
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA

313/761-4700 800/521-0600

Order N um ber 9513392

Design and evaluation of real-time fault-tolerant control systems

Kim, Hagbae, Ph.D.

The University of Michigan, 1994

U M I
300 N. Zeeb Rd.
Ann Aitoor, MI 48106

DESIGN AND EVALUATION OF REAL-TIME
FAULT-TOLERANT CONTROL SYSTEMS

by

Hagbae Kim

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
1994

Doctoral Committee:
Professor Kang G. Shin, Chair
Professor Semyon M. Meerkov
Professor Yoram Koren
Assistant Professor Farnam Jahanian

© Hagbae Kim 1994
All Rights Reserved

To My Late Grandmother, My Parents, and Hyunjung

ACKNO WLED GEMENTS

I am most grateful to my advisor, Professor Kang G. Shin, for his guidance and constant

encouragement throughout my graduate school years, which made my Ph.D. process so

much enjoyable and will go on leading me in the future. He introduced the field of real-time

fault-tolerant control systems to me four years ago, and has always been eager to discuss

the dissertation topics with invaluable technical and professional advice.

Many thanks also go to my committee members for their important comments and

suggestions. In particular, Professor Meerkov helped me successfully finish my first directed

study.

This dissertation work has been supported in part by the NASA under Grant NAG-1-

1120 and by the Office of Naval Research under Grant N00014-91-J-1115. I would also like

to note tha t the work in the fault-tolerant latency of Chapter 4 and in the reconfiguration

latency of Chapter 5 has benefited from the quantitative data provided by Chuck Roark

and his colleagues of the TI Microelectronic Center, Plano, Texas.

I thank all fellow students of the Real-Time Computing Laboratory and especially my

officemates for their friendship and insightful discussions. I also want to thank many Korean

colleagues on the campus by whom my life in Ann Arbor could be decorated with many

unforgettable memories.

Although they are in the distance across the Pacific, my parents, brother, and sisters

have bestowed a constant love and encouragement on me. This thesis could not have been

finished without their support. Last but not least, I would like to express my gratitude and

love to my wife, Hyunjung.

TABLE OF CONTENTS

D E D IC A T IO N .. ii

A C K N O W L E D G E M E N T S .. iii

L IS T O F TA B LES .. v

L IST O F F IG U R E S ... vi

L IS T O F A P P E N D I C E S ... vii

C H A P T E R S

1 INTRODUCTION.. 1
1.1 ' M otivation .. 1
1.2 Research O bjectives.. 2
1.3 Outline of the D issertation ... 4

2 PRELIM INARIES... 7
2.1 Real-Time Control Systems .. 7
2.2 B ack g ro u n d ... 9

3 DERIVATION AND USE OF CONTROL SYSTEM DEADLINES 13
3.1 In tro d u ctio n ... 13
3.2 Generic Problem of Controller-Computer F a ilu re s 14
3.3 CSD of Stationary Model Due to Feedback D elays............................ 17
3.4 CSD in the Presence of Delays/D isturbances...................................... 21
3.5 One-Shot Event M o d e l.. 24
3.6 CSD for Time-Invariant Nonlinear System s... 27

3.6.1 CSD of the Stationary M o d e l ... 28
3 .6 . 2 CSD of the One-Shot Delay M o d e l .. 30

3.7 Examples .. 31
3.8 Application of C S D .. 43
3.9 Conclusion.. 48

4 EVALUATION AND USE OF FAULT-TOLERANCE LATENCIES 49
4.1 In tro d u ctio n ... 49
4.2 Generic Fault-Tolerance F e a tu re s ... 50
4.3 Evaulation of F T L .. 52

iv

4.3.1 FTLs of a Pooled-Spares S y s te m .. 52
4.3.2 The FTL of General Fault-Tolerance M echanism s................ 53

4.4 Application of F T L ... 61
4.5 Conclusion... 64

5 EVALUATION OF RECONFIGURATION LA TEN CIES............................. 67
5.1 In troduction .. 67
5.2 P re lim in a ry .. 6 8

5.3 Evaluation of Reconfiguration L a te n c y .. 69
5.3.1 Reconfigurable Duplication .. 69
5.3.2 Reconfigurable N M R ... 70
5.3.3 Backup S p a rin g .. 71
5.3.4 Graceful D egradation... 74

5.4 E x a m p le .. 75
5.5 Conclusion... 79

6 AN OPTIMAL INSTRUCTION-RETRY POLICY FOR TMR CONTROLLER
CO M PU TER S... 80

6.1 In troduction 80
6.2 Notation, Assumptions, and M odels.. 82
6.3 Optimal Retry P o licy .. 85

6.3.1 Reconfiguration without Retry (7re = 7r, = 0) 8 8

6.3.2 Retry for Masked Errors (Jr<j = 1, 7r, = 0) 89
6.3.3 Retry for TMR Failures (7r<! = 0, 7r, = 1) 90
6.3.4 Retry for Both Cases (7re = 1, 7r, = 1) 92
6.3.5 Optimal Retry Period and Minimum Number of Spares . . . 92

6.4 Numerical E x a m p le s .. 93
6.5 Conclusion... 96

7 A TIME REDUNDANCY APPROACH TO TMR FAILURES USING FAULT-
STATE LIKELIHOODS .. 98

7.1 In troduction .. 98
7.2 Detection and Recovery of a TMR F a i lu r e .. 99
7.3 Optimal Recovery from a TMR Failure Using R S H W 102

7.3.1 The Optimal Voting In terval... 102
7.3.2 Pre-determination of Non-adaptive R S H W s 103
7.3.3 Adaptive R S H W 104

7.4 Numerical Results and D iscussion.. 114
7.5 Conclusion... 120

8 TASK SEQUENCING TO MINIMIZE THE EFFECTS OF NEAR-COINCIDENT
FAULTS IN TMR CONTROLLER COMPUTERS 121

8.1 In troduction .. 121
8.2 Basic Model and Assumptions ... 123

8.2.1 Fault M o d e l.. 123
8.2.2 Task M o d e l .. 123

8.3 Task Sequencing P o lic ies ... 124
8.3.1 Comparison of Conventional and Random Task Sequencing 125

v

8.3.2 The Optimal Task Sequencing.. 128
8.3.3 The General Model for Different-Size and Dependent Tasks 133

8.4 Numerical E x a m p le s .. 136
8.5 Conclusion... 142

9 CONCLUSIONS AND FUTURE D IRECTIO NS... 143
9.1 Research C ontributions... 143
9.2 Future D irec tio n s ... 144

9.2.1 Extension of Each C hap ter.. 144
9.2.2 Reliability Model Based on CSD .. 145
9.2.3 Experimental Methodology for Measuring the Effects of EMI 146

APPENDICES.. 148

BIBLIOGRAPHY.. 151

vi

LIST OF TABLES

T able
3.1 Relation between the pole position and N when P = gjv = 1.......................... 32
3.2 Relation between the pole position and the probability distribution of delays

when N = 3... 32
3.3 Maximum magnitude of eigenvalues.. 33
3.4 Maximum magnitude of eigenvalues, | Amax|... 39
3.5 Control system deadlines around some operating points (« 0 = 0).................... 42
5.1 td for various task sizes (sy) [KBytes].. 75
5.2 td for various CPU speeds (s^) [M IPS] ... 76
5.3 td for various Bus speeds (sB) [Kbytes/millisecond]... 76
6.1 Optimal retry periods ropt = {r,-,/•<} when X = 1 : (i) K = 5000 instruc­

tions/task, (ii) m = 10000 tasks/mission 97
6.2 Numerical examples of iVm,n vs. m .. 97
7.1 n vs. X for (p ,T „Tv) - (0.9,0.1 Jf, 0 .0 0 1) ... 103
7.2 km vs. X for (P, F, R) = (0 .8 ,0 .1 ,0 .8) ... 105
7.3 Parameter values used in simulations, all measured in hours........................... 115
8.1 Examples E (N j Ys when A,- = le —4, A,- = le —5, /xc = 1/3, and /i; = 1/3, i.e.,

independent faults are likely to occur.. 127
8.2 {®i, 0-2) bij 6 2 } 132

vii

LIST OF FIGURES

F ig u re
3.1 A computer-controlled system.. 14
3.2 Time index for argumented vectors representing the stationary occurrence of

computer failures (delays) when N = 3... 19
3.3 Time index for the one-shot event/delay model.. 25
3.4 State trajectory in the absence of delay, and the state trajectories in the pres­

ence of one-shot delay equal to the CSD with and without terminal constraints. 34
3.5 Control system deadlines of the state trajectory 3 of Fig. 3.4 in the absence

of delay, (1) without terminal constraints and (2) with terminal constraints. 35
3.6 (a) Control system deadlines (DTS) of the region {5 < ®i < 15, —5 < x 2 < —1

}(A" = Xi, Y = x 2, Z = N), where the top and the bottom values of Z-axis
are 24T, and 8 Ts, respectively; (b) {5 < ®i < 15, 0 < x 2 < 2 }, where the
top and bottom values of Z-axis are 10T, and T ,... 36

3.7 State trajectories for a point robot with four obstacles, 1) in the absence of
delay and 2,3) in the presence of delay equal to D T ,... 38

3.8 Control system deadlines of state trajectory 1 of Fig. 3.7 in the absence of
delay without terminal constraints... 3 9

3.9 Probability mass functions of Au, which is given a priori, and D, which is
derived... 40

3.10 Control system deadlines of one-shot event model in the absence/presence of
input disturbances.. 41

3.11 P m f of the CSD of one-shot event model when p&u = 10 and aa u = 10. . . 41
3.12 State trajectories of the brachistochrone problem.. 44
3.13 The CSD along the optimal path as a function of time..................................... 44'
3.14 The source and application of hard-deadline information in a real-time control

system.. 45
3.15 A Markov reliability model with knowledge of the system inertia...................... 48
4.1 Tradeoff between temporal and spatial redundancy for various fault-tolerance

mechanisms.. 51
4.2 All possible failure-handling scenarios.. 54
4.3 Probability distribution functions (PDF) of FTL with cold spares.................... 63
4.4 PDFs of the FTLs with policy parameters different from those of Fig. 4.3:

pd = 0.97, N c = 5, and t rp = 2.. 64
4.5 PDFs of the FTL under fault environments different from those of Fig. 4.3:

pt = 0.95 and E (ta) (the mean active duration)= 0.25.. 65

4.6 PDFs of the FTLs with a reconfiguration strategy different from that of
Fig. 4.3: warm spares... 65

5.1 Structure of reconfigurable duplication... 69
5.2 Reconfiguration steps of backup s p a r in g ... 71
5.3 Reconfiguration latency vs. CPU speed for three types of spares: sb = 2.105

[Kbytes/milliseconds]... 77
5.4 Reconfiguration latency vs. bus/interconnection speed for three types of

spares: sc = 2 . 2 [M IP S] .. 78
6.1 Time index of a mission lifetime: X m = X i .. 83
6.2 A system state diagram. In case of a masked error (eO): e l = recovery

by retry, e2 = recovery by immediate reconfiguration (Ire = 0) or after
unsuccessful retry (Jr<[= 1), e3 = a TMR failure due to occurrence of another
faulty module during retry, e4 = spares exhaustion during reconfiguration or
missing the CSD. In case of a TMR failure (fO): t l = restoration to a fault-
free state by retry, 12 = recovery by reconfiguration, t2> = restoration to one
masked-error state by retry, <4 = the same as e4... 8 6

6.3 A modified Markov-chain model based on the number of spares upon occur­
rence of masked errors or TMR failures: p0 = l —pE.—Pr.—Pmh, Pe, (Pt.) =
probability of reconfiguration due to a masked error (TMR failure), pmh =
probability of dynamic failure due to missing the CSD...................................... 87

6.4 Probabilities of dynamic failure (Pfyn’s) of several retry policies (Jr<s : I Tt):
ce = c< = 1.. 94

6.5 Prfyn’s of several retry policies (7re : I rt): ce = ct = 0.9.. 95
6 . 6 Prfyn’8 of several retry policies (I Tc : Jr,): ce = c< = 0.7.. 96
7.1 The structure of a TMR system with two voters and a comparator................ 101
7.2 Graphical explanation for Vi and to,- for 1 < i < n .. 103
7.3 A simplified Markov-chain model for a TMR system... 107
7.4 Algorithm to recover from a TMR failure by estimating the system state and

comparing the costs of RSHW and RHWR... 113
7.5 Probability/Frequency of a TMR failure obtained from the Markov-chain

model (P:S0=from S0 and P:S4=from 6 4)/from simulations (F:S0=from So
and F:S4=from 54)... 114

7.6 Mean TMR failure time (E[T°]) obtained from analysis (P:S0=from S0 and
P:S4=from S 4) , and from simulations (F:S0=from S0 and F:S4=from S4). . 115

7.7 OVR(A) [%] vs. X for RSHW and RHWR, with the optimal number of
votings for Tv = 0.0005 hour: (13,34,61,87,110,133,164,181,198,216)............... 116

7.8 OVR(X) [%] vs. X for one voting and multi-votings with the optimal number
of votings.. 117

7.9 Ratio [%] of the number of reconfigurations to the total number of simulation
runs.. 118

7.10 OVR(X) [%] vs. Tc for RSHW and RHWR.. 119
7.11 OVR(X) [%] for different occurrence rates of non-permanent and permanent

faults.. 119
8.1 Wrapping tasks around in M 3 with N = 20 and d = 3, i.e., t 5 +2 x3 mod(io) = h- 128
8.2 An example number of TMR failures (£) when u < c + j 131

8.3 Sequencing tk such tha t 2d+J2i=i ni < N but 2d+£)f_1 n,- > N in M3 by-
shifting the whole execution time in M3 to the right (i.e., the end of a task)
by (2 d + £ i= i 7i i - N) TIs... 134

8.4 The Pm f of the number, Nf , of TMR failures due to (a) both common-
cause and independent faults with P (N } — 0) = 0.99988, (b) only common-
cause faults with P(Nj = 0) = 0.9999, and (c) only independent faults with
P{Nj = 0) = 0.99998... 137

8.5 Mean number of TMR failures while varying the number N of tasks for
several sequencing methods with dopt = {8,10,11,13,15,16,18,20,21}. . . . 138

8.6 Mean number of TMR failures (E (N j)) while varying task distance, d, under
two different conditions of common-cause faults, when N = 30 (basic model):
(a)Ac = 10-6 (E (N j) = 8.76e-4 for the random sequencing) and (b)Ac = 10-5
(E(Nj) = 1.089e—4 the random sequencing). .. 139

8.7 Mean number of TMR failures (E (nd)) while varying task distance d un­
der two different conditions of common-cause faults for a general task set
{(1,4,1), (3), (3,1), (4,2), (5), (3,5)} (m = 11 and N = 33), where tasks
within a pair of parentheses are dependent on each other: (a) Ac = 10-6
(E(nd) = 8 .4 6 e -5 for the random sequencing), (b) Ac = 10-5 (E(nd) =
6.35e—4 for the random sequencing)........... ... 140

8 . 8 Mean number of TMR failures (E(nd)) while varying task distance, d, un­
der two different conditions of common-cause faults, and two sets of tasks
(different size model): (a) = {1 ,2 ,4 ,3 ,2 ,4 ,1 ,1 ,3 ,2 ,4 ,3} (m = 1 2 and
N = 30) and Ac = IQ- 6 (E{nd) = 9.09e—5 for the random sequencing), (b)
task set T\ and Ac = 10- 5 (E (n d) = 7.12e—4 for the random sequencing), (c)
r 2 = { 3 ,5 ,7 ,5 ,4 ,6 } (to = 6 and N = 30) and Ac = 1 0 ~ 6 (E(nd) = 7.65e-5 for
the random sequencing), and (d) task set T2 and Ac = 10-5 (E (n d) — 5.83e—4).141

x

LIST OF APPENDICES

APPENDIX
A List of Symbols in Chapter 7 ... 148
B List of Symbols in Chapter 8 ... 150

xi

CHAPTER 1

INTRODUCTION

1.1 Motivation

The use of digital computers for such applications as aircraft, automated factories and

nuclear reactors, has become commonplace due to the availability of inexpensive, powerful

computers and the increasing need to control more sophisticated processes.

A traditional control system consists of simple components, such as an electrical, me­

chanical, or hydraulic hard-wired controller, in the feedback loop of the controlled process.

These controllers have the virtue of simplicity in designing and implementing them, and

evaluating their performances. By contrast, recent and future developments — which are

likely to be intrinsically unstable to achieve other purposes — such as a highly fuel-efficient

“fly-by-wire” aircraft demand the controllers to react fast enough, for example, to main­

tain stability. Digital computers are thus playing a more im portant role in maintaining

safety-critical functions while improving control system performance significantly.

Computers for controlling life-threatening processes must be highly reliable to avoid

any catastrophe. For example, the computer used in commercial aircraft requires a failure

probability lower than 10- 1 0 per hour. To reduce the probability of failure, early systems

focused on fault-avoidance through rigorous quality control, where component-failure rates

were reduced by careful design and manufacturing. But this method alone cannot always

meet system design goals because of economic and technical problems. To guarantee the

safe operation of these processes in the presence of computer-component failure(s), some

form of fault-tolerance should be provided with the controller computer by using two kinds

of redundancy: space and time. Fault-tolerant controller computers are far more complex

and difficult to design and validate by resolving such issues as control-task scheduling and

allocation, optimal queue control, and optimal redundancy management than non-fault-

1

2

tolerant counterparts due to the stringent reliability required.

In a real-time control system, the environment (or controlled process) in which a con­

troller computer operates is an active component of the system, and a system failure may

occur not only because of the slow execution of critical tasks but also because of massive

hardware or software component failures. The design and evaluation of a fault-tolerant

controller computer in a highly-reliable real-time system is even more complicated due to

(i) its interaction with the controlled process (the operating environment) and the difficulty

in expressing the needs of the controlled process and (ii) the difficulty in predicting the

execution time of control tasks tha t subsumes the time required to recover from an error

in case of component failure(s). One has to determine the strict timing requirements of the

controlled process, and specify and evaluate the controller-computer’s performance in the

context of the controlled process.

Thus, derivation of the timing information from a controlled process is essential to the

design of a fault-tolerant controller computer. The type and degree of redundancy should

be determined to minimize a certain cost based on this information. In other words, the

need of reliable and safe operation of the controlled process synergistically interacting with

the controller computer must be formally specified in a form that is understandable to the

controller computer. This specification captures the interplay between a controlled process

and its controller computer.

1.2 Research Objectives

In order to formally specify the timing information about a controlled process, we must

analyze the controlled process. Specifically, we will derive the hard deadline of a real-time

system, which represents system inertia/resilience against a dynamic failure. The deadline

will henceforth be called the Control System Deadline (CSD). The computation time delay

or erroneous input disturbance due to controller-computer failures or environmental disrup­

tion such as an ElectroMagnetic Interference (EMI) may lead to a dynamic failure by either

violating the necessary conditions for system stability or causing the system to leave the

region of the state space defined by the system specification (i.e., the allowed state space),

if the active duration of this abnormality exceeds the CSD. The control system deadline of

a critical-control task was usually assumed to be given a priori. This presupposed the exis­

tence of a precise definition of the hard deadline and a method to derive it, which, however,

3

have not been addressed in detail. We thus propose a heuristic algorithm to iteratively

compute the CSD as a function of the system state and time by examining system stability

or testing the given (or derived) constraints of control inputs and states.

To provide information meaningful to the design and evaluation of fault-tolerance strate­

gies in a controller computer, we evaluate the Fault-Tolerance Latency (FTL), defined as the

cumulative time taken by all sequential steps to recover from an error or failure, while con­

sidering various fault-tolerance mechanisms. To meet timing constraints or avoid a dynamic

failure, the latency of any fault-handling policy — which consists of several stages such as

error detection, fault location and recovery — must not be larger than the Application Re­

quired Latency (ARL), which depends upon the controlled process under consideration and

its operating environment. Note that one can derive the ARL using the hard-deadline infor­

mation, because the CSD is equal to the sum of ARL and the minimum time to executethe

remaining control task to generate a correct control input.

We also pay special attention to the reconfiguration latency, defined as the time taken

for the whole reconfiguration process, because reconfiguration is generally the most time-

consuming stage of a fault- or error-handling process and thus makes the greatest impact

upon the FTL.

Using the timing information derived from a real-time control system, we develop a cost-

effective design strategy for a fault-tolerant controller computer by trading off between space

and time redundancy. Among many fault-tolerance schemes, we have optimized the design

of a Triple Modular Redundant (TMR) controller computer by applying time redundancy

based on the information of the control system deadline, because the TMR structure has

been one of the most popular and practical fault-tolerance schemes using spatial redundancy.

Since more than 90% of faults are known to be transient [6 6] (especially external faults,

because disruptive environmental conditions are temporary and may cause functional error

modes without actual component damage [5, 29]) and system reconfiguration is expensive

both in time and hardware [31], retry or re-execution on the same hardware without any

reconfiguration is effective in recovering from a TMR failure1 or a masked error.

First, we propose an “optimal” instruction-retry policy minimizing the probability of

control-system failure that may occur due to either multiple consecutive TMR failures whose

inter-arrival times exceed the CSD or the exhaustion of spares as a result of frequent system

reconfigurations, upon detection of a masked (by the TMR) error as well as a TM R failure

in a controller computer.

1 Failure to establish a majority among the processing modules in TM R system.

4

Secondly, we propose an adaptive recovery method for TMR failures by “optimally”

choosing either Re-execution of the task on the Same HardWare (RSHW) or Replace the

faulty HardWare, reload, and Restart (RHWR) based on an estimated cost. The cost,

the mean execution time of a given task, is computed by fault-state likelihoods, which are

updated with the voting results using the Bayes theorem.

The TMR structure in masking the effects of a single faulty module is effective only

under the assumption tha t multiple faults are unlikely to occur (near) simultaneously in

different modules. Note tha t real-time control systems often perform safety-critical mis­

sions under harsh environments with EMI such as lightning, HIRF (high intensity radio

frequency fields), or NEMP (nuclear electromagnetic pulses), and the controller computers

using spatial redundancy usually share the same clock and power sources (and also the

same operating environment). In this case, the effects of near-coincident faults tha t will

disable the TMR’s masking capability can no longer be ignored [32]. We therefore propose

a method to eliminate or alleviate the effects of (near) coincident faults by sequencing tasks

on different modules so as to maximize the number of tasks that do not suffer from TMR

failures.

In summary, the objectives of this dissertation are to:

• Derive the control system deadlines of controlled processes,

• Evaluate the fault-tolerance latency of controller computers and the reconfiguration

latency,

• Design an optimal instruction-retry policy for TMR controller computers,

• Propose an adaptive recovery method using task re-execution in TMR controller com­

puters, and

• Develop an optimal task-sequencing strategy in TMR controller computers.

1.3 Outline of the Dissertation

The dissertation is organized as follows. In Chapter 2, we describe basic concepts and

terminology in the analysis and design of real-time fault-tolerant control systems. We also

provide background information both on the derivation of the CSD and the FTL and on

the optimal design of fault-tolerant computers.

Chapter 3 presents a method for deriving the CSD from the dynamic characteristics of

the controlled process, their fault behaviors, and the properties of the control algorithms

5

employed. In this chapter, we compute the CSD by iteratively examining the necessary

conditions for (asymptotic) system stability or the residence of system states in the allowed

state space with the equations of dynamics modified to account for the effects of controller-

computer failures. We also demonstrate the application of the CSD information with a

design example that optimizes time-redundancy recovery methods such as retry or rollback

and an evaluation example that assesses the system reliability.

In Chapter 4, we evaluate the FTL while considering various fault-tolerance mechanisms

and use the evaluated FTL to check if a fault-handling policy can meet the timing constraint,

FTL < ARL, for a given real-time application. We investigate all possible fault-handling

scenarios and express FTL with several random and deterministic variables tha t model the

fault behaviors and/or the capability and performance of fault-handling mechanisms. We

also present a simple example to demonstrate the application of the evaluated FTL in real­

time systems, where an appropriate fault-handling policy is selected to meet the timing

requirement with the minimum degree of spatial redundancy.

Chapter 5 focuses on the evaluation of the reconfiguration latency, which is generally

the largest portion of the FTL. To do this, we first classify the reconfiguration techniques

into four types: reconfigurable duplication, reconfigurable N-Modular Redundancy(NMR),

backup sparing, and graceful degradation. For each type of reconfiguration, we analytically

evaluate the reconfiguration latency, defining several parameters to describe the task size,

the individual processor capabilities, and the underlying reconfiguration strategy and system

architecture.

In Chapter 6 , we propose an optimal instruction-retry policy in a TMR controller com­

puter. An “optimal” instruction-retry period is derived here by minimizing the probability

of dynamic failure upon detection of a masked (by the TMR) error as well as a TM R failure.

We also derive the minimum number of spares needed to reduce the probability of dynamic

failure below a pre-specified level for a given mission by using the derived optimal retry

period.

Chapter 7 develops an adaptive recovery method for TMR failures by optimally choosing

either RSHW or RHWR based on the estimation of the costs involved. We derive and

compare the expected costs of RSHW with that of RHWR by using the likelihoods of all

possible states in the TMR system, which are updated by the Bayes theorem with each

voting result. In this chapter, we also present our simulation results to show that the

proposed method outperforms the conventional reconfiguration method using only RHWR

under various conditions.

6

In Chapter 8 , we derive the probability mass function of the number of TMR failures for

a random sequence as well as the conventional sequence of tasks on the three modules. (In

the conventional task sequencing, all three copies of a task are executed at the same time

on the three modules.) Then, we develop an optimal sequence of tasks by minimizing the

mean number of TMR failures. This chapter illustrates several examples showing significant

improvements in reducing TMR failures with the optimal task sequencing.

The dissertation concludes with Chapter 9, which summarizes the contributions of this

dissertation and discusses future directions.

CHAPTER 2

PRELIMINARIES

In this chapter, we describe the attributes characterizing a real-time control system with

the basic concepts of real-time computing and fault-tolerance. We also give a summary of

the background involving extensive literature in the area of analysis and design of real-time

control systems and our approach for : (i) the derivation of the CSD, (ii) the evaluation of

the FTL, and (iii) the optimal design of fault-tolerant computers, especially using the TMR

structure.

2.1 Real-Time Control Systems

Digital computers are commonly used in real-time control systems due mainly to their

improved performance and reliability in dealing with increasingly complex controlled pro­

cesses. A digital computer, called the controller computer, in the feedback loop of such a

control system calculates the control input by executing a sequence of instructions, thereby

introducing an unavoidable delay — called the computation-time delay — to the controlled

process. This calculation introduces an extra delay in addition to the system delay com­

monly seen in the control literature. Computation-time is an important component of

the delay in the feedback loop, which also includes contributions related to measurement or

sensing, A /D and D /A conversion, and actuation. However, these other delay contributions

are usually constant, and thus easy to model. Due to data-dependent loops and conditional

branches, and contentions in resource sharing during the execution of programs th a t imple­

ment control algorithms, the computation-time delay is a continuous random variable which

is usually much smaller than one sampling period, T,, if no failure occurs to the controller

computer.

When a component failure or environmental disruption, like EMI, occurs, the time spent

7

8

for error detection, fault location, and recovery (i.e., the FTL) must be added to the exe­

cution time of a control program, thus increasing the computation-time delay significantly.

This increase in task execution time seriously degrades the system performance and may

even lead to a dynamic failure.

Some performance functional may be available to measure the effects of the computation­

time delay, which are characterized by the controlled process, for example, fuel, time, or

some other physical parameters associated with the trajectory of the system (like a vehicle)

as it travels from one point to another. It is not easy to quantify the performance of the

controlled process in units which are physically meaningful in the context of application.

In [59], this performance measure was represented by the additional cost of running the

controlled process that is accrued because the computer has a non-zero response time.

We focus on hard real-time tasks having control system deadlines tha t must be met to

ensure system stability and/or the system residence in its safe region (allowed state-space).

In other words, the controller computer should perform its intended functions to provide

correct control inputs within a stringent timing limit in such life-critical controlled processes

as aircraft and spacecraft, power systems, life support systems, and nuclear reactors. This

is one of the distinguishing characteristics of real-time computing, which has emerged as an

im portant discipline in computer science and engineering. Real-time control is an important

application of real-time computing, where the computer system is required to close feedback

control loops.

To guarantee the safe and reliable operation of the computer in the presence of faults , 1

the controller computer should be equipped wiih some form of fault-toierance. Since the

controller computers must provide predictable performance even in the presence of faults,

fault-tolerant controller-computers should be designed in the context of the timing require­

ments of the controlled process (to be specified in Chapter 3). Note tha t fault-tolerance is

achieved by making a tradeoff between time and spatial redundancy. Although most de­

sign criteria concentrate on spatial optimization while treating time as a cheap resource in

non-real time applications, time becomes so invaluable as to trade space in a real-time envi­

ronment. This tradeoff between time and spatial redundancy will be covered in Chapters 6

and 7.

1 According to the origins of faults with respect to the system boundary, faults are classified into (i)
internal faults, which represent the malfunctioning or damaged parts of a system that induce errors due to
physical defects during manufacture or due to component aging, and (ii) external faults, which result from
environmental interferences or disruptions, such as electromagnetic perturbation, radiation, temperature, or
vibration. External faults are likely to be near-coincident and their effects are treated in Chapter 8.

9

2.2 Background

C o n tro l S y stem D eadline: Failures in actuators, sensors, mechanical parts, A/D

and D /A converters may also induce a system failure. In [45], a mathematical framework

was presented to describe the interactions between mechanisms to detect or isolate failures

of components (actuators, sensors, or computers) failures and the reconfiguration of control

algorithms. The author of [67] focused on the design of fault-tolerant control systems to

enhance system reliability. In contrast to the work cited above, a goal of this dissertation

is to analyze the interplay between a controlled process and its fault-tolerant controller

computer, and to derive the deadline information of the controlled process that is useful for

the design and evaluation of the controller computer.

Several researchers attem pted to analyze the effects of computation-time delay on the

performance or stability of a control system. The authors of [75] considered the qualitative

effect of feedback delay on a multivariable, computer-controlled linear system by proposing

an algorithm to compensate for the delay effect. The sufficient (necessary) conditions of

stability with a feedback delay and the delay effects on quadratic performance indices were

presented for a linear control system [20] (for a nonlinear robot control system [55]). In [52],

a more detailed analysis of the stability of a digital control system with a feedback delay was

carried out by modifying the state difference equation. However, all of these analyses are

based on the assumption that the feedback delay is fixed or constant. Although the stability

problem with a variable-feedback delay was investigated in [2 2], it was still based on a regular

and periodic (thus deterministic) pattern of delays. In [6], a control system with a random

time-varying delay in the feedback loop was modeled with a stochastic-delay differential

equation, and sufficient conditions were derived for the almost-sure sample stability under

which almost every possible differential equation for an ensemble of stochastic systems has a

stable solution. However, it did not show any explicit relation between the performance (or

stability) and the magnitude of delay, but, instead, gave a condition of the coefficients of the

state equations and the average rate-of-change of delay for sample stability. Furthermore,

this work assumed a delay to be bounded by the ‘worst-case’ inter-sample period. In [59],

the control system deadline (hard deadline) in controlling the elevator deflection of the

aircraft landing problem was obtained numerically by using the concept of allowed state

space.

The problem associated with disturbances to the control input was treated by analyzing

the observability of a linear system with a dynamic feedback controller under unknown

disturbances in the control input [24] and experimentally testing the functional error modes

10

of computer-based control systems in a “harsh” operating environment [5].

F au lt-T o le ran ce L a ten cy a n d R econfigu ration L atency : Most work on fault-

tolerance uses simple models for FTL, which was also represented in [6 6] as the sum of

Mean Time To Detection (MTTD) and Mean Time To Repair (MTTR). Reliability or de­

pendability models assumed the recovery time to have a certain probability distribution;

if the recovery time is distributed exponentially, the transition from error state to normal

state is represented by the mean rate in a Markov model [15, 19, 6 8]. In [47], recovery

procedures were represented by instantaneous probabilities which measure the effectiveness

of fault- or error-handling mechanisms while ignoring the recovery time due to the stiffness

existing between fault occurrence and recovery. The authors of [18] derived the distribution

of system-recovery times using a truncated normal distribution and a displaced exponential

distribution, which captures general short periods of normal recovery and special long du­

rations of rare abnormal recovery. This work was based on the recovery time data collected

from various experimental sources.

Note, however, that all of the foregoing approaches do not treat the recovery as consisting

of several sequential stages such as fault detection or isolation, system reconfiguration, and

recovery of contaminated computations, but instead derive a simple expression for the

recovery-time distribution.

In [16, 36], the experimental data/statistical methods (i.e., sampling and parameter-

estimation methods) for characterizing the times of fault detection, system reconfiguration,

and computation recovery were discussed based on hardware fault injections in the Fault-

Tolerant Multiple Processor (FTM P). In [4, 53], the recovery times were estimated for a

pooled-spare and TV-modular redundant systems. The effects of various fault-tolerance fea­

tures on FTL were described there. However, the results were given in a specific application

context using spatial redundancy only, and assumed that the time required for each stage

of fault or error recovery is approximated to be in a deterministic range.

For the problem of evaluating the reconfiguration latency, although many researchers

have proposed reconfiguration algorithms for various system architectures [3, 10, 37, 50, 71],

little work has been done to evaluate the actual times taken for those reconfiguration pro­

cesses. In [36], the reconfiguration times were measured with detection and isolation times

via fault-injection experiments on FTMP, and the average reconfiguration time was experi­

mentally measured to be 82 milliseconds for switching tasks and setting up interconnection

routing. In [53], the reconfiguration latencies ranging approximately 40-90 milliseconds

11

were evaluated for specific load-module sizes of several demonstration applications in a

pooled-spares system implemented in the Dynamic Reconfiguration Demonstration System

(DRDS) Phase 1 of the DRDS Program.

F au lt-T o te ran ce , T M R S y stem s, an d T im e R ed u n d an cy : Fault tolerance is

generally accomplished by using redundancy in hardware, software, time, or a combination

thereof. There are three basic types of redundancy in hardware and software: static, dy­

namic, and hybrid. Static redundancy masks faults by taking a majority of the results from

replicated tasks [44]. Dynamic redundancy takes a two-step procedure for detection of, and

recovery from, faults [7]. The effectiveness of this method relies on selecting a suitable num­

ber of spares, a fault-detection scheme, and a switching operation. Hybrid redundancy is

a combination of static and dynamic redundancy [1 1]. A core based on static hardware re­

dundancy, and several spares are provided to tolerate faults. Such redundant systems could

provide very high reliability depending on the number of spares used, under the assump­

tion of perfect coverage and switching operation. However, new faults may occur during

the detection of existing faults, and the switching operation becomes very complex as the

number of spares increases. In order to reduce the complexity of switching operation and

enhance reliability at low cost, self-purging [42] and shift-out [12] schemes were developed,

where faulty modules were removed but not replaced by standby spares. In these schemes,

the additional operation required to select nonfaulty spare(s) is not needed, thus making

the switching operation simpler. But it is difficult to implement either a threshold voter or

a shift-out checking unit which requires comparators, detectors, and collectors.

Triple Modular Redundancy (TMR) has been one of the most popular fault-tolerance

schemes using spatial redundancy. There are several papers to design or analyze TMR

systems [2, 9, 23, 64, 73], which is applied for design of a controller computer in Chapters 6 -

8.

In FTMP [23], computations are performed by triads which are triplicated proces­

sors/memories connected by redundant common serial buses, and its quad-redundant clocks

use bit-by-bit voting in hardware on all transactions over these buses. C.vmp [64] is a TMR

system trading performance away for reliability, by switching between TMR mode and in­

dependent modes under program control, where each bus transaction is voted on in a bit

parallel fashion by bi-directional voters for voting mode. The probability of system crash

due to multiple channel faults is shown in [63] to be insignificant even when the outputs of

computing modules are infrequently voted on, if the system is free of latent faults. In FTP

12

[63], votes are taken only on certain bus transactions by the programmed vote instructions.

Increasing the voting frequency improves the fault-detection capability, reduces the time

wasted on continuing the execution with contaminated intermediate results, but increases

the time overhead of voting: for example, the bus cycle time on C.vmp [64] was extended

from 27% to 67% with an average penalty of 40% on the more prevalent memory access for

the propagation and synchronization delays of the bi-directional voting between the pro­

cesses and memories. In [73], an optimal TMR structure for resynchronization to recover

from a transient fault was shown to improve significantly the mission time of a small system

in spite of the effects of unreliable voter circuits.

In a recent paper [9], a modular TMR multiprocessor was designed to increase reliability

and availability by using a retry mechanism to recover from a transient fault and switching

between TMR and dual-processor modes to separate a permanent fault. A simple multiple

retry policy, which was also a criterion used to detect a permanent fault, was employed there.

This can tolerate multiple faults only by treating them as a sequence of single faults with

repair between fault occurrences, thus requiring frequent votes for effective fault detection.

A TMR failure caused by near-coincident faults on different modules (two or more faults

occurring within a short time period) must also be detected and recovered in spite of its

rare occurrences. The effect of dependent faults inducing a TMR failure was eliminated by

periodic resynchronization with an optimal time interval in [25]. However, the fault models

of [25] and [73] did not include permanent faults for which resynchronization is no longer

effective.

In addition to spatial redundancy with fault masking or reconfiguration, time redun­

dancy can be applied effectively to recover from transient faults, which will be treated in

Chapters 6 and 7. Such recovery techniques are classified into instruction retry [40], pro­

gram rollback [62], program reload and restart with module replacement. Several papers

attem pted to develop an optimal recovery policy using time redundancy mainly for single­

module (simplex) systems. Instruction retries and program rollbacks were analyzed with

optimal parameters (number of retries and intercheckpoint interval) of each procedure in

[34]. In [7], an optimal module switching policy was proposed to maximize application-

oriented availability with a priori specified retry period in an ad hoc manner. In another

paper [40], the maximum allowable retry period was derived to minimize mean task com­

pletion time, while classifying the type of each fault.

CHAPTER 3

DERIVATION AND USE OF CONTROL SYSTEM

DEADLINES

3.1 Introduction

This chapter presents a method for deriving the CSD of a real-time system, which is

defined as the maximum tolerable duration of a controller-computer failure by using the

dynamic equation of the controlled process, the information about failure occurrence rates

and durations characterizing the environment and fault-tolerance features, and well-defined

control algorithms. The dynamic equations are modified to account for the presence of

some controller-computer failures that cause computation-time delays. Using these modi­

fied equations, we compute the CSD iteratively by examining the necessary conditions for

(asymptotic) system stability or the residence of system states in the allowed state space.

We also extend this method to cover the case of nonzero error latency [60] owing to

an imperfect error detection coverage. There may be control input disturbances due to

erroneous computation during the error latency in addition to the computation-time delay

upon occurrence of component-failure/environmental-interference.

For nonlinear time-invariant control systems, we first linearize the nonlinear dynamics

around an operating point and then use well-developed linear systems methods to derive

an optimally stabilizing control input and examine system stability (Lyapunov’s indirect

method) in the presence of additional feedback delays.

To demonstrate the application of the derived CSD information, we also include (i)

a design example tha t optimizes time-redundancy recovery such as retry or rollback, and

(ii) an evaluation example tha t assesses system reliability by using a Markov chain model

augmented with new states representing system inertia.

The rest of this chapter is organized as follows. In Section 3.2, we address the generic

13

14

u (t)

x(t)

latch circuit D/A A/D

Controlled system

Controller computer

F ig u re 3.1: A computer-controlled system.

problem for qualitative analysis of computation-time delay and/or input disturbance effects,

and review the basic definition of the CSD in real-time digital control systems. Section

3.3 presents a method for modifying the state difference equation in the presence of the

computation-time delay only, and then analyzes system stability by examining the pole

positions of the modified state difference equation. In Section 3.4, we extend the method

proposed in Section 3.3 to the case of covering the effects of input disturbances. Control

system deadlines are derived there stochastically as well as deterministically. In Section 3.5

the CSD associated with the one-shot event model is derived, when even one occurrence

of a computer failure for a long period may drive the controlled process out of its allowed

state space, i.e., a dynamic failure occurs. Section 3.6 treats the CSD of nonlinear time-

invariant systems, without considering control input disturbances. The linearization method

is applied for this analysis. In Section 3.7, several simple control systems are examined to

demonstrate our approach. Section 3.8 deals with the application of the CSD information

by presenting a design example tha t optimizes time redundancy such as retry or rollback,

but also an evaluation example that assesses system reliability by using the derived deadline

information. The chapter concludes with Section 3.9.

3.2 Generic Problem of Controller-Computer Failures

As shown in Fig. 3.1, a linear time-invariant controlled process is generally represented

by the vector difference equation as shown in Eq. (3.1) and is equipped with a well-designed

controller that stabilizes the overall control system and optimizes the given control objective:

x(fc + 1) = A x(k) + Bu(fc) (3.1)

15

where k is the time index, one unit of time represents the sampling interval T, , and x £ TV1

and u £ 7 t l are the state and input vectors, respectively. The coefficient matrices, A £

7Z.nxn and B £ 7V1*1, are obtained from those of the corresponding continuous-time model:

A = eAcT', B = f T’ eAc<T’- f)B eds, (3.2)
Jo

where A c and B c are the corresponding coefficient matrices of the continuous-time model.

We observe the behaviors of a discretized-system by investigating all phenomena only at

each sampling time, because a controller computer is required only to response periodically

at a sampling time and because our main concern is to analyze the effects of the controller

computer on the controlled process. Note tha t although some abnormal behaviors possible

may occur during the inter-sampling interval we assume to use a discretized-system involving

those effects. When the computer generates its output during the inter-sampling interval,

its effects can be represented using a different conversion process from a continuous-time

domain to a discrete-time one (like Eq. (3.3). The (digital) controller computer reads sensor

values, compares them with desired values, and calculates the control input once every Ts

seconds according to a programmed control strategy. The control input, which is held

constant within each sampling interval by a latch circuit, is applied to the continuous-time

controlled process.

Eq. (3.1) must include the delays associated with the measurement or sensing, A/D

and D /A conversion, and the execution of control algorithms. The sum of these delays is

usually much smaller than one sampling period, T ,, in the absence of computer failure(s)

or external interferences like an EMI, which was called the delay problem in [55]. For the

delay problem where the magnitude of delay, A, is smaller than T,, one can change the

state equation (3.1) to:

x(A: + 1) = Ax(A:) + B iu (k) + B 2 u(/i; - 1) (3.3)

where B i — / J ’ e ^ c(T*“^ B cd$ and B 2 = eA,,(-T'~s^Bcds.

As mentioned earlier, digital computers are highly susceptible to transient EMI such as

lightening, high intensity radio frequency fields (HIRF), and nuclear electromagnetic pulses

(NEMP). The main problem caused by EMI is functional error modes — or computer

failures — often without component damages. When a computer failure occurs and it is

detected upon its occurrence (i.e., with a zero error latency measured from the occurrence

to the detection of an error [60]), a certain recovery process is invoked. 1 Then, the

*A fault-tolerance mechanism consists of error detection, fault location, system reconfiguration, and

16

computation-time delay resulting from the corresponding recovery actions may be large

relative to T This was termed the loss problem in [55]. Note tha t the detection schemes

are, in reality, imperfect with a detection probability smaller than one, resulting in a non­

zero error latency. During this error latency, the control input will be updated erroneously

until the fault inducing the computer failure disappears, or the computer failure is detected

and handled properly.

Suppose a computer failure occurs at time k0, it is detected ni sampling intervals after

its occurrence, and the subsequent recovery takes n2 sampling intervals during which the

control input will be held constant at u (k0 + ni + 1) by the D /A converter and latch circuits.

The control inputs during this period are formally represented as:

u(A:o + l) IA,u (& 0 + 2)IA, • • •, u(k0 + rii)IA, • • *,
ni

u (k0 + ni + 1), u(fco + 7Zi + 1), • • • , u(k0 + Til + 1), U(k0 + ni -f n 2 + 1), • • •,
 .

n3

where I A is a diagonal matrix with Dtap[IA],- = 1 + Au,- and Au, is a random sequence

which is modeled by the output of a dynamic system with a white-noise input. Since

faults/interferences occur randomly during the mission lifetime, their occurrences are con­

sidered stochastic perturbations to the controlled process, which can be modeled depending

on the fault characteristics. When the environment is assumed to be stochastically station­

ary, the occurrence and duration of computer failure(s), and the magnitude of disturbances

in the control input can be represented by several probability density functions. The rel­

ative frequency of disturbance and delay due to such computer failure(s) depends upon

the coverage (the probability of detecting an error induced by an arbitrary fault), which is

determined by failure-detection mechanisms [60].

Stationary occurrences of controller-computer failures/interferences not only degrade

the performance of the controlled process but may also lead to loss of system stability if

their active duration exceeds the CSD. Even one occurrence of this abnormality with a long

active duration in the one-shot event model may make the system leave its allowed state

space [56].

The CSD of the stationary model is defined as the maximum duration of the controller

computer’s failure without losing system stability [56]. More formally, we have the following

definition.

recovery. General recovery processes are retry, rollback, and reconfiguration, each of which takes a finite
time. See [6 6] for a more detailed account of fault-tolerance mechanisms.

17

D efin ition 1: Let x e denote an equilibrium state of the system represented by Eq. (3.1).

Then, x e is said to be stable at time k0 if for each e > 0 there exists a 6(e, ko) > 0 such that

||x(&0) - x e|| < 6 ==» ||x(k) - x e11 < e, Vk > kQ. (3.4)

The equilibrium state x e is said to be asymptotically stable at time ko, if it is stable at time

k0, and there exists a 6i(k0) > 0

||x(fc0) - x e|| < fii(fc0) =*> ||x(fc) - x e|| — ► 0 as A: — ► oo. (3.5)

In linear time-invariant systems, stability can be checked simply by using the pole po­

sitions of the controlled process in the presence of random computer failures. Using this

information one can derive the CSD stochastically or deterministically with the sample(s)

and the ensemble average of the controlled process:

D (N) = inf sup{JV : ||A(JV)|| < 1}, (3.6)
ven»

where A(N) is the eigenvalue of the controlled process in the presence of computer failures

of the maximum duration N T, and Cenv represents all the environmental characteristics

that cause controller-computer failures.

Consider a state trajectory evolved from time k0 to kf. Let X^(fc) and be the

allowed state space at time k and the admissible input space, respectively. If a computer

failure, which occurred at Aq (Ar0 < Aq < kf) and was detected N^T, later, is recovered

within N f l , , where N — Ni + jV2, 0 < N\, N 2 < N , then the control input during these N

sampling periods is:

u"(A;) = u ^ I a I M ^) + u(Aq + ^ i) n fcl+JVl(AT2), kl < k < Aq + N

where IIm(7i) is a rectangular function from m to m + n , i.e., IIm(n) = £ (k ~ m) —£(k—m —n)

where f is the unit step function. Then, the CSD during [k0Ts, kt T,\ is also defined as:

D (N , x(A?0)) = inf sup{IV : <p(kfk0,-x(ko),u^(k)) e X A(k), kQ < k < kf), (3.7)

where the state trajectory is assumed to evolve as:

x(A;) = ^(fc, k0, x(Ar0), (A:)). (3.8)

3.3 CSD of Stationary Model Due to Feedback Delays

In our model, the controlled processes represented by Eq. (3.1) are usually unstable in

the absence of feedback control, i.e., the real part of at least one eigenvalue of A is greater

18

than one. For example, the aircraft designer may push his design to the edge of instability

to improve the fuel-efficiency of a future aircraft, where the fast, accurate, and consistent

control is required [59]. The state-feedback control input that stabilizes such unstable

systems can be calculated by using the observed (or estimated) states according to their

own control objectives such as time-optimal control with an energy constraint, optimal state-

tracking, and optimal linear regulator [39]. Suppose the feedback control input is computed

by u (k) = — Fx(fc), where the feedback matrix F depends upon the control objective used.

We want to derive necessary conditions, under which it will remain (asymptotically) stable

even in the presence of random failures to the controller computer. These conditions require

the knowledge of the system dynamic equations, the control algorithm to be used, and the

environmental characteristics.

Consider a simple controlled process represented by a linear time-invariant differential

equation, which can be converted to a discrete-time problem by using Eq. (3.2) and a

quadratic performance index:

• 7 = ^ 2 [xT(fc)Qx(A:) + uT(*)Ru(fc)] + xT(A;/)Qx(A:/)j , (3.9)

where the matrix Q € 7Z.nxn and R € are positive semidefinite and positive definite,

respectively, and are determined by the control objective of interest. The optimal control

input is calculated by minimizing J while maintaining system stability, tha t is, u (k) =

—Fx(&), where the state feedback gain matrix F is obtained by solving a discrete Riccati

equation [39].

Let the control input have been updated at t = m N T, . If the control input had not been

updated for i (0 < i < N) sampling periods since t = m N T a due to a long computation-time

delay, the corresponding state equations for the group of intervals during which the system

failed to update the control input become:

x(mJV + 1) = Ax(miV) + Bu(mlV)

x(mJV + 2) = Ax(mJV + 1) + B u (7niV)

= A 2x (m N) + (A + I)Bu(mlV)

i—1
x(miV + i) = A 'x(mlV') + A JBu(mJV)

j =o
ft

x (m N + i + 1) = A ,+1 x(mlV) + ^ AJBu(mlV) + Bu(mlV + *)
l=i

19

time t
3(m — 1) 3(m-l) + l 3(m-l) + 2 3(m ■(■ 1) 3(m+l)+l 3(m+l) + 2

I 1--------1--------1------- 1------- 1--------1------- 1------- 1--------1--- ►
K : 3m 3m+ 1 3m+2 3(m + 2)

1 . . 1
11

11 1

1 1 1 I k91
| 1 1 | ►

z : 3 1 2 3 1 2 3 1 2 3
\<------ m - 1 ---------- ►f*--------- m ----------►}*------ m + 1 --------- »j

F ig u re 3.2: Time index for argumented vectors representing the stationary occurrence
of computer failures (delays) when N = 3.

N - l N - i - 1
x((ro + l) N) = A Nx (m N) + ^ Aj Bu(m JV)+ A j B u (m N + N — j — 1),

j = N - i j =0

(3.10)

where m is the time index for the groups of N sampling intervals each. Let X (m) =

[x i,x 2, .. . ,x ^] r = [x(mN+ 1),x(m iV +2),.. .,x((m +l)lV)]T and U (m) = [ul t u2, .. .,ujv]r =

[u(mlV + 1), u(m N + 2) , . . . , u ((m + l)jV)]r . That is, X (m) and U (m) are respectively the

augmented state and control vectors at the group of sampling intervals during which the

system failed to update the control inputs (see Fig. 3.2). When the delay is equal to i

sampling periods, the following augmented state equations result:

X (m + 1) = A cX (m) + B k.U (m) + B ^ .U (m + l) , (3.11)

U(m) = -F a X (ro) , (3.12)

where
0 - 0 A F 0 ••• 0

0 ••• 0 A 2 0 F ••• 0
A D — f d =

: : : 0 0 0

0 •• 0 a n 5 0 0 ••• F

20

B L .=

’ 0 ... o B ' 0 0 ' *

0 ... o (AB + B) : •
: : : 0 •• 0 0
0 ... 0 _ £tfoAJ'B IInQffl 0 •• B 0
0 ... 0 £}=i a ' b 0 •• AB o

0 ... o ZjL~N -i AJ'B . J 0 •• ••• B 0 ¥

N

(3.13)

Suppose the occurrence of computer failure(s) is binomially distributed with parameter

P at each sampling time. Let go>?i ■ • - be the probabilities of delays 0, Ts, • • •, N T S,

respectively, such tha t YliLi Qi = P> where the maximum delay is assumed to be N T a. This

delay distribution can be derived in practice from the knowledge of the failure-handling

policy and environmental characteristics. Since the delay equal to the time interval from

failure occurrence/detection to its recovery — called the Fault-Tolerance Latency (FTL)

— it can be measured via fault-injection experiments or can be evaluated analytically by a

certain pdf (probability density function) considering all fault-tolerance features [28]. From

the experimental samples or the fitted pdf of the FTL, one can estimate the parameters of

the multinomial distribution (?;’s).

By combining the state equations (3.11) with the delay distribution, the state equation

including the effects of delay no greater than N T 3 becomes:
N

X (m + 1) = A n X (m) + (B ^ U fm) + B& .U (m + 1)) , (3.14)
i=0

where £; € {0,1} is a binomially-distributed random variable with parameter <?,•, i.e., Pr[£t- =

1] = q{. Then, the first moment of Eq. (3.14) is:
N

X (m + 1) = A DX { m) + £ q{ {B},fU (jn) + B ^ .U (m + 1)} . (3.15)
1=0

Since the period of the index m is N , the complex variable z in the Z-transform of Eq. (3.15)

corresponds to zjf, where Zf. is the complex variable in the Z-transforms of equations with

index k, tha t is, the period of Eq. (3.15) is ^ in the frequency domain, where w indicates the

period of equations with index k in the frequency domain (sub-sampling). Using Eqs. (3.12)

and (3.15), the characteristic equation of the control system in the presence of stationary

occurrences of feedback delay is represented by:

det
N N

(I + £ giB 2D{Fd) z n - A d + Y 1
t= 0 i= 0

= 0. (3.16)

21

The asymptotic stability can be tested with the pole positions of Eq. (3.16) whose char­

acteristic equation reduces to a simple form due to the simple structure of A D despite its

augmented dimension. The characteristic equation of the zero-delay case (i.e., q0 = 1 and

thus P — qt = 0) is:

det [z " l - (A - B F)"] = 0. (3.17)

Further, one can get the following characteristic equation for the worst case in which q^ = 1,

or the control input is updated only once every N sampling intervals due to the periodic

delay of an active duration NT,:

det
N - 1

zNl - A n + A’B F
»=o

= det
J V - l N —l

= 0, (3.18)zNI - £ A '(A - B F) + A<
« = 0 1 = 1

where A = Q D Q - 1 by the similarity transformation if D = diag[di, • * *, dra] and d,-’s are

the eigenvalues of A .

The conditions for asymptotic stability are used to derive the CSD. Let NT, and DT,

be the assumed maximum and the actual maximum delays, respectively. Then, the CSD

can be obtained by iteratively testing the necessary conditions for system stability in the

modified charcteristic equation Eq. (3.16) while changing N from 1 to D.

3.4 CSD in the Presence of Delays/Disturbances

The hard-deadline information is also derived for a linear time-invariant controlled pro­

cess in the presence of disturbances as well as delays in the control input. We use the same

method in Section 3.4, i.e., iteratively testing for the stability of the modified (stochas­

tic) dynamic equation while changing N from 1 to D, where N T , and DT, are redefined

as the assumed maximum and actual maximum duration of delays and/or disturbances,

respectively.

To modify the given state equation of Eq. (3.1) by incorporating all stochastic behaviors

of controller-computer failures, we need the following random sequences and assumptions:

• d is the conditional probability of successful detection given tha t a computer failure

had occurred.

• qf is the conditional probability of an input disturbance for i sampling intervals

(52iLi Q? = 1) if a computer failure occurs and is not detected until its disappearance.

It can be estimated by using the experimental data or the analytic model for the error

latency.

22

• q&u is the probability density function (pdf) of A u which is the magnitude of a control

input disturbance at time kT,, i.e., u flC<uai(&) = Udejl>etj(^)lA- The mean and variance

of are given as Pa » and respectively.

« The probability that two transient failures occur sequentially within a small number

of sampling intervals, (N — i)T,, where the delay (recovery duration) or duration of the

erroneous control input (active duration of a transient failure) is i sampling intervals

and N T , is the assumed maximum value of such intervals — is so small as to be

ignored. Thus, we consider only one computer failure possible during a group of N

intervals,

• Any random sequence will be independent identically distributed (i.i.d) for the time

index k.

The control input at (m N + i)T, is updated to be u (m N + z)Ia for the disturbance case

or u (m N) for the delay case. We, then, obtain the augmented state equations by using the

augmented state and control vectors for a group of N sampling intervals:

X (m + 1) = A DX (m) + B j,.U (m) + B ^.U (m + 1), (3.19)

U(m) = - F 2>X(m), (3.20)

where [B^., B^.] becomes [B ^ , B ^ J for the normal behavior, [BS.Bg] for the delay case,

and [Bfl*, B ^] for the disturbance case, respectively. (In [30], these augmented matrices are

described in full.) Eqs. (3.19) and (3.20) are, in turn, modified by combining the random

squences representing the behavior of computer failures:

X(m +1) = ADX(m)+((l-V>)BJ't + lK l-v)B S I + ^ f ; f i B S , j u (ro) +

((1 - *)BI] + -K1 - V)EC.BK + * v '£ (iB do) U(m + 1) (3.21)

where ip,ip € {0 , 1 } are binomially-distributed random sequences with probabilities P, d,

and £ £ { 0 , 1 } are multinomially-distributed random sequences with probabilities q f , q f ,

i.e., Pr[f, = 1] = q f .

The asymptotic stability of Eq. (3.21) can be examined deterministically or stochasti­

cally.

A . D e te rm in is tic A pproach

Similar to the method used in the Section 3.4, the deterministic value of the CSD

is obtained by examining the pole positions of the first moment (ensemble average) of

23

Eq. (3.21). Although the resulting CSD has little practical meaning, it can show the trend

of the ensemble system behavior with an uncertainty (in the state and output) which can

be characterized by the second moment of Eq. (3.21). The first moment of Eq. (3.21) is:

X(m H- 1) = A c X (m) + f (l - P) B J ‘ + P(1 - U (m) +

((1 - P) B " + P(1 - d) £ qfB.% + p i f ^ t f B g) U (m + 1). (3.22)
\ i=l i=l /

Using Eqs. (3.20) and (3.22), one can get the characteristic equation of Eq. (3.22):

1̂ + [(1 - P) B l \ + P (l - < t) J 2 + p d £ «?B £]F b) z K-
K i=i i=i /

N
jnl , rtfi = 0. (3.23)- [(1 - P) B l \ + P(1 - d) B l 1 + P d J 2 q f B dD\]FD

The characteristic equation of the zero-delay case (i.e., no computer failure, or p = 0) is:

det [zNI - (A - B F)*] = 0, (3.24)

where the magnitutes of eigenvalues are equal to those obtained from:

det [zl — (A — BF)] = 0 (3.25)

which is the characteristic equation of the original state equation (Eq. (3.1)) in the absence

of computer failures.

B . S to ch astic A p p ro ach

The effectiveness of the deterministic approach decreases as the variance of q&u gets

large. In such a case, we can derive the probability mass function (p m f) of the CSD with

respect to q&u rather than the deterministic value of the CSD based on the mean of q&u.

Now, the mapping between the CSD and the magnitudes of disturbance (A n’s) is not one-

to-one, and the CSD can be derived numerically for each sample value of A u’s. In all

but simplest cases it is impossible to derive a closed-form expression for the p m f of the

CSD or the exact relation between the CSD and Aw. The method we use is therefore to

quantize uniformly the q&u continuum in the interval [a ,b], where qAudAu = 7 . Let

this quantization result in M equal-length subintervals (cells). There is a tradeoff between

the accuracy and the amount of computation in determining 7 and M , and a and b are

determined appropriately according to 7 . Then, points are allocated to the quantized cells,

and let the point of the i-th cell ([a + (i — 1) ^ - , a + * ^]) be Aw,- which corresponds to the

midpoint of the cell, i.e., Aw,- = a + then the probability of the point is calculated

24

as ?Au = qAu{s)ds. A CSD is derived for each A u {, and let it be Z?t- whose

probability is equal to that of q^u. Finally, the p m f of the CSD is derived numerically by

multiplying £>,• and q^u, 1 < i < M. The accuracy of the resulting p m f depends on a, 6 ,

and M , which must be determined by considering the controlled-process state equations,

the environment, and the amount of computation.

Although the above method uses a stochastic approach in deriving the p m f of the CSD,

it is still based on the mean values of binomially- and multinomially- distributed random

sequences since the control system deadlines of all possible samples cannot be derived due to

the excessive number of possible samples. However, the stability of each individual system

(i.e., samples) has more practical meaning than the stability of the average system or the

ensemble of all possible systems which might be built. Thus, in addition to the deterministic

analysis (or combined with the stochastic analysis) of the averaged system stability, we will

attem pt to stochastically analyze system stability by using the almost-sure sample stability

concept (which is actually almost deterministic).

D efin ition 2:

• Probabilistic Stability : For every pair of positive numbers a and b, there exists a

positive number d(a, b, t0) such that

P[sup ||a:t || > a] < b for x io such that ||s t0|| < d, (3.26)
t>t0

where x t = {a:(s): f0 < s < t} is a segment of the past history.

• Almost-Sure Stability: For every pair of positive numbers a and b, there exists a

positive number d(a,b,t0) such that

P[sup (supHzjH j > a] < b. (3.27)
l|r«oll«* \«>*o }

In fact, the almost-sure sample stability means that almost every possible difference equation

for a given ensemble of such systems has a state which is stable in the Lyapunov sense.

3.5 One-Shot Event Model

The pole locations do not change in case of only one failure with a relatively long (> Ts)

active period (Fig. 3.3). The (asymptotic or global) stability condition discussed thus far

is therefore no longer applicable. Instead, the terminal state constraints can be used to test

whether or not the system leaves its allowed state space. Note that every critical process

25

time t failure(s) occur

I 1 a -
\

No control update during this period

+
ko ko 4- 1

/

ko + N

successful recovery

+ -It

F ig u re 3.3: Time index for the one-shot event/delay model.

must operate within the state space circumscribed by given constraints, i.e., the allowed

state space. When the control input is not updated correctly for a period exceeding the

CSD, the system may leave the allowed state space, thus causing a dynamic failure. The

allowed state space consists of two sets of states and defined as follows:

• X^: the set of states in which the system must stay to avoid an immediate dynamic

failure, e.g., a civilian aircraft flying upside down is viewed as an immediate dynamic

failure. This set can usually be derived a priori from the physical constraints.

• X^: the set of states tha t can lead to meeting the terminal constraints with appropri­

ate control inputs. This set is determined by the terminal constraints, the dynamic

equation, and the control algorithm used.

The system must not leave X ^ nor X^ in order to prevent catastrophic failure.

Assuming tha t some computer failure may not be detected upon its occurrence but every

detected failure can always be recovered successfully, we can consider three cases for the

analysis of the effects of computer failures during a finite time: (i) delay: when a computer

failure is detected upon its occurrence, (ii) disturbance: when a computer failure is not

detected until its disappearance, and (iii) disturbance and delay: when a computer failure

is detected at some time after its occurrence but before its disappearance.

Let k0, k f , N lt and N 2 denote the indices for the failure occurrence time, the mission

completion time, and the period of disturbance, the period of delay measured in sampling

periods, respectively, where N = Ni + N 2, 0 < IVi, N 2 < N. The dynamic equation for a

one-shot event model is:

x(* + 1) = Ax(fc) + B [u(*) + (u(fc0) - + u(*)(IA - I) n ko+Nl(N2) \ , (3.28)

where n*0(JV) is the rectangular function as defined in Section 3.2, and Ni and N 2 are

random variables and determined by the conditional probability of successful detection (d)

if N is given:

P r [Nx = i] = d (l - d y 0 < i < N - l

26

Pr[jV2 = i] = d (l - d) w- ‘' 1 < i < N

Pr[JVi = N] = Pr[Aa = 0] = 1 - d{l - d)N~ \ (3.29)

Thus, the first moment of Eq. (3.28) is:

u(*0) - u(k))Uko(Ni) + - I)ILko+Nl(N2)]^ .

(3.30)

Using Eq. (3.30), one can derive the states at time k0 + N and k j , and examine whether

or not the state trajectory satisfies the immediate and terminal constraints, iteratively for

each N (1 < N < D).

ko+N-l
5t(k0 + N) = A Jvx(fc0) + J 2 + (3.31)

i=ko
ko+N—1 k,- l

x(fy) = A ^ - iox(fc0) + J 2 A ^-* “ 1B[®u(fc0) + 9r«(O lA]+ £ A*/- ,_ 1 B u(i)
t=fco i=ka+N

kj-1
_ A k' - ka~Nx(k0 + N) + Y A i/_ i_ 1 B u(t). (3.32)

i=k0+JV

In addition to this deterministic approach, the p m f of the CSD th a t depends on q&u

is also derived by using the same stochastic approach employed in the stationary model.

W ithout using the first moment of the state equation (3.30) the probability of the CSD

being N (i.e., Pr[iV = D]) is thus obtained as the sum of the probabilities2 of the sample

equations (3.28) in which a dynamic failure occurs at time N . One must continue this

process until a dynamic failure occurs for all samples (i.e., P r[N — D]= l).

The following pseudo-code is used to iteratively derive the CSD for the system with the

initial state x 0 at time fc0, where Td is the duration of abnormality due to a computer failure.

* Recursive testing the allowed state space while increasing Td *\
m = 1 * sub-sampling period, mA *\
D = integerJime(Num) * integer times of T, *\
if (D < Niim) then

while (m / T , /A or test.constraintsQ ^ATRUE) do
Td := (D - 1)Td + mA
if test.constaints(Td) then re tu rn Td * CSD is Td *\
else m := m + 1 * test larger Td by increasing m *\

end_while
else re tu rn no CSD

integer dime{Ntim)
N = 1

N
x(& +1) = Ax(fc)+B (u (k) + £ [® (

\ <=o

2 N 2 testings are required for each N.

27

while (N ^ Niim or iest-.constaints() ^TRUE) do
Td := NT,
if test.constaints(Td) then re tu rn N * D = Nmax is obtained *\
else N := N + 1 * test larger N *\

endjwhile
test„constraints(Td)
compute x((fco + N)T,) from xo
if (x ((£ 0 -f N)T,) G X^) then

begin
compute x(kjT,) from either x((k0 + N)T,) or x 0
if (x(kjT,) G X^) then re tu rn FAILURE
else re tu rn TRUE

end
else re tu rn TRUE

X/ G can be tested indirectly by the following relation:

x(k j) G X JA «=*► x (k 0 + N) G X ^, (3.33)

k j - i

where X* = { x j [Akj- k°~Nx + £ A * '" * " ^ *)] € X ' }. (3.34)
i=k0+ N

In practice, it is difficult to obtain X ^. Although there may be a one-to-one mapping

between x(fc0 + N) and x(fy), X^ is usually a continuum, which requires an excessive

amount of computation due to the curse of dimensionality. The size of X^ will decrease as

either N increases or k approaches kj, but the size of X^ is usually larger than tha t of X ^

due to the (asymptotic) stability of a controlled process.

3.6 CSD for Time-Invariant Nonlinear Systems

Nonlinear control systems generally differ from linear systems in two important aspects:

1. It is not always possible to obtain closed-form solutions for nonlinear systems, where

the sequences of approximating functions converging to (or estimates for) the true

solution are mostly satisfying forms of the solution.

2. The analysis requires more complex and difficult mathematics.

In spite of these difficulties, control system deadlines are derived for nonlinear control sys­

tems since the dynamic equations of most control systems consist of nonlinear properties

such as nonlinear gain, saturation, deadband, backlash, hysteresis, and nonlinear character­

istic curves. The nonlinear differential equation of the continuous-time domain is generally

given by:

x(f) = h [t,x (t),u (t)], x(0) = x 0. (3.35)

28

Assuming tha t the function h(t, •) is globally Lipschitz-continuous, the state at the sampling

time (k + 1)T, is represented by using a Taylor series:

x((fc + 1)T.) = x(*T,) + T, i (kT .) + S x (fcT ,) + . . . , (3.36)

where the first-order derivative term can be calculated using Eq. (3.35), i.e., x(fcTa) =

h.[kT,,x.(kTs), u(£T3)]. Since higher-order methods require the calculation of many partial

derivatives, the first-order method is applied as a useful starting point in understanding more

sophsticated methods. Then, the nonlinear discrete-time state equation is approximated by:

x(& + 1) = x(fc) + f[fc,x(A;),u(A:)], Vfc > k0, (3.37)

where f(-) = T,h(-) and x(&) corresponds to x(kTa).

3.6.1 CSD of the Stationary Model

The effect of the stationary occurrences of computation-time delay due to the failure(s)

of the controller computer can also be analyzed by examining the stability of nonlinear

systems like linear systems. In this analysis, every failure is assumed to be detected upon its

occurrence and call for a recovery mechanism, i.e., d = 1. This assumption ignores the effects

of erroneous control inputs. However, one cannot simply modify the dynamic equations,

nor can he calculate pole positions efficiently. The stability of nonlinear systems is generally

analyzed by the Lyapunov’s second method. The drawback of this method, which seriously

limits its use in practice, is that it is not easy to find the required Lyapunov function and

it gives only sufficient conditions for stability or instability. Thus, the Lyapunov’s first

method, which linearizes the nonlinear system around an equilibrium point and examines

the stability of the resulting linearized system, is used for general nonlinear systems.

The state difference equation of a nonlinear control system is assumed to be given as

in Eq. (3.37) and a suitable feedback control input is calculated to stabilize the system.

Let the control input have been updated at t = m N T, . If the control inputs were not

updated for i sampling periods from that time due to a long computation-time delay, where

0 < i < N , the corresponding state equations for the group of intervals during which the

system failed to update the control inputs become:

x.(mN + 1) = x(mJV) + ffmiV, x(mlV), u(7nlV)]

x(mJV-|-2) = x(mJV + 1) + f[mJV + l,x(m iV + l),u(miV)]

= x(miV) + {[mN, x(mN), u(mJV)] + f[mN + 1, x (m N + 1), u(mJV)]

29

»-i
x(ralV + i) = x(miV) + ^ f [m iV + j,x (m iV + j),u(m iV)]

j =0
i —1

x(mJV + i + l) = x(mAT) + + j,x(m jV + j), u(mJV)]
j - o

+ f[mN + i, x(miV + i), u (m N + t)]

t- i
x((m + l)iV) = x(miV) + + j,x(miV + j"),u(m7V)]

j =o
J V - 1

+ ^ ffmiV + j , x(miV + j) , u (m N + j)]
j=i

where m is the time index for the groups of N sampling intervals each. Then, we get the

following augmented state difference equation:

X (m + 1) = X (m) + F i [m N ," • , m N + N - l,X (m),X (m + l) ,U (m) ,U (m + 1)], (3.38)

where

f[miV, EwX(m), EwU(m)]

f[miV,EJVX (m),E wU(m)] + f[mN + l ,E iX (m + l),E jvU (m)]

F,[-] = E jlo f[mN + j , E ^ r o + 1), E ^ m)]

E}=o + 3, Ej X (m + 1), EivU(m)] + {[mN + i, E ,X (m + 1), E ,U (m + 1)]

. £}=o + h E /X (m + i), ENU(m)] + E jL , 1 f[mN + E; X (m + i), E jU (m -f 1)] _

N

where E,- = [0, * * •, 0 ,1 ,0 , • • •, 0].

Using the probabilities of delays (q0, qi • • •, qN), we get a final form of the state difference

equation:

N

X (m + 1) = X (m) + ^ ^ F i[m lV ,- .- ,m iV + JV -l,X (m),X (m + l),U (m),U (m + l)] (3.39)
i= 0

where £,• £ {0,1} is a binomially-distributed random variable with parameter q,-, i.e., Pr[& =

1] = q{. Then, the first moment of the above equation is:

N
X (m +1) = X(m)+y~l gt-Ft[mjV, • ■ •, m N + N - 1, X(m), X (m +1), U(m), U(ro-f 1)]. (3.40)

»=o

30

To derive the maximum value of N which maintains local stability, the stability of Eq. (3.40)

is examined by linearizing Eq. (3.40) around an equilibrilum point. Let the equilibrilum

point be 0 without loss of generality. Then, the linearized form of Eq. (3.40) is:

A JX (m + 1) = A iX (m) + B j,U (ro) + B ^U (m + 1),

where F,-[0, • • •, 0] = 0, A lD = I —

B n = I ttD flU(m)
When a state feedbac

X=o,U=osX(m)

, and B ^ = I —

c controller — which is also obtained
_ sG

, K = i + sX(m+l)

X=0 ,U= 0

(3.41)

X=o,U=o ’

X=o,U=o
Tom the linearization method

— is used (i.e., U (7n) = -P /jX (m) where P D = and U (m) — G[X(m)]), Eq. (3.41)

becomes:

(A 2d + B 2dP D) X (m + 1) = (A*, - B ^P n)X (m). (3.42)

Using Eq. (3.42), we examine local stability by calculating the pole positions of the

following characteristic equation:

det [(A i + B ^ P „)n” - (A}, - B i P B)] = 0. (3.43)

This method has two limitations: (i) the conclusions based on linearization are purely local,

i.e., it is effective only in the vincinity of the equilibrium point, and (ii) if some poles are

located on the unit circle and the others are located within the unit circle, the result is

inconclusive, which is called a critical problem.

3.6.2 CSD of the One-Shot Delay M odel

The trajectory of Eq. (3.37) is determined by the following equations if the conditions

for the existence and uniqueness of solutions for the nonlinear difference equation are met:

jt-i
x(fc) = x 0 + *(*> x (*’)» u(*))- (3.44)

«=o

For the existence of a unique trajectory there must exist finite constants T, r, h, k such that

||f(fc,x(fc),u(&))-f(fc,y(fc),u(fc))|| < f c ||x -y ||, V x,y € B , Vfc € [0, If]

||f(fc,xo(A:), u(k))\\ < h , VA; 6 [0,K\

where B = {x G R n : ||x - x 0|| < r}.

Then, Eq. (3.37) has exactly one solution over [0, J] whenever

D ThSekS < r and S < min[T, £ , ----—] for some constant p < 1 .
h h + kr

31

Let ka,kj , and N denote the indices of delay/failure occurrence time, the mission com­

pletion time, and the period of delay measured in sampling periods, respectively. Then,

the dynamic equation of a one-shot delay model for nonlinear control systems described by

Eq. (3.35) is:

x(& + 1) = x(fc) + f [k , x(A), {(u(k) + (u(&0) - u(k))Eko(N)}] .

To test if the constraints at time k0 + N and kf are met, one must derive x(fc0 + N) and

x(k j) as:

kB+ N - l

x (k 0 + N) = x (k 0) + ^ 2 f(*>x(t),u(fc0))
i=ko

k0+ N - l k j - l

x(k j) = x (k0) + J 2 f(*.x(z),u(&<,))+ J 2 “ (*))■
i=k0 i=k0+N

3.7 Examples

To demonstrate the concept of CSD, we derive the deadlines for eight simple, yet prac­

tical, example systems. The former four examples (7.1-4), among which the first two ones

calculate control system deadlines via stability analysis, consider only the effects of the

computation-time delay with a perfect error detection coverage. The latter four examples

(7.5-8) involve the effects of an imperfect error detection coverage, i.e., the derivation of the

CSD in the presence of stationary occurrences of input delays/disturbances due to computer

failures.

E x am p le 3.7.1: Consider a simple controlled process:

x(k + 1) = 1.05x(&) + 1.8u(&), where Q = 2, R = 7.

This system is unstable without any feedback control but is controllable. The optimal

feedback control is given by:

u(k) = [R- lB TP ~ \ k + 1) + B P ~ l {k + 1)Bt] _ 1 Ax(k) = Fx(k), (3.45)

where P(k) is the solution of the discrete Riccati equation:

P(k) = Q + ATP(k + 1) [I + B R ~ 1B TP(k + l)] - 1 A, P(k f) = 0.

Hence, we obtain a steady-state feedback gain F = —0.3594 by plugging P(k) = P(k + 1)

into the above equation (making the algebraic Riccati equation), tha t is, u(k) = —0.3594x(&)

32

N 2 3 4 5 6 7
l-M 0.4729 0.9589 1.1198 1.1811 1.2049 1.2128

T able 3.1: Relation between the pole position and N when P — qN = 1.

C
O

OIIQi p 0 0.1 0.3 0.5 0.7 0.9 1
|A| 0.5596 0.5642 0.5731 0.5818 0.5903 0.5985 0.6024

II o P 0 0.1 0.3 0.5 0.7 0.9 1

I'M 0.7917 0.7970 0.8076 0.8178 0.8255 0.8375 0.8423

T ab le 3.2: Relation between the pole position and the probability distribution of de­
lays when N = 3.

as k —► oo. The system is stabilized by the feedback control tha t results from minimizing the

performance index J (Eq. (3.9)), since the pole position A is changed from 1.05 to 0.4031.

The relation between the pole position and N for the worst case 3 is given in Table 3.1,

yielding the CSD D = 4 since the pole moves outside the unit circle beginning at D = 4.

The pole position is affected by the probability distribution of delays as well as the

magnitude of the maximum delay (NT,), which is shown in Table 3.2 where qi = 1 — P,

q2 = P(1 — /?), and q3 = P/3. Since the pole in the worst case or when qN = 1 is located

at 0.9589 for N = 3, the pole in all other cases (i.e., q3 < 1), for example A = 0.9033 when

P = q2 = 1 , q3 = 0, must reside inside of the unit circle. However, the pole approaches the

unit circle quickly as the probability of a large delay increases.

E x am p le 3.7.2: For a more practical example of stationary occurrence of delays/failures,

the dynamic behavior of the altitude of a spinning satellite is described in terms of the long­

term control of the roll (<p) and yaw (-0) angles, which is based on the dynamic coupling

resulting from the rotation of the satellite around the earth:

<px = 2.1ipx + l.bif}z + 0.1ux + 0.2u2, (3.46)

4>z = -2.3^* + 0.2U* + 0.1uz, (3.47)

where the coefficients depend upon the orbital frequency, i.e., the angular velocity of the

satellite with respect to the inertial frame, and ux and uz are control signals. The goal of

3The ‘worst case’ means the periodic occurrence of the largest delay possible, that is, deterministically
qN = 1, while updating the control input only once every N sampling intervals.

33

N 5 6 7 8 9 10
|Ama® | 0.3017 0.5219 0.7732 1.0381 1.3055 1.5682

T able 3.3: Maximum magnitude of eigenvalues.

the control is to maintain a desired orientation of the satellite in the orbit around the earth

(the stabilization problem) with the minimum-control effort, which can be represented by

a quadratic performance index (Eq. (3.9)) of the state and the control input. Discrete state

equations are derived from Eqs. (3.46) and (3.47) with Ts = 1 second. The corresponding

coefficient matrices are then:

8.1660 2.7490 0.5470 0.7855

1O1

5 0
A = ; B = ; Q = ; R =

0 0.1003 0.0782 0.0391 o 2 0 5 _

One can derive the optimal (feedback) control gain matrix, F:

F =
4.7623 1.6249

6.6508 2.2661

This feedback control changes the eigenvalues from {8.166,0.1003} to {0.1102 ± 0.0045j},

thus stablizing the satellite. Let the rate of failure occurrence be ^ per hour. Then, the

change of poles as a result of incrementing N is derived for the occurrence of the largest

delay possible (P = qN = 5.556 X 10~7) and is given in Table 3.3.

Since the CSD D = 8 TS, the controller computer must have some mechanism of fault-

tolerance, which can recover from any controller-computer failure within 8 T3 in order not

to lose the (asymptotic) stability in rotating the satellite. Whereas the previous examples

calculated control system deadlines via stability, the following examples will calculate con­

trol system deadlines using state constraints.

E x am p le 3.7.3: Consider the system of a double integrator [21], whose sampled model

with Ta = 0.01s is:

x(fc + 1) =
' 1 1 *

1

O bi
..1

x(fc) +
0 ! 1

u(k),

where the constraints on the control and state for ko < k < k j are given by:

f l = {u(fc) : —1 < u(k) < 1}, = {(®i(^),X2 (^)) : —25 < a:i(A;) < 25, —5 < X2(k) < 5}.

The terminal state must belong to the set = {(®i5 *2) : l t̂'l < 0.2, i = 1,2}. From these

constraints, one can find a simple (non-maximal) ft-invariant set X which is a polyhedron

34

10
x2

5

0
xl

-5

10
-30 -20 - 1 0 0 10 20 30

Xl(k)

F ig u re 3.4: State trajectory in the absence of delay, and the state trajectories in the
presence of one-shot delay equal to the CSD with and without terminal
constraints.

defined by the vertices: Vi = (0,5), v2 = (25,0), u3 = (2 5 ,-5), u,- = —u,-_3, i — 4 ,5 ,6 . A

set X is said to be ti-invariant with respect to G if X C G such tha t (i) Vx(fc0) =

X , 3u(k) G Q V&, such that if x(&o) = Xo then x(&) £ G VI; and lim x(&) = 0, and (ii)k—►co
x(k) G X Vft. An ^-invariant set clearly belongs to the allowed state-space (X ^ n X ^) , since

the state x(fc) Vk G [&o,fc/] must stay in the given state constraint set G and satisfy the

terminal condition 'x.(kj) G X ^ by the convergence property of x(k). A constant feedback

control input was simply derived by using Theorem 3.1 in [21]:

u(k) = -0.04a;i(fc) — 0 .2 a:2 (A:). (3.48)

The state constraint X ^, ft-invariant set X with respect to X ^ , and the state trajectory

in the absence of delay, and the state trajectories in the presence of one-shot delay equal

to the CSD with and without terminal constraints are plotted in Fig. 3.4, where the curves

1-5 indicate X ^, X (or an fl-invariant set), state trajectory in the absence of delay, state

trajectories in the presence of delay equal to the CSD with terminal constraints, and without

terminal constraints, respectively.

The control system deadlines associated with the states on the trajectory in the absence

35

30

25

free of
hard deadline

for 1,
a
ofa for 2.
;o 15
s•a
■E _M 1 0s

5 10 15 20 25 30 35 40 45 500

lime, k [Us]

F ig u re 3.5: Control system deadlines of the state trajectory 3 of Fig. 3.4 in the ab­
sence of delay, (1) without terminal constraints and (2) with terminal
constraints.

of delay are derived by the algorithm in Section 3.3 for both cases with and without terminal

constraints, and are plotted in Fig. 3.5.

In Fig. 3.6, the control system deadlines on the subset, {5 < < 15; (a) — 5 < ® 2 <

— 1 and (b) 0 < $ 2 < 2} C X , are derived under the assumption tha t the remaining mission

time is 38TS for all states in the subset.

E x am p le 3.7.4: The physical meaning of a CSD based on the one-shot delay model

can be explained with the real-time controller of a robotic manipulator, where the obstacles

in the robot’s workplace are translated into state constraints. That is, the system states

(robot’s positions) must be constrained to avoid collision with the obstacles. In addition

to these state constraints, there are usually control input constraints due to the bounds on

joint motor torques and energy. In [26], a point robot of Cartesian-coordinate class was

modeled by a set of decoupled double integrators:

X _ 0 I * X
+

0 0 0

V 0 0 V I 0 u

where x , v, and u are 2 -dimensional position, velocity, and control vectors, respectively,

36

(a) (b)

F ig u re 3.6: (a) Control system deadlines (DTa) of the region { 5 < ®i < 15, — 5 <
X2 < —1 } (X = xi , Y = X2, Z = N), where the top and the bottom
values of Z-axis are 24T3 and 8 Ts, respectively; (b) { 5 < x\ < 15,
0 < * 2 < 2 }, where the top and bottom values of Z-axis are 10Ta and
Ta.

37

and I € 72.2x2. The robot’s end-effector is guided by the control input determined by:

xm n||vrf- v | | 2 (3.49)

subject to the control constraints |u,j < u™ax for i = 1,2, and the state constraints specified

by the obstacles. The Obstacle Avoidance Strategy (OVS) used in [26] considers the dynamic

environment and real-time control needs, where the obstacle-related state constraints are

transformed into state-dependent control constraints by mapping each end-effector’s posi­

tion relative to an obstacle into the P-functionals:

P = (xTx)fc - (r2)fc,

where the obstacle is assumed to be centered at the origin and covered by a circle of radius r.

The k in the P-functional must be chosen such th a t the set of permissible controls remains

nonempty, and the system state and each obstacle’s position determine x = [sj — a, x% — 5]r ,

where (a,b) is the coordinate of a 2D obstacle. According to Theorem 1 in [26], k is set

to 0.5 so tha t the control input constraint set may remain nonempty over the duration

from the detection of a potential collision to the disappearance of this collision danger. A

collision-free trajectory is guaranteed if P(t) > 0 Vf. A potential collision was detected by

checking

P(i) = P(0) + tP (0) + ^Pmax > 0 Vi =» Pmax > (3.50)

where f = — P(0)/Pmax is the time at which the minimum of P occurs. K the condition

(3.50) is violated, the instantaneous value of Pmax is calculated, and an additional constraint

(Eq. (3.51)) is included until P becomes positive, i.e., the danger of collision disappears.

$ (x , v) = {u : P xr u + v r P xxTv > Pmax], (3.51)

where P x = (x-r x)_ 1 / 2 x , P xx = — (xr x)-1/ 2, and m (x) = 2k(xTx) k~1. The inter­

section of these constraints with the admissible control set 1 1 results in a polygonal control

space:

A = 4>(x, v) n 11.

The Optimal Decision Strategies (ODS) in [43] can be used to solve such a constrained

minimization problem, similarly to a class of pointwise-optimal control laws constrained by

hard control bounds. The CSD is derived using a pointwise-optimal control law with the

OVS. Since the computation-time delay causes the failure to update the control input, a

collision (or a dynamic failure) occurs if the computation-time delay is longer than a certain

38

s
•a

5
4 obstacles (circles)

4

delay for 23

2

0 / 0'
/ delay for 31 1.2,3

0
0 1 2 3 4 5

xl(k)

F ig u re 3.7: State trajectories for a point robot with four obstacles, 1) in the absence
of delay and 2,3) in the presence of delay equal to DTS.

threshold, which is a function of the system state and time. In this example, the state

constraints change with system state (time), i.e., the state-dependent control constraints.

Thus, the control input must be updated on the basis of new information to avoid any

collision.

The trajectories derived in both the absence and presence of delay DTS, and the control

system deadlines on these trajectories in the absence of delay are plotted in Figs. 3.7 and 3.8.

E x am p le 3.7.5: To show the CSD of a linear time-invariant system in the presence of

stationary occurrences of input delays/disturbances due to computer failures, we consider

a simple controlled process:

Xi(k + 1) = 1 1 .0 2 :ri(&) + 1.08x2(fc) + 3.5ui (&)

®2 (& + l) = 0.95x2(&) + 0 .5 ui(&) + 1.07u2(fc), (3.52)

where the coefficient matrices of a quadratic performance index are given as:

" 1 0 0 ’ ’ 5 0 ’

R'la? ■—) H-UU —
0 1 0 0 5

39

8J 2,
0>e

1
*E
£

4

3

2

1

0

0 1 1.5 20.5 2.5 3.53
xl

F ig u re 3.8: Control system deadlines of state trajectory 1 of Fig. 3.7 in the absence
of delay without terminal constraints.

N 3 4 5 6 7
d= 1 0.7537 0.8945 0.9659 1 . 0 0 2 1 1.0204
d — 0.9 0.7579 0.9985 1.1698 1.2922 1.3798

Table 3.4: Maximum magnitude of eigenvalues, |Ar

One can derive the optimal feedback control gain matrix F tha t stabilizes the controlled

process by solving a discrete Riccati equation as:

F =
3.1251 0.3090

-1.0791 0.5512

This feedback control changes the system eigenvalues from {0.95,11.02} to {0.0777,0.2101}.

We then derived deterministically the change of poles as a result of iteratively incrementing

N for the occurrence of the largest delay possible {p — qN — 0.045). The results are given

in Table 3.4, where the first case represents the perfect coverage (d = 1) and the second

case represents the presence of an input disturbance (d = 0.9 and p&u = —5).

The deterministic value of the CSD is D = 6Ta in the absence of input disturbances under

instant failure detection, whereas it decreases to D = 5TS with some (infrequent) input dis-

40

Input disturbance (Au)
-9 -8 -7 -6 -5 -4 -3 -2 -1

0.30O.SO

0.270.4S
0.240.40
0.210.35

S-0.30 0.18 <

0.15 S
■8

0.12 *p

3 0.25
Au p0.20

0.09

0.06

0.030.05
0.000.00

1 2 3 54 6 7 9a
Hard deadline [lb] (D)

F ig u re 3.9: Probability mass functions of Ait, which is given a priori , and D, which
is derived.

turbances. The pm f of the CSD is plotted in Fig. 3.9 along with the p m f of the magnitude

of input disturbances.

E x am p le 3.7.6: The CSD of a one-shot event model is derived for a double-integrator

system which was also used for a one-shot delay model in [56]. The state difference equation

of the discretized process with sampling rate, Ts = 0.01s, is:

x(k + 1) =
* 1 1 ' 0.5 ’

x(k) +
0 1 1

u(k). (3.53)

W ith the same (state/term inal) constaints and the same feedback control input as those in

[56], control system deadlines are deterministically derived in the absence (curve l)/presence

(curve 2: pAu = 10, curve 3: PAu = —10) of input disturbances, which are shown in

Fig. 3.10.

The p m f of control system deadlines at time T = 15TS is derived for a Gaussian prob-
. (A u - 1 0 1 2

ability density function of Air, qAu = 200 , and is given in Fig. 3.11. Since the

disturbance to the control input is significant, the CSD is likely to be small as shown in the

calculation except for D = 2 1 Ts, which is the CSD in the absence of input disturbances.

41

30

25

g , 20
a
a?a
£ 15
5•o
■E _ « 10s

free of ||
ird deadlinfe

for 2 Tor 3for 1<

- i , \ v K i

5 10 15 20 25 30 35 40 45 500

Time, k [ft]

F ig u re 3.10: Control system deadlines of one-shot event model in the ab­
sence/presence of input disturbances.

E x am p le 3.7.7: The CSD of a nonlinear system in the presence of stationary occur­

rence of delays is derived for a second-order system described by:

+ 1) = 3xi(A;) + x 2(fc) 2 - sat(2a: 2 + ti(k))

x 2(k + 1) = s inxi(k) — x 2(k) + u(k), (3.54)

where the sat function is defined as

+< \ \ p M - 1sat(p) = <
\ sign(p) \p\ > 1 .

Then, f [k, x(fc), u (k)] in Eq. (3.37) is equal to [2xi(A:) + x2(k)2 — sat(2® 2 -f- u(k)), sin x\(k) —

2x 2(k) + «(A:)]T. Control system deadlines around some operating points are given in Ta­

ble 3.5, for which the optimal feedback control inputs are calculated by a linearization

method, and local asymptotical stability around such operating points is examined by us­

ing the eigenvalues of linearized equations in the presence of random occurrence of feedback

delays (Lyapunov’s first method).

42

e ai

F ig u re 3.11: P m f of the CSD of one-shot event model when fj,&u = 10 and cau = 10.

(x i o , ® 2 o) (0 , 0) (tt, 0)
(f - °) (0 , 1) (0 , - 0 . 2 4)

D [T s] 5 2 3 3 7

T able 3.5: Control system deadlines around some operating points (u0 = 0).

E x am p le 3.7.8: As an example of the one-shot delay models for nonlinear control

systems, we consider the brachistochrone problem with an inequality constraint on the

admissible state space. Specifically, a particle is falling in a constant gravitational field g

for a fixed time t j with a given initial speed x3(t0) = £3 0 . Then, we wish to find a path

maximizing the final value of the horizontal coordinate x \ (t f) with unspecified final values

of vertical coordinate x 2(t f) and the velocity x3(tf). The continuous-time system dynamic

equations, which were treated in [13], are modified by using a certain sampling period Ts

to obtain the following difference equations:

^(fc + l) = x \ (k) + x3(k)cosu(k),

x2(k + l) = xi(k) + x 3(k)s inu(k)f

£3 (A: + 1) = x3(k) + gcosu(k),

£ 1 (0) = 0

®2(0) = 0

®3 (0) = 0.05, (3.55)

where u(k) is the control input to drive the particle to an optimal path at kT3(0 < k < 100),

and g is given by 0.02. The state constraint is described by the state variable inequality,

x 2(k) — 0.4®i(&) — 20 < 0, V&, which is converted to a difference equation by introducing a

43

dummy variable x4:

x4(k + 1) = x 4(k) + [a;2 (fc) - 0.4i;1 (A:) - 20]2 W(a:2(&) - 0.4si(A:) - 20), 0:4 (0) = 0

where W(g) = 0 if g < 0 and 1 if g > 0. The performance index is represented by a modified

cost function by including the effect of x 4(k j) as:

J = — x i (k f) + ^ S x^ (k f) k f = 100.
£d

The optimal control input minimizing J is derived by using the gradient method for mul­

tistage decision processes, where the Hamiltonian H and the adjoint equation are defined

by the system dynamic equation f and a new vector A:

H = \ T(I (+ l)f[x(jfe),u(fc),fc],

m = - Aw = S A(* + 1) ’

where the terminal condition on the adjoint equation is AT(kj) = [—1 ,0 ,0 ,5 z 4 (ft/)]. The

control input is updated by an iterative equation (for more detailed derivation of uopt(k),

see [54]):

uN+1(k) = uN(k) -f- AuN (k), where A uN(k) = —K (k) ®^—'. (3.56)
01l[fC j

The state trajectories during [0,100T3] are plotted in Fig. 3.12, where curve 1 is based on

an initial control input (it(fc) = f) and curve 2 being close to the optimal path is derived by

an optimal control input obtained with 11 iterations of Eq. (3.56) and curve 3 indicates a

path of the particle when a long controller-computer failure occurring at k — 50 (marked by

X). The control system deadlines along curve 2 in the presence of a long one-shot delay are

derived as a function of time index k, which is shown in Fig. 3.13. As the state gets closer

to the boundary of the constraint space, the CSD gets reduced significantly (61 < k < 75).

When it leaves the boundary by changing the direction, the system (i.e., a falling particle)

instantly enters the non-critical region (76 < k) — which is free of control system deadlines

— since the control inputs from th a t time do not drive the particle close to the constraint

space.

3.8 Application of CSD

The hard-deadline information allows us to deduce the timing constraints of the con­

trolled process. It can be used to evaluate the fault-tolerance requirements of a real-time

44

10

20

30
3

40

50

60

70
0 10 20 30 40 50 60 70 80 90

xi(k)

F ig u re 3.12: State trajectories of the brachistochrone problem.

50

45

40

35£
Q 3 0

a
§ 25s
« 20
1as 1 5

free of
hard

deadline

10

0 10 20 30 40 50 60 70 80 90 100
Time, k [Rs]

F ig u re 3.13: The CSD along the optimal path as a function of time.

45

H/W
Design

S/W
Design

Hard Deadline

Evaluation
(Reliability)

Controlled Process:

System Dynamics

Controller Computer:

Control Algorithms

Environment:
Fault behaviors

F ig u re 3.14: The source and application of hard-deadline information in a real-time
control system.

control system in terms of its timing constraints. Fig. 3.14 shows the source and appli­

cation of hard-deadline information. As we shall see, this deadline information about the

controlled process is quite useful for the design and evaluation of a controller computer.

When designing a controller computer, one has to make many design decisions in the

context of controlled processes th a t are characterized by their control system deadlines and

cost functions [59], including:

• hardware design issues dealing with the number of processors and the type of inter­

connection network to be used, and how to synchronize the processors,

• software design issues related to the implementation of control algorithms, task as­

signment and scheduling, redundancy management, error detection and recovery.

Since the timing constraints of the controlled processes are manifested as control system

deadlines, the deadline information is also essential to evaluate the system reliability, an

important yardstick to measure the goodness of the controller computer.

To illustrate the general idea of applying the knowledge of the deadline information

(i.e., system inertia), we consider two specific examples; (i) a design example tha t optimizes

time-redundancy recovery methods such as retry or rollback, and (ii) an evaluation example

tha t assesses the system reliability.

46

E x am p le 3.8.1: When an error is detected the simplest recovery method is to re­

execute the previous instruction, called simply retry, which is effective in case of immediate

error detection [34, 38]. When retrying an instruction, one must determine a retry period,

which is long enough for the present fault (s) to die away. If the retry does not succeed

in recovering from the error, we have to use an alternative recovery method like rollback

or restart. So, the retry period must also be short enough not to miss the deadline by

considering the amount of time to be taken by the subsequent recovery method in case

of an unsuccessful retry. Let Tt, Ta, and t r be the “nominal” task execution time in the

absence of error, the actual task execution time, and the retry period, respectively. Then,

one can obtain a set of samples of Ta:

Ta € {Tt,Tt + t —, (T -f T, + tr) + Tt, (T + Ta + tr) + 1) + — ,2 (T + Ts + tr) -)- Tt, • • •}.

where T,, T , and j - are the resetting time, the mean occurrence time of an error, and the

mean active duration of a fault. Since Ta has discrete values, the probability mass function

(p m f) of T„ is:

/ £ = Prob[Ta = k (T + T, + t r) + Tt + 6y] , 0 < k < oo, £<={0,1}

= pke+s(Tt)(1 - p ,(tr))k(1 - pe(Tt))l ' epa(try , (3.57)

where pe(Tt) and ps(tr) are the probability of occurrence of an error during Tt (i.e., af­

ter restart) and the probability of a successful retry with a retry period tr .A Then, the

probability of missing a CSD is:
f OO

Pmh(Tu D) = I £ f x S x)fD(y)dy, (3.58)
J° k>[(D-T,)/(T+T.)i

where f D(y) is the probability density function of the CSD. When the CSD is deterministic,

f D(y) is a delta function and the corresponding pmh(Tt,D) becomes simpler. Consequently,

the optimal retry period can be determined by minimizing pmh(Tt,D) with respect to tr,

using the derived hard-deadline information /n(t/).

Similarly, the hard-deadline information is also useful to rollback recovery, where check­

points must be placed optimally. The checkpoints are usually placed so as to minimize

the mean execution cost [69]. However, the mean cost must be minimized while keeping

the probability of dynamic failure — the probability of missing a deadline [59] — below

a prespecified level in a real-time control system [62]. The hard-deadline information is

necessary to compute the probability of dynamic failure, which can, in turn, be used for

4See [27] for the derivation of pe(Tt) and p , (t T) in a TM R system.

47

the optimal placement of checkpoints.

E x am p le 3.8.2: We consider a simple example of a triple modular redundant (TMR)

controller computer in which three identical processors execute the same set of cyclic tasks.

The TMR controller computer updates, once every T, seconds or every sampling period,

the control input to the controlled process (plant). That is, the period of each cyclic task

is equal to Ts. The input of the cyclic task is a discretized output of the plant and the

output of the cyclic task will be used to control the plant during the next sampling interval.

The output of the TMR controller is correct for each task only if at least two of the three

processors in the TMR controller produce correct outputs. A TMR failure is said to occur

if more than one processor in the TMR controller fail during Ts. Thus, the output of the

TMR controller would not be correctly updated in case of a TMR failure. The condition for

a system (dynamic) failure resulting from controller-computer (TMR) failures5 is derived

from the CSD, which is the allowable maximum duration of TMR failure(s). In other

words, this condition gives us the knowledge about the controlled system’s inertia against

controller-computer failures.

More than 90% of computer failures have been reported to be transient, especially with

short active durations [6 6]. Thus, the controller computer may recover from most failures

in a few sampling intervals, and it can correctly update the control input without causing

any dynamic failure, if the active duration of controller-computer failure is smaller than the

CSD.

Suppose the CSD derived from the controlled process is three sampling periods and a

TMR controller computer is used. That is, no dynamic failure occurs if the faults inducing

computer failures disappear (or are recovered by a fault-tolerance mechanism) within three

sampling periods. Then, the reliability model for this controller computer (Fig. 3.15) is

built by extending a Markov chain model whose parameters are to be estimated at a given

level of confidence from empirical data. The additional states account for the system

inertia, i.e., a dynamic failure results from only three consecutive erroneous (missing the

update of) outputs of the controller computer or for a period of 3Ts, not immediately from

one or two erroneous outputs. W ithout the information of CSD, one can over-estimate the

probability of a system failure under the assumption th a t the system has no delay-tolerance,

5 As mentioned earlier, the other sources of system failure(s), such as failures in actuators or sensors
or mechanical parts and failures of A /D and D /A converters, are not considered in this chapter, because
the main intent is to analyze the coupling between a controlled process and its (fault-tolerant) controller
computer.

48

P l3

P23

P32 (

P32 /

S3

54

5s

Si: No failure
S2: One processor with failure(s)
S 3 : Two or three processors with failure(s)

= One TMR failure
S 4 : Two sequential TMR failures
>?5 : Dynamic failure

F ig u re 3.15: A Markov reliability model with knowledge of the system inertia,

i.e., one incorrect output can lead to a dynamic failure.

3.9 Conclusion

In this chapter, we derived CSDs for linear time-invariant systems in the presence of the

computation-time delay and/or the control input disturbances due to a controller-computer

failure.

First, when the occurrence of computer failures is stationary or represented by an ap­

propriate probability density function, the CSD is obtained as an integer multiple of the

sampling period by using the (asymptotic) stability condition for a modified state equation.

Second, a heuristic algorithm is proposed to iteratively compute the CSD as a function of

the system state and time by testing for the given (or derived) constraints of control inputs

and states.

We presented several examples to demonstrate the derivation of the CSD and its appli­

cation for the design and evaluation of a fault-tolerant controller computer, which will also

be treated in detail in Chapter 6 .

CHAPTER 4

EVALUATION AND USE OF FAULT-TOLERANCE

LATENCIES

4.1 Introduction

In this chapter, we propose to evaluate FTL analytically, covering all practical fault-

tolerance mechanisms based on the tradeoff between temporal and spatial redundancy. We

first investigate the times taken for all individual fault-/error- handling stages. Then, we

tailor these results appropriately to represent all possible fault-/error- handling scenarios

or policies. (A policy/scenario is composed of sequential fault-/error- handling stages.)

Our analysis is based on the assumption tha t the latencies of fault-handling stages are

stochastic, depending upon the random characteristics of fault/error detection (or a random

error latency) and fault behaviors; the active duration of a fault affects significantly the

success/failure of a spatial-redundancy method (i.e., instruction retry or program rollback).

Our results — th a t focus on a sequence of error-/failure- handling stages — can also be

used in those well-developed reliability or dependability models [8 , 14, 19].

From the evaluated FTL, one can obtain timing information on the controller computer.

That is, the FTL reveals an increase of the execution time of a task in the presence of

faults, which in turn enables one to estimate system reliability with timing information on

the controlled process (i.e., control system deadlines derived in Chapter 3). Thus, the FTL

is to be used as one of design criteria for a fault-tolerant controller computer. In other

words, a fault-tolerance policy should be selected and implemented to recover completely

from faults/failures within the time limit (deadline) of the underlying controlled process.

In Section 4.2, general fault-tolerance features are described by classifying fault-tolerance

mechanisms and considering the tradeoff between temporal and spatial redundancy. Section

4.3 examines the effects on the FTL of individual fault-handling stages from the occurrence

49

50

of an error to its recovery, and combines these results to evaluate the FTL of a general

fault-handling policy covering all possible fault-handling stages. In Section 4.4 we argue for

the importance of FTL information to the design and validation of fault-tolerant controller

computers. We present there an example tha t selects an appropriate fault-handling policy

based on the FTL information. The chapter concludes with some remarks in Section 4.5.

4.2 Generic Fault-Tolerance Features

Computer system failures occur due to errors, which are deviations from the program-

specified behaviors. An error is the manifestation of a fault resulting from component

defects, environmental interferences, operator or design mistakes. It is desirable to select

an appropriate policy so as to continue the program-specified functions even in the presence

of faults.

Fault-tolerance is achieved via spatial and/or temporal redundancy, i.e., systematic and

balanced selection of protective redundancy among hardware (additional components), soft­

ware (special programs), and time (repetition of operations). Thus, design methodologies

for fault-tolerant computers are characterized by the tradeoff between spatial and tempo­

ral redundancy. Using these two types of redundancy, a fault-tolerant computer must go

through as many as ten stages in response to the occurrence of an error, including fault lo­

cation, fault confinement, fault masking, retry, rollback, diagnosis, recovery, restart, repair

and reintegration. The design of fault-tolerant computers involves selection of an appropri­

ate failure-handling policy that combines some or all of these stages.

Spatial redundancy is classified into two categories: static and dynamic. Static redun­

dancy, also known as masking redundancy, can mask erroneous results without any delay

as long as a majority of participant modules (processors or other H /W components) are

nonfaulty. However, the associated spatial cost is high, e.g., three (four) modules are re­

quired to mask a non-Byzantine (Byzantine) failure in a TMR (QMR) system. The time

overhead of managing redundant modules — for example, voting and synchronization —

is also considerable for static redundancy. Dynamic redundancy is implemented with two

sequential actions: fault/error detection and recovery of the contaminated computation. In

distributed systems, upon detection of an error it is necessary to locate the faulty module

before replacing it with a nonfaulty spare. Although this approach may be more flexible

and less expensive than static redundancy, its cost may still be high due to the possibility

51

Space redundancy
(+overhead)

P ■*/ as n increases.

l‘‘V f i t / k (n-modular redundancy)
\ y , { ' \ , * \ irt w. -li* • I1

1.Detection scheme
(without recovery)

3.Static/Hybrid redundancy

2.Dynamic/Time redundancy

(restart (including the case of replacement))

(rollback)

(retry)

Time redundancy (+overhead)

F ig u re 4.1: Tradeoff between temporal and spatial redundancy for various fault-
tolerance mechanisms.

of hastily eliminating modules with transient faults1 and it may also increase the recov­

ery time because of its dependence on time-consuming fault-handling stages such as fault

diagnosis, system reconfiguration, and resumption of execution.

To overcome the above disadvantages, temporal redundancy can be used by simply

repeating or acknowledging machine operations at various levels: micro-operation/single

instruction (retry), program segment (rollback), or the entire program (restart). In fact,

one of these recovery schemes is also needed to resume program execution in case of dy­

namic redundancy. This temporal-redundancy method requires high coverage of fault/error

detection so as to invoke the recovery action quickly. (The same is also required for dynamic

redundancy.) The main advantages of using temporal redundancy are not only its low spa­

tial cost but also its low recovery time for transient faults. However, the time spent for

this method would have been wasted in case of permanent or long-lasting transient faults,

which may increase the probability of dynamic failure.

The relations between the temporal and spatial redundancy required (and the associated

redundancy-management overhead) are shown in Fig. 4.1 for several fault-tolerance mech­

anisms. In case of time-critical applications, an appropriate fault-tolerance mechanism can

'N ote that m oie than 90% of faults are known to be non-permanent; as few as 2% of field failures are
caused by permanent faults [46].

52

be found from the top left of Fig. 4.1, i.e., paying a small amount of temporal redundancy

at the cost of spatial redundancy like TV-modular redundancy. When the timing constraint

imposed by the controlled process is not tight, we can save the cost of spatial redundancy

by increasing temporal redundancy (i.e., a larger time for retry, rollback, or restart recov­

ery), which enhances the system’s ability in recovering from more transient faults before

the faulty modules are replaced with spares. Increasing temporal redundancy, however,

increases the possibility of missing task deadlines or dynamic failure.

4.3 Evaulation of FTL

The recovery process that begins from the occurrence of an error consists of several

stages, some of which depend on each other, and the FTL is defined as the time spent for

the entire recovery process. Thus, all the stages necessary to handle faults/failures upon

occurrence of an error should be studied and their effects on the FTL must be analyzed.

In a specific application context, the recovery times were estimated in [4, 53] by de­

composing the fault recovery process into stages and analyzing the effects of various fault-

tolerance features on the FTL. We also use a similar approach to the problem of evaluating

the FTL, but for more general fault-tolerance strategies. For completeness, these approaches

are summarized below.

4.3.1 FTLs of a Pooled-Spares System

In [53], the FTL was estimated for a pooled-spares system implemented in the Dy­

namic Reconfiguration Demonstration System (DRDS) Program . 2 Phase 1 of the DRDS

Program is reported to have shown potential benefits of the dynamic run-time reconfigu­

ration implied by the pooled-spares approach, such as increased functional availability and

flexibility, higher reliability, and less complexity than classical TV-modular redundancy.

This work includes the analysis of FTL and has indicated tha t the pooled-spares ap­

proach can be used for many contemporary applications. The FTL was estimated for the

demonstration system and the near-future (5-10 years from today) systems under the as­

sumption that each fault-handling stage — fault detection/isolation, reconfiguration, and

recovery =— requires time within a deterministic range. In other words, (i) an upper bound of

detection/isolation time was determined by using a fail-fast approach with health messages

2The DRDS Program is being developed to prove the feasibility of pooled spares for next generation
weapon system s by Texas Instruments (TI) Incorporated under a contract from the Naval Air Warfare
Center, Indianapolis, IN.

53

and the system is assumed to use a combination of continuous Built-In-Test (BIT), periodic

BIT, and application-level detection/isolation methods, (ii) the reconfiguration times were

actually measured on the demonstration system with cold backups for a specific load of size

8 K 16-bit words, and (iii) recovery of the application code was performed via application

checkpointing and rollback, and the required time was approximated to be a single check­

point period. The expected reduction of FTL in the next 5-10 years was also estimated by

considering such improvement factors as throughput and memory capacities.

In another paper dealing with the pooled-spares system [4], various fault-tolerance tech­

niques covering both software and hardware issues were addressed by focusing on their

latencies. This work also analyzed the FTL in the pooled-spares system based on the

results of the DRDS Program in [53], and included part of the fault-masking method of

iV-modular redundancy. Possible fault detection/isolation, reconfiguration, recovery, and

fault-masking features were considered to examine their effects on the FTL while consid­

ering the CPU speed and the relative rates of fault occurrences in individual components

such as memory, I/O , buses, and processors.

Memory or data-path parity checking, error-correcting memory, checksum, reasonable­

ness checks, health messages, data-type checks, watchdog timer, and periodic BIT were given

as candidate fault detection/isolation mechanisms, while cold, warm, and hot spares were

considered for classifying the system reconfiguration with the estimated data of the down­

load and initialization delays depending upon the program size, bus speed, and CPU speed.

Several characteristics of checkpointing such as consistency, independence, programmer-

transparency, and conversation were introduced with the methods of software re-execution

and rollback, where the time required for this recovery procedure was assumed to be a single

checkpoint period as in [53].

Finally, the examples to select appropriate fault-handling policies to meet the given FTL

requirement were presented for the cases of using cold, warm, and hot spares, illustrating

how the analysis of FTL is applied.

4.3.2 The FTL of General Fault-Tolerance Mechanisms

Fig. 4.2 depicts all possible scenarios from an error occurrence to its recovery, cover­

ing static/dynamic redundancy, temporal-redundancy methods, and combinations thereof.

Each path represents one fault-handling scenario which may occur as a result of selecting a

fault-handling policy corresponding to the path and the success/fail result of the selected

method, depending upon the fault behavior when a temporal-redundancy method is applied.

54

c o in c id e n t Nf>(n-l)/2

h y b rid
(s ta tic)

s ig n a l leve l
o n e (s in g le)

fa u lt

d y n a m ic

su c c e ssfu l
re c o v e ry

e r r o r
d e te c te d d y n am ic

fu n c tio n lev e l

c o in c id e n t
(mfffie)

h y b rid
(s ta tic)

re try

ro llb a c k

re s ta r t

e r ro r m ask ed

re c o v e ry o f m a jo rity

re c o v e ry o f m ajo rity

d iag n o s is
(fa u lt lo ca tio n &

id en tif ic a tio n)
s w itch o u t
w ith a s p a re

(re c o n f ig u ra tio n)

F ig u re 4.2: All possible failure-handling scenarios.

For example, an unsuccessful retry implies another error detection, which may trigger a sec­

ond retry or rollback or restart. As shown in Fig. 4.2, fault-handing processes are classified

by fault/error detection and recovery mechanisms.

First, we divide the fault-handing process into several stages, and evaluate the time spent

on each individual stage of Fig. 4.2. When a temporal-redundancy method such as retry or

rollback is used upon detection of an error, we need such stages as fault diagnosis, system re­

configuration, and resumption of execution only after the temporal-redundancy method be­

came unsuccessful in recovering from the fault. Whether the temporal-redundancy method

is successful or not depends upon the policy used and the underlying fault behavior. Thus,

we have to represent the effects of certain stages on the FTL in probabilistic terms.

F a u l t /E r ro r D e tec tio n P ro cess: The time interval between the occurrence of a

fault and the detection of an error caused by the fault is divided into two parts by the

time of error occurrence: fault latency for the time interval from the fault occurrence to

the error generation, and error latency for the time interval from the error generation to

the error detection. The distribution of fault latency was estimated in [61] by using the

Gamma and Weibull distributions. Since the FTL begins with the occurrence of an error,

we are mainly interested in the error latency which depends upon the active duration of a

fault and the underlying detection mechanism. Error detection mechanisms are classified

55

into (i) signal-level detection mechanisms, (ii) function-level detection mechanisms, and (iii)

periodic diagnostics.

Let t ei and Fei(t) be the error latency and its cumulative probability distribution, re­

spectively. Several well-known pd f s, such as Weibull, Gamma, and lognormal distributions,

were examined in [16] to model the error latency. If At,- is the mean execution time of

an instruction, Fei(A t{) « 1 for a high-coverage signal-level detection mechanism. For a

function-level detection mechanism, t ei depends on the detection mechanism used and the

executing task. The coverage of the function-level detection is generally lower than that

of the signal-level detection (and significantly less than one), and its error latency is thus

larger than the signal-level detection’s. We will therefore use the mean error latency of the

function-level detection which is much larger than the signal-level detection’s for the ex­

amples presented in Section 4.4. Although the periodic diagnostic whose coverage depends

on both its period and duration is also a popular method to locate faults, only the first

two types of detection mechanisms are considered in our analysis, because the results thus

obtained can be extended to the case of periodic diagnostic.

F au lt M ask ing (S ta t ic /H y b r id R ed u n d an cy): This method filters out the effects

of faulty modules as long as the number of faulty modules is not larger than for n-

modular redundancy. The method induces the time overhead of redundancy management

such as synchronization and voting/interactive consistency techniques even in the absence

of faults, which increases with the degree of redundancy [35]. Although the time required

for this type of recovery is almost zero it induces high spatial costs; when the number

of modules available is limited, this method is not as reliable as the dynamic-redundancy

method [53] and must be equipped with separate detection and recovery mechanisms for

ultra-reliable systems [9].

A hazardous environment, like the one resulting from EMI, will affect the entire system

and induce coincident, or common-source, faults in the multiple modules of an n-modular

redundant system. If the number of faulty modules is larger than in such a harsh

environment, then the recovery time, which also depends upon the adopted temporal- or

spatial- redundancy method, is no longer negligible. We do not treat such a case because

of the similarity of its recovery process to the case of dynamic redundancy.

F au lt D iagnosis: When a function-level detection mechanism is used, upon detection

56

of an error it is necessary to locate the faulty module3 and/or to determine certain fault

behaviors. Let td and pd be the time spent for fault diagnosis and the probability of locating

the faulty module (i.e., diagnostic coverage). Then, there is a tradeoff between td and pdl

which is usually difficult to quantify. The accuracy of diagnosis, which increases with the

diagnosis time, affects greatly the results of the subsequent recovery and hence the FTL.

Note that the time, td, taken for diagnosis is likely to be deterministic, because it is usually

programmed a priori. We assume that td is sufficiently large to locate faulty modules, that

is, pd « 1 .

S y stem R econfiguration : When a fault is located and identified as a permanent

fault, the faulty module must be isolated from the rest of the system by replacing it with

a spare module or switching it off without replacement (thus allowing for graceful degrada­

tion). This process is necessary for both dynamic and hybrid redundancy. Specific hardware

like the Configuration Control Unit (CCU) in FTMP [23], may be dedicated to handling

system reconfiguration. This process (of using cold spares) generally consists of (i) switching

power and bus connections, (ii) running built-in-test (BIT) on the selected spare module,

(iii) loading programs and data, (iv) initializing the software. When warm spares are used,

steps (i) and (ii) are not needed. The time taken for this process is also likely to be deter­

ministic, which depends upon program size, system throughput, processor speed, and bus

bandwidth. Let tr be the time spent for system reconfiguration. We assume that tr lies

in a deterministic interval, trl < tr < fr2, where tri and tr2 are determined by the type

of reconfiguration and several other factors described above. In fact, these values can be

determined experimentally as was done in [4, 53].

R e try : This is the simplest recovery method using temporal redundancy, which re­

peats the execution of a micro-operation or instruction. To be effective, this method requires

immediate error detection, i.e., almost perfect coverage of a signal-level detection mecha­

nism yielding an error latency smaller than the execution time of a micro-operation or an

instruction (Fei(A ti) « 1). The retry period, which is defined as a continuous-time interval

or the number of re-executions, is the maximum allowable time for retry. In other words, a

retry must be terminated when the retry period expires, regardless whether it is successful

or not. Let frp, Za, and Fa(t) be the retry period, the active duration of a fault, and the

probability distribution of the active duration, respectively. The result of a retry depends

3in distributed systems

57

upon trp and ta. When the retry is successful, the time it took is certainly smaller than

the retry period and is equal to the fault duration, ta. However, it is equal to the retry

period, trp, when the retry became unsuccessful, and an alternative recovery method will

be followed, thus increasing the FTL.

R ollback w ith C heckpo in ts: The in quality teJ > A t{ is allowed in this method, i.e.,

Fei(At{) < 1. When an error is detected by a signal- or function- level detection mecha­

nism, this method rolls back past the contaminated part of a program following a system

reconfiguration in case of dynamic redundancy. It is invoked as the first step of recovery

after an unsuccessful retry. The time taken for the rollback process is dependent upon the

error latency, the inter-checkpoint interval, the number of checkpoints maintained, and the

way checkpoints are selected for rollback. Let A t e and N e be the inter-checkpoint interval

and the maximum number of checkpoints necessary for rollback recovery, respectively. For

simplicity we assume that the inter-checkpoint intervals are simply equidistant. (It is not

difficult to extend our method to the case of non equidistant checkpoints, though the nota­

tion will become more complex.) When the rollback is successful, the time taken to restore

the contaminated segment of a program is larger than the error latency but smaller than

the error latency plus one inter-checkpoint interval; tha t is, equal to Afc, where [a:] is

the smallest integer larger than x. If the fault is active during the entire period of rollback

or the contaminated part is larger than the re-executed part of the program, the rollback

recovery will fail and the corresponding “wasted” time is equal to N cA t c.

R e s ta r t : If too much of the program is contaminated by an error due to a long error

latency, its execution is repeated from the beginning. The time (computation loss) taken

for the restart process depends upon (i) the time to detect an error and (ii) the types of

restart (i.e., hot, warm, and cold restarts) following a system reconfiguration. We use t e

and Fe(t) to denote the error-detection time measured from the beginning of the program

execution and the probability distribution of error occurrences in a program (determined

by the pdf of fault occurrence), respectively.

C o m b in a tio n o f F a ilu re-H and ling S tages: As mentioned earlier, all failure-

handling scenarios are described by the paths from error detection to the corresponding

recovery in Fig. 4.2. It is clear th a t a fault-handling policy depends on several mutually

exclusive events, where one event represents a scenario and its occurrence depends upon

58

fault behaviors and the policy parameters. The probability of the occurrence of each event

can thus be calculated by using the pdf of fault active duration (Fa) and the policy param­

eters such as A t e, N c, or trp. The FTL of a certain fault-handling policy is thus obtained

by using the probabilities of all possible events/scenarios and the times spent for those

events/scenarios. Note that the time spent for each scenario is obtained by adding the

times spent for all fault-handling stages on the path representing the scenario. Likewise we

can obtain the probability distribution of a fault-handling policy (F)) as:

(4 .i)
1 = 1

where S,- indicates the i-th scenario of a fault-handling policy, and P(5,-) and n are the

probability of the occurrence of S,- and the number of all possible scenarios in the selected

fault-handling policy, respectively. Eq. (4.1) describes F}(t) as a weighted sum of condi­

tional distribution functions. Each S,’s conditional distribution function is computed by

convolving the probability distribution functions of the times spent for all the stages on the

corresponding path or fault-handling policy. The times spent for all possible fault-handling

stages are described as deterministic values or random variables with certain probability

distribution functions. We will investigate each fault-handling stage individually.

Now, we characterize the fault-handling process into four policies according to the types

of error-detection mechanisms and recovery methods combined with temporal and spatial

redundancy; (i) restart after reconfiguration, (ii) rollback, (iii) retry, and (iv) retry then

rollback. These cover all possible dynamic- and/or temporal- redundancy methods. Specif­

ically, we can describe the fault-handling policies as follows. (Note that the number of all

possible scenarios in each fault-handling policy is equal to n.)

• Policy 1 (n. = 2): Si = successful restart after diagnosis and reconfiguration, S2 =

unsuccessful restart due to incorrect diagnosis then repeat.

• Policy 2 (n = 2): Si = successful rollback after diagnosis, S2 = unsuccessful rollback

then restart after diagnosis and reconfiguration.

• Policy 3 (n = 2): Si = successful retry, S2 = unsuccessful retry then restart after

reconfiguration.

• Policy 4 (n = 3): Si = successful retry, S2 = unsuccessful retry and successful rollback,

S3 = unsuccessful retry and unsuccessful rollback then restart after reconfiguration.

While signal-level detection mechanisms can capture the faulty module immediately upon

occurrence of an error and can thus invoke retry in Policies 3 and 4, function-level detection

59

mechanisms — that cause a nonzero error latency and thus require the diagnosis process to

locate the faulty module — may be used for Policies 1 and 2. The probabilities of scenario

occurrences and the (conditional) distribution functions of the above scenarios are derived

by using the variables defined earlier for individual fault-handling stages.

For simplicity, we do not consider the occurrence of an error/failure due to a second

fault during the recovery from the first fault. If we need to consider the effects of such an

error/failure, we cannot derive a closed-form distribution function of FTL, but can instead

derive the moments of FTL by using recursive equations, which can then be used to derive

the distribution function of FTL numerically.

Policy 1 is a simple form of dynamic redundancy, i.e., to restart the task from the

beginning after identifying and replacing the faulty module with a nonfaulty spare. The

first scenario is a successful restart with correct diagnosis. Thus, the probability of its

occurrence is equal to that of successful diagnosis (Pd), and the time (t/) spent on this

scenario becomes:

tj = t el + td + tr + te,

where td and tr are deterministic variables, and t ei is a random variable with the distribution

function, Fet. te is also a random variable with a certain conditional distribution function

given tha t an error had occurred during the execution of a task, i.e., Fe(t\an error occurred).

Let t = ti —td — t r, then:

P{Si) = pd,

.F/(t|<S'i) = Fei(t) * Fe(t\an error occurred). (4-2)

Similarly, P (S2) and Fi(t\S2) are derived for the second scenario. Since an unsuccessful

restart (of the second scenario) wastes more time than the first scenario by the amount of

the incorrect-diagnosis time plus the (error) latency for a second error detection due to this

incorrect diagnosis, is changed to:

tl = tel + td + tei + td + tr + te — 2tel + 2 td + tr + te.

Let t = ti — 2td — tr , then:

P (S 2) = 1 - Pd,

P}(i|iS2) = Fet(^-) * Fe(t\an error occurred). (4.3)

Policies 2 and 3 use rollback with diagnosis and retry upon error detection, respectively.

Reconfiguration is also called for if the temporal-redundancy approach became unsuccessful.

60

Since the first scenario of Policy 2 is a successful rollback, the probability of its occurrence

depends on the probability of successful diagnosis (pd), the parameters of rollback (A tc and

JVc), the error latency (tej), and the fault active duration (ta). For a successful rollback,

(i) a faulty module must be identified with correct diagnosis, (ii) tej must be smaller than

N cA t e, which is the maximum allowable time for rollback, and (iii) the fault must disappear

within N cA t c. Let pt be the percentage of transient faults, then:

P (S i) = P t P d F a (N c A t c) F e l (N c A t c) . (4.4)

The time spent for this case is simply obtained as:

= tei + U + A te.

Let t = ti — td, then:

= (4-5)

where Fm is a cumulative probability mass function for m = |_^-J. The probability of the

second scenario being exclusive of the first one is equal to 1 — P(Si):

P (S 2) = 1 - ptpdFa(N cA t c)Fel(NcA t c). (4.6)

The time spent for this scenario is increased to:

f/ = iei 4* td 4* N cA t e + td + tr + te — tef + 2td + N cA tc + tr + t e.

Let t = ti — 2td — N cA tc — t r, then:

-FiC^S^) = Fei(t) * Fe(t\an error occurred). (4-7)

For Policy 3 which does not require fault diagnosis due to the assumed immediate

and correct detection of errors with signal-level detection mechanisms, the probabilities of

scenario occurrences and distribution functions are derived similarly to Policy 2. For a

successful retry, the error must be detected before contaminating the result of executing

the instruction tha t will be retried (At,-) and the fault must become inactive within trp, if

the time spent is t el + ta. Thus,

P (5 i) = ptFa(trp)Fe{(Ati),

F M S J = (4.8)

When a retry is unsuccessful, the time spent for this becomes:

— f e l + ^ r p + f r + f e -

61

Let t = ti —trp — t r, then:

P{S2) = 1 - p tF a i t ^ F ^ A t i) ,

Fi(t\S2) = Fe{(t) * Fe(t\an error occurred). (4.9)

Policy 4 has three scenarios whose probabilities and distribution functions are obtained

by combining those of Policies 2 and 3. The first scenario is a successful retry, for which

P (S i) and .F'i(fl.S'i) are equal to those of the first scenario in Policy 3 (i.e., Eq. (4.8)). The

second scenario is a successful rollback following an unsuccessful retry. Thus, P (S 2) and

Fi(t\S2) can be obtained by modifying Eqs. (4.4) and (4.5) to include the effects of an

unsuccessful retry. Let t = tt — trp, then:

P (S 2) = pt[Fa(N cA t c)Fei(NcA t c) — Fa(trp)Fei(Ati)\,

F f f lS ,) = (4.10)

The third scenario is to restart with reconfiguration following an unsuccessful retry then

rollback when the time spent is t\ = tel-\-trp-\-NcA te+ tr+ te. T hus,iff = t, — trp — N eA t e—tr

then:

P(S3) = l - p tFa(N cAtc)Fel(N cA te),

F,(t\Sa) = Fei(t) * Fe(t\an error occurred). (4.11)

W ith these derived probabilities and conditional distribution functions, we can compute

the probability distribution of FTL for each policy from Eq. (4.1).

4.4 Application of FTL

A real-time control system is composed of a controlled process/plant, a controller com­

puters, and an environment, all of which work synergistically. A control system does not

generally fail instantaneously upon occurrence of a controller failure. Instead, for a cer­

tain duration the system stays in a safe/stable region or in the admissible state space even

without updating the control input from the controller computer. However, a serious degra­

dation of system performance or catastrophe called a dynamic failure (or system failure),

occurs if the duration of missing the update (or incorrect update) of the control input due

to malfunctioning of the controller computer exceeds the CSD [59]. The CSD represents

system inertia/resilience against a dynamic failure, which can be derived experimentally

62

or analytically using the state dynamic equations of the controlled process, the informa­

tion on fault behaviors involving environmental characteristics (such as electro-magnetic

interferences), and the control algorithms programmed in the controller computers [56].

When an error/failure occurs in a controller computer, the error must be recovered

within a certain period, called the Application Required Latency (ARL) [53], in order to

avoid a dynamic failure. Roark et al. [53] presented several empirical examples of ARL

for flight control, missile guidance, air data system, automatic tracking and recognition

applications. It is important to note that one can derive the ARL analytically using the

hard-deadline information [56], because the sum of ARL and the minimum time to execute

the remaining control task to generate a correct control input is equal to the system’s

deadline. Using this information about the ARL/deadline of the controlled process and the

FTL of the controller computer, one can select (or design) an appropriate fault-handling

policy by making a tradeoff between temporal and spatial redundancy while satisfying the

strict timing constraint, FTL<ARL. One can also estimate the system’s ability of meeting

the timing constraint in the presence of controller-computer failures, which is characterized

by the probability of no dynamic failure using the evaluated ARL and FTL.

We now present an example to demonstrate the usefulness of the evaluated FTL. Con­

sider a pooled-spares system which consists of multiple modules connected to a backplane.

The system consists of power supplies, input/output modules, and a set of identical data

processing modules, a subset of which are assigned to processing tasks. The remaining

modules can be used as spares in case of an error/failure. Let the basic time unit be one

millisecond, and let the task execution time in the absence of error /failure and the mean ex­

ecution time of one instruction be given as T = 50 (= 0.05sec) and At,- = 0.002 (= 2fisec),

respectively. The error latency is assumed to follow an exponential distribution with mean

12 and 0.002 for function- and signal- level detection mechanisms, respectively. The fault

occurrence and duration are also governed by exponential distributions, where the mean

value of active duration is 0.5, and the percentage of transient faults (p ,) is about 0.9. Then,

given tha t an error occurred during T, the occurrence time, te, is uniformly distributed over

T. The diagnosis time, td, is 50, which is assumed to yield coverage pd = 0.95. When cold

spares are used, it is assumed to take 500 units of time for system reconfiguration. We

also assume that this value can be reduced to 100 by using warm spares. When applying

rollback recovery, we set A t c = 5 and N c = 4, whereas the retry period, t rp, is set to 1.

Under these conditions, the probability distribution functions of FTL are evaluated for the

four representative policies by using the method developed in Section 4.3. These functions

63

T

•A-
0.8

0.6

0.4

policy 1

policy 2

policy 3
policy 4

0.2

10 30 50 70 90 300 400 500 600 700

Fault-Tolerance Latency (FTL) [msec]

F ig u re 4.3: Probability distribution functions (PDF) of FTL with cold spares.

are plotted in Fig. 4.3.

From the above evaluations of FTL, one can conclude tha t Policies 1 and 2 are acceptable

only when thd > 14T(= 700 = 0.7sec). While the FTL of Policy 1 is distributed around

12T(= 600) with a small variance, Policy 2 has a wide range bounded by 14T, indicating

tha t Policy 2 is less likely than Policy 1 to violate the timing constraint, FTL<ARL, under

the above chosen conditions. Policies .3 and 4 that use retry have better distributions as

compared to Policies 1 and 2, which satisfy the constraint t^d > 12T. However, to be

effective, retry usually requires dedicated hardware and immediate error detection. (Note

that the mean error latency of Policies 3 and 4 in Fig. 4.3 is 0.002.)

Fig. 4.4 plots the FTL while varying the policy parameters. We adopt a more accurate

diagnosis process with pd = 0.97, and change rollback and retry policies to N c = 5 and

t rp — 2, respectively. The error-detection mechanisms are also improved to decrease the

error latencies to 10 and 0.001 for both function- and signal- level mechanisms. In this case,

the mean values of FTL become smaller, but the upper bounds of FTL are not changed.

Thus, we can draw the same conclusion as Fig. 4.3 in selecting an appropriate fault-handling

policy.

We also consider different fault parameters: pt and the mean value of active duration

are changed to 0.95 and 0.25, respectively. Since the temporal-redundancy approaches get

64

r

0.8

0.6 -

0.4

policy 1
policy 2

policy 3
policy 4

0.2

- * ---------XX -K- l - M L*-------------L * —

10 35 60 85 110300

Fault-Tolerance Latency (FTL) [msec]

F ig u re 4.4: PDFs of the FTLs with policy parameters different from those of Fig. 4.3:
Pd — 0.97, N c = 5, and trp = 2 .

better under such conditions, the FTLs of Policies 2, 3, and 4 cluster small values, as

depicted in Fig. 4.5. However, one cannot still neglect some possible FTLs larger than 10T,

albeit with small probabilities.

When the CSD thd is tight like thd < 10T (— 500), no policy can meet the timing

constraint, FTL<ARL. It is shown in Figs. 4.4 and 4.5 tha t the FTL does not change

significantly even if the policy and/or fault parameters are changed. Considering the fact

tha t reconfiguration is the most time-consuming among all the fault-handling stages, we use

warm spares to reduce tr , which skews significantly the probability distribution functions of

the FTLs to the right, as shown in Fig. 4.6 where all parameters but tr are the same as those

in Fig. 4.3. In that case, Policies 3 and 4 are suitable for systems with thd > 4T (= 200).

If the timing constraint is tighter, e.g., thd < 4T, we can conclude tha t static redundancy

(or hot spares) must be used at the expense of spatial redundancy, since no policy using

dynamic or temporal redundancy can satisfy the stringent constraint.

65

a
•S
•§
£

0.8

0.6

0.4

policy 1

policy 2

policy 3
policy 4

0.2

— L* ------------ * -----------4 ------------ 1---------
110300 400 500 600 700

Fault-Tolerance Latency (FTL) [msec]

F ig u re 4.5: PDFs of the FTL under fault environments different from those of
Fig. 4.3: pt = 0.95 and E (ta) (the mean active duration)= 0.25.

S'

■S
-8
£

1

0.8

0.6

0.4

policy 1

policy 2

policy 3
policy 4

0.2

0

4 8 12 16 20 50

Fault-Tolerance Latency (FTL) [msec]

F ig u re 4.6: PDFs of the FTLs with a reconfiguration strategy different from that of
Fig. 4.3: warm spares.

66

4.5 Conclusion

In this chapter, we evaluated the FTL for general failure-handling policies tha t combine

temporal and spatial redundancy. We investigated all the individual fault-handling stages

from error detection to its complete recovery, and used some deterministic and random

variables to model the times taken for these stages. This is in sharp contrast to the previous

work tha t evaluated fault-recovery times with simple models or deterministic data collected

from experiments.

As shown in a simple example — although the parameters used in the example are

chosen arbitrarily, their choice would not change the conclusion we draw — the evaluated

FTL is a key to the selection of an appropriate fault-handling policy, especially for real-time

controller computers.

CHAPTER 5

EVALUATION OF RECONFIGURATION LATENCIES

5.1 Introduction

In Chapter 4, several aspects that affect the reconfiguration latency were mentioned in

evaluating the FTL, because reconfiguration is an important error-/failure- handling stage.

However, the reconfiguration latency was modeled as a variable lying in a deterministic

interval as was done in [53].

In this chapter, we focus on the reconfiguration latency by analyzing the effects of all pa­

rameters associated with the reconfiguration process. We classify reconfiguration techniques

into four types; reconfigurable duplication, reconfigurable N-Modular Redundancy (NMR),

backup sparing, and graceful degradation. For each type of reconfiguration, we describe

all the features of the reconfiguration process, which is generally composed of switching in

power and bus connections, running power-up BIT on the spare, loading software programs

and data from a permanent storage medium to a spare CPU and memory, and initializing

software. First, we define several parameters accounting for task sizes, CPU speed, trans­

fer rate of bus/interconnection, the number of interconnections (links) between a faulty

module and its replacement module, and the types of spares. We evaluate qaulitative and

quantitative effects of these parameters on the reconfiguration latency for the four types of

reconfiguration.

In Section 5.2 we specify task sizes, and processor & system capabilities by defining

several parameters. Some assumptions required to formalize our analysis are also presented

there. In Section 5.3 we investigate the reconfiguration latency of each of the four types of

reconfiguration as a function of the parameters defined in Section 5.2. Section 5.4 presents

an example of evaluating and using the reconfiguration latency, especifically for backup

sparing. The chapter concludes with Section 5.5.

67

68

5.2 Preliminary

When a failure/error is detected and its source is identified, the system (hardware

and/or software) should be reorganized to remove the failed component from active use.

Although this process of changing the system organization or the interconnection among

its components may be invoked due to a mode change and can occur while the system is

non-operational, we focus on dynamic reconfiguration tha t enables the system to tolerate

faults occurring dynamically and randomly during a mission. Obviously, the time spent on

dynamic reconfiguration is critical to the reliability of a real-time system, because reconfig­

uration, which is the most time-consuming stage of fault-/error- handling, is the only way

to remove the effects of any permanent fault and because it should be completed within a

certain time bound, i.e., the control system deadline. For the purpose of our analysis, we

assume prompt and perfect fault detection and isolation (diagnosis).

In this section, we define several parameters affecting the reconfiguration latency. First,

the task (application-program) size determines the size of application code and data to be

reloaded. (We assume that necessary core operating system components are preloaded.)

It is well-known th a t software download, if required, has the greatest impact on the re­

configuration latency. Let sr be the task size measured in K bytes. The reconfiguration

latency is also dependent on the speed of each individual processor, because the CPU speed

greatly affects the program download time as well as the initialization time. Note tha t the

time required for setting up the transfer, the operating system overhead, and the process­

ing time for the transfer are intrinsically sensitive to the CPU speed. Let sc be the CUP

speed measured in MIPS. Bus/Interconnection speed also influences (slightly) the program

download time. This speed is determined by bus/interconnection bandwidth, network OS,

and memory access time. Let sB be the bus speed measured in M bytes/second.

In case of graceful degradation, task redistribution is required to transfer the tasks of

a faulty module to the remaining active modules, where the transfer time depends upon

the system architecture and the adopted reconfiguration algorithm. The reconfiguration

algorithm decides which module(s) to take over the tasks of a faulty module. Let nR be

the number of interconnections between the faulty module and the module receiving the

remaining tasks.

69

Outputs

C ontro l Line

Comparator

Acitve Processor Standby Processor

F ig u re 5.1: Structure of reconfigurable duplication.

5.3 Evaluation of Reconfiguration Latency

A majority of reconfiguration techniques are included into four classes of dynamic re­

dundancy: (i) reconfigurable duplication, (ii) reconfigurable NMR, (iii) backup sparing,

and (iv) graceful degradation. In this section, we derive the reconfiguration latency, de­

fined as t ri, by investigating the effects of several parameters such as task sizes, processor

capabilities, the system architecture, and the reconfiguration strategy for the four classes

of dynamic reconfiguration.

5.3.1 Reconfigurable Duplication

A duplicated system is generally used to provide the capability of fault detection by

comparing two modules’ outputs . 1 When a fault is detected by a mismatch between two

outputs, the duplicated system can be reconfigured by disconnecting the faulty module,

which can be identified by a certain diagnosis method such as a diagnostic or test program,

a watchdog timer, self-checking circuits, and connecting a ‘standby spare’ running in parallel

with the active module. As shown in Fig 5.1, a signal generated by a detected mismatch

during comparison triggers reconfiguration through the control line.

Let t3 be the switching time for disconnecting the active module and connecting the

standby spare from the output line, and let t j be the time (overhead) required for initial­

ization. Then, the reconfiguration latency is equal to the time required for switching two

modules and initializing the standby module:

tri = ts + ti, (5*1)

where tri = t, if the standby module is always executing the same task for comparison-based

*A module is defined as a logical block mapping a binary input vector to a binary output vector.

70

fault detection. Since the standby spare is generally ready for performing the same tasks

as the active module, the process of loading software (program and data) is not necessary.

Thus, the reconfiguration latency depends upon switching and/or initialization delay. Note

tha t duplicated modules are generally located on the same bus and the bus interface unit

in each module performs the switching function.

5.3.2 Reconfigurable NMR

The combination of TV-modular redundancy and standby sparing, known as hybrid re­

dundancy, is a promising approach to meeting the requirement of high reliability and avail­

ability. An NMR core is formed by connecting TV identical modules to a majority voter,

and several extra modules are used as standby spares. The output of a faulty module dif­

fers from the majority-voted result, which is indicated by a disagreement detector. The

reconfiguration process of this scheme corresponds to switching the faulty module with one

of standby modules, which is also signaled by a disagreement detector.

Let t°J} and t°sn be respectively the time required for cutting off the faulty module and

the time required for switching the standby module in power and letting power-up transients

settle, where t s = t°J} + t°n. Let tb and t j be the time required for power-up Built-in-Test

(BIT) on the standby module and the time required for download and initialization on the

spare module, respectively.

A switching strategy decides which modules to be switched in to replace the faulty

module in the NMR core. In [65], two switching designs were proposed: (i) a sequential

switch where all spares are ordered and the i-th spare is switched in to replace the i-th

faulty module and (ii) a rotary switch where the spares arrange themselves in numerically

increasing order of the voter positions they occupy with the lowest-numbered spare rotating

to the highest voter position. The time spent for switching (t°J3 and t°n), thus, depends

on the adopted switching strategy and the switch complexity that intrinsically depends on

the number of spares and the core size. The states of spares are also the key factor in

determining the reconfiguration latency. Since a module in an unpowered state probably

has a lower failure rate, the standby modules may be unpowered until they are switched

in. In tha t case, the reconfiguration latency significantly increases due to the time (tb + tj)

required to make the selected spare powered up and to load and initialize the software (the

application program and/or data of intermediate results) on the spare.

Consequently, we obtain the reconfiguration latency, which depends on the switching

71

strategy and the states of standby modules:

Ui — + t°n + it + id, (5-2)

where t t depends upon the coverage/thoroughness of the BIT, the complexity of the spare,

and BIT software (requiring a certain degree of hardware assistance). In Section 5.3.3,

we will examine the factors affecting td and derive tj using the parameters introduced in

Section 2.

5.3.3 Backup Sparing

In addition to hybrid redundancy using the NMR core, the concept of backup sparing can

be used in general multiprocessor structures like meshes and hypercubes. For effectiveness

of this method, we assume appropriate schemes of fault detection and isolation th a t will be

followed by the replacement of faulty module(s) with spare(s). If any sparing module can be

used to replace any other working module, the set of spares are called “pooled spares” . The

module periodically checkpoints its state on its backups so tha t a selected backup among

the set of pooled spares may have state information to maintain consistency. In other words,

the new active module restores the last checkpoint and reexecutes all the operations that

were executed by the previously active module since the checkpoint. The new active module

can then start executing the remaining tasks and service new requests from the consistent

state.

Let tw be the time spent for selecting a spare to take over the remaining tasks of the faulty

module. In case of dedicated spares which associate some spares locally with specific groups

of active modules to minimize the interconnection complexity, tw can be made negligible

by using well-controlled procedures. However, it could be considerable depending on the

applied reconfiguration strategy for nondedicated spares.

As shown in Fig. 5.2, the reconfiguration process for this class is generally composed

of (i) switching power and bus connections, (ii) running built-in-test (BIT) on the selected

spare module, (iii) loading programs and data, (iv) initializing the software, among which

some steps are not always needed depending on the state of on-line spares. When a spare to

be switched in is determined upon fault detection and isolation by an appropriate method,

the selected spare is powered up and ready to become an active module. Since unpowered

modules are likely to have lower failure rates and the standby power requirements are lower

than the active ones, unpowered spares are often kept in the form of cold spares despite

their large time overhead to become active. Extensive testing can be done during power-up

72

C o l d s p a r e s

BITPower-upSelecting Download InitializationSwitching-off

W a r m s p a r e s

p--- ^ H o i s p a r e s h---

F ig u re 5.2: Reconfiguration steps of backup sparing

before starting any normal operation, such as a comprehensive memory test. As mentioned

in Section 5.3.2, the time required for this power-up BIT (t b) depends upon the complexity

of the module, the accuracy of BIT, and the degree of hardware support for BIT software.

In cold spares, the reconfiguration latency is computed as:

t rl = + tw + t°n + tj, + tj. (5-3)

Cold spares require power-up transients to settle and to run BIT to ensure tha t a

healthy (nonfaulty) module is switched in the system, whereas warm spares are kept powered

up on-line ready to load and run the application software. Using Fig. 5.2, we get the

reconfiguration latency of warm spares:

tri = t°Jt + tw + td. (5-4)

The software program that is downloaded from a, certain permanent storage medium to

a spare CPU generally causes the longest delay. Let t0 , tB, t P, and t / be the time required

for setting up data transfer plus the operating system overhead, the processing time for

the transfer, the transfer time on the bus/interconnection, and the time for initialization,

respectively. Then, for a task of size St , we have:

td = to + t j + Spits 4- tp), (5-5)

where to, tp, and tj are sensitive to the change of CPU speed, and tB is sensitive to the

change of bus/interconnection speed. If some specific values are measured for a certain

protocol having s°c and s% as { to , tB j tp , t j } , the estimated values of { to , tB , tp , t i } for

different sc and sB are calculated by:

to = ccto , tp = Cc tp,

t s — cBt°B, t[= Cctj, (5-6)

73

where Cc and c-b are the coefficients indicating the amounts of change in { to , t i , t p } and ts

by Sc and Sb , respectively. Although other factors affect cc and c# (for example, Cc and cb

also depend on the inherent synchronization factors and the type of buffering, respectively)

we consider only the effects of sc and Sb because they are most influential. Then, Cc and

cB are inversely proportional to the module throughput (CUP speed sc) and transfer rate

of bus/interconnection (bus/interconnection speed s b), respectively. (Note th a t cc and cB

are decreased by using better sc and s b -) Thus, we obtain

cc - — and cB — — • (5.7)
sc Sb

For example, from the actual measurements of a pooled-spares system implemented in

Phase 1 of the DRDS Program 2 in [48], i.e., 2.2 1750A Digital Avionics Information System

(DAIS) M I P S and sb = 2.105 [Mbytes/second] (bus bandwidth 200 [Mbytes/second] for

16 bit bus-width and memory access time 250 [nanoseconds]), we obtain:

-f t° = 29.8 [milliseconds],

t% = 0.2375 [milliseconds/IKbyte],

tp = 0.3375 [milliseconds/1Kbyte],

where cc = 2.2j s c and cb = 2.105/sB.

By using Eqs. (5.5), (5.6), and (5.7), we evaluate the estimated value of td under the

various conditions of sp, sc and sB. When only the task size sT varies with sc and sb

fixed, we obtain a linear equation for td-

td = As? + B, (5*8)

where

A = ts + tp = CBt% + cc t°P = — t°B 4— —tp ,
Sb Sc

B = to + ti = cc(to + t f) = — {to + $) '
S c

When only the CPU speed s c varies with St and s p fixed, we obtain a equation containing

two constants A and B for td-

td = — + B, (5.9)
s c

where

A = Sc(to + + Sxtp),
0 0 B ~ Sq>tB = S /p C B tg = S p t g .

Sb

2This was mentioned in Introduction.

74

Likewise, for various sB values we obtain td from:

td = — + B, (5.10)
SB

where

A =
s°

B = to + t j + StIp — cc (t°0 4- t° + sxt%) = — {ta0 + t j + sTt°P).
S C

In case of hot spares tha t are always on-line executing the target software in parallel

with the active hardware (dedicated hot spares) as in Section 5.3.1, the reconfiguration

latency reduces to:

tr, = t°J! + ti , (5.11)

which is suitable for applications requiring short latencies because all the steps but switching

out and initialization are not necessary for hot spares.

5.3.4 Graceful Degradation

When an error is detected and the contaminated module is located in a multiprocessing

system, the system is reconfigured to isolate the faulty module from the rest of the sys­

tem. The faulty module may be replaced by a backup spare as discussed in Section 5.3.3,

and alternatively, it may simply be switched off, thus degrading the system capability,

i.e., graceful degradation. This technique uses redundant hardware as part of the normal

operating-resources at all times and allows the system performance to degrade gracefully

while compensating for failures.

In a complex multiprocessor like a mesh or a hypercube, faulty modules are disconnected

upon fault detection and identification, because a faulty module cannot be immediately re­

paired in many cases (nor replaced in the mode of graceful degradation). The remaining

modules should be reconfigured into a functioning connected network of smaller size and/or

tasks are also redistributed by assigning the tasks of the failed modules to the remaining

modules. For our analysis, we assume that each module can test its neighbor modules

to determine their state (fault or fault-free), and the neighboring modules exchange pre­

determined test information and the intermediate task results at regular intervals. The

intermediate results of each module are stored in some of its neighbors and will be used

by those neighbors for reconfiguration in case the module fails. We also assume that this

procedure of testing and updating the intermediate results is synchronized throughout the

system.

75

st 1 2 4 8 16 32 64 128
td 30.38 30.95 32.1 34.4 39 48.2 66.6 103.4

T able 5.1: td for various task sizes (s t) [iiTBytes].

The reconfiguration latency is, thus, equal to the time spent for transferring and ini­

tializing the remaining tasks of faulty modules. We assume that it takes tw for a certain

reconfiguration strategy to decide which modules take over the tasks of the faulty modules,

as has been done in various system architectures [3, 10, 37, 50, 71]. We define nB as the

number of processor-interconnections between the faulty module and a module taking over

the tasks of the faulty module. Let t n be the time to transfer a unit of task (say 1 [Kbyte])

between the faulty module and its replacement module, which is called the network latency

and depends upon the speed/bandwidth of an interconnection network and the distance

(number of inter connections/links to go through). The network latency includes both the

overhead to prepare for transferring a task in the source module (address generation, pack­

aging, etc.) and the overhead in the destination module induced due to acknowledging,

error check, unpackaging, etc.). If the size of the remaining tasks is sT and the tasks are

transferred in block-data transfer mode, in which one unit of latency is required for a block

of data/task elements, the reconfiguration latency is:

tri = t0/ * + tw + tn + sp{tB + tp), (5.12)

where

tn = to + h + (nR — l) t B ,

and the effects of Sc and sB upon { t o , t i , t p , tB} were described in the previous subsection.

In the mode of single-data transfer where each data/task element requires one unit of latency

and a transfer time, the reconfiguration latency becomes:

tri = t0/ ^ -f tw + ST(tn + tB + tp). (5.13)

5.4 Example

In this section, we present an example of evaluating the reconfiguration latency for the

demonstration system of [48] using milliseconds as the basic time unit. In the measurements

of a pooled-spares system implemented in Phase 1 of the DRDS Program using 2.2 DAIS

MIPS experimental system, the data of {/<■>, <£},<§•} is given as {28.8,0.2375,0.3375} with

the condition of s? = 1 [Kbyte], s% = 2.2 [MIPS], and sB = 2.105 [Kbytes/millisecond].

76

Sc 1 2 2.2 5 10 50 100 1000
Cc 2.2 1.1 1 0.44 0.22 0.044 0.022 0.0022
td 81.24 42.52 39 19.29 11.54 5.35 4.57 3.88

T able 5.2: td for various CPU speeds (s^) [MIPS].

SB 1.0525 2 .105 4.21 8.42 16.84 21.05 33.68 42.1
cB 2 1 0.5 0.25 0.125 0.1 0.0625 0.05
td 42.8 39 37.1 36.15 35.67 35.58 35.44 35.39

T able 5.3: td for various Bus speeds (sB) [Kbytes/millisecond].

We assume that t°J} = 1, tw = 5, t°sn = 80, tb = 20, and t°T = 4 are given, and { t°H , tw, t b,t°}

are inversely proportional to CPU speed sc .

First, we begin with evaluating the time required for download and initialization td,

which is most sensitive to task sizes and processor-capability parameters. Under the given

condition, td is computed as 28.8 + (0.2375 + 0.3375) + 1 = 39. If we change sT , s c , or sB,

then the estimated values of td are computed using Eqs. (5.8), (5.9) and (5.10), as given in

Tables 5.1, 5.2, and 5.3.

Similarly, we derive tri for various conditions, i.e., type of spares, CPU speed, and bus

speed, with a fixed sT = 16 [Kbytes]. Fig. 5.3 plots the value of tri while varying sc over

three types of spares. Since most steps of system reconfiguration are sensitive to CPU

speed, tTi decreases as sc increases. However, tri of cold spares is not decreased below a

certain value due to insensitiveness of the time required for power-up transients to settle.

The t rl values of warm spares (and cold spares) are not scaled directly with the CPU speed

(but hot spares are directly scaled down) because the bus/interconnection transfer time tB

is independent of sc (and also t°n). In Fig. 5.4, we also plot t rl while varying sB. In this

case, tri does not change significantly because only one step in system reconfiguration (tB)

is dependent o n s B.

Cold spares are generally useful for applications that require low fault rates of spares

(faults occur more frequently in powered states) and do not have tight control system

deadlines. In this type of spares, it takes more time to become operational due to large t°n

and tb, relative to the time required for other steps of reconfiguration. In Section 5.3, we

observed that the time required for most steps with cold (and warm) spares depends on

CPU speed. Fast CPU speed significantly decreases t ri of cold or warm spares as shown

77

220
cold •©—

warm -®—
hot A -

170

120

8

6

4

2

1
0.8

0.6

0.4
0.2

1 2 5 10 50 100 200 500

CPU Speed (ac) [MIPS]

F ig u re 5.3: Reconfiguration latency vs. CPU speed for three types of spares: sB =
2.105 [Kbytes/milliseconds].

78

150
148
146
144
142
140

50
48
46

tri 44
42
40

l 1--------- 1--------- r

-A A A A A A A
_i______ i______ i______ i______ i______ i______

0.5 1 2 4 8 16 32 64

Bus/Interconnection Speed (s#) [Kbytes jmillisecond]

F ig u re 5.4: Reconfiguration latency vs. bus/interconnection speed for three types of
spares: Sc = 2.2 [MIPS].

20

15
10

cold -Q—
warm -

hot A — _

79

in Fig. 5.3, which allows cold or warm spares to be effectively used for meeting a certain

system deadline. A higher transfer rate of bus/interconnection raises cold or warm spares’

usefulness, as shown in Fig. 5.4. However, only hot spares can satisfy a stringent CSD, for

example, requiring the reconfiguration latency less than 1 [millisecond] in the example, for

which sc should be improved as fast as tens of M I P S for even hot spares.

5.5 Conclusion

We evaluated the reconfiguration latency of four classified reconfiguration techniques

by using the times required for such steps that make up those techniques. Specifically, we

analyzed the effects of the task size, CPU speed, and bus/interconnection speed (and the

number of links between a faulty module and its replacement module) upon the download

and initialization time, which is the most contributing factor of the reconfiguration latency

in backup sparing (as well as graceful degradation), for the three types of spares. Via an

example, we observed that the reconfiguration latency can be decreased to meet a given

CSD by using, for example, fast CPU or high transfer rate of bus/interconnection, in case

of cold or warm spares. However, hot spares should be used to satisfy a tight CSD, because

the time required for some steps with cold (or warm) spares is insensitive to these improved

capabilities.

CHAPTER 6

A N OPTIMAL INSTRUCTION-RETRY POLICY FOR

TM R CONTROLLER COMPUTERS

6.1 Introduction

Using the deadline information obtained from the controlled process in Chapter 3, we

propose in this chapter an optimal recovery policy to enhance system reliability by adding

time redundancy to controller computers equipped with a minimum degree of spatial re­

dundancy. Specifically, instruction retry is used “optimally” (in a sense of minimizing a

certain cost) for triple modular redundant (TMR) controller computers.

A TM R system is a typical example of static redundancy which can tolerate one faulty

module without any delay [9, 23, 25, 64, 73]. The TMR system can tolerate even multiple

faults, if they occur sequentially with a relatively long inter-occurrence interval, by using

appropriate detection, identification, and replacement of a faulty module (whose error was

‘masked’) before a new fault occurs to another module within the TMR. Detect-diagnose-

reconfigure is a conventional recovery policy for handling multiple faults in TMR systems

[23, 64], Alternatively, the system can also recover from the masked error induced by a

transient fault by retrying the failed operation a fixed number of times on the same hardware

[9], Note th a t these two policies can tolerate only a subset of multiple faults. T hat is, TMR

failures — failure to establish a majority of module outputs due to multiple faulty modules

or a faulty voter — caused by coincident/common-cause faults require a different recovery

method. Note that a harsh environment with electromagnetic interferences (EMI), such as

lightning, high-intensity radiated fields (HIRF), or nuclear electromagnetic pulses (NEMP),

may cause coincident faults in all modules.

A TMR system uses a minimum degree of spatial redundancy to mask one faulty mod­

ule (in general, 2n + 1 modules needed to mask up to n faulty modules), and more than

80

81

90% of field failures are reported to be caused by transient faults [46]. Most TMR failures

can thus be recovered by (a) using the capability of a TMR system that can mask one

(perm anent/transient) faulty module, and (b) retrying instructions on the same redundant

hardware in case of a TMR failure resulting from additional transient fault(s). This may

reduce the hardware cost by avoiding the premature retirement of modules with transient

faults, and reduce the time overhead of recovery and the probability of dynamic failure re­

sulting from spares exhaustion as well as deadline misses. Note th a t system reconfiguration

is more time-consuming than a simple retry. Reconfiguration and (cold) restart generally

consist of (i) switching power and bus connections, (ii) running built-in-test (BIT) on the

spare module, (iii) loading programs and data, (iv) initializing the software (even when

warm spares are used, thus unneeding (i) and (ii), this is still time-consuming), and (v)

there are only a limited number of spares available during each mission.

As the simplest form of time redundancy, instruction retry has been proposed and

analyzed by several researchers. The authors of [7] specified the retry period a priori in

an ad hoc manner. The retry period was also derived by minimizing an average task-

oriented measure (mean execution time per instruction) [34], or mean task-completion time

by using a Bayesian decision approach [38] or the maximum likelihood principle [40], under

the assumption that an infinite number of spares are available. The retry periods derived

in these papers were intended for use in simplex systems.

In contrast to the above cited approaches, we derive in this chapter the optimal retry

period, ropt, of a TMR controller computer by minimizing the probability of missing dead­

lines or dynamic failure upon detection of a masked error or a TMR failure. A retry will

terminate if it becomes successful or the retry period expires, whichever occurs first. (Since

the time required for repeated execution of an instruction cannot be cascaded into a single

continuous duration, a retry period should be discrete, i.e., we define the “retry period” as

a number of retry attempts throughout the discussion to follow.) If retry during a given

period cannot recover the system from a TMR failure, the system will be reconfigured.

Clearly, whether or not retry is successful depends upon the retry period as well as the

error latency defined as the time interval from the occurrence of an error to its detection.

The retry period should be large enough for the transient fault(s) inducing the detected er­

ror/failure to die away. This may in turn increase the recovery time when retry is used for

permanent fault(s), and/or when the error latency is larger than the execution time of the

retried instruction. We assume the use of a detection scheme with high (but not necessarily

82

perfect) coverage for both masked errors and TMR failures as required by a usual retry

policy. For example, any error in a module can be caught by using a simple disagreement

detector [51, 74]. One can ultimately adopt a detection scheme like a Totally Self Checking

Circuit (TSCC) in [17], which has the capability of detecting a masked error as well as a

TMR failure and is both self-testing and fault-secure.

The probability of dynamic failure, Pdyn, depends on the mission lifetime, the number

of spares, the CSD, and the retry period r .1 We calculate Pdyn as a function of these

parameters and derive ropt by minimizing Pdyn in each case of masked error or TMR failure.

Using the optimal retry period, we also determine the minimum number of spares needed

to attain the largest acceptable Pdyn for a given mission.

This chapter is organized as follows. Section 6.2 describes the characteristics of a real­

time control system, the basic assumptions used, and the required property and structure

of a detection scheme adopted. In Section 6.3, we numerically derive the optimal retry

period by minimizing Pdyn in both cases of TMR failure and masked error. The effect

of the number of available spares on Pdyn is also analyzed there. Section 6.4 presents

representative numerical examples. The chapter concludes with Section 6.5.

6.2 Notation, Assumptions, and Models

A real-time control system executes missions between maintenances, and usually no

repair is assumed during a single mission. System diagnosis and the subsequent repair, if

needed, are performed during a maintenance period between missions. As shown in Fig. 6.1,

a mission lifetime generally consists of many task periods during each of which a sequence

of instructions are executed to generate a control command or display output. During a

mission, a dynamic failure is said to occur due to several consecutive TMR failures whose

total period exceeds the CSD, the maximum delay in the feedback loop the controlled process

can tolerate without losing system stability or leaving its allowed state space [56, 57]. This

delay could be as long as the time of executing several consecutive tasks or task invocations.

Using the CSD, one can derive the deadline of each task.

The main computational load of a controller computer consists of a set of periodic tasks

that are executed repetitively, each time with a different input. A dynamic failure may

occur due to either missing the CSD2 or exhausting spares as a result of frequent system

1r= 0 means system reconfiguration without retry.
2That is, missing the update of the control command for a period longer than the CSD due to consecutive

83

reconfiguration
retry

w

A*
i« >i« »i«— — »i« - i«— - — i-— ► I- >i

*1 *2 ••• X fc_x X fc+1 X m^ X m

F ig u re 6.1: Time index of a mission lifetime: X m = YTiLi X{.

reconfigurations. Note tha t the latter may occur because there are only a limited number

of spares aboard, depending on the weigh, volume, cost, M TTF of each spare and the given

mission. To study the effects of retry/reconfiguration on the probability of dynamic failure,

we need to introduce the following variables:

• X m - the lifetime of a mission consisting of m computational tasks.

• X,-: the execution time of the i-th task of the mission, i.e., X M = Yl7=i Xi- X =

is the average execution time of a task in the mission, or it is the execution time of a

single task invocation if the mission consists of m invocations of a periodic task.

• Ax: the inter-voting interval such that X = K A x , where K is the number of times

(intermediate) computation results are voted on during the average execution time,

X , of a task or a task invocation.

• N: the number of spares available during a single mission.

• D: the CSD characterized by a probability density function /o (t) .

• r = {re, r (}: the maximum retry period allowed for a masked error (re) or a TMR

failure (rt).

Throughout the paper, we will classify faults to be external or internal, depending on

whether their causes are inside or outside the system. Internal (system component) faults

reside inside the system inducing errors, while external faults are caused by environmental

interferences. One can observe tha t external faults are likely to be transient because adverse

environmental conditions are generally temporary/transient and environmental disruptions

result in functional error modes without actually damaging system components [5]. A

TM R failures or generating incorrect execution results for several tasks.

84

harsh environment resulting from lightning, HIRF, or NEMP is likely to cause coincident

or ‘common mode’ faults/errors. In other words, external faults are likely to result in

multiple non-permanent fault modules, which will in turn cause TMR failures.

We assume that all faults arrive according to time-invariant Poisson processes with rate

A,p (Ain) for permanent (non-permanent) internal faults such that the total internal fault

arrival rate A,- = A;p + A,n, and rate Aep (Ae„) for permanent (nonpermanent) external faults

such tha t the total external fault arrival rate Ae = Aep + Ae„. The active duration of a non­

permanent internal (external) fault is assumed to be exponentially distributed with mean

ATT (ATT)' We a ŝo assume occurrences of internal faults in one module to be independent

of those in other modules.

As mentioned earlier, retry could be effective only if the corresponding masked er-

ror/TM R failure is detected upon its occurrence. To achieve immediate and accurate de­

tection of such errors/failures, we employ a special detection scheme like a Totally Self

Checking Circuit (TSCC) [17], which detects the existence of a masked error and/or a

TMR failure and is both self-testing and fault-secure. The TSCC provides two output in­

dications distinguishing a masked error (and/or a fault in the error checking circuit) from

a TMR failure (an output-information error generating a stop signal). However, it may not

detect the incorrect output(s) before the completion of one instruction, thus making retry

inapplicable. If a more complicated recovery operation such as rollback with checkpoints is

applied to complement retry, an error /failure detected late can also be recovered by using

only time redundancy, i.e., a non-zero error latency is allowed. However, in our approach

to using retry or reconfiguration, any error/failure detected late is assumed to be recovered

only through reconfiguration.

Let ce and ct be the detection coverages of a masked error and a TMR failure, respec­

tively. Then, the probability tha t the detection scheme detects late (or misses) a masked

error (or TMR failure) is (1 — ce) (or (1 — c()). There are two cases in which the detection

scheme may fail to find a masked error/TM R failure: (i) a short-lived fault inducing the

masked error/TM R failure disappears after contaminating one or more tasks, (ii) a perma­

nent or long-lived transient fault keeps generating incorrect outputs to lead to a dynamic

failure. Although an undetected permanent or long-lived transient fault can cause serious

damages, the probability of not capturing such a long-lived fault is so small as to be ignored

because consecutive instructions with incorrect results are likely to be detected before the

CSD which is usually larger than the execution time of one or more tasks. Furthermore, the

probability of missing a short-lived fault, which may not induce any error, is not negligible,

85

but its effect is not significant to independent periodic tasks. Thus, we will only deal with

late detection of errors/failures due to an imperfect detection scheme while assuming that

long-active faults are detected eventually.

6.3 Optimal Retry Policy

In our model of a TMR system, the key variables in determining the optimal retry period

ropt are the mission lifetime X M = m X , the number of spares N , and the CSD D.

When a masked error/TM R failure is detected, there are several state-transition scenar­

ios as shown in Fig. 6.2. Suppose a masked error/TM R failure occurs during X,. If retry

is chosen to recover from this error/failure (ITc = I u = 1), it may terminate when the fault

tha t had caused the error/failure disappears (a successful retry), or the retry period expires

(an unsuccessful retry), whichever occurs first. In the case of a TMR failure, a successful

retry results when the system is in one of two possible states: fault-free state due to dis­

appearance of all existing (non-permanent) faults and one masked-error state due to the

existence of one still-active faulty module. A successful retry for a masked error moves the

controller computer to fault-free state. Unsuccessful retries may lead to a dynamic failure

in case of a TMR failure,3 or may trigger a system reconfiguration in both cases of masked

error and TMR failure. Note tha t retry for a masked error is performed only on the faulty

module while retaining the execution results from the other two healthy modules. The

occurrence of a new fault in another module before the disappearance of the current fault

or initiation of a system reconfiguration will result in a TMR failure. The system may be

reconfigured immediately without retry (ITc = ITt = 0) or after an unsuccessful retry. If no

spares are available, or N = 0 for a masked error and N < 3 for a TMR failure, a dynamic

failure occurs. System reconfiguration increases the probability of exhausting spares during

the remaining mission even if it could prevent an immediate dynamic failure. When the

CSD is tight, system reconfiguration may also lead to a dynamic failure due to its setup

and restart delays, during which another TMR failure may occur.

All of the above phenomena are captured in the Markov-chain of Fig. 6.3, each state of

which is distinguished by the number of spares available. In this model, the probabilities

pE, and pTi account for replacing the faulty module(s) tha t had caused a masked error

and a TMR failure, respectively, and pmh represents the probability of dynamic failure

due to missing the CSD during the execution of a task. These probabilities determine the

3due mainly to missing a CSD

86

masked
. error J

AT- 1

TMR
failure

F ig u re 6.2: A system state diagram. In case of a masked error (eO): e l = recovery
by retry, e2 = recovery by immediate reconfiguration (Ir<! = 0) or after
unsuccessful retry (Ir<s = 1), e3 = a TMR failure due to occurrence of
another faulty module during retry, e4 = spares exhaustion during re­
configuration or missing the CSD. In case of a TMR failure (t O) : t l =
restoration to a fault-free state by retry, t2 = recovery by reconfiguration,
f3 = restoration to one masked-error state by retry, M = the same as e4.

probability of dynamic failure over the mission lifetime. They all depend upon whether

retry is used or not (represented by a pair of indicator functions (/re, I rt)) and how long

retry lasts (i.e., values of (re,r*)), or how many times the failed instruction is retried.

Pdyr.(r, m, X, N, D) is obtained simply by adding the probability of exhausting spares

Pea(r , m , X , N) and the probability of missing the CSD Pmh(r , m , X , D) during the mission

lifetime X m = m X , i.e.,

Pdyn(r,Tn,N,D,X)= Pea(r , m , N , X) + Pmh(r , m , D , X) . (6.1)

N spares can withstand j and k reconfigurations resulting from TMR failures and masked

errors during m invocations of tasks, respectively, such tha t 3j + k < N . Thus,

3 j + k> N J ’ ' ' J >'
(6.2)

where Pe , (r, X) (pT, (r, X)) is the probability of reconfiguration due to a masked error (TMR

failure) during the average task-execution time X with a retry period r = {re, r (}. Suppose

that in Eq. (6.2) of a multinomial function, m > 1, Pt, + Pe, < 1> but mpT, and mpE,

87

P T.

dynamic
failure

I N - I [N - 2 \ N - 3 AT- 4
Pi.

P m h

F ig u re 6.3: A modified Markov-chain model based on the number of spares upon
occurrence of masked errors or TMR failures: p0 = l —pE, ~Pt . —Pmh,
Pe. (Pt .) = probability of reconfiguration due to a masked error (TMR
failure), pmh = probability of dynamic failure due to missing the CSD.

remain constant, say mpT, = Oi and mpEt = a2. Then, Eq. (6.2) can be approximated as

- «i - a2)m- j ~k, where m(m - 1) • • -(m - j - k + 1) ~ m k+j, if m is allowed

to become large enough and if j and k are fixed. Hence as m oo, pTi + pEw 0, and

j + k < m, we obtain

Thus in situations where the multinomial law applies with m 1, pTi -{- pEi ■< 1, but

mpx, = «i and mpEi = a2 are finite constants, we can use the following approximation for

Eq. (6.2):
■jyg (TnpTXrt,X) y (m p E , (r i ,X)) ke -rnlpTA’-t,x)+pEM(ri,x)]'

Eq. (6.2) is based on the assumption of at most one masked error or TMR failure dur­

ing X , which is reasonable because masked errors and TMR failures occur very rarely.

Fmh(r, m, D, X) is also derived from the probability, pmh (r , X , D), of missing the CSD D

during X when retry is applied for a period r. For the successful completion of a mis­

sion, every task/invocation must not miss its deadline, which is represented by n£Li[l —

Pmh(r,X,D)\. Thus, -Pm/,(r, m, X, D) is computed as:
m

Fmh(r ,m ,X ,D) = 1 - [f t 1 - P m h (r , X , D) } = 1 - [1 - pmh(r, X , D)] " \
t=i

^ mpmh(r ,X ,D) , if pmh < 1. (6.3)

88

We now analyze quantitatively the effects of retries for masked errors and TM E failures

on Pdyn separately, and then combine the two results to derive ropt.

6.3.1 Reconfiguration w ithout R etry (ITe = In = 0)

This is the usual recovery method for masked errors and TMR failures without using

time redundancy, i.e., re = rt = 0. The diagnosed faulty module is replaced with a healthy

spare. In case of a TMR failure, all three modules are switched out due to the considerable

time overhead of identifying (diagnosing) faulty modules, and the current task is re-executed

with the reloaded data as shown in Fig. 6.1.

Pe,(X) and Pt , (X) in this case are equal to the probabilities of a masked error Pe(X)

and a TMR failure P t (X) , respectively. Since masked errors are also recovered through

reconfiguration (or retry in the following methods) with high detection coverage ce, a TMR

failure is assumed to occur due mainly to (near) coincident faults occurring within an inter-

voting interval, rather than sequentially occurring faults. Let pTc(X) and PTi(X) be the

probabilities of TMR failures caused by external and internal faults, respectively. Then,

Pr.(X) is equal to 1 — e~XeX, which is the probability of occurrence of an external fault

during X , because external faults are assumed to cause coincident internal faults/errors.

PTi(X) is also obtained by using the probability of coincident internal faults in two or three

modules in K inter-voting intervals during X , that is:

P tX X) = 1—[1 - 3(1 - e~XiAx)2 + 2(1 - e~XiAxf) K ~ IC [3(1 - e~XiAx)2 - 2(1 - e"AiAx)3] .

Since TMR failures caused by external and internal faults are not exclusive to each other,

P t (X) is not the direct sum ofPtc(X) and pTi(X) , but equals PT.(X)+pTi(X) - p T c(X)pTi(X).

Pe(X) is the probability of occurrence of an internal fault in only one module during X ,

which is calculated as:

pE(X) = 3(1 - e~XiX) - 3(1 - e~XiX)2 + (1 - e“AiX)3 - p Ti(X) ~ 3 /f (l - e- AiA*)e-2A<As.

Let X a be the actual time required to complete the computation corresponding to X ,4 and

f x a and f D are the p d f s of X a and the control system deadline D, respectively. Using f Xa

and f n , we can obtain pmh(X ,D) as the probability tha t X a > D\

rO O rO O

pmh(X , D) = / f x a{x)fD(y)dx dy.
Jo J d

4 Because of the time overhead of retry and/or reconfiguration for errors during the execution of a mission
segment, X a is usually larger than X .

89

The set of samples of X a is obtained as:

x ae{x, (x + tr) + x,2(x + tr) + x,z(x + tr) + x,---},

where tr is the resetting time and X is the mean occurrence time of a TMR failure, which

was derived in [58]. Since X a has discrete values, the probability mass function (p m f) of

X a is:

= Prob[Xa = k (X + tr) + X} = pk (X)(1 - pT(X)).

Note tha t fjj is given a priori from experimental data or the analysis of controlled processes

[56, 57]. Consequently,

p ^ (X , D) = T £ f i . (x) M y) d y .
J0 k>[(D-X)/(X+tr)l

6.3.2 Retry for Masked Errors (ITe = 1, Irt = 0)

In this case, retry of a period re is initiated upon detection of a masked error, and

reconfiguration is the only recovery mechanism for TMR failures. Thus, P e , (X) and p r . (^)

are no longer equal to P e (X) and px(X) . pEi decreases with r e, because most masked errors

are induced by non-permanent faults and because a simple retry is likely to recover from

them (only if they are detected before the completion of an instruction that is to be retried).

However, Pt, increases with re due to the increased probability of a TMR failure during the

retry period, i.e., a TMR failure may be induced by faults occurring sequentially during the

retry for a masked error as well as by coincident faults.

Let Eg‘c(re) and R\nc(re) be the coefficients indicating respectively the decrease of

masked errors and the increase of TMR failures after retrying for masked errors. Then,

\ \
R deec{re) = + -iHe“A“,re)e- (2A'+Aeh’° -j ^-(1 — e-A,ar,!)(l — e-Air°)e- (Ai+A,:)re,

A i A,- A,-

where the first term represents the effect of an unsuccessful retry and the second term

represents a second fault occurrence after successful retry on the first fault occurrence.

g ” Aar eR\nc(re) = (^ + ^ e - A" r‘)(l - e-(2A'+A«)’-«) + ^ (1 - e- A“ r‘) (1
At* A,* A, \

+(1 - e_Air°)2 - (1 - e_A°r°)(l - e~XiTc)2 ^ ,

where the first term represents an unsuccessful retry (occurrences of fault in any healthy

module) and the second term represents a successful retry (occurrences of fault in two

or three modules). Then, using Rfec(re), R\nc(re), ce, pE(X), and pT(X) y we can obtain

90

pEt(re, X) and P t , (t ^ x) a s :

P B . { r „ X) = (1 - c e)pE(X) + ceR de" (r e)pE(X),

pT.(re, X) = pT(X) + ceR r (r e)pE(X). (6.4)

Pmh(i'eiX,D) is derived in the same way as before except for the change of / £ a, i.e., sub­

stituting pT,(Te ,X) for Pt (X) since the probability of a TMR failure is changed:

s \ a = Prob[Xa = k (X + tr) + X] = pkTt(re, X) (1 - pr.(rejX)) , 0 < k < oo.

6 .3 .3 R e t r y fo r T M R F a ilu re s (ITt = 0, I rt = 1)

This is the opposite to the previous policy, that is, retry of a period rt is initiated upon

detection of a TMR failure, and a masked error calls for an immediate reconfiguration.

Obviously, pTt decreases with r t, because most TMR failures are also recovered by a simple

retry during which non-permanent faults are likely to disappear. Even if retry is successful,

there may still exist a faulty module. Those masked-error states transited from TMR

failures during a retry increase pEt(X).

Let pij denote the conditional probability of i faulty modules and j permanent-fault

modules given a TMR failure (i.e., i < 2), which is computed as:

„ _ t A > f I ^ „ _ 2 A i n A j p B , \ {p . j B
V 20 V \ J A i T3 t r " P21 \ 2 A I- A. P22 \ \ / "A, ’ A + B + C ' ^ A? A + B + C ' VAt J A + B + C '

_ Kn X (A,n X3 C _ 3AfnA,-p C
P3 0 — \ /i i n _i_ » P31 ~Ae A + B + C ^ K A,-' A + B + C ' Af A + B + C '

i p ________ ^ _______ A ep ____________ , I A j p ̂ 3 _________ Kj _________ — »p ~ L / ‘ P ^P32 ,3 . . D - n i P33 x A , o . / y { \ }Af A + B + C ' ™ \ e A + B + C ' K A + B + C '

where A = 1 — e~x°x and B = 3 /f (l — e-AiAr)2e~AiA® (C = K (1 — e-A*Ax)3) are the

probabilities of occurrences of external faults and near-coincident internal faults inducing

two (three) faulty modules during X . Let iEj,n<:(r<) and Rfec(r t) be the coefficients indicating

respectively the increase of masked errors and the decrease of TMR failures after retrying

for TM R failures. R™c(r t) is obtained by computing the probability th a t only one faulty

module remains in each case of ptJ-, and R f ec(r t) is derived from the cases of more than two

permanent or long-lived transient faults, thus:

K ne(r t) = p21(l - e~A,“ri) + p31(l - e- A‘*r<)2 + 2p20(l - e-A,sr‘)e-Ai“r'

+3p3oC'i(l ~ e■Ai‘ '̂) 2e-Ai‘^,,

R dt cc{r t) = p 33 + P32 + P22 + P2 i e " Ai“r ' + P 3 i(2 e -A" r< - e - 2A>°r <)

91

+P2oe"2A",r‘ + P3o{Cee~XM + Ci(3e 2A<-r‘ - 2e“3Ai°r')},

where

ce = + 1,c , = (^) 3c ^ a + (^) 3c)~1

Using these coefficients, we obtain Pj3.(t‘*,.X’) and pTi(rt, X) as:

PeX t u X) = pB(X) + ctJ2!"e(r t) p r W ,

P r . K *) = (l-c O P T (X) + ctJR{d“ (r()p r(X). (6.5)

Now, a dynamic failure may occur due mainly to unsuccessful retries if the CSD, D, is

tight. The controller computer may fail to generate a correct control command within D

units of time due to TMR failures after repeating/retrying the execution of an instruction.

Thus, the derivation of pmh(rti X , D) is different from that of the previous two cases. By

approximating the mean end-of-retry period with in case of a successful retry, the

samples of X a are:

X a e { X , X + - ? - , { X + tr + rt) + X , { X + tr + r t) + X + ^ - , 2 (X + tr + r t) + X , - " } .
™ta ™ia

The p m f of X a is then:

/£ . = ?i[Xa = k (X + tr + rt) + X + 0 < A: < oo, <?€{0,1}
A{d

= phT+s(X)(1 - p ,(r t))*(l - P T { X) f - spa{r t) \ (6.6)

where S € {0,1} indicates that the mission segment corresponding to X is completed because

of a successful retry upon detection of a TMR failure or because of no TMR failure, while

repeating the execution of the mission segment k times with k reconfigurations. p,(rt) of

Eq. (6.6) represents the probability of successful retry, which is computed by considering

all cases of no more than one faulty module remaining after retrying in each case of p,;-:

P*(rt) = ct [p2i (l - e - Ai*r<) + P 3 i(l -e “Ai“r‘)2 + P2o (l - e -2Aior*)

+P30 {Ce(1 - e-A**r‘) + Ci(1 - e-Ai“r<)2(l + 2e-A“p‘)}] .

Consequently,

yO O

Pmh(ru X , D) = / ^2 f x a(x) M y) d y .
J 0 k > H D - X - 6 ^ ;) / { X + t r + r t)i

92

6 .3 .4 R e t r y fo r B o th C a se s (/ r<! = 1, ITt = 1)

Finally, we present a retry policy for both cases of TMR failure and masked error

with retry periods rt and r e, respectively. To show a significant decrease in the frequency

of reconfigurations, pEi (r, X) and p?, (r, X) are also derived by using all the coefficients

indicating the increase and/or decrease of masked errors and TMR failures, i.e., in the

same way of deriving Eqs. (6.4) and (6.5):

P e . (t ,X) = {pE(X) + ctR[n%rt)pT(X) } { l - c e + ceR deec(re)},

pT. (r ,X) = {pT(X) + ce(1 - ct)B}r(re)PE(X) } { \ - ct + ctR?ee(rt)}, (6.7)

which are obtained by considering both the effects of retry for masked errors (i2fec(re) and

R\nc(re)) and the effects of retry for TMR failures (R'Jlc(rt) and R f ee(rt)). The derivation of

X , D) is similar to the previous case because both cases use retry for a TMR failure.

The only difference from Eq. (6.6) is the change of P t (X) to pT0 in /£ a, where pro is the

increased probability of TMR failures after retrying for masked errors:

t k = P t i ‘(X) (1 - P . (n)) ‘ (l - P T ° (X) y - ‘p , (r ,) ‘ , (6.8)

where

pT0=P T (X) + ceRienc(re)pE(X).

6 .3 .5 O p tim a l R e t r y P e r io d a n d M in im u m N u m b e r o f S p a re s

Using the derived pEi(re, X) , PT,(rt iX) , and pmh(r ,X ,D) , one can compute Pea and

Pmh from Eqs. (6.2) and (6.3), which are in turn used to calculate Pdyn with Eq. (6.1).

Now, ropt = {reopt,rtopt} is determined by minimizing the derived Pdyn with respect to

re and rt . (There always exist rcopt and Ttopt that minimize Pdyn over a closed interval,

0 < re,rt < D — X .) The derivation of ropt involves the following three steps:

S tep 1: Compute reopt from the case of I Fe = 1 and 7r< = 0 and let it be r*e.

S tep 2: Compute rtopi from the case of ITa = 1 and ITi = 1 by using r* and let it be r j

S tep 3: Calculate Pdyn(r = 0) and compare it with P(ij,n(r*,r*). If Pdyn(r = Q) < Pdyn{r*,r\),

then toPt = 0 else r opt - {r*, r t*}.

Steps 1 and 2 to minimize Pdyn with respect to re and rt separately are reasonable, because

the frequency (thus, effects on Pdyn) of masked errors is significantly larger than th a t of

93

TMR failures. Step 3 is taken to choose a better recovery policy between reconfiguration

and retry (with the derived retry period).

When the maximum acceptable probability of dynamic failure is given as p^/Jf, the min­

imum number of spares, iVm,n, can be computed by using the derived optimal retry period.

Obviously, Pdyn decreases with N when other variables are fixed. We can derive the relation

between Pdyn and N iteratively by increasing N from a certain initial value N 0. From this

relation N min is determined using pfy™. The derivation of N min is described in pseudo-code,

where N 0 is simply determined by using the case of Irc = 0 and I rt =0:

Recursive method to derive N min\

* A = acceptable error in the upper bound of pj^jf *\

* P R O B - D Y N A () ; program to compute Pdyn for I rc = 0, I rt = 0.*\

* P R O B J) Y N _2() : program to compute Pdyn using ropt for I rc = 1 , / r(= l .* \

N 0 := K * K : arbitrary number * \

Pdyn := P R O B -D Y N - 1 (N 0)

w hile (p £ - - A < Pdyn < p ^)

if (P d y n > P 7 y n)

N 0 := No + 1

else N 0 := N 0 — 1

encLw hile

Pdyn := P R O B -D Y N - 2 (N 0)

w hile (pg“ < Pdyn < p ? “ + A)

if (Pdyn < Pdyn) th e n

N \ - N - 1

else N := N + 1

encLw hile

r e tu rn N mi„ := N

6.4 Numerical Examples

In this section, we present numerical examples of ropt and fVm,„ under a certain condition

of fault occurrences. A brief performance analysis of several retry policies is also presented

using numerical values of Pdyn. All variables have the same time unit and thus are listed

without any specific unit. Specifically, the basic (time) unit is defined as a task period

(X = 1) for convenience, i.e., the mission lifetime is simply represented by m. The CSD is

94

0.001

0.0001

l e - 0 5

le - 0 6

iyn
le - 0 8

le —

l e - 10

le — 11

0 100 150
mission lifetime, m (xl03)

20050 250

F ig u re 6.4: Probabilities of dynamic failure (Pdyn’s) of several retry policies (/ r<j : ITt):
ce = ct — 1.

specified by a distribution function Fjj(d) = ^ (uniformly distributed) for 2 < d < 4, the

result of which can be extended to any other model of the CSD. In the numerical results

below we used the resetting time tr = 0.1 and the number of spares N = 10. (These

numbers are chosen somewhat arbitrarily, but their choice would not change the conclusion

we draw.)

Fault occurrences are also governed by the following set of fault parameters:

Aep = 5 x 10-8, Acn = 10-6, Aip = 2 x 10“7;

A,„ = 10-6 , -^ - = 0.01, y ~ = 0.005. (6.9)A|fl Aea

The examples of Pdyn of the four retry policies in Section 6.3 are shown in Figs. 6.4, 6.5,

and 6.6, while varying the mission lifetime m. A simple-minded retry period (r,- = rt = 0.02)

is used to demonstrate the effects of retrying for TMR failures and masked errors. Retrying

for TMR failures significantly reduces Pdy„ over the whole range of mission lifetime when the

detection coverages are perfect (ce,ct = 1). When the mission is short, retrying for masked

errors may increase Pdyn; this is demonstrated by comparing Pdyn s of (ITi : 7r() = (0 : 0) and

(1 : 0), or (0 : 1) and (1 : 1), when m = 1000 or 10000. In case of short missions, a dynamic

failure is likely to occur due to missing a CSD, rather than exhausting spares. Retrying

for masked errors clearly increases the probability of TMR failures (thus the probability

95

0.001
0:0) - e -
1:0) A -
0:1) -a-

0.0001

le — 05

le — 06

le — 07

le — 08

le — 09

le - 10

le - 11

le - 12
0 50 100 150

mission lifetime, m(x 103)
200 250

F ig u re 6.5: Pdy„ ’s of several retry policies (/ro : I rt): ce = ct — 0.9.

of missing a CSD), and decreasing the probability of exhausting spares is not effective in

reducing Pdyn for short missions. However, retrying for masked errors also decreases Pdyn

as the mission lifetime increases.

When the detection coverages are not perfect (ce,c t < 1) the relative advantage of retry

gets diminished; one can see this by comparing Fig. 6.4 with Fig. 6.5 or 6.6. Since the retry

periods are generally by far smaller than a CSD, the retry policy retains its superiority

to reconfiguration even if the detection coverages are not perfect, i.e., the time spent on

an unsuccessful retry does not significantly affect the probability of missing control system

deadlines.

Several examples of ropt are shown in Table 6.1 while varying the mission lifetime m and

the task period K . The task (invocation) period is measured by the number of instructions

executed for the task. Those values are derived by the method proposed in Section 6.3,

i.e., Ti is derived first and rt computed by using the derived r,-. Case (i) uses the same task

period (K = 5000) which is equal to one time unit (i.e., X = l) , while Case (ii) takes the

same mission lifetime (m = 10000). Both cases use the same values of fault parameters,

the number of spares, the resetting time and the control system deadlines as given earlier.

Although the absolute values of r opt (ropt x K) change a little with m and K , the relative

values of ropt with respect to a task period (X) changes significantly with K . One can

observe that the mission lifetime does not affect the optimal retry period as much as the

96

0.001
; (0:0) -©-
“(1:0) A
; (0:1) -B -

0.0001

le — 05

le — 06

le — 07

le — 09

le - 10

le — 11

50 100 1500 200 250
mission lifetime, m (xl03)

F ig u re 6.6: Pdy„’s of several retry policies (Jrt : I Ti): ce = ct = 0.7.

task period under the same condition.

iVmin is given in Table 6.2 for various mission lifetimes with a required level of Pdvn =

10-9/mission. Although other parameters affect the values of 7Vrmi-n, Nmin heavily depends

upon m. Pdyn decreases with an increase of N, but there is a lower bound of Pdyn because

the minimum value of the probability of missing the CSD cannot be decreased beyond a

certain value only by increasing N.

6.5 Conclusion

In this chapter, we have analyzed the effects of retry policies for TMR failures and

masked errors on the probability of dynamic failure. We have also proposed a method to

derive the optimal retry periods for both TMR failures and masked errors by minimizing

the probability of dynamic failure. For this purpose, we adopted a detection scheme with

high coverages of TMR failures as well as masked errors. The instruction-retry policy

outperforms reconfiguration even with low detection coverage, as shown in Fig. 6.6.

Although the TMR structure can mask only the effects of one manifested faulty module,

the occurrence of fault(s) in another module or coincident faults in multiple modules can

lead to a TMR failure. Our retry policy reduces effectively the frequency of TMR failures

by recovering from masked erroneous module(s), and it also recovers from a TMR failure

as a result of coincident faults by considering the control system deadlines and the number

97

(i) m (x l0 3) 1 10 25 50 100 250
Ti 0.1002 0.1248 0.1324 0.1402 0.1448 0.1524
Tt 0.0562 0.0564 0.0560 0.0546 0.0542 0.0762

(ii) iiT(xl03) 2.5 5 7.5 10 15 25
Ti 0.2392 0.1248 0.0844 0.0767 0.0462 0.0279

0.0456 0.0564 0.0443 0.0440 0.0164 0.0177

T ab le 6.1: Optimal retry periods ropt = when X — 1: (i) K = 5000 instruc­
tions/task, (ii) m = 10000 tasks/mission.

m (x l0 3) 1 10 50 100 150 250 300 400
Nm in 6 7 9 10 12 13 14 15

Table 6.2: Numerical examples of Nmi„ vs. m.

of spares. Our analysis also includes the relation between the number of spares and the

probability of dynamic failure, which is a key factor in determining the minimum number

of spares so as to satisfy the required level of the probability of dynamic failure for a given

mission.

CHAPTER 7

A TIME REDUNDANCY APPROACH TO TM R

FAILURES USING FAULT-STATE LIKELIHOODS

7.1 Introduction

Instruction retry used in Chapter 6 intrinsically assumes almost-perfect fault detection,

for which TMR systems require frequent voting, thereby inducing high time overhead.

However, the probability of system crash due to multiple-channel faults is shown in [63]

to be usually insignificant for general TMR systems, even when the outputs of computing

modules are infrequently voted on as long as the system is free of latent faults. This chapter

thus applies a simpler time-redundancy to TMR systems, re-execution of the whole task

(program), than the approach of instruction retry taken in Chapter 6,

If the TMR failure had been caused by transient faults, system reconfiguration or Re­

placement of Hardware and Restart (RHWR), upon detection of a TMR failure, may not

be desirable due to its high cost in both time and hardware. To counter this problem, we

propose to, upon detection of a TMR failure, Re-execute the corresponding task on the

Same HardWare (RSHW) without module replacement. Unlike simplex systems, program

rollback is not adequate for TMR systems due to the associated difficulty of checkpointing

and synchronization. So, we consider re-execution of tasks on a TMR system with infre­

quent voting. For example, since more than 90% of faults are known to be non-permanent

— as few as 2% of field failures are caused by permanent faults [46] — simple re-execution

may be an effective means to recover from most TMR failures. This may reduce (i) the

hardware cost resulting from the hasty elimination of modules with transient faults and (ii)

the recovery time tha t would otherwise increase, i.e., as a result of system reconfiguration.

Note tha t system reconfiguration is time-consuming because it requires the location and

replacement of faulty modules, program and data reloading, and resuming execution.

98

99

We shall propose two RSHW methods for determining when to reconfigure the system

instead of re-executing a task without module replacement. The first (non-adaptive) method

is to determine the maximum number of RSHWs allowable (MNR) before reconfiguring the

system for a given task according to its nominal execution time without estimating the

system (fault) state — somewhat similar to the multiple-retry policy applied to a general

rollback recovery scheme in [70]. By contrast, the second (adaptive) method (i) estimates

the system state with the likelihoods of all possible states and (ii) chooses the better of

RSHW or RHWR based on their expected costs when the system is in one of the estimated

states. RHWR is invoked if either the number of unsuccessful RSHWs exceeds the MNR

in the first method or the expected cost of RSHW gets larger than th a t of RHWR in the

second method. For the second method, we shall develop an algorithm for choosing between

RSHW and RHWR upon detection of a TMR failure. We shall also show how to calculate

the likelihoods of all possible states, and how to update them using the RSHW results and

the Bayes theorem.

The chapter is organized as follows. In the following section, we present a generic

methodology of handling TMR failures, and introduce the assumptions used. Section 7.3

derives the optimal voting interval (Xv) for a given nominal task-execution time X . The

MNR of the first method and the optimal recovery strategy of the second method are

computed for given X . We derive the probability density function (pdf) of time to the

first occurrence of a TMR failure, the probabilities of all possible types of faults at that

time, transition probabilities up to the voting time, the costs of RSHW and RHWR, and

the problem of updating likelihoods of the system state and the recovery policy after an

unsuccessful RSHW. Section 7.4 presents numerical results and compares two recovery

methods of RSHW and RHWR. The chapter concludes with Section 7.5.

7.2 Detection and Recovery of a TM R Failure

Detection and location of, and the subsequent recovery from, faults are crucial to the

correct operation of a TMR system, because the TMR system fails if either a voter fails at

the time of voting or faults manifest themselves in multiple modules during the execution of

a task. The fault occurrence rate is usually small enough to ignore coincident faults which

are not caused by a common cause, but non-coincident fault arrivals at different modules

are not negligible and may lead to a TMR failure.

100

Disagreement detectors which compare the values from the different voters of a TMR

system can detect single faults, but may themselves become faulty. FTMP [23], JPL-STAR

[2], and C.vmp [64] are example systems that use disagreement detectors. In FTMP, any

detected disagreement is stored in error latches which compress fault-state information

into error words for later identification of the faulty module(s). System reconfiguration

to resolve the ambiguity in locating the source of a detected error is repeated depending

on the source of the error and the number of units connected to a faulty bus. Two fault

detection strategies — hard failure analysis (HFA) and transient failure analysis (TFA)

— are provided according to the number and persistency of probable faulty units. These

strategies may remove the unit(s) with hard failures or update the fault index (demerit)

of a suspected unit. Frequent voting is required to make this scheme effective, because

any faulty module must be detected and recovered before the occurrence of a next fault on

another module within the same TMR system.

Voting in a TMR system masks the output of one faulty module, but does not locate

the faulty module. One can, however, use a simple scheme to detect faulty modules and/or

voter. Assuming tha t the probability of two faulty modules producing an identical erroneous

output is negligibly small, the output of a module-level voter becomes immaterial when

multiple modules are faulty [33]. A TMR failure can then be detected by using two identical

voters and a self-checking comparator as shown in Fig. 7.1. These voters can be implemented

with conventional combinational logic design [74]. The comparator can be easily made self­

checking for its usually simple function: for example, a simple structure made of two-rail

comparators in [41] for each bit can be utilized for its high reliability and functionality. This

TM R structure can also detect a voter fault. When a TMR failure or a voter fault occurs,

the comparator can detect the mismatch between the two voters that results from either

the failure to form a majority among three processing modules, or a voter fault. (Note that

using three voters, instead of two, would not make much difference in our discussion, so we

will focus on a two-voter TMR structure.)

If the comparator indicates a mismatch between two voters at the time of voting, an

appropriate recovery action must follow. Though RHWR has been widely used, RSHW may

prove more cost-effective than RHWR in recovering from most TMR failures. To explore

this in-depth, we will characterize RSHW with the way the MNR is determined. The

simplest is to use a constant number of RSHWs irrespective of the nominal task-execution

time and the system state which is defined by the number of faulty modules and the fault

101

comparator

voter 1

voter 2

processor 3

processor 2

processor 1

F ig u re 7.1: The structure of a TMR system with two voters and a comparator.

type(s). Taking into account the fact that the time overhead of an unsuccessful RSHW

increases with the nominal task-execution time X , one can determine the MNR simply

based on X , without estimating the system state. A more complex, but more effective,

method is to decide between RSHW and RHWR based on the estimated system state.

Since the system state changes dynamically, this decision is made by optimizing a certain

criterion which is dynamically modified with the additional information obtained from each

unsuccessful RSHW. In this adaptive method, the probabilities of all possible states will

be used instead of one accurately-estimated state. Upon detection of a TMR failure, the

expected cost of RSHW is updated and compared with that of RHWR. The failed task will

then be re-executed, without replacing any module, either until RSHW recovers from the

corresponding TMR failure or until the expected cost of RSHW becomes larger than that

of task execution . 1 As the number of unsuccessful RSHWs increases, the possibility of

permanent faults having caused the TMR failure increases, which, in turn, increases the

cost of RSHW significantly.

Throughout this paper, we assume that the arrival of permanent faults and the arrival

and disappearance of non-permanent faults are Poisson processes with rates Ap, A„, and /i,

respectively.

1This procedure is described in the algorithm of Fig. 7.4,

102

7.3 Optimal Recovery from a TMR Failure Using RSHW

7.3.1 The Optimal Voting Interval

Let Xi (2 < i < n) be the nominal task-execution time measured in CPU cycles between

the (i — l)-th and i-th voting, and let X i be tha t between the beginning of the task and the

first voting, in the absence of any TM R/voter failure. As shown in Fig. 7.2, for 1 < i < n let

Wi represent the task-execution time from the beginning of the task to the first completion of

the i-th voting possibly in the presence of some module failures, and let W{ = E{wi). Then

E (w n) = W n is the expected execution time of the task. Upon detection of a TMR failure,

let p and q be the probabilities of recoverying a task with RSHW and RHWR, respectively,

where p + q = 1 . Assuming tha t the time overhead of reconfiguration is constant Tc, Wn

is expressed as a recursive equation in terms of Wi, 1 < i < n. Let F}(f) (2 < i < n) be

the probability of a TMR failure in t units of time from the system state at the time of the

(j — l)- th voting, and let -Fi(i) be tha t from the beginning of the task. The probability of

a recovery attem pt (i.e., RSHW or RHWR) being successful depends upon Fi(t). When a

TMR failure is detected at the time of first voting (i.e., it occurred during the execution

of the task portion corresponding to Ax), the system will try RSHW (or RHWR) with

probability p (or q) to recover from the failure. This process is renewed probabilistically

for the variable uq which is the actual task-execution time corresponding to the nominal

task-execution time X \ . Thus,

(X i with probability 1 — Fi{X{)

X 1 -{- wi with probability Fi(Xi)p

X i + Tc + wi t h probability F 1 (A'1)g.

where Tc is the setup time for system reconfiguration.

Let Tv be the time overhead of voting which is in practice negligible. The above equation

is also renewed for all io,’s (2 < i < n) after each successful recovery. Hence,

Wi = id,_i + Vi + Tv for 2 < i < n,

where Vj is defined as the actual task-execution time between the (i — l)-th and i-th votings,

i.e., Vi = wi and

(Xi with probability 1 — Fi(X,)

Xi + Wi with probability F{(Xi)p

Xi + T c + Wi with probability Fi(Xi)q .

103

r r TMR failure
 +-----X — f

H— Vi —►H— V2 ■

— Wi —H
■ w 2 ■ -H

■Wi

■Vi

: voting

----------H

F ig u re 7.2: Graphical explanation for Vi and W{ for 1 < i < n.

From the above equations, the following recursive expressions are derived for 2 < i < n:

1
Wi =

1 - F i (X t)

Applying this recursively n — 1 times, we can get:

(W i ^ + Tv + Xi + FiiX^qTc).

 ^ f r f F j j X j W ' + X j + T A
Wn 1 - F i (X i) J

(7.1)

The optimal voting frequency is derived by minimizing Wn with respect to n and A,-,

1 < i < n, subject to

± X i = X.
1 = 1

If all inter-voting intervals are assumed to be identical then the constant voting interval is

Xi = X v = ^ for 1 < i < n, where an optimal value of n must be determined by minimizing

Eq. (7.1). Examples of n for a given X with typical values of p, q, Tv, and Te are shown in

Table 7.1. The voting points can be inserted by a programmer or a compiler.

X (hr.) 3 5 1 0 2 0 30 40

n 2 3 9 24 42 61

T able 7.1: n vs. X for (p,TCiTv) = (0.9,0.1A, 0.001)

7.3.2 Pre-determination of Non-adaptive RSHWs

In the first method, we determine a priori the maximum number of RSHWs (MNR), fcm,

based on X without estimating the system state. The associated task will be re-executed up

to km times. As X increases, the effect of an unsuccessful RSHW becomes more pronounced;

that is, the possibility of successful recovery with RSHW (instead of RHWR) will decrease

104

with X due to the increased rate of TMR failures, and the time overhead of an unsuccessful

RSHW also increases with X while the time overhead of RHWR remains constant. So, km

decreases as X increases.

Let Ci(k, X) be the actual tim e/cost of task execution in the presence of up to k RSHWs

for a task with the nominal execution time X , which can be expressed as:

Ct(k,X) = Xp\ + 2Xvlrl + • ■ ■ + kX + (kX + t T̂ x)) I I K ,

k —1 m —1 k — 1 / T 4- Y \ k

= E ” * I I + ^ I I K + (i J p / y j I K ', (7.2)
m = 1 n = 1 n = l ' -r lV.'A) ' n = l

where p” (p„) and F i (X) denote the probability of the rc-th RSHW becoming successful

(unsuccessful) and the probability of a TMR failure during X after system reconfiguration,

respectively, where p" + p" = 1, 1 < n < k. In fact, p" and p" cannot be determined

without knowledge of the system state after the (n — l)-th unsuccessful RSHW, which is too

complicated to derive a priori. We will approximate these probabilities using the following

useful properties of a TMR system. Since the probability of permanent faults having caused

the TMR failure increases with the number of unsuccessful RSHWs, p" is monotonically

decreasing in n:

p] > p] > ■ ■ • > v k, *=* Pu < p l < • • • < ? „ •

Though p] and R(n) = p"+1 /p" depend upon X and fault parameters, it is assumed for

simplicity tha t p] is given a priori as a constant P and R(n) is a constant R for all n.

C i (k ,X) of Eq. (7.2) is then modified in terms of P and R:

k —1 in—1 k — l / rri . -wr v k

c , (k , x) = E mX n (1 - r a r -^ P J r - '+ k x J p i - w ‘) + (.) I I (i - w 1)-
m = l n= 1 n = l \ l - ^ U A j y n =1

(7.3)
The cost of RHWR, denoted by C 2(X), is derived by using recursive equations:

« * > = ! 3 ^ 5 - (M)

Now, km can be determined as the integer that minimizes C i(k ,X) subject to C\{h ,X) <

C2(X) . Example values of km for typical values of P and R are shown in Table 7.2.

7.3.3 Adaptive RSHW

In this method, the system chooses, upon detection of a TMR failure, between RSHW

and RHWR based on their expected costs. RSHW will continue either until it becomes

successful or until the expected cost of the next RSHW becomes larger than that of RHWR.

105

X / T c (hr.) 1 / 1 2 / 1 3/1 4/1 5/1

km 4 3 2 2 1

T able 7.2: km vs. X for (P , F , R) = (0.8,0.1,0.8)

The system state is characterized by the likelihoods of all possible states because one can

observe only the time of each TMR failure detection, which is insufficient to accurately

estimate the system state. The outcome of one RSHW, regardless whether it is successful

or not, is used to update the likelihoods of states in one of which (called a prior state)

the RSHW started. The possible states upon detection of a TMR failure can be inferred

from the posterior states which are the updated prior states using the RSHW result and

the Bayes theorem.

Unlike a simplex model, there are too many possible states and events to analyze a

TMR system accurately. We will thus use the simplified Markov-chain model in Fig. 7.3

to derive the state probabilities and transition probabilities in a TMR system. The model

consists of six states which are distinguished by the number of permanent faults and that

of non-permanent faults, where two- and three- fault states are merged into one state due

to their identical effects in our analysis. In Fig. 7.3 the transitions over the bidirectional

horizontal lines result from the behavior of non-permanent faults and the transitions over

the unidirectional vertical lines are caused by the occurrence of permanent faults. Note

tha t even occurrences of near-coincident faults can be represented by sequential occurrences

with slightly different inlerarrival times. The model, thus, includes only transitions between

neighboring states — any transition from a state due to multiple faults occurs in two steps

through one of its neighboring states.

Some faults may disappear without affecting the execution of a task. This happens

when the latency of a fault is greater than its active duration, i.e., it will not manifest itself.

Note tha t the occurrence of an error in a module during the task execution may produce

an erroneous output for the task, even if the fault which had induced the error disappeared

before producing the final output of the task. In other words, a transient fault may have

permanent effects on task execution . 2

The optimal recovery algorithm based on the adaptive method in Fig. 7.4 can be illus­

2In fact, this problem can be eliminated by resynchronizing the processors after a transient fault is
detected [72], This, however, requires frequent voting and additional mechanisms for detecting errors in
each processor and resynchronizing the processors.

106

trated as follows. Upon detection of a TMR failure, the first step is to derive the probabilities

of all possible states at time X f evolved from each prior state. Let Tj be the time when the

TMR system moved to the failure state from prior state i during [0 , Xf], where X j is the

time of detecting a TMR failure (i.e., a voting time). Occurrence of a TMR failure is then

represented by an event (Tj < X /) for prior state i. We want to calculate the probabilities

of all possible states ir^(Xf) at voting time X j evolved from prior state i, which are actually

conditional probabilities given the observed event (Tj < Xf) . They can be calculated from

the probabilities of all types of TMR failures ic'm(Tj) at time Tj and the transition proba­

bilities Pmn(Xf — Tj) during the remaining task-execution time, Xj — Tj. The probabilities

of all possible states are thus

»(•>) = £ £ T T T T T W - ‘K (*). (7-5)
i m Jo j

where subscripts i , m and n indicate the prior state, the state at time Tj, and the state

at the time, X /, of detecting a TMR failure, respectively. As mentioned earlier, a voting

failure may result from a voter fault or multiple-module faults. Multiple-module faults

can be classified based on the number of modules with permanent faults: Type-I, Type-

II, and Type-III failures represent zero, one, and more than one permanent-fault module,

respectively, where all possible states of each type are listed in Fig. 7.3. Let S (x ,y) be

the state with x permanent-fault modules, y non-permanent-fault modules, and 3 — x — y

nonfaulty modules.

Although there are ten different states, we only need to consider six of them by merging

(i) 5 (0 ,3) into 5(0 ,2), (ii) 5 (1 ,2) into 5(1,1), and (iii) both 5 (2 , 1) and 5(3 ,0) into 5(2,0).

This merger of states simplifies the model of a TMR system without losing model accuracy,

because:

• By modifying the transition rates, one can make the simplified Markov-chain model

in Fig. 7.3 represent a TMR system very accurately, and

• The merger is based on a realistic assumption tha t simultaneous occurrence of faults

in different processor modules is highly unlikely.

Moreover, the merger does not change the analysis of a TMR failure because merged

states have similar effects on the TMR failure as compared to the original states. For

example, the merged states induce the same type of TMR failure, where the ‘type’ is

determined by the number of permanent-fault modules. There are four possible states,

{5(0 ,0), 5(0,1), 5(0,2), 5(0,3)} a t time X /, which led to Type-I failures (i.e., it was 5(0 ,1),

107

W TYPE-II failure

) possible states
{Sa,S9,S12}
at time X f

H TYPE-III failure

possible states

TYPE-I failure {5o.5i.52,53}
y at time Xj

possible states

F ig u re 7.3: A simplified Markov-chain model for a TMR system.

5(0 ,2), or 5(0 ,3) at time Tj, because a non-permanent fault might disappear after inducing

error(s).). Type-II and Type-III failures have three possible states, {5(1,0), 5(1,1), 5(1,2)}

and {5(2,0), 5(2,1), 5(3,0)}, respectively, at time Tj and Xf.

For notational simplicity, let state 5; = S(x , y) where i = 4x -f- y. Then, the set of all

possible states after the merging is {5; : i = 0 , 1 , 2 ,4,5,8}; out of these, {5i, 5 2 ,5 5 ,5 S}

are the set of possible fault states transited from 5 0 ,5 i, and 5 2 at time T j , T j , and Tj ,

respectively. 5 4 and 5 5 may change to 5S (or 58) at T j (or Tj) , and 5g remains unchanged

due to the persistence of a permanent fault.

Let a path denote the transition trajectory between a pair of states. Since there are

usually more than one path between a given pair of nodes, each of these paths is assigned

an ID number. From the simplified model in Fig. 7.3, Tj is the minimum-time path from

Si to any type of TMR failure. Let tj be the time taken from 5,- to a TMR failure via path

j . Then, Tj — min;- [/}], where the pdf of tj is calculated by convolving the pdf's of all

sub-paths th a t make up path j . The pdf of a sub-path between two states Sjk and 5Jfc+1

is obtained by using the distribution of sojourn time tjk of Sjk with several exits in the

Markov chain model (Fig. 7.3):

W . , W = ^ ' T E (7.6)
2 ^ ye{Eik}

y€{Eik}

where {Ejk} represents the set of all outgoing arcs of Sjk, Then, the pdf of tj is

108

where path j is composed of sub-paths { i j u j i j 2, • • •, j / m } and Sm must be one of possible

fault states: Sm G {5j, S2, S4, S5, 5a}- (When the inter-arrival time of events such as fault

occurrence, fault disappearance, and fault latency, is not exponentially distributed, we need

a semi-Markov chain model in place of a Markov chain model.) Let J'm represent the set of

all paths to a fault state Sm from S{. The likelihood of a fault state Sm at time Tj is, then,

equal to Prob(<J = Tj), which is obtained by:

r‘ (T ''I = V * -x
2 s V- ' f (rT*

s/efE'}

where E * is the set of all paths to all possible fault states evolved from 5,-, i.e., E' =m
[J J lm and m 6 { 1 ,2 ,4 ,5 ,8 }. The probabilities of Si and S2 leading to Type-I failure are

computed based on the behavior of non-permanent faults, i.e., depending on whether or

not a non-permanent fault, after having induced some error(s), is still active when a second

non-permanent fault occurs. Likewise, the probabilities of S4 and S5 leading to Type-II

failure are computed by the behavior of a non-permanent fault, if it had occurred earlier

than permanent fault(s). When an intermittent fault is considered, the fault state must

be divided by fault active and fault benign states as in [60], which makes the problem

too complicated to be tractable. The numerical examples of FT>(X) and the mean of Tj

(i = 0,4) for several X are given in Figs. 7.5 and 7.6, in which analytic results are compared

against the results obtained from Monte-Carlo simulations.

In addition to f Tt and irlm, the transition probabilities Pmn from Sm to Sn during X j —Tj

must be derived in order to obtain the likelihood of every possible st.a,te at the time of

voting (failure detection), X j . Although the matrix algebra using the transition matrix or

Chapman-Kolmogrov theorem can be applied to give accurate expressions, we will use a

simplified method for computational efficiency at an acceptably small loss of accuracy. For

the transition probabilities from T j , we need not consider subsequent errors but can focus

on only those states useful in choosing between RSHW and RHWR.

Observe that the occurrence rate, Xp, of permanent faults is much smaller than both the

appearance and disappearance rates of non-permanent faults. Using this observation, one

can analyze the behavior of permanent faults separately from that of non-permanent faults.

The transition probabilities due to the occurrence of permanent faults are represented by

Pmn(Xj —Tj) for Sm e {S (xu y)}, Sn e {S (x 2,y) : x 2 > a^}, that is, Pmn(X j - T j) = 0 for

S m € {*S'(xx,y)}, S ,1 £ { 5 (s2, y) : x 2 < Si}, because of the persistence of permanent faults.

Although these probabilities depend upon 7r^(f) \ / t ,T j < t < X j , they are approximated by

using only the prior probabilities of source states, irlm(Tj). This approximation causes only a

very small deviation from the exact values because the occurrence rate of permanent faults

is usually very small as compared to the other rates. For example, consider Pin for n > 4,

i.e., transitions from Si due to the occurrence of permanent fault(s). The corresponding

transition probabilities are derived from the model in Fig. 7.3 in terms of the pdf's of

sub-paths between two states. Let T = X j — Tj, then

P ^ (T) = I * Fw (T - t) f U t) d t
J o

The probability 7r\(Tj) for Si is thus reduced to (l - F i 5 (T))7rj(Tj). Likewise, transitions

from other source states due to the occurrence of permanent faults can be derived. Conse­

quently, the prior probabilities are transformed into (1 — F25(T))ir'2(T lf), (1 —

and (1 — F’5 8 (T))7ri(Tj), respectively. Using these transformed prior probabilities, we will

derive the transition probabilities based only on the behavior of non-permanent faults.

Considering only the behavior of non-permanent faults divides the above model into a

two-state model {£4 , £ 5 } and a three-state model {£0, £ 1 , £ 2}, as shown in Fig. 7.3. The

transition m atrix of the three-state model {£0 ,£ i ,£ 2 } is derived by (i) using the Laplace

transform which reduces the linear differential equations of three states to algebraic equa­

tions in s, (ii) solving the algebraic equations, and (iii) transforming the solution back into

the time domain.

The linear differential equation of {£ o ,£ i,£ 2 } with only the effects of non-transient

faults is Jl(Xf) = T (X f - T})Jl(Tj), where

-3A„ 0

T = 3A„ - 2 A nfi 2 p

0 2A„ —2p

The Laplace transform of T is:

110

The solution requires the inverse of A:

s 2 + (2A„ + 3 mu)s + 2/i2

3A„(s + 2 fi)

6 A*

fi(s + 2 /i)

s 2 + (2A„ + 3 n)a + 6 A„/i

3A„(s + 2A„)

2 /i2

2 /i(s -j- 3A„)

s 2 + (5A„ + fi)s + 6 A2

s3 + (5A„ + 3 y) s 2 + (6 A2 + 6 A„/i + 2/i2)s.

Let the roots of s2 + (5An + 3fi)s + 6 A2 + 6 An/i + 2 /t2 be a and (3, then a,j, the i/- th

element of A, can be obtained by partial fraction expansion:

c (0) l , c (ij)2 , C(i j) 3
a i j — ------------1------- ;-------- 1------- — ?.•s 5 + a s + p

Since C(ij)2 and C(,j) 3 are conjugates, c^ 2 = kij(a,(3) if C(,j) 3 = fcy(/?,a). The effect of

permanent faults changes the initial probabilities of {So, Si, £ 2 } to:

n'(Tj) = [i4o*.(z?),iW z}), iW iJ J F .

The above equations indicate th a t the coefficients of exponentials in A 0, Aj, and A 2 include

where A0 = (1 - F 0 4 (T)), A* = (1 - Fl t (T)), A 2 = (1 - Fn (T)).

Thus, the i-th column of the 3 x 3 transition m atrix P(T) reduces to:

C-£ + M “ . + ku(P, oc)e~eT)Ai-i '
+ k2i(a, /3)e~aT + k2i(/3,a)e~^T)Ai^i

(^ + fc3i(«,/?K“T + A:3,(/3,«}e-/3T)Ai_1 J ,
where

h i (x , y)

k22 (x ,y)

x 2 + (2 A„ + 3fi)x + 2/i2

x(y - x) ’
x 2 -f (3An 4 - 2 u)x 4 - 6 Anu

x(y - x)
x 2 + (5An + /i) x + 6 A2

the effects of the occurrence of permanent fault(s) on the prior probabilities. Likewise, the

transition m atrix of a two-state model for {S4, Sg} can be derived as:

I l l

where A 4 = 1 — F ^ T) and A 5 — 1 — F$g(T) also represent the effects of permanent-

fault occurrences on the transitions to Ss. These transition matrices and probabilities

(resulting from the occurrence of permanent faults) can describe all possible transitions in

the simplified model of Fig. 7.3.

When the TMR system is in S2, S$ or S8 at time X f , RSHW will be unsuccessful again

due to multiple active faults (in more than one module). If it is not in those states at

time X f due to disappearance of active fault(s) after inducing some error(s), the system

moves to a recoverable state by RSHW. Let FTi(X) be the probability of a TMR failure

evolved from Si during the execution time X , where FTi is the probability distribution

function of Tj. Since exact knowledge of the system state is not available, we estimate the

state probabilities, which are then used to calculate the expected cost of a single RSHW as

follows:

C ,(X) = X + I E "-<(0)+ £ fr ;(X)ir ,(0)) , (7.8)
,€ {0 ,1 ,4 } J

where 7r,(0) is the probability th a t the state before starting one RSHW (upon detecting a

TMR failure) is Si, i.e., the probabilities of the present states become those of the prior

states for the next RSHW. The expected cost of RHWR is obtained similarly to Eq. (7.4):

w

When RSHW is unsuccessful or a voting failure occurs again, the (prior) state prob­

abilities are updated with the additional information obtained from the RSHW using the

Bayes theorem. The observed information tells us that a TMR failure has occurred again

during the current execution. (Note that the TMR failure detection time during the cur­

rent execution is Xj .) As a result, the prior probabilities of all possible fault states for the

(k + l)- th RSHW (tt*+1) are renewed from those of the k-th RSHW (ir?):

f.+1 _ Prob(a TMR failure during Xj from 5,-) .
T% Prob(a TMR failure during Xj) ’

where Prob(a TMR failure during Xf) = J2i wi Prob(a TMR failure during X f from Si) =

Ti ^ T ‘(^ f) - From Eq. (7.10) one can see that the probability of the TMR system

being in a permanent-fault state increases with each unsuccessful RSHW, which, in turn,

increases the chance of adopting RHWR over RSHW upon detection of next TMR failure.

Using the above updated state probabilities, we can get the conditional probabilities of all

states upon detection of a TM R/voting failure.

When RSHW is successful, one can likewise update the probabilities of possible states,

which will then be used to guess the prior state of the next voting interval.

112

When the hardware cost is high and the time constraint is not stringent, one may do the

following. Since the fault occurrence rate is much smaller than the disappearance rate of

(existing) non-permanent faults, we may wait for a certain period of time (called a back-off

time) in order for the current non-permanent fault(s) to disappear before task re-execution.

An optimal back-off time is determined by minimizing the expected time overhead. When

a task is re-executed without any back-off, the cost of one RSHW is equal to Eq. (7.8).

When re-execution starts after backing off for r units of time, the cost changes (due to the

change of prior states):

C ,(r) = X + r + V m l E * M + E ,
where 7T,(r) = ^ Fji(r)iri(0).

j£ST

The optimal back-off time is obtained by minimizing C\{r) with respect to r.

113

re-execute

a TMR failure

compute Cireconfiguration

yes

no

RSHW

yes nosuccessful ?

continue execution

update prior prob.

F ig u re 7.4: Algorithm to recover from a TMR failure by estimating the system state
and comparing the costs of RSHW and RHWR.

114

0.7
P:S0 —
F:S0
P:S4 •••-
F:S4 -

0.6

0.5
Prob.

(/Freq.) 0.4
of

TMR 0.3
failure

0.2

10 20 30 40 50 60 70 80 90 100

X\ nominal computation [hour]

F ig u re 7.5: Probability/Frequency of a TMR failure obtained from the Markov-chain
model (P:S0=from S0 and P:S4=from 54)/from simulations (F:S0=from
S0 and F:S4=from 54).

7.4 Numerical Results and Discussion

A system with three replicated processing modules, two voters, and a comparator is

simulated to compare the proposed method (called Method 1) with an alternative which

is based on RHWR (called Method 2). Upon detection of a TMR failure, Method 1 will

decide between RSHW and RHWR according to their respective costs. Method 2, however,

will reconfigure the TMR entirely with a new healthy TMR or partially with healthy spare

modules following an appropriate diagnosis. If a non-permanent fault does not disappear

during the diagnosis, it will be treated as a permanent fault and replaced by a new, non-

faulty spare. We assume that (A l) an unlimited number of tasks with the same nominal

task-execution time are available to keep the running module busy, which simplifies the

description of system workload, and (A2) there are an unlimited number of spares available.

The performances of these two methods are characterized by the overhead ratio:

OVR(X) =

where E is the real execution time (including the RSHW and/or RHWR overheads) of a

task whose nominal execution time is X .

115

70

60

50

TMR 4 0

failure
occurrence

time 30

20

10

0

10 20 30 40 50 60 70 80 90 100

X : nominal computation [hour]

F ig u re 7.6: Mean TMR failure time (E[T°]) obtained from analysis (P:S0=from £ 0

and P:S4=from £4), and from simulations (F:S0=from £ 0 and F:S4=from
S4).

1
A „

x * i_
/i

1
ft

X *

200 3000 0.0001 0 .0 0 2 50

Table 7.3: Parameter values used in simulations, all measured in hours.

We ran simulations under the fault generation process with the parameters as given

Table 7.3, where the symbol * indicates a parameter varied while the others are fixed,

in order to observe the effects of the parameter on OVR in both methods. Since fault

occurrence/disappearance rates are difficult to estimate on-line, some experimental data or

numerical data based on a model reflecting the maturity of design/fabrication process, the

environmental effects, operating conditions, and the number and ages of components, can

be used [6 6].

In Figs. 7.5 and 7.6, the probabilities of a TMR failure and the failure times from £ 0 and

£ 4 are computed from the Markov-chain model and simulations, and are then compared.

The simulation and modeling results are very close to each other. The modeling analyses

proved to be very effective in determining when and how to choose between RSHW and

P:S0 -
F:S0
P:S4 ••
F:S4 ••

116

50
45
40
35
30

Overhead ot-
ratio M

20
15
10
5
0

10 20 30 40 50 60 70 80 90 100

X : nominal computation [hour]

F ig u re 7.7: OVR(X) [%] vs. X for RSHW and RHWR, with the optimal number of
votings for Tv = 0.0005 hour: (13,34,61,87,110,133,164,181,198,216).

RHWR under various conditions, as shown in Figs. 7.7-7.11.

The results obtained while varying X from 10 to 100 hours with Tc — 0.15X, are

plotted in Figs. 7.7-7.9. The OVRs of Methods 1 and 2 with the optimal number of votings

are compared in Fig. 7.7. The difference between the OVRs of Method 1 and Method

2 increases significantly with X . When X is small, the OVRs of the two methods are

too small to distinguish, which is due mainly to the small probability of a TM R failure.

Fig. 7.8 compares the multi-voting policy (with the optimal number of votings) and one

voting policy. Generally, the overhead of a TMR system with infrequent voting increases

significantly as X increases, because the probability of a TMR failure increases with X ; e.g.,

if there is no voting during the task execution, a TMR failure means the waste of the entire

nominal execution time, X . As X increases, the OVR of a one-voting policy increases more

rapidly than that of multi-voting policy. The number of RHWRs — which is represented by

the percentage of RHWR from the total number of simulations in Fig. 7.9 — will determine

the hardware cost of spares used. The increase in this percentage is much larger in Method

2 than Method 1 , since the number of TMR failures increases with X , and Method 1 can

recover from most TMR failures with RSHW.

The second comparison is made while varying Tc — the resetting time for system recon-

Method 1
Method 2

117

60

50

40

Overhead oq
ratio

20

10

0

10 20 30 40 50 60 70 80 90 100

X : nominal computation [hour]

F ig u re 7.8: OVR(X) [%] vs. X for one voting and multi-votings with the optimal
number of votings.

figuration — from 2.5 to 12.5 hours for Af=50 hours, and the results are plotted in Fig. 7.10.

A larger resetting time generally results in a larger OVR. Increasing Tc greatly affects the

performance of Method 2. But, it has little influence on the OVR of Method 1, since the

system recovers from most TMR failures with RSHW which has nothing to do with Tc.

The third comparison in Fig. 7.11 is made while varying from 5 to 25, where A„ is
A p

fixed at 0.005 /h r, and X = 50 hours and Tc = 7.5 hours. The OVRs of both methods

decrease with but the magnitude of decrease in Method 1 is larger than tha t in Method

2. This is because the probability of a TMR failure decreases as Ap decreases with An fixed,

and because the probability of successful RSHW increases with An..
A p

We simulated the proposed and other schemes for 10s units of time with the fault param­

eters of Table 7.3 for each comparison (of the mean overhead ratios of different schemes).

The fault parameters are assumed not to change during the simulation. Since the estima­

tion of system states depends upon the fault parameters, they must be estimated first. This

problem can be solved by assuming the parameters to be time-varying and estimating them

on-line with certain adaptive methods which, in turn, require more samples.

118

Ratio

54 Method 1

- Method 244

34

24

14
i4

4
3.5

3
2.5

2
1.5

1

0.5
0

10 20 30 40 50 60 70 80 90 100

X : nominal computation [hour]

F ig u re 7.9: Ratio [%] of the number of reconfigurations to the total number of simu­
lation runs.

119

11.5

11
Overhead

ratio
10.5

10

9 5
2.5 5 7.5 10 12.5

Tc: resetting time [hour]

F ig u re 7.10: OVR(X) [%] vs. Tc for RSHW and RHWR.

Method 1
Method 2

14

13

12

Overhead 11

ratio

10

9

8

5 10 15 20 25

Ratio of occurrence rates (np f /p f)

Method 1
Method 2

F ig u re 7.11: OVR(X) [%] for different occurrence rates of non-permanent and per­
manent faults.

120

7.5 Conclusion

In this chapter, we have proposed a strategy for recovering TMR failures using two

different methods tha t determine when and how to apply RHWR. Both methods are shown

to outperform the conventional method based solely on reconfiguration. This finding is

consistent with the fact that most faults are non-permanent, so simple re-execution can

recover from non-permanent faults and the TMR structure can mask the effects of one

faulty module.

The distinct characteristic of the proposed strategy is that it uses the estimated state

of a TMR system even with incomplete observation of system states. Detection of a TMR

failure and/or an unsuccessful RSHW does not always call for reconfiguration (RHWR) but

requires us to derive and compare the expected costs of reconfiguration and one additional

RSHW. Most TMR failures are represented by using a simplified Markov-chain model, and

the TMR failure time and the probability of another unsuccessful RSHW are also analyzed

with the model. One can therefore conclude that combining time and spatial redundancy

appropriately can be effective in handling component failures.

CHAPTER 8

TASK SEQUENCING TO MINIMIZE THE EFFECTS OF

NEAR-COINCIDENT FAULTS IN TM R CONTROLLER

COMPUTERS

8.1 Introduction

TMR used in Chapters 6 and 7 is effective only if (A l) the voter is fault-tolerant, (A2)

module faults are statistically independent, and (A3) additional detection and recovery

schemes are available to retain its fault masking capability or prevent a TMR failure that

results from sequentially-occurring faults in different modules. (A TMR failure is said to

occur if the TMR system fails to form a majority of its module outputs.)

The triplicated voters in [1, 49] can overcome any critical single-point fault in the voter,

thus satisfying A l. Most TMR systems in the field are based on A2 and adopt appropri­

ate detection and recovery schemes to preserve the capability of masking faults occurring

sequentially with sufficiently large inter-occurrence time intervals so as to recover from the

effects of a faulty module before a next module fault occurs (thus satisfying A3). For

example, several researchers [2, 9, 23, 58, 64, 72] have proposed the policies tolerating

multiple faults by treating them only as sequential fault occurrences, one at a time, with

repair/recovery between occurrences, thus requiring effective detection and identification of

each faulty module in the TMR system.

However, under certain conditions we cannot ignore (near) coincident faults occurring in

different modules, especially when the system is exposed to a harsh environment and/or the

system is required to have very high reliability. For example, faults caused by EMI are likely

to induce coincident faults in a TM R system [29]. Thus, a TMR failure caused by common-

cause faults in multiple modules must also be detected and recovered. In [25], the effect of

dependent faults inducing a TMR failure was eliminated by periodic resynchronization at

121

122

an optimal time interval. In tha t paper, the reliability of a TMR microcomputer system

with dependent faults was considered, and a dependent-fault-tolerant operating chart was

produced by executing different programs on different CPUs. In [27] we proposed an optimal

instruction-retry policy to minimize the probability of dynamic failure (i.e., missing a task’s

deadline) for a TMR controller computer while considering the possibility of coincident

faults tha t cause TMR failures. However, all of these approaches still focus on the behaviors

of independent faults, and do not present any adequate means of tolerating, or minimizing

the effects of, coincident faults.

The key idea of this chapter is based on the observation tha t two coincident module

faults in a TMR system will not result in a TMR failure if (i) at any given time all three

processor modules execute different tasks, (ii) the source of the two coincident module

faults does not last long, and (iii) tasks are independent of one another. (As we shall see

in Section 8.3.3, condition (iii) can be relaxed.) This fact implies that some TMR failures

can be avoided by properly sequencing tasks on the three modules of the TMR system.

Such task sequencing will be effective in dealing with coincident faults induced by transient

environmental disruptions like EMI. This is different from the approach proposed in [25]

in which processors 1, 2, and 3 execute tasks (n + 2), (n + 1), and n during the n-th cycle

with a fixed pattern. Our approach is much more general and flexible than this. We first

compute the probability mass function (pmf) of the number of TMR failures (i.e., two or

more modules are faulty when each corresponding task is executed) for:

• random task sequencing in which tasks are randomly selected for execution, and

• conventional task sequencing in which all three modules execute the same task at the

same time.

Then, we develop an optimal task sequencing by maximizing the mean number of TMR fail­

ures. We will not consider TMR failures due to fault occurrences during the voting process,

which usually do not affect significantly the comparative numbers of TMR failures for both

conventional and random task sequencing. Moreover, since the voters are generally imple­

mented with simple combinational logic components [74] and the time required for voting

is relatively small compared to task execution times, the probability of fault occurrences

during the voting process is very small.

The rest of the chapter is organized as follows. In Section 8 .2 , we discuss fault and

task models along with the assumptions used. In Section 8.3, we analyze the effects of

123

independent and coincident faults on both the random and conventional sequencing of

tasks. Specifically, we compute the mean number of independent and/or dependent tasks

producing correct executions results. An optimal task sequencing is also developed there.

Section 8.4 presents demonstrative examples. The chapter concludes with Section 8.5.

8.2 Basic Model and Assumptions

8.2.1 Fault Model

Hardware modules are subjected to the same environment (temperature, humidity, and

EMI) and often share the same clock and power supply, for which the commonly-used

independence assumption for fault occurrences in different modules no longer holds. In

particular, the harsh environment resulting from EMI (lightning, high-intensity radio fre­

quency field, or nuclear electro-magnetic pulses) will affect the entire system and induce

coincident or common-cause faults in the multiple modules of a TMR system. These faults

may cause a TMR failure, or failure to form a majority of module outputs. In this paper,

we consider a fault/failure model tha t accounts for both independent and common-cause

faults. Physical defects during manufacture or component-aging effects are the main cause

of independent module faults. Multiple (near-) coincident faults occur due mainly to envi­

ronmental disruptions.

Occurrences of independent and common-cause module faults are assumed to follow

Poisson processes with rates A,-and Ac, respectively. 1 The durations of external disruptions

inducing these faults are also assumed to follow Poisson processes with rates p; and p c,

respectively. In fact, since a fault may disappear without causing any error/failure or the

effects of a fault may persist even after its disappearance, the duration of an error/failure is

not always equal to the duration of a fault. However, we approximate error/failure durations

using the knowledge of fault-duration information.

8.2.2 Task Model

A mission is broken down into several sequential phases and is accomplished by exe­

cuting a set of computational tasks, three copies of each task on the three modules of a

TMR system, during a task interval (TI), a basic time unit, defined as the time required

to execute a task. The module outputs are voted on when these tasks are completed or

1 Failure occurrences are modeled using information on the occurrences of faults, and the fault and error
latencies.

124

produce outputs. We will begin with a basic task model in which all tasks have an identi­

cal execution time (= A t = one TI) and are independent of one another. This basic task

model is covered in Sections 8.3.1 and 8.3.2. In Section 8.3.3, we extend the results of the

basic task model to a more general (thus realistic) task model including tasks of different

execution times and/or dependent tasks.

When the three copies of a task are executed by all three modules during the same

TI, the execution results can be voted immediately upon completion of the task execution.

However, if the three modules execute different tasks during each TI according to a certain

sequencing policy, it is no longer simple to determine when to vote on the execution results.

To circumvent this difficulty, we assume that all task execution results are saved and voted

on later . 2 If there are tasks with tight timing constraints, they will be given priority to be

executed early and their execution results will immediately be voted on. The tasks requiring

synchronous interaction of all three modules with their environments such as actuators or

peripherals, should also be executed simultaneously in all three processors and voted on

immediately.

8.3 Task Sequencing Policies

If more than one copy of a task produce incorrect results due to multiple coincident

module faults, the TMR system cannot generate a correct output for the task, thus result­

ing in a TMR failure. Let a mission or a mission phase consist of N tasks and let N d (N j)

be the number of tasks producing correct (incorrect) results in the absence (presence) of

TMR failures. We want to develop a method for sequencing tasks in a TMR system that

maximizes the mean value of N d or E (N d). We first focus on the basic task model and then

extend the basic model results to a more general task model. This problem is equivalent

to minimizing E(N j) = N — E (N d), which is the mean number of TMR failures or voting

failures. Occurrences of TMR failures depend on the fault model governing the fault occur­

rences and durations in individual modules as well as on the method of sequencing tasks in

different modules.

2 In typical current-generation systems, memory components have higher failure rates than any other
components. Thus, the saved data may also be vulnerable to some faults. However, the memory can be
equipped with another well-developed fault-tolerance scheme (like error detection and correction codes).
Our idea and analysis will be based on the assumption that the saved data waiting for voting is safe by using
appropriate fault-tolerance methods for memory components.

125

8.3.1 Comparison of Conventional and Random Task Sequencing

We derive and compare E { N j) for the conventional task sequencing that executes the

copies of the same task in the three modules during the same TI and the random task

sequencing tha t selects a task randomly for each module during a TI.

We consider only one occurrence of common-cause or independent fault in each module

during the time interval of interest. Since fault inter-arrival times are significantly larger

than the task execution time, the results derived under such consideration differ little from

those under more realistic conditions assuming multiple-fault occurrences. We will first

consider the simplest task model, where all tasks are assumed to have an identical execution

time (= A t = one TI) and to be independent of one another; that is, tasks can be ordered

arbitrarily as { t i , t2, • • • , ^ }

Let Pjk be the probability tha t a TMR failure occurs during the j- th TI and the durations

of coincident faults inducing this failure are larger than (k — l)A t and smaller than kA t

(1 < k < N — j + 1). We will consider such a duration equal to k TIs. Given tha t a TMR

failure occurs during the j- th TI, the time of this occurrence will be uniformly distributed

over that interval, because a Poisson process has stationary and independent increments.

Then, by using the probability density functions (pdf) of fault occurrences and durations,

Pjk can be derived for 1 < j < N — 1 as:

P ? — ji _

DC _r ik -

P / (j V - i + l) =

where 1) includes both relatively long active transient faults (whose durations are

larger than (N —j) A t) and permanent faults during the j'-th TI. All of the above is also

applicable to independent faults by using the probability, of coincident independent

faults during the j- th T I with a duration of k TIs.

Now, we derive the probability mass functions (pmf) of Nj for both the conventional

and random task sequencing. Let the dummy variable for the number of TMR failures be £,

At 1 />At-<r
dt dx

/*At 1 ptlU-X

Jo A t Jo
(e-Ac(;-l)At_e-Ac;At^ 1 + _ L _ (e-,icAt „ ^

f l cL \Z
#»At i p k i A i —ir

(e - A c(j - l) A t _ e -Ac; A t) I I f a e ' ^ d t d x
Jo A t J (f c - l)A f i r

(c - A c (j - l) A t c —A c j A t ^ 1 ^ — e - 0 c A t ^ 2 e - p c (f c - 2) A t ^

fhCA t
for 2 < k < N — j

(e-Aco -i)A t_ e-AcJA t ^ A< 1 f 50 f r e - M d t d x
J o A t J (N - j) & t - x

(e - M ; - l) A < _ g - A e; A t) _ l ^ _ g —p cA t j . q(iV—j —l)At^ (g j)

126

where 0 < £ < N . In the conventional sequencing, the Nj due to coincident faults is simply

equal to k (i.e., £ = k and 1 < j < N —£+ 1) because only one possible fault occurrence is

considered during the entire mission or mission phase. In the case of independent faults,

we ignore the rare case when all three modules become faulty at the same time. A TI of a

module M,- is said to be faulty if Mf is faulty during that TI. The Nj due to independent

faults is then the number of TIs during which two of the three modules are faulty — we call

it two modules’ overlapping faulty TIs. Let pU and P„„ be the probabilities of independent

faults occurring in two modules. For any pair of j and k (1 < j < N and 1 < k < N —j + 1),

when u < j , £ = v— (j —u) for 1 < £ < k—1 , and all module faults lasting longer than j —u+k

TIs cause £ = k TMR failures. When u > j , £ = v for 1 < £ < k —(u—j) ~ 1, and all module

faults lasting longer than k — (u—j) TIs cause £ = k —{u—j) TMR failures. Considering the

above and the fact that the three modules in a TMR system can be paired in three different

ways, the pm f of Nf due to coincident faults and independent faults is obtained by using

Pfk and Pjk as follows:

N-i+l N JV-;+l

p [n , = i] = E ^ + JE E 4
j = i j = i t = i

; I N -u+i

E KuWW-iH E
u = l \ u=7-u+fc

j4 * -l I W-u+l

+ l^ n £(l,fc-«+J-l)+ Y , Pu v h (k - U + j)
u=j+1 \

(8.2)

where 11^(1, k) is a rectangular function of £ over [1, Aj] (i.e., 11/(1, k) = 1 if £ G {1 ,2 , • • •, k}

and 0 otherwise), and 6t(k) is a delta function such that 6t(k) = 1 if £ = k and 0 otherwise.

In the random task sequencing, the Nf due to common-cause faults is not k but equal

to an integer smaller than or equal to k. That is, the pmf of N} due to common-cause faults

is derived as:
N N-j+l

W = o = EE p ;fcp (M) , (8.3)
j= l k= t

where P(k,£) is the probability that any pair of modules execute same £ tasks during k

consecutive faulty TIs. P(k,£) is obtained by using the combinatorics of three generic urns

containing N balls, because the method of sequencing tasks is random just like drawing balls

from urns. Consider one pair of modules, say M\ and M2, which contribute £k TMR failures

because of their overlapping faulty TIs. Suppose k tasks (black balls) assigned to the faulty

TIs of Mi are distinguishable from the remaining N — k tasks (white balls). Then one can

cast the random task sequencing on the other module, M2, into the problem of sampling of

balls without replacement in the urn containing A: black balls and N —k white balls. Noting

th a t there are also k faulty TIs of M2, k balls are drawn at random (simultaneously or

127

Sequencing method \ N 5 1 0 15 2 0 25
Conventional 1.142e—4 2.979e—4 4.948e—4 6.942e—4 8.941e—5

Random 7.995e—5 1.671e—4 2.612e—4 3.484e—4 4.202e—4

T able 8.1: Examples E(lV/)’s when A, = l e - 4 , A,- = l e - 5 , = 1/3, and p, = 1/3,
i.e., independent faults are likely to occur.

one-by-one without replacement) from M2. The probability that £i black balls are selected

among those k balls drawn is simply derived as:

P (k ,£1) = kCil N~ f k̂ , < k, k - £ x < N - k = ^ 2 k ~ N < £ 1 < k. (8.4)
M -’it

Let £2 be the number of TMR failures contributed by two pairs of modules, (M2, M3)

and (M i, M3), then £ = £i + £2. Again, suppose 2{N—£{) tasks (black balls) assigned to the

faulty TIs of M k and M2 are distinguishable from the remaining N — 2{N —£\) tasks (white

balls) in M3. Since there are also k faulty TIs of M3, the conditional probability tha t £2

black balls are selected among k balls drawn from M3 given £x is derived as:

P{k £2\£i) =
uCk

l 2 < 2 (N -£ i) , k - l 2 < N - 2 (N ~ £ i) =>• k + N - 2 ^ < £ 2 < 2 (N - £ 1). (8.5)

From Eqs. (8.4) and (8.5), P (k ,£ i ,£2) = P(k,£ i)P(k ,£2\£i) is computed, and thus P (k ,£) =

The number, N f, of TMR failures caused by coincident independent faults in the case

of random task sequencing is an integer not greater than the number of two modules’

overlapping faulty TIs. The pm f of N f is thus derived from Eqs. (8.2) and (8.3) as:

N N-j+1 / N N-u+1 \

P(N, =t) = 3 'E T , E E ■ (8.6)
J= 1 Jfc=l \U=1 V=i /

where P (k ,v ,£) is the probability that any pair of modules execute same £ tasks during

their k and v faulty TIs, respectively, thus resulting in £ TMR failures. This

probability can be obtained similarly to P (k ,£) by sampling balls in the urn containing k

(or v) black balls out of N balls. (Recall that k or v represents the number of a module’s

faulty TIs.) P(k, v,£) is equal to the probability that £ black balls are selected among v (or

k) balls drawn from the urn (the other module), because there are v (or k) faulty TIs of

the other module. That is, P (k ,v ,£) = kCi N-kCv-i/ nCv for £ < k and k —£ < N — v (i.e.,

128

Module 1 (N=10)

Module 2

Module 3

PD>=d

F ig u re 8.1: Wrapping tasks around in Ms with N = 20 and d = 3, i.e., ts+2X3 m od(io) =

k-\-v — N < l < k) . Using the derived p m f of N j, we finally compute:

E (N t) = = I). (8.7)
£=1

Using a particular set of fault parameters, we have derived several example E (N j Ys

while varying N and presented them in Table 8.1 for both the conventional and random

task sequencing. These examples do not cover the entire set of missions or mission phases

(represented by N TIs) and fault environments. But the results indicate tha t the methods

of sequencing tasks in which three modules execute different tasks during each TI may

be effective in dealing with coincident faults and suggest the existence of an optimal task

sequence that results in a smaller E (N j) than the random sequencing.

8.3.2 The Optimal Task Sequencing

We search for an optimal sequence of tasks that minimizes E (N f). This may be more

complex to use but yield more reliable task execution results than the random and conven­

tional sequencing. Let M1? M2, and M3 be the first, the second, and the third modules

labeled arbitrarily in a TMR system.

We consider a simple sequencing strategy such that the three copies of a task are ex­

ecuted on three different modules at different times separated by d A t , which is called the

task distance (TD). This is formally stated as follows.

1. In M i, N tasks are assigned to N different TIs in an arbitrary order and let tj denote

129

the task assigned to the j- th TI.

2. In M 2 and M 3, tj is assigned to the (j + cJ)m0(jjv-th TI and the (j + 2d)mo(JjV-th TI,

respectively.

A m od n represents tha t the j4-th TI is wrapped around the iV-th TI if A > IV, like { t 5 , t 6, • • •, t 10}

in Fig. 8.1, because we consider only N consecutive TIs for executing all copies of N tasks

on three modules. That is,

f A i f A < N
A-m odN — \

[N — A otherwise.

TD should not be smaller than d even after wrapping, like t5 in Fig. 8.1. Since wrapping

happens earlier in M3 than M 2, the following condition for M 3 guarantees TD not to be

smaller than d after wrapping in both M2 and M3:

j - (j + 2 d - N) > d ^ 3 d < N . (8.8)

We now want to derive E (N j(d)) in this sequencing strategy and find an integer dopt that

minimizes E {N }(d)) for 0 < d < |"y"|.

Let Si be the subset of tasks which are not wrapped around, S2 be the subset of tasks

wrapped around only in M3, and S3 be the subset of tasks wrapped around in both M 2 and

M 3. Then

' * ' j ^N—2d} € Si,

{ I n - 2 d + l^ N - 2 d + 2 ' • ' t ^ N - d] £ S 2 ,

{ tN - d + l > tN -d + 2 - ‘ 1 > ijv} G S3.

Let N j , N j , and N j be the numbers of TMR failures occurred during the execution of tasks

in Si, S2, and S3, respectively. Using ~ N j, the pm f of N j can be obtained by

convolving the pm /’s of N j , N j , and Nj:

P (N f = £) = P (N j = i) * P (N j = £)* P (N j = £). (8.9)

First, consider the tasks affected by common-cause faults. In Si, the TD of a task is

d for all pairs of task copies on (M i, M2) and (M2, M3). When faults occur between the

first TI and the d-th TI, no more than N — 2d tasks may be contaminated. If the faults

have an active duration of k TIs, then N j = I = k —d for 1 < £ < N —2d—I, and all faults

lasting longer than N —d TIs cause £ = N —2d TMR failures, because TD = d. If faults occur

130

between the (d + l) - th TI and the (JV -d)-th TI, then £ = f c - d f o r l < £ < N - d —j + 1,

similarly to the above. No TMR failure will occur when j > N — d. Consequently, when

1 < J < d, the probability of £ TMR failures is increased by P - ^) f°r 1 < £ < IV—2d—1 and

by Y^k=N^d Pjk f°r £ = N —2d. When d + 1 < j < N —d, the probability of £ TMR failures is

increased by for 1 < £ < N — 2d—l. Thus,

d / JV-j+1

p (n } = i) = y . i >; (w)n 1(i , j v - 2 r f - i) + y , W f f - 2d)
j = 1 \ k - N - d

N -d

+ ^ 2 P/(dt/)II^ (l,J V -d -j+ l). (8.10)
j = W

For any task in S2, the TDs of task copies in module pairs (M 2,M 3), and

(M3,M x) are d, N — d, and N — 2d, respectively. When faults occur between the first and

the d-th TI, the task copies on M 3 and Mi are likely to be contaminated. If these faults

are active for k TIs, N j = k — (N — 2d) (< d), because the TD of task copies on M3 and

Mi is equal to N — 2d. When faults occur between the (d + l) - th TI and the (N — d)-th

TI (d + 1 < j < N — d), only the task copies on Mi and M 2 can be contaminated. For

d + 1 < j < N — 2d, the only faults lasting longer than (N — 2d —j) + d TIs can induce

N j = k — (N — 2d — j) — d — l (< d) TMR failures, because no task in S 2 is executed on

any module during N — 2d —j TIs and the TD of task copies on Mi and M 2 is d. For

lV -2 d + l < j < N - d , we get N j = k - d (< N - j - d + 1), simply because the TD of task

copies on Mi and M 2 is d, and the task copies on Mi before the fault occurrence (i.e., those

tasks executed between the (JV — 2d+ l)-th TI and the (j — l)-th TI) are unaffected by the

fault. Thus, similarly to Eq. (8.10), we get

d (iV - j+ l \ N-2d

p (n] = i) = E W (» - w) n < (w - >) + E
j= l \ k= N -d J ; = d f l

N -d

+ ^ 2 - ^ / (^ ^ (l ^ - r f - j + l) - (8-H)
j= N -2 d \i

For any task in S3, the TDs of the task copies on module pairs (M i ,M 2), (M 2, M3), and

(M3, Mi) are N — d, d, and N — 2d, respectively. When faults occur between the first and

the d-th TI (1 < j < d), the task copies on M 2 and M 3 are likely to be contaminated. If the

faults stay active for kA i, where d < k < 2d - j , 2d—j < k < N —d—j+ l, N —d—j+1 < k < N —d,

and N — d < k < N —j + 1, N j becomes k —d, 2d—j+ 1 , k —N+2d, and d, respectively. When

faults occur between the (d+ l)-th TI and the 2d-th TI (d+1 < j < 2d), only the task copies

on M 3 and Mi can be contaminated. N j(< d — (j — d) + 1) is equal to k — N + 2d, because

TD between the task copies on M 3 and Mi is N — 2d, and the task copies of M 3 before the

131

a l H H b l

j+ k | JL i u u+v

c = a2 -a l
-H a2 b2

A Task Subset

Faulty T Fs

F ig u re 8.2: An example number of TMR failures (£) when u < c + j .

fault occurrence (between the (<f+ l)-th TI and (j — l)-th TI) are unaffected by the fault.

Thus, if we treat the probability of I TMR failures for two cases of j (i.e., 1 < j < d and

d +1 < j < 2d) by considering the above facts, we have

d / JV— 1
P i N f = t) = £ £ P f M d - j + v + p ^ w M d - j + U - i)

j = 1 \ k=2d-j+l
N-j+1 \ 2 d

+ E W + E <8-12)k=N-d 1 ;=dfl

Similarly, we can obtain the p m f of the number, N'f , of TMR failures caused by indepen­

dent faults. We derive the number of two modules’ overlapping faulty TIs and the number

of TMR failures occurred in executing each subset of tasks during these TIs, separately

for both all three subsets (Si, Sz, and 5s) and all three possible module pairs, (M i,ilf2),

(M 2 ,M 3), (Mb, M i).

As shown in Fig. 8.2, suppose tasks in a subset, say Si, be sequenced between the a : -th

TI and the fc^th TI on a module, say Mi, and sequenced between the a2-th T I and the

6 2-th TI on the other module, say M2. Then, TD = c = a2 — Oi. Let Pjk (P L) be the

probabilities tha t an independent fault occurs in Mi (M2) during the i-th (u-th) T I with

an active duration of k A t (vAt). The values of {0 1 , 0 2 ^ 1 , 6 2 } of all three possible pairs of

modules for all task subsets are given in Table 8.2.

Let N j (i j) = £ be the number of TMR failures occurred during the execution of tasks

in Sk due to the coincident independent faults in M, and Mj. Then, the pm f oi N j (i j) = £

can be derived similarly to that of the conventional sequencing in Section 8.3.1 (Eq. (8.2)).

Suppose a fault occurs at the j- th TI and lasts for k A t in a module, which is represented

by Pjk• Using Pjk, we derive the probability of iV*(i j) = £ while varying u and v in the

132

M\ and M2 M2 and M3 M3 and Mi
Si {l,d+ l, N —2d, N —d} {d + l,2 d + l,N -d , N} { l ,2 d + l,N -2 d ,N }
s2 {N -2 d + l, N - d + 1, N - d , N} {1, N —d+l, d, N} { l ,N - 2 d + l ,d ,N - d }
s3 { l ,N - d + l ,d ,N } {1, cf+1, d, 2d} {d+ l,N -d + l,2 d , N}

Table 8.2: {a i,a 2,b i,b2}

other module.

First, le t’s consider the case of Oi = 1. In this case, if a fault occurs after the (a2—Oi+J+

k —l)- th TI in a module or &2-th TI in the other module, then there is no overlapping faulty

T I between the two modules. Thus, we need to deal only with two cases: (i) 1 < u < c+ j

and (ii) c + j + 1 < u < r i , where r\ = m in{c+ j' + f e - l , f>2}. In Case (i), the number of

TMR failures is £ = v — c—j + u for 1 < ^ < r 2— 1, where r 2 = m in {k, fri-y + l} . However,

all faults lasting longer than c + j — u + r2 TIs cause r 2 TMR failures. In Case (ii), £ is

simply equal to v for 1 < £ < r3 — 1, where r3 = min {k — u + c + j , — j + 1}, and all

faults lasting longer than r3 TIs cause r3 TMR failures. Consequently, we have the p m f of

N *(ij) G {N}(12), N}(31), Nj(23), N f (31), N f (12), N f (23)}:

bi N-j+1

P(Nf(i j) = £) =
j - l fc=l

o t f / J V - u f l

E ^ " < (^ - 1) + £ fL ffa)
u = l y u=iH i-l*+»'2

r , / W -ufl >

+ E JWi,ra-l)+ E PtMn)
u s o ^ ' + l \ V = r 3 J

(8.13)

When <ii > 1 , we should also deal with two cases of j: (I) 1 < j < s q - l and (II) a* < j <

bi. We can compute the probabilities of Case II, just like Case (ii) of a\ — 1 or Eq. (8.13). In

Case I, a fault should last longer than a i—j TIs in the first module to have any overlapping

faulty TI (i.e., k > a\—j+ 1). We should also deal with two cases of it different from those of

a,i = 1 : (a) 1 < u < a2 — 1 and (b) a2 < u < r 4, where r 4 (= r1) = m in{a 2+(fc-a1+ j)—1 ? b2}. In

Case (a), £ is equal to v—a2+u for 1 < £ < r3—1, where r5 = min {k—(o i—j) , b\—a4}, and all

faults lasting longer than a2—u+r5 TIs cause r5 TMR failures. In Case (b), £ is equal to v for

1 < £< t3—1 , where r6 = m in{A -(oi-j) - (u —a2), 6 1 —fli), and all faults lasting longer than re

TIs cause r 6 TMR failures. Thus, we have the pm f oi N j (i j) G {N j (23), Nj(12), JV^(31)}:

a i - l N-j+1

p(xf(i j) = t) = £ £ pjt
j= lk = a ,- j+ l

a3 / N-u+1 >

E £ P t M r ,)
.u=l \ V = a3-u+ s)

r< / N-u+l N

+ £ J>in,(l,r»-l)+ £ P iM r,)
u=aa+l V u=r8 /

133

6i JV-i+1

+ E E
j = a i f c = l

oh' / J V -u f l

E E PtMn)
u = l \ V~oh~U}T2

r i / JV—tt+1 >

+ E -Pi,n,(i,r3-i)+ J2 pLHt3)
u = o t j + l \ t = r 3)

(8.14)

We ignored the effects of three modules’ overlapping faulty TIs caused by independently-

occurring faults. A TMR failure occurring due to a pair of faulty modules is treated as an

exclusive event of TMR failure occurring due to the other pairs of faulty modules. In other

words, JV*(12), iVy (23), and Ay (31), become exclusive random variables. Hence, we can

get P (N j = I) from Eqs. (8.13) and (8.14):

P {N j = £) = P (A *(12) = £) + P (N f (23) = £) + P (N }(31) = £) k <E {1,2,3}. (8.15)

just like Eq. (8.9).

The pm f of independent faults is obtained by convolving three equations: P (N j = £),

P (N j = £), and P (N f = £). The pm f of common-cause faults is also obtained from

convolving Eqs. (8.10), (8.11), and (8.12). Consequently, P (N j = £) is obtained by adding

the p m /’s of common-cause and independent faults. (Since we considered only one possible

fault occurrence in each module, occurrences of common-cause and independent faults are

also exclusive to each other.)

By using the constraint of d in Eq. (8.8) and the pm f of N f derived as a function of d,

we can determine dopt minimizing E (N f).3

q o o n r i , „ __ e c : ,— . — i r v _ _ _ — i . _ i nn__i
u . u . u J L l i e 0 8 1 1 6 1 a i l u u u c i i u i u i u c i c i m - i J i Z c t t i l u l / c p c l l U C U l X d S & S

We now treat a general model for tasks with different execution times. (Precedence

constraints will be considered later in this section.) Let 1 ■ •, tm} be an ordered set of

m tasks, and let n,- be the execution time of U such tha t YT=i n\ = N .

Suppose we use the same sequencing strategy as the basic task model, according to which

three copies of each task are placed in the schedules of three modules with a separation

interval dAt, as shown in Fig. 8.3. Then, unlike the case of basic task model, when placing

the copies of tk in the module schedules, one is likely to encounter a case where 2d+5lfl11 n,- <

N but 2d+X^=i n,- > N on M3, or d+D?!1! < N but d-|-]£i=i n,- > N on M2. That is, none

of the remaining tasks, tk,th+1 ,* • • , , can be executed before or at the end of the IV-th

TI of M2 or M3. Since we cannot generally divide a task, we have to extend the execution

3Although it is impossible to derive dopt in a closed-form, we can determine dopt numerically, i.e, com­
puting E (N j) for every d (0 < d < f y l) .

134

idle time of Ml
N 2d+nl+.. ,+nk nk-N+2d+nl+.. .+n(k-l)

M1

N

tk

2d

M3 tk

nk-N+2d+nl+.. .+n(k-l)
idle time of M3

2d+nl+... +n(k—1)

F ig u re 8.3: Sequencing tk such that 2 d + ni < N but 2d+'£ji=ini > N in M 3
by shifting the whole execution time in M 3 to the right (i.e., the end of a
task) by (2d+Yli=i n,- — N) TIs.

of each of these tasks beyond the IV-th TI. For example, on M 3, tk is executed from the

{2d+YliZi Tii)-th T I to the (2 d + £ -=1 n,)-th TI, and t k+i is not wrapped around to the first

TI but extended to the (2£f+X^=1 ?*« “ ■W)-th TI, as shown in Fig. 8.3. This extends4 the

cumulative execution time of tasks t i ,•••,£* from N TIs to (2 d + ^ * =1 n,-) TIs.

Unlike the arbitrary ordering of tasks in the basic task model, we must develop an or­

dering algorithm by minimizing these extra TIs as follows.

An algorithm for ordering m tasks by minimizing the extra TIs:

Step 1: Select any task and call it ti(i = 1).
Step 2: i := i+ 1 (sequence tasks until tasks on M3 need to be wrapped around).

If there is a task whose execution time is equal to N —2d—]C}=0 nji then call it t{
and go to Step 3.

Else if there is any task whose execution time is smaller than N —2d—J2'f=o nji
then (select one arbitrarily if more than one and) call it ti
and go to Step 2.

Else select a task (of execution time nr TIs) among the remaining tasks by
minimizing 2d+Yl)~=o n j+ n r — N and call it ti and go to Step 3.

Step 3: i := i + 1 (sequence tasks until tasks on M2 need to wrapped around)
If there is a task whose execution time is equal to N —d —Y?f=0 nji then call it t,-

and go to Step 4-
Else if there is any task whose execution time is smaller than N — d —J2'f~o nj,

then (select one arbitrarily if more than one and) call it f,-
and go to Step 3.

4 adding idle TIs

62208750

135

Else select a task (of execution time nr TIs) among the remaining ones by
minimizing d + nj + nr — N and call it t{ and go to Step 4-

Step 4' Sequence the remaining tasks in arbitrary order.

Let nj be the number of TMR failures in this task model. Considering tha t a mission

or mission phase is composed of N TIs,5 we can derive the pm f of N f , the number of

faulty TIs, similarly to the case of basic task model. From P(Nf = £), we derive the pm f

of nd under the assumption that if tasks are sequenced according to the proposed ordering

algorithm then a TI is assigned to a task of execution time n,- TIs with a probability j f) ,

i.e., a uniform distribution. Note that the size of a task for the general model is measured

in number of TIs “composing” the task and the sum of the TIs composing all tasks in the

mission or mission phase is N. A task will produce a correct output if no TI composing

the task is faulty; in other words, a task would have an erroneous output if some of the TIs

composing the task are faulty.

Given that N f = £, the conditional probability of nd = r is obtained similarly to

“sampling balls without replacement” in the urn containing N balls of m different colors

(tasks) such tha t Yl'ILi n> = N . Since there are £ faulty TIs, we randomly select £ balls

from the urn and derive the p m f for the number, r , of different color balls among £ drawn

balls. Let Sf be the set of all subsets of task sizes, each subset consisting of r task sizes

n , i ,n ,2 - • ‘ ,n 3r and]Ci=i ^ ^ from the entire set of m tasks. The number of subsets

each composed of r tasks is mCr, from which we obtain the set S*. The probability that

at least one ball is drawn from every color group corresponding to every task in the subset

{n3U n s2 • • ' , n sr} € S$ is:

which includes all the cases of r different color balls drawn by using r summations as well

as all combinations of £ — r balls selected from the remaining balls in each case (i.e., from

Z)y=i(nJj ~ b) balls), which can be obtained by avoiding repeated cases. The pm f of nd is

thus derived as:
N

P (n d = r) = ' £ P (n d = r\Nf = £)P(Nf = £)
1=1

5The effects of the extra TIs required to handle different size tasks are not considered, because (i)
2d + ni + . . . + rifc — N is smaller than the execution time of any remaining task, (ii) the total number of TIs
during which tasks are actually executed in each module is still N, and (iii) the number of the extra TIs
depends on the given task set and thus is difficult to determine. Since N » 2d + n\ + • • • + nk — N > 0,
this approximation makes little difference.

136

As a result, we compute all E (n dys for 0 < d < [y] and determine dopt that minimizes

E (n d) numerically as we did for the basic task model.

To calculate Eq. (8.17), we need to check the inequality ^ =1 nsi > I mCr times to

obtain S$ for 1 < r < m, and thus a total of £5=! mC« (= 2m) times. In addition, a t least r+1

loops are required to compute the probability for each element (subset) in Sf:, 1 < i < N .

Thus, the amount of computation required for Eq. (8.17) increases rapidly as m and N

increase. Let n0 be the Greatest Common Divisor (G C D) of {rai, n2, • • •, nm}. If n0 > 1, we

reduce significantly the required computation by using the adjusted execution times, which

are obtained by dividing the original execution times by n0, e.g., nj- = ^ , N ' = A-. The

amount of computation is then proportional to N ', not N . It is thus better to change the

size of a few tasks (typically one or two) to obtain a larger nQ (thus a smaller JV7), i.e., if

GrC'D({n1,n 2, • • • ,« ,+ An, • • - ,n m}) > G CD({n1,n 2, • • •,n,-, • • - ,n m}) for a small A n , then

we change {na,n 2, • • to { n j,n 2, • • • ,n, + A n , • • • ,n m}. After this change, the

real execution time of the i-th task is n,- and all three modules are idle for A n TIs. For

example, if a set of tasks with execution times {18,12,8,3} is given, we would better use

{18,12,9,3} =3- {6,4,3, l} (n0 = 3) by assigning an idle time (An = 1) to the third task.

Now, we want to consider a task model in which some tasks are dependent on others,

i.e., there are precedence constraints. We define a new task for each subset by merging all

dependent tasks within the subset into consecutive TIs, thus obtaining a new set of tasks

whose sizes are equal to the sum of sizes of all merged tasks. The problem of optimally

sequencing tasks in such a newly-defined set is then equivalent to a different-size task

model. However, even when no task is fitted in the remaining TIs (= N — 2d—'^2i^ n{ or

N - d —Y^i=i «.) on M3 or M 2, no extra TIs are required, unlike the different-size task model.

Since a newly-defined task is composed of dependent tasks, parts of it can be sequenced

during both the TIs near the JV-th TI and the TIs near the first TI after wrapping around.

8.4 Numerical Examples

In this section, we present the numerical results derived from both the basic and general

task models under certain fault-behavior conditions.

We assume fault-related parameters, Ac = 10-6 , A,- = 10“4, fa = 1/6, and /z,- = 1/6, all

in number of TIs. Although independent faults occur more frequently than common-cause

faults in each individual module, most TMR failures occur due to common-cause faults,

as shown in Fig. 8.4. Note th a t coincident independent faults in multiple modules are

137

l e - 0 5

le — 06

l e - 0 8

le — 09
2 5 71 3 4 6 8 9 10

Number of TMR, Failures (Nj)

F ig u re 8.4: The P m f of the number, of TMR failures due to (a) both common-
cause and independent faults with P{N j = 0) = 0.99988, (b) only
common-cause faults with P (N j = 0) = 0.9999, and (c) only independent
faults with P (N j — 0) = 0.99998.

138

0.0005
conventional^ = 0) -©—

d = 3 'A—
random -X—

d = 8 - e -
d = dopt ■#—

0.00045

0.0004

0.00035

0.00015

0.0001

5e — 05

25 30 35 40 45 50 55 60 65

Number of Tasks (N)

F ig u re 8.5: Mean number of TMR failures while varying the number N of tasks for
several sequencing methods with dopt = {8,10,11,13,15,16,18,20,21}.

significantly rarer than common-cause faults during a mission or mission phase. If a large

number of TMR failures occur during a mission or mission phase, from Fig. 8.4 one can see

tha t their main causes are common-cause faults.

In Fig. 8.5, the mean numbers of TMR failures are derived for several sequencing meth­

ods while varying the number of tasks during a mission or mission phase. The

conventional task sequencing turns out to be the worst, i.e., it has the largest E (N j) for

any N and the fastest increase of E (N j) as N increases. When tasks are sequenced with

a constant T D = d > 0, there may be a certain value of d that performs similarly to the

random sequencing. Clearly, the random sequencing works better than the case of d < 3

but worse than that of 8 < d < dopt. The increase of E (N j) in the optimal sequencing is

negligible as compared to that in any other sequencing method.

To investigate the effects of d on E (N j) under different fault-behavior conditions, we

derived the mean numbers of TMR failures while varying d from 0 to dopt for IV = 30 in

Fig. 8.6. Case (b), in which common-cause faults occur more frequently than case (a), has

shown improvements by using a better d. In other words, the use of a better d achieves

139

0.0019
(a) •©-
(b) • _0.0016

0.0013

0.001

0.0007

E{Nj) 0.0004

0.00021

0.00014

7e — 05
2 3 4 5 6 7 80 1 9 10

TD{= d) [TIs]

F ig u re 8.6: Mean number of TMR failures (E (N j)) while varying task distance, d,
under two different conditions of common-cause faults, when N — 30 (ba­
sic model): (a)Ac = 10-6 (E (N j) = 8.76e—4 for the random sequencing)
and (b)Ac = 10-5 (E (N f) = 1.089e—4 the random sequencing).

more when the effect of common-cause faults is severer.

In the general task model, we obtained similar results. In Fig. 8.8, the use of a better d

(i.e., a larger d < dopt) results in a smaller E(rid), and the relative effect of using a better d

is also larger when common-cause faults are more likely to occur as in cases (b) and (d) of

the figure.

We also dealt with two task sets:

2\ = {1 ,2 ,4 ,3 ,2 ,4 ,1 ,1 ,3 ,2 ,4 ,3} and T2 = {3,5 ,7 ,5 ,4 ,6},

which have the same number of TIs but different number of tasks (m i = 12 and m 2 = 6).

Although the numbers (JV/) of faulty TIs of two task sets are the same as the case of N = 30

in Fig. 8.6, Ti suffers more TMR failures (larger E(nd)) because mi > m2. However, the

difference of E(udYs in the two task sets decreases as d increases. This is because the

increase of E(nd) as a result of increasing m becomes less pronounced as d increases, which

is shown similarly in Fig. 8.5.

140

0.0013
(a)

0.0011

0.0009

0.0007

0.0005

0.00015

0.0001

5e — 05
0 1 2 3 4 5 6 7 8 9 10 11

TD(= d) [TIs]

F ig u re 8.7: Mean number of TMR failures (E (n j)) while varying task distance d
under two different conditions of common-cause faults for a general task
set {(1,4,1),(3), (3,1),(4,2), (5), (3,5)} (to = 11 and N = 33), where
tasks within a pair of parentheses are dependent on each other: (a) Ac =
10-6 (E{nd) — 8 .4 6 e -5 for the random sequencing), (b) Ac = 10-5
(E (n j) = 6.35e—4 for the random sequencing).

141

0.0013

0.0011

0.0009

0.0007

0.0005

0.00015

0.0001

5e — 05
2 5 60 1 3 4 7 9 108

TD(= d) [TIs]

F ig u re 8.8: Mean number of TMR failures (E (n d)) while varying task distance, d,
under two different conditions of common-cause faults, and two sets of
tasks (different size model)", (a) !Z\ = {1 ,2 ,4 ,3 ,2 ,4 ,1 ,1 ,3 ,2 ,4 ,3 } (m =
12 and N = 30) and Ac = 10-6 (E (n d) = 9.09e —5 for the random
sequencing), (b) task set Tj and Ae = 10-5 (E{n<i) = 7.12e —4 for the
random sequencing), (c) T2 = {3,5 ,7 ,5 ,4 ,6} {m — 6 and N = 30) and
Ac = 10-6 (E(nd) = 7.65e —5 for the random sequencing), and (d) task
set T2 and Ac = 10-5 (E(n,j) = 5.83e —4).

Fig. 8.7 deals with a task set, in which some subsets of tasks are dependent on others

due to the precedence constraints:

{ (1 ,4 ,1),(3),(3 ,1),(4 ,2),(5),(3 ,5)} ,

where tasks in a pair of parentheses are dependent on each other. The results are derived

by defining a new task set {6 ,3 ,4 ,6 ,5 ,8} as discussed in Section 8.3.3. In this case, the

effect of using a better d shows similar results to those in Figs. 8.6 and 8.8, i.e., the task

sequencing with a better d is more effective when common-cause faults are likely to occur.

142

8.5 Conclusion

We developed in this chapter a new method for sequencing task copies in a TMR system

in order to alleviate the effects of common-cause/coincident faults, the main source of TMR

failures. We first proposed a simple sequencing strategy in which three copies of each task

are executed on the three modules of a TMR system with T D = d, and then derived the

probability mass function of the number of TMR failures as a function of d.

For both the basic and general task models, we determined numerically the optimal TD

by minimizing the mean number of TMR failures on the basis of the derived p m /’s. We also

presented numerical examples of the mean number of TMR failures while varying N and

d, showing tha t the proposed sequencing strategy can significantly decrease the number of

TMR failures under various conditions, especially when common-cause faults are likely to

occur.

CHAPTER 9

CONCLUSIONS AND FUTURE DIRECTIONS

In this chapter, we summarize the contribution of this dissertation, and explore possible

extensions of the work presented here.

9.1 Research Contributions

The timing information on the controlled process and the controller computer is a key

to the design and evaluation of the controller computer in a hard real-time control system.

We formally specified the needs of the controlled process understandable and meaningful to

the the controller computer by using the CSD and also represented the recovery capability

of the controller computer by evaluating the FTL.

In Chapter 2, we described the characteristics of real-time control systems where the

controlled process and the controller computer are interacting synergically, and discussed

the background of our work.

The main contribution of Chapter 3 is to provide a precise definition of the CSD and

a method to derive it. This subject was not previously addressed in detail in spite of its

importance for task assignment and scheduling, specification and evaluation of fault-tolerant

controller computers.

In Chapter 4, we also investigated various features of fault-tolerance and several aspects

of error- or failure-handling in fault-tolerant systems to evaluate the FTL, which encapsu­

lates useful timing-information of the controller computer in the presence of faults. Espe­

cially, Chapter 5 concentrates on the reconfiguration process, a predominant contributor to

the FTL.

Our attention to the design of a fault tolerant controller computer has been focused

mainly on using the TMR, structure, because it is the most popular and a practical fault-

143

144

tolerance scheme using the simplest form of spatial redundancy. Retry or re-execution on

the same hardware without any reconfiguration can yield a successful recovery from TMR

failures or masked errors caused by transient faults, and system reconfiguration is expensive

both in time and hardware. Thus, a fault-tolerance strategy using time redundancy and the

TMR structure proves to be cost-effective in designing a fault-tolerant controller computer

by making a tradeoff between spatial and time redundancy.

Chapters 6 and 7 were based on the notion of applying time redundancy to a TMR

system to develop design methods for “optimal” (in a sense of minimizing certain costs)

fault-tolerant controller computers. In Chapter 6, we proposed an optimal instruction-retry

policy minimizing the probability of dynamic failure based on the number of spares and the

CSD derived in Chapter 3. Specifically, upon occurrence of both TMR failures and masked

errors, either retry or reconfiguration whichever has a smaller Pdyn, is selected, and if retry

is chosen, then the optimal retry period is derived to minimize Pdyn• In Chapter 7, we also

used a simpler time redundancy for a TMR system, optimally choosing RSHW or RHWR

based on the mean task-completion time.

In case of safety-critical missions under harsh environments where we cannot ignore the

effects of near-coincident faults due to a common source such as an environmental disruption

or malfunction of a shared component, the masking capability of a TMR system is no longer

effective. In Chapter 8, we thus proposed a new method for sequencing task copies in a

TM R system in order to alleviate the effects of common-cause/coincident faults, the main

source of TMR failures in these harsh environments.

9.2 Future Directions

There are many remaining related research issues in designing and evaluating real-time

fault-tolerant control systems. Discussed below are some of these issues.

9.2.1 Extension of Each Chapter

In Chapter 3, we considered only the failure to update the control input in case of

nonlinear time-invariant control systems. It would be interesting to derive the deadlines of

these systems in the presence of control input disturbances as was done for linear systems.

We may extend linear control approaches after linearizing the nonlinear dynamic equation

around several nominal states.

145

The derivation of control system deadlines for time-varying systems will also be a chal­

lenging task. This problem appears to be extremely difficult, since the elegant frequency-

domain theory — that is applicable to the analysis of linear time-invariant system stability

— is no longer applicable. We will begin with slowly time-varying linear systems, so that

the frequency-domain theory can be applied over a certain time period. We must apply this

theory many times, once per period, over the entire mission.

In Chapter 4, although we assumed the latencies of individual stages to be available

by measuring or modeling relevant variables, it is in reality quite difficult to obtain their

accurate values, some of which depend on one another and also on applications. We are

currently investigating ways to evaluate or model the times taken by the individual stages

(e.g., reconfiguration treated in Chapter 5) while considering the system architecture, task

type, and the implementation of each stage.

Other related problems worth further investigation include:

• Derivation of a closed-form pdf expression for the time taken for each individual stage.

In case an exact closed-form pdf is not obtainable, an approximate expression may be

used to determine an appropriate fault- or error-handling policy.

• Dependence of FTL on fault coverage, which was assumed to be a constant deter­

mined by the diagnosis stage. However, fault coverage is in reality not simple to

determine due mainly to the effects of many coupled testing and detecting methods.

The task type and the failure occurrence rate also affect fault coverage. When peri­

odic diagnoses are used, there is a tradeoff between accuracy (fault coverage) and time

(frequency and diagnosis time). It is important to study all the factors determining

fault coverage and analyze its effects on the FTL.

In Chapter 8, although we dealt only with TMR systems, we can extend our approach

of this chapter to the problem of sequencing tasks in NMR systems. We can also include

tight timing constraints for a certain subset of tasks and the effects of unreliable voting,

which requires a more complicated sequencing strategy to minimize the mean number of

NMR failures.

9.2.2 Reliability Model Based on CSD

It is necessary to develop a reliability model of a real-time control system with a fault-

tolerant controller computer by incorporating the random CSD and the underlying fault-

146

tolerance strategy. System reliability is an essential attribute to any fault-tolerant system,

for which its modeling is an important and popular tool. We can develop a reliability model

by applying the general Markov-chain model in a systematic manner. For this purpose, a

reliability model should incorporate all phenomena of general real-time control systems such

as stochastic fault behaviors (transient as well as permanent faults), several possible fault-

handling strategies of a fault-tolerant computer, and the characteristics of controlled process

and the effects of tight timing conditions. A system crash can result from incorrect results

of a controller computer as well as not meeting the stringent timing requirement, which

depends on the nature of the controlled process. Specifically, all samples of a Markov-chain

reliability model must be derived for all samples of control system deadlines by including

additional states for each control system deadline. We then derive a desired reliability model

from these samples. To reduce the necessary amount of computation, only im portant states

and parameters will be analyzed.

9.2.3 Experimental Methodology for Measuring the Effects of EMI

We will outline an experimental methodology for measuring the effects of EMI on dig­

ital controller computers in flight-critical digital control systems. We view the main EMI

effects as functional error modes of computing control inputs in the system/subsystem level

and have already developed a theoretical basis for the assessment of EMI effects. We will

measure the parameters using the testbed of NASA Airlab’s HIEF Laboratory.

P a ra m e te rs to be M easu red : Executing the same tasks on multiple modules (hard­

ware/software) like a TMR system is one of the most popular fault-tolerance methods. Since

the EMI effects are likely to induce common-cause failures in these redundant modules, it

is no longer effective to design a fault-tolerance strategy using massive spatial redundancy

under the assumption of independent failure behaviors. In [29], we used a probability mass

function pm f called the (compressed) beta-binomial distribution to model fault/failure oc­

currences caused by EMI. To validate such a model or develop another useful model to

assess the EMI effects on the use of massive redundancy, we first propose an experiment

measuring the number of faulty modules/computers in the presence of EMI.

There are two types of EMI effects on digital controller computers: (i) damage of com­

ponents which should be replaced or repaired immediately and (ii) functional error modes,

147

called as upset,1 without any component damage. In [5, 29], the main effects of EMI are

functional error modes of the system/subsystem level that result in degraded system perfor­

mance and/or reliability. Thus, the EMI effects are likely to be transient when the controller

computer executes periodic tasks. Although programs or data remain contaminated after

disappearance of EMI, a certain corrective action such as reset/reload software or internal

recovery mechanisms may recover the controller computer. Secondly, we propose an ex­

periment measuring the time taken from error occurrence to its recovery in the application

context, which is equal to the FTL discussed in Chapter 4.

Finally, we propose an experiment measuring the system inertia in the presence of

EMI, which characterizes the timing constraint of the controlled process. In Chapter 3, we

developed a method to analytically derive the CSD.

1 We use computer failures, errors, and upsets, in the same sense.

APPENDIX A

List of Symbols in Chapter 7

X i

Wn{X)
Wi

Vi

P (s)
Tc
Tv

r f (p S)
p
R

km

7 }

FTj(X)

n
S{x,y)

JL
jr,(0)

Pmn{T)
C!(k,X)

C W W X))
F,JkJ(k+1)

Nominal task-execution time in the absence of failures, i.e., the amount of pure
computation for a task measured in CPU cycles without including repetition of
part of the task due to failures.
Nominal execution time for the task between the z-th and (i — l)-th voting.
Expected execution time of a task whose nominal execution time is X.
Actual execution time from the beginning of the task to the first completion
of the f-th voting, where Wi = E(wi).
Actual execution time during the interval [Xj_i,X,-].
Probability of recovering a task with RSHW (RHWR), p + q = 1.
Resetting time in case of system reconfiguration.
Time for voting on those variables changed during the previous voting interval.
Probability of the n-th RSHW being successful (unsuccessful).
Probability of the first RSHW being successful.
Ratio of the probability of success at the (n + l)-th RSHW to that at the n-th RSHW.
Allowable maximum number of RSHWs.
Time of detecting a TMR/voting failure.
Time to a TMR system failure occurred first after starting the system in state S,-.
Probability of a TMR failure from Si during the execution time X (fT, = pdf of Tj).

Time of TMR failure occurrence via path j from Si (/t; = pdf of t'j).
State with a; permanent faulty processor(s), y non-permanent faulty processor(s),
and (3 — x — y) nonfaulty processor(s) (S,- = S(x, y) such that i = 4.x+ y).

m
Set of all paths to a fault state Sm from an initial state Si {Ex = [J J'm).
Probability of a prior state before the first RSHW.
Probability of a fault state Sm at time Tj from an initial state Si.
Transition probability from Sm to S„ during T.
Expected cost of RSHW with a nominal task-execution time X and MNRA k.
Expected cost of RSHW (RHWR) for X.
Distribution of time to move to Sj(k+1) from Sjk.

148

149

{ ^ }
A.,(A,)

1̂
A*

Set of all sub-paths emanating from Sjk.
Occurrence rate of non-permanent (permanent) faults.

Active duration of a non-permanent fault.

150

APPENDIX B

List o f Symbols in Chapter 8

A t : One task interval (TI), which is the execution time of a task.

N : Number of tasks during a mission phase in the basic task model.

Nd (N f) : Number of tasks producing correct (incorrect) outputs in the absence

(presence) of TM R failures.

ti : The i-th task (1 < i < N).
Pjk (Pjf.) : Probability that a common-cause (independent) failure occurs during

the j-th TI and the durations of coincident faults inducing this failure are

larger than (k ~ l)A i and smaller than kAt (1 < k < N —j+ l).
P(Nf = £) : Probability mass function (pmf) of Nj (0 < £ < N).

P(k,£) : Probability that any pair of modules execute same £ tasks during

k consecutive faulty TIs, i.e., £ contaminated tasks.

P(k,v,£) : Probability that any pair of modules execute same £ tasks during

k and v faulty TIs of two modules, respectively.

Mi : The i-th module ordered arbitrarily in a TMR system.

d(dopt) : Task Distance (TD) (the optimal TD minimizing E(Nj)).
Si Subset of tasks which are not wrapped around.

5*2 (5 3) : Subset of tasks wrapped around only on M3 (on both M 2 and M3).

Nj : Number of TMR failures due to common-cause faults in

N j (i j) : Number of TMR failures occurred in S k due to the independent

faults in M,- and M j .

m : Number of tasks during a mission in the general task model.

m '■ Number of tasks producing incorrect results in the general task model.

rii : The i-th task in the general task model (1 < i < m).

Sf Set of all subsets of tasks that consist of r tasks of sizes n*i, 0 , 2 • • • 1 n sr

and $2 I=i n »» — t from the entire set of m tasks,

no : Greatest Common Divisor (GCD) of {n j, n 2 , • • •, nm).

Xc (A,) Occurrence rate of common-cause (independent) failures.

— (—) : Mean active duration of common-cause (independent) failures.

BIBLIOGRAPHY

[1] J. A. Abraham and D. P. Siewiorek, “An algorithm for the accurate reliability evalu­
ation of triple modular redundancy networks,” IEEE Trans, on Computers, vol. C-23,
no. 7, pp. 682-692, July 1974.

[2] A. Avizienis and G. C. Gilley, “The STAR(self-testing and repairing) computer: An
investigation of theory and practice of fault-tolerant computer design,” IEEE Trans,
on Computers, vol. C-20, no. 11, pp. 1312-1321, November 1971.

[3] P. Banerjee, “Strategies for reconfiguing hypercubes under faults,” in Proc. 2oth Annu.
Int. Symp. on Fault-Tolerant Computing, 1990.

[4] P. Barton, “Fault latency white paper,” Technical report, Texas Instruments, Micro­
electronics Department, Plano, TX, January 1993.

[5] C. M. Belcastro, “Laboratory test methodology for evaluating the effects of electromag­
netic disturbances on fault-tolerant control systems,” NASA TM-101665, November
1989.

[6] A. P. Belleisle, “Stability of systems with nonlinear feedback through randomly tim e-
varying delays,” IEEE Trans, on Automat. Contr., vol. AC-20, no. 1, pp. 67-75, Febru­
ary 1975.

[7] M. Berg and I. Koren, “On switching policies for modular redundancy fault-tolerant
computing systems,” IEEE Trans, on Computers, vol. C-36, no. 9, pp. 1052-1062,
September 1987.

[8] R. W. Butler and A. L. White, “SURE reliability analysis,” NASA Technical Paper,
March 1990.

[9] P. K. Chande, A. K. Ramani, and P. C. Sharma, “Modular TMR multiprocessor sys­
tem,” IEEE Trans, on Industrial Electronics, vol. 36, no. 1, pp. 34-41, February 1989.

[10] C. Chen, A. Feng, T. Kikuno, and K. Tori, “Reconfiguration algorithm for fault-tolerant
arrays with minimum number of dangerous processors,” in Proc. 21st Annu. Int. Symp.
on Fault-Tolerant Computing, 1991.

[11] B. Cuchi, “Reliability and analysis of hybrid redundancy,” in Digest of Papers, FT C S-
5, pp. 75-79, 1975.

[12] P. T. de Sousa and F. P. Mathur, “Shift-out modular redundancy,” IEEE Trans,
on Computers, vol. C-27, no. 7, pp. 624-627, July 1978.

151

152

[13] S. Dreyfus, “Variational problems with state variable inequality constraints,” RAND
Coporation Paper, vol. P-2605, pp. 72-85, 1962.

[14] J. Dugan, K. Trivedi, M. Smotherman, and R. Geist, “The hybrid automated reliability
prediction,” AIA A Journal of Guidance, Control and Dynamics, pp. 319-331, May
1986.

[15] J. B. Dugan and K. S. Trivedi, “Coverage modeling for dependability analysis of fault-
tolerant systems,” IEEE Trans, on Computers, vol. 38, no. 6, pp. 775-787, June 1989.

[16] G. B. Finelli, “Characterization of fault recovery through fault injection on FTM P,”
IEEE Trans, on Reliability, vol. R-36, no. 2, pp. 164-170, June 1987.

[17] N. Gaitanis, “The design of tatally self-checking TMR fault-tolerant systems,” IEEE
Trans, on Computer., vol. C-37, no. 11, pp. 1450-1454, November 1988.

[18] R. M. Geist, M. Smotherman, and R. Talley, “Modeling recovery time distributions in
ultrareliable fault-tolerant systems,” in Digest of Papers, FTCS-20, pp. 499-504, June
1990.

[19] R. M. Geist and K. S. Trivedi, “Ultrahigh reliability prediction for fault-tolerant com­
puter systems,” IEEE Trans, on Computer., vol. C-32, no. 12, pp. 1118-1127, December
1983.

[20] A. Gosiewski and A. W. Olbrot, “The effect of feedback delays on the performance of
multivariable linear control systems,” IEEE Trans, on Automat. Contr., vol. AC-25,
no. 4, pp. 729-734, August 1980.

[21] P.-O. Gutman and M. Cwikel, “Admissible sets and feedback control for discrete-time
linear dynamic systems with bounded controls and states,” IEEE Trans, on Automat.
Contr., vol. AC-31, no. 4, pp. 373-376, April 1986.

[22] K. Hirai and Y. Satoh, “Stability of a system with variable time delay,” IEEE Trans,
on Automat. Contr., vol. AC-25, no. 3, pp. 552-554, June 1980.

[23] A. L. Hopkins Jr., T. B. Smith III, and J. H. Lala, “FTM P-a highly reliable fault-
tolerant multiprocessor for aircraft,” Proceedings of the IEEE, vol. 66, no. 10, pp.
1221-1239, October 1978.

[24] G. Hostetter and J. S. Meditch, “Observing systems with unmeasurable inputs,” IEEE
Trans, on Automat. Contr., vol. AC-18, pp. 306-307, June 1973.

[25] M. Kameyama and T. Higuchi, “Design of dependent-failure-tolerant microcomputer
system using triple-modular redundancy,” IEEE Trans, on Computers, vol. C-29, no.
2, pp. 202-205, February 1980.

[26] S. Kheradpir and J. S. Thorp, “Real-time control of robot manipulators in the presence
of obstacles,” IEEE journal of Robotics and Automation, vol. 4, no. 6, pp. 687-698,
December 1988.

[27] H. Kim and K. G. Shin, “Design and analysis of an optimal instruction-retry policy
for TMR controller computer,” submitted for publication, 1993.

153

[28] H. Kim and K. G. Shin, “Evaluation of fault-tolerance latency from real-time applica­
tion’s perspectives,” Technical Report CSE-TR-201-94, CSE Division, EECS Depart­
ment, The University of Michigan, 1994.

[29] H. Kim and K. G. Shin, “Modeling externally-induced faults in controller computers,”
Proc. 13rd IE E E /AIA A Digital Avionics Systems Conf. (in press), 1994.

[30] H. Kim and K. G. Shin, “On the maximum feedback delay in a linear/nonlinear control
system with input disturbances caused by controller-computer failures,” IEEE Trans,
on Control Systems Technology, vol. 2, no. 2, pp. 110-122, June 1994.

[31] H. Kim and K. G. Shin, “Reconfiguration latencies of dynamic redundancy techniques
in fault-tolerant systems,” in preparation, 1994.

[32] H. Kim and K. G. Shin, “Task sequencing to minimize the effects of near-coincident
faults in TMR controller computers,” submitted for publication, 1994.

[33] D. L. Kiskis and K. G. Shin, “Embedding triple-modular redundancy into a hypercube
architecture,” in Proc. o f 3rd Conf. on HCCA, pp. 337-345, Los Angeles, January 1988.

[34] I. Koren and Z. Koren, “Analysis of a class of recovery procedures,” IEEE Trans,
on Computers, vol. C-35, no. 8, pp. 703-712, August 1986.

[35] C. M. Krishna, K. G. Shin, and R. W. Butler, “Synchronization and fault-masking in
redundant real-time systems,” in Digest of Papers, FTCS-14, pp. 152-157, June 1984.

[36] J. H. Lala, “Fault detection, isolation and configuration in FTMP: Methods and ex­
perimental results,” in Proc. 5th IEEE/AIAA Digital Avionics Systems Conf, pp.
21.3.1-21.3.9,1983.

[37] Y. H. Lee and K. G. Shin, “Optimal reconfiguration strategy for a degradable multi­
module computing system,” Journal of the ACM., vol. 34, pp. 326-348, April 1987.

[38] Y. H. Lee and K. G. Shin, “Optimal design and use of retry in fault-tolerant computing
systems,” Journal o f the ACM, vol. 35, pp. 45-69, January 1988.

[39] G. Leitmann, An Introduction to Optimal Control, New York, NY: McGray-Hill, 1969.

[40] T.-H. Lin and K. G. Shin, “An optimal retry policy based on fault classification,” IEEE
Trans, on Computers, vol. C-43, no. 9, , September 1990.

[41] J.-C. Liu and K. G. Shin, “A RAM architecture for concurrent access and on-chip
testing,” IEEE Trans, on Computers, vol. C-40, no. 10, pp. 1153-1158, October 1991.

[42] J. Losq, “A highly efficient redundancy scheme: Self-purging redundancy,” IEEE
Trans, on Computers, vol. C-25, no. 6, pp. 569-578, June 1976.

[43] D. G. Luenberger, Optimization by vector space methods, New York, Wiley, 1969.

[44] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to improve
computer reliability,” IBM J. Res. Develop., vol. 6, pp. 200-209, April 1962.

[45] M. Mariton, “Detection delays, false alarm rates and the reconfiguration of control
systems,” Int. J. Control, vol. 49, no. 3, pp. 981-992,1989.

154

[46] S. R. McConnel, D. P. Siewiorek, and M. M. Tsao, “The measurement and analysis of
transient errors in digital computer systems,” in Digest o f Papers, FTCS-9, pp. 67-70,
June 1979.

[47] J. McGough, M. Smotherman, and K. S. Trivedi, “The conservativeness of reliability
estimates based on instantaneous coverage,” IEEE Trans, on Computers, vol. C-34,
no. 7, pp. 602-608, July 1985.

[48] D. Paul, C. Roark, and D. Struble, “Technical report on phase one of the dynamic
reconfiguration demonstration system program,” Technical report, Texas Instruments,
Inc. NAWC-DRDS-P1-TR-0003, April 1992.

[49] V. B. Pradsad, “Fault-toterant digital systems,” IEEE, pp. 17-21, February 1989.

[50] C. V. Ramamoorthy and Y. W. Eva Ma, “Optimal reconfiguration strategies for re-
configurable systems with no repair,” IEEE Trans, on Computers, vol. C-35, no. 3, pp.
278-280, March 1986.

[51] C. V. Ramamoorthy and Y.-W. Han, “Reliability analysis of systems with concurrent
error detection,” IEEE Trans, on Computers, vol. C-24, no. 9, pp. 868-878, September
1975.

[52] Z. V. Rekasius, “Stability of digital control with computer interruption,” IEEE Trans,
on Automat. Contr., vol. AC-31, no. 4, pp. 356-359, April 1986.

[53] C. Roark, D. Paul, D. Struble, D. Kohalmi, and J. Newport, “Pooled spares and
dynamic reconfiguration,” in Proceedings of NAECON’93, pp. 173-179, May 1993.

[54] A. P. Sage and I. C. C. White, Optimum systems control, Prentice-Hall Inc., Englewood
Cliffs, New Jersey, 1977.

[55] K. G. Shin and X. Cui, “Effects of computing time delay on real-time control systems,”
in Proc. of 1988 American Control Con}., pp. 1071-1076,1988.

[56] K. G. Shin and II. Kim, “Derivation and application of hard deadlines for real-time
control systems,” IEEE Trans, on Systems, Man, and Cybernetics, vol. 22, no. 6, pp.
1403-1413, Nov./Dec. 1992.

[57] K. G. Shin and H. Kim, “Hard deadlines in real-time control systems,” Control Eng.
Practice, vol. 1, no. 4, pp. 623-628,1993.

[58] K. G. Shin and H. Kim, “A time redundancy approach to TMR failures using fault-
state likelihoods,” IEEE Trans, on Computers, vol. C-43, no. 9, , October 1994.

[59] K. G. Shin, C. M. Krishna, and Y.-H. Lee, “A unified method for evaliating real­
time computer controller and its application,” IEEE Trans, on Automat. Contr., vol.
AC-30, no. 4, pp. 357-366, April 1985.

[60] K. G. Shin and Y.-H. Lee, “Error detection process — model, design, and its impact
on computer performance,” IEEE Trans, on Computers, vol. C-33, no. 6, pp. 529-539,
June 1984.

[61] K. G. Shin and Y.-H. Lee, “Measurement and application of fault latency,” IEEE
Trans, on Computers, vol. C-35, no. 4, pp. 370-375, April 1986.

155

[62] K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-time tasks,”
IEEE Trans, on Computers, vol. C-36, no. 11, pp. 1328-1341, November 1987.

[63] K. G. Shin and J.-C. Liu., “Study on fault-tolerant processor for advanced launch
system,” NASA Contractor Report, June 1990.

[64] D. P. Siewiorek, V. Kini, and H. Mashburn, “A case study of C.mmp, Cm*, and C.vmp:
P art I - experiences with fault tolerance in multiprocessor systems,” Proceedings of the
IEEE, vol. 66, no. 10, pp. 1178-1199, October 1978.

[65] D. P. Siewiorek and E. J. McCluskey, “Switch complexity in systems with hybrid
redundancy,” IEEE Trans, on Computers, vol. G-22, no. 3, pp. 276-283, March 1973.

[66] D. P. Siewiorek and R. S. Swarz, The Theory and Practice o f Reliable System Design,
Digital Equipment Corporation, Bedford, MA, 1982.

[67] D. D. Siljak, “Reliable control using multiple control systems,” Int. J. Control, vol. 31,
no. 2, pp. 303-329, 1980.

[68] M. Smotherman, R. M. Geist, and K. S. Trivedi, “Provably conservative applications to
complex reliability models,” IEEE Trans, on Computers, vol. C-35, no. 4, pp. 333-338,
April 1986.

[69] A. Tantawi and M. Ruschitzka, “Performance analysis of checkpinting strategies,” ACM
Trans. Computer Systems, vol. 2, pp. 123-1441, 1984.

[70] J. S. Upadhyaya and K. K. Saluja, “A watchdog processor based general rollback
technique with multiple retries,” IEEE Trans. Software Eng., vol. SE-12, no. 1, pp.
87-95, January 1986.

[71] M. Uyar and A. Reeves, “Dynamic fault reconfiguration in a mesh-connected MIMD
environment,” IEEE Trans, on Computers, vol. 37, no. 10, pp. 1191-1205, October
1988.

[72] J. F. Wakerly, “Transient failures in triple modular redundancy systems with sequential
modules,” IEEE Trans, on Computers, vol. 63, no. 5, pp. 570-573, May 1975.

[73] J. F. Wakerly, “Microcomputer reliability improvement using triple-modular redun­
dancy,” IEEE Trans, on Computers, vol. 64, no. 6, pp. 889-895, June 1976.

[74] X.-Y.Zhuo and S.-L. Li, “A new design method of voter in fault-tolerant redundancy
multiple-module multi-microcomputer system,” in Digest of Papers, FTCS-13, pp.
472-475, June 1983.

[75] K. Zahr and C. Slivinsky, “Delay in multivariable computer controlled linear systems,”
IEEE Trans, on Automat. Contr., vol. AC-19, no. 8, pp. 442-443, August 1974.

