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CHAPTER 1

INTRODUCTION

1.1 Motivation

Real-time systems are an increasingly important class of computer applications. A com

puting system is considered real-time if it has deadlines associated with its computations. 

Examples of real-time systems include advanced manufacturing systems, air traffic control 

systems, telecommunications systems, nuclear reactor controllers, and “sm art” weapons 

systems. In a hard real-time system, such as a machine controller, missing a  single deadline 

could result in catastrophic failure. Soft real-time systems can tolerate occasionally missing 

deadlines. Although the techniques presented in this dissertation could be used for soft 

real-time systems, we focus primarily on hard real-time systems.

As real-time applications become more complex and need to process large volumes of 

data, it becomes desirable to use database systems to manage data shared between soft

ware components (tasks, processes, modules). For example, in a manufacturing system, a 

database can be used to store part specifications, part programs, machine characteristics, 

control equation parameters, histories of performance data, and the current state of the 

machine(s). If this information is available in a  database, it can be used to support both 

low-level servo control and high-level supervisory control of manufacturing machines. Fur

thermore, it becomes much easier to integrate new sensors and software modules into the 

controller because their interactions with other parts of the controller can be defined in 

terms of operations on the database.

The primary difficulty in using databases in real-time systems is th a t conventional 

database systems (i.e., file- or memory-based non-real-time database systems) are not de

signed to provide the performance levels or predictability needed by high-speed real-time 

systems. High-speed is a relative term; we consider a real-time system to be high-speed if

1
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it requires worst-case transaction times of less than a millisecond. This definition of high

speed is somewhat arbitrary, but it is motivated by the hard deadline constraints of machine 

tool controllers that have control tasks with periods of about one millisecond. In the future, 

we expect conventional database performance to improve, but by then high-speed real-time 

applications will require even greater performance.

It is possible to improve database performance by keeping the database in memory and 

avoiding disk I/O  during transaction processing [23]. However, conventional main memory 

databases are designed to maximize average throughput, not to minimize individual trans

action times. Typical average transactions times for simple transactions in main memory 

databases (600 milliseconds for TPK  [45], about 69 milliseconds for the main memory version 

of Starburst with concurrency control disabled [42], over 100 milliseconds for PRISMA/DB 

[4]) are much too slow for high-speed real-time systems. Furthermore, these main mem

ory database systems do not provide worst-case guarantees for their transactions. Hard 

real-time systems need worst-case guarantees to ensure that all deadlines will be met.

Of the prior real-time database prototypes reported in [13, 41, 34, 70, 77, 88], none 

provides hard real-time guarantees, and none has average transaction times of less than 100 

milliseconds. Thus, these database systems are not suitable for high-speed hard real-time 

systems such as machine tool controllers. Because suitable database management systems 

have been unavailable, hard real-time systems have traditionally used ad hoc methods for 

data management. However, ad hoc methods do not provide the flexibility needed for the 

complex, evolving software architectures of next-generation real-time systems. To provide 

greater flexibility and to manage the complexity of future real-time applications, better 

real-time data management technology is needed.

This dissertation describes the design and implementation of a real-time database system 

called MDARTS (Multiprocessor Database Architecture for Real-Time Systems). MDARTS 

is a framework for developing object-oriented data management services suitable for high

speed, hard real-time applications on uniprocessor or multiprocessor computing platforms. 

Our MDARTS prototype is an extensible library of data management classes written in 

CH—h, an object-oriented programming language [85]. Applications using MDARTS can 

specify real-time requirements for transactions in the declarations of their database ob

jects, and they can query database objects to determine real-time characteristics prior to 

performing transactions.

MDARTS is not intended to duplicate the services of a  traditional database system,
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since many of these features are expensive to provide and are not necessary in the context 

of most hard real-time systems. For example, most database systems provide interpreters 

for ad hoc queries expressed in a database language such as SQL. Machine control systems 

have no need for ad hoc queries. In this application domain, the raw performance of 

the database is much more important than report-generating features or the ability to 

provide multiple views of the data. A database purist may, upon reading this dissertation, 

conclude that we have not created a database system at all. That would be a perfectly valid 

interpretation, given a fairly narrow definition of a database system. However, MDARTS 

does address an important problem domain that has not been adequately addressed before. 

Specifically, MDARTS provides flexible data management services tha t are compatible with 

the extremely demanding performance requirements of high-speed hard real-time systems.

We characterize the real-time performance of MDARTS with the term transaction time. 

An MDARTS transaction time is composed of two components. The first component rep

resents local task execution time required to perform a transaction. The second component 

represents blocking delays caused by a transaction either for concurrency control, I/O , or 

communication with other processes. The two components of an MDARTS transaction time 

correspond to the parameters needed to perform real-time schedulability analysis of tasks 

that use MDARTS. For simplicity, we sometimes refer to a transaction time as a single 

number. In those cases, we mean the sum of the two components. The sum of the two 

transaction time components corresponds to the response time metric commonly used in 

conventional database systems.

MDARTS uses semantic information supplied by application tasks to adjust its data 

management services during object initialization and to reserve sufficient resources to meet 

the requirements (or to signal a problem, if the requirements cannot be met). For example, 

an application might specify that only one task will be updating a  particular database 

object. Given this semantic information, MDARTS can choose a  database class that is 

optimized for single-writer concurrency control.

Transactions with guaranteed transaction times are executed directly by application 

tasks rather than by separate database servers. In this way, MDARTS avoids the system 

overhead of context switching and inter-process communication implicit in most database 

systems. Our prototype implementation can guarantee transaction times of less than 100 

microseconds for simple, memory-based transactions typical of machine controllers. In this 

context, the transaction times consist entirely of local task execution time (the blocking
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times are zero since busy waiting is used for concurrency control). These performance 

levels are achieved using commercially available multiprocessor hardware and a  commercial 

real-time operating system kernel (20 MHz 68030 processors running VxWorks). These 

processors are fairly slow by today’s standards, and with modern processors performance 

could be improved by at least an order of magnitude. MDARTS also provides network access 

to remote objects through proxy objects that forward requests to database servers via remote 

procedure calls (RPC). The relatively slow RPC transactions provided by MDARTS servers 

do not delay the fast memory-based transactions executed directly by application tasks on 

the multiprocessor. Except for variations in transaction time guarantees, the locations and 

implementations of MDARTS objects are transparent to applications.

1.2 Background

1.2.1 R ea l-T im e C om puting

A computation is defined as real-time if its correctness depends on the time at which it 

completes. In other words, the computations have deadlines associated with them. Real

time systems can be categorized as either hard or soft real-time. In a soft real-time system, 

the value of the computations is sensitive to deadlines, but the system will not fail if 

some deadlines are occasionally missed. Examples of soft real-time systems include on-line 

transaction systems such as program trading or airline reservation systems. Hard real-time 

systems have strict deadlines; catastrophic failure can occur if even one of these deadlines is 

missed. For example, a  manufacturing machine controller may recompute its control signals 

every 1 or 2 milliseconds. Failure to meet this deadline could cause the machine to become 

unstable and malfunction, possibly with dire consequences.

A common misconception about real-time computing is that it is equivalent to high

speed computing [82]. Actually, there are fundamental differences between the two. Whereas 

high-speed computing refers to average performance levels, real-time computing requires ab

solute performance levels. To guard against failure, hard real-time systems are typically 

designed using worst-case assumptions about all operations. If the average case differs 

significantly from the worst case, this will lead to severe underutilization of resources. Fur

thermore, real-time systems must keep up with external events and changes in the system 

being monitored. Conventional software is not constrained to respond as quickly or as 

predictably to external events. Because of these fundamental differences, algorithms and
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software architectures suitable for high-speed computing often are inadequate for real-time 

systems.

1.2.2 R eal-T im e D ata  M anagem ent

Historically, real-time system designers have taken an ad hoc approach to data  manage

ment. Shared data are sometimes passed between tasks via message queues and sometimes 

kept a t predetermined locations in shared memory. For simple systems with limited inter

task data  coupling, an ad hoc approach to data sharing suffices. However, as data  volume 

increases and software becomes more complex, ad hoc data  management becomes inade

quate.

The Next Generation Workstation/Machine Controller (NGC) for autom ated factories 

is representative of the class of complex, distributed real-time architectures that requires 

da ta  management services [2, 51]. The NGC is a software architecture specification for 

advanced cell-level machine tool controllers. In this context, cell-level refers to a manu

facturing system workcell, which is a factory component tha t might contain one or more 

robots, a computer-controlled milling machine, etc. The NGC architecture was designed 

for high-performance computing platforms such as VME-based shared-memory multiproces

sors. An NGC-compatible controller consists of multiple hardware and software components 

possibly supplied by different vendors. Decomposition of NGC software components into 

separate tasks on multiple CPUs complicates data  management. Shared data must be made 

accessible to, and used consistently by, all tasks that access them. It is also necessary to 

control concurrent access to prevent data  corruption. Clearly, these requirements match 

the traditional capabilities of database management systems. Therefore, the NGC specifies 

a  database called the Information Base Subsystem (IBS) to provide data  sharing and com

munication between different software modules. For real-time tasks, the IBS should also 

provide strict transaction-time guarantees. Interestingly, the NGC does not provide any 

specification of transaction time requirements for the IBS. This is a serious limitation in 

the NGC architecture.

Real-time systems such as the NGC require database services, but they do not require 

all features provided by conventional database systems. D ata values representing the state 

of the controlled system can change very rapidly, sometimes thousands of times per second. 

I t is too expensive to provide traditional database transaction semantics in this context. In 

particular, data persistence and failure recoverability are not needed for data corresponding
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to transient sensor readings. Furthermore, often only one task will be performing updates 

to a  given data  value. Therefore, it is possible to optimize the concurrency control strategy 

to match the semantics of the application.

1.2 .3  R ea l-T im e D atabase R esearch

Several researchers have recently investigated real-time database systems (RTDBSs). 

For a  database system to be suitable for a real-time system, it must have fast and pre

dictable transaction times. Prior RTDBS research investigates three primary strategies for 

improving the performance and predictability of database transactions: 1) use memory- 

based databases, 2) schedule transactions according to task priorities and/or deadlines, and

3) reduce delays and uncertainties associated with concurrency control. To this list, we add:

4) avoid the overhead associated with a client-server architecture, and 5) make maximum 

use of parallelism on multiprocessor systems.

M ain Memory Databases

Some RTDBS researchers propose using main memory databases to eliminate blocking 

time uncertainties associated with disk I/O  during database transactions [71, 80]. There 

has also been significant interest recently in using main memory databases to increase 

performance for conventional transaction processing systems [4, 23, 42, 45]. Garcia-Molina 

and Salem present a nice overview of main memory database research in [23]. The primary 

limitation of conventional main memory database systems, from the perspective of hard 

real-time applications, is that these database systems are designed to maximize average 

transaction throughput rather than to minimize worst-case individual transaction times. For 

example, the TPK  multiprocessor main memory database system reported in [45] achieves 

an average throughput of over 1,300 transactions per second on a multiprocessor with five 

one-MIPS processors.

If T PK ’s 1,300 transactions per second corresponded to a guaranteed transaction time 

of one millisecond, it would be sufficient for many hard real-time systems (especially since 

much faster processors are now available). However, T PK  achieves this average performance 

level by processing 650 transactions as a group. The database does not commit an individual 

transaction until the entire group is processed. The average execution time to process a 

group of 650 transactions is about 400 milliseconds (these are fairly simple transactions). 

Communication and context-switch overhead further delay the response times of individual
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transactions so that the average response time is about 600 milliseconds. The authors 

report tha t 99% of transactions in their experiments completed within one second. This 

implies that some transactions had response times over one second (more than 1,000 times 

slower than the average throughput implies). Therefore, this system is not well-suited to the 

needs of high-speed hard real-time systems. Like TPK, MDARTS is designed for shared- 

memory multiprocessors. However, MDARTS avoids the system overhead tha t led the TPK 

designers to process transactions in groups. MDARTS transactions tha t directly access data 

in shared memory require no context switching or inter-process communication. Therefore, 

MDARTS transactions need not be batched together to achieve high throughput and fast 

individual transaction times.

Clearly, using main memory does not in itself yield a real-time database system. The 

database system must be designed specifically for the needs of real-time applications. 

MDARTS combines main memory with parallel transaction execution performed by appli

cation tasks rather than database server tasks. Data integrity and concurrency control are 

supported by MDARTS since all data  access is through the transaction methods exported 

by the database objects. This transaction execution model maximizes the performance 

benefits of using main memory because it eliminates the overhead implicit in client-server 

architectures. None of the prior work in RTDBSs considers the possibility of application 

tasks executing transactions themselves.

Transaction and I/O  Scheduling

Several researchers have investigated transaction and I/O  scheduling algorithms that 

support different real-time needs and priorities [1,12, 62, 83, 76]. Some commercial database 

systems support priority-based transaction scheduling [25, 64]. By servicing high-priority 

tasks first, the database can provide faster and more predictable performance for trans

actions submitted by high-priority tasks. In this case, low-priority tasks experience de

graded performance. File-based databases in particular can benefit from transaction and 

I/O  scheduling according to priorities. Memory-based databases benefit less because the 

scheduling overhead may become a significant percentage of the transaction processing 

time. One of the difficulties with database transaction scheduling is that interactions with 

the operating system’s task scheduler must be considered.



Serializability and Concurrency Control

Locks are often used in database systems to guarantee serializability. Serializability is a 

transaction property that means the effect of running interleaved concurrent transactions is 

equivalent to  running them in some serial order. Serializability is the most widely accepted 

criterion for correct concurrency control. It is useful since it permits transactions to be 

designed as if they had exclusive access to the database. A major source of performance 

uncertainty in conventional databases is the potential for transaction delays or aborts when 

concurrent transactions compete for locks. In a real-time system, such delays could cause 

critical tasks to miss deadlines. This problem and its contributing factors have been the 

focus of most RTDBS research.

The most popular locking protocol in conventional database systems is two-phase locking 

(2PL). This algorithm is easy to implement, and it guarantees serializability. However, two- 

phase locking can lead to unpredictable delays in transaction processing since 2PL does not 

bound the worst-case time required to obtain the locks and proceed with the transaction. 

For conventional applications, these delays are usually tolerable, but unbounded delays are a 

serious problem in real-time systems. Therefore, a significant amount of work has been done 

to evaluate alternative concurrency control strategies for real-time synchronization. Nishio 

et al. advocate a cautious transaction scheduling approach that checks for non-serializable 

execution as it executes transactions [56]. This cautious approach performs better than 

2PL, and it never aborts or rolls back transactions to achieve concurrency control. Haritsa 

et al. [32] and Lee and Son [41] advocate various optimistic concurrency control protocols 

which proceed with transactions and only check for serialization problems at commit time. 

Huang et al. [34], however, dispute some of the conclusions of Haritsa et al. and observe 

that overhead associated with implementing optimistic concurrency control can reduce its 

performance advantages.

Some researchers have investigated concurrency control algorithms for distributed real

time databases. Consistency across replicated data  objects can be maintained through 

transaction timestamps [70, 79] or symmetric updates [71]. Priority inheritance protocols 

can also be used to reflect task priorities in distributed transaction execution [67].

Some researchers suggest that serializability should not be used as the primary correct

ness criterion for real-time concurrency control [12, 21, 56]. Lin [48, 49] suggests that, for 

real-time applications, data inconsistent with the external world can be worse than inter

nally inconsistent data. He calls the correspondence between a  database and the state of the
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external world “external consistency.” External consistency is lost if the database cannot 

process transactions fast enough to keep up with changes in the world. Lin does not explain 

how a  database system should choose trade-offs between internal and external consistency. 

Clearly, these trade-offs would depend heavily on the particular application. Kuo and Mok 

[40] introduce a correctness criterion for concurrent transactions which permits unserialized 

transactions if the data values read and generated by those transactions are sufficiently 

similar. Epsilon serializability [61] is another alternative to traditional serializability pro

posed for real-time transactions. The problem with relaxing consistency constraints such as 

serializability is that it can be more difficult to demonstrate the correctness of transactions.

We agree with Graham [28, 29], who argues that serializability is indispensable as a cor

rectness criterion for concurrent transactions. Furthermore, serializability is not necessarily 

expensive to achieve. In [29], Graham presents some techniques for verifying the serializabil

ity of transactions by analyzing the read and write operations of concurrent transactions. 

The TPK  main memory database system provides serializability without locking by exe

cuting transactions serially in a single database server task. In main memory databases, it 

is common to achieve serializability by simply using serial transaction execution [23]. On 

a  multiprocessor, this is usually accomplished with a database server tha t serially executes 

client transaction requests. Disk-based databases cannot afford to use serial transaction 

scheduling since all transactions would be delayed during I/O  operations.

Synchronization delays caused by locking can be reduced if the frequency of locking con

flicts is reduced. One approach to reducing locking conflicts is to adjust the lock granularity 

to lock only data that are affected by each transaction [6, 66, 79]. Reducing lock granularity 

increases space overhead for locking, and it can degrade performance if many locks must 

be acquired to perform a transaction. Therefore, the locking granularity should be tuned 

to transaction characteristics. Semantic and object-based concurrency control protocols 

extend this idea by characterizing which transactions conflict and thus require serialization 

[7, 21, 40]. Another approach to reducing locking conflicts is to design transaction proto

cols tha t use data versioning to avoid locking altogether [79, 86, 90, 91]. MDARTS objects 

can use similar techniques in providing concurrency control for their transaction methods. 

MDARTS does not dictate concurrency control policies, but the MDARTS object-oriented 

approach facilitates the use of semantic and object-based concurrency control.

Concurrency control in real-time systems can lead to a problem called “priority inver

sion.” Priority inversion occurs when a high-priority task is forced to wait for a lock held
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by a lower-priority task. If the lower-priority task is preempted by a medium-priority task 

before it can release the lock, the duration of the priority inversion can become unbounded. 

An unbounded priority inversion can lead to indeterminate delays in transaction processing, 

which can cause the high-priority task to miss its deadline. Priority inversion is to some 

extent unavoidable if resources must be shared, so most researchers have investigated ways 

to place an upper bound on the duration of priority inversions. One approach to priority 

inversion is to abort lower priority transactions tha t conflict with higher priority ones. An 

alternative is to bound priority inversions using various priority inheritance protocols which 

temporarily boost the priority of tasks holding locks if they conflict with higher priority 

tasks [58, 60, 67, 76]. This temporary priority boost helps lower-priority tasks complete 

transactions and release their locks.

Since the best approach to real-time concurrency control often depends upon the partic

ular application, some researchers advocate hybrid protocols that borrow features of several 

earlier strategies to perform acceptably for a wider range of applications [12, 32, 35, 60, 78]. 

For example, Huang et al. [35] advocate a  hybrid approach in which tasks inherit higher 

priorities only if they are close to committing. Otherwise, if higher-priority tasks require 

locks held by low-priority tasks, the lower priority transactions are aborted.

Temporal Databases and T im e/Precision Tradeoff's

Some researchers have investigated new approaches to database management based on 

semantic differences between real-time databases and conventional databases. For instance, 

a radar tracking application may need to correlate multiple observations that are retrieved 

from the database. Thus, temporal consistency may be a semantic requirement for a  real

time database. Temporal consistency could be achieved by adding constraints to transaction 

scheduling so that time correlation of data values is maintained [31, 62]. No current sched

ulers employ this technique, but Liu and Song [81] use temporal correlation as a criterion to 

evaluate scheduling algorithms. Smith and Liu [75] suggest that real-time databases could 

return approximate values when precise values cannot be computed before the deadline. 

This is an application of the imprecise computation idea of Lin et al. [47].

MDARTS does not directly address temporal consistency issues, but it is possible to 

design data management classes within the MDARTS framework that provide temporal 

consistency. Similarly, imprecise computation techniques can be built into MDARTS objects 

if necessary for a particular application.
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A Side N o te  on  th e  C lien t-S erv e r A rc h ite c tu re

Figure 1.1 illustrates the types of overhead implicit in client-server architectures. We 

show both multiprocessor and uniprocessor examples. Figure 1.1 reflects the simple trans

action model of MDARTS, in which each transaction is bundled into a single request and 

sent to the database server. The database transactions themselves are highlighted with the 

bold dashed lines. Each transaction is decomposed into a  start-up region S, a critical sec

tion CS (in which mutual exclusion is required), and an end region E. The relative lengths 

of these regions depend on the particular transaction. The client-server overhead is la

beled as follows: C -IP C  represents client-side inter-process communication, which includes 

RPC stub procedure call overhead, data conversion and marshalling, copying overhead, and 

transmission latencies (if the RPC is not local). S w itch  represents context-switch. overhead 

(we assume, for simplicity, tha t the server task requires only one context switch to service 

both client requests), S -IP C  represents server-side inter-process communication, and Q 

represents time required to enqueue client requests in the server.

Multiprocessor Case

T ransaction time for client 1 on  C PU -1

C-IPCl Switch 1
client 1

I Switch I Q I S | CS I E~l S-IPC Q f s  | CS I E I S-IPC
client 2

C-IPC I Switch I

Transaction tim e for client 2  on CPU-3

Uniprocessor Case
Transaction tim e for client 2

C -IP C  I Switch C -IP C  I Switch I Q  I S  I C S  I E I S -IP C Q  | S  I C S  I E 1 S -IP C  1 Switch

\  / \  /  
client 1 client 2

T ransaction tim e for client 1

F ig u re  1.1: Real-time performance implications of the client-server architecture.

The relative sizes of overhead components depend on the characteristics of the target 

hardware and operating system. Usually, the context-switch and inter-process communi

cation overhead is on the order of a few milliseconds, whereas the transaction execution 

time could be only a few microseconds. Furthermore, the client-server architecture implies 

a  serial bottleneck in the server processes. This is not a  problem on a uniprocessor, but 

on a  multiprocessor it limits parallelism when multiple simultaneous transactions use the
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same object. On a uniprocessor, more context switches are generated as the CPU switches 

execution from clients to servers. Note that scheduling algorithms can only rearrange the 

order in which these operations are performed. Far better performance can be achieved if 

the overhead itself can be reduced or eliminated.

Some researchers have investigated ways to reduce RPC (remote procedure call) over

head. The rc-kernel is an operating system designed to efficiently support multiple RPC 

protocols [57]. A-kernel RPC overhead is four milliseconds for Sun RPC and 1.7 millisec

onds for Sprite RPC on a 2 MIPS processor and a lightly loaded ethernet. Local (same 

machine) RPCs can be made much faster, depending on how they are implemented in the 

operating system kernel. By carefully minimizing data copying and using shared memory, 

Bershad was able to reduce worst-case overhead for local RPCs on DEC Firefly multiproces

sors to about 150 microseconds [9]. Bershad’s technique has the advantage of propagating 

the execution priority of the client to the server (the client task is mapped into the server’s 

address space, and it effectively becomes an instance of the server for the duration of the 

RPC). To accomplish this trick, Bershad relied on several platform-specific features of the 

Firefly and Taos, its multiprocessor operating system.

W ith faster processors even better performance can be achieved. For example, by ma

nipulating the virtual memory hardware of the 486 processor and carefully optimizing in

teractions with the system scheduler, Liedtke was able to reduce worst-case local RPC 

overhead for short messages (passed in registers) on a 50 MHz 486 uniprocessor to about 

twelve microseconds (twenty machine instructions) [46]. This represents about an order of 

magnitude speedup over Mach RPC on the same platform.

Although inter-process communication latencies can be reduced through hardware sup

port and clever optimizations, they can never be completely eliminated. Furthermore, even 

if RPC overhead could be eliminated, each object’s server creates a serial bottleneck that 

limits parallelism on a multiprocessor (assuming the worst-case scenario in which tasks on 

multiple CPUs submit simultaneous requests to the same object). This point leads us to 

another issue: how many objects should be represented by each server? If there is one server 

per object, the system overhead associated with the server processes discourages designs 

tha t use large numbers of objects. If there is one server for multiple objects, each server 

becomes even more of a  bottleneck on the multiprocessor. MDARTS permits application 

tasks to use large numbers of objects without creating proportionately many server tasks 

or creating serial bottlenecks.
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M u ltip ro c e sso r  C a s e  U n ip ro c e s s o r  C a s e

CPU-1 I s l  q  I cs |~ e ~ ! |  s 'k l  c s  I lI  e~!

T ra n sactio n  tim e
CPU-2 I sTo~kpir C S .  _E j

CPU-3 I S~f~~Q~

W orst T ran sactio n  tim e ■

F ig u re  1.2: Transaction times if clients perform transaction execution.

On our implementation platform, round-trip RPCs consumed several milliseconds be

tween CPUs on the local multiprocessor (we used Sun RPC). The special techniques for 

minimizing context switch overhead in RPCs described in [9, 46] were not available to  us 

in the commercial real-time operating system we used. Therefore, the theoretical limits of 

RPC overhead was a moot issue for us. On our platform, RPC was expensive. Instead of 

trying to reduce RPC overhead, which would have been difficult and would not have been 

portable, we decided to avoid the client-server architecture for local data sharing.

Figure 1.2 illustrates the approach taken in MDARTS. Rather than client tasks submit

ting requests to servers, the client tasks use MDARTS objects tha t point directly to shared 

memory. The client tasks can thus perform the transactions themselves, using the MDARTS 

object transaction methods. In the multiprocessor case, critical sections are guarded by 

spinlock queues (variants of spinlocks with fair scheduling policies). The locking protocols 

are implemented within the MDARTS transaction code, so applications need not concern 

themselves with these low-level issues. Note that contention to enter the spinlock queue 

runs in parallel with the critical section of the lock holder. Therefore, this approach makes 

excellent use of the parallelism available on a multiprocessor. In a  uniprocessor, the critical 

sections are guarded by locking task preemptions. This approach is viable for short critical 

sections that perform memory-based operations.

As we have said, context-switch and inter-process communication overhead is often much 

larger than the actual execution times of transactions. Therefore, the performance gains 

achievable by avoiding client-server interactions can be very significant. This is especially 

true when individual transaction times rather than transaction throughput is considered. 

Pipelining and batch transaction execution can amortize context-switch overhead and com

munication latencies on parallel machines to achieve high average throughput. However, 

these techniques do not improve end-to-end response times of individual transactions, a key 

requirement for real-time applications. On our implementation platform, RPC overhead 

was typically three orders of magnitude greater than the basic transaction execution time.
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By avoiding the client-server model, we were able to achieve much better performance and 

predictability in our database transactions. Chapter 6 presents these experimental results.

Object-Oriented Approaches to Real-Time Data Management

Object-oriented technology has many features that are particularly useful for developing 

database systems. A set of basic data management capabilities can be designed into base 

classes that define a common programming interface and implement certain core function

ality. Customized data management classes can then be derived from these base classes, 

overriding the base class methods where appropriate to extend their capabilities. Because 

the inheritance mechanism enforces interface compatibility, software developed using the 

base class methods can safely use objects of derived classes without knowing their exact 

class. This in tu rn  yields better extensibility and modularity of design. W ith inheritance 

and polymorphism, it is very easy to provide data transparency, which means the location 

and implementation of the data is hidden from the software that uses it. D ata transparency 

is commonly provided by database systems, but object-oriented languages enable efficient 

implementation of this capability. Object-oriented systems also support the encapsulation 

of both data and methods (functions) within objects. Data and m ethod encapsulation 

facilitates the mapping of software objects to physical objects and mechanisms tha t have 

internal state. By associating a computation with the context of an object’s encapsulated 

state, higher-level application software need not explicitly maintain implementation-specific 

state information.

CHAOS [26, 27, 65], M aruti [44, 54], and ARTS [87] provide support for real-time objects 

a t the kernel level of an operating system. ARTS supports real-time objects with lightweight 

threads and multiple task scheduling policies. A major emphasis in ARTS is the provision 

of exception handling if deadlines are violated. Maruti guarantees hard real-time deadlines 

by verifying the schedulability of accepted service requests during a pre-scheduling phase. 

M aruti and MDARTS share the philosophy of guaranteeing deadlines through runtime ini

tialization, but M aruti primarily focuses on scheduling resources. MDARTS provides atomic 

data  objects with transactions that are not explicitly scheduled by the operating system. 

Thus, MDARTS requires less global task information than Maruti does, and MDARTS is 

compatible with existing commercial operating systems.

CHAOS enhances predictability and timeliness by reducing OS-related overhead for ob

ject method invocations in multiprocessor and distributed real-time applications. CHAOS
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objects export methods with heterogeneous invocation semantics. These semantics corre

spond roughly to different RPC semantics (asynchronous send, synchronous send and reply, 

etc.). Deadline information is passed at runtime as parameters in CHAOS object invoca

tions. The database designer hard-codes execution times for object methods in the object 

definitions. These execution times are divided into overhead incurred by the client and 

overhead incurred by the server in servicing each invocation. CHAOS does not provide 

support for inheritance, so it is object-based rather than object-oriented (as these terms 

are usually defined). All three of these operating systems provide application-transparent 

distributed object method invocation.

CHAOS, Maruti, and ARTS are all based entirely on the client-server model of object 

sharing. Therefore, these systems incur communication latencies, queueing delays, and 

serial bottlenecks in the object servers. Schwan et al. report some performance numbers for 

a CHAOS implementation in [65]. According to [65], the best-case overhead for invoking 

CHAOS methods on the client side alone ranges from one to five milliseconds, depending on 

the semantics of the invocation. Presumably, the worst-case overhead is substantially worse 

(the paper does not quantify the worst case). Note that these measurements do not include 

communication latencies or server-side overhead. In ARTS, each method call incurs about 

one millisecond of overhead for local objects and about eleven milliseconds for method calls 

across processors. The paper does not say if this overhead is best or worst-case. Note that 

this overhead does not include the actual transaction processing or concurrency control 

delays. Therefore, we conclude that neither CHAOS nor ARTS is well-suited to application 

domains where sub-millisecond transaction times for object methods are required.

The M 02 model combines features of database systems and real-time systems [5]. M 02 

supports distributed active objects with per-object read and write servers tha t execute 

client requests at the client priorities. Serializability is provided by executing methods 

serially in an object’s write server process. Unlike CHAOS, M 02 supports inheritance. Like 

CHAOS, M 02 requires application developers to hard-code execution timing information 

in the definition of object methods. Since each object has associated with it a t least two 

heavyweight processes, the M 02 architecture makes it expensive to create systems with 

large numbers of objects. Furthermore, M 02 is also client-server based and thus incurs the 

overhead associated with that architecture.

Stewart et al. describe an object-oriented approach to developing hard real-time appli

cations in [84]. The objects, called port-based objects, follow a strict protocol for sharing
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information across task boundaries. All cooperating tasks share a  common global state 

table, and during each cycle of a  control task’s execution, a copy of needed global variables 

is made by each task. The tasks then run asynchronously to compute their results, which 

are copied out to the global table at the end of the cycle. The entire global table is locked 

when copies to or from it are made. The port-based object approach is appropriate for 

some problem domains, but the data sharing mechanism lacks flexibility and provides no 

support for serializing concurrent transactions. Suppose two concurrent tasks on different 

CPUs each copy the same global variable to their local state tables, modify it, and write it 

back to the global table. Clearly, these transactions will not be serialized. Furthermore, if 

applications share large amounts of data, it is expensive to copy it between the local and 

global state tables each cycle.

Ishikawa et al. [36] describe a real-time extension of C + +  called R T C + + . R T C ++ 

active objects define periodic tasks with multiple threads. Object methods can include dec

larations of their execution times, and these execution times can be used to perform schedu- 

lability analysis of task sets. Concurrency control is implemented in the object methods. 

If mutual exclusion is needed when executing the object methods, the object is a nonpre- 

emptive object, otherwise, it is a preemptive object. Although R T C + +  defines language 

constructs for expressing timing information, the object developer is responsible for deriving 

this information. This could be a significant burden, and it suffers the additional drawback 

tha t execution times are fundamentally platform-dependent. When timing information is 

hard-coded into the class definition, there is no allowance for performance variability of 

computing platforms. This is a serious problem, especially since timing information must 

be updated and all application code recompiled whenever hardware characteristics change. 

CHAOS and M 02 share this problem. MDARTS has a  more flexible approach that provides 

support for benchmarking execution times and scaling timing estimates to the performance 

of the execution platform at runtime (see Section 2.7).

DiPippo and Wolfe have developed an extensive object-oriented model for real-time 

databases called RTSORAC [21]. Their model includes object-based semantic concurrency 

control, temporal scopes for object methods (temporal scopes specify very fine-grained tim

ing information about each method), temporal consistency constraints, inter-object trans

action constraints, and imprecision constraints. Although this model is extremely powerful, 

the authors do not report any performance or implementation details that would support a 

fair comparison between RTSORAC and MDARTS. Like the other real-time object-oriented
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systems, RTSORAC appears to require developers to specify large amounts of timing infor

mation by hand. Furthermore, the runtime overhead of supporting such a complex model 

are likely to be substantial.

1 .2 .4  D atab ase T ransaction  T im es and Task Scheduling

The ultimate goal of a real-time database system is to facilitate the development of 

real-time applications. When developing a real-time application, particularly a  hard real

time application, it is necessary to analyze the tasks that comprise the application to verify 

tha t all (or as many as possible) task deadlines will be met. Verifying that task deadlines 

will be met is called schedulability analysis, and this problem has been extensively studied 

in the literature. If tasks are not preemptible, general schedulability analysis is compu

tationally intractable (NP-complete or NP-hard). However, if tasks are preemptible, it is 

possible to efficiently determine their schedulability by applying rate monotonic scheduling 

theory [50, 59]. Rate monotonic scheduling is an optimal algorithm for static (pre-assigned) 

task priorities. Various other dynamic priority scheduling protocols have also been studied 

(earliest due date, least slack time, etc. [15]).

Rate monotonic scheduling is the most popular scheduling method for practical real

time systems, since it is easy to analyze and more robust under overload conditions than 

dynamic scheduling approaches. Equation 1.1 defines a  set of inequalities that, when satis

fied, guarantee the schedulability of a set of n  tasks using rate monotonic scheduling. Rate 

monotonic scheduling assigns task execution priorities for periodic tasks according to the 

lengths of their periods. The shorter the period the higher the priority. The lower-numbered 

tasks in Equation 1.1 have higher priorities, and Ci, 7), and Bi represent the computation 

time, period, and blocking time of task Tj, respectively. Note that the blocking time Bi 

does not include blocking for higher-priority local tasks, since that is part of the normal 

preemption interval for task Ti.

\ /i , l < i < n § -  +  §  +  ••• +  §  +  f r < * ( 2 l / i - l )  (1-1)

To make schedulability guarantees, it is necessary to know in advance the computation 

times, periods, and blocking times of all application tasks. Usually the periods of tasks are 

known in advance (in the case of sporadic tasks, one can use the worst-case interarrival times 

of the task). However, the worst-case computation times of tasks are sometimes difficult 

to determine. Furthermore, unless resource-sharing protocols can bound the blocking time
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Bi, it is impossible to guarantee task deadlines. When a  database transaction is performed 

by a  real-time task, the delays and execution time uncertainties associated with using the 

database can make schedulability analysis impossible. MDARTS addresses this problem 

by making transaction times short and predictable. When transaction times cannot be 

predicted (as when non-real-time networking protocols are used in transactions), MDARTS 

reflects these uncertainties by refusing to guarantee its transaction times.

An MDARTS transaction-time guarantee consists of a  worst-case bound on the pure local 

computation time of the transaction and a  worst-case bound on the blocking delay of the 

transaction. We avoid the more common “response time” metric since it is inappropriate 

when tasks perform transactions themselves. Most RTDBSs consider the scheduling of 

multiple client transactions by one or more database server processes. In the client-server 

model, transaction execution time in the client is much less than the wall clock response 

time of the database server (which corresponds to blocking delays for the client task). 

Therefore, the response time is used to characterize the database performance. In MDARTS, 

tasks usually execute transactions themselves. Unless proxy objects are used, the entire 

transaction time consists of local execution time rather than blocking time. Therefore, 

one should analyze execution of the database transaction just as one would analyze the 

execution of an ordinary code sequence in a task. The wall clock response time of a  given 

set of instructions is not a relevant measure, since higher-priority tasks can preempt and 

make an arbitrarily short code sequence appear to take a long period of time. This delay is 

already accounted for in the normal preemption interval of that task. In summary, the two 

components in an MDARTS transaction-time guarantee correspond directly to the Ct and 

Bi variables in Equation 1.1. These components are those needed to perform schedulability 

analysis for tasks that use the database. Note that response times reported in the database 

literature correspond roughly to the Bi components of an MDARTS transaction time.

If dynamic real-time scheduling techniques are used, the guarantees provided by MDARTS 

can still be useful. In earliest due date scheduling, the high performance and predictability 

of MDARTS transaction times can reduce the execution time variance of tasks and bound 

delays to  access shared resources. In least slack time scheduling, the predetermined worst- 

case transaction times can be used to generate more accurate estimates of slack time for 

tasks tha t use the database.
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1.3 Research Objectives

Most prior RTDBS research focuses on algorithms and protocols for soft real-time 

databases. Rather than develop new database architectures, most RTDBS researchers 

have applied ideas originally developed in the real-time computing field (such as real-time 

scheduling) to enhance the predictability of traditional database systems. In most cases, 

the fundamental architecture of the database system has not been questioned. This has 

led most RTDBS research to use database architectures with one or more database servers 

that service multiple client tasks. The basic properties of this architecture make it difficult 

to achieve the levels of predictability and performance required by hard real-time systems. 

Therefore, most prior RTDBS prototypes have been suitable only for soft real-time systems.

There is a need for soft real-time databases for applications such as airline reservation 

systems and program trading, but the needs of manufacturing machine controllers and other 

hard real-time systems are quite different. Our primary research objective is to provide data 

management services suitable for high-speed hard real-time systems with sub-millisecond 

transaction-time requirements. None of the prior work in RTDBSs addresses this important 

application domain. Note tha t we are not suggesting that every database transaction will 

have the same guaranteed transaction time. Each transaction might have a unique deadline. 

The key point is that applications can specify deadlines for individual transactions and can 

determine in advance if these deadlines will be met.

Another important objective in our research is to provide a flexible and convenient mech

anism for expressing and evaluating semantic constraints and transaction-time requirements 

of applications. Although the performance and predictability of the database system are 

paramount, it is also important for applications to be able to specify their requirements 

and determine if the database can meet them. MDARTS uses semantic information pro

vided by applications to configure its data management services according to application 

needs. MDARTS also supports bidirectional information flow concerning the transaction

time characteristics of its data  management services. Applications can use this mechanism 

to determine the worst-case transaction times of transactions before they are even started.

Our final research objective is to implement and evaluate a  prototype implementation 

of MDARTS to determine its performance and suitability for typical hard real-time appli

cations. Our MDARTS prototype is designed to be portable and flexible without sacrificing 

real-time performance. Particular attention was paid to making the database’s application 

programming interface simple. Many of the advanced object-oriented techniques employed
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by MDARTS address issues related to using the library for actual applications. We de

voted significant efforts in this area since we wanted to make it as easy as possible for our 

prototype to be adapted for use in industry. For the same reason, we explicitly avoided 

reliance on custom hardware support. Our prototype uses strictly off-the-shelf hardware 

components and operating systems. We implemented our prototype in C + +  [85]. We chose 

C + +  because of its wide availability, runtime efficiency, compatibility with C, and object- 

oriented features. To enhance the portability of our implementation, we used only standard 

features of C + +  rather than adding language extensions.

1.4 A Map of the Dissertation

Chapter 2 presents the core design and implementation of MDARTS. This chapter in

cludes a discussion of the MDARTS transaction model and the different implementation ap

proaches for local shared-memory objects and remote objects. It also describes techniques 

for automatically calibrating transaction performance estimates for database objects.

Chapter 3 discusses the techniques we use to dynamically customize database services 

according to application semantics. We show how to use software contracts and exemplar- 

based object construction to simplify an application’s view of a complex library and to 

guarantee certain semantic and timing constraints before transactions are performed.

Chapter 4 analyzes the problem of assigning priorities to real-time tasks as they wait 

in global semaphore queues in multiprocessors. Prior work on extending uniprocessor 

semaphore scheduling to multiprocessors uses task execution priorities for global semaphore 

queue priorities. We show that better schedulability can be achieved if global semaphore 

queue priorities are assigned independently of the task execution priorities.

Chapter 5 discusses how we used MDARTS in the real-time control of an actual man

ufacturing machine. This demonstration also illustrates the proxy (remote transaction) 

capabilities of MDARTS and shows how it can be used to facilitate integration of existing 

hardware and software components.

Chapter 6 presents performance results of our MDARTS prototype on a  stock multipro

cessor. These experiments evaluate the performance of MDARTS under extremely heavy 

load conditions and demonstrate its multiprocessor capabilities.

The dissertation concludes with Chapter 7, which summarizes the contributions and 

discusses future work.



CHAPTER 2

MDARTS

2.1 MDARTS Overview

MDARTS is radically different from prior work on real-time databases. Most prior work 

on real-time databases investigates specific transaction and concurrency control protocols 

tha t can enhance the performance or predictability of a database system. Very few actual 

real-time database implementations are described in the literature, and most of those are 

testbeds designed for studying algorithms rather than for supporting realistic real-time 

applications [35, 77]. Furthermore, to our knowledge, none of the RTDBS implementations 

reported in the literature are intended for hard real-time applications such as machine 

controllers. CMU’s port-based objects [84] include a simple approach to data  management 

for hard real-time applications, but the data management protocol supported by these port- 

based objects lacks flexibility. It also incurs substantial runtime overhead by periodically 

copying data  between a global state table and local caches.

In contrast, MDARTS is a  flexible object-oriented RTDBS architecture suitable for hard 

real-time applications. MDARTS consists primarily of a library of object-oriented database 

service classes. Tasks needing to share data with other tasks declare objects belonging to the 

MDARTS database classes. These objects are automatically registered with an MDARTS 

Shared D ata Manager (PDM) server that allocates shared memory, performs object lookup, 

and supports remote data access. Real-time constraints are specified by applications in 

the declarations of the MDARTS objects. The MDARTS object creation process exam

ines the constraints during object initialization and constructs data  objects that satisfy 

the constraints. By registering application needs during initialization, MDARTS objects 

are able to track resource allocation at runtime and guarantee transaction times before 

transactions using them are actually performed. MDARTS also fully exploits the hardware

21
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capabilities of shared-memory multiprocessors by supporting both remote network-based 

transactions and local bus-based transactions. A major difference between MDARTS and 

other RTDBSs is tha t local bus-based transactions on multiprocessors are accomplished by 

application tasks without communicating with a separate database server. We have imple

mented and tested a  prototype of MDARTS and have demonstrated its utility in controlling 

an actual manufacturing machine.

Some unique features of MDARTS (compared to other RTDBSs) include:

•  hard real-time guarantees,

•  the ability to query a  database object to determine its guaranteed transaction times 

prior to performing a transaction,

• customization of database services a t object initialization time using application-side 

software contracts and an object-oriented technique called exemplar-based program

ming,

• transparent support for both remote procedure call transactions and local shared- 

memory transactions,

•  multiprocessor support without performance bottlenecks or overhead associated with 

client-server architectures, and

•  a convenient application programming interface.

In subsequent sections of this chapter, each of these features is discussed in detail.

An application using MDARTS declares database variables as in the following example: 

MdartsArray<Point> positions("p o sitio n s" ,"read < = 5 0 u sec ;s ize= 6 ;ex c lu siv e_ u p d ate");

In this declaration, MdartsArray<Point> is the database class of the object positions, 

with which the application can store and retrieve elements from a shared array of Point data 

structures. Point is an application-defined data structure that contains a three-dimensional 

Cartesian coordinate. The two string parameters within the parentheses are passed to the 

MdartsArray<Point> constructor routines which initialize the positions object. The first 

param eter is a unique identifier for that object in the database. The second param eter is a 

“contract” composed of a set of semantic and timing constraints. These constraints are used 

during initialization to configure the database object and to verify th a t timing requirements 

will be met when transactions are performed. The timing constraint in this case refers to 

a bound on the magnitude of the sum of the two MDARTS transaction time components
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(local execution time and blocking time). In our current prototype, this usually corresponds 

to local transaction execution time since the blocking times axe zero. The following example 

shows how an application would perform a  read transaction:

Point end_effector_position =  positions[5];

Clearly, the syntax for using MDARTS is very convenient compared with application 

programming interfaces tha t require preprocessing of embedded query languages. Object- 

oriented database systems often have convenient application programming interfaces, so 

MDARTS is not unique in this respect.

Prior real-time database systems either make deadline guarantees a priori with off

line static analysis of applications [74] or use dynamic transaction scheduling to try to 

meet deadlines a t runtime [12]. Off-line static analysis has the advantage of providing 

early feedback if requirements cannot be met. However, off-line analysis of transactions is 

not always feasible, especially for complex, distributed applications. Dynamic transaction 

scheduling is a  viable alternative for soft real-time systems. However, if deadline information 

is processed during transaction execution, overload conditions might cause some deadlines 

to be missed. MDARTS is unique in registering real-time requirements on a per-object basis 

during object initialization. This approach maintains most of the flexibility advantages of 

dynamic deadline guarantees while making guarantees before the transactions are actually 

performed. Furthermore, transaction execution performance is enhanced since the overhead 

of checking these requirements and constructing the data access objects is incurred only once 

per task before the real-time processing begins.

2.2 MDARTS Transactions

2.2 .1  T ransaction  P rop erties

A transaction is a fundamental concept in database systems. According to Elmasri and 

Navathe, “The execution of a program that accesses or changes the contents of the database 

is called a t ra n s a c tio n ” [22]. Traditional properties of transactions (the so-called ACID 

properties) include atomicity, consistency preservation, isolation, and durability. Atomicity 

means the transaction is either completely performed or not a t all. Consistency preserva

tion means the transaction transforms the database from one consistent state to another. 

Isolation means the effect of a transaction is not visible to other transactions until it is 

committed. Durability means the effect of a  committed transaction on the database is
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permanent. Elmasri and Navathe add serializability to the ACID transaction properties. 

Serializability is a concurrency control property that means the effect of running interleaved 

concurrent transactions is equivalent to running them in some serial order.

Some of the ACID properties of transactions can be expensive to provide, especially in 

the context of real-time systems. Durability can be particularly expensive since it usually 

implies keeping the database on a disk and incurring all of the overhead and execution 

time uncertainties associated with disk I/O . Atomicity and isolation can also be expensive, 

especially if a large fraction of the database is accessed or modified by the transaction. 

The serializability property has been the focus of recent debate in the real-time database 

community. Serializability is considered indispensable in the non-real-time database com

munity, and some real-time database researchers concur [12, 55, 28, 29, 41]. Other real-time 

researchers consider full serializability too expensive and possibly unnecessary for real-time 

databases [48, 71].

Since many of the traditional ACID transaction properties may be expensive or infeasi

ble to provide in the context of a real-time database, it may be desirable to limit or trade off 

various transaction properties. Unfortunately, the costs and benefits of various transaction 

properties depend on application semantics and database usage patterns. Some applica

tions, such as real-time machine controllers, may not need persistence for data such as 

sensor values that are accessed within time-constrained feedback loops. Other applications 

may need persistence for some or all of their data. Similarly, the data  consistency require

ments of some applications may require serializable transactions while others may not. The 

difficulty with this situation is that no fixed set of transaction properties will be suitable 

for all applications. Therefore, MDARTS does not support a single set of transaction prop

erties. Instead, MDARTS provides a framework within which multiple transaction types 

can be used. The transaction properties required by applications are explicitly declared 

and matched against the properties supported by various database service classes. In this 

way, an application can avoid incurring the overhead implicit in database properties that 

it does not need. Furthermore, the specification of properties is on a per-object basis, so 

the heterogeneity of da ta  needs within an application can be closely matched by MDARTS 

services.

The internal heterogeneity of transaction properties in MDARTS makes it somewhat 

difficult to compare MDARTS with other real-time database approaches. MDARTS can 

support extremely fast transaction times for transactions that directly access non-persistent
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data  in shared memory. Chapter 6 summarizes transaction timing experiments performed 

by our prototype MDARTS implementation. The worst-case transaction times in our exper

iments ranged from 25 to 180 microseconds, depending on the transaction. These transac

tion times correspond to worst-case object contention conditions, with multiple concurrent 

transactions performed using the same object. Since we use spinlocks that busy wait to 

enter critical sections, these transaction times are composed entirely of local task execution 

times rather than blocking times.

However, it is not fair to compare this absolute performance with that of a real-time 

database that uses file I /O  for persistence. It would be possible to encapsulate access 

to a persistent database within an MDARTS object by invoking transactions on that 

database within the object’s read and write methods. In tha t case, however, the speed 

of MDARTS transactions for that object would be constrained by that of the underlying 

database. MDARTS reflects the worst-case transaction times of its underlying data  ser

vices, whether they are local memory transactions or transactions submitted to a file-based 

database system. Note tha t our prototype implementation does not provide interfaces to 

fxle-based database systems. However, we intend to create such interfaces in the future.

In ordinary database systems, applications are perm itted to explicitly control the scope 

and duration of transactions. An application defines a transaction by executing a Be- 

gin_Transaction() operation, performing a set of arbitrary database operations and compu

tations, and executing a closing End_Transaction(). The application is allowed to perform 

an unlimited number of operations within the transaction, and the database is required 

to guarantee atomicity and other transaction properties for the entire sequence of oper

ations. Clearly, this type of transaction support is extremely powerful and useful from 

an application’s perspective. However, we believe tha t this level of transaction support is 

fundamentally incompatible with the absolute transaction-time guarantees needed by hard 

real-time systems.

Consider a typical scenario in which an application begins a  transaction, reads some 

portion of the database, and then begins an extensive computation to determine derived 

values with which to update the database. During this extensive computation, the portions 

of the database th a t will be affected by the transaction must remain locked. Because 

the length of time the lock is held is not under the control of the database, there is no 

way the database system can provide any real-time guarantees for other transactions that 

need to access the locked data. The database system might be able to abort the first
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transaction if a higher-priority transaction came along, but this would make it more difficult 

to guarantee that lower-priority transactions will meet their deadlines. Furthermore, if the 

aborted transaction were close to committing, substantial processing resources could be 

wasted in forcing the transaction to start over. This issue is considered by Huang et al. in 

[35].

Unconstrained application-defined transactions may or may not be acceptable in the con

text of soft real-time systems such as considered in [35], but to provide hard real-time guar

antees, a  database system must tightly control transaction execution. Therefore, MDARTS 

transactions are modeled as object method invocations (function calls). An application can 

provide parameters to the transactions, and a transaction can perform relatively complex 

computations. However, MDARTS currently does not support application-defined trans

actions that span multiple database operations. We do not believe that such transactions 

can be supported in hard real-time systems without sacrificing serializability. In the future 

we may investigate providing limited support for more complex transactions, perhaps using 

data  versioning [39], but we have not yet developed a  model of such transactions or tried 

to implement one within MDARTS. W ith the current MDARTS transaction model, it is 

possible to guarantee transaction times while supporting atomicity, consistency, isolation, 

and serializability. The processing required to perform each transaction is specified entirely 

in the code of the database objects, so the database system can determine the transaction 

times either analytically or empirically. The only major source of execution time uncertainty 

in this context (assuming bounded latency to access system resources such as a shared bus) 

is tha t associated with concurrency control. W ith appropriate concurrency control proto

cols, MDARTS objects can bound this uncertainty and thereby guarantee their transaction 

times. The MDARTS transaction model also permits a simple distributed implementation 

using remote procedure calls. Locks in MDARTS are never held across the network since 

the transaction is propagated to a remote server and executed there as a local operation.

In summary, although transactions in MDARTS are more limited than traditional 

database transactions, we believe these limitations are necessary if the database is to make 

hard real-time guarantees.

2.2 .2  T ransaction Scheduling

Most of the algorithms proposed for real-time databases assume a client-server archi

tecture in which a database process services multiple application tasks. When several
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transactions arrive a t the same time, the server must choose the order in which to service 

them. This decision becomes complicated if timing constraints are associated with trans

actions and if transactions that access the same data must be serialized. In a real-time 

database, timing constraints are certainly associated with transactions. The question of 

whether transactions must be serialized has generated considerable interest in the RTDB 

community. However, the entire context of this debate has been framed by the architectures 

of traditional database systems.

Clearly, there are many important application domains where traditional file-based 

databases with enhanced real-time characteristics are needed. Program trading systems and 

on-line reservation systems are examples. Nevertheless, application domains such as manu

facturing machine controllers have very different needs. The transaction-time requirements 

of systems like these are probably unachievable in the context of a  traditional file-based 

database architecture. MDARTS uses the following methods to provide high-performance 

real-time data  management:

• use memory rather than disks,

• use multiprocessors rather than uniprocessors, and

•  avoid the overhead associated with a client-server architecture.

The motivation for the first two points is obvious: disk I/O  times are relatively large and 

unpredictable, and multiprocessors can achieve extremely high performance through parallel 

processing. The third point is motivated by the need to achieve maximum parallelism and by 

the observation that as the basic cost of a service decreases, the overhead for providing that 

service becomes increasingly important. If tasks on multiple CPUs submit simultaneous^ 

requests to an object tha t resides on a single CPU, that object (rather the CPU and server 

task associated with it) becomes a  serial bottleneck. Furthermore, if a server can perform an 

operation in ten microseconds but the overhead required to use the server is ten milliseconds, 

there is tremendous incentive to find alternatives that do not incur the overhead. These 

overhead numbers are realistic: a typical RPC round trip can take several milliseconds, 

whereas local procedure calls and memory accesses require only a few microseconds. Some 

high-speed RPC systems can reduce the overhead of transferring data  and control between 

clients and servers [9, 46], but these systems are not widely available, they rely on processor- 

specific optimizations and low-level kernel modifications, and they do not eliminate the serial 

bottlenecks of server processes on multiprocessors.



28

In MDARTS, each object supplies the context and identity of its particular data. There

fore, it is unnecessary to perform index searches on keys to locate the data needed for each 

transaction. Instead, the methods of an object can follow direct memory pointers to  perform 

transactions. This means that, with MDARTS, simple data read and write transactions can 

be performed at speeds approaching that of accessing ordinary variables. However, if the 

overhead of performing inter-process communication between clients and servers is added 

to each transaction, much of the speed advantage of the memory-based approach can be 

lost. MDARTS avoids the client-server overhead by allowing tasks to  perform transactions 

themselves through their database objects.

By avoiding the client-server architecture, we recast the entire transaction scheduling 

problem. If there is no server managing multiple requests, where is the transaction schedul

ing? P u t another way, how can we schedule concurrent transactions without a server? Each 

task performing a  transaction must participate in the scheduling. MDARTS achieves this 

by embedding concurrency control and scheduling logic in its object methods. MDARTS 

objects are distributed across the tasks in a multiprocessor. The tasks themselves per

form the execution of the database transactions. Therefore, none of the task switching and 

inter-process communication overhead implicit in conventional client-server architectures is 

incurred. Furthermore, the transactions are automatically performed a t the respective pri

orities of the application tasks, and no system overhead is incurred to dynamically modify 

the priorities of server tasks. In our prototype implementation, we achieve serialization by 

simply serializing transaction critical sections with spinlock queues. Priority inversion is 

bounded by disabling preemption when a  task is waiting for a  lock or executing its critical 

section (Section 2.10 discusses this issue).

Since there is no blocking for I/O , and we have a  parallel machine, serial access is a 

simple and efficient approach for mutually exclusive resource sharing. Note tha t only m utu

ally exclusive transactions need be serialized. Concurrent transactions on different objects 

or compatible transactions on the same object can proceed in parallel with no synchro

nization delays. The MDARTS transaction model also helps make serial access acceptable 

by guaranteeing tha t locks are held only for very short periods of time. Transactions that 

m ust lock resources for significant time periods should use semaphore queues rather than 

spinlock queues so the processor is available for other tasks while the transaction waits for 

the resource (see Chapter 4).

The approach to scheduling transactions in MDARTS is completely different from that
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of other RTDBSs. By radically distributing transaction execution across the multiprocessor, 

we have transformed the problem from a local scheduling to a global scheduling problem. 

In general, global scheduling is more difficult than local scheduling. However, MDARTS 

does not really attem pt to perform global scheduling of active transactions (in the sense 

of assigning transactions to available processors). Instead, the application tasks that have 

already been assigned and scheduled on processors perform the transactions. If ten tasks on 

ten processors execute transactions on ten different database objects, all of these transac

tions can proceed in parallel with minimal transaction scheduling overhead. If some of these 

transactions attem pt to use the same object, the locking protocol of that object’s methods 

guarantees the serializability of the concurrent operations. In many cases, a simple FIFO 

policy for an object’s locking protocol will suffice. If the queue length can be bounded, a 

FIFO can provide transaction-time guarantees.

An object’s concurrency control protocol in part determines its worst-case transaction 

time, and the transaction times are negotiated and verified during object initialization. 

Therefore, the acceptability of an object’s locking protocol is indirectly verified at runtime 

during object initialization. Since MDARTS transactions proceed in parallel unless they 

conflict with other active transactions, MDARTS can take full advantage of the parallelism 

available on the multiprocessor. MDARTS transactions are not scheduled by any centralized 

scheduling task or processor, so MDARTS avoids serial bottlenecks on multiprocessors.

2.2 .3  N ested  T ransactions

The current MDARTS implementation provides no direct support for nested transac

tions in the sense of guaranteeing serializability. However, it is possible for one object’s 

transaction to  invoke a transaction on another object. Since there is no global transaction 

management in MDARTS, it is the responsibility of the database object designer to ensure 

serializability if transactions invoke other transactions. The most direct way to achieve this 

is to create an interface class that implements application-specific transactions in terms of 

sub-transactions on other database objects. The interface class becomes the path  through 

which applications perform relatively complex database operations on multiple objects. By 

encapsulating the sub-transactions on other objects, the interface object can simplify the 

application’s interface and can enforce serializability of the nested transactions.
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2.2 .4  R ea l-T im e G uarantees for Transactions

The most common approach to deadline guarantees in RTDBSs is to provide transaction 

processing that gives preference to higher-priority transactions. It is deemed the responsi

bility of the application or the operating system to assign appropriate priorities to tasks and 

thereby to the task’s database transactions. In this model, the database server execution 

is seen as an extension of the execution of each task. Priority-based transaction processing 

protocols do not guarantee the transaction times. They only guarantee tha t higher-priority 

transactions will receive preferential service. Interestingly, in some cases, priority-insensitive 

optimistic concurrency control algorithms can outperform priority-cognizant transaction 

scheduling in the sense that fewer deadlines are missed as the transaction load increases 

[41].

Unfortunately, neither priority-based transaction processing nor optimistic concurrency 

control algorithms are particularly suitable for hard real-time applications. These protocols 

cannot prevent transaction overload conditions in which more transactions are submitted 

to the database than can be scheduled without missing deadlines. Furthermore, these pro

tocols can abort and restart transactions in an unpredictable manner. It is difficult to 

analyze the computational resources required to service transactions that might be aborted 

and restarted. A database server using these techniques makes a best effort to satisfy the 

timing requirements of multiple transactions, bu t it makes no guarantee of individual trans

action times. Therefore, it is possible that some application deadlines will be missed. In 

fact, the performance advantage of optimistic concurrency control algorithms over priority- 

based protocols derives in part from the database server discarding certain transactions 

th a t it determines cannot be completed before their deadlines. In a  hard real-time applica

tion, missing even one deadline could be fatal, so this feature can hardly be considered an 

advantage.

An RTDBS for hard real-time applications must be able to provide real-time guarantees 

for each transaction. Alternatively, and just as importantly, if no guarantee can be made, 

the RTDBS should reflect this as well. The emphasis on per transaction real-time guaran

tees is one of the fundamental principles of MDARTS. It should also be possible to make 

these guarantees in advance, before the transaction is actually performed. In  other words, 

the database system should require advance reservation of transaction resources to protect 

hard real-time applications from overload conditions. Prior RTDBS research has not con

sidered the possibility of making transaction-time guarantees during initialization. From
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the perspective of a real-time task, the database transaction should be an atomic operation 

with a bounded, worst-case execution and blocking time. If the database provides this level 

of predictability, the task scheduler can guarantee higher-level task deadlines through a 

straightforward application of well-known real-time scheduling theory [50]. Guaranteeing 

each transaction’s execution time also helps applications estimate the latency of tasks that 

perform database operations. This capability can be very important for systems in which 

the response time to events is critical.

Some real-time database researchers emphasize maintaining temporal consistency con

straints in the data itself. MDARTS focuses on the performance of the database system 

and defers temporal semantics of the data to the application. If an application needs 

database transactions that preserve data temporal consistency, it is possible to implement 

new database classes with transaction methods that provide whatever semantics are needed. 

MDARTS is modular and easily extensible in ways like this.

Quantum mechanics notwithstanding, predictable systems are composed of predictable 

components. This principle motivated the MDARTS emphasis on providing predictable 

transaction times, and it guided our approach to implementing MDARTS itself. To imple

ment a  database service within the MDARTS framework and to provide transaction-time 

guarantees, it is necessary that the computational environment also be predictable. There

fore, a suitable plaform for MDARTS (or indeed any hard real-time application) must 

provide consistent processor performance and bounded latency for bus and memory access. 

Furthermore, any transactions that require network communication must either be non- 

real-time transactions (without transaction time guarantees) or be based on networking 

protocols and hardware that provide end-to-end response-time guarantees.

In a  shared-memory multiprocessor, it is necessary to characterize delays associated with 

using the shared bus that provides access to the global memory. MDARTS transactions 

tha t use the multiprocessor bus will inevitably be delayed by the bus access latency. This 

is a factor over which MDARTS has no control, and it is highly implementation-dependent. 

Some buses, such as the VME bus, support DMA operations that can seize control of the 

bus for extended periods of time. Any computing platform with components tha t monop

olize the bus, e.g., by performing uninterruptible DMA transfers, will severely limit the 

timing guarantees MDARTS can make for shared-memory transactions. However, if DMA 

operations are interruptible, and the bus master is configured to support a deterministic 

scheduling protocol, it is possible to determine worst-case latencies to access the bus. Given
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these worst-case latencies, MDARTS can guarantee its transaction times.

2.3 Object-Oriented Database Service Classes

2.3.1 Im plem en tation  A pproach

We have implemented MDARTS in the C + +  language [85]. We chose C + +  because of 

its wide availability, runtime efficiency, compatibility with C, and object-oriented features. 

Some advantages of C + +  for real-time software are discussed in the literature [18, 17]. To 

enhance the portability of our implementation, we use only standard features of C + +  rather 

than adding language extensions. It is beyond the scope of this dissertation to fully describe 

the C + +  language. It is a very popular language with dozens of excellent reference books 

available. Therefore, we will only mention a few C + +  features and terms.

C + +  permits data structures and functions to be combined into new object types called 

“classes.” Classes can inherit behavior (functions or methods, we use these terms inter

changeably) and data from other classes. Classes that inherit from other classes are called 

derived classes, and those they inherit from are their base classes. C + +  classes have spe

cial functions for creating and destroying instances of that class. These functions, called 

“constructors” and “destructors,” are defined by the class programmer, and they are au

tomatically invoked at runtime by the language. Constructors can be passed parameters 

which are used to initialize objects to some desired state. C + +  also supports runtime poly

morphism through virtual functions. This means a function defined as “virtual” in a base 

class can be overridden in derived classes, and the derived class version will be invoked at 

runtime even if the exact class of the object is not known to the caller of the function. This 

capability may seem strange and of dubious value to people unfamiliar with object-oriented 

programming, but it is very powerful and is one of the key features of C + + . Finally, C + +  

allows class designers to redefine the meaning of standard operators such as “+ ”, , and

even function call operators “()” for objects of that class. This feature, called operator over

loading, permits expressions involving objects of user-defined C + +  classes to be as concise 

and convenient as ordinary arithmetic expressions.

MDARTS includes a base class (called Base) that defines the essential framework of 

MDARTS and contains various object initialization and data access methods. Base imple

ments methods to construct new objects, communicate via RPC with the MDARTS Shared 

D ata Manager, parse and check constraint lists, and store and retrieve the shared data.
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Class Base implements 
exemplar-based object construction, 
constraint checking framework

application
interface
layer

specialized database service 
classes implement operations 
defined in application interface 
layer

Base

Array<T>

Persistent
Array<T>

Concurrent
Array<T>

Multiple
Writer
Array<T>

M em ory-
Based
Array<T>

Single
Writer
Array<T>

Readonly Array<T>

F ig u re  2.1: MDARTS database class hierarchy.

The RPC communication used by Base is performed during object initialization, before 

transaction-time guarantees are made. Base also specifies the interfaces of several methods 

that it does not implement. The MDARTS library requires that these methods be imple

mented by classes derived from Base (using the CH—1- pure virtual function mechanism). For 

example, the pure virtual function dataSize() returns the amount of shared memory required 

by the derived database service class. Because the Base function interface is inherited by 

derived classes, compatibility with the MDARTS framework is ensured. Furthermore, code 

reuse through inheritance reduces the amount of work required to integrate new database 

service classes into the MDARTS framework.

Figure 2.1 illustrates the structure of the MDARTS inheritance hierarchy. The service 

classes in the hierarchy, such as “Multiple Writer A rray<T>,” all provide the same data  

access operations, but each is specialized to support different constraints. This figure shows 

a single hierarchy corresponding to template array objects. In addition to array classes, 

MDARTS provides a generic database class hierarchy tha t defines transaction methods that 

set or get the basic data types of integer, floating point, and character strings. MDARTS 

also provides a template-based class hierarchy for application-defined data  structures.

It is important to determine which levels of the database class hierarchy will be visible 

in the application programming interface. Some object-oriented databases require applica

tions to specify data semantics by choosing the class tha t supports those semantics. This
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approach leads to a  proliferation of similar classes that the application programmer must 

know about. For instance, a persistent object that supports only one writer might be de

clared as “DbPersistentExclusivellpdatelnteger my.object.” This name might be deemed too 

long and be converted to something cryptic like “DbPEUInt my.object.” In either case, ap

plications are exposed to the leaf classes in the database library’s class hierarchy. Clearly, 

this approach to semantic specification becomes unmanageable as the number of semantic 

constraints grows. Furthermore, attributes that correspond to continuous variables, such as 

transaction times, cannot be encoded into class names. In MDARTS, semantic attributes 

like “persistent” and “exclusive.update” are passed as strings to the library’s object con

struction methods instead of being encoded into the database class names. MDARTS thus 

dramatically reduces the number of different database classes to which applications are ex

posed and thereby reduces dependencies between applications and the internal organization 

of the database library. Applications are only exposed to classes in the database hierarchy 

that correspond to different data interfaces (e.g., a floating point array vs. a linked list of 

strings).

Applications use abstract interfaces in MDARTS by creating objects from the classes 

in the application interface layers. The constructors for these interface classes forward 

the constraints specified by the application to the constructors of the specialized database 

classes derived from the interface classes. See Section 2.8 and Chapter 3 for further details 

relating to the construction of database service objects. Once an acceptable specialized 

database service object is constructed, the interface object used by the application forwards 

transaction requests to that service object. This forwarding of transactions is a form of 

delegation. W ith C + +  inline functions and an optimizing compiler, very little runtime 

overhead is added through transaction forwarding. If even this small overhead becomes a 

problem, it is possible for an application to obtain a  direct pointer to the database service 

object and use it instead of the interface object.

The database service classes in the MDARTS library function like populations of in

dividual contractors. The contract analogy and its relationship to object construction is 

discussed in detail in Chapter 3. Each MDARTS class is free to specialize services, such 

as concurrency control, to match particular application needs. Application-specified real

time and semantic constraints constitute the contracts, and each database class recognizes 

and implements its own set of constraints. For example, a fundamental constraint type 

is the transaction times for concurrent read or write transactions. There are many algo
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rithm s that support concurrent data access. Faster algorithms generally require semantic 

restrictions such as allowing only a single writer a t a  given time [90, 91]. If multiple con

current writers are allowed, additional overhead is required to lock and unlock the data and 

to wait if another task is updating it. The MDARTS library contains data management 

classes optimized for restricted concurrency semantics as well as classes that support more 

general semantics. Each database class guarantees transaction times according to its own 

implementation.

If none of the MDARTS classes can satisfy the contract, the application is notified 

(an exception is raised). Because the contracts are checked during object initialization, 

MDARTS detects possible transaction overload conditions before the transactions are ac

tually performed. This point is crucial for safety-critical applications because it permits 

an application to verify its timing properties before beginning real-time processing. Once 

a da ta  object has been constructed, the application program uses the object to perform 

database transactions. The location of the data  and the implementation of the data  access 

mechanisms are hidden from applications. Some objects directly access shared memory for 

maximum transaction speeds. Some objects use remote procedure calls to submit transac

tion requests to remote MDARTS SDM servers across the network. Other objects could 

access persistent data in file-based databases (we have not yet implemented persistent ob

jects in MDARTS, but there are many techniques for accessing file-based databases using 

C + +  classes [11]). In our current implementation, only shared-memory objects provide 

guaranteed transaction times.

The object-oriented architecture of MDARTS has been crucial to the success of the real

time constraint implementation effort. MDARTS is a relatively complex software system, 

but the programming interface presented to the user is remarkably simple. This is a  direct 

result of the power and flexibility of the C + +  language and the advanced object construction 

methods employed in MDARTS.

2.4 Memory-Based Objects

The timing constraints of some real-time applications are so tight th a t database trans

actions on the order of tens of microseconds are required. For example, an NGC manu

facturing machine controller will typically have one or more tasks monitoring sensors and 

computing control signals. An NGC control task might be periodic with a hard deadline
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every millisecond. Each time the control task runs, it extracts the current sensor values 

from the database and computes new control signals for the machine actuators. Several 

database transactions may be required to compute the control signals each cycle. There

fore, the worst-case transaction times must be much less than one millisecond. Disk-based 

databases, or virtual memory-based databases that may generate page faults, cannot yet 

approach this speed (recall that we are talking about worst-case times). Therefore, data  

accessed at extremely high speeds must be kept in shared physical memory.

Real-time control systems typically keep their key data structures in memory as ordinary 

variables, but then the data  is local to the control tasks and inaccessible to other software 

modules that might need to access them to perform execution monitoring or higher-level 

control. To permit more flexible data sharing, some systems make the memory addresses of 

da ta  objects known to multiple tasks by using pointers or declaring global data structures at 

predefined absolute memory addresses. W ith these types of sharing, there is a  danger tha t 

some of the tasks will inadvertently misuse or misinterpret the data and possibly corrupt the 

common data  areas. Such errors are extremely difficult to find and can have catastrophic 

consequences. In general, it is a bad idea for multiple tasks to directly manipulate pointers 

to common data  areas. This is especially true in multiprocessor systems, where tasks can be 

distinct processes that run concurrently on different CPUs (i.e., they are not ju st different 

threads of a  single process). A better approach is to encapsulate access to the common 

memory using object-oriented techniques. Since all manipulation of the data is performed 

by the object methods, application code never uses the raw memory addresses. The object 

methods can thus ensure that the shared data is accessed consistently by all tasks. Using 

shared objects rather than raw shared memory is appealing, but many complexities arise in 

its implementation. MDARTS provides applications with the convenience of shared objects 

without exposing them to the complexity of their implementation.

2.4 .1  D esign

Figure 2.2 shows an MDARTS Shared D ata Manager and three application tasks sharing 

a common object on a shared-memory multiprocessor. The shaded boxes in each task on the 

multiprocessor represent local MDARTS objects that contain internal pointers to a  common 

data  structure in shared memory. The arrows in the figure represent da ta  flow to and from 

the shared memory or across the network. In this example, an exclusive update constraint 

has been declared by the sensor task, so only it is allowed to write updates into the shared
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F ig u re  2.2: Access to shared memory data.

memory (hence the direction of its arrow vs. those of the other tasks in Figure 2.2). One 

of the application tasks (the factory monitor task) is running on a remote computer, so it 

uses a  proxy MDARTS object that uses remote procedure calls to forward transactions to 

the Shared D ata Manager. The Shared D ata Manager uses its instance of the MDARTS 

object to perform the actual transaction for the remote task. The object instances used by 

the SDM and the two application tasks on the multiprocessor point to the same shared- 

memory region, so data  consistency is guaranteed across the tasks. Note that once the 

MDARTS object is constructed on the multiprocessor, transactions performed by local 

tasks require no inter-process communication. In this case, the MDARTS transactions are 

ordinary C + +  function calls performed by the application tasks. This avoidance of inter

process communication is extremely important, and it is the primary reason MDARTS can 

achieve such high performance on multiprocessors. The execution of transactions by tasks 

also affects transaction scheduling. This issue is discussed in Section 2.2.2.

2 .4 .2  Im plem en tation

One might think tha t it would be trivial to place C + +  objects in shared memory and 

then use pointers to access them from different tasks. However, because of address space 

differences across tasks on different processors, shared memory cannot be used as easily as 

ordinary process memory for instantiating C + +  objects. The fundamental reason for this 

is th a t pointers embedded in objects cannot be shared easily across different processes. In 

C + + , objects usually contain pointers to functions (most often in the form of a  pointer to 

a virtual function table). In general, these functions will be loaded a t different addresses
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in each process, so no single function pointer will be valid for all processes. Jordan [37] 

discusses this problem and presents an approach to instantiating C + +  objects in shared 

memory. Unfortunately, Jordan’s methods rely on virtual memory and will not work for 

real-time operating systems, such as VME-based VxWorks, that do not support virtual 

memory. One portable solution to this problem is to establish a policy that forbids objects 

from using virtual functions or otherwise containing function pointers. However, without 

virtual functions, C + +  loses one of its most powerful object-oriented features.

Therefore, MDARTS places only the shared data parts of objects in shared memory. 

The rest of the MDARTS objects, including the virtual function pointers, are instantiated 

as ordinary C + +  objects in local process memory. This permits the portable use of C + +  

object-oriented features together with shared memory. Each local MDARTS object cor

responding to a particular database object has an internal pointer to the same region of 

shared memory. A given application may consist of many separate tasks, each of which 

shares the same data  objects through their local MDARTS object instances. Concurrent 

access to the shared memory region is managed by the implementations of the MDARTS 

transaction methods of each object.

For example, part of an MDARTS class called “Mdartslnt” is shown below. Mdartslnt 

is a  database service class. It contains a pointer (thelnt) to a single integer in shared 

memory. The pointer is initialized by the virtual function setM emoryPtr(), which recurses 

up the class hierarchy to determine the shared memory address of thelnt. SetMemoryPtr(), 

together with the virtual function dataSize(), permits future classes derived from Mdartslnt 

to declare additional shared memory data structures. We will present the code and then 

describe this mechanism in more detail.

Once an object of type Mdartslnt is initialized, its thelnt pointer points to a  valid shared 

memory address. This memory may be on the local machine, or it may be somewhere 

across a multiprocessor bus. Suppose an application task had an object of class Mdartslnt 

named foo. This task could set the shared integer value of foo to 99 with the statement: 

foo.setValue(0,”” ,0199); The shared integer value of foo could be retrieved with: int val 

=  foo.getlValue(0,”" ,0); These methods are converted by the compiler to simple shared 

memory accesses which require a t most a few microseconds to complete. The amount of 

time required depends upon the location of the shared memory and the performance of the 

computing platform. If the shared memory is on the same processor as the task and no 

virtual memory page faults are possible (the shared pages are locked into physical memory or
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class Mdartslnt: public RW_Mdarts { 
typedef RW.Mdarts inherited;

int * thelnt; / / a  pointer to an integer in shared memory
virtual int getlValue(int itag, const char * tag, int index) {

DECLARE.BUS-OPS(l) 
return *thelnt; }

virtual void setValue(int itag, const char * tag, int index, const int val) { 
DECLARE_BUS-OPS(l)
*thelnt =  val; }

virtual size .t dataSize() { return inherited::dataSize() +  align(sizeof(int)); }
virtual void * setMemoryPtr(void *ptr) { 

ptr =  inherited::setMemoryPtr(ptr); 
thelnt =  (int*) ptr; 
return ptr +  align(sizeof(int));
}

/ /  ... other Mdartslnt methods omitted
h________________________________________________________________________________

F ig u re  2.3: Code for MDARTS class M dartslnt.

virtual memory is simply disabled by the operating system), the memory read or write will 

require only a fraction of a microsecond. If the shared memory is across a  multiprocessor 

bus, the memory access will be delayed by the time required to gain control of the bus 

and perform the bus transaction. This delay in turn depends upon the availability of the 

bus when the request is made. A properly-designed real-time platform should ensure that 

enough bus bandwidth is available to guarantee access to the bus within a few bus cycles. 

In this case, the read or write should take no more than a few microseconds.

The “itag” and “tag” parameters to getlValue() and setValue() are used to identify 

which members of a complex MDARTS object should be returned. For example, suppose 

an MDARTS class stored a structure with six integers in shared memory rather than a 

single integer. The task calling getlValue() could indicate which member it wanted by 

passing a code for tha t member in “itag” or “tag.” In our simple Mdartslnt example, these 

parameters are ignored. However, it is necessary to include them in the function declarations 

so tha t they match the virtual functions declared by the MDARTS base classes. The 

“index” parameter is used for array objects or stream objects for which a cursor (or iterator) 

is needed. We discuss these issues further and explain how the syntax for performing 

transactions is simplified even more in Section 2.9.

The careful reader will notice tha t the name of the read function, getlValue(), has en

coded in it the data type to be returned (an integer), while setValue() does not. C + +  

perm its defining multiple functions with the same name, provided their param eter types
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differ (this is called function overloading). However, the getlValue() functions all have the 

same parameters, so we are forced to use different names. Multiple methods named set- 

ValueQ can be disambiguated by the compiler by virtue of the different types of their fourth 

parameter. The getValue() methods do not have a fourth parameter, so it is necessary for 

them  to have unique names. As an alternative, an overloaded getValueQ function could be 

defined if it took a fourth parameter to store type-specific function results. We do not con

sider this issue particularly important, especially since the methods described in Section 2.9 

hide this complexity from the application programmer.

Having introduced the methods that perform transactions, we will explain the process 

of initializing the shared memory structures. When the Shared D ata Manager is ready to 

instantiate a  new instance of a Mdartslnt object, it calls the Mdartslnt function dataSizeQ. 

This function recurses up the inheritance hierarchy, returning the overall amount of shared 

memory needed for a Mdartslnt object. Note that this size is not the same as the value 

returned by the standard C + +  function sizeof(Mdartslnt). Sizeof(Mdartslnt) returns the 

size of the local part of a Mdartslnt object, not the part in shared memory. The shared 

memory size of any class X  is recursively defined as the shared data  size of its base class 

plus the aligned size of the shared data of X .  The call to alignQ insures that derived classes 

will be able to put arbitrary data at the address just beyond the end of the shared memory 

used by X  (some machine architectures require long words, pointers, or floating point 

numbers to be placed at long word boundaries in memory). When creating an Mdartslnt 

object, the SDM allocates Mdartslnt::dataSize() bytes of shared memory, say at address 

addr, and calls Mdartslnt::setMemoryPtr(addr). Like dataSizeQ, setMemoryPtrQ recurses up 

the class hierarchy to determine which shared memory address thelnt should contain. In 

the recursion, the shared memory pointers of any base classes of Mdartslnt are similarly 

initialized. This mechanism permits new classes to be derived from Mdartslnt that include 

additional data  to be placed in shared memory.

Figure 2.4 illustrates the data parts of a shared MDARTS object of type Mdartslnt once 

the shared memory pointers have been initialized. The dashed lines represent the potential 

for future classes derived from Mdartslnt to add their data  to the shared memory region 

without recompiling the code for Mdartslnt and RW_Mdarts.

Although our approach to shared C + +  objects works and is portable, it has some limi

tations. In particular, the data  kept in shared memory is not perm itted to contain pointers 

to other MDARTS objects (it can, however, contain pointers to other shared memory data
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F ig u re  2.4: MDARTS pointers to shared memory regions.

structures). This makes it inconvenient to place MDARTS objects in shared data  structures 

such as linked lists and trees. It is possible to devise various techniques to circumvent some 

of these limitations, but the result will not be as efficient or as convenient as structures 

composed of ordinary C + +  objects. For example, shared linked lists can be created within 

MDARTS if they consist of lists of data structures (or objects without virtual functions) 

rather than lists of MDARTS objects. However, suppose we need a shared linked list of 

MDARTS objects. It is possible for each object to contain a pointer to its shared memory 

data  and to the next object in the list (see Figure 2.5). However, this is not truly a shared 

linked list, because if one of the tasks performs a list insertion or deletion the list in the 

other task remains unchanged. MDARTS does not dictate the implementation of the shared 

objects, so these problems are caused by the implementation approach we have taken. If 

portability is not a requirement and virtual memory is available, Jordan’s methods can be 

used for placing objects with virtual functions in shared memory.

2.5 Remote Transactions

In some cases, it is impossible to directly access the memory where data reside because 

the processor on which the task is running does not have physical access to it (i.e., the 

processor is not on the same bus). If distributed shared memory is available, it is possible 

to use physically remote memory as if it were local. However, most systems require some 

form of networking to access remote data. One of the difficulties associated with remote 

data  access is that most networking protocols add substantial overhead and do not provide 

end-to-end response-time guarantees. For example, TC P/IP-based protocols for socket and 

datagram  communications, on which Sun RPC [10] and OSF DCE [69] are built, provide no
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F ig u re  2.5: An MDARTS linked list.

timing guarantees. Clearly, any remote transaction that uses these services cannot provide 

any absolute timing guarantees. Nevertheless, it can still be very useful to provide remote 

access even if transaction-time guarantees are not made. For example, suppose a factory 

monitoring task needs to examine the internal state of a particular machine controller. The 

factory monitoring task may not have tight deadlines, so it might be able to tolerate the 

latency and unpredictability of a transaction that uses RPC. Since markets for real-time 

networking to support digital multimedia and telecommunications are expanding rapidly, 

implementations of networking protocols with guaranteed response times should soon be

come widely available. Thus, soon it should be easier to provide remote data services that 

are suitable for real-time systems.

2.5.1 D esign

One of the design goals of MDARTS is that data location and implementation be trans

parent to applications. Applications specify the database identifiers of the objects they 

need, and the MDARTS library constructs the appropriate objects to access that data. For 

local data  (on the same processor or accessible across the bus), MDARTS objects with direct 

pointers to shared memory are constructed. For remote access, proxy MDARTS objects are 

constructed. Proxy objects contain the information needed to perform RPC transactions 

on that object. This information includes the object identifier and the RPC handle cor

responding to the SDM server that manages that object. W hen making transaction-time 

guarantees, MDARTS takes communication delays into account. In our current implemen

tation, this essentially means that if MDARTS determines remote access is required, it will
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refuse to guarantee transaction times for the proxy object. The location of da ta  is not com

pletely transparent to applications since a timing constraint that is supported for local data 

will be rejected if the data is remote. This behavior is useful since it prevents unsuspecting 

applications from performing operations that might cause them to miss their deadlines. 

If we were using networking protocols that provided end-to-end response time guarantees, 

MDARTS could be enhanced to also guarantee transaction times for proxy objects [38]. 

However, this would still not be entirely trivial since the scheduling of RPC requests in 

the SDM would have to be considered. To do this, the SDM would need to have sufficient 

execution time to service remote requests. The CPU utilization required by the SDM would 

depend on the arrival rate of remote requests and their worst-case execution times.

For remote access to data, our implementation of MDARTS uses remote procedure 

calls (RPC) [10]. Applications that need to access remote objects use proxy objects that 

generate RPCs to ask the SDM to perform transactions on their behalf. Applications need 

not know whether the access is local or remote; the MDARTS objects hide the access 

mechanism. In other words, when applications construct their MDARTS objects, they do 

not specify whether the objects are local or remote. The MDARTS object construction 

process determines what type of object is required for each task to access each database 

object.

Naturally, remote transactions that use RPC are much slower than transactions that use 

direct shared memory access. For example, on our test platform a local database transaction 

tha t requires no more than 20 microseconds for direct memory access typically requires 30 

milliseconds if a proxy object is used. Almost all of this time is consumed in the RPC 

overhead required to send messages across the Ethernet. Faster processors, such as Sun 

Sparcstations, can perform RPCs on average significantly faster than this. However, since 

the T C P /IP  protocols do not guarantee delivery times, the higher average performance does 

not help with respect to hard real-time guarantees.

It is crucial that the execution of the RPC-based transactions not cause local real-time 

tasks tha t use the same data to miss their deadlines. For this reason, our initial transaction 

model does not support compound transactions that allow applications to lock resources 

across multiple da ta  access operations. If such transactions were allowed, locks held across 

the network by remote applications could block execution of local transactions for extended 

periods of time, making it impossible to guarantee fast transaction times for the local tasks. 

Instead, in MDARTS, each transaction is essentially equivalent to a single local or remote
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1 — class MdartsRemote: public MdartsLetterBase {
2 — public:
3 — virtual int getlValue(int itag, const char *tag, int index) {
4 — int answer:
5 — get_ival(theHandle, theObjectName, itag, tag, index, &answer);
6 — return answer;
7 -  }
8 — virtual void setValue(int itag, const char *tag, int index, const int val) {
9 — setJval(theHandle, theObjectName, itag, tag, index, val);

12 — protected:
13 -  CLIENT * theHandle; / /  RPC handle
14 — char * theObjectName; / /  object identifier
15 -
16 — / /  ... other MdartsRemote methods omitted
1 7 - ) ; ____________________________________________________

F ig u re  2.6: MDARTS proxy class for client side of RPC.

procedure call. If a transaction requires a lock, it obtains and releases the lock before it 

returns control to the application. In the case of a remote transaction, the lock is acquired by 

the Shared D ata Manager, which services the RPC call, performs the transaction specified 

in the call, and returns the result to the application through the remote proxy object (see 

Figure 2.2).

2.5 .2  Im plem en tation

To implement MDARTS remote access, we created a  proxy class called MdartsRemote. 

This class uses RPC calls to implement the virtual functions tha t store and retrieve data. 

The RPC calls are serviced by MDARTS SDM servers. Each MdartsRemote object con

tains an RPC handle and the identifier (name) of the remote MDARTS object. Our first 

MDARTS implementation used Apollo NCS for its remote procedure calls. NCS is the base 

technology for OSF DCE remote procedure calls [69]. However, since NCS and DCE are 

not widely available yet, we modified the RPC functions in MDARTS to use Sun RPC [10]. 

Figure 2.6 illustrates some of the MdartsRemote class members that forward transactions 

via RPC. The functions get_ival() and set_ival() (called on lines 5 and 9, respectively) bun

dle their arguments into the structures used for the Sun RPC client stubs and generate the 

RPC calls.

Figure 2.6 represents the client side of the RPC call. The server side is shown in 

Figure 2.7. GetJvalue_l() is the remote procedure provided by the MDARTS Shared D ata 

Manager to service transactions tha t retrieve integers from MDARTS objects. The object is
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1 — getJrecord * get_ivalue_l(get_value_args *args)
2 - {
3 — static getJrecord *get.rec =  new getJrecord;
4 —

5 -  Base *bp =  getObjectPtr(args-»name); / /  look up the object by name
6 -  if (!bp) {
7 -  get_rec-*st =  OBJECT.NOT.FOUND;
8 — return get.rec;

11 — / /  eventually put exception handling around the getlValue call.
12 -  get.rec-^answer =  bp->getlValue(args-»itag,args->-tag,args-»index);
13 -  get.rec—>st =  RPC.OKAY;
14 -
15 — return get.rec;

_____________________________________________________________

Figure 2.7: GetlValue() Function for server side of RPC.

retrieved by name from a hash table of registered objects (line 5), and then the getlValueQ 

function is called for that object. In this way, the SDM performs the transaction on behalf 

of the remote proxy object and returns the results via RPC.

The call to getlValueQ on line 12 of Figure 2.6 illustrates the power of virtual functions 

in C + + . Notice tha t get_ivalue.l() never tries to determine the actual type of the MDARTS 

object retrieved from the hash table. It simply calls the virtual function getlValue(), and 

C + +  automatically ensures that the correct version of getlValue() will be called for that 

object. Thus, the RPC server code never needs to be recompiled when new MDARTS 

classes are created. The code for the new classes is linked into the SDM server, and no 

modifications of existing code are required. Therefore, MDARTS is very easy to extend 

with application-defined classes.

2.6 Real-Time and Semantic Constraints

Transaction deadline specification in real-time databases is im portant because real-time 

applications often contain implicit assumptions about the performance characteristics of 

data  access operations. For example, the control loop of a machine controller might access 

a  database to read sensor values or issue actuator commands. The sampling frequency of 

the control loop is determined a priori according to  the control strategy and the physical 

characteristics of the machine. The sampling frequency helps determine the control task’s 

deadline. To verify that the deadline will be met, the software designer must know the 

time required to complete the database transactions. However, if this timing dependency
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is implicit and is not checked at runtime, the application may fail catastrophically if the 

designer’s assumptions about the database performance are wrong. Therefore, applica

tions should specify their real-time constraints explicitly and delegate the responsibility for 

meeting them to the database system.

Prior real-time database research investigates algorithms suitable for meeting real-time 

requirements. However, relatively little attention has been paid to the question of how real

time applications should communicate their requirements to the database system. This 

issue is very im portant in any practical implementation. A common assumption is that 

transactions will contain deadline information and/or task priorities. The problem with 

putting deadline requirements in transactions is that if the database system cannot meet 

a  deadline, this will not be discovered until the transaction is performed. Furthermore, 

processing deadline information adds additional overhead and complexity to transaction 

processing. This overhead in turn  reduces the performance of the database system. DiP- 

ippo and Wolfe [21] present an object-based RTDB model in which object methods are 

specified with worst-case execution times and temporal scopes defining the timing behavior 

of subsequences of statements within the method. It appears from their paper tha t the 

database class designer is responsible for specifying all of this information, but the authors 

do not provide any tools to help perform the specification. In MDARTS, timing knowledge 

is derived empirically with object methods that benchmark transactions on the actual ex

ecution platform (see Section 2.7). This timing knowledge is used at object initialization 

time to evaluate application-specified transaction deadlines expressed as transaction-time 

requirements. By checking requirements during initialization rather than during transac

tion execution, problems are detected early, and overhead during transaction processing is 

reduced.

Recent work by Badrinath and Ramamritham [7] and DiPippo and Wolfe [21] propose 

concurrency control techniques that use the semantics of object methods to increase the 

level of concurrency supported by database objects. The semantic information used by these 

techniques is limited to the state of the object and knowledge about the compatibility of the 

object’s methods. Semantics-based concurrency control is a powerful technique to reduce 

the amount of locking in transactions. However, it is possible to improve transaction per

formance even more if application-level semantic information relating to the intended use of 

the object is available to the database. For example, suppose only one task in a distributed 

application should be perm itted to update a particular object. In  that case, concurrency



47

Constraint type Specification_______________

access time "write<=80usec; read<=50usec"

persistence "volatile"

staleness "stale<=20msec"

concurrency "exclusive_update"

F ig u re  2.8: Examples of real-time and semantic constraints.

control protocols that are tuned to single-writer semantics could be used. However, a 

database system ordinarily would not know that there will be only one task performing 

updates to an object. Therefore, the database is forced to use less efficient protocols that 

assume more pessimistic application semantics. MDARTS allows applications to declare 

semantic information at runtime to help match database services with application charac

teristics. This semantic information, along with transaction-time requirements, is passed 

to the MDARTS library object construction methods. Therefore, MDARTS is capable of 

using both object-level and application-level semantic information to customize services and 

maximize transaction concurrency.

2.6 .1  D esign

Figure 2.8 shows some example MDARTS constraints and how an application can specify 

them in contracts using character strings. An MDARTS contract is a  string containing a 

list of constraints separated by semicolons. “Staleness” specifies an external consistency 

constraint. If a sensor monitor fails and its database values become obsolete, a  staleness 

constraint can trigger an exception or warning when a task tries to read that data.

MDARTS provides a rich environment for developing database constraints. For example, 

researchers interested in new concurrency control techniques can implement their algorithms 

in database service classes within the MDARTS framework by deriving new classes from 

existing MDARTS classes. Since constraints are expressed as character strings, it is possible 

to invent a new semantic constraint, define a syntax for the constraint, and integrate it 

seamlessly with MDARTS. It is not even necessary to recompile the MDARTS library to 

add a  new service class or a new constraint. New user-defined MDARTS classes tha t support 

the new constraints can simply be linked into the application code along with the standard 

MDARTS library.
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Application-specified constraints can be used for a variety of purposes in MDARTS. The 

constraint strings that are included in a request to create a new object are used to select 

the database service class and to configure the new object’s state. Constraint strings that 

are passed in subsequent requests to share an existing object are used to verify tha t the 

new request is compatible with the capabilities of the existing object and will not cause any 

prior timing guarantees to be violated. One rather nice feature of the MDARTS contracts 

is th a t mnemonic tags can be associated with constraints that initialize various members in 

the objects. For example, an MDARTS array object might be initialized with the following 

statement:

MdartsArray<Point> sensors(" sensors ", "read<=20usec; size=50;exclusive_update");
Notice that the size of the array is specified in the contract string. Configuration pa

rameters like this are ordinarily passed to object constructors, but usually they must be 

passed in “raw” form, without the mnemonic “size=” tag to indicate their meaning. In 

simple classes, there may not be confusion regarding the meaning of the constructor pa

rameters. However, if there are several configuration parameters passed to the constructor, 

it is possible to confuse their meaning. For example, suppose an ordinary C + +  object 

corresponding to an array of integers has a constructor that takes two integer parameters. 

The first param eter establishes the size of the array, and the second one is used to initialize 

the elements of the array to that value. The declaration would look like:

IntArray sensors(10,20); / /  is the size 10 and initial value 20 or vice versa?

2 .6 .2  Im plem en tation

When the MDARTS Base constructor processes a contract, it parses the string and 

converts it to a linked list of Constraint objects. The declaration of the ConstraintType 

enum on lines 2-5  of Figure 2.9 lists a  basic set of constraint types defined for the MDARTS 

library. This list represents a preliminary attem pt to define some constraints tha t might be 

useful for a real-time database. New constraint types should be added to this list as they 

prove useful for general-purpose database service classes.

When an application-specified contract is parsed by MDARTS, the string is subdivided 

into individual constraint clauses separated by semicolons. Each constraint clause is further 

parsed to extract a  constraint type field and optional operator and argument fields. For 

example, the constraint “size =  10;” has constraint type "size", operator “= ” , and argument 

“10". When the constraint type is parsed, the string is used to choose a corresponding
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1 — class Base {
2 — enum ConstraintType
3 — { unknown, null, size, type, restrict-type, read, write,
4  — remote.access, memory_access, priority, range-checked,
5 — access, staleness, persistence, concurrency, units };

9 — class Constraint {
10 — public:
11 — Constraint() : ct(Base::null), con(0), op(0), arg(0) { }
12 — Constraint(char * c, char * o, char * a);
13 Constraint);
14 — Base::ConstraintType ct;
15 — char * con;
16 — char * op;
17 — char * arg;
18 -  };__________________________________________________________

Figure 2.9: Structures for constraints.

1 — class M dartslnt: public RW.Mdarts {
2 -  virtual int checkConstraint(const Constraint^ c) {
3 — switch (c.ct) {
4 -  case size:
5 -  if (SAMESTR(c.op,"=")) {
6 — shared—̂ size =  atoi(c.arg);
7 - }
8 — return 1;
9 -  / /  ...
10 — default: return inherited::checkConstraint(c);
11 -  }
1 2 -  }
13 -  / /  ...
1 4 -  );______________________________________________________

F ig u r e  2 .1 0 : Code for constraint checking.

enumerated type for that constraint. This constraint value is used to initialize the "ct" 

member of a Constraint object (see line 14 of Figure 2.9). The string values of all three 

parts of the constraint clause are also stored in the Constraint object. Note that the very 

first constraint type on line 3 is "unknown". This type is chosen if the string for the 

constraint type does not match any of the predefined constraints. In  this case, the actual 

string of the constraint type will have to be examined by the MDARTS class to determine 

if it is supported. Since MDARTS allows unknown constraints, it is possible to extend 

the number of constraints without modifying the existing MDARTS library. This is a  very 

im portant feature.

Figure 2.10 shows part of the constraint checking method from a sample MDARTS class. 

Note tha t this method checks only a  single constraint at a time. The MDARTS Base class
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provides a  method that iterates over the list of constraints corresponding to an MDARTS 

contract and submits each one to the checkConstraint method. CheckConstraint() is a  virtual 

function, so the version implemented in the most derived class will be called. A return  value 

of 1 indicates success, and 0 indicates failure. On line 10, checkConstraint() delegates the 

checking of unrecognized constraints to the checkConstraintQ methods of its base class. This 

is a very im portant point, because it allows a  derived class to only check those constraints 

that it implements differently than its base classes. This significantly reduces the effort 

required to create a checkConstraint() function for a  new MDARTS class.

MDARTS provides a framework and a mechanism for expressing and checking application- 

specified constraints. However, the validity of each constraint check is deemed the responsi

bility of the database class that performs the check. There is no protection against database 

classes that erroneously agree to a  constraint that they actually cannot meet. Therefore, 

the real-time guarantees provided by MDARTS are only as good as the implementation of 

the classes that make the guarantees.

2.7 Benchmarking Execution Times

We have examined the basic mechanisms in MDARTS for expressing and checking timing 

constraints, but we have yet to consider how a database class can know its own performance 

so that it will make accurate transaction-time guarantees. A similar problem is addressed in 

the RTC-t—f  language [36]. In R T C ++, the designer of a real-time class specifies the worst- 

case execution time bound of each method in the class definition. An example given in [36] 

is: int m33(float f) bound(0t30m);. This declaration specifies a 30 millisecond bound for the 

method m33. This method of determining performance has three serious limitations. First, 

it requires the class developer to determine the execution time bound “by hand” using some 

unspecified method. Second, it ignores the possibility of heterogeneous computing platforms 

and hardware evolution. In other words, “on what CPU, what bus, and what clock rate 

does real-time m ethod m33 require 30 milliseconds to execute?” W hat if one wanted to 

compile the same source code to run on a multiprocessor with a mixture of 68030 and 

68040 CPU boards? Third, the timing specification method in RTC+-)- does not account 

for blocking delays associated with synchronization. Analysis of “nonpreemptive objects” 

tha t can cause blocking must be performed manually.

Since computers execute instructions at a well-defined rate and higher-level functions are
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composed of sequences of instructions, one might think that it would be easy to determine 

the execution time of a function by analyzing the source code. Unfortunately, this is a 

variant of the famous halting problem, which is theoretically undecidable. If restrictions 

are placed on the code, such as prohibiting looping constructs, it becomes theoretically 

possible to synthesize execution times. Because of the transformations performed by the 

compiler during code generation, one must analyze the assembly code rather than high-level 

source code. However, with modern CPU architectures that employ instruction and data 

caches, even analyzing the execution time of assembly can be difficult. Instead, we prefer 

to empirically measure the execution times of MDARTS object methods. Given a clock 

with sufficient resolution and transaction methods that exhibit predictable performance, 

an empirical approach is sufficient to characterize execution times. We believe that most 

database transactions will consist of simple code sequences that, apart from concurrency 

control delays, have highly predictable performance. By benchmarking execution times, we 

can automatically factor in the CPU speed and other attributes of the execution platform. 

Benchmarking addresses the first two drawbacks of the R T C ++ approach. Combining the 

benchmarking results with runtime lock information addresses the third.

2 .7 .1  D esign

Transaction-time guarantees in MDARTS are derived from benchmarking of m ethod 

execution times, runtime estimation of locking delays, and estimation of worst-case bus 

access times. Execution time benchmarking can be performed in a  separate calibration run 

of the MDARTS software on the target platform, or it could be performed at application 

initialization time. An MDARTS object includes a virtual function called calibrateQ that 

performs a  set of timing experiments on its methods. The results of these timing experiments 

can either be kept in memory or be output in a form that can be included in the class source 

code, which is then recompiled. The former case is used for benchmarking a t initialization 

time. The latter case is used for a separate calibration run. Since MDARTS adds code to 

the locking methods to collect some of the timing information, overhead during transaction 

execution can be reduced by performing a separate calibration run and recompiling without 

the timing support. Inclusion of the timing analysis code is controlled by preprocessor 

directives, so it can be removed when the program is recompiled. Furthermore, the overhead 

of performing benchmarks during initialization can be avoided if the timing information is 

collected in a  calibration run. Therefore, in most cases we prefer to use calibration runs to
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generate benchmarking information.

The advantage of lower overhead with calibration runs must be weighed against the 

possibility that the runtime platform differs in some significant way from that used in 

the calibration run. W ith calibration runs, MDARTS could be vulnerable to the R T C ++ 

problem with respect to a heterogeneous computing platform (e.g., a mixture of 68030 and 

68040 processors). There are two approaches to this problem in MDARTS. The first is to 

perform multiple calibration runs, one on each platform. The correct benchmark can be 

included via preprocessing directives or could even be determined at runtime using a flag 

variable to indicate the CPU type. The second approach is to scale execution times in units 

of the execution time of a standard function. This permits automatic scaling of transaction 

times to the execution speed of the CPU. For example, suppose the standard function is 

timed at 40 microseconds on a 68030. If a  calibration run on that CPU measures method 

M  at 20 microseconds, it could output the execution time as 0.5 standard function units. 

Suppose this code is then run on a 68040 on which the standard function requires only 10 

microseconds. Then the MDARTS library on the 68040 would infer that method M  will 

require 5 microseconds.

MDARTS performs two experiments for each benchmark in a calibrate() function. The 

first experiment times the overall execution of the method in the absence of concurrency 

control delays. The second experiment measures the maximum critical section time C ST im e  

and the number of critical sections entered by the method. The critical section information 

is collected by the lock objects used to control access to the critical sections. When critical 

section timing is enabled, the getLock() method of each lock reads a  hardware timer, and the 

releaseLock() method reads it again to measure the length of the critical section. GetLock() 

also increments the critical section counter.

The local execution transaction time for a database transaction is the time required 

for its execution plus the time spent busy waiting in the spinlock. If the execution time 

is E X tim e , the number of critical sections is N C S , and the wait time to acquire a lock 

(to enter a  critical section) is bounded by D, then the overall transaction time is bounded 

by E X tim e  +  (N C S  x D). Included in E X tim e  is a bus access factor that accounts for 

worst-case latencies to perform whatever bus operations are required by the transaction. 

The method for determining worst-case wait times for locks is described in Section 2.10.

The examples of timing constraints presented thus far, such as “read<=30m sec” , have 

implied a rather coarse view of object transaction methods. Suppose the transaction time of
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char * MDclass::Timep[] =  {
"read(delay);20usecs;1;Ousecs;0",
"read(name);40usecs;10;Ousecs;0",
"read(sum);0.5bms;lx;0.lbms;1",
"write(start.motors);lOmsecs + 3bms;2;50usecs;2",
"write(increment);0.4bms;2x;0.lbms;1",
QJtl______________________________________________________________________________

F ig u r e  2.11: Example of MDARTS benchmark data.

an MDARTS object depends upon which member is accessed. For example, some queryable 

fields might require the database object to perform a computation to derive the requested 

value while others might simply retrieve a value from memory. If an application can only 

specify a single timing constraint for all read or write transactions for an object, the object 

must make the pessimistic assumption that the most time-consuming transaction will be 

performed. This may cause an unwarranted rejection of a  timing constraint that could 

actually be met if it were known which transaction would be performed.

For example, an array object might support one read transaction that returns its size 

and one that returns the sum of the elements in the array. If the array is large, there could be 

a  significant difference in the execution times of these two transactions. MDARTS permits 

each transaction method to have as many parameter-specific timing records as the class 

implementer deems worthwhile. The cost of providing more detailed timing information 

is nominal: less than 100 bytes per timing record for each class (all objects of a given 

class share the same timing records). The time spent searching the extra timing records 

depends on the search algorithm. W ith binary search, a record can be found in O(logn) 

time. Furthermore, most timing checks are performed during object initialization, and the 

time required to do the check does not affect the real-time guarantees of other transactions. 

In  summary, the MDARTS benchmarking approach allows the database class developer to 

support timing constraints of very fine granularity an nominal cost.

2 .7 .2  Im plem entation

Benchmarks in MDARTS are stored as sets of records that contain the name of the 

transaction, the execution time, the bus operations and size scale factor, the maximum 

critical section time, and the number of critical sections entered by that benchmark. When 

ouput by a calibration run, this information is encoded into an array of character strings 

associated with that database class. Figure 2.11 illustrates a set of benchmarks for a 

hypothetical MDARTS class. Each benchmark record is composed of five fields delimited
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static void MDclass::calibrate() { 
int j;
char buf[80];
CALIBRATE_START(MDclass)
R U N (" read (d e lay ) ",j =  getlValue(delay.f,"",0),"usees")
RUN("read(nam e) ",getSValue(name.f,"",0,0Ibuf,80)1"usecs")
R UN("read(sum ) ",j =  getlValue(sum_f>"",0),"bms")
DECLARE("write ( s t a r t  .m o t o r s ) ; lOmsecs + 3 b m s;2 ;5 0 u secs;2 " )
RUI\l("write (in crem en t) "lsetValue(increment-f,"",0,j)("bms")
CALIBRATE.END

}_________________________________________________________________________________

F ig u re  2.12: Example of MDARTS calibrate function.

by semicolons. At application initialization time, the array of strings is processed and 

converted into an internal format that efficiently supports retrieval of transaction times by 

name. The first field is the name of the transaction. By convention, this name is prefixed 

by either “read" or “write,” and it includes parameters such as the name of the data  field 

being accessed. The second field is the execution time for the transaction in the absence of 

concurrency control delays.

The third field contains the number of bus operations and an optional scale modifier 

for the transaction. The scale modifier indicates a scale factor for execution time and bus 

operations. A constant scale modifier is used to adjust the time bound to some constant 

factor of the time measured during calibration. This technique can be used to make the 

guaranteed times more conservative. Modifiers with the letter “x” in them correspond to 

size scaling. For example, a “sum” transaction that returns the sum of the elements in an 

array or linked list iterates over all of the elements. The number of bus operations for this 

transaction will be proportionate to the size of the array or the length of the list. Although 

our current implementation only supports constants and a linear modifier “x” , it would be 

very straightforward to add other scale modifiers (e.g., “logx” for transactions that perform 

searches on binary trees). The fourth field in the benchmark record is the execution time 

of the longest critical section entered by the transaction. The last field is the number of 

critical sections entered by that transaction.

Figure 2.12 shows the implementation of a  calibration function corresponding to  Fig

ure 2.11. Notice that some of the benchmarks are in terms of microseconds or milliseconds 

while others are in terms of “bms” , which is the execution time required to execute a 

standard benchmark function. An application will generally express its transaction time 

requirements in ordinary time units such as microseconds or milliseconds, so MDARTS au

tomatically converts benchmark units to time units when the calibration data  is processed
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at application initialization time. The “write(start_motors)” benchmark string is actually 

generated by the DECLARE macro. DECLARE allows the class programmer to generate 

a  hard-coded benchmark during calibration without actually executing the operation. This 

capability can be useful in some contexts, especially if there is some side effect of executing 

the operation that would be undesirable during calibration. Note also that the timing value 

for “write(start.m otors)” includes a mixture of time values. Execution times for certain 

operations might include both computation times and delay times associated with waiting 

for events in the real world. Not every operation will scale directly with CPU performance. 

Therefore, it can be desirable to include an absolute time value plus some execution time 

scaled to CPU speed. Benchmarks such as this must be generated by hand, since the timing 

method cannot distinguish fixed overhead from CPU-dependent overhead.

# ifd e f CALIBRATE
#define CALIBRATE_START(c) printf("char * c: :T im ep[] = -[\n");
#define CALIBRATE.END printf("0 } ; \n " );
#define DECLARE(dec) printf("\"'/oS\" ,\n " ,d ec)
#define RUN(name,call,units) \

{ int tot; double cs; \
Time opv =  TimeList::ConvertToTimel)nits(1.0,units); \
Lock::TurnOffMonitoring(); GET-COUNTER(tot); call; DELTA.TCLTIME(tot); \  
resetBenchmarkQ; Lock::PrepareMonitoring(); call; Lock::TurnOffMonitoring(); \  
printf^'y.c'/oS; °/.6g°/0s ; '/0d'/oS; ’/06g°/0s ; °/od%c, \n " ,1111 ,nam e,(double)tot/opv,units1\  
busOperations(),scaleFactor(),\
(double) Lock::CsectionTime()/opv,units,Lock::CsectionCount(),1" '); }

# e lse  / /  non-calibration version of the code
/ /  declare null versions of these macros 
#define RUN(name,call,units)
#define CALIBRATE_START(c)
#define CALIBRATE.END 
^define DECLARE(dec)
#en d if

F ig u re  2.13: Macros used in MDARTS calibration functions.

The macros used in Figure 2.12 are defined in Figure 2.13. These macros are the ones 

used to generate output during a calibration run for an MDARTS class. Similar macros 

without the print statements can be used for initialization-time benchmarking. The RUN 

macro is complex enough to merit detailed explanation. Run takes as parameters the name 

of the benchmark, the method call corresponding to it, and the units in which to specify the 

timing results. It first determines the execution time of the units by calling an MDARTS 

function called ConvertToTimeUnitsQ. This function returns an unsigned 32-bit integer 

corresponding to the time values passed to it. A Time value with the highest bit =  0
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S e tV a lu e (...)  { 

int t =  th eL ock .getL ock ();

th eL ock . r e le a se L o c k (t);

}

c s _ t im e e x e c u tio n _ tim e

B e n c h m a rk R eco r d  { " S etV a lu e (fo o )”, e x e c u t io n j im e ,  s c a le ,c s _ t im e , c s _ c o u n t }

F ig u re  2.14: MDARTS method timing.

represents a time interval from 0 to 21 seconds with a resolution of 10 nanoseconds. If the 

highest bit is set, the lower bits are interpreted as seconds (with a 21-second offset) rather 

than 10-nanosecond units. By encoding time with this dual-resolution technique, intervals 

from 10 nanoseconds to 68 years can be represented in a single 32-bit value.

RUN next turns off critical section timing in the MDARTS Lock classes. RUN then 

executes and times call. Now that the overall timing of the call is completed, RUN resets the 

bus operation counter and the scale factor, instructs the Lock class to prepare for critical 

section timing, and executes call once more. The transaction methods in call count bus 

operations and set the scale factor. The MDARTS Lock classes used in call automatically 

determine the number of critical sections entered and the worst-case critical section time. 

Finally, RUN prints the timing results in a form that is ready for inclusion into the source 

code of the class that is being calibrated. Note that the time values output by RUN are 

scaled to correspond to the units specified in the calibrate() method. To do execution timing, 

RUN uses two other macros, GET_COUNTER and DELTA_TO_TIME. These macros are 

implemented in terms of hardware timers on the target CPU platform. On the 68030 

boards of our multiprocessor, these macros use a hardware timer with resolution of 6.25 

microseconds. On the Sun Sparc, we use an internal tim er with 1 microsecond resolution. 

However, the interface to the timer on the Sparc is through system calls that introduce 

jitte r and uncertainty of a few microseconds in the measurement. Figure 2.14 illustrates 

the execution time intervals measured by the RUN macro.

One of the objectives of the MDARTS benchmarking design was to minimize the pro

gramming effort and runtime overhead required to support timing analysis. Most of the 

timing code is localized in the calibrate() method. However, the MDARTS transaction 

m ethods for each object must indicate the number of bus operations and the size scale
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factor needed by calibrate(). To minimize runtime overhead, the benchmarking macros are 

conditionally compiled only for calibration runs (see Figure 2.15). After calibration, the 

preprocessor substitutes the null versions of the macros to eliminate the overhead they 

represent. Figure 2.15 shows the getDValue() method delegating to getlValueQ. The DE- 

CLARE-BUS_OPS() macro increments a counter so that methods that call other methods 

need not contain knowledge of how many bus operations are invoked by other methods.

# ifd e f CALIBRATE
^define DECLARE.BUS_OPS(busops) theBusOperations + =  (busops);
^define DECLARE-SCALE(scale) theExecutionScale =  scale;
#else
^define DECLARE_BUS_OPS(busops)
#define DECLARE_SCALE(scale)
# en d if
class Mdartslnt: public RW.Mdarts {

int * thelnt; / / a  pointer to an integer in shared memory
virtual int getlValue(int itag, const char * tag, int index) {

DECLARE.BUS_OPS(l) 
return *thelnt;
}

virtual double getDValue(int itag, const char * tag, int index) { 
return (double) getlValue(itag,tag,index);
}

F ig u re  2.15: Support for benchmark calibration in transaction methods.

The MDARTS approach to determining object method performance has significant ad

vantages over the approach of R TC ++. Our method requires less effort on the part of 

the database class developer, and it permits the specification of very fine-grained timing 

constraints. For example, in R T C ++ only one time bound may be associated with a 

method. In MDARTS, multiple benchmarks can be performed for the same method using 

different parameters. Applications can then specify detailed timing constraints such as: 

” read(update)<lm sec; read(sum)<50usec; write(increm ent)<lm sec” . By counting bus oper

ations invoked by methods and including scale factors for execution times tha t depend on 

the data structure size, MDARTS provides much better estimates of performance than can 

be expressed in RTC+-K

In addition to calibrate(), MDARTS supplies a  function called Time QueryTiming(char 

*transaction_name), which returns the guaranteed execution time of the specified transac

tion. This function first retrieves the benchmarked timing values for that transaction. Next,
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it queries the object’s lock for D, the worst-case spin delay for that lock. Finally, QueryTim- 

ing() computes and returns a worst-case execution time for that transaction based on the 

nominal execution time, bus latency, and bounded synchronization delay. QueryTiming() is 

used by MDARTS during constraint checking to determine if transaction-time constraints 

can be satisfied. Applications can also call QueryTimingQ directly after the object is created. 

This perm its applications to perform more sophisticated timing analysis than can be con

veniently accomplished with constraint strings. Contract strings perm it timing information 

to flow in one direction: from the application to the database object. W ith QueryTimingQ, 

MDARTS supports the flow of timing information in both directions. Thus, an application 

can specify its minimum requirements of the database in the contract string and then query 

the resulting object for its actual performance, which may exceed the initial specification.

2.8 Construction of MDARTS Objects

Many of the unique capabilities of MDARTS are associated with the way MDARTS 

objects are constructed at runtime. There is no single answer to the question “how are 

MDARTS objects constructed?” The answer depends on the context in which an MDARTS 

object is declared and on the prior state of the database. To clarify some of these issues, 

we will describe the various ways objects are created and discuss the implications of these 

alternatives.

In 2.3.1, we discussed the MDARTS class hierarchy and mentioned that applications 

are shielded from knowing the exact class of the database objects they use. Applications 

interact with the database through classes defined in the application interface layer. C + +  

inheritance is used to enforce interface compatibility among derived database service classes.

Suppose an MDARTS interface class RW_Mdarts is the base class of several database 

service subclasses Servicei. If an application wants to use an MDARTS object of class 

RW.Mdarts, it can declare an object as: RW_Mdarts m yob(“myob", "read<=lm sec”). This 

declaration automatically triggers RPC requests to the various MDARTS SDM servers to 

find an existing shared object called “myob.” The MDARTS SDM that manages “myob” 

verifies that the existing object is compatible with the constraint “read< = lm sec” and that 

the class of “myob” is compatible with RW.Mdarts (i.e., it is one of the classes Servicei). If a 

new object is to be constructed, an additional CREATE flag is supplied to the RW.Mdarts 

constructor. The SDM contacted with the create request verifies that the object does
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not exist already and then selects an appropriate service class Servicej that can meet 

the specified constraints. Once the service class is chosen, the SDM creates an instance 

of th a t class and allocates whatever shared memory is needed for it. After the existing 

object is found or the new one is constructed, the SDM returns the type Servicej and the 

shared memory pointer to the client application, which can then finish constructing its local 

instance of the shared object.

A task might want to use an MDARTS class for its local purposes without registering 

it with the SDM or making it visible to other tasks. The constraint-checking features of 

MDARTS can be useful even for objects that are not shared. In this case, it is unnecessary 

to assign a  database name to the object or to communicate with the SDM. A task can 

create a  purely local MDARTS object by simply omitting the database name in the object 

declaration. Each MDARTS class has a constructor that does not have a database name 

argument. This constructor does not issue any RPC calls but instead builds an object that 

meets the constraints in local memory. It is this constructor that the SDM uses when it 

services object construction requests. Therefore, there are three different MDARTS object 

construction sequences, depending on the context of the declaration. The first sequence 

corresponds to creating a new shared object; the second corresponds to creating a local 

instance of an existing shared object; the third corresponds to creating a new local object 

that is not visible to other tasks.

If a new shared MDARTS object is created with this declaration: 

RW.Mdarts ob(”ob”,’’read<=lmsec",CREATE), the following activity occurs.

1. RW_Mdarts() constructor sends its parameters via RPC to an MDARTS SDM

2. the SDM searches those database service classes that are compatible with RW.Mdarts 
and constructs an object from one that is compatible with the timing constraint.

3. the SDM returns the exact database service class of the new “ob” and the location of 
its shared memory. If the remote client does not have access to the shared memory, a 
flag is set to create a remote access object if timing constraints can still be met.

4. RW_Mdarts() constructor builds a  local copy of “ob” with the same database service 
class (Mdartslnt) and initializes its shared-memory pointers.

5. RW.MdartsQ constructor keeps a pointer to the local “ob” for subsequent transaction 
delegation.

6. RW_Mdarts() constructor returns.

For a local instance of an existing shared object, this declaration is used: 

RW.Mdarts ob("ob", "read<=lm sec").

1. RW.MdartsQ constructor sends its parameters via RPC to an MDARTS SDM
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2. the SDM determines if the existing “ob” is compatible with RW.Mdarts and if it can 
meet the new constraints.

3. the SDM returns exact database service class of the existing “ob” and the location of 
its shared memory. If the remote client does not have access to the shared memory, a 
flag is set to create a remote access object if timing constraints can still be met.

4. RW_Mdarts() constructor builds a local copy of “ob” with the same database service 
class (Mdartslnt) and initializes its shared-memory pointers.

5. RW_Mdarts() constructor keeps a  pointer to the local “ob” for subsequent transaction 
delegation.

6. RW.MdartsQ constructor returns.

For a purely local object, this declaration is used (note that no database name is in

cluded):

RW.Mdarts ob(”read<=lm sec").

1. RW_Mdarts() constructor searches those database service classes that are compatible 
with RW.Mdarts and constructs an object from one that is compatible with the timing 
constraint.

2. RW.MdartsQ constructor keeps a pointer to the new object for subsequent transaction 
delegation.

3. RW.MdartsQ constructor returns.

The contract specified when an MDARTS object is originally created is more significant 

than contracts checked by existing objecs. The constraints in a creation request determine 

the database service class that will be chosen for that object, whereas subsequent contracts 

axe simply checked against the existing object to ensure tha t it can meet the requirements of 

tha t contract. A typical application will maintain a set of shared object creation declarations 

for each MDARTS SDM to be loaded during initialization. These declarations could be read 

from a file and processed by the SDM before it begins accepting RPC requests. Naturally, 

it is im portant to ensure that the shared objects are created before requests for instances 

of existing objects are generated.

Several of the object creation steps for shared objects manipulate class type information. 

For example, the SDM sometimes needs to check for type compatibility in construction 

requests. Furthermore, the SDM needs to pass the type of the database service class back to 

the client task. To perform runtime type comparisons and class lookups, MDARTS includes 

an implementation of runtime type information for its classes similar to tha t described by 

Stroustrup [85]. Each MDARTS class registers itself at initialization time with its runtime 

type information as a key. Two class registries are maintained by MDARTS, one for interface
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classes and one for database service classes. Database service classes also separately register 

their exemplars (see Chapter 3) with the interface classes from which they inherit.

2.9 MDARTS Application Programming Interface

An im portant consideration in any database is how applications access the database. 

The most popular approach is to provide an interpreter for the language SQL. This lan

guage was originally created to support ad hoc queries on relational databases. Although 

popular, this language is awkward to use in the context of a compiled language like C or 

C + + . Most relational database vendors provide C preprocessors tha t permit SQL state

ments to be mixed with ordinary C code. This “embedded SQL” is converted into C by 

the preprocessor and subsequently compiled into an executable program. Mixing query 

languages and compiled languages creates the well-known “impedance mismatch” problem 

of database applications. In essence, the problem is that query languages were designed 

to provide very high-level operations on the database, and functions written in compiled 

languages often need lower-level access to the data  elements. The query language code that 

results from this awkward mixture is often inconvenient to write and inefficient to execute. 

Furthermore, debugging the hybrid code can be difficult. We believe that a  query language 

interface is totally inappropriate for high-speed real-time databases. The entire relational 

data  model upon which SQL is based, with its tables, foreign keys, joins, and index searches, 

implies far too much overhead for this domain. Our goal is to make the database accesses 

as natural and as convenient as possible for a C + +  application programmer.

2.9 .1  D esign

Figure 2.16 illustrates the MDARTS C + +  application programming interface (API). 

Two MDARTS classes corresponding to the same database object are shown in Figure 2.16: 

MdartsArray<T> and ReadOnlyMdartsArray<T>. These are C + +  template classes, where 

< T >  indicates an arbitrary class or structure T. In this case, T is an application-defined 

class called “Point,” which represents a 3-dimensional Cartesian coordinate. An array of 

Points might be used to store the positions of each joint in a robot arm. The same MDARTS 

template classes that manage arrays of Point objects in Figure 2.16 can also manage arrays 

of other types of data  objects. Thus, with template instantiation, new data  structures 

designed by application programmers can be added to the MDARTS database library very



62

* Declaration of MDARTS object in sensor task that will be updating it: 
*/
MdartsArray<Point> position_sensors("position_sensors",

"exclusive_update; size = 6; write(element) <= 50usec", CREATE);

/* Sensor task updates the data:
*/
position_sensors[5] = Point(1.2,0.866, 3.4);

jJ  ̂k|« jjj  (j, t|« «Jg ijj «|« jjg *jg «|g jjg «̂ g jj* (|# jj, ĝ g g|g ĝ g j|« jjg j|g tjg ^

* Corresponding declaration of MDARTS object in control task:
*/
ReadOnlyMdartsArray<Point> position_sensors("position_sensors",

"read(clement) <= 80usec");

/* Control task reads the data:
* /
int i = position_sensors("size") -  1;

Point end_effector_position = position_scnsors[i];

F ig u re  2.16: MDARTS C + +  application programming interface.

easily.

The “exclusive.update” constraint specified by the sensor task in Figure 2.16 causes 

MDARTS to reject subsequent attem pts to construct objects that could modify the data. 

This constraint allows the MdartsArraycT> class to use efficient concurrency control algo

rithm s and provides protection from unauthorized data access. By alternating updates to 

two copies of the data  as described by Vidyasankar [90], MDARTS can perform concurrent 

read and write transactions without locking the data. This technique relies on the restric

tion that only one write transaction will be active a t a given time. The “exclusive_update” 

constraint guarantees that this will be the case. It is important to note that constraints 

such as “exclusive.update” are checked only during initialization of the data  objects. Sub

sequent database access using the objects is not burdened with the overhead of checking 

access permissions. In Figure 2.16, the control task declaration specifies its object as a 

ReadOnlyMdartsArray<Point>. This class cannot update the data, so it satisfies the “ex- 

clusive.update” constraint. If the application programmer mistakenly tries to modify data 

with a ReadOnly object, an error is reported at compile time. We implement the ReadOnly 

semantic restriction as a separate class so that such errors can be detected by the compiler. 

This is an exception to our rule of keeping semantic constraints out of the class names. If 

“read-only” were only specified in the contract string, illegal update attem pts would not be
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caught until runtime.

Interestingly, the API of Figure 2.16 does not seem to correspond to the get/setV alue() 

interface shown in Figures 2.3 and 2.6. This is because MDARTS uses the operator over

loading features of C + +  to simplify the programming interface to the database. MDARTS 

also uses type conversion operators and temporary classes to effectively overload methods 

based on their return types (this issue was discussed in Section 2.4.2). The MDARTS appli

cation programming interface is remarkably simple, when one considers that it is achieved 

in standard C + + . There are no preprocessing stages required to translate this elegant syn

tax  into some compilable intermediate form. Therefore, MDARTS avoids the debugging 

difficulties introduced by preprocessing stages.

2.9 .2  Im p lem en tation

The MDARTS API is deceptively simple. Suppose a task has created an MDARTS 

object called db.object. Now consider the following statement: 

int i =  db_object("size") +  5;

This statement needs to be translated into the following equivalent sequence of sta te

ments:

int temp =  db_object.getlValue(Base::unspecified,"size",0); 

int i =  temp +  5;

One approach for implementing this would be to overload db.object’s function call op- 

eratorQ to call getlValueQ and return that result. However, then the function call operator 

would not be available for returning db-object members with non-integer types. Further

more, it would be impossible to use the function call operator for update transactions as 

in:

db_object("size") =  6;

This statement must be translated into: 

db_object.setValue(Base::unspecified,Ms iz e " 1016);

To support this convenient syntax for both read and update transactions, MDARTS 

overloads the function call operatorQ to return a temporary object that actually performs 

the calls to  get/setV alue(). There are actually two classes of temporary objects, one for 

read-only MDARTS objects and one for read/write MDARTS objects. The read-only class, 

simplified slightly, is shown below. Note that the original expression: db_object(”size") 

is first converted to an MdartsElement object by ReadOnlyMdarts::operator(). Next, the
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temporary MdartsElement object is converted to an integer with MdartsElement::operator 

int(). This operator calls handle.getlValue(itag,tag,index). Since the MdartsElement con

structor made the assignments itag =  Base::unspecified and index =  0, this getlValueQ call 

is converted to: getlValue(Base::unspecified,’’size",0) for that ReadOnlyMdarts object. The 

read/write MDARTS objects use the same method except that their RWMdartsElement ob

jects have overloaded opertor = ( )  operators to call the setValueQ methods of their MDARTS 

objects.

1 — class MdartsElement {
2 — public:
3 — MdartsElement(ReadOnlyMdarts& b, const char * s) : handle(b),
4 — itag(Base::unspecified), tag(s), index(O) { }
5 — inline operator int() { return handle.getlValue(itag,tag,index); }
6 — inline operator double() { return handle.getDValue(itag,tag,index); }
7 — protected:
8 — ReadOnlyMdarts& handle;
9 — const char * tag;
10 — int itag;
10 — int index;
11 — private:
12 — void operator=(const int& val) { }
13 -  };___________________________________________________________________________________

Figure 2.17: MdartsElement class for MDARTS API syntax.

Objects of type MdartsElement are created by operator() of the ReadOnlyMdarts class: 
ReadOnlyMdarts::MdartsElement operator() (const char* str) { 

return MdartsElement(*this,str);
}
Therefore, when the statement: int i =  db_object("size"); is encountered, a temporary 

object of type MdartsElement is constructed, a  reference to db.object is stored into handle, 

and the parameter " s iz e "  is stored into the tag member of the temporary MdartsElement 

object (by the constructor, shown on lines 3 and 4 of Figure 2.17). Next, the type conversion 

operator MdartsElement::int() of line 5 is called, since the context of the integer assignment 

causes the compiler to try  to convert the MdartsElement object into an integer. It is this 

type conversion operator that actually calls getlValueQ to perform the database transaction. 

Notice that the “= ” operator is declared as a  private class member. This allows the compiler 

to generate an error if an attem pt is made to use a read-only object in an update transaction 

such as:

db_object("size") =  6;

For read/write MDARTS objects, operator() returns a RWMdartsElement object that 

has its ’= ’ operator defined to call the MDARTS object’s setValueQ function. This permits
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read/w rite MDARTS objects to appear on either side of an assignment statement.

The introduction of temporary MdartsElement objects yields very convenient syntax 

for database queries and updates, but in a real-time database it is im portant to con

sider their effect on performance. To investigate this question, we ran some simple tim

ing experiments using our Sun Sparc version of MDARTS. First, we measured the trans

action times for a simple class like Mdartslnt that returns a single integer value from 

shared memory. We compiled the code without optimization and timed both int val =  

db_object.getValue(Base::unspecified1""); and int val =  db.object();. On average, the former 

call took 11 microseconds and the latter took 23 microseconds. Therefore, the creation of 

the temporary object added 73% overhead to a very simple MDARTS transaction. For more 

complex transactions, the 8 microsecond overhead would be a smaller fraction of the total 

transaction time, but one still might want to avoid using this syntax for time critical trans

actions. However, we next recompiled the code with optimization turned on (using the -O 

flag to the C + +  compiler). When we ran the experiment again, the getValue() transaction 

took on average 5 microseconds and the operator() transaction took only 6 microseconds. 

Clearly, the optimizer was able to eliminate most of the overhead of creating the intermedi

ate M dartsElement object. From this experiment, we conclude that with a  good optimizing 

compiler, it is possible to have the syntactic convenience of operatorQ without paying a 

significant performance penalty a t runtime.

2.10 Concurrency Control in MDARTS

Concurrency control is a critical issue in any transaction processing system. The con

sistency preservation and isolation properties of transactions capture the essence of concur

rency control: the correctness of a transaction’s execution should be independent of any 

concurrent execution of conflicting transactions. A conventional database system usually 

provides concurrency control by implementing the two-phase locking protocol. Two-phase 

locking is popular since it is easy to implement and guarantees serializability, which is the 

most widely accepted definition of correct concurrency control. As we discussed in Chap

ter 1, two-phase locking is not very well suited to real-time concurrency control. Therefore, 

many researchers have investigated alternative concurrency control strategies for RTDBSs.



66

2.10.1  D esign

MDARTS can support multiple concurrency control protocols by encapsulating concur

rency control in the implementation of the object methods that perform transactions. This 

approach, which is similar to that of DiPippo and Wolfe [21], permits each database class 

to use whatever protocol best fits the semantics of the data it manages. Through exemplar- 

based object construction, MDARTS can also match application-specified semantics with 

concurrency control strategies of different database classes.

We were primarily motivated to use object-based concurrency control to avoid the over

head of client-server communication. W ithout a database server to manage concurrency, the 

database objects must supply their own concurrency control. In other words, the database 

objects should be atomic data types [92, 73]. An atomic data  type is essentially a  class 

whose methods guarantee serial behavior in the presence of concurrent requests. Since the 

concurrency control can be individually tailored according to the semantics of the class 

member functions, it is possible to achieve higher levels of concurrency than with tradi

tional read-write locking [21, 72, 93]. It is also possible to implement atomicity in a  base 

class and inherit this property in derived subclasses [20]. MDARTS shared-memory objects 

differ from atomic data types and semantic concurrency control techniques described in the 

literature in that MDARTS objects are fragmented across multiple separate processes. The 

shared data  structures, including lock information needed to synchronize access, are the 

only parts of the objects kept in shared memory. Despite this implementation difference, 

it is usually very easy to adapt semantic and object-based concurrency control techniques 

described in the literature to MDARTS.

To implement concurrency control in MDARTS we propose the following principles. Our 

current implementation reflects all of these ideas except data versioning.

A void  u n n ecessa ry  locking. When possible, use data versioning [39, 79] or multiple data  

copies [90] to permit concurrent read and write operations without locking.

M a tc h  locking  g ra n u la rity  w ith  d a ta  sem an tics . This ensures that locking does not 

unnecessarily restrict concurrency. Sha et al. [66], Badrinath and Ram amritham  

[6], and Son [79] all propose locking only the data affected by a transaction. How

ever, identifying affected data and locking only those data are non-trivial problems 

in conventional database systems, where the data affected by a transaction are de

termined during query processing at runtime. MDARTS simplifies this problem since
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semantically-related data are grouped into database objects. Each object implements 

the methods that perform transactions on its data, so it is easy to match locking 

granularity with transaction semantics.

C o n tro l lock ing  d u ra tio n . Transactions should have well-defined critical sections, and 

lock acquisition and release should be performed within each operation that accesses 

a guarded resource.

P re v e n t  u n c o n s tra in e d  p r io r ity  inversion . Priority inversion can be limited by dis

abling task preemption during short transaction critical sections. For transactions 

with long critical sections, it may be possible to avoid priority inversion by avoiding 

locking with data versioning techniques. Alternatively, a priority inheritance protocol 

such as the Priority Ceiling Protocol can be used to limit priority inversions.

M a tc h  locking  m e th o d s  to  c ritic a l sec tion  size. Short critical sections are executed 

so quickly that the overhead of complex locking protocols can degrade performance. 

For example, a simple FIFO queue lock can perform better than a lock that uses 

a priority queue if critical section times are relatively short compared to the extra 

queuing time for the priority queue.

Although the MDARTS architecture does not specify any particular concurrency control 

protocol, our prototype implementation includes several types of lock objects. Lock objects 

are kept in shared memory along with the data  they are guarding (see Figure 2.4). Database 

object methods that require mutual exclusion can acquire locks before performing their 

critical sections. The semantics of the transaction determine whether and for how long 

locks are needed. For example, a  fixed-size array might support a transaction that retrieves 

the array size. Since the size of the array will not change, there is no need to acquire 

a  lock to read it. However, suppose each array element contains a compound structure 

th a t requires multiple bus operations to store or retrieve. In this case, mutual exclusion 

m ust be provided for transactions that read or update array elements. Transactions that 

require more complex processing, such as summing the array elements, can require the entire 

array to be locked for the duration of the transaction. If a  lock is associated with each array 

element, greater concurrency is possible, but the locks will consume memory proportional to 

the array size. Acquiring multiple locks for complex operations on an object (e.g., summing 

an array) can also add substantial runtime overhead compared to acquiring a single lock. 

MDARTS does not dictate an implementation policy on such issues. Instead, it is deemed
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the responsibility of the database class designer to implement concurrency control strategies 

that are appropriate to the data and application semantics. The performance and resource 

costs of the class implementations will be reflected in the timing and resource constraints 

tha t the class can support.

In MDARTS, we assume that the distribution of tasks sharing an object (and hence its 

lock) may not be known until runtime. The alternative is to require full knowledge of all 

resource sharing in the system prior to runtime. In complex systems, it is unrealistic to 

expect such complete knowledge. Therefore, MDARTS registers information with its lock 

objects during initialization to make transaction-time guarantees.

2.10 .2  Im plem entation

Locking delays are the primary source of transaction-time uncertainties for memory- 

based MDARTS objects. Therefore, we have designed locking strategies in our prototype 

implementation that allow MDARTS objects to bound locking delays for their methods and 

thus determine overall transaction-time guarantees. We will discuss how locking delays are 

bounded by one of our MDARTS locks, a spinlock queue.

Recall from Section 2.7.2 that transaction-time guarantees depend on D, the worst-case 

blocking delay for a transaction to acquire a  lock. For a given lock, D  is bounded by 

Q Tim e  +  (LC Scount x LC Stim e), where Q Tim e  is the overhead required to enqueue and 

dequeue a  transaction, LC Scount is the worst-case number of critical sections that a  trans

action may have to wait before it acquires the lock and L C Stim e  is the worst-case execution 

time for critical sections guarded by the lock. L C Stim e  depends on the implementation of 

transactions that use the lock. As each object initializes, it registers its worst-case critical 

section tim e with its lock object. This critical section time is measured during object bench

marking, as described in Section 2.7.2. LC Scount depends on the locking and queueing 

protocol implemented by the lock and upon the number and distribution of objects sharing 

it.

We have implemented a spinlock queue lock that uses a simple FIFO queueing strategy. 

The literature contains several examples of implementing such locks on shared-memory 

multiprocessors, e.g., [3, 19]. A transaction requests a lock by invoking the lock’s getLock() 

method. Just before enqueuing a transaction, getLock() disables task preemption. This 

means tha t while executing the critical section or while waiting for the lock, the transaction 

effectively acquires the highest execution priority in the system. It is necessary to prevent
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preemption so that tasks will not be delayed if tasks ahead of them  in the queue are 

preempted. On a multiprocessor, it is especially important to ensure tha t once transactions 

enter a spinlock queue they are not preemptible. This is because transactions executing on 

different CPUs could spin for an unbounded time if a remote task ahead of them  in the 

queue is preempted.

If preemption is disabled and a FIFO queue is used, it is easy to determine LC Scount, 

the maximum number of critical sections a  transaction would have to wait before acquiring 

a lock. By disabling preemption, we not only bound the time required for each transaction 

to complete its critical section and release the lock, but we also ensure that no more than 

one transaction from each CPU can enter the queue. Therefore, for any number of tasks 

distributed across m  CPUs and sharing a lock, LC Scount =  m  — 1. The benefits of 

disabling preemption do have a cost, however. The maximum time a  transaction might 

disable preemption m ust be considered when analyzing task schedulability. If this time is 

too long, the schedulability of tasks with tight deadlines could be jeopardized. Therefore, 

the maximum synchronization delay D  for any lower-priority tasks with locks tha t disable 

preemption must be included as a component of priority inversion for the higher-priority 

tasks. If these delays are bounded tightly enough, it will still be possible to guarantee task 

schedulability for the application.

Each task that declares a shared object containing a spinlock automatically registers 

with that lock during the initialization of its object instance. To register with a lock, the 

MDARTS object indicates the execution time of its longest critical section and the shortest 

slack time for its timing constraints. The longest critical section is usually fixed for a given 

object, but it could vary due to differences in CPU speeds. The shortest slack time is the 

smallest difference between the application-specified timing constraints for a transaction 

that uses the lock and the execution time of that transaction when no locking delay is 

experienced. If a  transaction has multiple critical sections, the slack time registered with the 

lock is divided by the number of critical sections. As tasks register new instances of shared 

objects, the lock keeps track of the minimum slack time registered thus far. The lock also 

counts how many different CPUs have registered with it. If a task on a new CPU attem pts 

to register, but that task would cause a violation of a previously-guaranteed transaction 

time, the registration attem pt is rejected by the lock. A transaction-time guarantee is 

violated if the D  that would result after the new registration exceeds the minimum slack 

time.
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Clearly, spinlock queues are appropriate only for very short critical sections. In our 

MDARTS implementation, we have focused on applications whose data needs match this 

description, namely high-speed control systems. For synchronization techniques applicable 

to longer critical sections, refer to Chapter 4.

2.11 Current Status

Currently, we have completed implementation of the MDARTS framework with the 

Shared D ata Manager, local and remote updates, and exemplar-based object construction 

using semantic and timing constraints. We have also implemented shared lock objects for 

concurrency control. MDARTS currently runs on VxWorks-based shared-memory multipro

cessors and on Sun workstations using System V shared memory and socket communication.



CHAPTER 3

CONTRACTS

3.1 Motivation

Several times in Chapter 2 we mentioned that MDARTS dynamically constructs database 

objects according to application semantics. We now explain this capability in the context 

of object-oriented library design and present the implementation approach we have taken 

in MDARTS to achieve it.

Object-oriented programming features such as polymorphism, encapsulation, and in

heritance, encourage the development of sets of classes that are similar in functionality but 

are customized in various ways. Software libraries populated with such classes, such as the 

MDARTS library, can be made both flexible and efficient, thus encouraging reuse. Each 

customized class in the library might support different space and time efficiencies for mem

ber functions and various combinations of features such as range checking, persistence, and 

concurrency control. For example, the library of generic container classes supplied with the 

gnu C + +  compiler includes eleven customized Set classes, each using different underlying 

data  structures and algorithms. Application writers must understand the subtle differences 

between customized classes in the library to select the best class and use it correctly. As 

libraries become larger and more complex, this problem becomes increasingly difficult.

In real-time applications, the subtle differences between similar classes in a library can 

be very significant since memory is likely to be more limited than in a conventional applica

tion, and timing differences between different implementations will affect the application’s 

schedulability. Therefore, the space-time tradeoffs of alternative class implementations are 

more likely to become critical issues in real-time systems. Class browsing tools are often 

proposed to assist application writers in selecting classes [33], but these tools still expose 

the full complexity of the class hierarchy. Applications that use specific subclasses in a cus-

71
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tomized class hierarchy can become dependent on the internal class structure of the library. 

Such dependencies make future reorganizations of the library classes difficult to accomplish 

without propagating changes to existing applications. Therefore, applications should be 

kept as independent as possible from the structure of a library’s internal class hierarchy. 

Class browsing tools do not address this need.

Furthermore, since many of the differences between customized classes may reflect se

mantic differences th a t are not expressible in the syntax of the language, there is a danger 

of mismatch between the semantics supported by a  customized class and its actual use in an 

application. Meyer discusses this problem and shows how software contracts in Eiffel can 

detect some types of semantic mismatch at runtime [52]. Although Eiffel software contracts 

help check consistency, they do not help select the server object in the first place. Further

more, the runtime contract checking in Eiffel adds overhead and slows m ethod execution.

In this chapter, we describe a  novel approach to software contracts that uses explicit 

application-side contracts and exemplar-based programming techniques to 1) automatically 

determine which customized server object to create and 2) configure the server according 

to application needs. Our object construction mechanism also improves encapsulation by 

hiding part of the library’s internal class hierarchy from applications. MDARTS uses this 

exemplar-based technique to customize its database services at runtime, according to the 

real-time and semantic characteristics of applications. To our knowledge, no other real-time 

database system has comparable dynamic adaptability to application requirements.

The remainder of this chapter is organized as follows. Section 3.2 reviews prior work on 

software contracts and introduces our approach. Section 3.3 discusses customization and 

ways application-side contracts can simplify the selection of customized server classes. Sec

tion 3.4 presents the MDARTS design, which uses application-side contracts with exemplar- 

based programming to implement the server class selection discussed in Section 3.3. Sec

tion 3.5 discusses the MDARTS implementation of contracts. Section 3.6 concludes and 

discusses future work.

3.2 Software Contracts

By analogy to contracts employed in civil law, software contracts have been proposed 

to formalize relationships between software entities. The software entities could be two 

interacting processes, an application and a software library, a  server object and a  client
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object or application, or a base class and a derived class. Although several researchers have 

used the contract metaphor, there is little consensus on what a  software contract should 

specify or how it should be expressed.

Wirfs-Brock et al. define contracts to be the set of methods exported by a server object 

[94, 95]. In this case, the contract is pure metaphor: a  useful perspective on existing struc

ture. The Eiffel language provides support for a more tangible form of software contracts 

[52]. Contracts in Eiffel are constraints on the pre- and post- conditions of functions. These 

constraints are assertions that check at runtime if applications are using functions correctly. 

Eiffel also supports the related concept of class invariants, which can be considered contracts 

specifying consistency between base classes and derived classes in an inheritance hierarchy. 

Helm et al. propose a higher-level use of the contract metaphor in which contracts specify 

roles and interactions between cooperating objects [33]. Applications instantiate contracts 

a t runtime by selecting classes for the various roles.

Like the software contracts described by Wirfs-Brock et al. [94] and Meyer [52], our 

contracts apply constraints to individual objects rather than behavioral compositions as 

in Helm et al. [33]. However, since the application does not necessarily specify the exact 

class to which the contract applies, our contracts are more accurately viewed as being 

between the application and the software library. Furthermore, we distinguish between 

explicit software contracts and implied software contracts. The implied part of a contract 

corresponds roughly to the contracts in [52, 94]; the explicit part is the subject of this 

chapter. We base our approach to software contracts on the following analogy with contract 

law. When a legal contract is established between a  service provider and a client, there is 

both an express and an implied contract. The express contract is comprised of the specific 

clauses in the contract document. The implied contract consists of the reasonable and 

customary duties of that kind of service provider. For example, a contract with a plumber 

might specify the brand of faucet to install in a kitchen. If the plumber installs the right 

type of faucet but the plumbing leaks, the plumber is liable for damages even if the contract 

does not specifically mention leaks. This is because a  plumber’s professional duties routinely 

include leak-free installation of plumbing. A leaky installation is a  violation of the implied 

contract.

We consider the methods exported by a class and any class invariants to constitute an 

implied contract between the server class and the application. By selecting a  server class, 

an application establishes the implied contract with the server that covers most aspects of
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its subsequent use. However, just as in legal contracts, the application may need to specify 

explicit terms that must be fulfilled in addition to the implied terms. It may be tha t only 

certain specialized server classes can satisfy the explicit terms. In this case, the contract can 

be used to select an acceptable class from the general population of server classes. In other 

cases, the explicit terms might relax certain constraints and thereby permit server objects 

to optimize various aspects of their services. For example, a server object that supports 

concurrent access could use simplified locking protocols if it knew the application would not 

perform concurrent update operations. This semantic constraint could be supplied by the 

application in the contract.

Wirfs-Brock et al. [94] and Meyer [52] focus on contracts defined by server objects. 

Since the server dictates all the terms, there is no way for applications to add clauses or 

establish their own contracts. Applications must know at compile time which server classes 

support the desired functionality, a requirement that becomes especially burdensome when 

the library contains many similar server classes. By contrast, in our system, applications can 

create explicit contracts to specify requirements and communicate application-dependent 

semantic information to servers. Contract clauses can contain either specific constraints 

or preferences. Specific constraints, such as “persistent,” are either met or not met by a 

server. Preferences, such as “minimize_execution_time,” indicate the characteristics most 

im portant to the application. Preferences can be used to guide the selection of servers and to 

help servers configure their services to application needs. Just as in legal contracts, explicit 

application-side software contracts are complementary to implicit server-side contracts. In 

the remainder of this chapter, we restrict our discussion to explicit software contracts, which 

we simply call “contracts.” The contracts are physically represented by character strings 

passed by applications to the server library. Contracts are evaluated at runtime during 

server object initialization. Our approach resembles service specification and acquisition in 

distributed computing systems [14, 63], except our server objects are much lighter-weight 

and are constructed from local libraries rather than remote server processes. If no server 

objects in the library can meet the requirements of the contract, then the library can set 

an error flag or throw an exception. In the next section, we discuss how application-side 

contracts can help determine which customized server objects will be used.
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3.3 Contracts and Customization

Through customization, object-oriented programming can partially overcome the classic 

tradeoff between flexibility and efficiency in software libraries. Instead of supporting a  single, 

general-purpose implementation of a function or abstract data  type, an object-oriented 

library can provide a variety of specialized classes that collectively cover the same domain 

but are individually more efficient than a  general-purpose implementation. Specialized 

classes can be more efficient since the best implementation of a  given function may depend 

on the patterns of use within the application. For example, a  set class that keeps members 

in a hash table would perform well if the application mainly tests for set membership. 

However, a linked-list internal representation might be better if memory is scarce, the set 

contains few members, or the application adds members frequently and rarely tests for 

membership. Instead of choosing a single compromise implementation, an object-oriented 

library can contain multiple compatible classes, each optimized for certain operations. An 

application can then choose a customized class according to its needs. W ith polymorphism, 

the programming interface to such classes can be made convenient and consistent.

However, with the flexibility of choosing from a  group of similar classes comes the 

burden of understanding the characteristics of each and making a good choice. There is 

also a danger of mismatch between any restrictions imposed by a customized class and the 

way it is used in an application. For example, a  server object used in a multithreaded 

environment might use a concurrency control protocol that supports a single writer and 

multiple readers. If the single writer restriction is violated by the application, as could 

happen accidentally since the restriction may not be expressible through language syntax, 

the object is likely to become corrupted.

The usual approach to choosing a customized class is to instantiate the class by name. 

The customized characteristics are encoded in the class name. For example, the generic 

container class library distributed with the gnu C + +  compiler contains a base class and 

eleven derived classes that implement sets: Set, AVLSet, OSLSet, VHSet, BSTSet, OXPSet, 

SkipSet, VOHSet, CHSet, SLSet, SplaySet, and XPSet. Each name encodes the data structure 

and algorithms the class uses to implement sets. Applications choose the set implementation 

by using the corresponding class name. While this technique for specifying customization 

is easily understood, in practice it is unwieldy. As additional semantic attributes such as 

persistence or concurrency are added, the class names either become very long or very 

cryptic. It also becomes difficult to remember the correct order for semantic attributes in
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Set

AVLSet BSTSet CHSet OSLSet OXPSet SLSet

VOHSetVHSetSkipSet XPSetSplavSet

VHSet<int> application_set; // application must explicitly choose the class 

F ig u re  3.1: Generic Set classes.

class names. Even worse, each combination of semantic attributes implies a unique class. 

Thus, the addition of new semantic attributes results in an exponential explosion in the 

number of classes. If persistence and two types of concurrency control (e.g., single-writer 

and multiple-writer) were added to the gnu Set classes, the eleven subclasses would become 

sixty-six (persistent and non-persistent versions of the original classes plus persistent and 

non-persistent versions for each type of concurrency control). Figure 3.1 illustrates the class 

hierarchy for the Set classes and how an application creates an instance of a Set class.

Because selecting an appropriate customized server class is so dependent upon application- 

side semantics, software contracts specified by applications can aid in the selection process. 

Instead of using class names directly, applications can use contracts to provide a mapping 

between application requirements and server classes. W ith this more flexible means of com

municating semantic requirements, it is possible to avoid unnecessary proliferation of classes 

by supporting several combinations of semantic attributes in a single class. For instance, 

a single concurrent implementation of a class could support several locking protocols for 

single-writer or multiple-writer semantics.

In MDARTS, contracts axe composed of constraint clauses encoded in character strings. 

The syntax of the contract language is implementation-specific. A typical contract string 

might be: “range-checked; lookup_time<=0(log n);” . Using strings for contracts is simple, 

portable, convenient, and offers more flexibility than plausible alternatives such as defining 

language extensions for processing contracts at compile time. An application may need 

to dynamically determine contract constraints at runtime, so compile-time contract pro

cessing is not always possible. Furthermore, by leaving contract interpretation to class 

member functions rather than embedding it in the compiler, we preserve the ability to
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define new types of constraints with whatever syntax is most convenient in the context of 

a particular class. It is even possible to define new constraints in customized subclasses 

without modifying the base class. This provides great flexibility and helps keep contract 

constraints orthogonal to the class hierarchy. Another reason we chose to use character 

strings for contracts is that MDARTS performs remote object creation by passing contracts 

across the network using remote procedure calls. Character strings are easy to use for RPC 

parameters.

The contract string is supplied as a  parameter to a server class constructor function. 

The server class constructor examines the contract string during object initialization and 

either configures a new object to meet the terms of the contract or rejects the construction 

request. An application can specify the exact class desired, or it can specify one of the base 

classes in a hierarchy of customized classes. In the latter case, exemplar-based programming 

is used to automatically select the customized class according to the contract. Section 3.4 

describes our use of exemplar objects in more detail.

For example, an MDARTS application might declare a persistent array object as follows: 

MdartsArray<int> parts_list(,,partsJist” ."persistent; range-checked; sparse; size=1000”). In 

this case, the base class MdartsArray is specified along with the name of the object and 

its contract string. Some constraints, such as “persistent”, might be supported only by 

specialized subclasses that access a disk-based database system. Some, such as “size” , are 

supported by all MdartsArray subclasses and help initialize the state of the object. The 

size constraint would be implemented in the base class and be inherited by subclasses. 

Others, such as “sparse” , might be used to determine the subclass or might just set a flag 

in the object during initialization. The mapping of contract constraint clauses onto the 

subclasses of the MdartsArray class is of no concern to the application. The library either 

will construct a customized, correctly-configured server object or will signal an error (return 

NULL or raise an exception).

There are many advantages to customization through software contracts. One advantage 

is th a t application-specific semantic attributes can be explicitly stated in object declarations. 

This is especially helpful when the attributes represent hints to server objects tha t enable 

various optimizations. By declaring these hints, the application is expressing a  willingness 

to abide by whatever restrictions are implicit in these hints. For example, single-writer 

concurrency control protocols can reduce locking delays compared to more general concur

rency control methods [91]. However, a server object cannot control application behavior to
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ensure that the single-writer restriction is followed. W ith contracts, a single-writer server 

class would not be chosen unless the application explicitly indicated in the contract that 

it would avoid concurrent updates (by specifying a concurrency constraint such as “exclu- 

sive.update”). For software reliability and maintenance reasons, it is im portant tha t such 

restrictions be declared in the code itself rather than existing only in documentation or in 

the mind of the application developer.

Another important advantage of customization through contracts is that it allows ap

plications to maintain a simplified view of the library’s class structure. We call this “class 

hiding” because the class hierarchy beneath each abstract server base class is hidden from 

applications. The MdartsArray example discussed above illustrates this idea. There could 

be dozens of different classes in the library tha t support the abstract interface defined in the 

M dartsArray base class. Because the semantic attributes that determine which subclass to 

use are passed in the contract, the application can safely ignore the underlying complexity 

and still be assured that a  server customized to its needs will be created. If no server can 

be created, the library can signal an error condition (throw an exception). The server sub

classes in each class hierarchy can be viewed as a population of contractors with the same 

trade. Each has different abilities and specialties, but all follow the same basic protocols. 

The application need not be familiar with each contractor’s idiosyncratic combination of 

specialties. Instead, the application creates a contract and submits it to the population 

of contractors. The techniques we use to accomplish the contractor selection process are 

described in the next section.

Naturally, there are also disadvantages to using application-side contracts, and the 

m ethod should not be applied indiscriminately. Contracts add complexity to the library 

implementation, and they impose runtime overhead as they are evaluated during server 

initialization. Contracts may not be worthwhile for libraries with few customized class hi

erarchies. The runtime overhead during initialization is amortized over subsequent server 

use, so the efficiency gained through customization in server functions must exceed the ini

tialization overhead for the method to be worthwhile. If an application wants to avoid the 

overhead of processing contracts during initialization, it always has the option of explicitly 

specifying a server class. Doing so will lose the benefits of class hiding and semantic checks, 

bu t tha t decision can be left up to an application. In general, contracts are best for server 

objects tha t will be used frequently by applications and that can achieve significant per

formance improvement through customization. However, even for cases in which efficiency



79

gains through customization cannot justify the use of contracts, contracts may still prove 

useful for specifying semantic constraints to reduce errors in server usage.

Another limitation of our contract implementation is that errors in contract strings are 

not detected until runtime. This problem is unavoidable if dynamic creation of contract 

strings is allowed. Finally, since it is unknown until runtime which server classes will be used, 

application executables might become very large as they incorporate all of the customized 

classes. We address this issue in the next section. Although contracts are not necessarily 

useful in all circumstances, a library need not support contracts for every class hierarchy. 

Support for contracts can be embedded in only those hierarchies where they are needed.

3.4 Exemplars and Customized Classes

Exemplar-based programming, in which prototype objects play a role similar to that 

of classes, is often cited as an alternative to more traditional object-oriented architectures. 

The best known example of this approach is Self, a language which uses exemplars and 

delegation to dispense with classes altogether [89]. While exemplars in Self form the basis 

of a complete programming paradigm, exemplars can be useful in a class-based object- 

oriented context as well. Coplien illustrates the use of exemplar-based programming in C + +  

[16]. In our implementation, we combine software contracts with Coplien’s autonomous 

generic exemplar idiom (in which exemplars register themselves with a base class and object 

construction requests iterate over the exemplars).

Exemplars are special, one-per-class objects tha t are prototype representatives of an 

entire class. Given an exemplar object, applications can construct copies of the exemplar 

by invoking a special clone() method. Because exemplars are objects, they can be stored 

in data structures. In some object-oriented languages, classes are first-class objects, so 

class objects could be used with our technique instead of exemplars. We put exemplars (or 

class objects) in data structures to manage collections of customized server classes. These 

representatives comprise the populations of contractors mentioned in the previous section. 

Rather than choosing a  specific server class, an application chooses a base class and specifies 

the rest of its requirements in a contract string. The contract is passed to the population 

of contractors (exemplars) derived from that base class. The exemplars then bid on the 

contract to determine which class meets the application’s requirements. The winner of the 

bidding process is cloned, and the clone object is returned to the application.



80

All classes (exemplars) in each contractor population support the same functional inter

face, so applications can use the cloned object without knowledge of which class was actually 

constructed. Therefore, applications only contain dependencies on the abstract base classes 

in the library. This is a very significant point, because it permits class libraries using our 

techniques to be extended, modified, and reorganized without requiring corresponding mod

ifications to existing applications that use the library. The concept of encapsulation is thus 

extended to include encapsulation of entire class hierarchies.

For example, a library might initially contain an array base class and two customized 

subclasses: one that supports concurrency and one that does not. Each of these subclasses 

would contain various configuration options to support different combinations of semantic 

attributes. Suppose applications using this library are developed. Now suppose that the 

library developer decides to split the class that supports concurrency into three separate 

classes, each customized to support a subset of the attributes supported by the original 

concurrent class. The developer may want to do this to improve efficiency. As long as 

applications use the array base class and specify semantic requirements in contracts, mul

tithreaded applications whose contracts originally mapped to the single concurrent class 

will now automatically use one of the new classes. No source code modifications in the 

applications are required. The programs need only be relinked with the new library.

One of the key advantages of using exemplars is that it facilitates extensibility. New 

classes can add their exemplars into the appropriate exemplar collection, and no existing 

library or application code need be changed to accommodate the new class. W ithout the 

exemplar mechanism, existing applications can benefit from new classes only if the applica

tion code is changed to specify the new classes or an object-creation function in the library 

is modified to include the new classes.

Given exemplar-based object construction, there are still numerous implementation is

sues to consider. For instance, how are the exemplars organized?, how is the bidding process 

accomplished?, how can applications avoid linking in unneeded exemplars?, etc. In the re

mainder of this section, we consider these issues. In Section 3.5, we present an example 

C + +  implementation of contracts and exemplar-based object construction.

Since we are interested in groups of exemplars derived from a common base class, the 

data structure containing the exemplars should belong to the base class. The simplest way 

to do this is to create a  linked list for each server base class. Exemplars of derived classes 

are added to the list during exemplar initialization. Bidding can then proceed by iterating
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over the list and submitting the contract to each exemplar in turn. Either the first exemplar 

to satisfy the contract is cloned or the exemplar that best satisfies the contract is cloned. 

In the former case, the iteration proceeds until one of the exemplars clones itself. In the 

latter case, each exemplar returns a “bid” value in response to the contract. The function 

performing the exemplar iteration keeps track of the most attractive bid and clones that 

exemplar once all of the bids are examined.

Clearly, if large numbers of exemplars are associated with each base class, iteration over 

all of them will be slow. If the first exemplar to satisfy the contract is cloned, performance 

will be somewhat better. However, in this case the order of exemplars in the list may 

influence which server class is constructed. Since applications might prioritize different 

server characteristics, there may not be a single list ordering that is best for all applications. 

Nevertheless, the “first bid wins” approach does ensure that the server returned will satisfy 

the requirements specified in the contract.

To improve the performance of the bidding process, one could use more sophisticated 

techniques than iteration over a linked list. The selection of a server can be viewed as a 

search process over exemplars using the contract as the key. If the exemplars are organized 

during library initialization into a classification network or a signature-based hash table, the 

search could be guided at runtime by the contract. If there are many exemplars, this could 

dramatically reduce the number of exemplars asked to bid on a contract. However, the value 

of complex algorithms must be weighed against their cost. More complex data  structures 

require more memory and more complex search algorithms. Since the library maintains 

multiple exemplar lists, each attached to a different base class, most of the exemplars in 

the library are eliminated from consideration when the application specifies the base class. 

Since the exemplar bidding process is performed only during server object construction, 

it is unlikely to occur inside tight application loops where efficiency is crucial. The best 

technique for exemplar bidding ultimately depends upon the particular class hierarchy and 

expected patterns of use by applications. This is an interesting research problem on its 

own.

A naive implementation of contracts and exemplars would include all exemplars (and 

their associated code) in applications using the library. If most of these exemplars are never 

used (cloned) by an application, which is likely, this means lots of unused code will be linked 

into the application. Furthermore, the presence of unused exemplars will slow the bidding 

process. Ideally, one would like to have each exemplar list contain only those exemplars
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Exem plar list ( in stan ces of S e t  su b c la sse s )

S et

I O SL SetC H Set I I O X P SetAVLSet SL SetB ST Set

S p lavS et V H Set V O H Set X P SetS k ipSet

Set<int> application_set(”space=0(n);tim e=test_m em bership<=0(logn);prefer=tim e'');

/ /  note that with contracts, applications declare their n e e d s  directly 
/ /  in th e  contract rather than implicitly through ch oosin g  a  specific  
II c la s s  from the library.

F ig u re  3.2: Generic Set classes with exemplars.

tha t will be used by the application. Unfortunately, this information is not known until 

runtime.

If the contracts do not depend on runtime information, so the same exemplars are 

always cloned, this problem can be solved with the following technique. For each server 

base class there is a header file that causes all customized exemplars to be linked into 

an application. Applications during development and testing use this header file so all 

exemplars are included. If a  certain mode is enabled during testing, the base class keeps 

track of which exemplars are actually cloned in each application run. As the application 

terminates, the base class exemplar (in its destructor) writes a  new header file tha t includes 

only the classes of cloned exemplars. Applications ready for production can use the new 

header files and thereby avoid linking in unused exemplar code. W ith this technique, the 

exemplar-based approach to customization does not necessarily lead to bloated code size. 

However, as memory prices fall and operating systems add support for shared libraries, code 

size becomes less important. Therefore, in the long run it will probably be unnecessary to 

eliminate unused exemplars.

Figure 3.2 shows how exemplars and contracts could be used to simplify the application 

interface to the generic Set classes introduced previously. The object declaration below the 

diagram in Figure 3.2 shows tha t applications do not need to specify a  particular server 

subclass if exemplars are used to select the servers. Instead, the application can use a single 

template class, Set<T >. This example raises an interesting question: how difficult is it 

to add support for contracts to an existing class library? If one has access to the library 

source code, it is possible to add constraint-checking methods and exemplar objects to the
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existing classes.

However, what if it is not feasible or not desirable to modify the library source code? Our 

basic contract and exemplar techniques would not work in this case, since the exemplars 

are instances of the classes, and they must support the constraint-checking methods to 

bid on contracts. There are two alternatives to modifying existing library code. One 

possibility is to create a new class hierarchy derived from the original library using multiple 

inheritance to add the necessary methods. This approach is illustrated in Figure 3.3. The 

class MySet in Figure 3.3 contains the exemplar list and the methods for checking contracts 

and selecting exemplars. The new subclasses such as MyCHSet inherit and override the 

constraint-checking functions from MySet and also inherit the Set functions from the original 

library classes. Applications use the cloned exemplar objects through the MySet interface. A 

second approach is to create a  shadow class hierarchy tha t simply encapsulates knowledge of 

the existing classes but does not inherit from them. The exemplars of the shadow hierarchy 

process the contracts and determine if the original class they represent would satisfy them. 

W hen one of these shadow exemplars is chosen, it creates a new instance of its original class 

instead of cloning itself. Figure 3.4 illustrates this approach.

Set

subclass-of

\  Exemplar list
MySet

CHSet

SplaySet
MyCHSet

/  instance-of
MvSplavSet

MySet<int> application_set("space=0(n);time=test_membership<=0(logn)");

F ig u re  3.3: Adding contract support via inheritance.

3.5 Example C + +  Implementation

Although our approach to contracts and customization is not language-specific, our 

prototype MDARTS library includes a C + +  implementation of exemplar-based customiza-
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_______  Exemplar list
MySet -*>p

MyCHSet I

/  instance-of

Set

CHSet

SplaySet

Set<int> * application_set =
MySet<int>::make(,'space=0(n);time=test_membership<=0(logn)");

// note that the application interface with a shadow hierarchy requires a different 
// syntax: an explicit call to MySet<lnt>::make() is required, and a pointer to 
// an original Set object is returned.

F ig u re  3.4: Adding contract support via a shadow hierarchy.

tion. In this section, we present this implementation. We first discuss support for con

straint processing in the MDARTS base class “Base.” We next present two example server 

classes: a  server base class called “MdartsArray” and a customized server class called 

“RangeCheckedArray” that supports the semantic constraint “range.checked”. For brevity, 

part of the MDARTS class hierarchy and some class member functions are omitted.

Code common to all exemplar-based class hierarchies is factored into the MDARTS 

abstract base class called “Base.” This class contains methods for parsing contract strings 

and cloning server objects from lists of exemplars. Parsing contracts into lists of constraint 

structures was discussed in Section 2.6.2. Since Base declares pure virtual functions needed 

for exemplar-based object construction, derived classes are forced to implement the required 

functions. Figure 3.5 shows the Base class code used to implement exemplar-based object 

construction. This code uses the simple “first bid wins” approach for choosing the exemplar 

to clone.

The constraint checking function in each server class consists of a switch statement over 

the enumerated constraint type. Figure 3.6 lists the code of an example server class called 

MdartsArray. Another example of checkConstraintQ is presented in Figure 2.10.

Note tha t class MdartsArray exports a public function called “makeQ” that invokes 

the Base::ConstructServer() function. This is the function used (directly or indirectly) by 

applications to create customized server objects. A direct use of makeQ by an application 

would look like: MdartsArray *array_ob =  MdartsArray::make(“size=80,range_checked");. If
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class Base { 
protected:

/ /  ConstructServerQ parses the constraints and tries to clone an object 
/ /  that meets them. Returns a server object if successful, NULL otherwise.
II
Base * ConstructServer(const char * contract) {

Base * server =  0; / /  server object, if cloned successfully 
Base *ex; / /  exemplar object in list
Plist<Constraint> cl;
MakeConstraintList(contract,cl);
/ /  scan down the exemplar list to find one that meets all constraints 
P list< B ase>  & elist =  getExemplarListQ; / /  virtual fn call 
for (Pix p =  elist.first(); p; elist.next(p)) { 

ex =  elist(p);
server =  ex-»checkAIIConstraints(cl) ? ex—»clone() : 0;
}

return server;
}

/ /  Pure virtual functions below. These methods must be implemented
II by MDARTS server classes.
virtual void registerExemplar(Base * ptr) =  0;
virtual int checkConstraint(const Constraints c) =  0;
virtual void stageConstraintCheck() =  0;
virtual Base * clone() =  0;
virtual P list<B ase> & getExemplarList() =  0;

F ig u re  3.5: Contract and exemplar methods in Base.
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class MdartsArray: public Base { 
public:

static MdartsArray * make(const char * contract) { 
return (MdartsArray *) ConstructServer(contract);

}
/ /  public MdartsArray accessor functions here, e.g., operator() ...

protected: / /  methods visible only to member functions and subclasses
/ /  constructor for array object 
MdartsArray(int s) {

shared =  sharecLmemory_malloc(sizeof(shared-data)+(s-l)*sizeof(int)); 
shared->theSize =  s; }

/ /  array representation: size and first element in array, stored together 
/ I  in shared memory. A more realistic example would be a template class... 
struct shared.data {

int theSize; / /  how many elements in the array 
int theArray; / /  start of array

};
shared.data * shared;
/ /  list of derived exemplars -  subclasses add their own exemplars 
/ /  to this list by calling registerExemplar(). 
static P list<B ase>  TheExemplarList;
P list<B ase>  & getExemplarList() { return TheExemplarList; }
/ /  Implementation of pure virtual functions defined in class Base. 
void registerExemplar(Base * ob) { TheExemplarList.prepend(ob); } 
void stageConstraintCheck() { shared->-theSize =  1; } / /  initialize state
II  check a single constraint 
int checkConstraint(const Constraint^ c) { 
switch (c.constraint.type) { 

case size:
shared—̂ theSize =  atoi(c.value); / /  convert argument string to integer 
return 1; / /  success (should verify c.value is an unsigned int) 

default:
return 0; / /  failure (reject all constraints except "size")

II definition of static (one per class) exemplar list 
Plist<B ase>  MdartsArray::TheExemplarList;_____

F ig u re  3.6: Class definition for MdartsArray.
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makeQ fails to create a valid MdartsArray server object (as could happen if the contract 

contains constraints not supported by any of the exemplars), it returns NULL. If this object 

construction syntax is undesirable, it is possible to encapsulate the server object pointer and 

the make() call in an envelope class tha t forwards server functions to the internal object. 

This is the technique used in MDARTS to achieve the application programming interface 

described in Section 2.9. The make() function in each server base class passes Construct- 

ServerQ the contract string and the list of exemplars of derived classes. ConstructServer() 

parses the contract and converts it into a list of Constraint structs. It then submits the 

constraint list to each exemplar until one of them  returns a clone (we use the simple “first 

contractor to accept the contract wins” bidding technique). The Base pointer returned by 

ConstructServerQ is type cast to a pointer to an MdartsArray object. This is a type-safe 

operation since all exemplars on the list belong to classes derived from MdartsArray.

Each exemplar’s stageConstraintCheck() function is invoked by the Base ConstructServerQ 

function before the constraints are checked. StageConstraintCheckQ is used to initialize the 

state of the exemplar to eliminate carryover from prior contracts. For example, if an ex

emplar derived from MdartsArray processes the constraint “size=1000”, it sets its internal 

theSize variable to 1000. This size variable is used to determine how big the clone object’s 

array will be. If a subsequent and completely different contract is processed that does not 

specify the MdartsArray size, we want theSize to default to some constant value rather than 

retaining the value from the previous contract. Thus, M dartsArray’s StageConstraintCheckQ 

sets theSize to 1. It may be that state variables must be initialized at multiple points in 

the class hierarchy. Therefore, if derived classes implement StageConstraintCheckQ to ini

tialize any state specific to that subclass, before returning they should also invoke their 

base class(es) StageConstraintCheckQ function(s). Once the exemplar state is initialized 

via StageConstraintCheckQ, each constraint in the contract is evaluated by the exemplar’s 

checkConstraintQ function. CheckConstraintQ returns a  boolean result to indicate whether 

the constraint is supported.

The Exemplar class is used as a dummy param eter to a special constructor in each 

derived server class that adds the exemplar to the base class exemplar list. By declaring a 

static pointer to the exemplar in the server class, C-)—h static member initialization can be 

used to automatically construct and register exactly one exemplar per class. This technique 

is borrowed from Coplien [16].

Each server class need only recognize a subset of the constraints defined by the server
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class Exemplar { public: Exemplar(){} };
class RangeCheckedArray: public MdartsArray {
typedef inherited MdartsArray;
protected:

/ /  constructors
RangeCheckedArray(Exemplar) { registerExemplar(this); } 
RangeCheckedArray(int s) : Array(s) { } 
static RangeCheckedArray * TheExemplar;
Base * clone() { return new RangeCheckedArray(shared->theSize); }
int checkConstraint(const Constraint^ c) { 

switch (c.constraint.type) { 
case range.checked: 

return 1;
default: / /  defer other constraints to base class

return inherited::checkConstraint(c);

/ /  definition of static (one per class) data members 
RangeCheckedArray * RangeCheckedArray::TheExemplar =

new RangeCheckedArray(ExemplarQ);___________________________________________________

F ig u re  3.7: Class for range-checked array.

base class. Like stageConstraintCheck(), checkConstraint() chains up the inheritance hier

archy, deferring to its base class when unrecognized constraints are encountered (see the 

default clause in the switch statement o f RangeCheckedArray’s checkConstraint() function).

Figure 3.8 illustrates the object creation sequence in an MDARTS shared data  manager. 

The application declares an object, and the constructor for that object forwards the type 

information of its class (the application interface class) and the object’s name and contract 

string to a shared data manager server. This SDM uses exemplar-based object construction 

to select and instantiate a service object that meets the application needs. After the RPC 

returns, the application task completes the construction of its local instance of the object.

3.6 Summary

We have described a new approach to software contracts based on application-side con

tract strings and exemplar-based server construction. MDARTS contracts consist of seman

tic constraints tha t are used to guide the selection of customized server objects a t runtime. 

Our techniques permit the encapsulation of entire subtrees of classes in an object-oriented 

library. Instead of exposing the application developer to many similar customized classes, 

the library implementer can define a small set of abstract server base classes and hide the
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1. c o n stru c to r m akes R P C  request

/* declaration of MDARTS object 7  
MdartsArray<Point> obj("obj'',"constraints"); S hared  D ata  

M an a g e r p rocess

2. S D M  fin d s  ex em p lar lis t fo r M dartsA rray< P oin t> , 
passes constra in ts  to  exem plars

5. re tu rn  serv ice  ob jec t
type  and  shared  m em o ry  location

E x e m p la r lis t fo r M d artsA rray < P o in t>

MdartsArray<Point> obj serv ice
ob jec t

3. su cc e ss , c rea te  c lo n e  o f  s e rv ice  
o b je c t exem plar, a llo ca te  shared  
m em o ry  fo r it.

4. se t p o in te r to  se rv ice  ob jec t 
in  in te rface  o b jec t "o b j” in th e  
S hared  D ata  M anager, add  "obj" 
to  ob jec t reg istry .

shared
m em o ry

F ig u re  3.8: MDARTS object construction using exemplars.

hierarchies of specialized subclasses from applications. Besides simplifying the application 

interface, class hiding permits radical restructuring of the library implementation without 

breaking existing applications. Our techniques should prove very useful for the development 

and management of large class libraries.

Although our exemplar and constraint checking implementation requires class library 

implementers to follow certain protocols, the price is not high compared with the benefits 

of software contracts and class hiding. Much of the complexity of our technique is localized 

in the Base class and in the application interface classes of each server hierarchy. The addi

tional support required in customized server classes is nominal. Language extensions could 

simplify the library implementer’s job somewhat by, for example, automatically providing 

exemplar objects and the Base functions. However, there are many practical drawbacks 

to creating language extensions. We prefer to use existing language features provided that 

they can support the desired functionality.

In the future, we plan to investigate more sophisticated techniques for organizing exem

plars and conducting the bidding process. It would be useful if applications could specify 

both requirements and preferences (e.g., minimize runtime, minimize space utilization, etc.) 

to guide contractor bidding. We also intend to investigate ways to negotiate constraints 

with exemplars if none of the exemplars are willing to bid on the original contract.



CHAPTER 4

SEMAPHORE QUEUE PRIORITY ASSIGNMENT IN

MULTIPROCESSORS

4.1 Motivation

Our prototype implementation of MDARTS focuses on memory-based transactions with 

very short critical sections. For transactions such as this, the overhead required to  block and 

restart a transaction that fails to acquire a lock will generally exceed the worst-case wait 

time to acquire the lock. Therefore, it is more efficient to simply spin wait until the lock 

becomes available. The time spent spin waiting is wasted CPU time, but more than that 

amount of time would be lost by switching to a different task. Furthermore, if a  transaction 

is blocked and another task is allowed to run, the new task will usually have lower priority 

than the first task (assuming preemptive, priority-based scheduling). This lower-priority 

task that is granted the CPU now has an opportunity to acquire other locks that might 

cause further blocking of the first transaction after it acquires the lock that blocked it. If 

the higher-priority task spin waits instead, it will avoid this problem. For these reasons, we 

have focused our implementation efforts on spinlocks.

However, the MDARTS architecture does not dictate the concurrency control policies of 

its objects. It is quite likely that applications will develop database objects with long critical 

sections for which spin waiting is highly inefficient. Any transaction that accesses relatively 

slow devices instead of shared memory or performs complex, expensive calculations would 

fall into this category. Objects with long critical sections will need to use some form of 

blocking on semaphores to release the CPU to service other tasks while the transaction 

waits to enter its critical section. In this chapter, we consider the problem of assigning 

priorities to tasks that are blocked on semaphore queues. The ideas in this chapter have 

not been employed yet in our MDARTS prototype, but they reflect the approach we will

90
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take in the future for MDARTS transactions with semaphore queues.

Prior work on real-time multiprocessor synchronization minimizes the global blocking 

of high-priority tasks a t the expense of lower-priority tasks [58, 60]. Global blocking in a 

multiprocessor system is blocking on semaphores that are shared across processor bound

aries. In this chapter, we examine the relationship between global semaphore queue wait 

times and the schedulability of periodic tasks using rate monotonic scheduling on multipro

cessors. We show that in many cases the intuitive assignment of global semaphore queue 

priorities for tasks actually reduces the overall schedulability of the system. There are two 

fundamental reasons for this. First, there is no direct correlation between the execution 

priority of a task and the amount of blocking that it can tolerate and still meet its dead

line. Second, higher-frequency tasks contribute proportionately greater blocking delays to 

lower-frequency remote tasks if the higher-frequency tasks are also given higher semaphore 

queue priorities. In uniprocessors, blocking for higher-frequency tasks is considered part 

of the ordinary preemption interval for a task. In multiprocessors, however, blocking for 

any remote task adds directly to the blocking delay used to determine schedulability. This 

basic difference between uniprocessor and multiprocessor blocking drastically changes the 

characteristics of the problem of assigning blocking delays.

For these reasons, our experiments show that a  simple FIFO queue for global semaphores 

usually results in better real-time schedulability on multiprocessors than a priority queue 

using task execution priorities (henceforth called RMSS, for rate monotonic semaphore 

scheduling). Furthermore, we show that substantial improvement in schedulability can 

be achieved if global semaphore queue priorities are explicitly assigned according to the 

blocking tolerance (the amount of blocking a task can tolerate and still meet its deadline) 

of a  task rather than according to FIFO or RMSS semaphore queue priorities. We also prove 

that this priority assignment problem is NP-complete and present a heuristic bin packing 

algorithm that finds a  good solution for most task sets.

Early work on scheduling hard real-time systems assumed independence between the 

tasks to be scheduled [50]. However, most real-time systems require inter-task data sharing 

that violates the independence assumption of early scheduling algorithms. Furthermore, 

Mok [53] showed that if tasks make unrestricted use of binary semaphores to enforce m utu

ally exclusive access to shared resources, the problem of determining their schedulability is 

NP-complete. This is because unrestricted semaphore use can force a  high-priority task to 

wait while a low-priority task holds the lock on a resource. If a medium-priority task tha t
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does not use the semaphore then preempts the low-priority task while it is holding the lock, 

the wait time of the high-priority task can be unbounded. In preemptive scheduling, waiting 

for a lower-priority task is called priority inversion, and the potential for unbounded priority 

inversion makes the problem of determining schedulability computationally intractable.

However, it is possible to provide mutual exclusion and still guarantee schedulability 

by restricting semaphore use in various ways. The basic idea is to design protocols that 

bound the length of time a job might have to wait to acquire a semaphore or access a 

shared resource. Given such a bound, traditional scheduling strategies such as rate mono

tonic scheduling or earliest deadline scheduling can be used to guarantee task deadlines 

[8, 60]. The most common approach to bounding semaphore wait times is to use variants of 

the priority inheritance protocol (e.g., basic priority inheritance, priority ceiling protocol, 

semaphore control protocol, kernel priority protocol [59]) to limit wait times due to lower- 

priority tasks [36, 58, 60, 68]. These protocols temporarily boost the priorities of tasks that 

are executing critical sections to ensure tha t they can complete the critical sections within 

a short, predictable time. This in turn bounds the blocking delays of other tasks that wait 

for the resources. The priority ceiling protocol and the semaphore control protocol further 

bound blocking delays and avoid deadlocks by preventing tasks from attem pting to acquire 

semaphores under certain conditions. These “real-time” synchronization protocols were 

first developed for uniprocessors and then extended to multiprocessors [58, 60, 68].

Some uniprocessor protocols, such as the priority ceiling protocol, do not use explicit 

semaphore queues. However, real-time multiprocessor synchronization requires queues for 

the global semaphores. In multiprocessors, the blocking delays also depend on the dis

tribution of tasks that share semaphores across processor boundaries. Since preemptions 

of critical sections by non-critical section code is prevented or severely constrained by the 

various priority inheritance protocols, the amount of blocking for a given task and a given 

semaphore depends only on the length of the critical sections and the periods and semaphore 

queue priorities of other tasks tha t share the semaphore. In this chapter, we examine the 

problem of assigning static global semaphore queue priorities to improve schedulability of 

real-time multiprocessor applications.

We restrict our analysis to rate monotonic scheduling of periodic tasks composed of se

quences of jobs with deadlines corresponding to the task periods (each job J  of a task r  must 

complete its computation within r ’s period after its release). A job corresponds to a se

quence of instructions that would continuously use the processor until the job finishes if the
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job were running alone on the processor. Aperiodic tasks can be accommodated within this 

framework through use of a periodic server [43]. In general, deadline-driven scheduling pro

tocols, which determine execution priorities dynamically, can guarantee higher utilizations 

than  rate monotonic scheduling. However, dynamic priority algorithms are more complex to 

implement and less stable under overload conditions. For many real-time systems it is bet

ter to precompute static priorities and verify system performance off-line rather than spend 

valuable computation time determining dynamic priorities at runtime. Therefore, we use 

static priorities both for task execution and for semaphore queue priorities. Furthermore, 

we assume static assignment of tasks to processors.

The remainder of this chapter is organized as follows. Section 4.2 presents the basic 

schedulability equations for rate monotonic scheduling and explains why, in multiproces

sors, the blocking delays of high-priority tasks should not always be minimized. Section 4.3 

analyzes the relationship between semaphore queue priority assignment and blocking delays. 

In Section 4.4, we prove that optimal semaphore queue priority assignment for multiproces

sor synchronization is NP-complete. We also present there a heuristic algorithm for solving 

this problem. Section 4.5 discusses the problem of assigning tasks to processors and relates 

this problem to that of semaphore queue priority assignment. Section 4.6 describes the ex

periments we performed to evaluate the different methods for scheduling global semaphore 

queues. Section 4.7 discusses various implementation issues, and the chapter concludes with 

Section 4.8.

4.2 Blocking Delays and Schedulability Guarantees

Given rate monotonic scheduling of n  periodic tasks with blocking for synchronization, 

Rajkum ar et al. [60] proved that satisfaction of the following equation on each processor 

provides sufficient conditions for schedulability:

V i , l < z < n  ^ -  +  ^  +  . . .  +  ^  +  ^ < * ( 2 ^ - 1 )  (4.1)

In this equation (set of equations, actually), lower-numbered subscripts correspond to 

higher-priority tasks. Cj, I ) , and B { are the execution time, period, and blocking time 

of task Tj, respectively. The ith  equation is a sufficient condition for schedulability of 

task Tj. This equation appears very simple, but it warrants careful study. The Cj/Tj 

components represent the utilization, or fraction of computation time consumed by task Tj.
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The number i(21/* — 1) represents a bound on the utilization of the processor below which 

task deadlines are guaranteed [50]. As the number of tasks increases, this bound converges 

to In 2, or about 70% utilization. This utilization bound provides only a sufficient condition 

for schedulability; for most task sets, a  more complex method called “critical zone analysis” 

is able to guarantee higher utilizations with rate monotonic scheduling. However, Eq. (4.1) 

is a  useful approximation to critical zone analysis, and it provides insight into the basic 

properties of rate monotonic scheduling.

The Bi/Ti  component represents the effect of blocking on the schedulability of task 

Tj. The blocking factor B { is the amount of time a  job may be blocked when it would 

otherwise be eligible to run. This blocking might result from waiting for a semaphore 

held by a lower-priority job on the same processor (local blocking) or it might result from 

waiting for a semaphore held by a job of any priority executing on another processor (remote 

blocking). Waiting for higher-priority jobs on the same processor is explicitly excluded from 

Bi since this is part of the normal preemption time for task t In other words, the time 

spent waiting for higher-priority tasks on the same processor is already counted in the Cj/Tj 

component for j  < i. Clearly, if the B t components are not bounded, schedulability cannot 

be guaranteed. Note that the schedulability equation for each task depends only on i, the 

utilizations of casks with higher-priority than r ;, and the utilization and blocking of t*. In 

particular, the blocking times of other tasks do not affect the schedulability of a given task. 

This makes intuitive sense because it is the processor utilizations of other (higher-priority) 

tasks that reduce the schedulability of a task.

Prior work [50] on real-time synchronization for multiprocessors states: “Another fun

damental goal of our synchronization protocol is that whenever possible, we would let a 

lower-priority job wait for a higher-priority job” . This is accomplished for global semaphores 

by using priority queues to ensure that the highest-priority blocked job will be granted the 

semaphore next. The justification given in [60] for making lower-priority jobs wait is that 

the longer periods (Tj) of lower-priority tasks results in less schedulability loss B / T  for a 

given blocking duration B.  However, the statement “a  given blocking duration B"  does 

not take into account an important characteristic of the problem. In general, the blocking 

duration B,  associated with a given semaphore queue priority is proportional to the ratio 

of the periods of the tasks sharing the semaphore: Bi — AT [ | f ] , where Tj is the period 

of a  task with a higher semaphore queue priority and K  is the critical section time for Tj. 

If a  higher-priority job has a lower semaphore queue priority than a lower-priority job, it
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waits for a t most one critical section of the lower-priority job (Tf^l =  1 if Tt <  Tj). If a 

lower-priority job also has a lower semaphore queue priority, it may have to wait for multiple 

critical sections of the high-priority job. This factor, on average, increases Bi of the lower- 

priority task to more than offset the longer period Tj. Therefore, the schedulability loss 

B i / T  is actually greater for the lower-priority task than it would be for the higher-priority 

task. This is one fundamental reason that it is better to use a FIFO for global semaphores 

than  to use RMSS. We will present a detailed evaluation of this phenomenon in Section 4.6.

Although lower-priority tasks on a uniprocessor are not penalized (made less schedula- 

ble) by the blocking of higher-priority tasks, neither do they benefit. This is because the 

deferred execution of the higher-priority task’s critical section must still be completed on 

the same processor before its deadline. Even if a lower-priority task is granted first use of 

the shared resource, it can be immediately preempted by the higher-priority task when it 

exits the critical section. There may be some application-dependent semantic advantage 

to granting earlier access to a lower-priority task on a uniprocessor (e.g., due to dataflow 

considerations), but no schedulability advantage is gained by granting the lower-priority 

task earlier access. The same conclusion can be reached by examination of Eq. (4.1): when 

a  lower-priority task allows a higher-priority task to use a semaphore first, this blocking is 

considered part of the normal preemption interval of the lower-priority task and does not 

contribute to that task’s Bi component. Alternatively, if the opposite semaphore queue pri

orities are used, the extra blocking of the higher-priority task will add to the higher-priority 

task’s Bi component. Therefore, on uniprocessors, it is always best to assign semaphore 

queue priorities according to the execution priorities (i.e., RMSS). On multiprocessors, 

however, the situation is fundamentally different. Higher-priority tasks on remote proces

sors cannot preempt a local task, so the schedulability of local lower-priority tasks can be 

improved by increasing their global semaphore queue priorities relative to remote tasks.

It is increasingly beneficial to assign remote blocking to higher priority tasks rather 

than  lower-priority tasks as the total number of tasks increases. This is because the ad

ditional C /T  terms (processor utilization) of the higher-priority tasks further reduce the 

schedulability and blocking tolerance of the lower-priority tasks. Table 4.1 illustrates the 

distribution of blocking tolerance for two example task sets. The {/, variables in this table 

are the Ci/Ti components from Eq. (4.1): utilizations for task r,. Although the magnitude 

of Ti increases as i increases (since we are assuming rate monotonic scheduling), there is a 

corresponding decrease in the utilization-dependent coefficients. The product of these two
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Schedulability equations showing bounds on blocking:

Ui + —̂  < 1.00 B y < T y ( l - U y )

Uy + U2 +  ^  <  .828 B 2 < T2(.828 - U y -  U2)

Uy + U2 + U3 + <  .780 B 3 < T3(.780 - U y - U 2 -  U3)

Uy + U2 + U3 + U4 + ^  < .757 Bi < Ti(.757 - U y - U 2 - U 3 -  Ui)

Blocking bounds corresponding to possible utilizations:

Uy =  .5 U2 =  .1 U3 = .05 Ui =  .05

By < .57) B 2 < .2287)  B3 < ,13T3 By < .0577}

Uy =  .05 U2 =  .05 U3 =  .1 Ui = .5

By < .95Ty B 2 < .728T2 B3 < .58T3 Bi < .057T4

T ab le  4.1: Blocking Factor Bounds for Rate Monotonic Scheduling.

components determines the blocking tolerance B  of a given task. It is also often better to 

give higher-priority tasks low semaphore queue priorities if their periods are much shorter 

than those of lower-priority tasks that share the semaphore (provided, of course, that the 

higher-priority tasks can tolerate the blocking). This is because a higher-frequency remote 

task with a higher semaphore queue priority can block a lower-frequency task multiple times 

for each semaphore request of the lower-frequency task.

The following simple example illustrates the greater tolerance of blocking in high-priority 

tasks. Suppose that we have two jobs Jy and J 2, both released at time 0, with execution 

times of 4, and periods 9 and 11, respectively. Furthermore, assume that exactly one of 

the jobs is blocked for 4 time units when it requests a global semaphore (one held across 

processor boundaries). If the remote blocking is assigned to the lower-priority job J 2, the 

schedulability equation for i = 2 becomes .44 +  .364 + .364 <  .83. This inequality does not 

hold, so schedulability is not guaranteed. Now assume that the higher-priority job Jy is 

blocked instead. The schedulability equations are: for i = 1, .44 +  .44 < 1 and for i — 2, 

.44 +  .364 <  .83. Both of these inequalities hold, so the tasks are schedulable. Figure 4.1 

depicts graphically these two alternatives. In the first case, job Jy completes its execution 

before J2 is allowed to start, and when J2 is blocked for 4 time units, the delay causes J2



97

rem o te  b lock ing

— i— 1
1
II—I— I I I l"l I I ' I ' I ( I

0  4  8  |  12

rem o te  b lock ing

__________  I
J  2 IZ   |

I— I —  I I I I I I I ' I  I I  I
0 4  8  |  12

F ig u re  4.1: Schedulability advantage of blocking high-priority task.

to miss its deadline of 11. In the second case, when job J\ is blocked, job J 2 is able to  use 

the processor until Ji is unblocked, and both deadlines are met.

4.3 Priority Queues and Blocking Delays on Multiprocessors

We have seen how rate monotonic scheduling imposes limits on task blocking delays. 

A full characterization of blocking delays in multiprocessors depends upon the particular 

scheduling and priority inheritance protocol used. For the purposes of this chapter, we ana

lyze the blocking associated with waiting on a single global semaphore in a multiprocessor. 

Our analysis applies only to global semaphores; local semaphores should be managed by 

one of the near-optimal uniprocessor protocols such as the priority ceiling protocol [68]. It 

is easy to extend our results to derive the total blocking associated with all semaphores. 

Therefore, our goal is to calculate B iiS, the blocking time for job associated with waiting

for global semaphore S. To simplify the analysis, we assume that global critical sections are

non-preemptible, which approximates the behavior of the modified priority ceiling protocol 

proposed for multiprocessor synchronization [60]. We define the following notation. Note 

that Ji might contain multiple critical sections guarded by S. Furthermore, unlike Eq. (4.1), 

the task numbers in our notation do not correlate with priorities. On a  multiprocessor, task 

53 might be the highest-priority task on one of the processors, so the notation of Eq. (4.1) 

is inadequate for this domain.

pjt The processor to which is assigned.
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T): The period of task t *.

Pk,S' The semaphore queue priority for job Jk when it waits for S. As discussed thus far, 

this priority is independent of the execution priority of Jk.

The set of local jobs on pj that use S  and have lower execution priority than Jj.

{J r,s}: The set of jobs assigned to processor p r ^  pj th a t use semaphore S.

{JH Q P i}S}: The set of jobs Jk € { J L itjtS} U {Jr,s } with Pk>s > Pi,s-

{JLQPi's}:  The set of jobs Jk G { J L i<jiS} U {Jr,s} with Pk}S < Pi,s -

C S i ^ : The maximum time required by job Jj to execute a critical section guarded by S.

CSimax,i,s: The maximum critical section time for S  of jobs Jk G {JLQ P its}.

NCi'St The number of times Jj enters a critical section guarded by S.

L N U M : m in (N C itS , E k(N C klS x \ ^  1) for J ,  G {JLQ P i<s}).

Given these definitions, the blocking Bits  is bounded by:

Bi,s < (L N U M  x C Slmax,i,s ) +  ^ ( N C ^ s  x C Sk,s x \ 1) for Jk G {JH Q P US})
k 1

At most N C kis x critical sections guarded by S  for each Jk can block Ji since the

number of instances of Jk within Tj’s period is bounded by Critical zone analysis

cannot reduce this bound, because the tasks in {JHQP^s}  with higher frequency than r, 

are on remote processors. The extra blocking represented by L N U M  x C SlmaXtiiS accounts 

for the possibility tha t a task (local or remote) with a lower semaphore queue priority 

will already be using the semaphore when task Tj attem pts to access it. The number of 

jobs Jfc G {JHQPits}  depends on the task distribution across the multiprocessor and the 

semaphore queue priority assigned to Jj for semaphore S.

If we take the task distribution in the multiprocessor as given (we address the issue of 

task allocation in Section 4.5), the blocking associated with semaphore S  for Jj is primarily 

determined by the semaphore queue priorities. Therefore, it is possible to manipulate the 

distribution of blocking associated with S  across the different tasks that use S  by assigning 

the semaphore queue priorities Pkts ■ Semaphore queue priority assignment provides an 

added degree of freedom to the design of a  synchronization strategy for multiprocessor
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scheduling. By allocating blocking delays in this way, it is possible to improve the overall 

schedulability of the system.

Now let us consider the RMSS semaphore queue priority assignment proposed in [58, 60]. 

As we have seen, lower-priority tasks can be less tolerant of blocking delays than  higher- 

priority tasks. If task execution priorities are used for semaphore queues, as much blocking 

as possible is assigned to the lower-priority tasks. In some cases, this will lead to a violation 

of the blocking bound of a lower-priority task, i.e., the task will not be schedulable. If the 

semaphore queue priorities cannot be adjusted, the only recourse is to somehow modify the 

task utilizations or change the task distribution on the multiprocessor. Neither of these 

alternatives is always feasible. The periods of tasks are often fixed according to physical 

characteristics of the real-time system, and the computation times C< cannot always be 

reduced without compromising the quality of the solution. Moving the task to a  different 

processor will not necessarily make the task schedulable, and it may cause other tasks on 

the destination processor to become unschedulable. Fortunately, it is often relatively easy 

to improve the schedulability of the system by taking a more flexible approach to global 

semaphore queue priority assignment.

The previous discussion might lead one to conclude that priorities in global semaphore 

queues should be the inverse of the task execution priorities. However, this is not always 

true either. A high-priority task may have such a short period that it cannot afford to wait 

long on its semaphore queues. In general, there is no fixed relationship between blocking 

tolerance and task execution priorities. It is necessary to conduct a  search over possible 

semaphore queue priority assignments for each particular task set to find assignments that 

will guarantee schedulability.

4.4 The Semaphore Queue Priority Assignment Problem

Given a distribution of tasks sharing resources on a multiprocessor such that all tasks 

are schedulable via rate  monotonic scheduling without global semaphore blocking delays, we 

would like to know whether the tasks can be assigned global semaphore queue priorities such 

tha t they are still schedulable. Furthermore, we would like to have an efficient algorithm to 

generate a solution to the priority assignment problem. We call this problem SQPA-RMS. 

Unfortunately, this problem is computationally intractable.
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T h e o re m  1 The semaphore queue priority assignment problem for rate monotonic schedul

ing (SQPA-RMS) is NP-complete.

Proof: To show that SQPA-RMS is in NP, for an instance of the problem, we let the 

set of priority assignments {Pi.s} be the certificate (where Pits  is the semaphore queue 

priority for task Tj and semaphore S). Checking whether task deadlines are guaranteed can 

be performed in polynomial time by calculating the blocking factors for each task Tj using 

{P^s}, as described in Section 4.3, and applying Eq. (4.1) or critical zone analysis.

We now show that SQPA-RMS is NP-hard by reducing PARTITION [24] to an instance 

of SQPA-RMS.

Suppose that we have a multiprocessor with 3 processors. Processor pi will be assigned 

a task tha t uses all n  global semaphores but has a low utilization so that it can always tol

erate the lowest semaphore queue priority (priority 1). Processor pi we call the “blocking 

processor” since it serves only to supply blocking delays to the system. W ithout this pro

cessor, the semaphore queue priority assignment of tasks on the two “partition processors” 

would make no difference, since the queue could never be longer than one. The other two 

processors are each assigned a single task r<. Each of these tasks has the same execution 

time C  and the same period T, and each task r, will use all n  global semaphores.

Now for a given instance of PARTITION, we define n global semaphores where n  =  |A| 

and map each of the n  items a G A  to the decision to assign queue priority 3 or queue priority 

2 for a given semaphore and a given task 7* on one of the partition processors. Furthermore, 

we set the critical section times for each semaphore such that the PARTITION size function 

s(a) €  Z + corresponds to the difference in blocking between having priority 3 or priority 2 

in the semaphore queue. Finally, we adjust the utilization and period of the two tasks r, 

such that the available blocking B  for each is exactly B min +  1/2 YlaeA s (a)- Bmin is the 

best-case blocking for the partition processors, corresponding to having priority 3 for all 

semaphores. Now we have a symmetric problem where each processor can tolerate exactly 

1/2 of the total blocking associated with having the lowest semaphore queue priorities. All 

of these transformation steps can be performed in polynomial time.

Suppose that a subset A' exists with s (a) =  YlaeA-A1 s (a )- Then if we assign

semaphore queue priority 3 to r 2 for semaphores associated with a € A' and priority 2 for 

the rest (and vice versa for r3 on processor p 3), the total blocking B  for each task 7* will be 

exactly B min +  1/2 Y^a&A s (a )> which will not exceed the blocking tolerance. Hence, the task 

set will be schedulable. Conversely, assume that we have determined a priority assignment
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for each of the n  semaphores and each task Tj such that the blocking tolerance B  is not 

violated. Then if we choose the items a that correspond to the priority assignment 3 for r2, 

we will have constructed a subset A' of A  with X)ae/t' s (a) =  ^aeA-A> s(a).

We have shown how to reduce PARTITION to an instance of SQPA-RMS, so SQPA- 

RMS is NP-hard. Since SQPA-RMS is in NP and is NP-hard, it is NP-complete. □

4 .4 .1  T h e B IN P  algorithm

Unless P=N P, no efficient algorithm solves SQPA-RMS. However, we have developed 

an efficient algorithm that performs well for most task sets. Our approach is essentially a 

heuristic bin packing algorithm. Before presenting the algorithm, which we call BINP, we 

review the characteristics of the problem that guided our selection of heuristics. Each task 

in the multiprocessor has a finite blocking tolerance defined by Eq. (4.1) and illustrated in 

Table 4.1. This blocking tolerance can be considered the “bin size” of that task. Our goal 

is to assign semaphore queue priorities to each task such that the resultant blocking does 

not exceed the blocking tolerance of any task.

Whenever a lower global semaphore queue priority is assigned to a  task, other tasks 

sharing tha t semaphore benefit. Prom the perspective of tasks on one processor, it is 

always preferable that tasks on another processor do more waiting. When possible, it 

is preferable that tasks with short periods (high execution priorities) be assigned a  low 

semaphore priority Pi<s since high frequency tasks add proportionally more blocking to the 

tasks with lower semaphore priorities and incur proportionally less blocking from the tasks 

with higher semaphore priorities. This is because global blocking is a  function of the ratio 

of task periods. If a task has only one source of blocking (one semaphore) not yet assigned, 

the maximum allowable blocking should be chosen for that task, because any excess task 

blocking capacity is effectively wasted once all of its semaphore priorities are chosen.

W ith these characteristics in mind, we present our heuristic algorithm. Our basic s tra t

egy is to use a modified ordered best fit bin packing algorithm, assigning the largest blocking 

elements (lowest semaphore queue priorities for the most heavily used semaphores) first to 

those bins (tasks) tha t have the most blocking capacity. Because not all tasks use every 

semaphore, we really have several bin packing problems that are overlaid on overlapping 

subsets of bins. The asymmetries of the problem make analysis difficult, but the best fit 

with largest items first heuristic performs well in practice.

1. Calculate the blocking bounds for each task from Eq. (4.1) or from the more accurate
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critical zone analysis.

2. Determine the blocking delays associated with local semaphores using whatever pro

tocol is chosen to manage them (e.g., priority ceiling protocol). Subtract these delays 

from the blocking bounds determined in Step 1. The result is the available absolute 

blocking tolerance for each task. If any of these are negative, report failure immedi

ately.

3. Identify the semaphore S with the largest unassigned blocking delay. An approximate 

method for determining this is: for each semaphore with priorities still unassigned 

for some set of tasks {r}, compute J2Tke{r} Tmaxp x NCk,s/Tk where Tmaxp is the 

maximum period of the tasks in {r}. Choose the semaphore with the largest sum.

4. Find the task r  tha t uses semaphore S  and that has the largest measure of blocking 

tolerance. This can be defined as the largest absolute blocking tolerance or the largest 

ratio of blocking tolerance to unassigned semaphores (excluding S) for that task. If 

one or more tasks has enough absolute blocking tolerance for the blocking currently 

being assigned and if it has no other unassigned semaphores, then choose the task 

with the highest execution priority (shortest period) in this group. This rule is an 

elaboration of the selection method that uses the largest ratio of blocking tolerance 

to unassigned semaphores.

5. Assign the lowest unassigned semaphore queue priority for S  to task r .  As semaphore 

priorities are assigned to a  task, the absolute blocking tolerance of that task is reduced 

to reflect the blocking delay associated with that semaphore priority assignment.

6. Repeat the previous three steps until all semaphore queue priorities are assigned for 

all tasks.

7. Verify the schedulability of the task set using Eq. (4.1) or critical zone analysis.

4 .4 .2  C om plex ity  analysis

If there are k  semaphores, each shared by an average of Tave tasks and by at most Tmax 

tasks, there are a total of k x T ave priority assignments to make. For each priority assignment, 

BINP iterates over the unassigned tasks for that semaphore, which number at most Tmax. 

W hen a priority assignment is made, the unassigned blocking delay for that semaphore is 

adjusted, and the semaphore is inserted into a priority heap. This insert operation has
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complexity lg k. The overall complexity of BINP is thus: 0{kTavc{\g k +  Tmax)). I fT max is 

bounded, the algorithm is essentially 0 (k \g k ) .  Otherwise, it is quadratic in Tmax. In either 

case, this is a relatively efficient algorithm.

Now, consider the priority assignment method of [58, 60]: assign lowest semaphore queue 

priorities to the lowest-priority tasks. This is a constant time algorithm, but it is essentially 

a bin packing strategy in which the largest k  items are assigned to a predetermined set of 

bins, which could be the smallest bins. If this priority assignment overflows a bin’s capacity, 

the algorithm returns failure. Clearly, the bin packing algorithm we propose should perform 

much better than the method used in [58, 60]. By performing better, we mean that given 

some population of task sets, more will be schedulable with our algorithm. To verify this 

claim, we have implemented our algorithm and conducted extensive experiments comparing 

our approach with the previous approach and with simple FIFO queues. The results of our 

experiments are presented in Section 4.6. We also examine implementation issues associated 

with the different algorithms in Section 4.7.

4.5 The Task Allocation Problem

In the discussion so far, we have assumed th a t the task distribution across the multipro

cessor was fixed and the problem was to choose the semaphore queue priorities. In reality, 

one often needs to solve both problems: first task allocation and then semaphore queue 

priority assignment. Since the problem of allocating tasks to processors on a  multiprocessor 

is known to be NP-complete [24] even when no resource sharing (other than processors) is 

considered, there is no computationally efficient solution for this problem (unless P=N P). 

The potential for blocking on semaphore queues adds another level of complexity to an 

already very difficult problem. A task allocation algorithm should consider the impact of 

resource sharing since this will affect the overall schedulability of the system. However, the 

resource sharing costs depend in part on the task allocation. Therefore, if a task alloca

tion algorithm conducts a  search over possible task allocations, the resource sharing costs 

have to be computed for each point in the search space. The semaphore queue priority 

assignment method we propose requires more computation than the fixed priority methods 

of FIFO and RMSS (i.e., 0 (k T ave(lg k + Tmax)) rather than constant time). Our algorithm 

is relatively efficient, but if it is employed during task allocation, some additional overhead 

is incurred compared to FIFO and RMSS. However, the solution generated by BINP, as
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shown in Section 4.6, will usually be superior to that of FIFO or RMSS.

It is im portant to remember that this overhead is paid off-line, before any real-time 

processing occurs. Furthermore, it is not absolutely necessary to use our algorithm at 

each point in a  task allocation search. It would be perfectly valid to use FIFO or RMSS 

priorities to arrive a t a task allocation and then use BINP to improve the schedulability 

for tha t allocation. This might result in a  suboptimal combination of task allocation and 

semaphore queue priorities, but we cannot efficiently find an optimal combination in the 

first place, since task allocation itself is NP-complete. Regardless of the method used for 

task allocation, once that allocation is determined, our method for semaphore queue priority 

assignment should lead to better schedulability than either FIFO or RMSS for most task 

sets. This claim is supported by our experiments with randomly-generated task sets and 

by the intuitive argument that when placing objects into bins it is better to consider the 

relative sizes of the objects and bins than to follow some fixed assignment policy.

4.6 Experiments

To illustrate the advantages of our algorithm over RMSS and simple FIFO queues, 

we implemented all three methods and compared their performance in scheduling a large 

number of randomly-generated task sets. Our task-set generator program took the following 

parameters: target utilization for the processors, number of task sets to generate, number 

of processors, average number of tasks per processor, number of semaphores, and a flag to 

vary or keep constant the critical section times for each task using a semaphore. First, we 

established a  range of periods for the tasks from 100 to 3000. Second, we chose the nominal 

critical section time for each semaphore from a uniform distribution between 0.1 and 0.5 

of the average expected computation time of a task (average period x target utilization 4- 

average number of tasks per processor). Next, we began generating tasks for each processor 

until the assigned utilization reached the target utilization.

For each task, we first randomly chose a utilization from a  uniform distribution between 

one th ird  and twice the average utilization (target utilization for each processor 4- average 

number of tasks). If the chosen utilization plus that of the tasks already assigned to that 

processor exceeded the target utilization bound, we reset the chosen utilization to equal the 

difference. In this way, we ensured that every processor would have the same utilization 

load. In a realistic system, not every processor is equally loaded, but we were interested in
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examining the behavior of the system when the blocking delays were close to violating the 

schedulability of the processor. By loading all processors equally, we were able to move all 

of the processors near this region of marginal schedulability in a consistent manner. Equal 

loading also diminished somewhat the expected advantage of our semaphore assignment 

strategy since BINP is able to add extra blocking to tasks on lightly-loaded processors. 

Nevertheless, in the interest of simplicity, we used uniform utilizations. Given the task’s 

chosen utilization, we chose the task’s period from a uniform distribution between 100 and 

3000 and derived the corresponding computation time. We also set the priority for the 

task according to the rate monotonic scheduling discipline. Once each task’s execution 

parameters were set, we used the following method to choose its semaphores.

For each task, we randomly chose a fraction of its computation time to devote to execut

ing global critical sections. This is an important param eter because it partially determines 

how many semaphores will be used by the task and thus how much blocking will be in

curred. Therefore, we decided to select this parameter randomly rather than choose some 

fixed value for it. The range we chose was between 0.2 and 0.8 of the computation time, 

so on average about half of a task’s computation time will be spent in critical sections. 

Real applications might spend less time executing global critical sections, but we chose this 

range to examine the schedulability characteristics of the three semaphore queue priority 

assignment methods under consideration. Obviously, if global semaphore critical sections 

represent only a very small fraction of the computation in a given application, their impact 

on schedulability will also be small (if priority inversion is limited).

We next examined the flag for varying critical section times. If the flag was true, we 

randomly chose an additional scaling factor between 0.25 and 1.75 tha t was multiplied 

by the semaphore’s nominal critical section time to determine the critical section time for 

that task and tha t semaphore. We chose a different critical section scaling factor for each 

semaphore used by each task. To choose the semaphores, we randomly selected a semaphore 

from the semaphore set and checked whether adding its critical section time would exceed 

the fraction of computation time bound for critical sections for tha t task. If this bound was 

not exceeded, we assigned that semaphore to the task. If the same semaphore was chosen 

more than once, we incremented the number of times the semaphore was used by each 

job of the task (NCkts )• If the bound was exceeded, we skipped that semaphore and chose 

another. If five selections in a row exceeded the bound, we exited the semaphore assignment 

loop for that task. Because of this termination condition, often the sum of critical sections
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assigned to a task did not quite reach the fraction of execution time bound.

4 .6 .1  D escr ip tion  o f  task  sets

For our primary experiments, we generated 5,400 different task sets. These task sets 

were generated in groups of 50 sets for each combination of [3, 6, or 10 processors], [3, 6 

or 10 tasks per processor], [5, 10, or 20 global semaphores], [processor utilizations of 0.6 or 

0.7], and [constant or varying critical section times for semaphores]. For our schedulability 

analysis, we used critical zone analysis rather than  Eq. (4.1) because it is a more accurate 

method for determining schedulability. If Eq. (4.1) is used, the blocking bounds are slightly 

tighter, which makes the task sets more difficult to schedule. The relative performance of 

the semaphore scheduling methods remains the same regardless of which m ethod is used.

We first checked how many of the task sets each method successfully scheduled. Table 4.2 

presents this information. Not surprisingly, more task sets were schedulable with lower 

utilization and with constant critical section times (constant only for a given semaphore, 

different semaphores were assigned different critical section times). Processors with lower 

utilizations have larger bounds on blocking for the lowest-priority tasks, and it is easier to 

schedule resources if they are of uniform size.

The da ta  show a clear trend with BINP performing much better than FIFO, which in 

turn  performs much better than RMSS. We also examined which combination of processor 

number and number of tasks corresponded to the schedulable and unschedulable task sets. 

The most significant factor was the number of processors. Of the 2,721 task sets scheduled 

by BINP, 59% were from the 3 processor task sets (1/3 of the overall task sets had 3 

processors). For FIFO queues, 84% of the 1,412 schedulable task sets had 3 processors; 

for RMSS, 95.7% of the 654 schedulable sets had 3 processors. It was easier to schedule 

fewer processors in our test sets since the number of semaphores was independent of the 

number of processors. Fewer processors meant fewer total tasks in the system and hence less 

contention for the fixed number of semaphores. We ran some additional experiments with 

100 processors to test this hypothesis. W ith 200 semaphores, BINP was able to consistently 

schedule task sets with 100 processors, 6 tasks per processor, 0.6 utilization, and constant 

critical section times. The FIFO and RMSS methods could not schedule any of these task 

sets. However, if there were only 100 or 50 semaphores, none of the priority assignment 

methods could schedule any of the 100 processor task sets.

It is also likely that with more processors there is a greater chance tha t one of the
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critical section times utilization BINP FIFO RMSS

constant 0.6 987 522 275

varied 0.6 748 411 206

constant 0.7 602 292 109

varied 0.7 384 187 64

total 2721 1412 654

T able  4.2: Task Sets Scheduled by Each Method (Each Row Corresponds to a Differ
ent Group of 1,350 Task Sets).

processors has a task/semaphore distribution that is especially difficult to schedule. This 

would make the multiprocessor less likely to be schedulable than an individual processor. 

To investigate this possibility, we counted how many individual processors were schedulable 

with each method for our test sets. If entire task sets are considered, as in Table 4.2, 

BINP scheduled 50% of the task sets, FIFO scheduled 26%, and RMSS scheduled 12%. For 

individual processors within the multiprocessor, BINP scheduled 47.9%, FIFO scheduled 

29.5%, and RMSS scheduled 19.9%. These numbers confirm our suspicion that the FIFO 

and RMSS methods sometimes are unable to schedule a multiprocessor due to  unfavorable 

task distributions on individual processors. However, BINP is able to modify its blocking 

assignments to compensate for processors tha t are more difficult to schedule. Therefore, in 

our task sets, BINP was able to schedule approximately the same percentage of complete 

task sets as individual processors.

We next investigated how the different methods compared when individual task sets 

were considered. One might think tha t the different semaphore priority assignment methods 

would be suited to different task sets. For example, are some of the task sets schedulable 

via RMSS but not BINP, and vice versa? Table 4.3 addresses this question. The answer 

is “no,” RMSS could not schedule any of the task sets that BINP could not schedule. On 

the other hand, BINP scheduled 2067 task sets that RMSS could not. Likewise, BINP 

dominated FIFO and FIFO dominated RMSS in terms of scheduling individual task sets. 

Thus, the performance differences between these methods are significant on average, and 

they also hold for individual cases.

Since the three methods have significant differences in ability to schedule task sets,
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Method BINP FIFO RMSS

BINP - 7 0

FIFO 1316 - 15

RMSS 2067 773 -

T ab le  4.3: Individual Task Sets Schedulable by Method of Column but not by Method 
of Row.

it is im portant to measure more than simply the number of task sets scheduled. This 

is because it is possible to make the best method look arbitrarily good by adjusting the 

parameters that determine how difficult the task sets are to schedule. For example, BINP 

was able to schedule 50% of our sample task sets. By reducing the number of very difficult 

task sets (those with the most contention for semaphores) and increasing the number of 

moderately difficult task sets (those that BINP can usually schedule but the other methods 

cannot), we could disproportionately increase the percentage of task sets schedulable by 

BINP. To eliminate this source of bias and to better quantify the relative performances 

of the different methods, we investigated how close the unschedulable task sets were to 

being schedulable under each method. To answer this question, we kept the semaphore 

queue priorities the same and gradually decreased the utilization of all processors in the 

multiprocessor until the task set became schedulable. We did this by leaving most task set 

values unchanged (periods, semaphore priorities, etc.) while decreasing the computation 

time of the tasks and of the critical sections. The percentage by which it is necessary to 

reduce the utilization to achieve schedulability we call “delta.” Task sets that were close 

to being schedulable typically became schedulable with a  delta of five or ten. Task sets 

th a t are far from schedulable might have a delta of 40 or 50. A delta of 30 with an initial 

utilization of 0.6 means the utilization must be reduced to 0.42 before the task set becomes 

schedulable.

To determine delta, we scaled back the computation times uniformly across all of the 

processors until the task set became schedulable. This led to some unnecessary reduction 

of utilization for individual processors that were already schedulable, but it simplified the 

metric. In realistic systems, it may not be possible to reduce computation times significantly 

without reducing the quality of the solution. Usually the physical characteristics of the
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Test sets Reassign BINP BINP FIFO RMSS

Most difficult 1350 26.5 38.3 56.8 64.3

Moderately difficult 1329 9.4 12 32.9 44.9

Overall 2679 18 25.4 44.9 54.7

T able  4.4: Average Percentage deltas for Unschedulable Task Sets, a Smaller delta 
Means Closer to Being Schedulable.

real-time system determine the periods, so it is even less realistic to reduce utilization by 

extending task periods. A uniform reduction in computation time is equivalent to using a 

faster computer. Realistic or not, delta provides a useful metric to determine how close a 

task set is to being schedulable by a given semaphore queue priority method. We determined 

two delta factors for BINP: the delta when the semaphore priorities were kept constant as 

the utilization changed, and the delta when the semaphore priorities were recomputed as 

the utilization changed. We call the latter the “Reassign BINP” delta.

Table 4.4 shows the average delta values for the task sets that were unschedulable by 

BINP. The row labeled “Most difficult” averaged the deltas of the groups of task sets for 

which BINP could not schedule any of the 50 similar task sets (recall that we generated 

50 task sets for each combination of task parameters such as number of processors). These 

task sets were the most difficult to schedule, and Table 4.4 shows that they had the largest 

deltas. The “Moderately difficult” row in Table 4.4 averages the deltas of task sets for 

which some of the 50 similar sets were schedulable and some were not. The “Overall” row 

averages all of the cases from the other two rows. The delta factors provide a  more useful 

characterization of the relative performances of the three priority assignment methods than 

simply how many task sets are schedulable. As Table 4.4 shows, on average, bin packing 

could schedule about 20% more utilization than FIFO (44.9 — 25.4), which in turn  could 

schedule about 10% more utilization than RMSS (54.7 — 44.9). The differences in utilization 

schedulable by each method depends heavily on the fraction of computation time spent in 

global critical sections. The percentages reported here are with respect to our task sets. 

Task sets for which less time is spent in critical sections would probably have lower delta 

percentages but the same pattern of relative performance.

Reassigning the semaphore queue priorities as the utilization was scaled back helped
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Method BINP FIFO RMSS

BINP - 48 7

FIFO 3922 - 438

RMSS 4732 4252 -

T ab le  4.5: Individual Task Sets for Which the Method of the Column Performed 
Better than the Method of the Row.

substantially for those test cases that were difficult to schedule (the “Most difficult” cases) 

but did not help much for test cases that were originally nearly schedulable (the “Mod

erately difficult” cases). This is because the shape of the blocking bound curve changes 

as computation times are reduced. The more the computation times are scaled back the 

more the shape changes and the more opportunity for improvement through changing the 

blocking distribution to reflect the new bin sizes.

We next investigated how the different methods compared when the deltas of individual 

task sets were examined. This information is summarized in Table 4.5. Table 4.5 expands 

upon Table 4.3 by counting all of the individual task sets for which one m ethod performed 

better than another. Performing better is defined as either successfully scheduling the 

task set when the other method could not or as having a smaller delta than the other 

method. These results are consistent with that reported in Table 4.3: By a wide margin, 

BINP performs better than FIFO and RMSS; FIFO performs better than RMSS by a  lesser 

margin. To keep the comparison fair, the delta of BINP in Table 4.5 is the one that kept 

the original semaphore queue priorities (it is not the “Reassign BINP” delta).

4 .6 .2  A  specific  task  set

Now that we have characterized our entire task sets, we will examine a particular case in 

detail to gain insight into the behaviors of the different semaphore queue priority assignment 

methods. Figure 4.2 shows the task set (to make the listing easier to correlate with the 

graphs, the tasks in Figure 4.2 were renumbered and sorted in decreasing priority order 

for each processor). This particular task set was one of the 50 task sets generated with

0.7 utilization, 3 processors, average of 6 tasks per processor, 5 semaphores, and varying 

critical section times. For these parameters, BINP was able to schedule 16 of the 50 task



I l l

run  8 0 .7  u t i l  3 cpus 6 ta s k s  5 sems 
#nominal semaphore CS tim es
45 32 70 46 63
# ta sk cpu p r i o r i t y  p e rio d  ctim e ; sem# NCS CSscale . . .

1 0 273 1095 66 ; 0 1 0 .62
2 0 271 1106 81
3 0 193 1553 290 ;0 2 0 .48 ; 3 1 1.7
4 0 152 1966 144 ;3 1 0 .9
5 0 150 1989 127 ; 1 1 1 .4 ; 4 1 0 .6
6 0 129 2315 424 ;0 1 0 .28 ; 2 2 0 .74; 3 2 1 .5 ; 4 1 1.2
7 0 122 2453 147 ;0 1 0 .57 ; 3 1 0 .3 ; 4 1 0.81
8 1 395 758 108 ; 1 3 0 .33
9 1 394 760 115 ; 0 1 0 .85 ; 1 1 0 .35 ; 2 1 0.36
10 1 131 2284 333 ;0 1 0 .79 ; 1 2 1.7
11 1 117 2556 293 ;0 3 0 .29 ; 3 4 0 .31 ; 4 1 1.3
12 1 104 2874 419 ;0 1 0 .62 ; 1 1 0 .77 ; 3 1 1 .4
13 2 622 482 45
14 2 437 686 27
15 2 193 1547 235 ;3 1 1
16 2 115 2603 365 ;0 1 1 .6 ; 3 3 0 .3 ; 4 1 0.62
17 2 110 2722 244 ;0 2 0 .9 ; 1 1 0 .9 ; 2 1 0 .92
18 2 108 2764 513 ;0 1 1 .5 ; 2 2 1.4

F ig u re  4.2: Example task set.

sets. The average delta factors for the 34 unschedulable task sets were: “Reassign BINP”=  

8.9 B IN P= 9.7 FIFO = 24.1 RMSS= 32.2. For the particular task set considered here, the 

delta factors were: “Reassign BINP”=  8 BINP= 10 FIFO = 23 RMSS= 31. Therefore, this 

task set is fairly representative of the group of 34 unschedulable ones with the same task 

generation parameters.

Processor 0 has 7 tasks, while processor 1 has only five. This is because we randomize 

the utilizations for tasks as we generate them and stop when the processor utilization limit 

is reached, not when a certain number of tasks are chosen. Likewise, three of the tasks 

were not assigned semaphores. This is because their computation times were small, and 

the m ethod we used to select semaphores failed to assign a  semaphore after five random 

selections.

Figure 4.3 shows the blocking distributions and bounds for the tasks when BINP is 

used to assign the semaphore queue priorities. In these graphs, the bars represent worst- 

case blocking for each task associated with its chosen semaphore queue priorities. The 

line shows the bound on blocking below which the task is schedulable with rate monotonic 

scheduling. The tasks on each processor are shown in decreasing priority order from left to 

right on the X axis, and the processor numbers for the tasks are shown below each task’s 

bar. The lower graph in Figure 4.3 shows that when utilizations are reduced by 10% (delta
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F ig u re  4.3: Bin packing blocking before and after a 10 percent reduction in utilization.

=  10), the task set becomes schedulable with the original BINP semaphore queue priorities. 

If one examines the blocking bounds for each processor, it is apparent that there is no 

direct relationship between task priority and blocking bound. However, the highest-priority 

(leftmost) and lowest-priority (rightmost) tasks on each processor tend to have the tightest 

blocking bounds. The highest-priority tasks have tight blocking bounds because they have 

short periods. The lowest-priority tasks have tight bounds because of their lower execution 

priority. As the utilizations are scaled back, the blocking times (semaphore critical section 

times) decrease and the bounds increase until the blocking no longer exceeds the bound. 

At that point, all of the (modified) tasks axe guaranteed to be schedulable.

Figure 4.4 shows the blocking distributions and bounds for the tasks when FIFO is
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F ig u re  4.4: FIFO blocking before and after a 23 percent reduction in utilization.

used for the semaphore queues. If the top graphs for BINP and FIFO are compared, one 

can see that FIFO assigns less blocking to the higher-priority tasks on each processor than 

BINP does. W ith FIFO, the lower-priority tasks thus exceeded their bounds by a greater 

percentage than with BINP. Therefore, the original utilization of 0.7 had to be scaled back 

by 23% before FIFO was able to schedule the task set. The blocking bound curve for 

the tasks with scaled-back utilization differs somewhat in shape from the original bound 

curve since the increase in bound for each task is the product of the task periods and the 

reduction in higher-priority utilization (recall Eq. (4.1) and Table 4.1). Although we used 

critical zone analysis to determine the bounds for each testset, Eq. (4.1) approximates it. 

Thus, the blocking bound increases disproportionately for lower-priority tasks, which have
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F ig u re  4.5: RMSS blocking before and after a  31 percent reduction in utilization.

longer periods and a larger sum of higher-priority task utilizations.

Figure 4.5 shows the blocking distributions and bounds for the tasks when RMSS is 

used for the semaphore queues. RMSS assigned even more blocking to the low-priority 

tasks than  FIFO and thereby severely exceeded the blocking bounds of the lowest-priority 

tasks. A delta of 31 was required to make the tasks schedulable with RMSS. In general, 

the inflexibility of FIFO and RMSS leads to assigning too much blocking to tasks with low 

blocking tolerance, thereby making them unschedulable. RMSS assigns as much blocking 

as possible to the lowest priority tasks, and performs even worse than FIFO for most of our 

task sets.

  bound
■ ■  blocking
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4.7 Implementation Issues

We have shown that BINP has significant advantages over both FIFO and RMSS, but 

it also is im portant to consider the relative complexity and overhead associated with imple

menting the different methods. Clearly, BINP is more complex to implement than either 

FIFO or RMSS. FIFO and RMSS are constant-time algorithms for which the priorities 

are immediately known. Our BINP algorithm runs in 0 (k T ave(lgk  -I- Tmax)) time for k 

semaphores, each shared by on average Tavc and at most Tmax tasks. A more efficient bin 

packing algorithm for this problem may exist, but it would still be slower than FIFO or 

RMSS. Although BINP is more complex to implement, the performance advantages could 

be substantial for real-time multiprocessor applications with heavy semaphore use. Fur

thermore, the computation of BINP is performed off-line, so it does not add extra overhead 

a t runtime. Real-time application designers usually perform off-line schedulability analysis 

and task allocation, so running BINP would simply be an extra part of that activity.

BINP does not require any significant runtime overhead compared with RMSS, with 

the possible exception of an additional table for storing the semaphore queue priorities 

(the RMSS priority can be inferred from the task priority and thus need not be stored 

separately). Nevertheless, for applications that do not use global semaphores heavily it 

might be preferable to simply use FIFO priorities. In our experiments, FIFO was almost 

always superior to RMSS, so FIFO is probably the best alternative to BINP. For some 

applications, in which the high-priority tasks have particularly tight blocking bounds, RMSS 

might be better than FIFO. However, in most cases either FIFO or BINP should be used.

Both BINP and RMSS require a priority queue for semaphores. The extra overhead 

of maintaining a priority queue rather than a FIFO must be justified by the superior per

formance of BINP (but not RMSS, which performs worse than a FIFO in our testsets). 

Since suspending a task on a semaphore generally requires substantial overhead in the first 

place, maintaining a  priority queue rather than a FIFO should not add significantly to the 

overhead. Ultimately, the question of whether a  priority queue is justified depends upon the 

application and the implementation of the queues. The operating system should probably 

provide both types of queues unless the overhead differences are trivial, in which case only 

priority queues should be provided (since a priority queue can emulate a  FIFO).

We believe that the determination of the semaphore queue priority should be the re

sponsibility of the application rather than the operating system. This allows an application 

programmer to explicitly control the relative blocking times of tasks rather than commit
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to a particular semaphore scheduling policy. The operating system could use a  FIFO by 

default and allow applications to specify priorities for those global semaphore queues that 

require more control.

If tasks must be dynamically added or removed from the multiprocessor, it is possible 

to use BINP to precompute semaphore queue priorities corresponding to different task sets 

on the system (different modes). Real-time systems tend to be much more consistent in 

their task sets than conventional multiprocessing systems, so the different modes are likely 

to be known in advance. Alternatively, suppose an unexpected task needs to be added to a 

running system. It is not necessary to recompute and change all of the existing semaphore 

queue priorities throughout the system. Rather, it is only necessary to search over the 

possible semaphore queue priorities for the new task being added and to assign its priorities 

such th a t none of the existing tasks become unschedulable. A similar run-time schedulability 

determination is required with FIFO or RMSS when unexpected tasks are added, but these 

methods only try  one fixed global semaphore priority for the task, so they may not be able 

to schedule the new task whereas the more flexible approach can.

An im portant advantage of rate monotonic scheduling over alternative scheduling ap

proaches such as earliest deadline first is that rate monotonic scheduling behaves more 

predictably under overload conditions. This advantage is derived from the static nature of 

the rate monotonic priority assignment. If priorities change dynamically as deadlines ap

proach, it is difficult to ensure tha t semantically important tasks will always be completed 

under overload conditions. Fortunately, both FIFO and BINP also use static priorities, so 

they share the predictability advantages of RMSS.

4.8 Summary

In this chapter, we have shown that the schedulability of real-time multiprocessor ap

plications can be significantly improved if synchronization blocking delays are distributed 

according to task blocking tolerance rather than some fixed priority scheme. Often, higher- 

priority tasks tha t share global semaphores on multiprocessors should be given low global 

semaphore queue priorities. However, there is no fixed relationship between task execution 

priorities and semaphore queue priorities. We have analyzed the problem of selecting global 

semaphore queue priorities for real-time tasks on multiprocessors and have proven tha t this 

problem is NP-complete. Fortunately, it is essentially an NP-complete bin packing prob
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lem, for which heuristic algorithms perform quite well in practice. We presented such an 

algorithm and compared it with the RMSS method and FIFO scheduling on a large number 

of task sets.

Of the methods tested, BINP performed best by a wide margin. The next best method 

was FIFO, followed by RMSS. It is surprising that a simple FIFO performed better for real

time scheduling than RMSS, which is the best method for local semaphores. However, we 

have shown that remote blocking in multiprocessors is fundamentally different than local 

blocking in a  uniprocessor. In multiprocessors, it is often better to assign more remote 

blocking to the more frequent, higher-priority tasks. Because FIFO distributes more of the 

blocking to high-priority tasks than does RMSS, it usually performs better.

The ultimate question of which method is best for real systems cannot be answered 

without reference to a  particular implementation and a  particular application. However, a 

real-time operating system could provide priority queues for global semaphores, default to 

FIFO priorities, and allow an application to choose different priorities during semaphore 

initialization. This would allow the application programmer to use whatever method is 

appropriate for that application.



CHAPTER 5 

DEMONSTRATION

One of the key objectives of MDARTS is to support the development of real-time man

ufacturing control applications. To evaluate the suitability of the MDARTS design in this 

domain, we used MDARTS to implement a prototype motion controller for a six degree-of- 

freedom robotic manipulator. This chapter discusses the implementation and results of this 

demonstration.

5.1 Introduction

Manufacturing systems are often composed of customized hybrids of software and hard

ware from a variety of vendors. Customized systems are expensive to build and maintain, 

so efforts are underway to establish standard, open software architectures for advanced 

manufacturing. The proposed Next Generation Workstation/Machine Controller (NGC) 

for autom ated factories [2, 51] is representative of the trend toward open software archi

tectures in manufacturing. The NGC is a software architecture specification for advanced 

cell-level machine tool controllers. The NGC architecture is designed for high-performance 

real-time computing platforms such as VME-based shared-memory multiprocessors. An 

NGC-compatible controller consists of multiple hardware and software components possi

bly supplied by different vendors.

Decomposition of software into separate tasks on multiple CPUs, as the NGC permits, 

introduces problems with respect to data sharing and communication. Shared data must be 

made accessible to, and used consistently by, all tasks that access them. It is also necessary 

to control concurrent access to prevent data inconsistencies. For real-time tasks, the data 

access should also provide strict real-time guarantees. Interestingly, the NGC architecture 

does not explicitly address the issue of real-time guarantees for shared data access (or for
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any of its specified operations, for that matter). A systems integration phase is proposed 

in which all such timing properties will be verified by some unspecified method. MDARTS, 

with its support for explicit timing guarantees, could facilitate the verification of timing 

properties in an NGC implementation.

MDARTS permits separate tasks in real-time systems to interact by performing opera

tions on the common database. This is a very useful way to organize interactions, because 

it perm its complex systems to be constructed around the database rather than in terms 

of direct inter-component interactions. The number of interactions can thus be conceptu

ally reduced from 0 ( n 2) to 0(n).  The database also provides consistent management of 

information that is of strategic value to multiple applications and subsystems in the overall 

system. These advantages of database systems are widely recognized, bu t without high 

performance and transaction-time guarantees such as provided by MDARTS, a database is 

of limited utility in hard real-time systems.

Rather than build an entire control system from scratch for our demonstration, we used 

MDARTS to provide a software interface to a commercial motion control board from Delta 

Tau D ata Systems. The MDARTS object corresponding to the motion control board allows 

local or remote tasks to get and set fields in the object and thereby invoke the functionality 

of the motion control board. As the manipulator moves in real time, a higher-level control 

task on a  Motorola 68030 host processor monitors the performance of the manipulator 

and supplies offset values to dynamically alter the path  followed by the manipulator. To 

access the Delta Tau board, the controller on the 68030 uses a  local MDARTS database 

object. MDARTS can easily meet the transaction-time requirements of this task (each of 

the transactions performed by the controller completes within 25 microseconds). The path 

followed by the machine can be programmed remotely using an X Window System interface 

on a Sun workstation. The remote interface uses the proxy object capability of MDARTS 

to query and modify the internal state of the controller across the ethernet.' The results of 

motion experiments can also be immediately displayed graphically on the Sun workstation.

Although MDARTS was originally designed to provide real-time data  management, 

this demonstration shows that the MDARTS framework for sharing objects and expressing 

timing constraints is useful in a much broader context. The MDARTS object that interacts 

with the Delta Tau device hardly fits the usual notion of a database object. However, 

the implementation of the object’s get and set methods can be whatever the application 

programmer desires. Nothing in MDARTS limits these methods to data structure reads and
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writes. Furthermore, the timing characteristics of devices such as the Delta Tau controller 

can be reflected in the implementation of the MDARTS object.

5.2 Initial Experimental Setup

The machine we used in our demonstration was a six degree-of-freedom robotic manip

ulator made available to us by members of the Mechanical Engineering Department. Prior 

to our demonstration, this manipulator was used in adaptive assembly experiments for car 

body parts. The initial configuration of the machine and its associated computing hardware 

for these prior experiments are illustrated in Figure 5.1.

We will first describe the experimental setup used in prior experiments and then ex

plain the changes we made to demonstrate the capabilities of MDARTS. Figure 5.1 depicts 

the hardware of the original system. It is a physical mechanism for geometric error com

pensation at the assembly stage of automotive applications. This mechanism consists of a 

multi-axis manipulating device (essentially a robotic table to which sheet metal parts can
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be affixed), a  number of optical sensors which acquire the relative part positions and orien

tations, a XYCOM-682 (PC/AT286) computer which controls the overall system activity 

and provides the user’s interface, and a multi-axis servo-motion controller which handles 

the execution of desired motions a t the manipulator joint level. The servo motion con

troller board is a commercial product designed and manufactured by Delta Tau Systems. 

This Programmable Multi-Axis Controller (PMAC) has a digital signal processor (Motorola 

DSP5600), and it is capable of controlling up to 8 machine axes. The manipulator consists 

of a fixed base, a  movable platform, and six independently positioned legs. Each leg is 

connected to the base by a 2-DOF joint and to the platform by a 3-DOF joint. The tops of 

adjacent legs are joined together a t the platform connection point, forming a  set of three 

leg triangles.

As Figure 5.1 shows, the manipulator controller used two processors. The first processor, 

the Xycom-682, was connected with a serial line to the second processor, the Motorola 

digital signal processor on the PMAC motion control board. The PMAC contains its own 

local memory, signal processing circuits, built-in functions for PID servo feedback control 

and machine coordinate transformations, and interpreters for programmable logic controller 

(PLC) and motion control programs. Although the PMAC is a powerful device, capable of 

running stand-alone applications, the Xycom processor performed three im portant functions 

in the adaptive assembly experiments. First, the Xycom served as a host computer to 

download programs and provide a  user interface for the application. Second, the vision 

sensors used for precise positioning of the parts were more easily interfaced with a PC, so 

the Xycom was used to read the vision sensors. Finally, the unusual kinematic features 

of the manipulator did not fit well with the coordinate system functions built into the 

PMAC. This is because unlike most robots, the axes corresponding to the actuators are 

not orthogonal, and their relative angles change as the platform moves. Therefore, the 

mechanical engineer who designed the original experiments implemented forward and inverse 

kinematic functions for the table in the C language and computed these values on the 

Xycom. In these experiments, the control program on the Xycom performed the following 

tasks:

1. initialize the PMAC and establish home positions for the motor encoders,

2. determine the approximate joint coordinates to move the platform (and the attached 

part) near the final destination,
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3. download a  motion program with these joint coordinates to the PMAC across the 

serial line,

4. send the PMAC a  command to run the motion program,

5. use the vision sensors to determine what fine position adjustment is needed to precisely 

align the parts,

6. download a  new motion program to achieve the final positioning of the platform and 

command the PMAC to execute it,

7. repeat the previous two steps until the desired alignment is achieved.

Although this system could precisely align the parts, its capabilities were limited by 

certain aspects of the hardware configuration. In particular, the serial line used to com

municate between the Xycom and the PMAC limited the speed of information exchange 

between the two parts of the control system. This limitation made it infeasible to include 

the Xycom in tight feedback loops controlling the table motion. The system was forced to 

operate in a “think...move; think...move” mode both by the low communication bandwidth 

and by the slow speed of the vision sensors. Furthermore, the low communication band

width made it difficult to closely monitor the performance of the manipulator to detect 

and diagnose any errors that might occur during operation. When such errors occurred, 

typically one or more of the motors was automatically shut down by the PMAC. Recovery 

at this point required a complete restart of the system.

In addition to these hardware-related limitations, there were difficulties associated with 

the software interface to the PMAC. The PMAC is a very complex device, and configuring 

and programming it correctly is difficult. Delta Tau supplies PC-based software that pro

vides a  convenient interface to the PMAC, but this software does not support customized 

features such as the vision sensors or the specialized kinematic computations required for 

this mechanism. Therefore, the control software used in the assembly experiments bypassed 

the high-level Delta Tau interface and programmed the PMAC at a relatively low level. 

Furthermore, neither the Delta Tau interface nor the software developed for the adaptive 

assembly experiments provide any support for remote access across a  network. In a  factory 

application, it is very useful to be able to monitor and control assembly machines remotely, 

so this is a  significant limitation.
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5.3 MDARTS Demonstration Plan

When we decided to use the PMAC device, we were immediately faced with a serious 

problem. Namely, the PMAC is incapable of directly supporting MDARTS. MDARTS is a 

C + +  library, and we had no way to link C + +  objects into the execution environment of the 

PMAC. Therefore, we created an MDARTS object tha t interfaced with the PMAC device. 

This MDARTS PMAC object, which resided on the 68030 host processor, provided functions 

for initializing and shutting down the device, sending and receiving ASCII messages through 

the PMAC mailbox registers, and reading and writing regions in the dual-ported RAM. 

These functions were invoked through database writes and reads from corresponding “fields” 

in the object. The PMAC object acted as an agent to forward MDARTS requests on to the 

actual PMAC board. In effect, we extended the concept of an MDARTS object from being 

an interface to a da ta  structure in memory to being an interface to an arbitrary system 

component. This was a significant conceptual leap, bu t it was very easy to implement. The 

original MDARTS architecture required no changes to accommodate this new object type. 

The built-in support for expressing and evaluating timing constraints and for providing 

remote access across the network were just as useful for a device interface as for a data 

structure interface. The PMAC object also explicitly reflected timing information relative 

to the PMAC device, which had no built-in functions for inquiring about timing behavior. 

By representing timing knowledge explicitly, it is possible to avoid propagating implicit 

assumptions about timing behavior into application code. When used in this way, MDARTS 

can be an extremely powerful tool for enhancing real-time applications.

Our objective in the demonstration was to highlight MDARTS capabilities while over

coming some of the limitations of the prior system. The demonstration was not intended to 

perform a complex task but rather to establish an open architecture framework upon which 

future control systems could be built. Therefore, we focused on supporting high-speed 

communication between a host processor and the PMAC device, providing network access 

to the controller, simplifying the application interface to the PMAC, and demonstrating 

modification of the manipulator motion from the host processor. By modifying the manip

ulator motion during execution of each move command, we demonstrated time-constrained 

database interaction. Furthermore, as the mechanism moved, the controller running on the 

host processor periodically examined the state of the machine and stored the motion history 

in the database. This also was a  time-constrained operation. To show the networking ca

pabilities of MDARTS, we implemented a simple X Window interface on a Sun workstation
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th a t sent commands via MDARTS to the demonstration platform. The application on the 

Sun performed read and write operations on an MDARTS proxy object, and these requests 

were automatically forwarded to the SDM, which performed the transactions with its local 

PMAC object. The networking support in MDARTS enabled us to quickly develop remote 

monitoring and command capabilities for the demonstration.

5.4 Modified Experimental Setup

Figure 5.2 shows the hardware configuration that we used in our MDARTS experiments. 

Notice that we replaced the Xycom PC host with a 68030 processor on a  common VME bus 

with the PMAC. The PMAC-VME interfaces to the VMEbus as a slave device. Commands 

to the PMAC and responses from it are sent in ASCII through a set of 16 8-bit mailbox 

registers which are mapped into the VME address space. This communication interface was 

rather awkward and slow since message exchanges required interrupt handshaking across 

the VME bus to coordinate access to the mailbox registers. For example, even a trivial 

send/reply message sent across the mailbox registers required over 4 milliseconds. To by

pass this relatively slow communication path, we upgraded the PMAC hardware to include 

8K X 16 bits of dual-ported RAM mapped into the VME address space. This hardware 

configuration is more suitable for real-time control applications since the host processor 

can communicate with the PMAC across the VME bus, and the dual-ported RAM per

mits monitoring and modification of the manipulator state and PMAC control strategy at 

extremely high speeds (less than 30 microseconds, including the MDARTS procedure call 

overhead). On the 68030 host, we ran the VxWorks real-time operating system, which pro

vides a multitasking real-time kernel with priority-based preemptive scheduling and support 

for T C P /IP  networking with sockets or Sun RPC.

To demonstrate time-constrained use of MDARTS, we decided to modify the path  of 

the manipulator v/hile it was executing a sequence of move commands. In the adaptive 

assembly experiments, once the PMAC was programmed to perform a  sequence of moves 

there was no way to dynamically modify its behavior. One could easily imagine a  scenario 

where such dynamic motion control would be needed. For example, suppose the vision 

sensors detected an unexpected obstacle in the way of the programmed path. It would be 

useful to change the manipulator path at runtime to avoid the obstacle.

To perform dynamic motion compensation, we created two arrays of joint coordinates
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for one of the manipulator’s axes. The first array was the original path for that axis, and 

the PMAC object used it to automatically generate and download a corresponding motion 

program to the PMAC device. The second array was a modified path for the axis such 

as might be planned by an obstacle avoidance algorithm. The modified path was not sent 

to the PMAC device but rather was used by the PMAC object while the machine was 

running to generate a series of offsets to modify the original machine path. The motion 

program executing on the PMAC processor added the current offset (which was kept in 

the dual-ported RAM) to the position specified in the original path. There was only one 

offset variable for the compensated axis, so the controller running on the 68030 host had 

to synchronize its execution with that of the PMAC motion program to determine which 

offset to supply at each point in time.

The PMAC motion program trajectories used in our experiments were linear blended 

moves. To achieve smooth blending of multiple move commands, the PMAC reads two 

moves ahead in the motion program. Reading one move ahead is necessary for smooth 

transitions in velocity, and reading a second move ahead is necessary for smooth transitions 

in acceleration. Because the PMAC processes the motion program two moves in advance, 

our demonstration also had to supply the computed offset two moves in advance.

We tried to synchronize the executions of the PMAC and 68030 control tasks using
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static MdartsOb thePmac("Pmac","access<=30usec");
int modify_path()
{

static int laststep = -1;
int nextstep = thePmac("program_step");
if (laststep != nextstep) { 

laststep = nextstep;
thePmac("path_offset”) = thePmac("modified_path”,nextstep) - 

thePmac("original_path",nextstep);
)

return 0;
)

Figure 5.3: Host controller code to generate offset.

a VME interrupt from the PMAC to the 68030, but this interrupt was already used to 

manage access to the PMAC mailbox registers. Using this interrupt for both purposes 

proved impractical, so we decided to poll the PMAC periodically from the 68030. We 

programmed a  timer on the 68030 host to generate an interrupt every 20 milliseconds. In 

the controller interrupt service routine, we retrieved the m anipulator’s joint coordinates 

from the PMAC object and also retrieved the value of a counter tha t was incremented 

by the PMAC device each time it processed a motion command. Prom the value of the 

counter, the controller routine could determine which step in the motion program would be 

evaluated next and thus which offset to supply to modify the desired position for that step.

Figure 5.3 shows the C + +  code used on the host to generate the offset for the PMAC 

motion program. The modify_path() function is called by the host controller’s interrupt 

service routine. The 30-microsecond limit specified in the PMAC object declaration is 

somewhat artificial since our simple control program could actually tolerate a larger la

tency for each transaction. In the worst case, the controller on the host performed eleven 

transactions with the PMAC object. This controller executed once every 20 milliseconds, so 

on average each transaction had to complete in less than  two milliseconds if the controller 

task were to complete before the next cycle. We specified tighter time constraints than this 

since we wanted to guarantee that the execution time of the interrupt service routine would 

be very short. The PMAC object could perform read or write transactions to the PMAC 

dual-ported RAM in less than 20 microseconds, so it could easily meet the 30-microsecond 

constraint.

Figure 5.4 depicts the X Window user interface we developed to run our experiments. 

From this interface, it is possible to initialize the PMAC, specify the original and modified 

arrays of joint coordinates for the motion program, run experiments, and display graphically 

the outcome (the actual vs. programmed motion of the machine). It is also possible to
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query the current axis positions of the manipulator at any time. Furthermore, the interface 

program can run on any Sun workstation on the network. All of the network communications 

between the interface and the controller on the 68030 host are handled by the MDARTS 

library.

To monitor the manipulator position during an ongoing movement, the host needed to 

retrieve the current manipulator position. One way to do this would be to  query the PMAC 

command interpreter for the axis positions by sending ASCII messages across the mailbox 

registers. Unfortunately, the overhead to do this would be a t least 4 milliseconds, which 

was too slow for our needs. Therefore, we programmed the PMAC to periodically place 

the current axis positions of the manipulator into the dual-ported RAM. For this purpose, 

we used PLC program 0, which is a  special-case PLC program that can be executed at 

the end of each servo interrupt cycle (every half millisecond) on the PMAC. To reduce the 

load on the PMAC, we configured PLC 0 to run once every 4.4 milliseconds since that 

was sufficient for our purposes. When queried for the axes positions, the PMAC object 

on the host retrieved them directly from the dual-ported RAM. The time required for the
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bus access to the RAM was at most a few microseconds. When the MDARTS procedure 

call overhead was added, the total transaction time was still less than 24 microseconds to 

read the axes positions. Figure 5.5 shows the result of executing and monitoring the test 

path illustrated in Figure 5.4. This graph overlays the original, modified, and measured 

path  followed by axis 1 of the manipulator. Note tha t the measured path rounded off the 

sharp corner in the modified path to ensure a smooth transition between the blended moves. 

Otherwise, the measured path followed the modified path  very closely. The paths do not 

start exactly at time 0 since it took about 200 milliseconds for the PMAC to start the 

motors. Therefore, we offset the original and modified paths in the graph to compensate 

for this delay.

As Figure 5.5 shows, our technique for modifying the manipulator motion in real time 

worked very well. I t is also significant that we could perform these experiments with our X 

interface from any machine in the network.



129

5.5 Summary

This demonstration shows how MDARTS can be used to facilitate the implementa

tion and integration of advanced manufacturing systems. In addition to providing local 

and remote access to shared data structures, MDARTS can be used to encapsulate the 

functionality of complex system components such as the PMAC motion controller board we 

used in our demonstration. The resulting interface reflected the timing characteristics of the 

component, and it supported remote access through the MDARTS Shared D ata  Manager 

server. This demonstration was very interesting from a systems integration perspective. 

We took an existing hardware platform that had significant limitations in functionality and 

radically improved its capabilities. We also designed a software interface to a physical de

vice (the PMAC) and implemented that interface within the framework of our real-time 

database. By creating a PMAC object in our database, we provided both remote access 

and a convenient programming interface to a fairly complex hardware component. Finally, 

our X interface provided a convenient and powerful means of exercising the capabilities of 

the new system.

Not all of the MDARTS features were exercised in this demonstration. In particular, 

there was only one host CPU on the VME bus, so some of the multiprocessor capabilities 

of MDARTS were not shown. Furthermore, this demonstration did not attem pt to perform 

very low-level feedback control such that maximum database performance was needed. In 

the future, we plan to apply MDARTS to a high-speed drill grinding application to fully 

demonstrate its capabilities.



CHAPTER 6 

TIMING EXPERIMENTS 

6.1 Introduction

Although the controller demonstration described in Chapter 5 illustrated many impor

tan t features of MDARTS, it did not fully demonstrate the multiprocessor capabilities of 

MDARTS. The demonstration also did not rigorously test the timing guarantees provided 

by MDARTS objects. Even if we had implemented a more complex demonstration with 

multiple control and sensor monitoring tasks running on several CPUs, the timing and 

concurrency control features of MDARTS would not have been rigorously tested. This is 

because the critical section times for most MDARTS objects are so short that the rate 

of locking conflicts would be very low. A low rate of locking conflicts is good from the 

perspective of performance, but it does not test the behavior of the database under worst- 

case conditions, where contention is unusually high. Therefore, we conducted a series of 

experiments to evaluate the timing properties of various MDARTS objects in our prototype 

library. These experiments evaluated MDARTS performance under artificially heavy load 

conditions on a  multiprocessor.

6.2 Experimental Platform

Figure 6.1 depicts the hardware platform we used for our experiments. The experimental 

platform was a standard VME-based multiprocessor with a bus controller, three Motorola 

68030 processor boards, two 68020 boards, and one standalone memory board with two 

megabytes of RAM. Each of the processor boards was running the VxWorks real-time 

operating system. VxWorks provides a UNIX-like environment with networking support 

and an efficient kernel that performs fixed-priority preemptive scheduling of user tasks. 

Each 68030 board has its own Ethernet interface, and one of them served as a network

130
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gateway for the 68020 boards. The VME chips on the 68030 boards also provided support 

for inter-processor interrupts through VME write operations.

Note that this is a stock multiprocessor system. No specialized hardware was purchased 

or developed to support our MDARTS implementation. The VME bus on our platform 

is clocked a t 16 Megahertz, so there are 16 bus cycles per microsecond. The maximum 

throughput of this bus is 40 megabytes/second, although typical throughput is more like 

20 megabytes/second. Therefore, five 32-bit bus operations can typically be performed in 

a  microsecond. Two of the 68030 processor boards have a 20 MHz clock rate. The other 

68030 has a  25 MHz clock rate. Note that these boards were purchased in 1989. W ith 

modern processors, it would be possible to increase MDARTS transaction performance by 

an order of magnitude or more. Clearly, the performance of transactions that use the VME 

bus are limited by the bus bandwidth, so one cannot guage system performance solely by 

the processor speeds. Nevertheless, the reader should keep in mind that the performance 

numbers reported here could be improved dramatically if newer processors and/or a faster 

bus were used.

The local memory on each processor board is visible to its own processor starting at 

address 0. This local memory is also mapped into a unique region of the VME bus address 

space. Therefore, remote processors can access the local memory of other processors by 

issuing VME read and write operations at the appropriate addresses. Requests for access 

to the local memory of a remote processor can encounter delays associated with contention 

for the remote processor’s local bus. Unlike some shared-memory multiprocessors, this plat

form provides no support for local caching of global memory. Every read or write to the
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VME address space results in an actual bus request. For example, suppose processor Px 

has four megabytes of memory mapped in the VME address space a t address OxODOOOOOO. 

In this case, an integer a t address 0x400 on Pi would be visible to processor P2 at address 

OxOD000400. If processor P2 attem ps to read an integer from this address, the hardware per

forms a  rather complex sequence of operations. See Figure 6.2, which depicts the hardware 

components in more detail.

First, the read operation is generated by P2’s CPU on its local bus. P2’ s VME chip 

detects that this is a VME request, so it issues a request for control of the VME bus. The 

VME bus controller determines when to grant P2 s request for the bus according to other 

activity on the bus and its bus scheduling protocol. Once P2 s VME chip gains control of 

the bus, it issues a read request a t OxOD0OO4OO. This address is recognized by P i’s VME 

chip as a  request for access to P i ’s memory. P i’s VME chip issues a  request for control 

of P i’s local bus, which is granted by P i’s CPU. Once the local bus is controlled by P i ’s 

VME chip, it issues a request to read an integer at local address 0x400. P i’s local memory 

responds and retrieves the data. P i’s VME chip then transfers the data to the VME bus 

and signal’s P2’s VME chip that it is available. Finally, P2’s VME chip retrieves the data
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from the bus and supplies it to P2's CPU across P2's local bus.

Clearly, there is a fair amount of overhead in reading shared memory across the VME 

bus. However, the response time for a given bus request depends on the bus scheduling 

protocol and the current state of the bus and bus controller. If another CPU is using the 

bus and other CPUs have requested the bus, a  new request may have to wait several bus 

cycles for its turn. Another source of latency in reading another processor’s memory across 

the VME bus is that the remote processor (i.e., Pi in the above example) might be busy 

using its local bus when its VME chip requests access. These processor boards always give 

highest priority to the local CPU, so the remote request will be delayed until the CPU 

grants access to its VME chip.

Since MDARTS transactions on multiprocessors use global shared memory, the latency 

to access that memory is an important component in any transaction-time guarantees. 

Therefore, it is necessary to bound this latency as tightly as possible. To this end, we took 

two steps. First, we configured the VME bus controller to grant bus requests in round-robin 

order. T hat way, given n  processors, a given processor board would at most wait for n  — 1 

other VME operations before it was able to use the bus. Second, we allocated memory 

for the shared data structures of MDARTS objects on the auxiliary memory board. This 

eliminated the contention for the local bus of a remote processor that occurs when remote 

processor memory was accessed. In some cases, it might be preferable to locate the shared 

parts of MDARTS objects in processor memory rather than on a  separate memory board. 

This is an implementation detail, but it will have an effect on transaction times. If the 

shared data structures of an object are located in one processor’s local memory, transaction 

times for tasks on that processor will be faster than for tasks on other processors. MDARTS 

can determine during constraint checking whether the task creating an instance of the object 

has local access to the shared memory. If so, faster timing guarantees can be made for tha t 

task.

The response-time uncertainties in accessing shared memory are highly platform depen

dent. We did not select this platform to meet the needs of MDARTS. The platform happened 

to be available for our use, and we analyzed its properties and designed algorithms to match 

its characteristics. However, the platform-dependent parts of MDARTS are largely encap

sulated in the implementation of a few functions in the Lock objects. Therefore, it would 

be fairly straightforward to design MDARTS implementations for different platforms.
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6.3 Experiment Design

Given our hardware platform, we needed to design experiments tha t would exercise 

MDARTS and demonstrate its multiprocessor capabilities. Clearly, the worst-case transac

tion load condition is when tasks on all of the CPUs try  to perform conflicting transactions 

on the same object simultaneously. To create this maximum load condition, it is necessary 

to synchronize the execution of tasks on different CPUs and to perform multiple transactions 

in a  tight loop. After trying a few different approaches, we decided to use interprocessor 

“mailbox” interrupts available on the 68030 boards to synchronize execution of competing 

transactions on multiple CPUs. The 68020 CPUs do not have hardware support for this 

interrupt, and they are also much slower than the 68030s. Furthermore, we did not want 

to complicate our experiments with the timing uncertainties associated with heterogeneous 

processors, so we performed our experiments exclusively on the three 68030 CPUs.

Conventional database benchmarking measures average transaction throughput in trans

actions per second. Most prior real-time database research compares different transaction 

scheduling algorithms in terms of the fraction of transactions that meet their deadlines as 

the load increases. The former metric is suitable for non-real-time applications, and the 

latter is suitable for soft real-time applications, but neither is appropriate for hard real-time 

applications. In a hard real-time environment, every transaction must meet its deadline. 

Therefore, we decided to measure the elapsed time of every MDARTS transaction in our 

experiments. Each of our processor boards has a hardware tim er chip with a resolution of

6.25 microseconds. W ith this timer, we were able to measure individual transaction times.

From an application’s perspective, MDARTS is a  library of classes that can be used 

to construct shared objects that provide timing guarantees. Since each class encapsulates 

its concurrency control and transaction implementations, each must be individually tested. 

Therefore, our strategy for testing the MDARTS objects was to simultaneously perform 

identical transactions on the same object from tasks on different CPUs. Given this design, 

the implementation questions were how to construct the objects, synchronize their transac

tions, and collect the resulting timing information. We also wanted to have a flexible means 

of conducting multiple timing tests without compiling separate programs for each test.



135

6.4 Experiment Implementation

Figure 6.3 illustrates the approach we used to perform our experiments. We first created 

a special-purpose MDARTS class called Experiment (objects of class Experiment are labeled 

E in Figure 6.3). Each Experiment object contains a pointer to another MDARTS object 

(labeled 0 ). The shared-memory part of an Experiment object contains fields that specify 

which experiment to run and which parameters to use to construct new 0  objects or perform 

transactions using the 0  objects. One of the CPUs ran a task called the experiment driver 

task. This task contained an interpreter for a  very simple experiment specification language. 

W ith this language, we defined a set of experiments in an input file. As the experiment 

driver task read this input file, it used its Experiment object to store experiment parameters 

in the database. The other two CPUs ran slave tasks that also shared the Experiment object 

E. These slave tasks waited for a signal from the experiment driver task to perform their 

transactions.

Once the parameters for a  given experiment were in place, the experiment driver task 

signalled the slave tasks on the other CPUs using a  mailbox interrupt across the VME bus. 

This signal was generated when the Experiment object’s setValue method was called with 

a "start-experiment” tag parameter. When the signal was given, the three tasks performed 

their experiments in parallel and recorded their transaction response times (storing them 

in the Experiment object).

Note that these experiments measured wall clock time rather than true MDARTS trans

action times (pure execution time plus blocking time, if any). Unfortunately, some trans

actions were occasionally preempted by other tasks or by the operating system scheduler. 

These preemptions inflated the apparent execution time of those transactions. It is crucial to 

understand that these outlier measurements are not worst-case MDARTS transaction times. 

In addition to the transaction execution time, they include execution times of higher-priority 

tasks on the local CPU. The scheduler interrupts and preemptions were rare, so they did 

not greatly affect the average transaction times. Nevertheless, their presence prevented us 

from empirically measuring the worst-case MDARTS transaction times.

Figure 6.4 shows the code executed by the experiment driver task when it processed 

an input line such as: “get i 1000 0 value 0”. This command caused parameters 1000, 

0, “value” , and 0 to be stored in the Experiment object’s repeat.count, itag, tag, and in

dex fields, respectively. Next, experiment type "i-get” was stored in the command field 

to indicate a getlValueQ transaction. Once the parameters were stored, the experiment
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create foo type=0 
set i 100 0 value 0 10 
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F ig u re  6.3: MDARTS experiments.

was started by storing a "start.experiment” command into the Experiment object. The re- 

peat-count field specifies how many transactions should be performed for each experiment, 

so in this example, each CPU would perform 1000 getlValue() transactions. The transac

tions were performed using the MDARTS object 0  to which the Experiment object points. 

These transactions were performed in a tight loop, and the start time was synchronized 

by the "start-experiment” transaction. Therefore, this experiment executed a total of 3000 

transactions (1000 on each of 3 CPUs). Each of the transactions was timed, and the worst 

case, best case, and total execution time were recorded by the Experiment object. Actually, 

the wall clock time rather than the execution time was measured in our experiments. If a 

task is preempted by another task in the middle of an experiment, the time read from the 

hardware timer will not reflect the true execution time of the transaction.

The code segment in the Experiment object tha t performs getlValue transactions is shown 

in Figure 6.5. This code segment is reached when the Experiment object’s setlValue() method 

was called with a "do_command” value in its val parameter and an “Lget” value has been 

stored previously in the Experiment object’s "command” field. Once all repeat.count experi

ments were run by each CPU, the overall worst, best, and largest sum of execution times for 

all CPUs was updated in the Experiment object. The experiment driver task waited until
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void RunGetCommand(char *s)
{

static RW_Mdarts ex_ob("experiment"1l,type=Experiment"); 
int count,itag,index; 
char tag[80]; 
char type;
if (sscanf(s,"get %c %d %d %s y,d",&type,&count1&itag,tag,&index) !=  5)

ScanError(s);
ex_ob("repeat_count") =  count; 
ex_ob("itag") =  itag; 
ex_ob("tag") =  tag; 
ex_ob("index") =  index;
switch (type) {

case 'i1; ex_ob("command") =  (int) Experiment::i_get;
case 1 d ': ex_ob("command") =  (int) Experiment::d_get;
case ' s ' :  ex_ob("command") =  (int) Experiment::s.get;
}

ex_ob("start_experiment") =  1;
}_________________________________________________________________________________

F ig u re  6.4: Experiment driver code for getValueQ transactions.

it and the slave tasks finished the experiment (this was detected by watching a counter in 

the Experiment object), and then it printed the overall timing results. The object used to 

perform transactions (labeled 0  in Figure 6.3) could be changed many times within the in

put file processed by the experiment driver task, so a large number of experiments covering 

as many different MDARTS classes as desired could be performed without recompiling the 

test programs.

6.5 Experimental Results

6.5 .1  T h e M d artsln t class

Our first experiments used a very simple MDARTS class called Mdartslnt. Mdartslnt 

contains a single shared integer variable, and its getlValue() and setValue(...,int val) methods 

get and set tha t integer with no locking. Although Mdartslnt does not lock its data, locking 

a  single integer is only needed for multiple-writer concurrency control. A single writer 

and any number of readers can share an Mdartslnt object since 32-bit integer read and 

write transactions across the VME bus are atomic operations. MDARTS classes with more 

complex data, e.g., a  character string or an array of integers, generally require more complex 

concurrency control. Since the get and set methods of Mdartslnt are so trivial, the timing 

experiments on this class essentially reflect the execution time overhead associated with
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void Experiment::setValue(int itag, const char *tag, int index, int val) {
/ /  ... code deleted
/ /  perform getlValue experiments (got here from switch on command type) 
for (i =  0; i <  repeat.count; i+ + )  {

if (m askJt) intLock(); / /  possibly lock interrupts
GET-COUNTER(time);
int v =  obj.ptr—>getlValue(theJtag,the_tag,the_index); / /  experiment 
DELTA_TO_MICROSECONDS(time); 

if (m askJt) intUnlockQ;
/ /  save results of this experiment 
if (time >  the.worst) 

the_worst =  time; 
if (time <  the.best) 

the_best =  time; 
the-sum + =  time;
}

/ I  ... code deleted

F ig u re  6.5: Experiment class method for getlValueQ transactions.

performing transactions using the MDARTS methods. Table 6.1 summarizes the results of 

our initial experiments with Mdartslnt.

CPUs operation best average worst outliers

1 get 12 13.6 18 0 >  100

set 12 13.9 18 0 >  100

2 get 12 14.6 700 2 >  100

set 12 15.7 706 2 >  100

3 get 12 14.8 1018 3 >  100

set 12 15.1 850 2 >  100

T ab le  6.1: Read and Write Wall Clock Times (in Microseconds) for M dartslnt Object.

Each row of Table 6.1 corresponds to 1,000 transactions per CPU. The first column 

indicates how many CPUs were used in the experiment (the first two experiments used only 

one CPU, the next two used two CPUs, etc.). Thus, the first two experiments performed

1,000 transactions, the next two performed 2,000, and the last two performed 3,000. Only 

one bus operation was required for each “get” or “set” transaction. The “set” transactions 

tended to be slightly slower on average because of slightly more param eter passing overhead 

(the value to be stored is passed to the setValue method of Mdartslnt).
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W ith a  single CPU, all of the transactions completed within 18 microseconds (three 6.25 

microsecond ticks of the timer). However, when multiple CPUs were added, some of the 

transactions appeared to take several hundred microseconds. The get and set methods of 

Mdartslnt contain no loops or branches. They simply issue VME read or write operations, 

which on our platform usually required less than a  microsecond. The bus controller was 

configured to grant requests using round-robin scheduling, so bus access was not a problem. 

I t is impossible for the Mdartslnt transactions to vary this much in execution time (Vx- 

Works does not use virtual memory, so we are not seeing page fault effects). Therefore, we 

conclude that the apparent transaction time variations are actually due to task preemption. 

We measured wall clock time (using a hardware timer) from the start to the end of each 

transaction. If the VxWorks scheduler suspended the experiment task to run some other 

task, the timer kept running until the experiment task resumed execution and read the 

timer. The last column in Table 6.1 counts the number of transactions measured at more 

than  100 microseconds. Only two of the 2,000 two-CPU transactions and two or three of the

3,000 three-CPU transactions were outliers by this definition. Most likely, one transaction 

per CPU was preempted while the timer was running. Since we were not running any other 

application tasks, the preempting tasks were operating system tasks, probably related to 

ethernet activity.

It is possible to prevent preemption during transactions by disabling processor interrupts 

when transactions are performed. Locking interrupts substantially reduces the variance in 

wall clock transaction execution times. W ith this technique we could eliminate the outliers 

and reduce the variance in execution times for the Mdartslnt class to no more than one

6.25 microsecond clock tick. This technique is used when performing individual timing 

experiments for transaction calibration. However, locking interrupts can disrupt operating 

system activities. This is especially true if thousands of interrupt-locking transactions are 

performed in tight loops, as they are in our experiments. We quite frequently crashed the 

operating systems of our processors when running our experiments with interrupts locked. 

Furthermore, the apparent predictability gains of locking interrupts during transactions can 

be illusory. This is because as soon as the transaction completes and interrupts are enabled 

again, the task can be interrupted. From the perspective of a  task performing a transaction, 

there is no difference between being interrupted during a transaction and being interrupted 

immediately after the transaction completes (provided the transaction itself is not affected 

by the interrupt or its handler routine). In short, we decided to allow interrupts during



140

our experiments even though this decision made our worst-case transaction measurements 

appear longer than their actual execution time. Instead of locking interrupts, we counted 

the number of transactions that exceeded a  certain threshold. Counting outliers does not 

completely characterize the execution time variance, but it does help distinguish rare events 

such as task preemption from true transaction execution time variance.

Another point to keep in mind when examining our execution-time measurements is 

that the granularity of our clock was about six microseconds. When averaged over 1,000 

experiments, the effective accuracy of our measurements is better than 6 microseconds. 

However, the best and worst-case measurements refer to individual transactions for which 

the time granularity of our clock can be significant (particularly for very fast transactions). 

In general, the best-case transaction times reported in our tables can understate the actual 

execution time by up to six microseconds. This is because a transaction that starts a t time 

zero and executes for twelve microseconds will only see one 6.25 microsecond tick of the 

timer. It is also possible to overstate the actual time of a transaction by the amount of the 

clock granularity, but it is unlikely that an overstated time would be kept as a best-case 

value since this is the smallest measurement of the 1,000 transactions per CPU.

If locks are used to enforce serializability, the problem of preemption or interruption be

comes more significant because remote preemptions of lock holders can affect the execution 

times of local transactions. A compromise approach we have taken in our implementation 

of locks in MDARTS is to disable task switching during critical sections. This prevents long 

delays due to preemption of a lock-holding transaction but still allows interrupts to service 

critical system functions.

The Mdartslnt class is so simple tha t it is easy to analyze its execution time. If an 

Mdartslnt transaction is allowed to run uninterrupted, the most significant execution time 

variance is due to VME bus latency. The other sources of variance, CPU caching and local 

bus access latency when fetching instructions, are much smaller than the VME bus latency. 

In our system, the VME bus controller is configured to do round-robin bus scheduling, so 

in the worst case an Mdartslnt transaction will have to wait for the two other 68030 CPUs 

to finish using the VME bus (assuming the 68020 CPUs stay off the bus, which they should 

since they are idle in our experiments). The VME bus access delay is slightly unpredictable, 

bu t under almost all cases it will be no more than  a microsecond. A VME system with 

more CPU cards will have larger worst-case latency, especially if bus scheduling is priority- 

based or if DMA operations across the bus are performed. For MDARTS classes to provide
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timing guarantees, it is necessary for the system designer to analyze the worst-case bus 

access latency and make that information available to MDARTS.

6 .5 .2  A n  M D A R T S Array

Because the Mdartslnt class does not use any locking for concurrency control, we per

formed another set of experiments on array classes tha t use locks. As with the Mdartslnt 

experiments, each experiment performed 1,000 transactions per CPU. In addition to range- 

checked get and set transactions on individual elements, these array classes support “size” , 

“sum”, and “increment” transactions. In all of our experiments, the arrays contained 10 

integers. Although locking is not strictly necessary for read and write of integers across the 

VME bus, we locked the “get” and “set” operations. Arrays of more complex structures 

would need to do locking on individual element accesses. Furthermore, locking “get” and 

“set” transactions helps characterize the locking overhead in our various lock implementa

tions. The “size” transaction returns the number of elements in the array. No locking is 

used for “size” transactions. The “sum” transaction locks the array, sums the values in all 

array elements, and returns the sum. The “increment” transaction adds an application- 

specified value to each element in the array. We used exclusive locks even on read-only 

transactions. Our objective was to experiment with different critical section lengths rather 

than  trying to develop realistic transaction semantics.

We performed experiments on three different integer array classes. The only differences 

between these classes was the type of lock they used for concurrency control. Unless other

wise noted, the shared data regions of the array data structures and the locks were kept in 

a  separate memory board on the VME bus rather than in the local memory of one of the 

processor boards.

Figure 6.6 shows the getlValueQ method for the MdartsArray class. Note how the itag 

is used to determine which field is requested of the object. If itag < 0, this means the 

application is querying the field number of the tag parameter. Converting a  string tag 

param eter to a  field number involves a  series of string compare function calls, which are 

relatively expensive in execution time. A task with tight deadlines would not want to incur 

this overhead with every transaction. One alternative is to supply the itag field numbers 

corresponding to the desired field. However, a programmer may only know the name of 

the field it wants, not the field number. In this case, a task can first query the field 

number corresponding to a transaction it wants to perform. Subsequent transactions can
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int MdartsArray::getlValue(int itag, const char * tag, int index)
{

int tid;
if (itag < =  0) { / /  an unspecified field number, examine the tag string.

if (itag <  0) / /  if a query for the field number of that tag.
return getFieldNum(tag); 

itag =  getFieldNum(tag); / /  convert tag to field number
}

switch (itag) { / /  note: shared points to the shared memory region.
case value.f: / /  get the value of array element[index]
if (index > =  0 && index <  shared-Hsize) { 

tid =  shared-»lock.getLock();
int retval =  theArray[index]; / /  theArray points into *shared
shared-dock.releaseLock(tid);
return retval;
}

else {
cerr <SC "out of range read: " <g. index <C endl; 
return —1;
}

case size_f: /  /  get size of array
return shared-»lsize; 

case sum.f: / /  get sum of array elements
int thesum =  0; 
tid =  shared->lock.getLock(); 

int the_size =  shared-Msize; 
for (int i =  0; i <  the_size; i+ + )  

thesum + =  theArray[i]; 
shared ->lock.releaseLock(tid); 
return thesum; 

default:
cerr <SC "invalid field for getlValue: " itag<?C 1 , '<g; tag <$; endl; 

return —1; / /  default clause could throw an exception and never reach here

F ig u re  6.6: GetlValueQ method for MdartsArray.
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be performed using this field number without incurring string comparison overhead. Our 

Experiment object uses this technique. Some tasks may be willing to tolerate the overhead 

of translating names to field numbers on each transaction. In tha t case, the field number 

in itag is set to zero and the field name is passed in tag. Given a valid field number, the 

getlValue() method performs the transaction and returns the result.

Figure 6.2 summarizes our experiments on the first of the three array classes. This class 

uses a spinlock queue that is designed to minimize bus traffic generated by tasks in the 

queue. For comparison purposes, we also include an experiment on a single CPU running 

out of its local memory rather than to the memory board across the VME bus. The local 

memory experiment is labeled 1* in Figure 6.2. Note tha t data caching in the 68030 makes 

the local memory experiments even faster than one would predict from the nominal latency 

differences between local memory and VME bus memory. All of our spinlocks disable task 

switching when tasks enter critical sections. This prevents unbounded priority inversion 

due to remote lock-holding tasks being preempted and blocking tasks on other CPUs. Note 

that the “size” transaction does not acquire a lock since there is no critical section for this 

read-only transaction.

The best case performance in the three CPU case were substantially better than  in 

the one or two CPU cases. This anomaly was puzzling for a while, until I examined the 

physical hardware of the CPUs. The CPU board that we used for the third CPU was a 

25 MHz machine, whereas the other two CPUs were 20 MHz machines. This explains the 

best-case performance jum p for three CPUs. It really just corresponds to the performance 

of CPU 3 when it ran a  transaction with no contention. We synchronized our experiments 

to maximize contention, but it is not surprising tha t some of the 1,000 experiments run  on 

CPU 3 encountered no contention from the other CPUs. If CPU 3 happened to run the first 

transaction, or if it ran the last two, then at least one of its transactions would encounter 

no spin wait delays. In that case, its transaction time would be as fast as the single CPU 

case (faster, since the clock speed was faster). A similar observation applies to  the best-case 

performance of the two CPU case.

Although task switching is disabled in the critical sections, interrupts are not disabled. 

Therefore, some jitter appears in the transaction time measurements due to tasks being 

interrupted while the timer is running. Careful examination of the data shows two lev

els of granularity: the small jitter granularity was about 70 microseconds; the large jitte r 

granularity was about 800 microseconds. The 70 microsecond jitte r was due to interrupt
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processing for the operating system task scheduler. The system task scheduler is triggered 

by a  clock interrupt every 16 milliseconds. If one examines the top two rows in Table 6.2, 

one can see that on average the transactions required about 75 microseconds, bu t five trans

actions measured more than 100 microseconds. Since we are executing 1,000 transactions 

in these experiments, the total wall clock execution time was about 75 milliseconds. In 80 

milliseconds, five scheduler interrupts will occur, so we conclude that scheduler interrupts 

caused this jitter. The “size” transaction worst-case time was 93 microseconds compared 

with 23 microseconds on average. The 70-microsecond difference indicates the granularity 

of the scheduler interrupt when no task switching is performed.

If one examines the “size” transaction in the two-cpu case, one can see that one of the 

transactions was timed at 718 microseconds. Clearly, this was a task preemption while 

the timer was running. It appears that 800 microseconds is a typical execution time for 

tasks that preempted our transactions. Most probably, the preempting task in this case 

was an ethernet servicing task run by the operating system. One might wonder why we 

are encountering preemption delays in transactions that disable preemption during critical 

sections. The answer is that parts of the transaction outside of the critical section can still 

be preempted.

We disable preemption (task switching) in critical sections for two primary reasons. 

First, we want to tightly bound the number of tasks that can enter a spinlock queue for 

a particular object. If preemption is disabled when tasks enter the queue, no more than 

one task per CPU can be in the queue. By bounding the queue lengths, the lock objects 

can make real-time guarantees regarding the maximum delays to acquire the lock. Second, 

we wish to disable preemption to avoid remote processor blocking if a task ahead of it in 

the queue is preempted. In general, we are willing to be preempted by local high-priority 

tasks, but we are not willing to be delayed by preemptions on a remote processor. By 

disabling preemption but not disabling interrupts during critical sections, we are exposing 

transactions to the possibility of being delayed during remote interrupt processing. However, 

the total interrupt processing utilization for the task scheduler on our system is about 70 

microseconds per 16 milliseconds, or 0.0044 utilization. In fact, the scheduler utilization is 

probably even less when task switching is disabled, but for the sake of discussion, assume 

that it is 0.0044. If scheduler interrupts are perm itted during critical sections on our three 

processors, in the worst case this will result in utilization loss of 0.0088 for each processor 

(each processor may have to delay the amount of time required for handling scheduling
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CPUs operation best average worst outliers

1 get 75 76 193 5 >  100

set 68 75 362 5 >  100

size 18 23 93 0 >  100

increment 100 105 331 5 >  170

sum 93 97 168 5 >  150

2 get 75 83 1212 9 >  150

set 68 82 1787 9 >  150

size 18 25 718 2 >  150

increment 100 115 993 8 >  200

sum 93 111 1756 13 >  200

3 get 56 90 2075 23 >  150

set 56 86 1256 16 >  150

size 12 25 862 3 >  150

increment 87 167 1831 26 >  300

sum 81 129 1893 24 >  300

1* get 50 55 218 3 >  100

set 50 56 118 4 >  100

size 12 18 181 1 >  100

increment 62 67 137 0 >  170

sum 62 64 131 0 >  150

T ab le  6.2: Wall Clock Times (in Microseconds) for M dartsArray with NQLock.
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interrupts on the other two processors). Although this is a very pessimistic assumption, the 

utilization loss is still very low.

T ra n sa c tio n  T h ro u g h p u t

It is interesting to examine the raw transaction throughput of these array transactions. 

W ith one CPU, getting a lock, reading or writing one integer in the array, releasing the 

lock, and returning the result requires about 75 microseconds. This corresponds to over

13.000 transactions per second. The “sum” transaction (which gets a lock, sums the 10 

array elements, releases the lock, and returns the result) requires about 97 microseconds, 

about 10,000 transactions per second. The “increment” transaction is roughly as fast as 

the “sum” transaction. The “size” transaction, because it requires no locking, executes a t

43.000 transactions per second. Table 6.3 summarizes the average throughputs of Table 6.2.

CPUs get set size increment sum

1 13,000 13,000 43,000 9,500 10,000

2 24,000 24,000 80,000 17,000 18,000

3 33,000 35,000 120,000 18,000 23,000

1* 18,000 18,000 55,000 15,000 15,600

T ab le  6.3: Throughput (in Transactions Per Second) for M dartsArray Transactions.

Table 6.3 shows that for transactions with short critical sections, we achieve nearly 

linear speedup as processors are added. The “increment” and “sum” transactions do not 

show as much speedup since they have longer critical sections, and time spent waiting to 

enter a critical section is unproductive. Another factor made the speedup appear worse for 

“increment” and “sum.” Namely, since these transactions take longer to perform in the 

first place, the number of preemptions by other tasks is higher for these transactions. This 

effect can be seen in the worst-case transaction times and the number of outliers for these 

transactions.

W ith only one CPU, none of the transactions experienced preemption (we know this 

since none of the worst-case transaction times were in the seven or eight hundred microsec

ond range typical of preemptions). However, with two and three CPUs, we observed some 

preemptions. These preemption-caused outliers increased the average transaction times.
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We only recorded the worst preemption delays, so we cannot determine precisely the mag

nitude of this effect. However, let us examine the “increment” transaction with three CPUs. 

We observed 26 preemptions on the three CPUs. At least one transaction was preempted 

for about 1,700 microseconds. We also know that often these preemptions take about 800 

microseconds. If all but one of the preemptions took 800 microseconds, then the average 

transaction execution time was increased by about 7 microseconds (26 times 800 microsec

onds per 3,000 transactions). If all of the preemptions consumed 1,700 microseconds, this 

would increase average transaction time by 14 microseconds. Since preemptions caused the 

average transaction times in the three CPU case to be higher, the MdartsArray “increment” 

transaction will have a better speedup for multiple CPUs than is reflected in Table 6.3. 

Nevertheless, the mutual exclusion enforced by the locks limits the possible speedup. The 

larger the critical sections in relation to the overall transaction time the more speedup will 

be limited.

The linear speedup of the “size” transactions shows that bus bandwidth is not a limiting 

factor in these experiments. This is not surprising since our platform’s VME bus can support 

about 5 bus operations per microsecond. The “size” transaction requires 23 microseconds 

to complete, and it issues only one VME request. Therefore, a CPU running thousands of 

“size” transactions in a tight loop will consume only one percent of the VME bandwidth. 

Similar observations apply to the other transactions supported by MdartsArray. The primary 

factor that limits speedup in our experiments is the mutual exclusion enforced by the locks, 

not the bus bandwidth. However, on systems with large numbers of CPUs, the bus may 

become a bottleneck.

By comparing the average-case performance of the different transactions on one CPU, 

it is possible to derive an estimate of the critical section times (direct measurements of 

critical section times are also possible). The “get” and “set” transactions have trivial critical 

sections, so their execution times can be taken as a baseline to estimate the procedure call 

and locking overhead of MdartsArray. If we subtract 75 microseconds from the average 

execution times of “increment” and “sum” transactions for the single CPU case, we derive 

30 and 20 microseconds for their respective critical sections. However, the lock operations 

contribute about five microseconds to the critical sections, so we add five microseconds back 

to the execution time deltas to derive a more accurate estimate of the critical section times. 

Therefore, we conclude that the critical sections of “increment” and “sum” are 35 and 25 

microseconds, respectively.
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“Increment” has a  longer critical section since it generates two VME operations per 

array element (for read/add/write), whereas “sum” generates only one (read/add). Since the 

critical section of “increment” is one third of its overall execution time, we can never achieve 

better than a threefold speedup through parallelism. Similarly, the “sum” transaction can 

be speeded up only by a factor of four. Table 6.3 supports this conclusion since the speedup 

is greater for “sum” than  “increment” when a third CPU is used. However, these speedup 

limitations apply only to concurrent transactions on the same object. If an application issues 

concurrent transactions on different objects, no mutual exclusion delays are encountered, 

and the transactions can proceed in parallel. In this case, the bus may be the limiting 

resource in the system. However, the bus is fast enough to support very high transaction 

rates (roughly a million five-operation transactions per second).

W orst-case Transaction Times

We have discussed the throughput of our MdartsArray transactions in terms of total 

transactions per second, because this metric is commonly used to evaluate database system 

performance. However, hard real-time systems must be designed for worst-case conditions, 

not average-case. Therefore, it is important to consider the worst-case transaction per

formance. Clearly, system interrupts and task preemptions greatly increase the wall clock 

uncertainty of any given transaction. However, the true measure of transaction performance 

is actual execution time, not wall clock time. It is execution time that directly affects the 

utilization and hence the schedulability of tasks that perform transactions (provided priority 

inversion is bounded). In other words, it is wrong to attribute preempted time to the oper

ation that was preempted. However, time spent spinning in a spinlock queue is execution 

time that should be attributed to that transaction. If a  remote lock-holding transaction is 

preempted, then this preemption time will directly impact the spin wait time of other tasks 

in the queue. This is a  form of priority inversion, and our spinlocks disable task switching 

to limit it.

We have argued tha t spin wait delays attributable to remote interrupt processing (e.g., 

when a remote lock holder is interrupted by its CPU scheduler) should be factored into an 

overall utilization reduction, not charged to each transaction that might encounter such a 

delay. This is because the maximum cumulative delay associated with waiting during remote 

interrupts is bounded for a given period of time (assuming interrupt rate and service times 

are bounded, which is true of any properly-designed real-time system). For example, if 100
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transactions are performed during a  short period of time in which only one remote interrupt 

can occur (because the interrupt rate is bounded), then it is unnecessarily pessimistic to 

charge an interrupt service time to each of the 100 transactions when calculating worst-case 

database performance. Instead, one remote interrupt serv'ce time should be charged to 

the entire set of 100 transactions. The most straightforward way to accomplish this is to 

reduce the available processor utilization on each CPU that uses the database by the sum of 

interrupt servicing utilizations on other CPUs with which it shares database objects. If this 

results in too severe a utilization penalty (as may be the case if average interrupt service 

times are long or interrupt rates are high), then the lock objects should disable interrupts 

during critical sections. If remote interrupts are accounted for with a utilization deduction, 

delays due to remote interrupts can be discounted when considering worst-case MDARTS 

transaction time guarantees. Furthermore, local task preemption should not be charged 

to the preempted transaction. Our lock implementations prevent remote task preemption 

from blocking tasks on spinlocks, so this is not a problem.

Since we have eliminated interrupt and preemption-related delays from our worst-case 

transaction time analysis, the worst-case transaction time becomes a  function of the transac

tion code implementation, characteristics of the hardware platform (e.g., bus bandwidth), 

the level of concurrency, and the locking protocol used for that transaction. In the sin

gle CPU case, the worst-case execution time in our experiments is almost identical to the 

average-case execution time. This is because without concurrency control delays (with only 

one CPU, the transaction always acquires the lock), the only significant source of execution 

time uncertainties is VME bus access time. W ith three CPUs performing simultaneous bus 

operations and round-robin scheduling, the delay to access the bus will be less than one 

microsecond per bus operation (assuming five bus operations per microsecond). The “size” 

transaction performs only one bus operation, so in the worst case it is delayed only one 

microsecond due to bus contention. The “get” and “set” transactions each perform only 

one bus operation in their critical sections, but their lock objects perform two or three bus 

operations in the critical sections, so in the worst case about five microseconds of latency 

will be added due to bus contention. The “increment” transaction performs two VME bus 

operations per array element (plus one operation to read the array size), and the “sum” 

transaction performs one per array element. In our experiments, the array size is 10, so 

the maximum cumulative bus access latency will be about 20 microseconds for “increment” 

and 10 microseconds for “sum” (assuming three CPUs and five VME bus operations per
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microsecond).

CPUs get set size increment sum

worst-case transaction times in microseconds

75 +  6C 75 +  6C 25 75 +  35C 75 +  25C

1 81 81 25 110 100

2 87 87 25 145 125

3 93 93 25 180 150

worst-case throughput in transactions-per-second

1 12,000 12,000 40,000 9,000 10,000

2 23,000 23,000 80,000 14,000 16,000

3 32,000 32,000 120,000 17,000 20,000

T ab le  6.4: Estimated Worst-case Performance for M dartsArray Transactions.

It is important to note that while a CPU is waiting in the spinlock queue, it generates no 

VME bus operations (it spins on a local control/status register in its VME chip). Therefore, 

as lock contention increases, bus contention decreases. This effect reduces the worst-case 

latency attributable to the bus as queue lengths increase. If each CPU performs transactions 

on different objects, the bus contention is maximized, but none of the transactions will be 

delayed in the spinlock queues. The net result of these two alternatives is tha t worst-case 

transaction performance remains high even under heavy loads.

Table 6.4 summarizes the worst-case transaction times for our MdartsArray objects. 

These are estimates rather than actual measurements since preemptions and remote inter

rupts prevented us from directly measuring worst-case transaction times (as we have defined 

them). Nevertheless, these estimates should be quite close to the actual worst case (given 

round-robin bus scheduling and no uninterruptible DMA activity).

Table 6.4 assumes critical section lengths of 6 microseconds for “get” and “set,” trans

actions 35 microseconds for “increment,” and 25 microseconds for “sum.” For example, 

the “get” and “set” transactions’ worst case execution times are 75 microseconds plus 6 

microseconds per CPU. If Table 6.4 is compared with tables 6.2 and 6.3, one can see 

that the average-case transaction times under the high transaction loads generated by our 

experiments correlate well with these worst-case estimates. Actually, these worst-case esti

mates are probably slightly pessimistic. Remember th a t the average-case measurements are
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inflated somewhat by the inclusion of outliers caused by preemption, and the best-case mea

surements can understate execution times by up to six microseconds due to the granularity 

of our timer. Therefore, the actual best-case times and average-case times are even closer 

than our data  indicate. If best-case times are close to average-case times, this implies that 

worst-case times are also close to the best and average-case times. This is a  very desirable 

property for hard real-time systems.

Note tha t these worst-case transaction times assume maximum transaction load con

ditions. Under normal conditions, much less contention would be observed for a given 

MDARTS object. However, since we are targeting hard real-time systems, we must ensure 

that our transaction-time guarantees will be valid even under heavy load conditions. It is 

very significant that the worst-case transaction times are so short. This makes MDARTS 

suitable for high-speed hard real-time applications. We are able to achieve this high per

formance under extreme load conditions because of our locking protocols and our approach 

to concurrent transaction processing across the multiprocessor.

6 .5 .3  A rrays w ith  A ltern ative  Spinlocks

The MdartsArray class discussed above uses a certain spinlock object to synchronize crit

ical section access. The getLock() method of this lock is presented in Figure 6.7. This lock 

class uses the global control and status registers of the processor boards to avoid generating 

VME traffic during spin waiting. Each NQLock object keeps four variables in shared mem

ory (the memory used by the lock is part of the shared memory region of MDARTS objects 

that use the lock). The first variable, theDataLock, is a lock used to control concurrent 

access to the NQLock object itself. The second variable, theCurrentNumber, is a transac

tion number for the current lock holder. The third, theNextNumber, is the next available 

transaction number. The fourth variable is an array of processor numbers corresponding 

to processors spinning in the queue. Note that task switching is locked a t the beginning of 

the getLockQ method. The BEGIN-CSECTION statement is a  macro used to time critical 

sections during transaction benchmarking.

When a  processor spins in the queue, it spins on a  flag in a  local control/status register 

that can be set by other CPUs across the VME bus. This spinning does not generate any 

VME bus operations. When a task releases its lock, it checks the processor number array 

to determine which CPU should be granted the lock next and then sets the flag in that 

CPU’s control/status register. The spinning CPU then exits the spin loop and uses the
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class NQLock { 
int theDataLock; 
int theCurrentNumber; 
int theNextNumber;
char theWakeup[MAX_NUM_MACHINES]; 
enum { stop, go };
static char * gcsrQ; / /  global control/status registers
static char * localcsr; / /  local ptr to control/status register
II

};
int NQLock::getLock() {

volatile int x =  0; / /  use x to add delays to tight loops
int num;
LOCK.TASKS; / /  disable task switching
*localcsr =  stop; / /  put this here to avoid race condition...
while ( ! sysBusTas((char*) & theDataLock) ) {

if ( + + x /3  >  1000) break; / /  delay a few microseconds between checks 
}

/ /  counter lock is held until this indentation ends 
num =  theNextNumber;
theWakeup[num % MAX.NUM.MACHINES] =  ThisCPUNumber; 
theNextNum ber++;
theDataLock =  0; / /  release lock on counter 

BEGINXSECTION
if (num !=  theCurrentNumber) { / /  don’t wait if we are next

while (*localcsr !=  go) { / /  spin on local flag in VME chip register
+ + x ;  / /  could also support a timeout...
}

}
return num;

1____________________________________________________________________

F ig u re  6.7: Implementation of NQLock spinlock queue.



153

locked resource. Figure 6.8 shows the code executed when releasing the lock. In essence, 

this spinlock works like a  “take a number” scheme in a candy store. A task that wishes to 

use the resource takes a transaction number and then waits until that number comes up. 

If it must delay, it does not keep checking the current number (which would generate VME 

traffic). Instead, it is notified by the task immediately ahead of it when its transaction 

number comes up. The design of these spinlocks is a bit tricky, but several good examples 

can be found in the literature (for example, [3, 19, 30]). This algorithm assumes that no 

more than MAX_NUM_MACHINES tasks will attem pt to enter the lock. Since we disable 

task preemptions, this assumption is valid.

void NQLock::releaseLock(int my_number) {
int next =  my.number +  1;
theCurrentNumber =  next;
if (next !=  theNextNumber) { / /  bump the next one if someone is waiting

*(gcsr[theWakeup[next % MAX.NUM.MACHINES]]) =  go;
}
UN LOCK _TASKS; / /  enable task switching again
END.CSECTION

}_________________________________________________________________________________

F ig u re  6.8: releaseLockQ for NQLock spinlock queue.

Since the performance of MDARTS transactions is so dependent on the concurrency 

control implementation, we experimented with two other spinlock implementations. The 

first is similar to NQLock except that it spins on the counter value rather than spinning 

on its local control/status register. This difference means greater VME traffic during lock 

contention but less overhead in the locking operations. The code for this lock is presented 

in Figure 6.9. Note tha t QLock’s implementation is simpler and more portable than that 

of NQLock. However, the bus traffic generated during spin waiting could be significant 

in systems with large numbers of processors. Some shared-memory multiprocessors have 

hardware support for cache coherency. On machines like this, the spin waits would spin on 

the local cache of the counter until the task releasing the counter increments it. Therefore, 

this spinlock would not generate excessive bus traffic on some systems.

The results of our experiments with MdartsArray and QLock are reported in Table 6.5. 

Note that the best-case transaction times are faster than those of NQLock, but the average 

transaction times are generally worse. This difference is attributable to the reduced VME 

bus contention of NQLock. As the number of CPUs increases, this difference becomes even 

more significant.

For comparison purposes, we also experimented with an ordinary spinlock tha t does not
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int QLock::getLock() { 
volatile int j,x =  0;
LOCK.TASKS
while (! sysBusTas((char+) ^theDataLock) ) { 

j == + + x /3 ;  / /  delay a bit
}

int num =  theNextl\lumber++; 
theDataLock =  0; / /  release lock on counter 

while (num !=  theCurrentNumber) { / /  spin until number comes up
j =  -f+ x /3 ;  / /  delay a bit

}
return num;

}
void QLock::releaseLock(int my.number) { 

theCurrentNumber =  my.number +  1;
UNLOCK.TASKS;

1_______________________________________________________________

F ig u re  6.9: Code for simple spinlock queue.

queue transactions. Figure 6.10 illustrates the implementation of this simple class. A task 

using this spinlock spins waiting for the lock until it acquires it, and there is nothing that 

prevents tasks on other CPUs from acquiring the lock multiple times while a previous task 

waits (i.e., this lock is not fair). As the task is spinning, it generates test-and-set operations 

across the VME bus. It is more expensive to execute test-and-set operations across the bus 

than the simple reads performed by QLock. Therefore, the spin loop first checks if the lock 

is free with a simple read before it tries to acquire the lock with a test-and-set.

class SpinLock { 
protected:

int theDataLock; 
public:

SpinLock() : theDataLock(O) { } 
int getLock()
{

volatile int x =  0;
LOCK.TASKS; / /  disable the system scheduler 
while (theDataLock || ! sysBusTas((char*) ^theDataLock) ) { 

int j =  + + x /3 ;  / /  delay slightly between test-and-sets
}
return 0;

}
void releaseLock(int ignored) { 

theDataLock =  0;
UNLOCK.TASKS;

F ig u r e  6 .1 0 : Code for an ordinary spinlock.

The results with SpinLock are reported in Table 6.6. The simple spinlock performed
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CPUs operation best average worst outliers

1 get 62 67 187 17 > 100

set 56 66 256 18 >  100

increment 75 113 425 6 >  170

sum 75 104 425 8 >  150

2 get 62 93 1175 9 >  150

set 62 96 1775 11 >  150

increment 75 151 937 29 >  200

sum 75 129 1281 5 >  200

3 get 50 100 1250 40 >  150

set 50 104 1787 41 > 150

increment 68 166 2743 43 >  300

sum 62 153 2712 29 >  300

T ab le  6.5: Wall Clock Times (in Microseconds) for M dartsArray with QLock.

best when there was no contention for the lock (the single CPU case). However, with 

multiple CPUs, NQLock performed better. The longer the critical sections and the more 

CPUs sharing the lock, the better NQLock performs compared with SpinLock. NQLock and 

QLock also have the advantage of being fair locks. It is impossible to determine analytically 

or empirically the worst-case transaction times of transactions that use SpinLock. This is 

because competing transactions can theoretically prevent a transaction from ever acquiring 

the lock. For this reason, NQLock is superior for hard real-time applications even in cases 

where the SpinLock would perform better on average.

Figures 6.11 to 6.13 summarize the measured throughputs corresponding to the three 

spinlocks. The throughputs of the different locks converge in Figure 6.12 since the length of 

the critical section of “increment” begins limiting the speedup possible through parallelism.

6 .5 .4  R em o te  A ccess

We have presented the performance of direct shared-memory access by two MDARTS 

classes. However, MDARTS also supports remote access through RPC calls to the Shared 

D ata Manager server. Although we cannot analyze the worst-case performance of our RPC- 

based transactions (because the networking protocols we use do not provide guarantees),
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CPUs operation best average worst outliers

1 get 50 66 281 9 > 100

set 50 65 156 10 > 100

increment 62 94 318 4 > 170

sum 62 86 193 2 > 150

2 get 50 71 1800 9 > 150

set 50 69 837 8 > 150

increment 62 120 1231 10 > 200

sum 62 114 1831 15 > 200

3 get 37 84 1325 22 > 150

set 37 80 1750 18 > 150

increment 56 170 1868 48 > 300

sum 50 143 1856 31 > 300

T ab le  6.6: Wall Clock Times (in Microseconds) for M dartsArray with Spinlock.
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F ig u r e  6 .1 1 : Measured throughput o f the “get” transaction.
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call

F ig u re  6.14: MDARTS experiments with remote objects.

we can measure typical performance of RPC-based MDARTS transactions on our platform. 

As we shall see, the communication delays completely dominate the transaction times for 

short transactions such as supported by MdartsArray. Figure 6.14 illustrates the tasks and 

communication involved in our remote experiments. In this case, the MDARTS objects 

used by the Experiment objects (labeled RO) are RemoteMdarts objects that use RPC to 

forward transaction requests on to the SDM server. The SDM performs the transactions 

and returns the results to the application tasks. The objects we used in these remote access 

experiments were Mdartslnt objects, which have trivial critical sections and no locking. 

W hen the SDM processes a transaction request, it performs that transaction using the 

same shared memory transaction methods that the local object supports. Therefore, each 

“get” or “set” transaction requires only about 15 microseconds of execution time in the 

SDM. However, the overhead implicit in the client-server architecture reduces performance 

by three orders of magnitude.

The CPU boards we used in our experiments could use two networks. One was the 

campus-wide ethernet. The other was a separate network implemented by the VxWorks 

operating system across the VME bus backplane. We ran experiments with remote objects
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on both of these networks. Our first set of experiments used the campus ethernet. In these 

experiments, we ran the SDM on only one of the three CPUs. Experiments involving one 

or two CPUs did not run experiment tasks on the CPU that hosted the SDM. However, 

experiments with three CPUs necessarily ran one of the experiment tasks on the same CPU 

as the SDM. Table 6.7 presents the results of running the remote experiments across the 

campus ethernet. The transaction times for “get” and “set” transactions were equal, so the 

transaction type is not labeled in Table 6.7. Note that the average throughput increases 

nearly linearly as the CPU number increases. However, the average transaction times 

are about 32,000 microseconds for transactions across the ethernet, whereas the average 

transaction times were only about 15 microseconds when direct shared-memory access was 

used.

Interestingly, the average performance is actually better when there are two clients (the 

two-CPU case). This is probably due to the server task on CPU 3 being more often ready to 

service requests when they are more frequent. If requests are relatively infrequent, the SDM 

server will block between requests. Each request is then delayed by the time required to 

schedule and start the server task running again. If the server task has just finished serving 

a  request from CPU 1 when a request from CPU 2 arrives, it can immediately service the 

new request thus reduce the blocking and task switching overhead.

CPUs best average worst average throughput (TPS)

1 31,400 33,000 80,000 30.3

2 9,000 31,000 83,000 64.5

3 14,900 34,800 100,000 86.2

T ab le  6.7: Remote Wall Clock Times (in Microseconds) for M dartslnt Across Ethernet.

One would think tha t substantial performance improvement could be gained by using 

the VME backplane network rather than the ethernet wire. To investigate this, we ran an 

additional set of experiments using this alternative network and our remote access objects. 

The results of these experiments are reported in Table 6.8. W ith one and two CPUs, the 

average throughput using the backplane network is approximately twice that of the campus 

ethernet. Furthermore, the worst-case times are very close to the average-case. On the 

campus ethernet, worst-case times were two to three times the average case.

However, when the third CPU is used, the overall throughput actually declines. This is
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because the third CPU was the host of the SDM server task. When the experiment task on 

that CPU was invoked, the VxWorks task scheduler began context switching between the 

experiment task and the SDM. This caused a significant decrease in the overall transaction 

throughput. To investigate this effect further, we ran an additional experiment using only 

the CPU with the SDM task. The result of this experiment is the 1* row of Table 6.8. 

Running the client and server on the same CPU yielded approximately the same throughput 

as using the campus ethernet, about half of the throughput when the client and server were 

on different CPUs.

We did not observe this large throughput decline when we added a client to CPU 3 

using the campus ethernet (in Table 6.7). This is probably due to the hardware support of 

the LANCE ethernet chip. This chip could perform many of the duties tha t were delegated 

to the CPU when the backplane was used. Therefore, in the ethernet case, response times 

were limited by communication latencies, and in the backplane case, response times were 

limited by CPU power. When three client tasks were used, neither method showed a clear 

advantage over the other.

CPUs best average worst average throughput (TPS)

1 14,700 16,700 17,000 59.9

2 9,600 16,600 18,000 120

3 14,900 33,300 77,500 90

1* 27,700 33,300 83,300 30

T ab le  6.8: Remote Wall Clock Times (in Microseconds) for M dartslnt Across VME 
Backplane.

6.6 Summary

Our experimental evaluation of MDARTS shows that with direct shared-memory access, 

MDARTS can support extremely high transaction throughput with worst-case transaction 

times tha t are very close to average-case. By avoiding context-switching overhead and com

munication delays implicit in inter-process communication between clients and servers, we 

can achieve about three orders of magnitude performance improvement for simple trans
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actions. This can be seen when comparing memory-based MDARTS transactions with 

RPC-based transactions, especially if RPC clients and servers are on the same CPU. On 

a multiprocessor, MDARTS can provide nearly linear speedup, depending on the ratio of 

critical section times to overall transaction times.



CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

In this chapter, we review the contributions of this dissertation and discuss future di

rections for the research.

7.1 Research Contributions

MDARTS makes many important contributions to the fields of RTDBS and real-time 

object-oriented systems. First and foremost, MDARTS is an actual implementation of a 

hard real-time database system with very high performance. Prior RTDBS prototypes are 

designed only for soft real-time systems, and their performance is insufficient for applica

tions with sub-millisecond transaction deadlines. By moving transaction processing into 

application tasks, using spinlock queues for concurrency control, MDARTS achieves high 

predictability and two to three orders of magnitude performance improvement over prior 

RTDBSs for memory-based transactions typical of machine controllers.

Database systems and distributed object-oriented systems are almost universally im

plemented using a client-server architecture. We have shown why this architecture implies 

system-related overhead that can drastically degrade real-time performance, especially when 

individual transaction times rather than aggregate throughput are considered. The primary 

reason MDARTS is so much faster than prior RTDBSs is that we avoid the client-server ar

chitecture for real-time transactions. Note that if high-performance remote procedure calls 

with worst-case latency bounds were available, the client-server architecture would become 

more competitive with the direct shared-memory approach. MDARTS defines a  frame

work for expressing performance characteristics and requirements, and the database class 

designer is free to implement MDARTS objects using whatever techniques are appropriate.

MDARTS can run on both uniprocessors and multiprocessors. On shared-memory mul-
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tiprocessors, MDARTS is able to fully exploit the parallelism available in the hardware with 

minimal overhead. Prior RTDBSs and object-oriented systems for multiprocessors either 

incur serial bottlenecks in server processes, or they duplicate data  across the processors and 

incur substantial overhead maintaining data consistency.

Another key contribution of MDARTS is the way it uses application-specified timing 

and semantic constraints to customize the selection of data management classes. MDARTS 

allows applications to make their requirements explicit in the contracts processed by the 

object constructors. Prior work on dynamic server selection through runtime service speci

fication has been at the level of network services rather than local objects within processes

[14]. By providing a mechanism for customizing object creation according to application 

needs, MDARTS can enhance performance without requiring application programmers t&- 

know exactly which database class to use.

MDARTS also provides finer granularity of method timing specification than  prior real

time object-oriented systems since each transaction method can have multiple timing records 

corresponding to different parameters. Furthermore, MDARTS includes support for auto

matically measuring method execution times, scaling performance to benchmarks performed 

on the computing platform, and estimating worst-case resource sharing delays a t runtime. 

Prior real-time object-oriented systems require application developers to specify method 

execution times and analyze resource sharing delays by hand.

Finally, we have shown that in many cases multiprocessor schedulability can be improved 

by making higher-priority tasks wait longer on global semaphore queues than lower-priority 

tasks. In our experiments, we showed that a simple FIFO scheduling policy is usually better 

than using static task execution priorities for global semaphores. However, priority queues 

can provide better multiprocessor schedulability than FIFOs if the priorities are assigned 

according to the blocking tolerance of tasks rather than according to the task execution 

priorities.

7.2 Future Directions

There are many areas in which MDARTS could be enhanced. First, it would be very 

useful to develop interfaces to file-based database systems. Real-time transactions could 

prefetch and cache persistent information in memory to avoid long I/O  delays during trans

action execution. Main-memory database researchers have investigated many algorithms for
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transaction logging and recovery in memory-based systems. It wonld be interesting to deter

mine which, if any, of these methods could be used in MDARTS to make its memory-based 

objects persistent.

The current MDARTS prototype only provides spinlocks for concurrency control. This 

means that the transaction time guarantees of our implementation correspond to local task 

execution time rather than blocking time. For long critical sections, it is inefficient to use 

spinlocks for concurrency control, so semaphores should be used to block tasks waiting 

for shared resources. We have studied this problem in Chapter 4, but we have not yet 

incorporated this type of locking in MDARTS. To extend MDARTS in this area it would be 

necessary to develop new lock objects that use semaphores and to modify the transaction 

time specification methods to include both blocking time and local transaction execution 

time.

I t would be interesting to experiment with multiversion concurrency control techniques 

to eliminate blocking delays for MDARTS transactions. Our spinlock queues limit multi

processor speedups in proportion to the number of processors and the lengths of the critical 

sections (assuming that all processors access the same object simultaneously). Multiversion 

concurrency control can improve transaction time guarantees for database objects tha t are 

likely to be used by many tasks across large numbers of CPUs. Since MDARTS permits 

each database class to use its own concurrency control strategy, the multiversion technique 

could be applied judiciously to those objects that are good candidates for that approach.

Another area for future work would be to use networking protocols with end-to-end 

timing guarantees to provide real-time guarantees for remote transactions. This would 

require more than just predictable message latencies, though, because client transaction 

rates and server task priorities would affect transaction times.

MDARTS has an extremely simple application programming interface, so end users of 

the library can use it without knowing the details of how the classes or real-time guarantees 

axe implemented. However, the developers of MDARTS classes must implement those classes 

correctly according to the protocols and structures of the MDARTS framework. It would 

be useful to develop higher-level tools to assist MDARTS library developers in creating 

classes that work correctly with MDARTS and accurately reflect their timing properties. 

For example, it would be possible to develop automatic test modules that exercise and 

attem pt to verify the correctness of all the MDARTS methods defined by a class, including 

the transaction-time guarantees. A new class could be checked by the test module before
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it is included in the MDARTS library.

Finally, it would be very useful to develop a set of basic data management classes 

for real-time control systems and make MDARTS available to industrial and academic 

developers of machine controllers. We have already taken the first steps in this direction 

in the MDARTS demonstration developed in collaboration with the University of Michigan 

Mechanical Engineering Department.
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