J. Rexford, S. Daniel, A. Mehra, and K. Shin, “Tailoring routing and switch­
ing schemes to application workloads in multicomputer networks,” Computer Science
and Engineering Technical Report CSE-TR-239-95, University of Michigan, May 1995.

[24] W. Feng, J. Rexford, A. Mehra, S. Daniel, J. Dolter, and K. Shin, “Architectural
support for managing communication in point-to-point distributed systems,” Technical
Report CSE-TR-197-94, University of Michigan, March 1994.

[25] D. Ferrari, “Client requirements for real-time communication services,” IEEE Com­
munications Magazine, pp. 65-72, November 1990.

[26] F. Hady and D. Smitley, “Adaptive vs. non-adaptive routing: An application driven
case study,” Technical Report SRC-TR-93-099, Supercomputing Research Center,
Bowie, Maryland, March 1993.

172

[27] J.-M. Hsu and P. Banerjee, “Performance measurement and trace driven simulation of
parallel CAD and numeric applications on a hypercube multicomputer,” IEEE Trans.
Parallel and Distributed Systems, vol. 3, no. 4, pp. 451-464, July 1992.

[28] N. C. Hutchinson and L. L. Peterson, “The af-Kernel: An architecture for implement­
ing network protocols,” IEEE Trans. Software Engineering, vol. 17, no. 1, pp. 1-13,
January 1991.

[29] H. Kanakia and D. R. Cheriton, “The VMP network adapter board (NAB): high-
performance network communication for multiprocessors," Proceedings of the SIG-
COMM Symposium, pp. 175-187, August 1988.

[30] D. D. Kandlur and K. G. Shin, “Reliable broadcast algorithms for HARTS,” ACM
Trans. Computer Systems, vol. 9, no. 4, pp. 374-398, November 1991.

[31] D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-time communication in multi-hop
networks,” in Proc. Int. Conf. on Distributed Computer Systems, pp. 300-307, May
1991.

[32] V. Karamcheti and A. A. Chien, “Software overhead in messaging layers: Where does
the time go?,” in Proc. Int ’I Conf. on Architectural Support for Programming Languages
and Operating Systems, pp. 51-60, October 1994.

[33] P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer communication
switching technique,” Computer Networks, vol. 3, no. 4, pp. 267-286, September 1979.

[34] J. Kim, Z. Liu, and A. Chien, “Compressionless routing: A framework for adaptive
and fault-tolerant routing,” in Proc. In t’l Symposium on Computer Architecture, pp.
289-300, April 1994.

[35] J. H. Kim and A. A. Chien, “Evaluation of wormhole routed networks under hybrid
traffic loads,” in Proc. Hawaii In t’l Conf. on System Sciences, pp. 276-285, January
1993.

[36] S. Konstantinidou, “Segment router: A novel router design for parallel computers,” in
Symposium on Parallel Algorithms and Architectures, June 1994.

[37] S. Konstantinidou and L. Snyder, “Chaos router: Architecture and performance,” in
Proc. In t’l Symposium on Computer Architecture, pp. 212-221, May 1991.

[38] S. Konstantinidou and L. Snyder, “The Chaos router,” IEEE Trans. Computers, vol.
43, no. 12, pp. 1386-1397, December 1994.

[39] A. Kovaleski, S. Ratheal, and F. Lombardi, “An architecture and interconnection
scheme for time-sliced buses in real-time processing,” Proc. Real-Time Systems Sym­
posium, pp. 20-27, 1986.

[40] H. S. Lee, H. W. Kim, J. Kim, and S. Lee, “Adaptive virtual cut-through as an alter­
native to wormhole routing,” in Proc. International Conference on Parallel Processing,
pp. 1-68 - 1-75, 1995.

173

[41] C. Leiserson, Z. Abuhamdeh, D. Douglas, C. Feynman, M. Ganmukhi, J. Hill, W. D.
Hillis, B. Kuszmaul, M. St. Pierre, D. Wells, M. Wong, S.-W. Yang, and R. Zak, “The
network architecture of the connection machine CM-5,” in Symposium on Parallel
Algorithms and Architectures, pp. 272-285, June 1992.

[42] J.-P. Li and M. W. Mutka, “Priority based real-time communication for large scale
wormhole networks,” in Proc. International Parallel Processing Symposium, pp. 433-
438, April 1994.

[43] O. Menzilcioglu and S. Schlick, “Nectar CAB: A high-speed network processor,” in
Proc. Int. Conf. on Distributed Computer Systems, pp. 508-515, May 1991.

[44] M. W. Mutka, “Using rate monotonic scheduling technology for real-time communica­
tions in a wormhole network,” in Proc. Workshop on Parallel and Distributed Real-Time
Systems, April 1994.

[45] J. Ngai and C. Seitz, “A framework for adaptive routing in multicomputer networks,”
in Symposium on Parallel Algorithms and Architectures, pp. 1-9, June 1989.

[46] L. Ni and P. McKinley, “A survey of wormhole routing techniques in direct networks,”
IEEE Computer, pp. 62-76, February 1993.

[47] L. M. Ni, “Should scalable parallel computers support efficient hardware multicast?,”
Technical Report MSU-CPS-ACS-107, Michigan State University, Lansing, Michigan,
April 1995.

[48] A. G. Nowatzyk, M. C. Browne, E. J. Kelly, and M. Parkin, “S-Connect: from networks
of workstations to supercomputer performance,” in Proc. Int 'I Symposium on Computer
Architecture, pp. 71-82, June 1995.

[49] W. Oed, The Cray Research Massively Parallel Processor System: Cray T3D, Novem­
ber 1993.

[50] S. S. Owicki and A. R. Karlin, “Factors in the performance of the AN1 computer
network,” in Proc. ACM SIGMETRICS, pp. 167-180, June 1992.

[51] D. K. Panda, “Issues in designing efficient and practical algorithms for collective com­
munication on wormhole-routed systems,” in Proc. of the 1995 ICPP Workshop on
Challenges for Parallel Processing, pp. 8 - 15, 1995.

[52] H. Park and D. P. Agrawal, “WICI: An efficient switching scheme for large scalable
networks,” in Proc. IEEE Symposium on Parallel and Distributed Processing, pp. 385
- 392, 1994.

[53] C. Peterson, J. Sutton, and P. Wiley, “iWarp: A 100-MOPS LIW microprocessor for
multicomputers,” IEEE Micro, pp. 26-29,81-87, June 1991.

[54] G. F. Pfister and V. A. Norton, “‘Hot-spot’ contention and combining in multistage
interconnection networks,” IEEE Trans. Computers, pp. 943 - 948, October 1985.

[55] P. Ramanathan, K. G. Shin, and R. W. Butler, “Fault-tolerant clock synchronization
in distributed systems,” IEEE Computer, pp. 33-42, October 1990.

174

[56] S. Ramany and D. Eager, “The interaction between virtual channel flow control and
adaptive routing in wormhole networks," in Proc. International Conference on Super­
computing, pp. 136-145, July 1994.

[57] J. Rexford, J. Dolter, W. Feng, and K. G. Shin, “PP-MESS-SIM: A simulator for
evaluating multicomputer interconnection networks,” in Proc. Simulation Symposium,
pp. 84-93, April 1995.

[58] J. Rexford, J. Dolter, and K. G. Shin, “Hardware support for controlled interaction
of guaranteed and best-effort communication,” in Proc. Workshop on Parallel and
Distributed Real-Time Systems, pp. 188-193, April 1994.

[59] J. Rexford, J. Hall, and K. G. Shin, “A router architecture for real-time point-to-point
networks," To appear in Proc. In t’l Symposium on Computer Architecture, May 1996.

[60] J. Rexford and K. G. Shin, “Support for multiple classes of traffic in multicomputer
routers,” in Proc. Parallel Computer Routing and Communication Workshop, pp. 116-
130, May 1994.

[61] C. L. Seitz and W. Su, “A family of routing and communication chips based on the
Mosaic,” in Symp. on Integrated Systems: Proc. of the Washington Conf., 1993.

[62] K. G. Shin, “HARTS: A distributed real-time architecture," IEEE Computer, vol. 24,
no. 5, pp. 25-35, May 1991.

[63] D. Smitley, F. Hady, and D. Burns, “Hnet: A high-performance network evaluation
testbed,” Technical Report SRC-TR-91-049, Supercomputing Research Center, Insti­
tute for Defense Analyses, December 1991.

[64] P. Steenkiste, “A systematic approach to host interface design for high-speed networks,”
IEEE Computer, 1994.

[65] C. B. Stunkel, D. G. Shea, B. Abali, M. M. Denneau, P. H. Hochschild, D. J. Joseph,
B. J. Nathanson, M. Tsao, and P. R. Varker, “Architecture and implementation of
Vulcan,” in Proc. International Parallel Processing Symposium, pp. 268-274, April
1994.

[66] Y. Tamir and G. Frazier, “Dynamically-allocated multi-queue buffers for VLSI com­
munication switches,” IEEE Trans. Computers, vol. 41, no. 6, pp. 725-737, June 1992.

[67] L. M. Thompson, “Using pSOS+ for embedded real-time computing,” in Proc. COM-
PCON, pp. 282-288, 1990.

[68] P. Thompson, “Concurrent interconnect for parallel systems,” The Computer Journal,
vol. 36, no. 8, pp. 778-784, 1993.

[69] K. Toda, K. Nishida, E. Takahashi, N. Michell, and Y. Yamaguchi, “Design and imple­
mentation of a priority forwarding router chip for real-time interconnection networks,”
International Journal of Mini and Microcomputers, vol. 17, no. 1, pp. 42-51, 1995.

[70] Anjan K. V. and T. M. Pinkston, “An efficient, fully adaptive deadlock recovery
scheme: DISH A," in Proc. In t’l Symposium on Computer Architecture, pp. 201-210,
June 1995.

175

[71] X. Zhang, “System effects of interprocessor communication latency in multicomputers,”
IE EE Micro, pp. 12-15,52-55, April 1991.

176

