INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master, UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Number 9409675

A programmable routing controller supporting multi-mode
routing and switching in distributed real-time systems

Dolter, James William, Ph.D.

The University of Michigan, 1993

Copyright ©1998 by Dolter, James William. All rights reserved.

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

A PROGRAMMABLE ROUTING CONTROLLER
SUPPORTING MULTI-MODE ROUTING AND
SWITCHING IN DISTRIBUTED REAL-TIME SYSTEMS.

by

James William Dolter

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1993

Doctoral Committee:
Professor Kang G. Shin, Chair
Assistant Professor William P. Birmingham
Associate Professor Richard B. Brown
Professor Trevor N. Mudge
Associate Research Scientist Chinya V. Ravishankar

(© James William Dolter 1993
All Rights Reserved

To Karen and my parents

ii

ACKNOWLEDGEMENTS

It is an impossible task to thank all those who have contributed in one form or another
to this dissertation. I would, however, like to take this opportunity to thank a few who
have provided me great support in this undertaking.

First, I would like to thank my advisor, Professor Kang G. Shin. Without Professor
Shin’s continuous and unconditional support I would not have been able to complete the
work presented here. Through his guidance I have gained invaluable expertise in approach-
ing, analyzing, and solving the problems that every researcher hopes to find. I would also
like to thank the other members of my doctoral committee, Professors William Birmingham,
Richard Brown, Trevor Mudge, and Chinya Ravishankar for their constructive input on this
dissertation. Thanks also needs to go to the Office of Naval Research, Martin Marietta, and
the National Science Foundation for providing the funds necessary for this endeavour.

I would also like to gratefully acknowledge:

My wife Karen, for her love, support, and putting up with what appeared at times to
be a snail’s pace at completing this work.

Parmesh Ramanathan and Dilip Kandlur, for many of the daily discussion/arguments
(ask the neighbors a couple of offices down) that formed many of the carlier ideas
presented here.

Professor John F. Meyer for instilling in me a great respect for the use of performability
modeling and SANS.

Stuart Daniel for having the patience to work in detail on the existing PRC design
and tolerate what at times may seem like complete lunacy for the rigor that I impose
on the project.

Dave Musliner for being a fellow hacker in many ways and a great sounding board.

Jennifer Rexford and Ashish Mehra, for reading draft material and providing an en-
thusiastic audience for some of my preaching.

iii

TABLE OF CONTENTS

DEDICATION e e e e e e e e i

ACKNOWLEDGEMENTS e et e e e iii

LIST OF TABLES e e e e e vi

LIST OF FIGURES s s e e e vii

LIST OF APPENDICES e e e ix
CHAPTERS

1 INTRODUCTION e e e e e e e e s e e 1

1.1 Motivation e 1

1.2 Research Objectives 2

1.3 Domain Clarification and Assumptions 3

1.4 A Map of the Dissertation 4

2 PRELIMINARIES o s e e 6

2.1 C-wrapped Hexagonal Mesh 6

2.2 Hexagonal Architecture for Real-Time Systems (HARTS). 8

2.3 Network Processor (NP) 9

2.3.1 Functions supported by the NP 9

2.3.2 Proposed NP architecture and implementation 10

2.4 Communication Terminology 13

2.4.1 Messages and Packets, 14

2.4.2 Switching Paradigms 0oL, 14

2.4.3 Routing Methods 17

3 PROGRAMMABLE ROUTING CONTROLLER 20

3.1 Architectural Overview of the PRCand NI. 20

3.2 Packet Routing Example 23

3.2.1 Packet Transmission 27

3.2.2 Packet Cut-Through and Reception 30

3.3 PRC Implementation 32

3.3.1 Media Access and Flow Control 32

3.3.2 Routing Algorithm Support 38

3.3.3 Error Detection 41

3.3.4 Operating System Support 47

v -

3.3.5 Design Decisions Revisited 49

3.4 Comparison to Related Commercial and Research Devices 51

3.5 Low-Level Simulation and Geometry Results 57

3.6 Summary 58

4 DELIVERY TIME DISTRIBUTIONS 60
4.1 Problem Description 60

4.2 Message Model 61

4.3 Terms and Notation. 62

4.4 Network Model Derivation and Parameter Calculation 65

4.5 Distribution of Message Delivery Times 72

4.6 Numerical Examples and Simulation Comparison 73

4.7 Discussion of Results L., 75

5 THE POINT-TO-POINT MESSAGE SIMULATOR 80
5.1 General Organization and Structure 81

5.2 Simulation Specification Language 83

5.3 Topology Generation and Support FFunctions 87

5.4 Event Management and Flow, 94

5.4.1 Event queue e 94

5.4.2 Event hierarchy and structure 95

5.5 Insights into Modeling Hardware 97

5.5.1 Bus behavior 0oL 97

5,52 TFlowcontrol L o e 98

5.6 Data Collection Supporto, 98

BT Summaryo e e e e e e e e e e e e 99

6 MULTI-MODIE ROUTING AND SWITCHING 100
6.1 Motivation: Wormhole vs. Virtual Cut-through 101

6.2 Experimental Results 106

6.3 Discussion L e 108

7 CONCLUSIONS AND FUTURE DIRECTIONS 116
7.1 Research Contributions 116

7.2 Tuture Directions o 117
APPENDICES e e 119
BIBLIOGRAPHY e 154

Table
2.1
3.1
Al
A2
A3
A4
A5
B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8

LIST OF TABLES

Basic Types of Store-and-Forward Networks 16
Cut-Through Bus Commands 35
Cut-Through Device Arbitration Order 120
Cut-Through Bus Command Encoding 121
Cut-Through Master Device Encoding 122
Cut-Through Addressed Slave Device Encoding 123
Cut-Through Bus Signal Summary 124
ALU Instruction Encoding o oo, 130
ALU Operand Selection Coding 131
Transfer Instructions o e 132
Source and Destination Operand Coding 133
I'lag Manipulation Instruction Encoding 134
Wait Instruction Encoding oo oL 135
Jump and Return Instruction Encoding 136
Condition Code Selection Coding 137

vi

Figure
11
2.1
2.2
2.3
2.4
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
4.1
4.2
4.3
4.4
4.5
4.6
4.7
5.1
5.2
5.3
54
5.5

LIST OF FIGURES

Domain specific characteristics 0. .. 3
A C-wrapped hexagonal mesh of edge size 4 (Hy). 7
Block diagram of a HARTS node. 9
A block diagram of the NP. L. o o, 11
Classification of routing algorithms 18
Programmable Routing Controller architecture 22
PRC to NI functional coupling 23
Packet formats L 24
Components used in common routing example. 25
Example packet structure Lo oL oo L 26
Pseudocode description of TFU operation 27
Binary tree priority arbiter example 34
CTBUS protocol policies 36
The architecture of a PRC Receiver 39
Code example constant declarations 42
Code example — Header collection 43
Code example — Route determination 44
Code example - Main dataloop 45
Code example — Transmitter reservation 46
Parallel CRC Check Unit 46
Parallel CRC Generator Unit 47
Example shapes in a I-mesh of dimension 5. 64
Network model around node s. 66
Probability distribution of Dy in a H-mesh of dimension 7.. 75
Delivery time vs. Probability of successful delivery. 76
Fp, at 15% Peak Load (H-mesh dimension 7.). 77
Fp, at 30% Peak Load (H-mesh dimension 7.). 78
Fp, at 45% Peak Load (H-mesh dimension 7.). 79
Organization of pp-mess-sim source tree 82
Example of a simulation specification 86
Net class definition L 88
C-wrapped hexagonal mesh class definition 89
Wrapped square mesh class definition, 90

vii

5.6 C-wrapped hexagonal mesh translate function 91

5.7 Wrapped square mesh translate function 91
5.8 C-wrapped hexagonal mesh map function 92
5.9 Wrapped square mesh map function 93
5.10 Base Ilvent class definition Lo 0 oL 96
5.11 Message create event class definition 96
6.1 Wormbhole switching latencies as a function of packet rate. (¢, =1.0) 103
6.2 Packet delivery latencies for a C-wrapped H-mesh with edge dimension e.
(es=1.0) . .. o e 105
6.3 Delivery Latency Class I Traffic—2hops - Hs 110
6.4 Delivery Latency Class I Traflic-3 hops-Hs 110
6.5 Delivery Latency Class I Traffic—4hops-Hs 111
6.6 Delivery Latency Class Il Traffic—-1hop—-Hs 111
6.7 Delivery Latency Class II Traffic -2 hops-Hs 112
6.8 Delivery Latency Class II Traffic-3hops - Hs 112
6.9 Delivery Latency Class II Traffic—4 hops-Hs 113
6.10 Comparison of Class [to Class II Traffic — Average hops — Hg L. 113
6.11 Comparison of Class I to Class II Traffic -2 hops-Hs 114
6.12 Comparison of Class I to Class II Traffic -3 hops-Hs 114
6.13 Comparison of Class I to Class II Traflic—4 hops-Hs 115
B.1 Partial structure of the address sequencing hardware of the RX 126
B.2 Simplified state diagram for microsequencer controller 126
B.3 Instruction sequence example #1 o oL 127
B.4 Instruction sequence example #2 oo 128
B.5 Instruction sequence example #3 Lo 129

viil

LIST OF APPENDICES

APPENDIX
A PRC CTBUS IMPLEMENTATION 119
B PRCRXINTERNALS. o i 125
C PRC MICROASSEMBLER INPUT GRAMMAR 138
D PRC BIT INTERLEAVED CRC IMPLEMENTATION 146
E ANCHORED SHAPES to ANCHORED ROUTES PROOF 148
I PP-MESS-SIM INPUT SPECIFICATION LANGUAGE 151

ix

CHAPTER 1

INTRODUCTION

1.1 Motivation

As we approach the 21st century the once separate disciplines of parallel computing
and distributed systems are now starting to exhibit significant overlap. Parallel computing,
initially driven by the need for high-performance scientific computing, traditionally has
resulted in highly regular interconnection networks and tightly-coupled processing elements.
In contrast, distributed systems grew out of the need to share expensive resources such as
disk space, printers, and data between possibly heterogeneous network-based machines. The
once clean separation between these two fields exists no more.

At the same time it is becorning commonplace to use digital computers for such real-
time applications as fly-by—wire, industrial process control, computer-integrated manufac-
turing, electric power distribution/monitoring, and medical life-support systems. The use
of computers can increase productivity but the applications impose stringent timing and
dependability requirements on the computer system. These requirements are a direct con-
sequence of the fact that a disruption of service caused by a physical failure or inadequate
response time can result in a catastrophe.

The need for ultra-dependable computers that can function in real-time has been recog-
nized for some time and resulted in the initial developments of the Software Implemented
Fault-Tolerance (SIFT) computer[22] and the Fault-Tolerant Multiprocessor (FTMP)[44].
This commitment continued with the research and implementation of both the TFault-
Tolerant Processor(I'TP)[43] and its incorporation into the Advanced Information Pro-
cessing Systems (AIPS). Most of the effort in these systems was focused on the placement
and the management of redundancy in different forms to achieve the desired dependability.

Each of the above systems uses explicit redundancy in the physical interconnect between the

processing elements. These architectures could be summarized as ultra-dependable multi-
processors or multi-computers and form roughly the first or second generation of dependable
computers.

Due mainly to their potential for high-performance and high-dependability with the
multiplicity of processors and internode routes, distributed systems with point—to—point
interconnection networks are natural candidate architectures for supporting embedded real-
time applications. The key to the success in using distributed systems for these applications
is the timely execution of computational tasks which usually reside on different nodes and
communicate with one another to accomplish a common goal. Deadline guarantees for
these real-time tasks are not possible without a carefully designed communication subsys-
tem which supports the timely delivery of messages. In some cases it may be necessary to
provide specific hardware support in the communication subsystem in order to satisfy these
guarantees. In addition to the potential for supporting ultra-dependable computing, distrib-
uted systems based on a point—to—-point interconnection networks also hold great promise
for delivering systems with some level of intermediate dependability: something not as ex-
pensive and complete as the ultra-dependable systems used in mission-critical applications
but more dependable than systems constructed using standard networking techniques and

commercially-available components.

1.2 Research Objectives

This dissertation investigates an area of the design space in which a homogeneous dis-
tributed computing system is constructed that has the potential for an intermediate level
of dependability. The distinguishing {eatures captured in this system are depicted by the
enclosing ellipse in Figure 1.1. Most of these characteristics are “borrowed” from either the
parallel computing domain, the distributed systems domain, or the ultra-dependable sys-
tems domain. The unifying feature not explicitly present in the three “parent” domains is
the flexibility of the underlying communication support hardware which allows these other
features to co-exist while supporting the end goals.

One of the central themes of this dissertation is that if flexibility is provided in the
front-end routing hardware, the management of issues related to operating in this hybrid
domain are then possible. To that end, most of the results presented here focus on the

development and implementation of a programmable routing controller (PRC) that acts

Parallel Computers Distributed Systems

distribution

media topology (non-regular)

fine grain size connectivity ~ 1

cost

distribution
media

protocol support COSt

connectivity > 1

comm. support 4 coarse grain size ¢

:“'ﬁ

PRC
DOMAIN //

ﬂexibili S

clock sync

real-time comm. Y

predictability

local redundancy

%

Ultra-dep Systems

Figure 1.1: Domain specific characteristics

both as a single sample in the design space and supports further exploration of the design

space. Specifically, this work

o Proposes an architecture and an implementation for a front-end programmable routing

controller that supports multiple routing and switching schemes.

o Analyzes the performance of one of the supported switching schemes for a hexagonal
mesh interconnection network based on the capabilities provided by the programmable

routing controller.

e Shows how the capability of supporting multiple routing and switching schemes sim-

ultaneously offers potential for supporting a real-time communication subsystem.

1.3 Domain Clarification and Assumptions

This section highlights some of the important characteristics of the region of the design
space we are exploring. These domain characteristics either pertain to topological and ar-
chitectural components of the system or relate to requirements of the applications to be

supported by the system. We discuss each of the domain characteristics that was selec-

ted and attempt to illuminate the insight that led to their selection. Our domain can be
effectively characterized in terms of topology and connectivity, transmission media, mes-
sage/packet size, real-time support, faull-tolerance, and flexibility.

Connectivity refers to the number of adjacent neighbors of a node, which directly trans-
lates into the number of network ports that need to be provided into the interconnect fabric.
Distributed systems usually feature a low connectivity, providing only one or two network
ports. Parallel systems typically exhibit a higher degree of connectivity as a function of the
network topology. The desire to provide a system with enhanced dependability character-
istics leads directly to the adoption of the topology, connectivity, and routing and switching
features of parallel computers.

Transmission media refers to the technology used to implement the physical connections
between nodes and is characterized by several performability metrics, including propagation
delay, capacity, and reliability. Distribution relates to the length of the individual physical
links between nodes and directly affects the propagation delays and error characteristics.
Many of the real-time applications of which our system is intended to support have physical
distance constraints and external environmental disturbances that tend to align themselves
with those of the distributed systems.

The desire to be able to interoperate with existing distributed systems technology but
also have multiple internode routes and a communication system capable of timely deliv-
ery of messages solidifies the remaining characteristics highlighted by Iigure 1.1. Existing
distributed systems use communication protocols that force message/packet sizes to be
considerably larger than those traditionally used in parallel computers. Furthermore, most
existing parallel computers provide no mechanism for making the protocols supported ex-
tensible if providing any protocol at all. We are faced with the problem of having to deal
with the large packets of the distributed system domain along with the issucs o'f routing
these packets between the multiple ports inherited from the parallel domain. Our answer
is a flexible routing controller that can intelligently handle these issues efliciently close to

the physical network.

1.4 A Map of the Dissertation

This dissertation unfolds into seven chapters and several appendixes.

Chapter 2 presents background material that acts as a foundation for the remaining

[}

chapters. The network topology and experimental system for which the programmable
routing was conceived are described. In addition to the system level descriptions provided,
a brief tutorial on different routing and switching schemes is provided.

Chapter 3 presents the architecture and implementation of the programmable routing
controller and the network interface. In this chapter we will justify the design decisions in
light of our overall goals. It is the synergistic combination of many of the features present
in the programmable routing controller that make it stand out from previous work. After
the implementation is described, the design is compared to several related systems.

The problem of deriving an analytical model for virtual cut-through message passing in
a hexagonal mesh is addressed in Chapter 4. To accomplish this, the hexagonal mesh is
first characterized using a combinatorial analysis to determine the probability that a packet
will establish a cut-through at an intermediate node. Given this parameter, the probability
distribution function for packet delivery times is derived. The delivery times obtained from
the model are then compared with simulated results of an earlier version of the proposed
routing hardware. |

Chapter 5 presents the second generation simulator developed to explore design issues in
point-to-point distributed systems. The task specification language and some of the design
issues handled to allow for accurate modeling of the programmable routing controller are
described.

Chapter 6 presents some of the most interesting results derived in this dissertation:
significant advantages can be gained by simultaneously supporting maultiple routing and
switching algorithms. First, an analytic argument is presented for the mean value delivery
times in a hexagonal mesh using wormhole switching and compared against delivery times
of virtual cut-through. The differences in the delivery times lead to the conclusion that
there may be situations in which one scheme is preferred over another. The work is then
extended to show that it is possible to carry multiple classes of traffic and capitalize on the
best features of both classes.

The dissertation concludes with Chapter 7, which summarizes the contributions and
presents a discussion of the many directions that can be pursued with the results uncovered

thus far.

CHAPTER 2

PRELIMINARIES

Many of the design decisions incorporated into the research described in this dissertation
were influenced by the operating environment. This chapter presents a brief background on
the target system (i.e., HARTS), as well as examining and classifying a number of routing

and switching schemes.

2.1 C-wrapped Hexagonal Mesh

One of the interconnection topologies that has received considerable attention throughout

this dissertation is the C-wrapped hezagonal mesh [6, 49].

Definition 1 A C-wrapped H-mesh of edge size e, denoted by H.,, is comprised of N =
3e? —3e+1 nodes, labeled from 0 to N —1, such that each node s has siz neighbors [s + 1]n,
[s + 3e — 1)y, [s + 3¢ — 2]y, [s + 3e* — 3e]n, [s + 3e* — Ge + 2]y, and [s + 3e — 6e + 3],

where [a], denotes a mod b.

This topology can be visualized as an ordinary hexagonal mesh with links added to
the nodes on the periphery that wrap around to other nodes on the periphery to form a
homogeneous surface. For each mesh of edge size e the mesh of edge size e 4-1 is formed by
adding a new hexagon of 6(e 4+ 1) nodes around the existing nodes, relabeling the nodes,
and connecting the wraps according to the definition. Figure 2.1 shows an H, with the
wrap links shown in gray and labeled with the nodes to which they are connected. See
[6] for a more detailed discussion of some of the properties of the C-wrapped H-Mesh and
comparisons with other existing topologies.

Several of the properties discussed in [6] are relevant to the development of this work.
First, the C-type wrapping results in a homogeneous network. Consequently, any node can

view itself as the center (labeled as node 0) of the mesh. This allows the physical interface

6

33

23 e

Figure 2.1: A C-wrapped hexagonal mesh of edge size 4 (Hy).

to the network to be independent of the network size. Second, in terms of routing messages
throughout the surface, the diameter of an H, is e — 1. Third, there is a simple, transparent
addressing scheme such that the shortest paths between any two nodes can be determined
by a ©(1) algorithm given the address of the two nodes. (At each node on a shortest path
there are at most two different neighbors of the node to which the shortest path runs.)
Fourth, based on this addressing scheme it is possible to devise a simple routing algorithm
that can be efficiently supported in hardware. Last, since the total number of nodes in an
H, grows as a function of ©(n?), the incremental cost of expanding the network is low when
compared to many other topologies.

The six neighbors of a node in a C-wrapped H-mesh can be thought of as being in the
directions dy, d;, ..., ds. To send a message using the base routing algorithm presented
in [6], the source node calculates the shortest paths to the destination and encodes this
routing information into three integers denoted by mgy, m; and m,. These three integers
represent the number of hops from the source node to the destination node along the d,,
d; and d, directions, respectively. Before sending the packet to an appropriate neighbor,
intermediate nodes update these values to indicate the remaining hops in each direction
to the destination. Hence, my = m; = my = 0 indicates that the packei has reached its

destination.

For example, the (mg, mi, m») triple for routing a message from node 2 to node 14 is
(1,1,0) (see Figure 2.1). This triple encodes all the shortest paths from node 2 to node 14,
i.e., node 14 can be reached by either going from node 2 to node 3 in the dy—direction and
then from node 3 to node 14 in the d;—direction or by first going from node 2 to node 13 in
the d;—direction and then from node 13 to node 14 in the dy—direction. Note that in routing
this message from the source to the destination the “wrap” link was used transparently by
all nodes in the message’s path.

The C-wrapped mesh is the basis for the interconnection network of the HARTS dis-

cussed in the next section.

2.2 Hexagonal Architecture for Real-Time Systems (HARTS)

HARTS is an experimental testbed being designed and built to investigate various issues
in distributed real-time computing. The primary goal of HARTS is to allow low-level
architectural and OS issues such as message buffering, scheduling, and routing to be studied
in a setting that allows the researchers internal access to many of the system parameters.
To meet these goals, a hybrid system based on commercially-available processors and a
custom—designed communication interface is being developed. Up to three processor cards
are grouped together to form a cluster of Application Processors (APs). Fach cluster then
serves as a multiprocessor node and is interconnected to other clusters or nodes using the
Network Processor (NP) to form a distributed system. The structure of a single node is
shown in Figure 2.2.

In addition to the APs and the NP, each node has an additional processor that functions
both as the VME bus system controller and as a network monitor (NMON). All network
monitors are interconnected via a separate LAN. The NMON serves several purposes in the
node architecture. First, it provides a necessary non-experimental means of distributing
code and data amongst the nodes. This function is especially important during the early
stages of development of the NP. Second, the NMON allows portions of the operating
system to be developed in parallel with the development of the NP. Third, the NMON
will be used to collect experimental data by monitoring the APs and the NP with minimal
interference. Due to both multiprocessor and distributed aspects in the system, a wide

variety of architectural and OS effects on real-time issues can be easily investigated.

Cardcage Boundary)

System Cotlle o i
Network Monitor Application

Processor

MC68040
16 MB Memory
LANCE/SCSI

MC68040
4 MB Memory
LANCE/SCSI

—® {0 network
b

S

Na

Ll 1]

Experimental Network
_ Processor)

Figure 2.2: Block diagram of a HARTS node.

2.3 Network Processor (NP)

2.3.1 Functions supported by the NP

The support functions that the NP provides HARTS fall under three main categories:
communication protocol processing, low latency message transmission, and direct support
for real-time communication. Each of these areas is covered briefly, followed by a present-
ation of the proposed architecture.

The NP’s main function will be to offload communication processing from the host
processor. When an AP needs to transmit a message, it will provide the corresponding NP
with information about the intended message recipient and the location of the message data.
The NP should then execute the operations necessary to pass the message data through
the various layers of protocol down to the physical layer where it can be transmitted.
In terms of the OSI reference model, the NP will be responsible for the functions from
the transport layer down to the physical layer. At the transport level, the NP establishes
transport connections dependent only on the source and destination nodes, without concern

for the route to be used. It will also handle end-to—end error detection and handling. At

10

the network level, the NP will select primary and alternate routes for establishing virtual
circuits, form data blocks and segments, and reassemble packets at the destination node.
Depending on traflic conditions in the network and the message type, the NP will choose an
appropriate switching method for the message as discussed in Sectior 2.4. Detection and
correction of errors will also be performed at this level. At the data link level, the NP will
provide access to the network for the messages. It will perform framing and synchronization,
and packet sequencing.

Low communication latency is another key goal of the NP. This goal impacts upon task
migration and distribution, load sharing, and real-time cornmunication. Latency consider-
ations extend from the application tasks on the system down to the hardware components.
It is important to recognize that a significant portion of latency occurs in communication
processing; therefore achieving low latency communication is intimately related to imple-
mentation of communication protocols.

Timely delivery of messages requires a global time-base across the different nodes
in HARTS. The NP will provide hardware support for clock synchronization and time-
stamping of messages that are the basis for the implementation of various real-time com-
munication algorithms. At the same time, operations such as checkpointing, timeouts, and
deadline checking are made possible with the global time-base.

The NP will be required to implement buffer management policies that maximize util-
ization of buffer space, while guaranteeing the availability of buffers to the highest priority
messages. Similarly, if non-critical messages hold other resources that are needed by more
critical ones, it will be necessary to provide a means for preemption of such resources for
use by the critical messages.

Another important function of the NP will be to monitor the state of the network in
terms of traffic load and component failures. The traflic load will affect the ability of the
NP to send real-time messages to other processors, while link failures will affect the system
reliability. It will also be possible for the NP to keep track of the processing load of its
host (or hosts), and use the information for load balancing/sharing and task migration

operations.

2.3.2 Proposed NP architecture and implementation

There are five major components of the NP architecture: the main communications

processor, which will be referred to as the interface manager unit (IMU), the programmable

11

Network Processor VME Card Boundary

N 7 N N
) Buffer
Memory —
—b
4MB-16 MB
70 ns DRAM
q__._.
—
Programmable fq
outing e
Controller
&
Network g
r Interface ™
: N 7 N 5
Interface Manager a—
IMU Unit IMU —
Local PlUq Reol b Interface
Memor ug nepiaceapble Logic
y Processor Module g iy
- VAN J /

Figure 2.3: A block diagram of the NP.

routing controller (PRC), the network interface (NI), the buffer nemory, and the application
processor interface (API), interconnected as shown in Figure 2.3.

The API transfers data between the NP and the APs, while the PRC moves data between
the NP and the network with the assistance of the NI. Within the NP, the IMU controls
the movement and processing of message data. The buffer memory acts as a staging areca
for data that is to be transmitted to, or received from, the network. Messages that need to
be temporarily stored at the node due to unavailability of outgoing links are also stored in
the buffer memory. The PRC, in conjunction with the NI, implements the physical layer
and data link protocols for accessing the network and routing data to neighboring nodes.
The remainder of this section briefly discusses each of the major components but defers the

detailed description of the PRC and NI to Chapter 3.

Interface Manager Unit: The IMU will control the operation of the rest of the NP.

In particular, it will construct packets from the original messages and reassemble them at
the final destination, schedule messages with different levels of priority, decide on routing
strategies based on message priority levels and network load state, monitor the network

state, perform error correction and message acknowledgment, and implement various real-

12

time communication algorithms. One of the unique features of the IMU is the processor
module. Rather than restrict this study to one particular processor architecture, the IMU
is designed with a generic interface to a plug-replaceable processor module. This approach
has many advantages when designing experiments that can be pursued with the NP. The
processor module will also have external connectors that allow address and data traces to
be collected in real-time.

In addition to its own local memory, the IMU will also have access to the buffer memory.
To minimize the need of copying data, the bufler memory will in most instances serve as
the data memory of the IMU. Hence, the buffer memory will be part of the address space
of the IMU. Also under implementation is the separation of t.he headers from the body
of the messages, because such a separation allows the expansion and contraction of the
headers independent of the location of the message body. This separation allows the NP to
reduce the broadcast and/or multi-cast latency when it is necessary to transmit copies of
the message simultaneously over the different links. These copies would contain the same

data and differ only in the header information.

Buffer Memory: The buffer memory subsystem consists of the RAM required for storing

messages and a management unit. It will store messages that are waiting to be transmitted
to or from the current node, and may act as a temporary storage area for messages routed
through the current node. The amount of memory needed is being determined by the usage
patterns of the application tasks and is not expected to be greater than a few megabytes.
The word size used for the buffer memory is 32 bits. With the current access speeds of
DRAMs at 70 ns, this gives a memory bandwidth as high as 457 Mb/s. This bandwidth
appears to be sufficient for access by the PRC, the API, and the IMU, and for refresh cycles.
The buffer manager arbitrates access to the buffer from the IMU, API, and the PRC. It
also handles the refresh of the bufler memory by periodically accessing rows in the DRAM.
The access priorities given to these different sources can be static, dynamic or random,

depending on the buffer management policy being adopted.

Application Processor Interface: The interface between the NP and the APsis through

a VME bus. Data copying between the AP and the NP will be done with the help of the
API, which will have a DMA interface to the VME bus. There are two ways of designing
this interface for data transfer: mapping the NP data memory into the APs’ address space,

or copying data from the APs’ memory to the NP data memory. It may appear that map-

13

ping the NP into the address space of the APs is efficient as it avoids the overhead of a
system call. However, this mapping requires dedicated memory management hardware and
kernel support for mapped address spaces, and also incurs the overhead of data access over
the VME bus. Depending on the size of typical messages, it may be more efficient to use
burst mode DMA transfer from the APs memory to the NP memory.

The APs will initiate data transfer to the NP by writing to a control register in the
API. The API will then contend for the host VME bus and the NP buffer memory. When
both resources are acquired, it will proceed to copy the message data in burst mode directly
from the host to the NP buffers. Upon completion of the transfer, the IMU will be notified,
and the communication processing can begin. A similar sequence of operations will be
performed in the reverse order for the reception of messages.

This interface is being implemented using the Cypress VIC068/VAC068 VME bus con-
troller chip set. These devices provide a complete VME bus interface controller and arbiter,

support burst-mode data transfers, and map local bus addresses to VME bus addresses.

2.4 Communication Terminology

Up to this point HARTS and the NP have been presented without precisely defin-
ing the meaning of messages, packets, routing, switching, and other terms commonly used
when describing communication subsystems. In this section we discuss the communication
paradigms and definitions that are identified to be relevant to the area of the design space
that is explored as well as how these paradigms differ as some of the parameters of the
design are varied. We will now present a set of definitions that closely follows the termino-
logy and framework outlined by Reed and Fujimoto [40]. It is also important to recognize
the location of HARTS, including the PRC, within the entire spectrum of communication
architectures. This work investigates systems with a homogeneous point-to-point intercon-
nection supporting coarse-grain parallel computations, rather than {rying to operate in the
domain of tightly-coupled multiprocessor networks. In terms of real systems this work is
located somewhere between the high pefforrrumce hypercubes/k-ary n-cube machisnies and
the computation environment that can be provided by the Open Software Foundation’s

Distibuted Computing Environment (OSF/DCE).

14

2.4.1 Messages and Packets

In this framework a message is a unit of information that an entity, most commonly
a user task on an application processor, submits to the communication subsystem for dis-
semination to a set of entities located elsewhere in the system. The set of entities will be
referred to as the destinations of the message. The most common case is that the destin-
ation set identifies a single entity, which corresponds to a task sending a simple message
to another task. At the other extreme, the destination set can identify all entities present
in the system, in which case a message is being broadcast. The node in which the sending
entity resides will be called the source node, and the nodes that correspond to thoses in
which the destination entities reside will be called the destination nodes.

The communication subsystem, for efficiency reasons, may break the messages into a
number of smaller packets with their sizes usually chosen from a set of fixed sizes. If this
occurs, it becomes necessary to perform reassembly of the packets into the messages at each
of the destination nodes. The PRC and the NI assume this to be the case and deal with
packets. The API, on the other hand, usually deals with messages. This does not imply
that parts of messages or packets are stored in contiguous memory in either the NI or the
APs.

The NP derives its ability to act as an ideal tool for an experimental testbed by being
able to move in several dimensions of the design space. The key dimensions that define
its position are the switching and the routing paradigms, buffer management policies, and
flow control issues. The switching paradigm defines how the message/packet is physically
forwarded in the system. The routing paradigm determines paths that the messages/packets
will traverse in order to reach the destination nodes. Buffer management determines how
and where to store part or all of the messages/packets if communication links are busy.

Flow control determines how the incoming traffic is controlled.

2.4.2 Switching Paradigms

When observing the different switching paradigms there are several characteristics that
allow identification of the differences between various techniques. First, the unit for which
resources are allocated will be called the allocation unit, and can vary from a single bit up
to multiple messages. Second, the overhead associated with making the routing decisions
that can be attributed to the switching technique will be identified as the routing overhead.

Third, the policy by which the communication link bandwidth is allocated will be referred to

15

as the bandwidth allocation policy. The final parameter is the buffering complezity imposed
by the switching technique.

Point-to-point interconnection networks can be loosely classified as either circuit-switched
or store-and-forward. The most common example of a circuit-switched network is the Plain
Old Telephone Service (POTS) in which the switching mechanism is implemented via the
Public Switched Telephone Network (PSTN). When a call is placed, a circuit is created
between the source of the call and the desired destination. This circuit remains established
until either party decides to terminate the call. In terms of the distinguishing character-
istics the allocation unit is of arbitrary length, since it is equal to the duration of the call
which is user-determined. The routing overhead is only incurred as the circuit is being
established. The telephone company provides a guarantee that the voice-grade line will be
able to carry signals from approximately 300Hz to 3300Hz; hence the bandwidth allocation
is static. Finally, there is no need to provide any support for buffering. Another example of
this technique involving computer data is the circuit-switched data networks based on the
X.21 protocols.

One of the common objections to circuit-switched networks is that since the bandwidth
is statically allocated using the peak signal rate, much of the network bandwidth is wasted if
the communication is sporadic in nature. Store-and-forward networks avoid this problem by
allocating the communication link to either a packet or a message. Store-and-forward net-
works can be further subdivided to into those supporting datagram service, packet-switched
service, or virtual circuit service.

A comparison of these key characteristics is shown in Table 2.1. One of the main points
that can be noted from the table is that both packet-switched and datagram-based services
incur routing overhead on every hop that the packet must take to reach its destination.
Virtual circuits are an attempt to combine the best points of both circuit-switched and
packet-switched techniques. The routing overheads are mainly incurred during the circuit
establishment, during which the route through the network for a particular message is
established. Subsequent packets are routed according to the circuit path that was previously
established. Virtual circuits are not without their disadvantages. Since virtual circuits
obtain their reduced routing overhead by storing state information in the network, the
presence of node or link failures can be problematic.

Two more recently proposed variants on the above switching methods are virtual cut-

through switching and wormhole routing. Virtual cut-through switching, a variant on packet-

4

16

Store-and-forward type of service

Datagram Packet-Switched | Virtual Circuit

Allocation Unit Message Packet Packet

Routing Overhead | per Message | per Packet once per Message

Table 2.1: Basic Types of Store-and-Forward Networks

switching, was first presented and its average performance analyzed in [26]. Virtual cut-
through switching reduces packet latency by immediately forwarding the packet out of an
intermediate node the moment the node’s outgoing link on the packet’s path is available,
even if the packet has not been received in its entirety. The determination of the outgoing
link can only be made when the destination of the packet is known, and this information
is normally found in the header of the packet. Hence, virtual cut-through can begin only
after the header of the packet has been received, and when the outgoing link is available.
Should the link be busy, the packet is buffered at the node itself.

Wormbhole routing, a variant on circuit switching, is similar to virtual cut-through
switching in that a packet is forwarded to the next node once the header is received and
the outgoing link is available. The difference lies in the way the packet is handled when the
packet is not able to cut through a node. Whereas virtual cut-through buffers the packet
into the storage area of the node, wormhole routing buffers only a small portion of the
packet in an on-line buffer while signaling to the preceding node to stop transmission of
the packet. All the communication links from the source to the blocking node — the node
whose outgoing link is busy — continue to be reserved for use of the packet. Viewed from
a different perspective, wormhole routing is circuit-switching with the data portion of the
packet being sent immediately after the circuit establishment information. One benefit of
this, as compared to virtual cut-through, is that links need not be reacquired once they have
been initially acquired when encountering a busy link. Thus, one can save the time needed
to buffer the packet into a blocking node, and retrieve it {from the node’s buffer memory
when the associated outgoing link of the blocking node becomes free.

One problem that wormhole routing has, as a consequence of not relinquishing acquired
links when a packet is blocked, is the possibility of deadlock occurring in the network. Since
packets can hold a link while simultaneously requesting the use of other links, and circular

waits are possible in the network, conditions are satisfied for the possibility of deadlock.

17

Deadlock-{ree routing algorithms have been discussed previously in [10] to get around this
problem and usually involve multiplexing multiple channels on the physical links and some

ordering constraint on how the links are assigned.

2.4.3 Routing Methods

As mentioned earlier, routing is the process that selects the path(s) that a packet will
traverse when traveling from the source node to the destination node(s). When examining
the possible routing methods that are appropriate for the domain under study, techniques
can be used from both the loosely-coupled networks above and the tightly-coupled mul-
ticomputer networks below. Since both the IMU and the PRC are programmable devices,
it isn’t necessary to locus on any particular algorithm at the moment. However, it is im-
portant to ensure that the architecture can support a reasonable number of the possible
alternatives.

There are many properties that can be used to classify routing algorithms [39, 47, 46,
23, 41]. Figure 2.4 shows a simplified collection of properties that will be considered for the
discussion of routing algorithms.

Routing decisions can be either distributed, centralized, or directed (source-list) by the
source node. For distributed routing algorithms, in which each intermediate node along
the path participates, the amount and source of information required to make the routing
decisions is important. Centralized and distributed algorithms that depend on non-local
information suffer from the need to either collect or disseminate the state information
throughout the network. This adds additional complexity and uses a portion of the available
network bandwidth. The information type and quantity can vary from no information to
complete global information with algorithms using something in between these extremes,
providing the most interesting results. For example, algorithms using information only
available at the local node or information available up to k-hops distant from the node have
provided good performance without unduly loading the network.

Routing algorithms can also be classified as either static or adaptive. A routing scheme
is static if the path traversed by the packet only depends on the source node and the
destination node. This path is not influenced by the presence of other packets or resource
conflicts. For an adaptive scheme, the path may be and usually is influenced by other
entities in the network. Static schemes have the desirable properties that they are usually

simple to implement and preserve the order of packets sent between nodes. Unfortunately,

Routing Algorithm Properties

N T

Decision Place Routing Strategy Decision Time Performance Metric
Distributed Centralized Source Static Adaptive Packet Session Number of Delay Throughput
Node / Hops \
minimal non-minimal
path path

Figure 2.4: Classification of routing algorithms

81

19

these advantages are gained at the cost of higher packet latencies and the inability to deal
with any type of traffic congestion. Adaptive schemes overcome some of these disadvantages
but at the cost of algorithm complexity and can introduce problems of deadlock.

Another characterization of routing algorithms is the performance metric of the number
of hops the packet will traverse when being routed between a source—destination pair. These
algorithms are usually characterized as either providing minimal or non-minimal routing.
For minimal routing, only routes which traverse a minimum number of hops for the partic-
ular source-destination pair and topology are considered. In non-minimal routing, packets
may be routed around busy or broken links and this approach can improve performance and
tolerance to link and node failures. The greater flexibility offered by non-minimal routing
can be quite costly, especially if the introduction of packets that have been “misrouted”
introduces the possibility of livelock.

Finally, when and how often the algorithm must be executed is another way of charac-
terizing routing algorithms. This is clearly demonstrated when comparing virtual circuits
versus packet switching. For virtual circuits, the routing algorithm need only be executed
at each node during the establishment of the circuit through the network. All subsequent
packets will use the circuit identification registered by the first packet and will be routed
with practically no overhead. This is in contrast to packet switching, in which the routing

algorithm must be executed at every node for each packet.

CHAPTER 3

PROGRAMMABLE ROUTING CONTROLLER

This chapter presents the architecture and the implementation of the Programmable
Routing Controller (PRC). This device is a custom-designed application-specific IC (ASIC)
that has been developed using Cascade Design Automation’s EPOCH system and Cadence
Design Systems’ Verilog-XL. The PRC combines the functionality of the previously-designed
Routing Controller [20] and Packet Controller [15] as well as exploiting the availability of the
AM79168 TAXIchip Transmitters and the AM79169 TAXIchip Receivers[2, 1]. This design
greatly improves performance over its predecessors while preserving the experimental flex-
ibility and support for distributed real-time communication required for HARTS. Since the
design of the PRC and the Network Interface (NI) are closely-coupled and interdependent,
the architecture and interface requirements of the NI are also discussed in this chapter.

We open with a high-level description of the architecture and then illustrate the different
components through several packet-routing scenarios. After having demonstrated how the
PRC and NI interoperate we show how the PRC deals with some of the fundamental issues
that must be answered during the design of any communication subsystem. We conclude

by comparing our design with several other systems.

3.1 Architectural Overview of the PRC and NI

Interaction with the PRC is carried out through three distinct interfaces: the Page
Control Bus (PCBUS), the Cut-Through Bus (CTBUS), and the NP Bus (NPBUS). This
structure can be seen in Iigure 3.1. The PCBUS is a bidirectional 32-bit bus that provides
a communication path used by the IMU to control the PRC. This bus, with some addi-
tional decoding logic, is then used to map the PRC into the IMU’s physical address space as

a memory-mapped [/O device. The CTBUS is an 8-bit bidirectional, time-division multi-

20

21

plexed bus that facilitates communication between the I/0O devices of the Network Interface
(i.e., AMD TAXI Transmitters and Receivers) and the internal components of the PRC.
Arbitration for a slot on the CTBUS is implemented on the PRC and supports a centralized
demand assignment allocation policy that.is based on a binary priority tree. The NPBUS
interface stores data in and retrieves data from the buffer pool (or PRC cache) of the NP.
This interface is a master-only interface; all traffic through this interface is initiated by the
PRC.

Most of the internal architecture of the PRC is organized around the concept of a
physical channel. The PRC has twelve such channels, each of which is dedicated to com-
munication over a particular unidirectional link. There are six “inbound” channels (one for
each receiver interfaced to the CTBUS), and six “outbound” channels (one for each trans-
mitter interfaced to the CTBUS). Most of the components of the PRC can be classified as
providing support for either an inbound channel, an outbound channel, or an interface unit.
For example, the six transmitter fetch units in the lower center part of the PRC in Fig-
ure 3.1 support data transmission on the six “outbound” channels. The Cyclic Redundancy
Code (CRC) check and CRC generator units are used for manipulating the CRC values for
the “inbound” and “outbound” channels, respectively. The microprogrammed receivers are
used to support both “inbound” and “outbound” channels. This support takes the form of
low-level route determinations and reservations of transmitters in the NI for packets that
are attempting to cut through the node. The receivers also perform the more mundane
tasks of byte-to-longword construction and control of the CRC check on packets destined
for the communications subsystem residing at the PRC’s node.

Like the PRC, the NI is organized around twelve physical channels. For each receiver
in the PRC the NI has a corresponding receiver that recovers data from the physical inter-
connect and presents the data in a parallel form to the CTBUS. This functional coupling
is depicted in Figure 3.2. “Outbound” transmission is supported by the NI with six trans-
mitters that take parallel data from the CTBUS and perform the physical transmission on
the interconnect. Under PRC control, the receivers of the NI can be configured to automat-
ically forward incoming data to either a set of NI transmitters, a PRC receiver, or both.
The NI transmitters in conjunction with the CTBUS protocol support a command channel
and data channel in the forward direction and a command channel in the reverse direction.
The command channels are used to implement the low-level flow control between adjacent

nodes.

NP
Bus
Unit

Inter-device
Communication

Microprogrammed
Receiver
RX

' Reservation |

Status Control

CRC Check

CRC
Generator

Transmitter
Fetch Unit
TFU

PRC Device Boundary

Cut
Through
Bus

Network
Interface
Receiver

Network
Interface
Controller

Network
Interface
Cut Transmitter
Through
Bus

Network Interface Boundary

Figure 3.1: Programmable Routing Controller architecture

¢é

23

Network Interface
PRC ASIC

| PRC sz} (PRC

TFUQ) (TFU

Figure 3.2: PRC to NI functional coupling
3.2 Packet Routing Example

Rather than simply listing each of the components and their respective functions we
will present the internal structure and operation of the PRC by describing the activities
required to transmit a packet, receive a packet, and assist in establishing a cut-through.
_ The block diagram presented in Figure 3.1 will be the focus of our discussion.

Before proceeding to the examples, the packet format and other restrictions imposed
by the PRC need to be clarified. Iigure 3.3 summarizes the three packet formats that
the PRC uses. There are several important points to note in the different formats. First,
time-stamps are added by the transmitting and receiving PRCs. These time-stamps can be
accumulated to obtain the total transmission time of a message and are useful for distributed
information services such as clock synchronization and reliable broadcast as described in
[38]. The accumulation of time-stamps and modification of the packet size in order to
accommodate the time-stamps is the responsibility of the IMU. Second, a portion of the
routing header is not covered by the CRC. This allows the PRCs along the path that the
packet traverses to modily the routing headers without invalidating the CRC covering the
rest of the packet.

Packets that are transmitted and received by the PRC are stored in NP buffer memory in

24

(H Iwords) (D Iwords)

Routing §
Header Packet Data

(a) Prior to Transmission

(H Iwords) (D lwords) (1 lword) (1 byte) (1 Ilword)

TX Time § [Interieaved
§ Stamp i CRC ¥
g s B S R TR R] a8

Routing

Packet Data

iyt e

Portion of Packet Covered by CR

Portion of Routing Header NOT Covered by CRC

(U lwords)

(b) Transmitted on Physical Links

(H Iwords) (D Iwords) (1 tword) (1 lword})

Routing Packet Data : RX Time

Header Stamp

(c) After Reception

H <64
U < min(H,16)

Figure 3.3: Packet formats

25

o N [
Node 13

r—— Node 14
CTTX3

>(CT RX3 PRC RXSJ

\.

Node 2

[TFU,

Figure 3.4: Components used in common routing example.

a linked page structure similar to the indirect MBUF cluster structures used by many UNIX
communication subsystems [32]. I'urthermore, the pages referenced by these structures have
the following characteristics: the page size is 256 bytes, pages are longword aligned, and
pages must contain an integral number of longwords starting from an offset of 0 from the
base of the page. This structure, along with the offset indicating where to start the CRC
calculation is conveyed to the PRC by the IMU through a stream of page control tags
(PCT). Each PCT is a longword containing four data fields: the unchecked length, a last
page flag, the page base address, and the length of data within the page. The IMU manages
a separate stream of these PCTs for cach of the outbound channels and a single stream for
the inbound channels.

Throughout the remainder of this section we will expand the routing example presented
in Section 2.1 and describe the transmission of a packet from the buffer memory on node
2 to node 14 (through the intermediate node 13). This common example as depicted
in Figure 3.4 will allow us to explain packet transmission at node 2, the PRC’s role in
supporting a cut-through at node 13, and packet reception at node 14. For our example,
the packet will consist of 75 longwords of data occupying three partially-filled pages in the
buffer memory, as shown in Figure 3.5. Iive of these longwords will make up the header of
the packet and are stored at address 0x0€220000!. Only the first longword of the header
will not be covered by the packet CRC. The remainder of the packet is split into two blocks
of 25 and 45 longwords, stored at addresses 0x0C225000 and 0x0C222000, respectively.

The PRC can only address 4M longwords and is mapped into the buffer memory at base address
0x0C000000

26

0x0C220000

0x0C225000

Page 1

0x0C222000

45 LW
Page2 |

Figure 3.5: Example packet structure

27

transmit._word:

if(copsig)
request_ctbus;
transmit_byte(eop);

if(marksig)
request_ctbus;
transmit_byte(mark);

for(1=31>0;i--)
request_ctbus;
transmit_byte(1);

transmit_packet:

while(transmitter_reserved);

reserve_transmitter

eopsig = false;

while ((unchk > 0) & —ecopsig)
eopsig = fetch_word(data, ~CRCENBL);
transmit_word;
unchk = unchk - 1;

while (—eopsig)
eopsig = fetch_word(data, CRCENBL);
transmit_word,

fetch-word(time-stamp, CRCENBL);

transmit_word;

fetch_word(CRC,~CRCENBL);

transmit_word;

Figure 3.6: Pseudocode description of TI'U operation

3.2.1 Packet Transmission

Once the IMU has selected a packet for transmission and verified that there is space in
the page control tag queue (PCTQ) for the appropriate channel, the IMU loads the PCT for
the packet into the channel’s PCTQ. If space allows, the IMU may load up to three more
PCTs for the successive pages of the packet. At this point responsibility for the transmission
of the packet is taken over by the PRC, and the IMU must only provide a stream of PCTs.
Requests for more PCTs are conveyed through the PRC’s interrupt mechanism.

The PRC retrieves packet data from the buffer memory via the NPBUS, stores it tem-
porarily in the transmitter fetch units (TI'Us), and then places it into the CT devices, one
byte at a time. The TI'Us, each of which is associated witk a particular outbound channel
(and thus a single CTBUS transmitter), control the process of packet transmission.

When idle, each TFU constantly monitors its PCTQ for the presence of a PCT. When
the TFU finds a PCT (as the result of the IMU loading the PCT through the PCBUS),

packet transmission commences, following the algorithm described in Figure 3.6. This code,

28

while not complete, describes the general procedure for packet transmission.

At the start of a packet, the TFU retrieves the unchecked length from the PCT at the
head of the PCTQ and stores it internally. Until this value has been decremented to 0,
the retrieved data is excluded from the calculations of the CRC for the packet. This allows
packet headers to be altered by the PRC receivers without affecting the error detection for
the remainder of the packet. Simultaneously, the TFU attempts to reserve its associated
transmitter and issues a request to the NPBUS for the first longword of the packet. The
TTFU checks the reservation status of its associated transmitter, and if the transmitter is
currently unreserved, requests access to the CTBUS to reserve the transmitter.

Once the first longword of the packet has been retrieved from the buffer memory and
a reservation achieved for the appropriate transmitter, packet transmission begins. The
TFU requests access to the CTBUS, and when this is granted, drives the CTBUS data lines
with byte 3 (the high byte) of the longword in its local buffer. This word and its control
information are latched by the previously reserved CTBUS transmitter and transmitted to
the adjacent node.

The TFU now spins until the IRDATA line? of its CTBUS transmitter returns to
TRUE. When this is observed, the TFU again requests control of the CTBUS, placing the
next byte of data on the CTBUS when this access is granted. This process continues until
the TFU has transmitted all four bytes of data in its local register. In parallel with the
transmission of the bytes associated with the current longword, the TF'U prefetches up to
4 longwords. Hence, once the fourth byte of the current longword been transmitted, the
TFU should be able to immediately switch to transmitting the next longword.

The PRC design allows the page structure of a packet to be preserved during transmis-
sion (to allow received packets to only partially fill their pages). This is done by tagging
the longword requested by the TI'U with a flag indicating that the associated data is the
last longword on a page. If this is the case, the TFU will transmit the CTBUS “mark”
command. This mark can then be used by downstream nodes to reconstruct the page struc-
ture. This same tag when used in conjunction with the last page bit of the PCT is used to
detect when the TI'U has reached the end of the current packet. In addition to the EQP
that must be sent when dealing with the end of pgcket condition, two additional longwords
are transmitted: the first is a time-stamp I'epresehting the time at which the transmission

of the packet was completed; the second (transmitted after the EOP) is a CRC for error

2A line used to indicate the CTBUS transmitter’s willingness to accept forward channel data. The
detailed semantics are explained in the description of the CTBUS implementation.

29

detection.

Returning to our example, packet transmission begins when the PCT (0x02220005
(Addr=0x0C220000/Len=05/Unchk=1/Lastpage=false)) written by the IMU at node 2
reaches the head of the PCTQ of TFU,. This causes TFU, to attempt to reserve its CTBUS
transmitter (CTBUS TX; connected to node 13) and also to retrieve the longword stored
at 0x0C220000. This first longword will not be included in the future CRC calculations
since the unchecked length counter is greater than zero. Once the reservation has been
achieved and the data retreived, the TI'U begins sending the data over the CTBUS in one-
byte chunks. The first NPBUS access also decrements the unchecked length counter to 0;
hence, all future longwords retrieved {rom the buffer memory will be included in the CRC
calculation. |

A page fault is generated when the data word at 0x0C220004 is retrieved. This has
several effects: the PCT at the head of the PCTQ is shifted out, the page offset is restored
to 0, and the “mark” code is sent before transmitting the next byte of data. This code
notifies the destination PRC that a page fault has occurred.

The value 0x00225019 (Addr=0x0C225000/Len=25/Unchk=0/Lastpage=False) now ap-
pears al the head of the PCTQ, and the next memory access is tolocation 0x0C225000. Data
is retrieved and transmitted as before, and a page fault eventually occurs when 0x0C22501¢
is accessed, bringing 0x0122202D (Addr=0x0C222000/Len=45/Unchk=0/Lastpage=True)
to the head of the PCTQ. When the page fault is generated at the end of this page,
however, the NPBUS interface logic will also log a TX EOP event, since the lastpage bit
is currently set. The retrieved longword is transmitted normally, but the TFU exits the
main data transmission loop. On the next data request, the TFU sets its control lines to
indicate that it needs to read the time-stamp register. The time-stamp is latched in and
transmitted; when this is finished, the TFU retrieves the CRC. The CRC is transmitted
across the links; the only difference is that this final longword is preceded by a EOP signal
rather than a MARK signal. Once the final byte of the CRC is acknowledged, the TF'U
accesses the CTBUS one final time and unreserves the transmitter. The PRC is designed
so that the time-stamp and CRC accesses do not reach the NPBUS interface; thus, the

inbound channels can use the NPBUS while these accesses are made.

30

3.2.2 Packet Cut-Through and Reception

Packet reception by the PRC begins when data is transferred from a CTBUS receiver to
the PRC receiver (PRC RX) associated with it. Each receiver is an 8-bit micro-controller
intended to perform serveral functions: routing mode identification, route determination,
channel establishment, and packet reception.

Upon detecting the arrival of data, the receiver first allows each data byte to be acknow-
ledged until it has accumulated enough of the routing header to determine how the packet
is being routed and the packet’s final destination. It then stops signalling its willingness
to accept data (stalling the inbound channel) until a routing determination has been made
and the routing header is flushed by buffering at the local node and/or by retmﬁsmitting
it out through a CTBUS transmitter(s). Once the routing strategy for the packet has been
determined, the receiver must determine which resources are available for a packet of this
priority. If the RX decides to forward the packet, it attempts to reserve the appropriate CT-
BUS transmitter(s). If this attempt succeeds, the RX establishes the channel cut-through
and reconfigures the inbound channel to forward to the outgoing link.

If the packet is destined for the local node or the RX is unable to immediately forward
the packet, it is usually buffered in the local node. In order to support broadcast algorithms
the design of the CTBUS and the RX allow the RX to simultaneously buffer and forward
a packet. In cases where local resources are scarce or a deadlock may be present, the RX
may even drop the packet entirely by acknowledging it and then simply losing the data
internally (i.e., neither buffering nor forwarding it). The sender at a higher level in the
communication protocol stack will retransmit the packet after the corresponding timeout
period elapses.

When a packet is stored at the local node, the data is transferred from the PRC RXs
to the buffer memory via the NP interface of the PRC. Once an RX has accumulated a
full longword, it places the data in the RX I'IFO (access is arbitrated by the same scheme
as the CTBUS). The bus connecting the PRC RXs to this I'IIFO is known as the RXBUS.
The CRC check is computed during this storage. At the end of the packet, as the receive
time-stamp is read out from the local clock and placed into the RX I'IFO, a flag is set to
indicate the outcome of the CRC check. Data is then retrieved from the FIFO by the NP
interface and stored in the buffer memory.

We return once again to our packet reception example. The first event at node 13,

indicating the begining of reception from the perspective of PRC RX,, is the availability

31

of data in its inbound CTBUS interface. The PRC RX, removes this data and stores
it in an internal FIFO (after possible modification) and signals to the CTBUS receiver
its willingness to accept more data. This process then continues until the PRC RX, has
accumulated enough of the routing header to make a routing decision. In the case of the
algorithm presented by Chen et al. [6], the first 4 bytes of data are sufficient to determine
the packet’s type, its priority, and its destination. Based on this, the PRC RX, can then
choose how to handle the packet. ‘

Since the current node (13) is not the final destination of the packet, the PRC RX,
determines that it should check the reservation status of the CTBUS TX,. If the transmitter
is free, PRC RX, simply reserves the transmitter and transmits the data in its internal FIFO
to node 14 via this transmitter. After all the data buffered in the internal FIFO of PRC RX,
has been sent, the CTBUS receiver (CTBUS RX,) is configured to forward all received data
to CTBUS TX, without interacting further with the PRC RX,.

On node 14, a similar process takes place. Since the packet is destined for this node,
PRC RXj; simply leaves the CTBUS receiver (CTBUS RXj3) configured in this default mode
which is to transfer all received data to PRC RXj3. As data is received from the CTBUS,
the PRC RX transfers it to the RXBUS interface for storage in the buffer memory. When
mark commands are received {rom the CTBUS, PRC RXj3 can choose to convey them to
the NP interface as page faults and thus preserve the page structure of the packet or ignore
them, thereby compressing the incoming packet into a minimal number of pages. After
receiving the EOP command, PRC RXj instructs the RXBUS interface to store the receive
time-stamp in the RXFII'O, thereby reading out the CRC error flag and signaling an RX
EOP event.

32

3.3 PRC Implementation

There are many specific issues that need to be addressed when approaching the im-
plementation of any communication subsystem [4, 52, 51, 16, 34, 24, 29, 7] These include
accessing shared resources, flow-control, error detection, and routing. This section discusses

how some of these issues were resolved in the implementation of the PRC.

3.3.1 Media Access and Flow Control

The primary shared media in the PRC design is the CTBUS, an 8-bit wide Time-
Division Multiplexed (TDM) bus that provides a gateway into the interconnection network.
The CTBUS and its associated protocol play a fundamental role in supporting many of the
features provided by the PRC. The CTBUS is necessary for the implementation of multiple
switching techniques such as virtual cut-through and wormhole routing. It also provides the
primitives necessary for low-level flow control and broadcast algorithms [25]. Finally, since
the CTBUS is a critical resource, the arbitration method emphasizes fairness and scales
well under varying loads.

The CTBUS interconnects 25 separate components: 6 CTBUS transmitters, 6 CTBUS
receivers, 6 PRC receivers, 6 PRC transmitter fetch units, and the Network Processor’s
IMU. Of these 25 devices 19 can act as “master” and can participate in arbitrating for
control of the CTBUS (only CTBUS transmitters do not function as masters). All of the
devices except the PRC transmitter fetch units and the IMU can also function as “slave”
devices on the CTBUS. The external CTBUS signals are functionally divided into five
groups: master, control, address, arbitration, and data. The master and address lines
identify both the device that has control of the bus (the master) and the selected slave
device(s) for the current bus cycle. The control lines are driven by the master device and

identify the current command.

Bus Arbitration Scheme

Arbitration for the CTBUS is based on a binary priority tree in which the different levels
of the tree are permuted according to the state of a counter. This scheme is derived from
the work of Kovaleski et al. [28] and provides the basis for a demand slot access method.
This scheme was chosen for its “fairness” and scalable performance over varying loads.

Figure 3.7 shows an example in which we wish to construct an arbiter for eight masters. In

33

this example a 3-bit counter is used to control the permutation of the tree. This counter is
hooked up such that the least significant bit controls the nodes just above the leaves, the
middle bit controls the nodes below the root, and the most significant bit controls the root
of the tree.® The order in which access to the bus will be granted is the left-to-right order
of the leaves. For cycle 0, the priority order is 0,1,2,3,4,5,6,7 with device 0 having the
highest priority. To obtain the order for cycle 1 we exchange the left and right children
of the tree used for cycle 0 and obtain a device ordering of 1,0,3,2,5,4,7,6. The device
orders for remaining cycles can be read off from the figures. One of the main advantages of
this type of arbitration scheme is that no device has higher priority than any other device
over the major period? of the priority cycle. For our simple 3-bit example device 0 has
higher priority than device 4 four times (Cycles 0,1,2,3) and it has lower priority four times
(Cycles 4,5,6,7). Another advantage is that access to the bus scales well over a wide range
of bus activity. If a device does not wish to use the current-cycle access, then access will be
granted to devices of lower priority that need bus access. This means that in a PRC with
only a single channel active, the entire bandwidth of the CTBUS is at its disposal.

The actual arbitration for the CTBUS is implemented by the PRC with arbitration for
the next bus cycle overlapped with the current cycle. A device which has been granted
master status may suspend the arbitration until it is finished with the bus. This allows for
short bursts of multiple bytes and can be used to speed up the flow-control handshaking
described below.

More specific details concerning the actual arbitration order or device addressing may

be found in Appendix A.

Commands, Flow Control, and Broadcast Support

In order to present the measures undertaken to provide hardware support for broadcast
algorithms and flow control, it is necessary to provide a brief overview of the commands
used in implementing the CTBUS protocol. The commands shown in Table 3.1 can be
categorized as supporting either device configuration or forward channel data transmission.
The configuration commands support communication with the Network Interface Controller,

resource management, and CTBUS receivers. The forward channel commands provide for

*In the full CTBUS arbiter the bits are not a simple linear assignment to prevent master devices from
falling into a lockstep access pattern in which a particular master has an unfair advantage when accessing
the bus in a periodic fashion.

*Where the major period would be 8 bus cycles for the example and 32 cycles for the CTBUS managed
by the PRC.

34

oaeee’ee

Lowest Priority Highest Priority

Highest Priority Lowest Priofity

Cycle 0 Cycle 1

Highest Priority i Lowest Priority Highest Priority

Lowest Prionty

Cycle 2 Cycle 3

Highest Priority

Lowest Priority " Highest Priority Lowaest Prionity

Cycle 4 Cycle 5

Highest Priority - Lowest Priority Highest Priority > Lowest Priority

Cycle 6 Cycle 7

Figure 3.7: Binary tree priority arbiter example

35

Cut-Through Commands

Command Channel Direction
NOOP (No Operation) N/A

DTX (Data Transfer) Forward

RESV (Transmitter Reservation Request) Configuration
FREE (Transmitter Free Request) Configuration & Forward
HOLD (Transmitter Hold Request) Configuration
CHK (Transmitter Hold Check) Configuration
CFGO (Load CTBUS Receiver Address Reg 0) | Configuration
CFG1 (Load CTBUS Receiver Address Reg 1) | Configuration
MARK (Byte Marker) Forward

EOP (End of Packet) Forward

Table 3.1: Cut-Through Bus Commands

transmission of data and data delimiters.

Each device on the CTBUS that can function as a slave and respond to a forward channel
command has an Input Ready Data (IRDATA) line that signals the device’s willingness to
accept data on the forward channel. A master device uses the status of the IRDATA line
in deciding if it should attempt to acquire the CTBUS and perform a transaction. This line
forms the basis of the CTBUS flow control mechanism.

The set of policies outlined in Figure 3.8 provides support for several of the primit-
ives necessary to satisfy the design goals of the PRC. Tirst, the use of the IRDATA line
implements a tightly-coupled byte-level flow control mechanism that will prevent data over-
runs in both the Network Interface and the PRC. Second, making the multiple IRDATA
lines available to the appropriate bus masters and using an address mapping that allows
the selection of multiple slave devices provides efficient hardware support [or broadcast al-
gorithms [25]. This feature is significant in that it allows a one-to-many transaction in a
single bus cycle. Last, at the cost of providing the IRDATA lines to the possible CTBUS
masters, unnecessary traffic is greatly reduced when compared to schemes in which the cur-
rent CTBUS cycle would have to be canceled if all the devices addressed during the transfer

were not ready to accept the data.

Support for Multiple Routing Strategies

The primitives necessary to support multiple routing strategies are provided by making
the CTBUS transmitters “reservable” resources. Prior to using a forward data channel,

bus masters must have obtained a reservation by arbitrating for the CTBUS and issuing

¢ No CTBUS master will attempt a forward channel command unless all of the
IRDATA lines of the selected CTBUS transmitters are true.

e When a CTBUS transmitter is addressed as a slave and a forward channel com-
mand has been issued the IRDATA line for that transmitter will become false
until the command is properly acknowledged (as explained below).

e Upon receiving forward channel data, a CTBUS receiver will arbitrate for the
CTBUS and forward the data once all of the IRDATA lines of the devices selec-
ted by its internal address register are true. After the data has been sucessfully
forwarded, the CTBUS receiver will indicated to its paired transmitter® to ac-
knowledge the last forward channel command.

e upon receiving a reverse channel command indicating acknowledgement of the last
forward channel command, a CTBUS receiver will indicate to its paired transmit-
ter that the transmitter may raise its IRDATA line.

The term paired transmitter refers to the CTBUS transmitter that is connected to the same neigh-

boring node as the receiver.

Figure 3.8: CTBUS protocol policies

a RESV command. If the command is positively acknowledged during the bus cycle, then
a reservation has been granted and the bus master has sole control of the forward data
channel. Once the bus master is finished with the forward channel and wishes to surrender
its reservation, it arbitrates for the CTBUS and issues a FREE command. In addition to
releasing the CTBUS transmitter on the current node, the FREE command is transmitted
down the forward channel providing a mechanism to dismantle any circuit that may have
been established.

The reservation status of all six CTBUS transmitters is maintained by the PRC’s Re-
servation Status Unit. This unit performs the bookkeeping duties on behalf of the CTBUS
transmitters for the RESV, FREE, CHECK, and HOLD CTBUS commands and issues
acknowledgments accordingly. The HOLD command guarantees the issuer the next pos-
sible reservation on the target device®. After issuing this command the master monitors
the CTBUS transmitter’s reservation status until the current reservation is surrendered.
At this point a CHECK command is used to release the HOLD command and capture the
reservation.

With the RESV and FREFE primitives alone we can easily support switching strategies

such as virtual cut-through, circuit switching, packet switching, and wormhole routing. An

5Tt is assumed, although not strictly enforced, that only the tramsmitter fetch units on behall of their
IMU will use the HOLD and CHECK commands

37

example of how these commands are used to support virtual cut-through is presented in
Section 3.3.1. When operating in a circuit switching mode, FREE commands are only issued
when a circuit is to be dismantled, instead of at the end of every packet as in systems using
other routing strategies. For virtual cut-through, packet switching and wormhole routing,
a reservation is obtained and then released for every packet.

The HOLD and CHECK commands were added to allow the IMU to influence the
CTBUS reservation policy. These commands can then be used sparingly to guarantee a

single high-priority channel by bounding the delay required to reserve a CTBUS transmitter.

Packet Transmission Example on the CTBUS

In returning to our example, we describe the sequence of activities occurring on the
CTBUS. We begin at node 2, where the packet transmission begins, and then proceed to
node 13, which the packet cuts through. Finally, we look at node 14’s CTBUS as the packet
is received.

On node 2, TT'U, (assigned to outbound channel #1) arbitrates for the CTBUS and
issues a RESV command for the CTBUS transmitter connected to node 13 (CTBUS TX,).
Once TI'U; succeeds in obtaining a reservation on the transmitter, it will issue a DT'X bus
cycle and wait for the IRDATA line to return to true. This process will repeat until TF'U,
reaches the last word of the first page, at which point it will inject a MARK command
to delimit the page boundary®. Page two is transmitted in a similar manner. At the end
of page three, the end of the packet is signaled with an EQOP command?. Finally, TIFU,
surrenders its reservation of the CTBUS TX, with a FREE command.

On node 13, the CTBUS receiver (CTBUS RX,) is initially configured to transfer any
received data to the PRC RX (PRC RX,). Thus, when the first byte of data is received,
CTBUS RX, simply transfers it to PRC RX, by arbitrating for the CTBUS and using a
DTX transfer. After transferring the first byte to PRC RX,, CTBUS RX, acknowledges this
byte using the reverse channel of CTBUS TX,. Meanwhile, PRC RX, stores this first byte
internally and signals its willingness to accept the next byte of data by raising its IRDATA
line. During this time the CTBUS RX, has received the second byte of data and is waiting
for the IRDATA line to go true. This process continues until the PRC RX, has enough

of the header to reach a routing decision and reserve CTBUS TX,, which is connected to

SPrior to transmitling the last word.
"The EOP supersedes the MARK that would regularly be transmitted.

38

node 14, with a RESV command. PRC RX, then forwards the portion of the header it used
to reach its decision out CTBUS TX,. At this point, PRC RX, reconfigures CTBUS RX4
to automatically forward the received data to CTBUS TX,. When the FREE command
arrives from node 2, CTBUS RX, forwards the command to node 14 via CTBUS TX, and
reconfigures itself to its initial mode.

The activities on node 14 closely resemble those on node 13. Since the packet is
destined for node 14, PRC RX3 does not reserve an outbound channel and instead leaves

CTBUS RXj in its default configuration that forwards all data to PRC RX3.

3.3.2 Routing Algorithm Support

The flexibility required for efficient support of a wide variety of routing algorithms was
achieved by having each of the PRC’s six RXs designed around a microprogrammed control-
ler containing a 128-word control store. During system initialization, the IMU downloads
microcode to each PRC RX through the PCBUS. After the microcode downloads, each PRC
RX executes independently of both the IMU and other PRC RXs. The internal architecture
of an individual PRC RX is shown in Figure 3.9.

Local storage in the PRC RX is provided in the form of a small FIFO, six user-defined
flags, and a 16-byte register file. The main datapath includes a multi-function ALU, allowing
arithmetic and logical operations to be performed on incoming data. The FIFO allows the
PRC RX to store an incoming packet header after possible modification until a routing
determination has been made. Data may exit the PRC RX through either the CTBUS unit
for retransmission to an adjacent node, the RXBUS unit for storage in the buffer memory,
or both.

The operation of the PRC RX is controlled by the microsequencer, which decodes the
current instruction (retrieved {rom the control store) and then configures the remainder of
the datapath to execute it. The microsequencer operates as a standard two-stage pipeline
and thus needs to stall to refill the instruction decoding unit in the case of jump or subroutine
calls.

The instruction set contains instructions for general register/constant transfers, flag and
ALU operations, and control-flow instructions. All of these instructions have been tailored
to support communications, with the goal of reducing both execution time and micropro-
gram size. l'or example, the instructions that specify a destination register in either the

outbound CTBUS interface or the RX bus interface automatically stall the microsequencer

Microsequencer

F EOPHOLD F MARKHOLD

F ABORTHOLD F UFo ﬁ UF1

(Control Unit h
(Control Store)
128 Words
\ 20 bits J
N\

\F UFzﬁ UFSF UFa F UFSJ
_

SR
ﬁEM

Interface

(

2 READ/1 WRITE Register File

o

- %,
accumulator §

F zero

FIFQOR
HEADER FIFO

ﬁ ABORT
@ MARK
@ EOP

Interface

Interface

Outbound CTBUS

Figure 3.9: The architecture of a PRC Receiver

6¢

40

if the interface is busy with the last operation. This type of instruction greatly reduces both
the size and execution time of the microcode by eliminating the need to check the status
of the interface prior to attempting loads; the drawback is that routing algorithms rmust be
written in a manner that won’t deadlock if the microsequencer stalls on a busy interface.

The WAIT instruction is one of the more extreme examples of an instruction that has
been customized to support microcoded communication. In its simplest form the WAIT
instruction stalls the microsequencer until the selected condition becomes true. In its most
common use, the WAIT instruction stalls on one condition but also enables trap handlers
that allow the instruction execution to jump to addresses specified by the TRAPO and
TRAP1 registers on alternate conditions. This provides a three-way branch that greatly
simplifies the implementation of several supported routing strategies. For example, one
usually waits for data to arrive but needs to branch to an alternate routine if either an error
occurs or an EOP command is received.

In addition to the local registers in each PRC RX, the PRC RX has read/write access to a
256 byte inter-device communication RAM located within the PRC. This RAM is accessible
to all PRC RXs and is mapped into the PCBUS memory map. This RAM provides a way
for the PRC RXs or the IMU to convey information to each other and therefore influence the
routing algorithms dependent on either local state information or packet header contents.

For more information concerning the instruction encoding, timing, or syntax required

to use the accompanying micro-assembler see Appendix B.

Packet Routing Example using the PRC RX

We return one last time to our example and examine the microcode that could be
executed by the PRC RX on node 13 to assist in establishing a cut-through from node 2
to node 14. In this code example we have assumed that the network is only routing virtual
cut-through messages which allows us to ignore the byte that identifies the packet type. We
have also assumed that the transmitter required to establish the cut-through is unreserved
when describing the control {low.

Figure 3.10 shows the prolog code that most routing algorithms need. These are constant
expressions usually used as the immediate operand of a load constant instruction when
configuring one of the external interfaces in the PRC RX. These expressions do not use any
space in the control store and are only for the benefit of the routing algorithm designer.

The details necessary to derive these constants can be found in Appendices A and B.

41

The code depicted in Figure 3.11 performs two functions. Lines 41-50 initialize the
default flag values and prepare for the collection of the routing header. Lines 58-80 actually
collect the first four bytes of the packet and store them in the local registers RF00 through
RF03. While this is taking place notice that each transfer from the CTDIN register triggers
the IR flag (Lines 60, 64, and 71). This is coupled to the byte-level flow control and allows
the PRC RX to control the CTBUS RX behavior. Also, notice that one of the offset values
is being updated (lines 72-74) on behalf of the transmitter sending the packet. Although
not being used in this code example, if the header I'II'O is used to store the header is often
difficult to modify the header to reflect the direction the packet will be transmitted. Since
we are operating in a point-to-point network the receivers of the packet know what direction
the packet was received from and can update the header appropriately. The important point
concerning Figure 3.11 is that on the reception of the last byte of the header the PRC RX
has not raised its IR line. This will allow the PRC RX to reconfigure the CTBUS RX.

3.3.3 FError Detection

Any communication subsystem must deal with errors in transmitted and received pack-
ets. As error correction usually incurs too much overhead in transmitted check bits, one of
the accepted means of error control and recovery is to detect errors with a cyclic redund-
ancy code (CRC) and request retransmission of erroneous packets. Calculating CRCs in
software, however, is a time-consuming and resource-intensive task. The processor must
access every part of a packet and compute the remainder, which takes several operations
for every word covered. By implementing these calculations in hardware, however, they can
be made relatively transparent to the system. Consequently, this is the approach we have
taken in the PRC. The rest of this section describes the implementation and use of the CRC
generation and CRC check modules in the PRC.

The conventional implementation of a CRC generator/checker is a linear feedback shift
register. The obvious advantage of this design is its simplicity — for an n-degree generator
polynomial, all that is needed to implement CRC error detection is n flip-flops and several
exclusive-or gates. This implementation, however, depends upon being able to access the
data serially. Thus, its use is generally limited to error detection over serial interconnects,
although designers have been known to convert parallel data to serial form to run it through
a serial CRC register, and then to reconvert the data to parallel [35].

Another drawback to serial CRC generators and checkers is the time required to process

O O NO U WN=O

A0 W W W W W W W W WNNNDNDDNDNDNDDNDNIDNE = = e e e e e e
O W WO UMD WNEOWWNNDOUEWNREOOOWNO U R WN=O

microprogram vcexample;

begin

42

Identify this program as belonging to receiver 1
receiver 1;

Constant Declarations for RXBUS Interface
rxcmd_sop_w_crc
rxcmd_sop_wo_crc

const
const
const
const
const
const
const
const

Constants for controlling outbound CTBUS interface (loaded into CTCTL)

const
const
const
const
const
const
const
const

rxcmd_data_w_crc
rxcmd_data_wo_crc
rxcmd_mark_wo_crc
rxcmd_mark_w_crc
rxcnd_final_crc
rxcmd_timestamp

ctcmd_noop Oxf; #
ctcmd_dtx 0x0; #

ctcmd_abort 0x5;
ctcmd_resv 0x7;
ctemd_free 0x3;
ctcmd_cfg0 0x8;
ctcmd_mark Ox1;
ctcmd_eop 0x2;

H B B H B R

0x36;
0x26;
0x34;
0x24;
0x25;
0x35;
0x14;
0x3b;

CTBUS
CTBUS
CTBUS
CTBUS
CTBUS
CTBUS
CTBUS
CTBUS

Address for common devices

const
const
const
const
const
const
const
const
const
const
const
const

ctaddr_ctrx0
ctaddr_ctrxl
ctaddr_ctrx?2
ctaddr_ctrx3
ctaddr_ctrx4
ctaddr_ctrx5
ctaddr_cttx0
ctaddr_cttx1
ctaddr_cttx?2
ctaddr_cttx3
ctaddr_cttx4
ctaddr_cttx5

0x41;
0x42;
0x44;
0x48;
0x50;
0x60;
0x81;
0x82;
0x84;
0x88;
0x90;
0xa0;

Signal S0P and accumulate CRC

Signal SOP and don’t accumulate CRC

Signal DATA and don’t accumulate CRC

#
Signal DATA and accumulate CRC
#
#

Signal MARK and accumulate CRC

Signal MARK and don’t accumulate CRC
Accumulate CRC with no shift (prep for EOP)

Signal EOP and timestamp packet

Noop
DTX
ABORT
RESV
FREE
CFGO
MARK
EOP

(Data transfer)

(Abort packet and circuit)
(Attempt CTTX reservation)
(Free CTTX)

(CTRX configuration command)
(Data delimiter)

(End of Packet)

Figure 3.10: Code example constant declarations

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

43

init:

Clear out user flags, set IR high, clear ABORT, HOLD, EOP
clear all;

Load trap handler addresses
ldc eop_handler, trapO;
ldc abort_handler, trapti;

Prepare rxbus interface for first part of data
ldc rxcmd_sop_wo_crc,rxctl;

For this example we will assume VC offset routing with the following
format
{type,x-offset,y-offset,z-offset}

H H H R

Since we are receiver 1 we need to update (increment) the y offset.

Get message type and store in RF00
wait data,trapl(abort);
xfer ctdin,rf00,go ir; # IR set true to allow more data

Get x-offset, save zero/non-zero status in UF0, and store in RFO1
wait data,trapi(abort);

xfer ctdin,rf01,go ir; # IR set true to allow more data

alu rf01;

flag zero,f0;

Get y-offset, update offset, save zero/non-zero status in UF1,
and store in RFO02

wait data,trapl(abort);

xfer ctdin,rf02,go ir; # IR set true to allow more data

alu rf02+1;

flag zero,fl;

xfer acc,rf02;

Get z-offset, save zero/non-zero status in UF2, and store in RF03
wait data,trapl(abort);

xfer ctdin,rf03; # NOTE/WARNING: IR still pending

alu rf03;

flag zero,f2;

Figure 3.11: Code example ~ Header collection

44

82 ~ # Enough of the header has been collected to make a route determination
83 - check._y:

84 - jump f1,check_x; # Jump around the -y transmitter check
85 - ldc ctaddr_cttx4, rf04; # Save address for later reconfiguration
86 - jump rsvstat4,check_x; # Check the reservation stat of TX3

87 - jump true,grab_transmitter; # Try to actually reserve TX3

88 -

89 ~ check_x:

90 - jump f£0,check_z; # Jump around the -x transmitter check
91 - 1dc¢ ctaddr_cttx3, rf04; # Save address for later reconfiguration
92 - jump rsvstat3,check_z; # Check the reservation stat of TX2

93 - jump true,grab_transmitter; # Try to actually reserve TX2

94 -

95 - check_z:

96 - jump f£2,buffer_packet; # Jump around the -z transmitter check
97 - ldc ctaddr_cttx5, rf04; # Save address for later reconfiguration
98 - jump rsvstat5,buffer_packet;# Check the reservation stat of TX3

99 - jump true,grab_transmitter; # Try to actually reserve TX3

100 -

101 -

102 - # We either lost the reservation or the packet really goes here

103 - buffer_packet:

104 -

1056 - # Load up collected header into rx interface and trigger it

106 - # Here we have assumed that only the first long word is non-crc data
107 - #

108 - # Also turn our input ready back on, allowing CTRX to dump data into us
109 - xfer rf00,rxd3, go ir;

110 - xfer rf01,rxd?2;

111 - xfer rf02,rxdi;

112 - xfer rf03,rxd0, go rxbus;

113 -

Figure 3.12: Code example — Route determination

a single n-bit word of data. As noted in [3], it takes n clock pulses for a serial CRC
implementation to process a single word of data. By contrast, an n-bit parallel CRC
generator requires only a single cycle. There is thus a break-even point of nt, = ¢, (where
ts is the clock period for the serial implementation and ¢, is the period of the parallel). For
this reason, and since data is not always available in serial form, parallel CRC generators
have been studied by a number of researchers. Implementations have ranged from variations
on the software approach using a lookup table stored in ROM [31] to fully parallel encoders
3, 37].

For the PRC, packet data is only available in parallel form and at data rates such
that serial computation is not [easible. This leads to the seclection of a parallel CRC with
the obvious drawback of the number of gates required for an implementation. To rem-

edy these problems we have proposed and implemented bit-interlcaved CRC generator and

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

45

#

Main Data loop: Collect 4 bytes (Maybe 5 bytes if tagged with EOP or MARK)
The key is that the EDOP or MARK condition is held until we want to look at
it after we have received the data bytes.

data_loop:
ldc rxcmd_data_w_crc,rxctl;
wait data, trapi(abort);
xfer ctdin, rxd3, go ir;
wait data, trapl(abort);
xfer ctdin, rxd2, go ir;
wait data, trapl(abort);
xfer ctdin, rxdl, go ir;

wait data, trapO(eop), trapl(abort);

H H H®H HE R

#
#

Assume default non-MARK data with CRC
Wait on byte 3

Xfer byte 3 and set IR high for next byte
Wait on byte 2

Xfer byte 2 and set IR high for next byte
Wait on byte 1

Xfer byte 1 and set IR high for next byte.
Wait on byte 0 or trap on EOP

Handle possible mark by reloading control reg.

jump “mark, d40;
ldc rxcmd_mark_w_crc,rxctl;

do:
xfer ctdin, rxd0, go rxbus, go ir;
jump true, data_loop;

eop_handler:
wait data, trapl(abort);
ldc rxcmd_final_crc, rxctl;
xfer ctdin, rxd0, go rxbus;

#

#
#

Fire off RXBUS interface and start over

Make sure that data has arrived.
Prepare for final CRC

lde rxcmd_timestamp, rxctl, go rxbus; # Timestamp packet and signal EOP

jump true, init;

It isn’t totally clear what actions that abort handler should do to inform
the upper layers of the communication sub-system.

abort_handler:
jump true, init;

Figure 3.13: Code example — Main data loop

CRC check units based on the CRC-CCITT polynomial. Theses units snoop the internal

TXBUS/RXBUS for data that is transferred from/to the buffer memory and maintain sep-

arate 32 bit-interleaved CRCs for each of the outbound/inbound channels. (See Figures 3.1,

3.15 and 3.16.) The CRC check bits arc generated in parallel, with even and odd bits being

covered by independent polynomials.

This approach results in a 2.4 times reduction in

complexity and reduced the number of logic levels by 2 for both the CRC generator and

CRC check units as compared to a parallel CRC-32.

The equations used in the generator and check units may be found in Appendix D.

Information concerning the error coverage for the bit interleaved approach can be found in

[13, 14].

46

148 - # The address of CTTX to try to reserve is passed in RF04
149 - grab_transmitter:

150 - xfer rf04, ctaddrO;

151 - 1dc ctemd_resv, ctctl, go ctbus;

162 - # This jump will spin until cycle is complete

163 - jump "ack,buffer_packet;

154 -

155 - # We got the transmitter we wanted and now forward the packet header.
166 - ldc ctend_dtx, ctctl;

157 - xfer rf00, ctdout, go ctbus;

168 - xfer rfo1, ctdout, go ctbus;

159 - xfer rf02, ctdout, go ctbus;

160 -~ xfer rf03, ctdout, go ctbus;

161 -

162 - # Reconfigure the CTRX to use the reserved transmitter.
163 - xfer rf04, ctdout;

164 -~ ldc ctcmd_cfgo, ctctl;

165 - lde ctaddr_ctrxi, ctaddrQ;

166 - ldc Oxff, ctaddri,go ctbus;

167 - # The clear all at the beginning will reset our IR to high
168 - jump true,init;

169 -

170 - end

Figure 3.14: Code example — Transmitter reservation

D(31:0)

Next
State
Logic

s, [l ERROR

Figure 3.15: Parallel CRC Check Unit

47

D CRC(31:0)

Figure 3.16: Parallel CRC Generator Unit

3.3.4 Operating System Support

The PRC interacts with, and supports, the operating system running on the IMU in
several ways. These include inbound and outbound page sequencing, interrupt management,
precise time-stamping of packets, and the error detection as described previously. All of
this interaction, excepting data writes and reads to the buffer memory, takes place using
the PCBUS, which is mapped into the IMU’s physical address space.

One of the key functions supported by the PRC is automatic page sequencing on both
the outbound and inbound channels. As alluded to earlier, the IMU controls the page
sequencing by managing seven independent streams of Page Control Tags (PCTs). For
the inbound packet streams, the IMU loads PCTs that describe the base location of each
page. For each page associated with an outbound message, the IMU loads a PCT into the
PRC. Each PCT contains information about the base location of the page and the amount
of data on the page. In addition, PCTs associated with outbound streams contain a field
specifying how many longwords at the beginning of each page should be excluded from the
CRC calculation. This allows the downstream PRC RXs to modify the lowest-level rcuting
headers without affecting the packet’s CRC. Finally, outbound PCTs have a flag that can
indicate that the page is the last of the packet.

The PCTs for each outbound stream are stored in I'IFOs that are part of the specific
TFU that manages transmission in the direction in which the streams are associated. The
inbound streams have a single FIFO such that each inbound channel takes the next available

PCT. In the current design the outbound FIFOs are 4 PCTs deep and the inbound FIFO is

48

16 PCTs deep. The intention is to allow the different components of the PRC to be serviced
by the IMU in bursts. For example, in a single PCBUS read the IMU may determine the
capacity of all of the outbound PCT FIFOs and subsequently service all of them in a single
invocation of the PRC interrupt service routine. Since the PRC is designed to support a
tightly-coupled flow-control scheme, the unavailability of a PCT for a particular channel
doesn’t cause the loss of a packet but rather idles transmission in the case of outbound
channels or eventually suspends acknéwledgements for inbound channels.

With the possibility of having twelve active channels, the potential volume of interrupts
requiring service can be quite large. The design of the PRC specifically addresses this
potential problem. This support takes two forms: the event queue and the interrupt masks
that determine which events generate interrupts.

Information is conveyed from the PRC to the IMU through the generation of events
on the PRC and eventual retrieval of the events by the IMU. An event may be any of the
following: a page fault, an end-of-packet signal (EOP), or a start-of-packet signal (SOP).
A page fault occurs when a channel reaches the end of a page. For an outbound channel
this is a function of the length field of the active PCT. For an inbound channel the page
faults can be attributed to two sources: the NPBUS interface because the current page has
been exhausted or the PRC RX managing that particular channel (i.e. The PRC RX has
conveyed the mark command to the IMU). In either case the page fault for the inbound
channels indicates the channel and the length of data in the current page. The EOP and
SOP events are associated with a particular channel and indicate the end or start of a
packet, respectively.

Events are logged by the PRC in an internal FIFO called the event queue. Due to
the first-in first-out nature of the queue, the events can be read out by the IMU via the
PCBUS in the order in which they occurred. The only events which are not recorded in
the event queue are page faults on outbound channels. The length information on inbound
pages is conveyed back to the IMU through page fault events. These events contain enough
information (i.e., the actual number of longwords used) to construct PCTs that can be used
in subsequent outbound transmission. An interrupt of the IMU is triggered by any SOP
or EOP event, or by a channel needing more page addresses. The PRC incorporates an
interrupt masking scheme that allows the IMU to individually mask interrupts due to TX
SOPs, TX EOPs, RX SOPs, and RX EOPs. Interrupts due to page requirements, however,

cannot be masked inside the PRC.

49

Another feature specifically incorporated into the implementation of the PRC to support
OS functions is send time-stamps and receive time-stamps. The ability to accurately time-
stamp messages close to the network hardware and how this aids in synchronization of the

clocks in a distributed system is discussed in [38] and motivated its inclusion in this work.

3.3.5 Design Decisions Revisited

At many points during the implementation of the PRC we were faced with design
decisions that shaped the final capabilities of the PRC. This subsection sheds some light on
a few of the key decisions and discusses how we arrived at our solutions.

The interconnect structure of the CTBUS was one of the first decisions that needed
to be evaulated. The choice was limited to either a cross bar with the TFUs, PRC RXs,
and CTBUS RXs requesting service, or the demand slot TDM scheme described earlier.
The former was eventually rejected due to the excesive number of I/O pins that would be
required for a parallel implementation. The demand slot arbitration method was chosen
over other TDM arbitration techniques since it fairly distributes the bus bandwidth in times
of high utilization but allows idle cycles to be used in the event of unbalanced traffic.

The desire to minimize unnccessary traffic on the CTBUS motivated several of the
design decisions revolving around interaction with the CTBUS. The first question was how
to maintain the reservation status. The inclusion of the reservation status unit in the
PRC ratlier than the Network Interface Controller or the individual CTBUS transmitters
maintaining their own status allowed both the TFUs and RXs to concurrently check the
status of the CTBUS transmitters they are attempting to reserve. This allows the units to
issue the RESV command only after they know the unit has been previously freed. Several
other alternatives were considered, including requiring the units to continously issue RESV
commands until the device positively acknowledged the reservation attempt or to snoop the
CTBUS for RESV/FREE commands. The former was rejected due to the overhead placed
on the CTBUS. The latter was rejected since its hardware complexity is equivalent to the
current implemented unit.

Similar to the handling of reservation status, the availability of individual TRDATA
lines was chosen over a scheme in which the device would positively or negatively acknow-
ledge each data transaction on the CTBUS.

The implementation of the page sequencing is another area where several different meth-

ods were evaluated. The current implementation requires that the IMU provides streams of

30

PCTs. One would think that an obvious improvement would have the PRC actually fetch
the next PCT automatically. This was not done for two reasons. First, this assumes that
the PRC has detailed knowledge of the data structures used by the IMU. Second and most
important, automatic page following would prevent partial cut-throughs using the buffer
~memory. With the current implementation, a packet can be resubmitted for transmission
as soon as a single page has been received. If the source nodes are not able to provide data
fast enough, then the TFU will exhaust its page queue and simply wait for the next PCT.
The alternative approaches that follow the page structures automatically would have to use
some form of page locking to indicate that the next page is available. This was deemed to
be too expensive to implement for the amount of traflic that would take advantage of this
capability.

The decision to support the stalling I/O operations in the RX was made after observing
the excessive number of WAIT instructions required to stay in synchronization with the
CTBUS and RXBUS interfaces. The cost of adding these features was minimal since the

microsequencer must already handle the WAIT, JUMP, and RETURN instructions.

9l

3.4 Comparison to Related Commercial and Research Devices

In this section we compare the features of the PRC to those available in current research
and commercial devices. It is important to note that none of the systems discussed were
designed for the particular region of desigﬁ space that the PRC is targeted, therefore making
direct comparisons difficult. This does not mean that we cannot learn from previous mis-
takes or successes. Furthermore, it does not mean that future systems for these alternative
domains can’t integrate some of the features that we have chosen to incorporate.

The differences between the related systems and the PRC can be divided into several
dimensions. These include the decision to use centralized hardware components, the grain
size of the computation tasks, and the level of support services provided. In terms of the
spectrum of possible designs, the communication subsystems that are intended to provide
support for a network of workstations tend to provide high-level services through a single
port to the interconnect fabric. On the other end of the spectrum are the communication
subsystems targeted for today’s tightly-coupled multiprocessors. Here the packets are short,
the number of connections to the interconnect fabric larger, the interconnect assumed to
be reliable, and the host processor required to interact quite closely with the hardware.
The PRC is placed somewhere in between these two extremes; targeted for performing and
supporting experiments on fault-tolerant distributed real-time systems, the PRC needs to
support intermediate performance communication with multiple ports into an interconnect
fabric.

In examining the systems described below we will focus on the following characteristics

when applicable:
e The operating domain originally envisioned.
e The interconnection topology or fabric.
e The number of network ports.
e The routing algorithm(s) supported.
o The switching methodology.
o The packet/message sizes supported.

o The assumed media characteristics.

92

e The physical interconnection cost issues.

o The type of operating system support.

Post Office (Mayfly/FAIM-1) The Post Office (PO) of the Mayfly system [5, 17, 18]

(developed by Hewlett-Packard Laboratories) is a system whose architecture and function-
ality most closely matches that of the PRC. The PO is a independent packet delivery
subsystem that has evolved from its original inception as the communication support for
Schlumberger’s FAIM-1 symbolic multiprocessor [19, 49, 50] to its current role. The end tar-
get environment for the system has changed from supporting an ultra-concurrent symbolic
multiprocessor for Al systems to the existing design goals of being a scalable general-purpose
parallel processing environment for modern programming languages. Surprisingly enough,
the PO architecture and supported functions have remained relatively constant even though
most of its surrounding components have radically changed.

The interconnection topology provided by the PO is a two-level processing surface based
on a regular hexagonal surface with a wrap structure using a twisted torus. This wrap
structure is isomorphic to the C-wrapped structure being used for HARTS as described
earlier. This two-level structure is achieved by placing special three way switches on the
periphery of the lower level surface and connecting two adjacent surfaces. For example,
consider the original H, surface presented in Iigure 2.1. Instead of directly connecting the
gray wrap links as originally described, insert a three-way switch so that a packet may either
take the wrap link or exit the surface. The exit links are then connected to an adjacent H —4
surface. This hierarchical scheme doesn’t provide real benefits until the total number of
nodes and surfaces are reasonably large. A H; surface containing 127 nodes has a diameter
of six compared against a two-level surface constructed from a series of /15 surfaces (a S-2
I5-3 surface using Davis’s notation), which has a diameter of five. The benefits are clearly
presented when comparing the difference in the diameters of a E-140 to a series of E-10
surfaces (139 vs 89). This reduction is gained by having the routing algorithms deal with
two sets of offsets; one for the base surface and one for the surface constructed by tessellating
the base surface.

The PO claims to support the dynamic selection of four types of routing algorithms:
virtual cut-through, best path, no farther, and random. In reality, the PO doesn’t really
select one of these algorithms but sequences through these four sub-algorithms as a single

routing/switching algorithm. Only the router modules associated with input ports perform

a3

the virtual cut-through algorithm, which implements the same policies as the best path
algorithm but attempts to directly connect the input port to the output port prior to
the entire packet arriving at the input port. If an inbound packet can not be handled
successfully by the virtual cut-through phase, then best path algorithm is attempted. This
policy attempts to transmit the packet out a port that will result in the most routing options
for the router in the next node. If that isn’t immediately possible, best path attempts to
select a route that still preserves minimal path routing. Once a certain time threshold
for a particular packet is exceeded, the router modules switch from attempting best path
routing to attempting no farther routing by routing the message to a node which is the same
number of hops distant. Finally, after another time threshold is exceeded, the routers use
the random approach in which the packet goes out in any direction.

The PO uses a fixed packet size of 36 words and can carry a payload of 32 words. The
4 word header specifies the surface, the node within the surface, the original source, the
message id, the packet id, and the total number of packets associated with the message.
The PO deals solely with packets, but the message id is used by its managing processor
(MP) and allows the received packets to be directly transferred to the appropriate locations
in the MP’s memory.

Each PO has six 12 bit bidirectional buses used for communicating with the POs in
adjacent nodes and a 32 bit interface onto the MP’s bus. Arbitration for the bus between two
POs is handled by one of the POs and is granted for the period of a packet with the option
of the receiving PO NACKing the packet at any time during the transfer. Retransmission
for packets that are corrupted or refused due to lack of buffer space are handled directly by
the port controllers associated with each link.

The PO interface with the operating system and its managing processor (the MP) is
accomplished in several ways. TFirst the PO can act both as a co-processor to the MP
and/or an instruction assist device. This allows efficient use of the MP’s instruction set
(a HP Sterling 1.5 which is a 16 Mhz 32 bit implementation of Hewlett-Packard’s RISC
architecture) for loading the transmit and receive packet FIFO. The PO is designed to
operate in cither polled or interrupt driven mode, thus allowing the OS to use the mode
that is appropriate for the current network load (or set of device drivers available).

There are many differences between some of the fundamental decisions that the designers
of the PO made and those of the PRC. These include the fixed packet size, placement of

buffer space, the type of service expected from the MP, and resource allocation policies.

54

The fixed packet size of the PO is acceptable for the MIMD multi-computer which
the PO is designed to support. This fixed packet size is also necessary for the PO to
make guarantees that it will not deadlock on its internal packet buffers. Since the PRC is
intended to support a wide variety of communication protocols, many of which have a much
larger packet size, the PRC can not place such a restriction on the packet size and therefore
externally buffers transit packets. The PRC assumes that the external packet buffers are
large enough that higher level protocols can prevent deadlock due to buffer starvation.

The type of interaction and control required differs considerably between the PRC and
the PO. The PO operates as an autonomous packet delivery subsystem with only the
initiating MP and receiving MP required to interact with the PO. This also means that
the MP has no way of influencing the routes or resources being used. In contrast, the PRC
requires the IMU to schedule the packets for transmission on each individual TI'U (both for
injected packets and transit packets that could not cut-through). This allows the IMU and
PRC to adapt to changing network conditions and mission requirements. For example, the
IMU has at its disposal the packet scheduling policies for each of the TIF'Us, the reservation
release policies of the TI'Us, and the inter-device communication RAM. This type of control
provides the necessary support for both fault-tolerant and real-time communication.

There are several lessons that we can learn from the P.O design. Tirst, the flexibility
gained from having multiple routing algorithms (or phases of an algorithm) can be quite
important. This can be seen from the evolution of the routing support originally proposed
for the FAIM/1 system and what was finally implemented in the PO for the Mayfly system.
Second, the OS interaction with the PO can be dealt with in many ways. The PO acts as
an autonomous sub-system but requires the MP to calculate the checksum on the packets
submitted. In contrast, the PRC requires the IMU to initiate packet transmission in the
TEFUs but does not require the IMU to scan the entire packet in order to accumulate a CRC.
Last, it is easy to design a system that will give a large variance for the packet delivery
times. There are several examples of this in the PO. First, the PO does not implement a
FIFO policy in selecting which packet will be selected for transmission out of the packet
memory. Second, the PO has seven routers attempting to gain access to an outbound port
in order to transmit a packet. Six of these are assigned to servicing ports that are receiving
packets and thus will attempt a cut-through. This appears to lead to the situation in which

a node can have its packet delivery latency significantly influenced by cut-through traffic.

35

Torus Routing Chip The torus routing chip (TRC) is designed as a building block for

high-throughput, low latency message-passing concurrent computers based on a byte-wide
parallel k-ary n-cube interconnection network [9, 11]. The TRC implements a provable
deadlock-free interconnection network by routing variable length messages using wormhole
switching on two virtual channels per physical link. The TRC is implemented using a 5x5
10 bit crossbar with five 5-way arbiter built into the crossbar switch, 5 input controllers that
make routing decisions, and 5 output controllers that handle the flow control and physical
multiplexing onto the output links.

Although the TRC is now quite dated, some of its contributing features can be found
in many of the second generation parallel machines. Most notable is the efficient use of
wormhole routing that appeared in the Mesh Routing Chip (MRC) used in the Amtex 2010
[42] and the theory behind constructing deadlock-free routing by defining an order in which
the packets use the available virtual channels[10].

When evaluating the TRC in the intended operating domain of the PRC the fixed
routing algorithm, lack of end-to-end error detection, and lack of operating system support

could be considered major drawbacks. The beauty of the TRC is that it is small and simple.

Message Driven Processor The Message-Driven Processor (MDP), like its predecessors

(TRC/NDF/ADC), is designed to be part of a multicomputer capable of supporting fine
grain, message passing, parallel computation[12, 11, 36, 45]. What is novel about their
approach is that the processor that comprises the core of each node has been made network
aware. This has been accomplished by integrating a 36 bit (32 bits data/4 bit tag) integer
processor, a memory controller, a 3-D mesh router, 4K SRAM, and a 1 MB DRAM control-
ler all into a single VLSI device. This provide both the end user and the operating system
with low overhead mechanisms for communication, synchronization, and translation.

As with many of the parallel machines, the physical proximity of the nodes allows for
synchronous parallel interconnect, and the media characteristics are assumed to be error
free. These assumptions immediately allow the MDP to ignore the need for any end-to-end
error checking. Furthermore, the designers of the MDP have chosen to deemphasize any
notion of the interconnection topology and use a simple 3-D mesh with dimension order
routing with wormhole switching.

Messages are submitted to the mesh router using the SEND and SENDE instructions

which enqueue either one or two words per instruction. There is no DMA support and

56

the SENDE instruction signals the end of the message under construction and initiates its
transmission. For any time lost in constructing messages the MDP certainly compensates
with its hardware support for the automatic interrupt and execution of a thread upon arrival
of a new message. This may occur on two separate message priority levels which further
enhances the MDP flexibility.

Certain key characteristics of the MDP can be observed in portions of the PRC architec-
ture and implementation. The simple control interface in which the IMU submits a single
page tag for a single page message serves the same purpose as the SEND/SENDE instruc-
tions. The desire to minimize interrupt overhead by allowing the packet to be collected
completely before dispatching the receive thread is a dual to the PRC’s ability to filter out
interrupting events until the end of packet is detected.

The major differences between the MDP and the PRC are mainly an artifact of the
intended operating domains. The router of the MDP is designed solely to support low
latency communication for the J-machine, and the intention is to hide any notion of the
network from the user. The PRC is designed to allow the operating system designer the
maximum amount of information and control of the network so that a communication

subsystem capable of supporting distributed real-time applications can be constructed.

Nectar CAB We now move from comparisions of the PRC to routers supporting closely

coupled parallel computation to more general network adaptors or communication control-
lers. CMU’s Nectar project’s design and implementation of the Communication Accelerator
Board {CAB) clearly identifies some of the important features that a general purpose com-
munication system should efficiently support [8, 30, 33, 48]. Heterogeneity, scalability, low-
latency, and high-bandwidth communication were the stated goals of the Nectar project. To
achieve these goals they designed an efficient parallel crossbar interconnection network that
can be cascaded in multiple levels to support more nodes; hence satisfying the scalability,
low-latency, and high-bandwidth requirements. The designers’ answer to the heterogeneity
requirement was the CAB, a flexible and highly programmable network processor. Similar
to the PRC, the CAB had to balance the desire for flexibility against the need for fast basic
operations.

As with the HARTS Network Processor, the CAB architecture was divided into three
main function blocks: the host interface, the processing unit, and a network interface. For

purposes of comparison to the PRC we will only consider the functions supported by their

o7

network interface.

The network interface is composed of two independent sections: a transmitter and a
receiver. These two sections operate completely independently of one another and are
controlled as separate devices by the managing processor. Both the transmitter and the
receiver have a private DMA channel that allows for unattended data transmission/reception
once set up by the processor. Physical connection to the network is performed by AMD
TAXI transmitters and receivers.

There are significant differences in some of the design decisions undertaken by the CAB
designers when compared against the PRC/NI combination. First, the CAB uses only
packet level flow control and claims that byte-level flow control would too greatly impact
the peak performance. While this is true for the SRAM based CAB design, the fact that
‘the PRC is managing six TAXI device pairs and writing into DRAM invalidates this claim.
Also, routing in a crossbar can occur in a single cycle, which is not possible in the context of
more complicated routing/switching algorithms for point-to-point networks that the PRC
is designed to explore. These requirements force the PRC to support byte-level flow control,
but its costs are partially amortized by having up to 12 channels independently active.

The method in which DMA is implemented also differs between the two designs. The
PRC preloads the page tags that identify where incoming data will be received and then
has the IMU and API interfaces of the NP construct the contiguous message images as
they are copied into the address space of the application processors. The CAB requires the
processor to respond to the incoming packet and set up the DMA prior to overrunning a
FIFO inside the receiver of the network interface. This allows for the possibility of directly
transferring the received data into the host memory but places a significant response time
limit on the processor that can only be done for a limited number of incoming channels.
With the possibility of 6 packets arriving almost simultaneously, the PRC must take a more
automated approach to the reception. The same type of differences exist on the transmitter
side. Here the PRC loads a stream of page tags into the appropriate TI'U’s, where as the

CAB must set up the DMA for each contiguous block of data.

3.5 Low-Level Simulation and Geometry Results

The PRC design presented in this chapter has been completed and gate level simulations

performed. Designed in a 1.0pum CMOS process, the PRC measures 14.005mm by 13.4mm.

58

The PRC requires a total of 180 pins, divided into four main groups. Power, ground, and
clock lines consume 15 pins, while the remainder are divided amongst the PCBUS, the
CTBUS, and the NPBUS.

During the design of the PRC, we targeted for a CTBUS cycle period of no more than
50ns (20MHz). Timing analysis, however, has shown that this interface will be able to
function with a 30ns cycle (33MHz). This exceeds the 22.5 MHz cycle time if the AMD
TAXIchips are run in synchrounous mode which currently is our mode of choice for the
NI. In the current design of the Network Processor, this speed is sufficient to saturate the
memory subsystem.

With an unloaded system, the PRC can begin transmission of a packet within 500ns of
the first page control tag being latched into the page queue. During this time, the PRC
retrieves the first word of the packet from the buffer memory, obtains a reservation of the
CTBUS transmitter, and latches the first byte of the first word into that transmitter.

In addition to the low-level hardware simulations we have developed an intermediate
level event-driven simulator presented in Chapter 5 that allows us to model the entire point-
to-point network based on the operating characteristics of the PRC. The simulator is able
to capture activities with a granularity as small as a bus cycle, where necessary, in order to

provide accurate estimates of the network performance.

3.6 Summary

Throughout this chapter, the flexibility of the PRC has been emphasized as a key
desirable attribute. Why is this flexibility important? The flexibility of the PRC will
be crucial to experiments that vary routing strategies in order to determine which is the
“best” for a particular application or interface. The intelligence of the PRC receivers allow
complex routing decisions to be made at a level below that of the main processor of the
NP. The PRC even provides support for priority based decisions: if a particular channel
(for whatever reason) needs to be reserved to high-priority traffic, low-priority traffic can
be prevented from cutting through. |

One feature of the PRC design which has not been previously emphasized is how the
CTBUS protocol insulates the PRC from the physical implementation details of the Net-
work Interface. For example, HARTS uses the AMD TAXI chip set to create the physical

links between nodes. These could easily be replaced with CTBUS-compatible parallel inter-

59

connect without requiring modifications to eithier the PRC or the software. This separation
also serves to highlight the distinction the PRC provides between the routing algorithm and
switching scheme. The CTBUS protocol is used solely for controlling switching.

Several primitives were directly provided to support real-time communications. These
include the transparent addition of send and receive time stamps, which are useful for clock
synchronization and distributed agreement algorithms. The ability to implement channel
priorities allows the IMU to influence decisions made by the low-level routing stratégies as
a function of high-level goals of the IMU.

The PRC provides the flexibility required for an experimental system combined with the
performance of a hardware implementation. Aithough the PRC is not designed to compete
with commercial devices on raw performance, the insights gained from its design and use in
an experimental environment can be used in the design of future communication subsystems

that operate in its domain.

CHAPTER 4

DELIVERY TIME DISTRIBUTIONS

4.1 Problem Description

This chapter derives an analytical model to evaluate the virtual cut-through message-
passing scheme in a distributed computing system based on a hexagonal mesh architecture
described in Chapter 2.

Since real-time applications normally require short response times, simple store-and-
forward message passing schemes may not always be suitable. Consequently, we look at a
message passing scheme wvirtual cut-through as described earlier.

Although virtual cut-through was proposed almost a decade ago, it has not been im-
plemented in real systems until recently. Since custom ASICs have become economically
viable, several distributed systems are being designed and implemented that use virtual
cut-through (or some variant thereof) as their basic message passing scheme. It is easy
to see that virtual cut-through will perform better than a conventional packet-switching
scheme in terms of packet delivery times. However, the actual improvement it offers over a
packet-switching scheme for packet deliveries has not yet been accurately evaluated.

Kermani and Kleinrock carried out a mean value analysis of the performance of virtual
cut-through for a general interconnection network [26]. However, a mean value analysis is
not adequate for real-time applications because worst-case communication delays often play
an important role in the design of real-time systems. For example, the mean value analysis
cannot answer questions like what is the probability of a successful delivery given a delay
or what is the delay bound such that the probability of a successful delivery is greater than
a specified threshold.

The authors of [26] wanted to avoid any dependence on the interconnection topology in

their analysis. As a result, they assumed that the probability of a packet getting buffered

60

61

at an intermediate node is a given parameter. Since one cannot get a reasonable estimate
of the performance of virtual cut-through without an accurate estimate of the probability
of buffering, the approach in [26] becomes useful only if we can accurately determine the
probability of buffering for a given interconnection topology. However, determining the
probability of buffering at an intermediate node for a given topology is not simple. This
is because each node in a distributed system handles not only all packets generated at the
node but also all packets passing through the node (called {ransit packets). Consequently,
to evaluate the probability of buffering, we have to account for the fraction of packets
generated at other nodes that pass through each given node.

In contrast to [26], we first derive the probability that a packet is destined for a particular
node by characterizing the hexagonal mesh topology. This probability of branching is then
used as a parameter in a queueing network to determine the throughput rates at each node in
the mesh. After the throughput rates are found, the probability that a packet can establish
a cut-through at an intermediate node is derived. I'rom these parameters we approximated
the probability distribution function of delivery times for a packet traversing a specified
number of hops. The importance of this kind of analysis in a real-time system, as opposed
to a mean valuc analysis, is then illustrated through some numerical examples and compared
with simulation results that are based on some of the relevant parameters in HARTS.

The chapter is organized as follows. The terms and notation used are introduced in
Section 4.3. Analytical expressions for the branching probability and buffering probability
are derived in Section 4.4 and the probability distribution function of packet delivery times
is derived in Section 4.5. Numerical results from both the analytic model and simulations

are presented and compared in Section 4.6. We conclude with Section 4.7.

4.2 Message Model

This section presents the derivation of the probability distribution of packet delivery
times in a C-wrapped H--mesh that implements virtual cut-through. A queueing network
will be used to carry out this analysis.

To make the analysis tractable, we make the following assumptions:
A1: Poisson packet generation with rate Ag at each node.

A2: Exponentially-distributed packet lengths with mean £.

62

A3: Thelength of a packet is regenerated at each intermediate node of its route independ-

ently of its length at other intermediate nodes.
A4: Nodes have no preferential direction for communication.

Assumptions A1-A3 are consistent with Kermani and Kleinrock’s assumptions in [26]. Al-
though not completely accurate, it has been shown through empirical studies that these
assumptions lead to a fairly accurate characterization of message arrivals. Assumption A4
implies that all minimal length paths between a source and destination are equally used.
A4 does not imply uniform communication over all nodes of the mesh, but implies uniform
communication with nodes reachable in the same number of hops. So, let ¢, denote the
probability of a node communicating with a node which is & hops away. The definition of
qr will be used to derive some of the base parameters for the queueing network.

Due to the homogeneity of a C-wrapped H-mesh, any node can be considered as the ori-
gin of the mesh and labeled 0. Without loss of generality, we can concentrate on evaluating
the distribution of the packet delivery times for the packets generated at node 0. In order to
determine the distribution of the delivery times it will be necessary to evaluate the transit
load handled by node 0. This transit load is a function of both the packet generation rate
at each node and the interconnection topology. Another parameter necessary to determine
the distribution of the delivery times is the probability that a transit packet (at node 0) will
be buffered (at node 0) as a result of not being able to establish a circuit to the neighboring
node. The derivation of the analytical expressions for the transit load and the probability
of buffering is presented in Section 4.4. The distribution for the packet delivery times is

then presented in Section 4.5.

4.3 Terms and Notation

In the following analysis let e be the dimension of the H-mesh and let [j]; denote j mod .

Also let N ={0,1,...,3¢e(e — 1)} be the set of all nodes in the H-mesh.

Definition 2 A route from a source node, s € N, to a destination node, d € N, is a
sequence nony -« -N; -y of nodes, n; € N, Vi € {0,1,...,k}, such that (i) ny = s,
ny = d, and (1) there exists a direct link in the H-mesh between n; and n;yq,Ye € {0,..., k-
1}. Thelength of a route v is the number of components in the sequence and will be denoted

by len(r).

63

Definition 3 A minimal route from s € N tod € N is a route vy from s to d such that

len(ry) < len(rs) for all routes ry from s to d.

Definition 4 An anchored route is an ordered pair (ng---ny, ®) consisting of a route

ng---ng and x € N such that
1. k>2
2. ng---ny 18 a minimal route from ngy to ny, and
3. 314, 1<i< k-1, such that n; = z.

z is called the anchor of (ng - ny,).

Definition 5 A shape s of length k, 2 < k < e — 1, is a sequence ajay---a; - -ay_1a,

€ {dy,...,ds}, such that

m

U {1y U U {{dj> dij 41,3}

{ {do} {di}, {d2}, {da} {da}, {ds},
{do,dr}, {d1, ds}, {ds, ds}, {ds, ds}, {ds, ds}, {ds, do} }.

Il

The length of shape s is denoted by £(s).

A shape is a route that a packet can traverse. The above definition of a shape is
motivated by the fact that all minimal routes between any pair of nodes are formed by links
along one or two directions only [6]. For example, route A in Figure 4.1 corresponds to the
shape dyd;dod; such that Ul_, {e;} = {do,d,} and route B corresponds to the shape dydod,
such that U}_, {a;} = {do}. A shape can represent routes between several different pairs of
communicating nodes. For example, routes A and C in Figure 4.1 correspond to the same

shape but represent routes between two different pairs of communicating nodes.

Definition 6 An anchored shape p is an ordered pair (s,k), where s is a shape, and 1 <
k < £(s) — 1 marks a position within the shape. The length of an anchored shape (s,k) is

defined to be the length of the associated shape s.

There exists a one-to-one correspondence between the set of all anchored shapes and the
set of all anchored routes with their anchor at 0. (In order to not detract from the main goal

of this chapter the proof that there is a one-to-one correspondence between these mappings

64

Figure 4.1: Example shapes in a H-mesh of dimension 5.

has been given in Appendix L.) The mapping from an anchored shape (a;---a,---ay,£) to

an anchored route (ng - - ny,0) is done as follows:

cwhm(n; 1, @47) H0<i< -1
n; =< 0 ifi=¢ (4.1)
cwhm(n;_y, a;) ifl4+1<1<k
where @; = djnq3), il @; = dy, 0 £ m < 5. The mapping from an anchored route (ng - - - ny, 0)

to an anchored shape (a;,---a;---ay,{) is

a; = cwhm™(ni_,n) 1<i<k

L = argicicpq(n; = 0). (4.2)
where arg, .;<j_1(n; = 0) refers to the value of j such that n; = 0. For example, consider
the anchored route (33 — 47 — 0 — 1 — 15, 0) obtained from route A in Figure 4.1. From

Definition 1, we know that cwhm™1(33,47) = d;, cwhm=1(47,0) = d;, cwhm=1(0,1) = d,

and cwhm™1(1,15) = d;. Since 0 is the third node in the route argic;caln; = 0) = 2.

65

It then follows from Equation 4.1 that the anchored shape corresponding to the anchored
route (33 — 47 — 0 — 1 — 15, 0)is (d,d,dod,, 2).

Similarly, the anchored route (ngninansng, 0) corresponding to the anchored shape
(dididod,, 2) can be obtained as follows. Since the second element in the anchored shape
is 2, ny = 0. Since d; = dy and cwhm(0,d,) = 47, n, = 47. Proceeding further, we get
no = 33 because cwhm(47,d,) = 33, and n3 = 1 because cwhm(0,dy) = 1. Finally, n, = 15
since cwhm(1,d;) = 15. As expected, combining these results we get the anchored route
corresponding to the anchored shape (did;dod;,2) as (33 - 47 — 0 — 1 — 15, 0).

The minimal route corresponding to the anchored shape p is one of the possibly many
minimal routes between the source and the destination. The other minimal routes between
the source and the destination can be obtained by permuting the components of the shape
associated with p and applying a mapping function similar to the one above.

All of the routes associated with these permutations will not necessarily go through
node 0. Only the fraction of the total number of routes from the source to the destination

that pass through node 0 will influence the transit load at node 0.

4.4 Network Model Derivation and Parameter Calculation

The packet, transmission in the I-mesh can be modeled as a Jackson quecueing network,
consisting of 3e(e — 1) + 1 service centers of the M/M/1 type. TFor each service center a
packet completing its service may go to either of its six immediate neighbors or exit from the
system. Packets whose final destinations are immediate neighbors will not use the service
centers of their immediate neighbors and will exit the system at the current service center.
Packets whose final destination are not immediate neighbors travel to a neighboring service
center.

Let py,, denote the probability that a packet completing its service at a node 7 will
be routed to neighboring node 7. Using assumption A4 and the fact that the C-Wrapped
H-Mesh is a homogeneous surface it is easily seen that all the p,,; have to be equivalent and
thus will be denoted by p,. Figure 4.2 shows a portion of the queuing network centered
around node <.

The rest of this section concentrates on deriving an expression for p,. Once given an
expression for this, we can derive the probability that a packet will establish a cut-through

when arriving at a node in the H-mesh.

66

. .2 i+3a2
[i+3e<6e+2] N [i+3e<6e+3] N

| R
Figure 4.2: Network model around node 3.
Calculation of p,
The following symbols are used to identify the different packet arrival rates:
e)\ : the rate of generating packets at a node.

e A2+ @ the rate of generating packets at a node that are not destined for an immediate

neighbor.
o Ap : the rate of transit packets arriving at a node.

e Ar:t+ : the rate of transit packets arriving at a node that are not destined for an

immediate neighbor.

It is convenient to define a function ®(d;, p) that counts the total number of d;’s in the

shape associated with the anchored shape p, that is,

®(d;,p) = | {ax : ar = d;, a; is in the shape associated with anchored shape p } |.

67

Considering the anchored shape A from the previous example, ®(dy , (d1d1dod;,2)) =1
and ®(d, , (did,dpd,,2)) = 3. This function is used to derive the transit load associated

with an anchored shape on node 0.

Lemma 1 The contribution of an anchored shape p to the transit load of node 0 is

A
=)

5

[Z;:O @(dj,p)]!
[Ti= [®(d;,p)]

Proof: It follows from the definition of anchored shape and a simple combinatorial analysis

where k = Y0_, ®(d;,p) and M(p) =

that the total number of shortest routes between a source-destination pair is M (p).
By the definition of ¢, the rate at which a source sends packets to a destination is

Ag - q;. By 4, all routes between the source and the destination are equally used. Hence,
L(p) = #:26. |

Lemma 1 allows us to calculate the transit load for a single route through node 0. In
order to calculate the total transit loads Ay and Agpz+, we will need to determine the total
number of minimal routes passing through node 0 for all pairs of communicating nodes. To
determine this number we will partition the set of all anchored shapes into sets that can
be counted. Since there is a one-to-one correspondence between the anchored shapes and
anchored routes with their anchor at node 0, counting all anchored shapes is equivalent to
counting all pair of nodes that have a minimal route passing through node 0.

Partition the set of all anchored shapes P into the sets P, def {p: ®(d,,p)>1} for
0 <m <5and n=[m+ 1. Intuitively, each P,,, contains anchored shapes with one or

more d,,, and possibly some d,, components.
Lemma 2 The sets P, = {p: ®dm,p)21,pe P}, n=[m+1s, 0<m<5

partition P.

Proof: We will first show that sets P,,, cover the entire set P. For an anchored shape
p=(aias---a;---ag,l), there are two cases to consider.

In the first case,
k
U {a;} = {di,}, forsomei, €{0,1,2,3,4,5}.
i=1

From this fact we can conclude that p € P i, 413,-

68

In the second case,
?
U {a;} = {di,,dy, 41}, forsome iy € {0,1,2,3,4,5}.
=1

In this case, p € P, 41, -

We will now show that the sets P, are disjoint. Suppose not. Then, 3 P, ;, and P;,;,,
iy # is, such that P, ;, N P,;, # 0. Consider an anchored shape p € B;;, N P, ;, with the
shape a,a, - - -ay.

Case 1: jl = 1.

k k

p € P;,;, implies d;, € U {a;} and, p € P,,;, implies U {a;} € {{d;,,d;,},{di,}}. Since by
construction j; = [4; +11:]16 and js = [iy + 1]s, and by tlllzlcase under consideration i, = j; we
can conclude that i, # iy and @, # j». But, d;, € {d;,,d;,} and d;, & {d;,}, a contradiction.
Case 2: j; # iy, '

p € Py;, and p € P,,;, imply {d;,,d;,} C O {a;}. This would violate the definition of an
anchored shape since j, = [i; + 1] # @a. ‘a

In order to calculate the total transit load Ay we will need to further refine the partition
P, into thesets P* = {p: p € Pun, ®(dn, p) = a, ®(d,, p) = b}. The proof

mn

that P2 is a refinement of P, is straightforward and t’hus omitted.

mn

We are now in a position to derive Ap.

Lemma 3 The total transit load at node 0 is given by

e~1

AT:/\Gzﬁk(k—-‘l)qk

k=2
where A\ 1is the total rate of packet generation at a node, and q is the probability of a node

communicating with a node k hops away.

Proof: Since there is a one-to-one correspondence between the anchored shapes and all

minimal routes through node 0,

Ar = Z L{p), where P is the set of all anchored shapes
pEP

= Z > L(p).

i=0 pePi[iq)s

From the definitions of shapes and anchored shapes, the length of the shape associated with

the above anchored shape p lies between 2 and e — 1. Irom the definition of P,,, we know

69

that ®(d,,, p) > 1. It follows from these observations that

Z > Z L(p). (4.3)

1<a<e~1 PEP

2<u+b<c -1 t[it1]g

Note that all of the anchored shapes p € P2 have length a 4+ b. Furthermore, since each

mn
shape associated with the anchored shapes of P, has only components in the d,, and
a+b

d, directions, there are (
a

) shapes in P% . Given each shape one can then derive

@ + b — 1 anchored shapes. Therefore

= (a,+b) (a+b=1)

z[z+1]6
a+ b)!
= ((L!.b!) (at+b-1)
5 !
[ZI:O (I)(dhp)] . ((l + b _ 1)’ P[z+l]e (44)

[Tio [®(di, p)!]
Combining Equations (4.3) and (4.4) with Lemma 1, we get

/\F_Z Y A ‘ape-(atb-1). (4.5)

1€a<e~1
2<atb<e—1

Since Equation (4.5) depends only on (a + b), we can substitute & for a + b to obtain

e—1

/\T =)\G-qk'(k——l)'k

M
(]

i
o
[
!

(l
™
Mm

2

k(k — 1) q

i
=]

)

= 6/\@2]\.(1\,—1) qr. |

IN

o |l

Lemma 4 The transit load at node 0 for packets not bound for an tmmediate neighbor is
given by

e—1

)\T2+ = /\G Z 6]\7(’\7 - 2) k.

k=3

Proof: The proof of this lemma follows closely that of Lemma 3 with the additional
restriction that node 0 cannot be in the last position for the anchored shapes being counted.

Having node 0 in the last position of a anchored shape corresponds to having the anchored

70

shape terminate in an immediate neighbor. This is exactly the traffic that we are trying to
eliminate.
Since there is a one-to-one correspondence between the anchored shapes and all minimal

routes through node 0,

Apzt = Z L((s,k)), where P is the set of all anchored shapes

(s,K)EP
k#len(s)—1

5
= Z Z L((s,k)).
=0 (B’k)epl[i-{-l](,
k#len(s)—1
. In contrast to Lemma 3, the lengths of shape s associated with the above restricted

anchored shape (s, k) lies between 3 and e — 1. I'rom the definition of P, we know that

®(d,,, (s,k)) > 1. It follows from these observations that

Apes = 2 > S L{(s,k)). (4.6)

1<a<e—1 Jk)epab
3<atb<e—1 g
- k#len(s)—1

Note that all of the anchored shapes (s, k) € P2 have length a+b. Furthermore, since each

shape s associated with the anchored shapes of P has only components in the d,, and

mn
_— a+b e
d,, directions, there are shapes in P¢

- Given each shape one can then derive
a

a + b — 2 anchored shapes. The number of anchored shapes generated from each shape
differs by 1 from Lemma 3 since we cannot use the last position in the shape. Therefore

following that same steps as in Lemma 3 we arrive at

/\T2+ = Z Z /\G -qa+b-(a+b——2)
1=0

1<age—1
3<atb<e~1
5 e-—1
i=0 k=3
e--1 5
= Aed. D k(k-2)-q
% Ny

Theorem 1 The branching probability, p,, between adjacent service centers in the model is

b — - ©—
6 6 s K

71

Proof: p, can be derived as the ratio of traffic bound for immediate neighbors to all traffic

leaving a service center.

b — l . Agz+ + Apa+
[b—ﬁ Ag + Ar

Using the results of Lemmas 3 and 4 along with
AG'2+ =)\G(l - 6(]1)
e—1
d6k-q = 1
k=1

the theorem follows after some algebraic manipulation. =

It should be noted that p, only depends on ¢, and the topology.
Lemma 5 The throughpul at each service center is 6 - Ag - S s k2 - qy.

Proof: Jackson’s theorem({27] states that the total throughput 7; at service center 7 is

given by the solution to the set of traffic flow equations

3e(e—-1)

Ti=Xe+ Y, p-Te,i=0,...,3e(e—1).

k=0
By assumption A4 and the homogeneous nature of the C-wrapped H-mesh all 7; are equal.
Therefore,

E: /\G 3
1—-6py

t=0,...,3e(e—1).
Substituting p, from Theorem 1 the lemma immediately follows. &

Theorem 2 The probability of a packet cutting-through an intermediate node is
e—1 _
pe=1-— (AGZkz-qk) -l
k=1
where £ is the mean length or service time for packets.

Proof: A packet can establish a cut-through at an intermediate node only if there are no
packets being serviced or waiting for service at that node. Using Lemma 5 and Jackson’s
theorem that the probability of having zero packets at any node is 1 — p where p is the
traflic intensity. p in terms of the throughput and service rate p is given as follows:

T _T-1
6

e—1
p=—=—= ()\szz.qk) L.
k=1

1

and hence the theorem follows. ®

72

4.5 Distribution of Message Delivery Times

In a virtual cut-through message passing scheme, the delay that a packet incurs at a
node depends on whether the packet is able to establish a cut-through at that node. If
the packet establishes a cut-through, the delay incurred is negligible and assumed to be 0.
Otherwise, the packet incurs both waiting and service time delays. Furthermore, since a
packet cannot establish a cut-through unless there are no other packets waiting for service
at that node, the I'CI'S queueing discipline is preserved at each node. From Jackson’s
theorem we know that the queueing network described in Section 4.4 has a product form
solution. Therelore, each service center behaves as an M/M/1 queueing system.

The delivery time for a packet traveling n hops, denoted by D,,, can be expressed as
Dn = ‘YO + /Yn—-la

where Y, (X,,—1) is a random variable that represents the total time spent by a packet at the
source node (n — 1 intermediate nodes). Also let Y} be a random variable that represents
the total time spent by a packet buffered in an intermediate node.

Therefore,

PID, <1 = P[Yo+ X <]

n—1

= Z PlY, + X,,—; <t | buffered at m int. nodes] - P[buffered at m int. nodes]
m=0
n—1 m

= Z P[Z Y, <t]. Plbuffered at m int. nodes].

m=0 k=0
Note the P[Y";_,Y; < t] corresponds to an Erlang distribution with parameters u(1 — p)
and m + 1, i.e., ERL(x(1 — p), m + 1). This allows us to derive the probability density

function of D,, as:

n-—1 n—1 tme—[l,(l —_ p)t
5 \m p—1—m m+1
fo.(t) = n21—0 m (1=p) p. ! u(1 -p) : T

Using the result

n n B ka'wn—k
§0<k>(1)kl

er
/mneazdm —
a k

and integrating fp, (¢) from 0 to ¢ we get the delivery time distribution as

n—1 n —] I ' 1 . m+1

m
m=0 m m.

73

m! e‘“’(l - P)l m m LY. =k
w1 —p))™ w(l=p) =\ &) [=p)

4.6 Numerical Examples and Simulation Comparison

In this section, parameters derived from the actual HARTS routing hardware are used
to evaluate the probability distribution function for delivery times discussed in the previous
section. Also presented is a comparison of the analytic results against a low-level functional
simulation of the routing hardware of HARTS.

In contrast to the analytical model, the simulator makes very few simplifying assump-
tions in modeling the behavior of virtual cut-through in HARTS. The simulator accurately
models the delivery of ecach message by emulating the timing of the routing hardware [21]
along the route of a packet at the microcode level. Also captured are the internal bus ac-
cess overheads that the packets experience if they are unable to cut-through an intermediate
node. For example, when a transit packet arrives at an intermediate node, the following
sequence of timed events are set into action. First, the receiver for that particular direction
waits for the packet header to become available to attempt a routing decision. For the case
of the H-mesh any incoming packet may have either arrived at its final destination or could
be transmitted in one of possibly three directions. Second, the receiver schedules an access
to an internal bus to reserve the first choice for a direction to transmit the packet. If the
" transmitter for this direction is free, the packet will cut-through this node with only the
slight delay of waiting for the header and the single status query of the transmitter. If
the first attempt to reserve the transmitter was unsuccessful, an attempt at an alternate
transmitter is made, if applicable. If both of these attempts are unsuccessful, the packet is
queued at this node for later transmission. Third, the receiver schedules events to signal the
completion of the packet at this node. This may involve either unreserving a transmitter
if the packet successfully cut-through or informing the module that simulates the handling
of buffered messages. This detailed timing and tracking of messages allows different mes-
sage scheduling, access protocols, and memory management strategies to be investigated.
However, for the results presented in this section only a First-Come First-Serve single queue
with unlimited memory was used.

In addition to the exponentially distributed packet lengths, the simulator can also use
a discrete distribution of packet lengths where the user specifies the number of different

types of messages, their lengths, and the probability of each type of message. Similar to

74

the analytic model, packet arrivals are assumed to follow a Poisson arrival process.

For the examples presented in this section the following parameters were used. (Note
that choice of these parameters is arbitrary and will not in general change our conclusions
drawn in this section.) The dimension of the mesh was 7 resulting in 127 nodes in the
system. The probability of a node communicating with a specific node £ hops away was

assumed to be inversely proportional to the number of hops, i.e., ¢ The mean

packet length for the analytic model was assumed to be 185.6 bytes. Thegﬁgistribution of
packet lengths for the simulation were 64, 128, 512 bytes, each with probability 0.3, 0.5,
0.2, respectively. The results for three different packet generation rates are obtained. These
correspond to 15%, 30%, 45% of the peak packet generation rate that can be supported by
the routing hardware. Currently, the peak packet generation rate that can be supported
by the routing hardware is 4 MBytes per second. All the distributions either generated or
collected were for messages having their destination 5 hops from their source node.

Figure 4.3 shows a plot of the probability distribution function of the delivery times of
a message traveling 5 hops in a H-mesh of dimension 7. The three curves in the figure show
the variation in the probability distribution function with respect to the assumed message
generation rate Ag at each node. As would be expected, the delivery time distributions
shift to the right as the load on the network is increased.

Figure 4.4 shows the inverse of the probability distribution functions in Figure 4.3.
The inverse of the distribution function is useful to determine design parameters like delay
bounds. For instance, one can select a delay bound such that the probability of a message
being delivered within that bound is greater than a specified threshold. This would provide
a probabilistic measure on the guarantees that can be provided in a real-time system during
its operation.

Figures 4.5, 4.6, and 4.7 compare the analytic model against a low-level functional
simulation of the routing hardware in HARTS. The results show that the analytic model
predicts, with a reasonable accuracy, the delivery times for the loads shown. The jumps
in the simulation results are due to the discrete distribution of the message length. It is
found that at higher loads (greater than 65% of the peak load) the differences between the
simulation and the model can be significant. Reasons for these diflerences are currently
being investigated. Also note, the analytic model overestimates the actual delivery times
and therefore the model produces a pessimistic result. The slight discrepancy at small

delivery times between the model and the simulation result from the model not taking into

75

g 1.0"‘ NI -----_- :_';"_:UA—'--—-'——-—::'-_-_T__—.
= - v
.5 . : I" ."’.—
o .
%5 094 . /’ ‘/"
ko] ’ . ,/ ’
® s
E , e
> 081 g § ¢ > 7
9 9. S & s
= = F \Q/,'
@ & &, &
[07 Q) Q Tz
. 80 « e o
L &1 .
/ /
N ! :
0.6 -) ’ ?
;] /
. ! N
- I -
05 S K4
] /
] /7
04fp - ! ;
Sy 1
[} !
03l : Il !
) R !
1 7
2)
o2f-:, !
Ty
o
- ! *
-0y
0.1~ |
o
1/
0.0 ke | ! | | | ! |
700 0.6 1.2 1.8 24 3.0 36 42

Time (ms)

Figure 4.3: Probability distribution of Dy in a H-mesh of dimension 7.

account the overheads of processing the message headers.

4.7 Discussion of Results

The main contribution of this chapter is the derivation of the probability of cut-through
for a C-wrapped H-mesh that has virtual cut-through switching capabilities. The tech-
niques used in here can be extended to other interconnection topologies like hypercubes or
rectangular meshes because the techniques depend only on ability to determine the fraction
of minimal routes between a pair of nodes pass"mg through a given node. In a hypercube or
a rectangular mesh we can casily determine the required fraction of minimal routes between
a pair of nodes that pass through a given node.

The distribution functions derived are useful in the design of real-time systems with hard
deadlines. They provide a probabilistic measure on the guarantees that can be provided for

message exchanges during the operation of a real-time systemn.

Time {ms)

76

4.8 — |
[}
=1
h
1

a2l -
¥
ri

'
3.6 - 1
R
<
.l 2
3.0 LA N
/ [N
G s
2.4 /', !
ad . ! -
Vo'bb/ Y 2N
A .
<. ’
n\oQ-, 4 N
Dekd LA
1.8~ R 4 .
’, ’ .
P \«\'&i' ;
Pl e o .
R G"o 7 s
12} -) .
K - P
L Phe 20 ,
N - AR
R - ? i
f" a” '\50,0 "
M - .
0.6 - ’.’_I ‘—_— ‘-._.-
-" —‘—— '.-.'
NPT PPOTL L
R R
0.0i“f""‘” |] | J] | |]]
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Probability of Delivery

Figure 4.4: Delivery time vs. Probability of successful delivery.

Delivery time distribution

77

70.0 0.4 0.8 1.2 1.6 2.0
Time (ms)

Figure 4.5: Fpp_ at 15% Peak Load (H-mesh dimension 7.)

78

\
_ 1z

1
— Q
\. N

i
k -2
\
\
- o
\ -1
,‘
N le, ©
‘~ (4
* -y
\m.\Qmml
Q\\./
..\OQ ./ |4
\mw -\, o
,-
-)
_ _ _ | | | | _ _ | o
@ @ o N © 1§ T o o =~ o°
™ o (=] (=] o o o o o Q (]

uonnquisip swy A1ealieQ

Time (ms)

Figure 4.6: Fp, at 30% Peak Load (H-mesh dimension 7.)

Delivery time distribution

79

0.0
00 04 08 12 16 20 24 28 32 36

Time (ms)

Figure 4.7: Fp, at 45% Peak Load (H-mesh dimension 7.)

CHAPTER 5

THE POINT-TO-POINT MESSAGE SIMULATOR

This chapter discusses the design rationale and implementation insights gained during
the develc;pmeut of the Point-to-Point Message Simulator. The long-term high-level goal of
this effort was to develop a simulation environment for investigating issues related to sup-
porting real-time comrmunication systems interconnected by point-to-point interconnection
networks. The short-term goal was to create a simulator that could be used to size some
of the internal components of the PRC when operating in realistic conditions. Finally, the
immediate goals were to provide the tools needed to perform the multi-mode routing and
switching experiments described in Chapter 6.

The long-term goal of this work was motivated by the observation that many researchers
working on different topics related to communication using point-to-point networks scemed
to be constantly writing their own private simulators to show the one feature they were
interested in exposing. These simulators usually only provided support for examining one
free variable with the remaining parameters being implicitly fixed. This constant duplication
of effort resulted in a great amount of wasted manpower and, in the case of inexperienced
programmers, often produced results of questionable integrity.

The ideal solution would be to provide the researcher with a set of building blocks that
can be composed using a high-level language or graphical editor to construct a custom
simulator. These types of tools are commercially available for modeling LANs and signal
processing systems but, unfortunately, at least for the features that we were interested in
investigating, do not provide suflicient modeling detail.

On the other end of the spectrum, an obvious avenue that can be exploited is the existing
gate level simulation tools. With sufficient encapsulation of the base components, one would
think that this could be a viable alternative. For small systems this can be an alternative

partially due to the built-in support some of the gate level simulators provide. For example,

80

31

the negative exponential time delays that Cadence Verilog supports can prove to be quite
useful. The problem in simulating point-to-point systems is that they require replication of
the individual nodes, which quickly makes this approach impractical®.

Our solution to this problem of balancing the lack of modeling detail against the compu-
tation overheads imposed by the replication necessary in simulating point-to-point networks
is to provide a base set of primitives and a structure for combining these primitives. The idea
is that the user can model in detail the components of interest to him and hopefully reuse
previously designed components necessary to form the complete system under simulation.

The results of this work are the “Point-to-Point Message Simulator” (pp-mess-sim) that

has the following features:
e Supports C-wrapped hexagonal mesh, wrapped square mesh, and binary hypercube.

e Accurately models the behavior of the low-level routing hardware (based on the PRC

architecture).
e Supports multiple routing strategies.

e Provides a textual specification language for mapping tasks onto the topology being

simulated, thus allowing the end user to easily configure the message workload.
e Provides a structured framework for making extensions.

What should be of interest to those not interested in the PRC is the methods and
structures that we use to achieve the specific capabilities mentioned above and how easily
pp-mess-sim can be re-targeted for different topologies, routing hardware, and communica-

tion patterns.

5.1 General Organization and Structure

Figure 5.1 shows the directory structure of the pp-mess-sim source code tree. This
figure also quite accurately depicts the functional separation that was identified, and the
interfaces that needed to be developed between the different components of pp-mess-sim.
These functional separations can be classified into a set of C+- classes supporting: the
different network topologies (the net directory), the workload run on the simulated sys-

tem (the workload directory), the parsing and storage of the run specification (the spec

' A Verilog simulation of the PRC in isolation currently requires at least 400MB of swap and 48 MB of
main memory.

82

» pp-mess-sim

doc tests
generlc imu-pre-ni spec workload
eventq fifos maps misc random

Figure 5.1: Organization of pp-mess-sim source tree

directory), or the implementation of the particular routing hardware of interest (currently
the imu-prc-ni directory). The interaction between classes in these different functional
areas is through a well-defined set of member functions such that the impact of adding new
interconnection topologies and routing hardware is minimized to one area.

There are five fundamental classes that need to be briefly introduced before the re-
mainder of pp-mess-sim can be explored. These are Net, Node, Task, Message, and Event.

The Net class serves as the base class for the classes CWHMesh, SQMesh, and HyperCube.
Each of these derived classes implements the specific details of address translation and
mapping for its particular topology. All of the other classes requiring information on the
current topology must use the appropriate member functions of these derived classes.

The Node class implements the router/node-specific functions, and is dynamically al-
located according to the size of the network under simulation and referenced through the
derived net classes. This class and the subclasses stored within it can be easily changed to
model different hardware or software.

The Task class implements the behavior of the workload imparted on the system for
the duration of the simulation. Each instantiation of a Task has certain properties that are
either explicitly or implicitly specified in the simulation specification. Once instantiated,
the Task is assigned to a node much like its counterparts in a standard operating system.

The Message class is used just as an object to pass and possibly subdivide. This is the
case for the PRC model in which the messages are actually subdivided into bytes that are

individually simulated.

83

The Event class serves as a base class for all of the different types of events that im-
plement the behavior of the system under simulation. This class contains pure virtual
functions, thus requiring the support of a certain minimal set of operations in the derived

classes.

5.2 Simulation Specification Language

Part of the flexibility and power of pp-mess-sim is derived from the language used to
specify the parameters for each simulation run. This language, coupled with the built-in
primitives, has enough expressive power to concisely construct a series of workloads that
exhibit a wide range of communication patterns and resource usage. This is primarily
accomplished by allowing the user to assign tasks with specific behavioral characteristics
on a node-by-node basis if necessary to generate the desired workload. For the most part,
these assignments can be performed implicitly by allowing the default rules to resolve the
tasks assigned to each node.

The behavior of each communication task is characterized by eight parameters:
o the generation process

e the length process

¢ the maximum packet length

¢ the minimum packet length

e the target selection process

e the default routing algorithm

e the total number of packets

The generation process is used to generate the packet inter-arrival times in base unit of
bus cycles and may be selected from a wide range of the standard random processes used
in simulation. This process is guaranteed to have its own assigned random number stream
that does not overlap with any others’ during the lifetime of the simulation.

The length process is used to generate the length of a newly-generated packet in long-
words. This process may be also selected from either negativeexpntl or lengthdiscrete random

processes. The negativeexpntl provides the standard negative exponential distribution on

84

packet lengths used commonly in analytical models. The maximum and minimum length
parameters can be used to clip the lengths produced by this process negativeexpnt! to pre-
vent unrealistically small or large packets. The lengthdiscrete process allows the user to
individually specify the probability of a discrete number of packet lengths. These processes,
like the generation processes are guaranteed to have independent random number streams.

The target selection process selects the node that is the recipient for each generated
packet. The user can currently choose from either NodeUniform or HopUniform. When
NodeUniform is selected, each node, excluding the originating node, is equally likely to be
selected as the recipient. If HopUniform is selected, the user specifies the probability of the
packet traveling @ hops. Once it is determined that the packet is traveling @ hops, then all
nodes @ hops distant are equally likely to be selected as the recipient of the packet.

The default routing algorithm determines the routing algorithm and switching method-
ology that will be used to deliver the packet to the recipient. Users can currently choose
from virtual cut-through, wormkole, packet switching, or source-list. The first three choices
use a minimal path approach in selecting the route as the pdcket traverses the network
and use their respective switching method. As currently implemented, source-list utilizes
a user-specified route and a virtual cut-through switching method to deliver the packet.
The selection of a routing algorithm that the underlying hardware doesn’t support is con-
sidered a specification error and aborts the simulation run during the initialization of the
instantiation of the task in error.

The last key parameter describing a task’s behavior is the total number of packets
that need to be generated. This is actually the minimum number of packets the task will
generate. A task will continue generating packets until all tasks in the simulation have
satisfied their respective specification of the total number of packets. This approach allows
the data collections routines to detect when they should shut down in order to prevent
falsely collecting data as the network is “draining out” at the end of the simulation run.

In addition to the parameters describing the behavioral characteristics, the user must
select the type of data collection that needs to be performed with respect to the packet
being generated by the task. Currently, there are several different levels of detail, with the
simplest collecting the mean, variance, min, max, and confidence intervals of packet delay.
More complex data collection schemes are currently being investigated to explore posible
correlation effects such as those observed during higher loads in the previous chapter.

The aggregate behavior of a node is specified by the number and different types of tasks

85

that are assigned to it. This can be accomplished either by a default specification, an
override for a particular node number, or by a named node specification.

It is easier to explain the process of fully resolving an input specification to a complete
simulation specification through an example. Figure 5.2 shows a simple yet functionally
complete specification file that we will use to illustrate both the simplicity and the power
of the specification language.

There are three major blocks that the user must provide: the topology selection, the
default node, and the default task.

The first is the topology selection block. For our example lines 0-4 select a C-wrapped
hexagonal mesh with 31 nodes (edge size 4).

The next block that must bé provided is a default node specification. This is shown on
lines 4-8 and directs pp-mess-sim to instantiate each node such that there are a total of 4
tasks, two of which will have the characteristics of the named task “task_rt_real” unless a
specification of higher precedence for that node exists. The remaining tasks (two in this
case) required to bring the total number of tasks up to the total specified number (line 6)
will have the characteristics of the default task.

Lines 15-24 and lines 26-37 are two examples of task specification blocks. The first
describes the behavior of the default task that is created as a last resort in order to satisfy
the total number of tasks needed on a particular node. In this example, the default task
generates packets with an inter-arrival time using a negative exponential with a mean of
3368 bus cycles. The packets will have a 3 in 10 chance of being 8 longwords, a 1 in 2 chance
of being 24 longwords, and a 1 in 5 chance of being 88 longwords. Fach node of the other
36 nodes will be equally likely to receive the packets generated. The packets will be routed
using minimal-path routing and virtual cut-through. The user will be guaranteed that the
task will generate at least 1000 packets of which the first 250 will not be considered for data
collection. The renew line specifies that the random number streams allocated to this task
should grab blocks of 1000 samples at a time {rom the master random number stream. The
second task specification is an example of a named task which can be selected as shown in
lines 7 and 12.

Lines 10-13 demonstrate the use of a node override in which the task mix assigned to
node 3 is individually specified.

The general block (lines 39-47) is used for general parameters such as output file names

and random number seeds. Although not explicitly required, it usually has to be provided

O 0N U R WNR O

-
- O

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

86

topology begin
select cwhm;
size 4;

end

node default begin

tasks 4;

select task task_rt_real 2;
end

node 3 begin

tasks 2;

select task task_rt_real 1;
end

task default begin
arrival NegativeExpntl(3368.421053);
length LengthDiscrete(0.3,8,0.5,24,0.2,88);
target NodeUniform();
routing vc();
history simple;
packets 1000;

drop 250;
renew 1000;
end

task task_rt_real begin
arrival NegativeExpntl(16000.00000);
length NegativeExpntl(8.0);
target NodeUniform();
routing worrhole();
history complex;
packets 500;
drop 100;
renew 500;
max 8;
min 8;

end

general begin
random seed 1353625084;
timeout 640;
option resources true;
output simple_example.out;
errors simple_example.err;
results simple_example.results;
debug simple_example.debug;
end

Figure 5.2: Example of a simulation specification

87

since it is the only way the seed for the master random number stream can be specified.

The grammar describing the complete language is given in Appendix F.

5.3 Topology Generation and Support Functions

The Net class and its derived topology-specific classes play a key role in enabling
pp-mess-sim to [unction as a reusable software tool. Much of this power is a result of
being able to identify a small set of functions and parameters that allow the external in-
terfaces to the topology support routines to be identical for all of the topologies that are
implemented. The user is then forced to utilize only these functions when accessing topology
specific information in their implementation of the routing hardware and routing/switching
algorithms.

There are several assumptions made in creating a representation scheme for the gen-
eric interconnection topology that pp-mess-sim provides. First, nodes must be able to be
assigned an unique integer label that is handled by pp-mess-sim as the {ypedef Nodeld.
Second, all references to adjacent nodes can be made in terms of an integer (typedef Direction
in pp-mess-sim) that ranges from 0 to some maximum value that can be dependent on the
topology under simulation. Given these two typedefs the user is then provided three func-
tions for maneuvering within the topology and a function that returns a reference to a Node
based on a Nodeld. The basic structure of this scheme is shown in Figure 5.3.

The expressiveness of this generic approach will be shown by briefly studying these
basic functions in terms of the implementation of the support for the C-Wrapped hexagonal
mesh and the wrapped square mesh. These are shown in Figures 5.4, 5.6, and 5.8 for the
C-Wrapped hexagonal mesh and Figures 5.5, 5.7, and 5.9 for the wrapped square mesh.

The Net class doesn’t force any particular addressing/storage method for the nodes but
only requires that the derived class resolve the node() and operator[] methods since they
are defined as pure virtual functions in the base class. Moving the implementation of the
storage policy of nodes into the derived classes is done to allow for more efficient policies
dependent on the topology. For all of the topologies implemented thus far this has been
accomplished as an array of pointers to dynamic instantiations of the nodes in the system.
The node() and operator[] methods then just index off of this pointer as shown on lines 19
and 21 of Figure 5.4 for the hexagonal mesh and lines 17 and 19 ofFigure 5.5 for the square

mesh.

88

00 - class Net

01 - {

02 - public:

03 - SimSpecPtr sim_spec;

04 ~ Dimension edge-dimension;

05 ~ Direction max_direction;

06 - unsigned int total_nodes;

07 - unsigned int diameter;

08 - MTACG x*rootacg;

09 - TaskldTaskPtrAVLMap tasks;

10 - unsigned int generating_tasks;

11 - unsigned int holding_tasks;

12 - unsigned int delivered;

13 =~ MessageldMessagePtrAVL.Map messages;

14 - EventQ eventq;

15 - Net(SimSpecPtr);

16 - virtual ~Net() ;

17 - virtual Node& node(Nodeld)} = 0;

18 - virtual Node& operator[](Nodeld) = 0;

19 - virtual Nodeld neighbor(Nodeld , Direction) = 0;
20 - virtual Nodeld translate(Nodeld , OffsetVec) = 0;
21 -~ virtual OffsetVec map(Nodeld , Nodeld) = 0;
22 - virtual void error (const charx);

23 - kL

Figure 5.3: Net class definition

The derived topology classes are allowed to define private data structures and methods
in order to support the neighbor(), translate(), or map() methods if necessary. For the
CWHMesh the dir_v[] is defined to assist the neighbor() and translate() methods. In the
case of the H, mesh shown in Figure 2.1 the dir_v[] of Figure 5.4 would be initialized to
{1,11,10,36,26,27} when the network is instantiated.

The neighbor() method is used to obtain the Nodeld of an adjacent node for a given
Direction and the current Nodeld. The user can then utilize this function to implement the
transport of inforimation from one node to another. In both of the cases of the CWHMesh
class and SQMesh class it is relatively straightforward to implement as shown on lines 23-31
in Figure 5.4 and lines 21-46 in Iigure 5.5.

Both the map() and translate() functions manipulate data of the types Nodeld and
OffsetVec. The data type OffsetVec is just a max.direction element vector representing
the number of hops in each direction some entity should take. The map() functions then
provides a method in which the OffsetVec can be produced given source and destination
nodes. The translate() functions provide the inverse operation of the map() functions. These
topology support functions have proven to be quite adequate and have successfully insulated

the implementation of the PRC-specific portions of pp-mess-sim from the knowledge of the

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

89

class CWHMesh : public Net
{
public:
NodePtr #nodes; // Array Used to index instantiated nodes

CWHMesh(SimSpecPtr);

virtual ~CWHMesh();

virtual Node& node(Nodeld);

virtual Node& operator[](Nodeld);

virtual Nodeld neighbor(Nodeld , Direction);

virtual Nodeld translate(Nodeld , OffsetVec);

virtual OffsetVec map(Nodeld , Nodeld);

virtual void error (const chars*);
private:

unsigned short dir_v[6];
b
inline CWHMesh::~CWHDMesh () {}
inline Node& CWHMesh::node(Nodeld n) { return *(nodes[n}); }
inline Node& CWHDMesh::operator[](Nodeld r) { return *(nodes[n]);}
inline Nodeld CWIMesh::neighbor(Nodeld n , Direction d)

if (d < max_direction)

return (n + dir_v[d]) % total_nodes;
else {

error("Illegal neighbor mapping requested");
return 0;

}
}

Figure 5.4: C-wrapped hexagonal mesh class definition

interconnection topology or its implementation.

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

class SQMesh :

{

public:
NodePtr snodes; // Array Used to index instantiated nodes

b

inline SQMesh::~SQMesh () {}

public Net

SQMesh(SimSpecPtr);
virtual ~SQMesh();
virtual Node& node(Nodeld);

virtual Node& operator[](Nodeld);

virtual Nodeld neighbor(Nodeld , Direction);
virtual Nodeld translate(Nodeld , OffsetVec);
virtual OffsetVec map(Nodeld , Nodeld);
virtual void error(const charx);

90

inline Node& SQMesh::node(Nodeld n) { return *(nodes[n]); }

inline Node& SQMesh::operator[](Nodeld n) { return *(nodes[n]);}

inline Nodeld SQMesh::neighbor(Nodeld n , Direction d)

}

switch (d) {
case 0:

return

(n+1)%edge_dimension 4 (n/edge.-dimension)+edge_dimension;

break;

case 1:

return

(n+edge_dimension) % total_nodes;

break;

case 2:

return

(n+edge.dimension-1)%edge_dimension + (n/edge.dimension)xedge.dimension;

break;

case 3:

default: // Big error time....

}

return

(n+edge-dimension * (edge_dimension-1)) % total.nodes;

break;

What should we do now!

error("Illegal neighbor mapping requested");

return 0;
break;

Figure 5.5:

¢

Wrapped square mesh class definition

00
01
02
03
04
05
06
07
08
09
10
11
12

00
01
02
03
04
05
06
07
08
09

91

Nodeld CWHMesh::translate(Nodeld src , OffsetVec offset)

{

Nodeld dest = src;
for (unsigned inti = 0 ; i < max_direction ; i4++) {

dest += offset[i] * dir_v[i];
}

dest %= total_nodes;
return dest;

Figure 5.6: C-wrapped hexagonal mesh translate function

Nodeld SQMesh::translate{ Nodeld src , OffsetVec offset)

{

int src.row = src / edge_dimension;
int src_col = src % edge_dimension;

int delta_.row = mod(src.row + offset[0] - offset[2], edge_dimension};
int delta_col = mod(src_col + offset[1] - offset[3], edge_dimension);

return edge_dimension * delta_row + delta_col;

Figure 5.7: Wrapped square mesh translate function

00
01
02

03’

04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

92

OffsetVec CWHMesh::map(Nodeld src, Nodeld dest)
{

int N = int(total_nodes);

int E = int(edge_dimension);

OffsetVec retval(max_direction,0);

int k = mod(dest - src, N);

if(k < E) {
retval[0] = k;
}

else {
if(k>N-E)
retval{3] = N - k;
else {
int t = mod((k - E), (3 x E - 2));
intr=(k-E)/(3+E-2),

ift<E+r-1){
[+ destination is in the lower part of H-mesh centered at source */
if (t <) {
retval[3] =r-t;
retvall4] = E-r-1;
}
else {
ift>LE-1){
retval[0] =t - E + 1;
retval{5] = E - r - 1;
}

else {

else {
/* destination is in the upper part of H-mesh centered at source */
ift<2+E-2){
retval[3] =2+« E-t- 2
retval[2] = r + 1;
}
else {
if(t>2+«E+r-1){
retvalf[0] =t -2 E -1+ 1;
retval[l] = r + 1;

else {
retvall2l = 2« E +r-t - 1;
retval[ll} =t + 2 -2 % E;

} .

}
}
}
}

return retval;

}

Figure 5.8: C-wrapped hexagonal mesh map function

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

93

OffsetVec SQMesh::map(Nodeld src, Nodeld dest)

{

OffsetVec retval(max_direction,0);

src %= total_nodes;
dest %= total_nodes;

int src_row = src / edge_dimension;
int src.col = src % edge_dimension;

int dest.row = dest / edge_dimension;
int dest_col = dest % edge_dimension;

int delta_row = dest_row - src_tow ;
int delta_col = dest_col - src_cal ;

if (delta_row)

retval[2] = - delta.row;
else

retval[0] = delta.row;

if (delta_col)

retval[3] = - delta_col;
clse

retval[l] = delta_col;

return retval;

Figure 5.9: Wrapped square mesh map function

94

5.4 Event Management and Flow

5.4.1 Event queue

Two of the major problems that needed to be overcome during the development of
pp-mess-sim were the representation of time and the efficient management of the queue of
pending events. The importance of both of these problems is amplified by the fact that we
have both high-level and detailed low-level activity being modeled. In the case of the PRC
model, the transmission of each byte of a message can generate up to 6-8 events per node.

In order to accurately size some of the components of the PRC it was decided carly in
the development of pp-mess-sim that at a minimum it had to be able to accurately resolve
an individual bus cycle on the CTBUS. Given our target speed of a 40ns CTBUS cycle, if
an unsigned long int (32 bits) were to be used to represent time this would only allow a
simulation of approximately 3-4 minutes of elapsed time. This was deemed to be too short
and a two-level scheme was adopted in which global time is represented as an unsigned
long long (64 bits) and the delta time measurements represented as a unsigned long. This
two-level scheme was chosen over a scheme in which all time intervals are represented as an
unsigned long long since the operations on long long integer data types are open coded on
most of the 32 bit processor architectures on which pp-mess-sim was expected to execute.

It was also noticed during the course of debugging the implementation of the PRC-
specific modules that a few of characteristics of the events being processed should influence
the implementation of the event queue manangement routines. First, there was a significant
number of events being processed that were being submitted with a delta time of zero time
units (a mature event). Second, as an artifact of how some of the low-level bus arbiters
were being implemented, there were a fair number of events being canceled and removed
from the event queue. These observations led us to partition the event queue into two parts
and to support a lazy delete mechanism for canceling events that are located in the event
queue.

Taking all of the above factors into consideration resulted in the implementation of the
event queue as a container class of pointers to the base event class that has the following

characteristics:
e Global time is represented as a unsigned long long (glb_time).

o Events are submitted to the event queue management class with a delta time field

represented as an unsigned long and are only allowed to use half of the available

95

resolution of that field.
o A priority heap keyed on an unsigned long is used for the non-mature event list.
e A FIFO is used for the mature event list.

e Ivents submitted with a non-zero delta time are stored in the priority heap with a
key that is equal to the submitted delta time plus the key of the last item removed

from the priority heap.

o When an event is removed global time is advanced by the difference between the key of
previous item removed from the priority heap and the key of the item being currently

removed.

e If at any time the key of the last item removed exceeds half of the resolution of the
delta time data type, all keys within the priority héap are adjusted by subtracting the
value of the last key removed {rom the priority heap. This is usually accomplished
by removing all items and placing them in the mature event FIFO while adjusting
the delta time field. The I'IFO is then emptied back into the priority heap. After

repacking the priority heap the key of the last item removed is set to zero.

5.4.2 Event hierarchy and structure

All events in pp-mess-sim arc implemented as classes derived from the Event class shown
in Figure 5.10. What is important about this structure is that all derived events must
implement the handler() and the mtrace() functions. This structure also allows both main
event handler and hardware units to cause the execution of the code associated with the
events with no knowledge of what the event actually does, i.e., the dispatch of the event is
handled by the C++ virtual function mechanism.

The events derived from the base class store supplemental information so that they can
be executed in isolation. For example, Fligure 5.11 shows the event that is respounsible for
message generation. When the handler for this event is executed, it needs to determine
what node and task was responsible for its creation. Hence, a pointer to task and node are
stored locally.

Like all discrete event simulators, most of the effort in modeling the system is spent
in writing and debugging the event flow. pp-mess-sim has a crude built-in message trace

capability to assist in debugging. This feature is implemented by requiring all events to

96

class Event

{

public:
delta_time delta; // Time from current time to event occurance
glb_time e_time; // Global time cvent occurs (Set on dequeue.)
EventLoc loc; // Event Location (Indicates ownership)
bool cancel; // Event has been canceled.
unsigned long id; // Unique Identifier
NetPtr net; // Network that event is taking place in.

Event (NetPtr, delta_time);
virtual ~Event () ;
virtual void cancel_event();
virtual void error { const char +);
virtual bool mtrace() = 0;
virtual void handler() = 0;
private:
static unsigned long last_id; // Id Allocator

b

typedef Event* EventPtr;

Figure 5.10: Base Event class definition

class MessCreatellvent : public Event
{
public:
TaskPtr task;
NodePtr node;
MessCreateEvent (NetPtr , NodePtr, TaskPtr , delta_time);
virtual ~MessCreateEvent (};
virtual bool mtrace();
virtual void handler(};
static void+ operator new(size_t);
static void operator delete(voids);

b

typedef MessCreateEvent+ MessCreateEventPtr;

Figure 5.11: Message create event class definition

97

implement a mtrace() member function that returns a boolean. There is a global associative
map stored in the network under simulation that contains the identifiers of messages that
should be traced. It is the responsiblility of the mtrace() function to return true if it is an
event that is related to a message identifier that exists in the global map. For events that
have no relationship to particular messages, the mtrace() function is just an inline for a
“return false.” What is surprising is that the consistent availability of such a function can

reduce the debugging time by orders of magnitude.

5.5 Insights into Modeling Hardware

During the construction of the classes that model the low-level behavior of the PRC,
several techniques for modeling different types of components were developed that were
not immediately intuitive. These problems usually centered around modeling the different
types of asynchronous behavior present in the PRC. We describe below the techniques that
we used for modeling the bus arbiters, the bus interfaces, and the implementation of the

flow control behavior.

5.5.1 Bus behavior

The problem that we were immediately faced with when modeling the bus units was
when to consider the transaction complete. Tightly-coupled to this problem is how to model
the actual bus arbitration algorithm. Our technique solves both of these problems in an
efficient manner.

Each bus that operates in an asynchronous mode has three major types of event classes
defined: an arbitration event, a cycle event, and a complete event. Consider the following
scenario, where an event handler for the interface has been triggered due to the availability
of data. The proper behavior is to arbitrate for a shared bus, and once becoming master
of the bus to write data to a slave unit across the bus. The event handler dealing with this
data accomplishes this by first creating a complete event that will be used to indicate to
the interface unit that the future bus cycle is complete. The initial handler then creates
a cycle event that describes the nature of the future bus cycle such as the destinations of
the transfer and of the data. One of the fields of the cycle event is a pointer to a complete
event. This pointer is set to the complete event that the handler previously created. The

handler then calls a “submit” member function for the class that actually models the bus

3

98

arbiter. This submit function stores the cycle event internally and creates an arbitrate
event if one is not already pending for the next possible arbitration time. The handler
for the arbitrate event will then retrieve the appropriate cycle event, as determined by the
arbitration algorithm, that was previously stored, execute its handler, and then if possible,
execute the handler for the complete event. Finally, if there are remaining cycle events still
stored, a new arbitrate event is created and placed in the global event queue.

There are two advantages to this approach. First, buses that are inactive will produce
no events. Second, the arbitration algorithms and timing behavior are located in a single

event handler and can be casily modified.

5.5.2 Flow control

Flow control for the PRC is physically coupled to the state of certain signals. When the
IRDATA line from a CTBUS transmitter is true, then the device that has the transmitter
reserved can arbitrate for the bus and write forward channel data. The simple approach
would be to schedule an event every bus cycle that would check the status of the IRDATA
and take the appropriate action. The problem with this approach is that the number of
events scheduled becomes excessively large very quickly. Effliciently modeling this type of
interaction can be quite challenging.

Our solution is based on a technique used in the implementation of many windowing
systems. Fach unit that has a signal that other devices may be asynchronously basing their
event flow on has a FIFO in which the other devices may enqueue a “wakeup” event. The
class that controls the signal that others are watching will remove all the events in the FIFO
and enqueuc them with a delta time of zero in the event queue any time the state of the line
changes. The other devices may then use the wakeup event to perform the actions based
on the new state of the line.

In the PRC this technique was used for both the byte-level flow control and the TFU’s

decision on whether to attempt a reservation of the CTBUS transmitter.

5.6 Data Collection Support

Originally, data collection was handled in pp-mess-sim as part of the message receive
event handler. This just stored the collected data into the Task object that generated the

message that had triggered the event. This approach was sufficient for the results presented

99

in the next chapter.

More recently, we have restructured the data collection facilities to simplify the addition
of custom collection methods. These changes center around the creation and maintenance of
a MessHistory list. As a message is routed through the network and passes through different
hardware components, these components have the option of attaching an information record

to the message history list. Currently the following type of records are maintained:
o Iinter
e Cut

e Inject

Buffered
e Tail

Each of these information history records also contains the node id and a global timestamp
indicating where and when the record was added. This new structure allows the message
receive event handler at the destination node to call a user provided routine that processes
the list and extracts the metrics of interest to the end user. For example, the correlation
between routing/switching decisions in adjacent nodes can be investigated by looking the

the Cut and Buffered records in the MessHistory list.

5.7 Summary

In this chapter, we have presented the design rationale and provided a glimpse at the
implementation of the point-to-point message simulator. There are several unique features
about this tool that can be easily exploited. First, its ability to capture both the high-level
and, when necessary, low-level details of the system provide an opportunity to understand
some of the low-level interaction effects not previously investigated. Second, the interfaces
are designed such that models for different routing hardware can be developed and compared
within a common environment. Third, the generic topology approach provides unique
opportunities for investigating how sensitive different routing hardware is to the topology
specific features.

Although a relatively complex system (2 MB of sources), incremental modification is
quite tractable as proven by some of the more recent enhancements being attempted by

other researchers within our lab.

CHAPTER 6

MULTI-MODE ROUTING AND SWITCHING

This chapter consolidates the results of the three previous chapters to formulate one of
the first experiments that fully exploits the {lexibility of the PRC. Although the results from
the experiments presented here are relatively clear, the entire series of experiments suggested
by our findings is much more than we could hope to accomplish in this dissertation.

This chapter investigates how multiple classes of traffic using different switching methods
and routing algorithms interact with one another. We call the ability to support multiple
classes of traffic, each possibly with their own switching method, multi-mode routing and
switching.

After motivating with a simple analytical argument why therc might be great poten-
tial in pursuing a scheme supporting multi-mode routing and switching, we formulate an

experiment to answer the following questions:

e Does the presence of a low percentage of traffic using minimal-path routing with
wormhole switching adversely affect the behavior of the traflic being routed using
minimal-path routing with virtual cut-through switching in a C-wrapped hexagonal

mesh?

e Is the wormhole traffic in the above scenario unstable in the presence of the virtual

cut-through traffic?

But why are these questions important in the first place? The ability to support multiple
classes of traffic simultaneously with minimal interference can play a fundamental role
in forming the basis upon which a communication subsystem capable of supporting real-
time communication can be constructed. For example, associate one class of packets with
background traffic (non real-time) and the other class of traffic with message requiring

real-time delivery. This example is not that unrealistic because in most distributed real-

100 ”

101

time systems the actual percentage of traffic actually requiring hard deadlines is small. The
control surface of the airplane requires consistent and timely updates, in contrast to internal
cabin temperature display where “best effort” will suffice.

The usefulness of supporting multiple classes of traffic does not have to be cast only
in terms of real-time communication in order to still hold merit. We can look at the com-
munication support provided in the common workstation. One class can support standard
socket-based communication while the other to carries “out-of-band” data. The point is that
the different classes will have different characteristics as a function of routing and switching
schemes used to support the classes and each of these can be individually exploited.

These two questions are investigated within the assumed operating environment provided
by pp-mess-sim. The choice of using virtual cut-through switching and wormhole switching
for the two traffic classes in this experiment was modivated by both practical issues and
issues of fairness. The minimal-path routing algorithms for both wormhole switching and
virtual cut-through switching were the most tested of all the routing and switching com-
binations implemented in pp-mess-sim. This choice also allowed the same routing algorithm
to be used for both classes of traffic and only have the switching scheme be different. The
availability of the analytical models for each of the traffic classes in isolation also influenced

the design of experiments.

6.1 Motivation: Wormbhole vs. Virtual Cut-through

In this section we derive an approximation for the expected packet latency using minimal-
path routing and wormhole swithing in a C-wrapped hexagonal mesh. This is compared
against the expected packet latency using minimal-path routing and virtual cut-through
switching to conclude that the network load and number of hops the packet needs to travel
determines the switching scheme that minimizes the packet latency. These comparisons are
made in isolation; that is, they don’t account for the presence of the other class of traffic.

We will use the following notation which parallels Chapter 4:

Ag packet rate generated by each node into the network

(k)k (average) node distance measured in hops

I probability of a packet destination being located k hops away
o ratio of header length to the entire packet length

tm service time for a packet in a channel

102

Ton packet latency using wormhole switching

T. packet latency using cut-through switching

D probability of a packet being required to wait for a channel

Cs a constant representing the link arbitration/ sciledulillg mechanism used

when a wormhole-switched message encounters a busy link.

We can directly use the result from Theorem 2 from Chapter 4 which gives us:
e—1
Pw = Agtm ZkZ * Gk
k=1

The average latency of a packet using minimal-path routing and wormhole switching in

the C-wrapped H-mesh, 7',;, may then be approximated by:

Theorem 3

Ton = . (6.1)

Proof: There are three components in the packet latency. The first is the transmission
time of the packet header at each node. Cut-through at each node does not save time in
header transmission, because the header must be received in full before the node can select
the outgoing transmission link. The second component is the waiting time at each node
due to blocking. The final component is the packet transmission time.

The average packet delay per node, T, due to waiting for the current link occupant to
complete its in-progress transmission and possibly other waiting packets is ¢,p,1wn, Where
¢s is a constant representing the link arbitration/scheduling mechanism used. The minimum
of ¢y, which equals 0.5, occurs when the blocked packet is scheduled to be transmitted next.
The header transmission time is given by kat,, and the packet body transmission time by
(1 — a)t,,. Hence, we get

Twh = ETd + (1 - a)trn + -Ea’trn

= ¢.kpyTun + tn(1 4+ a(k = 1))
(1+a(k — 1)),

1- csﬁpw

(14 a(k — 1))ty
1— ek Ag tm i1 K2 qu

Using the fact that 332} 6k% - g, = &, we get

= (14 a(k -1)) t,

Tyn = 3
1 — 2F Agtn

103

o
w
o

o
w

o
N
[4)]
i ENENERAT S AT

o
)
L
M
BN

Packet Latency (ms)

©
—
i

L

.

1

E3

______/

llllIlIIYIIIIIIIIIIIIIIIIIIII

0 50000 100000 150000 200000 250000 300000
Packet Generation Rate (per Sec)

(=)

)

a3
I

L,

o

Figure 6.1: Wormhole switching latencies as a function of packet rate. (¢, = 1.0)

We can make a few observations concerning the latency of packets that use wormhole
switching from the above equation. IFrom the denominator we see that as the packet genera-
tion rate increases from zero, the routing time increases gradually at first, and then rapidly.
When the packet rate approaches the value which makes the denominator zero, the latency
becomes infinite. This value Ag ;4. is the maximum packet rate the network can support

for wormhole switching, and is given by:

6
)\G,max - —0
stk

We also see that the latency increases rapidly with the average hop distance k. This
agrees intuitively with the observation that the longer the hop distance of a packet is, the
more likely it is to block other packets. This is because packet data is not removed from
the network when the packet is not able to cut through a node in wormhole switching. This
means that for a wormhole switching scheme, the placement of tasks and thé minimization
of task separation is of prime importance. The latency is also sensitive to ¢, (a function of
the resource scheduling policy), although its effects are less than those of k.

Fig. 6.1 shows the packet latencies for H-meshes of dimensions 3, 5, 7 and 9, assuming
an average packet length of 128 bytes, a four-byte routing header, a link bandwidth of

16.6 MBytes/sec, and ¢, = 1.0. Each destination is equally probable. When the packet

104

generation is low (near zero), the latencies for the different H-meshes are similar, but as
the generation rate increases, the larger mesh (e = 7) quickly reaches link saturation, while
the latency for the smallest mesh (e = 3) increases rather slowly. The maximum packet
generation rate for the smaller H-meshes is higher due to the fact that the average packet
distance is larger.

The packet latencies for virtual cut-through switching have been analyzed in [26], and

given below:

Et
L—p

It is instructive to compare the packet latencies for the two forms of switching as a

7
[

(k- 1)(1 = p)(1 - @)l

function of channel load. The graphs of the latencies for different dimensions of H-mesh
are shown in Fig. 6.2. Again, we have assumed a packet size of 128 bytes with a four byte
routing header, a link bandwidth of 16.6 MBytes/sec, and ¢, = 1.0.

One can see that for low traffic, the latencies of both methods are almost identical. This
is because at low traffic, the probability of blocking is very small, and therefore packets are
not likely to be blocked at intermediate nodes. The latency is then determined mainly by
link transmission time. For higher dimensions of the H-mesh, wormhole switching is not
feasible for traffic load beyond a certain threshold. This threshold depends on the average
number of hops for a packet. For a 3-dimensional H-mesh the packet distance is short
enough' that the maximum traffic is limited by the bandwidth of the communication links
themselves.

For low traffic loads, wormhole switching actually takes less time to deliver packets on
average, while the opposite is true for high loads. The break-even point of traffic load also
decreases as the size of the mesh increases. This is due to the average packet distance
increasing with the size of the mesh. As pointed out earlier, the longer the packet, the more
likely it is for wormhole switching to cause network congestion, resulting in higher average
packet latencies. This also causes the maximum traffic load that can be supported by
wormbhole switching to decrease with the size of the mesh. For H-meshes of edge dimensions
less than 5, wormhole switching always gives a lower latency than virtual cut-through. For
an Il-mesh of edge dimension 5, however, the break-even traflic load is 0.55. By the time
the edge dimension reaches 7, the break-even point has dropped to 0.22. Consequently,
depending on the traflic load and average packet distance, one switching method might be

chosen in preference to the other.

'The communication diameter of a 3-dimensional H-mesh is only 2.

105

0.1+ 0.1
0.09 0.09
0.08 0.08
E 0.07 ‘g007-'
>’006— >~oos_
005— 005_
3 = E VC
004 Ve 004
S 0.03 K 003~
a E
0.02 4 0.02 WH
0.01 —Wh 001
O:""|""|""l""l""l’"'l""l""l""l”" O—“"I’”’I""I""I“"l --------- RAALMAR
0 010203040506070809 1 0 010203040506070809 1
Traffic Load Traffic Load
() e=3 (b) e=4
0.1+ 0.1+
0.09 5 0.09
AO.OB—; 0.084 WH
] [%2]
£ 007 €007+
>006~ 2 0.06
_‘1 2 E
005 E O.O‘.SE VC
004- = 0.043
Q
0.02 0.024
E WH
0.01 0.014
O—’ LR RAARE RRRRN RARAN RARRE RARLE LARL L AR RRAN O:""l LARD RRLAR SRS LLLA LINEARE AR RAREE RN A
00102030405060708091 0010203040506070809 1
Traffic Load Traffic Load
(c)e=5 (d)e=7

Figure 6.2: Packet delivery latencies for a C-wrapped H-mesh with edge dimension

e. (¢, = 1.0)

106

6.2 Experimental Results

In the previous section we were able to conclude from the simplified models that one
switching/routing scheme might be preferable to another as a function of the total network
load and individual characteristics of the packet to be transmitted. Unfortunately these
models do not provide much insight into how the real life issues such as the effects of flow
control, routing algorithm processing time, and how multiple routing/switching methods
interact with one another to change of overall behavior of the system.

To answer the two questions originally posed at the beginning of this chapter we per-
formed a series of simulations of the IMU-PRC-NI triple on Hj, H,, and Hg meshes using
pp-mess-sim. This simulations allows us to capture the real life factors and gain some con-
fidence in the utility provided by having a flexible router. In the interest of brevity we will
ounly present the results from the simulations on Hy and note that the same observations
and conclusions can be made concerning the data not shown.

The following experimental setup was used:
o Class I traffic

— Minimal-path routing with virtual cut-through switching.

— Inter-arrival process NegativeExpntl().

— Packet length LengthDiscrete with P[l = 8 longwords| = 0.3, P[l = 24 longwords] =
0.5, and P[l = 88 longwords] = 0.2.

o Class II traffic

— Minimal-path routing with wormhole switching.
— Inter-arrival process NegativeExpntl().

— Packet length Fixed at 8 longwords.
e Parameters for inter-arrival processes are set as follows:

1. Select percent peak link load as the primary parameter.
2. Select percentage of traflic that should be Class II.

3. Solve for the two generation rates as a function of the two parameters above.

e Wormbhole timeout set at 640 bus cyles (discussed below)

107

The characteristics of the traffic generated by the task specification that corresponds to
the class I traffic is intended to act as the higher percentage “background” traffic which is
then mixed with the minimal-path wormhole traffic. The task specification that corresponds
to the class II is used to generate the low percentage of wormhole traffic injected into the
nework. Both classes use a negative exponential interarrival process with their rates adjusted
to achieve the desired mix of traffic.

One of the weaknesses in the current design of the PRC was uncovered during the sim-
ulations performed for this experiment. As currently implemented, the PRC only provides
a single virtual channel across each physical link. For virtual cut-through switching this
doesn’t pose a problem since the packet is always allowed to make forward progress by buf-
fering at an intermediate node. Wormhole switching does present problems once the load
exceeds a certain threshold. We have two solutions to this problem. First, the PRC RX can
implement a timeout on the period of time that a packet is willing to wait for a transmitter,
after which the packet is buffered at the intermediate node and resubmitted. Second and
more long term (future work), the PRC implementation can be modified to support more
than a single virtual channel per physical link. We delay the discussion of this alternative
to Chapter 7.

The results of this experiment are presented in three series of graphs at the end of this
chapter. The first, examines the delivery latency of the class I traflic as the mix of class I
and class II is varied. This first series is presented to answer the first question posed. The
second series of graphs looks at the observered latency of the class II traflic as traffic is
varied. This series is intended to address the second question. The last series superimposes
some of the results of the first two series and allows to draw some conclusions that are
discussed later.

Figures 6.3 through 6.5 show the delivery latencies of class I traffic (virtual cut-through)
traveling 2, 3 or 4 hops in the mesh. Each separate curve is for a different percentage of
class I versus class II traffic mix. Note that the curves remain tighly coupled as the class
II traffic is varied from 5% to 30% of the total traffic being injected into the network. The
conclusions that we can draw from these figures is that the class I traffic is not adversely
affected by the class II traffic even as a function of the total number of hops the packets
are required to travel. If this were not the case we would expect the delivery time to vary
significantly as the percentage of the class II was increased.

Figures 6.6 through 6.9 show the delivery latencies of class II traffic (wormhole) traveling

108

1, 2, 3 or 4 hops in the mesh. Each separate curve is for a different percentage of class I
versus class II traffic mix. Here again the curves do not significantly diverge from one
another allowing use to conclude that the the class II traffic is not adversely affected by the
‘increase in overall percentage class II traffic.

Figures 6.10 through 6.13 compares the delivery latencies of class I and class II traffic
for the average number of hops and individually for 2, 3, or 4 hops. The top three curves in
each figure represent the class I traffic for three different percentages of class I/class I traffic
mixes. The lower three curves refer to the class II traflic for those same three traffic mixes.
The key point of this series is that the relative benefits that one can gain by operating in
one class or the other is not lost as the class II traffic percentage is varied in this range. If
this were not true the two sets of curves. should not maintain their relative differences from

one another or worse yet actually cross.

6.3 Discussion

We opened this chapter by posing the two questions:

o Does the presence of a low percentage of traflic using minimal path routing with
wormbhole switching adversely affect the behavior of traffic being routed using minimal

path routing with virtual cut-through switching in a C-wrapped hexagonal mesh?

o Is the wormhole traffic in the above scenario unstable in the presence of the virtual

cut-through traffic?

Before pursuing the answers to these questions we developed a simple model of the
latency of messages delivery via minimal-path routing in a C-wrapped hexagonal that uses
wormhole switching. When compared against the delivery latency of messages using virtual
cut-through switching we saw that there was no clear winner all of the time. This fact
motivated further studies into how a system capable of supporting multiple classes of mes-
sage traffic might behave. IFor the experimental system described earlier in this dissertation
this type of routing and switching interaction would not be possible without the flexibility
provided by the PRC.

With the results of the simulations we were able to conclude that the answer to both of
the questions is “no.”

Were the answer “yes” to either question the cost of providing the support necessary for

multi-mode routing and switching would require careful justification. The “no” answers only

109

partially vindicate multi-mode routing and switching since this experiment only examined a
single pair of routing-swithing combination. The good news is that for a scheme that didn’t
specifically try to isolate the different classes of traffic from one another the interactions
effects were not high. This is a very encouraging result since the PRC was easily able to
support the functions required for this experiment.

It is also interesting to postulate on the reasons why the two types of traffic in the
experiment didn’t interact in a significant way. One avenue of thought is that it might be due
to the fact that wormhole and virtual cut-through switching eflfectively uses diflerent types
of resources. Virtual cut-through use memory buffers on intermediate nodes in contrast to
wormbhole which stores its data in the actual network. A logical question that immediately
follows is how specific are these experimental results to the wormhole/virtual cut-through
switching pair. In the experiments performed thus far all the network resources have been
available to all the classes of traflic. A series of experiments that is currently being pursued
investigates different schemes in which the PRC can be used to isolated the different classes
of traffic from one another. For example, a certain amount of bandwidth could he allocated
to each class or in the case of the newer versions of the PRC certain classes of traffic can
have a preferences for certain virtual channels. Here again, the flexibility of the PRC allows
these types of issues to be explored.

The answers to our questions so far open up a whole new frontier of experiments con-
cerning routing algorithms and switching methods that can be investigated. For example
in the current experiments, once created the packets always use the same routing/switching
scheme to be delivered to the destination. What if we allow routing packets using virtual
cut-through switching initially and then change to wormhole as the packet approaches the
destination? This might provide improved performance since wormhole packets perform
quite well over a small number of hops when compared to virtual cut-through packets. But
when should we change switching methods? These type of functions the PRC can ecasily
provide.

What we are claiming is that having the flexibility to support multiple routing and
switching schemes provides the system designer with the tools necessary to construct sys-
tems capable of supporting a wide variety of characteristics. The experiments presented
in this chapter take a first step at showing that this type of flexibility requires further

experiments.

Delivery Time (Bus Cycles)

Delivery Time (Bus Cycles)

1800.0

110

1600.0

T

1400.0

1200.0

1000.0

@—805% Class Il Packets
W - M 10% Class Il Packets
®— 15% Class Il Packets
A—A~A20% Class Il Packets

: :25% Class !l Packets
VW 30% Class il Packets

800.0
0.10

0.15 0.20

0.25

0.30

Percent Peak Link Load

0.35

0.40

Figure 6.3: Delivery Latency Class I Traffic — 2 hops — H;

2500.0

T

2000.0

1500.0

1000.0 4

@ —®05% Class Il Packets
B-—®& 10% Class Il Packets
&—49 15% Class !l Packets
A—A 20% Class Il Packets

.25% Class |} Packets
W—Y% 30% Class Il Packets

500.0
0.10

0.15 0.20

0.25

0.30

Percent Peak Link Load

0.35

0.40

Figure 6.4: Delivery Latency Class I Traffic — 3 hops — H;

Delivery Time (Bus Cycles)

Delivery Time (Bus Cycles)

111

2500.0

2000.0

T

1500.0

T

T T T T T T T T T

©—@05% Class Il Packets
B ®10% Class Il Packets
&—& 15% Class Il Packets
A—A20% Class |l Packets

125% Class Hl Packets
¥——¥ 30% Class Il Packets

1000.0 1
0.10

0.15 0.20 0.25 0.30 0.35
Percent Peak Link Load

0.40

Figure 6.5: Delivery Latency Class I Traffic — 4 hops — ;5

600.0

500.0

400.0

300.0

¥ T T T T T T v T

©@—@95% Class | Packets
W% 60% Class | Packets
&-—&85% Class | Packets
A—~A80% Class | Packets

75% Class | Packets
V—V 70% Class | Packets

200.0
0.10

0.15 0.20 0.25 0.30 0.35
Percent Peak Link Load

0.40

Figure 6.6: Delivery Latency Class II Traffic — 1 hop — Hs

Delivery Time (Bus Cycles)

Delivery Time (Bus Cycles)

112

800.0

700.0

T

600.0

i

500.0

T

400.0

300.0

@®—@95% Class | Packets
W W®90% Class | Packets
©— 85% Class | Packets
A—AB0% Class | Packets

. 75% Class | Packets
¥—¥ 70% Class | Packets

200.0
0.10

0.15 0.20

0.25

0.30

Percent Peak Link Load

0.35

0.40

Figure 6.7: Delivery Latency Class II Traffic - 2 hops — Hg

1000.0

800.0

T

600.0

400.0

®—®95% Class | Packets
@—#@90% Class | Packets
&-—&85% Class | Packets
A—A80% Class | Packets

75% Class | Packets
W—V¥ 70% Class { Packets

200.0
0.10

0.15 0.20

0.25

0.30

Percent Peak Link Load

0.35

0.40

Figure 6.8: Delivery Latency Class II Traffic — 3 hops — Hs

113

1200.0 " 7 " T T T - 7 T T
@ —®95% Class | Packets
M - W90% Class | Packets
Il
o~ 1000.0 - '75"/: Clas;SPackets N
g ¥—¥ 70% Class | Packets
N3]
>
(6]
@ 800.0 .
Q
D
E
— 600.0 A
Pan
2
400.0 & i
200-0 L t " L L 1 " ! L 1 1
0.10 0.15 0.20 0.25 0.30 0.35 0.40
Percent Peak Link Load
Figure 6.9: Delivery Latency Class II Traffic — 4 hops — H;
14000 - @—®Class | Packets w/ 05% Class !l Packets -1

B Class | Packets w/ 15% Class Il Packets
&—& Class | Packets w/ 25% Class |} Packets
A———A Class Il Packets w/ 95% Class | Packels
1200.0 - Class Il Packets w/ 85% Class | Packets
W—VW Class Il Packets w/ 75% Class | Packets

1000.0

800.0

600.0

400.0

Delivery Time (Bus Cycles)

4

0.10 0.15 0.20 0.25 0.30 0.35 0.40
Percent Peak Link Load

Figure 6.10: Comparison of Class I to Class II Traffic — Average hops — Hjg

1200.0

114

1000.0

T

800.0 -

600.0

Delivery Time (Bus Cycles)

400.0

200.0 T/ :

T T T T T

@—®@Class | Packets w/ 05% Class Il Packets
| - M Class | Packets w/ 15% Class il Packets
9—@ Class | Packets w/ 25% Class |l Packets
A—A Class Hl Packets w/ 95% Class | Packets

Class Il Packets w/ 85% Class | Packets
¥-—¥ Class Il Packets w/ 75% Class | Packets

0.10

Figure 6.11: Comparison of Class I to Class II Traffic — 2 hops — Hj

0.15 0.20 0.25

0.30

Percent Peak Link Load

0.35

0.40

1400.0

1200.0

1000.0

800.0

600.0

Delivery Time (Bus Cycles)

200.0

T

T ¥ T T T

®—@Class | Packets w/ 05% Class Il Packets
B—HR Class | Packets w/ 15% Class |l Packets
®—® Class | Packets w/ 25% Class {l Packets
A—A Class 1| Packets w/ 95% Class | Packets

Class |l Packets w/ 85% Class | Packets
W¥—-¥ Class | Packets w/ 75% Class | Packets

400.0
B

0.0
0.10

Figure 6.12: Comparison of Class I to Class II Traffic — 3 hops — Hj

0.15 0.20 0.25

0.30

Percent Peak Link Load

0.35

0.40

115

1500.0 - . , : . ,

@—©Class | Packets w/ 05% Class Il Packets
M - -B Class | Packets w/ 15% Class Il Packets
¢—&Class | Packets w/ 25% Class Il Packets
A—h Class |t Packets w/ 85% Class | Packet,
' Class |l Packets w/ 85% Class { Pac]

1000.0

500.0

Delivery Time (Bus Cycles)

0 " i " 1 " 1. . I " 3 "
0.10 0.15 0.20 0.25 0.30 0.35 0.40
Percent Peak Link Load

Figure 6.13: Comparison of Class I to Class II Traffic — 4 hops — Hs

CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

In this chapter we review the contributions of this dissertation, and allude to the possible

extensions and future research for the work presented.

7.1 Research Contributions

The recurring theme throughout this dissertation has been that flexibility in low-level
routing hardware is a feature that the designer should promote. This is especially true for
systems where the domain in which the routing hardware is operating may not have been
fully characterized. This is certainly the case for the PRC, which is intended to operate
somewhere in between parallel machines and networked computers, a region not previously
investigated.

The PRC architecture offers several key contributions to the field. First, in no other
architecture/design has the separation of the routing algorithms and switching schemes
been made so explicit. This separation has many advantages over the more traditional
schemes. Second, the identification of features important in reducing the overhead required
to support real-time communication and their tradeoffs is key to understanding how future
systems should be built. Last, the PRC itself can serve as a tool for investigating the hybrid
domain of parallel computing and distributed systems. The PRC’s ability to further explore
this new domain will make a lasting impact in the field of distributed systems design.

The main contribution of the models developed in Chapter 4 is that the approach in
obtaining the probability of cut-through can be extended to other partially connected point-
to-point networks. It provides a more rigorous basis for justifying what previously had been
derived intuitively.

The contributions of pp-mess-sim fall into three areas: the identification of the classes

116

117

that enable topology independent modeling of routing hardware, the use of task and node
specifications to easily generate custom communication workloads, and a reusable software
tool in which plug-replaceable modules for different router hardware can be developed. The
impact of the latter could be long lasting and greatly reduce the work required by others.

Chapter 6 provides evidence of the utility of both pp-mess-sim and the flexibility provided
by the PRC. This initial set of experiments clearly demonstrates that the ability to dy-
namically vary the switching scheme independent of the routing algorithm deserves more
investigation. The fact that the delivery performance was stable in the presence of other

traffic is a significant finding.

7.2 Future Directions

We are currently working on three semi-independent research projects that are direct
consequences of the work presented here: the enhancement of the PRC architecture to
support 2 virtual channels per physical link, the addition of a virtual hardware router to
pp-mess-sim, and the development of different variants of multi-mode routing and switching.

The need for having two virtual channels per link was quite clearly demonstrated while
debugging the wormhole switching scheme during the development of pp-mess-sim. The
addition of two virtual channels per physical link does not significantly alter the current
architecture of the PRC. Both the PRC RX and TI'U modules were modified during the
last major design revisions to support the additional channels. For example, if you carefully
examine the different transmitters for which the PRX RX can check the reservation status
of, you will notice that there are twelve such possibilities. Until now the total size of the
PRC was such that we have been able to avoid having to perform any manual intervention
during the placement and route phases of compiling the PRC. This may no longer be true
as we include six more TFUs and RXs.

The desire to develop a generic hardware router module for pp-mess-sim is motivated
on several fronts. First, there are some effects of cut-through routing that can partially
invalidate at higher loads some of assumptions necessary to make the models tractable.
A router in which we don’t have the overhead of byte-level flow-control would allow the
cut-through effects to be measured. Second, it would allow the tradeoffs between on-chip
memory and off-chip buffering to be evaluated in terms of the different routing and switching

combinations.

118

The investigation of the different variants of multi-mode routing and switching is a direct
result of just recently being enabled by the availability of pp-mess-sim and high performance
workstations on which we can run pp-mess-sim.

In addition to the research efforts already being pursued there are several issues con-
cerning the representativeness of the existing analytic models and extensions of the models
beg for investigation. These questions center around what interactions are being lost in the
models of the switching methods and how to capture the changes in switching and routing

behavior.

APPENDIX A

PRC CTBUS IMPLEMENTATION

119

120

Cut-Through Bus Device Arbitration Order

Priority Cycle

— Highest

Device ID Priority Order

Lowest —

24
25
26
27
28
29
30
31

CO I & Ot > LN — O O

=)

10
11
12
13
14
15
16
17
18
15
16
17
18
15
16
17
18
15
16
17
18

1

= a3 00 O Oy Q0 B = N N

w

12
11
14
13
16
15
18
17
16
15
18
17
16
15
18
17
16
15
18
17

2

~N = O AW OO O

o0

13
14
11
12
17
18
15
16
17
18
15
16
17
18
15
16
17
18
15
16

14
13
12
11
18
17
16
15
18
17
16
15
18
17
16
15
18
17
16
15

_0 O Ut O W

WO U W= OCO

©

10
11
12
13
14

=]
<

12
11
14
13

6
3

=

13
14
11
12

7 8 9 1011 12 13
8§ 7 109 12
107 8 1314 11
8§ 7 14 13 12

9

10
11
12
13
14
14

13

12
11

[y
=)

0 O UTO W R DO WN O

-

14
13
12
11

9

12
11
14
13

o

0 ~J = = =N
G N

9

13
14
11
12

—_

Lo OOt OO W A NN

7
10

14 7
13 8
12 9
11
2

DO OO =
-J

O O = DN W R Ot
fum—
—

3 14
14 13

11 12

12 11
9 10
10 9
7 8

109 8 7

11 14

8§ 9
7 10
10 7
9 8

-~ 00N = OO Ut W
[53]

Ne)
[ow]
oo

b= =

N
—
S

[Ty
w
—
N

[=> N QU N UU R R o]

14 15 16 17 18
13 16 15 18 17
12 17 18 15 16
11 18 17 16 15
10 15 16 17 18
9 16 15 18 17
17 18 15 16
18 17 16 15
15 16 17 18
16 15 18 17
17 18 15 16
18 17 16 15
15 16 17 18
16 15 18 17
17 18 15 16
18 17 16 15
01112 13 14
12 11 14 13
13 14 11 12
14 13 12 11
7 8 10
13 8
12 9
11 10
2 3
4

WO = OO = N Wk 1Y -3

— =3
~

\]

— O

o

©

)
-3

_ W OO O
[) B e B e R
N = OO 5O WO =
— NN = A WOy o
OO~ N WHR DO I

Table A.1: Cut-Through Device Arbitration Order

121

Cut-Through Bus Command Encoding

Fxternal

Internal

CTCTL[3:0]

CTCTL[3:0]

Command

0

e e e e e e S v T e S e T o S e S o S con
e T S — R — T — T S SO S ==

0

0

0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0

el e R = e e = B - S o B T = T = S e B Y

1
1
1
1
0
0
0
0
1
1

—

oo s e B s S s N s e R s B T T e S S T Sy
(e e R e R e N

1

1
0
0
1
1
0
0
1
1
0
0
1

—

1

NOOP (No Operation)

DTX (Data Transfer)

DACK (Data Positive Acknowledgement)
DNACK (Data Negative Acknowledgement)
DRTRY (Data Transfer Retry)

RESV (Transmitter Reservation Request)
FREE (Transmitter Free Request)

HOLD (Transmitter Hold Request)

CHK (Transmiiter Hold Check)

CFGO (Load TAXI Receiver Reg 0)
CFG1 (Load TAXI Receiver Reg 1)
CFG2 (Load TAXI Receiver Reg 2)
CFG3 (Load TAXI Receiver Reg 3)
CFG4 (Load TAXI Receiver Reg 4)
MARK (Byte Marker)

EOP (End of Packet)

Table A.2: Cut-Through Bus Command Encoding

122

Cut-Through Master Device Encoding

External Internal Internal Internal

MST[2:0] | TAXIGRNT[5:0] | RXGRNT[5:0] | TFUGRNT[5:0] | Device Name
000 000001 000000 000000 0 TAXI RX,
001 000010 000000 000000 1 TAXI RX,
010 000100 000000 000000 2 TAXI RX,
G 11 001000 000000 000000 3 TAXI RX;
100 010000 000000 000000 4 TAXI RX,
101 100000 000000 000000 5 TAXI RX;5
111 000000 000001 000000 6 PRC RX,
111 000000 000010 000000 7 PRC RX,
111 000000 000100 000000 8 PRC RX,
111 000000 001000 000000 9 PRC RXj
111 000000 010000 000000 10 PRC RX,
111 000000 100000 000000 11 PRC RXs
111 000000O 000000 000001 12 PRC TFU,
111 000000 000000 000010 13 PRC TFU,
111 000000 000000 000100 14 PRC TFU,
111 000000 000000 001000 15 PRC TFU;
111 000000 000000 010000 16 PRC TFU,
111 000000 000000 100000 17 PRC TI'Us
110 000000 000000 000000 18 IMU

Table A.3: Cut-Through Master Device Encoding

123

Cut-Through Addressed Slave Device Encoding

External External Internal Internal
CTMST[2:0] CTADDR[7:0] CTMST[4:0] CTADDR[7:0] Device
X X X lxxxxxx1 X X X O0xxxxxx0 TAXI TX,
X X X lxxxxx1x X XX 0xxxxx0x | TAXI TX,
X X X Il xxxx1xx X X X 0xxxx0xx | TAXI TX,
X X X lxxx1xxx X X X 0xxx0xxx TAXI TX4
X X X lxx1xxxx X X X 0xx0xxxx | TAXITX,
X X X I x1xxxxx X X X 0 x0xxxxx | TAXI TX;
000 x1 XX XX XX 111 X0 XxXxXXxXX PRC RX,
001 X 1 xxxXxxxxXx 110 x 0 xxxxxx | PRCRX;
010 X1 XX XX XX 101 x 0xxxxxx | PRCRX,
011 x1 XX xx XX 100 x0xxxxxx [PRCRX,
100 ¥ 1 xxxXxxXx 011 x0xx vxxXx PRC RX,
101 X1 XX XXXX 010 x0xxxxxx | PRCRX;
111 Xxlxxxxxl1 000 x 0xxxxx0 | TAXI RX,
111 xlxxxx1lx 000 x0xxxx0x | TAXI RX,
111 x1lxxx1xx 000 x0xxx0xx | TAXI RX,
111 x1xx1xxx 000 x0xx0xxx TAXI RX;
111 x1x1xxxx 000 x0x0xxxx | TAXI RX,
111 x11xxxxX 000 x 00xxxxx | TAXI RX;
Table A.4: Cut-Through Addressed Slave Device Encoding

124

Cut-Through Bus Signal Summary

Pins | Type Signal Names | Description

6 Input CTREQ[5:0] TAXI Receiver Bus Request Lines
0 CTREQ[11:0] | PRC Receiver Bus Request Lines
0 CTREQ[17:12] | PRC TT'U Request Lines

1 Input CTREQ[18] IMU Request Line

3 Output | CTMST[2:0] Bus Master Grant Status

1 Input CTEXT Bus Cycle Extend

1 BiDir CTDSTRB Data Strobe

1 BiDir CTACK Command Ack

4 BiDir CTCTL[3:0] Command Sub-Bus

8 BiDir | CTADDR][7:0] | Slave Address Sub-Bus

8 BiDir CTDATAI7:0] | Data Sub-Bus

Table A.5: Cut-Through Bus Signal Summary

125

APPENDIX B

PRC RX INTERNALS

This appendix provides in depth information concerning the implementation of the PRC
RX module. This currently consists of the instruction encodings, sample instruction timing

diagrams, and some general figures used in the design of the RX.

126

LINKENCLK

N e ——r

SEL_UPC CLR_UPC

Control Store
128 Words
20 bits

MIRENCLK =3

CLK1

MIR

Figure B.1: Partial structure of the address sequencing hardware of the RX

{ download § B-{ preactivel B{ preactive?]

biocked -

Figure B.2: Simplified state diagram for microsequencer controller

ohi2
PC [D I I o ¥k I g | we ke 1 ¢
MAR (i j i+1 i+2 i+3 4 x K L k+1 X K+2 X k+3 x K X i+d)
MIREN i I I | I I l I I l ! I g E | l l I
MIRA x Instruction (i) x Instrugtion (i+1) Z Instruction (i+2) X Instruction {i+3} : Instruction { k } kns‘.ruction {k+t) g Instruction { k+2)x Instruction (k+3) j
MIRB (x instruction (i) X instruction (i+1) x Instruction (i+2) Instruction (i+3) X x Instruction (k) E Instruction { k+1) X tnstruction (k+2) x Instruction { k+3)x)
ADD JUMP/LINK XFER JUMP/LINK IDLE ADD RET FLAG RET IDLE
PCSEL x Incremen it X Incremen x Increment X increment z Load x tncrement x Increment g Incremen i x Increment x Link x Increment
state (Active X Active Active Active Active X Load E Active X Active z Active x Active x Load)
LINKEN | I

Jump condition false Jump condition true

Return condition false Return condition true

Figure B.3: Instruction sequence example #1

Le1

MAR (i l i+1 x w2 X 2 g w2 x 3 X 4 g 4 X N x 1 x k+2
MIREN r—] I_l H I—I I—] i_l l_L_

MIRA Z Instruction(i)x Instruction (i+1) g Instruction (i+2) X Instruction {i+3) Y Instruction (k) x1nstruction(k+1) 1

MiRa (E insuction (i) x Instruction (i+1) E Instruction {i+1) g Instruction {i+1) X lnstruction(uz)g Instruction { i+3) X tnstruction { i+3) g instruction {i+3 } i Instruction { k) K instruction { k+1))

FLAG WAIT ADD WAIT/TRAP IDLE ADD FLAG

PCSEL x Incremen t g Increment x Pass i Pass X Incremant x Increment X: Pass E Load X Incremen t x Increrment x increment
state (Active x Active x Active [Active x Active g Active X Active g Active g Load x Active X Active)

Wait condition become true Trap condition becomes true

Figure B.4: Instruction sequence example #2

8C1

PC

MIREN

MIRA

MIRB

PCSEL

state

RXBUSY

CTBUSY

i+1

i+2

i+2 1 i+2 i wa o Y iv4 1 i+5 1

H5

i+1

i+2

i+2 X ir2 x i3 K i+a x i+5 X

i+5 W

-

-

[[T1

X Instruction { 1) X

instruction (i+1)

! Instruction (i+2) s instruction (i+3) K

Instruction { i+4)

i Instruction (k) x

E Instruction (i) x instruction (i+1) x Instruction (i+1) K Instruction (i+1) x Instruction (i+2) Xlnstmction(na) E instruction { i+4) x Instruction (i+4)x Instruction (i+4)x l"‘5"‘“7ﬁ‘3”"(‘()A‘)

Lbc XFER ADD XFER{CT) JUMP IDLE
X Increment g increment X Pass ! Pass z Increment J Increment x Increment g Pass x Load j increment x increment
Active X Active x Active X Active B Active E Active K Active E Active gf Active ‘? Load x Active J

[1

Figure B.5: Instruction sequence example #3

6¢1

ALU Operations

M(19)

M(18) |[M(17) {M(16) | M(15)

M(14)

Carry

110

Control

Carry Control

M(16) [M(15)|ALU Carry Input
0 | 0 (False (0)
0 | 1 |Carry Flag
1 | 0 |Zero Flag
1] 1 |True (1)

M(13) | M(12) |M(11) | M(10) | M(9) | M(8) | M(7) | M(6) | M(5) | M(#) | M(3) | M(2) | M(1) | M(0)
A Port Select B Port Select ALU Function Control
ALU Function Encodings
M(4) =0 M(4) = 1; Arithmetic Operations
ME) M) M@ M©) | B c(::y::r:)o :j:f:;yl)
0 0 0 0 |A A minus 1 A
0 0 0 1 |AB AB minus 1 AB
0 0 1 0 |A+B |ABminusl AB
0 0 1 11 minus 1 (2’s comp) |zero
0 1 0 0 |A+B |Aplus(A+B) [Aplus(A+B)oplusi
0 1 0 1 B AB plus (A + B) " |AB plus (A + B) plus 1
0 1 1 0 |A®B A minus B minus 1|A minus B
0 1 1 1 |JA+B |A+B (A + B) plus 1
1 0 0. 0 |AB A plus (A + B) A plus (A + B) plus 1
1 0 0 1 A B A plus B A plus B plus 1
1 0 1 0 |B AB plus (A + B) |AB plus (A + B) plus 1
1 0 1 1 A+B |(A+B) {A + B) plus 1
1 1 0 0 |0 A plus A A plus A plus 1
1 1 0 1 [AB AB plus A AB plus A plus 1
1 1 1 0 |AB AB plus A AB plus A plus 1
1 1 1 1 |A A A plus 1

Table B.1: ALU Instruction Encoding

0€T

ALU Port A Select

ALTU Port B Select

M(9) | M(8) { M(7) | M(6) | M(5) { Device Selected M(13) | M(12) {M(11) | M(10) | Device Selected
0 | 0| 0| 0| 0 |Rego (RF00) 0 | 0| 0| 0 |Rego0 (RF00)
0| 0| 0| 0| 1 |Regl (RF01) 0 0] 0| 1 |Regl(RF01)
0 | 0| 0| 1| 0 |Reg2(RF02) 0| 0| 1| 0 |Reg2 (RF02)
0 | 6] 0| 1| 1 |Regs (RF03) 0 | 0| 1| 1 |Reg3 (RF03)
0 | 0| 1| 0| 0 |Regd (RF04) 0 | 1| 0| 0 |Reg4 (RF04)
0 | 0| 1] 0| 1 |Regs(RF05) 0 | 1| 0| 1 |Regs5 (RF05)
0 0 1 1 0 Reg 6 (RF06) 0 1 1 0 |Reg 6 (RF06)
0 | 0| 1| 1| 1 [Reg7 (RFO7) 0 | 1| 1| 1 |Reg? (RFOT)

0 | 10| 0| 0 [Reg8 (RF08) 1|0 | 0| 0 |Regs8 (RF08)

0 | 1|0]| 0] 1 |Reg9 (RF09) 1 10| 0 | 1 |Reg9 (RF09)

0 | 1|0] 1] 0 |Reglo(RF10) 10| 1| 0 |Reg10 (RF10)

0 | 1 10| 1| 1 [Regil (RF11) 1|0 | 1| 1 |Regil (RF11)

0 | 1| 1] 0] 0 |Regi2(RF12) 1| 1| 0| 0 |Reg12 (RF12)

0 | 1| 1| 0| 1 |Reg13 (RF13) 1| 1| 0| 1 |Reg13 (RF13)

0 1 1 1 0 |Trap Reg 0 (TRAPO) 1 1 1 0 |Trap Reg 0 (TRAPO)
0 1 1 1 1 {Trap Reg 1 (TRAP1) 1 1 1 1 |Trap Reg 1 (TRAP1)
1 0 1 0 1 |CTBus Data (CTDATA)

1 1 0 0 1 {Memory Data Reg (MDR)

1 1 0 1 1 |Header Fifo (FIFO)

1 1 1 1 0 |Accumlator (ACC)

Table B.2: ALU Operand Selection Coding

1€1

Load Constant

M(19) {M(18) IM(17) | M(16) | M(15) |M(14)|M(13) | M(12) [M(11)|M(10)| M(9) | M(8) | M(7) | M(6) | M(5) | M(4) | M(3) | M(2) | M(1) | M(0)
1 10| 1 |RX|CT Destination Select Immediate Data IR
0 Do not trigger RXBUS interface
1 |Trigger RXBUS interface
0 |Do not trigger CTBUS interface
1 |Trigger CTBUS interface
Do not Set CTBUS IR| 0 |
Set CTBUSIR| 1
Transfer Operation
M(19) | M(18) | M(17) | M(16)|M(15)|M(14) M(13) | M(12) | M(11)|M(10)}| M(9) | M(8) | M(7) | M(6) | M(3) | M(4) | M(3) | M(2) | M(2) | M(0)
1 10| 0 |RX|CT| Destination Select Source Select x| x| x|x|IR
0 (Do not trigger RXBUS interface
1 |Trigger RXBUS interface
0 |Do not trigger CTBUS interface
1 |Trigger CTBUS interface
Do not Set CTBUSIR| 0
Set CTBUSIR| 1

Table B.3: Transfer Instructions

43!

Source Select Field

Destination Select Field

=

RX Controt Reg (RXCTL)
CTBUS Data Reg 0 (CTDO)
CTBUS Address Reg (CTADDRO)
CTBUS Address Reg (CTADDR1)
CTBUS Control Reg (CTCTL)
Memory Data Reg (MDR)
Memory Address Reg (MAR)

M(9) | M(8) | M(7) | M(6) | M(5) |Device Selected M(14) |M(13) |M(312)|M(11)|M(10)|Device Selected
o] o 0 0 o Reg 0 (RF00) 0 [¢} 0 0 0 Reg 0 (RF00)
0 0 0 0 1 Reg1 (RF01) 0 0 0 0 1 |Reg 1 (RFO01)
0 0 ¢ 1 0 |Reg 2 (RF02) 0 s} 0 1 0 |Reg 2 (RF02)
0 0 0 1 1 |Reg 3 (RF03) 0 0 0 1 1 |Reg 3 (RF03)
0 0 1 0 0 Reg 4 (RF04) 0 0 1 0 0 Reg 4 (RF04)
0 0 1 0 1 |Reg 5 (RF05) 0 0 1 0 1 |Reg 5 (RF05)
0 0 1 1 0 Reg 6 (RF06) 0 0 1 1 o] Reg 6 (RF06)
0 0 1 1 1 Reg 7 (RFOT) 0 0 i 1 1 Reg 7 (RFOT)
0 1) 0 0 |Regs (RF08) 0 1) 0 0 |Reg 8 (RF08)
Q 1 0 o 1 Reg 9 (RF03) 0 1 0] 1 Reg 9 (RF09)
0 1 0 1 0 |Reg 10 (RF10) 0 1 0 1 0 |Reg 10 (RF10)
0 1 0 1 1 |Reg 11 (RF11) 0 1 0 1 1 |Reg 11 (RF11)
0 1 1 0 0 |Reg 12 (RF12) 0 1 1 0 0 |Reg 12 (RF12)
o] 1 1 0 1 Reg 13 (RF13) o] 1 1 0 1 Reg 13 (RF13)
o] 1 1 1 0 Trap Reg 0 (TRAPO) o] 1 1 1 0 Trap Reg 0 (TRAPO)
o} 1 1 1 1 Trap Reg 1 (TRAP1) s 1 1 1 1 Trap Reg 1 (TRAP1)
1) 1 o 1 CTBus Data (CTDATA) 1 0 0 o] o] RX Data Reg 0 (RXDO0)
1 1] 0 1 Memory Data Reg (MDR) 1 0 0 0 1 RX Data Reg 1 (RXD1)
1 1 0 1 1 Header Fifo (FIFO) 1 0 o} 1 0 {RX Data Reg 2 (RXD2)
1 1 1 1 0 |Accumlator (ACC) 1 0 0 1 1 RX Data Reg 3 (RXD3)
1 0 1 0 0
1 0 1 o} 1
0 1 1 0
[¢] 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1

I

Header Fifo (FIFO)

Table B.4: Source and Destination Operand Coding

€el

Set Flag Operation

M(19) [M(18) [M(17) | M(16) | M(15) {M(14) | M(13) | M(12) | M(11) | M(10) | M(9) | M(8) | M(7) | M(6) | M(5) | M(a) | M(3) | M(2) | M(1) | M(0)
1 1 1 | DataSelect | X X Flag Mask
Flag Select Mask Data Select

M(12) |M(11) |M(10) | M(9) | M(B) | M(7) | M(6) | M(5) | M(4) | M(3) | M(2) | M(1) | M(0) | Flag Modified

(12) |M(11) |M(20) | M(9) | M(8) | M(7) | M(6) | M(5) | M(4) | M(3) | M(2) | M(2) | M(0) | Flag Modifie M(16) |M15) | Flag Tnput

X X X X X X X X X X X X 1 |User Flag 0

X X X X X X | x X X X X 1 x |User Flag 1 0 0 |False (0)

X X x X x X X X X x 1 X x |User Flag 2 1 |Carry Flag

X X X X X X X X X 1 X X x |User Flag 3 1 0 |Zero Flag

X X X X X X X X 1 X X X x |User Flag 4 1 1 |True (1)

X X b.d X X X X 1 X X X X x |User Flag 5

X X X X X X 1 X X X X X x |Eophold Flag

X X X X X X X X X X X x |Markhold Flag

X X X X 1 X X X X X X X x |Aborthold Flag

X X X 1 X X X X X X X X x |Set IR (Set always)

X X 1 X x b X x X X X X x |Clear Mark (Clear always)

X 1 X X X X X X X X X X x |Clear Eop (Clear always)

1 X X X X X X X X X X X x |Clear Abort (Clear always)

Table B.5:

Flag Manipulation Instruction Encoding

VeI

Wait Operation

M(19) |M(18) [M(17)|M(16) | M(15)|M(14)|M(13)|M(12)[M(11)|M(10) | M(9) | M(8) | M(7) | M(6) | M(5) | M(4) | M(3) | M(2) | M(1) | M(0)
0 | 0 |Mark Condition Select Trap 0 Mask Trap 1 Link
Mask Enb
0 |Do not fall through on MARK
1 |Fall through on MARK
Do not store return Link| 0
Store return Link| 1
Trap 0 Select Mask Trap 1 Select Mask
M) | M(D) | M6) | Ms) | M(+) | Trap Condition M3) | M(2) | M1) | Trap Condition
X X X X 1 | CT Interface Busy X X 1 | Mark Flag
X X X 1 x | RX Interface Busy X 1 x | Eop Flag
X X 1 X x | Mark Flag 1 X x | Abort Flag
X 1 X X x | Eop Flag
1 X X X x | Abort Flag

Table B.6: Wait Instruction Encoding

Gel

Jump Operation

M(19) | M(18) | M(17) {M(16) | M(15) [M(24) [M(13) |M(12) |[M(21) | M(10) | M(9) | M(8) | M(7) | M(6) | M(5) | M(2) | M(3) | M(2) | M(2) | M(0)
- e Link
01110 Condition Select Target Address Erb
12l
Do not store return Link| 0
Store return Link| 1
Return Operation
M(19) [M(18) | M(17) |M(16) [M(15) | M(24) [M(13) | M(12) |M(21) |M(10) | M(9) | M(8) | M(7) | M(6) | M(5) | M(4) | M(3) | M(2) | M(1) | M(0)
1 0 1 Condition Select x| x| x| x| x|x|x]|x10

Table B.7: Jump and Return Instruction Encoding

9¢1

Condition Select Part I

Condition Select Part II

M(16) | M(15) | M(14) | M(13) |M(12) {M(11) |M(10)| M(9) |Condition Selected M(16) [M(18) {M(14) |M(13) |[M(12) [M(11) |M(10)| M(9) | Condition Selected
x % 0 0 0 0 0 0 |Resv Stat 0 x x 1 0 0 0 0 0 |Resv Stat 0
x x 0 0 0 0 0 1 |Resv Stat 1 x x 1 0 0 0 0 1 |Resv Stat 1
x x 0 0 0 0 1 0 |Resv Stat 2 x x i 0 0 0 1 0 |Resv Stat 2
X x 0 0 0 0 1 1 |Resv Stat 3 x x 1 0 0 0 1 1 |{Resv Stat 3
x x) 0 0 1 0 0 |Resv Stat 4 x x 1 0 0 1 0 0 |Resv Stat 2
x x) 0 0 1 0 1 |Resv Stat 5 x x 1 0 0 1 0 1 |Resv Stat 6
x x 0 0 0 1 1 0 |Resv Stat 6 x % 1 0 0 1 1 0 |Resv Stat 6
x % 0 0 0 1 1 1 |Resv Stat 7 x % 1 0 0 1 1 1 |Resv Stat 7
x x 0 0 1 0 0 0 |Resv Stat 8 x x 1 0 1 0 0 0 |Resv Stat 8
x x 0 0 1 0 0 1 |Resv Stat 9 x % 1 0 1 0 0 1 |Resv Stat 9
x x 0 0 1 0 1 0 |Resv Stat 10 x x 1 0 1 0 1 0 |Resv Stat 10
b3 X [¢] 0 1 4] 1 1 Resv Stat 11 X X 1 0 1 Q 1 1 Resv Stat 11
x X 0 0 1 1 0 0 |Timer Bit x 1 0 1 1 0 0 |Timer Bit
x x 0 0 1 1 0 1 |Abort x % 1 0 1 1 0 1 |Abort
x x 0 0 1 1 1 0 |Aborthold x x 1 0 1 1 1 0 |Aborthold
x x 0 0 1 1 1 1 |Random Bit x x 1 0 1] 1 1 |Random Bit
x x 0 1 0 0 0 0 |User Flag 0 x x 1 1 0 0 0 0 |User Flag 0
x X 0 1 0 0 0 1 |User Flag 1 x x 1 1 0 0 0 1 |Tser Flag 1
x x 0 1 0 0 1 0 |User Flag 2 x 1 0 1 1 1 0 |User Flag 2
x x 0 1 0 0 1 1 |User Flag 3 x x 1 1 ¢ 0 1 1 |User Flag 3
x x 0 1 0 1 0 0 |User Flag 4 x x 1 1 0 1 0 0 |User Flag 4
x x Y 1 o 1 o 1 User Flag 5 x x 1 1 0 1 0 1 m
x X 0 1 0 1 1 0 Header FIFO OR I x 1 1 0 1 1 0 Header FIFO OR
x x 0 1 0 1 1 1 |Mark Flag x x 1 1 0 1 1 1 |Mark Flag
x x 0 1 1 0 0 0 |Eop Flag x x 1 1 1 0 0 0 |Eop Flag
x x 0 1 1 0 0 1 |Data Flag x x 1 1 1 0 0 1 |Data Flag
x x 0 1 1 0 1 0 |Ack Flag x X 1 1 1 0 1 0 |Ack Flag
x x 0 1 1 0 1 1 |{RX Interface Busy x x 1 1 1 0 1 1 |RX Interface Busy
x x 0 1 1 1 [0 CT Interface Busy x x 1 1 i 1 0 [m
x x 0 1 1 1 0 1 |Markhold Flag x x 1 1 1 1 0 1 |Markhold Flag
x x 0 1 1 1 1 0 |Eophold Flag x x 1 1 1 1 1 0 |Eophold Flag
0 0 o 1 1 1 1 1 |False 0 0 1 1 1 1 1 1 |False
0 1 0 1 1 1 1 1 |Carry Flag 0 1 1 1 1 1 1 1 |Carry Flag
1 0 0 1 1 1 1 1 |Zero Flag 1 0 1 1 1 1 1 1 |Zero Flag
1 1 0 1 1 1 1 1 {True 1 1 1 1 1 1 1 1 |True

Table B.8: Condition Code Selection Coding

Lel

138

APPENDIX C

PRC MICROASSEMBLER INPUT GRAMMAR

This appendix lists the grammer accepted by the PRC microassembler used for created
the microcode images downloaded to each individual PRX RX during system initialization.
This BNI' grammar was constructed from the parser grammar and lexical analyzer spe-
cification files. All non-terminals are bracketed by (/) and alternatives are separated by |.
The lexical analyzer is configured to be case insensative. This notation my cause a little

confusion since | is also used in the bitwise OR operations in the alu instruction.
(program) — microprogram (identifier) ; (body)
(body) — begin (statement list) end
(const_1) — const (identifier) (int)
(statement list) — (statement list) (statement) | (statement)

(statement) —
(recv_decl) ;|
const_1) , I

(
(orgin) ;
(1nstruct_hne) 3
(label) (instructline) ;

(int) — (decint) | {octint) | (hexint)

(decint) — (nzdigit) | (decint) (digit)

(octint) — O (octdigit) — (octint) (octdigit)
(hexint) — 0x (hexdigit) — (hexint) (hexdigit)
(octdigit) -~ 0]1]2|3]|4|5]|6]|7

(digit) — (octdigit) | 8|9

(hexdigit) — (digit) |a|b|c|d|e]|f

139

(alpha) —
alblcldlelf]g
h|i|j|k[ljm|n|
o|plq|r[s|t|ul
v|wl|x|y|z

(identifier) —
(alpha) |
(identifier) (alpha) |
(identifier) (digit)
(label) — (identifier) :

(orgin) — address (int)
(recv_decl) — receiver (int)

(instruct line) —
(noop.instruct) |
(aluinstruct) |
(ldc.instruct) |

(xferinstruct) |

(wait_instruct) |

(jump_instruct) |

(retinstruct) |

(set_instruct)

(noop.instruct) — noop
(alu_instruct) —
alu (mux.select) , (alu.a) , (alu_b) , operation (int) |

alu (alu_op)

(mux_select) — false | carry | zero | true

(alu-op) —
(alu_a) + (alu_b) |
(alu_a) + (alub) + 1]
(alu-a) - (alub) - 1]
(alu.a) - (alub) |
(alu_a) |
(alu.a) + 1]
(alua) - 1]
A (alu.a) |
(alu_a) | (alu-b) |
(alua) | A (alu.b

(alu_a) & A (alu_b)
A (alua) & (alu.b)
(alu_a) exor (alu.b)
(alu_a) exnor (alu_b
-1 |

0|

1

|
|
|
) |

140

141

(alu_a)—
ctdata |
mdr |
fifo |
trap0 |
trapl |
rfoo |
rfol |
rf02 |
rf03 |
rf04 |
rfo5 |
rf06 |
rfo7 |
rf08 |
rf09 |
rf10 |
rfll |
rfl2 |
rfl3

(alu_b)—
trapO |
trapl |
rf0o0 |
rfol |
rfo2 |
rf03 |
rf04 |
rfo5 |
rf06 |
rfO7 |
rfo8 |
rf09 |
rfl0 |
rfll |
rfl2 |
rfl3

142

(ldcinstruct) —
lde (int) , (dest) (goop) |
lde (identifier) , (dest) (goop)

(goop) —
, g0 rxbus |
go rxbus , go ctbus |
go ctbus |
go ctbus , go rxbus |

M e v e

(dest) —
trapO |
trapl |
ctdo |
ctaddroO |
ctaddrl |
ctetl |
fifo |
rxdo |
rxd1 |
rxd2 |
rxd3 |
rxctl |
rfoo |
rf01 |
rf02 |
rfo3 |
rfo4 |
rf05 |
rf06 |
rf07 |
rfo8 |
rf09 |
rfl10 |
rfll |
rfl2 |
rfl3 |
mdr |
mar

143

(source) —
ctdata |
acc |
mdr |
fifo |
trap0 |
trapl |
rfoo |
rfo1 |
rf02 |
rf03 |
rfo4 |
rf05 |
rf06 |
rfo7 |
rfo8 |
rf09 |
rf10 |
rfll |
rfl2 |
rfl3

(xfer_instruct) — xfer (source) , (dest) (goop)

(wait_instruct) — wait (polarity) (condition) (mark handler) (trap0_handler)
(trapl_handler) (link_control)

polarity — ~ | ¢

(mark_handler) — , mark | ¢

(trap0_handler) — , trap0 ((trapOconds)) |e
(trapl_-handler) — , trapl ((trapl_conds)) |e
(trapO_conds) — (trapO_conds) , (trapO_cond) | (trap0_cond)
(trapO0_cond) — A ctbusy | A rxbusy | mark | data | eop
(trapl_conds) — (trapl_conds) , (trapl_cond) | (trapl_cond)

(trapl_cond) — abort | mark | eop

144

(condition) —
mark |
eop |
data |
abort |
ack |
rxbusy |
ctbusy |
markhold |
eophold |
aborthold |
fo |
f1 |
f2 |
13 |
4 |
15 |
16 |
rsvstat0o0 |
rsvstat01 |
rsvstat02 |
rsvstat03 |
rsvstat04 |
rsvstat05 |
rsvstat06 |
rsvstat07 |
rsvstat08 |
rsvstat09 |
rsvstat10 |
rsvstatll |
random |
timer |
false |
carry |
zero |
true

(jump_instruct) — jmp (polarity) (condition) , (identifier) (link_control)
(ret_instruct) — ret (polarity) (condition)
(link_control) — , link — ¢
(setinstruct) —
set (valid_flags) |

clear (valid_flags) |
flag (mux.select) , (valid_flags)

145

(valid flags) — (valid_flags) , (valid_flag) | (valid_flag)

(valid flag) —
fo |
f1 |
f2 |
3 |
fa |
15 |
16 |
eophold |
markhold |
aborthold |
all

146

APPENDIX D

PRC BIT INTERLEAVED CRC IMPLEMENTATION

The standard CRC-CCITT polynomial

GX) = XM+ XP4+X541

(D.1)

was used to generate the next state equations assuruing sixteen bits are clocked at one time.

This results in the following equations that were used in implementing the CRC generator

and check units. These equations where then feed into the multi-input multi-level logic

minimization program to produce the final units.

Qo(t+1)
Qi(t+1)
Qa(t+1)
Qs(t+1)
Q4(t + 1)
Qs(t+1)
Qs(t + 1)
Q7(t+1)
Qs(t+1)
Qo(t + 1)

Qio(t+1)

>0,

Q1)

2.0,

Q(t)

>

Q1)

>,

Q(t)

>,

Q1)

>,

Q(t)

> (6,

Q1)

>,

Q(t)

>,

Q(t)

>0

Q(t)

>7(0,8,10,16,18,22,24,26)& Y (4,6,8,12,14,20,22, 30)

Q1)

8,16,22,24)® » (6,8, 14,22,30)

D(t)
9,17,23,25)® Y (7,9,15,23,31)
D)
10,18,24,26) @ Y (4,6,12,20,28)
D(1)
11,19,25,27) @ Y (5,7,13,21,29)
D(t)
12,20,26,28)® Y (2,4, 10,18, 26)
D(t)
13,21,27,29) @ » _(3,5,11,19,27)
D(1)
14,22,28,30) @ Y (0,2,8,16,24)
D(t)
15,23,29,31) @ Y (1,3,9,17,25)
D(1)
16,24,30) @ > _(0,6,14,22)
D)

17,25,31) @ » (1,7,15,23)
D()

D(1)

147

Qu(t+1) = 3 (1,9,11,17,19,23,25,27)@ Y (5,7,9,13,15,21,23,31)
Q(t) D()
Qua(t+1) = > (2,10,12,18,20,24,26,28) @ D (2,4,6,10,12,18,20,28)
Q) D(1)
Qus(t+1) = > (3,11,13,19,21,25,27,20)@ > (3,5,7,11,13,19,21,29)
Q(t) D(t)
Quat+1) = > (4,12,14,20,22,26,28,30) @ »_(0,2,4,8, 10,16, 18, 26)
Q1) D(t) '
Qis(t+1) = Y (5,13,15,21,23,27,29,3) @ > _(1,3,5,9,11,17,19,27)
Q) D()
Qus(t+1) =) (6,14,16,22,24,28,30) & > _(0,2,6,8,14,16,24)
Q) D(t)
Qur(t+1) =) (7,15,17,23,25,29,3) @ > (1,3,7,9,15,17,25)
Q1) D(1)
Qus(t+1) = > (8,16,18,24,26,30)® » (0,4,6,12,14,22)
Q(t) D(t)
Quo(t+1) = > (9,17,19,25,27,31)® > (1,5,7,13,15,23)
Q) D(1)
Qu(t+1) = Y (10,18,20,26,28)® Y (2,4,10,12,20)
Q(t) D(t)
Qut+1) = > (11,19,21,27,29)® Y (3,5,11,13,21)
Q) D()
Qu(t+1) = > (12,20,22,28,30)® Y (0,2,8,10,18)
Q) D(t)
Qus(t+1) = 2(13,21,23,29,31)@2(1,3,9,11,19)
Q(t) D(t)
Qua(t+1) = > (0,8,14,16,30)® > _(0,14,16,22,30)
Q1) D()
Qas(t+1) = > (1,9,15,17,3)@ » (1,15,17,23,31)
Q(t) D(t)
Que(t+1) = > (2,10,16,18)@® Y _(12,14,20,28)
Q) D(1)
Qur(t+1) = > (3,11,17,19)@ Y (13,15,21,29)
Q) D(1)
Qas(t+1) = Y (4,12,18,20)@ » (10,12, 18,26)
Q(t) D)
Quo(t+1) = Y (5,13,19,2D)@ »_(11,13,19,27)
Q) D(1)
Qao(t+1) = D (6,14,20,22)® Y _(8,10,16,24)
Q(t) D(1)

Qu(t+1) = > (7,15,21,23)® Y (9,11,17,25)
QM) D(t)

148

APPENDIX E

ANCHORED SHAPES to ANCHORED ROUTES PROOF

Definition 7 A pseudo-shape corresponding to the route ng - - - ny, is the sequence a, - - - a; - - - ay,

of directions such that a; = cwhm(n,_y,n;) for 1 <1 < k.

Note that a shape is a pseudo-shape with constraints on the permissible directions (to form

minimal routes). Define an operator @ between two directions in {do, dy,...ds} as follows.

d[i—}-l]g lf_] = [Z -+ 2]6 and ¢ S {0, .. 5}
di®d; =1 0 if j=1[t+ 3]s and 7 € {0,...5}
diys), if j =[i+4]e and 7 € {0,...5}

The @ operator is undefined between two directions d; and d; such that j =i or j = [i 4+ 1]s
or j = [t + 5]6. Intuitively, traveling first along direction d; and then along d; equivalent to
traveling a single step along direction d; @ d; if d; @ d; is well-defined. For instance, traveling

along dy and then along d, is equivalent to a single step along d;.

Observation 1 A route ng---ny, can be transformed to any other route mg---mys with

k' < k using the following procedure:
1. Transform ng---n; to the pseudo-shape a, - - - ay.

2. Transform the ay ---ay to by ---bps by a finite number of applications of the following

operations:

(a) Replace a component a; with a component a; # a;.

(b) Replace any two components a; and a;, © # j, by a;Da;, where a;Da; is well-defined.

(c) Permute the components of ay------ ay.

3. Transform the pseudo-shape by -- by to the route mq - --myps.

149

Note that operation (2a) does not “preserve the source-destination node pair”. This obser-
vation can be formally stated as follows. Let a; - - -a; be the pseudo-shape associated with
the route ng---ng. Let by by be a pseudo-shape obtained from a; - --a; by a single ap-
plication of (2a). Also let mg - - - my, be the route associated with the pseudo-shape bg - - - by.
Then by “preserving the source-destination pair” we mean b; - - - b;, is such that my = ng im-
plies m;, = n;. With this definition of preserving the source-destination pair we can conclude
that the operations (2b) and (2c) preserve the source-destination node pairs. Operation
(2b) is the only operation that reduces the length of a pseudo-shape and the corresponding

route.
Lemma 6 A route ng---ny is a minimal route iff the associated pseudo-shape is a shape.

Proof: We will first prove that the pseudo-shape of a minimal route is a shape.

Suppose not. Then there exist components ¢; and a; in the pseudo-shape such that
we can apply operation (2b) to reduce the length of the pseudo-shape. The route associ-
ated with this reduced pseudo-shape will be shorter than the assumed minimal route. A
contradiction.

Now consider the reverse direction of the lemma, i.e., the route associated with a shape
is minimal.

Suppose not. Then there exists a minimal route between the same source—destination
pair whose pseudo-shape is shorter than the given shape. Therefore we should be able to
reduce our given shape to the pseudo-shape of the minimal route using operations that
preserve the source—destination pair. But this cannot happen since no operation of type
(2b) can be applied to this shape. Thus our initial assumption the route associated with

our shape is not minimal is false. &

Theorem 4 There is a one-to-one correspondence between anchored shapes and anchored

routes anchored at node 0.

Proof: We first show that Equation (4.2) transforms anchored shapes to anchored routes at
node 0. Consider the anchored shape (s,£). Construct the pair (r,0) using Equation (4.2).

We show that (r,0) satisfies the three necessary properties of an anchored route.
1. Since s has a length of at least 2, the corresponding route r has a length at least 3.

2. Follows from Lemma 6 that r is a minimal route.

150

3. Follows directly from the construction that node 0 is contained in the route r.

We now show that Equation (4.1) transforms anchored routes at node 0 to anchored
shapes. Consider the anchored route (r,0) anchored at 0. Construct the pair (a; - - -ay, £)
using Equation (4.1). By Lemma 6, @, - - -a; will be a shape since the route r is minimal by
definition. £ is bounded by construction between 1 and k — 1 as required by the definition

of an anchored shape. =

151

APPENDIX F

PP-MESS-SIM INPUT SPECIFICATION LANGUAGE

This appendix lists a pseudo BNI" grammar for the language used to specific the simula-
tion paramters for a pp-mess-sim run. This BNT' grammar was constructed from the parser
grammar and lexical analyzer specification files. All non-terminals are bracketed by (/) and

alternatives are separated by |. The lexical analyzer is configured to be case insensative.
(specification) — (spec_lists)
(speclists) — (spec.lists) (spec) | (spec)

spec —
topology begin (topo.list) end |
node (ident) begin (node list) end |
node (int) begin (node.list) end |
task (ident) begin (tasklist) end |
general begin (gen.list) end

(topo.list) — (topolist) (topo.line) | (topoline)
(nodelist) — (node.list) (node.line) | (node.line)
(taskdist) — (.task_list) (task line) | (task.line)
(gen_list) — (gendist) (genine) | (gen_line)
(gen_line) —

output (pathname) ; |

random seed (int) ; |

random size (int) ; |

option (switch) true; |

option (switch) false ;

(switch) —
flex | bison |

"

152

tasks | nodes | prime |

toplevel | messgen | messrecv |

npbus | ctbus | rxbus | txbus | pcbus |

rx | tfu | ni | imu |

npinterface | pcinterface | taxitx | taxirx |

cut | header | drop | trace | arbitrate |

spec | topology | memstats | resources | postnode

(param_list) — (param.list) (param) | (param)
(param) — (int) | (double) | €

(taskdine) —
arrival (a_process) ; |
length (I_process) ;|
target (t_process) ;|
routing (r.algorithm) ; |
history (h_select) ; |
cutoff (int) ; |
messages (int) ; |
drop (int) ;|
max (int) ; |
min (int) ;|
rngcycle (int) ;|
renew (int) ;

(a_process) —
binomial (i_d_parms) |
erlang (d_d_parms) |
geometric (d_parms) |
hyperGeometric (d._d_parms) |
negativeexpntl (d_parms) |
normal (d_d_parms) |
lognormal (d_d_parms) |
poisson (d_parms) |
discreteuniform (i_i_parms) |
uniform (d_d_parms) |
weibull (d_d_parms) |
lengthdiscrete (ld_parms)

(I_process) —
negativeexpntl (d_parms) |
lengthdiscrete (ld_parms)

(t_process) —
nodeuniform ()|
hopuniform ((dlist)) (d_parms)

153

i-d_parms) — ((int) , (double))
-d_parms) — ((double) , (double))
-parms) — ((double))

id-parms) — ((int) , (int))

di_list) — (dilist) , (di_single) | (di-single)
di_single) — (double) , (int)
dlist) — (dlist) , (double) | (double)

(i

(d

(d

(i

(1d_parms) — ((dilist))

(

(

(

(h_select) — none | latency | correlation
(nodeline) —

tasks (int) ; |

select task (ident) (int) ; |
select node (ident) ;

(topoine) —
select cwhm ; |
select sqmesh ; |
select hypercube ; |
select karycube ;|
size (int) ; |
dimension (int) ;

int) — (decint) | (octint) | (hexint)

(
(decint) — (nzdigit) | (decint) (digit)

(octint) — 0 (octdigit) — (octint) (octdigit)
(hexint) — Ox (hexdigit) — (hexint) (hexdigit)
(octdigit) — 0]|1]2|3]4|5|6]|7
(
{
{

digit) — (octdigit) | 8 | 9
hexdigit) — (digit) |a|blc|d]|e|f

alpha) —
alblcldlelflg]
h|ilj|k[ljm|n]
o|p|qlr|s|t|u|
viw|x|y|z

(identifier) —
(alpha) |
(identifier) (alpha) |
(identifier) (digit)

[1]

[10]

(11]

BIBLIOGRAPHY

Am79168/Am79169-275 TAXI-275 Transmitter/Receiver Transparent Asynchronous
Transmitter/Receiver Interface, Advanced Micro Devices, 15765-b-0 edition.

Am79168/Am79169 TAXI™-275 Technical Manual, Advanced Micro Devices, ban-
0.1m-1/93/0 17490a edition.

G. Albertengo and R. Sisto, “Parallel crc generation,” IEEE Micro, pp. 63-71, October
1990.

T. Anderson, H. Levy, B. Bershad, and . Lazowska, “The interaction of architec-
ture and operating system design,” in Proc. Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems, pp. 108-120, April 1991.

H. Carr, J. Evans, R. Kessler, L. Stoller, and M. Swanson, “Mayfly system software,”
Technical Report HPL-SAL-89-25, Hewlett Packard Company, April 1989. Available
in RTCL library.

M.-S. Chen, K. G. Shin, and D. D. Kandlur, “Addressing, routing and broadcasting in
hexagonal mesh multiprocessors,” IEEE Trans. Computers, vol. 39, no. 1, pp. 10-18,
January 1990.

D. D. Clark and D. L. Tenncahouse, “Architectural considerations for a new generation
of communication protocols,” in Proc. of ACM SIGCOMM, pp. 200-208, September
1990.

E. C. Cooper, P. A. Steenkiste, R. D. Ransom, and B. D. Zill, “Protocol implementation
on the Nectar communication processor,” in Proceedings of the SIGCOMM Symposium,
pp. 135-144. ACM, September 1990.

W. J. Dally and C. L. Seitz, “The torus routing chip,” Journal of Distributed Comput-
ing, vol. 1, no. 3, pp. 187-196, 1986.

W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multiprocessor inter-
connection networks,” IFELE Trans. Computers, vol. C-36, no. 5, pp. 547-553, May
1987.

W. Dally, VLSI and PARALLEL COMPUTATION, chapter Network and Processor
Architecture for Message-Driven Computers, pp. 140-222, Morgan Kaufmann Publish-
ers, Inc., 1990.

154

[12]

[13]

[14]

[15]

[16]

[17]

[18]

1585

W. Dally, A. Chien, S. Fiske, W. Horwat, J. Keen, P. Nuth, J. Larivee, and B. Totty,
“Message-driven processor architecture version 11,” MIT Concurrent VLSI Architec-
ture Memo 14, MIT, August 1988.

S. W. Daniel, “Improving distributed system communications through hardware sup-
port,” Prelim, 1992.

S. W. Daniel and J. W. Dolter, “Lrror-burst detection with bit-interleaved crcs,” In
preparation, 1993.

S. W. Daniel, “A packet control for HARTS: An experiemental distributed real-time
system,” Real-Time Computing Laboratory Techinal Report RTCL-TR-1-91, Real-
Time Computing Laboratory, 1301 Beal! Ave, Ann Arbor, MI 48109-2122, 1991.

B. Davie, “The architecture and implementation of a high-speed host interface,” IEEE
Journal on Selected Areas in Communications, vol. 11, no. 2, pp. 228-239, February
1993.

A. Davis, R. Hodgson, B. Schediwy, and K. Stevens, “Mayfly system hardware,” Tech-
nical Report HPL-SAL-89-23, Hewlett-Packard Company, April 1989.

A. L. Davis, “Maylly: A general-purpose, scalable, parallel processing architecture,”
Lisp and Symbolic Computation, vol. 5, no. 1/2, pp. 7-47, May 1992.

A. Davis and S. Rovison, “The architecture of the faim-1: Symbolic multiprocessing
system,” in Proc. Int’l Joint Conf. on Artificial Intelligence, pp. 32-38, Los Angeles,
August 1985.

J. W. Dolter, P. Ramanathan, and K. G. Shin, “A microprogrammable VLSI routing
controller for HARTS,” Technical Report CSE-TR-12-89, Dept. of Electrical Engineer-
ing and Computer Science, University of Michigan, Ann Arbor, 1989.

J. W. Dolter, P. Ramanathan, and K. G. Shin, “A microprogrammable VLSI routing
controller for HARTS,” in International Conference on Computer Design: VLSI in
Computers, pp. 160-163, October 1989.

J. Goldberg, M. W. Green, W. H. Kautz, K. N. Levitt, P. M. Melliar-Smith, R. L.
Schwartz, and C. B. Weinstock, “Development and analysis of the software imple-
mented fault-tolerance (sift) computer,” Contractor Report 172146, NASA Langley
Research Center, February 1984.

J. M. Gordon, Efficient Schemes for Massively Fault-Tolerant Parallel Communication,
PhD thesis, The Unversity of Michigan, 1990.

Z. Haas, “A communication architecture for high-speed networking,” in IEEE IN-
FOCOM, pp. 433-441, June 1990.

D. D. Kandlur and K. G. Shin, “Reliable broadcast algorithms for HARTS,” ACM
Trans. Computer Systems, vol. 9, no. 4, pp. 374-398, November 1991.

P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer communication
switching technique,” Computer Networks, vol. 3, no. 4, pp. 267-286, September 1979.

(27]
[28]

[29]

[30]

[31]
[32]

[35]

[36]

[40]

[41]

[42]

156

L. Kleinrock, Queueing systems, volume I: Theory, John Wiley & Sons, 1975.

A. Kovaleski, S. Ratheal, and F. Lombardi, “An architecture and interconnection
scheme for time-sliced buses in real-time processing,” Proc. Real-Time Systems Sym-
posium, pp. 2027, 1986.

A. Krishnakumar and K. Sabnani, “VLSI implementations of communication protocols
~ a survey,” IEFLE Journal on Selected Areas in Communications, vol. 7, no. 7, pp.
1082-1090, September 1989.

. Kung, R. Sansom, S. Schlick, P. Steenkiste, M. Arnould, F. J. Bitz, . Christianson,
E. C. Cooper, O. Menzilcioglu, D. Ombres, and B. Zill, “Network-based multicom-
puters: An emerging parallel architecture,” in Supercomputing 91, pp. 664-673. IEEE,
ACM, New York, NY, USA, November 1991.

R. Lee, “Cyclic code redundancy,” Digital Design, vol. 11, no. 7, pp. 77-85, July 1981.

S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The Design and
Implementation of the 4.3BSD Unixz Operating System, Computer Science, Addison
Wesley, May 1989. ISBN 0-201-06196-1.

O. Menzilcioglu and S. Schlick, “Nectar CAB: A high-speed network processor,” in
Proc. Int’l Conf. on Distributed Computing Systems, pp. 508-515, May 1991.

R. Metcalfe, “Computer/network interface design: Lessons from Arpanet and Ether-
net,” IFIE Journal on Selected Areas in Communications, vol. 11, no. 2, pp. 173-180,
February 1993.

E. Miller, “High-speed cyclic redundancy check generation and verification,” IBM Tech-
nical Disclosure Bulletin, vol. 21, no. 8, pp. 3065-3066, January 1979.

M. Noakes, D. Wallach, and W. Dally, “The J-machine multicomputer: An architec-
tural evaluation,” in Proc. Int’l Symposium on Computer Architecture, pp. 224-235,
1993.

A. Pandeya and T. Cass, “Parallel crc lets many lines use one circuit,” Computer
Design, vol. 14, no. 9, pp. 87-91, September 1975.

P. Ramanathan, D. D. Kandlur, and K. G. Shin, “Hardware assisted software clock
synchronization for homogeneous distributed systems,” IFEE Trans. Computers, vol.
C-39, no. 4, pp. 514-524, April 1990.

D. A. Reed and R. M. Fujimoto, Multicomputer Networks: Message-Based Parallel
Processing, M. 1. T. Press, Cambridge, Massachusetts, 1987.

D. A. Reed and D. C. Grunwald, “The performance of multicomputer interconnection
networks,” IEEE Computer, vol. 20, no. 6, pp. 63-73, June 1987.

J. Rexford and K. G. Shin, “Shortest-path routing in homogeneous point-to-point
netowrks with virtual cut-through switching,” Computer Science and Engineering
Techinal Report CSE-TR-146-92, University of Michigan, November 1992.

C. L. Seitz, VLSI and PARALLEL COMPUTATION, chapter Concurrent Architec-
tures, pp. 1-84, Morgan Kaufmann Publishers, Inc., 1990.

157

[43] T. B. Smith, “Fault tolerant processor concepts and operation,” Contractor Report
CSPL-P-1727, Charles Stark Draper Laboratory, May 1983.

[44] T. B. Smith and J. H. Lala, “Development and evaluation of a fault-tolerant multi-
processor (FTMP) computer volume I FTMP principles of operation,” Contractor
Report 166071, NASA Langley Research Center, May 1985.

[45] E. Spertus, S. Goldstein, K. Schauser, T. von Eicken, D. Culler, and W. Dally, “Evalu-
ation of mechanisms for fine-grained parallel programs in the J-machine and the CM-5,”
in Proc. Int’l Symposium on Computer Architecture, pp. 302-313, 1993.

[46] J. D. Spragins, J. H. Hammond, and K. Pawlikowski, Telecommunications Protocols
and Design, Addison-Wesley Publishing Company, 1991.

[47] W. Stallings, Data and Computer Communications, Macmillan Publishing Company,
New York, second edition, 1988.

[48] P. Steenkiste, “Analyzing communication latency using the nectar communication pro-
cessor,” in Proc. of ACM SIGCOMM, pp. 199-209. ACM, ACM, New York, NY, USA,
August 1992.

[49] K. S. Stevens, “The communication {framework for a distributed ensemble architecture,”
AT Technical Report 47, Schlumberger Research Laboratory, IFebruary 1986.

[50] K. S. Stevens, S. V. Robison, and A. L. Davis, “The Post Office — Communication
support for distributed ensemble architectures,” in Proc. Int’l Conf. on Distributed
Computing Systems, pp. 160-166, 1986.

[51] L. Svobodova, “Implementing osi systems,” IEEL Journal on Selected Areas in Com-
munications, vol. 7, no. 7, pp. 1115-1129, September 1989.

[62] C. A. Thekkath and H. M. Levy, “Limits to low-latency communication on high-speed
networks,” ACM Trans. Computer Systems, vol. 11, no. 2, pp. 179-203, May 1993.

