INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, cclored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfitms International
A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor, M1 48106-1346 USA
313/761-4700 800/521-0600

Order Number 9423252

An object-oriented real-time database system for multiprocessors

Lortz, Victor Bradley, Ph.D.

The University of Michigan, 1994

Copyright ©1994 by Lortz, Victor Bradley. All rights reserved.

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

AN OBJECT-ORIENTED REAL-TIME DATABASE
SYSTEM FOR MULTIPROCESSORS.

by

Victor Bradley Lortz

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1994

Doctoral Committee:
Professor Kang G. Shin, Chair
Professor Toby J. Teorey
Assistant Professor Elke A. Rundensteiner
Professor Galip Ulsoy
Associate Research Scientist Chinya V. Ravishankar

© Victor Bradley Lortz 1994
All Rights Reserved

To Robin and Kailee and to my parents

ii

ACKNOWLEDGEMENTS

Many people contributed directly and indirectly to the completion of this work, and I
would like to take this opportunity to thank them. First, I would like to thank my advisor,
Professor Kang G. Shin, for his support, feedback, and inspiration. I am also indebted to
my fellow graduate students in the Real-Time Computing Laboratory. Special thanks to
James Dolter, who set up a truly first-rate computing environment here. Thanks also to the
National Science Foundation and the Office of Naval Research, the agencies that provided
the funding to make this work possible.

Next, I would like to thank my wife, Robin, for her constant love and support and her
keen sense of the opportunity cost of years spent at graduate school. I would also like to
thank my parents for their love and wisdom and integrity.

Finally, I would like to thank my Lord and Savior, Jesus Christ, the source of my life
and to whom I owe everything.

iii

TABLE OF CONTENTS

DEDICATION e e e s e e e e e e e ii
ACKNOWLEDGEMENTS e e il
LIST OF TABLES e e e it e e e e e e e e e e vii
LIST OF FIGURES e et e e e e e e e e e e e viii
CHAPTERS
1 INTRODUCTION oo e e e s e e e e e e e e 1
1.1 Motivationo e e e e 1
1.2 Background 4
1.2.1 Real-Time Computing 4
1.2.2 Real-Time Data Management 5
1.2.3 Real-Time Database Research 6
1.2.4 Database Transaction Times and Task Scheduling 17
1.3 Research Objectives. 19
1.4 A Map of the Dissertation 20
2 MDARTS e e e e e e e e 21
2.1 MDARTS Overview i ittt e e i i e e 21
2.2 MDARTS Transactions v v v v v vt vt ettt e e e e 23
2.2.1 Transaction Properties 23
2.2.2 Transaction Scheduling 26
2.2.3 Nested Transactions 29
2.24 Real-Time Guarantees for Transactions 30
2.3 Object-Oriented Database Service Classes 32
2.3.1 Implementation Approach 32
24 Memory-Based Objects 35
241 Designo e e e e e e e 36
2.4.2 Implementation 37
2.5 Remote Transactions 41
251 Designo e e 42
2.5.2 Implementation 44
2.6 Real-Time and Semantic Constraints 45
26.1 Design e 47
2.6.2 Implementation 48
iv

2.7 Benchmarking Execution Times 50

271 Design e e e e o1
2.72 Implementation, 53
2.8 Construction of MDARTS Objects 58
2.9 MDARTS Application Programming Interface 61
29.1 Design0 61
2.9.2 Implementation 63
2.10 Concurrency Control in MDARTS 65
2101 Design e 66
2.10.2 Implementation 68
2.11 Current Status e 70
3 CONTRACTS e e e e e e e e e e e e e e 71
3.1 Motivation L. 71
3.2 Software Contracts e e e 72
3.3 Contracts and Customization 75
3.4 Exemplars and Customized Classes 79
3.5 Example C++ Implementation 83
3.6 Summary e e e e e e 88

4 SEMAPHORE QUEUE PRIORITY ASSIGNMENT IN MULTIPROCES-
SORS e e e e e e e e e e e 90
4.1 Motivation e e e e 90
4.2 Blocking Delays and Schedulability Guarantees 93
4.3 Priority Queues and Blocking Delays on Multiprocessors 97
4.4 The Semaphore Queue Priority Assignment Problem 99
44,1 TheBINP algorithm 101
4.4.2 Complexity analysis 102
4.5 The Task Allocation Problem 103
46 Experiments e e e 104
4.6.1 Descriptionoftasksets. 106
4.6.2 Aspecifictaskset. 110
4.7 ImplementationIssues, 115
4.8 Summary e e e e e e e e 116
5 DEMONSTRATION e e e et 118
51 Introduction 118
5.2 Initial Experimental Setup 120
5.3 MDARTS DemonstrationPlan. 123
54 Modified Experimental Setup 124
5.5 SUmMmAary v v i e e e e e e e e e e e e e e 129
6 TIMING EXPERIMENTS it 130
6.1 Introduction 130
6.2 Experimental Platform 130
6.3 Experiment Design 134
6.4 Experiment Implementation 135
6.5 ExperimentalResults 137

6.5.1 The MdartsIntclass v ... 137

6.5.2 AnMDARTS Array o v i i i i i i 141

6.5.3 Arrays with Alternative Spinlocks 151

6.54 Remote ACCESS . . . v v v v i e e e e e 155

6.6 Summary i e e e e e e e e 160

7 CONCLUSIONS AND FUTUREDIRECTIONS 162

7.1 Research Contributions« . v v 162

7.2 Future Directions v i i i i i e e e 163
BIBLIOGRAPHY o e e e e e 166

vi

Table
4.1
4.2

4.3

4.4

4.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

LIST OF TABLES

Blocking Factor Bounds for Rate Monotonic Scheduling.
Task Sets Scheduled by Each Method (Each Row Corresponds to a Different
Group of 1,350 Task Sets). i i i i i e
Individual Task Sets Schedulable by Method of Column but not by Method
of Row. e e e e
Average Percentage deltas for Unschedulable Task Sets, a Smaller delta
Means Closer to Being Schedulable.
Individual Task Sets for Which the Method of the Column Performed Better
than the Methodof the Row.,
Read and Write Wall Clock Times (in Microseconds) for MdartsInt Object.
Wall Clock Times (in Microseconds) for MdartsArray with NQLock.
Throughput (in Transactions Per Second) for MdartsArray Transactions.

Estimated Worst-case Performance for MdartsArray Transactions.
Wall Clock Times (in Microseconds) for MdartsArray with QLock.
Wall Clock Times (in Microseconds) for MdartsArray with Spinlock.

Remote Wall Clock Times (in Microseconds) for MdartsInt Across Ethernet.

Remote Wall Clock Times (in Microseconds) for MdartsInt Across VME
Backplane. e

vii

107
108
109

110
138
145
146
150
156
156
159

Figure
1.1
1.2
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
4.1
4.2
4.3
44
4.5
5.1

LIST OF FIGURES

Real-time performance implications of the client-server architecture. 11
Transaction times if clients perform transaction execution. 13
MDARTS database class hierarchy. 33
Access to shared memory data. o Lo L., 37
Code for MDARTS class MdartsInt. 39
MDARTS pointers to shared memory regions. 41
An MDARTS linked list. i i, 42
MDARTS proxy class for client side of RPC. 44
GetlValue() Function for server side of RPC. 45
Examples of real-time and semantic constraints.. 47
Structures for constraints. e e e . 49
Code for constraint checking. 49
Example of MDARTS benchmarkdata. 53
Example of MDARTS calibrate function.. 54
Macros used in MDARTS calibration functions., 55
MDARTS method timing. o, 56
Support for benchmark calibration in transaction methods. 57
MDARTS C++ application programming interface. 62
MdartsElement class for MDARTS APIsyntax. 64
Generic Set classes. e e e e e e e 76
Generic Set classes withexemplars. oL, 82
Adding contract support via inheritance. L L. 83
Adding contract support via a shadow hierarchy. 84
Contract and exemplar methodsinBase.. 85
Class definition for MdartsArray. v i it vt ot 86
Class for range-checked array. it v 88
MDARTS object construction using exemplars. 89
Schedulability advantage of blocking high-priority task. 97
Example task set. o o i i i i e e e e e e e e 111
Bin packing blocking before and after a 10 percent reduction in utilization. 112
FIFO blocking before and after a 23 percent reduction in utilization. 113
RMSS blocking before and after a 31 percent reduction in utilization. ... 114
Initial experimental setup. o oL, 120

viii

5.2
5.3
5.4
5.5
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

MDARTS demonstration hardware. 125

Host controller code to generateoffset., 126
User interface for the demonstration. 127
Demonstration. L e e 128
Platform used for MDARTS evaluation. 131
Detailed view of evaluation platform., 132
MDARTS experiments.« v v v v v v v ettt 136
Experiment driver code for getValue() transactions.. 137
Experiment class method for getIValue() transactions. 138
GetIValue() method for MdartsArray. 142
Implementation of NQLock spinlock queve. 152
releaseLock() for NQLock spinlock queue. 153
Code for simple spinlock queuwe. 154
Codc for an ordinary spinlock. 0L 154
Measured throughput of the “get” transaction. 156
Measured throughput of the “increment” transaction. 157
Measured throughput of the “sum” transaction. 157
MDARTS experiments with remote objects. 158

ix

CHAPTER 1

INTRODUCTION

1.1 Motivation

Real-time systems are an increasingly important class of computer applications. A com-
puting system is considered real-time if it has deadlines associated with its computations.
Examples of real-time systems include advanced manufacturing systems, air traffic control
systems, telecommunications systems, nuclear reactor controllers, and “smart” weapons
systems. In a hard real-time system, such as a machine controller, missing a single deadline
could result in catastrophic failure. Soft real-time systems can tolerate occasionally missing
deadlines. Although the techniques presented in this dissertation could be used for soft
real-time systems, we focus primarily on hard real-time systems.

As real-time applications become more complex and need to process large volumes of
data, it becomes desirable to use database systems to manage data shared between soft-
ware components (tasks, processes, modules). For example, in a manufacturing system, a
database can be used to store part specifications, part programs, machine characteristics,
control equation parameters, histories of performance data, and the current state of the
machine(s). If this information is available in a database, it can be used to support both
low-level servo control and high-level supervisory control! of manufacturing machines. Fur-
thermore, it becomes much easier to integrate new sensors and software modules into the
controller because their interactions with other parts of the controller can be defined in
terms of operations on the database.

The primary difficulty in using databases in real-time systems is that conventional
database systems (i.e., file- or memory-based non-real-time database systems) are not de-
signed to provide the performance levels or predictability needed by high-speed real-time

systems. High-speed is a relative term; we consider a real-time system to be high-speed if

it requires worst-case transaction times of less than a millisecond. This definition of high-
speed is somewhat arbitrary, but it is motivated by the hard deadline constraints of machine
tool controllers that have control tasks with periods of about one millisecond. In the future,
we expect conventional database performance to improve, but by then high-speed real-time
applications will require even greater performance.

It is possible to improve database performance by keeping the database in memory and
avoiding disk I/O during transaction processing [23]. However, conventional main memory
databases are designed to maximize average throughput, not to minimize individual trans-
action times. Typical average transactions times for simple transactions in main memory
databases (600 milliseconds for TPK [45], about 69 milliseconds for the main memory version
of Starburst with concurrency control disabled [42], over 100 milliseconds for PRISMA /DB
[4]) are much too slow for high-speed real-time systems. Furthermore, these main mem-
ory database systems do not provide worst-case guarantees for their transactions. Hard
real-time systems need worst-case guarantees to ensure that all deadlines will be met.

Of the prior real-time database prototypes reported in [13, 41, 34, 70, 77, 88}, none
provides hard real-time guarantees, and none has average transaction times of less than 100
milliseconds. Thus, these database systems are not suitable for high-speed hard real-time
systems such as machine tool controllers. Because suitable database management systems
have been unavailable, hard real-time systems have traditionally used ad hoc methods for
data management. However, ad hoc methods do not provide the flexibility needed for the
complex, evolving software architectures of next-generation real-time systems. To provide
greater flexibility and to manage the complexity of future real-time applications, better
real-time data management technology is needed.

This dissertation describes the design and implementation of a real-time database system
called MDARTS (Multiprocessor Database Architecture for Real-Time Systems). MDARTS
is a framework for developing object-oriented data management services suitable for high-
speed, hard real-time applications on uniprocessor or multiprocessor computing platforms.
Our MDARTS prototype is an extensible library of data management classes written in
C++, an object-oriented programming language [85]. Applications using MDARTS can
specify real-time requirements for transactions in the declarations of their database ob-
jects, and they can query database objects to determine real-time characteristics prior to
performing transactions.

MDARTS is not intended to duplicate the services of a traditional database system,

since many of these features are expensive to provide and are not necessary in the context
of most hard real-time systems. For example, most database systems provide interpreters
for ad hoc queries expressed in a database language such as SQL. Machine control systems
have no need for ad hoc queries. In this application domain, the raw performance of
the database is much more important than report-generating features or the ability to
provide multiple views of the data. A database purist may, upon reading this dissertation,
conclude that we have not created a database system at all. That would be a perfectly valid
interpretation, given a fairly narrow definition of a database system. However, MDARTS
does address an important problem domain that has not been adequately addressed before.
Specifically, MDARTS provides flexible data management services that are compatible with
the extremely demanding performance requirements of high-speed hard real-time systems.

We characterize the real-time performance of MDARTS with the term transaction time.
An MDARTS transaction time is composed of two components. The first component rep-
resents local task execution time required to perform a transaction. The second component
represents blocking delays caused by a transaction either for concurrency control, I/O, or
communication with cther processes. The two components of an MDARTS transaction time
correspond to the parameters needed to perform real-time schedulability analysis of tasks
that use MDARTS. For simplicity, we sometimes refer to a transaction time as a single
number. In those cases, we mean the sum of the two components. The sum of the two
transaction time components corresponds to the response time metric commonly used in
conventional database systems.

MDARTS uses semantic information supplied by application tasks to adjust its data
management services during object initialization and to reserve sufficient resources to meet
the requirements (or to signal a problem, if the requirements cannot be met). For example,
an application might specify that only one task will be updating a particular database
object. Given this semantic information, MDARTS can choose a database class that is
optimized for single-writer concurrency control.

Transactions with guaranteed transaction times are executed directly by application
tasks rather than by separate database servers. In this way, MDARTS avoids the system
overhead of context switching and inter-process communication implicit in most database
systems. Our prototype implementation can guarantee transaction times of less than 100
microseconds for simple, memory-based transactions typical of machine controllers. In this

context, the transaction times consist entirely of local task execution time (the blocking

times are zero since busy waiting is used for concurrency control). These performance
levels are achieved using commercially available multiprocessor hardware and a commercial
real-time operating system kernel (20 MHz 68030 processors running VxWorks). These
processors are fairly slow by today’s standards, and with modern processors performance
could be improved by at least an order of magnitude. MDARTS also provides network access
to remote objects through proxy objects that forward requests to database servers via remote
procedure calls (RPC). The relatively slow RPC transactions provided by MDARTS servers
do not delay the fast memory-based transactions executed directly by application tasks on
the multiprocessor. Except for variations in transaction time guarantees, the locations and

implementations of MDARTS objects are transparent to applications.

1.2 Background

1.2.1 Real-Time Computing

A computation is defined as real-time if its correctness depends on the time at which it
completes. In other words, the computations have deadlines associated with them. Real-
time systems can be categorized as either hafd or soft real-time. In a soft real-time system,
the value of the computations is sensitive to deadlines, but the system will not fail if
some deadlines are occasionally missed. Examples of soft real-time systems include on-line
transaction systems such as program trading or airline reservation systems. Hard real-time
systems have strict deadlines; catastrophic failure can occur if even one of these deadlines is
missed. For example, a manufacturing machine controller may recompute its control signals
every 1 or 2 milliseconds. Failure to meet this deadline could cause the machine to become
unstable and malfunction, possibly with dire consequences.

A common misconception about real-time computing is that it is equivalent to high-
speed computing [82]. Actually, there are fundamental differences between the two. Whereas
high-speed computing refers to average performance levels, real-time computing requires ab-
solute performance levels. To guard against failure, hard real-time systems are typically
designed using worst-case assumptions about all cperations. If the average case differs
significantly from the worst case, this will leau to severe underutilization of resources. Fur-
thermore, real-time systems must keep up with external events and changes in the system
being monitored. Conventional software is not constrained to respond as quickly or as

predictably to external events. Because of these fundamental differences, algorithms and

software architectures suitable for high-speed computing often are inadequate for real-time

systems.

1.2.2 Real-Time Data Management

Historically, real-time system designers have taken an ad hoc approach to data manage-
ment. Shared data are sometimes passed between tasks via message queues and sometimes
kept at predetermined locations in shared memory. For simple systems with limited inter-
task data coupling, an ad hoc approach to data sharing suffices. However, as data volume
increases and software becomes more complex, ad hoc data management becomes inade-
quate.

The Next Generation Workstation/Machine Controller (NGC) for automated factories
is representative of the class of complex, distributed real-time architectures that requires
data management services [2, 51). The NGC is a software architecture specification for
advanced cell-level machine tool controllers. In this context, cell-level refers to a manu-
facturing system workcell, which is a factory component that might contain one or more
robots, a computer-controlled milling machine, etc. The NGC architecture was designed
for high-performance computing platforms such as VME-based shared-memory multiproces-
sors. An NGC-compatible controller consists of multiple hardware and software components
possibly supplied by different vendors. Decomposition of NGC software components into
separate tasks on multiple CPUs complicates data management. Shared data must be made
accessible to, and used consistently by, all tasks that access them. It is also necessary to
control concurrent access to prevent data corruption. Clearly, these requirements match
the traditional capabilities of database management systems. Therefore, the NGC specifies
a database called the Information Base Subsystem (IBS) to provide data sharing and com-
munication between different software modules. For real-time tasks, the IBS should also
provide strict transaction-time guarantees. Interestingly, the NGC does not provide any
specification of transaction time requirements for the IBS. This is a serious limitation in
the NGC architecture.

Real-time systems such as the NGC require database services, but they do not require
all features provided by conventional database systems. Data values representing the state
of the controlled system can change very rapidly, sometimes thousands of times per second.
It is too expensive to provide traditional database transaction semantics in this context. In

particular, data persistence and failure recoverability are not needed for data corresponding

to transient sensor readings. Furthermore, often only one task will be performing updates
to a given data value. Therefore, it is possible to optimize the concurrency control strategy

to match the semantics of the application.

1.2.3 Real-Time Database Research

Several researchers have recently investigated real-time database systems (RTDBSs).
For a database system to be suitable for a real-time system, it must have fast and pre-
dictable transaction times. Prior RTDBS research investigates three primary strategies for
improving the performance and predictability of database transactions: 1) use memory-
based databases, 2) schedule transactions according to task priorities and/or deadlines, and
3) reduce delays and uncertainties associated with concurrency control. To this list, we add:
4) avoid the overhead associated with a client-server architecture, and 5) make maximum

use of parallelism on multiprocessor systems.

Main Memory Databases

Some RTDBS researchers propose using main memory databases to eliminate blocking
time uncertainties associated with disk I/O during database transactions [71, 80]. There
has also been significant interest recently in using main memory databases to increase
performance for conventional transaction processing systems [4, 23, 42, 45]. Garcia-Molina
and Salem present a nice overview of main memory database research in [23]). The primary
limitation of conventional main memory database systems, from the perspective of hard
real-time applications, is that these database systems are designed to maximize average
transaction throughput rather than to minimize worst-case individual transaction times. For
example, the TPK multiprocessor main memory database system reported in [45] achieves
an average throughput of over 1,300 transactions per second on a multiprocessor with five
one-MIPS processors.

If TPK’s 1,300 transactions per second corresponded to a guaranteed transaction time
of one millisecond, it would be sufficient for many hard real-time systems (especially since
much faster processors are now available). However, TPK achieves this average performance
level by processing 650 transactions as a group. The database does not commit an individual
transaction until the entire group is processed. The average execution time to process a
group of 650 transactions is about 400 milliseconds (these are fairly simple transactions).

Communication and context-switch overhead further delay the response times of individual

transactions so that the average response time is about 600 milliseconds. The authors
report that 99% of transactions in their experiments completed within one second. This
implies that some transactions had response times over one second (more than 1,000 times
slower than the average throughput implies). Therefore, this system is not well-suited to the
needs of high-speed hard real-time systems. Like TPK, MDARTS is designed for shared-
memory multiprocessors. However, MDARTS avoids the system overhead that led the TPK
designers to process transactions in groups. MDARTS transactions that directly access data
in shared memory require no context switching or inter-process communication. Therefore,
MDARTS transactions need not be batched together to achieve high throughput and fast
individual transaction times.

Clearly, using main memory does not in itself yield a real-time database system. The
database system must be designed specifically for the needs of real-time applications.
MDARTS combines main memory with parallel transaction execution performed by appli-
cation tasks rather than database server tasks. Data integrity and concurrency control are
supported by MDARTS since all data access is through the transaction methods exported
by the database objects. This transaction execution model maximizes the performance
benefits of using main memory because it eliminates the overhead implicit in client-server
architectures. None of the prior work in RTDBSs considers the possibility of application

tasks executing transactions themselves.

Transaction and I/O Scheduling

Several researchers have investigated transaction and I/O scheduling algorithms that
support different real-time needs and priorities [1, 12, 62, 83, 76]. Some commercial database
systems support priority-based transaction scheduling [25, 64]. By servicing high-priority
tasks first, the database can provide faster and more predictable performance for trans-
actions submitted by high-priority tasks. In this case, low-priority tasks experience de-
graded performance. File-based databases in particular can benefit from transaction and
I/0O scheduling according to priorities. Memory-based databases benefit less because the
scheduling overhead may become a significant percentage of the transaction processing
time. One of the difficulties with database transaction scheduling is that interactions with

the operating system’s task scheduler must be considered.

Serializability and Concurrency Control

Locks are often used in database systems to guarantee serializability. Serializability is a
transaction property that means the effect of running interleaved concurrent transactions is
equivalent to running them in some serial order. Serializability is the most widely accepted
criterion for correct concurrency control. It is useful since it permits transactions to be
designed as if they had exclusive access to the database. A major source of performance
uncertainty in conventional databases is the potential for transaction delays or aborts when
concurrent transactions compete for locks. In a real-time system, such delays could cause
critical tasks to miss deadlines. This problem and its contributing factors have been the
focus of most RTDBS research.

The most popular locking protocol in conventional database systems is two-phase locking
(2PL). This algorithm is easy to implement, and it guarantees serializability. However, two-
phase locking can lead to unpredictable delays in transaction processing since 2PL does not
bound the worst-case time required to obtain the locks and proceed with the transaction.
For conventional applications, these delays are usually tolerable, but unbounded delays are a
serious problem in real-time systems. Therefore, a significant amount of work has been done
to evaluate alternative concurrency control strategies for real-time synchronization. Nishio
et al. advocate a cautious transaction scheduling approach that checks for non-serializable
execution as it executes transactions [56]. This cautious approach performs better than
2PL, and it never aborts or rolls back transactions to achieve concurrency control. Haritsa
et al. [32] and Lee and Son [41] advocate various optimistic concurrency control protocols
which proceed with transactions and only check for serialization problems at commit time.
Huang et al. [34], however, dispute some of the conclusions of Haritsa et al. and observe
that overhead associated with implementing optimistic concurrency control can reduce its
performance advantages.

Some researchers have investigated concurrency control algorithms for distributed real-
time databases. Consistency across replicated data objects can be maintained through
transaction timestamps [70, 79] or symmetric updates [71]. Priority inheritance protocols
can also be used to reflect task priorities in distributed transaction execution [67].

Some researchers suggest that serializability should not be used as the primary correct-
ness criterion for real-time concurrency control [12, 21, 56]. Lin [48, 49] suggests that, for
real-time applications, data inconsistent with the external world can be worse than inter-

nally inconsistent data. He calls the correspondence between a database and the state of the

external world “external consistency.” External consistency is lost if the database cannot
process transactions fast enough to keep up with changes in the world. Lin does not explain
how a database system should choose trade-offs between internal and external consistency.
Clearly, these trade-offs would depend heavily on the particular application. Kuo and Mok
[40] introduce a correctness criterion for concurrent transactions which permits unserialized
transactions if the data values read and generated by those transactions are sufficiently
similar. Epsilon serializability [61] is another alternative to traditional serializability pro-
posed for real-time transactions. The problem with relaxing consistency constraints such as
serializability is that it can be more difficult to demonstrate the correctness of transactions.

We agree with Graham [28, 29], who argues that serializability is indispensable as a cor-
rectness criterion for concurrent transactions. Furthermore, serializability is not necessarily
expensive to achieve. In [29], Graham presents some techniques for verifying the serializabil-
ity of transactions by analyzing the read and write operations of concurrent transactions.
The TPK main memory database system provides serializability without locking by exe-
cuting transactions serially in a single database server task. In main memory databases, it
is common to achieve serializability by simply using serial transaction execution [23]. On
a multiprocessor, this is usually accomplished with a database server that serially executes
client transaction requests. Disk-based databases cannot afford to use serial transaction
scheduling since all transactions would be delayed during I/O operations.

Synchronization delays caused by locking can be reduced if the frequency of locking con-
flicts is reduced. One approach to reducing locking conflicts is to adjust the lock granularity
to lock only data that are affected by each transaction [6, 66, 79]. Reducing lock granularity
increases space overhead for locking, and it can degrade performance if many locks must
be acquired to perform a transaction. Therefore, the locking granularity should be tuned
to transaction characteristics. Semantic and object-based concurrency control protocols
extend this idea by characterizing which transactions conflict and thus require serialization
[7, 21, 40]. Another approach to reducing locking conflicts is to design transaction proto-
cols that use data versioning to avoid locking altogether [79, 86, 90, 91]. MDARTS objects
can use similar techniques in providing concurrency control for their transaction methods.
MDARTS does not dictate concurrency control policies, but the MDARTS object-oriented
approach facilitates the use of semantic and object-based concurrency control.

Concurrency control in real-time systems can lead to a problem called “priority inver-

sion.” Priority inversion occurs when a high-priority task is forced to wait for a lock held

10

by a lower-priority task. If the lower-priority task is preempted by a medium-priority task
before it can release the lock, the duration of the priority inversion can become unbounded.
An unbounded priority inversion can lead to indeterminate delays in transaction processing,
which can cause the high-priority task to miss its deadline. Priority inversion is to some
extent unavoidable if resources must be shared, so most researchers have investigated ways
to place an upper bound on the duration of priority inversions. One approach to priority
inversion is to abort lower priority transactions that conflict with higher priority ones. An
alternative is to bound priority inversions using various priority inheritance protocols which
temporarily boost the priority of tasks holding locks if they conflict with higher priority
tasks [58, 60, 67, 76]. This temporary priority boost helps lower-priority tasks complete
transactions and release their locks.

Since the best approach to real-time concurrency control often depends upon the partic-
ular application, some researchers advocate hybrid protocols that borrow features of several
earlier strategies to perform acceptably for a wider range of applications [12, 32, 35, 60, 78].
For example, Huang et al. [35] advocate a hybrid approach in which tasks inherit higher
priorities only if they are close to committing. Otherwise, if higher-priority tasks require

locks held by low-priority tasks, the lower priority transactions are aborted.

Temporal Databases and Time/Precision Tradeoffs

Some researchers have investigated new approaches to database management based on
semantic differences between real-time databases and conventional databases. For instance,
a radar tracking application may need to correlate multiple observations that are retrieved
from the database. Thus, temporal consistency may be a semantic requirement for a real-
time database. Temporal consistency could be achieved by adding constraints to transaction
scheduling so that time correlation of data values is maintained [31, 62]. No current sched-
ulers employ this technique, but Liu and Song [81] use temporal correlation as a criterion to
evaluate scheduling algorithms. Smith and Liu [75] suggest that real-time databases could
return approximate values when precise values cannot be computed before the deadline.
This is an application of the imprecise computation idea of Lin et al. [47].

MDARTS does not directly address temporal consistency issues, but it is possible to
design data management classes within the MDARTS framework that provide temporal
consistency. Similarly, imprecise computation techniques can be built into MDARTS objects

if necessary for a particular application.

11

A Side Note on the Client-Server Architecture

Figure 1.1 illustrates the types of overhead implicit in client-server architectures. We
show beth multiprocessor and uniprocessor examples. Figure 1.1 reflects the simple trans-
action model of MDARTS, in which each transaction is bundled into a single request and
sent to the database server. The database transactions themselves are highlighted with the
bold dashed lines. Each transaction is decomposed into a start-up region S, a critical sec-
tion CS (in which mutual exclusion is required), and an end region E. The relative lengths
of these regions depend on the particular transaction. The client-server overhead is la-
beled as follows: C-IPC represents client-side inter-process communication, which includes
RPC stub procedure call overhead, data conversion and marshalling, copying overhead, and
transmission latencies (if the RPC is not local). Switch represents context-switch overhead
(we assume, for simplicity, that the server task requires only one context switch to service
both client requests), S-IPC represents server-side inter-process cornmunication, and Q

represents time required to enqueue client requests in the server.

Multiprocessor Case

Transaction time for client 1 on CPU-1

CPU-1 [c-ipc] switen]
client 1

CPU-2 [swich[aTsTcs[ETscpc[asTes[ET sipc]
client 2

CPU-3 C-IPC

Transaction time for client 2 on CPU-3

Uniprocessor Case
Transaction time for client 2

C-IPC] Switch| C-IPC] Switeh] @] 5] ¢S | E [6-,c] @] s] ¢S | E] S-IPC | Switch

client 1 client 2

Transaction time for client 1

Figure 1.1: Real-time performance implications of the client-server architecture.

The relative sizes of overhead components depend on the characteristics of the target
hardware and operating system. Usually, the context-switch and inter-process communi-
cation overhead is on the order of a few milliseconds, whereas the transaction execution
time could be only a few microseconds. Furthermore, the client-server architecture implies
a serial bottleneck in the server processes. This is not a problem on a uniprocessor, but

on a multiprocessor it limits parallelism when multiple simultaneous transactions use the

12

same object. On a uniprocessor, more context switches are generated as the CPU switches
execution from clients to servers. Note that scheduling algorithms can only rearrange the
order in which these operations are performed. Far better performance can be achieved if
the overhead itself can be reduced or eliminated.

Some researchers have investigated ways to reduce RPC (remote procedure call) over-
head. The z-kernel is an operating system designed to efficiently support multiple RPC
protocols [57]. X-kernel RPC overhead is four milliseconds for Sun RPC and 1.7 millisec-
onds for Sprite RPC on a 2 MIPS processor and a lightly loaded ethernet. Local (same
machine) RPCs can be made much faster, depending on how they are implemented in the
operating system kernel. By carefully minimizing data copying and using shared memory,
Bershad was able to reduce worst-case overhead for local RPCs on DEC Fireﬂy multiproces-
sors to .about 150 microseconds [9]. Bershad’s technigne has the advantage of propagating
the execution priority of the client to the server (the client task is mapped into the server’s
address space, and it effectively becomes an instance of the server for the duration of the
RPC). To accomplish this trick, Bershad relied on several platform-specific features of the
Firefly and Taos, its multiprocessor operating system.

With faster processors even better performance can be achieved. For example, by ma-
nipulating the virtual memory hardware of the 486 processor and carefully optimizing in-
teractions with the system scheduler, Liedtke was able to reduce worst-case local RPC
overhead for short messages (passed in registers) on a 50 MHz 486 uniprocessor to about
twelve microseconds (twenty machine instructions) [46]. This represents about an order of
magnitude speedup over Mach RPC on the same platform.

Although inter-process communication latencies can be reduced through hardware sup-
port and clever optimizations, they can never be completely eliminated. Furthermore, even
if RPC overhead could be eliminated, each object’s server creates a serial bottleneck that
limits parallelism on a multiprocessor (assuming the worst-case scenario in which tasks on
multiple CPUs submit simultaneous requests to the same object). This point leads us to
another issue: how many objects should be represented by each server? If there is one server
per object, the system overhead associated with the server processes discourages designs
that use large numBers of objects. If there is one server for multiple objects, each server
becomes even more of a bottleneck on the multiprocessor. MDARTS permits application
tasks to use large numbers of objects without creating proportionately many server tasks

or creating serial bottlenecks.

