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CHAPTER 1

INTRODUCTION

1.1 Motivation

The computing speed of a single computer has been greatly improved over the last two
decades. However, there are intrinsic limitations in the computing capability of a single
computer. Computer scientists have always been exploring the possibility to make multiple
computers to work in parallel to achieve better performance.

Due mainly to the availability of inexpensive, high-performance microprocessors and
new networking technology, it has recently become very attractive to link together many
autonomous computers, called computing nodes, to build a multicomputer system for better
performance. In a multicomputer, a computational task is divided into smaller modules,
and each module is assigned to a computing node. To coordinate these nodes and ensure
that they cooperatively execute a common task, there needs to be a communication network
so that any node can send messages to any other node. In most situations, these computing
nodes do not work independently. One node may need to wait for messages from some
other nodes to continue its work. Therefore, if communications are not done efficiently, the
overall computing performance of a multicomputer can be seriously degraded. This has been
recognized as a major bottleneck in the performance of existing multicomputers [25, 66, 42].

The communication issue becomes even more of a concern if there are a large number
of nodes trying to send messages to other nodes (almost) concurrently. This occurs quite
often if many nodes need to exchange their partial results or synchronize their executions.
Consequently, a congestion, which is similar to a traffic jam, in the network occurs and
messages may need a long time to get through. Worse yet, before these messages reach
their destinations, many nodes cannot continue their computation and thus, the overall

performance of the multicomputer suffers. It is therefore important to irnprove the network’s



ability to handle this kind of concurrent traffic arrivals.

1.2 Preliminaries and Previous Research

1.2.1 Multicomputer Networks

Our research focuses mainly on multicomputer systems with a large number of processor
nodes. In these systems, instead of global memory, cach processor has its own local memory,
so cach processor does not have immediate access to all of the available data. If a required
datum is not in a processor’s local memory, it must request and reccive the datum from
another processor whose memory stores the datum. The processors are connected via a net-
work for such communication. We will only deal with direct networks, in which processors
communicate with one another by using dedicated communication links. In contrast, in an
indirect network, processors communicate through a series of intermediate devices, and is
often referred to as a mullistage interconnection network.

In our study, we will focus on the network topology family called k-ary n-cubes, and
particularly, binary hypercubes where £ = 2, and meshes where n = 2. A binary 4-cube
is shown in Fig 1.1, and a 4-ary 2-cubes shown in Fig. 1.2. An example of the existing
multicomputers using the binary hypercube topology is the Cosmic Cube [96]. On the

other hand, the J-Machine [84)] uses a mesh-like network with n = 3.

1110 1111

1001

Figure 1.1: A binary 4-cube.
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1.2.2 Communication Mechanisms
Switching Methods

There are four basic switching methods for interprocessor communication in multicom-
puters: message switching, circuit switching, virtual cut-through, and wormhole switching.

Message switching behaves in a store-and-forward manner, analogous to the usual mail
service. This method is generally advantageous when messages are short and/or infrequent.
Minimum message latency is proportional to the product of the number of hops and the
message length.

Circuit switching behaves like telephone systems. A path from the source to the desti-
nation is initially established and the circuit is held until the entire message is transmitted.
This method is generally most effective when messages are long and/or infrequent. Mini-
mum message latency is proportional to the sum of the message length and some constant
(> 1) multiple of the path length.

Wormbhole switching attempts to combine the benefits of message switching and circuit
switching. The message is broken into small parcels called flow control digits, or flits,
which are pipelined through the network. As soon as enough routing information becomes
available at an intermediate node and a corresponding output link is free, forwarding of
flits begins even before the entire message is received. If no out-going link is free, flits are

buffered at intermediate nodes. If the buffers are not large enough, the message will be



buffered across several intermediate nodes, thus holding the links between them. Minimum
latency is proportional to the sum of the message length and the path length.

Virtual cut-through is a special case of wormhole switching in which the buffers at any
intermediate node are large enough to hold the entire message. There is no link held when

messages are blocked.

Virtual Channels

A virtual channel is a logical entity associated with a physical link used to distinguish
multiple data streams traversing the same physical channel. Messages in virtual channels
are time-multiplexed over the physical channel by the underlying flow-control mechanism.

Virtual channels are used for deadlock avoidance by imposing routing restrictions [24].
They can also increase network throughput by reducing physical link idle time [27], espe-
cially in wormhole-switched networks. If virtual channels are not used in wormhole-switched
networks, when a routing header blocks, all physical links in the path are idle until the
header can advance. When virtual channels are used, other messages can use these physical

links while the blocked header waits.

1.2.3 Traffic Models

In this dissertation, we will mostly discuss the network transient behaviors under heavy
communication traffic arrivals. A group of messages which are sent through the network
in a small time span is called a communication mission, or mission for short. The time
required for a network to complete a mission is called makespan. Once the communication
mission is in progress, no additional messages are allowed into the network. This was called
the non-renewal context in [45] and had been introduced in [111, 110] for synchronous
communications. This traffic model was also used in {103, 53, 54, 61, 113].

The opposing context to the non-renewal context is called the renewal context [45], in
which messages are generated and allowed into the network continually and asynchronously.
Analysis of the renewal context is mostly applied to situations in which the system has

reached a steady-state [82, 25, 26, 27, 42, 43, 1].

1.2.4 Traffic Flow Control

In a multicomputer network, traffic flow-control mechanisms include message routing

algorithms, message scheduling policies, and in the case of virtual-channel networks, time-



division multiplexing methods. Flow-control mechanisms have little to do with the switching
method used in a network. In general, any flow-control mechanism can be used with all

four switching methods mentioned above.

Routing

Routing is the process of determining the path for a message to traverse in order to
reach its destination. Routing decision can be made using a centralized algorithm, which
globally coordinates the paths for all messages, or using a distributed algorithm, which
makes routing decisions locally on each processor node.

A centralized algorithm is useful only if the traffic pattern of a set of messages is known a
priori, or the network load condition is stored in a routing table whose contents are updated
regularly. Wlen using a centralized routing algorithm, message paths can be chosen to
minimize contention so that the performance can often be optimal or near-optimal [103, 53,
54, 16]. For on-line applications, the information required to perform centralized routing is
not easily obtained, and hence, a distributed algorithm is more practical.

Distributed algorithms can be oblivious, in which a fixed path is chosen for a given
pair of source and destination nodes regardless of the network traffic condition. This type
of algorithms make poor use of network bandwidth, thus blocking messages even when
alternative paths are available. They are also particularly susceptible to component failures.
One of the most commonly used oblivious routing algorithms for k-ary n-cubes is the e-cube
algorithm. Routing proceeds traversing a fixed sequence of dimensions. When the difference
in the address of the current node and that of the destination node is 0 in dimension ¢, the
message is said to have {raversed dimension i. Once all dimensions are successfully traversed,
the message is at the destination node.

In contrast, adaptive algorithms can use alternative paths between communicating pro-
cessor nodes, making more efficient use of network bandwidth and providing resilience to
failures. When an adaptive algorithm is used in a k-ary n-cube, the traversal of dimensions
is not fixed in a particular sequence. Adaptive routing algorithms have received considerable
attention from researchers [18, 32,44, 5, 8, 11, 12, 20, 22, 23, 37, 36, 49, 48, 52, 56, 60, 83, 90],
and can be further classified as fully or partially adaptive. A fully adaptive algorithm can
use all possible paths between the source and destination, and requires certain mechanism
to prevent a livelock. For example, in [18], the algorithm adds an extra field to the message

to record its routing “history”. A partially adaptive algorithm explores a subset of possible



paths, e.g., the shortest ones only, and is generally of lower complexity than a fully adaptive
one.

Although most simulation studies have shown adaptive algorithms to have superior
performance over oblivious algorithms, the practicality of building an adaptive network
router has been questioned due to the router’s complexity. Also, adaptive routers must make
more complex decisions and maybe slower, hence offsetting their performance advantages
over oblivious routers. However, some of the most recent high-performance routers [10, 31]
are able to support less complex adaptive routing without incurring significant overhead over

oblivious routing. This demonstrates the feasibility of low-complexity adaptive routing.

Message Scheduling

Message scheduling is the process of determining which message is allowed to access
communication resource in case of contention. In effect, a message-scheduling policy or-
ders messages in the queues. Message scheduling policies can also be cither centralized or
distributed.

In centralized policies, full knowledge of traffic patterns and message arrival times is
necessary. The problem is treated as a classical scheduling problem [41, 81] for gencral
traflic patterns, or as an integral part of routing algorithms [103, 53, 54, 61] for some
specific traflic patterns.

In distributed policies, only the information alrcady contained in a message is avail-
able to a scheduler on a processor node. Research on distributed message scheduling has
been mostly in the computer network literature [112, 116, 15]. On a multicomputer, most
low-complexity scheduling policies can be implemented with small modifications to the ar-

chitecture of message queuing mechanisms [27, 28].

Time-Division Multiplexing

In a network with virtual channels, time-division multiplexing methods determines the
way messages in different virtual channels are time-multiplexed over a physical channel.
Usually, messages are partitioned into flits and multiplexing methods determines the order
in which the flits from different messages access the physical channel.

Due to the complex nature of multiplexing, multiplexing methods are rarely central-
ized. Also, since flit multiplexing is performed on a flit-by-flit basis, a feasible multiplexing

method must be of very low complexity and incur extremely low overhead. Time-division



multiplexing has been discussed mostly in the literature related to the ATM networks [88].
On a multicomputer, several low-complexity multiplexing methods have been discussed in

[43]. A more complex, age-based method was used in [27].

1.2.5 Task Mapping

Before executing a task, if there is sufficient knowledge of the behavior of the task, then
this task can be mapped onto the multicomputer to improve their run-time performance.
In a multicomputer system, a task is usually decomposed into a set of cooperating task
modules which are then assigned to a set of processors. Therefore, a task-mapping problem

is essentially a module-mapping problem.

Models and Formulations

As shown in the survey by Norman and Thanisch [85], the problem of task mapping
has been addressed by numerous researchers using a wide range of models. They can be

generally categorized into 5 basic types [85].

e Model 1: No precedence relationship among modules

Model 2: Precedence relationship but with no communication cost

Model 3: Precedence relationship and with communication delay

Model 4: Both communication costs and computation costs

Model 5: Communication costs only

Model 1 is the simplest and most computationally tractable of all. Each of the modules
are executed sequentially on a single processor and there is no inter-module communication.
It also often referred to as event parallel [91] and related to the bin-packing problem [41].
Theoretical results and performance bounds regarding this model have been derived in
[14, 47, 63]. Some researchers [65, 410] have also extended Model 1 to allow certain constraints
such as on the locations of modules that can be mapped to.

In Model 2, the modules communicate results to other modules on their completion of
execution, and the structure of the computation is represented as a directed graph in which
a directed arc connects a pair of modules if and only if the module at the source of the arc
requires the results of computation from the module at the destination of the arc. However,

it is assumed that there is no communication cost. Since there is no communication delay,



processors are never idle waiting for messages to transmit, but can be idle waiting for a
precedence relation to be satisfied. Complexity results related to this model were presented
in [40, 51, 30]. Algorithms or approximate algorithms for this model include those discussed
in [19, 58, 67, 39].

Model 3 is an eluboration of Model 2 by adding a weight on each arc of the task graph
to indicate the cost of an instance of communication. Complexity results of this model were
reported in {95, 87, 64]. Approximation algorithms were discussed in [87, 105, 73, 59], and
some heuristics can be found in {115, 6].

Models 4 and 5 differ from Models 2 and 3 in that modules arc mostly represented by
undirected graphs. They are often used for modeling computations at a coarser granularity
where there are predictable communication patterns.

Model 4 can be typified by Stone’s [101] model, in which there is a computation cost
associated with cach module and a communication cost associated with each message. The
total cost of a mapping is the sum of all the computation costs and communication costs.
Results based on Stone’s model were also presented in [102, 9, 106, 94, 50].

In cases where computation and communication costs are not incurred sequentially, c.g.,
in parallel rather than serial programs, Stone’s model is not easily applicable since commu-
nication costs and computation costs are no longer additive. It may be more practical to
find minimum communication cost mappings without considering computation costs, and
hence, Model 5 is used. Models of this category often include considerations of some under-
lying processor architecture. The problem becomes that of mapping an undirected graph
of modules into an undirected graph of processors so as to minimize the communication
overhead. The overhead is typically defined as some mismatch between the edges of the
processor graph and the edges of the task graph. As Fox [38] observed in a survey of paral-
lel applications, 76% of real parallel programs can be considered as synchronous or loosely
synchronous. The programs would be executed on a multicomputer by regular data decom-
position with one module per processor and approximately an equal amount of computation
per module. Also, as a result of global or pairwise synchronizations between modules, the
execution would proceed mostly in a lock-step manner. Therefore, the problem is reduced
to mapping modules to minimize communication overhead. Results based on this type of
models include those presented in [7, 9, 62, 75, 74].

Other work on task mapping that uses models not easily classified includes [57, 78, 79,

21, 34]). A model which considers the tradeofl between processor and memory allocation is



used in [89].

Uncertainty in Task Behavior

Most work in the task mapping literature has assumed the availability of an cxact task
graph. However, most compilers are not able to generate such a task graph since the task
graph itself may even be underivable before the program runs. However, the effectiveness
of mapping algorithms may not be guaranteed in the presence of uncertain information on
task behavior. Only a few researchers have addressed this issue. In (80], a model was used
to allow probabilistic branching, whereas in [100] the worst-case performance of several

heuristic approaches were analyzed.

1.3 Research Objective and General Methodology

Our goal is to optimize the performance of multicomputers by improving the perfor-
mance of exchanging messages among computing nodes. Especially, we will focus on situ-
ations where there are a large number of messages sent concurrently among nodes. This
goal is achieved by exploiting communication locality through (i) on-line traffic flow-control
mechanisins during the task execution, and, (i) module mapping prior to the execution
assuming the sufficient task behavior information is given.

For on-line flow control, our main focus is on low-complexity, distributed schemes which
do not reqguire any extra field in the default message format, and can be implemented on
existing routers without incurring noticeable run-time overhead. We first study the effects
of combining routing algorithms with message scheduling policies in a binary hypercube
network with large-buffer switching methods such as (store-and-forward) message switching
and virtual cut-through. In mesh networks equipped with virtual channels and wormhole
switching, we study the effects of combining message-scheduling policies with time-division
multiplexing methods. Performances of different combinations are evaluated by simulations.

Our task-mapping approach takes into account the underlying flow-control mechanisms
in a mullicomputer. We use a model which can be classified as Model 5 defined in [85]
and consider only the communication performance of a task. However, unlike most pre-
vious work, the cost function itself is not our final objective. The quality of mappings is
eventually determined by performance measurements through simulating module commu-

nications during task executions. A cost function is selected only if mappings optimized



10

with respect to it can consistently improve the run-time performance. The effect of inac-
curate task-behavior information is also considered. In the case of binary hypercubes, we
also investigate the problem of mapping communicating subcubes, which is a generalized
version of the task mapping problem. Both empirical methods and mathematical analyses

are adopted in our study.

1.4 A Map of the Dissertation

The overall organization of this dissertation is shown in Fig. 1.3.

Congmtio&
Flow Control Task Mapping
Hypercube Mesh Hypercube Mesh Subcube Mapping
(Chap.2) (Chap.3) (Chap.4) (Chap.5) (Chap.6)

Figure 1.3: Organization of the dissertation.

In Chapter 2, we propose and evaluate low-complexity, low-overhead schemes for dis-
tributed message scheduling and routing in binary hypercube multicomputers equipped
with a hardware communication adapter at each node. We comparatively evaluate the per-
formance of different scheduling—-routing combinations for several switching methods, such
as message switching, circuit switching and virtual cut-through, supported by a commu-
nication adapter at each node. (Virtual channel networks with wormhole switching have
very different characteristics and are thus covered in Chapter 3.) The evaluation results
have indicated that a combination of carefully-chosen, low-complexity distributed message
scheduling and adaptive routing can offer close to optimal performance in most situations.
In case of heavy transient traffic, a low-complexity partially-adaptive routing scheme, when
combined with an appropriate message-scheduling policy, can outperform a fully-adaptive
routing scheme.

In Chapter 3, we propose and evaluate several low-complexity, low-overhead flow con-
trol mechanisms for a mesh multicomputer network equipped with virtual channels. In

such a network, virtual-channel flow control is accomplished at three levels: message rout-
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ing, message sequencing, and flit multiplexing. Under the fixed-path e-cube routing in mesh
multicomputers, we evaluate the performance of several on-line message scheduling and flit
multiplexing methods. In the presence of concurrent inter-node communication traffic, we
found that unless proper flow-control mechanisms are employed, adding more communica-
tion resources, such as links and buffers, can actually degrade the network performance. A
good message-sequencing policy combined with proper flit multiplexing is shown to improve
performance by more than 30% .

In Chapters 2 and 3, we discuss on-line flow-control mechanisms. From Chapters 4 to
6, we address the issues of exploiting communication locality before the actual execution
through task mapping. In Chapter 4, the problem of mapping task modules into a binary hy-
percube multicomputer is investigated. A concept of indirect optimization is introduced and
a function, called communication bandwidth, is proposed as the optimization cost function.
The mappings obtained from optimizing this function are shown to significantly improve
the actual communication performance (i.e., makespan) over random mappings. We also
extend our study to include the case of uncertain task behaviors resulting from link failures
and adaptive message routing algorithms.

In Chapter 5, we address the task mapping problem in a virtual-channel network as
defined in Chapter 3. The system under consideration is a mesh-connected computer with
wormhole switching and virtual channels. In such a system, it is difficult to define and
cvaluate a meaningful performance objective when one has to consider many messages being
transmitted concurrently. Therefore, an approximate cost function must be chosen so that
when a module mapping is optimized with respect to the function, the actual performance
of the mapping is also optimized. Several cost functions are tested using the simulated
annealing optimization process. The mappings found through optimizing each cost function
are then fed into a flit-level simulator to evaluate their actual performance. One particular
cost function, f7 | fs, is found to be very effective. Given approximately the same amount
of computing time in each case, mappings optimized with the function outperform these
found through optimizing other cost functions. Also, an optimization process using this cost
function can continually improve the performance as the given computing time increases.

In Chapter 6, we study the problem of mapping concurrently-communicating subcubes
within a hypercube multicomputer so as to minimize inter-subcube communication traffic.
The communication between subcubes is determined by a routing algorithm which in turn

depends on the schemes proposed in [86, 18]. Our objective is to minimize the total inter-
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subcube communication bandwidth required. This function was shown in [107, 109] to be
a good indication of the quality of mappings for concurrently-communicating modules.

We derive some important mathematical properties of subcube mappings. Methods
arc proposcd to modify cxisting optimization algorithms for finding optimal mappings. A
subset of all possible mappings, called parallel mappings, are found to possess some desirable
properties. For some special case, optimal parallel mappings are also proved to be optimal
among all mappings. We also evaluate several heuristic algorithms via simulations and show
that, in most sub-optimal mappings found, parallel mappings still outperform non-parallel
ones.

Chapter 7 concludes this dissertation with a summary of contributions and possible

directions to extend our research.



CHAPTER 2

COMBINED ROUTING AND SCHEDULING OF
CONCURRENT COMMUNICATION TRAFFIC IN
HYPERCUBE MULTICOMPUTERS

2.1 Imntroduction

As pointed out in [25], the critical component of a multicomputer is its interconnection
network. Many algorithms are communication rather than processing limited. Some fine-
grain concurrent programs execute as few as ten instructions in response to a message [24].
To execute such programs cfficiently, the communication network must be able to handle
heavy concurrent traffic.

Message or traffic routing in multicomputer interconnection networks has received con-
siderable attention [66, 93, 68, 42, 46, 103]. Most of the existing work has assumed inter-
node communication traffic to be composed of a set of steady, independent flows. Network
throughput or mean message latency over a certain period of time is often used as a per-
formance measure. This type of performance evaluation reflects more of the “steady-state”
behavior of a network. However, in the task level — where a computation task is decom-
posed into a set of communicating modules — intermodule traffic, and hence interprocessor
communication when the modules are assigned to different processors, tends to be bursty.
A large number of messages are often generated within a short span of time. Further-
more, delivering each of these messages may not be mutually independent. Yor instance,
an algorithm may not continue its execution until the partial results are collected from, or
exchanged among, the participating modules. Fig. 2.1 shows a multicomputer with four
processors connected as a two-dimensional hypercube, or a @J». Suppose at time 7" = 0,
the module assigned to processor 00 sends its partial results to all the other modules on

processors 01, 10 and 11. The modules need to receive these partial results to complete

13



their exccution. Fig. 2.2 shows the space-time diagram of this set of concurrent messages in
a (store-and-forward) message-switching network. Here message 00 — 01 is given priority
over message 00 — 11 when both are contending for link 0%, or the link between nodes 00
and 01. Obviously, the time when message 00 — 11 reaches its destination plays a major
role in determining the overall completion time of the task.

00 01

o Link 0* Q

Link *0 Link *1

1"

Figure 2.1: An cxample Q),.

0010 01 HH[[M[[[IHM
00to 11 &\:\&\\\\‘%\\\\\\x

oo

uneer - [[IIESNNNNSN

Link *1

ueco [

Link 1*

makespan

Figure 2.2: An example demonstrating the definition of makespan.
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We define a communication mission, or mission for short, to be a set of messages to
be exchanged among the nodes such that the completion of delivery of these messages
as a whole is crucial to the completion of the whole task. The makespan of a mission
denotes the time span since the arrival of the first message until the last message reaches
its destination. (A formal definition of makespan will be given in Section 2.2.) Note that in
the above example, if message 00 — 11 is given priority over message 00 — 01 in Fig. 2.2
instead, then the makespan of the mission consisting of three messages will be reduced.

In the execution of parallel algorithms, such as parallel state-space-search [92, 4], parallel
sorting [104] and parallel Fourier-Transform [29], their communication behavior in a multi-
computer network can often be characterized as a series of communication missions. In the
case of missions containing heavy concurrent traffic, the network may become congested and
turn into a bottleneck of execution efficiency. We will thus address the problem of message
routing and scheduling in situations where there may be heavy concurrent communication
traffic in the system, i.c., there exists a high possibility of contention for use of network re-
sources. Qur goal is to improve communication efficiency by implementing low-complexity,
distributed message scheduling and routing in a distributed-memory system equipped with
a communication adapter like SPIDER [31] at each node.

SPIDER (Scalable Point-to-point Interface DrivER) is a front-end hardware adapter that
provides scalable communication support for point-to-point distributed systems. The micro-
programmability of SPIDER enables a system to implement different topologies, routing
algorithms, and switching methods. We will focus on the case where SPIDER is configured
to work in k-ary n-cubes in general, and binary n-cubes in particular. Large-buffer message
switching and virtual cut-through as well as circuit switching will be considered for the
hypercube topology. Wormhole switching is found to be more suitable for high-radix low-
dimension hypercube networks (such as meshes) with multiple virtual channels, and is
covered in Chapter 3.

The work described here differs from others in several ways: (1) it stresses the impor-
tance of combining low-complexity adaptive routing with message scheduling as opposed to
complex, fully-adaptive routing; (2) it zooms on the case of bursty traffic where a network is
congested with concurrent communication traffic; and (3) it deals with the transient (rather
than steady-state) performance of a network.

This chapter is organized as follows. Necessary notation and definitions are introduced

'Here the arrival of a message means it is ready to be sent out of the source node.
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in Section 2.2. In Section 2.3, the proposed scheduling policies and routing algorithms are
described. Section 2.4 deals with the performance evaluation of various scheduling-routing

combinations. This chapter concludes with Section 2.5.

2.2 Notation and Definitions
The following notation will be used in this chapter.
e m,;: message ¢ of length £;,, 0 <1 < M.

e M: the number of messages arrive in [0, AT).

[t,t+ AT]: a mission time frame or time window during which messages of a mission

arrive. Without loss of generality, we will assume ¢ = 0 from now on.
o {%: the arrival time of m,, i.e., the time when m; is ready to be sent.

o 1f: the completion time of m;, i.e., the time when m; reaches its destination.

‘or a set of M messages {m;, 0 < i < M}, each with arrival time t¢, and completion
time t¢, the makespan of this set, {, is defined as orsni;z)gl{tf} - 0157321}‘,{!?}. Given this set
of messages to be exchanged among the nodes of a @,,, we want to minimize this set’s
makespan and hence maximize link utilization of the network. Depending on the system
implementation, we may achieve this goal with various combinations of message scheduling
and routing.

A network with a mission arrival can be viewed as a physical system with a certain
amount of injected energy, i.c., the total communication bandwidth required for the mission.
f is essentially the time span required to dissipate the injected energy. Given the same
mission, different message scheduling-routing coinbinations will affect the way the energy
is dissipated in the system, thus resulting in different { values. For example, in Fig. 2.3,
the remaining bandwidth of a mission is plotted against time for the hypercube under
two different message scheduling policies. Although the initial bandwidth is the same,
the rates of bandwidth decrease are different. Measuring the network performance using
this approach is analogous to evaluating the transient response of an electronic component
to step-function inputs. Similar to the case with an electronic component, as we shall

demonstrate later, a network that performs well under this transient condition will perform

well for most of the time under a steady-state condition.
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Figure 2.3: The remaining bandwidth against time under two different message
scheduling policies.

2.3 The Proposed Message Routing and Scheduling Schemes

In this section we will describe several message scheduling policies and an adaptive
routing algorithm that can be implemented with the aid of a SPIDER-like communication
adapter. Note that in the presence of concurrent communication traffic, the system must
use a traffic control mechanism that is efficient and doesn’t cause excessive overhead. The
schemes introduced here don’t modify the underlying message format, and can all be imple-
mented with minimal hardware, or, as in SPIDER, with a simple microprogram. Also, they
don’t need additional information on the task behavior except for the one already available

in each message and each node.

2.3.1 Scheduling

We will evaluate the performance of several distributed message scheduling policies,
while focusing on non-preemptive, low-complexity policies which utilize the existing message
format. Each message has a length field as well as a destination field. The routing controller
on a node can use the information in these two fields to determine which message to be sent
first over each link of the node. The only major overhead comes from the implementation
of a priority queue for each link, which can be implemented on a SPIDER-like adapter
or by gate-level logic circuit. The time overhead can be ignored since in a SPIDER-like

adapter, message queueing and communication can be done in parallel for non-preemptive
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scheduling.

In the default, FIFO, policy, no length or destination information is used, and the
message at the front of a FIFO queue will be transmitted over a link. Also, in any of
the following priority scheduling policies, a tie is broken by the FIFO principle. With
the shortest-first (SF), and longest-first (LF) policies, messages in the queue of a link are
arranged according to their lengths. When a message arrives and the outgoing link it
requests is busy, it is entered into a priority queue. SF gives a shorter message higher
priority, while LI' awards higher priority to a longer message. The nearest-first (NF) and
farthest-first (FF') policies take the destination field of a message and calculate the Hamming
distance of the current node to the destination of the message. Entries in the priority queue
are arranged in the order of increasing (as in NF) or decreasing (as in FF) Hamming
distances.

The remaining bandwidth (RB) of a message on a node is defined as the product of the
length of the message and the remaining Hamming distance to its destination. The Smallest-
RB-First (SRBF) policy gives higher priority to smaller RB messages. The Largest-RB-
First (LRBF') policy gives priority to larger RB messages. Implementing these two policies
induccs a slightly more overhead than the other policies due to a multiplication operation
required before each message is entered into a queue. Again, with a SPIDER-like adapter,
this overhead can be ignored since qucucing and routing can be done in parallel.

Note that all of the above scheduling policies can be combined with the Earliest Due-
Date (EDD) scheduling of message transmissions. With EDD scheduling, starvation can be
avoided when a certain type of messages arrives continually. For example, with the LRBF
policy, short messages may be blocked indefinitely if long messages arrive continually. This
can be remedied by giving earlier arrivals higher priority.

The effectiveness of a scheduling policy can be measured by comparing its performance
to that of optimal schedules. An optimal schedule is obtained by assuming that the following
parameters are known a priori: t¢, {;, and the path each message is routed through. Thus,
we have a classical scheduling problem in this case. For example, when message switching is
used, by treating each link as a “processor”, and each message as a “job”, the optimization
problem is essentially a special case of the job-shop scheduling problem [41], which is NP-
hard. For other switching methods such as circuit switching and virtual cut-through, there
are no known equivalent scheduling problems, but their computational complexity is also

NP-hard. A branch-and-bound algorithm [13] is used to find optimal schedules. At each
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node in the search tree, we calculate an estimated bound to decide which node to be
expanded next. The efficiency of the algorithm depends on the accuracy of the estimated
bounds. In [108], we developed algorithms and eqﬁations to be used for computing bounds
which are then used for finding optimal schedules for message switching, circnit switching,

and virtual cut-through.

2.3.2 Routing

Onc major drawback of the e-cube routing algorithm is that the path chosen between
a pair of processors is fixed regardless of the network traflic condition. When a certain
link leading toward the destination of a message is busy, the e-cube algorithm simply holds
the message and waits until the link becomes free, even if there can be an alternative
free path. In situations where interprocessor communication traffic is light, this may not
cause any serious performance degradation. However, under heavy traffic, it can become a
major performance bottleneck. With distributed adaptive routing, a processor can select an
alternative (free) link to route a message when the originally-selected link is busy. By doing
this, it is possible that link utilization and network efficiency can be greatly enhanced.

There are numerous adaptive routing algorithms proposed for hypercubes [42]. Each
scheme has its own advantages and disadvantages. More complex routing algorithms such
as the DFS (Depth-First-Search) routing algorithm [18] require extra fields in each message
to avoid livelock and achieve the backtracking capability. The major advantage of such
algorithms is that all possible paths between source and destination nodes will be explored.
However, their disadvantages include the overhead for storing information on detouring and
backtracking, and more complex routing controllers. Furthermore, the information stored
in a message can become out-of-date before it reaches the destination. For example, at a
certain intermediate node, the routing algorithm may find all links that lead the message
closer to its destination are busy, and hence decide to take a detour, i.c., a non-shortest path.
But when the message is routed via a detour, one of the shortest paths may become available.
This can result in a waste of network bandwidth, and hence degrade the performance. Also,
unpredictable path lengths in this routing algorithm can result in inaccuracies in calculating
the RB of a message, and therefore reduce the effectiveness of bandwidth-sensitive message
scheduling policies such as SRBF and LRBF.

On the other hand, if we restrict the routing algorithm to the shortest paths only, albeit

the full connectivity of the network is not explored, the above shortcomings can be avoided.
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Besides, in a network equipped with SPIDER-like adapters, virtually no additional overhead
is added to the default e-cube routing algorithm, since no modification needs to be done on
the original message format, and the routing controller can be easily programmed with low-
complexity code. Also, it is easy to have it work in tandem with any message scheduling
policies since the length of each path is predictable. Characteristics of this distributed

routing algorithm, called the Progressive Adaptive (PA) algorithm, are described as follows.

e As in e-cube routing, PA tries to route messages from the lowest dimension to the
highest dimension based on the results of exclusive-ORing the source and destination

addresses.

e When the link corresponding to the lowest dimension is busy, the next lowest dimen-
sion is tested, and so on, until a free link is found to route the message. If no link
lecading the message closer to its destination is available, the message is blocked and

entered into a queue.

o Only one message queue is maintained on each node. All blocked messages are entered
into the queue. Their order in the queue is determined by the underlying scheduling
policy. When a link becomes free, the message closest to the head of the queue that

can use the link to move closer to its destination is routed through this link.

The performance of the PA algorithm will be compared with DFS routing and a cen-
tralized path-selection (CPS) algorithm. As in the case of finding optimal schedules, the
CPS algorithm operates on the premise that accurate message lengths are known a priori,
and assigns paths to messages to balance the traffic in the network. With concurrent com-
munication traffic, {’s are usually dominated by the most heavily-loaded link. The problem
of selecting a path in order to minimize { is equivalent to minimizing the maximum link
load, and can thus be formulated as a mini-max optimization problem. This is a special
case of Decision Problem 1 in [66], which was shown to be NP-hard. However, the true
optimal solutions may not be meaningful since { is eventually determined by scheduling
messages. Therefore, our goal is to find sufficiently good solutions that, when combined
with the branch-and-bound scheduling algorithm, can achieve near-optimal performance.
The CPS algorithm used is based on the simulated annealing method [72] and is described

in [108).
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Performance Evaluation

When the number of messages being sent concurrently into a network becomes larger,

their interactions make the network behavior too complicated to predict and analyze. This

calls for simulations to assess the performance of various scheduling-routing combinations.

Qur simulation model is summarized as follows:

We assume processors — including their routing controllers — as well as communica-

tion links to be fault-free.

Each communication link is half-duplex, i.c., at any instant of time, only one message

can be sent in cither direction of a link.

As was supported in SPIDER, the routing controller on each processor can send or
receive multiple messages at the same time, provided that the links needed are not in
use. Also, incoming message buffering/queucing and outgoing message transmission

are done in parallel for all switching methods.

For circuit switching, the “call signal” for establishing a circuit is transmitted out-of-

band, and doesn’t interfere with the existing communication traffic.

AT is relatively small, i.c., the communication traffic is highly concurrent. As a result,
we assume there can be at most one message sent from node i to node 7, ¢ # j, within
AT. If there are more than one message, they will be combined into a long message.
We use Concurrent Communication Probability (CCP) to denote the probability that
onc processor sends a message to another processor in a mission. A higher value of
CCP means heavier traffic. In the uniformly-distributed traffic pattern, ¢; is generated

by the following routine:

fori:=0to M -1
for j:=0to M -1
if i # j and randl < CCP then ¢; := rand2;

else ¢; :=0;

In the above pscudo code, randl is a uniformly-distributed random number in the

interval [0, 1], and rand2 is a normally-distributed random number with ¢ = 10 and
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o = 5 and truncated to 0 when negative values are generated. In the hot-spot traffic
pattern, the routine is similar except that the traffic is directed only to a given number

of hot spots in a hypercube.

e In all of the presented data, we set AT = 0. The results with A7 > 0 were found to

be similar with the case of AT = 0 combined with lower CCP values.

e Each data point is obtained by averaging the results of 10,000 iterations. Deviation

from the mean values is found to be reasonablly small (< 2%).

e The hypercube dimension used is 4. Results of this problem size are found to be

typical among all tested sizes and are therefore selected for presentation.

2.4.1 Scheduling

Table 2.1 shows typical evaluation results of various scheduling polices. The data shown
is obtained with CCP = 0.95 for uniformly-distributed traffic, i.c., a highly-congested condi-
tion. It is obvious that LRBF, with performance very close to the optimal schedules (OPT),

outperforms the other policies.

MS CS | VCT
oPT | 193.1 | 193.7 | 193.0
FIFO | 231.1 | 229.0 | 218.5
LK 216.8 | 221.4 | 202.5
SK 240.5 | 233.7 | 2214
FF 199.9 | 217.3 | 208.7
NF 244.4 | 232.7 | 219.5
LRBF | 195.8 | 208.2 | 195.3
SRBF | 250.1 | 231.5 | 226.6

Table 2.1: Performance of scheduling policies under the e-cube routing algorithm.

Our simulation results in evaluating the various scheduling policies are summarized as

follows:

o SI°, NF, SRBF are all worse than FIFO under all three switching methods, i.e., mes-

sage switching (MS), circuit switching (CS), and virtual cut-through (VCT). Typi-
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cally, SRBF has the worst performance among all the scheduling policies considered.
It should be noted, however, that this is not the case with wormhole switching. As
we will show in Chapter 3, SF, NF and SRBF outperform LF, FF and LRBF in a

virtual-channel network with wormhole switching.

e FF has the performance characteristics closest to LRBF. In most situations FF out-
performs LF, especially when the variance of message length is small. In message
and circuit switching, FF generally outperforms LF, meaning that the distances to
destinations have more pronounced effects. It is found that only under virtual cut-
through, LF has performance closer to LRBF when the variance of message length
is large. But as o gets smaller, it gradually becomes closer to, and eventually gets

outperformed by, FF.

¢ Under circuit switching, the performance differences are smaller for all distributed
scheduling policies. The difference between the best and the worst are only =~ 25
time units. Since messages never get buffered under circuit switching, distributed
scheduling policies can only determine the order of sending messages at the source.
It is expected that a distributed scheduling policy is less effective than a centralized

policy in this case.

e Under virtual cut-through, messages are buffered only when a cut-through attempt
fails, so the effects of distributed scheduling policies lie between those of message
switching and circuit switching. However, given the same scheduling policy, virtual
cut-through has consistently shown the best performance among the three switching
methods. It is also interesting to note that as shown in Table 2.1, in case of heavy
concurrent traffic, with a better scheduling policy such as LRBF, message switching

can approach the performance of virtual cut-through.

e In all three switching methods, network performance generally gets better if message

lengths are closer to uniform, i.e., o is small.

In Figs. 2.4 to 2.6, the performance of LRBF scheduling is compared with the optimal
schedules and FIFO scheduling under various CCP values for uniformly-distributed traffic.
Figs. 2.7 to 2.9 show the comparison for a number of hot spots with CCP = 0.8. Under
message switching, for CCP > 0.3, and in most cases of hot-spot traffic, LRBF improves

significantly over FIFO and produces schedules whose makespans are within 10% of the op-
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Figure 2.4: Uniformly distributed traffic, message switching.

240 E T T T T 7]
n"‘
215 |- rt
--.'.o -’.‘
g 190 |- o g

o .-"o.—"o..—(
g 165 | R —
= ol ,g.’:"f-"‘ -
e
115 |- G -
oA
90 ‘)\'-f-’ A —-—a OPT -
v 0:=--=0 LRBF

65 I~ G-':..‘ [ REEEEE) o FIFO =

0.0 0.2 0.4 0.6 0.8 1.0

cCcp

Figure 2.5: Uniformly distributed traffic, circuit switching.



25

215 ..
o’
= .~ A
5 190 . 7
& oS g
g 165 |- o e .
C| o &,
= 140 el K
..gl-",k'
A 7/
15 | Qe i
9,.-;'-_? K
90 - a2 A —-—4 OPT -
_‘o':,' 0-~---=0 LRBF
65 I e.':x Orrenne o FIFO .
0.0 0.2 04 0.6 0.8 1.0
ccp

Figure 2.6: Uniformly distributed traffic, virtual cut-through.
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timal schedules. Its performance is only slightly degraded under very light traffic, where all
distributed scheduling policies become less effective and degenerate into FIFO scheduling.
Performance of LRBT under virtual cut-through is very similar to the case under message
switching, which is predictable since under heavy concurrent traffic, virtual cut-through es-
sentially degenerates into message switching. In circuit switching, all distributed scheduling
policies are less effective than in other switching since messages are never buffered and are
scheduled only at the source nodes. Nevertheless, LRBF can still approach within 12% of
optimal schedules for CCP > 0.5. The only casc where LRBF does not improve significantly

over FIFO is under circuit switching and hot-spot traffic.

2.4.2 Routing

The performance of PA routing combined with the LRBF scheduling is compared against
the DF'S routing working with the LRBF scheduling, the e-cube routing algorithm with
FIFO message schedules (EQ-FIFO), and the CPS centralized path selection algorithm
with optimal message schedules (CPS-OPT). The results are plotted in Figs. 2.10 to 2.12,
for uniformly-distributed traffic, and Figs. 2.13 to 2.15 for hot-spot traffic with CCP = 0.8.

Our simulation results indicate that under all three switching methods, PA-LRBF sig-
nificantly improves over the e-cube routing in all cases and outperforms DFS-LRBF in cases
of heavy concurrent traffic. In most situations, it also approaches the performance of CPS-
OPT closely within 12% in the message switching case, and in cases of circuit switching
and virtual cut-through, within 7%.

It is only under light traffic condition (CCP < 0.4) or a very small number of hot spots
(< 4) that the DFS routing has an advantage over the PA routing. It can approach CPS-
OPT under very light uniformly-distributed traffic, and outperform CPS-OPT in casec of a
very small number of hot spots. However, under heavy traffic, the DFS algorithm does not
farc much better than the e-cube routing, especially under message switching. This indicates
that detouring and backtracking in the DFS algorithm have negative effects on network
performance when the network is heavily congested. Besides, with the unpredictability
of path lengths of the DFS routing, LRBF scheduling becomes less effective and nearly
degenerates into FIFO scheduling.

The DFS algorithm performs significantly better under circuit switching or virtual cut-
through than in the case of message switching. In fact, virtual cut-through with the DFS

routing essentially degenerates into circuit-switching in our simulations. With both of
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Figure 2.10: Uniformly distributed traffic, message switching.
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Figure 2.11: Uniformly distributed traffic, circuit switching.
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these switching methods, the DI'S algorithm either successfully routes a message to the
destination, or blocks the message at the source. Therefore, there is no bandwidth waste in
detouring and backtracking. While in the case of message switching where a message can
be blocked at any inode in thc network, taking a detour and blocking a message at a node
farther from its destination can degrade the performance. However, in implementing the
DFS algorithm with circuit switching or virtual cut-through, the information on detouring
and backtracking must be stored in the header used for establishing the path to avoid
livelock. This can become a major overhead for large networks.

From the above results, one can conclude that, to improve network efficiency under
heavy concurrent traffic, shortest-path adaptive routing combined with the LRBF message
scheduling policy can approach the performance of near-optimal centralized routing and
scheduling. Also, it is a more cost-effective alternative than a high-complexity fully-adaptive

routing algorithm such as the DFS routing.

2.4.3 Steady-State Performance

Here we compare the performance of scheduling and routing mechanisms under steady-
state traflic arrivals. Message arrivals at cach node are assumed to follow a Poisson process.
The mean latency of messages over a period of 20,000 units of time is plotted versus the
mean message inter-arrival times. When scheduling messages, the ages of messages are also
taken into account and combined with either FIFO or LRBF scheduling policies. That is,
“older” messages are given higher priority to minimize the mean message latency and avoid
starvation on continual message arrivals.

In Figs. 2.16 to 2.18, the performance of PA-LRBY, DFS-LRBF and LEQ-FIFO are
compared. Centralized schemes such as CPS-OPT are not included because their high
computation cost makes them unsuitable for “on-line” applications in which message arrivals
are continual. The steady-state results indicate that a scheme that performs well in transient
conditions also performs well in a steady-state situation. Also, as in the transient case, the

DFS algorithm outperforms the PA algorithm only under light traffic conditions.
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Figure 2.16: Stcady-state performance under message switching.
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Figure 2.17: Steady-state performance under circuit switching.
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CHAPTER 3

SEQUENCING OF CONCURRENT COMMUNICATION
TRAFFIC IN A MESH MULTICOMPUTER WITH
VIRTUAL CHANNELS

3.1 Introduction

The use of virtual channels multiplexed over cach physical channel was introduced as a
mechanism to accomplish deadlock-freedom by placing routing restrictions at intermediate
nodes [24]. Virtual channels were also found to improve the network throughput via the
increased sharing of each physical channel and the resulting reduction of message block-
ing [27]. That is, when there are multiple virtual channels per physical channel, messages
of these virtual channels are allowed to time-multiplexed over the physical channel, thus
blocking less number of messages (waiting for the physical channel to be available).

Pipelined-communication mechanisms, such as wormhole switching [24], operate based
on the principle that the overall message latency can be reduced by pipelining the trans-
mission of each message when the message must traverse multiple intermediate nodes. A
message is broken up into small flow-control digits or flits, each of which serves as the basic
unit of communication. The time taken for one flit to cross a physical channel is called the
flit time. Header flits containing routing information establish a path through the network
from the source to destination. Transmission of data flits is then pipelined through the
path immediately following the header. A time-space diagram for wormhole switching is
given in Fig. 3.1. Wormbhole routing also has the advantage of requiring only a small on-line
buffer space per node. While the pipelined nature of wormhole switching serves to reduce
delivery latency, it may also propagate the effects of such bottlenecks as blocked flits and
heavily-loaded physical channels. It is therefore important to devise a means of efficient

allocation and management of network bandwidth.

34
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Figure 3.1: A time-space diagram of wormhole switching.

The network under consideration employs wormhole switching. Each pair of adjacent
nodes are connected by a pair of uni-directional physical links/channels. A fixed number of
uni-directional virtual channels are time-multiplexed into cach physical channel. Though
most of our discussion may apply to general networks, we will focus primarily on the mesh
network topology, which has been widely used in evaluating the performance of virtual-
channel networks (25, 26]. Especially, this chapter builds on the work by Dally [27] and
Gaughan [42], where wormhole switching was found to significantly reduce message latency
if it is combined with appropriate flow control schemes. We extend their work by focusing
on bandwidth allocation through message scheduling and flit multiplexing.

In the previous related work [27, 42], communication traffic in a multicomputer network
is often modeled as a number of mutually-independent, steady flows. However, this type
of communication traffic does not always represent the real-world situation well, because
network communication tends to be bursty. Message arrival' times are often clustered in a
short period, which can temporarily saturate the network. Also, these messages may not be
independent, and their delivery time as a whole is crucial to the overall performance. This
tendency is exemplified by such algorithms as parallel sorting [104] and parallel Fourier-
Transform [29)].

In this chapter, we define a communication mission, or mission for short, to be a set

of messages to be exchanged among the task modules which have already been assigned to

'Here the arrival of a message means that it is generated and ready to be sent out of the source node.
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processing nodes in the network. During the execution of a parallel program, inter-node
communication behaviors can be viewed as several independent communication missions.
In addition to the usual mean latency, the makespan of a mission will also be used for
performance evaluation. The makespan of a mission is defined as the maximum latency of
all messages in the mission, i.e., the time span from the arrival of the first message until all
the messages reach their destination.

As pointed out in [27], the most costly resource in an interconnection network is physical
channel bandwidth, and the second most costly resource is buffer space. As shown in
the following example, without proper message scheduling and flit multiplexing, increasing
resources, such as physical and/or virtual channels, does not always improve performance,
and may even degrade performance.

In Figs. 3.2(a) and (b), two messages A (light shaded) and B (dark shaded), cach of
length 4 flits, are sent over a physical channel to the same destination. We assume that
one flit can be sent through the physical channel in a unit time. In Fig. 3.2(a), there is
only one virtual channel per physical channel, and message A is given priority over message
B. In Fig. 3.2(b), there are 2 virtual channels per physical channel, and hence, message
transmissions are time-multiplexed over a physical channel. In this case, message B arrives
al the same moment as in Fig. 3.2(a), but message A reaches its destination later by 3 unit
time. So, in this example, adding one more virtual channel per physical channel actually

degrades the performance.
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Figure 3.2: Wormhole routing with (a) single virtual channel (b) two virtual channels.
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The main intent of this chapter is to (i) explore ways of sequencing messages and flits
so as to better utilize network resources, and (ii) improve the overall network performance
when more network resources are added. Especially, we will focus on the case when a
substantial number of messages can be transmitted through the network concurrently.

The chapter is organized as follows. Basic terms and concepts necessary for our dis-
cussion are defined in Section 3.2. We formulate and analyze the problem in Section 3.3.

Simulation results are presented and discussed in Section 3.4.

3.2 Preliminaries

A k-ary n-cube consists of k" nodes arranged in an n-dimensional grid. Each node is

connected to its Cartesian neighbors in the grid. For example, a 4-ary 2-cube is shown in

Fig. 3.3.
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Figure 3.3: A 4-ary 2-cube.

A 2-dimensional k x & flat mesh is a subgraph of k-ary 2-cube, is not a regular graph,
and has less edges than the corresponding k-ary 2-cubes (no wrap links at its boundary
nodes). For convenience, we will call a k-ary 2-cube a wrapped mesh, or a w-mesh for short.
Likewise, we will call a 2-dimensional flat mesh an f-mesh. Since an f-mesh is a subgraph
of w-mesh with the same number of nodes, a w-mesh can also be made to function as an
f-mesh by not using its wrap links.

Flow control in a virtual-channel network is performed at three levels: message rout-



38

ing, message scheduling, and flit muitiplexing. Each of these can be implemented with a
variety of algorithms, but we will consider only low-complexity, low-overhead flow-control

mechanisms to deal with concurrent traffic in the network.

Routing: Selection of a path for each message. A message is routed to its destination
via a fixed, shortest path. Issues related to fault-tolerance are not considered, or physical
and virtual channels are assumed to be fault-free. In f-meshes, e-cube routing is used. The
address of each node is expressed in terms of X and Y coordinates. A message is routed first
in the X -direction until the Y coordinate of the node matches that of its destination node.
It is then routed in the Y-direction. In w-meshes, a modified version of e-cube routing is
implemented to utilize the extra communication links so that each message is routed via
a shortest path. Decadlock-freedom is ensured by using the scheme proposed in [24]. That
is, the virtual channels corresponding to each uni-directional physical channel are divided
into high and low channels. Routing restrictions are then imposed such that cither a high
channel or a low channel, but not both, is allocated to each given message. The w-meshes

need at least two virtual channels per physical channel to achieve deadlock-freedom.

Message Scheduling: Dectermining which message is allowed to access a free virtual
channel in case of contention. When the number of messages to access a physical channel
at the same time is larger than the number of available virtual channels, some of these
messages have to be queued. So, we need to determine which messages are allowed to
access the virtual channels, and which messages to be queued. We will consider the FIFO
policy (as default), the Largest Remaining Bandwidth First (LRBI") policy, and the Smallest
Remaining Bandwidth First (SRBF) policy. The remaining bandwidth of a message is
defined as the product of message length and the distance from the current node to its
destination. Note that, if all messages are of the same length, LRBF becomes farthest-first,
and SRBF becomes nearest-first. Since we are dealing with concurrent traffic, an age-based
policy such as deadline scheduling used in [27] is not meaningful and hence not considered.
SRBF and LRBF can be easily implemented by using a priority queue instead of an FIFO
queue. In case of non-uniform message lengths, a length field in the header flit of a message

is added.

Flit Multiplexing: Determining the way messages are time-multiplexed over a physical

channel. When there are multiple virtual channels per physical channel, the messages allo-
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cated to these virtual channels are multiplexed over the physical channel. Flit multiplexing
determines the order for these flits from different virtual channels to access the physical
channel.

In the default, Round-Robin(RR), multiplexing, virtual channels take turns in accessing
the physical channel without using any network or message information. RR multiplexing
without any modification will henceforth be called strict RR. Like message scheduling, flit
multiplexing can be priority-based. The simplest priority-based multiplexing is called the
greedy policy. Under the greedy policy, if a virtual channel had successfully sent a flit in
the previous cycle, it will be given the highest priority again to access the physical channel
in the next cycle. Otherwise, the access right is rotated to the next virtual channel.

More complex multiplexing can also be built based on a message’s remaining bandwidth
requirement. The Largest Remaining Bandwidth Preferred (LRBP) multiplexing method
awards priority to the virtual channel containing a message of larger remaining bandwidth
requircment. By contrast, the Smallest Remaining Bandwidth Preferred (SRBP) multi-
plexing method gives priority to the one of smaller remaining bandwidth requirement. As
pointed out in [27], these multiplexing methods can all be implemented with combinational
logic which operates on the contents of the status register associated with each virtual chan-
nel. The added hardware cost should not be a concern if the number of virtual channels is
not too excessive.

If cach virtual channel is allocated a fixed physical bandwidth regardless of whether the
virtual channel is in use or not, this can lead to a substantial waste of physical bandwidth.
Demand-driven(DD) allocation can be used to rectify this problem. With DD allocation,
virtual channels will contend for use of a physical channel only if they have flits to send.
DD allocation can be easily implemented by adding low-complexity combinational circuit
to any multiplexing method.

With CTS (Clear-To-Send) lookahead, virtual channels only contend for use of a physical
channel if each of them has a flit to send and the receiving node has room for it. This can
further reduce the waste of physical bandwidth. When CTS lookahead is implemented, the
receiving-end of cach virtual channel must send a status bit back to the sending-end. These
signals can be sent via separate wires [24], which requires extra hardware. Or they can be
sent over the physical channel in the opposite direction, which can result in a non-negligible

bandwidth overhead.
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3.3 Formulation and Analysis

In this section, we discuss the tradeoffs among different message-scheduling policies and

flit-multiplexing methods under the following assumptions.

A physical channel takes one unit of time to transmit a single flit. A unit of time will

also be called a physical-channel cycle.
o There is a single-flit buffer associated with each virtual channel.
e A message arriving at its destination is consumed without waiting.

There are an even number of virtual channels associated with each physical channel

in a w-mesh.

For simplicity, the time window of message arrivals, AT, is assumed to be 0.

The following notation will be used in our discussion.

d;;: the length of the shortest path from node i to j.

o h,;: the Hamming distance from node ¢ to j, obtained by summing the difference of
addresses in cach dimension. Note that in w-meshes h;; > d;;, while in f-meshes they

are equal.

e k;;: the maximum number of messages that share a physical channel in the path from

node ¢ to j.
o (;;: the length of m,; in number of flits.
e m;;: the message to be sent from node i to j.

v: the number of virtual channels per physical channel.

The latency of m;;, denoted as t;;, is the time span from a message’s arrival to acceptance
of the last flit of the message by its destination. We will use ¢ to represent the mean latency
of a mission. Given AT = 0, the makespan, denoted as i, of a communication mission is
the maximum latency of all messages in the mission. We will evaluate the performance of

a network with both the mean mission latency and makespan. Formally, we have

tij = 6 + (/i) = 1)
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The first term, t?j, denotes the time span between the arrival of m;; at the source node 7 and
the arrival of its header flit at the destination node j. t); is composed of two components:
accumulated queucing delay t{; and accumulated head flit-multiplexing delay ;. t{; is the
sum of queueing times at all nodes in the path waiting for an available virtual channel. tf; is
the sum of times m,;’s header flit waits at all nodes on its path for use of physical channels.
The second term, (1/7;;)(£;; — 1), represents the time required for all other flits of m;; to
arrive at node j, which is determined by £;; and the transmission rate, r;;, of the pipeline

set up for m;;. Depending on the flit-multiplexing method used, r;; may change with time

during a mission.

Message Scheduling

Given a communication mission and fixed v, ¢ will be affected by the underlying
message-scheduling policy. Under the LRBF policy, messages requiring larger bandwidths
are given priority. Since those messages farther away from their destinations are more
likely to have larger ¢*’s, by minimizing their ?’s, we may minimize the variance of mes-
sage latencies. Similarly, the second term of ¢;; is larger for longer messages. By giving
these messages higher priority in using virtual channels, the balancing effect of smaller ¢?’s
and hence smaller {%'s can also minimize the variance of message latencies. However, in
wormhole switching, a blocked message does not release resources already allocated to it.
A message farther away from its destination is more likely to be blocked and may therefore
result in more resources being held. Also, a longer message can hold up resources in the
path for a longer time, thus blocking more of the other messages. Under the SRBI® policy,
messages requiring smaller bandwidths are given higher priority. This heuristic is proposed
based on the conjecture that if these messages are delivered to their destinations quickly
then there will be less number of messages contending for communication resources and the
overall concurrent communication traffic can be reduced. Thus, the remaining messages
may be sent through the network encountering less contention.

One can ecasily cbserve that the effect of message-scheduling policies will be more pro-
nounced with a small number of virtual channels. If v is large, then most of the contending
messages will be allocated virtual channels, thus making the effect of message-scheduling

policies less pronounced.
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Flit Multiplexing

Generally, 17 decreases with the increase of v. However, under strict RR multiplexing
without DD allocation or CTS lookahead, r;; = 1/v Vi, j. So, 1/r;; increases with v and ¢*
may increase because a flit may need to wait more cycles for use of the physical channel.
That is, there is a tradeoff between t? and r,;, and also between ¢? and t*, when more virtual
channels are added. Usually when v is increased to a certain point, the improvement in
reducing t? reaches a plateau, and adding more virtual channels only increases message
latency.

In case of strict RR, a large portion of physical bandwidth can be wasted on idle
virtual channels. With DD allocation (denoted as DD-RR), r;; is bounded below by
max{1/v, 1/k;;}. In the worst case, r;; = 1/v and latency t;; is the same as in the case of
strict RR. But, if at any instant there are less than v messages contending for a physical
channel, then no physical channel will be allocated to any idle virtual channel. Messages
can be transmitted at a rate > 1/v. When other muitiplexing methods are used, r,; is not
a constant, and hence, it is not casy to predict the performance.

Even with DD allocation, physical bandwidth can still be wasted if the corresponding
input buffer is not ready to receive a new flit. With CTS lookahead, a virtual channel will
not contend for a physical channel unless it has a flit ready to be sent and the receiving
end has room for accepting it. For a given multiplexing method, (r,; |with neither DD nor
CTS) < (ri; |[with DD) < (r; | with DD and CTS).

Another advantage of CTS is deadlock-freedom. In priority-based flit multiplexing, a
deadlock may occur if the method is not carefully implemented. For example, in Fig. 3.4,
cach physical channel has two virtual channels. All messages are routed to the same direction
on node 2. Messages A and B have established pipelines from node 0 to node 2, and node
1 to node 2, respectively. So on node 2, the two messages have occupied both of the output
buffers in the direction which all messages need to be routed to. Suppose message C arrives
al node 0 later than A, and occupies the other virtual channel, and the same situation
occurs on node 1 when message D arrives after B. If C is given priority over A, then C will
access the physical channel between node 0 and 2. Similarly, D also has a higher priority
than B, and monopolizes the physical channel between node 1 and 2. But on node 2, both of
the output buffers are occupied by A and B, and they cannot be preempted since wormhole
switching is used. Therefore, C and D will be queued at node 2 indefinitely waiting for

free output buffers, while A and B cannot access the physical channels which they need to
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finish sending their remaining flits and release the output buffers on node 2 that C and D

are waiting for. So, a deadlock follows.
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Figure 3.4: An cxample deadlock caused by priority-based flit multiplexing.

If CTS lookahead is used in the above example, then one can avoid the deadlock. Since
C and D will not be allowed to contend for physical channels, A and B will be able to
continue sending their remaining flits. In this chapter, we will always evaluate LRBP and

SRBP flit multiplexing with CTS lookahead to avoid deadlock.

W- and F- meshes

When compared to an f-mesh with the same number of nodes, a w-mesh has the ad-
vantages of more physical channels and smaller communication diameter. Also, its regular
connectivity may lead to better communication load balancing, especially in the case of
uniformly-distributed traffic.

However, one main drawback of w-meshes is the potential deadlock resulting from the
addition of wrap links. To ensure deadlock-freedom, virtual channels running over each
physical channel must be divided into two halves. When messages are sent between a pair

of nodes between which the Hamming distance is < k/2 in a k-ary 2-cube, only v/2 virtual



channels are available. If the other v/2 virtual channels are not in use, they are left idle
and their bandwidth wasted. Thus, there exists a tradeoff between these two topologies.
Depending on traffic density and distribution, one can outperform the other. Our simulation

results in the next section demonstrate this tradeoff.

3.4 Simulation Results

Under the following assumptions, we developed a program that simulates the flit-level

communication behavior of virtual-channel networks.

¢ Transferring a flit between two nodes via a physical channel takes one unit of time.

e At any instant of time, all flits that have been allocated channels are transferred

synchronously in a single physical channel cycle.

e Each virtual channel is assigned a single-flit buffer.

In the discussion that follows, the term configuration is used to represent a combination
of some message-scheduling policy with a flit-multiplexing method. The simulation results

presented here were obtained using the following parameters:
e Both w- and f- meshes are of size 16 x 16.

o Unless stated otherwise, all messages are 20 flits long. Traffic is uniformly-distributed.
For a given mission, the probability that node ¢ may send a message to node j is fixed.
The Concurrent Communication Probability (CCP) that node ¢ sends a message to
node j is 0.01. In a 16 X 16 network, the total number of concurrent messages during
a mission is & 0.01 - (162 — 1)2. Results on inputs with variable message lengths
and other traffic patterns are not presented. General trends of the results from these

alternative inputs do not deviate significantly from the data shown.

e Fach data point is obtained by averaging results from 10,000 iterations. Deviation

from the mean values is found to be < 5%.

Table 3.1 shows the makespan (¢) and the mean latency (f) of w- and {- meshes with
the FIFO message-scheduling policy and strict RR flit multiplexing. Clearly, with strict
RR, w-meshes not only perform worse than f-meshes with the same v, but also worse than
f-meshes with v/2 virtual channels. Thus, addition of physical and virtual channels in

w-meshes actually degrades the performance if strict RR is used.
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14 t
v | w-mesh | f-mesh | w-mesh | f-mesh
1 n/a 801 n/a 280
2 1389 652 470 228
4 1090 546 345 209
6 945 508 305 223
8 812 502 305 251
12 707 533 341 304
16 688 629 377 414

Table 3.1: Performance of w-meshes and f-meshes with strict RR flit multiplexing

Table 3.2 shows the case of DD allocation. Obviously, DD allocation greatly improves
the performance, particularly in the case of w-meshes with larger v’s. In a certain situa-
tion, ¢ and ? are reduced by more than 50%. With f-meshes, DD also makes a monotonic
improvement of i with the increase of v. Note that with DD-RR, w-meshes start to have
smaller makespans than f-meshes with the same number of virtual channels when v > 8.
Nevertheless, in the case where both types of network have equal number of nodes, we have
to take into account that w-meshes have more physical channels. In a network of 16 x 16
nodes, a w-mesh has 1024 uni-directional physical channels while an f-mesh has only 960.
Considering this, w-meshes still have poorer physical channel utilization, even with v > 12.

From the results in Tables 3.1 and 3.2, we conclude that physical bandwidth is used much
more efficiently with DD-RR than strict RR. Since DD allocation can be implemented with
minimum hardware overhead over any configuration, all configurations will be evaluated
with DD allocation. DD-RR with FIFO will be used as our “default” configuration. The
data in Table 3.2 will be used as the reference for other configurations. The makespan and
the mean latency of each configuration are plotted versus v.

Fig. 3.5 shows the comparison of the LRBF and SRBF message-scheduling policies with
FIFO in w- and f- meshes. DD-RR multiplexing is assumed in all three configurations.
In w-meshes, SRBI" shows a significant improvement (> 30%) over FIFO for v = 2. The
margin of improvement decreases with larger v’s, which drops below 10% when v > 8, and
reduces to near 0% after v > 12. The sharp drop after v > 6 can be attributed to the

fact that, when v > 6, adding virtual channels improves FIFO, and makes the effect of
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t t
v | w-mesh | f-mesh | w-mesh | f-mesh
1 n/a 801 n/a 280
2 889 616 316 216
4 635 507 200 188
6 516 457 162 189
8 401 432 147 198
12 310 418 144 216
16 290 410 151 229

Table 3.2: Performance of w-meshes and f-meshes with DD-RR.

message scheduling less significant. On the other hand, LRBF does not make any notable
improvement over FIFO. Only when v = 2 it shows ~ 8% improvement.

In f-meshes, SRBF shows 10% to 17% improvements over FIFO for v = 1 and v = 2, and
quickly drops to the same with FIFO when v > 6, while LRBF is only marginally effective
when v = 1 (= 7% improvement) and is virtually the same with FIFO for any v > 4.

Fig. 3.6 compares the mean latency, {, of the three message-scheduling policies. In
w-meshes, SRBF reduced the mean latency by more than 30% for v = 2 but the margin
reduces gradually down to less than 10% when v = 6 and later drops to near 0% after v > 8.
Similarly, in f-meshes, SRBF is effective for a small number of virtual channels(v = 1 and
v = 2), reducing { by at least 12%. But it performs virtually the same as FIFO for v > 4.
In both topologies, LRBF makes virtually no improvement over FIFO in terms of ¢ at any
value of v and is not shown in the plot.

Figs. 3.7 and 3.8 show how the three message-scheduling policies perform when com-
bined with the greedy flit-multiplexing method. The data of LRBF-G is omitted since its
performance is very close to FIFO-G.

In w-meshes, greedy multiplexing clearly reduces { in all three configurations for 2 <
v < 6 by almost 30% when v = 2. However, when v > 6, greedy multiplexing degrades
their performance. This is due to the nature of greedy multiplexing that awards access of
physical channels to the same virtual channel that succeeded in sending its message last
time. This can be beneficial in reducing the makespan of a mission when v is small, but

works against the case with a large number of virtual channels since the time-multiplexing
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effect is reduced. In f-meshes, greedy multiplexing is not effective in improving performance
over RR multiplexing. It actually results in larger {’s for all three configurations in most
cases.

In terms of , greedy multiplexing improves SRBF significantly for v < 4 and v > 12 in
w-meshes. In f-meshes, it is also quite effective in reducing ¢’s when v > 8 with all three
message-scheduling policies, showing nearly 12% reduction of . Thus, as characterized by a
typical increase of { and decrease of # when v is large, greedy multiplexing tends to increase
the variance of message latencies. Also, note that SRBF-G, LRBF-G and FIFO-G perform
almost the same with larger v’s, demonstrating that the effect of flit multiplexing takes over
message scheduling.

CTS lookahead can effectively minimize the waste of physical channel cycles, but its
higher implementation cost may not be justifiable if the margin of improvement is small.
In [42], it is shown that with pipelined circuit-switching, CTS is not very effective. As for
wormhole switching, it was shown in [27] that in a network with 32-bit flits and v = 15,
without adding extra wires for the lookahead signals, an additional 12.5% traffic overhead
is required to implement CTS lookahead. Therefore, CTS lookahecad should provide at least
12.5% improvement to justify its implementation overhead.

The effects of adding CTS lookahead on the three message-scheduling policies are plotted
in Figs. 3.9 and 3.10. CTS lookahead is very effective in w-meshes, reducing i over the
corresponding non-CTS lookahead version for 10% to 30% when 2 < v < 12, and ( for
at least 15% when 2 5 v < 8. CTS lookahead is less effective in f-meshes, however. The
greatest improvement (=~ 10%) in ¢ over non-CTS versions occurred when v = 4. The
improvement margin gradually decrcases down to 0% when v is increased to 16. It reduces
t by at most 10% when v = 2 and v = 4. The effect of combining greedy multiplexing with
CTS lookahead is not significant in terms of {. Nevertheless, greedy multiplexing is still
effective in reducing t for large v’s, in both w-meshes and {-meshes.

The effects of SRBP and LRBP multiplexing (with CTS lookahead to avoid deadlocks)
are plotted in Figs. 3.11 to 3.14. In w-meshes, as compared to the corresponding config-
urations with CTS lookahead only, the SRBP version further reduces { by ~ 10% when
4 < v < 8. But the margin of improvement gradually decreases when v reaches 12, and
actually has worse performance for larger v’s. In f-meshes, SRBP multiplexing improves

only slightly the CTS-only version. The maximum margin of improvement occurs at v = 4.
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SRBP multiplexing is extremely effective in reducing 7. As can be seen in Fig. 3.12,
for 2 < v < 32, this multiplexing method reduces t significantly for FIFO, and clearly
outperforms the CTS-only counterpart for larger v’s,i.e., v > 4 in w-meshes and v > 4 in
f-meshes. The performance in { of LRBF and SRBF policies with SRBP multiplexing is very
close to FIFO-SRBP and hence is not plotted. LRBP multiplexing is less effective overall
than SRBP: it has virtually no improvement in ¢ over the CTS-only counterpart. But it
still reduces ¢ effectively when v > 8 for both w- and f- meshes, though not to the extent
of SRBP multiplexing. From the data shown above for SRBP and LRBP multiplexing, onc
can conclude that they are quite cffective in reducing the variance of message latencies,
though the makespan is sacrificed somewhat for large v’s.

We also ran simulations for the general case that message length is not uniform. Results
are found to be consistent with the uniform message-length case, and bandwidth-sensitive
message scheduling and flit-multiplexing methods are found to be more cffective when the
variance of message length is increased.

The simulation results in this chapter are summarized as follows.

o SRBI message scheduling outperforms LRBF in almost all situations. This is sur-
prising since in Chapter 2, LRBT scheduling is shown to be much more effective than
SRBF in a network with large-buffer switching methods like store-and-forward and
virtual cut-through. We can thus conclude that in a wormhole-switched network,

resource management should be quite different from large-buffer switching networks.

e Demand-driven allocation and CTS lookahead are very effective in reducing the waste

of physical bandwidth, especially when the number of virtual channels is large.

o If reducing the mean latency is the main goal, then priority-based multiplexing is most
effective. Especially, in the case of f-meshes with a large number of virtual channels,
no other message-scheduling policy or flit-multiplexing methods can stop the trend of
increasing #’s with larger v’s. With SRBP multiplexing, { is also reduced when v is
small. Greedy multiplexing can be used as a quick-and-dirty alternative to reduce ,

but it is much less effective and may degrade { when v is large.

e When v = 1 or v = 2, f-meshes should be considered a better topology than w-meshes.
For the case v = 2, f-meshes outperforms w-meshes in both ¢ and t with less resources.

Moreover, w-meshes cannot function with v = 1 unless they are used as f-meshes.
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e Reducing the makespan of a mission does not necessarily reduce ¢, and vice versa. Net-
work configurations should be evaluated carefully with both measures before making

any conclusion on their performance.



CHAPTER 4

MAPPING OF COMMUNICATING TASK MODULES IN
HYPERCUBE MULTICOMPUTERS WITH POSSIBLE
LINK FAILURES

4.1 Introduction

While the abundance of nodes in a hypercube multicomputer allows for executing tasks
that require a large number of nodes, inter-node communication is still a major bottleneck in
achieving the overall speedup [25, 66, 42]. To achieve communication efficiency, during the
task execution, efforts must be made to improve traflic flow-control mechanisms as we have
done in Chapters 2 and 3. These mechanisms are basically concerned with on-line, system-
level implementation. Communication efficiency must also be improved on a per-task basis
by exploiting the communication locality among task modules before the execution.

To map task modules for an “optimal” performance, the run-time behavior of these
modules must be known a priori to some extent. However, as stated in the Halting Prob-
lem [76] in computing theory, there is no way to predict the exact run-time behavior of a
program before it is actually executed. In case of distributed computation, it is also very
difficult to predict the timing of communication events before a set of task modules are
actually executed. As shown in the survey by Norman and Thanisch [85], the problem
of module mapping has been addressed by numerous researchers [57, 78, 79, 77, 21, 34],
using a wide range of models and solution methods. In the graph-mapping approach (e.g.,
[55, 98)) the timing aspects of module communication are ignored, and a simple objective
function is proposed for optimization. It is generally difficult to relate this objective to
any of well-known performance measures, such as task execution time. By contrast, any
more complicated approach (e.g., 79, 21]) requires a substantial amount of knowledge of

the run-time behavior of task modules, which may not be available unless the task is tested

85
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thoroughly beforehand.

Our primary goal here is to optimize communication performance. We use a relatively
simple cost function and verify (with simulations) that optimizing this function actually
leads to better communication performance, especially for mapping concurrently communi-
cating task modules. Focusing on communication performance differentiates our work from
others’ related to more generic aspects of task mapping. Taking a communication-oriented
approach to the task mapping problem is hardly a limitation, many researchers (25, 66, 42
agree inter-node communication is of the utmost importance to the performance of any
multicomputer system.

This chapter is organized as follows. In Section 4.2, we present the basic system model
and assumptions used. Qur problem is also formally stated there. In Section 4.3, the NP-
hardness of minimizing the proposed cost function is stated first in order to justify the use
of heuristic algorithms. Several heuristics are then used to find good suboptimal solutions.
These heuristics are tested extensively for various inputs to assess the performance of the
mappings obtained from them. We then simulate these algorithms to verify the actual
performance of the mappings found by minimizing the proposed cost function. The effects
of inaccuracy in describing the task behavior are also discussed there. Section 4.4 deals with
the case where an alternative fault-tolerant routing algorithm is used. Some remarks are
given in Section 4.5 about the effects of combining the mapping strategies with flow-control

mechanisms discussed in Chapter 2.

4.2 Preliminaries

The communication volume between each pair of modules is expressed as the total
length of messages exchanged between them. Inter-module communications are assumed to
be accomplished via message passing. A message is routed from the source to the destination
via a fault-free shortest path under circuit or message switching. When there is no faulty
link, it simply degencrates into the e-cube routing algorithm. Since we are considering the
case with heavy concurrent traffic, as we have shown in Chapter 2, virtual cut-through
degenerates into message switching and will not be discussed here.

Since most existing hypercubes do not support a per-node multi-programming environ-
ment, it is assumed that at most one module is mapped to a node, i.e., the mapping between

nodes and modules is one-to-one. For a task with M modules such that 2! < M < 2" for
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some integer n, one can add some “dummy” modules and make it a task with 2" modules.
So, we will henceforth assume M = 2" where n is the dimension of the target hypercube to
execute the task, and thus, the mapping of modules into nodes is one-to-one and onto.

For a network of nodes, we define a communication event between modules (CEBM)
as an instance that a module needs to send a message to another module, while defining
a communication event between nodes (CEBN) as an instance of a node needing to send
a message to some other nede. In circuit switching, these two are indistinguishable. In
message switching, however, a single CEBM can become several CEBNs. For example, when
a pair of modules reside in two different nodes which are two hops apart, in circuit switching
a CEBM from one module to the other is just a CEBN from one node to the other node.
For message switching, however, this CEBM becomes two CEBNs: one from the source to
the intermediate node, and the other from the intermediate node to the destination. We
said there is an outstanding CEBN if a message is to be sent by a node. An outstanding
CEBN is said to be processed if it is sent from the source node to a neighboring destination
node. An outstanding CEBN may not be processed immediately due to the limited link
resources available. A CEBN is said to be blocked if it is not processed immediately.

The performance of a mapping is eventually measured at the execution time by its
communication makespan, or makespan for short, which is the time span from the the first
CEBN becoming outstanding to all CEBNs being processed. As an illustrative example,
in Fig. 4.1 we have a simple network of 4 nodes with 3 CEBMs. The status of each link
during the execution under both circuit and message switching is shown in this figure. Note
that the computation time needed is invariant among different mappings, since at most
one module is mapped to each node. Therefore, in this case, communication makespan is
the main source of difference in the completion time of a task. However, communication
makespan cannot be easily described as a mathematical function, and its value depends on
the timing of communication events, which even for the same mapping, can change from one
execution to the next due to the complex interactions among task modules and/or processor
nodes. Hence it is impractical to use a direct optimization method. However, as we shall
see, for concurrently communicating task modules, minimizing the proposed cost function
generally leads to minimization of makespan.

The communication cost in executing a set of task modules is defined as the sum of time
units during which links are kept busy with the messages among these modules. In other

words, it is a measure of the total communication resources used by an instance of task
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excecution measured in time units. Suppose ¢(h) is the number of time units links are kept
busy with a unit-length message sent over a path of A hops. The sum of time units that links
are kept busy for related purposes other than message transmission — such as establishing a
connection — is assumed to be negligible. For message-switched hypercubes, c¢(h) = he(1),
but this relation may not be accurate for circuit-switched hypercubes. However, if the “call
request” signal to hunt for a free path occupies each link only for a very short time, then
this expression would be a good approximation even for circuit-switched hypercubes. By
defining ¢(1) as a unit of communication bandwidth (i.e., the link usage by one unit-length
message traversing one link), the communication bandwidth resulting from executing a

task under a mapping I' becomes: &(T') = Z iV;, where V; is the total length of messages
1<i<s
traversing over ¢ links, and z is the maximal path length in the hypercube. (z = n if only

shortest paths are considered.) One can easily see that cost,om(I') o k(T').

In both type of switching, communication bandwidth is proportional to the total link
occupation time, two communicating modules placed far apart will require more communica-
tion resources, and there is a higher possibility that some other instances of communication
will be blocked and/or delayed, which can in turn lead to an increase of communication
makespan. Therefore, we can predict that reduction of communication bandwidth is crucial
to concurrently communicating tasks. When introducing the notion of communication cost
and communication bandwidth, we deliberately avoided the low-level timing details. We
only consider the total message length to be sent/received between a pair of task modules
during the whole mission time, thus allowing for optimizing a simple cost function that can
be translated into a combinatorial optimization problem.

The following notation will be used throughout this chapter:

e D(n;,n;) : the distance (i.e., the length of a shortest path) between node n; and
nj, and is dependent upon the routing algorithm used. For now, we will assume
D(ni,n;) = D(nj,n;). (The case where D(n;,n;) can be different from D(n;,n;) will
be discussed in Section 4.4.) Before mapping a module , D(n;, n;)’s are assumed given.
Note that the distance between a pair of nodes may be greater than their Hamming

distance and depends on the number of faulty links and the routing algorithm used.
o n: the dimension of the target hypercube.

e U: an M x M communication volume matrix, where U;; is the communication volume

from m; to m; during the task execution, and M is the number of task modules. As
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mentioned earlier, we will assume M = 2" unless specified otherwise. Note that

Ui = 0 Vi, since a module does not send messages to itself.

4.3 Optimization Heuristics and Performance Evaluation

Although the cost function we proposed is simple in nature, optimizing it is an NP-hard
problem. Its NP-hardness can be proved by restricting to the fault-free hypercube embed-
ding problem discussed in [71]. Therefore, there exists no known polynomial-time algorithm
to find an optimal mapping. Note that minimizing makespan, rather than communication
bandwidth itself, is our ultimate goal. As we shall see, good heuristic algorithms will suffice
in most situations. As shown in [107], an optimal solution that minimizes communication
bandwidth is usually computationally expensive, and may only improve slightly over fast
algorithms in terms of minimizing makespan, our actual objective.

One simple greedy heuristic which has been tested to work well in fault-frec cases [107]
is given below. Consider cach task as a weighted graph with vertices representing modules
and edge weights representing communication volumes. For any two nodes z and y under
the e-cube routing, D(z,y) = D(y,z). Therefore, it is sufficient to use an undirected
graph with U;; + Uj; as the weight on the edge connecting m; and m;. We want to find a
Hamiltonian cycle in this task graph with as high a total edge-weight as possible, and then
embed this cycle into a Hamiltonian cycle in the hypercube. A Hamiltonian cycle in a fault-
free hypercube can be easily found with Gray-code enumeration. In an injured hypercube
with faulty links, however, there may not be any Hamiltonian cycle available for embedding.
So, we define a weighted relared (WR) Hamiltonian cycle in an injured hypercube (with no
disconnected node) as a relaxed version of Hamiltonian cycle, such that two nodes z and y
can be linked in the cycle via a virtual edge which may be a path from z to y through some
intermediate nodes. The weight on each virtual edge of the cycle is the number of physical
edges on it. The greedy algorithm embeds the Hamiltonian cycle in the task graph with the
maximum weight (found by a greedy approach) into the minimum-weight WR Hamiltonian
cycle in the injured hypercube (also found via a greedy approach).

Two other (more complex) heuristic algorithms are also implemented and tested: a
bottom-up approach algorithm based on the one proposed in [55], and a top-down ap-
proach proposed in [35]. Both of these algorithms are modified to handle cases with broken

links. A third non-deterministic approach using the simulated annealing method [72] is
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also implemented and tested, where 2-opting 2] is used as the perturb function. To com-
pare the quality of the mappings found by these algorithms with respect to communication
bandwidth, we simulated these algorithms using input tasks with randomliy generated com-
munication volumes among their modules.

Each algorithm was executed for 10,000 randomly-generated tasks where U;;’s are char-
acterized by a normally-distributed random variable with mean p and variance 2. Chang-
ing the value of p is found to have little effect on the relative performance of mappings
found with different algorithms as long as the ratio ¢/u remains constant. It is also found
that, as o/p approaches zero, the difference in communication bandwidth between random
mappings and those mappings found with the above three algorithms gets smaller, while
the difference gets larger as o/ increases. This is consistent with the fact that when all
U;;'s are identical, all mappings will lead to an identical communication bandwidth, and
all mappings algorithms will perform identically. For cach data point, deviation from the

mean value is found to be reasonably small (< 3%).
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Figure 4.2: Performance of various algorithms.

For the input tasks used to obtain the plots in Fig. 4.2, U;;’s are characterized with
i = 20 and o = 15; the horizontal axis depicts the number of faulty links while the
vertical axis represents communication bandwidth. In this figure, “A1” represents the
greedy algorithm, while “A2” represents the communication bandwidth achieved with either
top-down or bottom-up algorithms, whichever yields smaller communication bandwidth.

This is to enhance the readability of the plots since the performance of the top-down and
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bottom-up algorithms turns out to be very close to each other.

It can be seen from the above result that the greedy approach performs surprisingly
well. Complex (i.e., top-down and bottom-up) approaches outperform the simple greedy
approach only by a small margin. Furthermore, as the number of faulty links increases,
the gap between the two curves gets narrower. This can be explained by the fact that
both the top-down and bottom-up approaches are best suited for fault-free (thus regular)
hypercubes. For hypercubes with faulty links, the interconnection structure is no longer
symmetric or regular. In such a case, the partitioning mechanism in the top-down approach
and the combining mechanism in the bottom-up approach must use less accurate heuristic
decisions, hence degrading the performance.

The simulated annealing approach (“A3”), on the other hand, has shown more consistent
performances. Its advantages over other algorithms become more pronounced as the cube
size and the number of link failures increase. Therefore, we can conclude that this approach
is more adaptable to irregular structures.

In Table 4.1, we show the relative timings of various algorithms used. The algorithms are
tested on a DEC 5000 workstation running Ultrix operating system. Though we have only
shown the performance data for problem size of n = 4, M = 16, the relative performances
of different algorithms are found to be consistent at least up to the problem size of n =

8, M = 256.

CPU Time
Size Greedy | Top-Down | Bottom-Up | S-Annealing
n=3,M=28 057 4.2 7.8 125.2
n=4,M =16 178 15.3 28.3 433.6
n=5M =32 1.215 172.4 297.6 2537.1

Table 4.1: Timing comparisons for various algorithms.

To demonstrate why minimizing the proposed cost function, i.e., communication band-
width, can be effective, we also need to compare the makespans of those mappings found
with different algorithms. Our simulation model for this purpose is described below.
Timing: A time unit is selected as the time required to send a unit-length message over a
communication link between a pair of nodes.

Routing algorithm and mechanism:
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o Link failures are detected before task mappings and execution. Each message is routed
through a fault-free shortest path determined prior to the execution of this task. We

assume there are no additional link failures during the execution of this task.

¢ Under message switching, the routing mechanism at an intermediate node on a path
will take a certain amount of time to forward a message from one link to the next.
We assume this time to be relatively small and absorbed into the length of the corre-
sponding message.

e Asin Chapter 2, the hypercube is equipped with a communication adapter like SPI-
DER [31] at each node. The routing controller can send or receive multiple messages
from different links at the same time. Also, incoming buffering/queucing and outgoing

message transmission are done in parallel for all switching methods.

Each communication link is half-duplex, i.c., at any instant of time, only one message

can be sent in either direction of a link.

e The propagation delay on a communication path is assumed to be negligible.
Task communication behavior:

o AT, given for each task, denotes the time window in which the CEBMs arrive. The
arrival times of CEBMs are uniformly distributed in [0, AT]. Hence, for a set of task
modules, a larger AT represents the communication being less intense, while a smaller

AT represents the communication traffic being highly concurrent.

e L, denotes the maximum message length. The communication volume between

each pair of modules is randomly grouped into messages of lengths within (1, L,,,,].

Message scheduling and queueing: If alink is busy when it is to be used for transmitting
an incoming message, the message is stored in a FIFFO queue at the source end of the link.
When more than one message requests the use of the same link at a time, one of them is
randomly chosen to use the link. This selection procedure is repeated until all requests are
honored.

The goal of our simulation is to comparatively evaluate the performance of different
mappings under the same execution environment, but not to compare the performance of
different system implementations. So, the simulation results should not be used to determine
the relative performance of different switching methods or routing algorithms.

The mappings found are fed into an event-driven simulator similar to the one used in

Chapter 2 to evaluate their performance in a close to real-world environment. The results
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are plotted in Fig. 4.3 for message switching systems. Input tasks used here are the same
as those used for Fig. 4.2. We set L,,,, € [1,5], and AT = 100. Results for circuit-switched
hypercubes are found to be similar in most situations and thus are not presented.

The effects of changing AT under the same mappings for a given task are shown in
Table 4.2 for message switching without link failures. The results are found to be similar to
those under circnit switching. For the cases of n = 4, M = 16 and n = 5, M = 32, changing
AT in the range {10, 300] does not have any significant impact on the relative performance
of mappings found with different heuristics. The mappings found with all of the above
heuristics have shown substantial improvements over random mappings V AT € [10, 300].

This is because the network gets saturated with messages when AT = 300.

n=3,M=28 n=4,M =16 n=>5M=32

AT |rand | A1 | A2 | A3 |rand | A1 | A2} A3 | rand Al A2 A3
10 | 220 (176 | 176 | 173 | 767 | 652 | 635 | 616 | 2456 | 2007 | 1994 | 1924
25 220 | 176 [ 175 | 173 | 767 | 653 | 636 | 616 | 2469 | 2011 | 1995 | 1928
50 | 221 [ 177 ) 177 1175 ] 769 | 655 | 636 | 617 | 2474 | 2026 | 2005 | 1940
100 | 222|182 | 178 | 176 | 770 | 655 | 637 | 618 | 2475 | 2028 | 2013 | 1949
200 | 308 | 306 | 305|302 | 772|657 | 639 | 620 | 2476 | 2037 | 2025 | 1961
300 | 311 | 308305303 775 661 ([ 642 [ 622 ( 2478 | 2048 | 2031 | 1993

Table 4.2: Effects of changing AT under message switching.

In case of n = 3, M = 8, the network becomes less congested at AT = 160 and the
differences of makespans among different mapping algorithms start to diminish. So, we
can conclude that minimizing communication bandwidth yields a peak improvement when
the task modules are communication-bound and the communication network may become
highly congested during the execution of this task. For n = 4, M = 16, the AT value which
results in small performance differences is approximately 750, while for n = 5, M = 32 it is
about 2,250. However, when AT is relatively small and the network is not near saturation,
the difference in message queue length can be made smaller by using the mappings obtained
from the minimization of communication bandwidth. Depending on system implementation,
the performance of a node may also be influenced by the length of message queue it has to
maintain.

The effects of changing L,,,, are more subtle than changing AT. Generally, shorter
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message lengths result in better performances in circuit-switched hypercubes, while for
message-switched hypercubes, changing the message length does not affect system perfor-
mance notably if the overall communication bandwidth is fixed.

Our simulation results have indicated that different switching techniques do not matter
much to system performance for highly concurrently communicating tasks. Circuit switch-
ing and virtual cut-through is found to have only a slightly better performance than message
switching for the same mappings. However, as mentioned earlier, the actual performance
will depend on system implementation, and thus, the simulation results should not be used
to compare the effectiveness of the two switching methods.

When the number of faulty links grows within our preset range (i.e., less than one third
of all links), makespan also increases. For smaller hypercubes, such as » = 3, introducing
even one more faulty link can make a significant difference in performance. This effect gets
more pronounced when the number of link failures becomes larger, as one can see in I'ig. 4.3.
As the cube size increases, there will be more fault-free links, hence making lesser impacts
of a single link failure on system performance.

Though the proposed mappings strategy requires only minimal information of run-time
task behaviors, we still need the communication matrix to map a task. It is obvious that
unless the task has been fully tested and each message length is exactly calculated, the
entries in the communication matrix cannot be absolutely accurate. To study the effects of
an inaccurate communication matrix, we repeated the simulation for evaluating makespan
while introducing uncertainties in the communication matrix. In Fig. 4.4, the input tasks
are essentially the same as those in Fig. 4.3, but there is a maximum of 20% error in each
Ui;, i.e., during an instance of actual task execution, the total length of messages exchanged
between m; and m; is U;; £ 0.2U;;. From Fig. 4.4, one can see that inaccuracies in U;;’s
affect communication performance, especially when the cube size and number of link failures
are large. However, when the number of link failures is less than one sixth of all links, the
overall performances of various mappings algorithms are still quite close to those in the case

with exact U;;’s.

4.4 An Alternative Routing Algorithm

Thus far, we have assumed that the hypercube is implemented with a routing algorithm

which routes messages from the source to the destination via fixed, shortest paths deter-
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Figure 4.3: Performance of mappings under message switching.
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mined before the execution of each task. However, there are several practical problems with
this assumption. For instance, all faulty links must be known before the task execution,
which may not always be possible. Also, if additional link failures occur later, the execution
of the task may become unsuccessful.

To overcome these problems, we must use a routing algorithm that is more adaptive
to system changes. For instance, the DFS algorithm proposed in {18] is an adaptive fault-
tolerant routing algorithm which uses only a limited amount of global link status informa-
tion. Under this algorithm, the system does not require a priori link status information,
and communications can be completed even if some unexpected link failures occur dur-
ing task execution as long as all nodes involved remain connected. However, due to the
adaptive nature of the DFS algorithm, it is difficult to predict the length of the path
used for routing a message during task execution, especially in the presence of link fail-
ures. So, D(z,y) cannot be accurately calculated, thus making it difficult to decide the
communication bandwidth of a mapping. Furthermore, under some adaptive routing algo-
rithm like the DF'S algorithm, due to the lack of global link status information, the length
of the path chosen for communication from node r to node y may not be the same as
the one chosen for that from y to z. For example, suppose we have a 3-cube with three
broken links, 00, 0 * 0, and *01. Then the length of path chosen under the DFS algo-
rithm from 000 to 111 is 3. But the path chosen to route messages from 111 to 000 is
111 -»110 —-001 —»101 —001 —110 —010 —011 —001 —000, which has a length of 9. The
routing algorithms with this nature are said to be asymmetric. In most cases, a routing
algorithm becomes asymmetric only in the presence of faulty components.

Based on the above observations, one may jump to a conclusion that there is no way
to minimize the communication bandwidth of an mapping, and hence it will be impossible
to improve communication efficiency by appropriately placing task modules. However, as
our simulation results show below, use of the proposed cost function, even by mapping
task modules to the nodes as if there were no faulty links, can still significantly improve
communication performance over random mappings when the number of faulty links is
within a certain range.

Three mapping strategies are compared in our simulation. The first is the usual random
mapping. The second is to apply the greedy algorithm to the hypercube without knowing
which links are faulty. The third assumes perfect knowledge of link failures and how each

message will be routed during the execution. This strategy is an unrealistic, ideal case,
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which gives an upper bound of performance improvement with communication bandwidth,
whereas the second strategy provides a lower bound. In real applications, depending on the
knowledge available during the task mapping phase, the performance should lie somewhere

between these two extremes.
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Figure 4.5: Communication bandwidth under the DFS algorithm.

Fig. 4.5 shows the communication bandwidth of the mappings under the DI'S algorithm
for the same set of input tasks as in Fig. 4.2. “S1” represents the mappings found with no
knowledge of faulty links, while “S2” represents those found with complete knowledge of
faulty links and the routing paths of all messages. It can be casily seen that under the DI'S
algorithm, the overall communication bandwidth is higher than the routing algorithm used
before. Nevertheless, the mappings “S1” still generate smaller communication bandwidth
than random mappings, though the improvement becomes insignificant as the number of
faulty links increases. The same set of input tasks used in Fig. 4.3 are employed again for
event-driven simulations, except that the DFS algorithm is used here. Since the DFS algo-
rithm is designed based on the operatiﬁg principles of message switching, we only simulate
the hypercubes implemented with this switching method.

The measured makespans of these mappings are plotted in Fig. 4.6. It is found that,
without knowledge of faulty links, mappings “S1” still improves over random mappings with
a margin of at least 10% when the number of faulty links is more than one eighth of the
total links. This margin increases as the number of faulty links increases, but starts to level

off when the percentage of faulty links approaches 33%. The mappings “S2” show even
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larger improvements and improve over random mappings with a steadily increasing margin

as the number of link failures increases.
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Figure 4.6: Performance of mappings under the DFS algorithm.

By comparing Fig. 4.6 with Fig. 4.3, one can see that, though the DFS algorithm
results in an overall higher communication bandwidth, it results in smaller makespans
when the number of faulty links is relatively small. This is due to the fact that the DFS
algorithm chooses communication paths in a more “spread out” fashion and causes less
congestion than the shortest fixed-path algorithm used before. This advantage diminishes
after the number of faulty links grows beyond one fifth of all links. When the percentage
of faulty links reaches 25%, the DFS algorithm begins to yield larger makespans than
the shortest path routing. This is because paths available between nodes are becoming
fewer, so messages cannot be spread out to more paths under the DFS algorithm. Also,
since the DFS algorithm does not always route messages through a shortest path, the
greater communication bandwidth overhead of the DFS algorithm starts to have dominant
effects. Note, however, that implementation details will be crucial in actual applications
and these simulation results should not be used to judge the relative merits of different

routing algorithms.

4.5 Remarks
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In Chapter 2, we have shown that by employing appropriate message scheduling poli-
cies, the performance of a binary hypercube under concurrent communication traffic can be
greatly improved. Here we will demonstrate that by applying these run-time flow-control
mechanisms, the communication performance of mappings optimized with respect to com-
munication bandwidth can be further improved.

In Fig. 4.7, we demonstrate the effect of applying a message scheduling policy on the
performance of a mapping. The performance measurements are shown for a typical input
task used in previous simulatios for the case n = 4,M = 16 and AT = 0, and the net-
work coonsidered here is fault-free. The remaining bandwidth during executions is plotted
against time for random mapping and the mapping optimized with respect to communica-
tion bandwidth using the simulated annealing method (“A3”). The mappings are executed
on systems with the FIFO message scheduling policy and the LRBF policy defined in Chap-
ter 2. “LRBF” denotes the message scheduling policy which gives a higher priority to the
message with the largest remaining bandwidth.

It is obvious that the message scheduling policy can further improve the performance of
mappings. Note that given a mapping, different flow-control mechanisms result in different
rate of “energy”(remaining bandwidth) dissipation. Better flow-control not only results in
a higher rate, but also a more linear behavior in the curve, and hence more predictable task
communication response time. On the other hand, an optimized mapping leads to lower
“initial energy”, and reduces the time needed to dissipate it. Note that the mapping strategy
can work almost independently of the flow-control mechanisms. And their improvements
on the performance can be additive. The result also confirms that, the amount of initjal

commnuication bandwidth is a good indication of the quality of mappings.



CHAPTER 5

MAPPING CONCURRENTLY COMMUNICATING
MODULES ONTO MESH MULTICOMPUTERS
EQUIPPED WITH VIRTUAL CHANNELS

5.1 Introduction

The author of [85] provided a thorough survey on models and techniques used for
mapping task modules in multicomputer systems. Among the various models, the graph-
theoretic model has been widely used [55, 98, 94]. In this type of model, a set of com-
municating task modules is modeled as a task graph, and the interconnecting topology
of processor nodes is modeled as a processor graph. An objective function is chosen for
optimization when the task graph is embedded into the processor graph.

Using the graph-theoretic model, the mapping problem is conceptually equivalent to a
combinatorial optimization problem, and there are a wide range of existing optimization
algorithms [13] to solve it. However, since graph-theoretic formulation often oversimpli-
fies the real-world situation, the objective function may not reflect any true performance
measure. As a result, finding an “optimal” mapping with respect to the objective function
may be meaningless. Here we basically adopt the graph-theoretic model, but our approach

differs from the previous work as follows.

1. We focus on optimizing the communication performance, particularly the concurrent

communication efficiency, of a mapping into a virtual-channel network.

2. Instead of using an abstract objective function, we adopt a realistic performance

objective as the goal of optimization.

3. The unavoidable inaccuracies in predicting run-time task behaviors are taken into

account,

72
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The network under consideration employs worinhole switching. Each pair of adjacent
nodes are connected by a pair of unidirectional physical links/channels. A fixed number of
uni-directional virtual channels are time-multiplexed over each physical channel. Though
most of our discussion may apply to general networks, we will focus primarily on the mesh
network topology, especially k-ary 2-cubes which have been widely used in evaluating the
performance of virtual-channel networks {25, 26).

A set of task modules are said to be communicating concurrently if they send messages
to one another within a short span of time. A network under concurrent traffic arrivals is
analogous to a physical system with a certain amount of injected energy, i.c., the total com-
munication bandwidth. The time span required to dissipate the injected energy indicates
the capability of the network to handle transient loads which is similar to the transient
response of an clectronic component to a step-function input. Given the same amount of
initial bandwidth, i.c., initial energy, various flow-control mechanisms result in different
rates of energy dissipation, and hence different time needed to dissipate all the energy. As
shown in Fig. 5.1, the remaining bandwidth is plotted against time for two different flow-
control mechanisms. Obviously, the time required to dissipate all the energy also depends
upon the amount of the initial energy. Therefore, if the communicating modules in the
network can be mapped so that the initial energy is minimized, i.e., communication locality

is maximized, then the performance can also be optimized.
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Figure 5.1: The remaining bandwidth versus time under two different message
scheduling policies.

In Chapter 3, we have addressed the problem of run-time concurrent traffic flow-control.
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Here we will discuss the issues of mapping concurrently communicating modules into a
mesh multicomputer before run-time, so that at run-time, the communication performance
can be optimized. Particularly, we will focus on the case where a substantial number
of messages can be transmitted through the network simultanecously, and thus may cause
serious traffic congestion. As pointed out in [25], most algorithms are communication rather
than processing limited. Fine-grain parallel programs can execute less than ten instructions
in response to an inter-processor communication event. To execute such programs efficiently,
the communication network must be able to allow a large fraction of the nodes to transmit
messages simultaneously.

The delivery of these concurrently-transmitted messages may not be mutually indepen-
dent. The arrivals of all messages at their destination as a whole are often important for
continuing the task execution. For example, in the execution of parallel algorithms, such as
parallel state-space-search [92, 4], parallel sorting [104] and parallel Fourier-Transform [29],
at certain stages, modules on each node must receive partial results contained in the mes-
sages from other nodes to continue. Therefore, in addition to the usual latency measure-
ment, the makespan of a set of concurrently-sent messages will also be used for performance
evaluation. The makespan of a set of messages is defined as the time span from the arrival
! of the first message until all the messages reach their destination.

Our objective is to map modules into the host multicomputer to minimize makespans
and latencies of those concurrently-sent messages. As we will show later, due to the complex
interactions among messages in a virtual channel network, a direct optimization approach
to the objective is extremely difficult. We will adopt an indirect approach by optimizing a
simplified cost function, which can also lead to optimized performance with respect to the
real objective. Several cost functions are proposed and then evaluated using simulations.

This chapter is organized as follows. Basic terms and concepts necessary for our discus-

sion are defined in Section 5.2. Simulation results are presented and discussed in Section 5.3.

5.2 Preliminaries

A k-ary n-cube consists of k" nodes arranged in an n-dimensional grid. Each node
is connected to its Cartesian neighbors in the grid. A 2-dimensional & x & flat mesh is a

subgraph of a k-ary 2-cube, is not a regular graph, and has less edges than the corresponding

'Here the arrival of a message means it is ready to be sent out of the source node.
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k-ary 2-cubes (no wrap links at its boundary nodes). For convenience, we will call a k-ary
2-cube a wrapped mesh, or a w-mesh for short. Likewise, we will call a 2-dimensional flat
mesh an f-mesh. Since an f-mesh is a subgraph of w-mesh with the same number of nodes,
a w-mesh can also be made to function as an {-mesh by not using its wrap links.

Flow control in a virtual-channel network is performed at three levels: routing algo-
rithms, message-scheduling policies, and flit-multiplexing methods. Each of these can be

implemented with a variety of algorithms.

Routing Algorithms: Selection of paths for messages. We consider only non-adaptive
routing. A message is routed to its destination via a fixed, shortest path. Issues related to
fault-tolerance are not considered, or physical and virtual channels are assumed to be fault-
free. In f-meshes, e-cube routingis used. The address of cach node is expressed in terms of X
and Y coordinates. A message is routed first in the X -direction until the Y coordinate of the
node matches that of its destination node. It is then routed in the Y -direction. In w-meshes,
a modified version of e-cube routing is implemented to utilize the extra communication links
so that cach message is routed via a shortest path. Deadlock-freedom is ensured by using the
scheme proposed in [24]. That is, the virtual channels corresponding to each uni-directional
physical channel are divided into high and low channels. Routing restrictions are then
imposed such that either a high channel or a low channel, but not both, is allocated to each
given message. The w-meshes need at least two virtual channels per physical channel to

achieve deadlock-freedom.

Message-Scheduling Policies: Determining which message is allowed to access a free
virtual channel in case of contention. When the number of messages to access a physical
channel at the same time is larger than the number of available virtual channels, some of
these messages have to be queued. So, we need to determine which messages are allowed
to access the virtual channels, and which messages to be queued. When evaluating cost
functions, we will mainly use the FIFO policy as a default, but other scheduling policies

will also be tested when necessary.

Flit-Multiplexing Methods: Determining the way messages are time-multiplexed over
a physical channel. When there are multiple virtual channels per physical channel, the
messages allocated to these virtual channels are multiplexed over the physical channel. Flit

multiplexing determines the order for these flits from different virtual channels to access
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the physical channel. In the round-robin (RR) multiplexing, virtual channels take turns
in accessing the physical channel without using any network or message information. RR
multiplexing without any modification will henceforth be called strict RR. Demand-driven
(DD) allocation can be used to rectify the problem of wasted physical bandwidth in strict
RR. With DD allocation, virtual channels will contend for use of a physical channel only if
they have flits to send. Furthermore, with CTS (Clear-To-Send) lookahead, virtual channels
only contend for use of a physical channel if each of them has a flit to send and the receiving
node has room for it. This can further reduce the waste of physical bandwidth. Like message
sequencing, flit multiplexing can also be priority-based, as discussed in Chapter 3.

We summarize the notation used in our discussion as follows.

e a}: the address of the source node of message m;.

e a?: the address of the destination node of m;.

¢ C,,: the maximum number of messages that share a physical channel from node z to
Y.

e d(z,y): the length of the shortest path from node z to y.

e F,,: the maximum number of flits that share a physical channel from node z to y.

o {;: the length of m; in number of flits.

o L;: the set of physical channels in the path of m;.

e m;: a message in P.

o P: the set of messages to be sent concurrently among modules.

¢ | P |: the number of messages in P.

e tI: the arrival time of m;.

o t{: the time span from the moment when p; is ready to be sent till its header flit

arrives at the destination.

o t!: the accumulated queueing delay of m;’s header flit from the source to the destina-

tion.

e {7: the accumulated multiplexing delay of m;’s header flit from the source to the

destination.
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e tl: the latency of m,.

e #!: the estimated latency of m;.

e AT: the size of the time window where messages in P arrive.
e v: the number of virtual channels per physical channel.

< x,y >: a physical channel from node z to y.

Our discussion will be based on the following assumptions.

1. All mappings are one-to-one, i.e., each processor can at most be assigned one module.

2. Accurate values of £;’s (message lengths in flits) are given. The effects of inaccurate

£;’s will be addressed later.

3. A physical channel takes one unit of time to transmit a single flit. A unit of time is

also called a physical-channel cycle.
4. There is a single-flit buffer associated with each virtual channel.
5. A message arriving at its destination is consumed without waiting.

6. There arc an even number of virtual channels associated with each physical channel

in a w-mesh.

Problem Statement: Given a set of modules and a set P of messages to be sent
among them, we want to map these modules into the network so that the makespan and
average latency to deliver all the messages in P are minimized.

To select a mapping out of a large number of possible mappings, there must be a
certain function to determine the quality of mapping. The most obvious choice is using the
performance objective itself. In our case, the average latency of messages in a set P can be

expressed as

PRTARSE

m,eP

and their makespan can be expressed as

a I
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In these equations, t! can be expressed as
t: = t? + (1/7‘,)(6, - 1)

The first term, #], denotes the time span between the arrival of m; at the source node and
the arrival of its header flit at the destination node. {? is composed of two components: the
accumulated queueing delay t! and the accumulated header flit multiplexing delay ¢7. ¢! is
the sum of queueing times at all nodes in the path waiting for an available virtual channel.
17 is the sum of times m;’s header flit waits at the output buffers of nodes on its path for use
of physical channels. The second term, (1/r;)(€; — 1), represents the time required for all
other flits of m; to arrive at the destination, which is determined by £; and the transmission
rate, 7,, of the pipeline set up for m;. Depending on the flit-multiplexing method used and
network condition, r; may change with time during the transmission of m;. Also, given a set
of messages and fixed v, t! will be affected by the underlying message-sequencing scheme.
Therefore, even when the exact values of £;’s are given, it is still very difficult to predict #}’s.
Consider the simplest case of f-meshes using strict RR multiplexing without DD allocation

or CTS lookahcad. We have r; = 1/v Vi, hence only t? needs to be calculated.

e Suppose v > C,, Vz,y, i.c., no messages will be blocked, then t! = 0, and ) = t7.
d

However, & € [0, v+d(a?,a?)], and as v and d(a?, a?) become larger, it is more difficult

to predict {¥’s.

e When the number of concurrent messages is large and blocking is inevitable, t! is no

longer 0, and the value of t7 is even less predictable.

With DD allocation or CT'S lookahead, r; is no longer a constant. It becomes even more
complex in the case of w-meshes with partitioning of virtual channels for deadlock-avoidance.
We therefore conclude that a direct optimization on the performance objective itself is not
practical. We need to come up with a certain simplified function that, when mappings are
optimized with respect to it, the resulting performance is also optimized. In this chapter,
we will investigate low-complexity cost functions whose computational complexities are of
the order 8(| P |).

A message m; € P is characterized by its source and destination modules, ¢;, and ¢{.
Of these parameters, the message arrival time, ¢¢, is the most difficult to obtain accurately
beforehand, since t¢ will be affected by the precedence relationship among modules, and

is intrinsically hard for a compiler or loader to analyze before actual execution. Even if
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the modules can be test-executed, message arrival times can still vary among executions
of the same set of modules due to minor variations in the environment, such as clock-
frequency drift. Besides, introducing time-related parameters into the optimization process
can further complicate the problem by adding the scheduling aspect into the picture. Since
we are mostly interested in dealing with concurrently-communicating modules, AT should
be relatively small. We therefore propose cost functions which ignore AT and assume
t? = 0, Vm; € P. Nevertheless, as we will show in our simulations, mappings optimized
with a properly-chosen cost function still perform well when AT is large. Besides, the issues
of message scheduling can be handled at run-time and, as we will demonstrate, can further
improve the performance of a mapping.

The following cost functions will be evaluated:
e fi: makespan estimate. The estimated value of !, denoted by 2!, is computed by
i T éi -1 [}
4 minfo, gy, o)l = 1)

where z is the estimated time required for the header flit of m; to reach its destination.
z is computed as random() * ) ¢, ,5er, I'ry, Where random() is a random number
uniformly distributed in (0,1). The estimated makespan is computed by taking the
maximum of #’s. Since r; assumes the lowest possible value, this will be a pessimistic

estimate.

e f,: average latency estimate. Similar to fi, except that the average value of !’s is

computed.

o f3: sum of length-distance product, i.e., the total physical bandwidth required by the
messages in P. Formally, it can be expressed as 3°,, ¢ p £ixd(a?,af). This cost function
is shown to be quite effective in large-buffer, non-multiplexing networks in Chapter 4.
However, in a virtual channel network with wormhole switching, apart from physical

bandwidth, the usage of buffer resource is also a major factor in network performance.

o fu Jnax C.y, the maximum number of packets to go through a physical channel,
0<r y<

i.e., maximum congestion.

o f5: Z C.y, the sum of congestion on all physical channels.
0<r,y<M

o fe: ma)lg{ Z Fy}, the maximum number of flits to go through a physical channel
m,€

<r,y>€L,
on the paths of all m; € P.
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o [ Z { E F;,}. Similar to fs but a summation is taken instead. Note that f;

m,€EP <z,y>€L,
is different from f3. In f7, a flit can be counted several times if the physical channel

it goes through are shared by a number of paths.

o f5| f3: fs constrained by fs, i.e., a mapping is considered better only if it has smaller

values of f; and fs.
e f2| fa: fr constrained by f;.

It is obvious that finding true optimal mappings with respect to each of the above cost
functions is NP-hard [41}, i.e., there are no known polynomial time algorithms. Also, finding
optimal mappings with respect to them is not very meaningful since the cost functions
themselves arc not the actual performance objective. Therefore, our goal is to obtain good
sub-optimal mappings with respect to a cost function with a reasonable computing time,
and the mappings will perform well at run-time and show significant improvements over
random mappings. We will adopt the simulating annealing method [72] for this purpose.

The advantages of using this method include:

e Computation times can be casily controlled by setting a few parameters, such as the
initial temperature, freezing point, etc. Hence it is possible to evaluate cost functions

by subjecting them to approximately the same amount of computing time.

e The performance of mappings may be continually improved with additional computing

time.
¢ Possible parallelized implementation.

The termination of a simulated annealing process is generally decided by the following
parameters: the initial temperature, the freezing point, the temperature updating function,
and the exit criteria at each temperature. For each tested cost function, we carefully select
these parameters so that for a given input traffic pattern and traffic density, the optimization
process will terminate in approximately the same number of trials, ny, regardless of the cost
function used. A trial is defined to be an instance of randomly choosing two modules and
exchanging their positions, followed by the evaluation of the cost function. On a Sun IPX
workstation, the compiled C program requires approximately 20 seconds of CPU time for
500 trials. For each given ny, only those inputs that the optimization process terminates

after ny £ 10% trials are used. The resulting mappings are collected and their average
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performance is calculated. Note that we do not artificially force a simulated anncaling
process to stop. Instead, we choose the parameters carefully and discard inputs which can
lead to early or late terminations when using any of the cost functions. By doing this, we

can ensure the fairness when comparing the effectiveness of cost functions.

5.3 Performance Evaluation

The mappings optimized with respect to the various proposed cost functions are fed
into the network simulation program we used in Chapter 3. Recall that we developed the

simulator under the following assumptions:
e Transferring a flit between two nodes via a physical channel takes one unit of time.

e At any instant of time, all flits that have been allocated channcls are transferred

synchronously in a single physical channel cycle.
e Each virtual channel is assigned a single-flit buffer.
The simulation results presented here were obtained using the following parameters:

e FIFO is the default message-scheduling policy. The default flit-multiplexing method
is RR with DD allocation.

e Unless stated otherwise, all messages are 20 flits long,.
o There will be at most one message from one module to the other.

e Both w- and {- meshes are of size 16 x 16. Since performance trends are mostly
similar for f-meshes and w-meshes for the same P, unless stated otherwise, only the

data obtained with w-meshes are plotted.

e The number of communicating modules is fixed at 256, i.e., the same as the number

of nodes in the network.
o The default number of virtual channels is v = 4.

e The Concurrent Communication Probability (CCP) that node ¢ sends a message to
node j in the uniform traffic pattern is 0.01. In a 16 x 16 network, the total number

of concurrent messages during a mission is = 0.01 - (167 — 1),
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o Unless stated otherwise, the traffic pattern is uniform. In hot-spot traffic, 5 hot spots
in the network are randomly chosen, with CCP = 0.5 between any node and cach of

the hot spots.
e The default value of AT is 0.
e The modules are first randomly mapped.

e Each data point is obtained by averaging results from 10,000 mappings. Deviation

from the mean values is found to be reasonably small (< 5%).

In Figs. 5.2 and 5.3, the makespans of average latency of mappings optimized with
different cost functions after &~ 500 trials, (i.e., np = 500), are compared for different values
of v. The performance of f, and f, arc found to be very close to that of f; and fs, and hence
are not shown. f; and f, are only found to be effective in the case of f-meshes with large
v’s and small CCP values. This can be attributed to the fact that only in these situations
makespan and latency estimates are more accurate.

From the results shown, it is obvious that f, f5 | fs and f7 | f3 perform better than the
other cost functions in this case. Mappings optimized with these functions are also more
resilient to the change of v’s. On the other hand, mappings optimized with some functions
(e.g., f1 and f¢) perform well with small v’s but become worse with larger v’s. In the casc
of f4, mappings optimized with it improve over the random mappings when v < 6, but
actually perform worse than random mappings when v gets larger. A similar behavior can
also be observed from mappings optimized with the other mini-max type cost function, fs,
though to a less pronounced degree.

In Figs. 5.4 and 5.5, the performance of mappings optimized with the various cost
functions under uniformly-distributed traffic are cvaluated with variable ny’s. The number
of virtual channels is fixed at v = 4. A good cost function should demonstrate a more
predictable behavior, i.e., better performance measurements and less fluctuations when ny
is increased. Note that for each plotted curve, ny = 0 corresponds to random mappings.
Arnong.the cost functions investigated, f;, fa, f4 and fs all demonstrate highly unpredictable
behaviors with increasing ny. With more computing effort, mappings optimized with these
cost functions can often worsen performance. This phenomenon is especially prominent with
the makespan mecasurement. On the other hand, f3, f7, and those related functions like
fs | fs and f7 | fs, all have more predictable performance, at least up to a much larger ny

than other cost functions. In makespan measurements, f3 shows continual improvement of
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mappings up to n, = 3000, and f5 | f3 can improve up to ny = 4000. While f7 | f3 is found
to improve mappings continually up to ny = 10,000. For average latency measurement,
there are less fluctuations for all cost functions. However, mappings optimized with most
cost. functions stop making noticeable improvement after ny > 1000. Only f7, fs | f5 and
J7 | f3 show continual improvement for ny > 1000, while f; | f5 shows improvement even
when np > 8000.

Figs. 5.6 and 5.7 compare the performance of mappings optimized with various cost
functions under hot-spot traffic. For makespan mcasurement, almost each cost function
becomes less predictable under hot-spot traffic. Except fs | f3 and f; | f3, mappings
optimized with all other functions cease to improve after np > 500. fs | f3 starts to
show fluctuations after np > 4000. On the other hand, f; | f still shows predictable
improvements after ny > 5000.

From the above results, we can conclude that mappings optimized with respect to f7 | f3
have the most predictable improvement under various traffic patterns. Thus, we will focus
on evaluating this particular function.

Given the same P, the effect of increasing AT is shown in Figs. 5.8 and 5.9. Mappings
arc optimized with f7 | f3 after 5,000 trials. It is obvious that mappings optimized with
J7 | f4 still improve over random mappings with significant margins for large AT’s. It is
found that even with AT = 250, the margin of improvement is still more than 20% for
both makespans and average latency measurements. Note that, for random mappings, the
makespan decreases monotonically with increasing AT up to 180, showing that even when
messages in P arrive in such a large time window, the network is still saturated. On the
other hand, for mappings optimized with f; | f3, the network becomes less congested when
AT > 120 and makespan tilts upward slightly with increasing ATs.

In Figs. 5.10 and 5.11, we again evaluate the performance of mappings optimized with
f7 | f5, but assuming ¢;’s given can be inaccurate to a certain degree. Here the optimization
process still “sees” each message length as 20 flits long. But during simulations, for a given
e, 0 < e < 1, the actual length of m; can be in [20 — 20e, 20 + 20e]. In Fig. 5.10, we
can observe that when e < 25%, the makespans of mappings are gradually improved with
increasing np’s. When e = 50% and e = 75%, the performance becomes less predictable
when np < 3000, but stabilized after np > 3000. For average latency measurement in
Fig. 5.11, there are less fluctuations in all three curves. In any case, the mappings optimized

with f; | f3 still improve significantly over random mappings, i.e., ny = 0.
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In Chapter 3, we have shown that by employing appropriate message-scheduling poli-
cies and flit-multiplexing methods, the performance of a virtual-channel network under
concurrent communication traffic can be greatly improved. Here we will demonstrate that
by applying these run-time flow-control mechanisms, the performance of mappings which
are already optimized with f; | f3, can be improved further. In Figs. 5.12 and 5.13, the
performance measurements are shown for mappings optimized with f; | f3 when executed
on systems with various message-scheduling and flit-multiplexing combinations. “SRBF”
denotes the message-scheduling policy which gives a higher priority to the message with
the smallest remaining bandwidth. “SRBP” denotes the flit-multiplexing method giving a
higher priority to the same type of messages as in SRBF. These two schemes are shown
in Chapter 3 to perform particularly well. Also, to prevent deadlock, CTS lookahcad is
implemented with SRBP multiplexing.

These flow-control mechanisms can still improve the performance of mappings signifi-
cantly. Though using SRBF scheduling alone can introduce some performance fluctuations
when ny is increased, it can still improve makespans by at least 12% and average latency by
at least 10%. The combination of SRBF and SRBP can further improve the performance,
cspecially the average latency. Also note that, when these flow-control mechanisms are
used, the margin of improvement with increasing ny’s is narrowed. For example, mappings
found with np = 5000 still outperform ny = 1000, but when compared with the case using
only FIFO-RR, the margin is greatly reduced. This shows that by using proper run-time
flow controls, we may save some computing effort on finding optimized mappings.

In Figs. 5.14 and 5.15, we show the effect of applying the mapping optimization process
and flow-control mechanisms on the performance of one set of communicating modules
under uniform and hot-spot traffic, respectively. The mapping is optimized with f7 | f; and
nr = 5000. It can be observed that given a mapping, different flow-control mechanisms
will result in different rates of “energy”(remaining bandwidth) dissipation. Better flow-
control not only results in a higher rate, but also a more linear behavior, and hence, a more
predictable task communication response time. Furthermore, in the presence of hot-spot
traffic, a good flit-multiplexing method like SRBP can reduce makespan dramatically by
reducing the time the system spends in non-saturate regions, as shown in Fig. 5.15.

On the other hand, the mapping optimization process leads to lower “initial energy”,
and reduces the time needed to dissipate it. Note that it can work independently of the

flow-control mechanisms, and their improvements on the performance can be additive. It
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is also interesting to note that the amount of initial bandwidth is a good indication of the
quality of mappings, especially when AT is small. In most of our inputs used here, when
AT < 70, a mapping with a smaller initial bandwidth almost always has a better makespan
and average latency measurements. However, in most cases, given the same computing
time, mapping optimized with f; actually has a higher initial bandwidth than f;|f;. The
reason for this is that using f; alone, the simulated annealing process can be “trapped” in

a local optimal much more quickly than using f; | fs.



CHAPTER 6

MAPPING COMMUNICATING SUBCUBES IN A
HYPERCUBE MULTICOMPUTER

6.1 Introduction

Subcube allocation — the problem of finding a subcube in a large target hypercube
— has been studied extensively [17, 33, 3, 69, 97] under the assumption that incoming
subcube requests are independent. The commonly-used objective of subcube allocation is
to minimize hypercube fragmentation.

In certain applications, it may be necessary to cluster task modules into small groups,
and cach group is assigned to a subcube so as to minimize the distance of intra-group (or
intra-subcube) communications. For example, in fault-tolerant applications where (appli-
cation) task modules are replicated, the partial results obtained by replicas of a module
can be sent to other modules only after they are voted on. Also, the execution of replicas
needs to be synchronized for the synchronous voting of their results. (Asynchronous voting
is known to be very hard due to the unpredictability of replica completion times [99].) Effi-
cient communications among the replicas of each module are therefore crucial to the overall
system performance.

There can still be inter-group (or inter-subcube) communications, which may become
a major performance bottleneck if these communicating modules/subcubes are not care-
fully placed within the hypercube. For example, the embedding of TMR modules into the
hypercube, as discussed in [70], requires each TMR to be embedded into a 2-dimensional
subcube, Q,. So, a task composed of communicating modules is embedded into a set of com-
municating Q,’s. If a pair of @»’s communicate frequently with cach other but are placed
far apart, then a large amount of inter-subcube communication will result, which may in

turn degrade intra-subcube communication performance, as both inter- and intra- subcube
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communications use the same network. We will in this chapter consider the problem of
mapping communicating modules/subcubes in a hypercube by minimizing inter-subcube
communication traffic.

The chapter is organized as follows. Section 6.2 introduces basic notation and assump-
tions, formally defines the objective function for subcube allocation, and states the opti-
mization problem. In Section 6.3, we first discuss the special case of uniform subcube sizes,
and derive some mathematical properties of the objective function. Methods are introduced
to modify cxisting optimization algorithms to solve the problem. A special class of map-
pings, called parallel mappings, are found to be useful because of their unique properties.
Also, it is proved that for some special cases, only parallel mappings need to be considered
when one wants to find an optimal mapping. Thus, the optimization problem is greatly
simplified. The general case of non-uniform subcube sizes is then discussed. Section 6.4
deals with sub-optimal mappings found with various heuristic algorithms. Through simu-
lations, we show that when only sub-optimal mappings are considered, parallel mappings

outperform non-parallel ones for most of the time.

6.2 Definitions, Assumptions, and Problem Statement

An n-dimensional hypercube, @Q,, consists of 2" nodes which are connected in the form
of a Boolean cube network. Each node is assigned a unique n-bit address, and two nodes are
adjacent if and only if their addresses differ in exactly one bit position. We will henceforth
use lower-case Greek letters to denote subcube addresses. Let ¥ be a ternary symbol set
{0, 1, ¥}, where * represents don’t care. Since each node in a @, is represented by n address
bits, every subcube of the @, can be uniquely represented by a sequence of n ternary
symbols in ¥, called the address of the corresponding subcube.

The Hamming distance between two subcubes @ = ap@,...a,_; and § = bob,...b,_y of a

Q. is defined as
n-1
]](a»ﬂ) = Z h(aiabi)’
i=0

where h(a;, ;) = 1if (a;,b; € {0,1} A a; # b;), and h(a;,b;) = 0 otherwise. For example,
H(00%,%11) =1, and H(00%,11%) = 2.

We will assume the sizes of each communicating subcubes are known a priori, and
communication events among those subcubes occur within a small time window [107, 109],

i.e., messages are sent almost concurrently. A weighted task graph G will be used to represent
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the communication behavior among the subcubes within the time window. G = (V, E),
where V is the set of vertices each denoting a subcube, and £ = {(v:,v;, w;;)} the set
of weighted, directed edges from v; to v;, where w;,; denotes the weight on the edge, and
represents the length of the message from v; to v;.

We will first discuss a simple case where all subcubes are of the same dimension, using
the subcube communication model defined for uniform-size subcubes as in {86, 18]. Given
(viy v, wij), wij > 0, suppose ¢; = anan_;...a; is the subcube address which v; is mapped
to, and @; = b,b,_;...b; is the subcube address v; is mapped to. We define an instance
of subcube communication as cach node in ¢; sends a message of length w;; to another
node in ¢;. For now, we are dealing only with uniform-sized subcubes of dimension d,
so the number of messages sent is 2¢ in cach instance of communication. These messages
arc routed by the algorithm Eq-subcube-route proposed in [86], where a 1-to-1 mapping
function is found between source and destination nodes, and the message between each
source-destination pair is routed through a shortest path. Also, all messages in an instance
of subcube communication are routed through edge-disjoint paths. From [18], the sum of
lengths of these paths is given by T'(¢i,¢;) = M(é:, ¢;)2%, where M(¢;, ;) is defined as
M(¢i,@;) = Y72, m(ai, b;), where

1 if a; = 5.' # *
m(ai, b)) =4¢ 0 ifa;=b

1/2 otherwise.

Therefore, we define the bandwidth of such an instance of subcube communication to be
w;; T'(di, ¢5)-

In Chapters 4 and 5, we have shown that for concurrently-communicating modules, the
total bandwidth of a mapping is a good indicator of run-time performance. A mapping
with a smaller total bandwidth almost always has better run-time performance, regardless
of the underlying switching methods. We will henceforth use the total bandwidth, denoted
by ®, as our objective function. A formal definition is given below.

Given G and a target hypercube of dimension n > log(2¢| V |), i.c., it is large enough
to accept all subcubes in V, our goal is to find a mapping of these subcubes into the target
hypercube so that the total communication bandwidth of all communication instances is

minimized. Formally, a mapping problem is described by a three tuple (G,d,n), and we
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want to minimize

= Z w;; T(é5, ¢5),

U,,lljev
where ¢; and ¢; are the addresses of subcubes v; and v; mapped to, respectively.

Before delving into details, we summarize the symbols used in this chapter as follows.

e d: the dimension of uniform-sized subcubes.

e D: the vector containing the dimensions of communicating subcubes when their sizes

are non-uniform.

G = (V, E): the task graph.

(G,d,n)or (G, D,n): a mapping problem under consideration.

H(a,B): the Hamming distance between two addresses o and S.

n: the dimension of the target hypercube.

@,: a hypercube of dimension n.

T(a, 3): the total lengths of the paths taken by messages routed from subcube address

a 1o § following the routing scheme in [86].

v;, v;: vertices € V of G. Each v; denotes a subcube.

(vi,v;, w;5): a weighted edge from v; to v, which is an element € I of G.

| V |: the number of elements in V.

a, 3: subcube addresses.

o | a |: dimension of a subcube address a.

¢i,¢;: the addresses of subcubes that v; and v; mapped to.

®: the total bandwidth of a mapping.

6.3 Mathematical Properties

In this section we derive some mathematical properties which are important when finding
optimal subcube mappings. We will first discuss the special case that all communicating

subcubes are of dimension d.
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6.3.1 Uniform-Size Subcubes

As in (18], we define the frontier subcube of a towards 3, denoted by 6,5 = ¢ ¢n_1...Co
such that ¢; = b; if a; = * A b; € {0,1}, and ¢; = a,; otherwise. For example, if a = 00 * *
and # = 1+ 1% then 0,5 = 001%. 0,5 contains all the nodes in a which are closest to g,
i.e., the Hamming distance of each node in this subcube of a to 3 is exactly H(a, 3).

Subcubes @ and /3 are said to be parallel with each other, denoted as a || 3,if | 6,—p |= d
=| a | =| B |. Note that in the degenerate case, all Q¢’s (individual nodes) are parallel with
one another. It follows that if a || 8, Tus = 2°H(a,B). Under a parallel mapping all
communicating subcubes are mapped to subcube addresses parallel with one another. In a
parallel mapping, the expression for ® can be rewritten as

d = Z U),‘j][((ﬁ,‘,(ﬁj)?d.

v,,v;EV

Thercfore, if we only consider parallel mappings, minimizing the total bandwidth is equiv-

alent to minimizing

S wi l (i ¢5).

v,v,€V
Note that if all subcubes are parallel, we can ignore the “don’t cares”, in subcube addresses
when calculating their Hamming distances. The optimization problem for (G, d,n) is then
reduced to finding optimal mappings for (G,0,n —d). This is just the optimization problem
we treated in [107].

Parallel mappings also have the advantage that, even with the simplest (fixed-order) e-
cube routing algorithm, all inter-subcube messages are routed through links that are never
used for intra-subcube messages. For example, in Fig. 6.1(a), with e-cube routing, all inter-
subcube messages are routed through links of the form ab* or xab, a,b € {0, 1}, but never
through links a * b which are used only for intra-subcube messages. But in the non-parallel
mapping shown in Fig. 6.1(b), when both vy’s send messages to vs’s, fixed-order routing
will either route a message through the link between the nodes which vy's are mapped to,
or the link between the nodes which v3’s are mapped to. This situation can only be avoided
by introducing a more complex routing algorithm.

Note that for arbitrary, but not necessarily parallel a and g, given the frontier subcube
04, €ach of a and § can be partitioned into parallel subcubes of the same size as 0,_.5. So
the computation of (e, 3) can be broken down into the evaluation of 7”s between parallel

subcubes of dimension | ¢,_5 | within @ and 8. If | 0,5 |= 0, then the evaluation of
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Figure 6.1: Two example mappings.
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T degenerates into the case of evaluating the Hamming distances between many pairs of
individual nodes in a and 8. As an illustrative example, consider several J;’s in a Q4 as
shown in Fig. 6.2. The two subcube addresses 01+ and 00+ * are parallel, and e%'**%0** = 2,
As for the two addresses 00** and *1#1, e?***!*! = 1 and T(00#*,*1*1) can be expressed
as T(00% 1,01 1)+ T(00%0,11x1) or T(00%1,11% 1)+ T(00 0,01 + 1). As for 00 * * and
* %00, €%****%0 = 0, 50 T(00 * *, * * 00) can only be expressed as in the definition of T', i.c.,

the sum of Hamming distances between individual nodes in these two subcubes.

1110 1111
1100 :

\ 0110

0100
0010
yocj
4
1000 1001

Figure 6.2: An example Q4.

As a result, all mappings for the problem (G, d, n) can be expressed as parallel mappings
for (G4-/, f,n), f < f*, where G¥~/ is some graph constructed from G (to be explained
below), and f* is the dimension of the greatest common frontier(GCY') subcube, which
can be calculated by counting the number of common positions in which *’s appear in all
subcube addresses. For example, we have a problem of (G,2,4) with G given in Fig. 6.3,
and we have a non-parallel mapping vy — 0% %0, v; — *1 %1, v — *¥0 1 and v3 — 1 * #0.
Then this mapping can be expressed as parallel mappings of either 16 Q¢’s or 8 @,’s, which
are smaller or equal to the size of the GCF subcube of the three Q.’s. G947/ is just 24~/

disjoint copies of G:
o Vit = {u, |v;eV,0<z <24/}

o B4 = {(viz, Ve, i) | (vi,05,w;5) € E,0< 2 < 2977}
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Figure 6.3: An example G.

Therefore, if the value of f is known and if an optimal parallel mapping for (G¢~/, f,n)
is an optimal mapping for (G,d,n), then the optimization algorithm for (G,0,n) can be
applied to solve {G,d,n). However, in general, the value of f in an optimal mapping of
(G,d,n) is not known, so we have to consider the worst case of f = 0 and construct G9-°,
which will be denoted as G? for simplicity.

Note that any mapping for (G,d,n) can be expressed as some mapping for (G¢,0,n),
but the converse is not true. In other words, the set containing all mappings for (G, d, n)is
a subset of the set containing all mappings for (G¢,0,n). Therefore, if we find an optimal
mapping for (G¢,0,n), it could be useless since it may not be a valid mapping for (G,d, n),
i.c., copies of certain v; are not mapped into a Q4. For example, let us consider (G, 1,3)
with G given in Fig. 6.3 and its corresponding G'! is just two identical G’s. Fig. 6.4 shows
an optimal mapping for (G', 0, 3), but this mapping is not valid for (G, 1,3) since copies of
vp are nol mapped into a @,.

It is possible to avoid this problem by modifying G? into G4. We will add some extra
edges to £¢, which are of the form {(viz, vi(z41), X) |0 <z < 29— 1}, and if d > 1, another
edge {(vi(z42¢-1), Viz, X )} is added. X is some sufficiently large number and its appropriate
value is calculated by the method below.

When these edges are added, ¢ of any mapping for (G%,0, n) should be the value of ®
of some mapping for (G¢,0,n) plus M such that M >| V | 2¢X. The value X is chosen so
that an optimal mapping found will always map all copies of v; into a @4, Yv; € V. And if
M >|V | 2¢X + X, the mapping can never be optimal and is not valid for (G, d, n). So, we

must have

[V 129X + X + @(opt(G4,0,n)) >| V | X2¢ + &(wst(G,d,n)),
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Figure 6.4: A mapping for (G',0,3).

where opt(G¢,0,n) denotes the optimal mapping for (G¢,0,n) and wst(G,d,n) the worst
mapping for (G,d,n). So we must have X > ®(wst(G,d,n)) — ®(opt(G4,0,n)). We can
substitute any upper-bound for ®(wst(G,d,n)) and any lower-bound for ®(opt(G?,0,n))
to obtain the value of X needed.

For example, to prevent an optimization algorithm from finding an invalid mapping as
in Fig. 6.4, we construct G as in Fig. 6.5. An upper-bound of ®(wst(G,1.3))is calculated
by assuming the worst possible case that any pair of v; and v; are mapped 3 hops away
from cach other, which is the farthest distance in a Q3. A lower-bound of ®(opt(G*,0,3))
is calculated by assuming any pair of v; and »; are mapped adjacent to each other. So
X>3+23+24+1)—1%2(3+2+1)=24.

Therefore the optimization algorithm for (G,0,n) can find an optimal mapping for
(G, d,n) by constructing G4 and apply the algorithm to (G%,0,n). Since the optimization
problem is NP-hard [107], the computation cost is much higher than the case of finding an
optimal parallel mapping, where only the problem (G,0,n — d) nceds to be considered. In
what follows, we will show that for some special cases of GG, an optimal parallel mapping is
indeed optimal. Therefore, the optimization process can be greatly simplified.

We define a sub-mapping of a mapping for (G,d,n) as a set of node addresses in a
(), which collectively contain a mapping for (G,0,n). Each mapping for (G,d,n) can
be partitioned into 29 such sub-mappings, and the node addresses which the copies of v

mapped to must form a Q4 to make the mapping valid for (G,d,n). Note that we can
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Figure 6.5: An example G.

partition a parallel mapping such that each of these 2¢ sub-mappings lies within a Q,_q,
and each sub-mapping is a mapping for (G,0,n — d). Furthermore, an optimal parallel
mapping for (G,d,n) can be partitioned into 2¢ sub-mappings, each of which is an optimal
mapping for (G,0,n — d). But this is not true in the case of non-parallel mappings. For
example, in Fig. 6.6(a) we have an optimal parallel mapping for (G, 1,3) and in Fig. 6.6(b)
a non-parallel mapping, with G again given in Fig. 6.3. A partition of cach of the mappings
is highlighted by the shaded nodes. In the parallel mapping, each sub-mapping lies within
a (), and is an optimal mapping for (G,0,2). In the non-parallel mapping, sub-mappings
are not mappings for (G,0,2).

The following proposition is stated without giving the proof, which is trivial.

Proposition 1 For a problem (G,d,n), if there exists a mapping better than an optimal
parallel mapping, then the mapping can be partitioned into sub-mappings and there must be
a sub-mapping whose ® is smaller than that of opt(G,0,n — d), the optimal mapping for
(G,0,n —d).

We will show that, if G is a star-like graph, i.e., all edges in G directed into or out from
just one vertex, then there is no such sub-mapping.

To facilitate the proof, let us first consider an example problem (G, 1,3) with G given
in Fig. 6.3. The mapping in Fig. 6.6(a) is an optimal parallel mapping for this problem. To
further improve the mapping, we need to have a mapping consisting of sub-mappings some
of which have a smaller & than any sub-mapping of the optimal parallel mapping. Since

cach of the sub-mappings shown in Fig. 6.6(a) is optimal in (G, 0,2), a better sub-mapping
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Figure 6.6: Two mappings for (G, 1,3).
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must be some mapping in (G,0, 3). The only way to find a mapping for (G, 0,3) which has
a smaller ¢ than an optimal mapping for (G,0,2) is to utilize the dimension not used in
mappings for (G,0,2). Hence we have in Fig. 6.7 an optimal mapping for (G,0,3). This
mapping is produced from re-mapping v; in node 101 which is 2 hops away from 000, to
node 010 which is only 1 hop away from v,, hence reducing ® from 7 to 6. However, this
forces vy in node 010 to be relocated to node 101. This leads to a mapping which is not
valid for (G, 1, 3), since the two nodes vy now mapped to cannot form a @;. On the other
hand, if v, in node 001 is exchanged with v, in node 010, the resulting mapping shown in
Fig. 6.6(b) is valid for (G,1,3), but the sub-mapping does not have a smaller ®. The same
holds if we exchange v, in node 110 with v, in node 010. Therefore, the optimal parallel

mapping in Fig. 6.6(a) is also a true optimal mapping for (G, 1, 3).

V4

Vs
/110 M
v v,
100 0 )101

010

on
Vv
3 V2
000 001
v,

Figure 6.7: A sub-mapping which cannot be part of a valid mapping for (G, 1, 3).

-

v
o}

Lemma 1 If G ts a star, an optimal parallel mapping for a problem (G, d,n) must also be

optimal among all mappings.

Proof: An optimal parallel mapping can be considered as 24 copies of the optimal
mapping of the problem (G,0,n — d), each denoted as opt(G,0,n — d), and the 2¢ nodes
that a given v; mapped to form a Q4. The ® value of this mapping can be expressed as
2¢9gP _,, where ®gF, _, is the @ value of opt(G,0,n — d). Suppose there is a non-parallel

mapping with a smaller . This mapping can also be partitioned into 2% copies of sub-

mappings. There must exist at least one sub-mapping whose ® is smaller than @8’?,',4. To
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satisfy this condition, this sub-mapping must be some mapping for (G,0,m),n—d < m < n.

Without loss of generality, let us assume v, to be the central vertex of the star in G and
is always mapped to the address 0"~ 9+, In the optimal parallel mapping, consider the sub-
mapping in *"~90¢ where v, is mapped to 0. Since G is a star, the value of @ is determined
only by the distance of v;’s to v,. If there is a mapping for (G, 0, m) with a smaller ¢ than
opt(G,0,n —d), then some v;’s in opt(G,0,n —d) must be re-mapped to the subcube 0"~ 9x4.
These addresses v;’s originally mapped to and 0" must form a @ 4; otherwise the copies of vy
cannot be re-mapped into a Q4. However, if the original addresses which these v;’s mapped
to can form a Qg, then re-mapping these v;’s into 0"~ 9x? cannot lower ®. Otherwise, the
original sub-mapping cannot be optimal in (G,0,n — d). A contradiction. |

We are still unable to prove the general case of arbitrary task graphs. However, in enu-
merations for many low-dimensional cases, we could not find better non-parallel mappings
than optimal parallel mappings. It is our conjecture that optimal parallel mappings are

indeed optimal.

6.3.2 Non-uniform Size Subcubes

In Section 6.3.1, we have discussed the mapping problem based on the assumption that
all communicating subcubes are of the same size. Here we will consider the general case
where subcube sizes need not be uniform.

For (v;, vj, wi;), wy; > 0, suppose a is the address to which v; is mapped, and 8 is the ad-
dress v; is mapped to. We generalize the definition of an instance of subcube communication

as follows.

o If | @ |<| 8|, then an instance of communication from a to 3 consists of instances

such that a communicates with each distinct @), contained in §.

o If | a [>| 8], then an instance of communication from a to 3 consists of instances

such that each distinct Qg in & communicates with §.

For example, in a Q4, an instance of communication from a = 00%0 to = 0**1 consists
of an instance of communication from 000 to 00 # 1, and an instance from 00 %0 to 01 * 1.
Or if we partition 0 % %1 in another way, it consists of instances from 00 x0 to 0+ 01 and to
0% 11. On the other hand, an instance from 3 to a consists of similar instances as above

while messages are sent in opposite directions. For arbitrary a and 8, T(a, ) = T(8,a)
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= M(a,B)2m>el18D where M(a,[3) is defined as before in Section 6.2. One can observe
that how the larger subcube is partitioned does not affect the value of T'(a, 3) or T'(53, a).

Now, we can describe the subcube mapping problem with a three-tuple (G, D, n), where
D = [dy,dy,...,dy_] is a vector specifying the dimensions of subcubes for vg, vy, ..., vjvj=1 €
V.

Here we define o || §if | 04—p |= min(] a |,| B 1), i.e., the frontier subcube is just
the smaller of the two. This is consistent with the uniform-size case, where two addresses
are parallel if the frontier subcube is cither of the subcubes. In the degenerate case, an
individual node address is parallel to any other subcube addresses. A parallel mapping is
the one that all subcubes are mapped to addresses parallel to one another. So if f* is the
dimension of the GCF subcube in a parallel mapping, f* = dp;,, i.e., the smallest d; € D.
While in a non-parallel mapping, f* < dpin.

One important property of parallel mappings in the uniform-size case is that to find
an optimal parallel mapping for (G,d,n), we only nced to find an optimal mapping for
(G,0,n—d). For the case of non-uniform subcube sizes, we need to make some modification.

A parallel mapping for (G, DD, n) can be expressed as a parallel mapping for (G', dypin, n),
where G’ is constructed from G by partitioning cach subcube into one or more Qg,,,.’s.
Formally, we have V' = {v;, | v; € V,0 < & < 2%~ 4m=}. For cach (v;,v;) € E, il d; > d,

then

{(Vizy Vjzy Wi5)y (Viry Vj(z41)s Wi )y eooy (Vizy Vjgrph—r)y i) | 0 L T < 24= k=24 %} C E,
else if d; < d;, then
{(Vizy Vjos Wij )y (Vigz41)s Vizs Wis )y ooy (Vigegk—1)y Vjmr wij) [0 S 2 < 24~ dmins | — 2“""’} c L.

For example, suppose G is given as in Fig. 6.3, a mapping for (G,[1,2,2,1],4) is shown in
Fig. 6.8, which can be expressed as a mapping for (G’, 1,4) with G’ in Fig. 6.9. However, the
set of parallel mappings for (G, d,,in, n) may contain some mappings which are not valid
for (G, D,n). For example, Figs. 6.10(a) and (b) are both valid mappings for (G’,1,4), but
only the one in Fig. 6.10(a) is valid for (G, [1,2,2,1],4). So if we apply the optimization
algorithm to find an optimal parallel mapping for (G, d,,,;,, n), which is equivalent to finding
an optimal mapping for (G’,0,n — d,,;,), the mapping may not be valid for (G, D,n). The
remedy for this is to adopt the method in Section 6.3.1 to modify the task graph. By adding
extra edges in G’ with sufficiently large weights, we can force copies of any given v; to be

mapped into a Qq,.
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Figure 6.8: A mapping for (G,[1,2,2,1],4).

Figure 6.9: A G' constructed from G.
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Figure 6.10: Example mappings for non-uniform subcube sizes.
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For finding an optimal mapping, not necessarily a parallel one, a similar method can be
used. A problem (G, D,n) is treated as (G's™",0,n), where G’¢™" is constructed from G’
defined above by following the modifications mentioned in Section 6.3.1.

Similar to Lemma 1, we have the following lemma for certain special cases of the non-

uniform size problem.

Lemma 2 If G is a star where vy is the central vertezx, and dy = d,,;,, then an optimal

parallel mapping for a problem (G, D,n) must also be optimal among all mappings.

Proof: Suppose we have an optimal parallel mapping for (G, D, n). It can be partitioned
into 2¢m» sub-mappings each of which is a mapping for (G’,0,n — dp;, ), where G’ is con-
structed from the above rules by partitioning subcubes into @Qg,.,.’s. Since dy = dpnin, G is

still a star. The proof follows the same argument as in the proof of Lemma 1. a

6.4 Heuristic Mapping Strategies

In Section 6.3, we have discussed the mathematical properties of subcube mappings,
and discussed a strategy to find an optimal mapping using a modified version of existing
optimization algorithms developed for a simpler mapping problem. However, the complexity
of these optimization algorithms remains exponential, and hence for large problem sizes, we
need some heuristic algorithms to find good sub-optimal mappings.

We have shown that an optimal parallel mapping is also optimal among all mappings
for certain special cases, and it is our conjecture that optimal mappings is indeed optimal.
However, this does not imply that all parallel mappings are better than non-parallel map-
pings. Therefore, two important questions arise: When we use a heuristic algorithm to find
a good sub-optimal parallel mapping, will this sub-optimal parallel mapping be worse than
most non-parallel mappings? Do we need to consider all possible mappings, and not just
parallel mappings when looking for a good sub-optimal mapping?

In this section, we investigate several heuristic methods, and compare the performance
of parallel and non-parallel mappings found with each heuristic. We also confirm that op-
timization of mappings with respect to ® improves several cther performance parameters
as well. We will focus on the discussion of the case of uniform-size communicating sub-
cubes, since we have shown that mapping variable-size subcubes can always be reduced to

a uniform-size subcube mapping problem.
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6.4.1 Fixed-Size Target Hypercubes

We first study the case where the target hypercube dimension is fixed at n.

The simulated annealing method [72] is shown to be an effective algorithm for finding
near-optimal solutions to NP-hard task-mapping problems [35, 108]. In [108], we inves-
tigated a simulated anncaling method optimization process for finding good sub-optimal
mappings for the problem (G, 0,n). The implementation of the simulated anncaling method
here is based on parameters selected with a similar criterion as in [35]. We set the initial
temperature To = 30, the new temperature T,., = 0.95T, where T is the temperature in
the last iteration. The freezing point is set so that a move increasing the objective func-
tion by a unit value has an acceptable probability of 273!, The perturb function is given
by performing random 2-opt exchanges [2] on the original mapping. Since each instance
of 2-opt exchange takes approximately the same amount of computing time, the expected
computing time of an optimization process can be normalized and expressed as the average
number of exchanges performed. Given the above parameters, the optimization process is
found to terminate after 3000 & 500 exchanges on 90% of inputs used in producing the data

presented here.
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Figure 6.11: Average diameter versus CCP.

In Table 6.1, we compare the performance of parallel mappings (sn-p) and non-parallel
mappings (sn-np) found with the simulated annealing method. Yor sn-p mappings, the
initial mapping is a random parallel mapping, and only exchanges among parallel subcubes

are allowed. For sn-np mappings, only non-parallel mappings are considered. The inputs are
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Figure 6.13: Average subcube distance versus CCP.
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generated with | V |= 25, prob(w;; > 0) = CCP (Concurrent Communication Probability),
i.e., the probability that v; communicates with v; in the time window considered. w;; is set
to 20 when w,; > 0, and each subcube is of dimension d = 3. Each data point is obtained
by averaging results from 10,000 iterations. Deviation from the mean values is found to be

reasonably small (< 3%).

CcCp 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
rand | 13472 | 25952 | 37888 | 49280 | 61056 | 72640 | 82368 | 96752
sn-p 8624 | 19072 | 30608 | 41216 | 52880 | 63968 | 76224 | 89344
sn-np | 9552 | 21344 | 34016 | 45536 | 58464 | 70480 | 81432 | 95856

Table 6.1: ¢ of mappings found by various strategies.

It is obvious that both sn-p and sn-np mappings improve over random mappings signif-
icantly when CCP is small. sn-p mappings have more than 15% improvement over random
mappings when CCP < 0.6. Also, sn-p mappings outperform sn-np mappings consistently
(> 10%) for all CCP values. This is even more prominent when CCP > 0.5, where the
margin between sn-np and random mappings narrows down.

When w;;’s are constant as in our simulations, the optimization of ¢ can also improve
several important performance parameters of a mapping. The communication diameter
of a mapping is the largest Hamming distance between two nodes belonging to a pair of
communicating subcubes. The average communication distance is the average Hamming
distancc of all pair of nodes involved in inter-subcube communications. The average subcube
distance is the average Hamming distance of all communicating subcubes. In Figs. 6.11 to
6.13, we show the three performance parameters plotted against CCP for the mappings
found. Obviously, sn-p mappings outperform random and sn-np mappings in all cases,
except in the case of average subcube distance, where sn-np has a lower value for various
CCP values. This shows that non-parallel mappings are better only in minimizing the

Hamming distance between subcubes, not necessarily between nodes.

6.4.2 Strategies for Unconstrained-Size Target Hypercubes

We now assume the target hypercube size to be unconstrained for mapping subcubes.
As shown in Section 6.3, ®(opt(G,d,n + 1)) < ®(opt(G,d,n)), so given some task

graphs, one may obtain better mappings for a larger target hypercube. Since processor
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nodes are often abundant in modern distributed-memory systems, the number of nodes
used for embedding a task should not be a major limiting factor. A mapping which needs a
larger target hypercube but demonstrates better communication performance may actually
be more attractive. Determining the size of the smallest target hypercube needed for an
optimal mapping is also a hard problem even when G’s are restricted to trees, as shown
in [114]. We will investigate a fast heuristic which finds a spanning tree of each connected
component of G and embed the treec into a target hypercube. The basic idea is to try to find
a mazimal spanning tree such that the sum of weights on the tree edges is maximized, and
then the tree is isomorphically embedded into a target hypercube of appropriate size, so
that these heavily-communicating subcubes are mapped adjacent to another. Finding the
minimal spanning tree of G is casily solved in polynomial time [13], but finding a maximal
one is itself NP-hard.

In the “df” heuristic, G is visited in a depth-first manner. On a vertex v;, the edge
leading to an unvisited vertex v; with the largest value of w,; + w;; is added to the tree.
In df-p, neighboring nodes in the tree is mapped only to parallel subcubes of Hamming
distance one to cach other, while non-parallel subcubes of Hamming distance one to cach
other are allowed in df-np. Intuitively, allocating two non-parallel subcubes is casier than
locating two parallel ones. So a possible advantage of mapping non-parallel subcubes is to
reduce the size of the target hypercube needed for a mapping, and possibly smaller @’s. In
the “bf” heuristic, G is visited in a breadth-first manner. A vertex is first picked so that
the sum of weights on all outgoing and incoming edges is the largest. The process is then
repeated for each of the unvisited vertices connected to this vertex, and so on, until all
vertices in GG are covered.

In Table 6.2, we compare the performance of mappings found by different heuristics. The
inputs used are the same as those used in obtaining the data in Table 6.1. The minimal
target hypercube dimension required is 8. Table 6.3 shows the average dimension of the
target hypercube required for the corresponding mappings in Table 6.2.

In both bf and df, the non-parallel mappings all result in worse performance, although
the target hypercube sizes are reduced slightly over parallel mappings. bf-p mappings have
about the same performance as df-p when CCP < 0.5, and only slightly improve over df-p
for higher CCP values. However, the bf approaches result in a large increase of required
target hypercube size. It is interesting to note that the df approach actually needs a smaller

target hypercube as CCP increases. This is because as CCP gets larger, G has a higher



probability to become Hamiltonian, and its spanning tree becomes “narrower” with lower
vertex degrees. For the bf approaches, the trend is reversed and larger target hypercubes

are needed for larger CCP values. Note that no matter which heuristic is used, the actual
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number of nodes occupied is still the same.

hypercube that becomes fragmented. A heuristic requiring a larger target hypercube will

lead to fragmentation of a larger hypercube.

The difference is in the size of the target

CCP

0.1

0.2

0.3

0.4

0.5

0.6 0.7

0.8

df-p
df-np
bf-p
bf-np

8240
8292
8112
8128

21344
21731
21456
21497

34240
34923
35440
35513

46272
47073
46704
46915

58320
59820
57808
58039

70400 | 82992
72183 | 84143
68096 | 79184
69011 | 81121

95584
98829
91056
93746

Table 6.3: Avecrage size of required target hypercubes for various heuristics.

Table 6.2: & of mappings found by different heuristics.

ccp (01| 02| 03| 04| 05| 06| 07| 08
df-p | 9.1} 85| 82| 81| 80| 80| 80| 8.0
df-np (89| 83| 81| 80| 80| 80| 80 8.0
bf-p | 9.1|10.0|11.3(12.7]13.8]|15.0( 15.0 15.0
bf-np | 90| 9.8 1047 11.1|11.9 | 12.8 | 13.5 | 14.2




CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Summary

In this dissertation, we have addressed several important issues in improving the per-
formance of multicomputer networks in the presence of concurrent communication traffic.
The proposed strategies have been shown to significantly improve communication perfor-
mance during task execution. In Chapters 2 and 3, we focused on flow-control mechanisms
to improve communication performance during the task execution. On the other hand, in
Chapters 4 to 6, we addressed the issues of mapping task modules onto the target network
before executing the task.

Chapter 2 dealt with optimizing the performance of interprocessor-communication in
a hypercube multicomputer equipped with SPIDER-like adapters under concurrent traffic.
Branch-and-bound algorithms were developed to find optimal schedules for various switch-
ing methods under the non-adaptive e-cube routing algorithm. Though computationally
expensive, these optimal schedules serve to measure the effectiveness of various scheduling
policies. A centralized path selection algorithm based on the simulated annecaling method
was also developed and serves as a reference for evaluating distributed routing algorithms.
Several distributed message scheduling policies under the e-cube routing algorithm were
examined for systems with message switching, circuit switching, and virtual cut-through.
In our simulations, the Largest Remaining Bandwidth First (LRBF) scheduling policy was
found to be very effective. It could approach the performance of optimal schedules in many
situations. Being a distributed scheduling policy, it was also more practical and computa-
tionally much less expensive than centralized approaches.

A low-complexity adaptive routing algorithm, called the Progressive Adaptive (PA)

algorithm, was also evaluated. When combined with the LRBF scheduling policy, this
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routing algorithm was found to be very effective in improving performance over the e-cube
algorithm. It outperformed the more complex DFS routing under heavy traffic conditions,
and could closely match the performance of centralized, near-optimal approaches.

Though we evaluated network performance under transient communication loads, it was
shown that an improvement in transient performance almost always offered better steady-
state performance,

In Chapter 3, we evaluated the performance of several message-scheduling policies and
flit-multiplexing methods in a mesh network with wormhole switching and virtual channels.
We focused on w-meshes (k-ary 2-cubes) and f-meshes (k X k& meshes) with e-cube routing
subject to concurrent traffic. We mainly dealt with low-complexity flow control mecha-
nisms. Simulations were performed for three message-scheduling policies, FIFO, SRBF and
LRBF, and their combinations with flit-multiplexing methods such as demand-driven (DD)
allocation, CTS lockahead, and priority-based multiplexing.

We used two performance measures in evaluating these configurations: ¢, the makespan
of a communication mission, and ¢, the mean latency. It was found that DD allocation
and CTS lookahecad are both essential to minimize the waste of physical bandwidth. With
a small amount of extra hardware, SRBF message scheduling and the SRBP flit multi-
plexing can improve network performance significantly. Also, w-meshes, though with more
communication resources, may perform worse than f-meshes in certain situations.

Using a simple objective function, we formulated and solved the problem of mapping a
task which is composed of multiple interacting modules into a binary hypercube in Chap-
ter 4. The goal was to optimize task communication performance, measured in communi-
cation makespan. Due to the difficulties in optimizing this objective directly, a function
called communication bandwidth is proposed. By minimizing this function, we could find
assignments with the optimal communication performance using heuristic combinatorial
techniques. Several heuristics that find mappings by minimizing communication bandwidth
are implemented and comparatively evaluated. The mappings found with these algorithms
are also evaluated with simulations to assess their performance during task execution. It
has been shown that for communication-bound tasks, they make significant improvements
over random assignments with respect to an actual communication performance measure,
i.e., the communication makespan. We also analyzed the case where an alternative routing
algorithm like DFS routing is used. Qur task mapping strategy is again shown to work well

in this case.
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In Chapter 5, we have addressed the problem of mapping concurrently concurrently-
communicating modules into a mesh multicomputer with wormhole switching and virtual
channels. Qur objective is to optimize the makespan and average latency of these messages.
exchange among modules. It has been shown that a direct optimization to the performance
objective itself is not practical. We investigated several simplified cost functions for the
simulated annealing method. The effectiveness of these proposed cost functions are com-
pared by using a flit-level simulation program to access the actual run-time performance of
the mappings optimized with each cost function when approximately the same amount of
computing time is given. The cost function f; | fs, has been found to be quite effective.
Mappings optimized with it have been shown to be consistently outperform the others.
Also performance of mappings can be continually improved with the increase in computing
time. We also showed that the run-time performance of optimized mappings can be further
improved when on-line flow-control mechanisms are implemented.

We addressed the problem of mapping a set of communicating subcubes in a hypercube
by minimizing inter-subcube communication traffic in Chapter 6. The communication model
we used was based on the one proposed in [86, 18] for routing messages between subcubes
of the same size. Our objective was to minimize the total inter-subcube communication
bandwidth.

We first considered the case where all subcube sizes were identical. Several important
mathematical properties of this type of mappings were derived. Methods were proposed to
modify existing algorithms to find an optimal mapping. Parallel mappings were found to
have certain desirable properties, and required less computation cost to find. It was also
shown that for some special cases optimal parallel mappings were indeed optimal among
all mappings. We then generalized our discussion to include communications among non-
uniform size subcubes.

We later showed by simulations that in heuristic algorithms such as simulated annealing
methods and other fast heuristics, parallel mappings still outperformed non-parallel map-
pings in most cases. Also, in our simulations, optimizing the proposed objective function

also lead to improvements in several other performance parameters.

7.2 Contributions

The main contributions of this dissertation are summarized as follows.
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e We proposed practical on-line and off-line strategies to reduce traflic congestion un-
der concurrent traffic arrivals. Most of the proposed strategies can be readily imple-
mented using simple hardware circuits or low-complexity software code on existing
multicomputers. In binary hypercubes equipped with large-buffer switching methods,
we have studied the effects of combining routing algorithms with message-scheduling
policies. In the past, researchers had mostly focused on complex routing algorithms
without considering the importance of on-line message scheduling. In mesh networks
with wormhole switching and virtual channels, we showed that good on-line message-
scheduling policies and flit-multiplexing methods could greatly enhance network per-
formance. Also, a new source of decadlock was found in our study of priority-based

flit-multiplexing methods.

e When communicating task modules are to be mapped onto a distributed/parallel
system, the underlying flow-control mechanisms were taken into account for our opti-
mization problem. We emphasized the importance of choosing effective cost functions
rather than the optimization algorithms themselves. With proper choices of cost func-
tions, task-mapping strategies and flow-control mechanisms were found to be able to

work in tandem.

o We studied the problem of mapping communicating subcubes into a binary hyper-
cube. Properties of this type of mapping were investigated and mapping strategics
were proposed. Previous research on subcube mapping has been mostly focused on

independent subcubes without considering inter-subcube communication.

7.3 Future Work

There are several research topics related to this dissertation work that warrant further
investigation. First, in Chapters 3 and 5, we only considered networks of which virtual-
channel buffers were one flit long. When the buffer size is increased, how the network
performance will be affected is an interesting issue. Although this has been addressed to
some degree in [27], the author used a simplified model which ignored the overhead of
entering or retrieving flits in larger buffers. For a more rigorous study, it is necessary to
construct a more complex simulation program taking this overhead into account.

Also, we only considered mesh networks implemented with the non-adaptive e-cube

routing algorithm. It should be interesting to investigate the problem in the context of
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adaptive routing algorithms such as those proposed in [32, 44]. We have shown that the
SRBF message-scheduling policy and the SRBP flit-multiplexing method to be very effective
when the e—cube algorithm is used. However, when another routing algorithm is used
instead, the resulting performance characteristics are still unknown.

In Chapter 4, we only focused on low-complexity cost functions. It may be possible to
propose a more complex cost function which requires more computation at each trial, but
can reach a good mapping with less number of trials. Also, we only used the simulated
anncaling method to evaluate these cost functions. The possibility of using other methods
like genetic algorithms should also be studied.

In Chapter 6, we showed that when the task graph is a star, an optimal parallel mapping
is also optimal among all mappings. It is our conjecture that this is also true for general
task graphs. A proof of this conjecture can greatly simplify the optimization problem.

Finally, in our simulations, the communication patterns used were mostly randomly
generated. It will be interesting to evaluate the various schemes using actual program

traces.
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