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CHAPTER 1

INTRODUCTION

1.1 Motivation

There has been an increasing need for timely, dependable communication services for
such embedded real-time applications as aircraft, intelligent vehicles, automated factories,
industrial process controls and many multimedia applications. Such applications are usu-
ally realized by executing a number of cooperating/communicating computational tasks on
multiple processors before their deadlines imposed by the corresponding mission/function.
To support the timely execution of these tasks, the associated communication subsystem
must guarantee the delivery of time-critical messages before their deadlines (defined by
the deadlines of communicating tasks). Unfortunately, the OSI standards in their present
form cannot adequately support time-critical applications, although some of them provide
a limited form of real-time communication services. Since the network architectures that
have been standardized so far are designed primarily for general-purpose, non-real-time
traflic, they cannot always provide adequate resilience and performance for time-critical
applications, especially when real-time and non-real-time traflic coexist.

The term “time-critical” or “real-time” is used to represent the presence of a time
window, within which one ar more specific actions are required to be completed with some
pre-defined level of certainty and some pre-defined level of quality. Failure to complete
specified operations within the time window risks failure of the application that needs the
correct and timely execution of these operations, or even worse, loss of plants, vehicles, and
possibly human lives. While the agreement about the presence of time window generally
exists, the duration of the window, and the required level of certainty and quality remain
an application-dependent issue. For this reason, it is not feasible to define or implement

a universally optimal network protocol for all applications. lHlowever, in addition to highly



reliable media and signaling methods, i.e., achieving a very low bit-error rate and a minimum

number of retransmissions, any network supporting real-time communrication must satisfy

the following requirements [4].

R1.

R2.

R4.

RS5.

R6G.

R7.

Both time-critical and non-time-critical services should be provided.

Network performance changes resulting from such dynamic factors as load changes
and unrelated component failures should not compromise the guaranteed quality of

sorvice.

A network should be able to support efficient cyclic or repetitive polling or data
transmission, This requirement is necessary in virtually all real-time applications,

e.g., audio and video messages, sensor sampling, and actuator signals,

Dynamic adaptation to the change of traffic load and pattern is required. In other
words, the ability of independently adding and deleting real-time connections is nec-
essary to make eflicient use of a network. Such addition and deletion must not com-

promise the quality of existing real-time services.

A network should be able to provide a certain form of fault-tolerance according to

user/application requirements.

A protocol should allow network designers to fine-tune the netwark parameters for

their specific applications.

Whenever possible, a network must be compatible with the existing protocols and

networks (for economic reasons).

Obviously, any network with the above features will provide a very general form of real-time

communication with a guaranteed quality of service for various applications and will also

provide the flexibility to adapt itself to different applications. This dissertation develops

and evaluates a communication subsystem that satisfies all of the above requirements.

Although real-time communication with a guaranteed quality of service is important and

necessary for many embedded real-time systems, it has not yet been addressed thoroughly.

Real-time communication between control and sensing devices in an automated factory is

a typical example of such applications. In an automated factory, various devices such as

robots, sensors, transport mechanisms and control computers are connected by a network,



and the ability to communicate with cach other in a predictable manner is of great impor-
tance. The Manufacturing Automation Protocol (MAP), which was proposed by GM and
other companies for automated factory networks, is based on the OS] seven-layer model
and the token bus protocol, IEEE 802.4. Although the MAP can provide some limited form
of real-time communication, it cannot provide any guarantee of delivering messages before
their deadlines. In fact, the MAP only provides some temporal ordering between devices
based on their priorities. The seven-layer MAP is usually too slow to be used for real-time
communication, since there are at least 14 layers’ delay in a single one-way message trans-
mission. Another protocol called MINIMAP employs only the first two layers of MAY and
combines the remaining five layers into a single layer. Although the communication delay
is expected to decrease with MINIMAP, the real-time issues remain unanswered. In fact,
other OS] standards are not adequate for such automated factories either. Token ring type
protocols cannot be used for the same reason as the token bus. CSMA/CD type protocols
are nat applicable to real-time communication because of their unbounded communication
delays.

Multimedia applications arc another important category of applications which need pre-
dictable real-time communication services. Although most of them require only a “statisti-
cal” type of performance guarantees, i.e., certain percentage of frame loss can be tolerated,
they do need predictable real-time communication to guarantee the application’s quality.
When dealing with these applications, most rescarchers focus on compression algorithms
and run-time scheduling or admission control issues for the currently available protocols
and technologics. Ifowever, since these protocols were primarily designed for non-real-time
trafiic, they cannot provide any predictable guarantees. From these Lwo examples, we can

see the need for a protocel which can provide predictable real-time communication services,

1.2 Literature Survey and Research Objectives

The problem of supporting time-constrained communication has been studied by scveral
researchers, since it plays a key role in many real-time applications. Most of these cfforts
can be divided into two categories. The first category is mainly concerned with designing
medium access protocols for multiaccess networks while considering time constraints in
delivering messages. In this context, most of the proposed schemes can be classified as

best-cffort schemes, where the system tries to ensure thalt most messages can meet their



deadlines, but it cannot give any guarantees of delivery delays [8,9,26,36,41]. However,
based on the given information about the message arrival/generation pattern, some best-
effort schemes can make guarantees about their delivery time [40].

The other category deals with establishing real-time point-to-point channels and giving
absolute guarantees of maximum delivery delays [16, 18,22-24, 31, 38,44]. Among them, the
concept of “real-time channel” proposed by Ferrari and Verma [18] can be used to provide
real-time communication services with performance guarantees in wide-area point-to-point
networks. A real-time channel is a unidirectional virtual circuit which can provide real-
time communication with performance guarantees for given user requirements and traflic
specifications [18). The main issues addressed in these schemes are message scheduling,
buffer management, and flow control in the network nodes. In addition to the concept of
real-time channels, most of these schemes assume the traflic gencrated by a real-time channel
can be described by a modified version of “linear bounded model,” originally proposed by
Cruz [15]. In this thesis research, we also use the concept of real-time channels and adopt
a modified {more generalized) version of the linear bounded model.

Although the schemes in this category can provide real-time communication with per-
formance guarantecs under certain traflic assumption, there are two serious issues which
remain unanswered. The first issue is the level of performance guarantees. As we discussed
in Section 1.1, the required level of quality and certainty of performance is an application
dependent issue. Since different applications may need different levels of service quality,
and many applications may tolerate a certain level of data loss, absolute performance guar-
antees are not always necessary, Therefore, the network service provider needs to provide
not only the hard real-time communication services but also real-time communication with
statistical performance guarantees which can be specified by users.

The second issue is the inadequacy of point-to-point network environment. Although a
point-to-point network with an arbitrary topology is a very general form of interconnecting
hardware structure, it is not suitable for many applications, especially those applications
requiring a large number of nodes in a small area, e.g., 2 workeell in an automated factory,
a vehicle and a campus/enterprise network. A point-to-point network is not adequate or
cost-elfective for such applications due to the complexity of connecting hardware and the
potentially long delivery delay. Local arca network {LANs), such as multiaccess buses or
token rings, are suitable candidates for such applications. They are simple, economical,

and have propagation/delivery delays. These advantages make multiaccess networks a very



good candidate as the underlying architecture for small-area real-time applications. How-
ever, due to the difference of hardware architecture, schemes which are suitable for wide-arca
point-to-point networks may not be appropriate for multiaccess LANs. In a point-to-point
network, the node at the end of a link has complete control of the link at run-time, and thus,
can adopt any scheduling algorithm and utilize the entire bandwidth of the link, if needed.
By contrast, nodes which are attached to a LAN nced to cooperate with each other in order
to transmit data/control packets, since only one node at a time can transmit packets on the
shared medium, Therefore, we must develop a scheme which can provide real-time commu-
nication with performance guarantees in a LAN environment for such applications. We will
propose a scheme which can provide both hard and statistical real-time communication for
a multiaccess network.

On the other hand, although LANs can be used in many applications and many end
systems are connected to LANs, they are limited to a relatively small area. In order to
support real-time communication between nodes which are not connected directly by a
multiaccess network, we need schemes which can connect LANs with each other or connect
multiple LANs with a point-to-point network via bridges or routers.

Generally, two distinct phases are required to realize the concept of multi-hop real-
time channel: off-line channel establishment and run-time message scheduling. The channel
establishment phase is of prime importance to the realization of a real-time channel, and
during this phase, the system has to selecl a route between the source and the destination
of the channel along which sufficient resources must be reserved to meet the user-specified
delay and buffer requirements. Although most of the schemes for point-to-point networks
mentioned above can be used in this case, the route-sclection problem has not yet been
treated in depth.

Since the number of possible routes between two communicating peers could be large,
selecting a route for each real-time channel is potentially a time-consuming task. It is there-
fore very important to develop an efficient scheme that is guaranteed to select a “qualified”
route, if any, for each real-time channel request. If the worst-case anticipated traffic over
a real-time channel is given, a “qualified” route for this channel js defined to be the one
that can meet the user-specified end-to-end delay requirement without compromising any
of existing guarantees.

Many schemes assume a global network manager to have knowledge of the resource

distribution/utilization and all existing real-time channels in the network [22-24,38]; so



the network manager can solve the route-selection problem for all other nodes which need
real-time channels. However, there are many disadvantages and problems of using a global
network manager to handle the route-selection problem. The most significant one is that
the network manager becomes a performance and reliability bottleneck of the system. The
authority of the global network manager is also an apparent problem, because there may be
many different organizations which are all connected to the network. Therefore, in spite of
the advantages of a centralized solution, a distributed route-selection algorithm is desirable
and necessary for wide-area networks.

Although the route-selection preblem for real-time channels is different from the tra-
ditional message routing problem for point-to-point networks, we do find some similarities
between these two problems. Specifically, we will propose two distributed route-selection
schemes which use the concept of the Bellman-Ford shortest path algorithm [9,41,46] and
the traditional routing tables in the previous ARPANET routing strategy (9,25, 34,35, 39,
41]. These two route-selection algorithms can be used with the schemes proposed to sup-
port real-time communication on multiaccess networks, and hence, can expand our LAN

solution to wide-area networks.

1.3 OQutline of the Dissertation

The goal of this thesis is to develop a scheme which can provide real-time communication
with statistical (including absolute) performance guarantees for both multiaccess netwaorks
and point-to-point networks.

In Chapter 2, we propose the concept of statistical real-time channels on a multiaccess
network, Bascd on the user’s traflic specification and performance requirements, we develop
a channel-based scheme which can provide real-time communication services with statistical
performance (including absolute) guarantees by reserving and allocating communication
resources Lo each channel independently.

In order to let the system add/delete real-time channels independently, we used a
channel-based design in Chapter 2 (i.c., each channe! is treated independently) without
considering the problem of mulitiplezing real-time channels. As a result, the scheme pro-
posed in Chapter 2 still under-utilizes the network, although its capability of supporting
real-time communication is much better than conventional LANs, such as FDDI and token

bus. Therefore, based on the channel-based scheme, in Chapter 3 we propose a scheme to



multiplex real-time channels which originate from a same node, and at the same time, pre-
serve the ability of independent addition and deletion of real-time channels. This scheme,
called the “node-based scheme” as opposed to the channel-based scheme in Chapter 2, can
significantly improve the network utilization by reducing the bandwidth reservation to the
average level from the worst case.

In order for the channel-multiplexing strategy to work carrectly, we need to consider
the frame inter-dependency problem which is common for many real-time applications,
especially multimedia applications. In Chapter 3, we also propose the muitiple-due-datc
scheduling algorithm to solve the frame inter-dependency problem in the run-time schedul-
ing phase. Simulation (using MPEG-coded frames from the movie Star Wars) results are
presented and the integrated scheme is shown to be able to effectively improve network
utilization and provide a guaranteed frame reconstruction rate.

Chapter 4 and Chapter 5 deal with the problem of route-selection for real-time channels
which is the key to extend the proposed LAN solution to the environment which contains
multiple interconnected LANs and/or point-to-point networks.

In Chapter 4, we propose a generic distributed route-selection strategy which is designed
for general real-time channels and is guaranteed to find a qualified route, il any, for each
real-time channel-cstablishment request. Although this scheme can provide a complete and
general solution to the route-selection problem, it often over-estimates link delay when there
are simultancous multiple channel establishment requests and its operaticnal overhead is
linearly proportional to the number of links in the network. 1lence, in Chapter 5 we propose
a table-driven route-selection strategy which is designed to support certain types of real-
time channels and can solve the route-selection problem by a simple table look-up. As
can be seen in Chapter 5, if we only have to support real-time channels with limited, yet
important, types — like interactive video — of traflic-generation behaviors, we can improve
the efficiency and performance of the route-selection scheme significantly.

Chapter 6 describes in detail how the proposed scheme can be applied to the new
industrial standard ISA/IEC SP-50 FicldBus protocol. We also simulate the proposed
scheme with FieldBus under an automated factory environment.

The thesis concludes with Chapter 7 which summarizes our contributions and suggests

future research directions.



CHAPTER 2

STATISTICAL REAL-TIME CHANNEL ON
MULTIACCESS NETWORKS

2.1 Introduction

The problem addressed in this chapter is the development of a scheme which can provide
statistical performance guarantees for real-time channels in a multiaccess network environ-
ment. Performance/deadline guarantees are, by definition, certain grades of service which
are promised by the communication system. Such guarantees may be defined by user-
specified parameters which are given at the time of setting up real-time communication
services. The maximum message delivery delay and the maximum (acceptable) message
loss rate are two typical performance parameters. In order to provide performance guar-
antees, the underlying communication system has to reserve a priori certain resources for
“anticipated” real-time traffic in order to meet performance requirements,

As discussed in Chapter 1, although using real-time channels to provide real-time com-
munication with absolute performance guarantecs for point-to-point networks has been
studied by several researchers [18,22-24,38,44], there are many applications which prefer
different hardware architectures (LANs) and require only “statistical” performance require-
ments. In this chapter, we focus on the issue of providing real-time communication services
with statistical (including hard) performance guarantees on multiaccess local-arca nectworks,
Although real-time channels were originally designed for point-to-point networks, we adopt
the same terminology for the multiaccess network environment throughout this thesis.

Several schemes for real-time communication on multiaccess networks [26,32,41] have
been proposed, or implemented on the token ring and the token bus, but generally belong
to the “hest-effort” category. They do not reserve resources according to the user-specified

traffic characteristics and performance requirements, and have no explicit admission control.



Thus, even if cach node is guaranteed to have access to the network within some upper bound
of delay, the network still cannot guarantee to deliver all real-time messages in time. In
this chapter, we propose a scheme which can provide performance guarantces for real-time
traffic on multiaccess networks and, at the same time, improve network utilization.

The chapter is organized as follows. In Section 2.2, we state the problem of providing
real-time communication services on multiaccess networks. The proposed solution with
absolute performance guarantees is presented in Section 2.3. Section 2.4 deals with the
real-lime communication with statistical performance guaranteces. Run-time scheduling
issues arc discussed in Section 2.5. We present a simulation for comparison and verification

in Section 2.6 and the chapter concludes with Section 2.7.

2.2 Problem Statement

There are two main approaches to supporting real-time communication. One is the
best-cffort approach which does not provide any performance guarantees. The other is the
“hard” real-time approach which provides “absolute” performance guarantees, but requires
a priori reservation of all necessary resources based on the worst-case traflic-generation
behavior. Both of them have drawbacks of their own. The former does not provide any
performance guarantees at all, and the laticr often under-utilizes the reserved resources.

Different applications come with different performance requirements and traffic-generation
characteristics. Some applications, such as the conversation between two cooperating
robots, may need hard real-time performance guarantees, while many other applications
may require less stringent performance guarantees. For example, reading various scnsors is
a typical task in automated manufacturing systems, and missing some of these readings is
tolerable as long as the missing frequency is lower than a pre-specified value. For applica-
tions of this type, the best-effort approach is not suitable because it offers no performance
guarantees at all, and the hard real-time approach is not suitable cither, as it requires
more resources to be reserved than actually needed. We propose the concept of statistical
real-time channel [13,18] to solve the problem of providing real-time communication with
“statistical” performance guarantees {or these applications.

A statistical real-time channel is defined as a unidirectional virtual circuit which can
provide real-time communication with performance guarantecs in statistical terms, c.g.,

the probability of a packet’s delivery before its deadline D is greater than a given number
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Z. Because of its less strict performance requirements, a statistical channel is likely to
roserve less resources than its hard real-time counterpart, yet provides acceptable real-time
performance. Although this concept was proposed in [18], how to realize it has not yet been
studied in depth.

Both how user’s traffic characteristics and performance requirements are specified and
who (which layer) is responsible for this specification have an important bearing on the sta-
tistical channels. The current OSI 7-layer model can at best treat real-time communication
as best-effort services, since there is no notion of performance guarantees or traflic specifica-
tion. Moreover, since there are too many layer-to-layer data conversions, the 7-layer model is
not adequate for real-time communication. The MINIMAP [21,43] and the FieldBus [3, 38]
protocols have only three layers in order to reduce the time required for layer-to-layer data
conversions. Under these protocols, a real-time communication system consists of only three
layers: the physical layer, the data link/network layer which is responsible for providing per-
formance guarantees, and the application/user layer which deals with all user interfaces as
well as user-specified traffic characteristics and performance requirements. Obviously, it is
the application/user Jayer’s responsibility to derive various user performance requirements
or traflic specifications, since ounly this layer is aware of user’s performance nceds and traffic
characteristics. The derivatiou should be independent of the network service provider, i.c.,
the data link/network layer which is responsible for implementing network communication
with performance guarantees. So, the application/user layer is responsible for deriving traf-
fic characteristics and performance requirements, and may choose to regulate user’s input
traflic {15,24,31,44] in order to honor existing performance guarantees. On the other hand,
the data link/network layer is responsible for testing, checking, accepting/rejecting requests
for establishing real-time channels and provides performance guarantecs by using both the
rescrvation and scheduling schemes which the application/user layer is not usually aware of.
Since the derivation of performance requirements depends greatly on the application under
consideration, we will not discuss it any further.

We will instead consider the problem of providing real-time performance guarantees
at the data link/network layer in multiaccess networks. Generally, there are three types
of medium access protocols. The first type is CSMA/CD, such as the Ethernet, which is
completely random and cannot provide any guarantee on the maximum access delay and
therefore, is not suitable for rcal-time applications. The second type is the distributed

timed-token protocol, such as the token ring and token bus. In this type of protocol, a
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token is rotated among all nodes on the network, and only the node possessing the token
is allowed to transmit data/control packets. The token rotation is governed by some rules
which guarantee each node to have medium access at least once within some specified
period. The third type of protocols uses a control unit for medium access control on each
multiaccess link/bus. This control unit follows some rules to ensure that user-specified
performance requirecments will be met. In the next section, we will compare the differences
between type 2 and type 3 protocols, and identify the advantages of using type 3 protocols
and the disadvantages of using type 2 pratocols. We will introduce a link control unit for
cach multiaccess link which is respansible for controlling and coordinating the link access
for all nodes on that link. The link control unit is also responsible for allocating tokens
and testing whether or not to admit hard/statistical real-time channels. Each real-time
channel is required to reserve a portion of link bandwidth by sending a channel (connection)

establishment request to the link control unit before sending its first packet over the link,

2.3 Hard Real-time Channels on Multiaccess LANSs

In order to provide “statistical” performance guarantees, like
P g

P{delay of a packet £ D) > a given Z or, (2.1)

P(no packet loss in any lime interval of certain length) > Z, (2.2)

the communication system needs to know the distribution of packet arrivals in each channel,
Those packets missing deadlines are considered “lost.” Using the user-specified delay bound
D, the maximum packet size 5,4z, the maximum burst size B,,,,;, and the maximum packoet-
arrival rate Gpqaz, one can cstablish a hard real-time channel in a point-to-point network
using onc of the schemes in [18,22,23,47]. Considering the differences between multiac-
cess local-area networks (LANs) and point-to-point networks, we will first develop a new
scheme for establishing hard real-time channels on multiaccess LANs with a more general
traffic specification than those used for point-to-point networks. We will then identify the
additional information needed to establish statistical real-time channels on a multiaccess
LAN.

The primary difference of a channel (connection) in a multiaccess LAN from that in a
point-to-point network is the relationship between nodes and links, and the LAN’s shorter
packet-delivery latency. In a poini-to-point network, a node has complete control of its

transmission links and has complete knowledge on whether or not a channel running through
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the node nceds to be scheduled for transmission by simply examining packets in the queues,
one for each channel; that is, it is casy to multiplex several real-time channels. However,
in a multiaccess LAN, it is difficult to determine which node has the right to transmit at
a particular instant, especially in the presence of both real-time and non-real-time packets.
There exist several medium access control protocols which can achieve fair medium access
among all nodes, and some of them can support a limited form of real-time communica-
tion. For example, FDDI uses a target token rotation time (‘'I'TRT), a high-priority token
holding time (for synchronous packets), and a token holding time {TIIT) to ensure that the
maximum time for synchronous packets to wait for medium access will not be greater than
2xTTRT. Although we can adjust the high-priority token holding time and the algorithm
of updating TIIT for cach node using the anticipated load of real-time traflic so as to make
a good distribution of transmission capacity, FDDI still has many inherent disadvantages.
Two of these disadvantages are most significant for real-time traffic. First, T''RTs must
be identical for all nodes on the LAN. This restriction may seriously limit the use of FDDI
when heterogeneous real-time traffic is to be handled. If some node requires a. very short
TTRT, the network utilization may be significantly reduced, as the token has to be rotated
around the ring very fast! (thus wasting the bandwidth used for token passing). Second,
since FDDI has no efficient way to dynamically change TTRT and the high-priority token
holding time for each node, it cannot be used in a network where the trafific load of each
node changes due to the establishment and /or removal of real-time channels. In fact, most
timed-token protocols (FDDI is one of them) suffer these two problems, and they are not
adequate for supporting real-time communication which requires dynamic and independent
addition/deletion of real-time channels.

Another typical example of LAN which supports real-time traffic is FDDI 1I. In addition
to being a timed-token protocol, FDDI II adds the circuit switching feature to facilitate the
transmissicn of real-time traffic. Although it provides some degree of dynamic allocation
of link bandwidth based on 16 wide band chanrels (WBC) [1,2,33,41,42), FDDI II still
suffers the aforementioned two problems. Moreover, FDDI II under-utilizes the network
resources because of the use of WBCs which cannot be shared by other trafiic even when
they are idle.

Before proceeding to describe our scheme, we formally define the maximum token return

time (MTRT) and real-time token holding time (RTHT) used in our scheme. The MTRT for

'according 1o the smallest TTRT
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a real-time channel is the maximum time interval between two consecutive token allacations
to the channel. For example, the MTRT for FDDI is equal to 2 x TTRT. During each of
its token possessions, the RTHT of a real-time channel is the maximum time the channel is
allowed to use for the transmission of its real-time packets.

In order to solve the above two problems, we need an adaptive scheme which allows
different real-time channels to have different MTRTs. The ring is not a good topology if we
want to allow different MTRTs for different channels or nodes; 2 multiaccess link/bus is
a natural candidate in this case. Note that ring structure can be used if we only manipulate
RTHT. On the other hand, the need of dynamically changing the MTRT and RTHT for
each node suggests usc of a centralized control unit on each multiaccess link which is re-
sponsible for token allocation and admission test upon receiving a request for establishing a
real-time channel. The centralized solutien is much more efficient and cost-effective than its
distributed counterpart for dynamic and independent addition/deletion of real-time chan-
nels, because a multiaccess link poses no communication bottleneck, no resource deadlock,
no routing problem, and low communication overhead in using a centralized control unit.
Besides, a distributed counterpart causes potential incoherence and inefliciency because all
changes of MTRTs and RTIITs have to be negotiated/accepted by all nodes. Thus, we will
use a centralized control unit, called the tink control unit (LCU), on a multiaccess link. The
LCU is responsible for token allocation and resource reservation for real-time channels run-
ning through the link. The LCU will send high-priority (i.e., real-time) tokens and normal
(i.e., non-real-time) tokens to all nodes on the link according to their needs and fairness.
Only the node which currently possesses a real-time (normal) token is eligible to transmit
real-time (normal) packets, There is an expiration-time parameter associated with cach
token. The node must return the token to the LCU before or at the time the token expires.

Fault-tolerance is an important issue for a centralized approach. For a multiaccess
link, fault-tolerance issues may be solved by duplication of the LCU. As all activities on
a multiaccess network can be seen by all nodes on the network, we can use a passive
LCU to maintain the network status just in case the primary LCU fails. Because of the
multiaccess property of the network, this approach induces little additional communication
cost in dealing with the problem of LCU failure. Another general problem for a centralized
solution is high communication overhead, since all control messages have to be routed to
the centralized control unit. In point-to-point networks, this may be a scrious problem,

because control messages may have to travel several hops to reach the centralized control
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unit, thus incurring high communication overhead for the transmission of control messages.
However, in a multiaccess network this communication overhead is small, because messages
can be received by all nodes on the multiaccess network, including the LCU, in one hop.
Therefore, the overhead of sending control messages (including tokens) is approximately
proportional to the ratio of token size vs. the lifetime of a token (RTHT). Although this
ratio depends significantly on the applications, it is generally small for typical applications,
e.g., voice/video communication, since the traflic volume (per token allocation) of these
applications is usually much larger than the size of a token, and the life of cach of these
applications is usually much longer than the time nceded to set up a channel (connection).

To provide real-time performance guarantees, the LCU reserves link capacity and allo-
cates a real-time token to each node on a per-channel basis. However, in Chapter 3, we will
also discuss an alternative in which the token is allocated on a per-node basis. The basic
idea is to let each real-time channel have its own MTRT and RTHT based on its anticipated
real-time traffic load. In our scheme, although the MTRT is defined to be the maximum
time interval between two consecutive token allocations, it is approximately the same as
the corresponding expected time, as the variance of actual token return time is negligibly
small if MTRT >> RTHT (true in most cases, if the network is expected to support many
real-time channels at the same time).

Among the several models proposed to describe the traffic generated by a real-time
channel, the linear bounded model —— which was originally proposed by Cruz [15] and also
adopted by other researchers [23,24,44] — is one of the most general and practical models.
The traffic generated by a real-time channel is said to follow the lincar bounded model if the
number of packets generated in any interval 7" is bounded by a linear function of the length
of the interval T, i.e., (Gmee T + Bma: ), Where G,q; is the maximum packet-generation rate
of this channel and B,,,. is the maximum burst size. Using the user-specified delivery-delay
bound D, one can establish a hard real-time channel in a point-to-point network [23, 24, 44].
In this chapter, we adopt an even simpler model which requires only two parameters for

establishing hard real-time channels:
» D (seconds): the user-specified delivery-delay bound for a message,

o M (packets): the maximum number of packets that ean be generated in an interval

of length D.

This model is more general than the lincar bounded model, because it can be applied to
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more cases, and the linear bounded model is only a special case of this model (by letting
M = Gmoc D + Bpac). As can be seen later, we need additional information for handling
statistical real-time channels.

We can derive MTRT and RTHT for each real-time channel by using these two parame-
ters which are provided by the application layer when a request for establishing a rcal-time
channel arrives. Since there is generally an upper bound for the size of a packet in a given
L AN, we also assume the transmission time for a maximum-size packet, Pz, is available,
Since the size of a message may be larger than P, we need to break this message into sev-
eral packets for transmission over the network. From these parameters, MTRT and RTI'T

can be derived by:

MTRT := D (2.3)
RTIHT := M X Ppa.. (2.4)

Although there are many other possible solutions which have smaller MTRTs, we do not
choose a smaller MTRT here, because the smaller the MTRT, the more frequently the
system has to assign a token to this real-time channel and therefore, the less efficient.

When a node attempts to establish a real-time channel, it has to provide the LCU
the requested MTRT and RTHT for this channel as arguments of its real-time channel
establishment request. The LCU will then try to reserve the link capacity for this channel
by performing the following admission test:

Z (RTHT,- + overhead.-) <1

MTRT; (25)

where the index i runs over all existing real-time channels and the current request., The
main part of overhead is determined by the token passing time. If the admission test can be
satisfied after adding this new channel, the LCU will reserve the required link capacity, up-
date the information about the existing real-time channels, and send a confirmation message
to the requesting node. Otherwise, the LCU will send a rejection message to the requesting
node. Using these parameters, the LCU can use the deadline-driven scheduling algorithm in
[29] to allocate tokens to each real-time channel with the corresponding guaranteed MTRT
and RTHT. Basically, the LCU will issue the requesting node a token approximately once
every MTRT, thus allowing the node to transmit packets of this real-time channel for a
period up to RTHT. If the transmission completes before the RTHT expires, this node has
to return the token to the LCU. The LCU will then issue the next token to this node (for
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this corresponding channel) no later than (MTRT — RTHT) time units after the current
token is returned by this node. Thus, if all channels use up all their reserved time, tokens
will be issued to all nodes exactly once every (their corresponding) MTRT, The run-time

scheduling strategy will be discussed later.

2.4 Statistical Real-time Channels on Multiaccess LANSs

If the application can tolerate the loss of a certain percentage of real-time packets,
using a hard real-time channel which reserves resources for the worst case will severely
under-utilize the network. Therefore, a real-time channel which reserves less resources and
meets looser requireimnents is more suitable for such applications. In order to achieve this,
we need additional information on packet generation, i.c., the distribution of packet inter-
arrival times. Basically, we assume the packet-arrival distribution for a real-time channel
(characterized over an interval of length D or MTRT) is given as in Fig. 2.1, and the
arrivals in the interval D are independent and identically distributed (#d). Then we try
to reduce the bandwidth that needs to be reserved for each real-time channel using the
packet-arrival distribution and the #id assumption. Although this iid assumption may seem
unreasonable in view of the highly-correlated nature of such real-time traflic as voice and
video packets, our simulation results in Section 2.6 show that the iid assumption works well
for the transmission of compressed (e.g., JPEG [45,48]) digital motion-video frames.

One can lower the bandwidth needed for a real-time channel by increasing MTRT or
decreasing RTHT. By increasing MTRT or choosing some MTRT > D, we may not be
able to salisfy Eq. (2.1) or Eq. (2.2) without making more assumptions, since a packet
could still be lost with this larger MTRT even when the packet-arrival rate for this channel
is far below average. For example, even though the packet-arrival rate is low, the token
may not always arrive in time since MTRT > D. Another practical advantage of choosing
MTRT = D is the packet-arrival distribution of a real-time channel can be computed off-
line, and only one distribution is needed for cach application even if it has scveral different
performance requirements, e.g., different packet-loss rates. Therefore, once D is determined,
the distribution of packet arrivals from a source can be characterized and derived from
industrial standards and simulations/experiments. We will therefore consider decreasing
RTHT and kecping MTRT as in Eq, (2.3). Fig. 2.1 shows an example distribution of packet

arrivals for a real-time channel within one MTRT (as in Eq. (2.3)). The horizontal axis
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of this figurc represents the number, NV, of packet arrivals within one MTRT. If & is a
continuous (discrete) random variable, the vertical axis represents the probability density
(mass) function of N. The shaded areca right to N,,,. represents the region where some
packets of this real-time channel may be lost due to insufficient bandwidth reserved, where
Nmaz is the maximum number of packets this real-time channel can transmil during cach
token allocation. We will derive V., using the performance requirements such as Eq. (2.1)
or Eq. {2.2), and Tig. 2.1. So, we can choose an RTHT large enough to satisfy this condition.
That is, within this RTHT, the system must be able to transmit at least N,,,, packets of this
channel. N can then be used to determine the RTIIT directly by using the relationship
RTHT = Npgz X Prgs. There are many possible ways to derive the desired RTIIT (or N,z )
when MTRT = D, depending on the type of performance requirements. We consider the
following three typical performance requircments. Let G denote the average packet-arrival

rate of a real-time channel,

P

N number of packets
max arrived within MTRT

Figure 2.1: An example distribution of packet arrivals within one MTRT

1: P(delay of a packet < delaybound D) > a given number Z.

This inequality is the same as Eq. (2.1) and should be satisfied over a sufficiently long
time period. Considering I"ig. 2.1, if the number of packet arrivals falls in the unshaded
region to the left of Np,,, all packets can be transmitted before their deadlines, since

the node can transmit up to V,,,, packets during each token allocation. Similarly, in
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the shaded region right to N,,,., at most (n — N4 ) packets will miss their deadlines.
Therefore, Eq. (2.1) can be converted to Eq. {2.6) by using Fig. 2.1. Without loss of

generality, we can consider N to be a discrete random variable, leading to:

— Eﬁf:m...,(n — Nunaz ) P(n)

Z <1 2.6
: STenP(n) (29
=1 Z:LN,,,.,(" - Nma:)P(n) (2 7)
G x MTRT '
Ir Zf:m..., P(n) is small, we can approximate Eq. (2.7) with

= GxXMTRT"

Using cither Eq. (2.7) or Eq. (2.8), we can find the smallest ¥,,,, that satisfies this

performance requirement.

With a minor modification, this case can be applied to many similar performance
requirements, e.g., “messages” are considered instead of packets in the performance

requirement formula. For example, if the performance requirement is
P(delay of a message < delay bound D) > a given number Z,

we can modify Eq. (2.7) to:

T s F( = Npa2 ) P(n)
Zz sl1- G X MTRT ! (2.9)

where f(n) is the number of messages which will miss deadlines given that n packets

will miss their deadlines.

2: P(no packet loss during any time interval of length > MTRT ) > 2.
This is similar to Eq. (2.2). The unshaded area to the left of V,,,. in Fig. 2.1 should

be greater than, or equal to, Z. Therefore, the relation between Z and N, is

represented by:
Nﬂllr
Z <Y P(n). (2.10)
n=0

Eq. (2.10) can be used to find the smallest N, that makes the unshaded area to the
left of Nya- greater than, or equal to, Z.
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3: P(delay of a packet < delay bound D) > a given Z for all time intervals of length MTRT

or larger.
‘This is the strictest requirement among the three cases, because it has Lo be satisfied
during any time interval of length MTRT or larger. So, we must consider their worst

case:
Ninaz 2 M X Z. (2.11)

We do not consider this performance requirement over an interval of smaller than
MTRT, because in case of an interval smaller than MTRT, say, a very short period
during which only one packet is lost, it is impossible to satisfy the requirement unless

Z =0, i.c., a hard real-time channel.

In Section 2.6, we will use an example of the first type of performance requiremeni and

derive MTRT and RTHT with the proposed scheme.

2.5 Run-time Scheduling

Since each real-time channel can be described by its MTRT (equivalent to “pericd”) and
RTIIT (equivalent to “running time”), we can use the deadline-driven scheduling algorithm
in [8,29] for allocating tokens to individual real-time channels. Before the LCU grants a
real-time channel establishment request, a new schedule for allocating tokens (e.g., “s0” in
Fig. 2.2) must be computed in addition to an admission test. According to the schedule, the
LCU issues a real-time token to each real-time channel at least once every MTRT, and this
token allows a node, when it reccives the token, to transmit packets of the corresponding
channel for a period up to RTHT. In order to improve network utilization, the LCU trics
to allocate a real-time token to cach real-time channel exactly once every corresponding
MTRT (if all channels use up all their reserved bandwidth) and use the remaining time for
non-real-time traflic. When there are no scheduled activities in the schedule, the LCU issues
a non-real-time token whose expiration time is set to the beginning of the next scheduled
activity (including the token passing overhead), and this token circulates among all nodes
on the network. Using an example we will illustrate these scheduling activities. In Fig. 2.2,
suppose “s50” is the original schedule and time starts with 0. The symbol “ns” represents
the time that can be used to schedule non-real-time traffic. H the token “A1” is returned

at time 2, the system will change the original schedule, s0, to a new schedule, s1, by moving
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the rest of the entire schedule ahead by (RTHT — t) time units. Al (A2) in Fig. 2.2 is the
first (second) token for channel A which is characterized by MTRT and RTIIT.

s0:
At ns B1 . - . A2
@ RTHT MTRT
s1:
ns B1 ’ . . A2
3
t MTRT-(RTHT-t)

Figure 2.2: A run-time scheduling example

Runtime scheduling performed by individual nodes is simple. Each real-time token
indicates which real-time channel should be scheduled, and each node discards late packets
and transmits the remaining packets in the queue according to their deadlines. When a
node receives a non-real-time token, it transmits non-real-time packets in the queue until
the token expires, or continue to circulate the non-real-time token if the node completes
the transmission of non-real-time packets before the token expires. Note that, in order to
achieve a higher non-real-time traffic throughput, a node does not give real-time packets
higher priority when it receives a non-real-time token.

Since no complex scheduling algorithm is required at the node level, the proposed scheme
can be implemented on a very simple node which may not even have suflicient computing
power, ¢.g., smart sensors in an automated factory. In the next section, we will show via
simulation the effectiveness and efficiency of the proposed scheme.

The communication overhead for the proposed scheme is low, since the following two
propertics are generally true for typical (soft) real-time audio/video communication. The
first is the time needed to establish a channel is usually much shorter than the life of an
application. This overhead does not have significant effects on the overall communication
cost, as this is only a one-time cost for a channel.

The second property is that the total size of successfully-delivered packets (per token

allocation} of these applications is usually much larger than the size of a token. The ratio
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of the average successfully-delivered traffic volume per token allocation to the size of two
tokens (one to issue and the other to return) can be treated as the actual utilization of
this real-time channel, since the token passing time is the primary source of communication
overhead for our scheme. Although this ratio depends greatly on applications, it is usually
small, because typical real-time audic/video applications generat'c large amounts of data.
In the simulation example (Section 2.6), if we assume cach token takes 500 bytes, the ratio

is shown 1o be less 1% for the proposed scheme.

2.6 Simulation

In this section we present a numerical example to demonstrate the effectiveness of the
proposed scheme. We will use both the FDDI and the proposed scheme to transmit com-
pressed digital motion-video frames and compare their performances. This example shows
that the proposed scheme reserves the bandwidth required for real-time traffic and also

utilizes the network efficiently in the absence of real-time traffic.

2.6.1 Simulation Model

In order to make a fair comparison with FDDI, we simulated a 100 Mbps multiaccess
link/bus with 20 and 50 nodes. The video data are sampled from a sequence of CNN
headline news, stored on a laser disk [48]. The size of each frame, after JPEG compression
[45,48), is plotted in Fig. 2.3, The quality of video can be characterized by the rate of
‘successfully-delivered’ frames, where a successfully-delivered frame is defined as ene which
is delivered to its destination correctly before the corresponding deadline, The maximum
one-way transmission delay of cach frame must be less than 100 ms in order to achieve
the quality of live performance. If we use the transmission rate of 30 frames per second, 3
frames will be transmitted in each 100 ms. Assume the maximum packet size of the network
is 1 Kbytes, and define the time to transmit a maximum-size packet as the packet time.
Therefore, 100 ms is equal to 1250 packet times, or D = 1250 (in packet time). We will use
a packet time as the basic time unit in the rest of this section. Following Eq. (2.3), we get

MTRT = D = 1250 packet times. The performance requirement can then be specified as:
P(delay of a frame < 1250) > a given Z. (2.12)

We will discuss three cases: Z = 99%, 95% and 90%. (All other cases can be handled

similarly.)
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Figure 2.3: An example of frame sizes (JPEG compression)

We need the distribution of traffic arrivals within the time interval MTRT (=1250)
to derive RTIIT. By adding the sizes of three consecutive frames (because there are three
frame arrivals in 100 ms), we can derive the distribution of traffic volume (in Kbytes} within
D =1259. Fig. 2.4 shows the distribution of traffic volume (three frame arrivals) within one
MTRT. For the scheme proposed in Section 2.4, we use this distribution to compute the
bandwidth reservation for various frame-delivery rate requirements, Let T),,.. be the time
needed to transmit one maximum-size message. 7i,,r = 62 according to Fig. 2.3. The

performance requirement can then be expressed as;

186 P(n)
7 < — =N mas 2.13
- :123803})(”) ( )
186
= - - 14
1 nz;m:jP(n). (2.14)

since if Ny, is sufficiently large (> M —T),,,. = 185 — 62 = 123), each point in Fig. 2.4 will
result in loss of at most one frame. This corresponds to f(n) = 1 in Eq. (2.9). Note that
188 2 3P(n) is the expected number of frames which will arrive within one MTRT (100

ms). By adding one packet time as the token passing overhead, we get:
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Figure 2.4: An example distribution of traffic volume in an interval of length 100 ms

¢ Z =00%: Nn... = 183.
o 7 =95%: Npa.o = 147.
o 7 =90%: Nua = 138.

According to Eq. (2.5) the network is expected to support six 99% video channels, eight 95%
video channels, or nine 90% video channels. Certain uniformly distributed non-real-time
traffic that requires from 0% to 90% of the total link capacity is added to each node during
the simulation. However, the source nodes of real-time channels are randomly chosen. (It is
possible that one node may become the source node of all real-time channels.) The traflic
data of real-time channels were taken from Fig. 2.3 and each channel has its own starting
frame (also randomly chosen).

In both 20-node and 50-node FDDI rings, we use the same input traffic except we
assume the source nodes of existing real-time channels are distributed evenly. The high-
priority token holding time is also distributed evenly to all nodes on the FDDI ring. The

token passing overhead is ignored in the FDDI case.
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2.6.2 Simulation Results

The main goal of our simulation is to evaluate and compare the maximum and average
frame-miss rates of both the FDDI and the proposed scheme. (The frame-miss rate is
defined as the percentage of frames missing their deadlines.) We will also evaluate the
improvement of network utilization by using statistical channels and examine the bandwidth
available for the transmission of non-real-time traflic in the presence of real-time traffic,
Our scheme is shown to always outperform FDDI and, at the same time, have the ability

to provide performance guarantees.
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Figure 2.5: Maximum frame-miss rate at a 50% non-real-time traflic load (20 nodes)

Figs. 2.5 and 2.6 show the maximum frame-miss rate of our scheme (20%, 95%, and
99% lines), and the maximum and average frame-miss rates of 20-node and 50-node FDDI
networks at a 50% non-real-time traffic load. The framc-miss rate is defined based on a
channel, i.e., the ratio of the number of frame misses for a channel C vs. the total number of
frames of C. The maximum {average) frame-miss rate is defined to be the largest (average)
value of individual channel frame-miss rates. Each point in the figure represents 30,000

cycles of the sequence for each channel, i.e., about 911,000 frames or 8.4 hours at the rate
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of 30 frames per second for each channel. As predicted by the analytic model, both figures
show that six 99%, eight 95% and nine 90% channels can be supported under the proposed
scheme. For those points where the link does not have suflicient bandwidth for both real-
time and non-real-time traflic, e.g., 7-10'* at 99% channels, 9-10** at 95% channels and
10" at 90% channel, we reserved the entire link capacity for real-time channels, and non-
real-time traflic is transmitted only when the bandwidth reserved for real-time traffic is not
used. Since we reserved the link bandwidth using the worst-case values, this is very likely
to happen.

For example, we reserved [1250/7] packet times for cach channel when there are seven
99% real-time channels. (Note, however, that our scheme does not allow a 7" 99% rcal-
time channel, because the system cannot guarantee the required performance.) When a 7t
99% channel is added, about 2% of real-time packets of this channel will miss deadlines.
The FDDI can provide 4-5 real-time channels at a 50% non-real-time load. As we will
sce later, the FDDT’s ability to support real-time communication is highly sensitive to the
non-real-time traffic load. The average frame-miss rate for our scheme is very close to the
maximum miss rate, so we only plot the maximum frame-miss rate in Figs. 2.5 and 2.6.
By contrast, the average and maximum frame-miss rates of FDDI are significantly different
when the FDDI ring cannot transmit all the real-time messages before their deadlines. The
FDDI's frame-miss rate is also sensitive to the number of nodes on the ring, but our scheme
can provide the same number of real-time channels regardless of the number of nodes on
the multiaccess link. This observation implies that the variance of frame-miss rate of our
scheme is very small, whereas the FDDI suffers a large variation of frame-miss rate.

IMigs. 2.7 and 2.8 show the maximum {rame-miss rate of our scheme (90%, 95%, and 99%
lines) as well as the maximum (FDDI line) and average (FDDI avg line) frame-miss rates
of 20-node and 50-node FDDI networks at a 90% non-real-time traflic load. At a high non-
real-time traffic load like this, the FDDI becomes nearly incapable of supporting real-time
communication. It can only support/handle two channels (< 10% {rame-miss rate) in the
20-node ring and one channel in the 50-node ring. By contrast, our scheme is insensitive
to the non-real-time traflic load. The system can still provide six 99%, eight 95% or nine
90% recal-time channels at a high non-real-time traffic load. Again, since the average frame-
miss rate of our scheme is very close to the maximum frame-miss rate, we plot only the
maximum frame-miss rate. (Similarly to the previous case, the FDDI’s average frame-miss

rate significantly differs from its maximum frame-miss rate.) As far as the ability to support
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Figure 2.8: Maximum frame-miss rate at a 50% non-real-time traflic load (50 nodes).

real-time communication is concerned, our scheme is shown to be far better than the FDDL

Our simulation also shows that network utilization can be improved significantly by
using statistical channels. According to the simulation model, the network can support
nine 90% channels, while only 6 channels can be established if no more than 1% of frames
are allowed to miss their deadlines.

Fig. 2.9 shows the actual non-real-time traffic throughput {(at a 90% non-real-time traffic
load) and the capacity which is not reserved for real-time traffic under our scheme. As can
be seen from this figure, the actual throughput is higher than the capacity which is not
reserved for real-time traffic, because our scheme requires the token to be returned to the
LCU if a node has no packets of the corresponding real-time channel to transmit. Thus,
the unused portion of the reserved capacity can be used to transmit non-real-time packets,
thus improving network utilization. This improvement is significant, especially when the
reserved capacity is much higher than the average need. For example, when there are six
99% channels, only 12.2% of the link capacity is left for non-real-time traflic if we use
circuit switching. In our scheme, however, the actval throughput is 36.5%, that is, it makes

a 24.3% improvement over the circuit-switching case (in terms of total link capacity).
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Figure 2.7: Maximum frame-miss rate at a 90% background load (20 nodes)

We also calculated the token passing overhead of the proposed scheme under the as-
sumnption that the size of a token is 500 bytes. Since two tokens are needed for cach token
allocation (one to issue and the other to return), the token passing overheads are approxi-
mately 0.84% (90% channels}, 0.79% (95% channels), and 0.75% (99% channels), since the
average successfully-delivered traffic volume per 100 ms are 119 Kbytes (90% channels), 127
Kbytes (95% channels), and 132 Kbytes (99% channels).

Since the average frame-miss rate and the maximum f{rame-miss rate of the proposed
scheme are very close to cach other, we can assume that whether a frame will miss its dead-
line or not (under the proposed scheme) follows a Bernoulli distribution and the numhber
of missed/lost frames of each channel follows a Binomial distribution. Let ¥ be a ran-
dom variable denoting the number of lost frames of a channel. For a particular point in
Figs. 2.5, 2.6, 2.7 and 2.8, let n be the number of samples (frames) and p be the frame-miss
rate of a channel in the corresponding environment. Therefore, n = 911,000 and p is the
mean of Y/n. By applying the central limit theorem [20, 28],

Y - np
va(Y/n)(1-Y/n)
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Figure 2.8: Maximum frame-miss rate at a 90% background load (50 nodes)

has a limiting distribution that is normal with mean 0 and variance 1. We can then find
an approximate 99% confidence interval for the frame-miss rate, p, of our simulation. We
can thus derive P{(—2.60 < —===2E—- < 2.60) = 0.99. As a result, for a large =, if the

VAV In)1=Y/n)

experimentally-determined value of Y is g, then the interval

[ v_ 2_60\/(y/n)(1 —9/m Y60 \/(y/n)u — y/n) ]
n T n

n
provides an approximate 99% confidence interval of p. In our simulation (n = 911, 000), for

any experimental value ¥

2.60\/ (v/ ")(ln" ¥/™) . .003.

The 99% confidence interval is even smaller in cases where k(> 1) channels exist, because
n =k x 911,000 in such cases, that is, the sample size increases.

Our scheme is shown to combine the advantages of circuit switching and packet switch-
ing. It provides performance guarantees for real-time channels and can also transmit non-

real-time packets during the idle period reserved for real-time channels.
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Figure 2.9: Non-real-time traflic throughput as % of total link capacity

2.7 Conclusion

In this chapter, we presented a new scheme for providing real-time performance guaran-
tees given traffic-generation characteristics and performance requirements. In addition to its
ability to provide performance guarantees, the proposed scheme can also improve netwark
utilization by using statistical (as opposed to hard) real-time channels for the performance
requirements specified in statistical terms. Since the traflic-generation model used in the
proposed scheme is very general and the information needed for this scheme is casy to ob-
tain, the scheme is casy to implement and is useful for many applications. Qur simulation
results have shown that this scheme is effective and efficient in supporting both real-time
and non-real-time communication. In the next chapter, we introduce a channel-multiplexing
strategy which further improves the network utilization and the ability to support real-time

communication in a multiaccess network,



CHAPTER 3

MULTIPLEXING STATISTICAL REAL-TIME
CHANNELS ON MULTIACCESS NETWORKS

3.1 Introduction

In Chapter 2, we proposed a scheme for real-time communication on multiaccess net-
works which can provide performance guarantees according to the user-specified traffic-
generation characteristics and performance requirements. However, in order to let the sys-
tem add/delete real-time channels independently, we used a chennel-based design in Chap-
ter 2 [13] (i.e., each channel was treated independently), but we did not consider the problem
of multiplexing real-time channels. As a result, the channel-based scheme still under-utilizes
the network. In this chapter, we significantly improve the channel-based scheme by multi-
plexing real-time channels originating from the same node in order to achieve higher network
utilization without compromising the capability of independent addition/deletion and the
performance guarantees of real-time communication.

Since more than one real-time channel may originate from a node, multiplexing these
channels on a per-node basis may achieve higher network utilization and induce less over-
heads. That is, instead of reserving link bandwidth for cach individual real-time channel,
the system assigns a real-time token to a node at least once in a certain period of time
for all real-time channels originating from that node. We may be able to multiplex several
real-time channels (especially statistical real-time channels) with much less bandwidth than
the sum of their individual bandwidths. However, the ability of independent addition and
deletion of real-time channels must not be compromised while multiplexing real-time chan-
nels. We will therefore focus on the problem of making correct and efficient link-capacity
reservation and run-time scheduling as well as preserving the ability of independent addition

and deletion of channels.

30
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In the rest of this chapter, we address the problem of multiplexing statistical real-time
charnnels. Specifically, we propose (i) a scheme to calculate the link bandwidth associated
with the addition or deletion of each channel, (ii) a procedure for establishing and closing a
real-time channel, and (iii) a run-time scheduling algorithm for solving frame dependency
problems. We decompose the channel multiplexing into three problems. The first problem
deals with the issues associated with channel establishment. The second problem deals
with the issues of closing a channel, and the third problem is concerned with the run-time
scheduling,.

The chapter is organized as follows. Qur proposed solution to this problem is described
in Section 3.2 and Section 3.3. In Section 3.4 we demonstrate via simulation the correctness

and effectiveness of the proposed scheme. The chapter concludes with Section 3.5.

3.2 Node-Based Scheme

In this section, we focus on the problem of multiplexing statistical real-time channels.
Note that we cannot multiplex two hard real-time channels without compromising their
performance guarantees. However, we allow a hard real-time channel to be multiplexed with
several statistical channels. In this case, this hard real-time channel is given the highest
priority ameng all the multiplexed channels. In the rest of this section, the term, “real-
time channel” or simply “channel”, {unless stated otherwise} means a statistical real-time
channel.

We propose an incremental scheme to add or delete a real-time channel and adjust the
reserved link bandwidth when a new real-time channel is accepted or an existing channel
is torn down. Real-time channels will be time-multiplexed on a per-node basis, since from
a single node’s point of view, once the node holds the token, it has the complete control
of the link until its token-holding time expires. Note that the token-holding time here
is referred to the real-time token-holding time for transmitiing the packets of real-time
channels. Basically, the proposed node-based scheme will function as follows. Each node NV
will compute MT RTy and RT HTy for the combined traffic of all real-time channels which
originate from node N, As will be seen later, MTRT ) is the smallest MTRT of real-time
channels which originate from node . The LCU then allocates the real-time token to ¥
at least once every MT RT)y, which allows the node to transmit real-titme packets up to

RT HTpx units of time. As in the channel-based token allocation in Chapter 2, the node
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should return the token to the LLCU immediately after it completes the transmission of all
existing real-time packets or the token holding time expires, whichever occurs first, If the
token for node N is returned at time ¢t = 0, then the next time node & will receive the
token is t < MTRTy — RTHTy.

We assume that the distribution of incoming traffic for all real-time channels is avail-
able at the time of receiving a channel-establishment request, i.c., information similar to
Fig. 2.1 is available for each real-time channel. Although the exact distribution of incoming
trallic may net be always available, an approximate distribution is usually not difficult to
obtain off-line for most real-time applications. For example, during interactive playback of
stored video, although the exact distribution depends on the user’s on-line instructions, the
original distribution from a sequential playback is usually a good approximation. For other
applications like video conferencing, although we cannot predict in advance the exact dis-
tribution of the anticipated traffic, an approximation is usually not difficult to obtain, e.g.,

follow industrial standards, or run extensive simulations and make conservative estimations.

R

RTHTy
MTRT,

:

average free link capacity
per packet time

R

Figure 3.1: An example distribution of the RBU link bandwidth for a node in packet
times

Before proceeding to the description of the channel-multiplexing scheme, we first intro-
duce the distribution of reserved-but-unused (RBU) link bandwidth for a node, which is
defined as the link bandwidth reserved by the node for real-time channels, but not actually
used at run-time. This distribution will be used in the derivation of link bandwidth to be

reserved when a new channel is to be added. Fig. 3.1 shows an example of the probability
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distribution of a node’s RBU link bandwidth per packet time measured in packet times
(defined in Section 2.6). The vertical axis of Fig. 3.1 represents the probability mass of
the RBU link bandwidth, and the horizontal axis represents the number of packets. The
probability of no RBU link bandwidth is usually non-zero (i.e., P(RBU link bandwidth
= () > 0), because the assigned capacity cannot otherwise be used up even in the worst
case.

We will show how the distribution of the RBU link bandwidth (Fig. 3.1) is derived
from the distribution of packet arrivals (Fig. 2.1) at the time of channel establishment or
teardown and how it is used in the link-bandwidth reservation procedure. Basically, we want
the new requesting channel to use as much RBU bandwidth as possible before requesting

additional link bandwidth frem the LCU.

3.2.1 Channel-Establishment Phase
Establishing the first real-time channel of a node

Since there is no real-time channel originating from the node, this request can be handled
just as in the channel-based scheme. lence, we can determine the MTRT and RTHT (or
Nmaz) for this channel according to the incoming traffic characteristics (Fig. 2.1) and the
performance requircment.

Because no real-time channel has already been established, there is no RBU link band-
width for this node. The node sends the LCU this first request of real-time channel estab-
lishment which includes the MTRT and RTHT of this channel. If this request is admissible,
the LCU will send a confirmation message to the requesting node. Then, the distribution
of the RBU link bandwidth must be updated, since a new real-time channel has becn ac-
cepted and the corresponding link bandwidth has been reserved. Beflore proceeding with
the derivation of the RBU link bandwidth, we present two intuitive results in theorem form

without proofs.

Theorem 1 Suppose MTRT > 1 (in packet time). If a real-lime performance requirement
can be satisfied by a real-time channel with the maximum token return time, MTRT, and a
real-time token holding time, RTIIT, then this performance requirement can also be satisfied

by a pseudo real-time channel with link bandwidth RTHT/MTRT per packet time. o

Theorem 2 Suppose MTRT > 1 (in packet time). If a real-time performance require-
ment can be satisfied by a pseudo real-time channel with link bandwidth RTHT/MTRT in
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every packet time, and the delay bound of this channel’s packets is at least MTRT, then
this performance requirement can also be satisfied by any real-time channel with a maci-
mum loken return time MTRT < MTRT and a real-time token holding time RTHT >
RTHT x MTRT' |MTRT. |

Because different real-time channels may have different MTRTs, we have to use a com-
mon MTRT for the the distribution of RBU link bandwidth. The smallest possible MTRT
is one packet time, and by Theorem 1, we can convert any real-time channel to a pscudo
channel with link bandwidth RTHT/MTRT in every packet time. By Theorem 2, we can
also convert a pseudo real-time channel back to a real-time channel if the channel’s MTRT
is given. So, we choose one packet time as the basic time unit for the distribution of RBU
bandwidth.

Let X be the random variable representing the number of average packet arrivals for a
new real-time channel within one packet time and R be the random variable representing
the RBU link bandwidih in a packet time. Let N represent the number of packet arrivals

within one MTRT, then

N

X = o (3.1)
_ mir_ 02
and,
pr(r) = P(%—X:r)
= P( = ff;szi - r) yfor 0<r< ﬁ?ﬁ? (3.3)
(o) = P(X23200), (3.4)

where pr(7) = P(R = r) is the probability mass function of the RBU link bandwidth in a
packet time.

We will use the notation MTRT,, and RTHT, to denote as the maximum token roturn
time and the real-time token holding time, respectively, for node n, while using MT RT" and
RTHT for a particular channel. If channels need to be distinguished, we will use MTRT"
and RTHT™ for channel n.
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A general procedure for channel establishment

A real-time channel-establishment request has to be handled differently than the pre-
vious case if it is not the first request. Basically, the procedure can be divided into two
cases, depending on whether or not the current RBU link capacity of the node is sufficient
to provide the required performance of this new channel without reserving any additional
link bandwidth. If it is sufficient, the node can simply accept this channel without asking
the LCU for more bandwidth, On the other hand, if the RBU link bandwidth of the node
is not sufficient to meet the performance requirement of the newly-requested channel, the
node has to determine the additional bandwidth needed for this new channel. Whether the
current RBU link bandwidth is sufficient or not can be determined by the following three

steps.

Step 1: Compute the distribution of ¥ = R — X first, where R is the current RBU link
capacity in a packet time and X is the average number of packet arrivals for this new

channel within one packet time. Fig. 3.2 shows an example distribution of Y,

R

' RTHTy
: MTIiTN
e "
a
min(R)-max{X}
Figure 3.2: An example distributionof Y = R— X

pr(y) = P(R-X=y)

= Y. P(R=y+z|X =z)x P(X =z) (3.5)

Y P(R=y+z)x P(X =), (3.6)
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where min(R) — max(X) < Y < {228 and py(y) = P(Y = y) is the probability

mass function of Y. Because R and X are independent, Eq. {3.6) equals Eq. (3.5).

2: The goal of this step is to determine the additional link capacity needed for this
new channel in a packet time. As in Chapter 2, we use three typical performance

requirements to illustrate our approach.

P1: P(delay of a packet < delay bound D) > a given Z: This requirement should be

satisfied in an average sense, i.e., over a sufficiently long time period. Using Fig. 3.2

this performance requirement can be converted to:

—a

n=min(R)—max(X)(_n '_' a)py(n)
G X MTRT ‘ (3.7)

Z <£1-

Using Eq. (3.7), we can find the smallest a for a given Z and the distribution, as in
Fig. 3.2, Since it is desirable that the reserved link bandwidth can be used up in the
worst case, i.e., min(R) = 0, we get

r-:"_c:— max(X)(_"’ - a)py(n)

<1-—
Z =1 G X MTRT

(3.8)

Il the requested channel is a hard real-time channel (i.e., Z = 1), we can derive
a = max(X) from Eq. (3.8). In Eq. (3.15), this corresponds to reserving an addi-
tional bandwidth a x P,a. X MTRTN for every MT RTy. As discussed in Chapter 2,
with a minor modification, this case can be applied to many similar performance

requirements,

P2: P(no packet loss during any time interval of length > MTRT)} > Z; The arca
left to the dotied line in Fig. 3.2 should be € 1~ Z. Thus, the relation hetween Z

and a is represented as:

Z <1-PY +a<0)

—a

Z <1- > pr(n) (3.9)
n=min(R)-max{X)

Z S 1 - Z py(ﬂ.). (3.10)
n=- max{X}

Eq. (3.9) can be used to find the smallest @ that makes the area left to the dotted line
not more than 1 - Z, If min(R) = 0 (normally), Eq. (3.10) can be used. Similarly, if
a hard real-time channel is requested (i.e., Z = 1}, @ = max(X) can also bhe derived

from Eq. (3.10).
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P3: P(delay of a packet < delay bound D) > a given Z for all time intervals of length

> MTRT. This is a more strict requirement than P1 and P2, because it has to be
satisfied during any time interval of length not less than MTRT. So, we must consider

its worst case;

_ [min(&) — max(X} + q

zZ <1 max(X) or, (3.11)
z <1-1=2 ’:‘:::}f(";)f A it min(R) = 0. (3.12)

As in P1 and P2, we can find the smallest a satisfying Eq. (3.11) or Eq. (3.12), and

a = max{X ) can be derived if the requested channel is a hard real-time channel.

3: The a derived from P1-P3 represents the additional link capacity in onc packet
time needed to accommodate this new channel without compromising the quality
guarantees of existing channels. Obviously, the case of a < 0 represents the current
RBU link capacity of node N is sufficient to provide the required performance of
the new channel, and thus, node N can accept this new channel without asking the
LCU for more bandwidth, if MT RT?ew <honnel > MT RTy. Afler accepting this new
channel, the RBU link capacity of node N has to be updated as:

Pr..(0) = P(Y <€0) (3.13)
Pr...(n) = pr(n), ¥n > 0. (3.14)

Il the MTRT needed for this new channel is smaller than the current MT 2Ty, node
N still has to ask the LCU for a smaller MT RT,; with a message containing the new
RTHTy and MT RT)y for this node:

MT‘RTN,ncw = MTRTnw channel
MI‘RTN.n ew

RTHTNpew = RTH Ty o X MTRTN e

The probability that the LCU will grant this request (for the new MTRTy) is high,
because the request does not increase the bandwidth that needs to be reserved. Iow-
ever, as MT RTy decreases, the corresponding token passing overhead increases, and

thus, this request may not always be accepted.

If the current RBU link capacity of node N is not enough to guarantee the required

performance of this new channel (i.e., the a derived in Step 2 is greater than zero), then



38

we first determine the new MTRTy. If the MTRT of the new channel is smaller than the
current MTRTy, then let MTRTy 10, = MTRT Y channels gtherwise, MT RTy remains
unchanged.

After determining MT RTx, we can compute the new RTIH Ty as:

MTRTN pew

TIIT niew = ‘ ?
R N, RTH Ty 14 % MTRTN o4

4+ @ X MTRTN new X Prar. (3.15)

In Eq. (3.18), @ X MT RTxN yew X Praz fepresents the additional link capacity needed in
one MTRTNpew. Note that if & = max(X) (requesting a hard real-time channel to be
established), max(X )X MT RTn »ew X P is equal ta the link capacity necessary to establish
a hard real-time channel in the channel-based scheme, because

MTRT 5 pew

max(X) x ﬂfTRI‘N,new = max(N) X MT R'Tnew channel*

Node N sends the LCU a channel-establishment request message which contains the new
MTRTy and RTHTy. The LCU will try to reserve the requested bandwidth and reply
with ecither accept or reject. If the reply from the LCU is reject, the new channel request
cannot be accepted, so MT RTy, RT H Ty and the distribution of RBU link capacity remain
unchanged. On the other hand, if the reply is accept, the RBU link capacity of node N has
to be updated as:

Pr,.(0) = P(Y +a <0) (3.16)
PR (1) = py(n—a), ¥n > 0. (3.17)

3.2.2 Channel-Deletion Phase

Deletion of an existing real-time channel must also be done independently of other
existing channels. After closing an existing real-time channel, we must update the RBU
link capacity using the performance requirement and the distribution of the traffic arrivals
of the deleted channel. Basically, the capacity reserved for the deleted channel is added
to the current RBU link capacity of the node from which the deleted channel originates.
If there is an excessive RBU link capacity, we may try to decrease the link capacity to be
reserved for the node and/or return the excessive capacity to the LCU.

An intuitive way to achieve the above goal is to develop a procedure which can “add”
the bandwidth used by the deleted channel back to the current RBU link capacity of this
node without compromising the performance guarantees of other real-time channels. Let

X and R be defined as in I3gs. (3.1) and (3.2), except that X now represents the number
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of packet arrival of the deleted channel. Therefore, the new RBU link capacity can be
expressed as R,., = R4 + X. However, since X and R,y are not independent, we cannot
easily compute the distribution of R,.., from the distributions of R,y and X.

In order to derive the distribution of R, .., we need to re-compute MTRT and RTHT
for the remaining channels as if we were to try to re-establish them in the original order of
their arrival. If there is excessive RBU link capacity, i.c., pg(0) = 0, the node returns it to
the LCU to make pp(0) > 0.

This method will reserve only the necessary link capacity, as it is basically the re-
computation of link bandwidths for adding channels, However, if the number of remaining
real-time channels is very large, its computation may become too expensive to be practical.
Instead of re-computing the required link capacity reservation, we introduce an alternative,
using the Fourier Transform to directly add the capacity of the deleted channel back to the
RBU link capacity based on the performance requirement and the traffic-arrival distribution
of the deleted channel. However, since the re-computation is in fact much simpler than
the computation of Fourier Transform, unless the number of channels is very large, we
will usually re-compute the link capacity to be reserved for the remaining channels. The
efficiency of handling a channel-closing request is not as imporiant as that of handling a
new channel-establishment request, because the system can always close the channel first
and compute the RBU link bandwidth later.

As deflined in the previous section, let R represent the current RBU link capacity, and N
represent the number of packet arrivals within one MTRT of the closing channel. According
to the performance requirements and traflic-generation characteristics of this closing chan-
nel, we can derive N,,,, for this closing channel. Since the system will schedule packets for
no longer than V,,. packet times for this closing channel in one MTRT (sce the run-time
scheduling in the next subsection), we modify the probability distribution of packet arrivals

as;

pN’(Nmar.) = P(N 2 Nma::) (3.18)
par(n) = py(n}, Vn < Ny, (3.19)

Let X' = 55— and let K denote the total reserved link capacity (in one packet time) for
all the real-time channels originating from this node at a given instant. Let U = K - R,
which is a random variable representing the portion of reserved link capacity which was

actually used during run-time. Since K is a constant, the distribution of U can be casily
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obtained from the distribution of &. Let X, X,,..., X be the numbers of packet arrivals of

+

N
MTRT

and N; is defined as in Eqs. (3.18) and (3.19). Since P(N > Np.) is small in most

n existing channels (including the closing channel), then U > Ti, X|, where X| =

applications, U =~ ¥°i_, X;. Thus, the distribution of U/ is approximately the convolution
of all distributions of X;’, ¢ = 1,...,n, i.e.,, F(U) ~ [IL, F(X;). Let V = U — X' then
F(V)= ';f(% and the distribution of V can be obtained from the inverse Fourier Transform
of (V). The new RBU link capacity can also be approximated by R,,., = { — V. Since
R, is an approximation of the available RBU capacity and the RBU link capacity will
be used when adding future channels, R,., must not be larger than the actually available
RBU. Because U > 0, X;, V is larger than, or equal to, the portion of reserved link

capacity which is not RBU after closing the channel. Therefore, R,,.,, is less than, or equal

to, the actually available RBU, i.e., it is safe to use R,.,, as an approximation of RBU.

3.3 Multiple-Due-Date Scheduling Algorithm

As in the channel-based scheme, the deadline-driven (normal Farliest Due-Date first)
scheduling algorithm [29] can be used by the LCU (node-based scheme) to schedule tokens
for real-time channels. When the total utilization (including overhead) is less than 1, the
deadline-driven scheduling algorithm can guarantee all deadlines as long as the input traffic
follows the pre-specified traflic-generation characteristics,

Tor individual nodes, the scheduling algorithm has to consider the existence of message
(frame) inter-dependency. If all messages (frames) are independent of cach other in a
data stream, i.e., the performance requirement of a real-time channel can be characterized
directly by the delivery rate of messages (frames) of the channel, then the deadline-driven
scheduling algorithm can also be used as the primary scheduling discipline by each individual
node. Since only N,,,. packet times are reserved in one MTRT for a channel, the system
has to give lower priority to the channel which had transmitted at least N,,,. packets
during the previous MTRT. This strategy can prevent the burstiness of some channels from
degrading other channels’ performance. Special customized scheduling policies can also be
added easily at the channellevel, i.e., a node can give a certain channel higher priority
according to the requirements of the application at hand.

If there exists inter-dependency among the messages (frames) of a data stream, i.e.,

the “cffective” delivery of some frame depends on the delivery of some other frame(s), the
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normal EDD scheduling algorithm alone is not sufficient to provide adequate performance
guarantees. In this section, we will focus orn the problem of scheduling real-time data
streams in the presence of frame inter-dependency and propose a multiple-due-date (MDD)

scheduling policy [14] to solve the problem.

3.3.1 Run-time Scheduling

Before proceeding to the description of the MDD scheduling algorithm, we first present
an example of the frame-dependency problem. Many real-time applications, such as au-
dio/video applications, often generate high-volume traflic. Hence, their real-time frames
are usually compressed before transmission through the network. For example, MPEG uses
three kinds of compressed frames: Intra-picture (I} frames, Predicted (P) frames and In-
terpolated (B) frames. I frames are coded directly from a picture and thus can be used to
reconstruct a picture independently. P frames arc coded with reference to a past picture (I
or ). B frames are coded with reference to past or future pictures (I or P). It is obvious
that a P or B frame will not be useful if the referenced frame(s) is not available. Therefore,
the frame “delivery” rate is not an adequate measure of quality of MPEG-coded video.
Instead, the frame “reconstruction” rate is a more appropriate measure of video quality.

In order to solve the frame inter-dependency problem, we need a scheduling method
for systematically dropping/re-ordering packets in the ouigoing queues so as to meet the
performance requirement in the form of Eq. (3.21). Assume frame A is encoded only with
reference to all of the frames in a set S. We want to ensure that frame A will not be
transmitted until all frames in § are transmitted. In this way, the performance requirement
in the form of Eq. (3.21) will be directly implied by the performance requirement in the
form of Eq. (3.20). Note that we assume that each data stream is independent of other data

streams, and frame-dependency occurs only between frames within the same data stream.

P(delay of a frame < delay bound D) > a given Z. (3.20)

P(a frame can be reconstructed by its deadline) > a given Z. (3.21)

The frame inter-dependency problem can be divided into two subproblems. First, we
need an algorithm to compute the appropriate amount of link capacity to be reserved when

a channel establishment request is received. The node-based scheme described in Section 3.2
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can efficiently reserve sufficient link bandwidth for streams without frame inter-dependency.
With a minor modification, the node-based scheme can also be used for real-time streams
with frame inter-dependency. We will discuss the necessary modification later.,

We nced to ensure that a frame which already missed its deadline will not be discarded
if it is still useful for the reconstruction of future frame(s). That is, no frame in § will be
discarded if frame A is not discarded. In order to solve this problem, we associate a frame

with two duc dates which are used in the MDD scheduling algeorithm:

o Scheduling-duc-date is used in the normal EDD scheduling algorithm. This is used to

determine the transmission order of frames.

¢ Drop-due-date indicates the time this frame is ne longer useful. This is used to deter-
mine the time that the frame will be discarded, if it has not alrcady been transmitted

compietely,

Initially, the scheduling-due-date of a frame will be set to the earliest time the frame
will be used for reconstructing some frame (not nccessarily itself) at the receiver node. This
time is often called the “delivery deadling” of the frame. Essentially, MDD works exactly
the same as EDD except that MDD systematically changes the scheduling-due-date of a
frame when necessary. By changing the scheduling-duc-date of a frame, we also change the
delivery order and the priority of this frame. The drop-due-date of a frame will be set to
the time when the frame will be no longer useful for frame reconstruction at the recciver
node.

After these two due dates of a frame are set, the frame enters the outgoing queue which
will be scheduled for transmission by the normal EDD algorithm. Note that frames in the
outgoing queue are in the ascending order of their scheduling-due-dates. When a frame
reaches the head of the outgoing queue, there are two possible ways to handle this frame.
If it can be transmitted completely before its scheduling-due-date, we start to transmit
this frame immediately. Otherwise MDD will check whether this frame will be useful in
the future or not. If this frame is not useful after its current scheduling-due-date, i.c., the
transmission cannot be finished before its drop-due-date, it will be discarded. On the other
hand, if this frame will be useful some time later, say 1, we will set its scheduling-due-date to
1, where £ must be greater than its current scheduling-due-date and less than or equal to its
drop-due-date. After the new scheduling-due-date is determined, this frame will be inserted

back into the outgoing queue right after all frames with smaller scheduling-due-dates.
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We then need a systematic method to determine the next scheduling-due-date (i.c.,
t) for a frame which misses its current scheduling-due-date but will still be useful in the
future. We propose to attach a list of “next” scheduling-due-dates to each frame. Each next
scheduling-duc-date represents a time when this frame will be used. The list is arranged
in ascending order and each next scheduling-due-date is a value relative to the generation
time of the frame. The last entry of the list will be the drop-due-date of the frame, and
thus, can be omitted. If a frame is not referenced by other frames, the drop-due-date will
be equal to the initial value of the scheduling-due-date and the entire list can be omitted.
Since the loss of an “important” frame will lead to the loss of all frames which are coded
with reference to it, the number of dependent frames is usunally small to prevent a visible
blackout,

If the input stream is highly periodic, the list of next scheduling-due-dates can be further
simplified or omitted. For example, video frames are usually generated at a constant rate
and expected to be reconstructed at the same rate by the receiver node, i.c., the inter-arrival
time between frames is a constant. Therefore, the immediate next scheduling-due-date can
be computed by adding the inter-arrival time to the current scheduling-due-date until the
drop-due-date is reached. So, MDD is particularly useful for the transmission of video

frames.

3.3.2 Link Capacity Reservation

If there is no frame inter-dependency, the node-based scheme (with EDD) in Section 3.2
can reserve link capacity efficiently according to the given performance requirement and the
distribution of packet arrivals, However, due to the frame inter-dependency, we have to use
MDD instead of the normal EDD for scheduling in order to meet the performance require-
ment in the form of Eq. (3.21). The adoption of MDD also implies that the amount of data
“expected” to be scheduled for transmission does not follow the given arrival distribution
when some “important” frame misses its initial scheduling-due-date. That is, the given
distribution of packet arrivals is not the traflic distribution in the outgoing queue when
important frames miss their scheduling-due-dates. We will use an example to illustrate the

problem and then propose a solution for the general case.

Example: Assume a stream of MPLEG-coded video frames {at the rate of 30 frames per

second) has onc I-frame and seven P-frames for every cight frames {19,30]. I-frames are
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coded independently and P-frames are coded with reference to the past I-frame. Thercfore,
the previous I-frame is necessary for the reconstruction of P-frames, Note that this example
is also used in our simulation.

Under MDD, since I-frames will not be discarded until their drop-due-dates and we al-
ways try to send I-frames before their associated P-frames, the delivery of P-framaes will be
delayed if the previous I-frame misses its scheduling-due-date. This will affect the amount
of data that needs to be delivered for the reconstruction of the P-frames associated with the
missed I-frames. Let P be the probability that an I-frame will miss its scheduling due-date.
The amount of data “expected” to be scheduled for the transmission and reconstruction of
the next P-frame before the next scheduling-due-date (i.c., 33.3 ms later after the I-frame’s
initial scheduling-due-date) is the size of the P-frame plus P x §;, where S; is the size of
an I-frame. Similarly, the amount of data expected to be scheduled for the reconstruction
of the n-th next P-frame before the n-th future scheduling-due-date (i.e., n X 33.3 ms later}
is the size of the P-frame plus P" x 5;, where n < 7 in this case. Since P is usually small
{c.g., less than 0.1), this effect diminishes rapidly, i.e., the modified distribution is usually

quite similar to the originally given one but shifted to right by a few packets.

General Case: Let F’ and R;,1 < i € n, be frames in a stream carried by a real-time
channel with frame reconstruction rate P under the MDD scheduling. Let S(R;) denote
the size of frame R;. Assume F' is coded only with reference to R,...R,, and the initial
scheduling-due-date of F' corresponds to the m;-th next scheduling-due-date of R;. Then
under MDD, the amount of data that is expected to be transmitted for the reconstruction

of I is .
S(F)+ )" P™ x S(1,). (3.22)

i=1

Using Eq. (3.22), we can compute the expected size of cach frame and also the distri-
bution of traffic expected te be scheduled. Having the modified distribution of expected
packet arrivals, we can use it as the given distribution to make link capacity reservation in

the node-based scheme (with MDD).

3.4 Verification and Evaluation

We present in this section a numerical example to demonstrate the cffectiveness of the

MDD scheduling algorithm and the channel-multiplexing strategy. The transmission of
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compressed digital motion-video frames with both channel-based and node-based schemes
is used to show the significant improvement in network utilization as a result of channel mul-
tiplexing. Our simulation results also show that the channel-multiplexing scheme can still

reserve a sufficient link capacity for real-time traflic to provide the guaranteed performance.

3.4.1 Simulation Model

We use a 100 Mbps multiaccess link/bus as the physical medium for transmitting digital
video frames. The video data used are obtained from a 5376-frame (about 3 minutes at
the rate of 30 frames per second) sequence of the movie “Star Wars” [30]. The size of cach

frame, after MPEG compression [19,30], is plotted in Fig. 3.3.

35000 T T T T T
MPEG INPUT ——
30000

25000

20000

15000

Frame size (Bytes)

10000 I

5000 |

0 (] ] 1 1 L
0 1000 2000 3000 4000 5000 8000
Frame number

Figure 3.3: An example of frame arrivals

The maximum one-way transmission delay of a frame is assumed to be less than 100
ms in order to achieve the quality of live video. Note that the transmission delay (100 ms)
includes only the queucing delay and the actual transmission time, i.e., encoding, decoding
and other processing times are not included. At the transmission rate of 30 frames per

second, 3 frames will be transmitted in each 100 ms. Although the original data rate was
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24 frames per second, we use the typical live-video speed, 30 frames per second, in our
simulation, because we want to simulate the requirement of live performance like video-
conferencing. In order to make the simulation more realistic, we allow random jitters in
the frame arrivals of each channel, These jitters are assumed to be uniformly distributed
between [-416,417] (packet times). Note that 416.7 is the frame inter-arrival time. The
maximum packet size of the network is assumed to be 1 Kbyte, so 100 ms is equal to 1250
packet times or I = 1250. The packet time will be used as the basic time unit in the rest

of this section. The performance requirement for these video frames is assumed to be
P(a frame can be reconstructed by its deadline) > a given Z. (3.23)

In our simulation, the MPEG video compression algorithm generates one I-frame and seven
P-frames for every eight frames. Since the I-frames are coded independently, they can be
used to reconstruct a picture independently. The P-frames are coded with reference to the
previous I-frame, so the previous I-frame is necessary for the reconstruction of P-frames.
Since the compression introduces the frame-dependency between P-frames and its previous
I-frame, the delivery rate of frames does not directly imply the same frame reconstruction

rate. That is,
P(delay of a frame < 1250) > a given Z (3.24)

does not imply Eq. (3.23).

By using the proposed MDD scheduling algorithm, if a frame misses its scheduling-
due-date, the system will reset the scheduling-due-date to some time later when this frame
will be used again (before its drop-due-date). Thus, if an I-frame arrives at time ¢, its
scheduling-due-date will be set to ¢ + 1250 (in packet time) and its drop-due-date will be
set to 2--1250 x 8/3. Every time an I-frame misses its scheduling-due-date, the scheduling-
duc-date will be extended by 1250 x 1/3 packet times until its drop-due-date is reached.
Similarly, if a P-frame arrives at time ¢, both of its due-dates will be set to ¢ + 1250, since
a P-frame has no value after its scheduling-due-date,

Since the maximum one-way transmission delay is 100 ms and the performance require-
ment is given in statistical form, by Eq. (2.3), MTRT = 1250. We necd the distribution
of traflic arrivals within one MTRT to derive RTHT, the link capacity to be reserved. By
adding three consecutive frame sizes, we can derive the distribution of traffic arrivals (in
Kbytes) within one MTRT. Fig. 3.4 shows the distribution of traffic arrivals within one
MPEG channel.
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Figure 3.4: An example distribution of MPEG frame arrivals
The performance requirement can then be expressed as
74 74
Y on=Np.: (1) 1
2Ll - —ogmee——~ =1~ =P(n), (3.25)
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since if N, is sufliciently large, each point to the right of the corresponding dotted line
in Fig. 3.4 will result in loss of at most one frame. By adding 0.5 packet time per frame as

the operation overhead, we get:
o 7 = 99%: Npar = 60.
o Z=95%: N, =49.

o Z =90%: Ny, = 41.

Then we apply the algorithm proposed in Section 3.3 to derive the modified distribution
according to the given frame rate. Fig. 3.5 shows the modified distribution of the “expected”
traflic arrivals of one (90%) MPLEG channel, i.e., 10% miss rate under the MDD scheduling

policy. The performance requirement can then be expressed as:

SonNmee (1) _ LA
Z<1=- AT 1 - nz%:m 5P(n), (3.26)
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Figure 3.5: An example distribution of modified MPEG frame arrivals

Again, il N4 is sufliciently large, each point to the right of the dotted line with label 90%
in Fig. 3.5 will result in loss of at mosi one frame. By adding 0.5 packet time per frame as

the operation overhead, we get:
Z = 90%, (i.c.,P = 0.1): N,,,e = 42.

The subsequent link capacity to be reserved for new channels is also based on this modified
distribution of traflic arrivals when the MDD scheduling policy is used. Using the same
method, we can also sbtain new modified distributions of frame arrivals for 95% and 99%
channels. However, since the miss rate is small in these two cases, N, does not change
for both 95% and 99% channels. Therefore, without channel multiplexing, the network is
expected to support twenty-one 99% MPEG channels, twenty-six 95% MPEG channels, or
thirty 90% MPLEG channels, according to Eq. (2.5). As we shall sce later, the node-based
multiplexing scheme reduces significantly the total link capacity that needs to be reserved,

and our simulation results confirm its eflectiveness,
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3.4.2 Simulation Results

The goal of our simulation is to demonstrate the effectiveness of the channel-multiplexing
strategy and the MDD scheduling algorithm and show that the integrated scheme can
provide performance gnarantees even in the presence of frame-dependency.

By using the node-based scheme in Section 3.2 and the modification algorithm proposed
in Section 3.3, the additional link capacity for a new MPEG channel can be determined based
on the number of already-established real-time channels, I'ig. 3.6 shows the normnalized link
capacity needed to add a new (node-based) channel with respect to the average traffic arrival

rate of the channel.
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Figure 3.6: Normalized link capacity needed for adding a new channel with respect
to the average traflic rate per channel

In Fig. 3.6, the horizontal lines “99% channel based”, “95% channel based” and “90%
channel based” correspond to the link capacity nceded for a new 99%, 95% and 90% channel,
respectively, if the channcl-based scheme is used. The channel-based scheme requires a con-

stant link capacity for adding a new channel regardless of the number of already-established
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channels on that node, i.e,, it represents the amount of reserved capacity necded to guar-
antee the performance if no multiplexing occurs. By contrast, in the channel-multiplexing
scheme, although the first (node-based) channel still requires to reserve the same link capac-
ity, it requires much less to add a new channel when there is already at least ane established
channel.

The capacity nceded for adding a new 90% channel rapidly converges to the dotted line
“y = 0.9” representing the average real-time traffic which needs to be delivered timely to
achieve the required 90% frame reconstruction rate. That is, approximately 90% of the
packets of a channel has to be delivered by their deadlines. Thus, the system only needs to
reserve the link capacity according to about 90% of the average real-time traffic rate of a
new channel when there are sufliciently many channels originating from a node (about 5 in
this example). In this case, only 73% capacity of a 90% channel-based channel is needed.
Thus, the network is expected to support about forty 90% channels, as compared to 30
without channel multiplexing.

The 95% (and 99%) line also demonstrates the same trend as the 90% line, i.c., converges
to a constant which is close to 95% (and 99%) of the average real-time traffic arrival rate
of a channel, Note that the line “y = 1” can be considered as the line “y = 0.99” here. As
the required delivery rate increases, channel multiplexing becomes more effective. For 95%
channels, 95% of average arrival traffic corresponds to only 67% of the capacity reserved for
a 95% channecl-based channel, For 89% channels, only 58% capacity of a 99% channel-based
channel is needed. Thus, the network is expected to suppert about thirty-four 99% and
thirty-seven 95% channels, as compared to 21 and 26 without channel multiplexing, There-
fore, the network utilization and real-time channel admissibility are improved significantly
with channel multiplexing. In other words, if there are sufliciently many channcls originat-
ing from a node, we can provide performance guarantees for statistical real-time channels
by reserving the link capacity based on the average case rather than the worst case.

After the additional capacity for a new channel is determined, we can then demon-
strate the effectiveness of the proposed MDD scheduling algorithm. We use the frame-
reconstruction miss rate in IMigs. 3.7-3.10 of real-time channels to show that MDD is of-
fective and works correctly. Note that the frame-reconstruction miss rate is defined as the
percentage of frames which can not be reconstructed by their deadlines at the receiver node.

We will first present the simulation results for channels with a short lifetime (3 minutcs

to 1 hour). Although the statistical guarantees are defined based on the assumption of
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infinitely long arrival data streams, as can be secn later, most (more than 99%) of channels
with a short lifetime can still provide the required performance. Note that we use 99-
percentile instead of the maximum miss rate in the short-lifetime channel experiments,
since the maximum is too sensitive to a single random sample and does not reflect the real
distribution of the data. However, we will use the maximum miss rate in the long-lifetime
simulations to show our scheme can provide the promised performance guarantees.

Figs. 3.7-3.9 show the frame-reconstruction miss rates among all established channels
under both the MDD scheduling and the normal EDD scheduling with the proposed channel
multiplexing scheme, i.e., the link-bandwidth reservation is made based on the data in
Yig. 3.6. Each unit of lifetime represents 5374 frames, i.e., about 3 minutes. The “20”
represents all channels with lifetime 20 or more. Each line in these three figures represents
a certain percentile (or average) among all samples with the same lifetime. For example,
in Fig. 3.7, the line “MDD:90%” shows the 90-percentile frame-reconstruction miss rate
of all 99% real-time channels with the same lifetime under MDD scheduling, and the line
“EDD:average” in Fig. 3.8 shows the average frame-reconstruction miss rate of all 95%
real-time channecls with the same lifetime under the normal EDD scheduling.

The MDD scheduling performs significantly better than the normal EDD in terms
of frame-reconstruction rate. As can be seen in Figs. 3.7-3.9, the 99-percentile frame-
reconstruction miss lines of MDD scheduling are all below the corresponding required miss
rate lines, and ihus, can provide the required performance guarantees.

The performance of EDD is sensitive to the performance requirement, For 99% channels
(Fig. 3.7), although DD scheduling is still outperformed by the MDD scheduling, the 99-
percentile miss rate line is below the 1% miss rate line, i.e., at least 99% of channels can meect
the performance requirements. However, the 99-percentile miss rate line of 95% channels
(Fig. 3.8), lies around “y = 0.05” and the 99-percentile miss rate line of 90% channels
(Fig. 3.9) lies around “y = 0.13". In fact, even the average miss rate line of EDD lies
above “y = 0.1”7 in Fig. 3.9. Thus, EDD scheduling is not appropriate for the short lifetime
streams of non-independent frames.

The capability of providing performance guarantees can be shown in the long lifetime
channel simulations. Fig. 3.10 shows the frame-reconstruction miss rate for multiplexing
long lifetime channels. As can be seen from the figure, MDD (with the node-based scheme)
works very well, i.c., the maximum f{rame-reconstruction miss rate among all channels is

always kept under the corresponding required upper bound before the network is saturated.
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Figure 3.7: Frame-reconstruction miss rate for multiplexing 99% channels (short life-
time)

Each point in these figures represents the transmission of about 24,000,000 frames per
channel or 222 hours at the rate of 30 frames per second. From Fig, 3.10, the network with
MDD (and the node-based scheme) can provide performance guarantees for up to thirty-
four 99% channels, thirty-seven 95% channels, or forty 90% channels, as expected from the
capacity reservation schemes proposed in Section 3.2 and 3.3. In Fig. 3.10, the frame-miss
rate starts high for the first channel and drops to the lowest point when there are about
five 95% or 90% channels, then rises very slowly until the network is saturated. This trend
can be explained by the reserved link capacity for adding a new channel. Tor the first 5
channels, we reserve more than the average need for each channel, so the frame-miss rate
keeps dropping. After that, the capacity we reserve for 2 new channel is approximately
equal to the average need of each channecl. Thus, the (approximately) same amount of the
reserved-but-unused capacity is shared by more and more channels so that the frame-miss
rate rises slowly. The miss rate of 99% channel is actually dropping until the network is

saturated, because the system always reserves more than the average traflic of a channel.
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Figure 3.8: Frame-reconstruction miss rate for multiplexing 95% channels (short life-
time)

Although the network capacity can only support thirty-four 99% channels, thirty-seven 95%
channels, or forty 90% channels by considering the link capacity that needs to be reserved,
we still simulate the cases with more channels than the network can support. In these
cases, the entire network capacity is reserved and fairly distributed to cach channel. By
doing this, in Iig. 3.10, we may find that the 35th and the 36th 99% channels, and the
38th 95% channel may be added and the system can still provide the required performance
guarantees. However, these cases are in the region where the network is saturated and the
frame-reconstruction miss rate rises sharply due to the insufficient capacity, i.c., the system
might not always be able to provide the performance guarantees in these cases,

In addition to the frame reconstruction rate, the distribution of miss frames is also an im-
portant measure of picture quality. For example, under the same frame-reconstruction rate,
consecutive-frame losses usually lead to worse picture quality than uniformly distributed
frame losses. Fig. 3.11 shows the distribution of frames which can not be reconstructed by

their deadlines. The horizontal axis denotes the length of consecutive miss frames, and the
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Figure 3.9: Irame-reconstruction miss rate for multiplexing 90% channels (short life-
time)

“10” on the horizontal axis represents all miss streaks of length 10 or more. The vertical
axis shows the percentage of frames falling in a certain length of miss streak among all
missed frames. As can be seen from the figure, most (more than 90%) of lost frames under
MDD are “1-misses” {miss streak of length one), and there are virtually no “6-misses”. At
the picture rate of 30 frames per second, these 1-misses are usually invisible by human cyes.
By contrast, less than 50% of missed frames are 1-misses under the normal EDD. Due to the
loss of I-frames, more than 50% are 8-misses. Since losing 8 (or more) consecutive frames
implies more than 0.25 seconds of picture loss, these 8-misses will lead to visible jitters.
From the distribution of missed frames, the performance of MDD is much better than that
of EDD.

The simulation results show that the proposed channel-multiplexing strategy can signif-
icantly improve the network utilization (shown in Fig. 3.6). In addition, it also shows that
the normal EDD is not able to handle video streams with frame inter-dependency and the

proposed MDD scheduling algorithm with the node-based scheme can provide the promised
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performance guarantees and betier distribution of missed frames.

3.5 Conclusion

We presented a node-based channel-multiplexing strategy and a scheduling algorithm
(MDD) which can provide performance guarantees for real-time channels with non-independent
frames. With the given traflic-generation characteristics and performance requirements, the
node-based channel-multiplexing strategy can (i) reduce the link capacity that needs to be
reserved and (ii) preserve the ability of independent addition and deletion of real-time
channels, which is of practical importance.

By integrating with the MDD algorithm, the node-based scheme is applicable to appli-
cations which generate real-time streams with non-independent frames, such as compressed
video applications. Simulation results show that the combination of MDD and the node-
based scheme is very effective in reducing the link capacity that needs to be reserved to
the level of average real-time traffic from the original worst-case level of traflic even in the

presence of frame-dependency. This reduction is practically important since the capacity
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reserved in the worst case is often significantly larger than that in an average case,



CHAPTER 4

A DISTRIBUTED ROUTE-SELECTION SCHEME FOR
ESTABLISHING REAL-TIME CHANNELS

4.1 Introduction

In Chapters 2 and 3, we proposed schemes which can provide real-time communica-
tion services with performance guarantees on a multiaccess network. Ilowever, in order
to support real-time communication between nodes which are not connected directly via a
multiaccess network, in this chapter, we will address the route-selection problem for multi-
hop real-time channels which can be used to expand the multiaccess network solutions to
wide-area point-to-point networks and /or multiple interconnected multiaccess networks.

The concept of real-time channels proposed by Ferrari and Verma {18} is used to pro-
vide real-time communication with performance guarantces for point-to-point networks,
although we adopt the same terminology for our schemes in the multiaccess network cn-
vironment. Generally, two distinct phases are required to realize the concept of real-time
channel: off-line channel establishment and run-time message scheduling. The channcl-
establishment phase is of prime importance to the realization of a real-time channel, and
during this phase, the system must select a route between the source and destination of the
channel along which sufficient resources can be reserved to meet the user-specified delay and
buffer requirements. Although several channel-cstablishment schemes have been propased
in the literature [12-14,18,22,23,38], very few of them have explicitly addressed the issuc
of selecting a route between the source and destination of a channel, despite its importance
to the channel-establishment phase.

Since the number of possible routes between two communicating peers could be large,
selecting a raute for cach real-time channel is potentially a time-consuming task. It is there-

fore very important to develop an efficient scheme that is guaranteed to select a “qualified”

a7



88

route, if any, for cach requested real-time channel. If the worst-case anticipated traflic over
a real-time channel is given (typically in terms of the minimum message inter-arrival time
and the maximum message size), a “qualified” route for this real-time channel is defined 1o
be a route which can meet the user-specified end-to-end delay requirement without compro-
mising any of the existing guarantees, The service provider (the network operating system
in our case) must also be able to reject a channel-establishment request as soon as possible
if no qualified routes are available for the requested channel.

There are basically two approaches to the route-sclection problem: centralized or dis-
tributed. Most existing channel-establishment schemes are based on the centralized ap-
proach [12,13,22,23,38]. They simply assume the existence of a global network manager
which maintains information about all cstablished real-time channels, the topology and
resource distribution and commitment of the network, and can thus select an appropri-
ate route for cach real-time channel requested. In such a centralized scheme, all real-
time channel-establishment requests require the network manager’s approval. That is, cach
channel-establishment request is sent, along with its traffic-generation characteristics and
user-specified performance requirements, to the network manager, which then selects a
qualified route and reserves resources along the sclected route, The network manager also
informs all intermediate nodes on this route of the establishment of the new channel and
the information necessary for run-time scheduling of the messages of this channel. Although
with the centralized approach one can devise eflicient algorithms for the network manager to
select qualified routes, there are two serious problems with this approach. First, the network
manager is likely to be a performance bottleneck, since it must handle all channel establish-
ment and disconnection requests. Second, the system is susceptible to single-point failures
of the network manager, since without the network manager no new real-time channel can
be established.

In contrast with the centralized approach, the distributed route-selection approach can
avoid performance and reliability bottlenecks. However, it generally suflers the following
inefficiency problem. Since there could be many possible routes between two communicating
peers, it may be too time-consuming to search every possible route and perform an admission
test on each route during the channel-cstablishment phase. On the other hand, if we only
test a small number of routes, we may not find a qualified route even if there exists one.
That is, the distributed approach may reject a channel-establishment request even when it

would have been accepted if more routes had been checked.
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To choose a qualified route for a new real-time channel, we have to perform an admission
test on cach route to check if there are sufficient resources along the route to meet the user-
specified end-to-end delay requirement for this channel. (Although there may be other
performance requirements to be met, for clarity of presentation we will focus on meeting
the user-specified end-to-end delay requirement.)

Since there could be a large number of routes between two communicating peers, choos-
ing a qualified route among all possible routes between the source and destination of cach
requested channel may not be an ecasy task. There are two simple-minded approaches to

the distributed route-selection problem:
1. Sequential scarch of all possible routes one by one, or & routes at a time.

2. Parallel search of all possible routes, i.e., sending multiple copies of an establishment-
request message through all possible routes, making “conditional” resource reservation

and performing admission tests on all of them.

The sccond approach is practically infeasible due to its excessive operational overhead. The
first approach, on the other hand, could be potentially time-consuming for the complete
search of all possible routes, and its operational overhead is proportional to K.

To guarantee the discovery of a qualified route, if any, we have to search all possible
routes between the source and destination of a channel to be established, while kecping
the operational overhead low enough to make the scheme practically feasible. In the next
section, we will propose a scheme that satisfies the above requirement for a single estab-
lishment request at a time. The scheme also works well for multiple simultaneous requests
if the existing real-time traflic load is reasonably low. Basically, each node in the network
maintains certain information of the real-time traffic going through it and exchanges the
information with its neighbors, so that the Bellman-Ford shortest path algorithm can be
used to guarantee a qualified route can be found, if any. Although the proposed scheme
starts with searching all possible routes at the same time, it prunes infeasible routes quickly.
Under the assumption that messages travel faster through lightly-loaded link, its worst-case
operational overhead is only a linear function of F, the number of links in the network.

The chapter is organized as follows. QOur proposed solution to this problem and its
overhead analysis are presented in Section 4.2, In Section 4.3, we demonstrate via examples

the cffectiveness of the proposed solution. The chapter concludes with Section 4.4,
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4.2 The Proposed Solution Approach

We first describe the environment and the assumption under which our distributed
route-selection scheme will be developed. The underlying network is an arbitrary point-io-
point network. Asin [7,15,23,24,44], the generation of real-time messages is assumed to be
governed by the lincar-bounded model that is characterized by three parameters: maximum
message size 8,4 (bytes), maximum message rate R,,,, (messages/second), and maximum
burst size B, (mmessages). In the linear bounded model, there are two restrictions on each

arrival:

¢ The number of messages generated in any time interval of length { does not exceed

Bmar + tRmc::-
» The length of each message does not exceed S,,,-.

Based on this message arrival model, the authors of [23,24] proposed a scheme to compute
the worst-case delay on cach link and a run-time scheduling algorithm for real-time messages.
By adding the worst-case delays of all links that a channel runs through, one can caleulate
the worst-case end-to-end delivery delay. This end-to-cnd delay is then compared against
the user-specified end-to-end delay bound for the requested channe]l and the sysiem can
decide whether to accept/reject the corresponding real-time channel-establishment request.
Note that these schemes have been developed under the assumption that a proper route
for the requested channel was already available. Using the delay-estimation method in
[23,24] and a Bellman-Ford-like algorithm, we will in this chapter develop a scheme Lo find

a qualified route for each channel-establishment request.

4.2,1 Link-Delay Estimation

Since real-time messages are given priority over non-real-time ones, we will ignore the
effects of non-real-time traflic in the rest of this chapter unless stated otherwise. We will
thus assess the delay of a link based only on the underlying real-time traffic. Since the
algorithm in [23,24] will be used to compute link delays, we will briefly introduce this
algorithm first.

The goal of the algorithm in [23,24] is to compute the minimum worst-case delay on
a link for a new real-time channel to be added without compromising the performance
guarantee of any of the existing channels on the link. Let {M; = (Ci,pi, d;),i = 1,...,k}

be the set of Kk existing channels on a link, where C; is the maximum time required to
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transmit a message of channel M; on the link, p; = I}, = ﬁ::f is the minimum message
inter-arrival time in M;, and d; is the maximum delay assigned to M; on this link, or link
(delay) deadline. Note that the inequality d; < p; must hold for the algorithm in {23,24]
to work correctly. Given a new channel M;4; = (Cry1,P141) to be established, the authors
of [23,24] proposed an algorithm for computing the minimum worst-case response time
(MWRT), 7441, on a link of channel Mg,,’s route without compromising the performance
guarantees of other existing channels. The algerithm statically assigns priority to cach real-
time channel to calculate the MWRT for this new channel, but uses an Earliest-Due-Date
(EDD) algorithm for run-time scheduling. The algorithm can compute the MWRT for a
new channel through link £ based on the traflic-gencration characteristics (C' and p) of the
channel, when C' (maximum service time for a message), p (minimum message inter-arrival
time) and d (maximum permissible delay over link £) are available for all existing channels.

The method in [23,24] has not included those channels pending for final confirmation
in the calculation of MWRT for the new channel-establishment request, but we will include
them in our calculation of MWRT as if they had already been established. This can simplifly
the channel-establishment phase, since the MWRT remains valid when the confirmation
message travels back from the destination to the source. Otherwise, the MWRT for a
new channel may change due to the confirmation of other pending channels which share
one or more links with this channel, and thus, we have to check this possibility at every
intermediate node the confirmation message visits en route to the source node. On the other
hand, inclusion of these pending channels in the link-delay estimation will sometimes make
MWRT larger than what it actually would be if some of them are rejected or choose not
to use this link later. This over-estimation of MWRT may result in incorrect rejections of
channel-establishment requests. Fortunately, the over-estimation problem occurs only when
two requests are initiated at about the same time. The incorrect rejection decisions due
to the over-estimation of MWRT will be made only when there is a very high percentage
of real-time traffic so that the over-estimation of MWRT may make the end-to-end delay
larger than the latency required by the application. Since a good system design should
also anticipate the existence of a substantial percentage of non-real-time traflic, the over-
estimation problem is usually not serious. In order to avoid any possible confusion, “existing
channels” will hencelorth mean both established and pending channels in Chapter 4 and 5.

Note that different real-time channels have different traffic-generation patterns, and

hence, cach of them is associated with a different MWRT, i.e., different channels may have
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different MWRTs over the same link. Determination of each channel’s MWRT on a link
will be referred to as link-delay estimation. In Scction 4.3, we will present an example

{Example 4.2) which includes the illustration of the link-delay estimation procedure.

4.2.2 The Route-Selection Algorithm

Based on the above definition of link delay, we can apply the Bellman-Ford algorithm
[9,46] to solve the route-selection problem. Note that the proposed algorithm is not cxactly
like the original Bellman-Ford shortest path algorithm in terms of the number of routes
that are explored. Under the original Bellman-Ford algorithm, only the one which has the
shortest delay is explored at any time. However, under our algorithm, we explore all routes
which are possible to be the shortest path at the same time.

Since the information of existing channels is necessary for the calculation of a new
channel’'s MWRT as well as for the run-time scheduling of messages belonging 1o those
channels already cstablished, each node has to maintain two sets of tables for existing
channels, The first set is the tables of established channels (TECs), one for each of its
outgoing links. Each entry of a TEC represents a real-time channel which goes through the

corresponding link and consists of the following four data fields.

¢ Channel identifier (ID) which uniquely identifies the corresponding real-time channel.
In order for a source node to generate unique channel IDs, each ID consists of two
parts. The first part is the source ID (or address), and the second part is a channel
number (unique within the source). This composition of channel IDs ensures their

uniqueness throughout the network.
o The maximum service time of a message {C) of this channel.
¢ The minimum message inter-arrival time (p) of this channel.
e The maximum permissible delay on this link {d) for this channel.

To be consistent with the way channel priorities are assigned for the link-delay estimation
[23,24), these entries are placed in ascending order of d values, i.c., the highest priority is
given to the channel with the least permissible delay on this link. Note that this priority
assignment is used only for calculating MWRT; a multi-class EDD algorithm is used for the
run-time scheduling of message transmissions. (The optimality of EDD in meeting deadlines

legitimates the off-line calculation of MWRT with fixed-priority scheduling followed by the
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on-line EDD scheduling of message transmissions.)

The second set of tables each node has to maintain are “temporary” tables for pending
channel-establishment requests, also one for each of its outgoing links. These tables will
be referred to as “tables of pending requests” {(TPRs). Each entry of a TPR represents a
channel-establishment request (or a pending channel) and consists of six fields. The first

three fields are the same as those of a TEC and the remaining three fields are:
o d°: the accumulated delay from the source to the current node,
e timeout: the expiration time of this request message,
o : MWRT of the corresponding cutgoing link.

For a real-time channel-establishment request, the first five fields are the same for all out-
going links of a node, and thus, can be shared among all TPRs for the node’s different
outgoing links, i.c., one may easily use only one table to store the combined information of
all TPRs, However, for convenience of presentation, we will assume that each TPR (one
per outgoing link) contains all of these data fields.

When the source wishes 1o establish a real-time channel to another node, it will use the
link-delay estimation method described earlier to compute the channel’s MWRT on each of
its outgoing links. After computing all MWRTSs, the source will send a real-time channel
request message (Req) via each outgoing link, which contains a channel identifier (7D),
the destination address (destination), the maximum message size of this channel (5,,4:),
the minimum message inter-arrival time (p), the end-to-end delay bound D, the expiration
time (timeout) of this request, the path (path) and the total number of hops (hops) this
message has traveled thus far, and the corresponding accumulated delay d°. Initially, the
d® field is set to the MWRT of the corresponding link, path is set to the source and hops
is set to 1. Note that although we include hops in the request message for convenience of
presentation, it can be omitted in a real implementation because the information carried in
hops can be derived from path. Copies of this channel-establishment message will be put
into the queues of all of its cutgoing links at the same time,! cach with priority lower than
all existing channcls but higher than non-real-time traffic. This new establishment request

will also be inserted into the source node’s TPRis.

'Onc can build hardware to do this [17]). If such hardware is not available then the copics will be put in
the queues sequentially, one at a time.
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Procedure rcu.req

If (lleq.timeout < current_time) then discard_req;
else if (Req.ID € TEC) then discard_req;

else if (Req.destination = A) then reply_reg;

else if (Req.ID € TPR) then {
if (Req.d® > TPR(Req.I1D).d*) then discard_reg;
else {
TPR(Req.ID).d* := Req.d?;
forward_regq;

}

}

else { ;;;(Req.ID notinTPR)
r := compute MW RT,;
if (Req.d® + 7 < Req.D) then { insert_req(r); forward.req;}
else discard_reg;

Figure 4.1: Procedure of processing a channel-establishment request

Fig. 4.1 outlines the procedure an intermediate node A will execute when a real-time
channel-establishment reguest is received. Procedure rcv_req checks the received request
message to determine whether the message should be discarded or processed further. The
first two if statements check whether the request has expired (timeout < current_time) or
the request is in any of TECs, i.e., a qualified route for the channel has already been found.
If either of these is true, the request message will be discarded. Procedure reply_req will
then be called if node A is the destination of the channel,

The fourth if clause is for the requests already in TPRs. The request will be discarded
if the accumulated delay (d?) of the received message is not smaller than the corresponding
one in TPRs which represents the minimum accumulated delay from the source known to
node A thus far. If the d* value of the received message is smaller, node A will update its
TPRs to reflect the fact that a better route has been found and the received request wiil
be forwarded to the next node by procedure forward_req.

Finally, we conclude that the request is new 1o node A. Thus, the request message

will be appropriately stored and forwarded (with procedure insert_req and forward.req)
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Procedure insert_reg(r)
TPR.ID := Req.ID;
TPR(Req.ID).C:= Req.Spnac/link _speed;
TPR(Req.ID).p:= Req.p;
TPR(Req.ID).d* := Req.d®;
TPR(Req.ID).timeout = Reg.timeout;
TPR(Req.ID).r:=r;

Procedure forward_req
Req.d® := TPR(Req.ID).d* + TPR(Req.ID).r;
Req.hops ;= Req.hops + 1;
i3 concatenate A and Reg.path.
Req.path := A - Req.path;
;;; all other fields remain the same,
forward this request message to all neighbors except B.

Figure 4.2: Procedures of inserting and forwarding a request

if the sum of the accumulated delay and the MWRT of the corresponding next link is less
than D. Otherwise, the path this request message has traveled so far cannot possibly be
a qualified one, so it will be discarded. Consequently, a request message will be forwarded
by an intermediate node only if it carries a smaller accumulated worst-case respense time
(Reg.d®) before its expiration time.

Fig. 4.2 shows the procedures for inserting a new channel-establishment request and
forwarding a request. As can be seen from these procedures, most of the fields are directly
copied from the requesting messages to TPR and the forwarding messages. Note that the
request message is assumed to come from the immediate upstrecam node B.

Each destination node has to keep a temporary list of already-processed requests (LPRs)
in order to avoid reporting the request to applications more than once. Each entry of this
list consists of iwo fields, request 7D and timeout which tells when to discard the request.
Fig. 4.3 shows the operations a destination node will perform after receiving a channel-
establishment request. From Procedure reply.req, one can see that if the system decides to
accept the channel-cstablishment request, the (qualified) path carried by the request that
arrived first will be selected as the route for the real-time channel.

Since the d° field of a channel-establishment request represents the sum of MWRT's of all

links on the path from the source to destination, the user-specified end-to-end delay bound



66

Procedure reply_req
If (Req.ID € LPR) then discard_reg;

else { ;j;(insert a new entry to LPR)
LPRID = Req.ID;
LPR(Req.ID).limeout := Req.timeout;
If (the application nccepts the request) then send.reply(accept);
else send_reply(reject);

Figure 4.3: Procedure of processing a channel-establishment request at the destination

D may be larger than d9, i.c., we are allowed to spend more time than the corresponding
MWRTSs when sending a message across each intermediate link. In such a case D — d° will
be divided evenly into hops parts at the destination and distributed to all links along the
path [23,24]. The permissible delay of a real-time message of this particular channel over
an intermediate link — simply called the link (delay) deadline — is the channel’s MWRT
of that link plus (D — d®)/haeps. Since this sum is stored in the table of existing channels (d
field in TEC}) and used for run-time scheduling, (1) — d°®)/hops is included in the channel-
establishment confirmation message {by procedure send_reply(accept)) from the destination
to the source via the same path the corresponding request message had traveled (but in
the opposite direction). Let Reply denote a channel-establishment confirmation message
which consists of four fields: I D, flag (accept or reject), dif f (= (D — d®}/hops) and path
(the remaining path back to the source node). Fig. 4.4 shows how a positive confirmation
message is constructed (send._reply(accept)), and the operations the intermediate nodes will
perform when receiving a (positive or negative) reply message ( forward_reply). Note that
head(list) represents the first element of list, and tail{list) represents the remaining list
after head(list) is removed from list.

The operations necessary to keep these route-selection tables (mainly TECs) up-to-date
during the channel-disconnect phase are very simple. We require one of the two commu-
nicating peers to send a disconnect message through the roule of the real-time channel
to the other communicating peer. In this disconnect message, only the channel /D nceds
to be included, All the intermediate nodes will delete the corresponding cntries in their
TECs upon receiving the disconnection message. Thus, we do not consider the load of this

real-time channel in all subsequent MWRT estimations.
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Procedure send_reply(accept)
Reply. D := Req.ID;
Reply.dif f := (Req.D — Req.d®)/ Req.hops;
Reply.flag:= 1
Reply.path := tail(Req.path);

Procedure forward_reply

If (Reply. flag = 0) then TPR(Reply.ID).d* = 0;

else {
173 move the channel from TPR to TEC
copy the ID, C and p fields from TPR to TEC.
TEC{Reply.ID).d:= Reply.dif [+ TPR(Reply.ID).r;
delete the corresponding entries in all TPRs of node A.

}
next := head( Reply.path);
Reply.path := tail{ Reply.path);

forward this reply message to the next upstream node nezt.
Figure 4.4: Procedure of handling reply messages

4.2.3 Performance and Overhead Analysis

The first goodness measure we are interested in is the “completeness” of the proposed
scheme, i.e., whether the scheme is capable of finding a qualified route, if any. Tor a
single request, the Bellman-Ford (shortest-delay path) [9,46] algorithm can ensure the least
MWRT path to be found, although other larger-delay routes may be found first when the
request messages happen to travel faster via these routes than via the least MWRT path. As
mentioned before, our algorithm is not exactly like the original Bellman-Ford shortest path
algorithm in terms of the number of routes that are explored. Under the original Bellman-
Ford algorithm, only the one which has the shortest delay is explored at any time. Ifowever,
under our algorithm, we explore all routes which are possible to be the shortest path at
the same time. Thus, if the least MWRT path is not “qualified” for the requested channel,
then there is no qualified route available for the channel. Since the least MWRT path
can always be found with the Bellman-Ford algorithm, the proposed scheme is complete
for the single-request case. However, due to the over-estimation of MWRTs when there

are multiple simultancous requests, the proposed scheme may not be complete, especially
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when the network has a high percentage of real-time traffic so that the over-estimation
of MWRTs will make the end-to-end MWRT delay larger than the user-specified end-to-
end delay bound. (As we discussed in the delay-estimation procedure, the over-estimation
problem is usually nrt serious in practice. In the next section, we will provide an example
to illustrate an over-estimation situation.}

Another performance measure is the time needed to establish a channel. For a single
request, the worst-case time necded to accept an establishment request is the time for the
request message to travel from the source to destination then back to the source node via
the least MWRT path. This is a round-trip delay between the scurce and destination via
the least MWRT path. In general, if a qualified path can be found (may not necessarily
be the least MWRT path), the time to complete the corresponding channel-establishment
request is the time for the request message to travel from the source to destination then
back to the source via the qualified route found first,

The primary overhead incurred in the proposed channel-establishment procedure is the
number of times (copies) a request message has to be transmitted for cach channel estab-
lishment request. Note that “one time (copy)” is defined as “sending a message across
one link”, ¢.g., 2 message is said to be transmitted n times if the message is sent across n
hops. For more accurate estimation, the request message is assumed to travel faster through
a lightly-loaded link (while considering only real-time traffic), This assumption generally
holds as the priority of the request message is lower than real-time traffic but higher than
non-real-time traflic. Under this assumption, we may find that each node will send a re-
quest message to its neighbors only once, since the request message will be forwarded oaly
when the conditional statement (Req.d® > TPR(Req.ID).d°) in Tig. 4.1 is false. A node
will likely receive the copy of a request message which travels through the route with the
smallest value of Req.d® first, and thus, all subsequent copies of the same request message
will be discarded. Under this assumption, a request message will therefore be transmitted
at most 2/ times in the worst case, i.e., cach node sends a copy of the request message to
all its neighbors once, where K is the number of links in the network.

The conditional statement (Req.d® + r < Req.D) in Fig. 4.1 is used to stop the unncc-
essary propagation of a request to a region where no qualified routes exist. Since a request
will be inserted in TPR and forwarded through an outgoing link only when the sum of
Req.d® and the MWRT over the outgoing link is smaller than D (=Req.D), the request

message will not propagate too far, i.c., the nodes whose distance from the source (in terms
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of the worst-case delivery delay for this new channel) is greater than D will not receive the
request message. Although this fact may not improve the worst-case overhead, for most of
the time it makes a significant reduction of overhead.

We may also put a restriction on hops to reduce the overhead; we may stop forwarding
a request if the number of hops the message has traveled so far is more than a pre-defined
limit. Nodes which are too far (in terms of hop count) from the source N will not reccive the
requests sent by N. If the pre-defined limit can be chosen appropriately, this method may
significantly improve both the worst-case overhead and the actual performance. Ilowever,
since this method also reduces the chance of finding a qualified route, it is not included in

the proposed solution and only mentioned as a possible way to reduce the overhead.

4.3 Examples

In this section, we will present several examples to illustrate the operations and utility

of the proposed route-selection scheme under various conditions.

Example 4.1: Fig. 4.5 shows a small network with five nodes. Each link is labeled with
a number representing its transmission bandwidth in million bits per second (Mbps); for
example, the link between N1 and N2 is a 100 Mbps full-duplex link. We will illustrate
all the operations in the network for establishing the first channel with 5,,.. = 50K bytes
(maximum message size), p = 50 ms (minimum inter-arrival time), and D = 100 ms (end-
to-cnd delay bound). The source of this channel is N1 and its destination is N5. We thus
assign 1:1 as the channel’s ID. The first “1” represents the source node, and the second
“1” represents a number which is unique to the source node N1. Since no real-time channel
exists at this time, all TECs, TPRs, and LPRs are empty.

Upon reception of a channel-establishment request, the maximum service time (C) for
the messages of this channel can be computed by dividing the maximum message size by
the link bandwidth. € = 0.5ms for link 1 — 2 and C = 1 ms for link 1 — 3. Since there is
no other real-time channel, the MWRT on a link equals its C value. N1 stores this request
in its TPR:1 — 2 and TPR:1 — 3. In Fig. 4.5, we omit C and p fields because C = r and
p are the same in all TPRs. T'tmeout is also omitted for clarity of presentation.

N1 sends two request messages (Reql and Req2) to N2 and N3, respectively. Although

there are 9 fields in a request message, only 11, destination, hops, path and d*(ms) (in this
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Reqs(1:1,N5,3,NANZN1,2.5)

—
F=4al

-y
Roply1{1:1,32.5,1,N2N1)

TPR 1-»2 TPA 2-24 TPA 4-»5 TEC 4->5 LPRS
ID da r D da ¢ ID da r D CcCpd D
1.1 0 05 1105 1 1115 1 111 1 50335 1:1
TPR 1-»3 TPR 3->4 TPR 4-»3 TEC2-»4
D da r ID da r D da r D Cpd
LH I R | 11 1 25 11 1525 111 1 50335

TPR 3-»5 TEC 1-»2

D da r D Cpd

11 5 1 1 60 33

Figure 4.5: Example 4.1: a simple five-node network.

order) are shown in Fig. 4.5, since other fields are the same for all request messages. For
example, Req1(1:1,N5,1,N1,0.5) represents I D =1:1, destination =N5, hops = 1, path =N1
and d* = 0.5 ms.

After N2 and N3 receive Reql and Req2, respectively, these messages will be stored
and the C field for link 2 — 4, link 3 — 4 and link 3 — 5 will be computed. Since there
is no other channel, each C is equal to the MWRT on the corresponding link. Thus, the
entries for this message in TPR:2 — 4, TPR:3 — 4 and TPR:3 — 5 can be inserted and the
corresponding request messages can also be sent. As can be scen in Fig. 4.5, path “grows”
to N2N1, Aops increments by 1 and d* becomes 1.5 in Req3, which is sent to N4 by N2.
Req4 (N3 — N4) and Req6 (N3 — NS5) can also bhe generated in the same manner.

Due to the randomness of network traffic, it is not certain whether Req3 or Regd will
arrive at N4 first. However, since the path NIN2N4 has a smaller MWRT and channel-
establishment requests are given priority over non-real-time traffic, Req3 will very likely

arrive at N4 first. So, in Fig. 4.5, we assume Req3 arrives at N4 before Req4. N4 will thus
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process the request based on Req3d and the entries in TPR:4 — 5 and TPR:4 — 3 can be
obtained (as shown in Fig. 4.5) and the corresponding request messages (Req5 and Req7)
can be sent.

When Req4 arrives at N4, the d* carried in Reg4 will be compared with the d* value
stored in N4’s TPRs. Since the d* (=3.5} carried by Req4 is greater than that (=1.5) of
N4's TPRs, Reqd will be discarded.

At N5, a similar situation will occur. We assume that Req5 will arrive at N5 before
Req6, because Req5 travels through a path of a smaller MWRT, (We would like to stress,
however, that Req6 may possibly arrive at N5 before Req5.) Since N5 is the destination
of the requested channel and the ID carried by Reqb is not in N5’s LPR, the channel’s
ID will be inserted into N5’s LPR and a confirmation/reject message is sent back via the
path carried in the request message (NAN2N1). If the reply is a confirmation, we need to
compute di f f = (100 — 2.5)/3 = 32.5. In Fig. 4.5, Replyl shows a confirmation sent to N4
by N5 with ID =1:1, flag =1, diff = 32.5 and path =N2N1,

After receiving Replyl, N4 inserts an entry with ID =1:1, C = 1 ms, p = 50 ms, and
d = 33.5 (=32.5+1) into TEC:4 — 5. Then all the corresponding entries (with JD =1:1)
in N4’s TPRs are deleted and Reply2 (with path = tail(path)) is sent to the next node
specified in Replyl’s head(path). Operations at N2 and N1 are similar. O

Before proceeding to more complex examples, we first describe an environment in which
such examples will be derived. The same network in Example 4.1 will be used for Exam-
ple 4.2 (Fig. 4.6), but TECs arc no longer empty, i.e., there already exist many real-time
channels when a new channel-establishment request is made. Table 4.1 shows the content of
all TECs at some time instant. The entries of these tables had been inserted for establish-
ing the following 21 channels. Fach channel is described as a 5-tuple (7D, S;q¢, p, D, path).
Table 4.2 presents the 21 channels in the order of their establishment. Note that the TECs
in Table 4.1 are only one of many possible situations after these 21 channel-establishment
requests have been processed and accepted. As discussed ecarlier, due to the randomness
of network traffic, there may be many other possible sets of TECs. We will also illustrate

such situations in the following examples.

Example 4.2:  We want to cstablish a real-time channel with 1D =1:8, §,,.. = 200K bytes
and p = 20 ms in the network of Fig. 4.6 under the environment as specified in Table 4.1.

The source of the requested channel is N1 and its destination is N5. We will first let D = 19
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m[c]r] 4 m[clp]d m[clep]l m | cJep] a
TEC: 1 =2 TEC: 2 — 1 TEC:1 — 3 TEC: 3 —1
a4 10 |10 ] 48 24 ) 10| 10 | 0B 24 | 2.0 } 10 | &5 a4 | 20 | 10 | 55
1:6 1.0 20 6 5:3 1.0 wn -] 1:3 1.0 20 B 5:2 1.0 20 a
1:4 {08 | 25 | 5.8 ;1 |04 [ 25 | 9 1:2 |os | 20 | 162 |f33]20] 20 20
1:i7 | 20 | 10 10 23 | 20 | 10 10 1:5 | 20 | 20 20 2 |18 | 50 { 238
1:1 ] o5 | s0 33 22 1.0 | 40 | 195 || 22 [ 20| 40 | 208
TEG: 3 — 4 TEC: 4 — 3 TEC: 2 — 4 TEC: 4 — 2
1:2 | 1.5 { 20 | 171 5:4 | 2.0 | 20 | 100 16 | 20 | 20 7 53§ 20 | 20 7
31 ] va | 40 f 200 [ s:x | a0 20 f 158 || 14 | 28| 25| 104 :1 | o8 | 25 | 102
22 | 5.0 40 | 215 || 22 | 40 | 50 | 262 || 3.1 | to | =0 | 335 || 3:2 | 20 | 40 { 185
21 | 2.0 | 50 50
TEC: 3 = & TEC: 5 = 3 TEC: 4 — § TEC: 5 — 4
1:3 | 50 { 20 12 52 | 50 | 20 12 16 | 20 | 20 7 53 | 2.0 | 20 7
31 ot |40 |10y |} s |12 20| 8
1:0 | to [ 50 | 335 || 5.0 | 12 | 20 { 14
| 21 | 2.0 | 50 50
Table 4.1: TECs for Example 4.2
1D Smax P D path 1D Swmar P D path 1D Smas p D path
1:1 50 50 | 100 | NIN2ZN4NS 1:2 ao 20 | 330 | mamana || 3a 20 40 | 40 NaN4Ns
2:1 100 50 [ 100 NIN4NS 51 50 20 a0 MsNANa || 40 40 25 | 20 NANZN1
1:2 80 50 | 50 NAN3N1 2:2 100 40 10 N2N1N3 1:a 50 20 | 20 N1NaN5
5:2 50 20 | 20 N5SN3N1 2:2 100 10 10 N3N4N2 1:4 B0 25 | 20 NIN2N4
3.3 100 20 | 20 NaN1 15 100 20 [ 20 MIN3 1:6 100 20 | 20 | MinaNaNS
53 100 20 { 20 | MSNaM2N1 1:7 200 10 10 H1N2 2:3 200 10 | 10 NaN1
2:4 100 10 | 10 N2NiNa || o 100 10 10 NaNiN2 )| 54 60 20 | 20 NSMiNa

Table 4.2: The table of previously-accepted requests for Example 4.2,
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Req5(1:8,N5,3,N4N2N1,10)
—_—
£o

-
Reply1{1:8,1,3,N2N1}

TFA 1=>2 TPR 2->4 TPR 4-»5 TEC 4-35 LFR &
IDCdar iDCdar iDCdar D Cpd ID
820 2 1:8 4 2 4 184 & 4 18 420 7 1.8
TPAR 1-»3 TPA 3-»4 TEC 2-24
IDCdar IDCdar D Cpd
1184 06 1:810 6 10 1:8 420 7

TEC 1-22

Ibcpd

8 220 6

Figure 4.6: Example 4.2

to show that only the path NIN2N4ANS is a qualified route for this request. D will then be

changed to illustrate other scenarios.

N1’s operations: The MWRTSs (r values in TPR} and C values of N1's outgoing links

are computed first. For link 1 — 3, ¢ = 200/50 = 4. To compute a channel’'s MWRT
on a link, we need to assign highest possible priority to this channel without violating the
link deadlines (¢ in TEC:1 — 3) of other existing channels. We start with assigning the
requested channel top priority, then check if any of the existing channels’ link deadlines
will be violated. Recall that the existing channels are placed in a TEC in ascending order
of their d values. By giving the newly-requested channel top priority on link 1 — 3, the

worst-case delay of channel 2:4 will be
5.5
4 x r———20] + 2 =6 > 5.5.

So, we lower the priority of this new request below channel 2:4 but above channel 1:3.

With this priority assignment, no existing guarantees will be violated, because the following
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schedulability test holds for any channel i whose priority is lower than the requested channel
(23,24, 27].
. d;
JteBi={di}u{kp;: 7€ A, 0Kk [_;-J},
i
t
Wity= 3 G- [—1+Ci<t,
jEA; Pj
where A; is the set of channels (including the requested channel) whose priority is higher
than that of channel i, C; is the maximum service time of channel i, d; is the link deadline

of channel 7, and p; is the minimum message inter-arrival time of channel ¢. Given below is

an acccptable set of ¢t and W;(2) for channels on link 1 — 3.
o channel 1:3,t =dy.3 = 8, Wi3(8) =7 < 8.
o channel 1:2, ¢ = dy.5 = 16.2, W} 2(16.2) = 9.6 < 16.2.
¢ channel 1:5, t = d,.5 = 20, W, 5(20) = 11.6 < 20.
e channel 2:2, 1 = p.3 = 20. W5,(20) = 13.6 < 20.5.

As a result, the priority of the requested channel will be placed between channel 2:4 and
channel 1:3. So, the MWRT of the requested channel on link 1 — 3 is equal to the smallest
t such that Wiye(t) = t, i.e., the smallest ¢ such that 2 X [{5] + 4 = t. Therefore, this
channel’s MWRT on link 1 — 3 is 6. For link 1 — 2, using the same procedure, the MWRT
is computed to be 2 by giving the new channel the highest priority on this link.

Note that this priority assignment for the requested channel is just for computing the
MWRT., As discussed in Section 4.2 and in [23,24], the run-time priority for transmitting the
messages of the requested channel, if accepted, is determined based on the channel’s link-
delay deadline which is greater or cqual to the MWRT obtained here and will be determined
after the route is selected.

After computing MWRTSs, N1 inserts appropriate entries into TPR:1 — 2 and TPR:1 —
3 (as shown in Fig. 4.6). Channel-establishment requests are sent to both N2 and N3.
Fig. 4.6 shows only five fields in the request messages as in Example 4.1, because the other

fields are the same for all request messages.

Operations of N2 and N3: After receiving the request message from N1 and determin-

ing that this request is new (does not exist in any TPR and TEC), N2 and N3 will perform
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simijlar operations as N1, i.c., compute C and MWRT values for all of their outgoing links
except for the links to N1, and store this information in TPRs.

Using the same procedure as above, we get ¢ = 4 and MWRT= 4 on link 2 - 4 by
assigning the new channel top priority. A request message (Req3 in Fig. 4.6) is sent to N4
with d* =244 =6,

For link 3 — 4, we get C = 10 and MWRT= 10 by assigning the new channel top
priority. A request message (Req4 in Fig. 4.6) is sent to N4 with d* = 6 + 10 = 16.

For link 3 — 5, we get C = 20 and MWRT= 25 by assigning the new channel the lowest
priority. Hlowever, in order to make the scheme work correctly, we require d < p (= 20) on
cach link of the channel’s route [23,24]. So, this link cannot be part of a qualified route,
and hence, no request message is sent to N5 via this link and no entry (corresponding to

this request) will be inserted into TPR:3 — 5.

N4's operations: Since it is not certain which of Req3 or Reqd will arrive at N4 first,

we will discuss both cases.

If Reqd arrives first, then N4 will compute € and MWRT for links to both N3 and N5.
For link 4 — 3, we get C = 10 and MWRT= 16 by assigning the requested channel the
priority lower than channel 5:1 but higher than channel 4:2. So, the accumulated MWRT
from NIN2N4N3 is 6 + 16 = 22 > D(= 19), and hence, no request message will be sent to
N3 and no entry (corresponding to this request) will be added to TPR:4 — 3.

Tor link 4 — &, we get € = 4 and MWRT= 4 by assigning top priority to the requested
channel. So, N4 stores this information in TPR:4 — 5 and Req5 (with d* = 6 4+ 4 = 10)
is sent ta N5. After N4 receives Reqd, since the d* (=16) carried in the message is greater
than that (=10} in N4’s TPRs, Req4 is discarded.

On the other hand, if Reqd arrives at N4 first, N4 will compute € and MWRT for links
to N2 and N5 based on Req4. Forlink 4 — 5, because MWRT= 4, the accumulated MWRT,
d®, from N1 to N5 will be 16 4 4 = 20 which is greater than the required ond-to-end delay
bound 19, so no message will be sent to N5. A similar situation occurs for link 4 — 2, since
C =4 and MWRT= 4 (top priority). Thus, when Req3 arrives, the operations performed

by N4 will be exactly the same as those in the case when Req3 arrives at N4 first.

Reply operations: N5 will perform the same operations as in Example 4.1, but with

dif f = (19— 10)/3 = 3. The operations to be performed by N4, N2 and N1 when the reply

moessage arrives at these nodes are the same as in Example 4.1.
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Path CH 1:8 first | Same time | CH 2:5 first
N1N2N4N5 10 25.2 25.2
NIN3N4NS 20 27.6 36.6
N2N4N3 NA 20 20
N2N1N3 17 17 8

Table 4.3: MWRTSs for two concurrent requests with Sy, = 200K bytes.

If we increase D) to 20, the path NININ4NS with the worst-case accumulated delay 20
is a qualified route for the requested channel. Thus, if Req4 arrives at N4 before Req3d
(Fig. 4.6), this route will be chosen instead of NIN2N4N5.

On the other hand, if we let D = 15 in this example, as can be scen in Fig. 4.6, Reqd
will not be sent because its d* > 15. If we decrcase D further to 9, then Req5 will not
be sent, In this case, no qualified route exists at that time, so the channel-establishment

request will time out and, thus, will be rejected. O

Example 4.3: In this example, we will use the same network and environment in Ixam-
ple 4.2 to demonstrate the effects of over-estimating link delays in case of multiple pending
requests. In addition to the requested channel 1:8 in Example 4.2, we assume another
channel (/D =2:5) establishment request occurs at about the same time. This channel is
specified as Sy, = 200/ bytes, p = 20 ms, source = N2 and destination = N3, At first, we
ignore the end-to-end delay requirements (J) of both channels, i.e., assume both Ds are
sufficiently large.

If these two channel requests arrive sequentially with a sufliciently large inter-arrival
time between them (regardless of the order of their arrival), the least MWRT of channel
1:8 is equal to 10 (via path NIN2N4NS§), and that of channel 2:5 is equal to 8 (via path
N2N1N3). Nate that as discussed in Section 4.2, due to the randomness of the network
traffic, the path with the least MWRT may not always be chosen. So, the MWRT of a
channel depends on which path is chosen. Thus, the least MWRT of a channel is defined to
be the MWRT of the path with the smallest MWRT. Ilowever, when the inter-arrival time
between them is not sufficiently large, i.e., TPRs contain entries for both channels at the

same time, the MWRTs (including the least MWRT) may be over-estimated.
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Path CH 1:8 first | Same time | CH 2:5 first
NIN2N4N5 2.5 4.5 4.5
NIN3N4N3 4.5 5.9 6.5
N2N4N3 7 3.5 3.5
N2NIN3 2.5 2.5 1.5

Table 4.4: MWRTSs for two concurrent requests with S,,.. = 50K bytes.

Table 4.3 shows the MWRTs of the two requests via two (with the least and the second
least MWRT) of their possible routes for different arrival orders of channels 1:8 and 2:5.
The first column shows the MWRT when channel 1:8 arrives first and channel 2:5 arrives
before the deletion of channel 1:8’s entries (in TPRs). The third column shows the opposite,
i.e., channel 2:5 arrives first. The second column represents the situation when channel 1:8
request arrives at N1 approximately at the same time as channel 2:5 request arrives at N2.
Note that the second column is derived under the assumption that request messages travel
faster via links with smaller MWRTs and the first-come-first-serve link scheduling policy
for messages of the same priority.

As can be secen from the first and third columns of Table 4.3, the MWRT estimate for
the channel which arrives later is unnecessarily large. When two channels arrive at about
the same time, the MWRT e¢stimates for both channels are larger than their true value.
Note, however, we have not yet considered the end-to-end delay requirement. When D is
reasonably large, e.g., Dy.g > 26 and D,y > 17, qualified routes for both channels can be
found regardless of the over-estimation of link delays. In fact, most real-time applications do
not require such short end-to-end delays (at least 100 ms for typical interactive applications)
and do not generate such high-volume data streams. For example, if we decrease Sy, to
50ICbytes which is a typical size for multimedia applications, the least MWRT for channel
1:8 is 2.5 ms, and for channel 2:5 is 1.5 ms. Table 4.4 shows the MWRTs of the same
four paths (as in Table 4.3) in this case. As can be seen from Table 4.4, channel 1:8's
MWRT increases only by 2 ms in the worst case due to the over-estimation of link delays
and channel 2:5’s MWRT only by 1 ms. Unless the requested channel generates very large
messages or it requires a very short end-to-end delay, over-estimation usually does not cause

unnccessary denial of channel-establishment requests.
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4.4 Conclusion

In this chapter, we have proposed an efficient distributed route-selection scheme which
is guaranteed to find a qualified route, if any, for each single real-time channel-establishment
request. By equipping two simple tables with each node, the proposed scheme can not only
eliminate the common reliability and performance bottlenecks of centralized route selection,
but also keep the operational overhead sufficiently low for practical use.

The proposed scheme is presented in procedure form, and its correctness and complele-
ness are discussed. In the next chapter, we will introduce a specialized scheme which can

solve the route-selection problem by a simple table look-up.



CHAPTER 5

A DISTRIBUTED TABLE-DRIVEN ROUTE-SELECTION
SCHEME FOR ESTABLISHING REAL-TIME CHANNELS

5.1 Introduction

In Chapter 4, we propose a generic distributed route-selection scheme which is guar-
anteed to find a qualified route, if any, for each single real-time channel-establishinent
request. However, this scheme suffers the problem of over-estimating link delays. That is,
when there are multiple simultaneous channel-establishment requests, the link delays may
be over-estimated as a result of treating the pending channels as if they had already been
established, thus perhaps incorrectly rejecting channel-establishment requests; they could
have been accepted if link delays had not been over-estimated. Another problem with the
scheme in Chapter 4 [37] is that it does not take advantage of the application features,
because it was intended for general real-1ime applications. In other words, if we only have
to support real-time channels with limited, yet important, types — like interactive video
— of traffic-generation behaviors and user’s performance requirements, we can improve the
efliciency and performance of the route-selection scheme significantly, e.g., shorter channel-
establishment delay and higher channel-request acceptance rate.

Specifically, in this chapter, we will consider the real-time traffic of interactive video
applications. Interactive video applications usually gencrate frames at some fixed rate!
and resolution which are both specified according to industry standards. For example,
30 frames per second is the frame rate for live interactive video and the MPLEG Video
Simulation Model Three (SM3) suggests 352 by 288 pixels per frame for achieving video
tape quality [30]. Note that a standardized resolution implies a standardized maximum-

frame size. Since video applications of our interest require only a small set of combinations

lallowing jitters

79
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of [rame-generation rates and maximum-frame sizes, by exchanging and maintaining real-
time traffic information among the nodes, the system may be able to prepare for channel
establishment even before receiving a establishment request. Under this setting, we will
develop a scheme which builds and maintains a delay table on each node so that the route-
selection problem can be solved by a simple table look-up at the source node [11].

The chapter is organized as follows. Qur proposed solution to this preblem is presented
in Section 5.2. In Section 5.3, we demonstrate via examples the effectiveness of the proposed

solution. The chapter concludes with Section 5.4.

5.2 The Table-Driven Approach

We first describe the environment and the assumptions under which our table-driven
distributed route-selection scheme will be developed. As discussed in Chapter 4, the un-
derlying network is an arbitrary point-to-point network and the generation of real-time
messages is assumed to be governed by the linear-bounded model [15]. Based on this mes-
sage arrival model, as in Chapter 4, we use the scheme proposed in {23,24] to compute the
worst-case delay on each link.

In addition to the linear bounded model, we further assume that the number of possible
combinations of {rame-generation rates and maximuim-frame sizes is small, since we are only
interested in standardized interactive video applications. Based on the link delay calculated
with the delay-estimation method in [23,24] and the above assumptions, we will develop a
scheme which buitds real-time channel delay tables at cach node so that a qualified route

may be found by a simple table look-up.

5.2.1 Link-Delay Estimation

We will use the same link-delay estimation method as in Chapter 4. Note that this
delay-estimation methed propased in [23,24] does not include those channels pending for
final conflirmation in the calculation of MWRT for the new channel-establishment request,
but in this chapter, we will treat pending channels differently in two situations. First, as
in Chapter 4, during the channel-establishment phase, we will include the load of pending
channels in the calculation of MWRTSs as if they had already been established. IHowever,
the load of pending channels will not be included in the real-time delay tables to avoid

excessive changes of real-time delay tables, i.c., we do not include pending channels in the
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calculation of MWRTs which are used to build real-time delay tables.

As discussed in Chapter 4, including pending channels in the calculation of MWRTSs can
simplify the channel-establishment phase, but it also causes the over-estimation of MWRT.
As will be seen later, because the proposed scheme checks only one route at a time instead
of checking all possible routes in parallel (the scheme in Chapter 4 does this), the over-
estimation of MWRT is much less likely to occur. Thus, the incorrect rejection decisions
duc to the over-estimation of MWRT are likely to be made only when there is a very high
percentage of real-time traffic so that the over-estimation of MWRT over those shared links

may make the end-to-end delay larger than the application-required latency.

5.2.2 Building Real-Time Delay Tables

Based on the above definition of link delay, we can apply the Bellman-Ford algorithm
[9,46] and a loop-{ree version of the ARPANET’s previous routing strategy (APRS) [10,34,
35,39] to build real-time delay tables at each node. As mentioned earlier, the MWRT used
to construct real-time delay tables does not include the load of pending channels for two

reasons:

¢ The maximum permissible delay for a link after a final confirmation is likely to be
greater than the MWRT computed during the resource-reservation phase. (We will

discuss this further in Section 5.2.3.}

¢ The time between making resource reservation and receiving a final confirmation is
usually small, e.g., it could be the time needed for the round-trip from a node on the

route under test to the destination.

Thus, if we want to include the load of pending channels in the real-time delay tables, the
table entries may have to be modified twice in a short period of time.

When only a small set of standardized combinations of frame-generation rates and
maximum-frame sizes needs to be considered, each node in the network can build a loop-free
table based on the MWRTs computed according to a pair of maximum-frame size (Snas
or ') and frame-generation rate (p). All real-time channels that can be specified by the
same pair (Spn,.z, p) are said to be in the same class. A node will compute the MWRT
on each of its outgoing links as the minimum feasible delay of the corresponding link for
each class of real-time channels. These MWRTs will be stored in a table, TM, which can

be indexed by its neighbors’ addresses and has only one ficld, 7, for each class of channels,
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representing their MWRTSs over the corresponding link by considering only those channels
already established.

Since the loop-free version of APRS will be used to exchange delay information and
maintain real-time delay tables, we will briefly describe the original APRS. In APRS, ecach
node collects and maintains the information about the minimum delays to all other nodes
via each of its neighbors. Thus, for every destination—-necighbor pair, the information is kept
in a 3-tuple form (destination, neighbor, delay). Other information may be needed for the
loop-free version of APRS, but we will not discuss this issue here. (See {10,34,35,39] for a
detailed account of this.) These 3-tuples are divided into groups based on the destination
node. Within a group, they are listed in ascending order of delay. The first entry of each
group (the minimum-delay entry to the corresponding destination node) is then used to
build a routing table.

Each node periodically exchanges a routing message with its neighbors which contains
the node’s current routing table. Again, recall that the loop-free version needs to exchange
some additional information, and the routing table exchanged may be slightly different from
that of the original APRS. After receiving routing messages from its neighbors, each node
will update its own routing table based on the information carried in the routing messages
and the status of its own outgoing links. As we shall see, the real-time delay table is built

in the same way as the routing tables except for the following two differences.

e Only real-time traffic is considered when building real-time delay tables. (APRS’s

routing tables were built by considering ali traffic,)

¢ Real-time delay tables are updated only when a new real-time channel is established
or an cxisting real-time channel is closed. Thus, a node sends “routing” messages
to its neighbors only when its set of real-time channels changes. These “routing”

messages are called real-time routing messages.

Using an example, we will show how to build real-time delay tables.

Example 5.1: The class of real-time channels under consideration is specified by Sy,.r =
100 Kbps and p = 33 ms. Fig. 5.1 shows the network used for this example. Each link
is labeled with a number which represents its transmission speed. Since initially no real-
time channels exist, if a channel-establishment request of this class is received, the highest

priority will be given to the requested channel. Therefore, the MWRT of this class for cach
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Figure 5.1: Example 5.1

link is equal to the maximum service time (C) of the class and can be computed as: link
N1eN2: 100/100=1 ms; link N1-N3: 100/50=2 ms; link N2+N4: 100/50=2 ms; link
N3~ N4: 100/20=5 ms; link N3<N5: 100/10=10 ms; and link N4~N5: 100/50=2 ms.

Table 5.1 shows the real-time delay tables for all five nodes in the very beginning. Nole
that D stands for destination, N stands for neighbor, and d stands for delay in all tables
of this chapter. Initially, a node can reach only its neighbors since information about the
other nodes is not yet available to the node. The label oo in an entry represents the case
when either the destination cannot be reached via the corresponding neighbor or the path
via this neighbor is not loop-free. The least-MWRT path to cach destination known so far
is used to construct a real-time routing message. Lach entry of the message is a 2-tuple,
(destination, delay), where destination is not the neighbor to which this message will be
sent. Tor example, the message from N3 to N4 will contain the two entries: {N1,2) and
(N5,10).

Since the real-time routing messages are not sent periodically (i.e., the updating proce-
dures of real-time delay tables are not synchronized among nodes), it is not certain what
the “next” state of the real-time delay tables will be. However, the “steady-state” real-time
delay tables depend only on the currently-anticipated real-time traffic of the established
real-time channels. Thus, after all nodes stop sending real-time routing messages (before
the next channel establishment or channel closing), the real-time delay tables at that mo-

ment can be determined from the current real-time traffic load, regardless of intermediate
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Table 5.1: Initial real-time delay tables, where D, N, and d stand for destination,
neighbor, and delay respectively.

Hl's table H2's tatle N3's wable H1's table H5's table
D N d D N d D N a D N d D N d
2 2 1 1 1 1 1 1 2 2 2 2 3 4 7
2 3 o0 1 4 o0 1 1 -] 2 3 o0 3 3 10
a 3 2 4 1 2 1 5 o 2 5 oa 4 4 2
a 2 ] 4 1 oo 41 L 5 3 3 5 1 3 15
4 2 3 3 1 J 4 5 12 a 5 12 1 h ) 12
L} 3 T 3 4 T 4 1 ] J 2 ©a 1 4 o0
s [ a2 | s |4 | 4 s [ ¢} 7 s | s | 2 2 | 4 1
5 2 o 5 1 (=] 3 5 10 5 3 15 2 3 o3

5 1 -] 5 2 oo
2 1 a 1 2 a
2 4 T 1 3 7
2 5 .1 1 5 o

Table 5.2: One possible intermediate state of real-time delay tables.



85

N1's table N2's tahle N3's table N4i's table HN5's wable
n N d D N & D N d D N d D N d
2 2 |1 1 1 1 1 1 F 2 2 2 a 1 T
2 | a9 1 4 9 1 4 [ 2 3 ) ’F 3 3 |10
3] a2 1 4 2 1 5| 1s 2 5 |15 i 4 2
3 2 | a 4 1 s 1 [} 5 3 3 5 4 3 | 1s
1 2 | a 3 1 3 1 1 5 2 2 5 i 1 5
[] 3|7 3 4 7 4 5 | 12 3 5 |12 1 a | 12
5 2 | s 5 4 Il 5 ] 4 T 5 5 2 2 4 ]
E|lajoe 5 1 10 5 1 7 5 3| 1 2 3 [ 13
5 s | 10 5 2 { o
2 1 3 1 2 3
; 2 4 T 1 3 7
Il 2|5 |1t IR ED

Table 5.3: Steady-state real-time delay tables.

states.

Table 5.2 represents one possible intermediate state which shows real-time delay tables
for all five nodes after receiving one real-time routing message from ecach neighbor. Table 5.3
shows the steady state of real-time delay tables before the arrival of any real-time channel-

establishment request or the termination of any established channel. ]

5.2.83 The Route-Selection Algorithm

Since the information of all existing channels is necessary for the calculation of a new
channel’s MWRT as well as for the run-time scheduling of their messages, each node has
to maintain another set of tables for the existing channels, one for each oulgoing link,
in addition to the real-time delay tables. These are called the tables of exisiing channels
(TEXCs). Each entry of a TEXC represents a real-time channel which goes through the

corresponding link and consists of the following four data fields:
¢ Channel identifier (ID) which uniquely identifies a real-time channel.
o Class (class) of the channel.
e Status (status) of the channel, established (1) or pending (0).

e The maximum permissible link delay (d) for the channel.

As discussed in Example 4.2, in order to be consistent with the way channel priorities are
assigned for the link-delay estimation [23,24], these entries are placed in ascending order of

d values.
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When the source node wishes to establish a real-time channel to another node, say B,
it will try to find the current least-MWRT route by considering the traflic of all existing
channels. Recall that only those already-established channels are figured in real-time delay
tables. Thus, the source node will send a real-time channel-request message (f2eq) to the
next node on the least-MWRT route, which contains a channel ID, the destination address
{(dest), the channel class (class), the end-to-end delay bound D, the path (path) and the
total number of hops (Lops) this message has traveled thus far, and the accumulated delay
d?. Initially, the d* field is set to the MWRT of the corresponding outgoing link, path is sct
to the source node, and hops is set to 1. As in Chapter 4, hops is included in the request

message only for convenience of presentation.

Procedure rcv.req
If (Req.dest = A) then {reply_req; return;}
for (i = 1 to number_of _entry(RT DT [Req.dest}) {
If (Req.d® + RT DT'|Req.dest](i].d) > Req.D) then {send_reply(reject); return;}
nezinode := RT DT[Req.dest][:].N;
If (no pending channel in TEX Cnexztnode]) then {
insert_reg(T M[neztnode]); forward_req(nextnode); return;

}

;i compute new MWRT, including established and pending channels.

r:= compute MW RT(nextnode, 1);

If (Req.d® + RT DT[Req.dest][i].d — T M{nextnode] + r < Req.D) then {
insert_req(r); forward_req(nexinode); return;

}
}

send_reply(reject);
Figure 5.2: Procedure of processing a channel-establishment request,

Fig. 5.2 describes the procedure of handling a channel-establishment request after node
A receives the request. This procedure can also be applied to the source node by setting
d® := 0, hops := 0, and path to an empty string. In order to find the next node of a qualified
route, Procedure rev.req uses the destination, B, as an index to the real-time delay table
and searches through all routes whose delays to B are not greater than the remaining user-
required delay bound (Req.D — Req.d®). The for loop and the first if statement in the loop

serve as this function. Since the entries in the real-time delay tables are placed in ascending
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Procedure insert_req(r)
TEXC.ID := Req.ID;
TEXC(Req.ID).class := Reg.class;
TEXC(Req.ID).stalus := pending;
TEXC(Req.ID).d:=r;

Procedure forward_req(neztnode)
Req.d® := Req.d®* + TEXC(Req.ID).d;
Req.hops := Req.hops + 1;
s concatenate A and Req.path.
Reg.path := A - Req.path;
;1; all other fields remain the same,
forward this request message to nexinode.

Figure 5.3: Procedures of inserting and forwarding a request.

order of delays to the destination, the search starts from the first entry and can terminate
il the current entry cannot satisfy the if statement.

After passing the first if statement in the loop, if there is no pending channel (the sec-
ond if in the loop), this entry is selected and appropriate actions will be taken by calling
Procedure inserf_req and forward_req. Otherwise, we have to re-compute the MWRT
(= r) for the corresponding outgoing link, because the real-time delay tables do not ac-
count for the pending channels. If the increase of MWRT due to the pending channel
(—T'M[nextnode] + r part in the third if statement) doesn’t make the delay to the destina-
tion greater than Req. D — Req.d®, this entry can be selected as the channel’s route. The
maximum permissible delay on this link (d field in TEXC) is set to r, instead of obtaining
it directly from TM([neztnode]. TM is a table of MWRTS (in Section 5.2.2), and RTDT (in
Procedure rev.req) is used to denote real-time delay tables.

Fig. 5.3 describes the procedures of inserting a new (pending) channel to TEXC and
forwarding a request. As can be scen from these procedures, most fields are directly copied
from the establishment-request message to TEXC and the forwarding message.

Fig. 5.4 shows the operations that a destination will perform after receiving a channel-
establishment request. Since the d° field of a channel-establishment request represents the
sum of MWRTs of all links on the path from the source to destination, the user-specified
cnd-to-end delay bound, D, may be larger than 49, i.c., we are allowed to spend more

time than the corresponding MWRT when sending a message over cach intermediate link.
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Procedure reply_req
If (the application accepts the request) then send_reply{accept);
else send_reply(reject);

Procedure send_reply(accept)
nexinode := head{Req.path);
Reply.ID := Req.ID;
Reply. flag := accept;
Reply.dif f := (Req.D — Req.d®)/ Req.hops;
Reply.path := tail( Req.path);
send Reply to nexinode.

Figure 5.4: Procedure of processing a channel-establishment request at the destination.

In such a case, the authors of [23,24,37] proposed that D — d* could be divided evenly
into hops parts by the destination node and distributed to all links along the path. The
deadline of a real-time message of this particular channel over an intermediate link is the
channel’s MWRT of that link plus (D2 — d®)/hops. Note that one may also choose to divide
D — d° in proportion to each link’s MWRT, i.e., the maximum permissible delay over link
£ is computed as (D — d°) x MR 4 MW RT,, where MW RT, is the MWRT of link £.
However, since this method may make the link-delay deadline unnecessarily small over a
link which has small MWRT we will adopt the method proposed in [23,24, 37).

Since this link deadlinc is stored in the table of existing channels (d field in TEXC)
and used for run-time scheduling, (D — d%}/hops is included in the channel-establishment
confirmation message (by Procedure send_reply(accept)) from the destination to source
via the same path the corresponding request message had traveled {but in the opposite
direction). Let Reply denote a channel-establishment confirmation message which consists
of four fields: I'D, flag (accept or reject), dif f (= (D —d®)/hops) and path (the remaining
path back to the source node). Fig. 5.4 describes how a positive confirmation message is
constructed {send_reply(accept)), and Fig. 5.5 shows the operations the intermediate nodes
will perform when receiving a (positive or negative) reply message (forward_reply). Note
that head(list) represents the first element of list, and tail(list} represents the remaining
list after removing head(list) from list.

The operations in Procedure update(node) of Fig. 5.6 are necessary to keep these real-
lime delay tables and TMs up-to-date after a new channel is established or an existing chan-

nel is torn down. Basically, nodes which receive a positive reply to a channel-establishment



89

Proacedure forward.reply

If (Reply.flag = reject) then delete the entry TEX C(Reply.ID);

else {
TEXC(Reply.ID).status := established;
TEXC(Reply.ID).d:= TEXC(Reply.ID).d+ Reply.dif f;
insert this entry in the ascending order of d field.
;13 update real-time delay tables if necessary
i5; assume the message is sent/forwarded by node N.
update(N);

}
nextnode ;= head{Reply.path);

Reply.path := tail(Reply.path);
forward this reply message to the next upstream node nextnode.

Figure 5.5: Procedure of handling reply messages.

request will re-compute the MWRT by considering only those established channels already
(including the one just accepted). Based on this new MWRT, rcal-time routing tables and
TM are updated and a new real-time routing message is generated and sent to all neighbor
nodes. When a node receives a real-time routing message from a neighbor node, it will
follow the procedure described in Section 5.2.2 to update its real-time delay tables.

The operations necessary to keep real-time delay tables and TMs up-to-date during the
channel-disconnect phase are straightforward. We require one of the two communicating
pecrs to send a disconnect message through the route of the real-time channel to the other
communicating peer. In the disconnect message, only 7D needs to be included. All interme-
diate nodes and the source node will delete the corresponding entry from their TEXCs and
call update (Fig. 5.6) to update both TMs and real-time delay tables. Real-time routing
messages may also be sent as discussed in Section 5.2.2. In the next section, we will present

examples to illustrate the operations of establishing a channel.

5.3 Examples

We will use the network in Fig. 5.1 for the demonstrative examples in this section.

Example 5.2: In Example 5.1, we constructed the real-time delay tables for a class of

real-time channels specified by S = 100 Kbytes and p = 33 ms. In this example, we
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Procedure update(node)
message ‘= ¢;
for each class class of real-time channels {
;;; compute the new MWRT, including only established channels.
r 1= compute_MW RT(nade, 0);
If (r #£ TM[node]) then {
update _RT DT (node, r);
T M ([node] := r;
table 1= Uizan dc:u‘nc!iona{(ir RTDT[ﬂ[l]'d)};
}

message := message U {(class, table)};

}

send a real-time routing message, message, to all neighbor nodes;

Procedure update RT DT (node, )

for all destinations, dest {
i:= l;
while (i < number.of_neighbors) {
I (RT DT[dest)[i]. N # node) then i:= i+ 1;
else {RT DTdest][i].d := RT DT [dest][i].d + r — T M|[node]; break; )
}

Figure 5.6: Procedure of updating real-time delay tables.

want to establish a channel (ID = 1:1) of this class (class 1) with an end-to-end delay bound

D =32 ms from N1 to N5,

Link-bandwidth reservation: NI will use NS as the index to its real-time delay table
(Table 5.3), and find the next node, N2, on the least-MWRT path to N5 with MWRT
= 5 ms. Since D > 5 ms and there is no pending channel, N1 will insert this channel
into its TEXC for link N1—N2. By looking up the table of MWRTs (TM[N2]=1) for this
class, the entry representing this channel in TEXC can be set to (1:1,1,0,1). The channel-
establishment request Req(1:1,N5,1,32,N1,1,1) can also be sent to the next node, N2.
After receiving this request message, N2 will call rev_reg to handle this request message

and forward it to the next hop on the least-MWRT path to N5. As can be seen from
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Table 5.3, N4 is the next hop and the delay is 4 ms. Since the accumulated delay (d°)
carried in the request is 1 ms, i.e., the end-to-end MWRT (1 + 4 = 5 ms) is not greater
than D = 32 ms and there is ne pending channel on link N2—N4, this channel request will
be inserted into N2’s TEXC for link N2—N4. Because TM[N4]=2 (for class 1), the entry
in TEXC will be set to (1:1,1,0,2). A request message, Req(1:1,N5,1,32,N2N1,2,3), will also
be forwarded to N4.

N4's operations arc similar to N2’s. The entry inserted in N4’s TEXC (link N4—N5)
for this request is (1:1,1,0,2), and the request message, Req(1:1,N5,1,32,N4N2N1,3,5), is
forwarded to N§.

N5’s operations will be different from those of N2 and N4, because N5 is the destination
of the requested channel. If the peer application at N5 decides to accept this channel request,
a positive reply message will be constructed and sent back to N1 via the same path of the
request message traveled but in the opposite direction. Since D = 32 ms is greater than
the accumulated delay (d® = 5 ms) carried in the request message, the difference, D — d¢,
will be divided evenly into hops parts and distributed to all links along the path. Thus,
using Procedure send_reply(accept) (Fig. 4.3), dif f = (32—5)/3 = 9 and the paositive reply
message will be Reply(1:1,accept,9,N2N1). This reply message will then be sent to N4 (the

head of path carried in the request message).

Channel-acceptance confirmation: After receiving the positive reply from N5, N4 will
call forward_reply and update the entry in TEXC (link N4—N5) representing channel 1:1
to (1:1,1,1,11}, where the third component indicates this channel to have been established,
and the fourth component (2 + 9 = 11) shows the maximum permissible delay of this
channel over link N4—Nb&. This positive reply (after removing head(Reply.path)) will then
be forwarded to the next upstream node (N2) specified by head(Reply.path).

Due to the establishment of channel 1:1, the MWRTS5 of channels (of all classes) over link
N4—N5 have to be re-computed. Ilowever, by using the link estimation method described
in Section 5.2.1, the MWRT for class-1 channels still remains to be 2 ms. Thus, N4’s real-
time delay tables will remain unchanged and no real-time routing messages will be sent.
Note that although the MWRT of class-1 channels does not change, the MWRTs for other
classes may change after channel 1:1 is established. Both TMs and real-time delay tables for
these classes will be updated and real-time routing messages will also be sent to reflect the

new MWRTs of these classes. We will demonstrate the update operations in Example 5.3.
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Table 5.4: Tables of MWRTs where N stands for neighbor.

The operations performed by N2 and N1 are similar to N4's. The TEXC for link
N2—N4 will contain an entry (1:1,1,1,11) and the TEXC for link N1-N2 will contain
an entry (1:1,1,1,10). All real-time delay tables and TMs remain unchanged because the
establishment of channel 1:1 does not increase the MWRT of class-1 channels over the links
of the route.

If the application at the destination node N5 refuses to accept this request, a negative
reply will be sent back via the same path. After receiving the negative reply, all nodes will
delete the corresponding entry from their TEXCs and forward the reply message to the

next upstream node specified by the path in the reply message, @]

Example 5.3: Another class (class 2) of real-time channels specified by S, = 300 Kbytes
and p = 20 ms will be used in this example. Table 5.4 shows the tables of MWRTs (TMs)
for all five nodes after channel 1:1 is established (Example 5.2), and Table 5.5 shows the
steady state of real-time delay tables for class-2 channels. We will establish a class-2 channel
(ID = 1:2, destination = N5, and D) = 30 ms) and then show the change in both TMs and
real-time delay tables after its establishment.

As in Example 5.2, the path NIN2N4N5 will be chosen because it is the least-MWRT
path from N1 to N5. Thus, a request will be sent from N1 to N5 via this path and each node
on this path will insert a corresponding entry into its own TEXC to reflect the existence
of channel 1:2. The entries to be inserted into the TEXCs of N1, N2 and N4 are: link
N1—-N2: (1:2,2,0,3), link N2—N4: (1:2,2,0,6), and link N4—N5: (1:2,2,0,6). If the peer
application at the destination node accepts this channel-establishment request, N5 will
compute dif f =30 — (34 6+ 6) = 5 ms and send a positive Reply(1:2,1,5,N2N1} to N4.

After receiving the positive reply to the request for establishing channel 1:2, N4 will set
the status of this channel to “established” and the maximum permissible delay to 64-5 = 11
ms in the TEXC (link N4—N5)., Then, N4 will re-compute the MWRT of both classes over
link N4— N5, including only the load of established channels. For class-2 cliannels, TM[N3]
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Table 5.5: Steady-state real-time delay tables for class-2 channels after establishing
channel 1:1, where D, N, and d stand for destination, neighbor and delay
respectively

is then modified to 14, because any new channel request of class 2 has to be given priority
lower than both channel 1:1 and 1:2 in order to retain the performance guarantees of existing
channels. However, the MWRT of class-1 channels does not change. Thus, the real-time
delay tables (Table 5.5) will be updated and real-time routing messages containing only
the class-2 information will be sent to N4’s neighbors. For example, the message sent to
N2 will contain three entries: (N5,14), (N3,15), (N1,21), and the message sent to N3 will
also contain three entries: {N5,14), (N2,6), and (N1,9). Note that the third entry in the
message to N2 is the result of loop-free routing. Since the least-MWRT path from N4 to N1
is NAN2N1 which includes N2, the second best path NAN3NI1 is sent to N2 as the (loop-iree)
least-MWRT path.

The positive reply will then be forwarded to N2 then to N1. The operations of N2
are similar to those of N4. The MWRTSs of both classes over link N2—N4 have to be re-
computed and the real-time delay tables have to be updated accordingly, The MWRT of
class 2 over link N2—N4 will increase to 14 and that of class 1 remains unchanged. Thus,
{(N5,28),(N4,14),(N3,29)} will be sent to N1, and {(N1,3),(N3,9),(N5,38)} will be sent to
N4 as the real-time routing messages for class-2 channels.

After receiving the confirmation for establishing channel 1:2, N1 will also re-compute the
MWRTs of both classes. Since both MWRTs do not change over link N1—N2, no further
actions are necessary.

In addition to the positive reply messages, the real-time routing messages generated
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Table 5.8: Steady-state real-time delay tables for class-2 channels
channel 1:1 and 1:2,

after establishing

by N4 and N2 will also be used to update real-time routing tables by those nodes which

receive them as discussed in Section 5.2.2. Following the procedure of building real-time

delay tables, Table 5.6 shows the steady-state real-time delay tables for all five nodes after

channel 1:2 is established.

5.4 Conclusion

In this chapter, we have proposed a table-driven distributed route-selection scheme which

is guaranteed to find a qualified route, if any, for each real-time channel-establishment

request. By equipping a real-time delay table with cach node, the proposed scheme can

choose a route for each real-time channel requested by a table look-up.



CHAPTER 6

AN APPLICATION: FIELDBUS

6.1 Introduction

In this chapter, we will discuss the real-time communication issues eof the FicldBus
protocol which is a new industrial standard, and apply the schemes discussed thus far to an
automated factory environment which uses FicldBus. An automated factory (AI") is usually
composed of several workcells (or simply cells), cach of which contains robots, sensors, and
transport mechanisms. A multiaccess bus connects all devices in a workeell. A bridge is used
to connect two or more workcells. Hence, the network of an AF consists of many links, each
of which can be viewed as a multiaccess bus, The ability to provide predictable inter-process
communication is of great significance to an AF, because unpredictable communication
delays may lead to missing the deadline of one or more communicating tasks. In this
chapter, we will address the issue of providing real-time communication on FicldBus which
is designed to support time-critical communication to and from devices in manufacturing
systems.

Due to the nature of manufacturing systems, most time-critical communication is likely
to occur between devices in the same workcell, and hence, a fast connection establishment
procedure is desirable. Since the physical area of a workcell is usually small and there are
often many devices (nodes) in a workeell, a multiaccess network is a natural candidate for
connecting devices in a workeell. On the other hand, since the ability to provide predictable
communication between any two devices in different workcells is also essential to the system,
we will focus on developing a “fast” real-time channel establishment scheme within a work-
cell (i.e., two nodes on the same multiaccess bus), while providing the ability to support
real-time communication between any two workcells,

The integrated scheme presented in this dissertation is an ideal solution for providing
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real-time communication between devices in a manufacturing system. The statistical real-
time channels on multiaccess networks can be used to provide real-time communication
between devices in a workcell. For devices in different workceells, the proposed distributed
route-selection schemes can be used to establish inter-cell real-time channels so as to pro-
vide inter-cell real-time communication services with performance guarantees, Note that
although both proposed route-selection schemes are applicable in this case, we will use the
table-driven scheme to show that our scheme can be integrated into the IMieldBus protocol.

The chapter is organized as follows. In Section 6.2, we provide a brief overview of the
data-link layer of the I'ieldBus protocol. The proposed scheme is discussed in Section 6.3.
Section 6.4 discusses the compatibility between the proposed scheme and the FieldBus
protocol., The performance evaluation of the proposed scheme is presented in Section 6.5,

and the chapter concludes with Section 6.6.

6.2 Overview of FieldBus

Our main goal is to analyze and cnhance the data-link layer of IFieldBus protocol. Al-
though most of the data-link layer protocol of FieldBus has been developed well, the support
for time-critical message communication is not completely specified. To facilitate our pre-
sentation, we need to briefly describe the FieldBus data-link layer.

The FieldBus data-link layer is designed to support time-critical message communication
for manufacturing systems and process controls, The FieldBus network is composed of
several links, cach of which is a multiaccess bus connecting all the devices in the workcell;
thus, the entire FicldBus network is a collection of multiaccess buses which are further
connected via several bridges. The data-link layer protocol of the FieldBus is similar to
the well-known Token Bus protocol, except that in the FieldBus protocol, there is a link
control entity which is responsible for token allocation of the corresponding link. Although
FieldBus is designed to support time-critical communication, it also provides support for
non-real-time data transmission.

Since the primary goal of the FieldBus is to support real-tine communication, several
changes (1o the OSI model) have been made to improve the performance. One important
performance measure of real-time communication is the worst-case delay in sending a mes-
sage. In order to reduce the delay in sending a message, unlike the OSI model, FiceldBus

has only three layers: Physical Layer, Data Link Layer and Application Layer. Among
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the three layers, the Data Link Layer is the most important, since the Physical Layer is
just an interface of the physical medium, and the Application Layer is user-dependent,
i.c., beyond our control. The Data Link Layer is modeled as a series of four sub-layers:
Link Access, Link Scheduling, Multi-link and Data Link Connection (DLC) Management,
and Bridge Management. As far as the real-time communication issues within a workcell
are concerned, it is sufficient to consider only the Link Access and the Link Scheduling
sub-layers.

Before describing the FieldBus protocol, we need to formally define a “data link entity.”
In the data-link layer of FieldBus, a Data Link Entity (DLE) is a logically active object,
such as a copy of the executing program, which is able to send/reccive packets to and
from the interconnection network and acts according to the data-link layer protocol of
FieldBus. Therefore, there could be several DLEs on a node which is physically attached
to the interconnection network, such as computers, sensors, or any manufacturing devices.
However, it is conceptually simple to treat each DLE as a node. Thus, the terms “DLE”
and “node” will be used interchangeably.

The data-link layer protocol of FieldBus is a delegated token protocol. There is a local
control entity on each multiaccess link which is responsible for scheduling messages on the
local link, i.e., this local control entity is responsible for managing the token. This local
control entity allocates a token to other entities based on their needs and each token grants
the receiver entity a certain amount of time for transmitting data on the shared medium.

The data-link layer service of FieldBus provides both connectionless and connection-
oriented communication between two peer communicating DLEs. The connection-oriented
communication service, which supports both real-time and non-real-time communication,
requires the source DLE to establish a connection first, thus allowing the source node
a,n'd intermediate nodes to collect and exchange the information nceded for the delivery
of packets, e.g., bufler requirements and route information. In general, a static routing
strategy is used for the delivery of connection-oriented packets, although it is not required
by the standard [3,5,6]. If a real-time connection is requested, the system has also to
reserve sufficient bandwidth and perform appropriate admission tests in the connection-
establishment procedure.

The connectionless service, which supports only non-real-time communication, is similar
to the traditional multiaccess packet switching networks. However, connectionless commu-

nication is allowed only between two DLEs on the same link in the current draft proposal



98

[3,5,6). This limitation might be relaxed later, because there is no good reason to establish
a connection via several bridges for exchanging only a few non-real-time packets. Since the
connection-establishment process is relatively time-consuming, connectionless communica-
tion should have been allowed for non-real-time messages across link boundaries.

There are four classes of DLEs in the FieldBus data-link layer: Basic, Link Master (LM),
Link Active Scheduler (LAS), and Bridge. Basic and LM classes are concepiually the same,
except that the LM class DLEs are equipped with more functions, while the Basic class
DLEs have only those functions which are absolutely necessary for adequate operation on
a FieldBus network. In gencral, these two classes of DLEs are the “user” nodes on the
FicldBus networks. For simplicity, the term “DLEs” or “nodes” will be used to mean both
classes in the rest of this chapter.

Unlike other popular timed-token protocols (e.g., token rings, token buses, FDDI), Ficld-
Bus has a localcontrol unit, LAS DLE, for each Fieldbus link. (Note that a FieldBus network
is composed of a set of links.) The LAS DLE is responsible for scheduling messages on the
local link. It receives, and responds to, scheduling requests from all DLEs on the same link
by giving a token to one of these DLEs which then assumes the exclusive right to use the
link over some time period specified in the token. A bridge DLE is one which performs
a store-and-forward function to connect two or more separale multiaccess links, In the
draft proposal of the FieldBus data-link layer protocol (3,5, 6], the routing strategy used by
bridges is not specified.

All normal communication requests for use of a link are scheduled by the LAS of the
link. The LAS generates “polling” tokens for DLEs on the link, and the receiver DLE re-
sponds immediately by returning a message which may include requests for future scheduling
and the priorities of the current requests. The LAS derives a schedule according to some
scheduling policy and provides the token to the “winner” DLE,

Based on the above brief description of FieldBus protocol and the nature of workcells
in an AI", one can see that the LAS is equivalent to the LCU in our scheme. Since most
real-time communication is likely to take place between two peer DLEs which are located
on the same link, most time-critical communication can be handled by the local LAS, i.e.,
the LCU. In the rest of this chapter, we will use LAS and LCU interchangeably.

For handling time-critical communication between devices in different workcells, a dis-
tributed scheme is implicitly assumed in the draft proposal of FicldBus protocol [3,5,6],

since the existence of a global network manager is not mentioned at all, In order to provide
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predictable communication for real-time applications, the system has to select a “qualified”
route, then reserve certain resources (e.g., link bandwidth) along the selected route, verify
certain conditions are met (e.g., the uscr-specified end-to-end delivery delay bound), and
guarantee these conditions will always be met during the lifetime of the application. Our
distributed route-selection schemes for establishing multi-hop real-time channels are ideal

for handling such inter-cell time-critical communication.

6.3 Basic Approach

As we discussed in the schemes covered in the previous chapters, non-real-time traffic
load is ignored when dealing with real-time traflic because real-time traffic is given higher
priority. Thus, we will focus on real-time traffic and ignore non-real-time traffic in the rest
of this chapter.

Because time-critical communication is most likely to take place between devices within
a workcell, the real-time communication problem associated with the I'ieldBus protocol can
be decomposed into two related sub-problems. The first sub-problem is to provide real-time
communication between two peer DLEs which are located on the same link. The second
sub-problem deals with the ability to establish real-time channels between two pcer DLEs
which are located on two different links. Since the first sub-problem is more likely to happen
than the second one, the channel establishment procedure and the resource management
for the channels of two peer DLEs on the same link should be designed cfliciently. For the
second sub-problem, we can apply the proposed distributed route-selection scheme to solve
the inter-cell time-critical communication problems.

The communication capacity of each link is divided into two parts. One part is concerned
with intra-link communication which is managed by the local LAS (i.e., LCU). The other
part deals with inter-link communication which is managed by a table-driven distributed
route-selection scheme (Chapter 5). In other words, all intra-workcell communication be-
tween two peer DLEs on a link are scheduled by the LAS on that link. The inter-workcell
real-time communication between two peer DLEs on two different links are managed by
the distributed route-selection algorithm, and scheduled by the LAS of cach link of the
path over which the corresponding channel runs. The fraction of the link capacity assigned
to each of these two parts depends on the distribution of communication demand on each

link. That is, the LAS of a link can reserve a different fraction of link capacity for local
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(or intra-link) communication based on the characteristics of local communication demand.
Since communication traflic may vary, the reserved capacity may also vary.

The chief advantage of dividing the link capacity is that we can have a fast channel
establishment procedure for intra-cell channels without triggering the expensive global op-
erations for keeping the route-selection tables up-to-date. Therefore, the route-selection
tables need not to be changed due to the addition/deletion of intra-cell real-time channels,
i.e., the route-selection tables for inter-cell real-time channels will be more stable. The
proposed solutions to the two sub-problems are described in detail in the following two

subsections.

6.3.1 Intra-link Communication

Intra-link (intra-cell) communication occurs between two peer DLEs on the same multi-
access link., This type of communication can be either connection-oriented or connectionless,
Since real-time communication requires a bounded delay in message delivery, we need to
reserve all the required resources in advance in order to guarantee that all messages can
be delivered before their deadlines. This implies that real-time communication must be
connection-oriented. We will use the schemes proposed in Chapter 2 and 3 to provide the
intra-cell real-time communication. By considering the LAS equivalent to the LCU in the
proposed schemes, intra-link real-time commaunication will be handled by the LAS DLE
on the corresponding multiaccess link, because the LAS is designed to be the local control
entity for scheduling messages on that local link under the FieldBus protocol [3, 5, 6].

The operations of the channel establishment procedure in Chapter 2 and 3 for the peer
DLEs are the same as those in the description of the draft proposal [3,5,6]. That is, the
source DLE will make a channel establishment request which includes necessary information
for establishing the channel according to the FieldBus protocol, such as a frame control
field, the destination address, and the quality of service. In order to support real-time
communication, the traflic pattern and the resources requirement also need to be specified
in a channel establishment request message. That is, in addition to the required information
in the draft proposal, each node needs to compute a MTRT (maximum token return time)
and RTIHT (real-time token holding time) and include them in the channel establishment
request message which is sent to the LAS.

In addition to the operations specified in the draft proposal, the LAS must respond to

all channel establishment requests for local real-time channels since all real-time channels
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Figure 6.1: Procedure for handling an intra-link channel establishment request.

running through this local link are subject to its approval. Note that the LAS's approval
is not required for non-real-time channels since no resource has to be reserved in advance
for them. A channel establishment request message includes a reservation (0 or 1) field,
representing whether the local LAS has reserved the requested capacity or not. When the
LAS receives a real-time channel establishment request from a local DLE with a destination
DLE located on the same link, the LAS tries to reserve the requested link capacity and
respond to this channel establishment request. Consequently, in addition to the computation
of the corresponding set of MTRT and RTHT after adding this new channel, a real-time
channel establishment request is handled in three steps (sce Fig. 6.1), whereas a non-real-

time channel establishment request requires only two steps. First, the requesting DLE sends
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a channel establishment request to the corresponding local LAS with reservation = 0 which
indicates that the channel establishment request has not yet been approved by the local
LAS. Both the LAS and the designated receiver node receive this request, but the designated
receiver node will ignore all real-time channel establishment requests with reservation = 0.
The LAS will respond to this request by sending out the modified channel establishment
request message with the requested quality of service and reservation = 1, if the LAS can
reserve a sufficient capacity and accept this channel establishment request. QOtherwise, the
LAS will reject this request by sending a rejection message to the requesting DLE. After
receiving a positive response from the LAS, the receiver DLE will respond as described in
the draft proposal, i.c., report the channel establishment request to the destination user,
and the user will decide whether to accept this request or not. If the channel establishment
request cannot be accepted, the receiver DLE will respond with a disconnection message,
which will be reccived simultaneously by both the LAS and the requesting DLE since the
link is a multiaccess bus, The LAS will release all the resources reserved for this channel.

If there are already too many real-time channels established which have almost exhausted
all the link capacity under the control of a LAS, the LAS may try to reserve more link
capacity for local usage. However, this is subject to the availability of the remaining link
capacity under the management of the distributed route-selection scheme.

In order to be compatible with the current draft proposal, if the source DLE requires
an immediate reply for a real-time channel establishment request, the receiver DLE will
respond with an acknowledgement immediately. Otherwise, the source node will send the
channel establishment request again as specified in the draft proposal. If the addressed
destination still does not respond, the source DLE will report the failure of the destination
DLE to the user, and the LAS will stop the reservation praocess and free all the resources
reserved thus far for this particular request. When an immediate reply is required, the LAS
will respond to the requesting node in the very next time slot after detecting the required

immediate reply.

6.3.2 Inter-link Communication

The portion of link bandwidth which is allocated for inter-cell real-time communication
is under the control of one (or more) bridge(s) (FicldBus terminology) which is physically
attached to the link. If there is more than one bridge involved in the management of

inter-cell real-time communication for nodes in the corresponding cell, the portion of link
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bandwidth which is allocated for inter-cell real-time communication will be divided further
and assigned to these involved bridges. Note that in order to prevent fragmentation of
link bandwidth, the number of such bridges should be limited. Therefore, each bridge has
complete control of a certain portion of link bandwidth which will be allocated to this bridge
on a time-division-multiplexing (TDM) basis on the shared medium. From the viewpoint
of this bridge, it becomes the LCU (or LAS) of the link with a reduced link speed (because
of TDM); thus, it may use this portion of capacity to send data to any node on this link
or allow some node on this link to transmit data. Consequently, the bridge becomes an
end node of this corresponding link (with a reduced transmission speed) which behaves like
a link in a point-to-point network. Under this environment, the table-driven distributed
route-selection scheme proposcd in Chapter 5 can be used to establish inter-cell real-time
channels.

The entire operation for establishing a channel between two DLEs on different links is
conceptually similar to that when they are on the same link. The only significant difference
is that the real-time channel establishment requests are granted by all the bridges along
the route which is chosen by the route-selection algorithm, rather than a local LAS. The
real-time channel establishment procedure still consists of three steps (see Fig. 6.2). First,
the requesting DLE sends a real-time channel establishment request to a bridge on the
link. In addition to the parameters specified in the FieldBus protocol, three parameters,
S (maximum message size), p (minimum message inter-arrival time) and D {user's end-
to-end delay bound requirement), must be included in the channel establishment request
message. Note that the request can also be made without an “addressed” bridge. In this
case, all bridges attached to the link will use their real-time delay tables to determine which
bridge has the shortest-MWRT-delay-path to the destination. And this bridge (with the
shortest-MWRT-delay-path to the destination) will become the “addressed” bridge.

Since the destination DLE is not on the same local link (as the requesting DLE), the
local LAS will ignore this channel establishment request, and the addressed bridge will
reserve sufficient resources (link bandwidth) and forward this request to the next bridge
along the route which is selected according to the real-time delay tables. (Note that in the
non-real-time channel establishment request case, the bridge will also forward the request
to the addressed destination DLE, without reserving resources). If no qualified path can he
found according to the scheme proposed in Chapter 5, a rejection message will be sent to

the source node and all resources reserved so far will be released.
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Figure 6.2: Procedure for handling an inter-link channel establishment request.

Finally, after the destination DLE receives the channel establishment request, the re-
ceiver DL will report this request to the destination user who will then decide its ac-
ceptance/rejection. In case of acceptance, the destination DLE will send a confirmation
message back to the requesting DLE along the same path (but in the opposite direction)
along which the request message traveled. All the operations which are necessary to main-
tain the integrity of the real-time delay tables are performed according to the scheme in
Chapter 5. Otherwise, a disconnection message will be sent along the established path to
the source node, thus making all intermediate bridges aware of this disconnection so that
all reserved resources for this real-time channel can be released.

If the destination DLE does not exist or respond to the channel establishment request

within a timeout period, the failure of the destination DLE can be detected by the bridge
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on the same link where the destination DLE resides and will be reported to the source node
by returning the channel establishment request to the source node. The source node may

choose to retry or inform the requesting application.

6.4 Compatibility with the FieldBus Protocol

Since most parts of the FieldBus protocol have been well developed and gained general
acceptance from the manufacturing and process control communities, the proposed scheme
for real-time communication must be compatible with the FieldBus protocol. The most
notable aspects of the proposed scheme are the introduction of the real-time delay tables
for route-selection algorithm, the division of link capacity, and the difference in establishing
real-time and non-real-time channels.

Although the FieldBus protocol does not specify how the inter-cell real-time commu-
nication should be handled, it does imply this problem should be solved in a distributed
manner. Therefore, using a distributed route-selection scheme to solve the inter-cell real-
time communication problem is compatible with the FieldBus protocol.

The second difference introduced by the proposed scheme is the division of the link
capacity into two parts which are controlled by either the corresponding local LAS or the
distributed route-sclection scheme. This link capacity division can easily be accommodated
into the current protocol. In the current FicldBus protocol, the entire link communica-
tion capacity is conirolled by the local LAS, regardless of whether the communication is
intra-link or inter-link and whether it is connectionless or connection-oriented. In order to
improve the utilization and traffic balancing of the network, we introduced the table-driven
distributed route-selection scheme for inter-link real-time communication, and as mentioned
before, a portion of link capacity is controlled by the route-selection scheme {bridges). Each
LAS can still function as described in the FieldBus protocol, except that some portion of
link capacity is assumed to have already been reserved for global usage. The LAS just
follows the instruction (in the request form) of bridges (the result of route-selection al-
gorithm) when assigning the “global-usage” portion of link capacity to some designated
bridge DLE(s) and/or the application DLE(s). Since bridges are only allowed to allocate a
pre-negotiated portion of the link capacity, and never exceed it, the LAS must follow the
bridge’s instruction. At the same time, the LAS may also grant its local requests without

any further checking with bridges. The portion of link capacity which is controlled by each
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bridge can be negotiated, i.c., when a bridge becomes active, it first negotiates with the
LAS of this local link for a portion of link capacity. Then this bridge starts to build the
real-time delay tables and broadcasts real-time delay messages based on this portion of
link capacity. When this bridge (based on the result of route-selection scheme) decides to
grant an inter-cell real-time channel request, it will inform the local LAS to allocate certain
portion of link capacity (out of the part of capacity which is under contro! of this bridge)
to the source nade of the channel. Note that only the bridge on the same link as the source
node neceds to inform the LAS of that link to allocate tokens to the source node. Other
bridges do not need such operations, because they receive data from another bridge which
has its own portion of link capacity. After a channel is closed, the amount of capacity which
is allocated for the source node is returned to the control of the corresponding bridge.

From a scheduling perspective, the local LAS schedules the tokens according to the
requests granted by both itself and the bridges. Since both the LAS and the bridges
cannot exceed their pre-negotiated limits, the messages for real-time channels can always
be delivered in time once the channel has been established,

The real-time channel establishment procedure is also different from the non-real-time
counterpart. Establishing a real-time channel requires three steps, while establishing a
non-real-time channel requires only two steps. This difference comes from the fact that
a real-time channel establishment has to be granted by ecither the local LAS (intra-cell)
or bridges (inter-cell) based on the result of the route-selection algorithm. In the inter-
cell cases, the request messages will not reach the destination node before the appropriate
resource reservation has been made; thus, the procedure of handling inter-cell real-time
channel establishment requests is the same as that of the non-real-time channel.

However, in the intra-cell cases, the real-time channel establishment request is consid-
cred valid by the node where the destination DLE resides even before the local LAS reserves
resources for the request. In such a case, the destination DLE may receive not-yet-accepted
(reservation = 0) request messages, but it will ignore them. So, the real-time channel
establishment request can be processed by the DLEs in the same way as a non-real-time
channel request. The FicldBus protocol uses a state-driven procedure to manage a non-
real-time channel, which is briefly described here. As can be secn later, the establishment
of a real-time channel can also be achieved by this state-driven procedure. The source (re-
questing) node makes a real-time or non-real-time channel request, initiates a state machine

for the channel, and enters CR-sent (Connection Request has been sent) state [3,5,6]. A
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node in CR-sent state that has received a channel establishment confirmation enters DATA
state and begins transmission. On the other hand, a node receives a non-real-time or a
valid real-time channel establishment request will create a state machine associated with
this request and enter the CR-revd state. After receiving the user’s positive response to this
request, the node in CR-revd state sends out a channel establishment confirmation to the
requesting node, enters DATA state, and begins transmission. A user’s negative response
(rcject or close) to a state machine will force the node to send a disconnection message
and terminate the associated state machine. Therefore, real-time channel establishment
requests can be processed in the same state-driven model with minor modification (adding
a reservation bit) as the non-real-time channel case.

Although the real-time channels can be established by using the same procedure as the
non-real-time channel at individual nodes, the bridges and the LAS have to be equipped with
the ability to handle real-time channel requests, make appropriate reservations, and respond
to such requests adequately. The bridge DLEs also require additional functions to make
correct run-time scheduling and flow control in order to provide predictable communication
[22,23]. Although these changes to the LAS and bridge are non-trivial, as mentioned before,
they are compatible with the draft Field Bus protocol, and are necessary in order to support

real-time communication.

6.5 Simulation

In this section, we present a numerical example to show the performance of the proposed
modification of FicldBus. We use a typical manufacturing system topology (see Fig. 6.3)
as the interconnecting network for the simulation. The goal is to derive the likelihood of
accepling real-time channel establishment requests and the non-real-time traflic throughput
under different link load conditions for both intra-cell and inter-cell communication {3,5,6,
22,29]. In Fig. 6.3, cach cell represents a workeell in an AF and there is a LAS in each cell.
The LAS; represents the LAS for the backbone link.

Real-time communication in manufacturing systems is usually periodic, and the deadline
of cach message is related to the period of the message. For example, the controller of a
workcell in a manufacturing system usually must read sensors in this workcell periodically,
and these sensor data should be collected and processed before the next period begins. In

this example, each real-time channel has its own period, and in each period, a fixed amount
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of time is assigned to the source node if the channel can be established, because the size
of cach time-critical message is limited in the FieldBus and cach message may potentially
include the maximum number of bytes, This fixed amount of time is assumed to be uscd
for handling a message of 256 bytes — which includes a maximum of 128 bytes user data
for time-critical messages — and all overheads, such as token passing time, transmission
delay, and framing overheads. Connections which need to send more than 256 bytes in a
period are simulated by making multiple channel requests.

Real-time channel request arrivals are assumed to be exponentially distributed with
a fixed rate. The period of each channel is assumed to be uniformly distributed within
the range from 20 ms to 500 ms based on the nature of the manufacturing system under
consideration. In addition to the arrival rate and period, the lifetime of each channel is
assumed to be normally distributed with a mean ranging from 1 second to tens of seconds
and a small variance, since a channel is requested by a certain entity only for a limited
lifetime. For example, a robot may need a channel with a short-life device for 10 seconds
when it operates on an assembly line, but it may only need a channel with a long-life device
for the next several seconds when the transport belt is moving. Therefore, it is reasonable
to assume that the lifetime of cach kind of channel is normally distributed with a small
variance and a fixed mean. In this example, we use several different lifetime distributions,
but, as long as the total requested load remains the same, the likelihood of accepting real-
time channel establishment requests and the average maximum achievable non-real-time
message throughput do not make any significant difference.

The following figures show the probability of accepting an intra-cell/inter-cell real-time
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channel request under a wide range of requested rcal-time channel loads. When the re-
quested real-time channel load is under 100% of the link capacity, the speed of the link
is important to the acceptance probability. The reason for this tendency can be given as
follows. The requested channel load of a link is the sum of the loads of all requested chan-
nels regardless of whether they are accepted or not. Insofar as a single channel request
is concerned, the load of a single real-time channel request is measured by the number of
slots (cach of which is the time required to handle a 256-byte packet) the channel needs
per sccond or its period in terms of slots, and this load occupies a higher percentage of the
capacity of a low speed link than it does on a high speed link. Therefore, when the requested
real-time channel load is less than 100% of the link capacity (i.e., the link has some unused
capacity), the probability that a new requested channel cannot be accommodated in the
remaining capacity of a low speed link is much higher than a high speed link.

Figs. 6.4 and 6.5 show, respectively, the likelihood of accepting real-time channel estab-
lishment requests and the average maximum achievable non-real-time message throughput
for intra-cell communication. As can be seen in Fig, 6.4, the higher the link speed, the
higher the acceptance probability. ‘The non-real-time message throughput has the oppo-
site trend. In Fig. 6.5, the low speed link has a higher non-real-time message throughput
in terms of percentage of the link capacity, since a smaller percentage of link capacity is
rescrved for real-time communication.

Figs. 6.6 and 6.7 show, respectively, the likelihood of accepting real-time channel estab-
lishment requests and the average maximum achievable non-real-time message throughpui
for inter-cell communication. In this example, we use a 4 Mbps backbone te connect 10
workcells, and three different link capacities for channels within a workeell, i.c., 128 Kbps,
256 Kbps, and 512 Kbps. In our strategy, inter-cell and intra-cell communications do not
interfere with cach other, since they use different portions of the link capacity. These two
figures follow the same trend as Fig. 6.4 and Fig. 6.5. However, the percentage of real-time
channel establishment requests accepted drops much faster for inter-cell channel requests,
since an inter-cell channel can be established only if all links on the path of the channel
have sufficient capacity to support this channel, while an intra-cell channel only needs one
link which has sufficient capacity to establish. Because a smaller percentage of link capacity
is reserved for real-time channels, the average maximum achievable non-real-time message
throughput is higher in the inter-cell communication case (as can be seen from Figs. 6.5

and 6.7).
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6.6 Conclusion

In this chapter, we proposed a strategy to handle real-time communication under the
I'ieldBus protocol which provides end-to-end delivery delay guarantees for time-critical mes-
sages. This strategy provides a fast lacal mechanism for establishing intra-workcell real-time
channels, while supporting global inter-workeell real-time channels. The proposed strategy
is fully compatible with the current draft proposal of FieldBus protocol, and also provides
flexibility for the choice of scheduling algorithms, adaptability for different traflic loads.

Numerical examples are also given based on a typical manufacturing network.



CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary of the Contributions

This dissertation has treated a new and increasingly important subject, real-lime com-
munication with statistical performance guarantees. The main contributions are summa-

rized as follows.

Channel-based statistical real-time channels: The channel-based scheme developed
in Chapter 2 can provide real-time communication services with statistical and abso-
lute performance guarantees for multiaccess network environments. Since no complex
scheduling algorithm is required at the node level, the channel-based scheme can be
implemented on a very simple node which may have only little computing power. In
addition to the ability to provide performance guarantees, the proposed scheme can
also improve network utilization by using statistical (as opposed to hard) real-time
channels. Our simulation results have also shown that the proposed scheme is effective

and eflicient in supporting both real-time and non-real-time communication,

Channel-multiplexing strategy: This strategy takes advantage of multiplexing real-
time channels originating from the same source node to reduce the link capacity
that needs to be reserved and thus improve the overall network utilization. In addi-
tion to improving of network utilization, this scheme can also prescrve the capability
of independent addition/deletion of real-time channels and can provide performance

guarantees.

Multiple-Due-Date (MDD) scheduling algorithm: The MDD algorithm proposed in
Section 3.3 can solve the frame-dependency problem which is common in many video

applications. By combining MDD with channel-multiplexing, the integrated scheme
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can significantly improve the network utilization and, at the same time, provide perfor-
mance guarantees even in the presence of frame-dependency. Our simulation (motion
video) results have shown that the integrated scheme can reduce the link capacity
that needs to be reserved to the level of average real-time iraffic from the original
worst-case level of traflic. This reduction is practically important since the capacity

reserved in the worst case is often significantly larger than that in an average case.

Distributed route-selection algorithm: The route-selection strategy studied in Chap-
ter 4 can guarantee to find a “qualified” route, if any, satisfying the performance
requirement of the requested channe! without compromising any of the existing guar-
antees. The proposed scheme can also eliminate the common reliability /performance
bottlencck of a centralized route-selection scheme, while improving efficiency over the
centralized and other distributed schemes. Although the proposed solution starts
with searching all possible routes in parallel, it prunes infeasible routes quickly and
its worst-case operational overhead is shown to be only a linear function of the number

of links in the network.

Table-driven distributed route-selection scheme: This scheme is designed to support
real-time channels with limited, yet important, types — like interactive video —
of traflic-generation behaviors. By supporting only limited types of traflic, we can
improve the efliciency and performance of the route-selection scheme significantly.
The proposed scheme uses the Bellman-Ford shortest path algorithm to build real-
time delay tables, and hence, can solve the route-selection problem by a simple table

look-up.

FieldBus application: FicldBus is a new industrial standard which is designed to sup-
port time-critical communication in process control and manufacturing systems. In
Chapter 6, we show that our real-time channel scheme can be used with the FieldBus
protocol to enhance the capability of providing real-time communication in manufac-

turing systems.

7.2 Future Work

In this dissertation, we have studied the problem of providing rcal-time communication

with statistical performance guarantees. However, there are still many unsolved problems
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and issues associated with real-time communication with performance guarantees. The

problems listed below are some of them.

Fault-tolerance of real-time channels: Fault-tolerance is an important issue for real-
time communication. If nodes/links on the route of a real-time channel fail, the system
has to be able to recover quickly from the faults. Conventionally, we either establish
multiple routes in advance or try to find an alternate route after the failure. Thus,
the system will suffer cither low network utilization due to over-reservation or a long
recovery latency because of the channel establishment upon detection of each failure.
By using real-time delay tables, we may be able to develop a scheme which can choose

a qualified alternate route using a simple table look-up.

Dynamic routing of real-time channels: The route-selection problem we have studied
so far is based on the assumption that the network topology is static, i.e., does not
change unless a failure occurs. However, if one of the communication peers is a
moving object, such as a vehicle in a cellular communication environment, the static
assumption does not hold. Therefore, a new route-selection policy must be developed

to support such an environment,

Implementation tssues: In this dissertation, although we have presented most of our
approaches in the form of procedures or flow-charts and provided many simulation re-
sults, we still placed more emphasis on analytical rather than implementation-oriented
issues, It is important to have thorough knowledge of implementation-related issues.
Tor example, we need to know how to obtain and also improve the approximation of the
“typical” input traffic distribution through experience and experiments. Experiment-

based studies may help us achieve this goal.

Applications: Since traflic specifications and performance requirements vary from appli-
cation to application, it is not feasible to define a universal optimal network protocol
and hardware structure for all applications. Therefore, the integration of the pro-
posed scheme with various applications and the necessary modification due to the

requirements of specific applications are important to the utility of our schemes.



APPENDIX A

List of Symbols and Acronyms

LAN
MDD
FEDD

Sma::

Brmaz
Gmar
TTRT
THT
MTRT
RTHT
Lcu

Pmu.r:
det

G

RBU
MTRTy
RTHTN
MTRT®
RTHT?
N

X

Local area network.

Multiple-due-date scheduling algorithm.

Earliest-due-date first (deadline-driven) scheduling algorithm.
User-specified delay bound.

User-specified performance-related probability.

Maximum packet size in Chapter 2 and 3 or

maximum message size in Chapter 4 and b,

Maximum burst size,

Maximurn packet-arrival rate,

Target token rotation time (FDDI).

Token holding time.

Maximum token return time for a real-time channel.

Real-time token holding time for a real-time channel.

Link control unit.

Maximum number of packets that can be generated by a real-time channel
in an interval of length D.

Transmission time for a maximum-size packet, i.c., packet time.
Maximum number of packets that a real-time channel can tranamit
during cach token allocation.

Average packet arrival rate of a real-time channel.
Rescerved-but-unused link capacity.

Maximum token return time for node N.

Real-time token holding time for node N.

Maximum token return time for channel n,

Real-time token holding time for channel n.

Random variable representing the number of packet arrivals

for a real-time channel within one MTRT.

Random variable representing the number of average packet arrivals

. L . . .o N
for a real-time channel within one packet time, i.e., X = 1rrr-

116



117

I : TRandom variable representing the RBU link capacity per packet time.
Y : ¥Y=R-X.
Ryar @ Maximum message generation rate.
C,(Cy) : Maximum time required to transmit a message of a real-time channel (), i.c.,

maximum service time of a message of a real-time channel (i) on a link.
p,{pi} : Minimum message inter-arrival time of a real-time channel (i).
Irim'n C 4
d,(d;) : Link (delay) deadline for a real-time channel (i), i.c.,

maximum permissible delay for a real-time channel (i) on a link.

MWHTD : Minimum worsl-case response lime,
TEC : Table of established channels,
ID : Unique identifier for a real-time channel.
TPR : 'Table of pending requests.
d® : Accumulated MWRT delay from the source node to the current node.
timeout : Expiration time of a real-time channel establishment request,
r ; MWRT of a link.
Reqg : Real-time channel establishment request message.
path : The path from the source node to the current node.
hops : ‘Total number of hops that a request message has traveled thus far.
diff : (D —d*)/hops.
LPR . List of already-processed requests.
Reply : Reply message of a real-time channel establishment request.
APRS : ARPANET’s previous routing strategy.

TM : ‘Table of MWRTSs.
TEXC : Table of existing channels,
RTDT : Real-time delay table.
AFF :  Automated factory.
DLE © Data-link entity.
LAS : Link active scheduler,
LM . Link master.
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