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CHAPTER 1

INTRODUCTION

Everyone who has ever driven a car has probably found himself waiting a t a  red light 

and  looking ahead to  see th a t all the lights up ahead are green, and then  watching them  

tu rn  red, one by one and in perfect sequence, usually ju s t as the light he is waiting at 

changes back to green. Some may attribu te  this to sadistic tendencies on the p a rt of traffic 

control engineers. O thers might call it coincidence. A rare few might even believe there is 

a  good reason for it. Almost nobody would a ttribu te  it to a  loss of synchronization, bu t 

such may very well be the case.

The cycles on older traffic light systems, and modern systems whose control systems 

have failed, are controlled by simple timers. On a heavily-traveled street all the lights use 

the same cycle, and s ta rt their cycles in a staggered fashion, w ith the tim e between when 

two lights s ta rt their cycles being the approximate time needed to  drive between them . The 

result is th a t traffic flows through unimpeded (at least in one direction). However, a light 

will slowly drift away from the nice staggered pattern  if the tim er th a t controls the cycle 

a t the light runs either a  little fast or slow. Such a light will eventually stop any cars th a t 

pass though the previous light, and let them through only when they will be stopped a t the 

next light.

The problems of traffic control may seem remote from those of real-tim e systems, but 

there are parallels. Consider a situation where one node of the system, N a, performs some 

com putation and sends the result to another node, JV6, for further processing. Suppose N a 

is late. W hen N b receives the result, it may have already moved on to  other tasks, and 

may not have the resources available to do the necessary processing. Processing the result 

sent by N a may have to wait until the necessary resources become available, or until N b can 

rearrange its schedule. If the result of the processing at N b is sent somewhere else, the delay 

a t N b will make it even later to its next destination. N a is analogous to the out-of-sequence
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traffic light. Tasks arriving from other nodes are early from iVa’s perspective, and are forced 

to wait. W hen the results are finally forwarded to the next node, they arrive late and are 

forced to wait again.

One might be tem pted to say th a t the problems in the preceding example could have 

been avoided if N b had simply informed N a th a t it was expecting the result, or would expect 

it in some number of milliseconds. But N b is not the only node w ith a  schedule to  keep. 

N a has its own set of tasks to perform, and cannot go about rearranging its schedule ju st 

to accommodate N b. Especially since N a has no reason to believe th a t it is not N b which is 

running fast.

Synchronization prevents these types of problems since synchronization allows, among 

other things, the coordination of schedules. Traffic lights need only be synchronized to 

w ithin a second or two. Even an inexpensive network has delay times on the order of tens 

of milliseconds, so synchronizing traffic signals only requires th a t they be connected in some 

fashion. M ulticomputers, especially real-time multicomputers, often m ust be synchronized 

w ithin microseconds, while the time for a signal to travel from one node to another may be 

on the order of milliseconds. Faulty nodes, clocks, and communications systems m ust also 

be dealt with. And, the price of failure may be far more than  a  traffic jam .

This dissertation considers some of the difficulties of synchronization in distributed 

real-tim e multicomputers. A new classification scheme is presented for synchronization al

gorithm s which breaks them  into three parts: distribution of clock information, estim ation 

of clock skews, and adjustm ent of clock values. Two new adjustm ent algorithm s are pre

sented which can greatly reduce the difficulty of synchronizing large systems. A new and 

highly-efficient clock distribution algorithm  is presented which, along w ith two provided 

probabilistic estim ation algorithms, allows highly accurate skew estim ation even in large 

systems. Finally, an algorithm for continuously distributing clock inform ation is presented, 

the only such algorithm  known th a t does not require special hardware. Continuous distri

bution of clock information allows nodes to  continuously m onitor their skews w ith respect 

to the rest of the system, and thus m aintain a  lower average skew between nodes. P u t 

together, these algorithms make an excellent synchronization algorithm  in its own right. 

But taken separately, they can be combined with algorithms from other sources to custom 

design a  synchronization algorithm for almost any need.

The organization of the rem ainder of this dissertation is as follows. C hapter 2 presents 

the new classification scheme for synchronization algorithms, describes previous work in
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the field, and defines notation used in the rest of the dissertation. C hapter 3 describes a 

fault-tolerant clock adjustm ent algorithm  which relaxes many of the restrictions found in 

sim ilar adjustm ent algorithms, especially w ith regard to large systems. C hapter 4 describes 

a  clock adjustm ent algorithm which greatly reduces the number of estim ates each node must 

make. C hapter 5 describes a clock distribution algorithm and two probabilistic estim ation 

algorithm s which allow accurate, efficient estim ation even in large systems. C hapter 6 

describes a  clock distribution algorithm  which operates “continuously” , allowing continuous 

monitoring of clock skews. C hapter 7 contains a  summary and proposals for future work.



CHAPTER 2

SYNCHRONIZATION

Synchronization is generally achieved by synchronizing clocks. A clock is a  counter, 

driven by a  known frequency, so it increments a t a known rate. If all nodes have their own 

clocks, incrementing a t nearly identical rates, having approxim ately the same values a t the 

same time, the clocks can be used as a global time base. Synchronization is achieved if 

there is a  bound on the maximum skew between clocks.

T he nemesis of synchronization is the variability of clock rates. No two clocks run  a t 

exactly the same rate. Over time, the difference in clock rates leads to an increase in the 

difference between clock values (called the skew). Synchronization becomes unnecessary 

if all nodes share the same clock. A single global clock is generally im practical due to 

fault-tolerance considerations and possible delays and difficulty in reading such a  clock. 

An external tim e reference may also be used. UTC (Universal Tim e Coordinated) [34] is 

available via telephone, radio, or satellite, from several sources, a t varying levels of accu

racy [4, 10, 45, 47]. However, equipping each node so it can read UTC may be an expensive 

proposition in term s not only of money, but size, weight, and power consumption as well. 

And some systems m ust operate where UTC is not available (e.g., spacecraft or m ilitary sys

tem s). A nother option is to reduce the variability in clock rates. Atomic clocks [12, 43, 44] 

and tem perature-com pensated quartz oscillators are far more accurate frequency sources 

th a n  the  simple quartz oscillators found in most com puter systems, and can greatly reduce 

or elim inate the need for synchronization (except for an initial synchronization). Again, 

such devices can add considerably to system cost, size, weight, and power consumption.

W hile the above solutions a ttem pt to reduce or eliminate variability in clock rates, 

synchronization algorithms attem pt to compensate for it. Synchronization algorithm s are 

generally cheaper, and often better than  the above solutions. The synchronization algorithm  

a t each node communicates w ith the synchronization algorithm s a t other nodes and tries to

4
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m aintain  a  bound on the skew between the local clock and every other clock in the  system. 

M ost synchronization algorithms run periodically, and alter the clock value directly. Some 

run  continuously, and usually attem pt to alter the clock rate  itself. A few are hybrids, and 

combine periodic adjustm ents of the clock value w ith modification of clock rates.

T he rem ainder of this chapter starts  by introducing a new and simple classification 

scheme for synchronization algorithms, and by giving a  brief overview of known algorithms. 

This is followed by a  discussion of the focus of this dissertation, which specifies w hat areas 

of synchronization and types of synchronization algorithms will be dealt w ith, and why. 

The chapter concludes by introducing some definitions, assumptions and notation th a t will 

be used throughout this dissertation.

2.1 Parts of Synchronization

In  order to better understand synchronization algorithms, it is helpful to  break them  

up into three separate operations, and classify them  according to  the type of algorithm  

employed for each operation. The three operations th a t make up synchronization algorithm s 

are as follows:

1. D istributing clock information.

2. Estim ating clock skews.

3. A djusting clock values.

The algorithm s which perform these operations are referred to  as the clock distribution, 

estim ation, and adjustm ent algorithms, respectively. Interaction between these operations 

is only through input and output, i.e., the output of one operation is the input to  another. 

One may therefore assume tha t the operations proceed sequentially, in the order listed 

above, and th a t the algorithms for each operation may be considered separately. The only 

dependencies between the algorithms for each operation is the requirements they place on 

one another, e.g., an estim ation algorithm  may require the clock distribution algorithm  

d istribu te  clock information in a particular format.

A num ber of algorithms have been proposed for each operation, bu t they generally fall 

into a  few general classes. The rest of this section presents the various classes of algorithm s 

for each operation, and briefly points out the advantages and disadvantages of each.
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2.1.1 D istr ib u tin g  Clock Inform ation

D istributing clock inform ation is the first operation, and the most resource intensive. 

The efficiency and accuracy with which it is done has a direct effect on the success of the 

rem aining two operations. Two general classes of algorithms exist, distinguished by whether 

or not special hardware is required.

Hardware Distribution

Hardware clock distribution algorithms require a special network dedicated solely to 

the transm ission of synchronization information. Each node uses this network to  transm it 

its clock signal, and to receive the clock signals of other nodes. The clock information 

transm itted  is not a  clock value, but rather the output of the oscillator which drives the 

clocks of each node.

In most cases [16, 20, 21, 42], the synchronization network must be completely connected. 

This requires on the order of n 2 communications lines in an n-node system. This results in 

a  rapid  increase in cost as system size increases. In [39] a hardware distribution m ethod is 

presented which does not require a  completely-connected synchronization network, however 

the number of network connections is still on the order of n 2.

Synchronization algorithms which use hardware clock distribution algorithms usually 

operate continuously, and place a  very small bound on maximum skew. However, they 

also require specialized estim ation and adjustm ent algorithms not used with other clock 

distribution algorithm s (although there are parallels). The estim ation algorithms consist of 

comparing the phases of the incoming clocks and selecting one of the signals as a  reference. 

The selected signal is usually some sort of median of the available signals [21, 42]. The 

adjustm ent algorithm s consist of using a phase-locked loop to synchronize the local clock 

signal to the selected reference. The authors of [40] point out tha t, especially in larger 

systems, the signal propagation delay may vary greatly due to variation in line lengths, 

parasitic capacitances and inductances, etc. This may cause signals to arrive “out of order” , 

and affect which signal is chosen as a reference. A solution is given in [40], bu t it doubles 

the  num ber of network connections.

An alternative to the above would be to use each of the incoming signals to  drive a 

counter. The counters then show the current clock values of the nodes supplying the oscil

la tor signals (with some allowance for signal propagation delay). The estim ation algorithm 

then  consists of subtracting the local clock value from each of the counters. Any of the
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adjustm ent algorithms of either Section 2.1.3, C hapter 3, or C hapter 4 can be used for 

the adjustm ent algorithm, and each node must tell the rest of the nodes how much it has 

adjusted its clock so th a t they may update their counters. There is no evidence th a t this 

approach has never been tried. Perhaps because it has the cost of hardware clock d istribu

tion algorithm s, bu t cannot bound the skew as tightly as the above algorithms. However, 

it does allow for much greater flexibility in the choice of adjustm ent algorithm.

There is another type of hardware distribution algorithm  th a t does not require a  com

pletely connected synchronization network, bu t is intended prim arily for synchronization of 

a switching network, such as a telephone transmission system [1, 5, 18, 25, 26, 33]. These 

algorithm s are used to establish a common frequency between switches so th a t transm itted  

d a ta  is not lost. They are not perfect however, and occasional slips [1] cause loss of data. 

Skew between clocks driven by these frequencies will still increase, albeit ra ther slowly. It 

may be possible to use one of these algorithms to control the frequencies, and use a  periodic 

synchronization algorithm to bound the skew. Such an arrangem ent would not bound the 

skew as tightly as algorithms using standard hardware clock distribution algorithm s, but 

would be considerably cheaper to implement.

Network Distribution

Network distribution algorithms use the existing communications network to transm it 

clock values. Special messages, called synchronization messages, are the carriers of this 

information. In most cases the synchronization messages are sent in some type of broad

cast [14, 15, 22, 27, 35, 36, 41]. O ther algorithms use private communication between 

nodes [3, 11]. Synchronization algorithms which use network clock distribution algorithm s 

are usually periodic, since continuous network traffic would likely interfere w ith other system 

operations.

The principal advantages of network clock distribution algorithms are their low cost, 

and their great flexibility. No ex tra hardware is required, the only cost is in the network 

traffic generated. Flexibility comes from using the system network. Unlike hardware clock 

d istribution algorithms, which distribute only oscillator signals, network clock distribution 

algorithm s can distribute any type of information which can be carried by the system 

network. This allows the clock distribution algorithm to be tailored to d istribute inform ation 

of the  type, and in the form required by the estim ation algorithm. This allows network 

clock distribution algorithms to be used w ith a  wide variety of estim ation and  adjustm ent
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algorithms. The estim ation and adjustm ent algorithms in the remainder of this section 

essentially assume a  network clock distribution algorithm is used.

The principal drawbacks of network clock distribution algorithms are the network load 

they generate, and the uncertain effects network delay has on the clock inform ation they 

distribute. The broadcasts of synchronization messages can cause a  noticeable network load 

and  interfere w ith other system operations. The periodic nature of these broadcasts may 

force time-critical tasks to  schedule communication around the synchronization algorithm. 

Perhaps more im portant is the effects of network delay. Synchronization messages arrive 

a t their destinations after some unknown and non-trivial delay. Clock inform ation ages 

quickly, and clock inform ation of uncertain age is of little use to any estim ation algorithm. 

The net result is poorer estimates, and a  much larger bound on clock skew than  w ith hard

ware clock distribution algorithms. The algorithm in [35] is something of a hybrid between 

hardware and network distribution. Synchronization messages are sent on the communica

tions network, bu t special hardware is required at each node to measure communications 

delay. This eliminates the problem with delays, at some extra cost in hardware.

2 .1 .2  E stim atin g  Clock Skews

The clock information tha t each node receives is used to estim ate the skew of the local 

clock w ith respect to the rest of the clocks in the system. Each estim ate has an associated 

uncertainty, which is the maximum amount by which the estim ate may be in error. The 

uncertainty of the estimates is a limiting factor in the synchronization algorithm. The 

higher the uncertainty, the more difficult it is to maintain tight bounds on skew.

There are two general types of estimation algorithms, divided according to  the uncer

ta in ty  of their estimates.

Simple Estimation

Simple estim ation algorithms compute the skew as the difference between the local clock 

value when a  synchronization message was received, and the clock value on the synchroniza

tion message, minus some constant [24, 22, 27, 30, 35]. The constant value is an  a ttem pt 

to  account for the communications delays. Usually, either the minimum or mean network 

delay is used.

Simple estim ation algorithms are easy to implement, and require a  minimum of processor 

tim e to  execute. They also place few demands on the clock distribution algorithm , requiring
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o n ly  a  single clock value from every node for which an estim ate is to  be made.

The principal drawback of absolute estim ation algorithms is the high uncertainties they 

generate. In  most cases the  uncertainty of estim ates is determ ined by the m aximum variabil

ity in network delay, which in a large or busy network may be quite high indeed. [35] man

ages to avoid these difficulties by using special hardware to track of network delay, b u t adds 

ex tra cost to  each node.

Probabilistic Estim ation

Probabilistic estim ation algorithm s make assumptions about the d istribution of network 

delays, and use this inform ation to  improve their estimates [2, 11, 36]. They are generally 

repeated executions of simple estim ation algorithms where the m ultiple estim ates for a 

single node are combined.

Probabilistic estim ation algorithm s can, in theory, produce estim ates w ith as low an 

uncertainty as is desired. They allow synchronization algorithm s to  overcome the  prim ary 

disadvantage of network clock distribution algorithms: unpredictability of network delays.

The principal drawback of probabilistic estim ation algorithm s is their need for large 

quantities of clock information. This is a result of the repeated executions of the simple 

estim ation algorithm , each execution requiring a new clock value. Often this causes the 

clock distribution algorithm  to be run  repeatedly over a specified tim e interval [2, 11, 32] 

Another approach is found in [36], where a  special broadcast is described which “pipelines” 

multiple broadcasts.

2.1.3 A d ju sting  C lock Values

Adjusting clock values is the ultim ate goal of the synchronization algorithm , and always 

the last of the three operations to be performed. The adjustm ent algorithm  takes the 

estimates generated by the estim ation algorithm  and produces a  synchronization adjustment 

which, when added to  the local clock, will synchronize it w ith the rest of the clocks in the 

system. T he ability of the  adjustm ent algorithm  to synchronize the system is generally 

limited by the uncertainty of the estimates.

Adjustm ent algorithm s have been the focus of most of the research in synchronization. 

There are a  num ber of them , and they fall into two general categories: m aster/slave algo

rithm s, and peer algorithm s.
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M aster/Slave Algorithms

M aster/slave algorithm s assign one or more nodes to the role of “m aster clock” , and 

have all the “slaves” synchronize to  the masters [2, 11, 32]. M aster clocks are usually given 

either a  highly accurate frequency source, such as an atomic clock, or have access to  some 

external tim e standard , such as UTC. Indeed, synchronizing a  system to an external tim e 

standard  is w hat m aster/slave algorithms are best suited for.

M aster/slave algorithm s are simple in concept, and greatly reduce the number of esti

m ates th a t m ust be made, thereby reducing the work of the clock distribution algorithm.

The principal disadvantage of m aster/slave adjustm ent algorithm s is the complexities 

involved in providing fault-tolerance. More than one m aster m ust be present if failures of the 

m aster clock, or the node containing the m aster clock, are allowed. This increases the cost 

as m ultiple nodes must be outfitted with the ex tra hardware needed for a  m aster clock. The 

adjustm ent algorithm  loses its surface simplicity as nodes must be able to detect or mask 

faulty masters. Finally, if the masters do not use an external tim e standard, the masters 

m ust synchronize themselves. Synchronization amongst masters may be done w ith a peer 

adjustm ent algorithm , or w ith a m aster/slave algorithm, forming a hierarchy of masters, as 

in N T P  [32].

Peer Algorithms

In  peer adjustm ent algorithms all clocks are on an equal footing. They bear a  consid

erable resemblance to  many distributed agreement algorithms, only in this case the value 

which is being agreed upon changes w ith time. There are three general types of peer ad

justm ent algorithms.

Agreement algorithm s are direct applications of d istributed agreement algorithm s used 

for clock adjustm ent [14, 15, 41]. In agreement algorithm s the nodes simply agree th a t the 

current tim e is T , and all nodes set their clocks to T. The synchronization adjustm ent is 

the difference between the current clock value and T. Since in a synchronized system the 

clocks of all non-faulty nodes should be approximately T  anyway, this brute-force approach 

works reasonably well. The simplicity of agreement algorithms is offset by limits on how 

tightly skew can be bounded. The bound on maximum skew is determ ined by the maximum 

run-tim e of the agreement algorithm, which can be ra ther large.

Consistency algorithm s com pute the synchronization adjustm ent as a function of the 

estim ates, usually the median. These algorithms are simple to implement, and the bound
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on skew is determ ined largely by the uncertainty of the estim ates. The prim ary draw

back of consistency algorithms is tha t they require th a t any two non-faulty nodes agree 

in their estim ate of any other node (faulty or not) [22]. In other words, Byzantine behav

ior [23], where a faulty node gives inconsistent information, is not allowed. W hile there 

are algorithm s to detect and mask Byzantine behavior, they are complicated and induce 

considerable overhead. For this reason, consistency algorithm s are rarely used.

Convergence algorithms compute the synchronization adjustm ent as a function of a 

subset of the estimates, discarding some estimates in the hopes of elim inating the effects 

of faulty nodes. Perhaps the simplest and most obvious example is to average the esti

mates [22]. Large estimates are discarded so th a t faulty nodes may not overly influence 

the com putation. O ther adjustm ent algorithms of this type select one estim ate to use as 

the synchronization adjustm ent. In  [27] the largest and smallest m  estim ates are discarded, 

where m  is the maximum number of faults, and the median of the remaining estim ates is 

used as the synchronization adjustm ent. In [35] the m  smallest estim ates are discarded, and 

the smallest remaining estim ate is used as the synchronization adjustm ent. Convergence 

algorithm s are simple to implement, and the bound on skew is largely determ ined by the 

uncertainty of the estimates. Byzantine behavior is tolerated, as long as the num ber of 

faults does not exceed the specified maximum. These attribu tes have made convergence 

algorithm s the most popular type of peer adjustm ent algorithm.

2.2 Focus

As may be seen from the previous section, while synchronization is considered an im

portan t problem, relatively little work has been published. A few dozen papers contain all 

im portant contributions to  the field. Familiarity with the field provides a  possible answer, 

while the problem seems simple a t the outset, it really is quite difficult. There are no simple, 

efficient, elegant algorithms th a t work in a wide variety of circumstances.

The focus of this dissertation is not to provide such an algorithm. It is unlikely th a t one 

exists. Instead, the classification system of the previous section is exploited. It is noted tha t 

the different operations which compose synchronization are independent to some degree. It 

is therefore possible to create different synchronization algorithm s by mixing and matching 

different algorithms for the different operations. The focus of this dissertation is to  develop 

algorithm s for the various operations of synchronization, and to  make them  flexible enough
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th a t they can work not only w ith one another, bu t w ith other algorithm s as well.

Certain types of algorithms will be of particular interest:

N e tw o rk  a lg o ri th m s : The cost of hardware algorithms is too high for all bu t the smallest 

systems. There are also significant problems with using hardware synchronization 

when the system is distributed over a wide geographic area.

P ro b a b i l is t ic  a lg o rith m s : Probabilistic algorithms have the potential to produce esti

m ates w ith arbitrarily  low uncertainties. Their major drawback is the network load 

they produce. This is becoming less of a problem as networks become faster and 

bandw idth increases, especially if an efficient clock distribution algorithm  is available.

P e e r  a lg o ri th m s : M aster/slave algorithms appear simpler on the surface, bu t th a t sim

plicity disappears when one considers problems of detecting m aster failures and syn

chronizing masters. Peer algorithms do not have such difficulties, and often offer 

be tte r fault-tolerance since they do not depend on any m aster clocks.

Chapters 3 and 4 introduce two peer adjustm ent algorithms th a t offer significant im

provements over existing algorithms. Chapters 5 and 6 then introduce two new network 

distribution  algorithms, and two probabilistic estim ation algorithms th a t work w ith them.

2.3 Notation and Assumptions

The d istributed systems under consideration are assumed to be multicomputers. Mul

ticom puters are defined to be distributed systems where the interaction and cooperation 

between nodes is assumed to be very high, high enough tha t the system can often be seen 

as a  single com puter. This close cooperation is the principal reason for synchronization. 

In  order to facilitate communication and task allocation, multicom puters usually have a 

homogeneous network topologies. The most common examples are the hypercube [38], the 

torus [29], and the hexagonal mesh [9]. These regular topologies will be exploited when 

possible.

For the purposes of synchronization, only those nodes which have their own clock are 

of interest, nodes w ithout clocks are im portant only in the way th a t they affect message 

delivery time. The system is assumed to have n  nodes with clocks, denoted N 0, . . . ,  N n- i .  

Should the system have a different node numbering, or if only some nodes have clocks, the 

node numbers can be re-mapped accordingly. Each node’s clock runs a t its own rate, and
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each node has a  clock process which maintains and periodically adjusts the clock value, and 

works w ith the synchronization algorithm  to keep the clock synchronized w ith the rest of 

the clocks in the system. The clock process may be implemented either in software, or in 

special hardware (similar to the “clock chips” currently available). The current clock value 

(and other values associated w ith the clock) may be obtained by querying the clock process, 

or by accessing its registers directly.

2.3.1 Faults

In  this dissertation faults are considered only so long as they affect the synchronization 

algorithm. These faults are divided into two types, those th a t affect clocks, and those th a t 

affect nodes.

D e fin it io n  2.1 A faulty clock is any clock which either increments by values other than 1, 

or increments at a which differs by more than g from its specified rate.

The value of g is specified by the manufacturer of the frequency source used for the 

clock, and is called the clock’s maximum drift rate.

D e fin itio n  2 . 2  A faulty node is any node which loses, corrupts or otherwise alters the 

contents o f synchronization messages, or includes incorrect or misleading information in 

synchronization messages.

Note th a t faulty nodes are defined only in term s of w hat they do to  synchronization 

messages. Since faulty clocks are generally not distinguishable from faulty nodes, the term  

faulty node will be used to refer both  to faulty nodes, and to non-faulty nodes which contain 

faulty clocks.

2.3 .2  Synchronization Param eters

There are two prim ary system param eters which affect the operation of the synchro

nization algorithm:

rn: The maximum number of faulty nodes tha t are present in the system a t any time. 

Synchronization becomes more difficult as m  is increased.

6: The target skew. If the system is synchronized the clocks of any two non-faulty nodes 

differ by no more than 6. Obviously, as 6 is reduced synchronization becomes more 

difficult and consumes more system resources.
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2 .3 .3  Clocks

A clock function  is a  non-decreasing function mapping from an interval of the  real 

numbers into the integers. The clock for N u Ci(t), is a clock function from some real-valued 

infinite-precision external Newtonian time frame into the set of integers. This external time 

frame is the same for all clocks, and can be assumed to be TAI, UTC or some equivalent 

standard . Throughout this dissertation lower-case letters are used for times in the  external 

frame, and capital letters are used for clock values.

The value of Ci(t) depends on three other functions:

C f1: The raw clock. The raw clock corresponds to the “clock” on most systems. I t is 

a counter which is incremented at regular intervals. C ^ t )  is a  clock function, and 

therefore may never decrease.

C f :  The clock adjustment. The clock adjustm ent is added to the raw time to get the  clock 

value, i.e., Ci(t) = Cjl(t.) +  C f( t ) .  C f ( t )  is not a clock function, and it may decrease 

as necessary to maintain synchronization.

Pi( t ) :  The clock drift rate. The drift rate is an instantaneous measure of the current dif

ference between the rate Cp(t)  increments, and the rate  a  “perfect” clock, \ t \ , incre

ments. If Of*(t0) = T0, then C ^{tf)  =  T0 +  (1 +  pi(t))dt. The drift ra te  is bounded

by the maximum drift rate, p, i.e., \pi(t)\ <  g\/t.

Both C f  and C f  are maintained by the clock process a t TV*. The value of p f t )  is 

generally not known, while g is a system param eter.

There is a fourth function m aintained by the synchronization algorithm  and m onitored 

by the clock process:

C j : The target adjustment. The target adjustm ent is what the synchronization algorithm  

has determ ined the value of C*{t) should be. Like the clock adjustm ent, the  target 

adjustm ent may either increase or decrease, and is therefore not a  clock function. The 

clock process monitors C f{ t ), and adjusts C f  so tha t C f( t )  =  C f( t ) .  However, since 

Ci must be a clock function, the clock process must gradually change the value of 

C f( t ) .  In particular, the clock process can reduce C f  only as fast as C-1 increases.

T he synchronization clock, C f , is the sum of the raw clock value and the  target ad

justm ent, i.e., C f( t )  =  C ^(t)  +  C[{t).  Because the target adjustm ent, unlike the clock
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adjustm ent, is changed in sudden large increments, the synchronization clock is not a  clock 

function.

O f the three “clocks” a t each node, Ct, C f ,  and C f , only C f  and C f  are of interest to  the 

synchronization algorithm. The relatively constant ra te  of C f  makes it good for measuring 

elapsed time, and the function of the synchronization algorithm  is to  synchronize C f  and 

C f  for all node pairs and Nj, i ^  j .

For notational convenience, the above functions will be referred to  by nam e only, e.g., 

C f  instead of C f ( t ), when the time in the external frame is understood (usually the  current 

time).

2 .3 .4  Skew

The skew between two time-dependent values is the current difference in their values. 

Skew could refer to any two values, bu t in the context of synchronization it usually refers 

to clock values. In particular, the skew of iVj w ith respect to Nj ,  a iXj , is understood to be 

the current difference in the raw clocks of AT* and Nj,  i.e., C f  — C f .

Synchronization algorithms measure skew between raw clock values because there is a 

specified minimum and maximum rate a t which they are incremented. Therefore, there is a 

specified minimum and maximum rate a t which the skew changes. This is very im portant 

to the synchronization algorithm, which tries to estim ate the skew, which changes over the 

course of the synchronization algorithm. A bound on the rate  the skew changes allows the 

synchronization algorithm to account for the change.

2.3 .5  T im estam ps

A timestamp is a  da ta  structure used to carry information about clock values through 

the system. There are three different types of tim estam ps commonly used in systems, and 

they are distinguished by the different w hat values they carry.

R a w  tim e s ta m p : The current raw clock value.

A d ju s te d  t im e s ta m p : The current values of bo th  the raw clock and the clock adjustm ent, 

listed separately.

S y n c h ro n iz a tio n  t im e s ta m p : The current values of both  the raw clock and the target 

adjustm ent, listed separately. Listing the raw clock and target adjustm ent separately 

instead of summing them  allows other nodes to track the values of bo th  functions.
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This allows nodes to  know one another’s current target adjustm ents, and allows them  

to estim ate the  skews between their respective raw clocks.

Synchronization algorithms use raw and synchronization tim estam ps only. Many sys

tems provide facilities to autom atically add raw tim estam ps to  messages. Few provide the 

means to autom atically add synchronization timestamps. However, the target adjustm ent 

is under the control of the synchronization algorithm, and is adjusted infrequently. The 

synchronization algorithm  may therefore generate synchronization tim estam ps for its mes

sages by adding the current value of the target adjustm ent to its messages, and letting  the 

autom atic tim estam ping feature complete the process. However, the synchronization algo

rithm  m ust be sure th a t the target adjustm ent will not be changed until after the message 

is sent.



CHAPTER 3

FAULT-TOLERANT CLOCK ADJUSTM ENT

As the final phase of synchronization, the needs of the adjustm ent algorithm  are what 

drive the development of the clock distribution and estim ation algorithms. For this reason, 

clock adjustm ent is considered first.

The purpose of the adjustm ent algorithm  is to com pute a synchronization adjustment 

which is then added to the target adjustm ent. The synchronization adjustm ent is the ad

justm ent algorithm ’s estim ate of how far off the local clock is from either the m aster clock(s) 

(if m aster/slave synchronization is used), or from the rest of the system (if peer synchro

nization is used.) By adding it to  the target adjustm ent the synchronization algorithm  

effectively informs the clock process about how much it must either speed up or slow down 

the system clock in order to keep it synchronized.

A djustm ent is a simple procedure in m aster/slave synchronization algorithm s. A slave 

makes skew estimates of each master. Of the estim ates obtained the largest consistent set is 

chosen (i.e., estim ates do not differ by more than  their uncertainties plus w hatever skew is 

allowable between m asters), the synchronization adjustm ent is the element of this set with 

the lowest uncertainty. There are several possible variations on this procedure. Slaves may 

only attem pt to estim ate a single m aster, or a  subset of the masters. Each slave may be 

assigned a  particular m aster whose estim ate is used as its synchronization adjustm ent (as 

long as its skew is consistent), regardless of whether or not the estim ate for th a t m aster has 

the lowest uncertainty. Or, an average of the consistent set may be used.

W ith  peer synchronization, the difficulty is finding a function th a t all nodes can com pute 

which, in spite of current differences between their clocks and the resulting differences in 

skew estimates, will nevertheless yield consistent results. Interactive convergence [22] is one 

of the most commonly-used adjustm ent algorithms. This is perhaps due to its intuitive 

nature and simplicity, it simply averages the estimates. However, interactive convergence

17



18

assumes th a t all estim ates have the same uncertainty, and th a t estim ates will be available 

for any non-faulty node. While these assumptions are reasonable in a  completely-connected 

network, they are somewhat restrictive in the more general case. Usually, the cost of making 

an estim ate increases both  as the distance to the node increases, and as the uncertainty 

decreases. I t may thus be im practical to get estimates of distant nodes w ith the same 

uncertainty as those of nearby nodes, and it is wasteful to  assume the estim ates of nearby 

nodes have the same high uncertainty as those of distant nodes. Similarly, faults, transient 

network loads, and other problems may make it impossible for a  non-faulty node to  make 

estim ates of some other non-faulty nodes (at least temporarily). Furtherm ore, interactive 

convergence tolerates up to n /3  faulty nodes. Most systems would fail long before so many 

nodes have failed, and it seems silly for a failed system to maintain synchronization.

This chapter shows how these restrictions of the interactive convergence algorithm  can 

be relaxed. Nodes are allowed to consider the uncertainty of individual estimates, and take 

advantage of the low-uncertainty estimates available. Nodes are also not bound to make 

estim ates of every other non-faulty node, as long as each is able to make some minimum 

num ber of estimates. The number of faulty nodes is specifiable instead of being fixed at 

n/3 .  Finally, techniques are introduced to handle cases where a  single fault may alter a 

non-faulty node’s estimates of other non-faulty nodes.

The chapter starts by introducing the param eters th a t govern the adjustm ent algorithm. 

Then, selection of estimates is described. Com putations are done to determine the mini

mum num ber of estimates needed to m aintain synchronization under the assum ption tha t 

estim ates of non-faulty nodes are correct. Finally, the assumption of correct estim ates of 

non-faulty nodes is lifted, and the results analyzed.

3.1 Adjustment Parameters

There are three principal param eters tha t control the adjustm ent algorithm. Selection 

of these param eters involves a number of trade-offs with the estim ation algorithm , and 

careful selection is necessary to ensure the synchronization algorithm does its job w ithout 

overly loading the system.

e: The maximum tolerable uncertainty in the synchronization adjustm ent. The value of e 

m ust be strictly less than <5.
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r : The maximum tim e between re-synchronizations. A system will not normally synchronize 

itself constantly, there is a minimum time needed to d istribute clock inform ation and 

to  make estim ates, and the cost is too great. Instead the synchronization algorithm  

runs periodically, w ith a  period no greater than  r.

t : The maximum skew between two nodes which have ju s t adjusted their clocks. Syn

chronizing the clocks of the system only counters the effects of clock drift, instead of 

preventing it. Imm ediately after synchronization the clocks will s ta rt drifting apart 

again. Since skew cannot be allowed to become greater than  8, and the synchronization 

algorithm  runs only periodically, the synchronization algorithm  must make sure th a t 

immediately after synchronization the maximum skew is less than  r  <  8, where 8 — r  

is large enough to absorb any clock drift tha t may occur before the synchronization 

algorithm  runs again.

The value of e determines how difficult the job of the estim ation algorithm  is. The 

lower e, the lower the uncertainty of the estim ates needed by the adjustm ent algorithm , 

and the more synchronization messages the estim ation algorithm has to send. On the other 

hand, the lower e, the fewer estim ates the adjustm ent algorithm  needs in order to  compute 

the synchronization adjustm ent, and the fewer low-uncertainty estim ates the estim ation 

algorithm  has to produce.

The difference between 8 and r  determines the maximum value of r. The maximum 

drift ra te  of any clock is p, so the maximum drift ra te  between any two clocks is 2 p, and, 

the relationship between r  and r  is as follows:

r £ <»>
Reducing r  increases the difference between 8 and r ,  allowing clocks to drift further 

before they m ust be re-synchronized. It therefore increases r , and since re-synchronizations 

happen less often, the time spent synchronizing is reduced. Reducing r  also makes each 

synchronization more costly, either e or the maximum tolerable faults m ust be reduced, or 

the number of estim ates needed must be increased.

Interdependence between these three param eters can make selecting their values tricky. 

However, since the synchronization algorithm should interfere as little  as possible w ith 

system operation, the percentage of time the synchronization algorithm  can run  will often 

be bounded. Given this bound and the expected run tim e of the clock distribution and
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estim ation algorithm s, one can find a  lower bound for r , and using Equation (3.1) provides 

an  upper bound for r .  The value of e is then chosen in accordance w ith the ability of the 

estim ation algorithm  to produce the necessary number of low-uncertainty estimates.

3.2 Selecting th e  Estimates

A djustm ent begins w ith the skew estimates. The estim ation algorithm  provides a  skew 

estim ate for every node for which an  estim ate is available, regardless of the the uncertainty. 

O f th e  set of estim ates the algorithm selects the largest subset E  such th a t all the skews 

in E  are w ithin certain bounds, and the sum of the uncertainties of the estimates in E  

is less than  ee, where e =  \E\. Exactly what bounds the elements of E  must meet is the 

distinguishing characteristic of the various adjustm ent algorithms discussed in this Chapter, 

and  is discussed in Sections 3.3 and 3.4. The estim ates in E  are the accepted estimates. 

The average of the accepted estimates is the synchronization adjustm ent.

As the average of the accepted estimates, the synchronization adjustm ent has an un

certainty less than  or equal to e. But tha t uncertainty is w ith respect to the average of 

the  actual skews of nodes with accepted estimates, not to the average of the actual skews 

of all non-faulty nodes. This difference becomes more crucial as the number of accepted 

estim ates decreases. W hen the number of accepted estimates per node is sufficiently small 

it is possible for a clique of nodes to form, where each member of the clique only accepts 

estim ates of other nodes in the clique. Such a clique is not influenced by the clock values of 

nodes outside the clique, and thus is free to drift arbitrarily  far from the rest of the system. 

Clearly, there m ust be some minimum number of accepted estimates th a t a node must have 

in order to add the computed synchronization adjustm ent to the target adjustm ent. Its 

value m ust be greater than  n / 2 in order to prevent clique formation. This minimum is 

denoted £, and if e >  ( , the com putation of the synchronization adjustm ent is said to be 

successful, and it is added to the target adjustm ent. Otherwise it is discarded.

3.3 Clock Adjustment W ith Reliable Estimates

W hile the adjustm ent algorithm must be able to tolerate some faults, it cannot possibly 

to lerate all possible faults. In particular, it cannot be expected to work if the estimates 

provided by the estim ation algorithm are in no way related to the actual skews. Specifically, 

estim ates of non-faulty nodes must be reliable. Estim ates of non-faulty nodes are reliable
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if the difference between the actual skews and the estim ated skews is always less than  

their respective uncertainties (with appropriate allowances made for probabilistic estim ation 

algorithm s). Seen from a  different perspective, no faulty node can cause a  non-faulty node 

to  incorrectly estim ate another non-faulty node.

Estim ates of faulty nodes, on the other hand, are not reliable, since a  faulty node has 

no defined clock value. Moreover, a  faulty node, Nf ,  is assumed to be able to m anipulate 

the estim ation algorithms of any non-faulty nodes, iV, and Nj,  into com puting whatever 

estim ates of N f  th a t are desired. The estimates need not even be in agreement, the  difference 

between N ^s  and IV,-’s estim ate of N f  need not be equal to the skew between them , a itj .

3.3.1 C alcu lating f

Calculating £ for given values of 8, m ,  e, and r  is relatively simple. The first step is 

to find the maximum skew between any two nodes immediately after they have adjusted 

their clocks. This value depends on 8, m , e, and the number of estim ates accepted by each 

node. The maximum skew must also be less than  or equal to r .  The resulting inequality is 

re-arranged to produce a  minimum for the number of estim ates accepted by each node.

The most difficult step in this process is finding the maximum skew between any two 

nodes immediately after they have adjusted their clocks. The system is assumed to  be 

synchronized so tha t the skew between any two non-faulty nodes is less than  or equal to 

8 before any clock adjustm ent is done. Let TV; and N j  be any two nodes in the system. 

W ithout loss of generality, assume C f  > C f .  Let N t accept e; >  £ estim ates, and N j  accept 

ej > £ estimates. The goal is to find, for all possible values of e, and t.j, the maximum skew 

between N j  and iV, after they have adjusted their clocks. The maximum skew increases as 

ei and ej decrease, so £ is the smallest integer such than  whenever both e* and e.j are greater 

than  or equal to £, the maximum skew is less than  or equal to r .

The skew between N j  and A£ after they have adjusted their clocks is equal to  the skew 

between them  before they adjusted their clocks, plus the difference between the  synchro

nization adjustm ents of Nj  and N t . Finding the maximum is not as simple as finding the 

maximum of iV /s synchronization adjustm ent and the minimum of N ^s synchronization 

adjustm ent. The two synchronization adjustm ents depend on one another as well as the 

skew between N j  and A£ before they adjust their clocks. However, there are certain condi

tions th a t must hold for the skew between N j  and TV, after they have adjusted their clocks 

to be the maximum for the given values of e* and ej:
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1. iVj’s estim ates are, on average, e too low, while N$ s estim ates are, on average, e too 

high. W hat this means for estimates of non-faulty nodes is clear, if the uncertainty 

for a  particular estim ate is e, then the estim ate is either e below (for N )  or above 

(for Nj)  the actual skew value. W hat this means for estim ates of faulty nodes is not 

so clear. Since each node establishes bounds w ithin which every accepted estim ate 

(plus or minus its uncertainty) must lie, estimates of faulty nodes are assumed to  lie 

ju s t w ithin these bounds. T hat is, if the uncertainty of TVj’s estim ate of a  particular 

faulty node is e, JV/s estim ate for th a t node will be e less than  N ^s  lower bound on 

accepted estimates.

2. Given any non-faulty node, either N if Nj ,  or both  accept an  estim ate for th a t node. 

This implies th a t the set of nodes for which both  iVf and N j  accept estim ates has the 

fewest possible members, which is e, +  Cj — n.

3. The nodes for which only N j  accepts estimates will have skews of 8 w ith respect to 

the nodes for which only N t accepts estimates.

4. The num ber of faulty nodes is rn, and both N  and N j  accept estimates of every faulty 

node.

5. Faulty nodes have no specific clock values. Two non-faulty nodes may therefore esti

m ate very different and inconsistent skews for the same faulty node. Thus, TV*’s skew 

estim ates for the faulty nodes are the smallest estim ates Nj can accept, and JVj’s skew 

estim ates for these same faulty nodes are the largest estim ates Nj can accept.

T he reasoning behind the above conditions is clear if one keeps in mind tha t the general 

objective is to maximize jVj’s synchronization adjustm ent while minimizing 7V,’s synchro

nization adjustm ent. It is then easy to verify th a t if any of the above conditions does not 

hold, then the skew between N j  and N  after they have adjusted their clocks will not be 

the  maximum possible.

T he following definitions are then useful in the com putation of ( . Note th a t in these 

definitions all skews are the actual skews instead of the estim ated skews, the difference 

between actual and estim ated skew will be accounted for by including a term  for maximum 

uncertainty.

j i  and 7 The minimum and maximum skews (with respect to N t) of non-faulty nodes 

whose skew is estim ated by iV*. Note tha t since a node will autom atically accept an
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estim ate of its skew w ith respect to itself (0 ), j j  has a maximum of 0 , and 7 i  has a 

minimum of 0. Also, 7  ̂— 7 i <  8.

7 j and 7 J: The minimum and maximum skews (with respect to  N j)  of non-faulty nodes 

whose skew is estim ated by Nj. Again, the maximum of 7 j is 0, the minimum of 7 J is 

0 , and j J  — 7 j <  6.

r \ :  T he sum  of the skews (with respect to JV*) of the n  — ej non-faulty nodes whose skew 

is estim ated by Ni  only.

T ,: T he sum of the skews (with respect to N j)  of the n  — e, non-faulty nodes whose skew 

is estim ated by N j  only.

Tij\ The sum of the skews (with respect to N t) of the e* +  ej — n  — m  non-faulty nodes 

whose skew both Ni  and Nj  estimate.

The value of £ is a function of n, m,  r ,  and e. The exact form of the function is

determ ined by the bounds placed on accepted estimates.

3 .3 .2  U n restricted  R ange M ean

The obvious approach to bounding the accepted estimates, and the one used in [22], is to 

accept only those estimates where the absolute value of the estimate, minus its uncertainty, 

is less th an  or equal to 8. The rationale is simple, if the system is currently synchronized 

all non-faulty nodes will be w ithin 8 of one another, and if the local node is non-faulty 

and estim ates are reliable, the absolute value of the skew estim ate for any non-faulty node 

must be less than  8 (allowing for any uncertainty in the estimate). If any estim ates are 

too large, either they come from a  faulty node or the local node is faulty. This approach 

is easy to  do, and limits the range of estimates to ±5. It is called unrestricted range mean 

because the only restriction on the range of the estimates is the one enforced by m agnitude 

restrictions, i.e., two estimates could differ by 28 even though such a  situation is not possible 

for non-faulty nodes.

T he value of C is found using the procedure in Section 3.3.1. Since C f  is assumed to

be larger than  C f ,  the skew after synchronization will be the current skew ( o ^ )  plus the

synchronization adjustm ent of Nj minus the synchronization adjustm ent of N,. Maximizing 

this value means minimizing the synchronization adjustm ent of Ni,  while maximizing the 

synchronization adjustm ent of Nj. As discussed in Section 3.3.1, N f s  estimates of the faulty
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nodes should be as small as possible, —6 minus their uncertainties, while N / s  estim ates of 

the faulty nodes should be as large as possible, 8 plus their uncertainties. To simplify 

m atters, the individual estim ate uncertainties are combined into two terms, — e^e for Ni, 

and ej£ for Nj .  T he following equations result:

r  >  ctjn -\ ( r  — i j  — (e, + ej — n  — m)  otjn +  T,- +  m8  +  e^e)
ej

-  — ( r - i j  + ri — m 6 - e ie) (3 .2 )

eiejT > ( e i - e j ) T - i j + e i T j - e j T i - e i ( e i - n - m ) a j li + (ei + e j ) m 6

+  2eiCje (3.3)

T he (ej + ej — n  — m)  term  compensates for the fact th a t the skews summed in T -̂ are 

w ith  respect to  JVj, and Nj will estim ate skews a jH lower.

Since ej and ej appear on both  sides of the inequality, they are considered constant 

for the moment. The goal is to maximize the right side of the inequality, so F, should be 

minimized while Tj  should be maximized. Since the minimum skew with respect to N,  of 

any non-faulty node is j i ,  and given tha t the skew between any two non-faulty nodes is less 

than  or equal to 8, it follows tha t the maximum skew with respect to N\  of any non-faulty 

node is j i  +  8. The following inequalities then hold:

Tj >  7 i _ {n -e j )  (3.4)

Tj <  ( j i  4- 8 -  a jH^ (n  -  e,) (3.5)

In  the worst case, the inequalities of Equations (3.4) and (3.5) are changed to  equalities. 

Substitu ting into Equation (3.3) gives the following inequality:

eiejT > ( e i - e j ) T — i j - e i (ei - n ) j i  + ej (ej - r ^ j i  + jim a ju

+  (ej +  ej) rn8 — e, (et — n ) 8  + 2etejE (3.6)

At this point no further reduction can be done w ithout more inform ation about the 

relative values of ej and e j . As a first case, assume Cj >  e j . F y must therefore be maximized, 

since the maximum skew with respect to N t of any non-faulty node is j i  +  8, the maximum 

value of Tjj is ^  4 - <!>j (ej +  Cj — n — m). Substituting into Equation (3.6) gives:



25

eiejT > —eiji +  ej-y, +  e^majH — ej (ej — n  — 2 m) 6 +  2 e*ej£

Since e, > ej: the right-hand side of the above equation decreases w ith increasing 7 *. It

is therefore a t a  maximum when 7 , is minimized. The value of 7 * m ust be w ithin 5 of the

skew of N j,  and therefore greater than  a.jn — 8. Substituting gives:

CiCjT >  CirriS + ejm ajn  + ej (n + m  — ej) 8 + eiejS

T he right-hand side of the above equation increases w ith increasing a jH, so ctjH should 

be as large as possible. The maximum of ctjH is 8. Substituting, and moving e* and ej back 

to  the right-hand side gives:

r  >  —m8  +  — (n +  2 m) 8 — 8 + 2 e
ej e.

W ith e* and ej appearing only on the right-hand side of the inequality it is now possible 

to  determ ine w hat values they can take to maximize the right-hand side. Since bo th  are 

used to divide positive quantities, both should be as small as possible, i.e., bo th  should be 

equal to  £. Substituting, and solving for (  gives:

C >  8 (n +  3m) /  (8 +  r  — 2e) (3.7)

Equation (3.7) is only for the case where e* >  ej, hence a separate derivation must be 

done for e* <  ej. In this case, Ty must be minimized, its minimum is j ,  (e, +  ej — n  — m). 

Continuing the derivation in the same way as above it turns out th a t 7 , m ust be maximized 

(0), as m ust be a.jH (6 ). Again, it tu rns out tha t e, and Cj must bo th  be minimized (£), and 

the final result is the same as above. It follows th a t Equation (3.7) is the lower bound for 

£ when unrestricted range mean is used to compute the synchronization adjustm ent.

Equation (3.7) has the properties th a t one would expect £ to have. It increases w ith n, 

m ,  and e. It increases as r  decreases, and becomes greater than  n  if r  becomes less than  

2e. Consider the case where m =  0, e =  0, and r  =  8, a fault-free system with “perfect” 

estim ation and “continuous” clock adjustm ent. Equation (3.7) reduces to  £ >  n j 2, i.e., 

a nodes needs to  accept estim ates for ju s t over one-half of the nodes in order to stay 

synchronized, exactly what would be expected in such a  system.



26

3.3 .3  R estr ic ted  R ange M ean

W hile unrestricted range mean limits the magnitude of skew estimates, it doesn’t directly 

lim it their range. For example, a  node may accept skew estimates of both  8 and —6, even 

though it is not possible for bo th  estimates to be of non-faulty nodes. But while one of the 

estim ates m ust be of a  faulty node, which one is it? As it turns out, it doesn’t  m atter, as 

long as the adjustm ent algorithm  accepts enough estimates.

W ith  restricted range mean, a  node selects the largest set of estimates whose average 

uncertainty is less than  or equal to  e, and where the absolute value of the difference between 

any two estimates, minus their uncertainties, is less than or equal to 8. Derivation of (  is 

much the same as in unrestricted range mean, only the skews of faulty nodes are different. 

Ni will estim ate skews o f j ^  — S for each faulty node (instead of —8), and N j  will estim ate 

skews of j j  +  8 for each faulty node (instead of 8). Following the example for unrestricted 

range mean, the following equations result:

t  > ctjH +  — ( r  -  i j  -  (e-i +  6j -  n  -  m)  +  (jj_ + 8 \ m  +  e,-e)
ej \ /  /

— — (T -  i j  + Ti + (jfl -  8) m  -  ete)
Gj

etejT  >  (e j  -  ej )  T  -  i j  +  ej^j -  ejTi  -  e f (ei  -  n  -  m) a jH +  e im j^  -  e jn v f i

+  (ei + ej) m8  +  2a^jE  (3.8)

Equations (3.4) and (3.5) can again be used to eliminate Fj and F^. Since N t and N j  

bo th  accept estim ates of some common nodes, it follows tha t j j  +  oijH < jJ. Substitu ting 

into Equation (3.8) gives:

etejT >  (ei -  ej )  V -  i j  -  e ,  (e* -  n)  7* +  ej  (ej  -  n) Yi +  (e* -  ej )  mrfi -  e f (e* -  n) 8

+  (ei +  ej) m8  +  2 ( 3 . 9 )

Note th a t all the a^ j 's  have canceled out. Again, no further progress can be made 

w ithout additional information about the values of e, and Cj. Again, assume e* >  ej. It 

follows th a t r ^ should have its maximum value, ^7 , +  8̂ j (et +  ej — n  — m ).  I t also follows 

th a t 7 i should have its maximum value, Ji + 8. Substituting into Equation (3.9), and moving 

ej and ej  back to the right-hand side gives:
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r  >  —m6  H—  (n +  m  — e,) 6 +  2 e
ej ê

Again, bo th  ei and ej divide positive quantities, so the right-hand side is maximized 

when bo th  are equal to ( .  Substituting and solving for (  gives:

C >  S (n +  2m) /  (6 +  r  — 2e) (3.10)

T he case where ei <  ej proceeds similarly. M inima of 7 * (ei +  ej — n  — m )  and 7 i are 

substitu ted  for F,j and 7 jr. Again, it is found th a t the right-hand side is a t a maximum 

when ei =  ej =  £. The result is identical to Equation (3.10).

Equation (3.10) has the same form as Equation (3.7), only 2m is used in place of 3m. 

As one might expect, restricting the range of the estim ates has reduced the num ber of 

accepted estim ates required for the com putation of the synchronization adjustm ent to be 

successful. However, the reduction is not large, in the neighborhood of m /2 . Therefore, 

restricted range mean is advantageous prim arily in instances where m  is large, or C, is near 

n.

3 .3 .4  E xam ples

A few simple examples will help show the utility of these adjustm ent algorithms.

S tart w ith a  64-node system, and let 6 =  5msec., r  =  4msec., and e =  1msec. W hen m  =  

2, unrestricted range mean requires 50 accepted estimates a t each node, and restricted range 

m ean requires 49. W hen m  =  5, unrestricted range mean requires 57 accepted estim ates 

a t each node, and restricted range mean requires 53. Unrestricted range mean requires 

more than  64 accepted estimates (and thus can no longer guarantee synchronization) when 

m  >  8 , while restricted range mean does not require more than  64 estim ates until m  >  12.

Double the values of 6 and r  to lOinsec. and 8 msec., respectively. Now when m  =  2, 

unrestricted range mean requires only 44 accepted estim ates a t each node, while restricted 

range mean requires only 43. W hen m  =  5, unrestricted range mean requires only 50 ac

cepted estim ates, and restricted range mean requires 47. U nrestricted range mean cannot 

guarantee synchronization for m  > 1 2 , and restricted range mean cannot guarantee syn

chronization for m  > 19. Increasing 6 and r  with respect to  e has greatly increased the 

fault-tolerance.
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For a  larger example, consider a 1024-node system, and let 6 =  5msec., r  =  4msec., 

and e =  1msec. W hen m  =  50, approximately a  5% failure rate, unrestricted range mean 

requires 839 accepted estimates a t each node, and restricted range mean requires only 803. 

U nrestricted range mean can guarantee synchronization only when m  <  136, while restricted 

range mean can guarantee synchronization only when m  <  204. Doubling 8 and r  raises 

these values to  m  < 204 and m  < 307, respectively.

3.4 Clock Adjustment W ith Unreliable Estimates

In the previous section it was assumed tha t the all estimates were guaranteed to  be 

w ithin their specified maximum uncertainties of the actual skew value. Some types of faults 

may make it difficult for the estim ation algorithm to meet this requirement. L ittle can 

be done if there is no relationship between the actual and estim ated skew values, bu t the 

restrictions can be relaxed a bit.

The calculations of Section 3.3 can be salvaged if the extent of the unreliability can 

be quantified. Unreliable estimates are modeled as reliable estimates to which have been 

added an offset. The offset is defined as the difference between the computed estim ate, and 

the value the estim ate would have had if the fault which is the source of the unreliability 

were not present. The maximum possible difference between the unreliable estim ate and 

the actual skew value is the sum of its uncertainty and its offset. Given some inform ation 

about the num ber of unreliable estimates, and the size of the offsets, the procedures of 

Section 3.3 can be easily modified to account for this new, enlarged uncertainty.

3.4.1 C onstant Offsets

The simplest case is when all offsets have the same value. This is a  likely situation 

w ith probabilistic estim ation algorithms. Most probabilistic estim ation algorithms make 

assum ptions about message delays, and a faulty node which invalidates these assumptions 

will often affect all estim ates in the same way.

Let each offset be o, and let iVj and N j  have a, and aj unreliable estimates. Consider 

unrestricted range mean first, re-writing Equation (3.2) to include the offsets gives:

r  >  a jH -I (r — i j  — (ei +  ej — n  — m) a jH +  Tj +  m8 +  e^e +  ajo)
ej
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1
 ( r  — i j  +  Tj — mS  — ei£ +  0 *0 )

The derivation continues as it did in Section 3.3.2, until it reaches the  point of Equa

tion (3.6):

At this point, it is assumed either e» >  ej, or Cj > e,. Since >  a* and ej > aj, it 

follows th a t when e* >  Cj the maximum value of a % is greater than  or equal to  a,j,  and the 

maximum value of the offset term s therefore occurs when o > 0 and a* =  0. Similarly, when 

ej > ei the maximum value of cij is greater than or equal to a*, and the m aximum vale of 

the offset terms therefore occurs when o < 0 and aj =  0. The offset term  is then  either 

eittj\o\, or ej-aj|o|.

As the derivation continues, the offset term  becomes either dj\o\/ej, or a^ol/e*. Both 

term s are maximized when eH and ej are £. Let a be the maximum num ber of unreliable 

estim ates a t any node. Clearly, the actual number of unreliable estim ates a t any node is 

no more than  £. In fact, the actual number of unreliable estim ates no more th an  £ — rn, 

since the faulty nodes are already assumed to have the maximum possible skews. The final 

equation for £ becomes:

actual number of unreliable estimates at each node is no more than  £, since adding the 

same offset to all estimates doesn’t  affect the range. The result is the following:

3.4 .2  B ounded Offsets

W hile constant offsets are perhaps more typical of the unreliable estim ates th a t will be 

seen in operation, they do not represent all possible faults. More generally, one can bound 

the value of the offsets, and the number of unreliable estim ates a t each node.

eiej r  >  (e, -  e j )T  -  i j  -  et (e* - n ) j i  + ej (ej -  n ) j i  +'y±m a jH

+  (e* +  ej) mS  — et (e* — n) 6 +  2CiCjE +  e ^ o  — ejdiO

c >  5±nU f ^ Lo1, i f a < c
{  ^  6{n+Zm)—m\o\ *
^  ^  6 + t — 2 e  — \o \ > 1 1  a  ^  S>

(3.11)

A similar derivation can be done for range restricted mean. However, in th is case the

6(n-j-2m)+«|o|
8-\-t — 2e 

8(n-\~2m) 
5-fr —2e —|o|5

(3.12)
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Assume the absolute value of each offset is no larger than  o, and there are no more 

th an  a unreliable estim ates a t each node. The procedure for selecting estim ates described 

in Section 3.2 is then modified to  incorporate the offsets into the estim ation error. Specif

ically, each node will choose the largest subset, E ,  of the estim ates such th a t the average 

uncertainty of the estim ates in E  is less than  or equal to  e — aoj\E\.  No modification of 

Equation (3.7) or Equation (3.10) is necessary since the offsets are included in the e terms.

Bounding the offsets instead of assuming constant offsets has made adjustm ent no

ticeably more difficult. One obvious requirement is tha t e > a o /( .  In fact, for practical 

purposes, e must be considerably greater than  ao/(.  This implies th a t either a is much 

smaller than £, or o is much smaller than e.

3.5 S u m m ary

The interactive convergence algorithm  [22] is commonly used to  compute synchroniza

tion adjustm ents in distributed systems. However, it was originally designed for completely- 

connected networks, and assumes th a t not only will estimates be available for all non-faulty 

nodes, bu t th a t all estimates have the same uncertainty, and th a t estim ates of non-faulty 

nodes will be reliable. These assumptions may not hold or may be difficult to satisfy in a 

network th a t is not completely-connected.

This chapter presented several algorithms which modify the interactive convergence 

algorithm  and relax these restrictions. The principal features of these algorithms are:

•  A range of estim ate uncertainty is not only allowed, bu t taken advantage of. Low un

certainty estim ates are used to balance high uncertainty estim ates to  form an average 

uncertainty.

•  Estim ates of all non-faulty nodes are not required. This allows estim ates w ith large 

uncertainties, th a t would otherwise adversely affect the com putation of the synchro

nization adjustm ent, to be discarded. Also, transient faults or other circumstances 

th a t prevent estim ation of otherwise non-faulty nodes can be tolerated.

•  The number of faulty nodes is a variable system param eter and is not set at n /3 .

•  The assum ption of reliable estimates (estimates of non-faulty nodes are correct), can 

also be relaxed to some degree.



CHAPTER 4

SYNCHRONIZATION BY GROUPS

The adjustm ent algorithm  of Chapter 3 is a considerable improvement over regular 

interactive convergence. It does not require nodes spend tim e and effort attem pting  to 

improve estimates of distant nodes. E ither better estimates can be used to make up for 

their shortcomings, or they can be dropped entirely. However, as system sizes increase, even 

these improvements may not be enough. The complexity of clock distribution algorithm  

increases at least linearly with system size, in some cases it increases w ith the square 

of the system size. The uncertainty of estimates usually increases a t least linearly w ith 

system diameter. Probabilistic estim ation can counteract this effect, bu t only by causing 

a  considerable increase in the am ount of clock information which m ust be distributed. 

Finally, the number of estimates each node must make and keep track of increases linearly 

w ith system size.

M aster/slave adjustm ent algorithms are one possible alternative. The num ber of m aster 

nodes need not scale linearly w ith system size, or a hierarchy of masters can be used as 

in N TP [31, 32]. However, an increase in system size does not eliminate the difficulties 

of m aster/slave algorithms, and may in fact exacerbate them. More masters are needed, 

and with more masters the probability of a m aster failure increases. The problems of 

synchronization amongst masters are also increased. If the num ber of masters does not 

increase as fast as system size, the average distance to the masters will increase, either 

increasing estim ate uncertainty, or increasing the amount of clock inform ation th a t must 

be distributed. Also, the number of nodes which must be served by each m aster increases, 

causing more congestion near the master. In hierarchical systems, the depth of the hierarchy 

increases, and the maximum skew between nodes at the bottom  of the hierarchy increases, 

unless the skew between levels of the hierarchy is reduced by reducing the uncertainty of 

estim ates. Again, any decrease in estim ate uncertainty generally requires an  increase in the

31
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am ount of clock inform ation distributed.

Peer synchronization algorithm s would not suffer so much from an increase in system size 

if nodes did not try  to  estim ate their skew w ith respect to every other node. Oddly enough, 

several hardware synchronization algorithms have taken this step. In  [39] the num ber of 

“estim ates” made by each node is reduced by a constant factor. In [33] there is no fixed 

reduction in estim ates, bu t the fewer the estimates, the slower the system is to  stabilize, and 

the more difficult it is to find a  stable configuration. [37] describes a  peer synchronization 

algorithm  which uses a network clock distribution algorithm. Nodes in a w rapped square 

mesh make estim ates of only their neighbors. However, the system is only simulated. No 

analysis is done, and fault-toleranee is not considered.

This chapter introduces an adjustm ent algorithm which restricts the set of nodes each 

node m ust estim ate. The num ber of estimates made by each node is only a  fraction of the 

num ber of nodes in the system, yet synchronization is preserved. While the maximum skew 

between any two nodes is likely to  be higher than  if estim ates of all nodes were used, there 

will still be sets of nodes w ithin which a very small maximum skew will be guaranteed. 

Cooperating tasks which need tight synchronization may be assigned to nodes in these 

groups, providing them  w ith the tight synchronization they need, while not requiring the rest 

of the  system pay the high price of such tight synchronization. Fault-tolerance is considered 

as well, and while reduced, is still reasonably good. And the am ount of fault-tolerance can 

be adjusted  by increasing or decreasing the number of nodes each node estimates.

The chapter starts  w ith a brief overview of the algorithm. A graphical approach for 

analyzing the algorithm  is then introduced, and an algorithm  for com puting the maximum 

skew in the system is presented. Finally, fault-tolerance is considered, and an algorithm  is 

presented to  determ ine the fault-tolerance of the synchronization algorithm.

4.1 Synchronization Groups

C hapter 3 shows th a t it is not necessary for each node to  make estim ates of every other 

non-faulty node, as long as each node has some minimum number of estimates. The estim ate 

of any o ther node may be discarded, and any number of nodes may discard their estim ates 

of any particular non-faulty node, i.e., all nodes may discard their estim ates of N t, even 

though Ni is non-faulty. Such a “shunned” node will remain in synchronization because (  is 

large enough to  ensure th a t any two nodes will make estim ates of many of the same nodes.
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I t  stands to  reason th a t if the set of nodes not estim ated by any particular node is 

carefully chosen, th a t the number of estimates each node must have can be reduced. Seen 

from the opposite perspective, if one carefully defines which nodes each node estimates, one 

can make sure th a t the skew between nodes remains bounded.

A set of synchronization groups, Q, is defined. Every node is a member of a t least one 

synchronization group, each synchronization group contains a t least two nodes, and each 

synchronization group m ust intersect at least one other synchronization group. A node 

estim ates only those nodes w ith which it shares a synchronization group, and the average 

uncertainty of the estim ates m ust be less than or equal to e. Estim ates outside the range 

[—6, 6] are discarded, and the remaining estimates are averaged to  get the synchronization 

adjustm ent. The synchronization groups must be defined so th a t the maximum skew be

tween any two nodes in the same synchronization group is 6, nodes which belong to  multiple 

synchronization groups provide the means of bounding the skew between nodes th a t do not 

belong to a  common synchronization group. For example, if N, and Nj  do not belong to  a 

common synchronization group, bu t there exists iV/t and synchronization groups G i and G2 

such th a t N i, N h E G\ and Nj ,Nf ,  E G2, then the maximum skew between N,  and Nj  is 26. 

The value of 6 is chosen small enough tha t the maximum skew between any two nodes is 6.

W hat the above arrangem ent means is tha t the tightness of synchronization between 

nodes varies. Nodes th a t belong to the same synchronization group will have a maximum 

skew of 6, while nodes th a t do not belong to a common synchronization group may have 

much larger skews. This implies tha t tasks which need to be tightly synchronized with 

one another should be assigned to nodes in the same synchronization group. These tasks 

get tight synchronization, but the whole system does not have to pay the cost of tha t 

synchronization ju st for their benefit.

I t is non-trivial to dem onstrate th a t a specific set of synchronization groups has the 

property th a t the skew between any two members of a synchronization group is no greater 

than  6. Much of the remainder of this chapter will be devoted to this task. The following 

definitions are the first step in this process:

D e fin itio n  4.1 Two nodes, N  and Nj ,  are said to be tied i f  there exists a synchronization 

group, G, such that N,  E G and Nj  E G. The relationship is symmetric, i f  N t is tied to Nj ,  

then Nj  is tied to N,.

D e fin itio n  4 .2  The synchronization set of N, is the set of nodes with which it is tied.
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D e fin itio n  4 .3  The transitive closure of tied is strung. Two nodes, Ni and N j ,  are strung 

i f  and only i f  there exists a sequence of nodes, N ai, , N ab, such that Ni is tied to N ai,

N j is tied to N ab, and N ah is tied to N ah+1 for all 1 <  h < b.

A node makes estimates of only those nodes w ith which it is tied, i.e., those nodes in its 

synchronization set. While a node need not be tied to every other node, it m ust be strung 

to  every other node. Only if two nodes are strung may there exist a  bound on the  skew 

between them.

As a  simple example, consider a  sixteen-node hypercube. Each node has a  binary address 

between 0000 and 1111. Define eight synchronization groups of four members each. The 

first four groups are the subcubes of the form ab * *, and the second four groups are the 

subcubes of the form * * ab, where * indicates a “don’t care” address b it and a, b E {0 ,1 } .  

Every node belongs to two synchronization groups, and there are three other nodes in each 

group. Each node has six nodes in its synchronization set, e.g., the synchronization set of 

node 0000 is {0001,0010,0011,0100,1000,1100}, and any pair of nodes is strung.

4.2 The Synchronization Graph

A bipartite  synchronization graph can be derived from the definitions of the synchro

nization groups. The two vertex sets are as follows:

G ro u p  v e r tic e s : For every G E Q, there exists a group vertex, go- 

S y s te m  v e r tic e s : For every N ,  there exists a system vertex, s,;.

An edge exists between s,: and gG if and only if N  E G. Therefore, N  and N j  are tied 

if and only if the distance between and Sj is 2. And, JV* and N j  are strung if and only 

if there is a path  between Sj and sj. Finally, all pairs of nodes will be strung if and only if 

the synchronization graph is connected.

Figure 4.1 shows the synchronization graph for the sixteen-node hyper cube example 

discussed in the previous section, where the small circles represent system vertices and 

large circles are group vertices.

D e fin it io n  4 .4  The stretch between N  and Nj is half the length of the shortest path be

tween Si and Sj.
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S 0000 S 0001 S 0010 S 0011 S 0100 S 0101 S 0110 S 0111 S 1000 S 1001 S 1010 S 1011 S 1100 S 1101 S 1110 S 1111

9oo‘* 9"oo 9or* 9"oi 9io" 9**io 9n "  9**11

F ig u re  4 .1 : Synchronization graph for a 16-node hypercube m ulticom puter

The stretch between two tied nodes is 1. If the stretch between Ni and N j  is h, then 

the maximum skew between N  and Nj  is hS. The maximum stretch between any two 

nodes determines the relative values of 8 and <5, if the maximum stretch is h, then  8 < 8/h. 

In Figure 4.1, the distance between any two system vertices is no greater than  4, so the 

stretch between any two nodes is no greater than  2, and 8 < 8/2. One should take care 

to distinguish between the stretch between two nodes, and the distance between them  in 

the m ulticom puter’s network. The stretch indicates the maximum skew between two nodes, 

and is not necessarily related to the physical distance between nodes. This can be seen in 

Figure 4.1, where the maximum stretch is 2, bu t the diameter of a 16-node hypercube is 4.

4.2.1 Synchronization  P ath s

A pair of tied nodes will make estim ates of some of the same nodes, bu t each will likely 

make estim ates of some nodes th a t the others do not. For example, in the hypercube 0000 

and 0001 will bo th  make estimates of 0010 and 0011, but of these two nodes only 0000 will 

make an estim ate of 1000, and only 0001 will make an estim ate of 1001. At first glance it 

may seem th a t 1000 and 1001 could have a skew of as much as 36, which could make it 

difficult for 0000 and 0001 to stay w ithin 8 of not only each other, bu t of the rest of their 

synchronization sets as well. Closer inspection reveals th a t 1000 and 1001 are tied, and 

the maximum skew between them  is therefore 8. This makes it much easier for 0000 and 

0001 to stay w ithin 8 of their respective synchronization sets. Analysis of these types of 

relationships is im portant when determ ining if a particular set of synchronization groups 

allows the system to  rem ain synchronized.
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The following notation will be useful in the discussion th a t follows:

Si". T he set of all system vertices a  distance of 2 from .s*. These are the system vertices 

which correspond to  nodes in iVf’s synchronization set.

Sij". The intersection of S t and Sj. These are the system vertices corresponding to  nodes 

in both N f s  and N / s  synchronization sets.

Gi". The set of group vertices a distance of 1 from s,. These are the group vertices corre

sponding to the synchronization groups which contain IV,.

G^'. The set of group vertices a distance of 1 from both Si and Sj. These are the group 

vertices corresponding to synchronization groups containing both  iVj and Nj.

D e fin it io n  4 .5  Given synchronization graph S, and tied nodes Ni and N j,  a synchroniza

tion p a th  (SP) is a simple (non-self-intersecting) path in S  from a member of Si to a member 

of S j,  which contains at most one member of 5H, no members of GQ, and has length no 

greater than 4.

T he synchronization paths of N, and Nj  are used to determine the maximum skew 

between Ni and Nj immediately after synchronization. The existence of an SP between 

Si> E Si and Sj> E Sj indicates a relationship between N'v N ji . E ither N and Nj> are tied to 

each other, or are both  tied to some common th ird  node. In either case the skew between 

and Nji is limited to either Sor 26. This in tu rn  limits the maximum possible skew 

between TV, and N j  immediately after synchronization.

As an example, consider Figure 4.1 again. 0000 and 0001 are both  in synchronization 

group 00 * *. The following sets are defined:

‘S’oooo =  {^oooi) 5ooiO) soon> soioo> Sioocn -Shoo}

<So001 — {-50000)-50010) s0011) s0101) ^1001) 5110l}

^oooooooi =  {{7**00) 5**01 }•

Each of the members of Soooo not in S^ooo oooi has an SP of length 2: Soioo <7oi*» 

Soioi) -5iooo —* {7io** —> Siooi) and Snoo —► <?n** —y Snoi- There are also 12 SPs of length 4. 

The SPs show th a t the maximum skew between members of 0000’s synchronization set and 

0001’s synchronization set is 6, significantly less than  the 36 th a t was first supposed.
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Procedure findsynch-path(fragment) 

begin

if fragment is a synchronization p a th  then  

makeSP (fragment)

else

if length(/ra<7me??i) <  4 then

tail =  last vertex of fragment, 

foreach neighbor of tail

find_synch_path(/ra<7men£+neighbor);

endif 

endif 

end

Figure 4.2: Procedure findsynch-path

Each SP has a  corresponding stretch of half the length of the SP. SPs are classified 

according to their corresponding stretches. An SP of length 2 has a  corresponding stretch 

of 1, and is therefore called a 1-SP. Similarly, an SP of length 4 is called a  2-SP.

All SPs for a  given pair of tied nodes can be found using a  simple modification of a 

depth-first search algorithm. Procedure findsynch-path, shown in Figure 4.2, finds all SPs 

which have endpoints a t a given vertex. The complexity of this algorithm  depends on the 

synchronization graph. If each node belongs to no more than  g synchronization groups, and 

each synchronization group has no more than k  members, then the maximum size of Si is 

g(k  — 1). The algorithm  will search all paths of length 4 from these nodes, for a  maximum 

of g(k  — 1 )g2k 2 =  g3k 2(k — 1) paths.

4 .2 .2  Synchronization  A reas

Showing th a t the system remains synchronized is done in a  m anner similar to  th a t of 

C hapter 3. It is assumed tha t when the adjustm ent algorithm  starts, the maximum skew 

between nodes in the same synchronization group is S. Then it is shown th a t after the 

synchronization adjustm ents have been added to the target adjustm ents, the maximum 

skew between nodes in the same synchronization group is less than  some f , f < 6 .  This 

could require checking every pair of tied nodes to make sure this condition holds. However,
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usually the number which need to  be checked is much lower.

D e fin itio n  4 .6  Given synchronization graph S , and tied nodes N t and Nj ,  the synchro

nization area of N  and Nj  is a subgraph of S  containing si; Sj, Gi, Gj,  S it Sj ,  all the edges 

which connect these vertices, and all vertices and edges contained in SPs for  Ni  and Nj .

The synchronization area of N  and N j  is all vertices and edges contained in paths of 

length less than  or equal to 8 between s, and Sj. This will contain all S P ’s for vertices in 

Si and Sj.  Since the SP’s determine the maximum skew between Ni  and Nj,  the synchro

nization area is the only part of the synchronization graph th a t has any part in com puting 

the maximum skew. One should take care to distinguish between a synchronization set 

and a  synchronization area. A synchronization set is the set of nodes whose skews a  node 

estim ates in order to  synchronize. A synchronization area is the subgraph of the synchro

nization graph which is used to determine the maximum skew for a pair of tied nodes.

Any pair of tied nodes will have a corresponding synchronization area. If two synchro

nization areas differ only in the labeling of their vertices, i.e., one can be transform ed to 

the other by simply relabeling its vertices, then they are said to be equivalent. To show 

the system is synchronized, one has to show synchronization for all possible non-equivalent 

synchronization areas, i.e., any synchronization areas equivalent to synchronization areas 

already checked don’t  have to be checked. This greatly reduces the number of cases. Often, 

as in Figure 4.1, the synchronization graph will be identical from the point of view of any 

system vertex. More specifically, given N ,  a labeling of the vertices of the synchronization 

graph can be found which gives the label Si to any desired system vertex. In Figure 4.1, 

the label s0ooo is given to the system vertex a t the far left; it could ju s t have easily been 

given to  the system vertex at the far right, or any system vertex in between. In such cases, 

all synchronization areas are equivalent.

4.3 Calculation of Maximum Skew

The proof of synchronization was outlined briefly in Section 4.2.2, and is similar to  the 

proofs used in Chapter 3. One starts by assuming th a t the maximum skew between any two 

tied nodes is less than  6. Then one shows th a t immediately after all nodes have adjusted 

their clocks, the maximum skew between tied nodes is less than  f ,  f  <  6. C hapter 3 

has already done similar proofs in the case where there is a single synchronization group

containing all nodes. In this case, things are more complicated, and in this section it is
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shown how to prove the system will remain synchronized for a  given set of synchronization 

groups, Q. It should be understood th a t this only shows how to prove the algorithm  works, 

it does not describe the algorithm ’s operation. None of the com putations done in this 

section have to be made by the synchronization algorithm during operation.

Assume Ni and N j  are tied. Let e, and e3 be the number of skew estim ates m ade by Ni 

and N j . Let A* and Aj be the sums  of the skew estimates com puted by N t and N j . Assume, 

w ithout loss of generality, tha t N j  has a greater clock value than  N t. At worst, the skew 

between Ni and N j  is already the maximum allowable, 8. The maximum skew between N t 

and N j  after synchronization can then be found by maximizing the following quantity:

(4>1)
G j  Gi

In order to show synchronization, it must be less than  f ,  i.e.

f  >  <5 +  ( —  — (4 .2 )
\  Gj Ci )

Consider the synchronization area of Ni and Nj.  Assume th a t the skew of Nj  w ith 

respect to  Ni is 8. Each vertex in 5, and Sj should be given a skew, with respect to  the 

appropriate node, so th a t if these were the skews computed for their respective nodes the 

value in Equation (4.1) would be maximized. At worst, members of Sj  are given skews of 

8 w ith  respect to Nj,  and members of S t are given skews of —8 w ith respect to  JV*. This 

implies a skew of 38 between members of Sj and S',. But, some vertices will be in bo th  Si 

and S j , and a  vertex m ust have a skew of 0 w ith respect to  itself. Also, an SP imposes a 

lim it on the skew between its endpoints. A 1-SP indicates a  maximum skew of 8 between 

its endpoints, and a 2-SP indicates a maximum skew of 28 between its endpoints. By giving 

a  skew to  one vertex one limits the skews which can be given to a number of other vertices, 

and by giving skews to these vertices one limit the skews which amy be given to even more 

vertices, and so on. Finding the maximum skew between Ni and N j  after synchronization 

is therefore a  process of searching a  large number of cases.

Searching the individual cases is much too slow, there must be a  way of lim iting the 

num ber of individual cases. To do this, the problem is broken into a num ber of similar, 

bu t smaller ones. The division is done carefully, so th a t the maximum for each of the small 

problems can be found by checking only a few cases. The sum  of these m axim a is an  upper 

bound for the true maximum, and in many cases will be equal to it.
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4.3.1 C lusters

The problem is one of maximizing a quantity subject to certain restrictions. Removing 

restrictions will not reduce the maximum, so it is safe to ignore some restrictions, since 

the result will be an increase in the calculated maximum skew. The SPs correspond to the 

restrictions, and the problem is simplified by eliminating many of the SPs. The members of 

Si and Sj are partitioned into clusters. A cluster is a group of vertices where each vertex has 

an SP to a t least one other vertex in the cluster. Any SPs between clusters (and many SPs 

w ithin a cluster) are ignored, allowing the consideration of each cluster separately. Finding 

the maximum skew for each cluster is a simple m atter of checking a few cases. The sum of 

the maximums for each cluster is then an upper bound for the actual maximum skew.

A vertex in either Si or Sj can be typed by the length of the shortest SP for which it 

is an  endpoint: a vertex in SQ *s an intersection vertex, a vertex which is the endpoint of 

a  1-SP is a  1-vertex, a vertex which is the endpoint of a 2-SP (but no 1-SPs) is a 2-vertex, 

and a  vertex which is not the endpoint of any SP is an unbound vertex. To form clusters, 

each 1-vertex and 2-vertex will be assigned to some other vertex. An assignment indicates 

the existence of an SP, and thus a  bound on the skew, between two vertices. If vertex sa is 

to be assigned to vertex sb, the following two requirements must be met:

1. There must be an SP with endpoints a t sa and sb.

2. If sa is a 1-vertex, there must be a 1-SP with endpoints at sa and sb. Note th a t sb 

then must be either a 1-vertex or an intersection vertex.

Because each assignment corresponds to some SP, either sa 6  Si and sb £ Sj,  or the 

reverse. Also, notice th a t a 1-vertex must be assigned to  either a 1-vertex or an  intersection 

vertex, while a 2 -vertex can be assigned to either a 2 -vertex, a 1-vertex, or an intersection 

vertex.

A cluster is a  minimal non-empty set of vertices such tha t for every vertex sa in the 

cluster, the cluster will contain all vertices assigned to sa, and the vertex to which sa is 

assigned, if any (an intersection vertex may belong to a cluster if some vertex is assigned 

to  it, bu t it will not be assigned to any vertex). As an example, if sa is assigned to  sb, and 

some vertex sc is assigned to sa, all three vertices will be in the same cluster. Because a 

cluster is a  minimal set, no subset can be removed and still leave a  cluster.

No special effort needs to be made to find clusters, they can be found as a  direct result 

of making assignments. To find the clusters, make assignments one a t a time according to
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the following procedure:

1. Assign 1-vertices first, then 2-vertices.

2. If  sa is assigned to sb and sb already belongs to  a cluster, then sa belongs to  s6’s 

cluster.

3. If sa is assigned to sb and sb does not belong to any cluster, a  new cluster is created 

w ith sa and sb as members. Furthermore, if sa and sb are the same type vertices (i.e., 

bo th  1-vertices or both  2-vertices) assign s b to s a. Notice th a t if sB is a  1-vertex, then 

sa must be a 1-vertex because all 1-vertices are assigned before 2 -vertices.

A cluster where all vertices are assigned to vertices of the same type is called a straight 

cluster. If one or more vertices is assigned to  a vertex of a  different type (e.g., a  1-vertex is 

assigned to an intersection vertex), the cluster is called jumbled. Calculation of maximum 

skew is easiest when clusters are small and straight. To get small, straight clusters one must 

be careful when selecting assignments. If vertex sa is to be assigned, then for each sb to 

which sa could be assigned, place sb in whichever of the following sets is appropriate:

1. Vertices of the same type as sa which do not belong to a cluster.

2. Vertices of the same type as sa which belong to a straight cluster.

3. Intersection vertices which do not belong to a cluster.

4. Vertices which belong to a  jum bled cluster.

5. Vertices of a  different type than  sa which belong to a  straight cluster.

These sets are listed in order of decreasing desirability. The vertex to which sa is 

assigned is selected from the most desirable non-empty set. W ithin sets 1 and 3, select one 

a t random . W ithin sets 2, 4, and 5, select a t random  from the vertices which belong to  the 

smallest clusters.

4 .3 .2  C om puting Skew Terms

Clusters reduce the maximizing problem of Equation (4.2) to one of maximizing a  sum 

of term s. The term s are formed by breaking up the Aj and k j  sums and reorganizing and 

mixing pieces to form term s of the form x / e3 — y / eH. The form of x  and y  is a  sum  of
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“related” skews. For example, the term  for a  cluster will have x  as the sum  of skews for 

vertices in the cluster which are in Sj,  and y  as the sum of skews for vertices in the cluster 

which are in S t. There will be one term  for each cluster, one term  for estim ation error, one 

term  for the skew between N  and Nj,  one term  for the unbound vertices, and one term  

for the intersection vertices which do not belong to a cluster. The maximum of the sum is 

found by maximizing each term , which means maximizing the values of the skews. Because 

of dependencies between terms (due to SPs between clusters which are being ignored), the 

maximum of the sum-will be an upper bound 011 the actual maximum skew between and 

N j  after synchronization.

The maximum of each term  is the maximum “contribution” each term  may make to  the 

skew between N t and N j  after synchronization. In most cases, finding the maximum means 

checking several possible worst-case configurations of vertices to see which is the maximum. 

The rest of this section lists these worst case configurations, and shows how to com pute the 

skew for each. The details are tedious, and the casual reader may wish to proceed directly 

to  Section 4.3.3.

Non-Cluster Terms

The error term  represents the maximum contribution to the skew due to estim ation 

uncertainty. If the maximum uncertainty is e, estim ation uncertainty can subtract £ (e* — 1) 

from A* and add e (ej — 1) to Aj (there is no error in estim ating one’s own clock). The value 

of this term  is then e ^  +  e 51̂ .ej a
The next term  is generated by each node estim ating the o ther’s clock. If the skew 

between them  is 6, and N j  has the greater clock value, the value of this term  is —S/ej — S/ei. 

This term  will always reduce the maximum skew.

Because the unbound vertices have no SPs, their skew values are bound only because 

they belong to  either Si or Sr  Therefore, as a worst case, the unbound vertices in Si are 

given skews —6, and the  unbound vertices in Sj  are given skews 6. If there are eit„ unbound 

vertices in Si  and eJiU unbound vertices in Sj,  this term  has value 6

Intersection vertices are given skews relative to both  N  and Nj.  These skews m ust be 

consistent, i.e., for a given vertex the skew w ith respect to N  m ust be 6 greater th an  the 

skew with respect to Nj.  If there are en<u intersection vertices which do not belong to  any 

cluster, and the to ta l skew with respect to N  of these vertices is An>u, then the value of this 

term  is ( An u — 5en,u) /e j  — An^/e*. This value is not constant, bu t is a  function of An,„.
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Because the intersection vertices must remain within 8 of both N x and Nj,  their skews w ith 

respect to Ni  m ust be in [0,<5]. This gives An>u a  range of [0 , ^en,„]. The function is linear, 

so it has its maximum at one of the endpoints. The maximum value of this term  is then 

the maximum of —8en>u/e j  and ~8er û/ei. This term  also will only reduce the maximum 

skew.

Cluster Terms

Each cluster will generate a  term  in the sum, and the form of the term depends on 

the type of cluster. The general idea is to place vertices from Si as far from the vertices 

of Sj  as the SPs will allow, while keeping their skews less than  8. This is similar to the 

original problem of giving skews to vertices discussed a t the beginning of Section 4.3, only 

now m atters have been greatly simplified by considering only one cluster at a  time, and 

by ignoring SPs between clusters. M atters are simplified even further by considering only 

those SPs w ithin a cluster which correspond to the actual assignments. A configuration of 

a  cluster is made by giving a  skew to each of its members, and each cluster will have only a 

few possible configurations of its members which could yield a maximum value for its term.

Number the clusters from 1 to M ,  where M  is the to tal number of clusters. The following 

notation is used throughout the rest of this section:

S f x: The set of 1-vertices in cluster c which are in S,, bu t not in Sj.

eci X\ The number of vertices in the set S c{ x.

S X2: The set of 2-vertices in cluster c which are in Si, bu t not it Sj.

eX2: The number of vertices in the set S X2.

The notation is defined similarly for N j .

The preference for assigning vertices to unassigned vertices has an interesting conse

quence for straight clusters of 1-vertices. Every vertex in S x x is assigned to the same vertex 

in S jtl (the point of S ^ ,), and every vertex in Sj X is assigned to the same vertex in S xx 

(the point of S'?!)- This results in two possible configurations for the maximum skew. A 

whole configuration is one where all the vertices are given the same skew k. In a fractured 

configuration all bu t the point of S ^ x and the point of S f x are given skews —8, while all 

bu t the point of S f , and the point of 5? x are given skews 8. Figure 4.3 shows the two con

figurations, the fractured configuration on top and the whole configuration on the bottom .
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Figure 4.3: Configurations for a  straight cluster of 1-vertices

The line a t left shows skew w ith respect to N t, subtracting 8 from this value gives skew 

w ith respect to Nj.  The vertices of S j X are cross-hatched, and assignments are indicated 

by the arrows. The whole configuration always yields the maximum value when either 

or Sj t has only one member. This configuration generates a  term  similar to the one for 

intersection vertices, i.e., it is a linear function of the skew given to the vertices. The func

tion will have its maximum when the skews are either —8 or 8. The fractured configuration 

usually yields the maximum when both  S?tl and S (̂ x have more than  one member. There is 

only one possible maximum for the fractured configuration. Equation (4.3) shows the skew 

term  for a  straight cluster of 1-vertices. The top two equations are generated by the whole 

configuration, the bottom  equation is generated by the fractured configuration.

$ (e<,i/ei -  ej , i / ej )

s {eU ei - e h / e ' )  (4.3)

tf((e £  i _ 2 ) / e J +  (e?i l - 2 ) / e i)

A straight cluster of 2-vertices is handled much like the straight cluster of 1-vertices. 

T he same general configurations apply, and only the values of the skews change slightly 

since nodes may now be 28 apart. Equation (4.4) shows the skew term  for a  straight cluster 

of 2-vertices. Again, the top two equations are generated by the whole configuration, and 

the bottom  equation is generated by the fractured configuration.

max
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Figure 4.4: Configurations for a jum bled cluster w ithout an intersection vertex

I" ^ ei f i/ei
max < 8eCj 2/e j  (4.4)

[ $ {(eh ~ l) hi + (<2 - 1) hi)
Jum bled clusters can be one of two kinds: either they contain an intersection vertex 

or they do not. Each will be considered separately. Jum bled clusters are somewhat more 

complex than  straight clusters, the following definitions are needed:

Definition 4.7 A sub-cluster is formed whenever a 2-vertex is assigned to a 1-vertex. The 
sub-cluster consists of the 1-vertex and all 2-vertices which have been assigned to it.

Definition 4.8 A vertex in a jumbled cluster is free if it does not belong to any sub-cluster.

T he existing notation is extended to include free vertices: 

eci l f '. The num ber of free 1-vertices in Sftl. 

eci 2f~ T he num ber of free 2-vertices in Sci2 ■

If  a  jum bled cluster does not contain an intersection vertex, then it is simply a  straight 

cluster of 1-vertices where some 2 -vertices have been assigned to  some of the 1-vertices 

(forming sub-clusters). Whole and fractured configurations exist ju s t as in straight clusters.
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The m ain difference is the extra consideration th a t m ust be given to  the sub-clusters. In 

b o th  configurations shown in Figure 4.4 a  sub-cluster has been formed by the assignment 

of pair of 2-vertices (gray filled) to a  single 1-vertex. I t may be the case th a t the  term  

will have a greater value if the three vertices had the positions shown in light gray. For 

this reason, sub-clusters must be considered separately from the rest of the cluster. As an 

example, Figure 4.4 contains only one sub-cluster, the one discussed above. I t contains three 

vertices, and its value is m ax{—8,26} (the two possible term s generated by the sub-cluster).

W ith  some modification for sub-clusters, com putation of maximum term  value proceeds 

much like it does for straight clusters. The whole configuration is somewhat more complex 

as it will now have three possible maxima. The first two are the same as for the straight 

cluster, the free vertices are given skews — 8 or 8. W hen they are given skews — 8 (as shown 

in the lower p a rt of Figure 4.4) sub-clusters containing vertices in S f x m ust be considered 

separately, while when they are given skews <5 sub-clusters containing vertices in S} x must 

be considered separately. The th ird  possible maximum is brought about by the presence of 

2-vertices. Members of S } x and 5 ?2 will have skews 0 and —8, while members of S } x and 

will have skews 0 and 8, and sub-clusters are not considered. The fractured configuration 

in the upper half of Figure 4.4 is handled just like the analogous arrangem ent for straight 

clusters, except the sub-clusters are handled separately. The term  is com puted as if the 

sub-cluster vertices did not belong to the cluster, then the sub-cluster term s are added 

in. Equation (4.5) shows the skew terms for a jumbled cluster which does not contain an 

intersection vertex. The top two equations are almost the same as those for the whole 

configuration of straight clusters of 1-vertices, except only free nodes are used, and sub

cluster term s are added. The th ird  equation comes from the th ird  possible m axim a of the 

whole configuration. The final equation is for the fractured configuration.

8 (e l j i / e i  — Cjji/ej')  +  sub-clusters

8 (eCj j i / e j  — e\ j Xjei^  +  sub-clusters ^  ^

^ (ej,2 / ej 4" ei,2/ et) +  sub-clusters 

8 — 2  ̂ /e j  +  ('e lj i  — 2 ) /e ,)  +  sub-clusters

If  a  jum bled cluster contains an intersection vertex, it m ust contain only one intersec

tion vertex, and every vertex in the cluster must be assigned to a  vertex of a  different type. 

I t follows th a t all 1-vertices, and perhaps some of the 2-vertices, is assigned to the sole

intersection vertex. The 2-vertices assigned to 1-vertices form sub-clusters, as in the case

max <
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Figure 4.5: Configurations for a jum bled cluster containing an intersection vertex

of jum bled clusters w ithout intersection vertices. Once again the result is a  linear function 

for the value of the term , this time depending on the skew given to the intersection vertex. 

Thus, there are two possible maxima, when the intersection vertex has a  skew of either 

0 or <5with respect to  N t. The configuration where it is given 0 is shown in Figure 4.5. 

The intersection vertex is shown w ith a bold border. In this configuration any sub-clusters 

containing vertices of S ^  must be considered separately. If the intersection vertex is given 

skew 6 w ith  respect to IV,, then any sub-clusters containing vertices of m ust be con

sidered separately. Equation (4.6) shows the skew terms for a  jum bled cluster containing 

an intersection vertex. The top equation is for the case when the intersection node is given 

skew 0 , and the bottom  equation is for the case where the intersection vertex is given skew 

6 .

max ^ ( ( eJJ2 -  *) h i  +  (ei,fi +  eh )  h i )  +  sub-clusters 

^  ( (ey,/i +  e<j,2) ! ei +  ( e i , / 2  — l )  h i )  +  sub-clusters
(4.6)

4 .3 .3  R ela tin g  s, 6, and f

If  synchronization is to be m aintained it must shown th a t the value in Equation (4.1) 

is less th an  or equal to  6, i.e.,

t  > 6 + A j /e j  -  Ai/ei  (4.7)

From the results of Section 4.3.2 it can be seen th a t Aj and Aj are functions of e and

S. So E quation (4.7) relates three variables, e, <5, and t .  If the value of one of them  is 

known, one can solve to get a minimum ratio  for the remaining two, e.g., if e is 1 msec, 

one can substitu te  into Equation (4.7) to get a minimum ratio  between ^and t . Even if
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only the  ratio  of two of the variables is known, the minimum ratio  for the other two can be 

determ ined, e.g., if 8 = lOe substitu ting  into Equation (4.7) will produce a  minim um  ratio  

between 6 and f .

As an  example, consider the 16-node hypercube whose synchronization graph is shown 

in Figure 4.1. The synchronization set of each node has six members, for a  to ta l of seven 

estim ates (including the 0 estim ate for its own clock). For any pair of tied nodes, there will 

be 2 intersection vertices, and 6  1-vertices (3 for each node). The estim ation uncertainty 

will contribute no more than  y e  to  the maximum skew. Each node estim ating the o ther’s 

clock will contribute no more than  — 'j8 to the maximum skew. The two intersection vertices 

will also contribute no more than  — to the maximum skew. Cluster assignment yields 

3 straight clusters of 1-vertices, each w ith two members, and each contributing 0 to the 

maximum skew. The result is the following inequality:

- 12 4 -
r  >  8 +  —  e - - 8  

7 7
12 3 j
7 7

If 8 =  10e, then t  > |(5, or f  >  6 e. A good estim ation algorithm  might have an  e of 1 

msec., then <5is 10 msec., and f is  a t least 6  msec. If g — 10~6, Equation (3.1) gives a  time 

between synchronizations of no more than  4000 sec.

4 .3 .4  C om p lex ity

Assigning vertices to clusters requires looking a t each SP a t most twice, and thus has a 

complexity of no more than  twice the number of SPs. Com puting the value of each cluster 

requires looking a t each vertex once, so the complexity is related to the number of vertices. 

Thus it is cluster assignment which dominates the complexity of computing maximum skew.

In practice, cluster assignment is very fast. All SPs need not be considered, only the 

shortest ones. Usually, only a few of these need to be checked in order to  make an assign

ment. Also, in practice one need not check all the vertices of a  cluster in order to  com pute 

its maximum value. Most of the information (the cluster type, w hether or not it contains 

an  intersection vertex, the numbers of nodes of each type) can be derived as the cluster is 

formed. Only sub-clusters require special handling.
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4 .3 .5  D efin ing Synchronization  G roups

So far discussion has assumed th a t a  set of synchronization groups, Q, is defined, and 

shown how to  com pute the maximum skew for them. N othing has been said about how 

to  define them  for a particular system. For some systems there is an obvious choice for 

the synchronization groups. For instance, in the hypercube it is reasonable to base the 

synchronization groups on subcubes. However, there is no general algorithm  th a t works well 

for all possible systems. W hat constitutes a good set of synchronization groups will depend, 

in part, on the network and the distance between nodes. Clock inform ation is usually more 

accurate and easier to get for nodes th a t are close by, so defining synchronization groups 

th a t contain many nodes from distant parts of the system can make synchronization more 

difficult and less accurate.

There is, however, a simple approach which can be used to generate good synchronization 

groups for most systems. For an n  node system, lay out the nodes in a  y/n  x y/n  grid, filling 

any em pty spaces w ith “dumm y” nodes. Define each row and each column of the grid to 

be a  synchronization group. This results in a  fairly good set of 2y/n  synchronization groups 

of y/n  nodes each. If more synchronization groups are needed (for fault-tolerance), one can 

define the diagonals as synchronization groups as well, yielding 4y/n  synchronization groups 

of y/n  nodes each.

This approach may not be ideal under all circumstances, bu t it may serve as a  good 

starting  point. One particular advantage is tha t the synchronization graph will be fairly 

homogeneous, so few synchronization areas will have to be checked when com puting the 

maximum skew. Furtherm ore, if y/n  is an integer, the synchronization graph will be homo

geneous, so there will only be one synchronization area to check.

4.4 Fault-Tolerance

Any multicom puter, especially a large one, or one which will be operating for a  long 

period of time, will have to  deal w ith faults. Such systems are designed to  tolerate a  given 

num ber of faults, and the synchronization algorithm  must tolerate these faults too.

S tandard  adjustm ent algorithms use estimates of every other node (or the vast m ajority 

of other nodes). Using synchronization groups reduces the num ber of estim ates a t each 

node, and reduces the worst-case fault-tolerance as well. Since each node makes fewer 

estim ates, each fault has a greater effect. However, considerable fault-tolerance is retained,
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and the reduction in the number of estim ates per node reduces the probability th a t a  faulty 

node will even be seen.

4.4 .1  Fault M odel

Any analysis of fault-tolerance depends upon the fault model used. Since few assump

tions are made about the way in which clock information is distributed, it is assumed tha t 

estim ates are reliable, ju s t as it was in Section 3.3. This may be accomplished by the net

work through digital signatures, multiple copies of messages, etc. Or, it may be provided 

by the clock distribution and estim ation algorithms.

Faults are modeled by removing components of the synchronization graph. The following 

fault types are defined:

•  Node Faults: These correspond to the removal of a system vertex from the synchro

nization graph. Examples of this type of fault are dead nodes, nodes isolated by 

communication failures, and nodes with faulty clocks.

•  Edge Faults: These correspond to the removal of an edge from the synchronization 

graph. Communication failures often fall into this type. Since the effects of these 

faults are less than the effects of the removal of either endpoint, they will not be 

considered further.

•  G roup Faults: These correspond to the removal of a group vertex from the synchro

nization graph. Faults which prevent the distribution of clock information fall under 

this type. If the distribution m ethod is fault-tolerant, these faults are generally the 

consequence of multiple node faults. A number of node faults w ithin a  small part of 

the  synchronization graph may mean th a t the maximum skew between members of a 

nearby synchronization group may no longer be guaranteed.

A group fault which is caused by the presence of node faults is called an induced fault. 

T here is nothing wrong with the synchronization group itself, its non-faulty members may 

continue to  estim ate each other’s clock values, bu t the guarantee of a  maximum skew of 6 

between members no longer holds.
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4 .4 .2  D eterm in in g  Fault-Tolerance

The system is considered to be synchronized as long as the synchronization graph is 

connected. The synchronization graph can become disconnected solely because of faults, or 

through a  combination of faults and induced faults.

Connectedness of the Synchronization Graph

Since each fault corresponds to the removal of a component of the synchronization 

graph, multiple faults may disconnect the graph. The number of faults the m ulticom puter 

can w ithstand is therefore lim ited by the minimum number of faults which can disconnect 

the synchronization graph.

The minimum cut, or connectedness, of a  graph is a well-known problem from graph 

theory. I t can be solved through use of a max-flow algorithm in conjunction w ith the  max- 

flow min-cut theorem. A straightforward, linear-time transform ation can change the graph 

to  an instance of max-flow min-cut. Let E  and V  be the number of edges and vertices in 

the transform ed graph, then the max-flow problem can be solved in 0 ( E V  log(V 2/E ) )  [13].

Collapse of Synchronization Groups

A synchronization group is said to have collapsed if it can be shown th a t the maximum 

skew after synchronization between two of its non-faulty members, as calculated in Sec

tion 4.3, is greater than f .  The collapse of a synchronization group is an induced group 

fault.

The problem with induced faults is they may cascade. An induced group fault can induce 

further group faults, which can induce more group faults, until all groups have collapsed. 

Exact com putation of the minimum number of faults required to cause such a  cascade is a  

difficult problem, bu t it is possible to compute the minimum number of node faults needed 

to induce a  group fault, and the minimum number of group faults needed to induce more 

group faults. A combination of these two numbers gives a  good estim ate for a  lower bound 

on the  number of faults needed to  produce a cascade.

To determ ine the number of faults needed to collapse a synchronization set, one must 

list all the different synchronization areas, then check each to find the minimum number 

of faults to  cause a  synchronization group to collapse. These are the same areas which 

are checked when computing maximum skew. If there is more than  one synchronization 

area to  consider, the search should start with the ones whose synchronization groups have
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m aximum skews already close to t , or have small values of either ej or e3-.

F inding the minimum fault set to collapse a  synchronization group requires searching all 

fault sets of the synchronization area. While the number of fault sets w ithin a synchroniza

tion area is much less than  the number in the entire multicomputer, it may still be rather 

large. The approach taken here is a simple tree search. Each node of the tree represents 

a  fault set. The root of the tree corresponds to the empty fault set, and the children of a 

node correspond to the fault sets created by adding a  single fault to the parent fault set. 

Thus, nodes a  depth of one in the tree correspond to fault sets of size one, nodes a  depth 

of two correspond to fault sets of size two, and so on. Each node also has a corresponding 

m aximum skew, which is found by inserting tha t node’s fault set and computing the max

imum skew. The search tries to find the node closest to the root which has a maximum 

skew greater than  6. The im plem entation here uses a depth-first search, though other types 

of search could be used. A breadth-first search in particular would parallelize well, making 

it a  good choice for im plem entation on a multiprocessor. Any of the following discussion 

applies equally well to a  breadth-first approach.

Once a  fault set has been found which collapses a synchronization group, only the 

nodes above it in the tree have to be searched. The number of nodes in the tree increases 

exponentially w ith depth. It is therefore im portant to find small fault sets quickly, as it 

will greatly reduce the search time. W hen searching the children of a  node, one should 

s ta rt w ith those whose fault sets are thought most likely to be subsets of the minimum 

fault set. Two strategies were employed to do this. The first strategy was to  ra te  each 

fault set according to the types of faults it contained. Fault sets which contained group 

faults, an d /o r node faults involving intersection vertices or 1-vertices, were searched first. 

The second strategy was to com pute the maximum skew for each fault set, and search those 

w ith the  highest skews first. The first strategy was quickly abandoned, it would take days 

to  find sets which the second would find in minutes. In fact, the second strategy usually 

found the smallest fault set almost immediately. The first, strategy seemed to fail because 

while the favored fault types caused great increases in maximum skew at first, they tended 

to  mask one another’s effects (especially in the case of group faults), and faults added later 

would have little  or no effect on maximum skew.

Even though the search found the minimum fault set quickly, a  large number of nodes 

may still have to  be searched. In  one of the examples below, the synchronization area 

contains in excess of 40 system vertices, while the minimum set is 13 node faults. To verify
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th a t this set is the minimum, one has to search all nodes a  depth  of 1 2  in the tree, a  to ta l 

of over 5 billion nodes. To allow the search to finish w ithin a reasonable am ount of tim e 

two strategies were employed which caused the search to skip those nodes thought to  be 

unlikely to  yield a minimum fault set. First, if several children of the current node have 

identical skews, search only one of them, the rest are assumed to be “equivalent” . Second, 

do not search any children which do not have a greater maximum skew than  their parent. 

These strategies greatly reduced the search time, from 22 days to less than  24 hours, in one 

case.

Any strategies to reduce the number of nodes searched may cause the search to  overlook 

the minimum fault set. No such cases were encountered. In fact, the first set found was 

almost always the minimum set. However, it is wise to consider the smallest set found to 

be only an estim ate of the actual fault-tolerance. As shown in the examples, it is possible 

to  intentionally underestim ate the fault-tolerance by changing e and f . This can be used to 

reassure oneself th a t the system has the desired fault-tolerance. It should also be possible 

to  intentionally underestim ate fault-tolerance by ignoring 2-SPs. Though this strategy was 

not tried, it should speed up the search considerably, and could be used for systems where 

the minimum fault set is too large for the search to find w ithin a  reasonable time.

4 .4 .3  E xam ples

Faults have the effect of increasing the value on the right-hand side of Equation (4.7). 

A t which worked when there were no faults may be too small when faults are present. 

T he value of f  m ust be chosen large enough so tha t there is considerable difference between 

the  two sides of the inequality in Equation (4.7) when no faults are present, so th a t Equa

tion (4.7) is still satisfied when faults are present. Each example below requires only a  single 

synchronization area be considered, because the synchronization graphs are such th a t there 

exists only one unique synchronization area. This is partly  because of the homogeneous 

nature of the systems under consideration, and partly  because such graphs are easier to 

deal with.

The first example is the 16-node hypercube of Figure 4.1. For a best-case estim ate of 

fault-tolerance it is assumed there is no estimation uncertainty and continuous synchro

nization, i.e., e =  0 and f  = 6. In order to collapse a synchronization group a minimum 

of 5 node faults or 3 group faults is needed. Fault-tolerance decreases as e increases and 

increases as f  increases. If e is increased to .lb and f  is decreased to .9<5, either 3 node faults
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or 1 group fault will collapse a synchronization group. Thus, 3 node faults may induce a 

cascade of group faults which will engulf the system.

For a  second example consider a 16 x 16 square mesh, wrapped on the edges to provide 

a  homogeneous system. The m ethod suggested in Section 4.3.5 is used to define 32 synchro

nization groups of 16 members each, one group for each row of the mesh, and one group 

for each column. If e — 0 and t  = 8, either 14 node faults or 9 group faults are needed to 

collapse a  synchronization group. Increasing e and decreasing f  to the more realistic values 

of e — .16 and t  =  .96, has a considerable effect on fault-tolerance. In this case, either 6  

node faults or 1 group fault are needed to collapse a synchronization group. So a t least 6  

node faults are needed to induce a  cascade of group faults.

The fault-tolerance of the previous example can be improved if more groups are used. 

Consider a  256-node hypercube w ith 64 synchronization groups of 16 members each. The 

hypercube has an 8 -bit address, abcdefgh . Each synchronization group is a  4-bit addressable 

subcube, where a subcube is defined by fixing four bits of the address and allowing the other 

four bits to vary. If x  indicates a “don’t care” position in the address the 64 subcubes are 

defined as follows: 16 of the form abcdxxxx , 16 of the form x x x x e fg h , 16 of the form 

a b x x x x fg , and 16 of the form xx c d e fx x .  The extra groups greatly improve fault-tolerance. 

W hen e =  0 and t  = 6, the search algorithm did not term inate in over 4 weeks. The 

smallest set found was 27 node faults. The search term inates if e is increased and f  is 

decreased. W hen e — .18 and f  =  .96', cither 13 node faults or 2 group faults are needed to  

collapse a synchronization group. A further reduction of f  still allows a  number of faults to 

be tolerated. If  f  =  .8 6  then 8  node faults are required to collapse a synchronization group.

The final example considers two 1024-node multicomputers, a 10-cube, and a  32 x 32 

w rapped square mesh. For the 10-cube define 64 synchronization groups, 32 5-cubes of the 

form abcdexxxxx,  and 32 5-cubes of the form x x x x x fg h i j .  For the square mesh use the 

m ethod in Section 4.3.5 and define each row and each column to be a  synchronization group. 

Each of these two systems has 64 groups of 32 members each. In fact, the synchronization 

graphs for the two systems are isomorphic, so their fault-tolerances are identical. These 

systems are too large to solve easily when e — 0 and f  = 8. If e is increased to .16 

and f  is decreased to .96 each system requires 10 node faults or 1 group fault before a 

synchronization group can collapse. A further reduction of f  to .8 6  still requires 5 node 

faults in order to collapse a synchronization group. While a set of 10 faults may not seem 

like much in a  1024-node system, note th a t each node gathers information on only 62 other
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clocks, and th a t the 10  faults must be confined to a  relatively small portion of the system. 

Also, fault-tolerance can be improved by increasing the number of groups, as shown in the 

previous examples.

The above examples also show the extent of the reduction in the num ber of estimates. 

The reduction in estimates can be determined by comparing the number of nodes in a  node’s 

synchronization set to the number of nodes in the system. In the 16-node hypercube example 

each node has a  synchronization set of 6  nodes, so each node need only communicate with 

6  other nodes in order to synchronize. This is compared w ith the 15 nodes of standard  

algorithm s, a  two-fold reduction. For the 16 x 16 square mesh sees a  reduction of 255/30 or 

more than  8 -fold, doubling the number of synchronization groups to  improve fault-tolerance 

reduces the savings to only 4-fold. In the last example, each node need only communicate 

w ith 62 out of 1023 other nodes in order to synchronize, over a 16-fold decrease in the 

num ber of synchronization messages.

The examples also show how well fault-tolerance is m aintained, and how it can be 

adjusted. The examples also dem onstrate a method for dealing w ith the difficulty in deter

mining absolute fault-tolerance. By increasing e decreasing f ,  or reducing the num ber of 

synchronization groups, the fault-tolerance of the multicom puter is reduced, and so is the 

tim e required to find a minimum fault set. By adjusting these param eters, not only will 

one find a  lower bound for fault-tolerance, bu t by analyzing how each param eter affects 

fault-tolerance one may be able to estim ate fault-tolerances which the search would take 

too long to find.

4.5 Summary

As system sizes get larger, it becomes very expensive for each node to make an estim ate 

of every other node in the system. This makes peer synchronization algorithm s difficult to 

use.

This chapter described a peer adjustm ent algorithm which requires nodes make estim ates 

for only a subset of the nodes in a system, yet still maintains synchronization. Groups are 

defined and each node makes estimates of those nodes which belong to the same groups. 

The principle features of the algorithm  are the following:

® The to tal number of estimates made by each node is greatly reduced.

•  W ithin groups synchronization is tighter than  in the system overall. Assigning coop
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erating tasks to  nodes in a  common group provides them  w ith the synchronization 

they need. Tasks th a t do not require tight synchronization can be assigned to  nodes 

in different groups.

•  Fault tolerance is also provided. Limiting the number of nodes for which each node 

makes estim ates also reduces the likelihood th a t any particular node will be affected 

by a fault.



CHAPTER 5

EFFICIENT PROBABILISTIC ESTIMATION

Probabilistic estim ation algorithm s are different from other estim ation algorithm s in 

th a t the uncertainty of their estim ates is not limited by the maximum variability in message 

delay. They can, in theory, reduce estim ate uncertainty to any desired level. The price paid 

for this feature is a tremendous increase in the number of synchronization messages per 

estim ate. This increase in network traffic makes probabilistic estim ation im practical in 

large systems.

The first published probabilistic estim ation algorithm  is found in [11]. This paper de

scribes a  simple m aster/slave synchronization algorithm employing a probabilistic estim a

tion algorithm. D istribution of clock information is done by private communication between 

m aster and slave. Since the adjustm ent algorithm is a m aster/slave algorithm , efficiency 

in the distribution of clock information is not a major concern, since only a few nodes are 

distributing clock information.

A second probabilistic estim ation algorithm appeared in [2]. This paper also describes 

a  simple m aster/slave synchronization algorithm employing a  probabilistic estim ation al

gorithm . D istribution of clock inform ation can be done via private communication from 

m aster to slave, or via broadcasts from the master. Again, the m aster/slave adjustm ent 

algorithm  limits the amount of clock information tha t m ust be distributed, so efficiency in 

distribution is not an issue.

The probabilistic estimation algorithms in [11] and [2] are the basis of all other known 

probabilistic estim ation algorithms. N TP [31, 32], while not billed as a probabilistic algo

rithm , effectively uses the algorithm in [1 1 ] w ithin a hierarchical m aster/slave system.

In  [36] an a ttem pt is made to use the estim ation algorithm  of [2] w ith a peer adjustm ent 

algorithm . A highly-efficient broadcast mechanism is described in order to reduce the cost 

of d istributing clock information. The algorithm proceeds as a series of rounds. In each

57
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round each node gathers the tim estam ps it received in the previous round, discards any 

duplicates, pu ts them  all into a message, timestamps it, and sends a  copy to each of a  pre

determ ined set of nodes. While the number of messages and bytes transm itted  is greatly 

reduced, in even a  m oderately large system the synchronization algorithm  literally swamps 

the system while it is in operation. Each round a node receives a  num ber of messages, each 

full of tim estam ps, processes all the tim estam ps it receives, discards many (if not most) of 

them , builds a  new synchronization message, and sends it to a num ber of nodes. The heavy 

load imposed by this algorithm  can impair normal system operations.

This chapter describes an efficient network algorithm for d istributing clock information, 

and two probabilistic estim ation algorithms designed to work w ith it. Clock inform ation is 

d istribu ted  globally, and the estim ation algorithms generate estim ates for all nodes, allowing 

peer synchronization of the system. However, unlike [36], synchronization messages are not 

sent all a t once, nor is large am ounts of information discarded, so system operations are 

not im paired while the synchronization algorithm is running. Extensive analysis is done to 

verify the effectiveness of the algorithm, and simulation results are presented to  back up 

the analysis. Fault-tolerance is considered also, to show th a t it has not been sacrificed for 

the sake of efficiency.

T he chapter starts  w ith the introduction of the distribution algorithm. Then, the two 

probabilistic estim ation algorithms are described, analyzed, and simulated. Several pos

sibilities for improving the clock distribution algorithm are then considered. Finally, the 

fault-tolerance of the distribution algorithm is discussed.

5.1 Synchronization Message Paths

In  order to estim ate JVj’s probabilistic estimation algorithm  must generate a  se

quence of high-uncertainty guesses of a jH, and combine them  into a  single low-uncertainty 

estim ate. Each guess of a jH must be made using clock information gathered independently 

from the clock inform ation used to make any other guess of a jH, or the independence as

sum ptions upon which probabilistic estimation algorithms rely are lost.

D istributing clock inform ation is therefore a sequence of independent inquiries, each 

inquiry generating at most a single guess for any a ^ .  Each inquiry involves sending one or 

more synchronization messages along pre-specified paths. The paths taken determ ine how 

m any nodes can participate in a  single inquiry, and how efficient the inquiries are.
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F ig u re  5.1: Single-node inquiry

5.1.1 S in g le-N od e Inquiry

The probabilistic estim ation algorithms in [3, 11] use the single node inquiry shown in 

Figure 5.1, which allows a single node to make a guess of only one other node1. Ni  wishes 

to  guess its skew with respect to N j , so it sends a synchronization message to  N j  and affixes 

its tim estam p, T t . Some time later the message arrives a t Nj,  w ith Tt still attached. Nj  

prepares a  new synchronization message containing Ti: adds its own tim estam p, Tj,  and 

sends the message to N t. Later, the message arrives at N t , w ith both  Tt and Tj attached, 

and the arrival tim e T “ is noted. A guess of N j 's skew w ith respect to Ni can be m ade w ith 

a  simple com putation involving T,, Tj, and T'1.

Each guess therefore requires two synchronization messages be sent, one by N t and 

one by Nj .  For a  single node to guess its skew with respect to every other node in an  n-  

node system, 2n — 2 synchronization messages containing 3n — 3 tim estam ps m ust be sent. 

For every node to  make a  guess of every other node, 2n 2 — 2n  synchronization messages 

containing 3n2 — 3n tim estam ps must be sent. This is for only a single guess, if, as is 

usually the case w ith probabilistic estimation, each node must make multiple guesses, more 

inquiries will have to  be done. The number of guesses needed varies w ith the node making 

the guess and the node whose skew is being guessed, bu t tends to increase w ith the distance 

between the  two. However, if g is the average number of guesses a  node must make for every 

other node, then a  to tal of 2gn2 — 2gn messages, containing 3gn2 — 3gn  tim estam ps, m ust 

be sent. W hen one considers tha t in order for probabilistic estim ation to  work properly, all 

these messages must be sent w ithin a fairly short interval, one begins to understand why 

m aster/slave clock organization is popular amongst those using probabilistic estim ation.

x[3] a c tu a lly  p ro p o ses a  so m ew h at s im p ler in q u iry  th a t  req u ire s  on ly  a  single sy n ch ro n iza tio n  m essage, 
b u t  th e  in q u iry  show n in  F ig u re  5.1 m ay  be  u sed  w hen  netw ork  de lays a re  n o t know n o r u n p re d ic ta b le
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F ig u re  5.2: k -node inquiry

5 .1 .2  D ou b le-N od e Inquiry

A n obvious way to improve the single-node inquiry described above is to make it a 

double-node inquiry by having iV* send another synchronization message to  Nj  containing 

Tj and adding its own tim estam p T[. N j  notes the arrival time, T f ,  and a  simple calculation 

involving Tj, T-, and T j ,  produces a  guess of 7V,’s skew w ith respect to Nj.  The result is 

two guesses, from three synchronization messages, containing a to tal of five tim estam ps. A 

to ta l of 3(n2 — n ) /2  synchronization messages, containing 5(n2 — n ) / 2  tim estam ps, must be 

sent in order for each node to be able to make a guess of every other node in the  system. 

T he num ber of synchronization messages has been cut by one-quarter, and the num ber of 

tim estam ps has been cut by one-sixth.

5 .1 .3  fc-Node Inquiry

Since some savings are realized by going from a single-node inquiry to a  double-node 

inquiry, it is reasonable to ask if further savings might be realized by adding more nodes 

and generalizing the inquiry to k  nodes.

T he generalization of inquiries to k  nodes is show in Figure 5.2. To simplify notation 

it is assumed N 0 sends the first synchronization message, and N if 1 < i < k — 1, sends its 

synchronization message to N i+ i. Node numbers can be re-mapped if this is not the case. 

T he fc-node inquiry begins when N 0 sends a synchronization message, containing tim estam p 

T0, to  N i.  After it arrives, N i  sends a synchronization message containing both  T0 and 

its own tim estam p, T ,  to N 2. The process continues in this manner, w ith iV, receiving
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a synchronization message containing timestamps T0,. from N i._1, and sending a

synchronization message containing tim estam ps T0r .. ,T, to  N i+1. Finally, N k_i sends its 

synchronization message to N 0. As before, N 0 notes the arrival tim e of the message, T0“. 

Then, simple calculations involving T0, . .. ,Tk_i, and T0“ produce guesses of Oi,0 through 

a k-uo-

At this point, only N 0 has made any guesses. However, one can continue much as 

w ith double-node inquiry. N 0 prepares a synchronization message containing T i , . .. ,T^_1, 

adds its own tim estam p, TJJ, and sends it to N x. W hen it arrives, N x notes the arrival

time, T “, and then 7VL can make guesses of « 2ui • • •, «fc-m and « 0u- W  then prepares a

synchronization message containing T2r .. and Tq, adds its tim estam p, T[, and sends 

it to  N 2. In general, N t receives a synchronization message of the following form:

rp  rp  rr l rr l
-*■ i i  • • • i -*■ h —1 j -^0’ * * * i — 1 •

I t guesses the skew of the other k  — 1 nodes with respect to  itself, then prepares a

synchronization message with the following form:

rp rp rpi rpt
-M + l)  ■ • • ) -*- k  — 1 ? O’ * * * i i — 1 •

It then adds its timestamp, T/, and sends it to N i+1.

Each node will send two synchronization messages, except which need not send

a  second synchronization message to  N 0. Therefore, the to tal number of synchronization 

messages sent in a  single inquiry is:

messages =  2k — 1 (5.1)

The first k  — 1 messages will contain a to tal of k(k  — l ) /2  tim estam ps, the final k 

messages will contain a  to tal of k2 timestamps. The total number of tim estam ps sent in a 

single inquiry is therefore:

timestamps = (3k 2 — k) /2 (5.2)

If  k  =  n, then every node can make a guess of every other node by sending only 2n — 1

synchronization messages containing (3n2 — n ) / 2 timestamps, an n-fold reduction in the

num ber of synchronization messages, and a nearly fifty percent reduction in the num ber of 

tim estam ps, compared to single-node inquiry. However, it is only fair to mention th a t an 

inquiry involving such a large number of nodes is likely to generate rather poor estimates. 

Analysis later in this chapter will show how much the estim ates suffer.
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5 .1 .4  Forward and Backw ard Inquiries

Since Ti is created well before Tfc_i, it will be much “older” when N 0 uses it to make 

its guesses. As a  result, AT0’s guess of Ar1 will have a greater uncertainty than  its guess of 

N k - i .  The obvious solution is to reverse the order and direction of synchronization message 

sends, N 0 will send first to Arfc_1, which sends to N k_2 and so on, until ATj sends to N 0. 

This way T k is “fresher” than  Tfc_j when it arrives a t N 0, and iV0’s guess of N i  will have a 

lower uncertainty than  its guess of N k- i .

Inquiries done as described in Section 5.1.3, where N t sends synchronization messages 

to  N i+i mod*, are called forward inquiries. Inquiries done in the opposite direction, where 

Ni sends synchronization messages to  -/Vj_lmocU. are called backward inquiries. Use of both 

forward and backward inquiries is not necessary, but is a simple way to improve estima

tion algorithm  performance, w ithout any corresponding cost increase in distributing clock 

inform ation (especially in systems w ith bi-directional communications.)

5.1 .5  U sing  A rrival T im estam ps

In  cases where the delay a t individual nodes may be long or highly variable, it is often 

useful to  modify the /c-node inquiry by having each node include its arrival tim estam p in 

the synchronization message. T hat is, wlieii N t prepares the synchronization message, it 

will include not only tim estam ps from the synchronization message it ju s t received, bu t T “ 

as well. The first synchronization message Ni receives will thus have the form:

Ti r p a  r p  r p a  r p
0? -L i 1-

And, the second synchronization message received by Ni will have the form:

r p  r p a  r p  r p a t  r p f  r p a t  r p t
-Li) )-*• i+1 ?•••)-* o 5 0 ’ * ' ‘ ’ t—1 ’ i—1 *

The addition of the arrival tim estam ps allows nodes to estim ate the delays a t interme

diate nodes more accurately, a t the expense of added complexity and larger synchronization 

messages.

5.2 Interval-Oriented Estimation

W hen Ni receives the second synchronization message, it knows th a t all tim estam ps in 

the  message were generated in between T i , when it sent its first synchronization message, and
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T “, the arrival of the second synchronization message. Furtherm ore, if the minimum time 

for Ni s tim estam p to reach N j  is .d then N { can be certain th a t iV /s tim estam p was not 

created before tim e T, +  ,d. on C f .  A similar argument produces an upper bound of T “ — d 

on the tim e on C f  when Nj  created its timestamp. The bounds can be further refined by 

taking advantage of the arrival tim estam ps (if present), and by taking into account possible 

clock drift during the inquiry.

Each guess is therefore an interval containing the time on C f  when the node created 

its tim estam p. The uncertainty of a guess is half its width, and guesses can be combined 

by intersecting them. The interval resulting from the intersection of a  num ber of guesses 

will be smaller than  any of the individual guesses, and its expected size decreases as the 

num ber of guesses increases. To make the estimate, one need only intersect enough guesses 

to make the w idth of the resulting interval small enough to have the desired uncertainty.

This estim ation algorithm is much like the one described by Cristian [11]. However, 

the algorithm  in [11] is tailored to single-node inquiry. No combination of guesses is done. 

Guesses are simply discarded if their uncertainty is too high, and the algorithm  continues 

to  make guesses until it finds one whose uncertainty is low enough. The algorithm  in [30] 

does intersection of intervals, but it is by no means a  probabilistic algorithm.

5.2.1 C alculation  o f Intervals

To simplify notation, and without loss of generality, consider only the calculation of 

intervals from the point of view of N 0. All other nodes will do the same calculation, w ith 

the node numbers re-mapped appropriately. If arrival tim estam ps are not included in the 

synchronization messages, then T)a =  1) for 0  <  i < k.

The following definitions are used in the com putations below:

N k: The node to  which N k_i sends synchronization messages during forward inquiries, and 

from which it receives synchronization messages during backward inquiries. Tech

nically, this is No, but notation is simplified (in particular, modulus operations are 

eliminated) if this convention is used.

To, Tfc: For forward inquiries, T0 is the tim estam p created by N 0 and Tk is the arrival 

tim estam p created by N k. For backward inquiries, Tk is the tim estam p created by 

N k and T0 is the arrival tim estam p created by N 0. Note th a t for forward inquiries, 

Tk =  Tfc while T(“ is undefined, and for backward inquiries T0a =  T0 while Tk is
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undefined.

dJ4 : The actual tim e between the creation of T0 and Tk, measured in the external reference 

frame. This is the time measured by an individual w ith a  “perfect” clock who is 

observing the system.

The m inim um  time between the creation of Tt and T?+1, 0 <  i < k,  during a  forward 

inquiry. Again, this tim e is measured in the external reference frame. Define .d 

0 < i < j < k a s a ,  sum of the individual minimums:

j - 1
d = V  d

i —*3 XL—>  h —W i - f l

h—i

These minimums are absolute minimums, and do not depend on the actual delays. It 

is physically impossible for the time between the creation of T* and T-l+l to be less 

th an  ,_d+i. Analogous definitions of ,_d_i and .d exist for backward inquiries.

iJf+i5 The excess tim e between the creation of Tt and T?+1, ( ) < ? ' <  k, in a forward inquiry. 

Therefore, . d + x  is the actual time between the creation of T{ and TA ,. As for' 1—*t+l 1—** + 1 *■
d x  0  <  i < j  < k, is the sum of the individual excesses:t-*j7 — J — ’

3 - 1
x  =  x

i  — j  Z — S  h ^ h + l
h—i

Again, analogous definition of ,_x_i and x  exist for backward inquiries.

Wi: The measured tim e between the creation ofT-n and Tj, i.e., Wi — T i —Tf .  This is called 

the node wait a t N t. The sum of a series of node waits in a  forward inquiry, W  is 

defined as

K =  E
h—i+1

for 0 < i < j  < k. The definition for backward inquiries is analogous. Note th a t W  

includes Wj bu t not Wi, in this sense it is the to ta l wait between the creation of ATj’s 

and N j ’s tim estam ps. If arrival tim estam ps are not included in the synchronization 

messages, all node waits are zero.

Wi". The actual time between the creation of T f  and Tu as measured in the external reference 

frame. This is called the actual node wait a t N t. The sum of a  series of actual node 

waits in a  forward inquiry,  ̂ ^  j ,  is defined as
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iw  _» _> j = 2̂  Wh.
h = i + 1

for 0 < i < j  < k. Again, the definition for backward inquiries is analogous. As in 

the case of node waits, actual node waits are defined to be zero if arrival tim estam ps 

are not included in the synchronization messages.

The values o f ._d and ,_d_i are determined during system design, and thus are available 

to  the synchronization algorithm. All other actual delays are not available, bu t can be 

underestim ated or overestimated (as appropriate) using the clock values available.

The following derivation is for forward inquiries. The derivation for backward inquiries 

is similar. To start, consider the relationship between actual delays:

dA =  +  0 ™ k

Because each d is an absolute minimum, it follows th a t x  >  0. So for 0 <  i < k,»—»i + l ' * —►»-f-1 '

(5-3)

Let t k indicate the time in the external reference frame when Tk was created, i.e., 

C $(tk) = Tk. C f ( t k) is then time on N ^s  synchronization clock when N 0's synchronization 

clock had value Tk. Then for any 0 < i < k,

C f  (t k) e  [Ti +  ( d h +  ,xk +  1 ^ ( 1  -  g), T i +  ™ ffj (1 +  p)j (5.4)

W hile this interval is quite small, and would therefore produce a guess w ith a  very low 

uncertainty, its bounds cannot be calculated by N 0, since No does not know the value of 

x  for any i. The x  values must be underestim ated for the lower bound of the interval
i —♦ »  °  i —*k

in Equation (5.4), and overestimated for the upper bound of the interval in Equation (5.4). 

Equation (5.3) provides the necessary underestimates and overestimates, yielding the fol

lowing:

C f ( t k) E [Ti +  +  j ™  (1 -  g ) t Ti +  ( d A - gd . ~  o ™ j) (1 +  £>)]

This leaves dA and the actual node waits as the unknown quantities. A bound can be 

placed on dA using p, namely dA( 1 — g) < Tk — T0, or dA < (Tk — T0) / (  1 — g). Similarly, Wj 

can also be bounded, Wj(l  +  g) > Wj ,  or Wj > W j / ( l  + g). Substituting gives
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Synchronization m essage timestamps

T0 T, Tg Tg T4 T5

I— )— h I - I -  I H  I l - l I I I I I I I I I I I
I r*  S  I

Computed intervals

F ig u re  5.3: Intervals calculated from tim estam ps

(5.5)
\  + q J  ‘ \  i - e

Somewhat more useful than the interval of Equation (5.5) is the corresponding skew 

interval. To get an interval containing the skew between C f  and C0S, subtract Tk from each 

endpoint:

W  \  / T  _  T
(1 - 0 ), T i - n + i ^ — S . - d U l  + g ) - ^ (5.6)

i  + e )  c/? 1 “ 1 V 1 - 0

The derivation for backward inquiries proceeds exactly as above. Or, one can simply 

re-map the node numbers in Equation (5.6). E ither way, the resulting interval for backward 

inquiries is the following:

otiio G Ti -  To +  d +
W
»-»0 (1 ~  q) i Ti — T0 +

To Tk
- A .  (r +  r f - E (5.7)1 1 f v — C/ J — C —U ' l  1+ g J \  1 -  Q

Figure 5.3 shows w hat might happen when k = 5. Time increases to the right, and 

T0 through T5 at the top of the figure represent the relative values of the timestamps. 

T0 was created by N 0 when it sent the first synchronization message, and T5 is T0a for 

the synchronization message sent by N 4. Arrival tim estam ps were not included in the 

synchronization messages. The intervals for C f  (f5) through C f(C ) are com puted by N 0 

using Equation (5.5), and are shown beneath the tim estam ps on the right side of the figure. 

The intervals determine the range of possible values for their respective clocks a t the time 

N 0 created T5. For instance, since the intervals for C f  and C f do not overlap, C f  and 

C f  cannot have the same value, and the minimum skew between them  is the difference 

between the lower bound of C f ’s interval and the upper bound of C f  ’s interval. Also, since 

the interval for C f  does not contain T5, the minimum skew between C f  and C f  is the 

difference between T5 and the upper bound of C f ’s interval.
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5.2 .2  C onvergence

All probabilistic algorithms assume th a t the delays are independent random  variables. 

T hat is, the delay distributions for . x  and w, depend neither on each other nor on the
t —► » +  !

values of either .Jj+1 or Wj, i /  j .  This assumption is made partly  because analysis assuming 

dependent delays is almost impossible, and partly  because testing and experience have 

shown it to  yield correct results in most cases. Independence implies th a t each tim e the 

inquiry is done the delays will be different, and the resulting set of skew intervals will be 

different. Each skew interval is a guess, whose uncertainty is half the w idth of the interval. 

After q inquiries have been done, there will be q guesses for each a il0- Since a il0 must be 

in all q guesses, it will be in their intersection, and their intersection will be yet another 

interval. As q increases, the w idth of the intersection interval tends to decrease, w ith the rate  

of decrease slowing as the interval becomes smaller. This process is known as convergence.

Convergence can be sped up by sending messages in both  directions. Some understand

ing of how can be gained from Figure 5.3. This figure was drawn as if C f ,  C f , and C f  

were tightly synchronized, while C f  was running ahead, and C f  was running behind. Note 

th a t even though at T5 on C f  bo th  C f  and C f  should also read approxim ately T5, T5 is not 

centered in either interval. T5 appears in the upper half of the interval for C f ,  and in the 

lower half of the interval for C f.  An exam ination of the derivation of Equation (5.5) shows 

th a t this is representative of a general trend. Much of the w idth of the interval is due to 

the substitution for x  using Equation (5.3). The lower bound of the interval substitu tes 0 

for ,x for small i this will usually be a considerable underestim ate, for i close to k  this is 

a close approximation. Thus, the lower bound of the skew interval will be considerably less 

than  the actual skew when i is small, and fairly close to the actual skew when i is close to k. 

The upper bound has the reverse situation. The upper bound substitu tes — o<̂, — Wik — 1 

for x  , which will be a close approxim ation when % is small, bu t far too large when i is close 

to  k. The upper bound of the skew interval will be close to  the actual value when i is small 

and considerably greater than  the actual skew value when i is close to k.

The situation is reversed for backward inquiries. The lower bound of intervals is close to 

the  actual skew value when % is small, and considerably less than the actual skew value when 

i is near k. The upper bound of intervals is considerably greater than  the actual skew value 

when i is small, and close to the actual skew value when i is near k. Obviously, intersecting 

an interval generated by a  forward inquiry with one generated by a backward inquiry will 

result in an interval much smaller than either type of inquiry is likely to generate on its
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own (at least for intervals where i is either small or close to k.) Convergence can therefore 

be greatly sped up by alternating forward and backward inquiries.

5.2.3 A nalysis

T he estim ation algorithm can easily tell if any more inquiries need to  be done — it 

simply com putes the average uncertainty of the current estim ates and stops if it is less 

than  e. However, since the to tal number of inquiries sent determines the to ta l number 

of messages and tim estam ps sent, one should know beforehand the maximum num ber of 

inquiries th a t are going to be needed. I t would be nice to have a  function, $ ( 9 ), whose value 

was the probability th a t only q inquiries will have to be sent. Unfortunately, such a  function 

is nearly impossible to compute. While the delays themselves are independent variables, 

the intervals are functions of the delays, and are not independent of one another. Finding 

$ ( 9 ), therefore, necessitates the convolution of a number of dependent random  variables.

However, all is not lost. It is possible to characterize the w idth of a  single intersection 

interval. The w idth of the intersection interval for N t after j  inquiries, f l j ,  is a function 

of the delays. If the distributions of the delays are known, the distribution of Qi after 

any num ber of inquiries can be determined. From the distribution one can determ ine the 

probability th a t the w idth of the interval is below a specified value (such as 2 e).

I t is assumed th a t the estim ation process consists of 2q inquiries, numbered 0 through 

2q — 1. Inquiries alternate between forward and backward, even-numbered inquiries are 

forward and odd-numbered inquiries are backward. Consecutive inquiries are assumed to 

s ta rt A clock ticks apart. For the most part, this analysis will concentrate on forward 

inquiries, mentioning backward inquiries only for im portant results, where the corresponding 

equation for backward inquiries will be presented also.

The focus of this analysis are random  variables X h and X h, the values of x  and x
0 —* i * —  0 — » i  — k

for inquiry h. The distribution and density functions of these variables are assumed to be 

known, and do not vary with h. Furthermore, and are assumed to be independent 

if either 0 < i < j  < i' < j '  < k  or 0 < j  < i < j '  < i' < k  holds, and X h and A '1 are 

independent if h /  h'. O ther random  variables of minor im portance are VW, and the value 

of i j  f°r inquiry h. The distribution of the node waits need not be known, bu t a good 

bound on the maximum total node wait should be available.

Let T f  be Ni s tim estam p from inquiry h. The following inequalities will hold:
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T t  >  I ? + ( „ i  +  £  +  W ; ) ( 1 - e )  (5.8)

T£ < %? +  (0i  +  £  +  WJ) (1 +  <>) (5.9)

T£ > T'‘ +  a„„ +  (0r f + ^ ' ‘ +  VV‘ ) ( l - ( , )  (5.10)

T t  < V; -I- -I- ( d: + x “ + w ‘ ) n  + (l) (5.11)

Let L \  be the value of the lower bound of the interval for iV* generated by inquiry h. The 

goal is to re-write the lower bound from Equation (5.6) in term s of the random  variables. 

Unfortunately, straightforward substitution cannot be done since Equation (5.6) is w ritten 

in term s of measured delays, while the random variables are actual delays. The inequalities 

in Equations (5.9) through (5.10) can be used to underestim ate or overestimate (whichever 

is appropriate) some of the measured values with random  variables. One would normally 

substitu te  W j( l  — g) for W  but this substitution will not cancel out the (1  +  g) in the 

denom inator, and will make the derivation considerably more difficult. However, since g2 

is very small, (1  +  ^ )(1  — 2 g) rj (1  — g), so W j( l  — 2 g) may be substitu ted  for W J ( 1  +  £>)• 

Performing all these substitutions, and dropping the g2 terms, results in the following:

l (  > v +«..« + (a , +  » )  T t

-  („£ + £1  + K?) (i + e) + ( ,i  + ® 1 -  2e)) (i -  e)
> <*« + („i + £  + JK) <1 -  e) -  (.1 + + E ‘) (1 + e) -  2eW‘(i -  a)
> “ » - ^ ( i  +  s ) - 2 S ( D£  +  £  +  K  + « )  (5-12)

Equation (5.12) is correct at the conclusion of inquiry h. I t may no longer be correct 

by the tim e all inquiries have been completed. To fix this, a  term  is added to  account for 

any possible clock drift over the course of later inquiries:

#  >  -  S ( 1  +  Q) ~  ( 0!  +  £  +  W J +  W j)  -  2gX(2q -  h -  1) (5.13)

The bound for backward inquiries can be computed in a similar manner:

L \  >  a i!0 -  £ J (1  + g ) - 2 g  ( , £  +  X h{ + W j +  W fc) -  2gX(2q - h -  2) (5.14)
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Since g is usually small, often 1 0 - 5  or less, the 2g term s can often be neglected for 

ballpark estim ates. For more conservative results, one can usually replace the first 2g term  

w ith  a  constant, f i f .  The value of f l f  should be an upper bound for the sum it replaces, and 

is usually com puted as the sum of d and the worst-case values of the random variables.

A similar derivation can be done for the upper bound of the interval for N t generated 

by inquiry h. This tim e the approxim ation (1 — p)(l +  2g) (1 +  g) is used in the (T f  — 

T g ) /(  1 — g) term , and again the resulting g2 terms are dropped. The resulting upper bound 

for forward messages is:

U? < a il0 +  £ ( 1  +  e) +  2g +  2**  +  2W h +  VV*) +  2gX(2q -  h -  1) (5.15)

For backward messages the upper bound is:

U t < <*iw +  £*(1  + g) + 2g (2 fcdo +  2 X ho +  2 W j +  W f )  +  2gX(2q - h - 2 )  (5.16)

Again, the first 2 g term  can be either eliminated or approximated by a constant, , 

which should again be an upper bound for the sum it replaces. While it is not really germane 

to  this discussion, it should be noted th a t is significantly larger than fJ f . As a  result, 

estim ates are inherently biased a little too high, especially in cases where there is significant 

node wait. This bias shows up both  in simulation and in “real life” , and will be of some 

concern in C hapter 6 .

Let the  p-th  inquiry pair be inquiries 2p  and 2p + 1 . There will be q inquiry pairs, each 

consisting of a  forward and a backward inquiry. Let Cf be the lower bound of the skew 

interval generated by the intersection of the intervals for A, from the p-th  inquiry pair, and 

U f  be the upper bound of the skew interval generated by the intersection of the intervals 

for Ni from the p-th  inquiry pair. Given the distribution and density functions F ^ , , f  ̂  >
o  - * i  o  - * i

F jy , f  % , F jy , f  % , F ^  , and f  ̂  o f  A., and X ^  the distribution and density
» —»0  i  —* 0  i  —*k  i  —* fc k —»i k —»i

functions of C£ and U f  are given in Equations (5.17) through (5.20). The constant an0 has 

been left out of these equations, as it will be taken care of later.

W hat is wanted is the maximum of the C f ’s and the minimum of the U f ’s. So two more 

random  variables, MAX?9 and M I N f f  are defined for the maximum lower bound and the 

minim um  upper bound.

MAX%9 =  m ax{£f : 0 <  p <  q}



71

r  1 1  A F ( - x - i g P t - 2 e M ? q - 2 p - l ) '  FC, ( , )  =  ( l - F ^ ---------------- —

x  ( i - F x  (5.17)

j. , , ,  ( - x - 2 e P i  - 2 g \ ( 2 q ~ 2 p -  1 )
/ £ f W  =  / * ( ------------------^ ------------------

+  \ l - F

x  ( i  — F  ( ~ X ~  20P* ~  2gA(2^ ~  2p -  2) \  \  1 
V ^ o \  1 +  0  ) ) 1 + e

' - x - 2 e t f - 2 0\ ( 2 q - 2 p - l ) \ y\
* {  J J

X f x  ( - ° - M t -  ‘>eH2q - 2 P - 2 ) \  1 (5_18)
*

i —* 0 1 +  Q J 1 +  e

FW (*) =  1 -  ( 1 -  F x  <X “  2eP‘ -  ^  -  2P “  11
0—»i \ 1 + 0

x  -  2q/3? -  2gX(2q - 2 p - 2 )  
1 +  0

x l - F x  ^ -----~  — ~  ' 1 ) (5.19)

t  /_■* r ( x ~  2  QPi -  2 0 M2 0  -  2P -  1 ) '
^ ----------------

x f l - F  f a ; - 2 g ^ - 2 g A ( 2 g - 2 p - 2 ) \ \  1

V ** v 1 + 0 11 1 +  e
+  M _  f  ( X ~  ~  2gA(2<? ~  ~  X)

I  * [  1 + 0
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MIN2q =  m in{Uf : 0 <  p < q)

The distribution functions for M A X 2'1 and MIN2'1 can be expressed in term s of the 

d istribution functions of Cf and Uf:

FM A X 2qW  =  n  Fq ( x ) (5-21)
* p = 0

f  M A X 2q^  = ^  \ ( n  FCf (*)') f  jCfi30) \ II (5.22)
1 j=o \  \ p = o  /  1 \ p = j + i  J  J

q-1
FMII'fiq(x ) =  I I ~  F j j p ( x ) )  (5.23)

* p=o 1

SM IN *<*> = £  ( ( f t 1 -  f UX )  (  f f  ~  % « >  ) ) (5.24)
1 i=o \  \p=o /  1 \p=j+i /  J

Finally, it is possible to determine the distribution of Q2'1, the w idth of the intersection 

interval for AT*. At this point, the o^o’s tha t were ignored earlier m ust be taken into account.

Fn  2„{x) =  P[(MIN2q + a il0) -  (M AX2q + a il0) < x]

= P[MIN2q -  M A X 2q <  x]. (5.25)

Random  variable M IN2q depends on the values of Uf, 0 <  p  < q. Each U f  depends on 

the values of and T 27’̂ 1. Similarly, M A X 29 ultim ately depends on the values of X'f and 

Therefore, M IN2q and M A X 2'1 depend on different random  variables. And, since each 

£ h is assumed to  be independent of the others, MIN2q and M A X 2q are also independent. 

T he distribution of f l2q can therefore be computed by a simple convolution integral:

/ oo r x + y

dy / - o o  *M A X 2q MIN2q W dz• (5-26)

Since f  j ^ a x 2’1 (v) does not depend on z, it can be moved outside the second integral. 

T he integral J'f^ f f M INiy{z)dz evaluates to FM IN^g(x +  y) -  FM IN 2q(-oo ) .  Since M IN2q 

will always be greater than  0, F ^ ^ q  (x ) =  0 when x  <  0, so Equation (5.26) reduces to:

/
OO

^M A X 2q^ FMIN2q x̂  +  y ^dy 

The range on integral of Equation (5.2.3) can be further reduced by noting th a t M A X 2q 

m ust be less than  0 and MIN2q must be greater than  0, so f m a X 2̂  ̂  =  ® w^en >  0 and 

^M IN 2q x̂  +  y) ~  ® when x  + y < 0. The final result is:
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fO
F^ p q =  J  fM A X ?q^ FMIN2q x̂  F  y ^ y  (5.27)

5 .2 .4  E xam ples w ith  g =  0

Provided the distributions of the various X  's are known, Equation (5.27) gives a  reason

able, perhaps slightly pessimistic, characterization of the w idth of IV; ’ s intersection interval. 

Unfortunately, while the expression in Equation (5.27) is simple, calculation may not be. 

Equations (5.22) and (5.24), along with Equations (5.17) through (5.20), show 

and f j t f J N complicated sums of products, with the number of term s growing rapidly 

with q. This makes Fq Zq (a:) difficult to evaluate, especially for large q.

For a  first approxim ation, one can assume tha t the effects of clock drift during the 

estim ation process are negligible. This is normally not too bad an assum ption, g often 

has a  value in the neighborhood of 10~ 5 and is multiplied by (3fJ, (3?, and A, whose values 

are usually approximately the time required for an inquiry. Since the tim e required for an 

inquiry is normally only one or two orders of m agnitude greater than  the desired interval 

width, the effects of g term s are small in comparison.

Removing g greatly simplifies Equations (5.17) through (5.20), resulting in new func

tions F £  , f £ ,  F y  , and / ^  , which are independent of p. As a  result, Equations (5.21) 

through (5.24) are also simplified, having the following form:

FM AX]q^ = f e ( x ) ) f (5.28)

fM A X *q(x ) =  <i{FcSx̂ )q fcix) (5.29)

FMIN]q = l - ( l  - F u X x j ) q (5.30)

fM IN ?1 ^

II >Cl 1 •Cl 1

j? (5.31)

The rem ainder of this section will use these equations w ith different d istributions for 

X  to  estim ate the number of inquiries needed for various values of k  and the maximum 

allowable uncertainty e.

N o rm a lly -D is tr ib u te d  D elays

It is commonly assumed tha t the delay for each “hop” taken by a  synchronization 

message is independent of the delays for any other hops, and th a t the distributions of the
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delays are identical for each hop. This is not a bad assumption in a  homogeneous distributed

system, such as a hypercube, where all nodes and communications links are identical. For 

this example things will be simplified a little more by assuming th a t all synchronization 

messages are sent only one “hop” . Then ,_d is a constant th a t does not depend on i, 

and the d istributions for X  and X  are identical, and also do not depend on i, i.e., for
* —♦ t - b l  * +  1 —* t  '  X  7 f

0  <  i , j  < k  and all x:

variables. The central limit theorem states tha t the distribution of a  sum of a  num ber of 

m utually independent identically distributed random  variables w ith finite variances can be 

approxim ated by a  normal distribution. In particular, the density function for X  will be 

the following:

W here u, is the mean value of . X  and a  is its standard  deviation. The d istribution1 t —»t +1'

Substitution into Equations (5.17) through (5.20), and from there into Equations (5.28) 

through (5.31) is straightforward. Substitution into Equation (5.27), however, produces a 

complex and difficult to integrate function. M athem atica [46] and Maple V [6 , 7, 8 ] were 

used to evaluate the integral for various values of i, k, q, and x. To check the results of the 

analysis, a  simple simulation was done. The simulator simply chose values of x  random ly 

using a  norm al distribution with mean //, and standard deviation a.

The values of . d n and crused by other researchers are used here in order to facilitate 

comparisons. Both Cristian [11] and Arvind [3] use ,_d+1 — 2.11msec., and p, =  0.34 msec. 

C ristian does not give a value for er, but Arvind gives a  =  1 . To see the effects of variance 

in delay, a  =  0.3 is also considered.

Figure 5.4 plots f£jp{x) and f y p (x )  for both * =  8  and i = 2. Since g is assumed 0, the 

graphs do not depend on p  and q, and thus are the same for all inquiry pairs. The graphs 

show th a t the interval for N 2 will almost certainly be smaller than  the interval for 1V8, as

j-j+i J + l-3

So X}1 is actually the sum of a number of independent, identically d istributed random

(5.32)

function can be expressed in terms of the error function, Erf(x) = (2/y/ir) fg e~t2dt.

(5.33)
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was discussed in Section 5.2.2. The graphs also show a  problem w ith assuming a  norm al 

distribution. Since norm ally-distributed random variables have no absolute lower bound, the 

norm ally-distributed delays will sometimes be less than  ._d , which the estim ation algorithm  

assumes cannot happen. The results can be seen in Figure 5.4 where the d istributions cross 

the  y-axis, allowing positive lower bounds and negative upper bounds. Since a il0 =  0, such 

intervals will not contain the actual skew value, it may even be th a t the lower bound is 

greater than  the upper bound. The error introduced is small enough to  be ignored, a t least 

for i near the “middle” , and o  =  0.3. However, for other nodes, and larger values of a, one 

should keep this source of error in mind.

The sim ulator also ran into this problem, and sometimes chose negative values of . x  

which often led to intervals whose lower bound was greater than  their upper bound. The 

sim ulator ignored these situations, since forcing .jc > 0  would alter the delay d istribution 

and  sim ulation results would no longer m atch analytical results. However, the sim ulator was 

also run  using a Weibull distribution for the delays. The Weibull distribution has a definite 

minimum, and it is relatively simple to generate Weibully d istributed random  numbers. 

However, the Weibull distribution does not lend itself to easy analysis. Figure 5.5 shows a  

Weibull density function with p, =  0.34 and a  =  0.3.

The results of the analysis and simulation are given in Tables 5.1 through 5.4. One 

analytical and six simulation results are presented. The single analytical result is the value 

of i ^ 2?(e), calculated w ith Equation (5.2.3)2, assuming norm ally-distributed delays. The 

sim ulation results consist of the following three values for both  the normal and Weibull 

distributions:

Pi". T he probability tha t the w idth of TV0’s intersection interval for TV, is less than  the 

specified value.

i V  The probability tha t the w idth of all of TV0’s intersection intervals are less than  2e, 

given th a t the w idth of TV0’s intersection interval for Ni is less than  the specified value. 

This is an  indication of the dependency between the w idth of TV0’s interval for TV, and 

the w idth of the rest of TV0’s intervals.

Pam' The probability th a t the w idth of all intersection intervals a t all k  nodes are less than  

2e, given th a t the width of TV0’s intersection interval for Ni is less than  the  specified

2E q u a tio n  (5 .2 .3) is u sed  in s tead  of E q u a tio n  (5.27) since th e  lack of a  low er b o u n d  o n  th e  n o rm a l 
d is tr ib u tio n  m ean s  t h a t  MAX2q <  0 an d  MIN?q > 0 no  longer holds.
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normal Weibull

k i 2 q Fn 2q(2) Pi P 3|z PA\i Pav Pi Po\i PA\i Pav

16 8 78 0.90690 0.9099 0.9472 0.3636 1 .0000 0.2767 0.6757 0.0015 1 .0 0 0 0

16 7 78 0.95270 0.9544 0.9029 0.3465 1 .0000 0.5530 0.3374 0.0007 1 .0 0 0 0

16 5 78 0.99998 1 .0000 0.8618 0.3306 1 .0000 1 .0000 0.1874 0.0004 1 .0 0 0 0

16 8 194 0.99906 0.9991 0.9998 0.9850 1 .0000 0.6964 0.9381 0.0668 1 .0 0 0 0

16 7 194 0.99985 0.9999 0.9990 0.9843 1 .0000 0.9312 0.7021 0.0498 1 .0 0 0 0

16 6 194 1 .0 0 0 0 0 1 .0000 0.9989 0.9843 1 .0000 0.9999 0.6539 0.0464 1 .0 0 0 0

16 8 296 0.99999 1 .0000 1 .0000 0.9998 1 .0 0 0 0 0.8737 0.9873 0.2889 1 .0 0 0 0

32 16 15038 0.90003 - - - - - - - -
32 15 15038 0.94768 - - - - - - - -
32 13 15038 0.99997 - - - - - - - -
32 16 38288 0.99900 - - - - - - - -
32 15 38288 0.99983 - - - - - - - -

32 14 38288 1 .0 0 0 0 0 - - - - - - - -
32 16 58718 0.99999 - - - - - - - -

T a b le  5.1: Probability of convergence when s =  1.0, assuming normally d istributed 
delays w ith ,_d+i =  2.11, a  =  0.3, and fx — 0.34.

value. This is an indication of the dependency between the w idth of No's interval for 

Ni and the w idth of all intervals a t all nodes.

Pav’ T he probability tha t the average width of all intersection intervals a t all k  nodes is 

less than  2e. This probability is not conditioned on any event. This is the probability 

th a t all nodes will be able to use the adjustm ent algorithm of C hapter 3 w ith  all 

estimates.

Each run  of the simulator consisted of multiple “trials” . A trial consisted of performing 

the specified number of inquiries, and noting which intervals converged. For larger values 

of k  and q the cost of simulation became prohibitive. Weeks or months of com puter time 

were required for a  single run. In some cases the cost of simulation was deemed too high 

and results are not available.

The high cost of simulation also makes it difficult to determine the standard  deviation 

of the results. W ith single runs so expensive it is not feasible to make the m ultiple runs 

needed to  com pute the standard  deviation of the results. M ultiple runs were done for some
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normal Weibull

k i 2 q V (2) Pi Po\i Pa \i Pav Pi Po\i p A\i PAv

16 8 6 0.93306 0.9333 0.9006 0.4628 0.9589 0;8790 0.8980 0.4082 0.9933
16 7 6 0.93546 0.9360 0.8983 0.4617 0.9589 0.8917 0.8855 0.4023 0.9933

16 2 6 0.99336 0.9935 0.8456 0.4344 0.9589 0.9991 0.7899 0.3588 0.9933
16 8 14 0.99938 0.9994 0.9983 0.9772 1 .0 0 0 0 0.9980 0.9978 0.9637 1 .0 0 0 0

16 7 14 0.99943 0.9994 0.9982 0.9771 1 .0 0 0 0 0.9985 0.9973 0.9629 1 .0 0 0 0

16 3 14 0.99997 1 .0000 0.9977 0.9765 1 .0000 1 .0000 0.9958 0.9617 1 .0 0 0 0

16 8 22 1 .0 0 0 0 0 1 .0000 1 .0000 0.9998 1 .0000 1 .0000 1 .0000 0.9994 1 .0 0 0 0

32 16 12 0.90983 0.9105 0.8231 0 .2 2 2 0 0.9752 0.0994 0.2922 0 .0 0 0 1 0.6546
32 15 12 0.91110 0.9122 0.8222 0.2217 0.9752 0.1113 0.2623 0 .0 0 0 1 0.6546
32 2 12 0.99993 0.9999 0.7494 0.2019 0.9752 1 .0000 0.0290 0 .0 0 0 0 0.6546
32 16 30 0.99921 0.9992 0.9968 0.9429 1 .0000 0.3745 0.5257 0 .0 0 2 2 1 .0 0 0 0

32 15 30 0.99924 0.9993 0.9969 0.9430 1 .0000 0.4055 0.4848 0 .0 0 2 0 1 .0 0 0 0

32 8 30 0.99996 1 .0000 0.9962 0.9425 1 .0000 0.9989 0.1967 0.0008 1 .0 0 0 0

32 16 46 0.99999 1 .0000 1 .0000 0.9988 1 .0 0 0 0 0.5871 0.6484 0.0119 1 .0 0 0 0

64 32 40 0.90029 0.9021 0.7678 0.0879 0.9998 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

64 31 40 0.90109 0.9025 0.7672 0.0879 0.9998 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

64 9 40 0.99999 1 .0000 0.6921 0.0796 0.9998 0.9988 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

64 32 102 0.99908 0.9991 0.9956 0.8857 1 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

64 31 102 0.99910 0.9991 0.9956 0.8856 1 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

64 20 102 0.99998 1 .0000 0.9946 0.8847 1 .0000 0.0738 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

64 32 160 0.99999 1 .0000 0.9999 0.9974 1 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0.0038

Table 5.2: Probability  o f convergence w hen e =  1.0, assum ing norm ally d istributed
delays w ith  ,_d+i =  2.11, a  =  1.0, and /x =  0.34.
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normal Weibull

k i 2  q V (4) Pi Po\i PA\i Pav Pi P 3|i PA\i Pav

16 8 8 0.91595 0.9178 0.9503 0.5125 1.0000 0.9230 0.9585 0.5349 1.0000

16 7 8 0.94685 0.9480 0.9200 0.4962 1.0000 0.9568 0.9246 0.5160 1.0000

16 4 8 1.00000 1.0000 0.8722 0.4704 1.0000 1.0000 0.8844 0.4940 1.0000

16 8 20 0.99936 0.9994 0.9997 0.9896 1.0000 0.9996 0.9999 0.9941 1.0000

16 7 20 0.99981 0.9998 0.9993 0.9891 1.0000 0.9999 0.9995 0.9922 1.0000

16 6 20 1.00000 1.0000 0.9991 0.9890 1.0000 1.0000 0.9994 0.9921 1.0000

16 8 30 0.99999 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000 0.9999 1.0000

32 16 786 0.90064 0.9063 0.9385 0.1593 1.0000 0.0258 0.2674 0.0000 1.0000

32 15 786 0.94244 0.9459 0.8992 0.1530 1.0000 0.0716 0.0965 0.0000 1.0000

32 12 786 1.00000 1.0000 0.8509 0.1444 1.0000 0.9973 0.0071 0.0000 1.0000

32 16 1992 0.99900 0.999 1.000 0.969 1.000 0.117 0.488 0.000 1.000

32 15 1992 0.99977 1.000 0.999 0.968 1.000 0.276 0 .2 1 0 0.000 1.000

32 14 1992 1.00000 1.000 0.999 0.968 1.000 0.767 0.075 0.000 1.000

32 16 3058 0.99999 1.000 1.000 1.000 1.000 0.219 0.614 0.000 1.000

T a b le  5.3: Probability of convergence when e — 2, assuming normally distributed 
delays v/ith . d+] =  2.11, a  =  0.3, and fj, = 0.34.

small values of k  and q. Comparison of these runs shows tha t results from runs containing a 

million or more trials are accurate to  well w ithin ±0.0005, and runs containing one hundred 

thousand or more trials are accurate to within ±0.005. For this reason, results from runs 

of one million or more trials are reported to 4 decimal places, while results from runs of 

between one hundred thousand and one million trials are reported to  3 decimal places.

One would expect th a t since the Weibull distribution does not produce negative values 

of . X  , it would be slower to converge than  the normal distribution. This does not tu rn  out 

to  be true. The Weibull distribution actually converges faster than  the norm al d istribution 

in some cases. This is especially true when k is small while a  and e are large.

Tables 5.2 and 5.4 show best how the difference between the normal and Weibull distri

bution varies. In both  tables there is little difference between the two distributions when 

k =  16, considerable difference when k  =  32, and the Weibull distribution yields probabili

ties near 0 when k — 64. And, while for both distributions the probabilities increase as the 

difference between i and k /2  increases, the probabilities for the Weibull d istribution increase 

faster. But the most obvious difference between the two tables is th a t the probabilities for
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normal Weibull

k i 2 q Pi Pq\% Pa \i Pav Pi Po\i Pa \i Pav

16 8 4 0.94692 0.9472 0.9386 0.5957 0.9877 0.9824 0.9808 0.8424 0.9990

16 7 4 0.94950 0.9497 0.9362 0.5941 0.9877 0.9839 0.9794 0.8413 0.9990

16 2 4 0.99852 0.9985 0.8903 0.5650 0.9877 0.9995 0.9642 0.8282 0.9990

16 8 10 0.99982 0.9998 0.9996 0.9939 1 .0000 1 .0000 1 .0 0 0 0 0.9999 1 .0 0 0 0

16 7 10 0.99984 0.9998 0.9996 0.9939 1 .0000 1 .0000 1 .0 0 0 0 0.9999 1 .0 0 0 0

16 2 10 0.99999 1 .0 0 0 0 0.9994 0.9937 1 .0 0 0 0 1 .0000 1 .0 0 0 0 0.9998 1 .0 0 0 0

16 8 14 0.99999 1 .0 0 0 0 1 .0000 0.9998 1 .0 0 0 0 1 .0000 1 .0000 1 .0 0 0 0 1 .0 0 0 0

32 16 8 0.91122 0.9119 0.8566 0.2918 0.9866 0.6848 0.7472 0.0865 0.9976
32 15 8 0.91264 0.9134 0.8553 0.2908 0.9866 0.6971 0.7341 0.0853 0.9976
32 3 8 0.99988 0.9999 0.7812 0.2656 0.9866 1 .0000 0.5115 0.0591 0.9976
32 16 20 0.99926 0.9993 0.9975 0.9547 1 .0000 0.9795 0.9758 0.6735 1 .0 0 0 0

32 15 20 0.99929 0.9993 0.9975 0.9547 1 .0000 0.9818 0.9735 0.6714 1 .0 0 0 0

32 8 20 0.99998 1 .0000 0.9968 0.9539 1 .0000 1 .0000 0.9557 0.6539 1 .0 0 0 0

32 16 30 0.99999 1 .0000 1 .0000 0.9987 1 .0 0 0 0 0.9983 0.9976 0.9420 1 .0 0 0 0

64 32 28 0.90512 0.9070 0.7969 0.1228 0.9999 0.0027 0.0739 0 .0 0 0 0 0.6124
64 31 28 0.90592 0.9074 0.7963 0.1227 0.9999 0.0029 0.0599 0 .0 0 0 0 0.6124
64 10 28 0.99995 0.9999 0.7226 0.1114 0.9999 1 .0000 0 .0 0 0 2 0 .0 0 0 0 0.6124
64 32 70 0.99907 0.9991 0.9939 0.8971 1 .0 0 0 0 0.0154 0.1088 0 .0 0 0 0 1 .0 0 0 0

64 31 70 0.99909 0.9991 0.9959 0.8972 1 .0000 0.0172 0.0930 0 .0 0 0 0 1 .0 0 0 0

64 19 70 0.99999 1 .0 0 0 0 0.9950 0.8962 1 .0000 0.9542 0.0017 0 .0 0 0 0 1 .0 0 0 0

64 32 110 0.99999 1 .0000 0.9999 0.9977 1 .0 0 0 0 0.0345 0.1520 0 .0 0 0 0 1 .0 0 0 0

Table 5.4: P robability  o f  convergence w hen e =  2, assum ing norm ally d istributed
delays w ith  ,_d+i =  2.11, a  =  1.0, and /j, =  0.34.
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the Weibull distribution are consistently higher in Table 5.4.

Since the only difference in param eters between Tables 5.2 and 5.4 is an increase in e, it 

is reasonable to  assume th a t this increase is the cause of the differences in the probabilities 

for the Weibull distribution. The likely explanation is th a t in the Weibull equivalent of 

Figure 5.4, the peaks are slightly further apart, bu t much narrower. As q increases, the w idth 

of the peaks for bo th  distributions decreases, though the peaks for the Weibull distribution 

are always much narrower, and all peaks move towards 0 , w ith the normal peaks closer to 

0 than  the Weibull peaks. However, while the peaks for the  two distributions are getting 

bo th  narrower and closer together, they are getting narrower faster than  they are getting 

closer. So, when e — 2, q is small enough tha t there is considerable overlap between the 

peaks of bo th  distributions, and any width tha t contains most of the normal peaks will 

contain much of the Weibull peaks as well. But when e =  1, q has increased to the point 

where there is little overlap between the peaks, and a w idth th a t encompasses most of the 

norm al peaks will contain little of the Weibull peaks.

The narrower peaks generated by the Weibull distribution also explains why its proba

bilities increase faster as |i — k / 2 | increases. As Figure 5.4 dem onstrates, as i gets further 

away from k / 2, the peaks move closer to 0. Because the peaks for the Weibull d istribution 

are much narrower, bringing the peaks closer to 0  can greatly increase the percentage of 

the peaks within any specified width.

Comparison of the analytical and simulation results for the normal distribution shows 

a  close match. Simulation and analytical results almost always m atch out to two decimal 

places, and are quite close out to three decimal places. This close agreement lends con

fidence to the values of P0\i and Pam found by simulation. These results, in turn , show 

the dependency of the widths of the various intervals. For example, consider the first two 

rows of Table 5.2. Assume tha t N q s  interval for N s has converged, then P 0|8 should be no 

greater than  the probability tha t the intervals for both  N 7 and N q have converged. If in

tervals converged independently then the probability tha t the intervals for both  N 7 and N q 

have converged is 0.93602 =  0.8761, which is already less than the value determ ined through 

simulation. A similar relationship exists between P0 ̂  and Pam- Assume tha t a t each node 

the interval for the “middle” node has converged. The probability th a t all intervals have 

converged a t any given node is then 0.9006. If independence is assumed between nodes, 

the probability th a t all intervals have converged at all nodes is then 0.900616 =  0.1873, 

significantly lower than  the value produced by the simulation.
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F ig u re  5.6: Exponential distribution with \i =  0.34

A pleasant surprise is the value of Pav, which consistently reaches 1.0 long before the 

probability of convergence of N k/2 reaches 0.999. This means if the adjustm ent algorithm  

of C hapter 3 is used, the number of inquiries can be reduced considerably. The value of Pav 

for the Weibull distribution generally matches tha t of the normal distribution, even when 

the probability of convergence for the Weibull distribution is much lower. Apparently, the 

slow convergence of nodes near N k/ 2 is made up for by faster convergence of nodes near N k 

and ATfc_i.

E x p o n e n t ia l  D e lay s

As the  examples of the previous section show, the lack of a  lower bound means a  norm al 

d istribution is not a good approxim ation when a  is much larger than  p. The advantage of a 

norm al d istribution is the ease with which one may determine the distribution of the sum  of 

a  num ber of independent normally distributed random variables. Another distribution may 

be used instead, if the distribution of the sum is known. The exponential distribution has 

this property, one may easily derive the distribution of the sum of independent identically 

d istribu ted  exponential random  variables. As can be seen in Figure 5.6, the exponential 

d istribution  also has a  definite minimum, avoiding the problems encountered w ith the nor

m al distribution. Finally, network delays are often assumed to be exponentially distributed. 

The prim ary disadvantage of the exponential distribution is th a t (i and a  cannot be assigned 

independently. In particular, a  =  /i.

The density function for a  single hop using exponential delays is:

f  X  (*) = /  T (*) = \ e Xltl
i - i  +  1 t  +  l - i  P

(5.34)
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F ig u re  5.7: f r p ( x )  and f j /p (x) ,  assuming a ii0 =  0, k  =  16, i =  8  and i = 2, and 
exponentially d istributed delays with fi =  0.34

The density function for multiple hops is easily derived via repeated convolution:

f X j W  =  (|* — j\  — l)!/x(li_7l) 5̂-35)

For purposes of comparison, Figure 5.7 plots / £ p(x ) and f ^ p ( x )  when the distribution 

of ^  is assumed to be exponential. Note th a t, in contrast to  the norm ally-distributed 

delays, the lower bound is always negative, while the upper bound is always positive, and 

as a  result the lower bound of the intervals is always less than  the upper bound.

Results are presented in Table 5.5. In this case, simulation results for only the expo

nential distribution are presented.

Unfortunately, while Equation (5.35) is the distribution for the sum of an arb itrary  

num ber of independent identically distributed exponential random  variables, it is not par

ticularly simple, especially in comparison to the norm al distribution. In  particular, bo th
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exponential

k i 2 q V (2) Pi Po\i PA\i Pav

16 8 156 0.90083 0.9066 0.9830 0.3862 1 .0 0 0 0

16 7 156 0.98354 0.9848 0.9048 0.3554 1 .0 0 0 0

16 6 156 0.99998 1 .0000 0.8912 0.3501 1 .0 0 0 0

16 8 390 0.99901 0.9992 1 .0000 0.9880 1 .0 0 0 0

16 7 390 0.99999 1 .0 0 0 0 0.9992 0.9872 1 .0 0 0 0

16 8 596 0.99999 1 .0000 1 .0000 0.9998 1 .0 0 0 0

(a) e = 1

exponential

k i 2  q Ffi2,(4) Pi Po\i PA\i Pav

16 8 8 0.95625 0.9573 0.9735 0.6698 1 .0 0 0 0

16 7 8 0.97395 0.9758 0.9584 0.6748 1 .0 0 0 0

16 5 8 0.99972 0.9997 0.9323 0.6417 1 .0 0 0 0

16 4 8 1 .0 0 0 0 0 1 .0 0 0 0 0.9321 0.6414 1 .0 0 0 0

16 8 16 0.99924 0.9993 0.9996 0.9877 1 .0 0 0 0

16 7 16 0.99975 0.9998 0.9992 0.9873 1 .0 0 0 0

16 6 16 0.99999 1 .0000 0.9989 0.9870 1 .0 0 0 0

16 8 24 0.99999 1 .0 0 0 0 1 .0000 0.9998 1 .0 0 0 0

(b) e = 2

T a b le  5.5: Probability of convergence assuming exponentially distributed delays w ith 
d — 2.11, and u, =  0.34.

i  —  i + l  ’  '
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M athem atica and Maple had difficulty doing the integration with the exponential d istribu

tion. During the search for alternative methods it was discovered th a t Maple could generate 

C [19] code which allowed the function being integrated to  be evaluated a t any point. W ith  

this, it was possible to write a program to do the integration numerically. Accuracy of 

this m ethod was checked by trying it with the normal distribution. The results matched 

those in Tables 5.1 through 5.4, and took far less time to produce. However, com putational 

difficulties still made it impossible to obtain results for large k.

A comparison between the normal and exponential distributions yields conclusions sim

ilar to  those for the comparison of the normal and Weibull distributions. Com paring Ta

bles 5.1 and 5.6a shows much slower convergence for the exponential d istribution when 

e — 1. Comparing Tables 5.3 and 5.6b shows faster convergence for the exponential d istri

bution  when k =  16, w ith the normal distribution having faster convergence for larger k. 

Like the Weibull distribution, the exponential distribution generates narrow, high peaks, 

which move towards 0 more slowly than  those of the normal distribution. A careful com par

ison of Figures 5.4 and 5.7 bears this out. This parallel between the Weibull and exponential 

distributions is not surprising, their density curves have a  similar shape, as a  comparison 

of Figures 5.5 and 5.6 shows.

The analytical and simulation results are as close for the exponential d istribution as 

they are for the normal distribution, and the same observations w ith respect to  Poh and 

Pam hold. Perhaps more obvious in this case is the slightly higher probabilities obtained 

through simulation. This trend can also be seen w ith the normal distribution, though in 

th a t case the difference is less marked. This may be due to biases in the random  num ber 

generation routines. More likely it is a reflection of the various approxim ations made during 

the analysis. The net result of these approximations is a slightly conservative probability.

5.2.5 E xam ples w ith  e > o

T he examples of Section 5.2.4 all assume th a t g is small enough th a t its effects can be 

ignored. This allows the use of Equations (5.28) through (5.31) instead of the far more 

complicated Equations (5.21) through (5.24). While this may save com putational expense, 

it is likely th a t the time required to complete the necessary number of inquiries may be 

non-trivial. This section considers whether or not g can be safely ignored.

A fairly conservative value of 1 0  5 is used for g. And, since g is assumed non-zero, a 

value m ust be specified for A also. For these examples A =  100msec., or ten inquiries are
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normal Weibull

k 2q V (2) Pi Po\i Pa \i PAv Pi Pom PA\i P a v

16 102 0.90217 0.9398 0.9662 0.4766 1 .0000 0.2593 0.6703 0 .0 0 1 0 1 .0 0 0 0

16 1000 0.99566 1 .0000 1 .0 0 0 0 0.9999 1 .0000 0.499 0.879 0 .0 1 0 1 .000

32 1000 0.00152 0.0054 0.0544 0 .0 0 0 0 1 .0000 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

64 1000 0 .0 0 0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .000 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

(a) <7 =  0.3

normal Weibull

k 2q V (4) Pi PoM PA\i Pav Pi PoM PA\i Pav

16 6 0.93229 0.9332 0.9002 0.4612 0.9585 0.8778 0.8970 0.4055 0.9932
16 14 0.99934 0.9993 0.9982 0.9765 1 .0000 0.9979 0.9976 0.9614 1 .0 0 0 0

16 22 0.99999 1 .0000 1 .0 0 0 0 0.9997 1.0000 1 .0000 1 .0 0 0 0 0.9993 1 .0 0 0 0

32 12 0.90833 0.9099 0.8221 0.2205 0.9747 0.0968 0.2902 0 .0 0 0 2 0.6428
32 30 0.99912 0.9992 0.9967 0.9407 1 .0000 0.3540 0.5101 0.0017 1 .0 0 0 0

32 46 0.99999 1 .0000 1 .0 0 0 0 0.9986 1 .0000 0.5492 0.6580 0.0084 1 .0 0 0 0

64 42 0.90926 0.9134 0.7861 0 .1021 0.9999 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

64 106 0.99906 0.9993 0.9961 0.8963 1 .0000 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

64 166 0.99999 1 .0 0 0 0 1 .0 0 0 0 0.9976 1 .0000 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

(b) a = 1.0

Table 5.6: Probability  o f convergence when e =  1 and i — k/2,  assum ing norm ally
d istributed  delays w ith  ,_d+j =  2.11, /i =  0.34, g — 10- 5 , and X =  100.
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normal Weibull

k 2  q V (2) Pi Po\t P/\\i Pav Pi Po\i PA\i PAv

16 8 0.91167 0.9161 0.9492 0.5074 1 .0 0 0 0 0.9211 0.9574 0.5282 1 .0 0 0 0

16 20 0.99912 0.9994 0.9997 0.9896 1 .0000 0.9995 0.9998 0.9913 1 .0 0 0 0

16 32 0.99999 1 .0 0 0 0 1 .0 0 0 0 0.9999 1 .0 0 0 0 1 .0000 1 .0 0 0 0 0.9999 1 .0 0 0 0

32 2 0 0 0 0.26556 0.568 0.697 0.003 1 .000 0 .001 0.086 0 .0 0 0 1 .0 0 0

64 2 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

(a) a  — 0.3

normal Weibull

k 2 q V (4) Pi Po\i P\\i Pav Pi Po\i PA\i Pav

16 4 0.94650 0.9473 0.9388 0.5957 0.9877 0.9824 0.9808 0.8420 0.9990

16 10 0.99981 0.9998 0.9996 0.9939 1 .0000 1 .0000 1 .0 0 0 0 0.9999 1 .0 0 0 0

16 14 1 .0 0 0 0 0 1 .0000 1 .0 0 0 0 0.9998 1 .0000 1 .0000 1 .0 0 0 0 1 .0000 1 .0 0 0 0

32 8 0.91028 0.9119 0.8572 0.2914 0.9860 0.6822 0.7465 0.0856 0.9975
32 20 0.99920 0.9993 0.9975 0.9544 1 .0000 0.9784 0.9747 0.6616 1 .0 0 0 0

32 30 0.99999 1 .0 0 0 0 1 .0 0 0 0 0.9988 1 .0000 0.9980 0.9972 0.9354 1 .0 0 0 0

64 28 0.90219 0.9053 0.7950 0.1204 0.9999 0.0025 0.0764 0 .0 0 0 0 0.5841
64 72 0.99908 0.9992 0.9965 0.9054 1 .0000 0.013 0.098 0 .0 0 0 1 .000

64 112 0.99999 1 .0 0 0 0 1 .0 0 0 0 0.9977 1 .0000 0.027 0.137 0 .0 0 0 1 .0 0 0

(b) cr = 1.0

T a b le  5 .7 : P robability  o f  convergence when e =  2 and * =  k / 2, assum ing norm ally
d istributed  delays w ith  ,_d+i =  2.11, =  0.34, p =  10- 5 , and A =  100.
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F ig u re  5.8: f£p{x)  and f i jr (x ) ,  assuming a il0 =  0, k  =  16, i =  8 , q =  39, p  =  0 
and p — 38, g =  10~5, A =  100, and normally distributed delays with 
p  =  0.34, and a  =  0.3.

completed each second. Figure 5.8 gives the first indication th a t q and A can affect results. 

This figure plots f £ p ( x )  and fy p (x )  for N s for the first and last inquiry pairs when q — 39. 

Careful comparison of the two plots shows tha t the f  rp(x) curve is further left when p  =  0, 

and the fy p {x )  curve is further right when p = 0. The result is tha t the interval generated 

by the  first inquiry pair is likely to be wider than  intervals generated by later inquiry pairs. 

The difference between curves is small enough tha t one might believe it to  be insignificant, 

analysis shows otherwise. Tables 5.6 and 5.7 summarize the results.

A norm al distribution is used for the analysis. Even though Section 5.2.4 exposed 

some difficulties with the normal distribution, it is the only available choice. The Weibull 

d istribution does not allow analysis, and while the exponential distribution allows analysis, 

it does not allow alteration of a, and it is com putationally expensive to evaluate. Even 

using the normal distribution, neither M atliematica nor Maple were able to evaluate the
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integral in Equation (5.2.3), and the alternative method used for exponential distributions

had to  be used. To reduce the com putational load, results are only provided for N k/ 2 ■ The 

point about other nodes converging more quickly was made in Section 5.2.4, and holds here 

as well.

independent of q. After a guess is made, the lower bound of its interval is decreased, and 

the upper bound of its interval is increased, at a rate of 2g. If the actual skew is assumed to 

rem ain constant, bo th  bounds of the interval will be a t least 2 e from the actual skew value 

after a  tim e of e/g. Such an interval is useless for convergence since it cannot be intersected 

w ith any other interval containing the actual skew and result in an intersection of w idth 

less th an  2e. W hen e =  1msec., and g =  10~5, intervals reach this point after 100 seconds, 

which is the tim e taken for 1000 inquiries if A =  100msec. W hen e is increased to  2msec., 

the  m aximum “useful” number of inquiries increases to 2000. In cases where q reaches its 

maximum before the probability of convergence for N k/2 reaches 0.99999, the probability of 

convergence when q is at its maximum is shown.

As the results of Tables 5.6 and 5.7 show, a non-zero g can have considerable effect on 

the ability of the estim ation algorithm to make accurate estimates. And, as pointed out 

above, the values of e, g, and A place an effective limit on the value of q. But, as can also 

be seen from Tables 5.6 and 5.7, the effects of g and A are greatest in cases where q is large. 

There is little difference between corresponding entries of Tables 5.2 and 5.7b, nor between 

corresponding entries of Tables 5.4 and 5.8b. W hat differences do exist are found when 

k  =  64, and involve an increase in q of no more than 3. The picture is very different when 

com paring Tables 5.1 and 5.7a and Tables 5.3 and 5.8a. Differences are found even when 

k  =  16, and lim its on q are reached for larger k.

Reducing q is the obvious method for reducing the effects of g and A. However, th a t may 

not be possible or practical. The value of q depends on k, g, a, and e, of which only e can 

usually be easily changed. But the value of e is limited by the adjustm ent algorithm , and if 

it cannot be increased, q cannot be decreased. This leaves only the alternative of decreasing 

either p, or A, or both. The value of g is determined by the hardware tha t generates the 

clock signal. Buying better quality hardware (if available and practical) can reduce g. The 

value of A is determ ined by limitations on network bandwidth, and by how much of it one 

is willing to  let the clock distribution algorithm use. To get an idea of ju s t how much can 

be gained from reductions in g and A, Tables 5.8 and 5.8 show the results when g is reduced

An im m ediate result of the choice of g and A is a bound on the value
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normal Weibull

k 2 q V2) Pi Po|; PA\i Pav Pi Po\i PA\i Pav

16 78 0.90616 0.9098 0.9473 0.3641 1 .0 0 0 0 0.2760 0.6751 0.0014 1 .0 0 0 0

16 194 0.99901 0.9991 0.9997 0.9845 1 .0 0 0 0 0.6948 0.9375 0.0660 1 .0 0 0 0

16 298 0.99999 1 .000 1 .0 0 0 1 .0 0 0 1 .000 0.874 0.987 0.288 1 .0 0 0

(a) a — 0.3

normal Weibull

k 2 q V4) Pi Po\i PA\i Pav Pi P<i\i P am Pav

16 6 0.93304 0.9334 0.9004 0.4620 0.9590 0.8792 0.8978 0.4077 0.9953

16 14 0.99938 0.9994 0.9983 0.9772 1 .0 0 0 0 0.9980 0.9978 0.9636 1 .0 0 0 0

16 22 1 .0 0000 1 .0000 1 .0 0 0 0 0.9997 1 .0 0 0 0 1 .0000 1 .0 0 0 0 0.9994 1 .0 0 0 0

32 12 0.90980 0.9107 0.8231 0.2225 0.9753 0.0994 0.2919 0 .0 0 0 2 0.6541

32 30 0.99921 0.9992 0.9969 0.9432 1 .0 0 0 0 0.3748 0.5251 0 .0 0 2 2 1 .0 0 0 0

32 46 0.99999 1 .0000 0.9999 0.9987 1 .0 0 0 0 0.5871 0.6845 0.0119 1 .0 0 0 0

64 40 0.90023 0.901 0.767 0.088 1 .000 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

64 102 0.99908 0.999 0.996 0.885 1 .000 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

64 160 0.99999 1 .000 1 .0 0 0 0.997 1 .000 0 .0 0 0 0 .0 0 0 0 .0 0 0 0.004

(b) a — 1.0

Table 5.8: P robability  o f convergence when e =  1 and i =  k/2,  assum ing norm ally
d istributed  delays w ith  ._d+i =  2.11, g, =  0.34, g =  10- 6 , and A =  10.
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normal Weibull

k 2  q V (2) Pi Po\i Pa \i Pav Pi Po\i PA\i Pav

16 8 0.91583 0.9179 0.9504 0.5126 1 .0000 0.9226 0.9585 0.5346 1 .0 0 0 0

16 20 0.99936 0.9994 0.9997 0.9896 1 .0000 0.9996 0.9999 0.9926 1 .0 0 0 0

16 30 0.99999 1 .0000 1 .0 0 0 0 0.9998 1 .0000 1 .0000 1 .0 0 0 0 0.9999 1 .0 0 0 0

32 802 0.90026 0.908 0.940 0.166 1 .000 0.026 0.265 0 .0 0 0 1 .0 0 0

(a) a =  0.3

normal Weibull

k 2  q V (4) Pi Po\i PA\i Pav Pi Po\i PA\i Pav

16 4 0.94690 0.9473 0.9388 0.5957 0.9877 0.9826 0.9807 0.8422 0.9990

16 10 0.99982 0.9998 0.9996 0.9939 1 .0 0 0 0 1 .0000 1 .0 0 0 0 0.9999 1 .0 0 0 0

16 14 1 .0 0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 0.9998 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0

32 8 0.91119 0.9119 0.8572 0.2914 0.9866 0.6847 0.7475 0.0869 0.9976
32 20 0.99925 0.9993 0.9975 0.9544 1 .0000 0.9796 0.9756 0.6728 1 .0 0 0 0

32 30 0.99999 1 .0000 1 .0 0 0 0 0.9988 1 .0 0 0 0 0.9983 0.9976 0.9422 1 .0 0 0 0

64 28 0.90507 0.908 0.797 0.123 1 .000 0.003 0.055 0 .0 0 0 0.614

64 70 0.99907 0.999 0.996 0.897 1 .0 0 0 0.015 0.106 0 .0 0 0 1 .0 0 0

64 110 0.99999 1 .000 1 .0 0 0 0.998 1 .000 0.035 0.142 0 .0 0 0 1 .0 0 0

(b) <7 = 1.0

T a b le  5 .9 : P robability  o f convergence when e =  2 and i — k/2,  assum ing norm ally
d istributed  delays w ith  . d : =  2.11, /i =  0.34, q =  10~6, and A =  10.
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a = 0.3 II H-i b

Distance e =  1.0 V) II to o £ — 1 .0  e =  2 .0

1 2 i 7 3

2 6 i 12 5

3 18 3 17 8

4 53 5 23 11

5 159 9 29 14

6 503 19 36 18

T a b le  5 .10: Distance away vs. number of inquiries needed, assuming normally dis
tribu ted  delays w ith ,_d = 2 .11 , and p  =  0.34.

to  10~ 6 and A is reduced to 10.

A quick look a t Tables 5.8 and 5.9 is enough to determine th a t the reduction in g and 

A has had a  considerable effect on the probability of convergence. The correspondence 

between Tables 5.2 and 5.9b and Tables 5.4 and 5.10b is nearly perfect, showing only 

a  slight reduction in some of the probabilities of convergence. In  Table 5.10a it is now 

possible to have a  probability of convergence of 0.99999 when k =  32, in Table 5.8a the 

highest probability of convergence is 0.2655G. In Table 5.9a, it is probably possible to get 

a  probability of convergence greater than  0.9 when k  =  32 (since the maximum q is now 

50000), except the com putational costs of finding it are too great.

5.2 .6  C om parisons

The examples of Sections 5.2.4 and 5.2.5 only compare the algorithm to itself. Any 

algorithm  can look good in comparison with itself, what counts is how well the algorithm  

looks in comparison w ith other algorithms which perform the same task. Here the other 

algorithm  of interest is the similar algorithm in [1 1 ], assuming single-node inquiry.

The estim ation algorithm  in [11] simply repeats single-node inquiries until the difference 

between the tim e taken for an inquiry and the minimum time required for an inquiry is less 

th an  2e. If, as above, independent identically distributed hops are assumed, and the node 

which is the object of the inquiry is h hops away, the probability th a t any given inquiry will 

complete quickly enough is F  ^  (2e). If inquiries are independent, the probability th a t an
0-.2A

inquiry w ith the desired property will be found in p  inquiries or less is 1 — (1 — F  ^  (2e))p.
0 —» 2 h

Table 5.10 shows the number of inquiries needed for nodes from 1 to  6  hops away in order
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th a t the  probability of a  near-minimal time inquiry being encountered is a t least 0.99999.

In  order for the estim ation algorithm  of [11 ] to be used w ith peer synchronization, every 

node m ust make inquiries of every other node. The total number of inquiries each node 

must make depends on the distances to the other nodes in the system, which depends on 

the system architecture. For example, in a 16-node hypercube, for each node there will be 

4 nodes 1 hop away, 6  nodes two hops away, 4 nodes 3 hops away, and 1 node 4 hops away. 

Using Table 5.10, and assuming a — 0.3 and e =  1.0, each node will make 4(2)+6(6)+ 4(18)+  

1(53) =  169 inquiries, or a total of 16 x 169 =  2704 inquiries system-wide. Since each single

node inquiry requires 2 synchronization messages, containing 3 tim estam ps, a  to tal of 5408 

synchronization messages will be sent, containing 8112 timestamps. Table 5.11 continues 

these com putations, and compares them with the number of synchronization messages and 

tim estam ps sent by a A;-node inquiry. Equations (5.1) and (5.2) were used to determ ine the 

num ber of synchronization messages and timestamps sent in each fc-node inquiry.

The comparisons are made assuming the values of g and A used in Section 5.2.5. The 

estim ation algorithm  of [11] is assumed to be essentially free from the effects of g and A, 

though this may not be true in practice. The inquiries N t sends to Nj  m ust be sent serially. 

If a  large number of inquiries must normally be sent, but a successful inquiry appears early, 

the resulting estim ate must wait until estimates of the remaining nodes are available. If 

other inquires are not so lucky, the estimate may be forced to wait a long time, long enough 

th a t clock drift may have rendered it inaccurate.

The general pattern  of the comparison is tha t the /,;-node estim ation algorithm  sends 

fewer inquiries and synchronization messages (and more timestamps) when a  is large, and 

sends more of everything when a is small. The probability of a near-m inim al delay pa th  

decreases rapidly with path  length, eventually there is little chance th a t the &-node inquiry 

will complete in near-minimal time, and thus little chance th a t the interval algorithm  will 

be able to  make accurate estimates. Single-node inquiry uses shorter paths, and can thus 

be used for larger systems, though a t considerable cost.

The interval estim ation algorithm is therefore usually advantageous when near-minimal 

delay paths are common, even for long paths. But there are advantages to  the interval 

algorithm  besides a reduction in the number of synchronization messages. Perhaps the 

most im portant is the structure it brings to the clock distribution process. Because of the 

fc-node inquiry each node sends and receives synchronization messages at regular intervals, 

synchronization message sends and receives can be scheduled and anticipated. The result
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single-node inquiry fc-node inquiry

a £ n #  inquiries #  mess #  tstamp #  inquiries #  mess #  tstamp

0.3 1.0 16 2704 5408 8112 00 oo oo

0.3 1.0 32 21568 43136 64704 00 oo oo

0.3 1 .0 64 173696 347392 521088 00 oo oo

0.3 2 .0 16 432 864 1296 32 992 12032

0.3 2 .0 32 2528 5056 7584 00 oo 00

0.3 2 .0 64 14656 29312 43968 oo 00 oo

1.0 1 .0 16 3056 6112 9168 22 682 8272

1.0 1 .0 32 15008 30016 45024 46 2898 69920
1 .0 1 .0 64 71488 142976 214464 166 21082 1014592

1.0 2 .0 16 1360 2720 4080 14 434 5264
1.0 2 .0 32 6848 13696 20544 30 1890 45600
1.0 2 .0 64 33280 66560 99840 112 14224 684544

(a) q = 10_ 5 a n d  A = 100

single-node inquiry fc-node inquiry

a £ n #  inquiries #  mess #  tstamp #  inquiries #  mess #  tstamp

0.3 1.0 16 2704 5408 8112 298 9238 112048
0.3 1 .0 32 21568 43136 64704 - - -
0.3 1 .0 64 173696 347392 521088 - - -

0.3 2 .0 16 432 864 1296 30 930 11280
0.3 2 .0 32 2528 5056 7584 - - -
0.3 2 .0 64 14656 29312 43968 - - -

1.0 1 .0 16 3056 6112 9168 22 682 8272

1 .0 1 .0 32 15008 30016 45024 46 2898 69920
1.0 1.0 64 71488 142976 214464 160 20320 977920

1.0 2 .0 16 1360 2720 4080 14 434 5264
1.0 2 .0 32 6848 13696 20544 30 1890 45600

1.0 2 .0 64 33280 66560 99840 110 13970 672320

(b) q — 10 6 an d  A =  10

Table 5.11: Comparison of number of inquiries, synchronization messages, and tim e
stam ps needed in a hypercube when using single-node inquiry vs. when 
using /c-node inquiry.
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is less interference w ith regular network traffic. In contrast, having each node send its own 

single-node inquiries causes a  mass of synchronization messages, all sent a t once, traveling 

in all directions. Each node may be conducting up to k — 1 inquiries a t once, each of which 

should complete as quickly as possible, all of them interfering w ith one another. Trying to 

lim it the num ber of messages sent at any time will reduce the interference, bu t increases 

the likelihood of clock drift becoming a problem. And the examples in Table 5.11 assume a 

hypercube architecture, which is nearly a best-case situation for single-node inquiry. O ther 

architectures, such as a  mesh or ring, would increase both the maximum and average dis

tance between nodes, and greatly increase the number of synchronization messages.

5.3 An Averaging Approach

The m ethod described in Section 5.2 concentrated on the worst case behavior of mes

sages, and made sure tha t its guesses had a guaranteed uncertainty. This pessimistic ap

proach has the advantage tha t any guess is guaranteed to  be off by no more th an  its 

uncertainty, bu t there is only a probability tha t after 2 q inquiries th a t the uncertainty of 

a  particular guess will be less than  some given e. If one were particularly unlucky, one 

m ight send 2 q inquiries and find none of the resulting guesses had the desired uncertainty. 

W hile increasing q can reduce the likelihood of this happening, the possibility can never be 

eliminated.

W hat would happen if, instead of considering worst-case behavior, one used expected 

case behavior? If the expected time between the creation of T; and T0a is .Aq, then N 0 can 

com pute the “expected” value of a im as 7) +  ,fl — T0“. If the value of lfQ is not known 

a-priori, it can be estim ated from the difference between T0 and Tg.

Each guess is therefore one of these “expected” skews. The system may act unexpectedly 

during any particular inquiry, so any particular guess may be off by an arb itrary  am ount. 

On average, however, the system will act as expected, so guesses can be combined by 

averaging them , and the result should be close to the true skew. As the number of guesses 

increases, the probability tha t their average is within e of the true skew also increases. The 

average becomes an estim ate when enough inquiries have been sent so th a t the probability 

th a t the average is within e of the true skew is greater than some specified value, called the 

probability o f validity, usually 0.999 or 0.99999 or some other value close to 1. The num ber 

of inquiries needed is a constant tha t depends primarily on the variance of synchronization
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message delays. In  contrast to the interval algorithm, the uncertainty of an estim ate is not 

guaranteed, bu t the num ber of inquiries needed to make an estim ate is.

This algorithm  is similar to the one described by Arvind [2]. However, [2] focuses on 

a  m aster/slave system where synchronization messages are sent from m aster to slave only. 

This does not allow .A to be deduced from round-trip  times, and thus is vulnerable to 

fluctuations in message delay characteristics. Some mention is made of using single-node 

inquiry, and deducing A  from the total time taken, bu t this is not fully explored. L ittle is 

also said about the effects of clock drift during the times the messages are being sent.

5.3.1 A n  A verage G uess

W hile the estim ation algorithm  may be different, d istribution of clock inform ation is 

identical, therefore the same notation used for the interval algorithm  will be used here. 

As for the interval algorithm , the estimation process will be considered from the point of

view of N 0, since any node can become N 0 by simply re-labeling the nodes. And it is still

assumed th a t 2 q inquiries are done, alternating direction each time, and th a t the s ta rt times 

of consecutive inquiries are A apart.

Calculation of the individual guesses is straightforward. If inquiry h is a  forward inquiry, 

then  the guess for the skew of N , w ith respect to N 0, a'^0, is:

&i* =  T? +  £ k +  W hk - T ,* (5.36)

T he corresponding equation for backward inquiries is:

« « o = ^ fc +  /lo +  K - r o (5-37)

The estim ate derived from the 2q inquiries is the average of the guesses:

a ilQ =  (T 'iP +  Ti P+1 +  'H  +  /l? 'T  +  K P +  ~  Tl P ~  ToP+1)  (5-38)
y p=o

In some cases there may be no mean delay time. At any time there is a  mean delay, 

b u t its value is not known and cannot be predicted. Burst loads or highly variable loads 

are the  usual reason for such behavior. In such cases the mean delay may be com puted (or 

estim ated) from the round-trip  time. For each i, 0 < i < k, two constants are specified:

,Cfc: T he expected ratio  of +  d Q  /  {̂0̂ k +
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{Co: T he expected ratio  of (  dQ +  .

Then f^ k «  ,Cfc (T 1̂ — T07t) and /^‘ «  ,Cq (T f  — T/1). The final estim ate is then:

+ g  E  (r<?"+1 -  f? + ' -  w % ')  -  JL g  (lyf + w^»)
p = 0  ^  p = 0

- ^ E ( t i2, +  to’’+‘) (S-3»)
”  p = 0

Both the individual guesses and the final estim ate are probably close to the actual skew 

value, bu t there are no guarantees. There are two main sources of inaccuracy in bo th  the 

guesses and the estimate. Inherent error is the result of clock drift both  during and between 

inquiries. Its  value cannot be determ ined a-priori, bu t must be computed along w ith the 

guess or estim ate. However, a  probable upper bound may be com puted ahead of time. In  

general, the inherent error of the estim ate is greater than  tha t of the guesses, and increases 

as q increases. Inherent uncertainty is the result of the variability of message delays, and 

the resulting difference between and and the actual delay. Its value can be com puted 

a-priori, and is such tha t, assuming the inherent error is zero, the difference between the 

actual skew value and the guess or estim ate is less than  the inherent uncertainty, w ith 

probability greater than  or equal to  the probability of validity. The inherent uncertainty of 

the estim ate is usually lower than  th a t of any guess, and it does decrease as q increases. The 

uncertainty of a  guess or estim ate is the sum of its inherent error and inherent uncertainty, 

and the rem ainder of this sections shows how to find a q such th a t the uncertainty of the 

estim ate is less than  the specified maximum uncertainty, e.

5.3.2 Inherent Error

There are two sources of inherent error in d 7l;0: clock drift during and after inquiry h, 

I the com putation of f^f or 

inherent errors of the guesses.

and the com putation of or . The inherent error of the estim ate is the average of the

Error from Clock Drift

Ideally, for forward inquiries d 7‘0 =  I f  +  ,dfc +  +  VV7t — T f .  However, since d^ +  X 1̂

is not known, ^  is used instead, and since W h is not known, W h is used instead. To get
' t —*h i —*k  ' i —* fc °
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an idea of how much error is introduced by the use of MR, consider the following:

R u - * ? )  <  R  <  R u  +  e)
W h  ,A,h W '>y -*   < vv <

« < » + / >  <  W “ <
1 — g ~  i-,k ~~ 1 — g

W h - pW h < W h < W h + p W h
i —* fc i —*k  —  i  —* A: —  i —»fc ^  i —*h

W here the final step involves dropping the g2 term  in the denominators. Thus, the 

inherent error introduced by using W ^  is This still does not account for clock drift

after the  inquiry has completed, and before the estim ate is computed. This adds another 

2gX(2q — h — 1) to the inherent error of <5'*0.

Error from Computation of R  and R

W hen estim ated means are to be used, one must specify the variances of X  and X ’ a 2
’ ^  J  0 — k  fc —  O O— fc

and R ,  chosen large enough to allow for any likely variation during system operation.

Consider the case of forward inquiries first. Consider the relationship between actual 

and measured times, in this case R ( ( l  — g)  <  R 1 <  R * ( l  +  g)-  Therefore, if g 2 term s are

ignored, then R * ( l  — 2 g)  <  R * ( l  -  g)  and R (1  +  g)  <  R * ( l  +  2 p). It then follows that:

(„i+Si+Kl) (i - s) <  T i - T *  < („£+s i+Kl) a + <?)
(»'!. + Si) U - e) < T ,, _  T n < („ft + Si) (! + e)

+ K i d - 2 s )  ‘ ” -  + K l d  +  2e)

U  + Sl)(i-e)-2eK £ 2f-2?-Kl £ („£ + Sl) d + <?) + 2eKl

Since R  =  . Cfc (l"l.1 — T0ft — R 1̂ , the inherent error added to  the guess from the compu

ta tion  of R  is ± R p  ( R  +  R  +  2 R 1) .  For backward inquiries the inherent uncertainty

»iHbe±,C.e(^  + jr‘ + 2K).

Inherent Error of the Final Estim ate

Given all the above calculations, a formula for the inherent error of the final estimate, 

e, can be derived. Equation (5.40) is the formula to use when R  and R  are constants. 

E quation (5.41) is the formula to  use when R  and R  are calculated.
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e =  ^ - D  +  l g ^  +  l V ^ ' )  (5.40)
* p= 0

+  i f  E  ( . 1  +  ^ 1 +  2f f " )  (5-41)

In bo th  equations the inherent error depends on a number of variables whose values 

are not known beforehand. This makes it impossible to predict the inherent error of the 

estim ate. However, an upper bound on the inherent error would serve just as well, and one 

can be found by replacing ^o> ^  > an(l W,„ in Equations (5.40) and (5.41) w ith their 

respective upper bounds. In general, no absolute upper bound may exist for these values, 

bu t highly probable upper bounds can usually be determined, yielding a  highly probable 

upper bound for the inherent error. By choosing upper bounds tha t are probable enough, 

one can com pute an upper bound for the inherent error for any specified probability.

5.3 .3  Inherent U ncerta in ty

The inherent uncertainty of a guess or estim ate is entirely due to the variability of mes

sage delays, and is essentially a bound on the error so introduced. Because there is usually 

no absolute upper bound on message delays, there can be no absolute upper bound on the 

error they introduce. For this reason the inherent uncertainty always has an associated 

probability, such th a t the probability the error caused by uncertainty in message delays is 

no greater than  the inherent uncertainty, is greater than or equal to the specified probability.

The inherent uncertainty when constant means are used can be found from an exami

nation  of Equation (5.38). The right side of the equation can be re-organized as follows:

Y  E [ { T i P -  T l P -  C f  +  & )  +  { T i V+1 -  T 0 P+1 -  ^ I Po+1 +  & ) ]
"  p = 0

The estim ate itself is then the sum of 2q terms. For each term, one of the following 

approxim ations will hold:

Ti - Tk - W hh ~  +  £

T ? - T £ - W ho «  a m + do + X*
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W here the approxim ation is a result of using or W 1̂ instead of or VV^} and any 

error introduced by this approxim ation has been accounted for by the inherent error. So, if 

P  and M are equal to the actual means of d +  A  and d +  A then the mean value of
»—*0 ^  t — k i — k t —»0 » —0 7

each term  will be o;,;0. The variance of each term  is the variance of either .T or A  which 

should be equal to either ^ 2 or cr2.

A similar re-arrangement can be done for the right-hand side of Equation (5.39):

“  £  [ (T- p -  T lp -  W \p +  ,Cfc [ i f  -  T 2p -  W ^ ) )
y p=0

| ^ r p 2 p + l  __  rp 2 p -\-l  __  p ^ f 2 p + l  £  ^ r p 2 p + 1 __  y 2 p + l  __  p ^ 2 p + l ^ ^ j

Each term  will have a mean of a iw if ,Cfc and .C are equal to  the actual means of 

(  d + X \  /  ( d, |  and ( d +  / ( d +  Af'). The variance of each term  will be\ i-*h i~>kj f \ o —k o—>kJ —♦ o *—*oy < \ f c —o k —► oy

the variance of either the C or C term, which will be either C cr2 or C o 2 .
» —► Aj i —► 0  5 i —  k  0 — k  * —. 0  k  —  Q

Since an estim ate is the sum of a number of independent random  variables, application 

of the central lim it theorem is tempting. One might hesitate due to  the bad experience 

w ith this theorem in Section 5.2.4, but there is good reason it may work be tte r here. In 

Section 5.2.4 the number of variables summed was either k, — i or i, which was apparently 

too small for the approxim ation to work, especially for large variances. In this case 2q 

variables are being summed, and each of them is the sum of k — i or i variables, for a  to tal 

of kq independent random  variables. Moreover, it should be intuitively obvious th a t as the 

variance of delays increases, the variability of the guesses will increase, so q will increase. 

The greater number of variables (increasing with the variance) in the sum means th a t the 

approxim ation of the central limit theorem is more likely to be valid.

Application of the central limit theorem makes it very easy to predict the mean and 

variance of an estimate. The mean of the sum will be the sum of the means, and the 

variance of the sum will be the sum of the variances. The value of a il0 will be approxim ately 

normally distributed with mean a il0 and variance (<72 +  n 2 j  /4q  if constant means are used, 

or variance (,Cfc o<72 +  fcCo /4<y if calculated means are used. If P, (x) is the probability 

th a t the error introduced by uncertainty in message delays is less than  x, then  for constant 

means:

P.M = Erf(- X̂
\  \ cr +  G
'  V i — k i —. 0 >

For calculated means:
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Pc(x) = Er f \  X^
J  C a 2 +  C CT2

‘ V o — k i - * 0  fc-»0 >

If  E r f 1 is the inverse error function, then for a given x, a  function mapping probability 

to  the value of q can be found.

a  + a  /  , \ 2 

q =  \ E r f  {Pe{x))) (5-42) 
C a 2 +  C o 2 , \ 2q =  ( E r f i {Pe{x))^ (543)

Equation (5.42) is used for constant mean, and Equation (5.43) is used for estim ated 

means.

The inherent uncertainty of an estim ate is the value of x  such th a t Pt {x) is equal to  the

probability of validity. To find minimum q so th a t the uncertainty of an estim ate is less

than  e, set x  to  be e minus the inherent error3, set Pt (x) to be the probability of validity, 

and use either Equation (5.42) or Equation (5.43). If one wishes to allow for the probability 

associated w ith the inherent error, set Pc{x) to be the probability of invalidity divided by 

the  probability for the inherent error.

5.3 .4  E xam ples w ith  g =  0

As for the interval algorithm, the first set of examples assume g «  0. This assum ption 

simplifies calculations since the inherent error is 0. Assuming individual delays are normally 

d istributed causes no problems for the averaging algorithm, in large part because it makes 

no assumptions about absolute minimum delay times4. Even so, simulations were run using 

the  Weibull distribution. Both distributions assumed g =  2.11 -f 0.34 =  2.45, and the same 

standard  deviations as before, a =  1.0 or exsig  =  0.3. Tables 5.12 and 5.13 summarize the 

results.

Since all delays are assumed independent and identically distributed, =  (k — i)a 2, 

o^o = icr2, o'2 =  = kcr2, ,Cfc =  (k — i ) / k , and .Cq =  i /k.  Equations (5.42) and (5.43)

therefore reduce to the following:

C o m p u ta t io n  o f x is c o m p lica ted  by  tl ie  fac t th a t  th e  in h e ren t e rro r d e p e n d s  on  q. A  sim p le  ite ra tiv e
p ro ced u re , desc rib ed  in  S ection  5.3.5, can  be  used  to  resolve th is.

4R ealistica lly , th e  a b so lu te  m in im u m  delay  is 0. H ow ever, th e  averag ing  a lg o r ith m  is u n a ffec ted  by 
n eg a tiv e  delays, a n d  th eo re tic a lly  w ou ld  w ork even if all delays w ere negative .
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normal Weibull

k 2  q Pe(l) Pi Po\i P A \ i Pi Po\i Pah

16 2 0.90442 0.9038 0.7153 0.1440 0.9073 0.7373 0.1779

16 8 0.99914 0.9989 0.9943 0.9552 0.9985 0.9930 0.9514

16 16 0.99999 1 .0 0 0 0 1 .0 0 0 0 0.9996 1 .0 0 0 0 0.9999 0.9990
32 4 0.90442 0.9042 0.6675 0.0793 0.9053 0.6696 0.0856
32 16 0.99914 0.9990 0.9934 0.9418 0.9990 0.9930 0.9396

32 30 0.99999 1 .0000 1 .0000 0.9992 0.9997 0.9985 0.9942

64 8 0.90442 0.9044 0.6286 0.0474 0.9025 0.6254 0.0466

64 32 0.99914 0.9992 0.9923 0.9242 0.9991 0.9919 0.9222

64 58 0.99999 1 .0 0 0 0 0.9999 0.9985 1 .0 0 0 0 0.9999 0.9984

(a) a --- 0.3

normal Weibull

k 2  q Pe(l) Pi Po\i P A \ i Pi Po\i Pah

16 22 0.90275 0.9034 0.7153 0.1433 0.9173 0.7876 0.2742

16 88 0.99909 0.9991 0.9947 0.9580 0.9975 0.9907 0.9433

16 158 0.99999 1 .0 0 0 0 0.9999 0.9992 0.9999 0.9994 0.9957
32 44 0.90275 0.9030 0.6601 0.0757 0.9064 0.6905 0.1104
32 174 0.99903 0.9990 0.9929 0.9363 0.9986 0.9915 0.9324
32 314 0.99999 1 .0000 0.9999 0.9987 1 .0000 0.9998 0.9974
64 88 0.90275 0.9028 0.6226 0.0452 0.9035 0.6379 0.0556
64 348 0.99903 0.999 0.992 0.918 0.999 0.991 0.919
64 626 0.99999 1 .000 1 .000 0.998 1 .000 1 .000 0.998

(b) a = 1.0

Table 5.12: Probability  o f  validity w hen e =  1.0, w ith  \i =  2.45.
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normal Weibull

k 2  q ^ ( 2 ) Pi Po\i Pa \i Pi Po\i Pa \i
16 2 0.99914 0.9991 0.9951 0.9610 0.9977 0.9908 0.9429

16 4 0.99999 1 .0 0 0 0 1 .0000 0.9996 0.9999 0.9997 0.9973
32 2 0.98158 0.9799 0.9102 0.5172 0.9805 0.9156 0.5598
32 4 0.99914 0.9989 0.9933 0.9413 0.9984 0.9918 0.9368
32 8 0.99999 1 .0 0 0 0 1 .0000 0.9996 1 .0000 0.9999 0.9988
64 2 0.90442 0.9038 0.6288 0.0478 0.9037 0.6351 0.0544
64 8 0.99914 0.9991 0.9925 0.9254 0.9990 0.9919 0.9236
64 16 0.99999 1 .0 0 0 0 1 .0000 0.9994 1 .0000 1 .0000 0.9992

(a) cr =  0.3

normal Weibull

k 2 q Pe( 2) Pi Po\i Pa \i Pi Po\i PA\i
16 6 0.91674 0.9169 0.7510 0.1914 0.9406 0.8902 0.5943
16 22 0.99909 0.9990 0.9943 0.9562 0.9946 0.9855 0.9254

16 40 0.99999 1 .0 0 0 0 0.9999 0.9992 0.9995 0.9983 0.9891
32 12 0.91674 0.9168 0.7003 0.1062 0.9280 0.7803 0.2419
32 44 0.99909 0.9990 0.9933 0.9393 0.9974 0.9884 0.9262
32 80 0.99999 1 .0 0 0 0 0.9999 0.9989 0.9936 0.9848 0.9566
64 22 0.90275 0.9033 0.6245 0.0450 0.9068 0.6635 0.0783
64 88 0.99909 0.9991 0.9921 0.9223 0.9987 0.9904 0.9204
64 158 0.99999 1 .0 0 0 1 .000 0.998 1 .000 1 .000 0.996

(b) a — 1.0

Table 5.13: Probability  o f  validity when e =  2.0, w ith  fj, =  2.45.
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g =  2^2 ( i?r^_1 (Pe(a;) ) )  (5 -44)

W hich does not depend on i. Therefore, the tables have no column for i, and results 

are not presented for particular nodes. Also, since all estim ates generated by the averaging 

algorithm  have the same uncertainty, there is no notion of the average uncertainty being 

less than  e. Thus there is no column for PAv. The remaining columns are the same as for 

the interval algorithm.

The analytical and simulation results for normal distribution m atch up very closely. 

However, while the simulation results for the normal and Weibull distributions are quite 

close, there is a general pattern  to their differences. A careful comparison shows th a t when q 

is small, and Pi is about 0.99 or less, Pi will be slightly greater for the Weibull distribution 

than  for the normal distribution. The situation reverses when q becomes large enough 

th a t Pi is greater than  0.99, the normal distribution yields a  higher Pl than  the Weibull 

distribution. The same observations may be made for P0|i and Pam- And in all cases the 

effect is more pronounced when a  — 1 .0 .

The close m atch between simulation and analytical results confirms th a t the central 

lim it theorem does provide a good approxim ation in this case. The close m atch between 

norm al and Weibull distribution shows tha t the shape of the distribution does not m atter, 

only its variance.

Finally, the simulation results verify the relationships between q. k, and o  seen in Equa

tion (5.44). The relationship between q and k should be linear, and as k  doubles from 16 to 

32, and then 32 to  64, the values of q also double. The relationship between q and cr2 should 

also be linear. The ratio  1.02 /0 .32 is approximately 11, so q should increase by a  factor of 

11 as a  changes from 0.3 to 1.0. This is also the case, there are a few exceptions, which 

are apparently due to the granularity of q (which must be an integer), and the num ber of 

inquiries (which is twice q).

5.3.5 Exam ples w ith Q >  0

Assuming g =  0 causes inherent error to be neglected. Normally, g will be very small, 

and since all the inherent error terms in Equations (5.40) and (5.41) contain g, the inherent 

error should be small as well. This is similar to the argument used for the interval algorithm, 

which turned out to be incorrect. Therefore, this section provides examples in which the 

effects of inherent error are taken into account.
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The same values of q and A are used as in Section 5.2.5, so for the first set of examples 

q =  10~ 5 and A =  100. The values of // and a  are the same as above. Estim ated means 

are assumed to be used since the inherent error of Equation (5.41) is greater th an  th a t of 

Equation (5.40), and thus will provide more of a worst-case example. The inherent error 

of Equation (5.41) depends on the value of Qdk +  oJ o, so a maximum for this value m ust be 

supplied, for these examples the maximum is assumed to be 6 msec.

Exam ination of Equation (5.41) shows tha t if individual delays are independent and 

identically distributed, then inherent error (like inherent uncertainty) does not depend on 

i. Equation (5.44) may still be used to determine q, only e —e is used in place of e. A minor 

difficulty arises because e depends on q. This can be resolved through simple iteration. 

Assume e =  0 to s ta rt, and compute q. Find e for the computed q, and re-com pute q for 

the  new value of e. If the two values of q arc not equal, re-compute e for the new q, and 

re-com pute q for the new e. Continue until successive r/’s are equal, or until e >  e. Since 

each e is greater than  the previous one, each q is at least as large as the previous one, so 

one of the term ination conditions is guaranteed to occur.

The results are summarized in Tables 5.14 and 5.15. Another column has been added, 

e, which shows the inherent error for the specified value of q. Note also th a t P e (e — e) is 

calculated instead of P £(e).

The value of inherent error for a given q is dominated by the g\(2q  — 1) term  (at least 

when the node wait is 0). W hen e =  1 the “maximum” q is 500, any larger value of q will 

cause an inherent error larger than e. However, the maximum probability of validity occurs 

when q is much less than 500, when q = 167 in fact. This is because while the probability 

of validity increases w ith q, the rate  of increase slows for large q. The value of e, on the 

other hand, continues to increase linearly with q, eventually overwhelming the increase in 

the probability of validity. The probability of validity when q =  167 is shown in Table 5.15b 

in cases where it is below 0.99999.

Accounting for inherent error has eliminated the nice linear relationship between q and 

k, and q and a 1. This is especially noticeable for higher probabilities of validity, and larger 

values of q. In Table 5.15b, one can see that for a probability of validity of 0.9, q increases 

from 12 to 24 to 55 as k  is doubled. When the probability of validity is 0.999, q goes from 

55 to  oo w ith only one doubling of k. In the case of cr2, where before an increase in a  from 

0.3 to  1.0 would increase q by approximately 11 times, the increase is now much greater, 

infinitely so in some cases. This is most easily seen in Table 5.14, as the values of q in
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normal Weibull

k 2 q e P (  1 - e ) Pi Po\i Pa \i Pi Po\i PA\i
16 2 0.00148 0.90393 0.9040 0.7150 0.1425 0.9070 0.7369 0.1771
16 8 0.00748 0.99906 0.9990 0.9948 0.9581 0.9987 0.9935 0.9531
16 16 0.01548 1 .0 0 0 0 0 1 .0 0 0 0 1 .0000 0.9997 1 .0000 0.9999 0.9992
32 4 0.00396 0.90310 0.7212 0.4878 0.0389 0.9029 0.6655 0.0814
32 18 0.01796 0.99948 0.9995 0.9960 0.9615 0.9994 0.9957 0.9598
32 30 0.02996 0.99999 1 .0 0 0 0 0.9999 0.9988 1 .0 0 0 0 0.9999 0.9985
64 8 0.00892 0.90142 0.9021 0.6216 0.0443 0.9002 0.6190 0.0439
64 34 0.03492 0.99909 0.999 0.992 0.923 0.9990 0.9916 0.9200
64 66 0.06692 0.99999 1 .000 1 .000 0.998 1 .000 1 .000 0.998

(a) cr =  0.3

normal Weibull

k 2  q e P£(l -  e) Pi Po\i Pa \i Pi Po\i P A \ i

16 24 0.02348 0.90924 0.9093 0.7272 0.1568 0.9213 0.7946 0.2863
16 110 0.10948 0.99904 0.9990 0.9946 0.9572 0.9978 0.9911 0.9446
16 334 0.33348 0.99998 1 .0000 0.9999 0.9988 1 .000 1 .000 0.997
16 oo oo 0.99999 - - - - - -
32 48 0.04796 0.90085 0.9009 0.6565 0.0730 0.9052 0.6869 0.1053
32 334 0.33396 0.99766 0.998 0.984 0.875 0.997 0.984 0.878
32 oo oo 0.99900 - - - - - -
32 oo oo 0.99999 - - - - - -
64 110 0.11092 0.90073 0.903 0.620 0.044 0.9016 0.6321 0.0521
64 334 0.33492 0.96834 0.968 0.840 0.296 0.9685 0.8454 0.3085
64 oo oo 0.99900 - - - - - -
64 oo 00 0.99999 - - - - - -

(b) a  =  1.0

Table 5.14: P robability  o f validity w hen e =  1.0, w ith  fj, =  2.45, g =  10 5, and A =  100.
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normal Weibull

k 2 q e 10“ Pi P 3|t P A \ i Pi P0|i P A \ i

16 2 0.00148 0.99913 0.9991 0.9951 0.9606 0.9977 0.9908 0.9428
16 4 0.00348 1 .0 0 0 0 0 1 .0000 1 .0 0 0 0 0.9998 1 .0 0 0 0 0.9998 0.9981
32 2 0.00196 0.98146 0.9815 0.9088 0.5155 0.9809 0.9151 0.5557
32 4 0.00396 0.99912 0.9991 0.9935 0.9414 0.9987 0.9921 0.9370
32 8 0.00796 1 .0 0 0 0 0 1 .0000 1 .0 0 0 0 0.9996 1 .0 0 0 0 0.9999 0.9990
64 2 0.00292 0.90399 0.9044 0.6282 0.0474 0.9036 0.6352 0.0536
64 8 0.00892 0.99909 0.9991 0.9920 0.9228 0.9990 0.9917 0.9213
64 16 0.01692 1 .0 0 0 0 0 1 .0000 1 .0000 0.9993 1 .0 0 0 0 0.9999 0.9992

(a) a =  0.3

normal Weibull

k 2  q e Pe( 2 - e ) Pi Po\i P A \ i Pi Po\i P A \ i

16 6 0.00548 0.91589 0.9158 0.7435 0.1770 0.9403 0.8878 0.5831
16 24 0.02348 0.99938 0.9994 0.9964 0.9703 0.9959 0.9882 0.9374

16 42 0.04148 0.99999 1 .0000 0.9999 0.9994 0.9996 0.9985 0.9904
32 12 0.01196 0.91487 0.9150 0.6934 0 .1011 0.9262 0.7756 0.2350
32 46 0.04596 0.99908 0.9991 0.9933 0.9390 0.9977 0.9889 0.9271
32 8 6 0.08596 0.99999 1 .0000 0.9999 0.9987 1 .0 0 0 0.999 0.994

64 24 0.02492 0.91282 0.9132 0.6535 0.0612 0.917 0.689 0.098
64 96 0.09692 0.99902 0.999 0.991 0.917 0.999 0.991 0.917

64 192 0.19292 0.99999 1 .000 1 .0 0 0 0.998 1 .0 0 0 1 .0 0 0 0.997

(b )  a  =  1 .0

T a b le  5 .1 5 : Probability o f validity w hen e =  2.0, w ith  fi — 2 .45, g =  10 5, and A =  100.
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Table 5.15 are too small.

The averaging algorithm  also has difficulty making estim ates when g is non-zero. Again 

the m ost trouble occurs when q is large, and is the result of clock drift over the period 

when the inquiries are being sent. One possible solution is to reduce q, which means either 

reducing k, or increasing e. Usually, k  is fixed, and e may be bounded by the needs of the 

adjustm ent algorithm. Another possibility is to reduce either g or A. This will not reduce 

g, b u t will reduce the inherent error by either reducing the clock drift over the period of 

tim e when the inquiries are being sent, or by reducing the period of time when the inquiries 

are being sent. Tables 5.16 and 5.17 show the results if g =  10“ 6 and A =  10msec. Since 

the results for the normal and Weibull distributions do not differ significantly the results 

for the Weibull distribution are om itted.

An im m ediate result of reducing g to 1 0 -(’ and A to 10 is th a t probabilities of validity 

th a t were previously impossible are now possible. W ith the larger values of g and A, when 

exsig  — 1.0, and e =  1, one can not achieve a probability of validity of 0.99999, even when 

k  = 16. W ith the smaller values of g and A, a probability of validity of 0.99999 can be 

achieved not only when k = 16, bu t when k = 32, and even when k  =  64.

The lower values of e and A have reduced the effects of inherent error to the point where 

the values in Tables 5.16 and 5.17 are almost identical to those in Tables 5.12 and 5.13. 

The few differences are when q is large and inherent error has a chance to have an effect. 

Even in these cases q is increased by no more than 4.

5.3 .6  C om parisons

Since the averaging algorithm is similar to the algorithm in [2], it is only logical tha t 

the two should be compared. Both have very similar characteristics, and differ prim arily in 

their m ethod of distributing clock information.

T he estim ation algorithm in [2], like the one in [11], uses single-node inquiry to d istribute 

clock inform ation, w ith one twist. In [2] it is assumed tha t the mean delay is known 

beforehand, and does not change significantly. As a result, “half” inquiries are done, instead 

of N{ sending a synchronization message to Nj and having N j send one back, N j simply 

sends a synchronization message to  JV*, and IVj makes a guess based on the tim estam p 

and the m ean delay. While this cuts the number of synchronization messages in half, it 

is vulnerable to changes in mean delay. And changes in mean delay are quite possible, 

especially if all nodes are conducting inquiries a t the same time.
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normal

k 2 q e P,{ 1 - e ) Pi Po\i P A \ i

16 2 0.00006 0.90440 0.9045 0.7152 0.1435

16 8 0 .0 0 0 1 2 0.99914 0.9991 0.9951 0.9610

16 16 0 .0 0 0 2 0 1 .0 0000 1 .0 0 0 0 1 .0000 0.9998

32 4 0.00013 0.90438 0.9040 0.6644 0.0783

32 16 0.00025 0.99914 0.9992 0.9936 0.9420

32 30 0.00039 0.99999 1 .0000 1 .0000 0.9992

64 8 0.00026 0.90433 0.9042 0.6282 0.0474

64 32 0.00050 0.99914 0.9991 0.9921 0.9249
64 58 0.00076 0.99999 1 .0000 0.9999 0.9985

(a) a =  0.3

normal

k 2 q e Pt ( l - e ) Pi Po\i P A \ i

16 22 0.00026 0.90266 0.9027 0.7114 0.1395
16 88 0.00092 0.99908 0.9991 0.9948 0.9585
16 158 0.00162 0.99999 1 .0 0 0 0 0.9999 0.9993
32 44 0.00053 0.90257 0.9026 0.6599 0.0750
32 174 0.00183 0.99900 0.999 0.993 0.936
32 316 0.00325 0.99999 1 .000 1 .000 0.999
64 88 0.00106 0.90239 0.902 0.624 0.045
64 350 0.00368 0.99902 0.999 0.991 0.916
64 634 0.00652 0.99999 1 .000 1 .000 0.998

( b )  a — 1 .0

T a b le  5 .1 6 :  Probability  o f validity when e =  1.0, w ith  // =  2.45, g =  10 6, and A =  10.
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normal

k 2 q e Pe( 2 - e ) Pi Po\i PA\i
16 2 0.00006 0.99914 0.9991 0.9952 0.9611

16 4 0.00008 1 .0 0000 1 .0000 1 .0000 0.9998
32 2 0 .0 0 0 1 1 0.98157 0.9816 0.9086 0.5154
32 4 0.00013 0.99914 0.9991 0.9936 0.9421

32 8 0.00017 1 .0 0 0 0 0 1 .0 0 0 0 1 .0000 0.9996
64 2 0 .0 0 0 2 0 0.90439 0.9042 0.6283 0.0476
64 8 0.00026 0.99914 0.9992 0.9923 0.9254

64 16 0.00034 1 .0 0000 1 .0000 1 .0000 0.9994

(a) a =  0.3

normal

k 2 q e Pe(2 - e ) Pi Po|i PA\i

16 6 0 .0 0 0 1 0 0.91672 0.9166 0.7452 0.1793
16 22 0.00026 0.99909 0.9991 0.9949 0.9589
16 40 0.00044 0.99999 1 .0000 0.9999 0.9994
32 12 0 .0 0 0 2 1 0.91670 0.9171 0.6976 0.1056
32 44 0.00053 0.99909 0.9991 0.9933 0.9393
32 80 0.00089 0.99999 1 .0000 0.9999 0.9989
64 22 0.00040 0.90268 0.9027 0.6238 0.0456
64 88 0.00106 0.99908 0.999 0.992 0.922
64 158 0.00176 0.99999 1 .000 1 .000 0.998

( b )  t r  =  1 .0

T a b le  5 .1 7 :  Probability  o f validity w hen e =  2.0, w ith  g  =  2.45, g — 10 6, and A =  10.
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a — 0.3
©IIb

Distance e =  1.0 e =  2.0

oIIoi—!II

1 2 1 21 5

2 4 1 43 10

3 G 2 68 15

4 8 2 96 20

5 9 3 129 25

6 11 3 170 31

(a) q =  10-5 and A =  100

<7 =  0.3 a  =  1.0

Distance e =  1.0 e =  2.0 e =  1.0 £ =  2.0

1 2 1 20 5

2 4 1 40 10

3 G 2 59 15

4 8 2 79 20

5 9 3 98 25

6 11 3 118 30

(b) g =  10 8 a n d  A =  10

Table 5.18: D istance away vs. number o f inquiries needed, assum ing norm ally d is
tributed  delays w ith  /j, =  2.45.
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Brief m ention is made in [2] of using a normal single-node inquiry and com puting the 

mean delay from the to tal time, much the same way the averaging algorithm  can use cal

culated means. For this comparison, it is assumed the algorithm in [2] takes this approach. 

Also, [2 ] shrugs off the effects of g and A. As seen in Section 5.3.5, this may not be a 

good idea. Since [2] specifies no means of accounting for these variables, the inherent error 

calculations of Section 5.3.2 are used. The net result is th a t a  single-node inquiry of a  node 

h hops away is much the same as a 2/i-node inquiry using the averaging algorithm . There 

is one difference, since the only node of interest in this inquiry is the “middle” one, N h, the 

directions of inquiries do not have to be alternated, and inquiries do not have to be done in 

pairs. T hat said, Table 5.18 shows the number of inquiries needed by the algorithm  in [2], 

assuming a  probability of validity of 0.99999, for nodes from 1 to 6  hops away5.

In the same way as done for the interval algorithm, one can com pute the num ber of 

inquiries, synchronization messages, and tim estam ps, sent by bo th  the single-node inquiry 

algorithm , and the A;-node inquiry algorithm. Table 5.19 summarizes these results.

The averaging algorithm takes very well to the A;-node inquiry. W henever it is able to 

make estim ates, it always sends fewer synchronization messages than  the single-node inquiry 

algorithm . This is not surprising considering the nice linear growth of q w ith k. Because 

it uses the A;-node inquiry, the averaging algorithm shares with the interval algorithm  nice 

predictable synchronization message sends and receives. The single-node inquiry algorithm  

sends a  mass confusion of messages, and in this instance there is no question th a t the length 

of tim e over which the messages are sent does affect the results.

5.4 Comparisons of Interval and Averaging Algorithms

Given th a t the preceding two sections have presented two different estim ation algo

rithm s, it is natural to wish compare the two. However, in doing so one is prone to  overlook 

the unifying theme of this chapter — the A;-node inquiry. Both algorithm s use the A;-node 

inquiry to  d istribute clock information, and neither modifies the inquiry in any way. Both 

algorithm s can use the results from the same inquiry to make guesses. The two algorithm s 

complement one another instead of competing with one another.

The examples of Sections 5.2 and 5.3 show tha t the interval algorithm  works well when 

message delays are usually near the minimum, while the averaging algorithm  works well

5I f  th e re  axe o b jec tio n s  to  th e  use o f in h e ren t e rro r c o m p u ta tio n s  n o t fo u n d  in  [2], one  m ay  use  th e  in q u iry  
n u m b ers  from  T ab le  5.19b since th e y  a re  essen tia lly  unaffec ted  by  in h e ren t e rro r.
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single-node inquiry fc-node inquiry

a e n #  inquiries #  mess #  tstarnp #  inquiries #  mess #  tstarnp

0.3 1.0 16 1024 2048 3072 16 496 6016
0.3 1.0 32 5088 10176 15264 30 1890 45600
0.3 1.0 64 24128 48256 72384 66 8382 403392

0.3 2 .0 16 320 640 960 4 124 1504

0.3 2 .0 32 1536 3072 4608 8 504 12160
0.3 2 .0 64 7168 14336 21504 16 2032 97792

1 .0 1.0 16 11360 22720 34080 334 10354 125584

1 .0 1.0 32 58368 116736 175104 oo 00 oo

1.0 1.0 64 288960 577920 866880 oo oo oo

1.0 2 .0 16 2560 5120 7680 42 1302 15792
1 .0 2 .0 32 12800 25600 38400 86 5418 130720
1 .0 2 .0 64 61504 123008 184512 192 24384 1173504

(a) q = 10-5  and A = 100

single-node inquiry fc-node inquiry

a e n #  inquiries #  mess #  tstarnp #  inquiries #  mess #  tstarnp

0.3 1.0 16 1024 2048 3072 16 496 6016
0.3 1.0 32 5088 10176 15264 30 1890 45600
0.3 1.0 64 24128 48256 72384 58 7366 354496

0.3 2 .0 16 320 640 960 4 124 1504
0.3 2 .0 32 1536 3072 4608 8 504 12160
0.3 2 .0 64 7168 14336 21504 16 2032 97792

1 .0 1 .0 16 10160 20320 30480 162 5022 60912
1.0 1.0 32 50656 116736 175104 336 21168 510720
1 .0 1 .0 64 242624 577920 866880 728 92456 4449536

1 .0 2 .0 16 2560 5120 7680 40 1240 15040
1.0 2 .0 32 12800 25600 38400 80 5040 121600
1 .0 2 .0 64 61440 122880 184320 160 20320 977920

(b) Q =  10~6 a n d  A =  10

T a b le  5.19: Comparison of number of inquiries, synchronization messages, and tim e
stam ps needed in a hypercube when using single-node inquiry vs. when 
using A;-node inquiry.
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when message delays are predictable. These two conditions are not necessarily in conflict, 

in fact it may well be th a t both  conditions are satisfied a t the same time. If the average 

delay is very close to the minimum delay, both  the interval and averaging algorithm s may 

work equally well. Such a situation may be found in many modern, point-to-point systems, 

where each link is a dedicated high-speed line. If traffic is light, messages will not have to 

w ait for links to  clear, and delays will normally be at or near the minimum.

Even when conditions do not favor one of the algorithms, there still may be much to 

gain by using both. Even when the intervals for the “middle” nodes don’t  converge, the 

intervals for other nodes often will, especially the intervals for the nodes near either end. 

T he intervals th a t converge can be used for their estimates, other intervals can be used as 

an ex tra  check on the averaging algorithm since the actual skew must lie w ithin the bounds 

of the interval, even if it doesn’t converge. The averaging algorithm  also can be used as 

a  check on the interval algorithm. The estimates made by the interval algorithm  should 

be w ithin the uncertainties of the estimates made by the averaging algorithm , widespread 

disagreement between the two is an indicator of trouble.

5.5 Meshing

T he probabilistic estimation algorithms presented in Sections 5.2 and 5.3 can produce 

estim ates w ith any desired uncertainty, as long as k  is not too large. The num ber of inquiries 

needed by interval algorithm increases rapidly with k. The number of inquiries needed by 

the averaging algorithm  is linear w ith k , until the effects of inherent error are taken into 

account. Then, as shown in Tables 5.14 and 5.15, it may be impossible to get estim ates for 

small uncertainties and high probabilities of validity.

In  Sections 5.2.6 and 5.3.6 the single-node inquiry algorithms were able to  generate 

acceptable estim ates for all nodes when the A,-node inquiries were not. They were successful 

because they effectively reduced k, and with it the path  length. More inquiries had to  be 

done as a result, and the result was a  mass confusion of synchronization messages. W hat is 

needed is a  compromise between the A;-node inquiry and the single-node inquiry algorithms, 

one th a t will reduce k, bu t will still allow the orderly procedure of the A;-node inquiry.

In this section, the k  nodes are divided into a set of groups G, and each inquiry involves 

only the members of some element of G. Some simple algorithms for defining G such tha t 

for any N t there will be a  group in G  containing iV,:, and for any pair of nodes, N t and TVj,



115

F ig u re  5.9: Nodes of the system laid out in a  rectangular grid

there will be a  group in G which contains both N t and Nj.  In this way every pair of nodes 

N{ and N j will participate in some common inquiry, and will be able to make estimates 

of one another. By reducing the number of nodes involved in each inquiry, acceptable 

estim ates may be produced which were not possible when all k  nodes were involved in each 

inquiry. But, because the way in which the groups arc defined, the procedure is regular and 

predictable.

These meshing techniques, so called because of the interlocking pattern  of groups they 

generate, can be used to generate G  for arb itrary  system architectures.

5.5.1 Four-Corner M eshing

In [28] several algorithms are described to generate for each N  a single set of nodes Si, 

such th a t for any Nj ,  S , fl S:j ^  0. In particular, one way described is to lay the nodes of 

the system out on an r  x c square grid in row m ajor format (i.e., the node in the *th column 

of row j  is Nj c+i), and to define S, to be all nodes in the same row or column as N z. If  n  is 

prime, or has few factors, one can choose r  >  3 and c >  3 so th a t n  + c > rc > n, and fill 

the excess spaces w ith “dummy” nodes. Figure 5.9 shows such an arrangement. If sets Si 

are defined in this manner, it is easy to define the groups in G. For each pair of non-dummy 

nodes, N  and Nj ,  where Nj  0  Si, define a group consisting of TV;, Nj ,  and S,  fl Sj.



F ig u re  5.10: Synchronization message sends with four-corner meshing

This technique is called four-corner meshing because most groups will consist of four 

nodes which form the four corners of a rectangle in the grid. Given the group containing 

N i and  N j, N j 5*, the inquiry will proceed w ith sending its synchronization messages 

to one of the nodes in Si fl 5 j, which in tu rn  sends its synchronization messages to N j , 

which sends its synchronization messages to the other node in Si fl Sj,  which sends its 

synchronization messages to N .  If the group contains a dummy node, the dumm y node 

is skipped, and the synchronization message is sent to the next node instead. In case the 

above cycle is not the shortest available, a shorter cycle may be substituted. Figure 5.10 

shows the synchronization message sends for a four node and three node group in a small 

system.

N u m b e r  o f  G ro u p s

To com pute the number of synchronization messages th a t need to  be sent one first needs 

to  com pute the number of groups th a t exist. Let the grid have r  rows and c columns, and 

let there b e l  < c nodes in the last row. Consider Figure 5.9 and count the groups as follows:
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•  Any node not in the last row of the grid will belong to (r — 2 )(c— 1 ) 4-node groups th a t 

don’t contain a node from the last row. There are (r — l)c  nodes not in the last row, 

so there are (r — l)c (r  — 2 )(c — 1 ) four node groups, except each group is “counted” 

4 times. The to tal number of 4-node groups tha t don’t contain a node from the last 

row is then

^  (r 2c2 — r 2c — 3rc2 +  3rc +  2c2 — 2c)

•  Any node in the last row of the grid will belong to (r — I)(I — 1 ) 4-node groups. There 

are I nodes in the last row, and each group contains two nodes from the last row. The 

to ta l number of 4-node groups tha t contain a node from the last row is then

^ (rl2 -  rl - I 2 + 1)
<u

The to ta l number of four node groups is therefore:

^  ( r2c2 — r 2c — 3rc2 +  3rc +  2rl2 — 2rl + 2c2 — 2c — 212 + I) (5.45)

If  I < c there will be a number of 3-node groups in addition to the 4-node groups. The 

num ber of 3-node groups is relatively simple to calculate. For every pair of nodes, one from 

the  last row and one from the last c — I columns, there will be exactly one 3-node group 

containing bo th  of them. There are l(r — l)(c  — I) such pairs, so there will be l(r — l)(c  — I) 

3-node groups.

Coordination

The num ber of groups generated by four-corner meshing is on the order of k 2, which is 

the  same as the number of “groups” in the single-node inquiry algorithms. I t would seem 

therefore th a t four-corner meshing would fall prey to the same problems, and would flood 

the  system w ith synchronization messages. A straightforward implem entation would create 

such problems, bu t they can be avoided with a little careful planning.

Each node only sends synchronization messages to those nodes in the same row or 

column. In fact, each node sends many synchronization messages to those nodes in the 

same row or column, because they belong to many common groups. For example, No will 

send a  synchronization message to  N [, expecting iV, to add its tim estam p and forward 

the  result to  N c+1. N 0 will send another synchronization message to Ni ,  expecting Ny
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to  add its tim estam p and forward the result to lV2c+1. Logically, N 0 should send a  single 

synchronization message to N i , and have jVj use the contents of th a t message when it sends 

synchronization messages to N c+i and N 2c+ 1 and the rest of the nodes in the second column.

For greatest efficiency, N i should wait until it receives synchronization messages from 

all nodes in the first row before it begins to send synchronization messages to  the nodes in 

the second column. The process therefore requires two alternating phases: a  node sends 

synchronization messages to each node in its row, then it sends synchronization messages 

to  each node in its column. This requires some coordination, so th a t all nodes are in the 

same phase a t approximately the same time. Since some nodes are bound to be a  little 

slower than  others, not all synchronization messages will arrive simultaneously, and arrival 

tim estam ps and node waits should be used to reduce uncertainty. A node does not include 

every tim estam p it receives in one phase in every synchronization message it sends in the 

following phase. For example, N c+1 should not send JV0’s tim estam p to  iVc+2, bu t it should 

send it to  N c. This adds some processing overhead between phases.

Coordinating four-corner meshing greatly reduces the num ber of synchronization mes

sages and timestamps, N 0 will send 1 synchronization message containing 1 of its tim estam ps 

to  N i instead of c messages each containing 1 tim estam p. The reduction is on the order of 

r | £ — 1 for both  synchronization messages and timestamps.

E x a m p le

Consider a 64-node hypercube [38]. Each node is specified by a  six-bit binary address, 

000000 through 111111. Lay the nodes out in an 8  x 8  square grid, in row-major order, and 

define the groups as described above. A to tal of 784 4-node groups are defined.

In  earlier examples it was assumed tha t all message delays were identically distributed. 

W ith  meshing, th a t may not be the case. Synchronization messages may have to  pass 

through one or more intermediate nodes in order to reach their destination. Two general 

cases will be considered here. The first case is th a t of a circuit-switched network where 

messages are not tim estam ped until the circuit is established. Message delay is then  largely 

independent of distance, and thus the effective value of k is 4, a t least for the purpose of 

determ ining q. The second case is tha t of a store-and-forward type system where the delay 

for a  message sent a  distance of h is the sum of h independent identically d istributed delays. 

In  this case it can be shown tha t two nodes in the same row or column will be no more than  

3 hops away from one another in the hypercube. T he to tal distance the synchronization
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interval averaging

eff. k a e 2 q F0 2Q(2e) 2  q e Pe(e -  e)

4 0.3 1.0 4 0.99996 2 0 .0 0 1 1 2 0.99913

4 0.3 1.0 6 1 .00000 4 0.00312 1 .0 0 0 0 0

4 0.3 2 .0 2 1 .0 0000 2 0 .0 0 1 1 2 1 .0 0 0 0 0

4 1.0 1.0 6 0.99988 24 0.02312 0.99929

4 1.0 1.0 8 1 .0 0000 44 0.04312 0.99999

4 1.0 2 .0 2 0.99597 6 0.00512 0.99945

4 1 .0 2 .0 4 0.99999 10 0.00912 0.99999

12 0.3 1.0 60 0.99903 6 0.00536 0.99909

12 0.3 1.0 102 0.99999 12 0.01136 1 .0 0000

12 0.3 2 .0 8 0.99983 2 0.00136 0.99988

12 0.3 2 .0 12 1 .0 0000 4 0.00336 1 .0 0 0 0 0

12 1.0 1.0 12 0.99972 76 0.07536 0.99900
12 1.0 1.0 16 0.99999 170 0.16936 0.99999
12 1.0 2 .0 8 0.99990 18 0.01736 0.99941

12 1.0 2 .0 10 0.99999 32 0.03136 0.99999

T a b le  5 .20: Number of inquiries needed in 4 and 12 node groups when i =  k/2,  
assuming normally distributed delays, with _d =  2.11, g  =  0.34, g 
10 \  and A =  100.

messages will have to  travel in order to complete the first half of an inquiry is therefore no 

greater than  1 2 , so in this case the effective value of k is 1 2 .

Table 5.20 shows the number of inquiries needed for both 4-node and 12-node inquiries, 

for each estim ation algorithm. Normally distributed delays are assumed, in order to  allow a  

to  be varied. This may introduce some error in the com putations for the interval algorithm, 

bu t as simulations in Section 5.2.4 showed, this error is small for small k.  The delay 

characteristics are the same as in the first examples of Sections 5.2.5 and 5.3.5, g =  10-5 , 

and A =  100.

T he existence of 784 groups makes it unlikely th a t meshing will reduce the to tal number 

of inquiries in many cases. Each group will conduct a t least 2 inquiries, for a t least 1568 

inquiries total. The interval algorithm is a clear beneficiary of meshing. Tables 5.6 and 5.7 

show th a t it is not possible when k — 64 for the interval for N 32 to converge w ith a 

probability of 0.9 or greater. Four-corner meshing allows such systems to be successfully
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synchronized. The averaging algorithm  does not benefit as much, a t least for the values 

of <7 and e used in the examples. Tables 5.14 and 5.15 show th a t when a  is large and e is 

small the averaging algorithm  cannot provide estimates with a probability of validity much 

greater than  0.9. Again, four-corner meshing allows such systems to be synchronized.

Simply comparing the number of inquiries does not tell the entire story. W hile four- 

corner meshing does generate more inquiries, each inquiry involves only four nodes, and so 

carries fewer tim estam ps. Using Equations (5.1) and (5.2), one finds th a t a single 64 node 

inquiry sends 127 synchronization containing a total of 6112 tim estam ps. A single 4 node 

inquiry sends only 7 synchronization messages containing a to tal of 22 tim estam ps, coordi

nation reduces the number of synchronization messages to 1 per inquiry and the number of 

tim estam ps to 4 (8  including the arrival timestamps). However, if one wishes to compare 

bandw idth used one should take into account tha t each synchronization message in the 4 

node inquiries of four-corner meshing will travel up to three hops, for effective bandw idth 

utilization of 3 synchronization messages and 24 timestamps (assuming coordination).

Tables 5.21 and 5.22 compare the effective number of messages and tim estam ps needed 

in the 64-node hypercube system. The tables show tha t while coordinated four-corner 

meshing usually generates more synchronization messages, it usually significantly reduces 

the to tal number of timestamps. The greatest reductions in the numbers of tim estam ps 

occur when q is large. This is due to the effects of g, which become more pronounced as 

q increases. Also, as might be expected, the circuit switched system benefits more from 

meshing, prim arily because the shorter message delays allow estim ates to be made with 

fewer inquiries. The interval algorithm benefits more than the averaging algorithm , since q 

is non-linear w ith kin the interval algorithm, and linear with the averaging algorithm .

A nother im portant difference between four-corner meshing and a  standard  /c-node in

quiry is run  time. As can be seen in Tables 5.21 and 5.22, the number of inquiries per group 

is considerably less w ith meshing. Since all groups conduct their inquiries simultaneously, 

the run  time for the clock distribution is the amount of time needed to conduct 2 q inquiries 

in a  single group. As a result, even though four-corner meshing reduces the to tal number of 

bytes sent, it also reduces the time over which they are sent, and may result in an  increase 

in network load w ith respect to a fc-node inquiry. On the other hand, the network load 

generated by the clock distribution algorithm is often a nuisance, and reducing its run  time 

may lim it its interference w ith other system operations.
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<7 e F^ 2q (2e) eff. k 2 q eff. mess. eff. tstarnp

0.3 1.0 0.99900 4 4 9408 75264
0.3 1.0 0.99900 12 60 141120 1128960
0.3 1.0 0.99900 64 OO oo 00

0.3 1.0 0.99999 4 6 14112 112896
0.3 1.0 0.99999 12 102 239904 1919232
0.3 1.0 0.99999 64 00 00 oo

0.3 2 .0 0.99900 4 2 4704 37632

0.3 2 .0 0.99900 12 8 18816 150528
0.3 2 .0 0.99900 64 oo oo oo

0.3 2 .0 0.99999 4 2 4704 37632

0.3 2 .0 0.99999 12 12 28224 225792

0.3 2 .0 0.99999 64 o o oo 00

1.0 1 .0 0.99900 4 6 14112 112896
1.0 1 .0 0.99900 12 12 28224 225792

1.0 1 .0 0.99900 64 106 13462 647872

1.0 1.0 0.99999 4 8 18816 150528
1.0 1.0 0.99999 12 16 37632 301056
1 .0 1 .0 0.99999 64 166 21082 1014592

1 .0 2 .0 0.99900 4 4 9408 75264

1.0 2 .0 0.99900 12 8 18816 150528
1 .0 2 .0 0.99900 64 72 9114 440064

1.0 2 .0 0.99999 4 4 9408 75264

1.0 2 .0 0.99999 12 10 23520 188160
1.0 2 .0 0.99999 64 112 14224 684544

Table 5.21: Comparison of effective number of synchronization messages and time
stam ps when using coordinated four-corner meshing with the interval 
algorithm, assuming normally d istributed delays, w ith d =  2 .1 1 , 
fi =  0.34, g =  10~5, and A =  100.
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a e Pe(e) eff. k 2 <7 eff. mess. eff. tstarnp
0.3 1.0 0.99900 4 2 4704 37632

0.3 1.0 0.99900 12 6 14112 112896
0.3 1.0 0.99900 64 34 4318 207808

0.3 1.0 0.99999 4 4 9408 75264
0.3 1.0 0.99999 12 12 28224 225792
0.3 1.0 0.99999 64 60 8382 403392

0.3 2 .0 0.99900 4 2 4704 37632

0.3 2 .0 0.99900 12 2 4704 37632
0.3 2.0 0.99900 64 8 1016 48896

0.3 2 .0 0.99999 4 2 4704 37632
0.3 2 .0 0.99999 12 4 9408 75264

0.3 2 .0 0.99999 64 16 2032 97792

1 .0 1 .0 0.99900 4 24 56448 451584

1.0 1 .0 0.99900 12 76 178752 1430016
1.0 1 .0 0.99900 04 oo 00 oo

1.0 1.0 0.99999 4 44 103488 827904
1.0 1.0 0.99999 12 170 399840 3198720
1.0 1.0 0.99999 64 00 00 oo

1.0 2 .0 0.99900 4 6 14112 112896
1 .0 2 .0 0.99900 12 18 42336 338688
1 .0 2 .0 0.99900 64 96 12192 586752

1.0 2 .0 0.99999 4 10 23520 188160
1.0 2 .0 0.99999 12 32 75264 602112

1.0 2 .0 0.99999 64 192 24384 1173504

Table 5.22: Comparison of effective number of synchronization messages and tim e
stam ps when using four-corner meshing w ith the averaging algorithm , 
assuming normally distributed delays, with fi =  2.45, g =  10-5, and 
A -  100.



F ig u re  5.11: Synchronization message sends in perim eter meshing

5 .5 .2  P erim eter M eshing

Perim eter meshing is simply an obvious optim ization of four-corner meshing, in addition 

to  the four corner nodes each group contains the nodes on the perim eter of each rectangle. 

Not all of the original four-corner groups are used, only enough are used to make sure any 

pair of nodes share a  common group. Figure 5.11 shows the synchronization message sends 

for two groups.

G roup formation for perim eter meshing is somewhat simpler than  for four-corner mesh

ing. The nodes are laid out in an r  x c rectangular grid as for four-point meshing, dummy 

nodes are used to fill in any blank spaces, and dummy nodes are skipped when synchro

nization messages are sent. However, in this case the grid is “w rapped” , nodes a t the top 

are adjacent to  nodes a t the bottom  and nodes on the left edge are adjacent to the nodes 

on the  right edge.

S tart assigning groups w ith the node in row [ |J  and column [ | J . The process is one of 

drawing rectangles on the  grid, where each rectangle has a corner on the node a t ( [ |J  , [ |J ) .  

T he opposite corner of each rectangle is unique, and is used to specify it. The first four 

rectangles drawn will have corners at (0,0), (0, c — 1), (r — 1,0), and (r — l , c  — 1). The
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F ig u re  5.12: Construction of groups in perim eter meshing

next four rectangles are made by moving the corners inward along the diagonal, i.e., (1 , 1 ), 

(1, c — 2), (r — 2,1), and (r — 2, c — 2). This process continues until all four rectangles have 

either a  w idth or height of 0. Figure 5.12 shows an example for a  7 x 6  mesh.

A quick look a t Figure 5.12 shows tha t if groups are defined by the perim eters of rect

angles, then there are still pairs of nodes tha t do not belong to a common group. To fix 

this the grid is “scrolled” down and to the right, nodes on the right and bottom  edges 

w rapping around to the left and top edges. Rectangles are drawn based on the new node 

a t location ([|J , [ |J), and new groups are defined. The process of scrolling the grid and 

drawing rectangles is repeated either r — 1 or c — 1 times, whichever is greater.

Perim eter meshing is an attem pt to increase efficiency of four-corner meshing by allowing 

those nodes along the synchronization message’s path  to read the message and add their 

own tim estam ps, effectively adding them  to the group. Many of the new, larger, groups 

are now redundant and can be eliminated. Perim eter meshing works well in square mesh 

and single-bus systems, or any system in which a square mesh may be easily embedded. 

However, because perim eter meshing generates groups assuming a square mesh, efficiency 

may suffer if the system is not a square mesh. It is possible to mimic perim eter meshing in 

other architectures by defining groups with four-corner meshing, then adding to  each group 

those nodes through which its synchronization messages must pass. The problem is th a t it 

may be difficult to decide which (if any) of the new groups are now redundant and can be
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eliminated.

Num ber of Groups

The num ber of groups can be computed by multiplying m ax(r, c) by the num ber of 

rectangles draw n each time the grid is scrolled. The number of rectangles each tim e the 

grid is scrolled can be broken down into those above and to the left, above and to  the  right, 

below and to the left, and below and to the r i g h t  of ( [ £ j  , [ | J ) .  The sum is then:

m ax(r, c) • ( r c A , • ( r
mm — _ +  nun _

V . 2 . . 2 . )  V .2 .

+  rnin - 1, •+- min

-  1

- 1,
0

(5.46)

There is one caveat, when r =  c all the rectangles will be squares, and any square 

draw n below and to the right of (|_§J , [ f j )  will later be re-drawn above and to the right of 

(L§J , L f J )  after the grid has been scrolled. Some groups will therefore be counted twice. 

To correct for these situations, subtract r  ([§]) from the value given by Equation (5.46).

In any event, the number of groups generated by perim eter meshing should be less than  

2 rc, considerably less than  the number generated by four-corner meshing.

Example

Once again, consider a  64-node liypercube. The nodes are laid out in an 8  x 8  square grid, 

as before, only this tim e perim eter meshing is used to define the groups. Equation (5.46) 

gives 104 groups, but since r  =  c, 24 groups have been counted twice, so the final to ta l is 

80 different groups.

Consider the circuit-switched and store-and-forward systems used in the example for 

four-point meshing. The largest of the groups, the ones defined by squares w ith corners at 

(0,0), (0,4), (4,0), and (4,4), will have 16 members and requires a minimum of 18 hops 

for a  complete cycle. In the circuit-switched system, k is effectively 16 for purposes of 

determ ining q, while in the store-and-forward system k is effectively 18. Table 5.23 shows 

the  results, again assuming the same param eters as in Sections 5.2 and 5.3, and g non-zero.

W ith  only 80 groups, perim eter meshing still is not likely to reduce the to ta l number 

of inquiries. As for four-corner meshing, perim eter meshing will only reduce the num ber of 

inquiries in extreme cases, or cases where the effects of g make obtaining estim ates nearly 

impossible. Also as w ith four-corner meshing, the interval algorithm is the more likely
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interval averaging

k a £ 2 q v(2e)2 q e Pc (e — e)

16 0.3 1.0 OO - 8 0.00748 0.99906
16 0.3 1.0 oo - 16 0.01548 1 .0 0 0 0 0

16 0.3 2 .0 20 0.99912 2 0.00148 0.99913
16 0.3 2 .0 32 0.99999 4 0.00348 1 .0 0 0 0 0

16 1.0 1.0 14 0.99934 110 0.10948 0.99904
16 1.0 1.0 22 0.99999 00 - -
16 1.0 2 .0 10 0.99981 24 0.02348 0.99938
16 1.0 2 .0 14 1 .00000 42 0.04148 0.99999
18 0.3 1.0 oo - 10 0.00954 0.99950
18 0.3 1.0 oo - 18 0.01754 1 .0 0 0 0 0

18 0.3 2.0 36 0.99915 4 0.00354 0.99999

18 0.3 2.0 58 0.99999 4 0.00354 0.99999

18 1.0 1.0 16 0.99943 130 0.12954 0.99906
18 1.0 1.0 24 0.99999 00 - -
18 1.0 2 .0 10 0.99941 26 0.02554 0.99921

18 1.0 2 .0 16 1 .00000 46 0.04554 0.99999

Table 5.23: Number of inquiries needed in 16 and 18 node groups when i =  k/2,  
assuming normally distributed delays, w ith _d =  2 .1 1 , // =  0 .3 4 , g =  
1(T5, and A =  100.

beneficiary.

In  comparison with four-corner meshing, perim eter meshing does what it set out to  do, 

it reduces the number of groups and inquiries, at least in some cases. It also has some 

unfortunate side effects. The advantage of circuit-switched systems has disappeared. The 

paths are longer, so in some cases perimeter meshing cannot achieve probabilities tha t 

four-corner meshing can.

Again, the number of inquiries is not the whole story, one should consider synchroniza

tion messages and tim estam ps also. Determining the effective number of synchronization 

messages and tim estam ps per inquiry is not easy. Only 16 nodes participate in the inquiry, 

yet the to tal number of hops per circuit is 18. The effective number of synchronization 

messages and tim estam ps depends on where the; two extra hops occur. For simplicity, it is 

assumed th a t the inquiry is identical to an 18 node inquiry, sending the same num ber of
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a £ F^2q{2e) eff. k 2 q eff. mess. eff. tstarnp

0.3 1.0 0.99900 1G oo 00 oo

0.3 1.0 0.99900 18 oo oo oo

0.3 1.0 0.99900 G4 oo 00 oo

0.3 1.0 0.99999 16 oo 00 00

0.3 1.0 0.99999 18 oo 00 00

0.3 1.0 0.99999 G4 oo 00 oo

0.3 2 .0 0.99900 16 20 56000 763200

0.3 2 .0 0.99900 18 36 100800 1373760

0.3 2 .0 0.99900 G4 oo oo oo

0.3 2 .0 0.99999 16 32 89600 1221120

0.3 2 .0 0.99999 18 58 162400 2213280
0.3 2 .0 0.99999 64 oo 00 oo

1.0 1.0 0.99900 16 14 39200 534240
1.0 1.0 0.99900 18 16 44800 610560

1.0 1.0 0.99900 64 106 13462 647872

1.0 1.0 0.99999 16 22 61600 839520
1.0 1.0 0.99999 18 24 67200 915840
1.0 1.0 0.99999 64 166 21082 1014592

1.0 2 .0 0.99900 16 10 28000 381600
1.0 2 .0 0.99900 18 10 28000 381600
1.0 2 .0 0.99900 64 72 9144 440064

1.0 2 .0 0.99999 16 14 39200 534240
1.0 2.0 0.99999 18 16 44800 610560
1.0 2 .0 0.99999 64 112 14224 684544

Table 5.24: Comparison of effective number of synchronization messages and tim e
stam ps when using perimeter meshing with the interval algorithm , assum 
ing normally distributed delays, with d =  2.11, /i =  0.34, q  =  10-5 , 
and A =  100.
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a £ Pcie) eff. k 2 q eff. mess. eff. tstarnp

0.3 1.0 0.99900 1G 8 22400 305280

0.3 1.0 0.99900 18 10 28000 381600

0.3 1.0 0.99900 G4 34 4318 207808

0.3 1.0 0.99999 1G 1G 44800 6105G0

0.3 1.0 0.99999 18 18 50400 68G880

0.3 1 .0 0.99999 64 GG 8382 403392

0.3 2 .0 0.99900 1G 2 5G00 7G320

0.3 2 .0 0.99900 18 4 11200 152640

0.3 2 .0 0.99900 G4 8 1016 48896

0.3 2 .0 0.99999 1G 4 11200 152G40

0.3 2 .0 0.99999 18 4 11200 152G40

0.3 2 .0 0.99999 G4 1G 2032 97792

1.0 1.0 0.99900 1G n o 308000 4197G00
1.0 1.0 0.99900 18 130 3G4000 49G0800
1.0 1.0 0.99900 64 00 oo oo

1.0 2 .0 0.99900 1G 24 67200 915840
1.0 2 .0 0.99900 18 2 G 72800 9921G0

1 .0 2 .0 0.99900 G4 9G 12192 58G752

1.0 2 .0 0.99999 1G 42 117G00 1G02720

1 .0 2 .0 0.99999 18 40 128800 17553G0
1 .0 2 .0 0.99999 64 192 24384 1173504

Table 5.25: Comparison of effective number of synchronization messages and tim e
stam ps when using perim eter meshing with the averaging algorithm , 
assuming normally distributed delays, w ith fj, =  2.45, g =  10~5, and 
A =  100.
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synchronization messages and timestamps. Equations (5.1) and (5.2) then give the number 

of synchronization messages as 35, and the number of timestamps as 477. Using these values 

will likely overestimate the actual numbers, bu t only by a small amount.

The results are in Tables 5.24 and 5.25. Compared to four-corner meshing, the savings 

of perim eter meshing are smaller, if even present at all. In some instances in Table 5.24, 

perim eter meshing with the interval algorithm cannot generate estim ates w ith the speci

fied uncertainty. The averaging algorithm  only sees savings from perim eter meshing when 

estim ates could not be made with a 64-node inquiry.

There is no general coordination procedure for perim eter meshing. One might try  having 

all groups send along their “bottom ” edges simultaneously, then up one side, then across 

the  top, and so on. The problem is tha t while such a circuit may work well in square mesh, 

it may not be particularly efficient in other architectures, like the hypercube, where such a 

circuit may not represent the shortest cycle for the group. As a result, clock distribution w ith 

perim eter meshing is somewhat more chaotic than for an k-node inquiry or coordinated four- 

corner meshing. However, it is considerably better than for single-node inquiry algorithm s, 

since the number of groups is much less.

Perim eter meshing fills a small niche between A;-node inquiries and four-corner meshing. 

It may provide estim ates with the desired uncertainty when an k-node inquiry cannot, bu t 

does not have the compressed run time of four-corner'meshing. It may also be used when 

coordinated four-corner meshing is either not possible or undesirable.

5.5 .3  E xten sion  to  O ther A rchitectures

W hile four-corner meshing and perim eter meshing can be used for arb itrary  architec

tures, they may not be particularly efficient. However, it is often possible to employ the 

underlying idea of four-corner meshing, only using a more natural definition of the sets for 

each node. T hat is, the set of nodes, S h for N, is defined in terms of some specific feature 

of the architecture.

The C-wrapped hexagonal mesh [9] is one instance where the basic principles four-corner 

meshing m ap easily, producing far more efficient, results than applying four-corner meshing 

as described above. The C-wrapped hexagonal mesh is a homogeneous structure where each 

node has six neighbors. Because of its homogeneity, any node can be seen as being a t the 

center of the mesh. This is analogous to the torus, where by “scrolling” the mesh in one or 

more of the four available directions, one can arrange for a particular node to occupy the
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center or any other specified position in the mesh. However, a C-wrapped hexagonal mesh, 

instead of having rows and columns, will have: three major axes evenly spaced 60° apart. 

The set of nodes for Ni, Si, consists of all nodes on the three fixes through Ni  when AT, is 

a t the center of the mesh. Figure 5.13 shows the synchronization message sends for three 

different groups in a 61-node hexagonal mesh. The crosshatched nodes are those on one of 

the three axes of the center node. From Figure 5.13 it should also be clear th a t a  hexagonal 

version of perim eter meshing is also possible.

There are a  few minor points to clear up. Given Ni and Nj,  Nj  0  S*, Si D Sj  will have 

more than  two members. Groups are formed by taking the two members of Si fl Sj  closest 

to  b o th  Ni  and Nj.  Also, the six nodes at the “corners” of the hexagonal mesh will not have 

a  common group w ith the center node. Six special two-node groups are therefore created, 

each containing the center node and one of the corner nodes.

5.6 Fault-Tolerance

The estim ation algorithm  is charged with the responsibility of providing accurate esti

mates of the local clock’s skew w ith respect to non-faulty nodes. W hile it may be able to 

recognize faulty behavior, in the form of empty intervals or wildly varying guesses, it is not
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required to  diagnose all faults present. Dealing with estimates of faulty nodes is the domain 

of the clock adjustm ent algorithm, and Chapter 3 has already discussed this.

T he estim ation algorithm  must, however, not allow faulty nodes to either prevent esti

m ates of non-faulty nodes from being made, or to cause these estim ates to be inaccurate. 

For practical purposes, the estim ation algorithm cannot, be expected to be completely un

affected by faults. Fault diagnosis is a hard problem in itself, and well beyond the  scope 

of this dissertation. There are also factors beyond the control of the estim ation algorithm , 

a  faulty node may flood the network with broadcasts, effectively preventing the estim ation 

algorithm  from operating. All the same, some simple steps can be taken th a t will detect 

the presence of almost all faults, and will do so fairly quickly.

5.6.1 C hordal M essages

Because the synchronization messages are the only input to the estim ation algorithm, 

any fault th a t is to affect the estim ation algorithm must affect the synchronization mes

sages. An obvious solution is to duplicate each message. Sending multiple copies of each 

synchronization message via independent paths will not only catch any corruption of the 

message en-route, bu t can also increase the likelihood of a near-minimal delay message [3 5 ].

However, such an approach provides no protection if the node which sends the synchro

nization message is faulty. In such cases it is better to avoid the faulty node altogether. 

Chordal messages are synchronization messages which are not sent to the node which would 

norm ally be the next node in the inquiry, but instead to a node tha t would normally be 

involved somewhat later. For example, a chordal message sent by iV* would not be sent to  

N i+i, bu t to Af(i+j)modk, where j  would normally be a fairly small number.

The operation of chordal messages is straightforward. Suppose each node sends c chordal 

messages, then Ni  will send one each to N { i -L>)„10,ifc through Af(<+c+1)modfc. Each recipient 

of a  chordal message then waits for the normal synchronization message to  arrive. W hen 

it arrives, its contents are checked against those of the chordal message(s). If they do not 

m atch, the chordal message may be used instead. If no synchronization message arrives 

before a  specified tim eout, the chordal message is again used instead.

Chordal messages are a powerful fault-toleranco and diagnosis tool. A faulty node which 

loses or alters the contents of synchronization messages will not only be detected, bu t the 

damage it caused can be undone, and it is usually easy to figure out which node is the culprit. 

This fault-tolerance comes a t the price of extra communication overhead, each node must
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norm al operation, chordal messages may only be used when a fault is suspected, and then 

only used long enough to locate the fault so it can be avoided.

5.6 .2  Lost and M isd irected  M essages

Perhaps the most obvious and easily understood fault is tha t of the “dead” node, which 

is characterized by a  failure to send (or forward) a synchronization message. Closely related 

are those faults which cause synchronization messages to be sent or forwarded to the wrong 

destination. Since it may not be practical or possible for the node which receives the message 

to determ ine its actual destination, these faults are functionally equivalent to  dead nodes.

Faults which lose messages are usually easy to delect, and locate. In many cases the 

system will have already located the fault, and the estim ation algorithm can use this infor

m ation to avoid the faulty node. However, if the fault lias occurred recently, is interm ittent, 

or only affects synchronization messages, the system may not have located it yet, and the 

estim ation algorithm  must continue to operate in spite of the fault. Meshing is of con

siderable help in this regard, since a faulty node may only affect groups of which it is a 

member, or groups whose synchronization messages it forwards. Since the clock adjustm ent 

algorithm  does not require an estim ate of every other node, the loss of a few groups can be 

tolerated.

There are several techniques th a t can help prevent, dead nodes from disabling a  group, 

all involve ex tra  communication overhead. Standard reliable communications techniques, 

such as acknowledgments and sending multiple copies of messages along independent paths, 

can detect problems caused by faulty intermediate nodes. Chordal messages can also be 

used, and will allow the clock distribution algorithm to continue to function until it can be 

re-configured to avoid the faulty node.

5.6 .3  C orrupted M essages

A nother common type of fault is those which alter or corrupt the contents of synchro

nization messages. These may be due to noisy communications lines, faulty transm itters or 

receivers or faults in the communications buffers. There is no way to prevent either a  group 

member or some interm ediate node from altering the contents of synchronization messages, 

bu t such tam pering can be caught with the aid of digital signatures.

As for lost messages, standard reliable communications techniques may be employed
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discarded, from the point of view of the estim ation algorithm, corrupted messages are not 

much different than  lost messages. The prim ary differences are tha t corrupted messages are 

self-evident (while lost messages are detected by timeout), and the culprit is easy to  discern. 

If all the copies of the synchronization message N i+i receives from N  are corrupted, Ni  is 

either responsible, or is guilty of passing on corrupted data, in either case it m ust be faulty. 

Chordal messages may still be employed to verify the identity of the guilty party, and to 

provide the  m eans for bypassing it.

5 .6 .4  Faulty T im estam ps

T he final type of fault are those tha t cause; a node to put incorrect inform ation on a 

synchronization message. In contrast to faults which corrupt messages and may alter any 

part of it, these faults are restricted to altering the information added by the  node sending 

the  message before the digital signature is created. This usually means the tim estam p(s) a  

node adds are not correct, and may be due to a faulty clock, faulty timestamping hardware, 

or faults which affect the operation of the estimation algorithm.

In  systems where arrival tim estam ps are not employed, these faults are of little  conse

quence. If the estim ation algorithm succeeds in making an estim ate of the faulty node (i.e., 

no em pty intervals, or irrational or out of order timestamps occur to indicate the presence 

of a  fault), then it becomes a problem for the clock adjustm ent algorithm, which has been 

designed to  tolerate a particular number of this type; of fault.

In  systems where arrival tim estam ps a,re used, these; faults are of greater concern. Be

cause Wi =  Ti — T f ,  incorrect values for T) and /or T" will cause other nodes to com pute 

a  value for Wi  which is either too high or too low. This in tu rn  causes undetected and 

unaccounted for errors in the guesses, not only for N t, but for other nodes as well. A fault 

a t Ni  which causes other nodes to incorrectly compute IT, is called an accounting fault.

Effects o f Accounting Faults on Guesses

If the interval algorithm is used, then in the cast; of forward inquiries overestimating Wi  

will cause the lower bounds of intervals for N ,+ , through N k- \  to be too high, and cause 

the upper bounds of intervals for N { through A,:_i to be too low. For backward inquiries, 

the upper bounds for N i+1 through IVfc_i and the lower bounds for Ni  through N ^ i  are 

affected. This can violate the guarantee; that the actual skew is within the com puted
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interval. Underestim ating Wi causes lower bounds to be too low and upper bounds to  be 

too high. W hile this can slow convergence, it cannot cause the actual skew to be outside 

the interval, and is therefore less of a problem.

If the averaging algorithm is used, any error in W-, will directly affect the guesses for

N i  through N ^ i  in the case of forward inquiries, or A i+1 through N k^i  in the  case of

backward inquiries. So while only some of the guesses will be affected, they will be affected 

if Wi  is either underestim ated or overestimated. E rror in the value of Wi is essentially 

unaccounted-for inherent error, and decreases the probability of validity of any affected 

guesses and estimates.

D etecting Accounting Faults

In  general, there is no sure way to detect accounting faults. There are, however, some 

checks th a t can be done and techniques that can be applied tha t will catch almost all of 

them , and limit their effects in the remaining cases. Because the algorithm in C hapter 6  

uses non-zero node waits, it is susceptible to accounting faults. Therefore, a simple analysis 

of accounting faults is done in Section 6.3.3.

A simple sanity check th a t can be done is to main; sure T,; >  T “. T “ and Tj can also

be checked against T ^ i  and n  i.e., T “ > -  <*>, and T?+l > Ti + ,_d — S.

Also, often the approxim ate value of Wt is known, the computed value can be compared to 

the expected value. Finally, if chordal messages are used, N i+i can compute the expected 

difference between W z and the time since the chordal message arrived, from the tim e between 

when N i - i  sent the chordal message; and the synchronization message, and the difference in 

expected message delay. Occasional outliers are to be expected, but regular deviation from 

the expected value indicates an accounting fault is present.

The interval algorithm  has a natural resistance to accounting faults. While the intervals 

for the “middle” nodes may be close to 2e wick;, the intervals for nearby nodes will be 

considerably narrower. This can be seen in Section 5.2 in the simulation results for Pav , 

which reaches 1.0 well before the probability of convergence; of the middle nodes. In  general, 

the larger fc, the narrower the intervals of nearby nodes in comparison w ith middle nodes. 

In  order to avoid causing empty intervals and giving itself away, an accounting fault must 

lim it the  overestimation of its node; wait to something sma,lle;r than the minimum expected 

w idth of any interval. This usually amounts te> senne; fraction e>f e, small enough th a t it 

is unlikely to  be a  problem, and small enenigh that the techniques for unreliable estim ates
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th a t cause an underestim ation of node wait. The number of intervals th a t converge, and 

the average w idth of intervals, should not vary much. Any sudden change in these values, 

such as a  decrease in the number of converged intervals, or an increase in average width, 

indicates th a t an accounting fault may be present.

W hile the averaging algorithm by itself doesn’t have much of a defense against account

ing faults, it can provide an extra check on the interval algorithm. The estim ates of the 

averaging algorithm will almost always be contained with the corresponding intervals, and 

will usually be smack in the middle. In order to have a significant effect on synchronization, 

an  accounting fault must “shift” estimates either up or down. An accounting fault a t AT* 

which causes Wi to be overestimated will shift Af0’s intervals for Ni  through Afj_j down

ward, and shift IV0’s intervals for A ;+1 through Nk-\  upward. At the same time, it will 

cause the averaging algorithm at N{) to make guesses f lint are too high for N i+X through 

Nk- i -  So AT0’s estimates for N t through Nj t will be affected differently for each estim a

tion algorithm. The resulting estimates of the averaging algorithm  will be off center in 

their respective intervals. This not only signals the presence of the fault, bu t also gives an 

indication of its location.

5.7 Summary

Probabilistic estimation algorithms can, in theory, produce estim ates w ith any desired 

uncertainty. However, they require large amounts of clock information, making each esti

m ate expensive to produce. For this reason probabilistic estim ation algorithm s are usually 

used w ith m aster/slave adjustm ent algorithms. Using them with peer adjustm ent is far too 

expensive.

This chapter introduces an efficient network clock distribution algorithm , and two prob

abilistic estim ation algorithms tha t work with it. The estim ation algorithm s are able to 

produce low-uncertainty estimates of every other node in moderate-sized systems a t at 

m oderate cost. The principle features of these; algorithms are the following:

•  Clock distribution is done in a predictable;, straightforward, and orderly fashion. The 

system is not floodeel with syneJironizatiem me;ssage;s traveling every which way.

•  The estim ation algorithms were; analyzed anel simulated, anel found to work well, even 

in larger systems.
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•  The clock distribution algorithm  may be modified to allow for more efficient opera

tion in large systems, or in systems where the network delay characteristics are not 

favorable to  synchronization.

•  The clock distribution algorithm  is fault-tolerant,, easily handling most common fault 

types.



CHAPTER 6

CONTINUOUS SYNCHRONIZATION

One advantage of using hardware clock distribution algorithms is the “continuous” syn

chronization they provide. By controlling the clock frequency a t each node they make sure 

th a t clocks are brought back under control before they can stray very far. Network d istri

bution algorithms, on the other hand, result in periodic synchronization algorithm s. The 

algorithm  runs as often as is necessary to keep the system synchronized, and is idle the rest 

of the time. The net result is a periodic load th a t can disrupt system operations, especially 

if a probabilistic estimation algorithm is used.

A ttem pting to run network distribution algorithms “continuously” (i.e., a t very short 

intervals), either results in little gain or excessive cost. The uncertainties of absolute esti

m ation algorithms are too high to gain much from more frequent operation, and the net

work traffic generated by probabilistic algorithms would consume all network bandw idth. 

N TP [31, 32] is continuous in the sense defined here. Estim ates are made at regular inter

vals, allowing constant monitoring of skew, and allowing nodes to adjust their clocks as soon 

as an increase in skew is noticed. However, N TP uses a m aster/slave adjustm ent algorithm. 

No continuous synchronization algorithms which use peer adjustm ent are known.

The results of Chapter 5 however, provide some hope th a t such an algorithm  may 

be possible. They show th a t a  simple, efficient clock distribution algorithm  can d ram at

ically reduce the number of synchronization messages needed by probabilistic estim ation 

algorithms. If such an algorithm can be adapted to continuous operation, it may allow 

probabilistic estim ation algorithms to be used w ithout overloading the system network.

This chapter describes a continuous clock distribution algorithm, and shows how it may 

be set up to “em ulate” the clock distribution algorithm of C hapter 5. This in tu rn  allows 

the probabilistic estim ation algorithms of C hapter 5 to be used as well. The result is a 

continuous synchronization algorithm which uses probabilistic estim ation, and can be used

137



138

w ith a  peer adjustm ent algorithm.

The chapter starts  w ith a discussion of the synchronization message structure. Then it 

considers when and where synchronization messages should be sent. The two probabilistic 

estim ation algorithms of C hapter 5 are then adapted to continuous operation, and ana

lyzed. A brief discussion of issues of concern to the adjustm ent algorithm  follows. Finally, 

sim ulation is done to determ ine the effectiveness of the algorithm  and the load it places on 

the system.

6.1 Synchronization Message Structure

Simply receiving a tim estam p from another node does not provide enough information 

to make an estim ate of its clock value. As was shown in C hapter 5, one must know where 

the tim estam p has been, how long it was there and what pa th  it took from place to place. 

Detailed accounting is needed to enable nodes to make accurate skew estimates.

The continuous synchronization algorithm, as will become apparent in the next few 

sections, depends upon accurate and extensive accounting information for each and ev

ery tim estam p. Even then, long paths are out of the question, and coordinated four-corner 

meshing (or something similar) is required. The extra accounting information, coupled with 

the num ber of synchronization messages generated with four-corner meshing, results in a 

trem endous am ount of synchronization information being moved through the system. To 

handle this load efficiently, the continuous synchronization algorithm uses a new synchro

nization message structure, one th a t allows it to combine w hat would otherwise be separate 

messages.

6.1 .1  Trails

In  the continuous synchronization algorithm, a synchronization message consists of a 

list of trails. Each trail contains one or more timerecords, listed in the order in which 

they were added. Each timerecord is basically an augmented tim estam p and contains 

accounting inform ation indicating how long the trail was a t a particular node, and the 

minimum transm ission time to the next node. Timerecords will be considered in more detail 

later. A typical synchronization message is shown in Figure 6.1. There is no connection 

between the trails in a synchronization message. They are placed together in a single 

message for reasons of efficiency only.
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Because of the information it carries, each trail is essentially a recording of its own 

history, which nodes it has visited, and when. If a  node receives a trail on which it already 

has a timerecord (i.e., the trail completes a cycle), it can use the inform ation in the trail, 

along w ith one of the algorithms in Chapter 5, to determine approxim ately when the trail 

was a t each node (according to its own clock), and compare tha t to the timerecords in 

the trail. Trails are analogous to  the synchronization messages of C hapter 5, and carry 

essentially the same information.

Associated with each trail are several values th a t indicate its current state.

L e n g th : The number of timerecords on the trail.

A rr iv a l: The local value of C^(t)  when the trail arrived. This is essentially the tra il’s 

arrival tim estam p, except it does not include G j .

C u r re n t  n o d e  w a it: The am ount of time since the trail arrived at the current node. This 

is the difference between the current value of C^{t)  and A rriv a l. Raw clock values 

are used to compute elapsed time because the drift of C^( t)  is bounded by g while 

the drift of Ci(t) is not.

T ra il w a it: The to tal amount of time the trail has spent a t all nodes on its path . This is 

the sum of the current node wait and all previous node waits.

6.1 .2  T im erecords

Timerecords replace the tim estam ps used in conventional algorithms. Timerecords are 

a combination of the arrival tim estam p, timestamp, and . d .

All timerecords have three fields. As shown in Figure 6.1, these fields are:

A rr iv a l T im e : The arrival timestamp. Only the raw clock value is actually used, the 

target adjustm ent may be dropped to save space.

S en d  T im e : The timestamp.

S en d  D elay : The value of d i.e., the minimum transm ission time for the trail to the
v  i —* t +  1 '  ‘

node which made (or will make) the next timerecord. This inform ation can be dropped 

if the value is already known, or if only the averaging algorithm  is used to make 

estimates.
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F ig u re  6 .1 : A synchronization message

T he first timerecord on each trail does not have an entry in the arrival tim e field since 

the tra il was created a t th a t node. The time of creation is effectively the send time.

T he more accurate the values of the arrival time and send time are, the easier and tighter 

the synchronization. The availability of special hardware, such as in [35], to precisely record 

the arrival and send times of messages can greatly improve accuracy while reducing the 

num ber of synchronization messages tha t need to be sent.

6.2 Message Sending

W henever a node receives a synchronization message it breaks up the message into its 

com ponent trails. Each trail is checked for cycles by checking to see if any of the timerecords 

on the tra il were made by the local node. Those tha t have completed a cycle are sent to 

the  estim ation algorithm. The remaining trails are kept for a  while so they can be copied
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into outgoing synchronization messages.

W henever a  node sends a synchronization message, it first creates a new, em pty trail 

and adds its timerecord to it. This is how new trails are created. The node then  selects 

trails from those currently on hand, copies them  into the synchronization message, adds its 

timerecord to each one, and fills in the fields appropriately. The message is then sent.

The rem ainder of this section presents the details of when and where messages are 

sent, how long a  node keeps the trails it receives, and how trails are selected for outgoing 

synchronization messages.

6.2.1 M essage Scheduling

Each Ni  has a schedule for sending synchronization messages. The schedule is composed

of a  round divided into one or more slices s®, .sj, __  Each slice is a  time interval along

w ith a (possibly empty) set of nodes. After a slice’s time elapses, a synchronization message 

is sent to each node in the slice’s set, and the next slice is started. After the final slice has 

elapsed, the round starts  over. The combination of all the rounds of all the nodes is a 

message sending pattern, tha t repeats over and over.

As an example, consider the wrapped square mesh in Figure 6.2. Define 2 slices for each 

node, each 500msec. long. After the first slice, even numbered nodes send synchronization 

messages to  the nodes to  their right and left, and odd numbered nodes send synchronization 

messages to the nodes above and below them. After the second slice, even numbered 

nodes will send synchronization messages to the nodes above and below them, and odd 

numbered nodes will send synchronization messages to the nodes to their right and left. If 

the m aximum skew between clocks is 6, and 8 500msec., then even nodes will be sending

right and left while odd nodes are sending up and down, and vice-versa. This way no two 

nodes are sending synchronization messages on the same link a t the same time.

A nother possible message sending pattern  mimics the £;-node inquiry of Section 5.1.3. A 

cycle containing every node in the system is defined, a Hamiltonian cycle is preferable, bu t 

not necessary. Each node’s round again has two slices. After the first slice each node sends 

a synchronization message to the next node on the cycle. After the second slice each node 

sends a synchronization message to the previous node on the cycle. The first slice provides 

the forward inquiries, the second slice provides the backward inquiries. The considerable 

wait time accumulated in this pattern  makes it suitable for small systems only.

Yet another possible message sending pattern  mimics the coordinated four-corner mesh-



142

F ig u re  6 .2 : A wrapped square mesh

ing of Section 5.5.1. The system nodes are first laid out in a rectangular grid, as for 

four-corner meshing. The number of slices in a round is one less than  the num ber of rows, 

or one less than  the number of columns in the grid, whichever is larger. Two synchronization 

messages are sent after each slice. After the first, slice each node sends one synchronization 

message to the node on its right, and one to the node below. After the second slice each 

node sends one synchronization message to the second node to its right, and one to the 

second node down (the grid is assumed wrapped at the edges). This continues until each 

node has sent one synchronization message to every other node in its row and column. As 

an example, in the 16-node square mesh there will be three slices per round, N 0 will send 

synchronization messages to  N t and N4 after the first slice, N 2 and N a after the second, 

and N 3 and N l2 after the third.

6.2 .2  W ait lim its

The longer a trail has been a t a  node, the less “fresh” is the information it carries, and 

the less use it will be if it does manage to complete a  cycle. There are two limits on the 

am ount of tim e a trail may spend a t any node:

W N: The maximum node wait. The current node wait must be less than  W ^ .

W t : The maximum trail wait. No trail can have a tra il wait greater than  Wr-
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Trails which exceed either lim it are discarded. A tra il which is discarded w ithout being 

copied into any synchronization message is said to have expired. An expired trail is a  waste 

of the network bandw idth used to  transm it it, and is something to be prevented.

6.2 .3  Passback, H op, and W ait Checks

It is inefficient for a node to copy all of the trails it currently has into each synchro

nization message. Since the goal is to form cycles, only those trails which would be able to 

form cycles if included in the message, should be included. There are four simple checks a 

node can do to decide if a particular trail should be included in a particular synchronization 

message:

Passback: A trail passes the passback check if either the destination of the synchronization 

message has no timerecords on the trail, or if it created the first, timerecord on the 

trail. This prevents the generation of small “internal” cycles on a  trail.

M inimum Hop (xmm/i): A trail passes the minimum hop check if the first timerecord 

on the trail has the property tha t the minimum number of timerecords the trail will 

acquire while traveling from the destination of the synchronization message back to 

the node which made the timerecord will create a  cycle containing a t least Xminh 

timerecords (not including the endpoints of the cycle). This guarantees cycles of 

length a t least X m i n h ■ Shorter cycles help produce low-uncertainty estimates, while 

long cycles help produce more estimates. The minimum hop check is a trade-off 

between uncertainty and the size of synchronization messages.

M aximum Hop (Xmaxh)'- A tra il passes the maximum hop check if the first timerecord 

on the trail has the property th a t the minimum number of timerecords the trail will 

acquire while traveling from the destination of the synchronization message back to 

the node which made the timerecord will create a  cycle containing no more than  

X m a x h  timerecords (not including the endpoints of the cycle). This guarantees cycles 

of length no more than  Xmaxh■ The number of possible cycles grows rapidly w ith the 

maximum length, while uncertainty increases. The maximum hop check is used to 

reduce the size of synchronization messages by eliminating trails th a t would be of 

little  use to the estim ation algorithm.

Wait: A trail passes the wait check if the first timerecord on the trail has the property th a t 

the minimum wait time the trail will accumulate while traveling from the destination
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of the synchronization message back to the node which made the timerecord is small 

enough so th a t the trail will not exceed W T■ This guarantees th a t the tra il will be 

able to form a cycle before it exceeds the maximum trail wait.

The passback check is done by checking all the timerecords on the trail. The hop and 

wait checks require one table lookup apiece, and can all be done a t the same time. The 

necessary tables can be generated in n 3 time, and since their values depend only on the 

message schedule, they can be generated off-line. The time required to perform all the 

above checks on a  tra il is therefore a linear function of the length of the trail.

The minimum and maximum hop checks require a minimum distance table. To generate 

the table, create a  directed graph H  w ith a  vertex for each TV,. There is an edge of length 1 

from Ni to Nj  if IV, sends a synchronization message to Nj.  A shortest pa th  analysis for H  

gives the table needed for the hop checks. The minimum hop check uses the table to make 

sure th a t th a t either the minimum number of hops from destination of the synchronization 

message to the node which created the first timerecord is large enough to ensure a cycle 

w ith Xminh timerecords, or th a t the destination of the synchronization message is further 

away from the node which made the first timerecord than  the current node. The maximum 

hop check simply uses the table to make sure the trail can re tu rn  to the node which made 

the first timerecord before it collects too many timerecords.

The table for the wait check is more complicated to generate. If there are s slices in each 

round, create graph W  w ith vertices S f , 0 <  i < n, 0  < k < s. Vertex 5* will represent the 

fc’th  slice of Ni.  If after slice k, sends a synchronization message to Nj,  there is an edge 

from to ig,j*+1)mod s Tiie length of each edge will be the length of a slice. These edges are 

equivalent to the statem ent “a tra il arriving at Ni  a t the s ta rt of slice k  must wait for one 

slice before being sent to N / \  Furtherm ore, if W Nis £ times the length of a  slice, will 

have an edge to each member of | 5 ' ( fc+j,’) rnod s : 1 < j  < P.], The length of each edge will be j  

times the length of a slice. These edges are equivalent to the statem ent “a  trail arriving at 

Ni  a t the s ta rt of slice k must wait j  slices for the s ta rt of slice (k + j )  mod s. A shortest 

pa th  analysis for W  gives the table needed for wait checks. If the node which created the 

first timerecord on the trail is Ni,  the destination of the synchronization message is Nj,  

and the current slice is k, the wait check looks in the table for the minimum wait from 

gjfc+i)mods j() any g. The wait check passes if the minimum is small enough to allow the 

tra il to  complete the cycle before it expires.
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6.3 Computing the Skew Estimates

The continuous clock distribution algorithm of Sections 6.1 and 6.2 is flexible enough to 

allow ju s t about any estim ation algorithm to be used. However, probabilistic estim ation al

gorithm s are most likely to  gain from continuous clock distribution. And, since Section 6.2.1 

shows how the continuous clock distribution algorithm can be made to em ulate both  k -node 

inquiries and coordinated four-corner meshing, it seems reasonable to use the probabilistic 

estim ation algorithm s of Chapter 5.

6.3.1 T he Interval A lgorithm

T he interval algorithm  adapts well to continuous operation. There is very little difference 

between the way it operates in C hapter 5 and the way it operates here. Each node m aintains 

a  set of intervals, one for every other node, which are updated regularly as new clock 

inform ation arrives. In  order to m aintain these intervals, Ni  must keep track of a  few values 

for each Nj:

I i j i  The last com puted interval for Nj.  This is updated every time a new timerecord from 

N j  arrives, or an estim ate is made.

I f f : The value of Cf(t .w),  where tw  is the last time the interval was widened. An interval 

m ust be widened before it is used to make an estimate, or before it is updated. 

W idening is done to take into account any clock drift which may have occurred. To 

widen A j, 2 g(C f ( t )  — I™) is added to the upper bound of the interval and subtracted 

from the lower bound.

/A : The largest raw time value seen in a timerecord from N r  The value of /A  will always 

increase.

/A :  The latest target adjustm ent seen in a timerecord from Nj.  W hether or not a target 

adjustm ent is the latest is determ ined by comparing JA and the raw time from the 

timerecord.

For the sake of efficiency, I itj will bound the skew between C f  and C f .  This is because 

I f j  and C f  will normally change fairly frequently. If I itj bounded the skew between C f  and 

C f , its endpoints would have to be updated each time either /A  or C f  changed.

To make an estim ate of the clock skew between Nj  and iVj, AT; will first widen the old 

value of l i j .  Adding the difference between current values of /A  and C f  to each endpoint
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of I iti gives an interval containing the current skew between C'j’ (a)nd C f  (.) The m idpoint 

of this new interval is the estim ated skew. The uncertainty of this estim ate is half the w idth

of h i -

Newly arrived clock information is handled the same way it was in Section 5.2.1. New 

intervals are calculated using either Equation (5.6) or Equation (5.7), whichever is appropri

ate, and are then intersected with the existing intervals. The existing intervals are widened 

first of course, a point which is glossed over to some extent in Section 5.2.

Analysis

Analysis of the interval algorithm w ith continuous distribution is a straightforward ap

plication of the procedures in Section 5.2.3. The principle difference between the examples 

here and those in Section 5.2.5 is the need to consider the node waits generated by the con

tinuous clock distribution algorithm. Also, exponentially distributed delays are assumed, 

to  allow for easier comparison w ith the simulations of Section 6.5.

Consider a 64-node hypercube, and use the message sending pa tte rn  in Section 6.2.1 

which em ulates coordinated four-corner meshing. The resulting round contains 7 slices. 

Each inquiry involves four nodes, which are assumed to be N 0 through N 3. As pointed out 

in Section 5.5, there is a maximum of 3 hops between nodes.

There is a minor difficulty in tha t the message sending pattern  being used does not 

send forward and backward inquiries consecutively, bu t rather concurrently. Inquiries of 

each type are started  at the same time, and the time between the s ta rt of each pair is the 

length of a round (i.e., Ais the length of a round). A minor modification of Equations (5.17) 

through (5.20) fixes this: the 2gX terms are changed to 2gX (q — p  — 1 ).

A second minor difficulty involves the values of ( if  and (3 f . Exam ination of Equa

tions (5.13) through (5.16) shows tha t /3f and (3f are different for forward and backward 

inquiries. W hen node wait is 0, the difference is small enough not to  m atter, and an upper 

bound for both  values can be used. W hen node wait may be on the order of seconds, the 

difference can be very significant. The calculations in this section therefore use different 

values of /3f and (3f for forward and backward inquiries. Their values are com puted by 

assuming ,_d+i =  6.33msec., the maximum value of ,_x is 12msec., and the node wait at 

each node is one round. As an example, with a round of 1000msec., one finds th a t for 

forward inquiries /3g =  4(6.33) +  3(12) +  3(1000) =  3061.32, and for backward inquiries 

$  =  4(6.33) +  1(12) +  3(1000) +  2(1000) =  5037.32.
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round N\ and N 3 N 2

(msec.) q V 2) V 4) ^ ? ( 2)
14000 1 0 .0 0 0 0 0 0.14466 0 .0 0 0 0 0 0 .0 0 0 0 0

14000 4 0 .0 0 0 0 0 0.22351 0 .0 0 0 0 0 0 .0 0 0 0 0

14000 8 0 .0 0 0 0 0 0.22351 0 .0 0 0 0 0 0 .0 0 0 0 0

7000 1 0.00919 0.77877 0 .0 0 0 0 0 0.14441
7000 8 0.01477 0.99971 0 .0 0 0 0 0 0.45218
7000 15 0.01477 0.99974 0 .0 0 0 0 0 0.45236

3500 1 0.18630 0.93071 0.00088 0.52723
3500 15 0.76663 1 .00000 0.00370 0.99923

3500 29 0.76663 1 .0 0000 0.00370 0.99928

1750 1 0.35779 0.96553 0.01147 0.71539
1750 29 0.99953 1 .0 0000 0.17758 1 .0 0 0 0 0

1750 58 0.99953 1 .0 0 0 0 0 0.17758 1 .0 0 0 0 0

700 1 0.46791 0.97819 0.03370 0.80347
700 72 1 .00000 1 .0 0000 0.86544 1 .0 0 0 0 0

700 143 1 .0 0000 1 .0 0 0 0 0 0.86544 1 .0 0 0 0 0

T ab le  6 .1: Probability of convergence using the continuous synchronization algorithm, 
assuming exponentially distributed delays w ith ,_d =  2.11, and // =  0.34.

Table 6.1 shows the results of the analysis. The round lengths are based on slice lengths 

of 2000, 1000, 500, 250, and 100msec. The length of a  round determines A, and therefore 

determines the value of q above which the probability of convergence does not increase. The 

probability of convergence is shown for this value of (/, as well as <7 =  1 , and for a q halfway 

in between.

The results in Table 6.1 are for the worst case, most synchronization messages will not 

travel 3 hops. They also ignore the fact tha t Ni  and N 3 are in many different groups, 

and will therefore be involved in many more inquiries. Even so, the results are quite good. 

One may recall tha t in Section 5.2.4 it was shown tha t the interval algorithm  did poorly 

in the case of exponential delays, barely working for a 16-node system. Yet the continuous 

synchronization algorithm is able to  get a probability of convergence of 0.999 or be tte r for 

all nodes in a 64-node system when e =  2msec. and slices are 1/2 second long.
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6.3 .2  T h e A veraging A lgorithm

The averaging algorithm  also adapts well to continuous clock distribution. Each new 

cyclic trail provides new guesses, which are then averaged w ith existing guesses. The fol

lowing inform ation is m aintained by Nj for each Nj:

A i j i  The list of most recent guesses of the skew between C f  and C f  made by Ni. The list 

has a  lim ited length, and when a new guess is made, the oldest guess is removed from 

the list.

A N :  The largest raw tim e value seen in a timerecord from Nj.  The value of A N  will always 

increase.

A'N : The latest target adjustm ent seen in a  timerecord from Nj.  W hether or not a  target 

adjustm ent is the latest is determ ined by comparing A N  and the raw time from the 

timerecord.

Note th a t once again tha t estim ates are made of the skew between C f  and C f  instead of 

C f  and C f.  Again, the reason is to  avoid updating estim ates whenever a  target adjustm ent 

changes. A N  and A'N are the same as IN  and I f , and the values need only be kept once 

if bo th  the interval and averaging algorithms are used.

The estim ate is com puted as an average of the guesses in A itj , plus the difference between 

the current values of A N  and C f.  New guesses are com puted using either Equation (5.36) 

or Equation (5.37). Old guesses are removed from A itj to keep them  from continuing to 

affect the estim ates. One might recall th a t in Section 5.3.5 it was shown th a t the probability 

of validity actually began to decrease for large q. Removing old guesses prevents this.

Analysis

Analysis of the averaging algorithm  can be done with the procedures in Sections 5.3.2 

and 5.3.3. Once again, the prim ary difference is the node waits produced by the continuous 

clock distribution algorithm.

Assume the same system as w ith the interval algorithm. As for the interval algorithm, 

the fact th a t bo th  forward and backward inquiries go on simultaneously requires minor mod

ification of the analysis. In particular, the q \  (2q — 1) term s in Equations (5.40) and (5.41) 

are changed to gX(q  — 1 ).
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round Constant mean Estimated mean
(msec.) Q e P c ( l - e ) P<{ 2 - e ) e Pc( 1 - e ) Pe(2 - e )

14000 1 0.14000 0.85581 0.99841 0.56012 0.54491 0.98552

14000 3 0.42000 0.91197 1.00000 0.84012 0.36181 0.99935

14000 6 0.84000 0.49428 1.00000 1.26012 0.00000 0.99791

7000 1 0.07000 0.88571 0.99895 0.28102 0.77845 0.99651

7000 5 0.35000 0.98642 1.00000 0.56012 0.90513 1.00000

7000 10 0.70000 0.89281 1.00000 0 .0 1 0 1 2 0.37064 1.00000

3500 1 0.03500 0.89872 0.99915 0.14012 0.85575 0.99841

3500 10 0.35000 0.99952 1.00000 0.45512 0.99657 1.00000
3500 20 0.70000 0.97729 1.00000 0.80512 0.86111 1.00000

1750 1 0.01750 0.90476 0.99924 0.07012 0.88567 0.99895
1750 20 0.35000 1.00000 1.00000 0.40262 0.99999 1.00000
1750 40 0.70000 0.99873 1.00000 0.75262 0.99211 1.00000

700 1 0.00700 0.90824 0.99929 0.02812 0.90113 0.99919
700 50 0.35000 1.00000 1.00000 0.37112 1.00000 1.00000

700 100 0.70000 1.00000 1.00000 0.72112 1.00000 1.00000

Table 6.2: Probability of validity using the continuous synchronization algorithm , as
suming exponentially distributed delays with . ^ =  2.11, and /r =  2.45.

Results are summarized in Table 6.2. The same slice lengths are used as in the averaging 

example. The inherent error and probability of validity when e =  1msec., and e =  2msec., 

are presented for bo th  constant means and estim ated means.

For long rounds the difference between constant and estim ated means is substantial. 

The larger inherent error for estim ated means reduces the probability of validity. Also 

visible in the table is the point where the probability of validity begins to decrease. For 

example, when the round is 14000msec., the probability of validity when e =  1msec. begins 

to  drop for q larger than  3 with constant means, and for q larger than 1 w ith estim ated 

means. The last item of interest is the number of guesses tha t must be kept in A itj. It 

should not be so large th a t the probability of validity is reduced. For instance, when the 

round is 3500msec. and e — 1msec., keeping 10 guesses in A itj gives a  probability of validity 

of over 0.999, keeping 20 reduces the probability of validity to 0.977.

The results in Table 6.2 should be worst case. As for the interval algorithm, most syn

chronization messages will not travel 3 hops. Also, N x and 7V;! will participate in many other
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inquiries w ith N 0, so their probabilities of validity will be be tte r than  shown in Table 6.2. A 

simple modification of the above analysis could be done to compute probabilities of validity 

for Ni  and N 3, bu t this is left to the reader.

6.3 .3  A ccou n tin g  Faults

Because the same estim ation algorithms are used, the discussion of fault-tolerance in 

Section 5.6 applies equally well here. However, since the continuous clock distribution 

algorithm  generates node waits, the estim ation algorithms must now worry about accounting 

faults.

There is no sure way to detect accounting faults, bu t tha t is largely due to the fact tha t 

their effects may be very slight. The interval algorithm  will often detect accounting faults 

by generating em pty intervals, bu t it is not guaranteed to detect them. It is possible to 

modify the analysis of Section 5.2.3 to  incorporate a simple model of accounting faults. It 

is then possible to determ ine the probability of empty intervals, as well as the probability 

th a t the actual skew lies outside the interval.

For this analysis an accounting fault is modeled as an offset added to the node wait of 

the faulty node. One offset, o /, is added to the node wait during forward inquiries, and a 

second offset, o(n is added to the node wait during backward inquiries. The values of oj and 

ob may or may not be equal, and may be either positive or negative.

Assume th a t the accounting fault is at Nj,  and consider the intervals com puted for N j, 

where i > j .  The lower bound for N ^s  interval generated by backward inquiries will be ob 

too high. The upper bound for N ^s  interval generated by forward inquiries will be O/ too 

low. New distribution functions for the lower and upper bounds may be derived to replace 

those in Equations (5.17) and (5.19).

pi ( ,  p  ( - x ~ 2ePi + o b - 2 g X ( q - p -  1 )'FC, ( X) =  U - F x { --------------------^ -------------------

x f1 - F X  l ~— - ( 61)

X -  2 Q0? -  2gX(q -  p  -  1 ) 
1 + Qx 1 -  FX\  , T  '  M l (6.2)

T he density functions can be found through differentiation. New distribution and
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ro u n d iV2 IV3

0 (m sec.) Q PE 2, p c l q pu/' p c 2„ PE2q p c 2:> Pu p Fc\
0.5 7000 15 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 1.00000

0.5 3500 29 0.00000 0.00007 0.00000 0.99997 0.00000 0.00000 0.00000 1.00000

0.5 1750 58 0.00000 0.00173 0.00008 0.99819 0.00000 0.00000 0.00000 1.00000

0.5 700 143 0.00031 0.01292 0.00556 0.98160 0.00000 0.00003 0.00001 0.99997

1.0 7000 15 0.00000 0.00248 0.00000 0.99752 0.00000 0.00000 0.00000 1.00000

1.0 3500 29 0.00096 0.04969 0.00336 0.94711 0.00000 0.00028 0.00000 0.99972

1.0 1750 58 0.05923 0.20602 0.08482 0.72664 0.00001 0.00317 0.00069 0.99615

1.0 700 143 0.54748 0.58481 0.46859 0.22063 0.00135 0.01839 0 .01110 0.97071

2.0 7000 15 0.18738 0.55600 0.08130 0.40791 0.00014 0.03041 0.00053 0.96908

2 .0 3500 29 0.95865 0.95661 0.76707 0.01011 0.05768 0.22233 0.07112 0.72236

2.0 1750 58 1.00000 0.99976 0.99748 0.00000 0.51371 0.58732 0.41369 0.24196

2.0 700 143 1.00000 1.00000 1.00000 0.00000 0.98555 0.95044 0.91758 0.00408

Table 6.3: Analysis of accounting faults when using the continuous synchronization 
algorithm, assuming exponentially distributed delays with . d =  2 .1 1 , 
and fi = 2.45.

density functions for M A X 2/ 1 and MIN2/ 1 can be found by modifying Equations (5.21) 

through (5.24) to use the new functions for the lower and upper bounds. The probabil

ity of an em pty interval, PE?<i, is then the probability tha t M IN2/ 1 — M A X 2/ ’ <  0. This can 

be found with a simple convolution integral, much like the one in Equation (5.26):

/ oo j-y

J V L jM A tA ,)!'M I^z)dz

/ oo

(6-3)

Furtherm ore, the probability th a t the actual skew is less than  the lower bound of the 

interval is P ^ q  =  1 — (0 )i an(l the probability tha t the actual skew is greater than

the upper bound of the interval is P ^ / i  — (^)- r̂ ie probability th a t the actual skew

is w ithin the interval is Pc 2, =  (1 — P ^ 2q)(l — P^<i)-

As an example, consider the same system used in the examples above. Assume th a t Ni 

has an accounting fault, and for simplicity, Of — oy =  o. N 0’s intervals for N-> and N a will 

be affected, the above equations determine how likely it is th a t the intervals will become 

empty, and how likely it is th a t the actual skew no longer lies w ithin the interval.

Table 6.3 summarizes the results. Several different values of o are used. For each round
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length, q was chosen to give a  maximum probability of convergence, so the intervals would 

be a t their smallest.

The general trend of the results is tha t accounting faults have little effect when o is 

small in comparison to the expected interval width. Longer rounds have no trouble when 

o =  0.5msec., bu t then their expected interval w idth is greater than  4msec. Even for rounds 

of 500msec. the interval for jV2 almost always contains the actual skew. Em pty intervals are 

not a  likely occurrence until it is quite likely th a t the interval does not contain the actual 

skew value. They do not do a good job of catching a small o, bu t they do manage to catch 

larger ones.

Somewhat surprising a t first glance is the effect of the accounting fault on the interval 

for N 3. From Table 6.1 it is clear tha t the interval for N 3 is almost always smaller than  the 

interval for N 2. But even with a large o it almost always contains the actual skew value 

and almost never becomes empty. The reason is tha t the accounting fault affects the upper 

bound of N 3 s interval on forward inquiries, and the lower bound on backward inquiries. A 

look a t Figure 5.3 shows th a t the upper bound for N 3 computed on forward inquiries will 

be too high. Similarly, on backward inquiries the lower bound computed for iV3 will be too 

low. The accounting fault is therefore affecting bounds tha t are already bad, and so has 

little effect. W hat this means is th a t an accounting fault can only affect estim ates of nodes 

in the same row or column, e.g., the accounting fault at N x will affect a t most 7 (out of 63) 

of TVq’s  estimates. The effects will also be small, less than ^(otherwise empty intervals will 

result), so the methods in Section 3.4 may be used to deal with them.

6.4 Uncoordinated Adjustment

Continuous synchronization can be done with ju s t about any adjustm ent algorithm. 

The algorithm s of Chapters 3 and 4 both work well. As do interactive convergence [22], 

and interactive consistency [22]1. Even m aster/slave adjustm ent algorithms or hierarchical 

adjustm ent algorithms can be used2.

All the above adjustm ent algorithms assume tha t all nodes adjust their clocks sim ultane

ously, usually as soon as the estim ates become available. W ith  continuous synchronization 

the estim ates are always available, and there is no obvious time to compute the synchroniza

1W ith  th e  prov iso  th a t  B y zan tin e  b eh av io r is n o t allow ed
2R esea rch e rs  a t  M a rtin  M a r ie tta  a re  considering  using  th e  co n tin u o u s sy n ch ro n iza tio n  a lg o r ith m  in  a  

m a s te r /s la v e  se ttin g . T h e  co n tin u o u s availab ility  o f skew e s tim a te s  allow s m ore  prec ise  co o rd in a tio n  of 
ev en ts  th a n  sy n ch ro n iza tio n  alone.
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tion adjustm ent. Coordinated adjustment solves this problem by specifying certain times 

when all nodes adjust their clocks, making clock adjustm ent roughly simultaneous. Because 

estim ates are continuously available, the adjustm ents can take place more often, allowing 

for larger values for r ,  smaller values for S, or both. However, this approach violates the 

“sp irit” of continuous synchronization, it is also rather inflexible. Nodes must adjust their 

clocks a t the specified times. And if they cannot, either because they are busy, or because 

estim ate uncertainty is too high, they risk falling out of synchronization.

Uncoordinated adjustment allows nodes to adjust their clocks ju s t about whenever they 

wish. Nodes may therefore wait until they are not busy, or until estim ate uncertainty is low 

enough. The principle hazard is th a t nodes may wait too long.

W ith uncoordinated adjustm ent each node normally attem pts to compute a synchroniza

tion adjustm ent either a t regular intervals, or whenever it has the time. The com putation 

is said to be successful if all the conditions of the adjustm ent algorithm (e.g., minimum 

num ber of accepted estimates, or average uncertainty) are met and a synchronization ad

justm ent is produced. If the absolute value of the synchronization adjustm ent is greater 

than  a  specified minimum, the synchronization adjustm ent is applied by adding it to the 

target adjustm ent.

There are three reasons for a minimum size of the synchronization adjustm ent: estim a

tion uncertainty, faulty nodes, and estim ate bias. W hen a node adjusts its clock it should 

be sure th a t the adjustm ent reflects a real change in skew, and not ju s t variation in the 

estim ates. The estim ates made by the continuous synchronization algorithm will normally 

“jum p” around some center point, and thus the computed synchronization adjustm ent will 

change slightly from moment to moment. The minimum synchronization adjustm ent should 

therefore be a t least e. Faulty nodes can also cause the synchronization adjustm ent to sud

denly change. Worse, if all the faulty nodes read either fast or slow, the non-faulty nodes 

may s ta rt to  “chase” them, constantly increasing or decreasing their clocks. The mini

mum synchronization adjustm ent should therefore be greater than  the maximum effect of 

faulty nodes on the synchronization adjustm ent (e.g., m 6 /(  for the algorithms in Chap

ter 3. Finally, estim ation algorithms may have an inherent bias. The interval algorithm, 

for instance, tends to overestimate skew. Synchronization adjustm ents therefore tend to be 

slightly larger than  they should be, and as a  result clocks will tend to run fast on average. 

A minimum synchronization adjustm ent cannot prevent this from happening, bu t it can 

slow it down by reducing the num ber of times a synchronization adjustm ent is applied.
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There is still the question of proving tha t the system will remain in synchronization. 

Unfortunately, uncoordinated adjustm ent does not provide any means of doing this. T hat 

the system remains in synchronization is normally shown through analysis and testing. 

However, some comfort can be derived from the availability of estimates. If e is small in 

comparison to 6, nodes will always have a very good idea of ju s t how well synchronized they 

are. So if the system does fall out of synchronization, or is in danger of doing so, the  nodes 

will be aware of it and may take steps to counteract it.

6.5 Simulation

As in C hapter 5 simulation is used to dem onstrate the effectiveness of synchroniza

tion using continuous clock distribution. Unlike C hapter 5, the simulations here are of an 

operating system. They are designed to evaluate the performance of the continuous syn

chronization algorithm under “real-life” circumstances, not ju s t verify tha t it works. The 

goal of simulation is not so much to see if the system remains synchronized, but to determ ine 

how much of a load it generates.

All simulation is done using the interval estim ation algorithm, and the adjustm ent al

gorithms using reliable estimates of Section 3.3.

6.5.1 S im ulation  Param eters

In  order to accurately simulate system operation, a number of system param eters must 

be specified. These param eters are summarized in Table 6.4.

The message delays are the same as those used in Chapter 5. Message transmission 

is done by store-and-forward, and individual hops are assumed to be independent and 

identically distributed, w ith an exponential distribution. Thus, the delay for a 3-hop path  

is a t least 6330/isec., and averages 7350/isec.

The length of the various components of synchronization messages are specified so tha t 

the to ta l number of bytes sent by the clock distribution algorithm may be determined. The 

values used are the lengths of the corresponding structures in the simulator.

The values of e, S, W N, W r, and the length of a slice are varied from example to  exam

ple. Unlike the simulator of C hapter 5, which simulated a single run  of the synchronization 

algorithm , the simulator used here operates for a specified period of time, covering mul

tiple clock adjustm ents by each node. The simulator was set to run for several hours of
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Param eter Value

M aximum clock drift (g) 0 .0 0 0 0 1

M inimum sending time (,_^+1) 

M ean sending time (, f£

2 1 1 0 psec.

2450/isec.

Length of timerecord 

Length of tra il header 

Length of message header

32 bytes 

24 bytes 

16 bytes

T a b le  6.4: Simulation Param eters

simulated time in order to make sure there were no slips or breakdowns on the part of the 

synchronization algorithm.

6.5 .2  16-node Square M esh

The first, example is the 16-node square mesh described in Section 6.2.1, using the first 

message sending pa ttern  (where nodes send only to neighboring nodes). It is assumed no 

faults are present (m  =  0), e =  1msec., and 6 =  5msec. Using range restriction, and 

Equation (3.10), one finds (  >  10. S tart with a  slice length of |sec., W n  =  lsec., and 

no hop checking. Under these circumstances the system synchronizes, averaging about 

13 estim ates per successful com putation. The average synchronization message is about 

3.5K bytes long. Each link averages one synchronization message per second, so given a 

lOM bit/sec. link, only about 0.3% of the available bandw idth is used for synchronization. 

Changing the minimum hop check to 3 and the maximum hop check to 5 decreased the 

average size of a synchronization message to about 3.3K bytes. Increasing the m i n i m u m  

hop check any further increases estim ate uncertainty to  the point where it is difficult to 

successfully compute a synchronization adjustm ent.

The synchronization message sending pattern  in the previous example is not particularly 

efficient. Nodes send only to their neighbors, so in order to make an estim ate of a node h 

hops away a trail will have to make a t least 2 h hops, accruing considerable trail wait in the 

process. For the next example the last message sending pattern  described in Section 6.2.1, 

the one which emulates coordinated four-corner meshing, is used instead. Use the same 

values as above for m, e, S, and the length of the slice. Let W n  be 1 round, W T be three 

rounds, and the minimum and maximum hop checks both  be 3. Under these circumstances
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the system synchronizes, averaging nearly 16 estimates per successful com putation. The 

synchronization messages average 1.8K bytes. The average number of messages per link 

is now 2/sec., so synchronization again uses about 0.3% of the available bandw idth  of a 

lOM bit/sec. link. Only in this case the synchronization is much tighter because of the 

greater num ber of estimates used when computing each synchronization adjustm ent.

6.5 .3  64-node H ypercube

A 64-node hypercube [38] poses a much greater test for the continuous synchronization 

algorithm. Again, the message sending pattern  which emulates coordinated four-corner 

meshing is used. This produces a round tha t is seven slices long. W n  is 1 round, W r  is 3 

rounds, and the hop checks are both  3. The resulting synchronization messages are about 

12K bytes long, independent of slice length. These messages are probably too long to be 

sent a t once, but could easily be broken up into multiple messages and sent separately over 

the course of the next slice, as long as no trail is split between two messages.

For the first example, range restricted mean is used to compute the synchronization 

adjustm ent. Table 6.5 summarizes the results. Each node attem pts to compute a  synchro

nization adjustm ent a t the end of each round, the sixth column shows the average num ber 

of estim ates used in each successful attem pt. The last column shows if the sim ulation is 

able to synchronize the system. The simulation made no a ttem pt to simulate faults, only 

increased £ accordingly.

One can get a good idea of how easily the system is synchronized by comparing £and the 

average number of estimates per successful com putation of the synchronization adjustm ent. 

If the average number of estimates is little more than £, the system had a difficult time 

staying synchronized. A real system, with real faults, might not be so lucky. T he effects 

of system param eters on synchronization is w hat would be expected. Reducing 8 or e, or 

increasing m, makes synchronization more difficult. Reducing the slice tim e reduces the 

average uncertainty in the estimates, and makes more estimates available. So, for example, 

if m  =  4, and 8 =  8 msec., synchronization may be achieved w ith e =  2msec., and a slice 

time of 1 second. However, if 8 is reduced to 6 msec., the slice time must be reduced to |  

second.

To compute bandw idth used, note tha t when slices are 1 second long each node will 

generate 2  messages per second, spread over 6  links. Since synchronization messages av

eraged 12K bytes, the resulting bandw idth usage is about 0.64%. For \  second slices the
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e (msec) 5 (msec) m slice (msec) />■
•> estimates synchronized?

2 10 0 1000 41 49 y

2 10 12 500 56 62 y

2 8 0 1000 43 49 y

2 8 4 1000 49 52 y

2 8 0 500 43 61 y

2 8 4 500 49 62 y

2 8 0 250 43 63 y

2 8 4 250 49 64 y

2 8 8 250 54 64 y

2 8 12 250 59 64 y

2 6 0 1000 49 51 y

2 6 4 1000 55 55 n

2 6 0 500 49 61 y

2 6 4 500 55 62 y

2 6 0 250 49 63 y

2 6 4 250 55 64 y

2 6 8 250 61 64 y

2 5 0 250 54 64 y

1 5 0 500 41 - n

1 5 0 250 41 41 y

Table 6.5: Sim ulation results for a 6-eube w ith  range restriction



158

e (msec) 6 (msec) m slice (msec) C estim ates synchronized?

2 8 0 1 0 0 0 43 49 y
2 8 4 1 0 0 0 51 53 y
2 8 0 500 43 61 y
2 8 4 500 51 62 y
2 8 0 250 43 63 y

2 8 4 250 51 64 y
2 6 0 1 0 0 0 49 51 y

2 6 4 1 0 0 0 58 58 n

2 6 0 500 49 60 y
2 6 4 500 58 62 y
2 6 0 250 49 63 y

T ab le  6 .6 : Simulation results for a 6 -cube with unrestricted range mean.

bandw idth usage doubles, to about 1.3%. For ~ second slices the bandw idth usage doubles 

again, to about 2.6%. Consulting Table 6.5, it can be seen tha t for only 1.3% of the network 

bandw idth the system can be synchronized to w ithin 6 msec., and still tolerate 4 faults.

Simulation were also done w ith unrestricted range mean. Table 6 .6  summarizes the 

results. They are much the same as for the range restricted case, only the value of £ 

increases when m  % 0. The safety margin tha t was present w ith range restriction has been 

cut somewhat.

6.5 .4  A  R eal-W orld  S im ulation

To further prove the viability of the continuous synchronization algorithm  a  second 

sim ulator was constructed which attem pts to synchronize the clocks of a group of Sun 

workstations. The sim ulator consists of several synchronization processes running on various 

workstations. Each synchronization process reads the local workstation clock, sends and 

receives synchronization messages using Internet datagram s, and uses the synchronization 

algorithm  to compute its own target adjustm ent. Since each process m aintains a  target 

adjustm ent instead of altering the local clock, more than  one synchronization process can 

run on each workstation.

Each synchronization process was configured to act as though it were the synchronization
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algorithm  of a  particular node in a  hypercube. Each sent and received synchronization mes

sages only from its “neighbors” in the hypercube. Eight workstations were used, running two 

synchronization processes each, to simulate a 16-node hypercube. The workstations were 

spread over two separate E thernets, connected by an FDDI bridge. The synchronization 

processes were arranged so tha t the pair on each workstation simulated nodes on the oppo

site ends of the liypercube (e.g., N 0 and 1V15), so the two synchronization processes would 

never communicate directly. In fact, the two synchronization processes on each workstation 

should have the most trouble estim ating each other’s skews.

The slice interval was set a t 2 seconds. Each simulation process measured the minimum 

delay to each of its neighbors, minimum times were about 1 2 0 0 //,sec. between workstations on 

the same E thernet and about 1500//sec. when the workstations were in different Ethernets. 

The sending pattern  was derived the same way as for the 6 -cube examples above, resulting 

in three slices per round. Test runs found a g smaller than 0.00005 caused errors. The 

synchronization processes were set up to use range restricted mean w ith e = 5msec., 6 — 

20msec. They were run  for two hours during the middle of the afternoon when workstation 

usage and network traffic was fairly high. Each synchronization process generated a  report 

a t regular intervals, and included in each report is the current target adjustm ent. The 

adjustm ents of two synchronization processes running on the same workstation should be 

the same, comparing the reports of the two processes shows how well the synchronization 

algorithm  worked.

Figures 6.3 through 6.10 plot the target adjustm ents of each pair of nodes in the simula

tion. It is obvious from the graphs th a t while the target adjustm ents of simulation processes 

running on the same workstation are nearly identical, there is considerable difference in ta r

get adjustm ents between simulation processes running on different workstations. Since 

sim ulation processes on the same workstation use the same raw clock value, they should 

have the same target adjustm ent if the synchronization algorithm works. Obviously, the 

synchronization algorithm did work, on each graph the curves are nearly indistinguishable, 

differing by no more than  1 0 msec.

Another obvious feature of the graphs is the positive slope exhibited in all bu t Figure 6.7. 

This is largely due to the estim ation bias of the interval estim ation algorithm. Evidently 

the workstation which was running simulation processes 4 and 11 had a fast running clock. 

As said in Section 6.4, there is nothing tha t can be done to stop the effects of estim ate 

bias, it can only be slowed down. On average, the graphs show an increase in the target
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adjustm ent of about 20msec. every 1000 seconds. This amounts to a  drift rate of 2” 5, which 

is less than  the drift ra te  of 5“ 5 th a t was used in the simulation. An increase in the minimum 

synchronization adjustm ent would slow the rate, determining the average estim ate bias and 

subtracting it from the synchronization adjustm ent is another possibility.

6.6 Summary

A continuously-operating synchronization algorithm would have several advantages. It 

would not generate the periodic load characteristic of standard synchronization algorithms, 

it would allow continuous monitoring of skews, and would let nodes adjust their clocks 

quickly in response to a  change in skew. Unfortunately, continuous operation also increases 

the cost of distributing clock information. This makes it difficult to use probabilistic esti

m ation algorithm s and peer adjustm ent algorithms with continuous operation.

This chapter introduced an efficient continuous clock distribution algorithm th a t may be 

used w ith the probabilistic estim ation algorithms of Chapter 5. Peer adjustm ent algorithms 

may be used w ith the resulting estimates. The principle features of this algorithm  are the 

following:

• Continuous distribution of clock information.

•  A flexible means of defining how clock information is to be distributed th a t allows for 

a wide variety of message sending patterns.

•  Works well w ith probabilistic estim ation algorithms, allowing low-uncertainty esti

mates and tight synchronization.

•  Can distribute clock information system-wide, allowing every node to estim ate every 

other node, making peer synchronization possible.



CHAPTER 7

SUMMARY AND FUTURE WORK

This dissertation has considered a great many of the problems associated w ith synchro

nization of distributed systems, and has presented new solutions for many of them. However 

it is not the last word on synchronization. Work on synchronization is likely to continue for 

many years yet. This chapter summarizes the contributions of this dissertation, and lists 

some of the work th a t still remains to be done.

7.1 Summary

Synchronizing the clocks of a  distributed system is a difficult problem th a t involves 

trade-offs between maximum skew and network load. There is no general synchronization 

algorithm  which works well under all circumstances.

P art of the reason for this is th a t synchronization algorithms usually have three distinct 

parts: distribution of clock information, estim ation of clock skews, and adjustm ent of the 

local clock. Each of these three parts interacts with the system differently. Breaking 

synchronization into these three operations, and developing separate algorithms for each 

part, allows some freedom to choose algorithms for each operation th a t are well suited to 

the system under consideration.

This dissertation takes the above approach, and several algorithms for each of the three 

parts  of synchronization are presented. These include:

•  A clock adjustm ent algorithm  which takes into account variation in the quality of 

estim ates and does not require estimates for every other node.

•  A clock adjustm ent algorithm  which allows synchronization to be m aintained while 

requiring each node make estim ates of only a subset of the other nodes.
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•  An efficient clock distribution algorithm which greatly reduces the num ber of synchro

nization messages needed by probabilistic estimation algorithms, and two probabilistic 

estim ation algorithms tha t work with it.

•  An algorithm  for continuously distributing clock information, thus allowing for con

tinual estim ation of clock skews, and more frequent clock adjustm ents.

As stated  above, these algorithms are only for parts of synchronization, none constitutes 

a synchronization algorithm in its own right. They can, however, be combined to make a 

synchronization algorithm. The adjustm ent algorithms of Chapters 3 and 4 can be combined 

w ith the clock distribution and estim ation algorithms of Chapters 5 and 6 . For example, 

the  continuous clock distribution algorithm could be combined with the interval estim ation 

algorithm , and used in the synchronization group environment of C hapter 4.

These algorithm s need not be combined only with one another. O ther algorithm s may 

be used as well. The adjustm ent algorithms of Chapters 3 and 4 may be used w ith simple 

(i.e., non-probabilistic) estim ation algorithms like the one in [22]. The d istribution and 

estim ation algorithms of Chapters 5 and 6  may be used with an interactive convergence, 

adjustm ent algorithm, or even with a  master/slave adjustm ent algorithm.

The flexibility of this work is such tha t it may be taken whole, or piecemeal, depending 

on the needs of the system.

7.2 Future Work

There is little  work left to do on the algorithms themselves. Much of the remaining 

work involves further simulation and implementation. There are, however, several new bu t 

related projects in progress. Specific areas of future work are the following:

•  More simulation work needs to be done, especially of the continuous synchronization 

algorithm . Simulation is to be done for larger systems, and different system geome

tries. Simulation of faults may also be added.

•  The continuous synchronization simulator tha t runs on workstations is in the process 

of being ported to a VXWorks system. This is a prelude to eventual im plem entation 

as part of the com puter system in the T itan  IV launch system [17].

® Some consideration should be given to the use of the adjustm ent algorithm  of Chap

ter 4 w ith the estim ation algorithms of Chapters 5 and 6 . Theoretically, they would
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work well together, bu t the needs of the adjustm ent algorithm  of C hapter 4 are some

w hat different than  those of Chapter 3. Specifically, the algorithm  of C hapter 4 cannot 

discard estim ates simply because their uncertainty is too high. This may mean the 

estim ation algorithms must work harder to reduce the maximum estim ation uncer

tainty.

•  N T P uses its estim ates to try  to estimate the ra te  a t which skew is increasing. Nodes 

can then try  to speed up or slow down their clocks in order to  reduce this rate. This 

reduces the need for synchronization since clocks do not drift apart as quickly. Im

plem entation and analysis of such an algorithm  is relatively easy w ith a m aster/slave 

adjustm ent algorithm like NTP. It is not so easy w ith a peer adjustm ent algorithm.
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