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CHAPTER 1

INTRODUCTION

1.1 Background

Today’s communication networks are characterized by specialization [1]. Different 

networks provide different communication services. Some of the most important existing 

communication networks include

1. a telephone network which offers the customers two-way voice conversations,

2. a computer network which transports computer data traffic, and

3. a cable TV (CATV) network which delivers television signals.

Each of these networks was designed specially for a specific service and is often not 

at all applicable to deliver different services. For example, a CATV network does not support 

voice conversations, and a telephone network does not deliver TV signals. Transmission of 

voice over a computer network is very problematic because of the unpredictable end-to-end 

delays, and transmission of computer data over the telephone network is very inefficient due 

to the low transmission speed achievable.

An important consequence of this service specialization is the existence of a large 

number of independent networks, each requiring its own design phase, manufacturing and 

maintenance. In addition, the capacity of each network must be designed for every indi

vidual service type. Even if resources are freely available in one network, they cannot be



used by another service type. For instance, the peak hours in a telephone network are 

between 9 a.m. and 5 p.m., whereas the peak hours in a CATV network are during evening. 

Since resource sharing is impossible, each network must be dimensioned for the peak hour 

traffic.

It is thus desirable to integrate a large number of different networks into a single 

universal network which is capable of providing all types of services. A single service- 

independent network will have the following advantages [1]:

1. Advances in technology may surpass the bandwidth used of existing communication 

services. New applications may require new communication services. A network 

capable of delivering all types of services will be able to adapt itself to changing or 

new needs.

2. Efficient sharing of available resources for all services.

3. Since only one network needs to be designed, manufactured and maintained, the 

overall cost of network design, manufacturing, operations and maintenance will be 

lower.

The work on integrating different networks into a single universal network has 

been done in the following two areas:

1. Telephone networks are made to support bursty computer data traffic and high rate 

video signals. The resultant network is called the Broadband Integrated Service Di

gital Network (BISDN). The key technology to be used for BISDNs is the Asynchron

ous Transfer Mode (ATM) which dynamically multiplexes packets (or cells in the 

ATM terminology) over transmission links. Compared with the Synchronous Transfer 

Mode (STM) which is used in current telephone networks, ATM is more suitable for 

handling varying-rate signals since it uses transmission resources more flexibly and 

efficiently.
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2. Computer networks are made capable of supporting real-time traffic which requires 

the timely delivery of messages. Examples of real-time traffic include digital voice/video 

streams and control/monitoring signals in distributed control/manufacturing systems. 

The key problem with real-time communication is to improve the quality of service of 

today’s computer networks such that not only can bursty computer data be efficiently 

transported, but also real-time traffic can be satisfactorily handled.

Traditionally, the first area has been investigated by telecommunication engineers, 

while computer scientists have been working in the second area. However, the boundary 

between two areas is fast becoming unclear, and the results in both areas are converging to 

a single technology with which a universal network will be built.

This thesis deals with real-time communication in computer networks. The ap

proaches developed in this thesis for real-time communication bear many similarities to the 

ATM — a key technology to be used for the BISDN.

1.2 Research O bjective

Advances in high-speed computer networking during the past decade have made 

available a wide range of network services, such as email to send electronic messages world

wide, ftp to transfer files between computers, and telnet for remote login to another machine. 

However, the contemporary computer networks fail to provide adequate quality of service. 

A message between two sites could get delayed for an unpredictably long period or even 

lost due to network congestion and/or component failures.

Insufficient service quality limits the application domain of computer networks to 

non real-time data communication only. Services which are not widely provided include 

digital continuous-media (motion video, audio), timely delivery of urgent messages in real

time control/manufacturing systems, and fast request-reply communication [2].

The objective of this research is thus to study how the quality of service can be



improved in computer networks. Specifically, in addition to non real-time data commu

nication, we want to provide network users with services which guarantee the timely and 

reliable delivery of messages. Achievement of this objective will make computer networks 

capable of supporting many applications including those mentioned above and those which 

may not be known at present.

1.3 Approach

A typical computer network is hierarchically organized. End systems in one or 

several buildings/floors are connected together by a local area network (LAN) like the 

Ethernet or IBM token ring. Several LANs are combined into a campus area network via a 

high-speed backbone network like the FDDI token ring. These campus area networks are 

then linked together via long distance lines to form the current Internet.

The Internet provides users with two basic types of communication service: data

grams and virtual circuits. Typical examples of these two types are the User Datagram Pro

tocol (UDP) and the Transmission Control Protocol (TCP). The datagram service provides 

connectionless, unreliable communications between two end systems where each data unit 

(datagram) is sent independently and there is no guarantee that the datagrams will ever 

get delivered or delivered correctly. The virtual circuit service, on the other hand, provides 

connection-oriented, reliable communications, and guarantees all messages to get delivered 

correctly and in sequence. Each type of service has its own application domains. Datagrams 

are used for short and/or urgent communications because no connection establishment pro

cedure is needed, while virtual circuits are more suitable for those applications requiring 

reliable and sequenced delivery of messages.

An important feature that both datagrams and virtual circuits do not support is 

the guaranteed timely delivery of messages despite numerous applications — such as inter

active voice/video communications, time-constrained remote operations, and real-time con
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trol/monitoring — that require messages to be delivered within pre-specified delay bounds. 

For these applications, we need a third type of service which guarantees the timely, se

quenced delivery of messages.

The need for providing services which guarantee the timely delivery of messages 

in computer networks was first noted in [3], recognizing that in addition to the TCP, at 

least two other types of protocols are desirable: (i) a protocol guaranteeing sequenced, 

timely delivery of messages without considering the reliability of message delivery, and (ii) 

a protocol guaranteeing both timeliness and high reliability. The first protocol is to be used 

for real-time voice/video transmission, and the second protocol could be used for distributed 

control/manufacturing systems. However, little work has been done in this area.

An easy way to implement real-time communication would be to use the circuit- 

switched transmission. Given the user’s maximum traffic generation rate, one can use 

a dedicated circuit between two end systems with an adequate bandwidth to guarantee 

the timely delivery of all messages. If the bandwidth of a link is greater than that a 

single channel requires, several channels can be established through the link using either 

frequency-division multiplexing (FDM) or time-division multiplexing (TDM) techniques, as 

is usually done for telecommunication systems. These multiplexing techniques, however, 

do not exploit the bursty nature of data traffic (resulting in inefficient use of link capacity) 

and the different requirements of traffic types (resulting in an inflexible allocation of link 

bandwidths), and thus are rarely used in computer networks.

The packet-switched transmission, on the other hand, uses the link capacity more 

efficiently and flexibly by dynamically allocating link bandwidths according to the traffic 

demands. However, due to the queueing delays at transmission links (e.g., when more than 

one packet need to be transmitted over a link, only one can be transmitted immediately 

and all others would have to wait), message delivery times are not predictable.

To counter this problem, a new transfer mode, called the real-time channel, has



recently been proposed to support real-time communication in packet-switched networks 

[4]. Real-time channels use two techniques to guarantee end-to-end message delay bound: 

admission control of channels and deadline scheduling of packet transmissions.

Like the circuit-switched transmission, admission control requires a process re

questing real-time service to establish a connection (i.e., a real-time channel) before starting 

packet transmissions. Non real-time messages are transmitted in an ordinary way without 

needing a channel establishment phase. However, in order not to affect the quality of service 

guaranteed to real-time channels by the unpredictable non real-time traffic, non real-time 

messages are given lower transmission priority than that of real-time messages transmitted 

via real-time channels.

A real-time channel establishment request may be accepted or rejected, depending 

on the current network-load condition. Admission control is necessary because message 

delay bounds cannot be guaranteed without controlling the traffic load of the network. If a 

channel request is rejected, the requesting process has the following three options,

1. Wait for a period of time and request the establishment of the channel again. Since 

real-time channels are established or removed from time to time, a channel which can

not be established at one time may be establishable at some other time. This is usu

ally used for critical real-time applications like in a distributed control/manufacturing 

system where an application should not be started before adequate communication 

channels are established.

2. Reduce the quality of service requirement, e.g., increase the requested end-to-end 

delay bound, and try to establish the channel again. This is sometimes useful for non 

critical real-time applications like interactive voice/video transmissions. When the 

first channel establishment failed, the user may be willing to accept a connection with 

a lower quality than the previously requested.



3. Transmit messages as non real-time ones without establishing a real-time channel. 

In this case, there will be no guarantee on the message delivery delay bound. This 

method is suitable for randomly generated urgent messages for which transmission 

without guarantee is better than holding them at the source node until the delivering

time guarantee can be arranged.

Each message is split into packets which may be all of the same size (like in an 

ATM network) or have different sizes (like in the current computer networks). Packet 

transmissions are scheduled as follows. Real-time packets are given higher transmission 

priority than non real-time packets. Each real-time packet is assigned a deadline over each 

link it traverses which is calculated from the requested end-to-end delay bound and the 

generation time of the packet. When several real-time packets contend for use of the same 

link, the packet with the earliest deadline is transmitted first. There are two advantages of 

using the deadline scheduling.

1. Minimal effects of queueing delays: For real-time applications, we need to control 

the maximum packet delay. Unlike the average delay, the queueing delays at trans

mission links have significant effects on the maximum packet delays, even when the 

traffic load is not heavy. The deadline scheduling policy can minimize the effects of 

queueing delays in the sense that given a set of packets with deadlines, if they are 

schedulable under any scheduling policy (i.e., every packet can be transmitted before 

its deadline), so can they under the deadline scheduling policy [5]. Thus, the deadline 

scheduling policy gives the communication network more capacity to accommodate 

real-time channels than that with other scheduling policies. In other words, the dead

line scheduling reduces the probability of rejecting channel establishment requests.

2. Channel protection: When establishing a new real-time channel, the worst-case 

queueing delay is calculated for each link under the assumption that all existing real

time channels over this link will generate messages according to their pre-specified



patterns (i.e., do not exceed their o priori specified maximum message generation rate 

and maximum message length). In practice, however, it is possible that some channels 

exceed their pre-specified limits. By properly assigning deadlines to the packets over 

each transmission link they traverse, the deadline scheduling policy can ensure that 

those channels exceeding their pre-specified limits will not affect the timely delivery 

of the other channels’ packets. Other scheduling policies, like the First-In-First-Out 

(FIFO), Exhaustive Round Robin or Priority Scheduling, do not possess this property.

In summary, real-time channels established in a packet-switched network guar

antee the timely delivery of messages like dedicated circuits in a circuit-switched network. 

Each real-time channel guarantees the end-to-end delay bound as long as the source node 

does not exceed the pre-specified limits of message length and generation rate. However, 

unlike a dedicated circuit in a circuit-switched network, a real-time channel does not re

serve any transmission bandwidth. The links are free to transmit other packets whenever 

there are no real-time packets to be transmitted, thus allowing efficient use of network 

bandwidth.

It is worth emphasizing that only those users who need guaranteed timely delivery 

of their messages would use real-time channels. Non real-time data services provided 

by today’s computer networks are still available to all other users who do not have tight 

delay requirements to meet. In other words, using real-time channels is a way to enhance 

computer networks with one more service type for users to choose from.

Research on real-time channels is still in its infancy. This thesis addresses some 

of the key issues of the real-time channel. Specifically, we will derive real-time channel 

establishment conditions, specify a detailed real-time channel approach, investigate the 

implementation issues, and enhance real-time channels to be fault-tolerant. Establishment 

of real-time channels over local area networks and the application of real-time channels for 

multimedia networking are also addressed.



1.4 Organization o f the Thesis

Since real-time channels are connection-oriented, one must set up a connection 

before sending messages. A fundamental problem is then to find the conditions under which 

a new channel request can be granted without violating existing guarantees. Previously 

known conditions either used some restrictive assumptions on the channel parameters [4] 

or were sufficient but not necessary [6]. Under such conditions, a channel establishment 

request could be rejected even if the network has the capacity to accommodate it.

We derive in Chapter 2 some results of deadline scheduling theory from which 

sufficient and necessary real-time channel establishment conditions can be obtained without 

any assumptions on the channel parameters [7]. Thus, under these conditions, the network 

transmission resources can be fully utilized when real-time channels are established.

Based on the deadline scheduling theory obtained in Chapter 2, we present in 

Chapter 3 the detailed procedures for channel establishment and message transmissions. 

These results are the first detailed specification of transport, network, and data link layer 

protocols of real-time channels. They also show the feasibility of the real-time channel 

concept.

One special requirement of the real-time channel protocol is that the deadline 

scheduling policy be used which specifies that if more than one packet contend for the 

same transmission link, the one with the earliest deadline should be transmitted first. The 

deadline scheduling of packet transmissions can be implemented in two ways:

1. Incoming packets are always placed at the end of a waiting queue. When the trans

mitter finishes transmitting a packet, it searches the waiting queue and picks up the 

packet with the earliest deadline to transmit.

2. The waiting queue is organized such that the packet with the earliest deadline is 

always placed at the head of the queue. Thus the transmitter always takes the packet
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from the head of the queue to transmit. However, when a new packet arrives, the 

queue must be searched for a proper position to insert the packet.

The time needed to find a proper packet to transmit or a proper position to insert 

a new packet is called the scheduling time. Unlike the commonly-used FIFO scheduling, 

the time needed for deadline scheduling is not negligible and dependent on the length of 

the waiting queue. To ensure the success of real-time channels, it is crucial to keep the 

maximum packet scheduling time below the time needed to transmit one packet, which is 

a challenging problem for high-speed networks.

In Chapter 4, we present a design of hardware deadline scheduler which can sched

ule one packet in at most 12 clock cycles [8, 9]. In other words, the scheduler can schedule 

n million packets per second with a 12 x n MHz clock frequency. The scheduling time is 

independent of the queue length as long as the total number of real-time channels passing 

through a link does not exceed the designed capacity. The design of the hardware deadline 

scheduler is verified and simulated with the hardware description language VERILOG.

The reliability problem of real-time channels is investigated in Chapter 5. A basic 

real-time channel is susceptible to component failures since all messages of the channel 

are transmitted along a pre-determined path. A single node/link failure in the path could 

disable the whole channel. In networks with sufficient connectivity like meshes and cubes, 

a basic real-time channel can be made Single Failure Immune (SFI) by adopting a semi

dynamic routing strategy and adding some extra links/nodes to the channel [10]. An SFI 

real-time channel guarantees the timely delivery of messages as long as there is no more 

than one link/node failure on the channel.

We also show how a class of reliable real-time channels, called Isolated Failure 

Immune (IFI) real-time channels, can be established in hexagonal mesh networks [11, 12]. 

An IFI real-time channel can tolerate any node/link failures which are not adjacent.

For networks where the SFI real-time channels can not be established, backup
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real-time channels can be established and switched in quickly in case a primary channel 

becomes faulty.

Chapter 6 discusses real-time communication in shared-medium local area net

works (LANs). This issue is important since end systems are first connected via LANs. 

An end-to-end delay bound can not be guaranteed without first achieving real-time com

munication in LANs. This chapter shows how the real-time channels can be established 

over FDDI local area networks. A modification to the FDDI, called the FDDI-M, is also 

proposed which significantly improves a network’s capacity of supporting real-time traffic 

[13, 14]. The new protocol can be implemented with minor modifications to the existing 

FDDI networks.

One of the main applications of real-time communication is multimedia network

ing. Interactive continuous-media communication like digital motion video needs timely 

delivery of messages. Messages arrived late will be discarded but deteriorate transmission 

quality. Conventional circuit-switched transmission is not suitable since the signal rate in 

multimedia applications usually varies greatly. Usage of the fixed bandwidth circuits for 

those applications with highly-varying signal rates wastes link bandwidth.

In Chapter 7, we show how the real-time channel protocol can be used to support 

the transmission of digital motion video [15]. When comparing to the conventional circuit 

switching, the real-time channel protocol is shown to remove the waste of link bandwidth, 

and when comparing to the conventional packet switching, the real-time channel protocol is 

shown to remove the uncertainty in message transmission delays. In shared-medium local 

area networks, the newly proposed FDDI-M is also shown to outperform the existing FDDI 

and FDDI-II protocols.

The thesis concludes with Chapter 8 which summarizes our contributions and 

suggests future work.

The primary application of the results in this thesis is computer networks. However,
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the results are generic in nature and applicable to other areas like message-passing mul

ticomputers and telecommunication systems.



CHAPTER 2

DEADLINE SCHEDULING THEORY

2.1 Introduction

As discussed in Chapter 1, real-time channels use deadline scheduling for packet 

transmissions. The advantages of using the deadline scheduling policy are the minimal ef

fects of contention delays and channel protection. However, as pointed out in [6], one major 

problem of using the deadline scheduling is the difficulty in computing guarantees. Espe

cially, there are no known solutions to the schedulability problem: given a set of real-time 

channels, can all messages of these channels be delivered before their requested deadlines? 

It is essential to solve the schedulability problem if the deadline scheduling policy is to be 

used for real-time channels.

Deadline scheduling theory was first studied in [5] which presented some results 

on periodic task scheduling on a  single processor. A schedulability condition was obtained 

under the condition that a task’s deadline always equals the generation time of the next 

task. However, this result is hardly useful for real-time channels since a message’s deadline 

over one link does not equal to the generation time of the next message in most cases.

Ferrari and Verma [4] obtained a solution to the schedulability problem under 

an assumption that the summation of the maximum message transmission times over all 

real-time channels passing through a link is not larger than the minimum message inter

arrival times of these channels. This assumption is also quite restrictive in practice since

13
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it limits the traffic types to be serviced. Without using this assumption, Kandlur et al. 

[6] established a sufficient condition to check the schedulability of channels. They first 

derived the schedulability conditions from a priority scheduling policy which assigns different 

priorities to the packets of different channels and the packet with the highest priority in the 

waiting queue is always transmitted first. Since a set of channels which are schedulable under 

the priority scheduling policy are also schedulable under the deadline scheduling policy, this 

condition is a sufficient schedulability condition for the deadline scheduling policy.

It can be proved that under the assumption of [4], the sufficient condition of 

[6] is equivalent to the condition of [4]. So, the result of [6] subsumes that of [4]; that 

is, [6] can deal with situations where the assumption of [4] fails to hold. However, using 

sufficient schedulability conditions for establishing real-time channels may still under-utilize 

the network’s transmission capacity since a violation of the sufficient conditions does not 

necessarily mean that the channels cannot be established.

The goal of this chapter is thus to obtain “true” schedulability conditions that 

are both necessary and sufficient without any assumption about the traffic types to be 

serviced. Using these conditions, the network’s transmission capacity can be fully utilized 

to accommodate real-time channels.

This chapter is organized as follows. Section 2.2 gives a real-time channel model 

based on which the schedulability problem and minimum delay bound problem are defined. 

The solutions to the two problems under the preemptive and non-preemptive. deadline 

scheduling policies are derived in Sections 2.3 and 2.4, respectively. The chapter concludes 

with Section 2.5.

2.2 R eal-tim e Channel M odel

A real-time channel is uni-directional. A bi-directional real-time channel can be 

created by setting up two separate uni-directional channels. The reason for this is that
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the traffic patterns of both directions could be significantly different. So it is efficient and 

convenient to consider one direction at a time.

To set up a real-time channel, the requesting process must specify its traffic gen

eration pattern. Because of the limited capacity of transmission links, no bounded message 

delivery delay can be guaranteed without this information. We use two parameters, T  and 

M , to describe a traffic pattern, where T  is the minimum message inter-generation time 

and M  is the maximum message size. It is reasonable to assume prior knowledge of these 

parameters for many applications, such as interactive voice/video transmission and real

time control/monitoring. In other applications where the traffic pattern is less predictable, 

the estimated values of T  and M  could be used. A process may exceed its pre-specified 

maximum message size and/or message generation rate at the risk that these messages may 

not be delivered within the pre-specified delay bound. But the real-time channel protocol 

will ensure that this particular process will not affect the guarantees to other channels.

The requesting process also specifies the addresses of the source and destination 

nodes of the channel, and an end-to-end delay bound D within which this process requires 

all its messages be delivered. Together with the the traffic generation pattern, a real-time 

channel can thus be defined as follows.

Definition 2.1 (Real-time channel) .

A real-time channel, described by a tuple (T, M, D ), is a connection between two nodes which 

guarantees that every message generated at the source will be delivered to the destination in 

a time period no longer than D under the conditions that (Cl) the message inter-generation 

time is not smaller than T, and (C2) the message size is not larger than M.

From this definition, we see that a real-time channel is a very convenient way to 

achieve real-time communication. In a network which provides real-time channel services, 

users can set up channels with adequate bandwidth (i.e., T  and M) and delay bound (i.e., 

D) suited to their applications. This flexibility in establishing different types of channels
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helps the better management of network resources and reduces the costs to users if they are 

charged for their connections. For example, a user will pay lower connection fee for a voice 

channel than a video channel since the former needs less bandwidth. Also, a channel with 

larger requesting delay bound D  costs less than the one with a smaller D. This is in sharp 

contrast to the conventional circuit-switched transmission where users do not have many 

choices on the bandwidth and quality (e.g., the delay bound D) of the circuits.

A fundamental problem to the establishment of real-time channels is to find the 

conditions to check whether the requested channel can be established. In this chapter, we 

derive channel establishment conditions over one link. In other words, we assume that 

each real-time channel is composed of one link only. We also assume that Cl and C2 in 

Definition 2.1 are always satisfied for each real-time channel. The results will be generalized 

in the next chapter for the establishment of multi-link real-time channels in an environment 

where some channels may violate the assumptions Cl and C2.

For the convenience of the following discussions, we use another variable C to 

denote the maximum message transmission time of a real-time channel. In other words, 

if R  is the link transmission rate, then C = M /R . The delay of a message over a link is 

defined as the time between the generation of the message and the transmission of the last 

bit of the message. The deadline of a message belong to a real-time channel (T ,C ,D ) is 

calculated as its generation time plus the requested delay bound D. Then the schedulability 

of a set of channels over a link is defined as follows.

Definition 2.2 (C hannel schedulability) .

A set of real-time channels r( =  (T,-, C,, D{), i = 1,2,..., n, is said to be schedulable over a 

link if for all 1 < i < n, the maximum delay experienced by channel i }s messages over the 

link is not larger than the requested delay bound Di.

To establish real-time channels, we need solutions to the following two problems. 

Problem  2.1 (C hannel schedulability) .



17

Given a set of real-time channels r,- =  (Ti, C,-, D,), i = 1,2,..., n, are they schedulable over 

a link?

Problem 2.2 (Minimum delay bound) .

Suppose Ti—l channels, r,- = (71,-, C,-, A)> * = 1,2, 1, are schedulable over a link.

Given a new channel r„ with the minimum message inter-arrival time Tn and the maximum 

message transmission time Cn, what is the minimum value of Dn such that all n channels 

are still schedulable over the link?

We derive the solutions to Problems 2.1 and 2.2 in the rest of this chapter, which 

form the fundamental deadline scheduling theory for real-time channels.

2.3 Preem ptive Deadline Scheduling

Deadline scheduling of message transmissions can be done in two ways: preemptive 

and non-preemptive. With a preemptive scheduling policy, the transmission priority is 

always given to the message with the earliest deadline. When a message with an earlier 

deadline is generated, the transmission of the current message is preempted and will be 

resumed after all messages with earlier deadlines are transmitted. The time needed for the 

preemption and resumption of message transmissions is assumed to be negligible. With a 

non-preemptive scheduling policy, messages are divided into packets and the preemption of 

a message transmission is allowed only at the boundaries of the packets. We derive solutions 

to Problems 2.1 and 2.2 under the preemptive scheduling policy in this section. The results 

will be extended to the non-preemptive scheduling policy in the next section.

The channel schedulability conditions are given in the following theorem.

Theorem 2.1 (Solution to Problem 2.1) .

A set of n channels ry =  (T,-, C,-, Di), i =  1,2, ...,n, are schedulable over a link under the
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preemptive deadline scheduling policy if and only if

v«> o,
i=l

where ("s]+ = n i f n —l < x < n ,  n = 1 , 2 ,..., and f®]+ = 0 for x < 0 .

Proof of the necessary condition: Let 0 be the starting time for the system. In 

other words, the system is empty (of messages) at time t = 0. Then, V/ > 0, a necessary 

condition for no messages to miss their deadlines in a time period [0 , t] is that the amount of 

time, T, needed to transmit all those messages generated during [0, t] with deadlines < t is 

not greater than t. Since the minimal message inter-generation time of channel i is T,, there 

are at most f(t — Dj)/Ti]+ messages generated by channel T; during [0 ,f] with deadlines

< t, which need at most f(t — jD,)/T,]+C,- units of time to transmit. Thus, the maximum 

value of T  is — A )/T ;]+C;. This proves the necessary condition.

Proof of the sufficient condition: We prove this by contradiction. Suppose a mes

sage misses its deadline at time ti, meaning that at least one message with deadline < ti 

has not been transmitted over the link by ti (a message is said to have been transmitted 

when the last bit of the packet leaves the transmitting node). Then, from the property 

of the preemptive deadline scheduling policy, there must exist t' < ti such that during 

the time period [t',fi], the node is busy transmitting only those messages with deadlines

< fj. Let t0 be the smallest such t', then there are no messages with deadlines < t^ queued 

at the link at time to . Thus, it is concluded that in the time period the link is 

busy transmitting only those messages which are generated at the link during the time 

period [t0, <i] and having deadlines < ti. Based on the same reasoning as the proof of the 

necessary condition, the maximum amount of time needed to transmit these messages is 

T  = f(ti —t0 — D i)/Ti\+Ci. Since one message misses its deadline at tu  this T  must 

be larger than ti — t0, that is,

j ^ K h - t o -  Di)/T{\+Ci > t1 - t 0.
i=l



By letting t = ti —t0, the above inequality contradicts the condition that Vt > 0, ]Ci*=i — 

Di)lTiYCi<t.  □

An interesting special case of Theorem 2.1 is when D, =  T< for all 1 < i < n. Since 

f(t -  Ti)/Ti]+ < t/T i, the inequality of Theorem 2.1 is satisfied if the maximum utilization 

of the link, C,/Ti, is not greater than 1. Also, it is easy to see that the channels are not 

schedulable if the maximum utilization of the link exceeds 1. Thus, it can be concluded that 

when the requested delay bounds are equal to the minimum message inter-arrival times, the 

channels are schedulable over the link if and only if the maximum linlj utilization does not 

exceed 1. This is the well-known result obtained in [5] for the problem of scheduling periodic 

tasks over a single processor. Thus Theorem 2.1 is a generalization of the schedulability 

condition of [5].

Two additional properties about the channel schedulability over a single link follow 

immediately from Theorem 2.1.

1. Increasing the requested delay bounds ZVs will not affect the schedulability of chan

nels.

2. A new channel can always be added if its requested delay bound is large enough and 

the total utilization of the link does not exceed 1 .

These two properties are stated formally in the following corollary.

Corollary 2.1 (Channel schedulability properties) .

(1) Suppose a set of channels r,- = (Ti, C,-, Z2,), i = 1,..., n, are schedulable over a link, then

for any D[ > Dit the set o f channels t( = (2), C,, D'f), i = 1,..., n, are also schedulable 

over the link.

(2 ) Suppose n — 1 channels Ti — (T,-, C,, Z?,), i = 1,..., n — 1, are schedulable over a

link, then by adding one more channel rn = (T„, C„, Dn), the set of n channels
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^  = (Ti,C i,D i), i — 1 , n, are also schedulable over the link if the maximum link 

utilization E ”=i Cf/T) < 1 andDn > Tn+tn, where tn = max {Z>x, £>„_i, ( E I ^ C l-  

Di/T^Ci +  Cn)/{ 1 -  E E i1 CifTi))}.

Proof: (1) is a direct result of Theorem 2.1.

To prove (2 ), using Theorem 2.1 we need to show that > 0 , E"=i [X*- A ) / 2Y| +C',- < 

t. Fort < Dn, E U  \(t~  Di)/Ti]+Ci =  E ,-^1 [X* _ A-)/T,"|+ C,-. Since the first n —1 channels 

are schedulable over the link, from Theorem 2.1, the right-hand side of the above equation 

can not be larger than t. Thus, E?=i IX* — A)/T,"|+C,- < t for t < D„. For t  > D„,

n - 1
J 2 \ ( t -  D i)/T f\+Ci < - D i/T i)Ci + ( £ C i /T i) t  + ( l - ( T n + tn)/Tn)Cn.
i=l 1=1 i=1

From the definition of tn, we have

-  Di/Ti)Ci < (1 -  £ CifTi)tn.
i=l i=l

Thus,

x ; r  (* -  D i) iT ^ C i  < tn + ( j r c i /T iK t  -  tn).
1 = 1  1 = 1

Since E?=i Ci/Ti < 1, E?=i \(i ~  AO/Til+C, < t Mows.

Theorem 2.1 has a neat mathematical form and is useful for deriving properties 

about the channel schedulability. However, one may find it difficult to use for solving the 

schedulability problem (Problem 2.1) in practice, because the inequality of Theorem 2.1 

is supposed to be checked over an infinite length interval [0, oo). This problem can be 

solved with the following two observations. First, the left-hand side of the inequality is a 

piece-wise constant function. Thus, we only need to check the inequality at some discrete 

points in [0 , oo). Second, there exists a point tmax such that under the condition that the 

total utilization of the link E"=i Cn/T n < 1, the inequality of Theorem 2.1 always holds for
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V t > tmax. So, we only need to consider a finite set of points to validate the inequality of 

Theorem 2.1. To this end, we have the following theorem which is a practically-realizable 

version of Theorem 2.1.

Theorem  2 .2  (P ractica l solution to  P rob lem  2 .1 ) .

A set of channels t* = (T;, C,-, A)> i -  1,2, ...,n, are schedulable over a link with the 

preemptive deadline scheduling policy if and only if both of the following hold:

1- E"=i Ci/Ti < 1.

a. v t e s ,  T ,U \( t-D i) /T i \+ C i< t,

where S  ~  U"=15j, Si =  {A  + kTi : k = 0 ,1 ,..., L(tma* -  A )/T ,J}, 

andtm0X = mBx{D1,...,D n,(Z»=1( l - D i/Ti)Ci) / ( l - 'E ' l=1Ci/T i)}.

Proof: The first condition is easy to prove since if the maximum link utilization 

i Ci/Ti > 1, the message queueing delay will tend to oo. Thus, there is no way that 

these channels can be scheduled over the link.

To prove the second condition, we use Theorem 2.1. Since the value of f(t — 

Di)/Ti]+Ci changes only on the set S( = {A  + kTi : k = 0,1,...}, we only need to check 

the inequality of Theorem 2.1 on the set 5 ' = U"=1iSf.

Furthermore, | (t — A )/2V |+ < 1 +  (t — A)/T< for all t > max{A : ® = 1,.

So, it is easy to verify that for t > tmaxi the inequality of Theorem 2.1 always holds. So, we 

only need to check the inequality on the set S' fl { t : t < tmax], which is the set S. □

The following example shows how Theorem 2.2 can be used to solve the schedulab

ility problem.

Exam ple 2 .1  . Given three channels tx = (T i,C i,D x) = (10,2,5), r2 = (T2,C 2, A )  = 

(8,4,8), and r3 = (T3, C3, D3) = (12,3, A )- Use Theorem 2.2 to check their schedulability 

for A  = 9 and A  = 8 .
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Solution: First we check that the link utilization £ f =1 Ci/Ti = 0.95 < 1.

For D3 = 9, tmax = m*x{Du D2,D 3, ( j : l i ( l  -  A /T O C ,)/(l -  £ ? = iCi/Ti)} = 

max{5,8 ,9,35} = 35. Then Sx =  {5,15,25,35}, S2 = {8,16,24,32}, S3 = {9,21,33}, and 

S  = Si U S2 U S3. It is easy to verify that Vf 6  S , £ f =1 [(t -  +C'f < t. Thus, the three

channels are schedulable with D3 = 9.

For £>3 = 8 , tmax = max{Du D2,D a,(T5s l (l ~ 4 / T O ) / ( l  -  E?=i ^ /T ,)}  = 

max{5,8,8,40} = 40. Then Si =  {5,15,25,40}, S2 =  {8,16,24,32,40}, S3 = {8,20,32}, 

and S  =  Si U 62 U S3. At t =  8 , 5Zf=1 f(i — d,)/2V|+ = 9. Thus, the inequality of Theorem 2.2 

is not satisfied. We conclude that the three channels are not schedulable with D3 = 8 . □

Using the first result of Corollary 2.1, we see that in the above example, 9 is

the minimum integer value of D3 such that the three channels are schedulable. So, if one 

wants to establish channel r3 over a link on which rx and r2 already exist, the minimum 

requested delay bound he/she can ask is 9. We then want to know if there is an efficient way 

to find this minimum requested delay bound. This is the minimum delay bound problem 

(Problem 2.2) defined in Section 2.2.

Given n — 1 real-time channels which are schedulable over a link, to determine the 

minimum value of Dn for an n-th  channel such that all the n channels are still schedulable 

over the link, we may first set Dn = Cn and use Theorem 2.2 to check whether the channels 

are schedulable or not. If they are, C„ is the minimum delay bound for channel n. Otherwise, 

Dn must be increased according to the extent that the inequality of Theorem 2.2 is violated. 

This idea leads to the following theorem which solves Problem 2.2 under a preemptive 

deadline scheduling policy.

Theorem 2.3 (Solution to Problem 2.2) .

Let f ( t , Dn) = 527=i \( t-D i) /T iY C i and S be the set defined in Theorem 2.2 with Dn = Cn.

Then, Dn = Cn is the solution to Problem 2.2 if Vf € S, f ( t ,C n) < t. Otherwise, the
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solution to Problem 2.2 is Dn =  max{.D* : t € G}, where G = S f\ {t : f ( t ,C n) > 2} and

Dt is calculated as D* = Cn +  kjTn + e) + with k*f  = [(/(/, Cn) -  t)/C n] -  1, =

f( t ,C n) - t -  kjCn, e\ = t — Cn — k\Tn, k\ = L(< -  Cn)/Tn\ .

Proof: From Theorem 2 .2 , if Vf € S , f ( t ,C n) < i, then all n channels are

schedulable over the link with the n -th  channel choosing Dn =  Cn. Also, it is easy to 

see that Dn can not be smaller than Cn. Thus, Dn = Cn is the solution to Problem 2 .2 .

Otherwise, we need to find a minimum Dn such that Vi > 0, f ( t ,D n) < t. Let 

Dn = Cn + 6D and 6f(t,6D ) = T(i -  C„ -  SD)/Tn]+Cn -  f(i -  Cn)/Tn]+Cn. Then, 

/ ( i ,  Dn) =  /( i ,  Cn) + S/ ( i ,  6D). For any i0 € G, define

0 if i < t0
fto(t)= <

f ( t 0,C n) if i > i 0.

Then, Vi > 0 , /( i,D „ ) < i if and only if Vi > 0, Vi0 G G, /<0(i) + 6 f(t,6 D ) < i. 

So, we only need to find the minimum value of 6D such that the latter inequality holds.

Let t0 be a fixed point in G. We first find a minimum 6Dto such that the inequality 

f t0{t)+ 6f(t,6D io) < i holds for all i > 0. Write 6Dto = kid°Tn+etl? , to—Cn = /:{°r„+c{°, with 

kff = [6Dto/T nJ, kl° = [(t0 -  C„)/T„J. Since the first n -  1 channels are schedulable over 

the link, we can restrict 6Dto < i0 — Cn. Under this condition, functions f to(t),6 f(t,6 D io) 

and i are plotted in Fig. 2.1. From Fig. 2.1, it is easy to see that f t0(t)+ Sf(t, 6Dio) < t holds 

for all t > 0 if and only if this inequality holds at t  = t0 and t = ti, where t\ = t0 + -  e{°.

Notice that S f(t0,SD to) = - ( k + 1 )Cn and 6 f( t1,6Di°) = - k %f C n. Thus, k'f and 6Dto 

must satisfy the following two inequalities:

f(toiCn) — (k j1 +  1)C„ < to

f ( t  oj G„) — k*d Cn < ti =  <0 +  Crf0 — e{°- 

The values of k\f and e f  which satisfy the above inequalities and minimize 6Dio = fcj°Tn+ej0
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are:

= T(/(*o) -  t0)/C n) - 1  = $°

Cd° =  / ( < 0 .  C n )  _  ^0 +  4 °  — kj'Cn = Cj0 +  c\°.

The minimum 6Dto thus obtained such that f to(t) + 6 f(t,6D to) < t, Vt > 0 is 

6D** = k*£Tn +  4° = k)°Tn + 4° +  4°.

Since 6 f(t,6D ) is a decreasing function of 6D, the minimum value of 6D that

satisfies

/to(0 + W ,5 D )  < t ,V t>  0 , V<0 € G 

is thus

SD = max{d.Dto : t0 6  <?}.

This proves that D = max{d< : t € G} is the solution to Problem 2.2. □
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Fig. 2.1. Plots of ft0{t),8 f(t,6D ia) and t as functions of t.

The following example shows the use of Theorem 2.3.

Exam ple 2.2 .

A real-time channel r3 = (T3, C3,D 3) =  (12,3, A,) is to be established over a link over 

which two other channels Tj = (Tu C i,D i) = (10,2,5), r2 = (T2,C 2,A 0  = (8,4,8) have 

already been established. What is the minimum value of D3 such that all three channels are 

schedulable over the link?

Solution: The maximum utilization of the link £ f =1 C./T,- =  2/10 + 4/8 + 3/12 =
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0.95 < 1 , so such a Da exists. Using Theorem 2.3, first let D3 = C3 = 3. Then, 

/( t ,3 )  =  f(t-5 )/1 0 ]+2 + f( t-8 ) /8 ]+4 + f(t-3 )/1 2 ]+3. From the definitions in Theorem 2.3, 

tma* = 65 and Si = {5,15,25,35,45,55,65}, S2 =  {8,16,24,32,40,48,56,64}, S3 = 

{3,15,27,39,51,63}, S = Sx U S2 U Sa

lt is easy to verify that / ( i ,  3) < t holds over S  except in G = {8,16} with 

/(8 ,3 ) =  9 and /(16,3) = 18. Using the formulae in Theorem 2.3, D8 = 9 and D16 = 6 . 

Thus, we get the solution D3 =  max} ! ) 4 : t € G} = 9. The correctness of the solution was 

verified in Example 2.1. □

We give a comparison of Theorem 2.3 with that of [4, 6]. The result of [4] can not 

be used for this example since C\ + C2 + C3 =  9 > min{T1,T2, r 3} = 8 . To compare the 

proposed scheme with that of [6], let us compute the worst-case delay for r3’s messages from 

the priority-driven scheduling policy. Since t 3 is not supposed to affect the delay guarantees 

for Ti and r2’s messages, its messages must be assigned the lowest priority. Assigning r3’s 

priority higher than Ti or r 2 will cause one of rx or r2’s messages to miss its deadline when 

two messages, one for each channel, arrive simultaneously. Then, when messages of all three 

channels (one per channel) arrive at the link simultaneously, the delay of r3’s messages will 

be 15. Thus, the solution given by [6] to Example 2 would be at least 15.1 One can see that 

the gap between the sufficient condition of [6] and our sufficient and necessary condition 

for the schedulability of real-time channels is quite large, indicating the superiority of the 

latter.

The complexity of the solutions to Problems 2.1 and 2.2  presented in Theor

ems 2.2 and 2.3 is of the order of the size of set S  which, from its definition in Theorem 2.2, 

is reasonably small when the maximum link utilization £ " =1 Ci/Ti is not too close to one. 

However, as the link utilization £ " =1 Ci/Ti approaches one, S  could become very large.

'Actually, since 15 is larger than T3, [6] cannot give a solution for Example 2 .
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One way to deal with this problem is to avoid the heavily-loaded links in the network (e.g., 

with the utilization > 0.9) during the real-time channel routing phase. This is based on 

the reasoning that links with high utilizations induce large delays, and thus, new real-time 

channels should not be routed through them. We also do not wish the link utilization to 

reach one because this could block non real-time messages completely from these links.

If the size of S  is still thought to be too large even for moderately loaded links, 

one can use the following sufficient condition for the schedulability of n channels over a link 

that only needs to validate an inequality on at most n points.

A set of channels r,- = (Ti, C,-, £>,), i = 1,2,..., n, is said to be ordered if D x < D2 <

T heorem  2.4 (Sufficient condition for P roblem  2.1) .

A set of ordered channels Ti = (Ti, Ci, Di), i = 1,..., n, are schedulable over a link with the 

preemptive deadline scheduling algorithm if Ci/Ti < 1, and

k
V k e K ,  +  (Dk — Di)/Ti)Ci < Di,

i=i

where K  = {1,2,...,n} — {k : Dk = Dk+i , l  < k < n — 1).

Proof: We want to prove that satisfaction of the above inequality implies that of 

the condition of Theorem 2.1. Let K  = {kx, ..., km} such that kx < k2 < • ■ ■ < km, and let 

Dko = 0, Dkm+l = oo. Then, Vf € [Dkj, Dkj+1),

E r ( ‘ - A ) / r , i +C i - i  = E r ( ‘ - A ) / r . l +C i - (
i=l 1=1

< ^ ( 1  + ( t - D i ) /T i ) C i - t
i=i

=  ( E c . / T . - I j l  + E l l - A / W
i=l i=l

< ( £  Ci/Ti -  1 )Dk. + J 2 ( 1 -  Di/Tt)Ci
i=l »=1

•=i
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< 0.

Since the above inequality holds for j  = 0 , 1 , m,  the theorem follows. □

An interesting by-product of Theorem 2.4 is a sufficient condition for the channel 

schedulability when Di/Ti equals a constant 6, called the the system hazard, for all 1 < 

i < n. Peng [16] proved that a sufficient schedulability condition is 0 > £ " =1 Ci/Ti. Using 

Theorem 2.4, we have another sufficient condition in terms of the system hazard:

k k
e > n gx{(i + (1 -

»=l  «=l

Since C./T1* < Ci/Ti, it can be proved that the above sufficient condition is tighter 

than Peng’s condition in [16]. The following example shows how much of improvement can 

be achieved. Suppose there are two channels,

• rj : Tx = 4, Ci = 2,

• 72 : ?2 = 16, C% — 4.

Using Peng’s condition, the minimum system hazard 6 is J2l=i Ci/Ti =  0.75. From our 

condition, 6 can be as small as 0.6. This shows the tightness (superiority) of the sufficient 

condition of Theorem 2.4.

It is worth pointing out that the simplicity of Theorem 2.4 is achieved at the cost 

that it gives only sufficient, but not necessary, conditions. Violation of sufficient conditions 

does not necessarily mean that the channels are not schedulable over the link. Thus, The

orem 2.4 should be used only when the simplicity of the algorithm is more important than 

the tightness of the results.

A set of channels is said to be strongly schedulable over a link if the conditions of 

Theorem 2.4 are satisfied. Then, we have the following problem which is a modified version 

of Problem 2.2.
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Problem  2.3 (S trong schedulability) .

Suppose n — 1 channels, rf = D{), i = 1, 2 , ...,n — 1, are strongly schedulable over

a link. Given a new channel r„ with the minimum message inter-arrival time T„ and 

maximum message transmission time Cn, what is the minimum value of Dn such that all n 

channels are still strongly schedulable?

The following theorem solves Problem 2.3.

Theorem  2.5 (Solution to  P rob lem  2.3) .

Let Dn = Cn. I f  for k = 1, •••,»,  6k = En^z^C 1 +  iDk ~ D ^/T ^C i -  Dk < 0, then 

Dn = Cn is the solution to Problem 2.3. Otherwise, let Kg = {& : 8k >0}.  The solution to 

Problem 2.3 is D„ =  max{.D* : k  6 I<g) ,  where Dk =  Cn +  (Tn/C n)6k ifC n + (Tn/C n)6k <  

Dk, otherwise, Dkn =  Dk +  (Cn -  Dk + (Tn/C n)6k)/(  1 + (1 -  E j , ^ *  C i / T ^ / O n ) ) .

We are not going to give the proof of Theorem 2.5 since it follows the same idea 

as that of Theorem 2.3.

For the purpose of comparison, we re-do Example 2.2 with Theorem 2.5. First, set 

D3 = C3 = 3. Here only two points need to be checked: ^  =  (1 +  (Di — D3)/T 3)C3 + Ci — 

A  = 0.5 > 0 , and S2 = (1 +  (Z>2-  D1)/T 1)C1+(1 + (D2 ~ D3)/T3)C3+C2-  D2 = 57/20 > 0 . 

Thus, Kg  =  {1,2}. From Theorem 2.5, D2 = 5 and D\ = 13.3. So D3 =  14 is the minimum 

integer-valued delay bound which can be assigned to channel r3 such that the three channels 

are strongly schedulable over the link.

This example shows that the result obtained from Theorem 2.5 is usually not as 

good as that obtained from Theorem 2.3. However, since the computational complexity 

of Theorem 2.5 is in the order of the number of channels to be scheduled, Theorem 2.5 is 

useful when a smaller channel establishment time is required.

In this example, the solution obtained from Theorem 2.5 is shown to be better 

than that of [6] (see Example 2.2). Although this cannot be said in general, our solution 

always requires less computation than that of [6].
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2.4 Non-preem ptive Deadline Scheduling

All results obtained in the last section are based on an assumption that a pree

mptive deadline scheduling policy is used for message transmissions. This means that the 

transmission of a message may be interrupted at any time when another message with an 

earlier deadline is generated, and resumed later from where it was interrupted. Unlike the 

task scheduling on a processor, this is difficult to implement in practice. A more realistic 

method is to break a message into packets and the preemption of the message transmission 

is allowed only at the boundaries of the packets. In other words, each packet is assigned a 

deadline and a non-preemptive deadline scheduling policy is used for the transmission of the 

packets. In this section, we will derive solutions to the schedulability and minimum delay 

bound problems under this policy.

We assume that the packets of a message are generated contiguously. That is, 

the next packet of a message is always ready for transmission when the first packet of the 

message is transmitted. The generation time of a message is defined as the time when its 

first packet is ready for transmission. The deadlines of the packets of a message belong 

to a real-time channel r  = (T, C, D ) is calculated as the message generation time plus D. 

Let Cp denote the time needed to transmit a maximum-size packet. Then, the following 

theorem gives a solution to the schedulability problem under the non-preemptive deadline 

scheduling policy.

Theorem 2.6 (Solution to the schedulability problem) .

In the presence of non real-time packets, a set of real-time channels Ti = Df), i =

1, 2 , ■ • n, are schedulable over a link under the non-preemptive deadline scheduling policy 

if and only if

V t > Dmin, £ r ( *  -  DjVTjl+Cj + C p < t , 
i=i

where X>min = min{A' : 1 < i < rc}.
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Proof of the necessary condition: We prove this by contradiction. Suppose the 

channels are schedulable over the link and there exists a i0 > Dmi„ such that H"=if(to — 

Dj)/Tj~\+Cj + Cp > t0. Consider the following scenario. The link has been idle for all 

t < 0. At t =  0“ , a maximum-size non real-time packet arrived at the link and then 

began transmitting at t = 0 (would last for Cp seconds). Starting from t = 0, all the real

time channels’ messages are generated at their maximum rates. Then, the time needed to 

transmit all these real-time packets with deadlines < t0 is ["(to — D j)/T j]+Cj. Since 

all n channels are schedulable over the link, these packets must be transmitted before time 

to, i.e.,

Y l \{t<,-Di )IT,-\+C,+Cr <U.
J=1

This contradicts the assumption.

Proof of the sufficient condition: We use contradiction again. Suppose the in

equality of the theorem holds, but the channels are not schedulable over the link. Then, 

there exists a ti such that a real-time packet is being transmitted at time t =  t x and misses 

its deadline. Let t0 < Zx be the earliest time such that in the time interval [t0, tj], the link 

is busy transmitting only those packets with deadlines < t\. Thus, at t = Zq , the link is 

either idle, transmitting a non real-time packet, or transmitting a real-time packet with 

deadline > Zx.

If the link is idle at t  = t ^ , then h — to > Dmin since a message generated 

after t0 misses its deadline at Zx. Also, during the time interval [Z0,Zi], the link is busy 

transmitting only those messages which are generated at the link during the time interval 

[Zo,Zi] and with deadlines < t x. The maximum time needed to transmit these messages is 

T  = f(Zi — to — D j)/T j]+Cj. Since one message misses its deadline at tx, this T  must 

be larger than t x —t0, that is,

j ^ ^ - t o - D A / T ^ C ^ h - t o .
3 =1
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By letting t = tx -  t0, one can see that the above inequality contradicts the inequality of 

the theorem.

If the link is transmitting a non real-time message at t — t ^ , then h — t0 + Cp > 

Dmin since a message generated after to — Cp misses its deadline at t x. Also, during the 

time interval [fo?*i3? the link is busy transmitting only those messages generated at the 

link during the time period [f0 -  Cp, fx] (this corresponds to the worst-case that the non 

real-time packet has the maximum length) and having deadlines < tx. The maximum time 

needed to transmit these messages is T = f"(*i - to  + Cp -  D j)/T j]+Cj. Since there is

a message missing its deadline at fx, this T  must be larger than <x — t0, i.e.,

Er(<i - *0 + cp -  DMTA+Cj > h -  to.
J=1

By letting t = tx —10 + Cp, one can see that the above inequality contradicts the inequality 

of the theorem with i = 0 .

Now suppose the link is transmitting a message belonging to a real-time channel 

i0 at t = t^ . From the definition of t0, this message must have been generated at the link 

at time to — Cp (again, this corresponds to the worst-case that the real-time packet is of 

the maximum length) and has a  deadline > tx. Then, dmin < t x -  t0 + Cp < Dio. Also, 

during the time interval [to^i]> the link is busy transmitting only those messages generated 

at the link during the time period [t0 -  Cp,ti] and have deadlines < <x. The maximum time 

needed to transmit these messages is T  =  i — to + Cp -  Dj)/Tj] + . Since there is a 

message missing its deadline at tj, this T  must be larger than tx — t0, i.e.,
n

I > 1  “  to +  Cp — D j)/T j]+ > ti — t0.
i =i

By letting t =  — t0 + Cp, one can see the above inequality contradicting the inequality of

the theorem. □

Results similar to Theorems 2.2 -  2.5 for the non-preemptive scheduling policy 

can be obtained from Theorem 2.6 as follows.
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Theorem 2.7 (Practical solution to the schedulability problem) .

In the presence of non real-time packets, a set of real-time channels Ti — (Ti,C;, D,), i =

1,2, ...,n, are schedulable over a link under the non-preemptive deadline-driven scheduling 

policy if and only if  both of the following hold:

1-

2. Vi € S, K* -  Di)/Tf\+Ci + Cp < t ,

where S  =  U?=1Si, .?,• =  { A  +  nTi : n = 0 , 1,..., L(ima* -  A )/r<J}, 

and imfl!C = raax{A , - , D n,(Cp + £ ^ ( 1  -  D i/Ti)C i)/(l -  £ ? =1 (7,/T,)}.

Theorem 2.7 allows us to check only a finite number of points to verify the 

schedulability of real-time channels. The following theorem gives the solution to the min

imum delay bound problem (Problem 2.2) under the non-preemptive scheduling policy.

Theorem 2.8 (Solution to the minimum delay bound problem) .

Let f{ t ,D n) = ]£J=i \( t—D j)/T j]+Cj+Cp and S  be the set defined above with Dn = Cn+Cp. 

Then, D„ = Cn + Cp is the worst-case delay if f( t ,C n) < t, Vi G S. Otherwise, the worst- 

case delay is Dn = max{jD* : i € G}, where G = S C\{t: f ( t ,C n) > i} and D* is computed 

as £>* = Cn +  k)Tn + e) +  e{, with k) = L(/(i, Cn) -  t)/C n\ , e) =  / ( i ,  Cn) - t -  k)Cn, e\ = 

t - C n - k \ T n, k \ = [ ( t - C n)/T n\.

Also, we have the sufficient conditions for the schedulability of real-time channels 

under a non-preemptive scheduling policy.

Theorem 2.0 (Sufficient conditions for the schedulability problem) .

A set of ordered channels Ti = (Ti,C i,D i), i = 1 ,...,n , are schedulable over a link with the 

non-preemptive deadline-driven algorithm Ci/Ti < 1 and

k
J ^ ( l  + (Dk -  D ^ /T ^C j + Cp < D k, VAre/f,
i= 1

where K  = {1,2, • * -, ti} -  {k : Dk = A + i ,  1 < k < n -  1).



34

Similarly, a set of channels is said to be strongly schedulable under a non-preemptive 

deadline scheduling policy if the conditions of Theorem 2.9 are satisfied. The following 

theorem solves Problem 2.3.

Theorem 2.10 (Solution to the strong schedulability problem) .

Let Dn = C„ + Cp. I f  for i =  0,---,n,  k = 1 , Bk{i) = (1 +  (Dk -

D j)/Tj)Cj + C i~  Dk < 0, then Dn = Cn + Cp is the solution to Problem 2.3. Otherwise, let 

ICG = {fc : 6k(i) > 0}. The solution to Problem 2.3 is Dn -  max. {max{D*(i) : k G K q}, 

where D*(i) = Cn + (Tn/C n)6k(i) i fC n + (Tn/C n)6k(i) < Dk, otherwise, £>* = Dk + (Cn -  

Dk + (T J C n)Sk(i))/( 1 +  (1 -  J2Di<Dk Ci/Ti)(Tn/C n)).

We do not present the proofs of Theorems 2.7 -  2.9 here since using Theorem 2.6, 

they are basically the same as the proofs of Theorems 2.2 -  2.5.

2.5 Conclusion

Solutions to the channel schedulability and minimum delay bound problems are de

rived in this chapter, which form the mathematical basis for the real-time channel concept. 

The real-time channel protocols are going to be constructed on these results in the next 

chapter.

Application of the deadline scheduling theory is not limited to real-time channels 

only. A link can represent any time-critical resource like a processor, and the channels can 

represent any periodic time-critical tasks. So, our solutions can also be used for periodic 

task scheduling problems as those discussed in [5]. Actually, the problems addressed in this 

chapter are more general than the ones in [5] since we do not require the delay bound D to 

be equal to the task period T  and the tasks do not have to be strictly periodic as long as 

there exists a minimum task inter-arrival time.



CHAPTER 3

REAL-TIME CHANNEL APPROACH

3.1 Introduction

As discussed in Chapter 1, real-time channels use two techniques to guarantee 

the end-to-end message delay bound: admission control via the channel establishment pro

cedure and the deadline scheduling of message transmissions. Thus real-time channels are 

realized with two protocols: a channel establishment protocol and a message transmission 

protocol.

The channel establishment protocol handles requests for the establishment of real

time channels. It checks whether the requested end-to-end message delivery delay bound 

can be guaranteed for a real-time channel under the current network-load condition. A 

channel establishment request is granted only if the requested delay bound can be guaran

teed. The message transmission protocol implements the deadline scheduling of message 

transmissions. It specifies how a message is divided into packets, and how deadlines of a 

packet over the links it traverses are calculated. These two parts are closely related. The 

calculation of the end-to-end message delivery delay bound depends on the transmission 

protocol used, and the transmission protocol must be designed such that the requested delay 

bound can be guaranteed and easily verified.

In Section 3.2, we will present in detail the message transmission protocol with 

which the message delivery delay bound over each link can be guaranteed and verified.

35
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Then, both a centralized and a distributed version of the real-time channel establishment 

protocol are constructed in Section 3.3. The centralized protocol requires a special node, 

called the Network Manager (NM), to take care of the channel establishment requests, 

while with the distributed protocol, the channel establishment algorithm is executed in a 

decentralized manner. The chapter concludes with Section 3.4.

3.2 M essage Transmission Protocol

Due to its ease of implementation, a non-preemptive deadline scheduling policy 

is used for the message transmission protocol. Specifically, each message that belongs to 

a real-time channel is divided into packets and the packets are transmitted individually. 

The message transmission protocol assigns each packet a deadline over each link it tra

verses. When several packets contend for the same transmission link, the one with the 

earliest deadline is transmitted first. The in-progress transmission of a packet will not be 

interrupted.

One key problem of the message transmission protocol is the calculation of packet 

link deadlines. As discussed in Chapter 1, the advantages of using the deadline scheduling 

policy are the minimal effects of contention delays and the protection among the estab

lished channels. However, these advantages cannot be realized unless the link deadlines are 

assigned such that the following conditions are satisfied.

C l.  Meeting the link deadlines guarantees the end-to-end message delivery delay bound.

C 2 . The deadline scheduling theory of Chapter 2 can be used to determine whether or not 

each packet can meet its link deadlines.

C3. Violation of the message generation pattern of one real-time channel will not affect 

the guarantees to other channels.

C l is the correctness condition. The link deadlines would be meaningless if they
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cannot guarantee the end-to-end message delay bound. C2 is the solvability condition which 

can check the schedulability of real-time channels. C3 ensures the channel protection as 

discussed in Chapter 1, which is important since real-time channels would be of little use 

in practice if one malicious source can disrupt the regular operations of other channels.

In Chapter 2, the deadlines of the packets of a message axe calculated as the 

message generation time plus the requested end-to-end message delivery delay bound. This 

scheme applies to single-link real-time channels only and does not satisfy C3. For multi-link 

real-time channels, an easy way to meet Cl would be to divide the requested end-to-end 

message delay bound into link delay bounds, and assign the deadline of a packet over a link 

to be the arrival time of the packet at the link plus the link delay bound. Clearly, in this 

way meeting the link deadlines guarantees the end-to-end delay bound. Unfortunately, this 

simple scheme does not satisfy C2 and C3.

Recall that in verifying whether or not the packet deadlines will be met using the 

deadline scheduling theory of Chapter 2, the following assumptions are used: (Al) the pack

ets of a message are generated at the same time, and (A2) there exist a minimum message 

inter-arrival time and a maximum message size for each real-time channel. However, these 

assumptions are not always true because: (1) when a message is split into packets which 

are transmitted individually, the packets may not always arrive at an intermediate link as 

a continuous stream, (2) a real-time channel may generate messages faster and larger than 

the specified values T  and M, and (3) even if no real-time channels violate their traffic spe

cifications, the message inter-arrival times at an intermediate link could be smaller than T  

due to the possible uneven queueing delays at upstream links. Thus, with the simple packet 

deadline assignment scheme described above, the deadline scheduling theory of Chapter 2 

cannot be directly used to check if the packet deadlines will be met (violating C2), and the 

real-time channels are not protected from one another (violating C3).

By convention, we say a message is generated at the source node and a message



arrives at an intermediate node or a destination node. To solve the problem described above, 

we use the logical message generation/arrival times to calculate the packet deadlines. At a 

source node, if a message is generated too early (i.e., with the message inter-generation time 

smaller than T ), its logical generation time is set to be later than its actual generation time 

as if it were generated on time. If a message is generated with too large a size (i.e., larger 

than M  bits), the extra part of the message is considered to be part of the next message. 

The deadlines of a message’s packets are then assigned to be the logical message generation 

time plus the link delay bound. Notice that with the deadline scheduling policy, packets of 

different channels interfere with each other only through their deadlines. Thus, with the 

packet deadlines calculated from their logical generation times, a real-time channel may 

never seem to violate its pre-specified traffic generation pattern from to other channels’ 

points of view.

At an intermediate node, the logical arrival time of a message is calculated as the 

time the message would have arrived at the node if each of its packets had experienced the 

maximum delays over up-stream links. In this way, the adverse effect of the early-arrived 

messages is removed. To the packets of the other channels, the message inter-arrival time 

of a channel will never appear to be smaller than T. Also, all packets of a message are 

always available for transmission after the logical arrival time of the message. Thus, the 

deadline scheduling theory of Chapter 2 can be used to check the schedulability conditions 

at intermediate links.

Calculation of the packet deadlines from the logical generation/arrival times will 

not introduce any unnecessary packet delays. An early generated/arrived packet is eligible 

for transmission before its logical generation/arrival time if there are no other packets with 

earlier deadlines contending for use of the transmission link. An early-arrived packet will 

be delayed for transmission only when its early transmission could cause adverse effect to 

other channels.
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Suppose a real-time channel is to be established over n links t \ The 

requested end-to-end delay bound D is split into link delay bounds. The algorithm for 

doing this will be given in the next section. Suppose the link delay bound over li is d(, 

i = 1, • • •,». We now present the message transmission protocol.

Source node message transmission protocol: In addition to the conventional

packet header information, a packet also contains the following header fields exclusively 

for real-time channels: (1) logical packet arrival/generation time t/, (2 ) packet deadline 

td, (3) routing information which contains the channel’s transmission link IDs and (4) 

scheduling information which contains the link delay bounds d,-.

The source node uses variables tp, te to record the times when the previous and 

current messages of the channel are generated, and mr, m a to record the size (in bits) of the 

remaining message (i.e., the part not yet packetized) and the accumulated message size (to 

detect an oversize message), respectively. Suppose the parameters of the real-time channel 

are (T , M ,D ), and P  is the packet size with which the messages will be divided. Initialize 

tp := —oo, mT := 0, m a := 0.

The message transmission protocol at the source node is given as follows:

Protocol 3.1 (Message transmission at source node) .

Step 1: When a message of m bits is generated at time t, set the current message generation 

time tc := t, and the remaining message size m r := m.

Step 2: Construct a packet of size p = min{P, mr). Fill the packet routing and scheduling 

information £,• ’s and d,- }s in the packet header fields. Update the accumulated message 

size m a := m a+p. Set the logical generation time t{ := max{fc, tp+T}+ [ma/(M + l)\T  

and the deadline td := tt +  da.

Step 3: Forward the constructed packet to the transmission link identified by the link ID l \ . 

Update the remaining message size mr := m r -  p. I f  mr > 0, goto Step 2 to assemble
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the next packet. Otherwise, update ma := max{ma -  M, 0}, tp := max{tc,tp + T}, 

and wait for the generation of the next message.

The function performed at the source node is to police the message generation 

of a real-time channel. If the messages are generated too fast or with too large sizes, 

the extra parts of the messages will be assigned later deadlines as if they were generated 

regularly (see Step 2). As discussed before, with the deadline scheduling policy, the packets 

of different channels interfere with each other only through their deadlines. With the packet 

deadlines calculated from Protocol 3.1, the violation of the traffic generation pattern of one 

channel will not affect other channels and the real-time channels are protected from each 

other. Notice that this kind of channel protection is not achievable with other scheduling 

policies like the FIFO, priority scheduling, or exhaustive round-robin. In this sense, the 

importance of using the deadline scheduling policy cannot be over-emphasized and the 

deadline scheduling of message transmission is a key to of real-time channels.

The packets forwarded to an outgoing link are scheduled according to their dead

lines. We will discuss in Chapter 4 this scheduling process and present an implementation 

of the deadline scheduler. The transmitter will put a time-stamp tt (the time when the first 

bit of the packet is transmitted) at the header of each packet which will be used by the next 

node to remove any clock skew between two nodes.

In te rm ed ia te  node message transm ission pro tocol; With logical message gen

eration times as calculated from Protocol 3.1 at the source node, it is guaranteed that 

the message inter-generation time of a real-time channel (T , M , D ) will never be smaller 

than T.  But, if two messages experience different delays over up-stream links, they could 

still arrive at an intermediate link with an inter-arrival time smaller than T.  So, logical 

message arrival times at intermediate links must be assigned such that the logical message 

inter-arrival time (the time between the logical arrival times of two consequent messages)
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Figure 3.1: Calculation of a message’s logical arrival time at node i.

is always not smaller than T.  As discussed before, this can be done by setting the logical 

arrival time of a message to be the time the message would have arrived if each of its packets 

had experienced the maximum delays over the up-stream links. In this way, the the time 

between the logical arrival times of two packets is always the same as the time between 

the logical generation times of the packets. Thus the problem of uneven packet delays at 

up-stream links can be overcome.

The message transmission protocol at an intermediate node, say node i, is presen

ted below. Let t denote the local time at node i when the first bit of a packet arrives. An 

arriving packet is processed as follows.

P ro toco l 3.2 (M essage transm ission  a t in term ediate  node) .

S tep 1 : Calculate the clock skew between node i — 1 and node i: t, = t — tt }  Suppose link 

£,•_! has a transmission bandwidth R i-i, then update the packet’s logical arrival time 

tt := ti + t ,+  d{-1 — max{0, (M  -  P ) /R i-1}, and deadline td = ti + d{.

Step 2: Remove and from the packet header and forward the packet to the linkti.

The calculation of the logical arrival time ti in Step 1 is explained in Fig. 3.1 

which shows the logical arrival times of a message at node i - 1  and i. A message’s link

'A s will be discussed in Section 3.3, this also removes the propagation delay between two nodes.
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delay is defined as the time between the logical arrival time of the message and the time 

when the last bit of the message is transmitted. Then, a message’s logical arrival time at 

node i equals the message’s logical arrival time at node i — 1 plus the worst-case link delay 

d,_i minus the time needed to transmit M  -  P  bits (i.e., the maximum message minus 

the first packet). One important fact is that if all channels are correctly established, which 

ensures the messages’ actual link delays not to exceed the worst-case link delays d,’s, then 

the actual message arrival times at a node will never be later than the corresponding logical 

arrival times. If this is violated, then something must have gone wrong: either a real-time 

channel is not correctly established or a source node is sending real-time messages without 

establishing a real-time channel first.

3.3 Channel Establishm ent Protocol

The concept of logical message generation/arrival times introduced in Section 3.2 

enables us to check the queueing delay bound over a single link using the deadline scheduling 

theory of Chapter 2. In this section, we show how the end-to-end message delivery delay, 

which is defined as the time between the generation of a message at the source node and 

the reception of the last bit of the message at the destination node, can be guaranteed to 

be below a requested bound using the the real-time channel establishment protocol.

The end-to-end packet delivery delay is composed of the following components:

• Switching delay: the time needed to move a packet from an incoming link to an 

appropriate outgoing link.

• Scheduling delay: the time needed to insert the arriving packet in a priority queue at 

the transmission link, according to a specific scheduling policy.

• Queueing delay: the time between the insertion of the packet at the priority queue 

(i.e., when the packet is ready for transmission) and the transmission of the last bit
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of the packet.

• Propagation delay: the time needed for the packet to reach the next node.

A delay component is said to be inherent if it cannot be controlled under a certain 

bound without a proper high level traffic control scheme. In other words, the inherent part 

of the delay cannot be removed by using an ideal network which has transmission links 

and switching nodes of arbitrarily high speed. In the development of the real-time channel 

protocol, the inherent part of a packet’s end-to-end delay is found to be the queueing delay. 

This is because the the incoming and outgoing links always have the same transmission rate 

in a general network. So, no matter how fast the link transmission speed may be, queueing 

delays at an transmission link cannot be bounded when several incoming links send packets 

at their fastest speed to an outgoing link continuously. In contrast, the switching and 

scheduling delays of a packet can always be controlled under a certain bound by increasing 

the switching/processing power of the node. For example, if the switching/processing speed 

of a node with n incoming links is n times as fast as the transmission speed of its links, the 

switching and scheduling delays of a packet will never exceed the packet transmission time.

Notice some overlap between the switching/scheduling delay and the queueing 

delay since the switching/scheduling of a packet can start at the reception of the packet 

header. Thus if the switching/scheduling can be done before the arrival of the last bit 

of the packet, the switching/scheduling time can be completely ignored. We will use this 

assumption in the rest of this chapter. The design of a fast switching that satisfies this 

assumption will be discussed in the next chapter.

The propagation delay, denoted by Dp, is a constant over a given route and can 

usually be ignored if the physical distance between the source and destination is not too 

long. If Dp is not negligible compared to the requested end-to-end delay bound D , it can 

be pre-subtracted from D and establish a real-time channel with a new end-to-end delay 

bound D — Dp. From Protocol 3.2, the propagation delay between two neighboring nodes
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will be automatically removed as the clock skew, thus guaranteeing the actual delay bound 

D.

From the above discussions, we assume that the end-to-end delay is composed of 

the queueing delays at the transmission links only. To establish a real-time channel over a 

given route, the first step is to divide the end-to-end delay bound into link delay bounds. 

The following theorem gives a relation between the link delay bounds and end-to-end delay 

bound.

Theorem 3.1 (End-to-end Delay Bound) .

Suppose a real-time channel with a maximum message transmission time C runs over n 

links which guarantee the worst-case message link delays di , - - - ,dn, respectively. Then, the 

end-to-end message delivery delay is bounded by
n

D = Y ^ d i -  ( n -  1) max{0, (C -  Cp)},
i=l

where Cp is the packet transmission time.

Proof: Since the end-to-end delay of a message will not exceed the end-to-end 

delay of a maximum-size message which experiences the worst-case link delays on the route, 

we only need to show that the latter will not exceed D as calculated in the theorem.

Label the nodes such that link i runs from node i — 1 to node i. Let t, denote 

the time the last bit of the message arrives at node i, and let t, denote the time the last 

bit of the message’s first packet arrives at node i. Then, from the definition of the end-to- 

end message delay, we get D = tn — t0, and from the definition of the link delay, we have 

di =  ti — r,_i. At the source node (i.e., node 0) we assume that all packets of the message 

are generated at the same time. Thus, f0 =  Ti- For i > 0, ti > 7* + max{0 , (C — Cp)} 

because Packets arrive sequentially. Thus, we have D = tn -  t0 = — L-i) =

]C"=1(ti -  TV-i +  Z)r=i(T»-i -  *«-i) ^  S"=i ^  -  (n -  1) max{0, (C -  Cp)}. The equality holds 

when all the packets arrive in a head-to-tail fashion. □



Theorem 3.1 shows that the end-to-end delay bound D is a decreasing function 

of the packet size. Thus the end-to-end delay can be reduced by dividing a message into 

small packets. This is one of the reasons why the packet-switched transmission is almost 

exclusively used in computer networks. However, one should not draw a conclusion from 

Theorem 3.1 that the smaller the packet size the better. Too small packets cause two 

problems. First, since each packet needs a header whose size is independent of the packet 

size, the smaller the packet, the more overhead is introduced, and the lower transmission 

efficiency. Secondly, small packet size increases the burden of switching nodes. As discussed 

before, the real-time channels require that each packet be switched/scheduled in a time 

period no longer than the packet transmission time. Smaller packets need faster switching 

nodes. Thus, unless a very tight end-to-end delay bound is required or the number of links 

of a channel is large, the packet size should not be set too small.

Using Theorem 3.1 and the deadline scheduling theory given in Chapter 2, there 

are two ways to guarantee the requested end-to-end message delay bound of a real-time 

channel.

M l: Divide the end-to-end delay bound D into link delay bounds d,’s such that the equa

tion of Theorem 3.1 is satisfied. Check the schedulability of the channels over each 

link using Theorem 2.7. If all the checks are positive, the requested real-time channel 

can be established. Otherwise, the channel request is rejected.

M2: Using Theorem 2.8, calculate the minimum link delay bound rf,- over each link of the 

channel. If the end-to-end delay bound calculated from Theorem 3.1 using these min

imum link delay bounds is not larger than D, the requested channel can be established. 

Otherwise, the channel request is rejected.

M2 is in general superior to M l since it calculates the minimum end-to-end delay 

bound which can be guaranteed under the current network-load condition. Thus, if a real

time channel cannot be established using M2, it cannot be established using Ml either under
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any link delay assignment policy. However, Ml is useful in situations where the network is 

lightly loaded (thus the requested channel is always establishable) and the client has specific 

preference on the link delay assignment policy. Also, Ml is simpler than M2 and is more 

suitable for the distributed real-time channel establishment protocol.

We now formally present the real-time channel establishment protocol. The cent

ralized protocol is given first.

P ro toco l 3.3 (C entralized channel estab lishm ent) .

S tep 1: To establish a real-time channel, the source node sends a channel-request message 

that contains the channel parameters (T ,M ,D ) and the addresses of the source and 

destination nodes to a special node containing the Network Manager (NM), which 

manages all the real-time channels in the network.

S tep 2: The NM maintains a channel table containing the information about all established 

real-time channels. After receiving a channel-request message,

S tep  2.1: The NM selects a route from the source to the destination over which the 

real-time channel is to be established. Suppose the selected route contains k 

links

Step 2.2: For i =  1,•••,&, the NM calculates the message link delay bound d'max 

over link £,• using Theorem 2.8. Then, it calculates the end-to-end delay bound 

Dmax using Theorem 3.1.

Step 2.3: If Dmax < D, the NM sets the delay bound over £i to be d,- = dlmax -f- (D — 

D m a x ) / k -

Step 3: If Dmax > D, the NM sends the source node a channel-reject message notifying the 

denial of the channel request. Otherwise, the NM sends the source node a channel- 

accept message which contains the route information and the assigned link delay
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bounds dj’s. After receiving the channel-accept message, the source node can start 

message transmission using Protocol 3.1.

Ml is used in the above protocol due to its “optimality” in checking the channel 

establishment conditions. The reason for re-assigning the link delay bounds in Step 2.3 is 

to make the link delay bounds as large as possible to facilitate the establishment of future 

channels over the links. This will be further discussed in Chapter 5.

The protocol to remove a real-time channel is straightforward. After all messages 

have been transmitted, the source node sends a channel-remove message to the NM which 

deletes the channel from its channel table. A message is also sent to the destination node 

informing it of the end of transmission.

With a centralized channel establishment protocol, all real-time channels are es

tablished by a single node containing the NM. This relieves all other nodes from the com

plex channel establishment functions, thus making it easy to implement and maintain. New 

channel establishment algorithms can be installed without disturbing all other nodes in 

the network. Other functions like accounting can be easily accommodated. Problems with 

the centralized protocol is its speed and reliability. Real-time channels have to be estab

lished one at a time, and each channel establishment needs to exchange several messages 

between the requesting node and the NM. Thus a node may have to wait a long time before 

its channel request is handled. Failure of the NM will cause the rejection of all channel 

requests.

The channel establishment can also be done in a distributed manner.

Protocol 3.4 (D istribu ted  channel establishm ent) .

Step 1: To establish a real-time channel, the source node selects a route to the destination 

over which the real-time channel is to be established. It then divides the end-to-end 

delay bound D into link delay bounds d^s satisfying Theorem 3.1 and sends a channel-
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request message which contains the channel parameters (T ,M ,D ), £,■’s and d,’s, source 

and destination addresses to the first node on the route.

Step 2: Each intermediate node, after receiving a channel-request message, checks the 

schedulability of the channels over the requested outgoing link using Theorem 2.7. If 

the result is positive, the channel being established is registered in the node’s channel 

table, and the channel-request message is forwarded to the next node on the route. 

Otherwise, a channel-reject message is sent back to the source node, and the channel 

is removed from the channel tables of the previous nodes.

Step 3: If a destination receives the channel-request message, it sends a channel-accept 

message to the source node. The source node can start message transmission using 

Protocol 3.1.

The reason for using Ml to calculate the link delay bounds in the above protocol 

is to avoid channel blocking. This distributed protocol allows several channel establishment 

processes to go on simultaneously. If M2 is used, then a real-time channel r  will first be 

established with the minimum link delay bound that each link of the route can provide. 

Before the link delay bounds are relaxed, as done in Step 2.3 of Protocol 3.3, it would be 

very difficult to establish other channels over these links since the unnecessary small link 

delay bounds have been assigned to channel r. This channel blocking phenomenon could 

increase the rejection probability of a channel request.

As to the routing scheme of the channel establishment protocol, we recommend 

the minimum-hop routing. The reason is that the fewer links a real-time channel uses, 

the more likely the channel can be established since the end-to-end delay increases with 

the number of links. Also, the fewer links a real-time channel uses, the less effect it has 

on the establishment of future channels. Thus, in general, the minimum-hop routing can 

maximize a network’s ability of supporting real-time channels. This fact will be discussed
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further in Chapter 5.

In spite of its many advantages, the real-time channel approach does have its lim

itations. One such limitation is the requirement of channel establishment before message 

transmissions. The channel establishment may take a time or even be rejected when the 

network is heavily loaded. This limitation makes real-time channels applicable to only those 

applications whose starting times can be delayed and whose communication sessions last 

for a relatively long period of time. Typical examples of such applications are interactive 

voice/video transmissions where it is acceptable for the users requesting new channels to 

receive “busy” signals but try the connections later. Once a connection is established, the 

life time is usually much longer than the channel establishment time. For distributed con

trol/manufacturing systems, the communication channels between sensors/actuators and 

controllers are usually valid until the system changes. These channels should be appropri

ately established before the system starts operation. Failure to establish necessary com

munication channels means that the system is ill-designed. Real-time channels are not 

useful for the transmissions of short randomly-generated urgent messages, for which the 

long channel establishment time is usually intolerable and the delay of message transmis

sion is not allowed. Enhancement of real-time channels to support such applications could 

be done in the following two ways.

1. For applications like alarm signal transmission, the source and destination nodes of 

communication channels are usually known in advance. Then, appropriate real-time 

channels can be established before the generation of messages. In this way, a ran

domly generated real-time message like an alarm signal can be transmitted over a 

pre-established real-time channel immediately after its generation. The problem with 

this approach is the inefficient use of the pre-established real-time channels since they 

are idle for the most of time.

2. If the source and destination nodes are not known in advance, a special real-time



channel which goes over every link of the network can be established in advance. The 

link delay bound of this special channel can be set very large in order not to affect the 

establishment of other real-time channels. All randomly generated real-time messages 

are delivered over this special channel using any routing algorithm. In this way, 

real-time messages will be delivered with higher priority than that of non real-time 

messages, and transmissions of these messages will not affect the quality guarantees of 

other real-time channels. However, there will be no delay bound guarantee for these 

randomly generated message and they are delivered on a best-effort basis.

3.4 Conclusion

The real-time channel approach is presented in this chapter with which the het

erogeneous real-time communications in point-to-point computer networks can be flexibly 

supported. Real-time channels enable us to use a new transfer mode which has the ad

vantages of both the circuit-switched (real-time communication) and the packet-switched 

(high transmission efficiency) transmission. In the following chapters, we will discuss the 

implementation, enhancement, and applications of real-time channels.



CHAPTER 4

IMPLEMENTATION ISSUES

4.1 Introduction

A key problem to the implementation of real-time channels is the existence of a 

fast switching node. Here by “fast” we mean that the switching/processing time of a packet 

can be controlled under the packet transmission time.

There has been extensive research on fast switch design [17,18,19,20, 21]. With an 

output-buffer architecture, switches supporting Gbps transmission links have been shown 

to be feasible with the available VLSI technology [22]. However, to implement real-time 

channels, a switch must perform an extra function: scheduling of packet transmissions.

Unlike the conventional First-In-First-Out (FIFO) scheduling for which a newly 

arrived packet is simply put at the end of a waiting queue at an outgoing link and a trans

mitter always picks the first packet in the waiting queue to transmit, the deadline scheduling 

requires that either the transmitter searches a waiting queue to find a  packet with the earli

est deadline to transmit, or a newly arrived packet is inserted at a proper position such that 

a waiting queue is ordered such that the packet with the earliest deadline is always at the 

head of the queue. In either case, the whole waiting queue must be searched once for every 

packet transmitted. Previous research on real-time channels simply ignored the scheduling 

time by assuming a fast network processor which performs the packet insertion/deletion in 

software [23]. However, for a communication network with high link bandwidth (say larger
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than 100Mbps) and short packet size (say less than 1000 bits), the transmission time of a 

packet is of the order of microseconds. This makes the above assumption impractical.

If packet scheduling time cannot be controlled under packet transmission time, a 

queue will be formed at the scheduler. One should not use deadline scheduling for the queue 

at the scheduler since this would need another deadline scheduler. So, only the conventional 

FIFO or round robin scheduling can be used, which could result in a larger queuing delay at 

the scheduler than that at a transmission link, making the use of deadline scheduling at a 

transmission link meaningless. Using scheduling policies other than the deadline scheduling 

makes real-time channels lose the second advantage (channel protection) as discussed in 

Chapter 1. So, packet scheduling times must be reduced as much as possible to implement 

real-time channels.

Realizing the need for a  fast deadline scheduler, a hardware implementation of it is 

proposed in this chapter which can schedule an incoming packet in at most 12 clock cycles 

(with the conventional software implementation, a couple of hundred clock cycles is not 

unusual). The design is verified and evaluated with the VERILOG hardware description 

language. Simulations showed enormous improvements over packet delays by reducing the 

scheduling time. We also compared the conventional FIFO and priority scheduling with 

the deadline scheduling and showed the superiority of the latter in supporting real-time 

channels.

This chapter is organized as follows. Section 4.2 presents a detailed design of a 

deadline scheduler, which is then verified and evaluated in Section 4.3 by simulations. The 

chapter concludes with Section 4.4.

4.2 Design of a Fast Deadline Scheduler

The architecture of each node to be considered is shown in Fig. 4.1. Each node 

is composed of one or more application processors and a network processor. Application
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Application Processor Network Processor

Figure 4.1: Node architecture

processors execute application programs and the network processors provide an interface 

for the application processors to communicate with application processors in other nodes. 

As discussed in [24], the usage of network processors can offload communication overhead 

from the application processors and increase parallelism between computation and commu

nication.

The main functions of a conventional network processor are packet processing and 

routing. It also buffers incoming packets when there are contentions at outgoing links. 

Real-time channels require a network processor to perform two extra functions: deadline 

calculation (Protocol 3.1 or Protocol 3.2) and packet scheduling. The architecture of a 

network processor is shown in Fig. 4.2.

As shown in Fig. 4.2, incoming packets are first processed by the Routing Control

ler (RC), which performs routing, deadline calculation, error checking and other necessary 

processing. The RC then stores the packets in the memories of the corresponding outgo

ing links. The packet Scheduling Information (SI) which contains the channel ID, packet 

deadline, and the address of the packet in the memory is passed to the scheduler.

With the network processor architecture described above, the function of the sched

uler is then accepting packet Sis from the RC, arranging them according to their deadlines 

and outputting the head of the queue to the transmitter when requested. The main oper

ation involved here is to arrange the Sis into a priority queue where the SI of the packet
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receiver

receiver transmitter

scheduler

scheduler

Mem

Mem

Figure 4.2: Network processor architecture

with the earliest deadline is always at the head of the queue. When the number of packets 

buffered in the network processor is large, searching the priority queue for an appropriate 

position to insert a new SI could be quite time consuming if the scheduler were implemented 

in software.

The key component of our deadline scheduler is a hardware implementation of the 

priority queue into which a new SI can be inserted in two clock cycles. This is realized 

by assigning a comparator to each storage cell and comparing all elements stored in the 

priority queue with the new one simultaneously. Needless to say, such an implementation 

is very expensive and the size of the priority queue must be kept under a certain limit.

We manage to keep the queue size to the maximum number of real-time channels 

to be accommodated by an outgoing link. This is possible since the packets of a single 

real-time channel are always transmitted on a FIFO basis. Hence, the priority queue needs 

to hold at most one packet SI for each channel. When this packet is transmitted, the second 

packet SI of the channel (if there is one waiting for transmission) gets inserted in the priority 

queue.

The detailed scheme is shown in Fig. 4.3 -  4.5. There are two types of events that



55

a deadline scheduler must handle: packet arrival and packet departure. On the arrival of a 

packet, the scheduler stores the SI of the packet in a register R l, it then checks if the priority 

queue (PQ) has a packet PI of the same channel (this information is stored in memory Ml). 

If not, the SI of the arriving packet is inserted in PQ. Otherwise, they are stored in memory 

M2. On the departure of a packet, i.e, when the transmitter finishes transmitting a packet 

and requests the next one, the scheduler outputs the head of PQ and checks if M2 has a 

packet SI of the same channel (again, this information is stored in Ml). If yes, the packet is 

fetched from M2 and inserted into PQ. Otherwise, it changes the contents in Ml to indicate 

that PQ no longer contains a packet SI of the channel. Since the arrival and departure of 

packets can happen simultaneously, care must be taken so that such collisions are handled 

consistently.

The scheduler is connected to the routing controller (RC) via a 32-bit data bus 

and a signal line IN. When the RC finishes processing an incoming packet, it asserts the 

IN line to the scheduler of the corresponding outgoing link. In the next two clock cycles, 

the PRC sends two data units DATA1 and DATA2 over the bus and then resets IN. The 

formats of DATA1 and DATA2 are shown in Fig. 4.6. They contain the channel ID, the 

deadline of the packet, and the address in the memory at which the packet is stored. The 

scheduler ignores all the following data transmitted over the bus (i.e., the packet itself to 

be stored in memory) until the IN line is asserted again.

The interface of the scheduler to the transmitter is an output register PDO and 

an OUT line from the transmitter. The last (65th) bit of PDO is a valid bit which serves 

as a  READY signal indicating if there are packets waiting to be transmitted. When the 

transmitter is idle and detects the READY signal, it reads the packet address from PDO 

and fetches the packet from the memory to transmit. The transmitter also asserts the OUT 

line for a couple of clock cycles to start the packet departure operations of the scheduler.

Insertion to PQ is composed of two phases (thus needs two clock cycles): compar-
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Figure 4.3: Scheduler data path
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IN = 0 IN = 1

Otherwise

FLAG = 0 & OUT = 0

Otherwise |  FLAG = 0 & OUT = 0

Packet ID to PQ Packet ID to M2

DR1[12] = 0 DR1[12] = 1

WAIT

BUS 1 ==> R1 [32:63]

BUS 1 ==> Rl[0:31]

IDLE

Rl[0:5] = >  AR1[0:5] 
DR1[6:11] = >  AR2[6:11]

1 ==> DR1 [13]
DR1[6:11]+1 =>DR1[6:11] 
DR2=>M2(AR2)

DR2[0:25] ==> PAR 
I ==> DR1 [12]

DR1 =>MI(R1[0:5]) 
{Rl[0:5], DR2} ==> 

PQ(PAR) phase 1

M1(R1[0:5])=>DR1 
1 ==> FLAG 
Rl[6:63] ==>DR2

DR1=>M1(R1[0:5]) 
0 ==> FLAG

{Rl[0:5], DR2) ==> 
PQ(PAR) phase 2 

1 ==> FLAG

Figure 4.4: Flow graph of scheduling an incoming packet
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OUT= 1OUT = 0

Otherwise

FLAG = 0

FLAG = 0Otherwise

Get a packet ID from M2 No more packets of the channel

DR1[13] = 1

WAIT

IDLE

PQ(0) —> PDO 
1 ==> SHIFT

M1[PDO[0:5]] ==> DR1 
1 ==> FLAG; 0 = >  SHIFT 
Shift PQ

DR1 = >  M1(PDO[0:5]) 
0 ==> FLAG

DR 1 [0:5] ==> AR2[6:11] 
PDO[0:5] —> AR2[0:5]

[PDO[0:5], DR2} = >  
PQ(PAR) phase 1 

IF DR1[0:5] = DR1[6:11] 
0 ==> DR1[13]

M2[AR2] = >  DR2 
M2[AR2][0:25] = >  PAR 
DR1[0:5]+1==>DR1[0:5] 
1 ==> DR1[12]

[PDO[0:5], DR2) = >  
PQ(PAR) phase 1 

DRI = >  M1(PDO[0:5]) 
0 ==> FLAG

Figure 4.5: Flow graph of outputting packet
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DATA 1

CHANNEL ID PACKET DEADLINE

0 6 31

DATA2

PACKET ADDRESS

0 31

Figure 4.6: Data format

ison and insertion. In the first phase, the deadline of the new packet (stored in the register 

PAR) is compared with the deadlines of all packets stored in PQ, and the position the new 

packet should be inserted is found. The new packet is inserted in PQ in the second phase. 

The output of PQ is simply a shift right operation.

The scheduler can accept or output a packet SI at any time. However, the opera

tions involved in the packet arrival or departure must be coordinated to avoid simultaneous 

requests for the memories and registers in the scheduler. This is achieved by adding two 

control bits FLAG and SHIFT.

As shown in Figs. 4.4 and 4.5, the FLAG bit allows only one operation (packet 

arrival or packet departure) to access the critical section. When the two operations try to 

enter the critical section at the same time, the access right is given to the packet departure 

operation by having the packet arrival operation check the OUT signal also. The SHIFT bit 

controls the shift operation of PQ. As discussed above, when PQ outputs a packet, it shifts 

right. However, this shift operation can not be done when the packet arrival operation is in 

the critical section. Thus, the SHIFT bit tells PQ not to insert the new packet at the head 

of the queue otherwise it will be mistakenly shifted out.
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4.3 Verification and Evaluation

The verification and evaluation of the obtained design were done using the VER- 

ILOG hardware description language. We wrote two levels of descriptions, one functional 

that describes the interfaces to the Routing Controller (RC) and the transmitter, and the 

internal datapath of the scheduler without consideration of the actual logic circuit generat

ing the control signals, and one structural that describes the real circuit of the scheduler. 

The functional description was used to perform high level performance evaluation, and the 

structural description to verify the correctness of the obtained design. The reason for using 

two level simulation is that the performance evaluation does not need the details of the 

control logic, and the program for functional description runs faster than that for structural 

description since it does not need to simulate the control logic. A structural description is 

necessary since we have to prove the correctness of the design.

To verify the correctness of the design, we inputted a set of packets to the scheduler 

and checked if the internal state transients and sequences of the outputting packets were 

correct. A typical run of the structural description program is shown below, where the first 

value of the state represents the state of the packet arrival operation as shown in Fig. 4.4 

and the second value the state of the packet departure operation as shown in Fig. 4.5.

VERILOG-XL 1.5c Dec 17, 1991 16:34:12

* Copyright Cadence Design Systems, Inc. 1985, 1988. *

* A ll Rights Reserved. Licensed Software. *

* C onfidential and proprietary inform ation which i s  the *

* property of Cadence Design Systems, Inc. *

Compiling source f i l e  " test.v"

Highest le v e l  modules: 

top
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annotate

clock cy c le  = 20

time = 0 s ta te  = (0 , 0)

time = 10 s ta te  = (1 , 0)

Packet arrives at 30 channel ID = 1 deadline = 5500

time = 30 s ta te  = (3 , 0)

time = 50 s ta te  = (7 , 0)

time = 70 s ta te  = (5 , 0)

time = 90 s ta te  = (13, 0)

time = 110 s ta te  = (9 , 0)

time = 130 s ta te  = (0 , 1)

Packet departs at 150 channel ID = 1 deadline = 5500

time = 150 s ta te  = (0 , 5)

time = 170 s ta te  = (0 , 13)

time = 190 s ta te  = (0 , 9)

time = 210 s ta te  = (0 , 0)

time = 230 s ta te  = (1 , 0)

Packet arrives at 250 channel ID = 2 deadline = 7500

time = 250 s ta te  = (3 , 0)

time = 270 s ta te  = (7 , 0)

time = 290 s ta te  = (5 , 0)

time = 310 s ta te  = (13, 0)
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time = 330 sta te = (9 , 0)

time = 350 sta te = (0 , 0)

time = 450 sta te = ( i , 0)

Packet arrives at 470 chann

time = 470 sta te = (3 , 0)

time = 490 sta te = (7 , 0)

time = 510 sta te = (5 , 0)

time = 530 sta te = (13 , 0)

time = 550 s ta te = (9 , 0)

time = 570 sta te = (o, 0)

time = 2130 s ta te  = (1 , 0)

Packet arrives at 2150 channel ID = 3 deadline = 11610 

time = 2150 s ta te  = (3 , 1)

Packet departs at 2170 channel ID = 0 deadline -  3500

time = 2170 s ta te  = (2 , 5)

time = 2190 s ta te  = (2 , 13)

time = 2210 s ta te  = (2 , 9)

time = 2230 s ta te  = (7 , 0)

time = 2250 s ta te  = (5 , 0)

time = 2270 s ta te  = (13, 0)

time = 2290 s ta te  = (9 , 0)

time = 2310 s ta te  = (0 , 0)

time = 4110 s ta te  = (1 , 0)



Packet arrives at 4130 channel ID = 4 deadline = 15600

time = 4130 s ta te  = (3 , 0)

time = 4150 s ta te  = (7 , 0)

time = 4170 s ta te  = (5 , 1)

Packet departs at 4190 channel ID ■ 2 deadline = 7500

time = 4190 s ta te  = (13, 3)

time = 4210 s ta te  = (9 , 3)

time = 4230 s ta te  = (0 , 5)

time = 4250 s ta te  = (0 , 13)

time = 4270 s ta te  = (0 , 9)

time = 4290 s ta te  = (0 , 0)

tim e = 5130 s ta te  = ( 1 , 0 )

Packet arrives at 5150 channel ID = 3 deadline = 21610

time = 5150 s ta te  = (3 , 0)

time = 5170 s ta te  = (7 , 0)

time = 5190 s ta te  » (6 , 0)

time = 5210 s ta te  = (4 , 0)

time = 5230 s ta te  = (12, 0)

time = 5250 s ta te  = (0 , 0)

time = 6190 s ta te  = (0 , 1)

Packet departs at 6210 channel ID = 3 deadline = 11610 

time = 6210 s ta te  = (0 , 5)
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time = 6230 sta te  = (0 , 4)

time = 6250 sta te  = (0 , 6)

time = 6270 s ta te  = (0 , 14)

time = 6290 sta te  = (0 , 10)

time = 6310 s ta te  = (0 , 0)

L848 "test.v" : $ fin ish  at sim ulation

370486 sim ulation events

CPU time: 0 secs to  compile + 1 secs to  lin k  + 13 secs in  sim ulation  

End of VERILOG-XL 1.5c Dec 17, 1991 16:34:28

At time 30, the first packet arrived at the scheduler. After a series of state transi

ents, the scheduler reached the state (9,0) at time 110, where the header of the packet was 

inserted at the priority queue (PQ). The transmitter fetched the pointer of the packet at 

the next clock cycle (time 130) and the packet got transmitted at time 150.

The minimum packet scheduling time is thus (150 — 30)/20 = 6 clock cycles. In 

other words, if the output link is idle, a cut-through packet experiences the delay of 6 

clock cycles at the scheduler. From the flowgraphs of the scheduler (Figs. 4.4 and 4.5), 

the maximum cycles needed to output a packet is 6, so the maximum scheduling time is 

6 + 6 = 12 clock cycles when a packet arrival and a packet departure occur simultaneously.

Competition for the critical section occurred at times 2170 and 4190. In the former 

case, the packet arrival operation waited at state 2 for three cycles until the packet departure 

operation finished. In the latter case, the packet departure operation waited at state 3 for 

two cycles until the packet arrival operation finished. At time 5150, the state transitions 

showed that the incoming packet was stored at M l, and this packet was inserted in PQ 

after a packet of the same channel got transmitted at time 6210. It is also easy to see 

that the packets got transmitted with the correct order, i.e., the deadline scheduling was
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implemented.

Performance evaluations were done using the functional description program. Five 

channels were created each of them had inter-arrival packet generation times uniformly 

distributed between 500 and 750 clock cycles. Packet transmission time was 100 clock 

cycles. With a 10MHz clock, these figures correspond to a 100Mbps transmission link, and 

a 1000-bit packet size. i

The delay of a packet is defined as the time period between its generation and 

when the transmitter starts transmitting it. The maximum packet delay of each channel 

was measured by simulating the system for 10 seconds (or 200,000,000 clock cycles), which 

took about 10 hours to run the functional description program on a SUN Spark workstation. 

Theoretically, the simulation time should be as long as possible to reveal the worst case 

packet delays.

The first experiment investigated the effects of scheduling times on the maximum 

packet delays to verify our claim for the need of a fast deadline scheduler. The measured 

maximum packet delays of the channels with different scheduling times were plotted in 

Fig. 4.7. The dashed lines in the figure represent the requested delay bounds of the channels.

At a scheduling time of 12 clock cycles, all the channels met the requested delay 

bounds. The real-time channels successfully supported channels with different delay require

ments. However, as the scheduling time increased to 30 clock cycles, packets of channel 1 

missed their deadlines. With a further increase of the scheduling time, all channels tend to 

have the same maximum packet delay, which means that the advantages of deadline schedul

ing disappeared completely. Actually, as will be shown by the next experiment, the queuing 

delays at the scheduler resulted larger packet delays than that with FIFO scheduling. The 

results of this experiment clearly showed the importance of a fast deadline scheduler in the 

implementation real-time channels.

The second experiment compared the deadline scheduling with the FIFO schedul-
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Figure 4.8: Comparison of deadline scheduling with FIFO scheduling

ing. The scheduling times for the deadline scheduling and the FIFO scheduling are assumed 

to 12 clock cycles and 2 clock cycles, respectively. The results are shown in Fig. 4.8, where 

the dashed lines represent requested delay bounds of the real-time channels. It is easy to see 

that a FIFO scheduler treats all packets equally therefore is not appropriate for accommod

ating real-time channels where different channels may have different delay requirements.

The third experiment compared deadline scheduling with priority scheduling. With 

a priority scheduler, an urgent channel is assigned a high priority, thus its packets are more 

likely to meet the delay bound than with the FIFO scheduling. However, a problem with 

priority scheduling is that the channels are not protected from each other. A higher priority 

channel can easily make lower priority channels miss their deadlines. Fig. 4.9 shows the 

situation when channel 1 (with the highest priority) violates its traffic specification and 

generates packets at a higher rate (generate a packet every 250 -  500 clock cycles instead
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Figure 4.9: Comparison of deadline scheduling with priority scheduling

of the specified 500 -  750 clock cycles). With deadline scheduling, only the packets of the 

violating channel missed their deadlines. But with priority scheduling, the violating channel 

made three other channels miss their deadlines. This error diffusion phenomenon is very 

undesirable for real-time systems.

4.4 Conclusion

In this chapter, we have showed the importance of a fast deadline scheduler for real

time channels and established the feasibility of implementing such a device. The experiments 

performed have clearly underscored the superiority of deadline scheduling over FIFO and 

priority scheduling in this domain, and also shown that for high packet bandwidths and 

slow scheduling, the scheduler becomes the bottleneck and deadline scheduling losses its 

superiority.



CHAPTER 5

FAULT-TOLERANT REAL-TIME CHANNELS

5.1 Introduction

Fault-tolerant and real-time communication is very important yet difficult to 

achieve. Traditional protocols like the TCP achieve reliable communication through ac

knowledgment and retransmission schemes, where one gains the reliability at the cost of 

timeliness. In this chapter, we discuss how this problem can be solved by using real-time 

channels and exploring the spatial redundancy of a given network topology.

The real-time channels discussed so far are not fault-tolerant. All messages of a 

channel are transmitted along a static path, so a single component failure could disable the 

entire channel. A natural way to increase the reliability of a real-time channel is to expand 

the channel with some extra links and nodes such that packets can be re-routed around 

faulty components on the original channel. One extreme is to use all links and nodes in 

the network such that packets can be successfully routed in a timely manner as long as 

the network remains connected. However, this method is usually very expensive. The cost 

comes not only from the large number of links/nodes involved, but also from the delay 

bound requirements over the links. For a real-time channel which remains operational as 

long as the network is connected, the number of hops a packet may traverse in the worst 

case is very large. The large number of hops from the source to destination node requires 

each link on the path to provide a very small delay bound so that the end-to-end delay
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bound can be guaranteed. From Theorem 2.6, it is easy to see that requests establishing 

real-time channels with very small requested delay bounds over a link are very likely to be 

rejected.

By making a tradeoff between reliability and cost, we first in Section 5.2 establish 

Single Failure Immune (SFI) real-time channels which guarantee the timely delivery of 

packets as long as each packet encounters no more than one link/node failure on its way 

to the destination node. In Section 5.3, we discuss how a class of more reliable real-time 

channels, called the Isolated Failure Immune (IFI) real-time channels, can be established in 

networks with the hexagonal mesh topology. For a real-time communication system that 

can tolerate rare short-period break downs, we discuss in Section 5.4 how backup channels 

can be established which is a less expensive way to increase the reliability of real-time 

channels. This method is also applicable to cases where a SFI circuit cannot be established 

due to the poor connectivity of the network. The chapter concludes with Section 5.5.

5.2 Single Failure Im m une R eal-tim e Channels

For convenience of presentation, we introduce some definitions first. A communic

ation network is modeled as a directed graph N  = {V ,E}, where V  is a set of nodes and 

E  is a set of directed links. A basic circuit from node v0 to node vk in a network is defined 

as a sequence Cb = vQe1v1e2.. ,ekvk, where v,-’s are nodes and e, =u,~7vi is a directed link 

from u,_i to Vi.

Definition 5.1 (Single Failure Immune (SFI) circuit) .

A SFI circuit, denoted by C,, from node v0 to node vk is defined as a basic circuit Cb = 

v0eiV\e2 • • -ekvk augmented with some extra nodes and links, which are called the detour of 

Cb, such that when node v{ (1 < i < k ) or link e, (1 < i < k ) is removed from Cb, there 

exists a basic circuit from Uj_i to vk in the remaining C,.
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Figure 5.1: Two optimal SFI circuits in a mesh network.

With the above definition, when a packet arrives at Vj_i and finds that either v; 

or e,- is faulty, it can always be re-routed over a detour link leading to the destination node. 

Thus a SFI circuit guarantees that a packet will always be delivered to the destination node 

as long as no more than one link or node (except the source and destination nodes) is faulty. 

Figure 5.1 shows two SFI circuits in a mesh network, where the solid arrows represent the 

basic circuits and the dashed arrows represent the detour.

To establish a SFI real-time channel, the first step is to find a SFI circuit on 

which the real-time channel is to be established. A straightforward way to find a SFI 

circuit from v0 to v* is given as follows. First, select a basic circuit Ct = v0e\ • • •, w*. Then, 

for i =  1, • ••&, remove u,- (e,- if i = k ) from and establish a basic circuit from «,•_! to 

Vk in the remaining network. Clearly, the union of all the basic circuits forms a SFI circuit 

from v0 to vk. Failure of this algorithm means that no SFI circuits exist with the selected
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Cb.

If a SFI circuit is to be used for the establishment of a SFI real-time channel, 

some extra features are desirable. From Theorem 2.6, we see that an established real-time 

channel over a link affects the link’s ability to accommodate future channels. In establishing 

a new channel, it is thus desirable to minimize this negative influence on future channels to 

be established.

There are two ways to measure this influence of a real-time channel. First, the 

more links a real-time channel traverses, the more pronounced the influence will become. 

This is because a larger number of links are involved in establishing a long channel than 

a short channel. Secondly, over a single link, the smaller the link delay bound the more 

the influence is (see Theorem 2.6). Thus, to reduce a real-time channel’s influence on the 

network’s ability to establish future channels, one should run it through as few links as 

possible, and make the requested packet delivery delay over each link as large as possible. 

Note that the second objective is consistent with the first, because the more links a real-time 

channel traverses, the smaller the requested packet delivery delay per link would become. 

Hence, the minimum-hop routes are best suited for real-time channels.

Another advantage of minimum-hop routing for real-time channels is the reduction 

of real-time packets’ influence over non real-time packets. If each real-time packet traverses 

through a minimum number of links, the total real-time traffic in the network would be 

minimized. Since transmission priority is usually given to real-time packets over non real

time packets, minimizing real-time traffic effectively minimizes its influence on non real

time packets in the network.

For SFI real-time channels, the influence of the existing real-time channels on fu

ture channel establishment also includes that over detour paths. Thus, one should establish 

a SFI real-time channel over a SFI circuit which needs a minimum number of extra links.



73

In summary, we have the following two goals in selecting a SFI circuit for the 

establishment of a SFI real-time channel:

G l: The basic circuit is a minimum-hop route from the source to the destination node. In 

the case of link/node break down, the detour should also be the minimum-hop routes 

in the remaining network.

G2: Under the constraint of G l, the total number of links on the detour of a SFI circuit 

should be as small as possible.

A SFI circuit is said to be optimal if it achieves the above two goals. It is not 

difficult to find an optimal SFI circuit in some widely-used regular networks like meshes 

and hypercubes. Figure 5.1 gives an example of two optimal SFI circuits in a mesh network.

For an arbitrary-topology network, however, the optimal SFI circuits are not al

ways readily obtainable. The difficulty comes from the existence of multiple minimum-hop 

basic circuits between two nodes in a network. Different choices of the basic circuit and 

detour could result in different numbers of extra links needed for a SFI circuit. We propose 

a heuristic algorithm for finding a SFI circuit as follows.

A lgorithm  5.1 (C onstruction  o f SFI circuits) .

S tep 1. Set up a minimum-hop basic circuit Cj = vQe\Vi ■ • • ekvk from the source node v0 

to the destination node vk.

Step 2. Initialize the set of extra nodes and links C := 0. For i = 1 ,...,& , do the following.

S tep 2.1. Remove from the original network node if i < k, and a link ek if i = k.

Step 2.2. Establish a minimum-hop basic circuit from u.-.j to vk in the remaining 

network. At any node, if there are two directions both leading to a minimum-hop 

circuit, the one to a node which is closer to Cj U C is selected. Break a tie using 

the following rules: (1) choose the one which does not introduce a new link, (2)
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choose the one which is closer to Cb, and (3) break the tie arbitrarily. If a basic 

circuit from v0 to vk does not exist, go to Step 3.

S tep 2.3. Suppose C{ intersects node vj in C. If there is node v„ in Cb such that 

(1) there is a link VjVn in C, (2) the basic circuit from Vj to vk in C,- does not 

contain any node v\, I < n, and (3) the number of hops from vn to vk in Cb plus 

1 is not smaller than the number of hops from Vj to vk in C,-, then remove VjVn 

from C. Update C := C U (C./Cj).

S tep 3. If the algorithm fails at Step 2, there does not exist a SFI circuit from v0 to vk.

Otherwise, C U Cb is a SFI circuit connecting v0 and vk with Cb as its basic circuit

and C as the set of extra links and nodes.

The heuristic used in the algorithm is that a detour route Cf should be as close to 

the existing routes Cb U C as possible. In this way, Cj will most likely intersect Cb U C, thus 

reducing the number of links needed. The purpose of Step 2.3 is to remove any redundant 

links and nodes. As an example, we show how a SFI circuit from SOURCE NODE 1 to 

DESTINATION NODE 1 in Figure 5.1 can be established using Algorithm 5.1. The relevant 

nodes and links and their labels are shown in Figure 5.2.

The sequences of the SFI circuit establishment steps are shown below.

Step 1. Set up a minimum-hop basic circuit Cb = v0e1vie2v2e3 v3.

Step 2. Initialize the set of extra nodes and links C := 0. i = 1.

Step 2.1 Remove node Vi from the original network.

S tep 2.2 Establish a minimum-hop basic circuit from v0 to v3 in the remaining 

network: C\ = v0e4V4e6v5e6V7euV2e3 V3. At node v6, both et i and e7 lead to 

a minimum-hop circuit, but en is chosen since it leads to a node closer to Cb.
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Figure 5.2: An example of using Algorithm 3
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Step 2.3 No nodes and links can be removed from C  since C = 0. Update C  :=

C  U {C i /C b} — {fi4, €5 , Sg, €n  , V4, Us, Vg}.

S tep 2. i = 2.

S tep 2.1 Remove node v2 from the original network.

Step 2.2 Establish a minimum-hop basic circuit from i>i to v3 in the remaining

network: C2 = v1egv5e6v6e7V7e8V3.

Step 2.3 C2 intersects node v6 in C  and there is node v2 in Cb such that (1) en 

directs from v6 to v2, (2) the basic circuit from v6 to v3 in C2 does not contain 

any node vt, I < 2, and (3) the number of hops from v2 to v3 in Cb plus 1 equals 

the the number of hops from v6 to v3 in C2. Thus, remove en  from C2. Update 

C := CU {C2/ C b} =  {e4,e5,e6,e7,e8,e9,v4,v s,v6,v 7}.

Step 2. i = 3.

S tep 2.1 Remove link e3 from the original network.

S tep 2.2 Establish a minimum-hop basic circuit from v2 to v3 in the remaining net

work: C3 =  v2ewv8e7v7e8v3.

Step 2.3 Update C := C  U {C3/ C b} = {e4,e8,e8,e7,e8,eg,e i0,v4,v 5,v8,v 7}.

Step 3 Then, C  U Cb is a SFI circuit from v0 to v3 with Cb as its basic circuit and C  as

the set of extra links and nodes.

Comparing with Fig. 5.1, we see that an optimal SFI circuit is constructed using 

Algorithm 5.1. Although this is not always true, the algorithm performs relatively well for 

most networks.

We now develop algorithms for the establishment of a SFI real-time channel over 

a SFI circuit. Let C,  =  C  U Cb be a SFI circuit on which a SFI real-time channel is to be
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established, where Cb = vQekVx ■ • -ekvk is the basic circuit from the source node v0 to the 

destination node vk and C is the set of extra links and nodes. Suppose there are m links 

in C„. Label the links in C as e*+1, • • •, em. Denote C0 = Cb. For i = 1,2, • • • ,k, let C,- be 

the minimum-hop circuit from v0 to vk in Ca when link v{ (ek if i = k) is removed. Define 

a (k + 1) x m  circuit-link matrix M  — (mij)kxm as follows:

rriij =
1 if Ci contains eJ+1 i = 0, • • •, k,

0 otherwise j  = 0, • • •, m — 1

Suppose link e,- guarantees a delay bound d,-, and let Cp denote the time needed to transmit a 

maximum-size packet. Then, from Theorem 3.1, a SFI real-time channel can be established 

with an end-to-end delay bound D if and only if the following delay inequality is satisfied:

M

V
<

' a '

l , i Dm i

(5.1)

where

—

/

M

V
_

\

max{0, (C -  Cp)} +

(  \  
D

K Dm > \ V1 / / , D ,

(5.2)

Then, there are two ways to establish a SFI real-time channel over a SFI circuit.

A lgorithm  5.2 (E stablishm ent o f SFI R ea l-tim e Channels (1)) .

Step 1. For i = 1,2, assign a link delay bound d,- over e,-, such that the inequal

ity (5.1) is satisfied.

S tep 2. Using Theorem 2.7, check the schedulability of the channel over each link. If all 

the checks are positive, the requested real-time channel can be established with the 

assigned link delays d,-’s. Otherwise, the channel establishment request is rejected.
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Algorithm 5.3 (Establishment of Real-time Channels (2)) .

Step 1. Using Theorem 2.8, calculate the minimum packet delay bound dminii over link 

e,-, t =  1, •••,&.

Step 2. Set di := dmin i, i = 1, • • •, m. If the inequality (5.1) is satisfied, the requested real

time channel can be established. Assign the link delay over e;- to be d{ =: dminii + 6{, 

where <$,-’s satisfy

(  \ /  N /  \
Si Di dmin, 1

M ; < ; - M ;

\  ^  / \ Dm )  ̂ dmin,m j

Otherwise, the channel establishment request is rejected.

Since the inequality (5.3) can not determine a unique solution, we need to give a 

rule to choose one of the solutions. The reason for increasing the delay bound over link 

e,- from dmini to +  Si in Algorithm 5.3 is to reduce the channel’s influence on the 

link’s ability to establish more real-time channels. The value of S{ represents the degree 

of the influence reduced. Thus, with respect to a single link e,-, one should set Si as large 

as possible. However, since the maximizing of St must be done under the constraint of 

inequality (5.3), increase of <5,- may cause the decrease of Sj of another link e;-. To make the 

whole network evenly loaded, we use the following max-min rule to choose a solution from 

the inequality (5.3).

M ax-m in Rule: Among all solutions satisfying the inequality (5.3), choose the one whose 

smallest element, i.e., mini<j<m <5,-, has the maximum value. If there are more than 

one solution satisfying this rule, choose the one whose second smallest element has 

the maximum value. Repeat this process until a unique solution is obtained.

The max-min rule can be easily implemented with the following algorithm.
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A lgorithm  5.4 (D istribu tion  of Link Delays) .

S tep 1. Initialize the set of variables to be determined as S — {6i, • • -,6m}.

Step 2. For all <5,- € S> replace with a single variable <5 in inequality (5.3). Calculate 

the maximum value of S satisfying inequality (5.3). Notice that Eq. (5.3) contains m  

inequalities, all elements of M  are either 0 or 1, thus the maximum value of 6  makes at 

least one inequality become an equality. Remove all V s from S  which are contained 

in the equality and set them to be the obtained maximum value of 6 .

Step 3. If S  = 0, stop. Otherwise, goto Step 2.

As an example of using Algorithms 5.3 and 5.4, we show how a SFI real-time 

channel can be established over the SFI circuit from source node 1 to destination node 1 in 

Fig. 5.1. Suppose this real-time channel is to be established in an otherwise idle network 

and has the minimum message inter-arrival time T  = 100, maximum message transmission 

time C  = 5, and requested end-to-end message delivery delay bound D = 60. Suppose 

Cp = C. The labels of the links on the SFI circuit are shown in Fig. 5.1. Then, the

circuit-link matrix is

I  \
1 1 1 0 0 0 0 0 0 0

M  = (5.4)
0 0 0 1 1 1 1 1 0 0

1 0 0 0 0 1 1 1 1 0

x 1 1 0 0 0 0 1 1 0 1

From Theorem 2.8, we have dminii =  5 for 1 < i < 10. Thus, the right-hand side of 

inequality (5.3) equals (45 35 35 35)T. Using Algorithm 5.4, we first set S  := {tfj, • • • ,5i0).

/
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Replacing all elements in S  with a single variable 6 , inequality (5.3) becomes

/  \  
3 (  AK \45

5
6  <

35

5 35

k 3 5 ;

The maximum value $ is then 7 and with which the second, third and fourth inequalities 

of Eq. (5.3) become equalities which contain all except S3. Thus, at the next iteration 

of Step 2 in Algorithm 5.4, S  = {«53}. Replacing S3 with 6  and set all other variables in 

Eq. (5.3) to be 7, it becomes 14 + 6  < 45. The maximum value of 6  is 31.

Thus, the solution from algorithm 5.4 is (^i,d2>̂ 3»̂ 4>̂ 5,^6, ^7,^85^95^10) =

(7,7,31,7,7,7,7,7,7,7). Using Algorithm 5.3, the SFI real-time channel is established with 

link delay bounds (di,d2 ,d 3 ,d4 ,d 5 ,d 6 ,d 7,ds,dg,d10) = (12,12,36,12,12,12,12,12,12,12).

5.3 Isolated Failure Im m une R eal-tim e Channels

Making a real-time channel more robust than just tolerating a single failure is 

usually very difficult and requires reservation of significantly more network resources. We 

discuss in this section how the problem can be solved by choosing a proper network topology.

If a network has a wrapped hexagonal mesh topology [25], one can readily establish 

Isolated Failure Immune (IFI) real-time channels. An IFI real-time channel guarantees the 

timely delivery of messages in the presence of network component failures as long as the 

failures are isolated with respect to the channel. Node failures are said to be isolated with 

respect to a real-time channel if the source and destination nodes of the channel are not 

faulty and any two faulty nodes in the channel are not adjacent. Link failures (a link failure 

is caused by either the failure of the link itself or the failure of the node which the link 

leads to) are said to be isolated if any two faulty links are not originated from a same non 

faulty node or directed to the destination node. Figure 5.3 shows four types of non-isolated
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destination

Figure 5.3: Four types of non-isolated component failures.

failures: (a) two faulty nodes which are adjacent, (b) two faulty links which originate from 

the same node, (c) same as (b) except that one link is made unusable (thus regarded faulty) 

by the failure of another node, and (d) two incoming faulty links of the destination node. 

Another two types of non-isolated failures are the failures of the source and destination 

nodes, respectively. Figure 5.4 shows an example of an IFI channel from node 1 to node 6 

and one pattern of tolerable isolated failures.

The isolated failure immune communication problem for undirected networks was 

first discussed in [26] where the authors proved that a 2-tree1 is a minimum IFI network. In 

other words, any IFI network must contain a spanning 2-tree. This result excludes almost all

1A 2-tree can be constructed as follows. Two nodes connected by a link is a 2-tree. A new node can be 
added to a 2-tree by connecting it to two neighboring nodes in the 2-tree.
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destination

source

Figure 5.4: An IFI channel and one pattern of tolerable link/node failures.

commonly-used network topologies (e.g., rings with more than 3 nodes, rectangular meshes,

and hypercubes) from the candidate set of the IFI networks, except for the hexagonal mesh.

An IFI real-time channel has the following advantages over a basic real-time

channel:

High Reliability: The channel can tolerate a large number of component failures as long 

as they are isolated. For example, the IFI channel shown in Figure 5.4 can tolerate as 

many as 7 faulty links and 2 faulty nodes, which represent 70% of the links and 33% 

of the nodes that the channel runs through.

Easy Failure D etection: Non-isolated failures in the network can be easily detected using 

only local information, i.e., the status of a node’s own links and its neighbor nodes. 

This makes the system maintenance extremely easy. A node can safely shut down one 

of its links or itself by checking the status of its links and the neighboring nodes.

Transm ission of Em ergency M essages: Notice that a path between any pair of nodes 

in a network can always be constructed using only those links whose failure will not 

cause non isolated failures. So, in the absence of network component failures, an 

emergency message can always be transmitted from a source node to a destination 

node using the full link bandwidth on its path without interrupting existing real-time
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Figure 5.5: A wrapped hexagonal mesh of size 3.

channels.

At the Real-Time Computing Laboratory, the University of Michigan, we are cur

rently building an experimental distributed real-time fault-tolerant systems called HARTS 

[12]. HARTS has a wrapped hexagonal mesh interconnection network as shown in Figure 5.5 

which can be defined as follows.

D efinition 5.2 Let [a]i denote a mod b. Then a wrapped hexagonal mesh of size n (or the 

number of nodes on each peripheral edge) is composed of N  = 3n(n — 1) + 1 nodes, labeled 

from 0 to N  — 1, such that each node s has six neighbors [s +  l]jv, [s + 3n(n — 1)]//, [s + 3n — 

2]jv, [s + 3ra2 -  6n + 3]^, [s +  3ra2 — 6 n +  2]^, and [s +  3n -  l]w, in the X , - X ,  Y, - Y ,  Z , - Z  

directions, respectively.

One important result obtained from the HARTS project is the routing algorithm 

in a wrapped hexagonal mesh network. It was proved in [25] that a wrapped hexagonal



mesh is homogeneous. Consequently, any node can view itself as the center of the mesh. 

Let mx,m y, and mz be, respectively, the number of hops (negative values mean the moves 

in negative directions) from the source node to the destination node along the X , Y , and Z 

directions on a shortest path. The following routing algorithm [25] determines the values 

of raT, my, and m2 for the shortest paths from a source node s to a destination node d in 

a wrapped hexagonal mesh of size n:

Algorithm 5.5 (Routing in HARTS) .

Step 0. Set mx := 0, my := 0, mz := 0. Let p  — 3ri2 — Zn — 1, k = (d ~  s)  mod 

p, r = (k — n) div (3n — 2), t = (k — n ) mod (3n — 2).

S tep 1. If k < n then set mx := k, stop. Else if k > 3n2 — 4n + 1 then set mx = 

k — 3n2 +  3rc — 1, stop. Else goto Step 2.

Step 2. If t < n + r — 1 then

• If t < r then set mx := t — r, m2 := n — r — 1, stop.

• If t > n -  1 then set mx := t — n +  1, my := r + 1 -  n, stop.

• Else set my := r — t, m 2 := n — t — 1, stop.

else

• If i < 2n -  2 then set mx := t + 2 -  2n, my := r + 1, stop.

• If < > 2n + r — 1 then set mx := t — 2n — r +  1, mz '■= —r — 1, stop.

• Else set my := 2n + r — t — 1, mz := 2n — t — 2, stop.

We now discuss how real-time channels can be enhanced to be Isolated Failure 

Immune (IFI) in HARTS. The first step is to find an IFI path, which is defined as a subnet

work containing a directed path from the source to the destination in the presence of any 

isolated failures. Let ds(vi,t»2) denote the minimum number of hops (i.e., distance) from
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node Vx to node v2 in a network S. The following theorem gives a sufficient condition for S 

to be an IFI path from a source node v, to a destination node vd.

T heorem  5.1 A network S containing the source node v, and the destination node vA is 

an IFI path from v, to vd if

C l Every node v € S, v ^  vd, has at least two outgoing links to two other nodes, say vx and 

v2, such that ds(vi,vd) < ds{v,dj), ds{v2 ,vf) < ds(v,Vd), and Vi, v2 are adjacent,

C2 There is no loop in S  whose nodes are all of the same distance d > 1 to the destination 

node vd.

Proof: From C l, every node v G S  except the destination node has two outgoing 

links li and /2 which lead to a pair of adjacent nodes Vi and v2, respectively. Then, a packet 

will be blocked at node v only if (1) both l\ and l2 are disabled, or (2) both V\ and v2 are 

disabled, or (3) l\ and v2 are disabled, or (4) l2 or Vi are disabled. All these situations 

represent non-isolated failures. Thus, in the absence of non-isolated failures, a packet from 

the source node can always progress unless it has reached the destination. Further, Cl 

ensures a packet will not move away from the destination and C2 ensures that a packet will 

not move forever without reaching the destination node or circling in a loop in which each 

node is directly connected to vd. Since vd can not have more than one faulty incoming link, 

we conclude that a packet from the source node can always reach the destination node. □

From the above theorem, we see that each node in an IFI path needs only two 

outgoing links. We call one of them the primary link and the other the secondary link.

The primary link is the one which leads to a node closer to the destination. One 

can choose the primary link from the shortest path as determined by Algorithm 5.5. In case 

there exist multiple choices, i.e., more than one of the mx,m y,m z are non-zero, we will use 

the following algorithm to select a primary link L.
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Algorithm 5.6 (Selection of the primary link L ) .

Let abs(x) and sign(x) denote the absolute value and the sign of x, respectively, and let 

X , —X , Y, —Y, Z, —Z  denote the outgoing links of a node along the six different directions. 

Then,

If abs(mx) > 1 then set L := sign(mx)X  

else if abs(my) > 1 then set L := sign(my)Y  

else if abs(mz) > 1 then set L := sign(mz)Z  

else if abs(mx) = 1 then set L := sign(mx)X  

else if abs{my) = 1 then set L := sign(my)Y  

else if abs(mz) = 1 then set L := sign(mz)Z.

As will be clear later, the selection of the primary links in the way specified by 

Algorithm 5.6 will facilitate the determination of the secondary links and reduce the number 

of nodes/links of the resulting IFI channel.

To ensure that the secondary link does not lead to a node which is farther away 

from the destination, it must be either 60 degree above or 60 degree below the primary link.2 

We use the notation L +1 to denote the link which is 60 degree above L, and L — 1 the one 

which is 60 degree below L. For example, if L =  X ,  then X  +  1 = - Z  and X  -  1 = - Y .

Let node[i] denote the ith node of an IFI path, and node[i].p and node[i].s denote 

the node’s primary and secondary links, respectively. We propose the following algorithm 

to construct an IFI path from vs to v^.

Algorithm 5.7 (Construction of an IFI path) .

Step 1. Calculate mx,m y,m z for all shortest paths from the source node vs to the destin

ation node vd using Algorithm 5.5. Notice that at most two of them can be non-zero.

2 Here “above” means counter-clockwise and “below” means clockwise.
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Step 2. Set i := 1 and node[ 1] := vs. Set the initial rotating direction for the secondary 

link R  := 1 if one of the following is true: (1) abs(my) > abs(mx) = 1, (2) abs{mz) > 

abs(my) = 1, (3) abs(mx) > 1, mz ^  0, and (4) abs(mx) = abs(mz) = 1. Otherwise, 

set R  := —1.

Step 3. Calculate the primary link L(i) using Algorithm 5.6. If i > 1, L(i) ^  L(i — 1), and 

node[i — 1] is not adjacent to vd, set R  := —R.

Step 4. Set node[i].p := L(i), node(i).s := L(i) + R, and set node[i + 1] to be the node 

which the secondary link of node[i] leads to. Update mx,m y,m z for node[i + 1].

Step 5. If node[i +  1] = node[i — 1], then set node[i +  1] := and stop. The destination 

node has been reached. Otherwise, set i := i+  1, R := —R, goto Step 3.

The correctness of Algorithm 5.7 is proved by the following theorem.

T heorem  5.2 The subnetwork obtained from Algorithm 5.7 is an IFI path from vs to vd.

Proof: We prove that the resulting subnetwork 5 satisfies C l and C2 of The

orem 5.1.

For any node[i] ^  vd in S , let t>i and v2 be the two respective nodes which links 

node[i].p and node[i].s enter. From the algorithm, node[i -f 1] = v2. Thus v2 6 S. To show 

that Vi is also in S', and vx and v2 are adjacent, we first prove that there is a link in S  from 

v2 to Vi.

Since a secondary link will never lead to the destination node, v2 ^  vd. Thus, 

node[i + 1] always has two outgoing links node[i + 1 ].p and node[i + l].s in S. Assume 

node[i\.s is 60 degree above node[i].p. As shown in Figure 5.6, from the direction of node[i].p 

(which is on the shortest path from node[i] to vd), node[i -f l].p (i.e., the shortest path from 

node[i + 1] to vd) has only three choices: /3,/4,/5. We claim that node[i + l].p can not 

take l3 since otherwise, from Algorithm 5.6, node[i\.p would have taken l2 instead of Zj. If
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Figure 5.6: Proof of the adjacency of vx and v2.
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node[i +  l].p = /5, the primary link of node[i + 1] is the link from v2 to vx. Otherwise, 

node[i + l].p = /4. From Algorithm 5.7, node[i + l].s should be 60 degree below node[i + l].p 

since node[i].p and node[i + l].p have the same direction and node[i] is not adjacent to vd 

(node[i +  l].p would otherwise have taken /5). Thus node[i + l].s =  Zs is the link from v2 to 

vx. Similarly, it can be proved that there is a link from v2 to vx in S  when node[i\.s is 60 

degree below node[i].p.

We now prove that vx 6 S. If node[i +  l].s = Z5, then vx = node[i + 2] 6 S.

Otherwise, from the above proof, node[i +  l].p = Z5. If vx = vd, from Algorithm 5.7,

node[i + 1].« directs back to node[i\. Then, vx = node[i +  2] € S. Otherwise, as shown in 

Figure 5.6, v3 = node[i + 2]. Continuing this induction, we can conclude that either vx £ S, 

or the six neighbors of vx all have primary links directed to vx. The latter case implies 

vx = vd. Thus, vx G S. Since there is a link in S  from v2 to vx, vx and v2 are adjacent in S.

Further, since node[i].p is on the shortest path, ds(vx, vd) =  ds(node[i],vd) — 1 <

ds(node[i], vd). Since there exists a link in S  from v2 to vx, d$(v2 ,vd) < ds (vx,vd) +  1 = 

ds(node[i\, vd). Thus Cl is proved.

We now prove that there does not exist any loop all of whose nodes are of a con-
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stant distance d > 1 to vd by contradiction. First, notice that such a loop contains only 

secondary links since a primary link connects two nodes of different distances to vd. Then, 

all the primary links of the nodes in the loop must lead to a common node v.  This is from 

the fact proved above that either node[i + 1 ).p or node[i + l].s must lead to node v which 

node[i].p leads to. But node[i + l].s can not lead to v since it must lead to a node of the 

same distance to vd as that of node[i\. This is possible only if v = vd, i.e., d = 1. Thus, C2 

is proved. □

We make several remarks on Algorithm 5.7 as follows.

1. In Step 4, the address of node[i +  1] can be obtained from that of node[i\ using 

Definition 5.2, which gives the addresses of the six neighboring nodes of a node in 

six directions. The values of mx,m y, mz for node[i + 1] can be updated directly with 

Algorithm 5.5 using the address of node[i +  1]. But a simpler way of doing this is 

as follows. Let u be the direction of link node[i].s and v,w  be the remaining two 

directions. Let s = 1 if link L(i) + R  is at the positive direction of u and s = — 1 

otherwise. Then, if (mu = mv = 0 and smw > 0) or (mu = mw =  0 and smv > 0), 

update := mv—s, mw := mw—s. Otherwise, update m u := mu—s. The correctness 

of this algorithm can be verified by placing the destination node vd at the center of 

the wrapped hexagonal mesh and checking the changes of m x , m , y , m y as one moves 

from node[i] to node[i +  1] along link node[i].s.

2. In Step 2, the initial rotating direction R  for the secondary link is chosen such that if 

node[ 1] has two links both on shortest paths3 to the destination nodes, node[\].s will 

take one of them. In this way, the resulting IFI path needs less links and nodes than 

when doing otherwise. The way in which the primary link is chosen in Algorithm 5.6 

also serves this purpose.

3 Note that there could be multiple shortest paths between a pair of nodes.
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3. Since the primary links are always on the shortest path to the destination, they form 

a shortest path sinking tree to the destination. In other words, if a packet generated 

at any node in S  is always forwarded using the primary links, it will take a minimum 

number of hops to the destination. This fact results in the following routing policy 

at each node: an arriving packet should be forwarded via the primary link whenever 

possible. The secondary link is used only if the primary link is down.

We now discuss how the IFI real-time channel can be established over an IFI path 

obtained from Algorithm 5.7. The procedures to establish an IFI real-time channel are 

composed of the following three steps.

Step 1. Calculate the message delay bound over each link of the channel.

Step 2. Calculate the end-to-end delay bound using the link delay bounds.

S tep 3. If the end-to-end delay bound is not larger than the requested one, the channel 

can be established. Calculate the link delay bounds to be assigned to the channel. 

Otherwise, the channel establishment request is rejected.

Theorem 2.8 can be used for the calculation of the link delay bounds in Step 1. Let 

node[i], i=  1, • • •, k be the nodes of an IFI path obtained from Algorithm 5.7, where node[ 1] 

is the source node and node[k) is the destination node. Let d[i\.p and d[*].s be the delay 

bounds over the primary and secondary links of node[i], respectively. Then the end-to-end 

message delivery delay bound in Step 2 can be calculated using the following algorithm.

A lgorithm  5.8 (Calculation o f th e  m essage delivery delay bounds) .

The message delivery delay bound d[i] from node[i] to the destination node node[k] for 

a real-time channel with a maximum message transmission time C can be calculated as 

follows:

d[k -  1] = max{d[k -  l].p, d[k -  l].s +  d[k -  2].p -  max{0, (C -  Cp)}},
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Figure 5.7: Calculation of d[i]’s. 

d[k — 2] = max{d[A; — 2].p, d[k — 2].s + d[k — l].p -  max{0, (C — Cp)}},

d[i] = max{d[i].p +  d[ip], d[i].s +  d[i,]} -  max{0, (C -  Cp)} i = k — 3, • • •, 1.

where node[ip], node[i,] are the nodes to which the primary and secondary links of node[i\ 

lead, respectively, and Cp is the packet transmission time.

The correctness of Algorithm 5.8 can be verified as follows. From the proof of 

Theorem 5.2, the connections between node[k — 2],node[k -  1], and node[k\ are shown in 

Figure 5.7(b), from which the first two equations can be obtained using Theorem 3.1. For 

1 < i < k — 3, node[i] is connected to node[ip] and node[is] in the way shown in Figure 5.7(a), 

which proves the remaining k — 3 equations. Since ip and i, are always larger than i for 

i < k — 2, the maximum delay bound from node[i] to node[k\ can be obtained from the 

above equations.

If d[l] < D, the IFI real-time channel can be established, and we need to determine 

the link delay bounds to be assigned to the channel. As discussed in Section 5.2, the link 

delay bounds of the channel should be set as large as possible to reduce the channel’s 

influence on the links’ ability to establish more real-time channels in future. This can be



92

done using the following algorithm.

Algorithm 5.9 (Assignment of link delay bounds) .

Step 1. In Algorithm 5.8, for i = k —1, • • •, 1, record the link (i.e., the primary or secondary 

link) /[i] on which the maximum is achieved for d[*]. Notice that there could be two 

links for i = k — 2 or i = k — 1.

Step 2. Record all the links traversed as one goes from node[ 1] to node[k\ using only the 

links recorded in Step 1. This gives a critical path from the source to the destination 

which has the end-to-end delay bound d[l] as calculated from Algorithm 5.8.

Step 3. Let N  be the total number of links on the critical path. For each link £j on the 

critical path, set the channel’s delay bound dJ := dj + (D — d[j])/N, where dj is the 

delay bound calculated using Theorem 2.8 for £j.

Step 4. Recalculate d[i]’s in Algorithm 5.8 with the link delay bounds on the critical path 

replaced by dJ ’s. The channel’s delay bounds of the links not on the critical path can 

then be calculated as the differences of d[i]’s of the nodes they connect.

In summary, we have the following algorithm for the establishment of an IFI real

time channel.

Algorithm 5.10 (Establishment of an IFI real-time channel) .

Step 1. Using Theorem 2.8, calculate the minimum message delay bounds d[i].pmin and 

d[i].sm,„ over the primary and secondary links of node[i], i = 1, • • •, k — 1.

Step 2. Calculate the end-to-end delay bound d[l] from Algorithm 5.8.

Step 3. I f  d[l] is larger than the user-requested end-to-end delay bound D, the channel 

request is rejected. Otherwise, the channel can be established with the link delay bounds 

calculated from Algorithm 5.9.
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Figure 5.8: An IFI real-time channel from node 1 to node 8.

We now give an example to demonstrate the above ideas. Figure 5.8 shows a 

portion of a hexagonal mesh. We want to establish an IFI real-time channel from node 1 

to node 8 with channel parameters (T ,C ,D )  = (100,5,70). For simplicity, assume Cp > C.

We first construct an IFI path from node 1 to node 8 using Algorithm 5.7. For 

i = 1, node[l] = node 1. ( m „ my,m z) = (2 ,0 ,—2). The initial rotating direction for the 

secondary link R  =  1 since abs(mx) > 1 and mz ^  0. From Algorithm 5.6, the primary link 

is calculated to be node[l].p =  Z (l) = X ,  and the secondary link is node[l].s =  L{ 1) + 1 = 

-Z .

Set the next node to one which link - Z  leads to, then node[2] = node 2. Update 

mx, my, m z for node[2] as follows. The direction of - Z  is Z, so u =  Z, and v = X ,w  =  Y. 

Also, s = -1 . Since mw = 0 and smv = - 2  < 0, we only need to update mu mu -  s = 

- 2  +  1 =  -1 . Thus, for node 2, (ms , my, mz) = (2,0, -1 ).
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Repeating the above procedure, we get an IFI path as shown in Figure 5.8, where 

the primary links are denoted by solid arrows and the secondary links by dashed arrows. 

It is not difficult to see that a packet can be transmitted from node 1 to node 8 in the 

presence of any isolated failures. Also, all the primary links and the nodes form a shortest 

path sinking tree to the destination node.

We now establish an IFI real-time channel over the IFI path thus obtained by 

assigning delay bounds to the links using Algorithm 5.10. Suppose there is no other real

time traffic in the network. Then, for i = 1, • * -, 8, d[i].pmin = d[i].sm<„ — C = 5. Using 

Algorithm 5.8, d[*]’s are calculated and shown near each node in Figure 5.8. The requested 

real-time channel can be established since d[ 1] = 35 < D = 70.

The critical path can be determined by recording the links over which the max

imum is achieved in Algorithm 5.8, which is in this example the ones marked by “/ / ” in 

Figure 5.8. There are a total o{ N  = 7 links on the critical path. The channel’s delay bounds 

over the links of the critical path are thus = dj + (D — d[l])/lV = 5 + (70 — 35)/7 = 10. 

The updated values of <J[*]’s calculated from Algorithm 5.8 are shown in the parentheses 

near each node. Then, the channel’s delay bounds on the other links can be calculated 

as the differences of d[*]’s of the nodes they connect, which are shown near each link in 

Figure 5.8.

5.4 Backup Channels

For real-time communication that can tolerate rare short-period break-downs, a 

less expensive way to increase the reliability of a real-time channel is to set up backup 

channels. This method is also applicable to cases where SFI circuits can not be established 

due to the poor connectivity of a network. The idea of the backup channels works as follows:

• Each real-time channel is composed of a primary channel and a number of backup 

channels. Under the normal circumstance, the primary channel is used for packet
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transmission while keeping the backup channels unused. In case the primary channel 

gets disabled by a component failure, one of the backup channels is promoted to the 

primary channel (thus taking over the transmission task).

• Both the primary and backup channels are established simultaneously using the pro

cedures described in Chapter 3. In case a primary or backup channel cannot be 

established, the system is allowed to tear down some of the existing backup channels 

based on a scheme that will be described later.

Using backup channels, the long channel re-establishment overhead can be avoided 

when the primary channel is disabled. The cost of backup channels is minimal because:

• Backup channels are not used to transmit redundant real-time messages under the 

normal circumstance, thus they do not affect the transmission of other channels as 

well as non real-time traffic, and

• The number of real-time channels that a network can accommodate is not reduced 

since the backup channels can be removed whenever there is a shortage of network 

resources in establishing a new real-time channel.

As compared to the case of replicating real-time channels, there are two problems 

in implementing the idea of backup channels. First, there is a delay in switching to a 

backup channel when a fault occurs to the primary channel. The main source of this delay 

is associated with fault detection and channel switching. The real-time packets transmitted 

during this period could be lost. Second, there is no guarantee on the number of backup 

channels that each real-time channel can have. As more and more real-time channels are 

established in a network, the number of backup channels of a real-time channels may reduce 

and even become 0. In the rest of this section we will address how these two problems can 

be alleviated.
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The fault detection time can be reduced by using an “acknowledgment channel” for 

each real-time channel. A channel fault can be detected quickly if the source node does not 

receive an ack in a certain period after transmitting a packet. Note that an acknowledgment 

channel usually costs far less than a real-time channel since it deals with a shorter packet 

size, a larger requested delivery delay (depending on the required fault detection time), 

and/or a longer packet inter-arrival time (several packets can be acknowledged at a time).

The channel switch time is the time needed to find a non faulty backup channel 

and promote it to the primary channel. If there is at least one non faulty backup channel, 

this process is quite fast. One can send multiple copies of a packet through all the backup 

channels of the now-disabled real-time channel, and choose the one which delivered the 

packet correctly. If, unfortunately, all the backup channels are faulty, there is no choice but 

to execute the time-consuming channel establishment procedure.

The second problem of using backup channels comes from the fact that a backup 

channel may be removed in order to accommodate future real-time channels. A real-time 

channel may have many backup channels when the network is lightly loaded (in the sense 

that there do not exist many real-time channels in the network). As more and more real

time channels are added, the number of backup channels may decrease or even become zero. 

Thus, the use of backup channels provide no guaranteed fault-tolerance for the primary 

channels. An important question is then how to manage the establishment and removal of 

backup channels such that the primary channels can be backed up as much as possible. To 

this end, the following three questions must be answered:

Q i: For each real-time channel, how many backup channels should be established?

Q2: How should the channels be routed?

Q3: Which channel removal policy should be used?
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A straightforward answer to Qx is that the more backup channels the better. A 

real-time channel is more likely to find a non faulty backup channel if it is backed up by 

many channels. However, there is a limitation to the number of backup channels which 

can be established. Establishing too many backup channels will complicate the channel 

establishment procedure. Also, the system gains little by establishing channels which have 

a large number of common links and nodes, because a single component failure would bring 

all of them down. For this reason, we restrict that the primary and backup channels of a 

real-time channel run through disjoint paths, and the number of backup channels to be 

established is thus the maximum number of disjoint paths minus one.

As to the routing problem, we argued in Section 5.1 that the minimum-hop routing 

is preferable for real-time channels. The primary channel and backup channels can be set 

up sequentially by establishing one at a time, then removing all the intermediate nodes and 

links it passes through from consideration for setting up next channels, and establishing the 

next backup channel in the remaining network, and so on.

The third question consists of two parts: (i) which channels are allowed to be 

removed? and (ii) which of the removable channels should actually be removed?

As to part (i), establishment of a new channel should only be allowed to remove 

only those channels which are less important than itself. There are two ways to compare 

the relative importance of backup channels: (1) the backup channels of a critical real

time channel is more important than those of a less critical one, and (2 ) for two real-time 

channels of the same criticality, the backup channels of the one with more backup channels 

are less important than those of the other real-time channel. To this end, one may assign 

a criticality number C to each real-time channel and then assign a rank R  =  /(C , k) to its 

k-th backup channel, where f(C , k ) is an increasing function of C and a decreasing function 

of k. One such choice is f(C , k) =  C — k. So, we have a channel removal strategy which 

allows for tearing down only lower-rank backup channels. Since the establishment of a
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primary channel is always allowed to tear down backup channels, the rank of all primary 

channels is assigned to be oo.

The answer to the second part of the question is that one should remove as few 

important backup channels as possible. In other words, if there is a choice between two 

backup channels, the one with lower rank should be removed. This can be done with the 

following algorithm.

A lgorithm  5.11 (C hannel Rem oval S trategy) .

S tep 1. Establish the new channel without removing any existing backup channels. Ter

minate if successful. Otherwise, goto Step 2

Step 2. Remove all the backup channels on the route having lower ranks than the new 

one, except those with link delay bounds larger than tm, the time that achieves the 

maximum of dn = max{d‘ : t € G} in Theorem 2 (the removal of these channels will 

not change the link-delay bound of the new channel).

S tep 3. Establish the new channel. If it is still not successful, the new channel cannot be 

established and those channels removed in Step 2 are restored. Otherwise, goto Step

4.

Step 4. Starting from the backup channels with the highest rank, re-establish the backup 

channels removed in Step 2. This step reduces the number of backup channels re

moved.

One possible application domain of the backup channels is in a dual-ring network 

(e.g., the FDDI) where both the SFI and IFI real-time channels can not be established. We 

give an example showing how backup channels can be established.

Consider a ring network with 5 stations connected by 5 duplex links (link i con

nects station i and (i +1) mod 5). All real-time channels have the same minimum message
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inter-arrival time T* = 100 and maximum message transmission time C,- = 5. Suppose three 

backup channels rlb, r2b, r3b have been established in the network with the following inform

ation on the source (src) and destination (dst) stations, user-requested end-to-end delay 

Di, channel rank Ru, and link-delay bound d{. (To show the procedure of Algorithm 5.11 

clearly, we do not consider the existing primary channels since the primary channels are not 

allowed to be torn down.)

rlb: src=3 dst=0 D b — 15 R u  = 1 dfj = 10 d\b = 5

r2b: src= 2  dst=0 D2 =  10 R 2b = 2 d\b — 5 d°6 = 5

r3b: src=3 dst=0 D3 = 30 R3b = 1 dgt =  7 d\b =  12 dj| b = 11.

Now, we want to establish a new real-time channel r4 of criticality 4 with src = 3, 

dst = 0, D4 =  15.

The primary channel of r4 takes the minimum-hop route l 3 —> Using Algorithm

2 , one can establish the primary channel as:

r4p: src=3 dst=0 Z?4 = 15 R ^  = oo dfp = 5 d4p = 10.

After removing 4  and £4 from the network, the network contains only one more 

connection between station 3 and station 0. So, r4 can have at most one backup channel 

T45. Since the criticality of r4 is 4, the rank of its first backup channel is # 4j = 4 — 1 =  3. 

Setting up r4b on the route l 2 -* l \  -*■ £ 0 with Algorithm 2 results in rejecting the channel 

request. Hence, all other backup channels on the route with lower ranks lower than r4, i.e., 

r2b and r3i, are removed. After this removal, r4i can be successfully established as:

r4i: src=3 dst=0 D4 = 15 R4b =  3 d\b = 5 d\b -  5 d%b = 5.
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The next step is to re-establish those backup channels removed, starting from the 

one with the highest rank. Using Algorithm 2, the establishment of r2b is rejected. So r24 

must be removed and r3b is re-established as:

r36: src=3 dst=0 D3 = 30 R3b = 1 d\b = 10 d\b = 10 dlb — 10.

Consequently, after establishing a new real-time channel r4, the network has the 

following four established channels:

src=3 dst= 0 A  = 15 Rib = l d\b = 10 d\b = 5

T3b- src=3 dst= 0 Z>3 = 30 R3b = 1 d\b = 10 d3b = 10 d°3b = 10

74 6 : src=3 dst= 0 D4 = 15 R4b =  3 d\b = 5 d\b = 5 d4b = 5

r 4 p : src=3 dst= 0 Da = 15 R4p = oo d4p = 5 d4p '•= 10 .

5.5 Conclusion
i

We discussed how real-time fault-tolerant communication can be simultaneously 

achieved in computer networks. Unlike the traditional reliable communication protocols 

like the TCP which uses message retransmission, i.e., time redundancy, we explore spatial 

redundancy since time redundancy is usually not suitable for real-time communication.



CHAPTER 6

REAL-TIME CHANNELS OVER SHARED-MEDIUM

LANS

6.1 Introduction

We have discussed how real-time channels can be established over point-to-point 

networks. In practice, however, an end system is usually connected to a shared-medium 

Local Area Network (LAN) and LANs are connected together by point-to-point networks. 

A message may have to go through one or more LANs to reach its destination. Thus, it is 

important to study how real-time channels can be established over shared-medium LANs.

A shared-medium LAN is usually composed of a common bus or ring which is 

shared by all the nodes in the network. Nodes’ access to the bus or ring is controlled by a 

Medium Access Control (MAC) protocol. The MAC protocol can be contention-based or 

non contention-based.

A typical contention-based MAC protocol is the IEEE 802.3 (also called CSMA/CD) 

used for the Ethernet [27, 28] in which all nodes are connected together by a common bus. 

Each node is allowed to transmit its packets when it senses the idle bus. Due to the propaga

tion delay, transmissions may collide when two nodes sense the idle bus and transmit their 

packets simultaneously. Thus a node needs to continue sensing the bus after the beginning 

of its packet transmission. When a collision is detected, the node stops transmission im

mediately, waits for a random amount of time, and re-transmits the packet when it senses

101



102

the idle bus again. The Ethernet is the most widely used LAN today. However, due to its 

contention-based MAC protocol, an Ethernet can operate only at a low transmission speed 

(10 Mbps) and over a short distance (several hundred meters). Also, its performance (in 

terms of throughput and message delay) deteriorates quickly with the increase of traffic in 

the network. Since no deterministic medium access time is guaranteed, the Ethernet is not 

suitable for real-time communication.

Under non contention-based MAC protocols like the IEEE 802.4 token bus, IEEE

802.5 token ring, and the FDDI token ring [27, 28], the access to a shared-medium is 

controlled by a token circulating among nodes. Only the node which has the token is allowed 

to transmit packets, and the transmission time is controlled by a few internal timers of the 

node. In this way, the access to the medium can be regulated and transmission collisions 

can be avoided. Also, real-time services can be provided by bounding the worst-case access 

delay for each node. A ring network can operate at a high speed (e.g., 100 Mbps for the 

FDDI) over a long distance (up to a couple of hundred miles).

We will cover non contention-based MAC protocols only since real-time commu

nication is inherently difficult to be realized with contention-based protocols. Among the 

token passing protocols, the FDDI is the newest, especially designed for high speed and 

real-time networks. So we will use the FDDI to demonstrate our ideas. The results thus 

obtained are extensible to other token passing protocols like the IEEE 802.4 token bus and 

the IEEE 802.5 token ring.

This chapter is organized as follows. Section 6.2 reviews the MAC protocol of 

the FDDI and its relevant properties. Real-time channel establishment conditions over the 

FDDI is derived in Section 6.3, and protocols for using real-time channels over the FDDI 

are presented in Section 6.4. A modification to the MAC protocol of the FDDI, called the 

FDDI-M, is proposed in Section 6.5 which significantly improves the FDDI’s capacity of 

supporting real-time traffic. The chapter concludes with Section 6.6.



103

6.2 Preliminaries

The Fiber Distributed Data Interface (FDDI) is a proposed ANSI standard for 

a 100 Mbps token ring network using a fiber-optic medium [29, 30]. During the past 

several years, a large number of FDDI networks have been installed and this number is 

still increasing rapidly. Thanks to its high transmission speed, the FDDI alleviates the 

bandwidth saturation problem of the current 10 Mbps Ethernet and the 4 Mbps or 16 

Mbps IEEE 802.5 Token Rings. The FDDI’s capacity of supporting synchronous traffic also 

makes it ideal for real-time applications.

Two types of traffic are supported in an FDDI network: synchronous and asyn

chronous. The network provides both a bounded transmission delay and a guaranteed band

width for synchronous traffic, while the asynchronous traffic is handled on a best-effort 

basis. These features are realized with the following MAC protocol.

Protocol 6.1 (MAC of the FDDI) .

P I :  Suppose there are N  nodes in a ring which are numbered from 0 to N  — 1. As part of 

an FDDI ring initialization process, each node declares a Target Token Rotation Time 

(TTRT). The smallest among them is selected as the ring’s TTRT. Each node which 

supports synchronous traffic is then assigned a portion of the TTRT to transmit its 

synchronous messages. Let hi, called the high priority token holding time, denote the 

portion of TTRT that node i is assigned to transmit its synchronous messages.

P2: Each node has two internal timers: the token-rotation-timer (TRT) and the token- 

holding-timer (THT). The TRT always counts up and a node’s THT counts up only 

when the node is transmitting asynchronous packets. If a node’s TRT reaches the 

TTRT before the token arrives at the node, the TRT is reset to 0 and the token is 

marked as late by incrementing the node’s late count Lc by one. To initialize the 

timers at different nodes, no packets are allowed to be transmitted during the first
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token rotation after the ring initialization and Lc's are set to 0.

P3: Only the node that has the token is eligible to transmit packets. The packet transmis

sion time is controlled by the node’s timers, but an in-progress packet transmission

will not be interrupted until its completion. When a node i receives the token, it does

the following:

P3.1: If Lc > 0, set Lc := Lc -  1 and T H T  := T T R T . Otherwise, set T H T  := T R T  

and T R T  := 0.

P3.2: If node i has synchronous packets, it transmits them for a time period up to 

hi or until all the synchronous packets are transmitted, whichever occurs first.

P3.3: If node i has asynchronous packets, it transmits them until the THT counts 

up to the TTRT or all of its asynchronous packets are transmitted, whichever 

occurs first.

P3.4: Node i passes the token to the next node (i + 1) mod N . □

Let Tring denote a ring’s latency which is the time needed to circulate the token 

around the ring once without transmitting any packets, and Tp denote the time needed to 

transmit a maximum-size asynchronous packet. Then, the settings of the parameters of the 

FDDI MAC protocol must satisfy the following protocol constraint:

52  hi < T T R T - T r in , - T p. (6.1)
»=o

The physical meaning of the above inequality is that the summation of the assigned 

synchronous bandwidth over the nodes in the network should not exceed the effective ring 

bandwidth. Violation of this constraint would make the ring unstable and oscillate between 

“claiming” and “operational” [31]. Under this protocol constraint, a well-known fact about 

the FDDI is that the worst-case token rotation time is bounded by 2 x T T R T , and the
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average token rotation time is bounded by TTRT [32]. A more general result was obtained 

in a recent paper [33] as stated below.

Lemma 6.1 (Worst-case token rotation times) .

Under the protocol constraint (6.1) of the FDDI, the time elapsed between any n consecutive 

token’s visits to a node i is bounded by n x  T T R T  — h{.

Once node i gets the token, it is given up to hi units of time to transmit its

synchronous packets. The following lemma gives a lower bound of time that node i is 

allowed to transmit its synchronous packets during a time period t [33].

Lemma 6.2 (Synchronous transmission time) .

Under the protocol constraint (6.1) of the FDDI, node i has at least [ t/T T R T  — lj -ft,- units 

of time to transmit its synchronous packets during a time period t. This lower bound is 

reached when \t/T T R T  — 1] • T T R T  — t>  hi.

Lemmas 6.1 and 6.2 are the best published synchronous properties of the FDDI

to date. In the next section, we will improve Lemma 6.2 and derive the conditions for 

establishing real-time channels over the FDDI.

6.3 Synchronous Bandwidth Allocation

A real-time channel r  passing through an FDDI network can be described by four 

parameters r  = (T ,C ,d ,s ), where s is the the source node of the channel in the network, 

T  is the minimum logical inter-generation time of the channel’s messages at s, C is the 

time needed to transmit a maximum-size message, and d is the requested message delivery 

delay bound over the ring. A real-time channel can be established over an FDDI network 

if the requested message delivery delay bound can be guaranteed by properly setting the 

parameters of the FDDI’s MAC protocol.
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The user adjustable parameters of the FDDI’s MAC protocol are the TTRT and 

h,-’s. TTRT is set at the ring initialization phase which determines the minimum message 

delay bound, dm,n = 2 x T T R T , that the network can support. Any channel request with 

a delay bound smaller than dmin will be rejected. With a given TTRT, a Synchronous 

Bandwidth Allocation (SBA) scheme determines the values of h{ s such that a given set of 

real-time channels can be established. An SBA scheme is said to be feasible with respect 

to a set of real-time channels if it can guarantee the requested transmission delay bounds 

of the channels. An SBA scheme is said to be optimal if it is always feasible whenever there 

exists a feasible SBA scheme.

Using Lemma 6.2, a normalized proportional SBA scheme was proposed in [33] 

which has the following features and/or problems.

1. The scheme can be used for real-time channels with d{ = T,- only. In other words, it 

can establish only those real-time channels whose requested message delay bound co

equal the message generation period Tt.

2. Using this scheme, an FDDI network is proven to be able to support any set of real

time channels with a total peak signal rate (i.e. £"=i Q /T i) less than 33% of the ring 

bandwidth. This percentage was claimed to be the highest to date.

3. This scheme is not optimal. Thus a set of real-time channels which cannot be estab

lished with the normalized proportional SBA scheme could be established with some 

other scheme.

4. It is a global SBA scheme in that the allocation/deallocation of synchronous bandwidth 

to a node would require to change the synchronous bandwidths previously assigned 

to all other nodes.

The requirement of d, = 7* limits the type of applications that can be supported 

and the non-optimality of the scheme does not fully utilize the network’s ability of accom
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modating synchronous traffic. Use of a global SBA scheme also complicates the synchronous 

bandwidth allocation protocol, making it difficult to implement.

As an improvement of the scheme in [33], Chen et al. proposed an optimal SBA 

scheme in a recent paper [34]. However, it still suffers the limitation of d,- =  Tj and is a 

global scheme. Besides, it uses an iterative algorithm for the calculation of the optimal 

bandwidths which may, in theory, need an infinite number of steps to converge.

In the following, we derive an SBA scheme which does not limit d{ = 1} and is 

optimal when dj < Tj + T TR T . The calculation of the optimal bandwidths can be done in 

just one step. Further, allocation/deallocation of a synchronous bandwidth to one node does 

not require to change the synchronous bandwidths assigned to other nodes, thus making 

the SBA scheme easy to implement.

Let T(t) denote the time that a node in the worst-case is allowed to transmit its 

synchronous packets during a time period t. Lemma 6.2 gives a lower bound of T(t) for 

node i. We extend Lemma 6.2 by calculating the exact value of T(t) as follows.

Lemma 6.3 (Worst—case synchronous transmission time) .

Under the protocol constraint (6.1) of the FDDI, node i in the worst-case has

T(t) = [t/T T R T  -  lj hi + S(t)

units of time to transmit its synchronous packets during a time period t, where 6(t) is 

calculated as
f

0 i f  \t/T T R T ]T T R T  - t >  or t<  T T R T

t — ( \t/T T R T ]T T R T  -  hi) otherwise.

Proof: T(t) is plotted in Fig. 6.1. Its correctness can be seen from Lemma 6.1. 

In the worst-case, node i would first wait 2 X T T R T  -  h{ units of time to get the token. 

Once it gets the token, it has h,- units of time to transmit its synchronous packets. This 

proves the correctness of T (t) for t < 2 x TTR T. From Lemma 6.1, the following worst-case
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Figure 6.1: Worst-case synchronous transmission time T(t).

token inter-arrival time at node i would be TTR T. This proves the correctness of T(t) for 

t > 2TTRT. □

Suppose no two real-time channels have the same source node and the synchron

ous transmission time of a node is used for real-time channel messages only. Then from 

Lemma 6.3, we have the following necessary and sufficient condition for the establishment 

of a real-time channel over an FDDI network.

Theorem 6.1 (Channel establishment conditions over the FDDI) .

A real-time channel t = (T ,C ,d ,s ) can be established over an FDDI network under the 

protocol constraint (6.1) if and only if

V<> 0, \ ( t-d ) /T ]+ C  < T (t),

where T(t) is calculated from Lemma 6.3 with i = s.

(6.2)

Proof of the necessary condition: Suppose node s does not have any message of 

channel r  at time t = 0. Then, Vt > 0, a necessary condition for no messages to miss their 

deadlines in [0,t] is that the amount of time, r(t), needed to transmit all those messages 

generated during [0, t] by channel r  with deadlines < t is not greater than T(t), the time that
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node s in the worst-case is allowed to transmit its synchronous packets. Since the minimal 

message inter-generation time of channel r  is T, there are at most |"(t — d)/T] + messages 

generated by channel r  during [0,t] with deadlines < t, which need at most f(t — d)/T ]+C 

units of time to transmit. Thus, the maximum value of r ( t ) is f(t — D )/T ]+C. This proves 

the necessary condition.

Proof of the sufficient condition: We prove this by contradiction. Suppose a mes

sage misses its deadline at time ti, meaning that at least one message with deadline < t\ has 

not been transmitted by t \ . Then there must exist t' < ti such that during the time period 

[i#,ti], node i uses all its allowable synchronous transmission time for channel r ’s packets. 

Let t0 be the smallest such t then there are no messages with deadlines < t\ queued at the 

link at time to • Thus, in the time period [t0, tj], node i uses all its synchronous transmission 

time transmitting only those packets of r  which are generated during [to, t j  with deadlines 

< ti. Based on the same reasoning as the proof of the necessary condition, the maximum 

amount of time needed to transmit these messages is r(ti - t 0) = YX=i T(*i —to—A )/?V |+C,'. 

Since one message misses its deadline at t1? this r ( t t —10) must be larger than T(tj -  t0), 

that is,

[(tj -  t0 -  D )/T ]+C > T (h  - 10).

By letting t = ti -  t0, the above inequality contradicts the condition that Vf > 0, [(f -  

D)/T]+C < T(t). □

Since the left-hand side of Eq. (6.2) changes only at points t = d 4- kT  with value 

f((d-f kT) — d)/T ]+C = (k + 1 )C, we have the following corollary from Theorem 6.1.

Corollary 6.1 .

A real-time channel t = (T, C, d, s ) can be established over an FDDI ring under the protocol 

constraint (6.1) if and only i fh s is set such that

h, > a ,C  (6.3)



where a, = max{(fc + 1 )/(T (d  +  kT )/h , ) :  k = 0,1, • • • }.

Then, we have the following SBA scheme for the establishment of a real-time

channel.

Algorithm 6.1 (Channel establishment over the FDDI) .

Suppose n — 1 real-time channels r,- = -,«<), i = l , - - - ,n  -  1 have already been

established over an FDDI ring. Then a new channel rn = (Tn,Cn,dn,s n) can be established 

with the following steps.

Step 1: Calculate a n from Corollary 6.1 and hSn = a nCn.

Step 2: I f  the protocol constraint (6.1) is satisfied, set the high-priority token holding time

of sn to be h ,n and establish channel r„. Otherwise, the channel establishment request 

is rejected. □

Algorithm 6.1 gives an optimal SBA scheme since it uses the sufficient and ne

cessary channel establishment condition of Corollary 6.1. In other words, if a real-time 

channel cannot be established with Algorithm 6.1, so cannot with any other SBA schemes. 

However, one problem with Algorithm 6.1 is the calculation of a n. The definition of a„ 

in Corollary 6.1 is not given in closed-form. Thus, we need the following theorem for the 

calculation of an.

Theorem 6.2 (Calculation of a„) .

Let x = dn/T T R T  -  1 and y = Tn/T T R T . Then,



I l l

and

{ 1 + (2 — x )/y  i f  y < 1 and 1 < x  < 2 

l/[y \ i f l < y < [ x \ .

Proof: By setting k := 0 and k := oo in the definition of an, we have an > l j \x \  

and a„ > 1/y, respectively.

From Lemma 6.3, T(t) = [t/T T R T  -  ljh„ 4- S(t) > [t/T T R T  -  ljh„. Thus,

an <m ax{(k + l)/[ (d n + kTn) /T T R T —l\ : k = 0,1,• • • } = max{(fc + l ) / |x  + %J "■ k =

0,1,- •• }. Let an(k) =  (k +  l) /[ x  +  ky\.

For y > [xj > 1, a n(k) = (k + l ) / |x  + ky\ < (A: + l)/((& + l)[x j) = 1/lzJ- Thus,

«n < 1/L*J. Together with the fact that an > 1/[»J, we have a n = l / \ x \ .

For y < 1 and x > 2, an(k) = (k +  l)/[® + kyj < (k + l) /(x  -  1 + ky) < 

(k +  1)/(1 + ky) < (k + 1)/((1 + k)y) = 1/y. Thus, an < 1/y. Together with the fact that 

On > 1 /Vi we have a„ = 1/y.

For y < 1 and 1 < x < 2, an(k) < min{/1(fc),/2(fc)}, where fi(k )  = k + 1 and 

f 2(k) = (k + l) /(x  — 1 + ky). It is easy to see that fi(k )  is an increasing function and 

/ 2(A:) a decreasing function of k. At k = (2 -  x)/y , fi{k) = / 2(A:) = 1 + (2 — x)/y. Thus, 

o„ < 1 +  (2 — x)/y .

For 1 < y<  [xj, an(k) < (k + 1)/(L*J + % J )  < (* +  l)/((fc+  1)L»J) =  l /[y \.  □

The values of a„ in different regions of the x-y  plane are plotted in Fig. 6.2. We 

need not consider the case of x < 1 since it means dn < 2 x T T R T  = dmin and the channel 

cannot be established. In most cases, the inequality dn < T n + T T R T  is satisfied, meaning 

that y > |x j. So, the exact value a„ = l/[x \ = l/[d n/T T R T  -  lj can be obtained and 

an optimal SBA scheme is realized via Algorithm 6.1. For regions on the x-y  plane where 

the exact value of a„ cannot be obtained, one can use an upper bound of an instead, with 

little loss of accuracy, because the difference between the upper bound and the actual value
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«„ =1/yl+(2-x)/y

Figure 6.2: Calculation of a„.

of a„ is always smaller than 1.

Comparing with the SBA schemes of [33] and [34], Algorithm 6.1 has the following

advantages.

G enerality: The SBA schemes of [33,34] can establish real-time channels with dj = Ti only, 

while Algorithm 6.1 can establish channels of arbitrary parameters, i.e., d, < Tj or dj > 

Tj. This extension is very important in practice since for many applications, especially 

those in real-time control/monitoring systems, the required delay bound dj is usually 

smaller than the message inter-generation period Tj. Real-time channels with df > Tj 

are also useful for multimedia applications. Thus restricting dj = Tj would greatly 

limit a network’s ability and effectiveness of supporting real-time communications.

O ptim ality: The SBA scheme of [33] is not optimal, even under the restrictive assumption 

dj =  Tj. Thus a real-time channel establishment request may be rejected even if
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it can be established using another scheme. The SBA scheme of [34] is optimal 

under the restrictive assumption of dj = Tj and requires complex computations. By 

contrast, Algorithm 6.1 is optimal for dj < Tj -f T T R T  (which subsumes the special 

case d,- = Tj of [33, 34]) as well as for some other cases when the exact value of a n can 

be calculated (see Algorithm 6.2), because it is based on the necessary and sufficient 

conditions of Theorem 6.1, and the computation of the optimal bandwidths is simple 

and straightforward. Rejection of a channel establishment request by Algorithm 6.1 

means the violation of the necessary conditions, implying that the channel cannot be 

established with any other scheme.

Simplicity: The SBA schemes of [33, 34] are global schemes in the sense that the addi

tion/removal of a channel or change of the parameters of a channel would require 

adjustment of the high-priority token holding times of all nodes in the network. This 

requires a complex SBA protocol. By contrast, Algorithm 6.1 needs only local para

meter adjustment, thereby making it far easier to implement than those in [33, 34].

We now investigate an FDDI network’s capacity of supporting real-time commu

nication. Given a set of real-time channels Tj = ( T j ,C<,dj,s,), i = 1, •••,« , its utilization 

is defined as U = Ya=i Gj/Tj. Uw is said to be the worst-case achievable utilization of a 

network if the network can accommodate every set of real-time channels with utilization 

< Uw, and for any U > Uw, there exists a set of real-time channels with utilization U which 

can not be accommodated by the network [33]. The following theorem gives the worst-case 

achievable utilization of an FDDI network using Algorithm 6.1.

Theorem 6.3 (Worst-case achievable utilization of FDDI) ..

Let A = min{dj/Tj: i = 1, • •*,«}. Suppose di < T T R T  + Ti and ignore Tring and Tp, then 

Algorithms 6.1 and 6.2 have the worst-case achievable utilization Uw = A/3.

Proof: From Algorithm 6.1, a set of real-time channels Tj = (Ti,Cj,dj,Sj), i =
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l , - - - , n,  can be established if and only if £ " =1 ha> =  £ ”=1 a.-C,- = Yl?=i(Ci/Ti)(aiTi) <

T T R T  -  Tring -  Tp. Ignoring Tring and Tp, we have the channel establishment condition

^(Ci/TiXatTi/TTRT) < 1.
1=1

From Algorithm 6.2, when d, < TTRT+Th a f t /T T R T  = (T /d ^ d i /T T R T )/ [d{/T T R T -  

1J. Since di/T T R T  > 2, (d,-/T T R T )/[d i/T T R T  -  lj < 3 . Thus a f t /T T R T  < 3 /A. We 

conclude that the channel establishment condition is always satisfied if the channel utiliz

ation U =  C i/T  < A/3 =  Uw. For any U > Uw, it is also easy to construct a set 

of real-time channels with utilization U such that the channel establishment condition is 

violated. □

Under the condition that d,- < Ti + T T R T ,  Algorithms 6.1 and 6.2 give an optimal 

SBA scheme, thus the Uw given in Theorem 6.3 is the worst-case achievable utilization of 

an FDDI network. In other words, no other SBA scheme can guarantee the establishment 

of a set of real-time channels with utilization > Uw = A/3. In [33], Agrawal et al. proved 

that their normalized proportional SBA scheme has a worst-case achievable utilization of 

33% when d,- = T{. Thus their scheme, albeit not optimal, reaches the highest worst-case 

achievable utilization.

Since the increase of d,- will not affect the establishment of a real-time channel, 

an FDDI network guarantees the successful establishment of any set of real-time channels 

with utilization lower than 33%, no matter how large d,-’s are. Uw decreases linearly with 

the decrease of A when A < 1. This means that the smaller the requested delay bounds, the 

more difficult to establish the channels.

Another useful metric to measure the ability of a network to establish real-time 

channels is the best-case achievable utilization Ub, which is defined as the highest utilization 

of a set of real-time channels that the network can support. Any set of real-time channels 

with a utilization larger than Ub is guaranteed to be rejected. Clearly, Ub should reach 1 for
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an ideal network. Unfortunately, this is not the case for the FDDI as shown in the following 

theorem.

Theorem 6.4 (Best-case achievable utilization of FDDI) .

Suppose d{ < Ti + T T R T  and ignore Tring and Tp, the best-case achievable utilization of an 

FDDI network is Ub =  max{[di/TTRT  -  l \ /(T i/T T R T ) : i = 1, • • *,n}.

The proof of Theorem 6.4 is similar to that of Theorem 6.3. To see how restrictive 

Ub is, let’s consider a special case when all channels are. identical with dt = T; = T ,i  = 

1,• • *,n and T T R T  = T/2. Then from Theorem 6.4, Ub = 1/2, which means that an FDDI 

network can use at most one half of its transmission bandwidth to set up real-time channels 

in this case.

From Theorems 6.3 and 6.4, we see that the FDDI’s MAC protocol is not very 

efficient in supporting real-time communication. We will propose a modified protocol, called 

FDDI-M, to improve the FDDI’s real-time performance in Section 6.5.

6.4 R eal-tim e Channels over the FD D I

Similar to that for point-to-point networks, usage of real-time channels over an 

FDDI network needs two protocols: a message transmission protocol and a channel estab

lishment protocol.

The message transmission protocol deals with message packetization and transmis

sion scheduling. Message packetization is necessary since (1) the message size may exceed 

the maximum frame size of the FDDI, and (2) the high priority token holding time assigned 

to a node may not be large enough to transmit one whole message. The results of Section 

6.3 were obtained under the assumption that a message can be divided into packets of any 

size and there are no packetizing overheads. Clearly, this is not very realistic in practice. 

In this section, we assume that all messages are divided into packets of the same size P , 

and each packet has an overhead of O bits. Then, a message of M  bits will be split into
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k — fM /P] packets with a total length of M  +  kO bits. In the real-time channel model, 

this packetization overhead can be taken into account by letting C denote the time needed 

to transmit a maximum-size message after it is split into packets.

Another effect of using a fixed packet size is that the high priority token holding 

time may expire in the middle of a packet transmission. From the MAC protocol of the 

FDDI, an in-progress packet transmission will not be interrupted until its completion. Thus, 

node i may use up to A,- +  Tp units of time to transmit synchronous packets, where Tp is 

the time needed to transmit a packet of size P. This phenomenon is called packet overrun. 

Due to the packet overruns, the protocol constraint needs to be modified as follows:

+ TPi) < T T R T  -  Tring -  Tp. (6.4)
t = 0

where TPi = Tp if A,- > 0 and TPi =  0 otherwise.

Transmission scheduling is necessary when more than one real-time channel ori

ginate from the same source node. The high priority token holding time of the node must 

be used to transmit urgent packets first. As in the point-to-point networks, we use the 

deadline scheduling policy again, i.e., each packet is assigned a deadline which equals the 

logical arrival time of the message to which the packet belong plus the requested delay 

bound over the FDDI network. When a node gets the token, it transmits the packet with 

the earliest deadline first. With the deadline scheduling policy, the required high priority 

token holding time for a node from which more than one real-time channel originates can 

be calculated as follows: if a channel ri requires A< = ti and a channel 72 requires A* = t2, 

then setting ht — + t2 will satisfy the requirements of both channels.

In summary, we have the following message transmission protocol.

Protocol 6.2 (Message transmission over FDDI) .

P i: On the generation (arrival) of a message, use Protocol 3.1 (Protocol 3.2) to divide the 

message into packets and assign a deadline to each packet.
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P2: On arrival of the token, transmit packets in order of their deadlines until the high 

priority token holding time expires or all of the synchronous packets are transmitted, 

whichever occurs first.

The channel establishment protocol implements Algorithm 6.1 to establish real

time channels. To establish a real-time channel, the source node calculates the required 

high priority token holding time locally and check if the protocol constraint (6.4) is satisfied.

To do the latter, a global variable Ts = + TPi) is needed. Since the token visits

each station regularly, it is convenient to let the token hold this variable. This idea leads 

to the following channel establishment protocol.

Protocol 6.3 (Real-time channel establishment over FDDI) .

A real-time channel r  = (T ,C ,d ,s ) can be established by the source node s with the 

following steps:

Step 1: If d < 2 x T T R T , the channel request is rejected. Otherwise, goto Step 2.

Step 2: Calculate the required high priority token holding time increment 6hs = max{rp, aC }, 

where a  is calculated from Algorithm 6.2. Let 6P = Tp if r  is the only real-time chan

nel originating from node s, and Sp = 0 otherwise. Wait until the token arrives and 

goto Step 3.

Step 3: Read Ts from the token. If Ts + Shs + 6p < T T R T  — Tring — Tp, goto Step 4. 

Otherwise, the channel request is rejected.

Step 4: Update Ts := Ts + Sht +  6p, and h, := h, +  6hs. The requested channel is 

established. Node s can start transmitting channel r ’s message using Protocol 6.2.

A real-time channel can be removed by updating hs := hs -  Sh3 at the source 

node, and T$ := Ts -  Sh, — SP in the token.
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6.5 A  N ew  MAC Protocol: FDDI-M

The token passing scheme used for the MAC protocol of the FDDI was proposed 

in 1982 [35]. Since then, a large number of papers have been published uncovering various 

properties of the protocol. However, few have discussed the rational and possible improve

ments of the protocol itself. Actually, from Theorems 6.3 and 6.4 of Section 6.3, we see that 

the MAC protocol of an FDDI network is not very efficient for real-time communication. 

For example, in some cases, the network can use at most 50% of its transmission bandwidth 

to support real-time traffic. In this section, we examine the reasons for this and propose 

a modification to the FDDI, called the FDDI-M, which can significantly improve an FDDI 

network’s ability of supporting real-time communication.

The main reason for the FDDI’s deficiency in supporting real-time communication 

is that the target token rotation time TTRT cannot always control the actual token rotation 

time below TTRT. As proved in [30], the worst-case token rotation time could be twice as 

large as TTRT. Thus, to guarantee an access delay bound, say d, the T T R T  must be set to 

no larger than d/2 instead of d. Due to the protocol constraint of the FDDI, a reduction of 

the TTRT results in the reduction of the synchronous transmission time hj’s, thus reducing 

the network’s capacity of supporting synchronous traffic.

To see the above reasoning more clearly, let us calculate the maximum number of 

identical real-time channels with message inter-arrival time T , maximum message trans

mission time C, and requested message delay bound d = T  that can be established over an 

FDDI network. Since the worst-case token rotation time could be as large as 2 x T T R T , 

TTRT must be set to no larger than T / 2 in order for a node to get the token at least once 

every T  units of time. Suppose the TTRT is set to be T f  2 (As discussed in [29], TTRT 

should not be set too small in order to achieve a high network efficiency), the high-priority 

token holding time of the node then must be set to no smaller than C  in order to give the 

node enough time to transmit at least one message after getting the token. Thus, from the
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protocol constraint of the FDDI, at most n = (T T R T  -  Tring -  Tp)/h{ < T/(2C) channels 

can be established. Since each channel can carry at most b — C /T  x  100 Mbps of traffic, an 

FDDI network can carry no more than n x b = 50 Mbps of real-time traffic, which is only 

one half of the network’s capacity.

If the worst-case token rotation time can be controlled under the target token 

rotation time TTRT, TTRT then can be set to T  instead of T /2, and twice as many of real

time channels (or equivalently, real-time traffic) can be established in an FDDI network. To 

realize this, notice that the token rotation time is composed of three components of time: 

for the transmission of synchronous packets, asynchronous packets, and the ring latency 

Tring• During one token’s rotation, the time used for the transmission of synchronous 

packets is bounded by Ts = hi (ignoring the synchronous packet overruns). So, if

we can control the time used for the transmission of asynchronous packets not to exceed 

Ta = T T R T  -  Ts — Tring> the maximum token rotation time will never exceed the TTRT. 

This can be implemented by making the following two modifications to the standard FDDI’s 

MAC protocol.

M l: Use a modified token rotation time TTRTm := T T R T  - T s - T p instead of the TTRT.

M2: Stop the counting of a node’s token rotation timer (TRT) when a synchronous packet 

is being transmitted/forwarded by the node.

With these modifications, the token holding timer (THT) at each node ensures 

the time used by the node for transmitting asynchronous packets plus the time used for 

transmitting asynchronous packets during the last token’s rotation not to exceed TTRTm + 

Tp -  T^ng = T T R T  -  Ts -  Tring = TA, as long as Ts = E ilo ' h  < T T R T  -  Tring. Thus 

the maximum token rotation time will never exceed TA + Ts +  Tring = TTR T.

The above modifications are easy to implement. One only needs to modify the 

timer circuits such that the counting of a node’s TRT is stopped when the node is trans
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mitting/forwarding a synchronous packet and resumed when the node starts transmit

ting/forwarding an asynchronous packet or the token. Notice that a packet’s type is iden

tified by the first bit of the Frame Control (FC) field in the packet’s header [30], thus no 

need to change the packet format. The use of the late counter Lc can also be eliminated 

since the token will never be late under the modified token passing protocol. Making the 

above modifications to the standard FDDI MAC protocol leads to a new protocol, called 

the FDDI-M, as follows.

Protocol 6.4 (FDDI-M) .

P I :  As part of an FDDI-M ring initialization process, each node declares a TTRT which 

equals the requested transmission delay bound of its synchronous messages. The 

smallest among all TTRTs is selected as the ring’s TTRT. Each node which supports 

synchronous traffic is then assigned a portion of TTRT to transmit its synchronous 

packets. Let h,- > 0 denote the portion that node i is assigned to transmit its syn

chronous messages. Update T T R T  := T T R T  -  ~ Tp, where Tp is the time

needed to transmit a maximum-size packet.

P2: Each node has two timers: the token-rotation-timer (TRT) and the token-holding- 

timer (THT). A node’s THT counts up when the node is transmitting an asynchronous 

packet and the TRT counts up when the the node is not transmitting/forwarding a 

synchronous packet. To initialize the timers at different nodes, no packets are allowed 

to be transmitted during the first token rotation after the ring initialization.

P3: Only the node which has the token is eligible to transmit packets. The packet trans

mission time is controlled by the timers, but an in-progress packet transmission will 

not be interrupted. When node i receives the token, it does the following.

P3.1: T H T  := T R T  and T R T  := 0.
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P3.2: If node i has synchronous packets, it transmits them for a time period up to 

hi or until all the synchronous packets are transmitted, whichever occurs first.

P3.3: If node i has asynchronous packets, it transmits them until the THT counts up 

to the TTRT or all the asynchronous packets are transmitted, whichever occurs 

first.

P3.4: Node i passes the token to the next node (i + 1) mod N . □

Similar to Lemma 6.3, we have the following lemma for the calculation of the time 

that a node in the worst-case is allowed to transmit its synchronous packets during a time 

period t.

Lemma 6.4 (Worst-case synchronous transmission time of FDDI-M) .

Under the protocol constraint (6.1), node i in the worst-case has

T{t) = [t/TTR T\hi + 6(t)

units of time to transmit its synchronous packets during a time period t, where 6(t) is 

calculated as

0 i f  \t/T T R T )T T R T  - t > h {

t -  ( \t/T T R T ]T T R T  — hi) otherwise.

With the above lemma, a real-time channel can be established over an FDDI-M 

network as follows.

Algorithm 6.2 (Channel establishment over FDDI-M) .

Suppose n -  1 real-time channels r,- = (T*, C,-, d,-, s,), i = 1, • • •, n -  1 have been established 

over an FDDI-M ring. Establishment of a new channel rn = (Tn,C n,dn,sn) can be done 

with the following steps:

Step 1: If dn < T T R T , the channel establishment request is rejected. Otherwise, goto 

Step 2.

m  =



Step 2: Calculate an from Algorithm 6.3 and h,n =  a nCn, If the protocol constraint (6.1) 

is satisfied, set the high priority token holding time of sn to be hSn. Channel rn can 

be established. Otherwise, the channel establishment request is rejected. □

Algorithm 6.3 (Calculation of a„ for FDDI-M) .

Let x = dn/T T R T  and y =  T„/TTRT. Then,

I
i/L*J i f y >  IaI > l 

i / y i f  y < i ond x > 2
and

(

Oin < <
1 + (2 — x) / y i f  y < 1 and 1 < x < 2

1/Lj/J i / l < 2 / < L ® J .

The only difference between Algorithm 6.2 and Algorithm 6.3 is the definition of

x.

The worst-case achievable utilization of the FDDI-M can be calculated as follows.

Theorem 6.5 (Worst-case achievable utilization of FDDI-M) .

Let A =  min{d,/2i : i = 1, • • • , n). Suppose di <  T T R T  + Ti and ignore Tri„g and Tp, then 

Algorithms 6.2 and 6.3 have the worst-case achievable utilization Uw = A/2.

One can see that the FDDI-M can achieve significantly higher Uw than the FDDI. 

For A > 1, an FDDI-M network guarantees the successful establishment of any set of real

time channels with utilization lower than Uw = 50%, up from 33% with the FDDI.

The best-case achievable utilizations of the FDDI-M can be calculated as follows.

Theorem 6.6 (Best-case achievable utilization of FDDI-M) .

Suppose di < T { + T T R T  and ignoring Tring and Tp, the best-case achievable utilization of 

an FDDI-M network is Ub = max{ [di/TTRT] / ( T /T T R T ) : * = 1, • • •, n}.
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Since [di/TTRT\ > [di/TTR T — l j ,  FDDI-M can always achieve a higher Ub than 

FDDI. For the special case considered for Theorem 6.4 where d,- = T{ = T  for all channels, 

TTRT can be set to T  with the FDDI-M. Thus, t/j =  1 from Theorem 6.6 meaning that the 

full transmission capacity of the network can be used to support real-time traffic. In other 

words, the network’s capacity of supporting real-time channels is doubled in this case.

The proofs of the above results are similar to that for the FDDI and are thus omit

ted here. With the enhanced capacity of supporting synchronous traffic, a natural question 

is then what is the FDDI-M’s ability of supporting asynchronous traffic? Surprisingly, the 

modified protocol also improves a ring’s ability of supporting asynchronous traffic.

To see this clearly, notice that the 100 Mbps transmission bandwidth of an FDDI 

ring is always partitioned into three parts: those used for the transmission of synchronous 

messages, asynchronous messages, and token passing. During one rotation of the token, the 

time used for token passing is a constant, Tring. Thus, the faster a token rotates, the more 

ring bandwidth is wasted for passing the token. In other words, for a given synchronous 

throughput, the larger an average token rotation time that a protocol can achieve, the more 

asynchronous traffic it can support. Suppose the synchronous message generation period 

is T, then from the discussion in Section 1, the largest average token rotation time that a 

standard FDDI protocol can achieve is T T R T  = T /2. Using the FDDI-M, on the other 

hand, the nodes always have TTRTm — Tring -  Tp units of time to transmit asynchronous 

messages. When a ring is heavily loaded with asynchronous traffic, the average token 

rotation time is at least TTRTm = T  -  Ts -  Tp. Ignoring Tp and since Ts should always 

be controlled under T T R T  = T/2 in an FDDI network, the FDDI-M can always achieve a 

higher asynchronous traffic throughput than the standard FDDI.

Another salient feature of an FDDI network is its fairness in transmitting asyn

chronous messages [36]. If a number of nodes have a large amount of asynchronous traffic 

to transmit, then all nodes will achieve approximately an identical average asynchronous
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throughput. FDDI-M preserves this feature. This can be seen by observing that for every 

node with many asynchronous messages to transmit, the average time it uses to transmit 

asynchronous messages during each token’s visit is TTRTm minus the average time used 

to transmit asynchronous messages during one token’s rotation (ignoring packet overruns). 

Thus, on average, each node has approximately the same amount of time to transmit its 

asynchronous messages at each token’s visit.

In summary, the proposed FDDI-M protocol has the following advantages:

1. It significantly improves the FDDI’s capacity of supporting synchronous traffic. This 

is of great significance as more and more applications require real-time services of 

computer networks.

2. It preserves all the good features of an FDDI network, e.g., the high efficiency and 

fairness in supporting asynchronous traffic. Thus, comparing to the FDDI, the FDDI- 

M gains a lot and loses nothing.

3. Its implementation requires only minimal modification to the existing FDDI. Basic

ally, only a few minor changes to the MAC layer timer circuits are sufficient. No 

modifications to the FDDI’s frame format and upper layer software are needed. Thus, 

a large number of existing FDDI networks can be easily upgraded to the FDDI-M 

with virtually no additional cost and transparently to users.

6.6 Conclusion

This section addresses the problem of establishing of real-time channels over the 

FDDI networks. A modified protocol, called the FDDI-M, is also proposed which signific

antly improves the FDDI’s ability of supporting real-time communication.

A complete scheme for the establishment of real-time channels in computer net

works has been presented while showing the feasibility and advantages of using real-time
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channels to improve quality of service of the contemporary computer networks. We will dis

cuss the application of real-time channels for multimedia networking in the next chapter.



CHAPTER 7

MULTIMEDIA APPLICATION

7.1 Introduction

This chapter discusses the application of real-time communication for multimedia 

networking. With the dramatic increases in link bandwidth and node processing power 

at inexpensive costs, real-time transmission of multimedia information like digital motion 

video over computer networks has now become a reality. Extensive work has been reported 

on the development of video processor, multimedia workstations, and network support for 

this new application [37, 38, 39, 40, 41].

Traditionally, video signals are transmitted over dedicated circuits only, e.g., the 

CATV. Clearly, this kind of service lacks flexibility (mainly for broadcasting or fixed point- 

to-point communication) and is not easily adaptable to computer networks for which packet 

switching is commonly used. To remedy this inflexibility, a hybrid transmission protocol, 

called the FDDI-II, has been proposed to add time-division circuit-switched transmission 

to the existing packet-switched FDDI networks [29, 42]. In an FDDI-II network, users can 

set up circuits with bandwidth of multiples of 64 Kbps up to 98.304 Mbps. In this way, 

continuous media communication like digital voice and video transmissions can be readily 

accommodated.

However, the problem with the fixed-bandwidth circuits is the inefficient use of 

link bandwidth [37]. The bit-rate of digital video signals, after compressed, is highly time-
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varying, with the peak rate several times higher than the average rate. To ensure the 

smooth transmission of video frames, the circuit bandwidth must be set significantly higher 

than the average signal bandwidth, thus wasting a great deal of circuit bandwidth. Since 

the bandwidth of video signals is usually very high (from several Mbps to several hundred 

Mbps), this kind of waste of circuit bandwidth is highly undesirable, even in high-speed 

networks.

By statistically multiplexing packets on transmission links, packet switched trans

mission is believed to be able to support variable bit-rate transmissions and make more 

efficient use of link bandwidth [37]. However, due to the contention delays at intermediate 

nodes, packet-switched transmission does not guarantee timely delivery of packets. This 

causes a serious problem in transmitting real-time motion video where each video frame is 

required to be delivered in a timely manner.

The concept of real-time channels studied in this thesis is a perfect way to solve 

the above problem. A real-time channel has the advantages of both circuit-switched and 

packet-switched transmissions. Specifically, it guarantees the end-to-end message transmis

sion delay bound as a dedicated circuit, and at the same time, reserve the high transmission 

efficiency of packet-switched computer networks.

In this chapter, we investigate the transmission of compressed motion video over 

computer networks with various protocols. Section 7.2 compares the real-time channels 

with both circuit-switched and packet-switched transmissions. Section 7.3 compares the 

FDDI-M with the FDDI and the FDDI-II in local area ring networks. The chapter concludes 

with section 7.4.

7.2 R e a l- tim e  C hannels

As discussed before, the transmission of compressed digital motion video requires 

both variable link bandwidth and timely delivery of video frames. Using fixed-bandwidth
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circuits wastes link bandwidth and the packet-switched transmission cannot guarantee the 

timely delivery of video frames. In this section, we verify these claims with simulations and 

show that real-time channels outperform both circuit and packet switched transmission 

with respect to the utilization of link bandwidth and the timeliness of frame delivery.

7.2.1 S im ulation  M odels

The network used for simulation is a 100 Mbps ring with 20 nodes. This corres

ponds to a single-ring FDDI backbone network. When video transmission is introduced, a 

100 Mbps ring could easily get congested and thus become the bottleneck of the system.

The objective of our simulation is to evaluate and compare the transmission delays 

of video frames using circuit switching, packet switching, and real-time channels. The video 

data used here are obtained from a sequence of CNN headline news, stored on a laser disk. 

The size of each frame is 512 x 512 black and white pixels. The number of bits in each 

frame, after compressed with JPEG [43], is plotted in Fig. 7.1. At a 30 frames/second 

transmission rate, the video sequence needs an average 10.5 Mbps, and a peak 15.3 Mbps 

transmission bandwidth.

The frame-transmission delays using a fixed-bandwidth circuit are easy to calcu

late. Let Ti be the time when the z'th frame is generated at the source node, and U be the 

time when the last bit of the ith frame has been transmitted. Ignoring the propagation 

delays, the delay experienced by the ith frame is d,- = U -  r<. Starting from time 0 and 

assuming a 30 frames/second transmission rate, r,-’s and U’s can be recursively calculated 

as follows:

Ti — i/30, i =  l ,2 , ...

U =  max{t,_i,r,} +  S i / B ,  i  =  1,2,...

to — 0
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Figure 7.2: The simulation model of node architecture for real-time channels.

where B  is the bandwidth of the circuit, and Si is the number of bits in the ith frame.

The frame-transmission delays using packet switching or real-time channels cannot 

be derived analytically. We wrote a detailed simulator (an 1100-line C program) to emulate 

the real transmission process and observe the delay each individual frame experienced. The 

simulation model of the node architecture which supports real-time channels is shown in 

Fig. 7.2.

In our simulation, each video frame is divided into packets of 10 Kbits each. The 

packet deadlines are calculated as described in Chapter 3. The packets received from the 

up-ring or generated at the local host are first put in the scheduler buffer sbuffer, and then 

are inserted in the priority queue according to their deadlines. When the sender completes 

the transmission of a packet, it fetches and transmits the next packet at the head of the 

priority queue. See Chapter 4 for a detailed account of scheduling process.

The same simulator is used for packet switching with one change: packets from 

sbuffer are queued at the tail of the priority queue. This reflects the fact that packet 

transmission is usually scheduled on a First-In-First-Out (FIFO) basis in an ordinary 

packet switching node.
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7.2 .2  R e a l- tim e  ch an n e ls  vs. c irc u it sw itch in g

Link efficiency; As stated earlier, the main problem with the circuit switching is the 

waste of transmission bandwidth. There is a tradeoff between the circuit bandwidth and 

video-frame transmission delays. Reserving too little circuit bandwidth introduces large 

frame delays, while reserving too much bandwidth wastes transmission capacity since no 

one else is allowed to use the reserved bandwidth. Our first experiment is thus to investigate 

the relation between the circuit bandwidth and the maximum frame delay.

We use the FDDI-II in our simulation since it is a well-defined protocol and sup

ports circuit-switched transmissions in packet-switched ring networks. The simulation 

results are plotted in Fig. 7.3, where the x-axis represents the circuit bandwidth normal

ized by the average signal bandwidth (10.5 Mbps), and the y-axis represents the maximum 

frame delays normalized by the frame period (33.3 ms). From Fig. 7.3, one can see that the 

maximum frame delays are very sensitive to the circuit bandwidth allocated. For the video 

sequence used in our simulation (Fig. 7.1), the maximum frame delay is as large as 32 frame 

periods, or approximately 1 second, if the circuit bandwidth is set to be the average signal 

bandwidth. To make the maximum frame delay smaller than one frame period, the circuit 

bandwidth has to be at least 1.5 times the signal bandwidth, wasting 50% of transmission 

capacity.

With real-time channels, on the other hand, no network capacity will be wasted. 

The average bandwidth used by a real-time channel is always equal to the average band

width of the signals transmitted over the channel. When a real-time channel is idle, the 

full link bandwidth can be used to trasfer other traffic.

Another disadvantage of the FDDI-II is that an established circuit always runs 

through every node in the network regardless of the distance between the source and des

tination. This aggravates the problem of wasting circuit bandwidth since it requires the 

reservation of some links’ bandwidth even if they are not used for communicating pack-
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ets between the source and destination. If we define the network bandwidth as the total 

number of links in the network times the bandwidth of each link, then the network band

width available for other traffic after establishing N  FDDI-II circuits with bandwidth B  

in our 100 Mbps 20-node ring would be 2000 — 20N B  Mbps which is plotted in Fig. 7.4 

with B  =  15.75 Mbps. With real-time channels, on the other hand, only those links which 

connect the source and destination nodes are used. In a 20-node ring network, the average 

number of links needed to connect a pair of source and destination nodes is 10. Thus, the 

network bandwidth available after establishing N  real-time channels is 2000 — 10NB, Mbps 

(as plotted in Fig. 7.4) on the average, where B , = 10.5 Mbps is the video signal bandwidth. 

From Fig. 7.4, we see that real-time channels use significantly less network bandwidth than 

the FDDI-II.
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A bility to  accom m odate video channels: We now compare the number of video

channels that each protocol can support. As stated earlier, the FDDI-II allows users to 

set up circuits with bandwidth of multiples of 64 Kbps up to 98.034 Mbps in a single

ring network. From Fig. 7.3 we see that to make video frame-transmission delay smaller 

than one frame period, the circuit bandwidth should be at least 1.5 X 10.5 Mbps = 15.75 

Mbps. With the total available bandwidth of 98.034 Mbps, at most 98.034/15.75 = 6 video 

channels can be established.

The number of video channels that can be established with real-time channels 

depends on the locations of the source and destination nodes. We assume that each host 

node wants to set up a video channel to a destination node which is h links away, where h 

is a random integer variable uniformly distributed over [1,-ff], and 1 < H < 19 is an integer 

parameter (H  cannot be larger than 19 in a 20-node ring). For each H, we use Protocol 3.3 

to establish real-time channels for each node. The parameters of the real-time channels 

are set to: minimum message inter-arrival time T  =  33 ms (30 frames/second), maximum 

message transmission time C = 5 ms (500 Kbits maximum message size), requested end-to- 

end delay bound D =  33 ms (one frame period), and the packet transmission time Cp = 0.1 

ms (10 Kbits packet size). Each experiment was repeated 10000 times. Out of 20 requested 

channels, the average numbers of establishable channels for different values of H  are plotted 

in Fig. 7.5 (the dashed curve).

From this figure, we see that real-time channels outperform the FDDI-II by far 

when the channel length is short. The number of establishable channels decreases as the 

channel length increases.

Another interesting feature is that one can significantly increase the ability of the 

real-time channels to accommodate video channels by relaxing end-to-end delay bounds. 

For example, if each destination node has a buffer capacity to store 4 video frames, then 

the end-to-end frame delivery delay bound can be relaxed to be four frame periods, i.e.,
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D = AT =  120 ms. From Fig. 7.3, we see that with the FDDI-II, the circuit bandwidth 

can be reduced to be 1.3 times the average signal bandwidth, i.e., 1.3 X 10.5 Mbps = 13.65 

Mbps. Thus, 98.034/13.65 = 7 video channels can be established in an FDDI-II network. 

The number of establishable video channels with real-time channels for D = AT is also 

plotted in Fig. 7.5 (the solid curve), which shows a significant improvement over FDDI-II.

7.2.3 R eal-tim e channels vs. packet switching

Ordinary packet switching exhibits two problems when used for real-time com

munication. First, its FIFO or Round-Robin scheduling policy treats all packets equally. 

Urgent messages do not receive the requisite transmission priority, and thus could easily 

miss their deadlines. Second, no efficient traffic control scheme is used to prevent network 

from congestion. When the network gets congested, real-time messages will get delayed or 

lost as well as the non real-time messages.

With the real-time channel protocol, urgency of a message is represented by the 

deadlines of its packets. The deadline scheduling of packet transmissions gives priority to 

the most urgent packets. The amount of real-time traffic over each link is controlled by 

the channel establishment algorithm that guarantees the timely delivery of all real-time 

messages of any established channel. The existence of non real-time traffic in the network 

has virtually no effect on real-time channels since non real-time packets always have lower 

transmission priority than real-time packets. When the network is congested with excessive 

non real-time traffic, only non real-time messages will get delayed or lost.

We verify the above claims with simulations. 19 video channels were established 

in the 20-node ring network described in Section 3.1. Channel 0 covers the whole ring,

i.e., with the source node 0 and the destination node 19. Channel i, i = 1, • • *, 18, has the 

source node i and the destination node i + (3 -  (i — 1) mod 3). All 19 channels transmit 

the video frames displayed in Fig. 7.1. The maximum frame transmission delay is required
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to be smaller than one frame period.

A certain amount of non real-time traffic is generated with random source and 

destination nodes. The amount of traffic is measured by the percentage of the network 

bandwidth needed to transmit them. For example, 10% of non real-time traffic in a 100 

Mbps ring means that each link will carry an average of 10 Mbps of non real-time packets. 

Recall that each video channel carries signals of an average bandwidth of 10.5 Mbps, and up 

to 4 video channels are established over some links with the source and destination nodes 

selection described above. Thus the network will get congested if the non real-time traffic 

over one link exceeds 100 Mbps — 4 x 10.5 Mbps = 58 Mbps, or the total non real-time 

traffic exceeds 58% of the network bandwidth.

The maximum and average frame delays of channel 0 are plotted in Fig. 7.6. 

Fig. 7.7 plots the distribution of frame delays. One can see that real-time channels are 

virtually independent of the amount of non real-time traffic. The maximum and average 

delays keep well below the requested one frame period, even when the network is nearly 

congested.

With the ordinary packet switching, on the other hand, frame delays increase 

as non real-time traffic increases. This makes the transmission of real-time video signals 

very unreliable. Notice that several large file transmissions could easily get the network 

congested. During such a transmission period, the frame delays could exceed 10 frame 

periods, interrupting the receiving side even if a few frame buffers are used.

Adding a priority mechanism to the ordinary packet switching, i.e., giving real

time packets a higher transmission priority than non real-time packets, could alleviate the 

problem. However, the performance still will not match that of real-time channels for the 

following reasons.

1. There exist differences in urgency among real-time messages. For example, the mes

sages of channel 0 (which need to travel 19 links) are more urgent than those of other
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Figure 7.6: Maximum and average video frame delays with Real-time Chan
nels (RTC) and ordinary packet switching.
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Figure 7.7: Frame delay distributions. The figure shows the number of 
frames, normalized by the total number of frames transmitted, whose trans
mission delays lie in each interval equal to a 1/10 of the frame period.



channels (which only travel at most 3 links). Also, some nodes may have larger frame 

buffers than others, and thus the frames sent to these nodes can tolerate larger trans

mission delays. A priority mechanism usually does not distinguish these differences. 

This can be seen in Figs. 7.6 and 7.7. In the absence of non real-time messages, 

the frame delays of channel 0 with packet switching are still larger than that with 

real-time channels. The reason for this phenomenon is that when real-time channels 

are established, Protocol 3.3 gives channel 0 smaller link delays than that of the other 

channels. Thus, the packets of channel 0 will be assigned tighter deadlines and are 

thus more likely to be transmitted before the packets of other channels. In conclu

sion, the real-time channel protocol is more flexible than the priority mechanisms in 

accommodating heterogeneous real-time traffic (i.e., with different transmission delay 

and bandwidth requirements).

2. No efficient traffic control schemes are known for (priority) packet switching. Thus it 

is still possible that real-time traffic could temporarily congest the network. The real

time channel protocol, on the other hand, will avoid congestion by rejecting requests 

for establishing new channels at the channel establishment stage.

3. Even if a traffic control scheme is employed for (priority) packet switching, the es

tablished channels could still affect each other. A video channel, for example, could 

create more traffic than specified from time to time (say, when the scene moves very 

fast). This extra traffic could affect the timely transmission of other channels’ mes

sages. As discussed in Chapter 3, this will not happen to the real-time channels due 

to the deadline scheduling of packet transmissions.

7.3 FDDI-M

We showed in the previous section that real-time channels outperform both the 

circuit-switched and packet-switched transmission. However, implementation of real-time
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channels requires significant hardware and software changes to the existing computer net

works. In local area ring networks like the FDDI, an easy way to improve the networks’ 

multimedia supporting capacities is to use the modified protocol, FDDI-M, proposed in 

Chapter 6.

We carry out extensive simulations to verify the advantages of the FDDI-M over 

FDDI and FDDI-II. The network simulated is a medium-size FDDI single ring of 50 nodes 

and 92-kilometer ring length. Assuming a node latency of 0.6 microsecond and a propagation 

delay of 5.085 microseconds per kilometer [30], the ring has a latency Tring = 0.5 ms. 

According to the FDDI standard, the maximum-packet size is 36 Kbits, and thus, the 

maximum packet transmission time Cp — 0.36 ms.

The synchronous traffic under consideration is the digital motion video signals com

pressed with the MPEG [44]. Each MPEG video channel has an average signal rate of ap

proximately 1.5 Mbps and the video frames are transmitted at the rate of 30 frames/second. 

Thereby the frame generation period T  — 33 ms. Each video frame is required to be trans

mitted before the generation of the next frame. The MPEG compression algorithm generates 

a large frame, called a prime frame, for every eight frames. The size of a prime frame could 

be three times as large as the average frame size. In our simulation, the prime frames are 

generated with their sizes uniformly distributed in the range of 100 Kbits ~  150 Kbits, and 

other frames are generated with their sizes uniformly distributed in the range of 25 Kbits 

~  75 Kbits.

Asynchronous messages are generated randomly with their sizes uniformly distrib

uted in the range of 0 ~  1.5 Mbits by those 10 nodes which are not transmitting video 

signals. To test a ring’s ability of accommodating asynchronous traffic, the asynchronous 

traffic is generated with a total rate equal to the ring’s bandwidth of 100 Mbps. So, the 

actual throughput represents a ring’s ability of accommodating asynchronous traffic. The 

fairness of a protocol can also be verified by checking each node’s asynchronous traffic
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throughput.

Three protocols, FDDI, FDDI-II, and FDDI-M, are compared for their ability to 

support video channels and asynchronous traffic. The configurations of these protocols are 

described below.

FD D I: Two configurations are simulated: (1) T T R T  = !T/2 = 16.5 ms, and (2) T T R T  = 

T  = 33 ms. The reason for using the second configuration is to check if it is really 

necessary to set the TTRT to one half of the requested delay bound. For both config

urations, the high priority token holding time of a node that generates video signals is 

set to the time needed to transmit a maximum-size frame = 150 Kbits /  100 Mbps 

= 1.5 ms. Theoretically, no more than n =  (T T R T  — Tri„g -  Tp)/hi video channels 

should be established to satisfy the protocol constraint J2i=o hi < T T R T  — Tring — Tp 

(see Chapter 6). This results in n = 10 for T T R T  = 16.5 ms, and n = 21 for 

T T R T  = 33 ms. In our simulation, however, when more than n video channels are 

requested, we ignore this constraint to see how many frames will not be transmitted 

before the generation of the next frame.

FDDI-II: In order to ensure each video frame to be transmitted before the generation of 

next frame, a transmission bandwidth of 150 Kbits /  33 ms = 4.5 Mbps is needed 

by each video channel. Thus, 98/4.5 = 21 video channels can be established. When 

n > 21 video channels are requested, we divide the 98 Mbps bandwidth equally among 

the channels. In this case, some frames may need longer than 33 milliseconds for their 

transmission.

FDDI-M: The configuration of the FDDI-M is the same as that of the FDDI except that 

the ring’s TTRT is set to 33 -  1.5n ms, where n is the number of video channels 

established. Since the TTRT should not be smaller than Trt„s = 0.5 millisecond, up 

to n = (33 — 0.5)/1.5 = 21 video channels can be established with the FDDI-M. When
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Figure 7.8: Percentages of prime frames missed deadline.

n > 21 video channels are requested, we set T T R T  = 2 ms to guarantee a certain 

level of asynchronous throughput.

In our simulation, we use nodes 0 ~  (n — 1) as the source nodes of the n requesting 

video channels. Asynchronous messages are generated by nodes 35 ~  44. For each channel 

number n = 0,1,• • •,30, we used a simulation period of 100 seconds during which each 

video channel generates 3300 frames. To simulate the worst case, all video channels start 

transmitting frames at time 0. For each n, the percentages of channel (n — l ) ’s prime frames 

missing their deadlines under different protocols are plotted in Fig. 7.8. We considered the 

prime frames only since they are more important than other frames (decompression of other 

frames needs information from the prime frames). Also, the prime frames are more likely 

to miss their deadlines because of their large size.

From Fig. 7.8, up to 13 video channels can be established in an FDDI ring with
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T T R T  = 16.5 ms without any late frames. Setting up any more channels would cause 

the loss of prime frames. The reason why a few more than the calculated 10 channels 

can be established is that the worst case which causes the largest token rotation time did 

not happen in our simulation. The token will experience the largest rotation time if (1) 

no packets were transmitted during the previous token’s rotation, and (2) the maximum 

number of synchronous and asynchronous packets are transmitted during the current token’s 

rotation. In our simulation, since nodes 35 ~ 44 always have many asynchronous packets to 

transmit, (1) will never happen. Setting T T R T  := 33 ms for the FDDI does not work at all. 

The prime frames missed their deadlines even in case of a small number of video channels. 

This means that the token rotation time could exceed the TTRT even if the synchronous 

traffic is light. Thus it is necessary to set the TTRT to one half of the requested delay 

bound in an FDDI network.

As expected, the FDDI-M outperforms the FDDI by far. It can accommodate 24 

video channels which is 11 channels more than that of the FDDI (TTR T  =  16.5 ms). The 

FDDI-II behaves exactly as calculated. Up to 21 channels can be established. The reason 

why the FDDI-M performs a little better than the FDDI-II is that the former shares ring 

bandwidth among different video channels, while with the latter, one channel cannot use 

the reserved bandwidth of another, even when that channel is not transmitting anything.

The throughput of asynchronous messages are plotted in Fig. 7.9. The FDDI-M has 

a higher asynchronous throughput when the number of channels is less than, or equal to, 13. 

This can be seen more clearly in Fig. 7.10 which shows the average token rotation times. 

As discussed earlier, the smaller the average token rotation time, the more transmission 

bandwidth is used for the token passing, thus leaving less bandwidth for asynchronous 

messages. The difference between asynchronous throughput becomes more pronounced 

with the increase of ring latency (i.e., increase of ring size).

When n > 14 video channels are established, the FDDI has a higher asynchronous
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throughput than the FDDI-M. However, this does not mean that the FDDI is superior 

to the FDDI-M. The FDDI’s gain in asynchronous throughput is achieved at the cost of 

missing synchronous messages’ deadlines. It is like setting a very large TTRT to have 

the maximum bandwidth without considering synchronous messages at all. The FDDI-M 

reduces the average token rotation time to accommodate more video channels. When the 

number of video channels reaches 21, the FDDI-M’s TTRT is fixed at 2 ms. Thus, the 

average token rotation time no longer decreases, and synchronous messages start missing 

their deadlines.

The FDDI-II provides the lowest throughput for asynchronous messages. Estab

lishment of each video channel deprives 4.5 Mbps bandwidth from the network. So, after 

establishing 22 video channels, less than 2 Mbps transmission bandwidth is left for asyn

chronous traffic. This indicates one of the disadvantages of the FDDI-II when a network is 

heavily loaded with synchronous traffic.

7.4 Conclusion

With simulations, we show in this chapter the advantages of using real-time chan

nels and the FDDI-M for multimedia applications. Multimedia networking is only one the 

the many applications which will benefit from real-time communications. We expect a lot 

more real-time services will be available with the improved quality of service of computer 

networks.



CHAPTER 8

SUMMARY AND FUTURE WORK

8.1 Summ ary of the Thesis

This thesis has treated a new, increasingly important subject of computer net

working: real-time channels. The main contributions are summarized below.

D eadline scheduling theory : The deadline scheduling theory developed in Chapter 2 

includes the sufficient and necessary channel schedulability conditions and an efficient 

algorithm for the calculation of minimum delay bounds with the deadline scheduling 

of message transmissions. It paves a solid mathematical basis for the whole real-time 

channel concept. Compared to the previously obtained results [4, 6], our results allow 

us to accommodate heterogeneous real-time channels and fully utilize the network’s 

transmission bandwidth.

The deadline scheduling theory thus obtained is also a significant generalization of 

the classical periodic task scheduling theory developed for a single processor [5]. It 

removes the restriction that the deadline of each task always equal the generation 

time of the next task, thereby making the theory applicable to a larger number of 

areas including the deadline scheduling of message transmissions.

R ea l-tim e channel protocol: The real-time channel protocol presented in Chapter 3 is 

the first complete specification of the real-time channel transfer mode. It is composed 

of two parts:

148
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1. Message transmission protocol. The message transmission protocol specifies the 

packetization of real-time messages and calculation of the packet deadlines over 

each transmission link. The proposed protocol ensures the correctness, solvabil

ity, and protection of real-time channels.

2. Channel establishment protocol. This protocol establishes real-time channels us

ing the deadline scheduling theory of Chapter 2. Both the distributed and cent

ralized versions of the protocol are presented.

Deadline scheduler: The need for a fast deadline scheduler for the implementation of 

real-time channels has been largely overlooked. We show in Chapter 4 the importance 

of this issue and worked out a design of the scheduler which is the first step of our 

project on building a prototype system capable of supporting real-time channels.

Fault—tolerance: Simultaneous realization of real-time and fault-tolerant communication 

is a difficult problem and little has been reported on this issue. With the real-time 

channels, we show in Chapter 5 how this problem can be tackled by exploring the 

spatial redundancy of the network topology.

Local a rea  netw orks (LA N s): The importance of real-time communication over LANs 

cannot be over emphasized since almost all end-systems are connected to a LAN. We 

show in Chapter 6 how real-time channels can be established over LANs with a proper 

MAC protocol like the FDDI. A modification to the FDDI, called the FDDI-M, has 

also been proposed which can significantly improve an FDDI network’s capacity of 

supporting real-time traffic.

M ultim edia applications: To illustrate the power of real-time channels, we investig

ate in Chapter 8 the application of real-time channels for multimedia networking 

through simulations, and show how the real-time channels outperform both the 

circuit-switched and packet-switched transmissions. We have also shown the su
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periority of the new MAC protocol FDDI-M over the existing FDDI and FDDI-II in 

supporting video transmission.

8.2 Future Work

The work of the thesis can be followed up in the following three directions.

P ro to ty p e  im plem entation: To verify the results of real-time fault-tolerant commu

nication approaches with real-time channels, we need to build and test a prototype 

communication system. A key problem is an efficient implementation of the deadline 

scheduling of message transmissions. We have proposed in Chapter 4 a preliminary 

design of a fast deadline scheduler. The next step is to refine and implement the 

design.

The HARTS [12] currently being built at the Real-Time Computing Laboratory is 

an ideal platform to perform experiments on real-time channels. The point-to-point 

connected hexagonal topology of HARTS will allow us to conduct experiments ran

ging from the basic real-time channels to the highly reliable IFI real-time channels. 

After equipping it with fault-tolerant real-time channels, HARTS will become a very 

promising architecture for critical real-time applications.

Extension to  th e  ATM : This thesis assumes the environment of computer networks for 

the establishment of real-time channels. With the development of BISDN [1], the 

current telecommunication network will also carry data traffic. The ATM is expected 

to become the main transfer mode for the BISDN. Thus, it is important to investigate 

the suitability of the real-time channel concept for the ATM.

Our preliminary investigation shows that real-time channels and the ATM bear many 

similarities. Both of them are connection-oriented to provide a proper quality of 

service and use statistical packet multiplexing to achieve high transmission efficiency.
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However, the procedures used by real-time channels for channel establishment and 

message transmission are more sophisticated than those for the ATM in order to 

achieve guaranteed end-to-end delay bounds. By applying the results obtained in 

this thesis to the ATM, we expect to improve the quality of service provided by 

the current BISDN networks and expand the application domains of the real-time 

channels.

Im plem entation  of th e  FD D I-M : The concept of real-time channels is very attractive, 

but making the current computer networks capable of accommodating real-time chan

nels needs considerable changes to the network hardware and software. By contrast, 

upgrading an FDDI network to the FDDI-M requires minimal modifications and can 

be done transparently to the users. Thus, the FDDI-M is an attractive way to improve 

local area networks’ ability of supporting real-time traffic.

At present, FDDI’s capacity of supporting synchronous traffic is capitalized due to the 

lack of application demands and a proper Station Management (STM) protocol dealing 

with the synchronous bandwidth allocation and connection establishment. With the 

rapid advance in multimedia systems, however, we expect computer networks to carry 

more synchronous traffic. Thus, instead of developing the synchronous MAC circuits 

and the STM protocol for the standard FDDI, it is better to work directly on the 

FDDI-M.
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