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C H A P T E R  1

IN T R O D U C T IO N

The conceptual goal of this dissertation is, quite simply, the combination of two major 

areas of Computer Science research: real-time computing and Artificial Intelligence (AI). In 

discussing this concept, we will find that these two research areas are pursuing conflicting 

goals; while real-time computing is aimed at producing predictable systems that make fixed 

performance guarantees given limited resources, AI is trying to  produce flexible systems 

tha t behave “intelligently” in complex, dynamic domains. We will explore the nature of 

these conflicting goals and present several alternative methods for avoiding the conflicts and 

merging real-time and AI research. This discussion will culminate in the introduction of a 

new architecture designed to combine real-time computing and AI. The Cooperative Intel

ligent Real-time Control Architecture (CIRCA) provides a powerful, flexible combination 

of real-time and AI capabilities, meeting goals that current systems have not addressed. 

To investigate the strengths and limitations of CIRCA, we will describe a prototype imple

mentation in great detail, and illustrate the system’s operations with examples from several 

domains.

1.1 M otivation

Artificially-intelligent agents that are constructed in the laboratory are often unsuited to 

real-world domains, where the pace of interactions between an agent and its dynamic envir

onment may exceed the response rate of traditional AI methods. For example, an autonom

ous vehicle operating in the real world needs a control system that responds quickly enough 

to avoid collisions with obstacles or other vehicles. This requirement for timely behavior 

is the defining characteristic of a class of environments known as hard, real-time domains. 

Hard real-time domains have deadlines by which control responses must be produced, or

1
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catastrophic failure may occur. Other common examples of hard real-time domains include 

nuclear power plant control, medical monitoring, and aircraft control.

Because catastrophic failure may occur if deadlines are missed, control systems for agents 

operating in real-time environments must not only choose appropriate actions in varied 

situations, they must also make those action choices at appropriate times. Research in 

real-time systems addresses precisely this issue, by developing methods for guaranteeing 

that the reaction rate of a  control system matches the rate of change in the environment. 

Real-time computing is not about building “fast” systems; it is about building systems that 

are predictably “fast enough” to act on their environments in ways th a t achieve their goals 

[36, 76].

This understanding of what it means to be “real-time” is dramatically different from 

the casual, non-technical use of the term which has become common in many fields. For 

example, if a database querying system responds quickly according to human time-scales 

(i.e., in a few seconds or less), it is called “real-time.” But what if we use that same database 

system in a critical application requiring responses in milliseconds? Clearly, the system is 

no longer “fast enough.” The fact tha t the inadequacy of the system in this new domain 

(and its “adequacy” in the slower domain) could not be recognized or predicted in any 

rigorous fashion indicates that this system was never “real-time” in the technical sense; it 

was never known to meet the required deadlines.

Real-time systems researchers have developed a powerful set of tools to prove that 

embedded systems meet their environment’s deadlines. These tools include techniques for 

characterizing a system’s interactions with its environment through such measures as worst- 

case execution time, resource requirements, and deadlines. Given this type of information, 

mechanisms are available to predictably schedule and execute the described behaviors and 

to guarantee tha t they will meet their deadlines.

While real-time systems research addresses timeliness issues for a given set of tasks, it 

does not consider the source of those tasks; real-time researchers assume they are given 

tasks that have certain performance requirements, but the motivations for those tasks and 

requirements are left unspecified. Traditional AI planning research, on the other hand, 

has characterized the interactions of an agent and its environment in terms of state spaces 

and operators that move through those spaces. Planning has concentrated on searching 

for sequences of actions (tasks) to execute in a particular situation. Thus we would like 

to combine the guaranteed performance methods of real-time systems with AI planning
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mechanisms to build a flexible, intelligent control system that can dynamically plan its 

own behaviors and guarantee that those behaviors will meet hard deadlines in real-time 

environments.

Note tha t human behavior is not a “gold standard” for real-time systems research. 

Although much AI research seeks to emulate human performance, people do not fully meet 

the criterion for real-time systems. In particular, human performance is too uncertain and 

too subject to  unpredictable delays, distractions, and errors to be considered “guaranteed” 

in the sense needed for hard real-time domains. It is certainly true tha t humans can perform 

in demanding environments that include deadlines and response requirements: people drive 

cars, fly planes, etc. However, the high incidence rate of car accidents can be largely 

attributed to human error— people are simply not predictable enough to  reliably handle the 

task. Our research takes a first step towards combining the best aspects of intelligent, human 

behavior (flexibility, adaptability, robustness) with the strengths of real-time computing 

systems (predictability, performance guarantees, reliability).

Unfortunately, applying the insights of real-time computing to the development of in

telligent embedded agents is not trivial. One major problem in combining AI and real-time 

systems is complexity. A real-time system must be guaranteed to meet the hard deadlines 

tha t its environment imposes, even under its worst-case performance. This requirement is 

difficult for intelligent systems because many AI techniques are not suited to analyses that 

can provide worst-case response times. For example, systems that learn are able to form 

new chains of inferences, resulting in changing performance characteristics tha t may defy 

worst-case bounding [13]. Furthermore, even predictable AI methods often have such high 

variance in their response times that making guarantees based on worst-case values would 

result in severe underutilization of computational resources during normal operations [60]. 

Thus making real-time performance guarantees while still using complex AI methods is a 

fundamental problem.

1.2 Approach and Contributions

In pursuit of the overall goal of combining real-time computing methods and AI tech

niques, this dissertation focuses primarily on describing the concepts underlying CIRCA, 

and on the particular implementation we have developed. As illustrated in Figure 1.1, 

CIRCA combines parallel AI and real-time control subsystems to  meet the requirements of
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F ig u re  1.1: The Cooperative Intelligent Real-time Control Architecture (CIRCA).

both arbitrarily complex AI algorithms and predictable real-time control responses. The 

AI subsystem (AIS) performs high-level reasoning about tasks and, in cooperation with the 

Scheduler, develops low-level control plans consisting of reactive behaviors. These control 

plans are executed in a predictable, guaranteed fashion by the real-time subsystem (RTS).

Unlike many other real-time AI systems, which force their AI components to meet real

time deadlines, CIRCA explicitly isolates its AIS from domain deadlines. CIRCA’s goal is 

to be “intelligent about real-time,” rather than “intelligent in real-time.” This distinction 

is crucial because it allows CIRCA to provide performance guarantees th a t are distinctly 

different from those available with other systems. While many real-time AI systems can 

only promise “best-effort” performance, CIRCA is able to make explicit guarantees about 

its ability to achieve its goals within particular domains using limited sensor, processor, and 

actuator resources.

In a sense, the goal of this research is to automate the design, implementation, and 

modification of a real-time control system. Currently, real-time systems are built by human 

designers who are given a set of task specifications, and design a method for executing those 

tasks to meet the specified constraints. CIRCA is designed to receive a description of its 

environment, its capabilities for interacting with its environment, and its goals, and then 

automatically derive a  behavioral plan, confirm that the system has sufficient resources to 

implement that plan (or modify the plan, goals, or environment as necessary), and finally 

implement the plan.

In pursuit of these objectives for CIRCA, this dissertation makes several conceptual 

contributions to the state of the art:

To clarify the fundamental conflict between real-time and AI systems, we introduce 

the concept of any-dimension algorithms, a general class of iterative improvement
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algorithms.

• To allow CIRCA to build real-time reactive plans, we develop a graph-based world 

model for representing the interactions between the environment and CIRCA’s real

time subsystem. The model includes a simplified temporal representation that permits 

easy analysis of worst-case behaviors.

• Within the world model representation, we develop a  formal characterization of the 

way a reactive plan can isolate the AI subsystem from the domain deadlines, keep

ing the controlled agent safe while CIRCA’s AI subsystem executes unpredictable 

algorithms.

• Using these capabilities, we characterize the domains to which CIRCA may usefully 

be applied, examining the range of situations in which our approach to real-time AI 

is appropriate.

Our research on actually implementing a prototype version of CIRCA has yielded several 

technical contributions, including:

• A novel deliberative architecture combining meta-level reasoning with interrupt-driven 

communication.

• A structured interface through which the arbitrarily complex AI planning subsystem 

can communicate with and control a predictable, guaranteed real-time subsystem.

• A real-time subsystem that meets hard response deadlines by executing a cyclic sched

ule of behaviors.

•  A modular, interruptible, search-based algorithm that the AIS uses to plan within the 

world model, determining which behaviors to request from the real-time subsystem.

• A modified deadline-driven scheduling algorithm that efficiently produces cyclic sched

ules of reactive behaviors.

• A set of methods by which the AIS can modify its world model or plans to decrease 

the resource requirements of the reactive behaviors it is trying to schedule for the 

real-time subsystem.

The prototype CIRCA implementation has exhibited several forms of novel performance. 

Primarily, the system has demonstrated the feasibility of using unpredictable AI algorithms 

in the process of building and executing reaction plans that can provide rigorous real-time
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guarantees, Other experiments have concentrated on showing the system’s unusual combin

ation of introspection and real-time performance. CIRCA is able to recognize its sensing, 

actuating, and processing resource limitations, and make performance tradeoffs when those 

resources do not allow the system to meet all of its goals within a given environment. Ex

periments have also been conducted to investigate the use of unguaranteed (or “best-effort”) 

behaviors that take advantage of the execution resources that become available when guar

anteed behaviors use less than their worst-case times. CIRCA supports cognizant, graceful 

performance degradation via these best-effort behaviors and tradeoff methods.

1.3 The Exam ple Dom ain

Throughout this dissertation, we will discuss examples drawn from the domain shown 

in Figure 1.2. The Puma robot arm is simulated in Deneb Robotics’ Igrip system (see 

Appendix A for details). The Puma is assigned the task of packing parts arriving on the 

conveyor belt into the nearby box. The conveyor moves at a fixed rate and the parts are 

spaced apart on the belt so that they arrive with some maximum frequency. Once at the 

end of the belt, each part remains motionless until the next part arrives, at which time it 

will be pushed off the end of the belt (unless the robot picks it up first). If a part falls off 

the belt because the robot does not pick it up in time, the system is considered to have 

failed. Thus, the arriving parts impose hard deadlines on the robot’s responses; it must 

always pick up parts before they fall off the conveyor.

The parts can have several shapes (e.g., square, rectangle, triangle), each of which 

requires a different packing strategy. The control system may not know a priori how to 

pack all of the possible types of parts. If parts of a new shape arrive, the system can stack 

those parts on the nearby table until it has derived an appropriate box-packing strategy. 

The derivation of the packing method may involve search algorithms with unpredictable 

behavior. This aspect of the domain is used to exercise CIRCA’s ability to combine arbitrary 

AI methods with real-time response guarantees.

The robot arm is also responsible for reacting to an emergency alert light. If the light 

goes on, the system has only a limited time to push the button next to the light, or it fails. 

This portion of the domain represents a completely asynchronous interrupt with a hard 

deadline on its service time.

To cope with this domain properly, the system controlling the robot arm must be able to
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F ig u re  1.2: The example Puma domain, in which the robot packs objects from the 
conveyor into the box.

provide real-time responses to unsynchronized domain events (part arrivals and emergency 

alerts) while also having the ability to perform complex search methods (deriving packing 

methods and reaction plans in general). To complicate matters further, the speed of the 

Puma robot and the domain sensors is limited. Variations of the domain can be set up with 

different part arrival rates, emergency alert rates, robot speeds, etc. To be truly intelligent 

and real-time in this domain, the control system will need to be able to evaluate its capabil

ities, its goals, and the domain behavior restrictions. With that information, an intelligent 

system should provide some measure of useful performance, possibly involving tradeoffs 

that sacrifice aspects of the system behavior as necessitated by resource restrictions.

1.4 D issertation  Outline

The body of this dissertation consists of seven additional chapters and several appen

dices. The chapters follow a logical progression from background concepts (Chapter 2), 

through an overview of the system (Chapter 3) and its theoretical underpinnings (Chapter
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4), into implementation details (Chapters 5 and 6). Experimental results follow in Chapter

7, and the dissertation concludes with a brief review and discussion of future work in Chapter

8. In somewhat more detail, the chapters are organized as follows:

Chapter 2 presents background material describing the differing goals of real-time sys

tems and AI, and shows how combining these research fields is non-trivial. We introduce the 

concept of any-dimension algorithms, which can be used to describe the tradeoffs necessary 

to combine the disparate goals of real-time and AI systems. This discussion clarifies the 

problems with many approaches to real-time AI, and leads directly to the conceptual basis 

of CIRCA.

Chapter 3 presents an overview of CIRCA. We describe the architecture in terms of the 

division of functional responsibilities among subsystems, and we motivate these divisions 

based on the goals described above and in Chapter 2. We then discuss in detail the previous 

approaches to combining real-time and AI, and we show how CIRCA fills a unique gap in 

the space of possible real-time AI systems.

Chapter 4 provides a detailed description of the world modeling methods CIRCA uses to 

reason about its environment and its own capabilities. Based on this world model, CIRCA 

makes decisions about its own performance, trading off various measures of performance 

quality when it recognizes that its resources are constrained. The final section of this chapter 

evaluates several advantages and disadvantages of the model.

In Chapter 5 and Chapter 6, we provide extensive details on the current prototype 

implementation of CIRCA. The implementation includes several novel features, including 

a reaction planner with a simplified representation of time, and a programmable real-time 

subsystem with predictable performance. Each of the prototype CIRCA subsystems is 

briefly evaluated according to its strengths and weaknesses.

Chapter 7 returns to the any-dimension algorithm theme to guide an evaluation of 

the performance of the CIRCA implementation, focusing particularly on the performance 

tradeoffs the system can make. While the implementation is less well-developed than several 

older architectures, we are able to demonstrate several unique performance features that 

result from CIRCA’s innovative approach to combining real-time and AI.

The dissertation concludes with Chapter 8, which reviews the contributions of CIRCA 

and discusses interesting directions for future work. Several appendices provide additional 

details on features of the implementation and the testing domains.



C H A PT E R  2

BACK G RO UND: REAL-TIM E V S. AI

AI planning research has traditionally concentrated on being able to prove that a se

quence of actions will lead to a desirable state of the world. Real-time systems, on the 

other hand, are concerned with proving that the time needed by a set of actions will not 

exceed deadlines. Ideally, we would like to combine intelligent planning methods from AI 

with the guaranteed performance features of real-time systems, to build an intelligent agent 

that could be guaranteed to succeed in its environment.

In this chapter, we will discuss alternative ways of meeting real-time constraints, and 

reveal a fundamental conflict between these methods and the characteristics of traditional AI 

methods. To clarify the nature of this conflict, we will introduce any-dimension algorithms, 

a generalized notion of iterative computation. The any-dimension concept will allow us to 

precisely pinpoint the conflict between the goals of real-time system and AI systems. With 

that understanding, we then survey several approaches to resolving this conflict, before 

introducing our approach in Chapter 3.

2.1 T he Strategic Approach to  R eal-Tim e G uarantees

As noted in Chapter 1, real-time domains are primarily characterized by deadlines. To 

succeed in a real-time domain, a control system must always provide required responses 

before their associated deadlines. Thus real-time research has focused on ways of proving 

that a particular set of tasks can be guaranteed to meet a domain’s timing constraints. 

There are two main classes of methods for obtaining performance guarantees given a limited 

set of system resources. In the most common “strategic” approach, a scheduler is given 

information about resource availability and future computational tasks, and determines 

how to execute those tasks in order to avoid resource conflicts and meet some performance

9
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requirements. This approach is well-suited to simple control algorithms and static domains, 

where resource needs and availability are predictable, so that the resulting schedule of tasks 

can be followed precisely.

Unfortunately, the search-based AI methods used in complex planning systems are prob

lematic for strategic schedulers. The fundamental problem is that planning involves search

ing for the solution to a generally intractable problem [7], and thus the planning process has 

extremely large worst-case resource requirements. The time to find a plan in the worst case 

may be several orders of magnitude longer than the average time to find a plan. This means 

that allocating resources to guarantee the worst-case response time of a planner will be very 

costly, and will lead to very low utilization of a system’s resources [60, 68]. Furthermore, AI 

systems with powerful knowledge representations [7, 14] or learning abilities [13] may have 

unbounded worst-case response times. In these cases, it is impossible to allocate sufficient 

resources ahead of time, and thus real-time guarantees are not feasible. As a result, it is 

not generally possible to build an effective real-time AI system by embedding traditional 

AI methods within a real-time system using the strategic approach to response guarantees.

2.2 The Tactical Approach to Real-Tim e Guarantees

To avoid these problems of strategic scheduling, some researchers have focused on “tac

tical” approaches that rely on the computational tasks themselves to manage their resource 

usage. These tactical methods are exemplified by any-time algorithms [9, 41, 65], which 

can be halted at any time to yield a result, possibly with reduced precision, confidence, or 

completeness. Any-time algorithms provide an on-line, dynamic method for guaranteeing 

the timeliness of a result, but the quality of the result may be sacrificed. For example, in 

the Puma domain, an any-time algorithm might be used to incrementally refine the robot’s 

estimate of the position of a part arriving on the conveyor belt. When the time allotted to 

the any-time algorithm expires, another process could revise the robot’s motion based on 

the resulting position estimate. However, the accuracy of the position estimate would be 

highly dependent on how much time was actually allocated to the any-time algorithm.

To clarify the relationship between AI and the tactical real-time systems approach, it is 

helpful to focus closely on tactical systems as implemented by any-dimension algorithms. 

The any-dimension algorithm concept is simply a generalization of the any-time approach, 

yielding a description of a larger class of tactical algorithms that can provide performance
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do
{

new.result = compute_next_reBUlt_froni(best_resul't_so_f ar); 
best.result.so^far = best_of(best_result_so_far, new_result);

>
until termination_condition(); /* threshold on resource/quality * /
return(best_result_so_far);

Figure 2.1: Pseudo-code for a generic any-dimension algorithm.

guarantees along dimensions describing resource usage and/or solution quality, rather than 

just time. Note that we are not claiming that any-dimension algorithms are a new method, 

but rather that this particular form of algorithm description is useful. The following sub

sections develop the concept in detail, showing how both real-time and AI methods can 

be mapped into any-dimension algorithms. We will use the any-dimension concept to our 

advantage in Section 2.3, where it will provide leverage on both describing and attacking 

the problems of combining real-time and AI.

2.2 .1  A n y-D im en sion  A lgorithm s

The most important feature of an any-time algorithm is the fact that it guarantees to 

use only a bounded amount of time, by performing iterative computations that can return a 

result any time they are halted. Of course, time is not the only resource that may be limited 

for a system: other bounded resources might include memory and non-computational phys

ical features like sensors and actuators. We can generalize the any-time concept to provide 

guarantees on other dimensions by noting that any-time algorithms have two crucial ele

ments: an iterative computation that produces intermediate results, and a termination 

condition that monitors the time and halts the iteration when the deadline is reached. So 

an any-dimension algorithm is composed similarly of an iterative computation and a ter

mination condition that may keep track of any measure of an algorithm’s performance, and 

will halt the iterative computation when some threshold on that measurement dimension is 

reached. Figure 2.1 illustrates a generic any-dimension algorithm in pseudo-code.

There are two basic types of any-dimension algorithms, distinguished by the nature of 

their termination conditions. These conditions may perform thresholding tests on measures 

of either resource usage or output quality.
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2.2 .2  A ny-R esource A lgorithm s

Any-resource algorithms are the most obvious generalization of any-time algorithms, 

having a termination condition that tests for some maximum resource usage: 

boolean te rm ina tion .cond ition  ()
■c

return(resources_used  >= m ax .resou rce .th resho ld );
>

Any-resource algorithms can guarantee that they will not exceed a maximum level of 

resource usage. As another example of an any-resource method, consider a scenario in the 

Puma domain where the system’s planning process has no hard deadline, but the system has 

limited memory. An any-memory algorithm would be useful in this situation, because the 

planning algorithm could require exponential amounts of memory as it constructs and stores 

alternative partial plans. If the planner writes beyond the free memory, it might corrupt 

critical control data and cause a catastrophic failure. An any-memory planning algorithm 

would monitor the available memory and, when memory ran low, the algorithm would halt 

and return the most-recent partial plan. Thus an any-memory algorithm guarantees that 

the system will not exceed the available memory capacity.

We can qualitatively represent the results of this type of algorithm by the resource/quality 

tradeoff graph in Figure 2.2a, where the shaded area represents the possible places that the 

any-resource algorithm will terminate (i.e., the types of results it will produce). Because 

we have cast the termination condition as a synchronous monitor within the iterative loop, 

it will only check the resource usage after each iteration1. As a result, the algorithm may 

overshoot the resource threshold (R t) by up to the maximum amount of resources used 

during any single iteration of the computation (fZu). Thus Figure 2.2a shows that a simple 

any-resource computation will be halted at some point when the resource usage is between 

Rt and Rt -1- Ru.

Note that an any-resource algorithm may fail to terminate if it never consumes enough 

resources. While this is not possible if the resource dimension is time (and there is a finite 

threshold, or deadline), with other resources it is possible for an iterative algorithm to 

continue executing without consuming additional resources. For example, a simple beam- 

search algorithm may traverse an arbitrarily large search space with a fixed maximum 

memory usage, and thus, if cast as an any-memory algorithm, it might never terminate.
’ In this discussion, we are not concerned with alternative, asynchronously-monitored term ination condi

tions th a t might rely on interrupts to  halt the iterative computation [55].
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(a) Simple any-resource algorithm.

Resource

(b) Simple any-quality algorithm.

Figure 2.2: Termination regions for simple any-dimension algorithms.

Unlike strategic scheduling methods, which must be given information about the total 

available resources and resource requirements, any-resource algorithms can make perform

ance guarantees even when resource limits and needs are changing or unknown when the 

algorithm starts. Any-resource algorithms dynamically adjust their resource usage to avoid 

exceeding some maximum level that may be determined outside of the algorithm. Thus 

any-resource algorithms are particularly appropriate for tasks where multiple computations 

may be competing for resources; the any-resource algorithms will automatically avoid over

taxing resources. Any-resource algorithms, and particularly any-time algorithms, are suited 

to real-time domains because they can provide flexible computations guaranteed to meet 

deadlines and other resource limitations. Unfortunately, any-resource algorithms do not 

provide any control over their output quality; whenever an any-resource algorithm’s re

source threshold is reached, it returns the current result, which may have less-than-optimal 

precision, confidence, completeness, or other quality measures. If result quality is critical, 

any-resource algorithms are inappropriate.
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2 .2 .3  A n y -Q u a lity  A lg o r ith m s

Any-quality algorithms can make output quality guarantees. While similar to an any- 

resource algorithms in that they iteratively compute intermediate results, any-quality al

gorithms differ in tha t their termination conditions are specified by a desired minimum level 

of result quality, rather than a maximum level of resource availability:

boolean termination.condition ()
i

return(quality(best_result_so_far) >= min_quality_threshold);
>

Figure 2.2b shows the termination region for the resulting any-quality algorithm. As 

with any-resource algorithms, an any-quality algorithm may never terminate if the per

formance profile of the iterative computation never crosses the quality threshold (Q t). This 

observation clarifies the value of “monotonic-improvement” any-quality algorithms: if the 

iterative computation always improves its result quality, then the iteration can be guar

anteed to terminate for any finite Qt. As a specific example, many iterative numerical 

methods [6] are any-precision algorithms. An iterative numerical method continually re

fines its estimate for the solution to a problem until the precision of its estimate is known 

to be beyond a certain level. In the Puma domain, such an iterative method might also 

be used to  refine the estimate of an arriving p art’s position until its precision reaches some 

fraction of a centimeter. The algorithm would continue running until it achieved tha t level 

of accuracy, as opposed to  the any-time methods discussed above, which terminate when 

a  deadline is reached. If absolute part locations are critical to the robot’s task, then an 

any-precision algorithm would be appropriate, while if the task has hard deadlines, an 

any-time algorithm might be better. In general, while any-resource algorithms match the 

goals of resource-constrained real-time systems, any-quality algorithms match the satisficing 

behavior of many AI methods.

Just as any-resource algorithms cannot guarantee output quality, a fundamental weak

ness of any-quality algorithms is that they cannot guarantee limited resource usage. By 

definition, any-quality algorithms must consume resources until they achieve the desired 

quality threshold.
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2 .2 .4  C o m b in a tio n s  o f  A n y -D im en sio n  A lg o r ith m s

We have noted tha t a simple any-dimension algorithm has the disadvantage of being 

unable to control its performance along more than the single dimension specified in its 

termination conditions. One approach to fixing this weakness is to combine multiple ter

mination conditions using conjunction and disjunction to yield more interesting algorithmic 

behavior. Disjunctive ( o r ) combinations of any-dimension methods lead to a guarantee that 

crossing one threshold or the other will yield a result. For example, in the Pum a domain, 

combining any-time and any-confidence conditions might be the most appropriate method 

for building plans to deal with various types of parts under time pressure; the resulting 

algorithm would work on each planning problem until it either found a  result in which it 

had sufficient confidence, or until the time allotted to that problem expired.

Disjunctive combinations of thresholds are actually quite common. A simple any-quality 

algorithm will run until its result reaches the quality threshold; if the threshold is too high, 

the any-quality algorithm may never terminate. Thus, most implementations of any-quality 

algorithms also include an alternative, resource-based termination condition, so tha t they 

will terminate even if their original quality threshold is never reached. For example, an 

any-precision algorithm might also have a condition that will terminate the algorithm after 

a certain number of iterations, regardless of the precision tha t has been reached at that 

time.

Similarly, a simple any-resource algorithm will run until it has consumed the allocated 

resources, even if the algorithm finds an optimal (highest quality) result before the resources 

are exhausted. To avoid this waste of resources, most any-resource algorithms also include 

a termination condition specifying an acceptable quality measure. For example, a search 

algorithm might have a termination condition checking for both a deadline and for the goal 

of the search. If the goal is reached before the deadline, the algorithm terminates and 

returns its result even though it could have used more time.

In general, a  disjunctive combination of an any-quality and an any-resource algorithm 

can be implemented using the form:

boolean termination.condition ()
■c

return( (qualityCbest.reault.so.far) >= min.quality.threahold) 1 1 
(resourcea.used >= max.resource.threahold) );

>

The termination graph for this disjunctive form is just the union of the previous two
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Resource Resource

(a) A disjunctive combination. (b) A conjunctive combination.

F igu re  2.3: Termination regions for combined forms of any-dimension algorithms.

graphs, as illustrated in Figure 2.3a. The algorithm will return a result either when it 

achieves sufficient quality or when it reaches the band of maximum allowable resource 

usage. This form of algorithm will not fail to terminate as long as some progress is being 

made along either the quality or resource dimension. This is the reason that disjunctive 

combinations are quite common: they will definitely terminate, and they provide intuitively 

desirable results— they continue running until they achieve a result of sufficient quality, or 

until their resources are consumed, whichever comes first. Note that the decision as to 

which termination condition (quality or resource) will be the deciding factor is not made 

until the algorithm actually runs; thus, this is not a simple prioritization mechanism.

The notion of conjunctive ( a n d )  combinations of any-dimension methods is also desir

able in certain cases, because it leads to guarantees over multiple dimensions. For example, 

combining any-confidence and any-precision conditions would lead to results with guar

anteed precision and confidence: the algorithm would continue until both thresholds are 

reached. Given the mapping described earlier between different any-dimension methods 

and the goals of AI and real-time systems, such conjunctive combinations might seem to 

point the way to a unified approach to real-time AI. However, if we try to conjoin ter

mination conditions on both resource and quality dimensions, the results are not clearly 

defined. A conjunctive combination of an any-quality and an any-resource algorithm can
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be implemented using the form:

boolean termination.condition ()

return( (qualityCbest.result.so.fair) >= min.quality.threshold) && 
(resources.used >= max.resource.threshold) );

>

This conjunction results in the undesirable termination pattern shown in Figure 2.3b. 

The conjunctive combination algorithm terminates only if the desired level of quality is 

achieved at the same time the resource consumption reaches the specified limits. A con

junctive algorithm would never terminate if it reached and exceeded its quality threshold 

but never used up the threshold quantity of resources (i.e., if the performance profile shoots 

up but never crosses R t), In this case, the results are similar to the behavior of a pure any- 

resource algorithm: it runs until the resource bound is reached. Likewise, and perhaps even 

worse, the conjunctive algorithm may also never terminate if the algorithm uses resources 

beyond the threshold R t before the quality bound is reached (i.e., the performance profile 

continues to the right, even past R, + R u, while remaining below Qt). The problem with this 

case is that the algorithm does not terminate even though it has utilized all of the allocated 

resources— this might lead to unexpected failures, as the algorithm tries to continue using 

resources. The algorithm will only terminate when it has both achieved sufficient quality 

and used up all the allocated resources.

This type of conjunction is problematic in realistic systems, because the region beyond 

the R t + R u boundary is ill-defined. For example, a conjunction of any-time and any- 

precision algorithms will not necessarily obtain both guaranteed precision and guaranteed 

timeliness. W hat happens if the time threshold (deadline) is reached before the precision 

threshold? The deadline indicates that all the allocated resource (time) has been consumed. 

If the algorithm terminates it fails to achieve the desired precision, but if it continues it will 

violate the resource threshold. Thus there is a fundamental restriction on conjunctive com

binations: they cannot be applied to any-resource algorithms, because resource thresholds 

represent maxima.

2.3 A ny-D im ension A lgorithm s and R eal-T im e AI

The inability to build conjunctions of any-resource and any-quality algorithms is at the 

heart of why real-time AI is so elusive. Real-time systems require resource-usage guarantees;
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F igure  2.4: An example performance profile, showing how a quality threshold can be 
mapped to a minimum resource threshold.

they must produce a result “by the right time.” AI, on the other hand, is concerned with 

solution quality: a chess program should make good moves, an autonomous vehicle should 

turn in the correct direction to avoid a collision, etc. So AI systems are designed to “do the 

right thing2.” Together, real-time AI systems must “do the right thing, by the right time.”

But we have shown that, with tactical any-dimension algorithms, guarantees on resource 

usage and output quality cannot simply be conjoined. The only way around this problem 

is to alter the termination condition so that it is no longer in an unacceptable form. One 

approach to doing this is to map one dimension threshold onto another, reducing the con

junctive any-dimension algorithm to testing a single dimension. For example, if we can 

convert a termination condition expressed in a quality dimension into an equivalent min

imum level of resource usage, then we know that reaching the minimum resource threshold 

will ensure also passing the minimum quality threshold. Figure 2.4 illustrates this mapping 

operation. Note, however, that now we not only have our usual maximum resource threshold 

for the any-resource algorithm, but we also have a minimum resource threshold to capture 

the any-quality dimension. In Figure 2.4, the algorithm’s termination must be restricted to 

the shaded area. To meet the quality requirement, we have to guarantee that at least the 

minimum quantity of resources will be available for the algorithm. Unfortunately, a tactical 

any-dimension algorithm cannot make such a guarantee.

However, recall that strategic approaches can guarantee resource availability by schedul

ing tasks before they run. The next logical step, then, is to try to combine the advantageous

2By “the right thing,” we mean the best choice given the system ’s limited knowledge and resources.
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features of both strategic and tactical methods to yield a new, combined approach that suc

cessfully addresses the requirements of real-time intelligent control in dynamic domains.

Given an any-resource algorithm with both minimum and maximum resource require

ments, one approach is to use a strategic method to schedule enough of the resource to assure 

the minimum threshold, and then to employ a tactical method beyond that to dynamically 

take advantage of additional resources at runtime. This is essentially the approach taken by 

Liu et al. [43] in the “imprecise computation” method. In this paradigm, an algorithm is di

vided into mandatory computations that are required to reach a minimal quality threshold, 

and optional computations that incrementally improve the result and can be interrupted 

at any time. The imprecise computation scheduler builds schedules that allocate at least 

enough time for all the mandatory computations. Excess time is scheduled for optional 

computations.

While the imprecise computation approach has the advantage of balancing strategic 

and tactical considerations to assure minimum quality within resource bounds, it does not 

provide any method for dealing with the problems that arise when resources are so scarce 

that all mandatory computations cannot be scheduled. In this over-constrained situation, an 

intelligent system must make tradeoffs between the level of output quality it will guarantee 

and the resource usage it schedules. For example, the system might use load-shedding 

methods [19, 35, 44] to drop or postpone some mandatory task, leaving resources available 

for the rest. Or, if alternative methods are available for accomplishing a particular task, 

the system might attem pt to schedule lower-cost methods that will produce a lower-quality 

solution [19, 47]. When making these tradeoffs between solution quality and resource usage, 

an intelligent system should use principled methods to decide what it will accomplish.

One approach to dealing with over-constrained systems is to make no guarantees of min

imum quality, but instead strive to perform “as well as possible” with the given resources. 

Dean and Boddy’s work on “deliberation scheduling” [9] uses decision-theoretic methods 

to build task schedules that optimize a measure of overall system utility (output quality). 

The various problem-solving methods that a system might need to run in some situation 

are cast as any-time algorithms. The deliberation scheduling problem is then to decide how 

long each competing any-time algorithm should be run. Dean and Boddy assume that a 

performance profile, like the one in Figure 2.4, is available for each system task, and that 

these tasks are interruptible, restartable, and completely independent, so that the total 

system utility is simply the sum of the utility levels achieved by individual tasks. Given
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these assumptions, a scheduling algorithm can maximize system utility by running, at each 

moment, the task with the largest expected gain in utility. In over-constrained systems, the 

any-time algorithms will continue to guarantee output timeliness, but output quality will 

be sacrificed as much as necessary to meet the deadline.

Thus, while imprecise computation assures minimum solution quality given minimal 

resources, deliberation scheduling commits to doing as well as it can given no assumptions 

on resources. Both approaches assume that the system is given a fixed mapping between 

the output quality (utility) dimension and the resource usage (time) dimension. There are 

two fundamental problems with this assumption. First, such mappings may be difficult or 

impossible to derive, because the performance of most algorithms is highly dependent on 

the particular problem to which the algorithm is being applied. For example, Liu et al. 

[43] describe an any-time implementation of Newton’s method for finding the roots of a 

function F. Unfortunately, as illustrated in Figure 2.5, the number of iterations this method 

requires to achieve a result with specified precision is highly dependent on both the domain 

(the function F ) and the internal state of the system (the initial guess for the root value). 

Because the precision threshold cannot be mapped onto the time dimension, the root-finding 

computation cannot be cleanly separated into mandatory and optional parts based on time 

alone.

The second major difficulty is that, even if an individual algorithm’s output quality 

can be accurately characterized by a fixed performance profile, tasks are not independent 

in realistic domains; the utility of a particular computation depends on other task com

putations. In the Puma domain, the utility of running a computation to decide whether 

to pick up a part is dependent on whether the routine that locates parts has been run. 

Furthermore, the utility of the part-locating routine is affected by the fact tha t its results 

will be used to decide about moving the robot. These routines have high utility when used 

in conjunction, in a particular order, but low utility otherwise.

2.4 CIRCA R evisited

The CIRCA approach to real-time AI combines features of both strategic and tactical 

methods, as shown in Figure 2.6. Together, the AIS and Scheduler act as a strategic 

controller for the RTS, building and scheduling reactive behaviors with known resource 

requirements. Within the AIS, tactical methods are used to actually build the reactive
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xguess = initiaLxguess;

while (abs(xnew -  xguess) > .01)

{
xguess = xnew;

xnew = xguess -  F(xguess) /  Fprime(xguess);

}_______________________________________________

(a) Newton’s method.

initiaLxguess

F 1 10 20

x 2 7 10 11

ex -  1 4 13 23
e26r _  J 27 252 502

(b) Iterations to achieve .01 precision.

F ig u re  2.5: Showing the difficulty of mapping precision to time for Newton’s root- 
finding method.

plans: these methods may sacrifice the quality of the plan in response to resource limita

tions. The AIS essentially performs the same task as deliberation scheduling, deciding what 

tasks should be executed by the RTS at any time. Unlike deliberation scheduling, CIRCA’s 

AIS does not require performance profiles and iterative tasks, and is capable of building 

useful guaranteed task schedules even when tasks have very complex interactions and de

pendencies. Deliberation scheduling is able to analytically derive an optimal schedule given 

performance profiles; CIRCA requires less precise information and performs a search for a 

desirable task schedule that yields acceptable output quality within given resource bounds.

CIRCA implements this search by iterating over a loop that first has the AIS plan a set 

of tasks to meet a given output quality threshold, and then runs the Scheduler on those 

tasks to see if they can all be successfully run given the system’s limited resources. In 

essence, this process corresponds to choosing a point along the performance profile (for the 

overall system, not a single task) that is above the quality threshold, and then using the
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F igu re  2.6: CIRCA revisited: combining strategic and tactical methods.

Scheduler to check if that point is also below the maximum resource usage threshold (e.g., 

point A in Figure 2.4). Failure to produce a schedule is an indication that the chosen set 

of tasks, while providing sufficient output quality, requires too many resources (e.g., point 

B in Figure 2.4). This iterative process of choosing a set of tasks to achieve a given level 

of output quality and then checking their resource usage with the Scheduler can be viewed 

as an any-quality algorithm: the iteration will continue until a feasible schedule of tasks is 

found that exceeds the desired quality threshold. Because this generate-and-test technique 

does not rely on explicit knowledge of the form of the performance profiles for each task, it 

is more widely applicable than the deliberation scheduling technique.

The RTS executes the reaction plans built by the AIS and Scheduler. In addition to the 

schedule of tasks that must be guaranteed to meet their deadlines, the AIS can also send 

the RTS a list of “if-time” or “best-effort” tasks, that should be run only if unused resources 

become available. Viewed from a high level, the RTS functions as a generalized form of 

imprecise computation: the guaranteed tasks represent mandatory computation, and the 

if-time tasks are optional computations. However, while the imprecise computation method 

specifies that optional computations are any-time algorithms that will improve the quality 

of the mandatory computations they follow, CIRCA’s if-time tasks need not be incremental, 

and they may have little or no relation to the tasks they follow. If-time tasks are simply 

those tasks which the AlS/Scheduler decided were desirable, but which could not be fit into 

the schedule of guaranteed tasks.

Thus, CIRCA combines aspects of both strategic and tactical methods in addressing 

real-time intelligent control problems. In the next chapter, we provide a more detailed view 

of CIRCA, and compare the architecture with several closely-related systems.
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OVERVIEW OF CIRCA

We assume that the system CIRCA controls will inhabit an environment in which, to sur

vive and achieve its goals, the system must respond actively to various types of inputs. Some 

of those responses will maintain the system’s safety, and some will help achieve other system 

goals. Within this type of environment, CIRCA is designed to make guarantees about its 

performance based on the fundamental restriction that the system has limited sensing, pro

cessing, and actuating resources. A direct consequence of this bounded rationality [73] and 

bounded reactivity [56] is that the system usually cannot simultaneously guarantee all the 

required reactions to input stimuli that may ever be required to achieve its goals. CIRCA’s 

solution to this limitation has two elements. First, the system divides its overall task into 

subtasks that only require selected subsets of the system’s possible reactions. CIRCA dy

namically builds short-term control plans that are guaranteed to implement those subsets 

of reactions. As the agent pursues different subtasks, the appropriate reactions change, and 

new control plans are derived. Thus the system never tries to simultaneously implement all 

of the reactions required for the overall task.

CIRCA’s second way of dealing with resource limitations is to gracefully degrade its 

guarantees. If a subtask still requires more reactive responses than can be guaranteed, the 

system can leave less-important reactions unguaranteed. CIRCA’s guarantees are based on 

worst-case execution times, so when guaranteed reactions use less time than they have been 

allotted, the system can use the remaining time to execute unguaranteed reactions. Thus 

CIRCA creates two classes of reactions (guaranteed and not) so that it can guarantee the 

timeliness of some reactions rather than none. We will discuss the value of these guarantees 

in Section 3.4, after presenting more details on CIRCA.

23
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TAP place-rectangle-in-box
:TEST (and (part-status in-gripper) (part-type rectangle))
.•ACTION (place-rectangle-in-box)
:RESOURCES (overhead-camera arm)
:TEST-TIME .2 [seconds]
:ACTION-TIME 2.5 [seconds]
:MAX-PERIOD 11.2 [seconds]

F igure 3.1: An example TAP from the Puma domain.

3.1 Control Plans

CIRCA’s control plans take the form of cyclic schedules of simple test-action pairs 

(TAPs). Each TAP is essentially an annotated production rule consisting of a test expression 

(or precondition), an action expression to evaluate if the test returns true, data about the 

sensing and actuating resources the TAP requires, and worst-case timing data on how long it 

takes to test the precondition and execute the action. During the process of building control 

plans (to be discussed in detail in Chapter 5), individual TAPs are automatically generated 

by composing primitive descriptions of actions and tests. The planning process also assigns 

each TAP a maximum period, fixing the longest time interval allowed between invocations 

of the TAP. A control plan (TAP schedule) is guaranteed to execute its component TAPs 

at least as frequently as their maximum periods require.

Figure 3.1 shows an example TAP generated automatically for the Puma robot task. 

The TEST specifies that the TAP is executed only if the robot has grasped the part, and 

knows that the part is rectangular. If these conditions are true, the robot places the part 

into the box. Testing and executing this TAP takes a maximum of 2.7 seconds (TEST-TIME 
+  ACTION-TIME), and the AIS’ planning process has determined that it must be run at least 

every 11.2 seconds (MAX-PERIOD) to guarantee that the current part will be processed by 

the time the next part arrives (thus avoiding failure).

To facilitate our discussion, we introduce a functional notation for referencing features 

of a TAP r. The function test{r) refers to the TAP’s test expression, and action{r) refers 

to the action the TAP implements. We use wcet{test{r)) to refer to the worst-case exe

cution time of the TAP’s test expression, and likewise wcet(action(r)) for the worst-case 

execution time of the TAP’s action. These are the values represented by the TEST-TIME 
and ACTION-TIME slots in the TAP structure. The worst-case execution time for the whole 

TAP is thus wcet(r) = wcet(test(r)) + wcet(action(r)). The best-case and actual execution
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times are similarly referenced by the functions bcet(r) and et(r). We introduce these last 

two notations only for the discussion in Chapter 4; CIRCA does not represent or reason 

about them.

In addition to the cyclic schedule of guaranteed TAPs, a control plan may also include 

a list of unguaranteed or “best-effort” TAPs. These TAPs implement reactions that are 

desirable, but cannot be guaranteed due to the system’s bounded reactivity. If the test 

expression of a guaranteed TAP in the schedule returns false, then an unguaranteed TAP 

may be executed in the time scheduled for that guaranteed TAP’s action.

3.2 Operations

CIRCA’s operation can be viewed as a pipeline in which control plans are derived in the 

AIS, scheduled in the Scheduler, and then executed on the RTS. These three operations can 

occur simultaneously on different control plans, so that while the AIS and the Scheduler 

are cooperatively developing the next control plans, the RTS is executing the previous 

control plan and maintaining system safety. However, dataflow is not strictly unidirectional 

through the pipeline: feedback information can flow from the RTS and Scheduler to the 

AIS, so that changes in the world can affect the generation of control plans. For example, 

the arrival of a part of an unfamiliar type will cause the RTS to temporarily stack the part 

on the table and notify the AIS. In response, the AIS will develop a new plan for packing 

the new type of part into the box.

CIRCA’s primary architectural feature is the separation of real-time and non-real-time 

subsystems. The RTS and AIS serve different purposes within the system, and their inter

action must be carefully controlled. The RTS is responsible for executing control plans in 

a completely predictable fashion, so that their execution matches the model used by the 

AIS and Scheduler. The RTS meets this criterion for TAP execution because it has no 

other function; it simply loops over the cyclic schedule of TAPs, testing and executing them 

repeatedly. Even communication into and out of the RTS is encapsulated within TAPs, 

so that all RTS activity is scheduled explicitly (see Section 6.2). Thus control plans that 

make guarantees in the modeled world are executed accurately, and the model guarantees 

are equally valid in the real world.

The AIS and Scheduler, on the other hand, perform the complex, unpredictable reason

ing required to develop guaranteed control plans, and the performance of these subsystems
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must not interfere with the RTS’ predictable execution. To achieve this isolation, each con

trol plan executed on the RTS is designed both to achieve a short-term goal and to ensure 

system safety throughout the range of environmental states that are anticipated during 

and after the accomplishment of this goal. The effect of the latter criterion, which will be 

explained in detail in Chapter 4, is to allow the RTS to keep the system safe while the AIS 

and Scheduler try to build the next control plan; the planning operation is not constrained 

to meet domain deadlines.

The planning processes of the AIS can be divided into two main levels: the planning 

that builds control plans (TAP schedules) to accomplish some short-term goal, and the 

higher-level abstraction planning, that decomposes long-term goals into short-term goals 

for which control plans will be built. Most of the work on CIRCA’s AIS has focused on the 

planning processes that reason about a world model to build control plans; the model and 

planning methods are described in detail in Chapter 4 and Chapter 5.

TAP control plans can easily implement sequential behavior, such as the series of actions 

required for the Puma to pick up a part from the conveyor, move to the box, and place the 

part in the box. The TAPs for each action are simply built with tests that are activated 

by the postconditions of previous TAPs in the sequence. Longer-term sequential behavior 

is achieved by downloading new control plans to the RTS. For example, if the Puma must 

move full boxes onto a second conveyor, the set of control reactions required for that task 

might form a separate TAP schedule, downloaded to the RTS when a box is filled1.

In a less-repetitive domain such as mobile robot navigation, this type of sequential 

activation of control plans is even more intuitive. For example, a mobile robot might be 

given one control plan that moves it along a hallway to a doorway, another plan to move 

through the doorway into a room, and another to perform some task once at a workstation 

in the room. These separate control plans would each use the robot’s limited sensors, 

processors, and actuators in different ways during the different phases of operation. The 

system would transfer between control plans only when the mobile robot was in a safe 

(halted) state, so there would be no hard deadlines dictating the time by which each control 

plan must be built.

1This example raises the obvious possibility of caching and reusing TA P schedules— we expect th a t this 
approach could provide significant benefits, but for now we have focused on how to produce these schedules 
in the first place.
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3.3 Control-level vs. Task-level

The dichotomy between CIRCA’s real-time and non-real-time subsystems relies on the 

distinction between two classes of goals: control-level goals and task-level goals. CIRCA is 

designed to guarantee its control-level goals via the predictable execution of the RTS. Task- 

level goals, on the other hand, are achieved on a best-effort basis; that is, the system tries 

to achieve task-level goals when possible, but if time pressure or other restrictions make 

this impossible, the system is still considered successful. In real-time systems terminology, 

control-level goals correspond to hard deadlines. Frequently, control-level goals are related 

to system safety. For example, in the Puma domain the system has a control-level goal of 

preventing arriving parts from falling off the end of the moving conveyor belt, because parts 

may be fragile or explosive, and thus dropping them is considered a catastrophic failure. 

Task-level goals can be violated (or not achieved) without such drastic results. For example, 

the Puma system is given a task-level goal to stack arriving parts in the box. However, if 

the emergency light goes on during that operation, it is acceptable for the system to quickly 

place the part on the table (instead of in the box) and respond to the emergency. In this 

example, it is acceptable for the system to not achieve its task-level goal, and no deadline 

is given.

We can also conceive of task-level goals that have deadlines, but those deadlines must 

be “soft” or negotiable. Task-level deadlines frequently result from commitments to other 

agents, while control-level deadlines are often derived from physical relationships between 

an agent and its environment. For example, a mobile robot may have a deadline for a task- 

level goal of arriving at some location, but missing that deadline may only require the agent 

to renegotiate a rendezvous with another agent at some later time. The same mobile robot, 

however, will have control-level goals to avoid collisions, and the actions that achieve those 

goals must always meet their deadlines, or the robot may be damaged. Accordingly, CIRCA 

always gives priority to scheduling and guaranteeing actions that achieve control-level goals.

The distinction between task-level and control-level goals is made automatically by 

CIRCA, based on its analysis of the domain model, resource limitations, and prioritized 

goals specified by the system designer2. Examining this information, CIRCA can derive 

deadlines for the actions which achieve the various goals, and can try to maximize the 

number of goals it will achieve given its bounded reactivity. CIRCA may also dynamically

2Currently, our im plem entation only deals with two priorities: critical and not.
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decide that it does not have the resources required to guarantee that it will achieve all of 

its control-level goals. In that case, the system can make performance tradeoffs which may 

leave some control-level goals unguaranteed, treating them essentially the same as task-level 

goals. Thus control-level goals are those that the system should try to guarantee, but this 

may not always be possible.

Linking control-level goals to system safety is a crucial concept, because it shows how 

the RTS and AIS can be truly isolated. Since the AIS and RTS run on separate processors, 

the AIS’ reasoning is largely separated from the system’s actual interactions with the en

vironment. The only way the AIS’ processing affects the world (directly, not through the 

RTS) is in the fact that it takes up time— that is, while the AIS is building a control 

plan, the world “keeps going.” However, even this effect can be factored out because the 

RTS continues interacting with the world, enforcing the guarantees on control-level goals. 

If those guarantees ensure the system’s safety, the RTS can continue keeping the system 

safe for an indefinite amount of time while the AIS generates the next control plan.

CIRCA’s unguaranteed TAP list provides best-effort reactions that are not guaranteed 

to meet any deadlines, but may run when the system has extra time available. Unguaranteed 

TAPs typically achieve task-level goals, and in tightly constrained circumstances they will 

also provide best-effort attempts to achieve control-level goals. In the degenerate case when 

all reactions are best-effort because the system lacks the resources needed to guarantee any, 

CIRCA behaves just like most other reactive systems, executing as fast as it can, with no 

reason to believe this speed will meet the demands of its environment. In the following 

section, we explain why CIRCA’s automatically guaranteed control performance is superior 

in many ways to unguaranteed control.

3.4 The Value o f Guarantees

One main benefit of providing control-level guarantees is the a priori knowledge of the 

suitability of the control system; if CIRCA can build a guaranteed control plan, we may 

confidently use that plan in situations where failure is not acceptable. If CIRCA cannot 

provide a guaranteed control plan, this is an indication that the system does not have 

sufficient resources to cope with its control-level goals in the environment. In that case, 

CIRCA has the ability to modify its high-level plans or goals to try to build an acceptable 

plan. For example, the system could alter the way it decomposes a long-term goal into
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short-term goals, so that the timing constraints on difficult processes are relaxed. In the 

Puma domain, the system might allocate more time to the process of packing parts into the 

box by slowing down the conveyor belt. The key point is that CIRCA is aware of its own 

capacity to deal with a specific combination of goals and environment. This is analogous 

to the cognizant failure stressed by Gat [21]. Guaranteed control plans also play a crucial 

role in isolating the unpredictable performance AIS from the rigid, real-time guarantees of 

the RTS, as discussed above.

Of course, CIRCA’s guarantees are based on several assumptions about the generally 

uncertain, unpredictable real world. However, there is no way to build a control system 

without such assumptions: all systems are designed with certain environments in mind, and 

if they can be proven to manage the specified environments, that is only for the better. The 

uncertainty inherent in the real world makes no difference for this argument. To paraphrase 

Stankovic [76], the fact that the system may not function correctly or that the world may 

differ from our environment model with a nonzero probability does not give us license to 

increase the odds of failure by not trying to guarantee performance.

Consider this didactic example: we must transmit vital digital information across a net

work, and we can use either a simple one-shot transmission or an error-correcting protocol 

that is guaranteed to correct all known types of errors. Ignoring efficiency (or cost), the 

error-correcting protocol is clearly the preferable choice, because it has a performance guar

antee that the one-shot transmission lacks. This guarantee has value despite the fact that 

we acknowledge that the protocol is only guaranteed to work for known errors. In fact, we 

can never hope to do better. The task as given is to transmit over a particular network, 

and the error-correcting protocol has been optimized for that task.

To determine the net value of performance guarantees, we must also examine their two 

fundamental costs: the one-time cost of making the guarantee and the recurring cost of 

potentially low utilization. In the case of the error-correcting protocol, these costs might 

be represented by the time-consuming process of coding the protocol, and the decreased 

transmission bandwidth available while using the protocol. By both of these measures the 

error-correcting protocol costs more, but it may be worth the cost to ensure that we really 

can transmit the information correctly. If the survival of the Space Shuttle depends on the 

transmitted data, the complex protocol is definitely worth these costs.

One confusing issue is flexibility: is a guaranteed system less flexible than an unguar

anteed system? Not necessarily— flexibility and utilization are traded off in guaranteed
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systems. A complete guaranteed system is maximally flexible because it must deal with all 

possible occurrences. This guarantee leads to lower utilization when the environment does 

not exhibit all of the worst-case behaviors that must be monitored. On the other hand, 

a system may guarantee to handle only some of the possible occurrences, and in return it 

could have higher utilization. The flexibility/utilization tradeoff is not unique to guaranteed 

systems; it is a feature of all bounded-resource systems. The tradeoff is clarified by the fact 

that guarantees provide a stricter definition of flexibility: a guaranteed system’s flexibility 

can be seen as the fraction of the possible worlds the system is known to be capable of 

handling. By that definition, an unguaranteed system can only establish flexibility through 

testing.

In sum, CIRCA’s guarantees are only as good as its environment model, and its control 

plans do incur higher costs than other plans that do not deal with all possible environmental 

occurrences. On the other hand, CIRCA’s control plans have known properties such as 

correctness and timeliness that can be used in a priori analyses, which may in turn lead to 

modifications in the system’s plans and goals. We postulate that, in many complex control 

tasks, the advantages of guaranteed performance outweigh its costs.

3.5 Summary of the CIRCA Approach

The concepts and goals of CIRCA can be characterized in several useful ways, providing 

different viewpoints on the architecture. Each of these viewpoints is valid, but each stresses 

different aspects of the approach:

• C IR CA  as a  real-tim e AI system . CIRCA’s goal is to be “intelligent about real

time,” as opposed to being “intelligent in real-time.” That is, CIRCA’s AI processing 

is not constrained to meet deadlines. Instead, the RTS is responsible for executing 

reactions that are guaranteed to meet the domain’s hard deadlines, while the AIS 

executes less-predictable search algorithms that address task-level problems without 

hard deadlines. The reactive plans executed by the RTS are built specifically to 

restrict the progression of world states so that failure is avoided and the state of the 

world remains within the range of the plan’s applicability. In other words, the RTS 

will prevent failure and keep “stalling” the domain until a new plan is downloaded. 

Thus CIRCA is able to apply unrestricted AI methods to difficult task-level problems 

while also guaranteeing control-level responses that will meet deadlines.
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• CIRCA as an any-completeness method. CIRCA meets the demands of real

time control within a bounded-reactivity system by guaranteeing that it will produce 

a precise, high confidence response in a timely fashion to a limited set of inputs. In 

other words, the architecture can sacrifice completeness of attention in order to achieve 

precision, confidence, and timeliness in its responses to environmental changes that it 

does observe.

• CIRCA as an introspective system. The key to CIRCA’s performance guaran

tees is its ability to introspect on its own performance, recognizing its own resource 

limitations and the resource needs of the reactive TAP plans it is generating. The 

AIS can be viewed as reasoning about a fixed meta-level of the RTS; while the RTS 

executes the TAP schedule to decide what to do next, the AIS plans the next sched

ules for the RTS. In addition, the AIS itself has meta-level capabilities that allow it to 

introspect on its own deliberative behavior. For example, the AIS can recognize when 

it is taking a long time to generate plans, and may decide to simplify its planning 

process as a result.

• CIRCA as an automated system designer. Traditionally, real-time systems have 

been designed by humans, who are given detailed characterizations of how the real

time system needs to interact with the environment. CIRCA is a first attempt at 

automating the entire process of building a real-time system, from planning tasks, to 

deriving their constraints, to scheduling them, and finally to executing them predict

ably. By automating this entire design and implementation process, CIRCA is able 

to dynamically and flexibly develop and modify its real-time behavior in the face of 

changing goals, capabilities, and/or domains.

Figure 3.2 shows a flowchart mapping the steps of a traditional control system design 

process to related portions of the CIRCA approach. Beginning in the upper left of the 

figure, the designer (human or automated) is given a specification of the system to 

be controlled; in the case of CIRCA, this specification has three parts: a set of initial 

world states, a set of state transitions that describe how the world can change, and a 

set of agent capabilities, describing how the agent can change the world. The output 

specification describes the desired behavior; for CIRCA, the specification includes 

both goals of avoidance (to stay out of some undesirable situations) and goals of 

achievement (to attain some desirable situations). Chapter 4 describes the CIRCA
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world model in detail.

The design phase of the process builds a tentative control system; CIRCA builds 

a TAP control plan using the planning methods described in Chapter 5. The next 

phase of the design process is to verify that the proposed control system meets the 

specifications; CIRCA verifies the logical correctness of a control plan when it is built, 

based on the world model, and the Scheduler verifies tha t the plan can be executed 

successfully by the RTS, as described in Chapter 6.

Following the dashed arrows in the flowchart, it is also possible for the design or 

verification phase to fail, indicating tha t some modifications must be made to the 

initial design or the specifications. Such modifications are essential to automating 

the overall design process, for two reasons. First, because heuristics are used to 

generate designs, the initial proposed design may not actually meet the specifications. 

A mechanism must be available to modify the planning process (or some other system 

aspect) so tha t a different design is heuristically generated and tested. Second, because 

CIRCA is intended to control an autonomous agent with bounded resources, it is not 

possible to ensure tha t the agent will always have sufficient resources to accomplish 

every task that might arise. Essentially, there are too many possible combinations of 

input and output specifications to enumerate. As a result, CIRCA must dynamically 

consider how to apply its limited resources to best achieve its goals, possibly by 

preferring some goals over others, by changing plans, or by making other modifications 

to  the planning process or specifications. This requirement distinguishes CIRCA’s 

approach from a more traditional design process, in which the goal is only to design 

a system that meets the fixed input and output specifications. In contrast, CIRCA 

may actually have to  modify the I/O  specifications of its control system design, when 

faced with resource limitations.

CIRCA has two ways of recognizing when modifications are necessary: the planner 

may fail to produce a plan, or the Scheduler may be unable to  build a feasible schedule. 

In response to these conditions, CIRCA can make modifications to an individual 

control plan, or to the state transition or goal specifications used to derive control 

plans. These modifications allow the system to make performance tradeoffs to account 

for overconstraining domains, and are described in detail in Chapter 7.
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■* Input Specifications
(initial world slates, 

world transitions, 
agent capabilities)

■ - -  Output Specifications
(avoidance goals, 

achievement goals)

Design

(planning)

Verification

(model proofs, 
scheduling)

Implementation

(RTS)

(tradeoff methods)

Modification

F ig u re  3.2: A flowchart showing the stages of real-time system design.

3.6  C om parison to  R elated  Work

Having presented a general description of CIRCA’s approach to real-time AI, we are now 

in a  position to compare this approach with several closely-related agent architectures. We 

will focus largely on the architectural division of responsibilities in these systems, as well 

as the types of performance guarantees they can provide, and thus how well they address 

real-time control issues. There are three main approaches to developing intelligent real-time 

control systems: embedding an AI system within a real-time system, embedding real-time 

reactive elements within an AI system, and using cooperating reactive and deliberative 

systems.

3 .6 .1  E m b ed d in g  In te llig e n c e  in  a R e a l-T im e  S y s te m

The most straightforward approach to real-time AI is to embed intelligence within a 

real-time system, so that the AI mechanisms are required to meet deadlines— the goal is 

to be “intelligent in real time.” One way to accomplish this is to simplify an AI system’s 

knowledge-base and inference mechanism so that it responds to all inputs within a bounded 

time [36, 40]. Unfortunately, this approach engineers out of the AI system the high-variance 

search and unpredictability which distinguishes AI techniques from simple algorithms. In 

a sense, when a system with these limitations can always solve a problem, tha t problem is 

no longer in the realm of AI.

Several other, less-restrictive approaches have been used to embed AI methods within 

real-time systems. These approaches variously rely on real-time operating systems, constant- 

cycle-time circuits, or any-time algorithms to enforce guaranteed, predictable execution.
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CRO PS5

CROPS5 is a C-based parallel implementation of the 0PS5 production system [60]. 

The production system is encapsulated within an “AI server” program that runs under a 

real-time operating system, allowing the production system to run only when other, guar

anteed real-time control tasks are not using the processor. The AI server thus isolates 

the potentially high-variance CROPS5 problem-solving from the real-time tasks. In the 

CROPS5 architecture, the problem-solving mechanism does not explicitly control the guar

anteed real-time tasks. Instead, the production system has separate tasks to perform, and 

the goal is to ensure that they will also be completed on-time despite running within the 

best-effort AI server.

Research on CROPS5 has focused on reducing the variance in its processing time, using 

both enhanced context-switching mechanisms and structuring of the problem space. While 

performance guarantees have been verified by hand for the system, it does not yet include 

internal mechanisms for reasoning about its own timeliness or problem-solving capacity. 

The system does not reason about a model of agent/environment interactions to create its 

own performance guarantees.

Subsum ption

The subsumption architecture [5] consists of numerous small finite state machines (“mod

ules”) running in parallel with no shared memory, connected by simple message-passing 

channels. The modules are “reactive” in that they maintain little or no internal state, 

and rapidly produce outputs in direct response to inputs, with a minimum of inferencing. 

These systems do not perform the lookahead (or internal simulation of actions) th a t classical 

planning implies; instead, they essentially act as a  parallel set of situated-action rules that 

recognize an input and produce the associated output immediately. Subsumption systems 

incorporate hierarchical control by having higher level modules alter the input or output of 

lower level modules. By inhibiting or enabling the output of different modules, a  high-level 

module can activate a subset of desired behaviors in much the same way as CIRCA chooses 

reactions to guarantee.

The processor-per-behavior approach assumed by subsumption suffers from obvious scal

ing problems, and also wastes computing power, since many behavior processors may not 

be active at all times. Our approach is based on the assumption tha t, as we extend the
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range of situations that our system is prepared to encounter, the necessary behaviors will 

become too numerous to allocate each to a separate processor. CIRCA’s Scheduler module 

addresses this problem by scheduling TAPs for the single-processor RTS.

Other systems [8, 75] have made provisions to activate only subsets of reactive beha

viors implemented on a single processor. However, these systems do not reason about the 

resources required for each set of behaviors, and do not use advanced AI techniques to 

control the set of activated behaviors3. CIRCA’s resource allocation and scheduling are 

crucial to the system’s flexibility, extensibility, and efficiency. Furthermore, by explicitly 

reasoning about time and resources, CIRCA is able to provide guaranteed performance, 

which reactive systems cannot. Reactive systems simply run as fast as they can, and thus 

they are only “coincidently real-time” [36].

Finally, since purely reactive systems lack the ability to learn and to form complex 

symbolic plans or expectations, they have little of the power we associate with intelligent 

systems [26]. Essentially, all of the inferencing and uncertainty associated with intelligent 

behavior has been engineered out of these systems. We might consider them to be conveni

ent, powerful formulations of traditional control systems, rather than intelligent real-time 

control systems.

R ex/G ap p s

Research into the formal relationship between a system’s internal model of the world 

and the real world has been fruitfully implemented in the Rex/Gapps system [63, 64]. Rex 

is a language used to describe digital machines that can be viewed as reactive systems. 

Rex programs are compiled into autom ata descriptions (usually implemented on a  general 

purpose computer) that perform a constant-time mapping between inputs (sensors) and 

outputs (actuators). The theory underlying Rex has been used to show that the information 

stored within a Rex machine can have a fixed relationship to the true state  of the world. 

Thus Rex machines provide predictable execution and support the types of performance 

guarantees enforced by CIRCA’s RTS.

Gapps [32, 33] is a system for compiling declarative descriptions of agent behaviors into 

Rex machines. Gapps takes as input the agent’s top-level goal and a set of goal-reduction 

rules that describe how to transform goals into smaller goals or Rex-machine primitives. 

Because Gapps compiles this input into a static Rex machine, it generates large reactive

3A Ithough Connell and Viola [8] are on a sim ilar track: they use a hum an to  make th e  decisions.
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systems that exhibit goal-directed behavior but do not perform lookahead planning, search, 

or adaptation. Rex/Gapps is used to  specify an agent’s control mechanisms directly, as in a 

robot programming language. CIRCA, on the other hand, plans those control mechanisms 

automatically given-a description of goals, primitive capabilities, and the environment.

A ny-T im e Algorithm s

Any-time algorithms (as discussed in Chapter 2) have recently become popular in both 

the AI and real-time communities. Some high-variance AI methods can be cast as any

time algorithms, which are then able to make timeliness guarantees because they can be 

interrupted at any time. However, the quality or correctness of the result returned after 

a deadline-driven interrupt cannot be guaranteed. Thus any-time algorithms may sacrifice 

precision, completeness, or other quality measures for timeliness, while CIRCA strives to 

guarantee both quality and timeliness. Furthermore, by reasoning explicitly about its goals, 

capabilities, and deadlines, CIRCA can trade off the guarantees it chooses to enforce when 

constrained by limited resources.

The “imprecise computation” paradigm [41] is a modification of the any-time method 

in which some minimum amount of processing is guaranteed, so that the algorithm will 

always produce a result with a minimally acceptable result. CIRCA uses this technique 

when generating TAP plans (see Section 5.3.1), where a minimally acceptable plan achieves 

only the control-level goals.

PR S

CIRCA’s AIS includes some mechanisms derived from the Procedural Reasoning System 

(PRS) [23, 31], which itself has features making it suited to real-time applications. Ingrand 

and Georgeff have shown that, given certain assumptions about event frequencies and the 

form of the system’s procedural knowledge, PRS can be guaranteed to notice (or begin 

reacting to) every world event within a bounded time. This guarantee is based on the fact 

that PRS processing is highly interruptible. However, “noticing” an event is distinguished 

from responding to the event. PRS does not make guarantees that it will respond to an 

event by a certain deadline, because it does not (yet) have the ability to reason internally 

about its own level of reactivity. PRS cannot focus its attention and ignore unnecessary 

sensor information completely; instead, the world model is constantly updated. Thus the 

system’s response to a particular event can be arbitrarily interrupted by the arrival of other
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events, and the response to those events can delay the initial processing.

It is possible to limit PRS’ inferencing capabilities and make guarantees about overall 

response time [31]. This approach leads to a complete embedding of the AI system within 

the real-time application environment [57], and requires either low utilization or engineering 

out the high-variance AI processing.

The guarantees that PRS makes are external to the system’s operation: it does not 

introspect on its abilities. PRS also does not plan in the sense of reasoning about an envir

onment and the appropriate actions; instead, it chooses how and when to invoke procedural 

“knowledge areas,” which are themselves partial plans.

3 .6 .2  E m b ed d in g  R e a c tiv ity  in an A I S y stem

Other research projects have taken the opposite approach, embedding real-time capab

ilities within an AI system. These systems use a set of designated reactions which bypass 

the normal invocation mechanisms, leading to faster response times.

For example, the Soar system [39] is an enhanced production system that structures 

all deliberate activity as search. Searches are conducted in problem spaces characterized 

by current states, goal states, and operators to move between states. Soar productions 

encode knowledge about what decisions to make in different situations. To make a decision 

(choosing what goal to pursue, operator to apply, etc.), Soar tries to match and fire all 

of its productions repeatedly, until no new productions match. The decision is then made 

based on all the knowledge retrieved from the production firings. If the productions do not 

provide enough knowledge to make a decision, the system recursively subgoals to solve the 

problem of “making the decision.” The integrated Soar learning mechanism (“chunking” ) 

builds new productions that summarize the search performed to solve problems.

From a predictability perspective, Soar’s flexible decision-making approach has the dis

advantage that arbitrarily large amounts of subgoaling and production matching may occur. 

To avoid subgoaling, Soar encodes one type of reactive knowledge as productions that indic

ate particular operators must be selected in a given situation [37]. However, this reaction 

technique still incorporates the uncertain delay associated with firing all productions until 

quiescence and then making the decision to implement the chosen operator. Recent work 

by Doorenbos [12] has shown significant performance improvements for Soar’s matching 

phase with very large numbers of rules (> 100,000), but the match time can still rise as 

the number of productions increases. Even if the match time was a known constant, the



38

process of firing productions repeatedly until quiescence is still an uncertain computation 

subject to scaling with the size of the knowledge base.

An even faster but less-controlled form of reactive knowledge can be implemented by 

productions that directly create motor commands when they are matched and fired, inde

pendent of the post-quiescence decision mechanism. This approach eliminates much of the 

potential for the interference of unpredictable search, but also moves the reactions below 

Soar’s level of introspection— the system cannot inspect or modify its productions directly, 

and thus such reactions would be outside of its direct control.

CIRCA addresses the issues of matching cost and iteration by choosing the subsets of 

reactive knowledge it will test during each cycle of the RTS. These choices prevent CIRCA 

from displaying the completely opportunistic behavior of general pattern-directed invocation 

methods, but they are necessary to cope with restricted resources and bounded reactivity. 

The choice of TAPs also has the effect of focusing the system’s attention on features which 

are deemed important, eliminating the assumption that all changes in the world are detected 

by the sensor system [38], By planning and reasoning about sequences of its own reactions, 

CIRCA can provide guarantees on its overall interactions with the environment, in addition 

to individual reactive behaviors.

One significant advantage of the Soar approach is that the benefits of automatic learning 

(a major focus of Soar research) are shared by both the deliberative and reactive processing. 

When Soar solves a problem, it chunks the result in a new production so that, in the future, 

the result will be immediately available. CIRCA’s planning operations and the construction 

of reactive control plans might be viewed as the chunking of deliberation into reactive form, 

although that form is not a unified representation of knowledge as in Soar. Currently, 

CIRCA does not store these “learned” reactions beyond their use by the RTS, but a case- 

based approach to plan retrieval could certainly be integrated easily into CIRCA’s AIS.

3 .6 .3  C o o p era tiv e  S y stem s

CIRCA demonstrates an alternative to the embedded approaches, using separate, con

current AI and real-time subsystems to cooperatively produce the desired performance. 

Several recent projects have taken similar approaches, with a variety of different areas of 

focus.
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E R E /R A P s

Hanks and Firby [26] are combining a transformational planner [27] with an execution 

module based on Reactive-Action Packages (RAPs) [15]. Each RAP is a separate entity that 

pursues a goal, possibly with multiple methods, until that goal is achieved. In pursuing a 

goal, RAPs can process global world model data and execute actions that change the model 

and/or the outside world. RAPs can also place new RAPs on the execution queue and 

suspend themselves, implementing sequential and hierarchical control. The description of 

the combined system [26] notes that sensing actions must be explicitly included within 

RAPs, so that data examined by the RAPs is up-to-date. CIRCA’s TAPs make this even 

more clear: sensor data is acquired by individual TAPs, and the fact that sensor data 

becomes outdated is explicitly represented by the TAP frequency requirements stating how 

often the sensing TAP must run.

The RAP interpreter, running on a single computer, acts as a dynamic, non-preemptive 

multiprocessing scheduler, choosing the next RAP to run from a queue. This is significantly 

different from CIRCA’s approach, in which the Scheduler builds a static schedule off-line 

from the execution system. Since RAPs are non-interruptible and their hierarchical compu

tational complexity is not restricted, the RAP-based control system is not able to provide 

timeliness guarantees. Also, the strategic planning and RAP execution subsystems share 

a global world model; this shared resource could lead to contention problems tha t would 

unpredictably delay the subsystems. CIRCA avoids shared data for this reason, relying 

instead on message passing and interrupts.

Hanks and Firby note that the RAP structure provides a useful representation which 

can be used by the planner for reasoning about execution, and, without translation, by the 

execution system for the actual control of operations. CIRCA’s TAPs provide exactly the 

same shared representation. However, Hanks and Firby focus on meta-control problems 

like deciding when to continue lookahead planning and when to interrupt a current plan to 

install a new one. We focus instead on establishing the predictable mechanisms which will 

allow such policy decisions to be rigidly enforced.

AuR A

Arkin’s Autonomous Robot Architecture (AuRA) [4] includes a reactive execution sub

system and a hierarchical planner that determines which reactive “schemas” are active. A
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world modeling subsystem controls AuRA’s stored knowledge, providing an interface that 

avoids shared-memory assumptions. AuRA’s reactive schemas are essentially formulas for 

calculating vector fields that describe the robot’s desired motion for a particular behavior. 

For example, an obstacle-avoidance schema outputs a navigation vector moving the ro

bot away from the obstacle. The vectors from different active schema are combined via 

vector summation and normalization. This technique is an elegant method of “command 

fusion,” the combining of simultaneous control commands from multiple sources. CIRCA 

does not address command fusion directly; in fact, since TAPs are executed sequentially, 

there is never an opportunity to combine commands. However, the conditions that de

termine which TAPs fire may be seen as preempting command fusion, choosing instead a 

single TAP to implement the desired combinations of commands. While CIRCA’s method 

is less intuitive in some cases, AuRA’s vector fusion is overly simplistic, because it may not 

always be desirable to merely sum commands. Sometimes one command should completely 

override another, and magnitude may not be a sufficient expression of that priority. Or, 

the confluence of two conditions triggering two schemas might warrant a response that does 

not resemble the sum of the individual responses. For example, cooking on a stove might 

prompt a response “stay near the stove,” while a fire would trigger “move away from the 

fire.” How can the magnitudes of those responses be arranged to coordinate with the overall 

desirable response to a stove fire, that might be “move closer to the stove to turn off the 

gas.” For problems beyond simple numerical navigation, vector field formulas and vector 

summation are not sufficient reactive mechanisms.

AuRA also includes a “homeostatic control” subsystem that monitors the internal con

ditions of the execution subsystem, allowing changes in the execution subsystem to affect 

the planning process. CIRCA can provide similar fault-tolerant functionality, as will be 

discussed in Section 6.3.5. AuRA does not address the timeliness or resource restrictions 

that are the focus of our architecture.

TCA

Simmons’ Task Control Architecture (TCA) also combines reactive and planning sys

tems [70, 72]. The architecture itself provides for a central control module, a set of dis

tributed task-specific processing modules, message-passing between modules, and a task 

representation (“task trees”) that coordinates planning and execution. The central control 

module maintains the task trees that represent the system’s plans, and issues messages to
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task modules as the task trees are traversed. In response to these messages, task modules 

may implement task-specific planning operations, sensing strategies, or motor control. Con

straints among task tree branches can restrict the central module’s processing of the tree, 

making the system wait for completion of one task module operation before initiating the 

next. Task trees may also include polling monitors that periodically check to make sure 

some condition is true in the world (by querying a task module), as well as interrupt-driven 

monitors by which task modules can alert the central control module.

TCA thus provides the ability to overlap or interleave distributed planning and execu

tion, and its monitors yield some reactive capabilities. However, the central control module 

represents a severe bottleneck through which all messages must pass. For example, there is 

no direct pathway between a sensing module and a motor control module. Since the central 

control module can become involved in updating arbitrarily large task trees, its performance 

is uncertain, and TCA cannot provide the timeliness guarantees required for hard real-time 

control tasks.

Although TCA does not provide execution-time guarantees, it does reason about its 

limited sensor capabilities, and is intended to derive sensing parameters (such as frequency) 

from a causal explanation of the sensing behavior and environment. This corresponds 

directly to CIRCA’s reasoning about TAP parameters. However, although sensing monitors 

are under the control of a central AI system, the reactive elements of TCA which attempt 

to keep the system safe are outside the system’s control [71]. In contrast, CIRCA reasons 

explicitly about its ability to remain safe by activating selected sets of reactions, and thus 

CIRCA can take into account its own bounded reactivity in building plans and choosing 

courses of action.

ATLANTIS

Miller and Gat have developed the three-layer ATLANTIS system [53], in which the 

bottom layer provides a subsumption-like reactive controller and the top layer is a deliber

ative planner and world modeller. In between, the sequencing layer turns on and off sets 

of reactive behaviors, much as CIRCA runs different TAP schedules. The sequencing layer 

actually does more, since it also maintains a task queue similar to the RAP interpreter, and 

sequences these tasks when it is interrupted or detects that the previous task is finished. 

ATLANTIS does not address the resource reasoning or guaranteed performance objectives 

of CIRCA.
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D R /M A R U T I

Hendler and Agrawala [30] are integrating an enhanced Dynamic Reaction (DR) system 

and the MARUTI operating system to implement guaranteed real-time reactive reasoning 

in a manner very similar to CIRCA’s guaranteed TAP schedules. The DR system sets 

up asynchronous monitor processes to check conditions on specific world model features: 

signals from these monitors drive changes in reactive activities. The MARUTI operating 

system provides explicit support for scheduling hard real-time tasks on distributed systems, 

guaranteeing the execution of jobs that are accepted. By using MARUTI to schedule and 

execute the reactive elements of DR, the combined system can make performance guarantees 

similar to those CIRCA provides for its control-level goals.

Higher levels of planning have been added to the DR model using the notion of abstrac

tion: the reactive system reasons about detailed information in very small units of time, 

while higher levels of reasoning use more abstract data and larger time scales [29]. Complex 

reasoning is implemented by reactive elements that are triggered by abstract information 

in the world model. The enhanced DR model thus attempts to smoothly integrate reactive 

reasoning and higher-level reasoning within a single processing model, unlike the abrupt 

distinction CIRCA makes between task-level and control-level goals. While this integration 

is desirable, it blurs the notion of guaranteed execution, because it is not clear which react

ive elements must be guaranteed and which not. By separating the AIS and RTS, CIRCA 

avoids this issue but must carefully limit the communication between the subsystems to 

avoid jeopardizing its performance guarantees.

DR/MARUTI currently does not reason about its scheduling requirements: it does not 

generate them, and it cannot revise them if sufficient resources are not available. However, 

Hendler and Agrawala have expressed interest in methods for internally deriving the schedul

ing requirements of the system [30], much as CIRCA reasons about TAP requirements. 

They discuss the need to increase the flexibility of DR/MARUTI so that it may include 

non-real-time jobs, just as CIRCA provides the unguaranteed TAP list. They also note that 

a “context-switching” approach might be used to switch between predetermined reactive 

schedules based on environmental data, This is precisely the way in which CIRCA operates 

continuously: it builds TAP schedules off-line from the execution unit (in the concurrent 

AIS) and the RTS executes each schedule when the environment has reached the appropriate 

point in the plan.
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Universal Plans

Schoppers’ research on the automatic generation of Universal Plans (UPs) [66, 67] re

sembles our work, with the notable exception that CIRCA relies on a restricted world model 

and emphasizes timeliness issues. UPs are generated without considering precisely which 

world states are possible and which are not; UPs specify reactions for all states of the world, 

possible or not. This approach has the advantage that it makes no assumptions about the 

success of its own actions or the behavior of the external world. However, lacking those 

assumptions, UPs cannot provide any performance guarantees. CIRCA’s control plans can 

be viewed as “partial Universal Plans,” in the sense that they specify reactions, as neces

sary, for all possible worlds. The possibility of a world state, of course, is dependent on the 

world model assumptions.

We have described how CIRCA’s control plans are intended to maintain the system’s 

safety while also making progress towards its task-level goals. Schoppers [69] has recently 

discussed how UPs can similarly keep a system safe through stable “closed-loop dynamics.” 

This concept of stable closed-loop control requires that, given sensed data within some 

bounds (input), the controlled system will produce world behaviors (output) within some 

bounds. CIRCA reasons explicitly about its ability to meet or alter those bounds, as well as 

the metric timing information required for guaranteed performance. UPs do not yet handle 

this type of metric information or the introspective reasoning required to internally verify 

or alter system goals.

7ZS

Lyons et al. [45, 46] are investigating the Robot Schemas (7ZS) plan representation 

with many of the same goals as our work on CIRCA. In the 7ZS model, robot plans are 

represented as concurrent communicating processes. 7ZS provides operators to compose 

larger systems from various combinations of processes. These composition operators are 

capable of representing on-line decision-making, concurrent actions, sequential actions, and 

preconditions. The 7ZS model can be used to represent both the capabilities of a control 

system and its environment, just as CIRCA represents both. Rewrite rules describe the 

evolution of 7ZS systems, and these rules can be used to derive proofs that systems will 

meet their goals [46].

1ZS research began by describing static, hand-coded robot control systems. An execution
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environment is now being developed to allow the system to run its schemas with predictable, 

guaranteed timeliness [45]. A planning technique has also been proposed [45], in which a 

concurrent planning process incrementally modifies the reactive schemas running on the 

execution system. A major advantage of this approach is that it avoids CIRCA’s behavior 

of building plans from scratch following every change of goal or other environmental feature.

R PL /X FR M

While TZS uses a process-based representation for plans, McDermott is investigating a 

very general Lisp-like Reactive Plan Language (RPL) [49, 50] as a basis for both planning 

and execution. The XFRM system [51] includes a planner that incrementally modifies an 

RPL program to improve its performance on given tasks.

On the positive side, the flexibility of RPL gives tremendous representational power. 

The converse, of course, is that any planner that can automatically modify such code must 

include complex mechanisms for reasoning about program structures such as variables, 

loops, and conditionals. Furthermore, XFRM does not generate RPL plans given goals 

and a description of the environment; instead, it modifies pre-built plans provided by the 

system designer, that are assumed to already have some reasonable level of competence. 

McDermott has noted that it is very difficult to encode a new domain in XFRM because of 

the large amount of a priori plan knowledge which must be given to the system, and also 

because of the difficulty of hand-coding plan critics that can recognize and fix problems 

with RPL code. The RPL representation is so flexible and powerful that simply reasoning 

about the meaning of a program is an AI task unto itself.

3 .6 .4  C om parison Sum m ary

Most of the systems described above are Turing complete— they can each implement 

almost any functionality we can specify. Thus the real issue in comparing these systems is 

not their absolute computational capacity, but how “naturally” each system’s capabilities 

match with a specific type of problem. CIRCA has been specifically tailored for the demands 

of real-time intelligent control domains, while many of these related systems were designed 

for different problems. Thus it is not surprising that CIRCA provides a unique combination 

of features, as shown in Table 3.1. The features relevant to our concern with real-time 

intelligent control include:
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Predictable reaction time: Is there a firm bound on the time that the system will require 

to begin reacting to an event? If not, the system is not suited to hard real-time 

domains.

Predictable response time: Is there a firm bound on the time that the system will re

quire to finish reacting to an event? If not, the system is not suited to hard real-time 

domains.

Introspection and guarantees: Can the system reason about its own capabilities to 

make guarantees on its own performance? If not, the system lacks the power to 

recognize overconstraining situations where performance tradeoffs may be necessary.

Planned performance tradeoffs: Can the system make decisions about trading off the 

goals it will pursue? This flexibility is required in overconstrained domains where all 

the initial goals may not be possible.

Parallel deliberation and reaction: Can the system react to the environment while also 

deliberating about future behaviors? If not, the system may become bogged down 

in highly dynamic environments where it must use all of its resources on short-term 

reactions.

Unrestricted search-based planning: Is the system capable of performing the high- 

variance search-based deliberation tasks characteristic of AI?

Incremental plan modification: Can the system incrementally improve its plans, rather 

than rebuilding them from scratch? This approach may have efficiency advantages in 

some situations, particularly if integrated with case-based approaches.

M etric tim e model: Does the system include a metric model of time? If not, the system 

may not be able to reason about hard deadlines.

Selective Perception: Does the system choose which environmental features to sense, as 

opposed to assuming that a complete world description is continuously available? This 

functionality is useful when sensing activities are costly or otherwise constrained.

Learning: Does the system improve its performance over time? While systems that learn 

from previous (possibly incorrect) performance are not suited to hard real-time do

mains, it is certainly true that learning in general is a useful capability, particularly 

for resource-constrained systems.



Feature CIRCA PRS UPs tzs Soar ATLANTIS GAPPS XFRM Subsumption DR/MARUTI
Predictable reaction 
time

y/ yj yj A/ a/ yj y/

Predictable response 
time

a/ y/

Introspection and 
guarantees

V

Planned performance 
tradeoffs

a/

Parallel deliberation 
and reaction

a/ a/ y/ V yj a/ V

Unrestricted search 
based planning

a/ yj V V yj yj V

Incremental plan 
modification

V yj a/ yj

Metric time model yj
Selective perception a/ yj a/ V yj
Learning A/

Table 3.1: Summary chart comparing system capabilities, y/ indicates that the system has demonstrated this feature.



CH APTER 4

THE WORLD MODEL

This chapter describes in detail the world model that CIRCA uses to build reactive 

TAP plans. The model allows the system to represent and reason about both the dynamic 

environment and the system’s own actions. We begin by describing the model informally, 

and then provide a more formal notation to add precision to our discussion. Using this 

formalism, we describe the conditions under which portions of the world model can be 

considered “safe.” Planning safety-preserving reactions thus becomes a matter of finding 

actions that can be proven to keep the system in such regions of the model space. After 

detailing the proofs involved in showing that a particular plan can keep a system safe, we 

show how CIRCA can safely string together sequences of these control-level plans to achieve 

longer-term task-level goals.

We then discuss several unusual aspects of CIRCA’s world model which result from 

the simplifications made to accommodate real-time considerations. This chapter concludes 

with a brief evaluation of the model’s representational power and a final summary of the 

information that must be captured in the world model to make real-time guarantees possible. 

The planning mechanisms that use the world model are described in Chapter 5.

4.1 The Informal View

An efficient world model should represent precisely the information necessary to derive 

plans, and no more. Since our goal is to derive control plans that are guaranteed to meet 

domain deadlines, these plans must be able to succeed even through the environment’s 

worst-case behavior. Thus the world model we have developed to derive TAP plans is not 

intended to be a complete, perfect representation of the world’s actual behavior; instead, 

the model represents the world’s worst-case behavior, and it is used to build plans that

47
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can cope with the worst-case. This distinction is extremely important, because it simplifies 

some aspects of world modeling and motivates the model form we have chosen.

Informally, the world model represents the behavior of the world (including the con

trolled agent) as movement between states via transitions. States contain descriptions of 

the features of the world at some instant, and transitions describe how those features can 

change. Ongoing processes in the world are represented by “state-encoding”-  that is, the 

status of a process is considered a feature of the world (a “fluent” [48]), and is explicitly 

encoded into the representation of a state. Important changes in process status thus cor

respond to transitions between states. Any passage of time that does not lead to significant 

changes in process status is not represented explicitly: essentially, when no transition occurs 

the world remains in the same state, where that state may indicate that some process is cur

rently occurring. For example, as the robot arm moves towards the box, the status of this 

process is encoded into the features (robo t-status moving-over-box) (robot-posit ion 

changing). Just continuing to move does not lead to a state change, and thus there is no 

associated transition. However, when the robot arrives at its destination, the process fin

ishes, the status will change, and the world model will represent this change by a transition 

to a new state with the features (robot-status free) (robot-position over-box).

4.2 The Formal View

We now describe a more formal representation of the world model which will be useful 

for showing precisely how control plans can be proven to guarantee the system’s safety. The 

formal world model has five elements (S, F,Te ,Ta ,Tt )'

1. A finite set of “states” S = {5i, S2, ..., 5m}, where each state represents a descrip

tion of relevant features of the world.

2. A distinguished failure state F, which subsumes all states that violate domain con

straints or control-level goals (e.g., system survival). The system strives to avoid the 

failure state.

3. A finite set of “event transitions” TE = {TEi ,TE2, ..., TEn), that represent world oc

currences as instantaneous state changes.

4. A finite set of “action transitions” TA = {TAi ,TA2, ...,TAp}, that represent actions 

performed by the RTS.
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5. A finite set of “temporal transitions” Tt  = {Ttx ,T t 2 , ...,7V,}, that represent the 

progression of time. We represent only the significant temporal transitions which lead 

to state changes.

Each transition 7*  G T = T$  U  TA U  Tr is a mapping between states; T< : S -* S. The 

functions D  : T  —► S and R  : T  —» S  determine the domain and range of a transition; 

: D{Ti)  - >  R(Tt).

Figure 4.1 shows an abstracted representation of a small portion of the graph model for 

the Puma domain. Solid single arrows represent event transitions Tg,-, dashed single arrows 

represent action transitions T^,, and double arrows represent temporal transitions Tt,. To 

obtain a reasonably compact example, many states and transitions have been omitted from 

this diagram, and even the state descriptions include only 7 of the 11 features used in 

the actual domain model. State A  in the figure represents the world state in which the 

robot is idle, no parts have yet appeared, and there is no emergency alert. The solid single 

arrow from state A  to state B represents the event transition indicating that a new part 

has arrived on the conveyor. The dashed arrow from state B to state C represents the start 

of a planned sequence of action transitions that have been planned to pick up the part and 

place it in the box. Within that sequence, state £ represents the world state in which the 

robot has picked up the part from the conveyor and is moving to place it into the box. The 

double arrow to state Q represents the continuation of that process until the robot reaches 

its destination. When the robot arrives over the box, the control system senses that state 

and halts the motion process, as represented by the dashed arrow to state 7i.

The solid single arrow from state £ to state J  represents the possibility that the emer

gency light may go on while the robot is in motion1. From state J7-, the double arrow to 

state T  (failure) represents the deadline for reacting to the emergency and pushing the 

button. The dashed arrows to states K, C, and M  represent the planned actions to avoid 

that failure, quickly halting, placing the part on the table, and moving to push the button. 

Note that we have modeled these three actions (stop-moving, place-part-on-table, and 

push-emergency-button) as atomic— no event can intervene. Before we can explain why 

this is necessary, we must first clarify the semantics of state transitions.

1 We have omitted other instances of the same event that may occur, for example, from sta te  B  and 
state C .
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Figure 4.1: An abstracted portion of the world model for the Puma domain. For clarity, many states, state features, and t r a . n s i t . i n n s  

have been omitted.
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Transition Type m inA max A

Event

Temporal

Action

0 

> 0 

bcet(r)

oo

oo

P (r)  +  wcet(r)

Table 4.1: Enabled interval definitions.

4.3 S tate Transitions

At any particular time, the world is considered to occupy a  single state in the model, 

conceptually marked by a unique token w. The token moves instantly along a transition 

from its domain state to its range state when the transition “fires.” A transition may fire 

any time the token is in its domain state and the transition is “enabled.” When the token 

enters a new state, the transitions out of that state are enabled for some interval of time 

following the transition into that state, as indicated by the function enabled r f x J l - *  {0,1}. 

The functions m in A  : T  —* 3? and max A  : T  —► represent the endpoints of the enabled 

interval as the minimum and maximum delays after the state is entered. So if t0 is the time 

at which in enters state S), and T, is a transition leading out of S, (i.e., D(Ti) =  51,), then 

enabled(Ti,t) = 1 for all times t such that -f m inA {T ,) < t < t0 +  maxA(Ti).

The different types of transitions have different general forms for their enabled intervals, 

as shown in Table 4.1. Since event transitions represent asynchronous and instantaneous 

external events, which may occur any time the world is in their domain state, their m in A  is 

zero and their max A  is infinity. Both event transitions and temporal transitions are modeled 

as uncertain; i.e., they may never fire. This feature prevents the system from building 

plans that depend on external events or unguaranteed processes for the accomplishment 

of control-level goals; such dependencies would prohibit any performance guarantees. This 

is the reason the push-em ergency-button action (among others) must be an atomic 

transition, rather than a state-encoded process; we must guarantee to  push the button to 

avoid a control-level failure, so the action must itself be guaranteed.

Temporal transitions, by definition, represent the passage of time, and the significant 

state changes that can occur as processes continue. Temporal transitions have a m inA  

determined by the rate at which the corresponding process is running. In the example of 

Figure 4.1, the m inA  for the temporal transition from state £  to state Q depends on how
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F ig u re  4.2: Deriving the m inA  and max A  for an action transition implemented by 
a periodic TAP.

fast the robot is moving, as well as how far it has to move. In this case, the transition’s 

m in A  represents the earliest possible time the robot could ever arrive over the box (and 

thus enter state Q).

Action transitions represent the intentional activity of the RTS, and thus can have more 

rigorously defined temporal behavior. In particular, since an action is implemented by a 

TAP running with a fixed period, we can compute values for the minimum and maximum 

delay between the time the world enters a state and the time the TAP fires, sensing that state 

and executing the action. We assume, as a worst case, that a TAP’s tests take a “snapshot” 

of the world when they are first run and spend the rest of et(tests(T)) processing that 

captured data. We also assume that the TAP’s actions do not actually affect the world 

until the very end of ef(aciions(r)). Thus the minimum delay between entering a state and 

completing a relevant TAP’s actions is 6cet(r), as illustrated in Figure 4.2. In the figure, 

the upper time-line shows the occurrence of an event that moves the world from state X 

to state Y. Below that, the m inA  case is illustrated by a TAP whose tests begin just as 

the new state is entered. Below that example, another periodic TAP is shown just missing 

the state transition (its tests started just before the event). In that case, the TAP will not 

correctly sense the new world state until its next invocation, and thus the action transition 

implemented by that TAP has a m axA  =  P ( t)  + wcet(r), where P{t ) is the period of the 

TAP.
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4.4  Proving Safety

Given this understanding of the dynamics of the world model, we are now in a position 

to lend rigor to the notion that some control plans can “cope” with the world. First we 

will define the goal of a control plan as keeping the world restricted to a particular subset 

of states, and then we will show how that goal can be provably achieved.

We define an “event-closed” set of states SEc Q S as a set of states for which every 

event transition from every state in the set leads to a state that is also in the set. That is, 

VT#,- € Te  | D(TEi) ^  S e c  V R(TEi) € SEc • In other words, instantaneous events cannot 

move the system out of the event-closed set of states; only actions and temporal transitions 

can leave the event-closed set. In the example of Figure 4.1, the entire graphed set of states

{ A  M} is event-closed. Note that, in the complete Puma world model, this set is not

event-closed because the em ergency-alert event transition might lead out from some of 

the states where it is not shown here. For the purposes of this discussion, we will consider 

only the states and transitions shown in the figure.

An event-closed set of states with no events leading to the failure state is called a “safe” 

set of states ( V T £ l  € TE \ D (TEi )  £ SsaJe V ( R(TEi) € Siaf e A  R(TEi) ^  F)).  Note that a 

safe set of states can still lead to the failure state through temporal transitions (i.e., it is 

possible that BTTi €  Tt  | D(T T i )  €  S,aje A  R{TTi) =  F).  These temporal transitions to 

failure correspond exactly to violating the hard real-time domain constraints: if the system 

fails to react to a state before a hard deadline, then in the worst case it will enter the 

failure state via a temporal transition. By “waiting too long” to react, the system fails. 

In the context of real-time computing, this is known as a timing failure. Looking again at 

the example in Figure 4.1, the entire graphed set of states is also safe, because the only 

transitions to the failure state F  are temporal transitions.

The definition of a safe set of states is not particularly restrictive, since it only prohibits 

event transitions to failure and event transitions that lead out of the set. The former 

requirement is necessary because no system can guarantee to avoid failure if it has no time 

to react to an event before failure occurs. The latter requirement is intended to allow the 

system to use action transitions to keep the world within the safe set, never moving to a 

state from which failure is possible via an event transition. In essence, the existence of a 

safe set of states only constrains the environment such that an agent must always have some 

minimum time to react before a failure occurs.
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Finally, we can define a “safely-controlled” set of states Ssc  as a safe set which also has 

no temporal transitions to failure or out of the set (i.e., VTt< € Tt  | D (T n) Ssc^(R (,Tn)  6 

Ssc  A R(TTi) ^  F)  ). The goal of a control plan is to ensure that the world remains in a 

safely-controlled set of states, so that failure can never occur. This is analogous to a stable 

closed-loop control policy [69] which is known to restrict the operation of a controlled 

system to a desirable range of states. In our running example, if we could show that the 

actions stop-m oving, place-part-on-table, and push-em ergency-button all are known 

to  occur before the respective temporal transitions to failure, then the failure states could 

be removed from Figure 4.1, and that set of world model states would be safely-controlled.

To show formally how a control plan can make a safe set of states a safely-controlled 

set, we now introduce a simple set of correctness-preserving model transformations. These 

transformations prune out unreachable states [18], and thus allow us to prove safety prop

erties by showing that certain control plans can restrict the world so that no failure states 

are reachable.

4.5 M odel Transformations

We must first define the concept of reachability in our world model. We represent

reachability, or the possibility of the world entering a given state, as a predicate reachable :

S  —> {0,1}, where reachable(Si) = 1 if 31} 6 T,BSj € S \ reachable(Sj) A -£>(!}) =

Sj A R(Ti) = Si. This recursive definition merely says that a state is reachable if there is a

transition to that state from another reachable state. We ground the recursion by defining

a set of initial world states I  C S  such that V / j  6 /  | reachable(Ii) = 1. For any initial

state /<, the transitive closure of reachability from that state yields R ti , the set of all states

reachable from that initial state. In general we do not distinguish among possible initial

states, and thus when we speak of the set of reachable world states we mean the union of

the reachable sets from each initial state: R/ = [ J  I?/,.
aei

The “correctness” of a world model is determined by how accurately it represents the 

behavior of the world. In our case, the model is intended to represent all of the worst- 

case possible behaviors, so the set of all reachable world states Rj  is the crucial factor in 

determining the correctness of our model. If the world model predicts exactly the same 

states that are possible in the real world, it is most correct. If the model predicts those 

correct states plus some additional states, the only problem is inefficiency because the
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VS, € S  -  I ,  Y l\  e T

preempted(Ti) =  31) 6 T | m axA (I)) < minA{Ti)

unreachable(Si) = R{Ti) ^  S,-

unfireable(Ti) = unreachable(D(Ti))

Table 4.2: Conditions for removing world model states and transitions.

system may plan actions to account for states that can actually never occur. However, if 

the model fails to predict some possible world state, the system may not plan a  necessary 

control action, leading to failure during plan execution. Thus the model transformations 

we use preserve the model’s correctness by never removing model states unless those states 

can never be reached.

The first, most powerful transformation simply involves removing transitions that are 

preempted; tha t is, transitions which can never fire because some other transition will always 

fire first. In terms of our representation, a transition TJ preempts another transition 7) 

if m axA(Ti)  < m inA(Tj). Since events have m in A  — 0, nothing can preempt an event. 

Temporal transitions have non-zero m in A , and thus we can design action transitions (whose 

max A  depends on the frequency we choose for the corresponding TAPs) tha t will meet the 

preemption criterion. A preempted transition never becomes enabled and thus can never 

fire, so it can be removed from the graph model without affecting the correctness of the 

model.

Two other simple transformations complete the required set. First, it is obvious that 

any non-initial state that has no transitions leading into it is unreachable, and thus can be 

removed from the model without affecting correctness. Finally, all transitions leading out of 

states that are unreachable can also be removed, since they will never fire either. Table 4.2 

summarizes the conditions for these model transformations.

By propagating the preemptive effects of planned control actions into the removal of 

states from the world model, these transformations show how control plans can force the 

world to remain within a safely-controlled set of states. Control plans tha t meet this 

criterion are called “complete” control plans, and they guarantee that the system will avoid 

failure.

Beyond this, however, complete control plans also provide one other feature critical to 

CIRCA’s operation. We have previously noted that resource restrictions generally make
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it impossible to produce a single control plan that will guarantee safety and achieve all 

task-level goals. Thus CIRCA breaks task-level goals into steps and tries to build complete 

control plans for each step. It is essential that these control plans guarantee to avoid failure 

and also guarantee to avoid moving out of the safely-controlled set of states for which they 

were planned, so that the system can continue running a complete control plan for an 

indeterminate amount of time without risk of violating its control-level goals. Thus the 

AIS can utilize unpredictable or high-variance AI techniques to build control plans, because 

while it is building one, the previous control plan is running on the RTS and keeping the 

system safe.

It should be noted that the model transformation method described above is not a very 

practical method of automatically deriving complete control plans, because it involves enu

merating the entire state space of the world model, and then progressively pruning out 

undesirable regions of that state space with planned actions. The enumeration required 

at the start of this process is impractical in any reasonably complex domain, because of 

the combinatoric explosion that results from trying to describe the entire world in each 

world model state. For example, the eleven-feature description we typically use for the 

Puma domain has 5120 possible combinations of feature values. Instead of building a rep

resentation for each of these combinations and then pruning many out, we instead use a 

forward-chaining method to simultaneously derive control plans and build up the repres

entations of the reachable world states. The implementation details of this process are 

described in Chapter 5.

4.6 Transitions between Safely-Controlled Sets

The conceptual goal in restricting the world to a safely-controlled set of states is that, 

while the RTS executes the reactive TAPs that keep the world in that set of states, the 

AIS will work on building a TAP plan for the next useful set of model states. When the 

new plan is prepared, it is downloaded to the RTS and the world can progress into the new 

safely-controlled set of states.

To ensure the safety of the system even during this transfer between safely-controlled 

sets of states, the sets must satisfy a simple criterion: they must overlap, as illustrated in 

Figure 4.3. In this case, the two sets X and Y share the state S. The RTS is initially given 

a TAP plan that keeps the world restricted to the X set of states, on the left. When a
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Safely-controlled set X Safely-controlled set

Action A

F igure 4.3: The state overlap required for a transfer between safely-controlled sets of 
states.

new plan is available for the Y  set of states, and the world is in state S, then the RTS can 

transfer control to the new TAP plan, which will execute the action A to progress into the 

new set of states.

Chapter 6 includes additional details on exactly how this transfer of control is accom

plished in our prototype implementation. From the modeling perspective, however, an 

important point to note is that, because the transfer state2 is shared by the two sets, both 

of the corresponding TAP plans are capable of handling the world and avoiding failure from 

that state. Thus when the TAP plan for set Y is first executed on the RTS, it is has been 

planned to cope with the current state S.

There cannot be any event transitions from the shared state to a non-shared state, 

because that would prevent the system from being sure that the transfer of control to the 

new TAP plan is accomplished in a state for which the new TAP plan is prepared. Temporal 

transitions from the shared state to a non-shared state are acceptable if they return to the 

first set of states (as illustrated by the transition B in Figure 4.3). However, if such temporal 

transitions exist, CIRCA must ensure that they are preempted by an action transition in 

the new TAP plan. That is, the action A must preempt the temporal transition B to 

ensure that, once control is transferred to the new plan, the world does not slip back into

2T he overlap and transfer may occur in multiple world states; for simplicity, we have illustrated only a 
single overlap state .
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the previous set of states.

4.7 Choosing Safely-Controlled Sets

Resource limitations are the primary motivation for dividing a long-term goal into a 

series of shorter-term plan steps: if a system has sufficient resources to continually ob

serve, reason about, and react to all of the possible world situations it will ever encounter 

without missing any deadlines, then focused attention is not necessary. However, most real

istic domains do not provide sufficiently vast resources, particularly if the domain requires 

high-variance AI methods. CIRCA is designed to deal with resource-limited domains by 

restricting its reactive attention to the states reachable within a safely-controlled subset. 

Therefore, the choice of exactly how the overall world state space is divided into safely- 

controlled sets is very important.

One simple approach to the problem of partitioning the overall state space into useful 

safely-controlled subsets is to incrementally decrease the size of the subsets, as necessary. 

The system could begin by trying to guarantee the entire set of goals over the entire state 

space. If such a plan is possible, resources are not a problem. More likely, the “universal” 

plan [66] will not be feasible, and the system will have to decide how to decompose the 

overall space, defining a useful set of intermediate goals that a TAP plan can achieve, 

and then pass control on to the next TAP plan. This iterative decomposition can continue, 

trying to build TAP plans for smaller and smaller sets of subgoals, until finally an acceptable 

decomposition is found.

The choice of exactly where in the state space to make the transfers between TAP plans 

is partially constrained by the conditions described above in Section 4.6. We have not yet 

developed stronger guidelines for this choice. It seems clear, however, that the partitioning 

of the state space into safely-controlled sets must be guided by heuristics. One promising 

idea is to define partitions between safely-controlled sets by finding planned actions that 

lead into time-constrained situations.

For example, consider a simple domain in which a mobile robot, equipped with an arm, 

is moving through an office to pick up an object from a table. The robot must avoid 

collisions with the walls and other obstacles. At a very coarse level of abstraction, the 

domain might be represented by the world model sketched in Figure 4.4. An initial plan 

might have the robot move towards its destination and, at the same time, move its arm into
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position to grasp the desired object. However, when the arm is extended to grasp the object, 

the effective radius of the robot is increased, so that it may collide with obstacles that are 

farther away from the robot body and sensors. If we consider that the obstacle detection 

routines have some limited range at which they detect looming obstacles, it is clear that 

the robot will have less time to react to avoid collisions when its arm is extended. Thus, 

the temporal transition to failure from state £  has a shorter m in A  than the transition from 

state Z?, where the arm is retracted. If we suppose that the system does not have sufficient 

resources to guarantee the higher reaction rate to avoid collisions from state £, then this 

particular plan (and division of the space into subsets of states) is not feasible.

However, the planning system may recognize this problem, seeing that the action of 

extending the arm leads to the excessively time-constrained state £. A simple solution is 

to postpone the action of extending the arm until after the robot reaches its destination, so 

that the robot’s effective radius remains as small as possible while it is moving. The state 

space will be transformed to separate the resource demands associated with moving the 

robot from the resources needed when the arm is extended. Then, if necessary, these two 

parts of the action plan (moving and reaching) can be separated into different TAP plans, 

with the transition between them occurring after the robot has moved to its destination. 

This approach to transforming the state space into safely-controlled subsets joined by an 

action corresponds to the intuitive notion of sequencing behaviors that cannot be safely 

performed at the same time. The key to this transformation is using the world model to 

recognize that the extend-arm  action leads to states that cannot be handled, and thus 

that changes to that portion of the plan will be useful.

4.8 Relationship to  P etri-N et M odels

It is useful to compare this type of state-based model with models based on Petri Nets 

and their variations [61]. In Petri Net models, “places” represent the status of world features, 

and transitions connect places, representing the way features can change. Multiple tokens 

can be spread among the places, and the complete state of the modeled world at any instant 

is defined by the distribution of those tokens, known as the “marking” of the net. Thus, 

in Petri Nets, the set of world states that can be reached from any initial world state is 

represented by the set of net markings tha t can be reached from an initial marking. In 

contrast, each state of our world model is a complete description of the world, and the set
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Figure 4.4: A simple mobile robot domain world model.
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of world states that can be reached from an initial state is represented by the set of model 

states reachable from that initial state. In other words, the explicit state enumeration of 

our world model makes the set of reachable world states extremely easy to recognize.

This feature is desirable because, as we have just shown, reachability is the key to 

proving safety. In the process of building the world model, it is trivial for the AIS to 

recognize when a failure state is reachable, because it will actually create a state with the 

(failure T ) feature. Thus, while building the world model, the AIS can immediately plan 

actions to avoid failures. Planning for a world model represented as a Petri Net would be 

considerably more difficult, because the effects of actions on the reachability of particular 

world states are much harder to determine. In effect, our state-based world model trades 

the storage space cost of enumerating world states against the computation time cost of 

determining reachability in a more compact Petri Net model.

4.9 W orst-C ase Simplifications: Uncertainty, D eterm inism , 

and T im e

Because our world model need only represent the worst-case behavior of the environ

ment, several potentially complex representation issues are simplified. For example, a great 

deal of research has been focused on methods for explicitly representing and propagating 

uncertainty about the likelihood of various events. Our world model has no need of that 

information: any possible transitions between world states must be included in the world 

model, no m atter how improbable they are, because in the worst case they just might occur. 

However, if the system eventually does need to make compromises because it cannot guar

antee all of its control-level goals, then having information on the likelihood of various states 

leading to failure might help the system make intelligent choices about which control-level 

goals can best be left unguaranteed.

Similarly, uncertainty about the world’s initial state is not explicitly represented. In

stead, the initial world features specified by the AIS are assumed to match a set of initial 

model states / ,  and control plans must be built to deal with all of the states reachable from 

each of those potential initial states.

As for uncertainty about information from sensors during runtime, the system is re

quired to be able to sufficiently distinguish the current world state whenever an action has 

been planned. This minimal capability is required by any system claiming guaranteed per
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formance. Note that this does not mean that the precise, complete world state must be 

determined for action (because some subset of world features may be sufficient to determine 

the appropriate action— see Section 5.3.2), nor does it mean tha t the control system must 

be able to perfectly track the progression of states in the environment [63]. In fact the sys

tem never needs to know the world’s state if it does not need to take any action; thus, the 

world can traverse many transitions but cause no change in the control system. The RTS’ 

internal representation of the world can become quite outdated, but only in non-critical 

ways.

For example, while the robot arm is responding to an emergency alert, the next part may 

arrive on the conveyor belt. However, the system may not immediately recognize this event, 

because it is in the middle of the actions responding to the emergency. These emergency 

response actions are scheduled at a higher frequency than the actions tha t deal with arriving 

parts. The response latency and the resulting temporarily “out-of-date” internal state of 

the RTS are non-critical because, even if the system had seen the new part immediately, 

it would have had to continue the ongoing reactions to avoid a timing failure from the 

emergency. In the process of building the control plan, the AIS has already examined this 

sequence of events and has guaranteed that the control plan functions correctly.

We have described the world model transitions with unique range states, but this does 

not mean that the world or the model must be deterministic. Transitions can easily specify 

multiple range states, as shown in the example pickup-part-from -table transition in 

Figure 4.5. Here, the results of picking up a part off the table have been abstracted to show 

that, after the action, the table may still have a (different) part on it, or it may have no 

more parts on it. This nondeterminism helps the system avoid the state enumeration that 

would be associated with counting the actual number of parts tha t might have been queued 

on the table. This type of abstraction will be discussed in more detail in Section 5.4.5. 

The important point to  note here is that the nondeterminism does not add any new sort 

of complexity to the world model; because all possible states must be handled, it matters 

little how those possible states are reached.

As we have seen, the worst-case criterion also removes the need for any detailed rep

resentation of time. Complex temporal logics have been developed for reasoning about the 

relationships between asynchronous external events, simultaneous actions, and the regular 

passage of “wall clock” time [3, 10, 27, 48, 77]. So far the only timing information we have 

shown for our world model is the simple worst-case values needed to recognize preempted
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eous events.

transitions. There is no need to explicitly represent or reason about the different possible 

orders of events or actions, because all of those orders are considered equally likely (in the 

worst case).

Instantaneous events allow our model to represent simultaneity, but they do so by enu

merating sequences of states that can occur without the passage of time. For example, 

in Figure 4.6 we see that event transitions E l  and E2  are both applicable to state A. A 

complex temporal world model might include constraints on the ordering of those events, 

but that information is of no use to us because the worst case may include any order of 

occurrence, even simultaneity. Note that the possibility of E l  and E2  occurring simultan

eously is explicitly represented by state C: since the events have m in A =  0, state C can be 

entered at the same instant state A  is entered.

4.10 D ependent Temporal Transitions

The world model has one difficulty with its minimalist representation of time: depend

encies between temporal transitions. To illustrate the problem, Figure 4.7 repeats a portion 

of the Puma domain shown earlier. Beginning with the event em erg en cy -a le rt entering
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state J , the robot has ten seconds to push the emergency button before failure occurs, 

as represented by the temporal transition to failure. We can see that taking the neces

sary actions s to p -m o v in g  and p la c e -p a r t-o n - ta b le  does not remove the threat of failure 

from the emergency condition. Thus state /C and state C still have temporal transitions 

to failure. The difficulty is that the minimum time until failure along these transitions is 

no longer ten seconds, because the emergency began in state J , and some amount of time 

passed before we halted and moved to state K. Thus the real minimum time to failure from 

state /C depends on the sojourn time in state J . We call this situation a dependent tem

poral transition, and it complicates the process of reasoning about the world model, as we 

shall see. However, dependent temporal transitions are still manageable because the worst- 

case m inA  for a dependent temporal transition is easy to determine: if Tj, is dependent on 

Tt , leading out of state 5,-, then minA(Trj) = minA(TTi) -  maxA(TAij), where TAij is the 

action taken to move between states Si and 5j. In the figure, the temporal transition from 

state /C has m inA  = 10 minus the worst-case execution time of the TAP implementing the 

action from state J  to state 1C.

4.11 Action Loops

Mixing action transitions and temporal transitions can lead to one type of pathological 

subgraph called an action loop. In an action loop, actions join a cycle of states without any 

intervening events or temporal transitions. For example, Figure 4.8 shows an action loop 

that the system might propose while building a plan for the Puma problem. In the figure, 

the system has planned to halt in state Z>, transitioning to state £. But it has also planned 

that, once in state £, it will immediately resume motion. There are two problems with 

this action loop. First, the loop can lead to a timing failure because each time the world 

loops back into state V , the time remaining until failure is not the original ten seconds, but 

depends on how long it has been since the emergency alert first occurred. CIRCA has no 

way to recognize when the loop has been executed many times and failure is imminent.

The second problem with action loops is that they accomplish nothing. In many classical 

planning systems, an action loop might have a valid purpose because the representation of 

states is incomplete, and thus side-effects are possible. In our complete state representation, 

side-effects do not exist, so looping back into a previous state means that the world is exactly 

the way it was (except for the wall-clock time). Thus a sequence of actions leading out of a



emergency-
alert

ROBOT-STATUS MOVING 
ROBOT-POSITION CHANGING 
PART-ON-CONVEYOR NIL 
PART-IN-GRIPPER T 
PART-IN-BOX NIL 
PART-ON-TABLE NIL 
EMERGENCY T

slop-moving

ROBOT-STATUS FREE 
ROBOT-POSmON UNKNOWN 
PART-ON-CONVEYOR NIL 
PART-IN-GRIPPER T  
PART-IN-BOX NIL 
PART-ON-TABLE NIL 
EMERGENCY T

place-part- 
on-table

ROBOT-STATUS FREE 
ROBOT-POSmON OVER-TABLE 
PART-ON-CONVEYOR NIL 
PART-IN-GRIPPER NIL 
PART-IN-BOX NIL 
PART-ON-TABLE T 
EMERGENCY T

cmcrgency-failurr
minA —10 seconds

aner gen cy-failure 
minA -  ?? seconds

push-
emergency-
button

em agency-fulure 
minA = ?? seconds

FAILURE

ROBOT-STATUS FREE 
ROBOT-POSIITON OVER-BUTTON 
PART-ON-CONVEYOR NIL 
PART-IN-GRIPPER NIL 
PART-IN-BOX NIL 
PARTGN-TABLE T  
EMERGENCY NIL

a>Cn
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Figure 4.8: An action loop that might be generated for the Puma domain.

state and then back into that same state will not accomplish any goal. Note that a loop of 

states including event or temporal transitions is quite reasonable, because these transitions 

represent environmental behaviors that may move the world away from desired states, and 

the system should plan actions to restore those goals.

4.12 Predictive Sufficiency

Figure 4.9 shows how “inappropriate” TAP actions may be executed if an event occurs 

between the time a TAP senses the world state and performs its actions. In some cases 

inappropriate actions do not matter, and in some cases they can lead to catastrophic failure. 

Consider an example in which a TAP is used to detonate explosive charges that will demolish 

a building. Sensors have been installed on the building’s doors to make sure that nobody 

is in the building when it is destroyed. But, as in Figure 4.9, someone might enter the 

building just after the sensors are checked, and before the explosives detonate. Since events 

are instantaneous and asynchronous, the system itself cannot prevent this type of failure. 

If failure may result from an inappropriate action, we must ensure that the sensors have 

“predictive sufficiency.” That is, a sensor reading must indicate both that a particular 

condition exists, and that it will continue to exist long enough for the response action to 

occur (wcef(r) in the worst case).

In the demolition example, one solution is to place a ring of sensors several meters 

from the building, so that people entering the building will first pass through the perimeter 

sensors. We can then interpret the actual information returned by the sensors (“nobody 

has crossed the perimeter”) to mean that “nobody could enter the building in the next
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event event

state X state <y

tests | actions

F ig u re  4 .9 : An inappropriate action.

K seconds.” The semantics of the sensor data are altered by adding domain knowledge 

(the perimeter distance and maximum human speed) to yield predictive information, or 

knowledge about possible future states.

Formalizing and implementing techniques by which CIRCA can reason explicitly about 

the need for predictive sufficiency is one area of ongoing research; Appendix D presents more 

details on this topic. Currently, CIRCA does not explicitly reason about predictive suffi

ciency, and thus it cannot detect or plan to prevent potentially inappropriate actions. The 

system designer is responsible for ensuring that predictive sufficiency holds when necessary 

to avoid such problems.

4.13 Representational Power

Although many aspects of CIRCA’s world model representation are fairly common, 

these aspects have been carefully combined to include precisely the information required 

for building real-time control plans. The representation of world states by simple lists of 

feature/value pairs is a powerful method essentially equivalent to first-order predicate logic, 

with the accompanying restrictions. For example, meta-level knowledge (i.e., knowledge 

about knowledge) is not rigorously supported by this representation. It is possible to define 

a state feature that indicates that some other state feature’s value is known (e.g., the 

feature/value pair (k n o w -F  T )  could mean we have a valid value for the feature F ) , but 

the meta-level linkage between the two is not supported directly by the representation 

or inferencing mechanisms; instead, the system designer is responsible for building RTS 

primitives that would maintain the appropriate relationship between (k n o w -F )  and F . 

CIRCA does not yet implement a general meta-level operator which would take a first- 

order predicate (feature) as an argument, and return the status of the system’s knowledge 

of that feature.

Pure logic also lacks the ability to represent metric values and time. The AIS world 

model has addressed time representation in an unusual fashion, using only worst-case timing
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values for the duration of temporal transitions and for transition m in A  values. This rudi

mentary representation of time supports only one temporal relation between transitions: 

preemption. However, as only worst-case behaviors are of interest in building a real-time 

plan that is guaranteed to achieve its goals, preemption (and thus the ability to avoid failure) 

is the only crucial aspect of time that must be modeled. More complex relations, such as the 

overlapping-interval relations defined by Allen [3], are not available to the control-planning 

world model3.

Because the AIS must enumerate all possible world states, continuous-valued variables 

are a problem: if all their values are possible, the state space is infinite. In general, 

however, this limitation has proven quite reasonable, because the TAPs that are being 

planned provide only a very discrete-valued type of service: either a TAP is fired, or it 

is not. Making this decision does not require the full power of continuous variables. Es

sentially, making this boolean decision is simply a matter of applying a threshold to a 

continuous value. That numeric operation can be abstracted by the system designer (who 

is encoding the world model) to yield a discrete variable (state feature) suited for use in the 

world model, even if the actual implementation of the TAP primitive on the RTS will use 

continuous variable computations to derive the value of the discrete feature.

For example, in the Puma domain, there is no need to include in the world model a 

state feature representing the distance to a part arriving on the conveyor belt, and then use 

that continuous-valued feature to decide whether the robot can grasp the part. Instead, the 

above thresholding technique can be applied to derive a related, boolean variable indicating 

whether the part is in range. The abstraction away from the continuous-valued, physical 

model makes the state space feasible.

This type of abstraction has a parallel effect on the representation of the world model 

transitions. Rather than including a transition that specifies the mathematical changes to 

continuous-valued state features, transitions can simply specify what possible changes to the 

discrete-valued abstract features are possible. For example, again in the Puma domain, the 

transition that indicates that a new part may arrive is not represented as a mathematical 

function of conveyor speed and part separation. Instead, a simple temporal transition is 

used to show that, after the last part arrives, the next part may arrive after some minimum 

delay. That delay may be automatically computed by the higher-level AIS mechanisms, or

3 A lthough it should be noted th a t such powerful techniques have been used by the  AIS in the  higher-level 
planning mechanism, when non-worst-case timing considerations may be of interest.
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it may be fixed by the system designer.

The AIS world model implements a very simple form of uncertainty representation via 

nondeterministic transitions: there is no explicit knowledge of probabilities or other bias 

in uncertainty. The motivation for this simplicity is, again, the need for guaranteed real

time control plans. To make true guarantees, the system must consider all possible world 

behaviors, no matter how unlikely. Therefore, measures of uncertainty have no use, at 

that simple level. However, as we move beyond the simplest model of CIRCA’s operation, 

and investigate its ability to make performance tradeoffs, it is clear that a more explicit 

understanding of the relative likelihood of different events would be useful in deciding what 

types of tradeoffs should be made. In Chapter 7 we will discuss the performance tradeoffs 

the AIS can make, and postulate some motivations for these tradeoffs, based on uncertainty 

information that the world model currently does not include.

The AIS makes an additional assumption that the world model descriptions are com

plete: all features of the world must be represented explicitly, and likewise all possible 

changes to state features must be represented as transitions. These completeness require

ments are needed to ensure that the AIS is able to reason about all possible sequences of 

events in the environment, so that all worst-case behaviors can be predicted and planned 

for. If completeness is not possible, the system can still build plans, but they will only 

be guaranteed to deal with the modeled portions of the environment’s true state space. 

See Section 3.4 for more discussion of the meaning of guarantees based on partial models. 

Section 7.2 illustrates some of the results of operating with an incomplete world model.

4.14 Summary o f Agent/Environm ent Characterization for 

Guarantees

In this chapter we have described CIRCA’s world model; in the process, we have identi

fied critical pieces of information that an agent needs to model in order to make guarantees 

about its performance in its environment. These characteristics of agent/environment in

teraction that an intelligent, flexible agent must be able to model include:

• Features of the world relevant to the agent, including failure conditions.

• Possible external events, and how they move the world to new states.
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• Transitions that are caused by the passage of time, including the minimum time until 

the transition can occur in the worst case (minA).

• All sensing primitives, including their worst-case execution times; sensors must have 

predictive sufficiency (as discussed in Section 4.12).

• All action transitions, including their worst-case execution times; actions and sensing 

primitives must be guaranteed to succeed.

•  The set of possible initial states, which must all be safe (or else the agent could fail 

before it ever begins).

• The actions tha t preempt temporal transitions, to keep the system in a safely-controlled 

set of states.

These requirements are not specific to CIRCA’s approach to real-time AI; any system 

seeking to make similar real-time response guarantees must have this information. For 

example, any system that is attempting to guarantee the timeliness of its behaviors must 

already have some guarantee that its primitive actions (or some combination of them) will 

succeed. If primitives are not guaranteed, then it does not m atter whether the system 

decides to act in time, because the action it takes might not affect the environment in the 

desired way. Similarly, if an agent hopes to avoid failing due to delays, it must be assured 

tha t it can take an action between an event and a temporal transition to  failure; no system 

can make safety guarantees in a world with instantaneous transitions to failure.

In the context of CIRCA’s approach to making guarantees with limited resources, we can 

also add one more requirement on the agent /environment interactions: it must be possible 

to partition the state space into safely-controlled sets of states for which the system has 

sufficient resources. In other words, the RTS is given a control plan that uses limited 

resources to deal with the contingencies that may arise in a limited set of situations, and 

we must therefore ensure that the world can be restricted to those handled situations. 

Intuitively, this means that the domain must afford the opportunity for “stalling” or cycling 

behavior, where the agent can remain safe by continuing to execute a  fixed, limited set of 

reactions while the AIS is generating the next control plan. For example, a mobile robot 

can halt and wait for instructions, and remain safe from obstacle collisions with a relatively 

simple set of reactions. Likewise, in the Puma example, the robot can stack unknown parts 

on the table, still avoiding failure while it waits for details on how to pack those parts. 

If this type of task decomposition is not possible, and remaining safe in the environment
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requires an agent to be continually monitoring for all possible situations, then there is no 

need for CIRCA’s intelligent resource allocation mechanisms.



CH APTER 5

THE AI SUBSYSTEM  IMPLEMENTATION

In developing a prototype implementation of the CIRCA architecture, we have focused 

on three main contributions of the design. First, the prototype system includes a carefully 

crafted subsystem interface designed to bridge the gap between the uncertain performance of 

the AIS and the rigid constraints of the RTS. Second, the prototype AIS includes a planning 

system which develops TAP plans to provide control-level guarantees based on the graph 

model described in Chapter 4. Third, when resource restrictions make ideal performance 

impossible, the prototype AIS has several strategies for reducing resource requirements, 

trading off the various dimensions of performance against each other.

In this chapter we examine the implementation details of the prototype AI subsystem, 

paying particular attention to the control-level TAP planner, which constitutes the main 

body of the CIRCA code development. The performance tradeoff methods used by the AIS 

are described in Chapter 7, in the context of evaluating the prototype system’s capabilities.

5.1 Overview of the AIS

The design of the prototype AIS is motivated by several operational requirements:

• Representation: The AIS must be able to represent and reason about descriptions of 

the system’s environment, descriptions of its primitive capabilities, multiple task-level 

and control-level goals, long-term plans, and TAP plans.

• Reasoning: As described in Chapter 3, the AIS is responsible for reasoning about 

the overall CIRCA system’s operations, so it must consider both its own activities and 

the behavior of the RTS and Scheduler. Thus the AIS must have meta-level reasoning 

capabilities allowing it to perform deliberation and planning at levels above the base 

domain level.

72
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F igu re  5.1: Conceptual schematic of the prototype AIS.

• C om m unication: To send TAP schedules to the RTS and receive feedback inform

ation, the AIS must have mechanisms for I/O. CIRCA is intended to operate in dy

namic environments where goals may change and feedback information may require 

TAP plan modifications, so the AIS should be able to respond to feedback information 

by modifying its problem-solving behavior.

In the prototype implementation, illustrated in Figure 5.1, the deliberative processing 

used to build TAP plans is implemented separately from the more general, higher-level 

deliberative mechanisms used to build long-term plans, make performance tradeoffs, and 

control the communication processing of the AIS. The TAP planner is a code module that 

is simply invoked by the higher-level processing mechanism, which is cast as an interpreter. 

After describing the interpreter in the next section, we describe the TAP planner and its 

representations in Section 5.3.

5.2 The AIS Interpreter

The main purpose of the AIS interpreter is to build long-term plans to achieve the sys

tem ’s goals, and then break those plans into sequences of subtasks that can be implemented 

by TAP plans. The interpreter then invokes the TAP planner module with the appropriate 

goals and domain description, so that it generates a TAP plan that will achieve the goals
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KS read-in-RTS-msg
:VARIABLES ((RTS-msg-task-p ?task))
PRECONDITION (eq (status ?task) ’waiting)
:ACTION (read-in-RTS-msg ?task)

F igure 5.2: The simple read-in-RTS-m sg KS.

of each subtask.

The problem-solving state of the AIS interpreter is stored in a dynamic set of data 

structures called tasks, where each task structure includes information describing a problem 

to be addressed. For example, when a feedback message from the RTS is waiting on the 

AIS’ socket queue, the AIS represents the required task of reading in that message by an 

R TS-m sg-task structure whose s ta tu s  slot is set to ’waiting.

The AIS interpreter processes these tasks by running Lisp code structured into Know

ledge Sources (KSs) that are similar in form to those of a blackboard system [58]. Each 

KS has a set of class-constrained variables, a parameterized precondition expression, and 

an action expression that is executed if the KS is actually “fired.” For example, the simple 

read-in-RTS-msg KS is shown in Figure 5.2. The VARIABLES declaration binds the ?task 
variable to a task structure of the appropriate class. The PRECONDITION expression tests 

to make sure that the incoming message is in the correct state, and the ACTION expression 

invokes a procedure to read the message in from the socket.

To determine which KSs are applicable to the current problem-solving state, the KS 

variables and preconditions are matched against the task structures via a unique Rete 

net [17] implementation. The Rete implementation allows the preconditions of each KS to 

apply arbitrary Lisp tests to the KS variables, allowing very powerful expressions describing 

when different KSs are applicable. The KS precondition is formed from either a single 

expression or a list of expressions that are implicitly conjoined. The Rete system invokes 

the Lisp interpreter on each of the conjuncts using (ava l), and retains partial match 

information to speed the match process. The flexibility of this precondition representation 

incurs the cost of relatively slow execution: Rete systems using more restricted precondition 

languages can be highly optimized.

The interpreter mechanism that chooses the next KS to fire is drawn almost directly 

from the PRS architecture [23, 31], and bears little resemblance to a blackboard’s agenda 

mechanism. Figure 5.3 shows a slightly simplified version of the Lisp code for the prototype
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(defun AIS-interpreter ()
(as sert-init i al-world-model)
(setf +soak* (get-all-matched-KSs))
(while T

(assert *soak*)
(setf *new-soak* (get-new-matched-KSs))
(cond ((and (null *soak*) (null *new-soak*)) 

(return))
((null *new-soak*)
(execute-KS (random-choice *soak*)) 
(unassert *soak*)
(setf *soak* (get-all-matched-KSs))) 

(T (unassert *soak*)
(setf *soak* *new-soak*)))))

(defun bootstrap-AIS ()
(setup-signal-handlers)
(catch 'terminate

(setf *soak* (get-all-matched-KSs)) 
(while T

(catch ’interrupted
(AlS-interpreter)))))

F ig u re  5.3: The prototype AIS interpreter.

AIS interpreter. Each cycle of the interpreter finds the set of KSs whose precondition 

expressions are true in the current problem-solving state (the “set of applicable KSs” or 

soak), and then asserts the value of the current soak into the Rete net, essentially making 

the problem-solving state represent the fact that the system is considering executing those 

KSs. This new assertion may cause new, meta-level KSs to match in the Rete net. The 

meta-level KSs are responsible for choosing which KS to fire from the soak matched in the 

previous interpreter cycle.

Figure 5.4 shows an example meta-level KS that chooses which lower-level KS to fire for a 

particular task, based on a global strategy variable (that some other KSs can manipulate). 

When any KSs match at the meta-level, the interpreter removes the previously asserted 

soak from the Rete net and asserts the value of the new (meta-level) soak  to be exactly 

the set of newly matched, meta-level KSs. Again, new KSs may match against this assertion, 

forming a meta-meta-level. In this way, the interpreter can climb an arbitrary number of 

meta-levels. When no new meta-level KSs match, the system executes a single KS, chosen 

randomly from the soak of the previous reasoning level.

;; Stop if no KSs matched.

;; If no meta-level KSs 
;; matched, fire one from 
;; last soak.

;; Else, go to meta-level.
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KS strategy-choice
:VARIABLES ((task-p ?task) (soak-p ?soak))
:PRECONDITION (get-KSs-for-taak ?soak ?task)
:ACTION (let ((task-KSs (get-KSs-for-task ?soak ?task)))

(execute-KS (random-choice
(get-KSs-for-strategy taBk-KSs •atrategy*))))

Figure 5.4: The strategy-choice meta-level KS.

The prototype AIS interpreter differs from PRS in the relatively unstructured form of 

our KSs, and the lack of an architectural “intentions” structure. In the prototype AIS, 

firing a KS simply means running some block of Lisp code. A PRS Knowledge Area (KA), 

on the other hand, is a structured representation of the set of plans to achieve a goal. 

When a PRS KA is chosen by the interpreter described above, it is merged into the PRS 

intentions structure, which represents the cognitive commitments of the system. The KA 

is then executed at some later time, as the intentions structure is traversed by the PRS 

execution phase (which has no parallel in our implementation). Cognitive commitments are 

represented in our system by task objects, which are manipulated by KSs in the same way 

as other tasks, rather than by architectural mechanisms.

5.2.1 Interrupt H andling

Although the AIS is never constrained to meet deadlines, we would like it to respond 

quickly to changes in goals or RTS feedback, so that it allocates its deliberation resources to 

the most important current task. Because the AIS interpreter may invoke complex, time- 

consuming processing that would make its worst-case response time unacceptably long, it 

is built to be interruptible. The interpreter installs two customized signal handlers in its 

Lisp environment, to handle timeouts and communication interrupts.

Timeouts

Timeouts are used to limit the amount of AIS processing that is committed to any par

ticular task whose problem-solving methods may have uncertain or high-variance processing 

requirements. The AIS can run this type of task with a limited time allocation by first fork

ing off (in the true Unix sense) a simple timer process that will send a SIGUSR1 signal to the 

AIS Lisp process after a fixed amount of time (set by the AIS). The AIS invokes the task
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processing after forking the timer. If the task processing takes too long, the forked timer 

will send the signal, and the AIS will be interrupted. The signal handler for the timeout 

signal creates a new timed-out-task structure, adds it to the Rete net, and then passes 

control back to the base-level AIS interpreter using a (throw ’interrupted) call (see the 

(catch ’interrupted) in Figure 5.3). This has the effect of terminating the processing of 

the current KS and giving the AIS interpreter the opportunity to re-examine the state of 

the system, deciding whether to execute the interrupted KS again or deal with the timeout 

in some other manner, possibly by making compromises that simplify the required task 

processing.

For example, the process of building a TAP plan is implemented by a KS that keeps 

track of its progress in a set of global state variables. If the TAP-planner KS is interrupted, 

it can resume processing on the next KS execution at (nearly) the same point at which it was 

stopped, by examining this global state (for more details, see Section 5.3). Alternatively, 

other KSs may intervene and alter some aspect of the TAP planner’s state, so that the 

planning operation will be simplified or altered entirely. Several examples of these sorts of 

changes, and the resulting performance tradeoffs, will be discussed in Chapter 7.

Communication Interrupts

Feedback data from the RTS can arrive at unpredictable times and may indicate high- 

priority changes in the environment which require the AIS’ attention. Thus we would like 

the AIS to be interrupted by feedback from the RTS. However, because the RTS runs 

on a different processor, it cannot send an interrupt or signal directly. Instead, the AIS 

must make special provisions to handle incoming messages from the RTS. When the AIS 

initializes, it opens a socket on a known port address for the RTS to connect to. The AIS 

also forks off a simple communications subprocess ( c o m m ) , written in C, which also opens a 

socket for the RTS. When the RTS is initialized, it connects to both the AIS and the COMM 

sockets. Whenever the RTS sends a message to the AIS over their socket link, the RTS 

also sends a short “wakeup” message to the c o m m  process. COMM simply loops repeatedly 

around a test that waits for that wakeup message, and then sends SIGUSR2 to the AIS Lisp 

process1. In response, the appropriate AIS signal handler will create a RTS-msg-task 

with a status of ’waiting, meaning that there is a message waiting to be read in from the

’ The C O M M  process can send a signal to the AIS because it is running on the same processor, unlike the 
RTS.



78

RTS. As with timeouts, the signal handler then throw s back to the interpreter, which can 

choose whether to read in the message from the AIS socket or leave the message waiting 

while the AIS performs other, more important task processing.

This somewhat complex arrangement has the effect of allowing the AIS to remain highly 

alert to incoming RTS feedback without constantly polling its sockets. This means that the 

code used in KSs need not be strictly limited in runtime, or interspersed with polling calls. 

However, because the normal interrupt handlers do not return control directly to interrupted 

KSs, the KSs do need to be written carefully when they make changes to stored information. 

To maintain a consistent processing state, some KS operations must be atomic— that is, 

they must either be run to completion, or not be started.

Critical sections of KS code that must be atomic are built as “monitors,” protected from 

interrupts by calls to (begin-monitor) and (end-monitor). The (begin-monitor) call 

simply replaces the signal handlers with modified versions that return to the interrupted 

KS after setting a global flag indicating that an interrupt has arrived. The (end-monitor) 

call restores the original signal handlers and also calls the appropriate signals handlers if 

the global interrupt flags have been set during the preceding monitor code.

Remaining interruptible gives PRS and our AIS the useful ability to perform arbitrar

ily complex computations within a KS while also attending to ongoing world events. In 

particular, Ingrand and Georgeff [31] have shown that, given certain reasonable assump

tions about event frequency and KS precondition complexity, the prototype AIS will notice 

every event that generates an interrupt. While our AIS has the ability to implement ar

bitrarily complex processing during both the matching and execution of KSs, the current 

experimental domains have only used limited procedures that do meet the requirements for 

bounded reaction time. However, the Lisp and Unix basis for the AIS makes rigid response 

bounds impossible.

5.2 .2  E x istin g  K now ledge Sources

Because the main focus of this work has been on building guaranteed TAP control plans 

using the world model described in Chapter 4, the knowledge built into the AIS interpreter 

has not been extensively developed. The current KSs for the Puma domain are used largely 

to manage and interleave the processing of feedback messages from the RTS with invocations 

of the TAP-planning KS and the process of downloading new TAP plans to the RTS. KSs 

to automate the performance tradeoffs described in Chapter 7 are under development.
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In the previous prototype implementation of CIRCA, which was applied to a mobile 

robotics domain, the AIS interpreter played a much larger role. In that domain, a Heathkit 

Hero 2000 robot navigated through hallways under the control of TAP plans, and the AIS 

planned paths and built TAP plans to implement the appropriate navigation strategies. 

That version of the AIS had KSs to incrementally form hierarchical navigation plans, given 

a building map, a destination, and the current location of the Hero. It also had KSs that 

implemented a primitive form of interval temporal reasoning capable of propagating ordering 

information. These KSs allowed the system to prioritize the hierarchical decomposition of 

path plans, so that TAP plans were generated first for the earlier portions of the planned 

robot path.

The AIS also had KSs that implemented two forms of performance tradeoffs when the 

domain was overconstrained. If the AIS recognized that collisions with obstacles were 

possible because of limitations on the robot’s sensing speed, a KS could slow down the 

robot’s forward motion until safety could be assured. Alternatively, a KS could sacrifice 

the guarantee on the TAP which used a sonar sensor to check the distance to the walls, 

making sure that the robot was moving down the middle of the hallway. By removing 

that TAP from the list of required TAPs, the sensing needs of the system were reduced, 

and obstacle collisions could be avoided. However, because the wall-checking TAP was only 

being executed in a best-effort fashion, the robot was no longer guaranteed to avoid colliding 

with walls.

Overall, the prototype AIS interpreter has proven to be a very flexible platform for 

controlling deliberation, particularly because of the ease with which the system climbs to 

meta levels to decide among competing processing demands. The interrupt mechanisms 

allow the system to remain alert while still implementing complex planning functions. The 

use of arbitrary Lisp code in both the preconditions and actions of KSs makes it possible to 

implement complex KS behaviors without the contortions imposed by less-flexible repres

entations. On the other hand, this also means that automatically parsing KS preconditions 

is difficult, and the AIS Rete implementation is not particularly fast.

5.3 The TAP Planner

The main use of the AIS interpreter in the Puma domain is to coordinate invocations of 

the TAP planner module, which instantiates and reasons about the world model (described
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in Chapter 4) to develop TAP control plans. The TAP planner essentially performs the 

design phase shown in the Figure 3.2 flowchart of automated real-time system design in 

Section 3.5. Our goal here is to describe the unusual features necessary to build real-time 

control plans using our model of agent/environment interactions. We describe algorithms 

that successfully implement these features, but we do not contend that these are the most 

efficient or novel mechanisms possible.

From the description of the world model in Chapter 4, we might derive a simple approach 

in which the entire world model state space is enumerated and then actions are planned 

to reduce the graph to a safely-controlled subset. Of course, the immediate objection to 

this approach is that it involves generating and storing a complete enumeration of the state 

space, which is exponential in the number of world features. Furthermore, since planning a 

single action can make large sections of the world model’s entire graph unreachable, much 

of that enumeration might be wasted.

Therefore, we have developed an algorithm that dynamically interleaves the construc

tion of the world model and the planning of control actions. The control plans (TAP 

schedules) that are run on the RTS are developed by five processing phases, outlined below 

and described in more detail in the following sections.

In the first phase (planning actions), the AIS is given a description of the goals that 

a particular TAP plan should achieve, a description of the possible transitions in the world 

model, and a set of initial states. The planner builds up a list of actions that will achieve 

its goals and will also restrict the agent to a safely-controlled set of states surrounding the 

initial states, by making failure states in the world model unreachable and by preventing the 

world from leaving the safely-controlled set of states. This planning phase actually builds 

and manipulates the world model states on-the-fly, as it is planning actions and simulating 

transitions. Associated with each planned action is a list of the states to which that action 

must be applied and the associated temporal transitions which it has been planned to 

preempt.

In the second phase of processing (minimizing tests), the AIS attempts to maximally 

generalize the preconditions for each action, so that as few tests as possible are necessary 

to decide when to apply the action. The third phase (planning sensing) builds TAPs 

that perform the tests using selected sensing actions. The fourth phase (assigning TAP  

periods) chooses TAP periods so that they will always preempt their associated temporal 

transitions, and the final phase (scheduling TAPs) invokes the Scheduler to build a cyclic
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TAP schedule that meets all of the TAP timing requirements.

These processing phases do not operate in a purely feed-forward manner; rather, con

trol and information can flow back from later phases when problems are detected in the 

developing TAPs. For example, when phase three runs to plan sensing actions it may find 

that the sensing actions required to test a particular planned action’s preconditions are so 

complex and time-consuming that the action can never preempt the temporal transition it 

was designed for (i.e., w c e t ( t e s t s ( r ) )  +  w c e t ( a c t i o n s ( T ) )  > minA(Tt)). This condition was 

not detected earlier because the sensing actions cannot be planned until the second phase 

has minimized the set of feature tests required. Since the temporal transition is no longer 

preempted, the world model is no longer safe, and the system must backtrack to choose 

different sensing actions or even different actions altogether.

To allow control (backtracking) to propagate between these different processing phases, 

we have implemented them in a state machine with global, explicit state storage, as il

lustrated in Figure 5.5. The action planning and postprocessing phases are cast in the 

form of individual functions for each decision process— every decision made by the system 

maps to a function call. The main loop of the system chooses which decision function to 

run next based on a global mode variable. Each decision function computes its decision, 

pushes the alternative choices for that decision onto a choice-stack, sets the mode variable 

to select the next decision that should be run, and returns a boolean indicating whether 

backtracking should be initiated. For example, the basic action-planning decision function 

looks at the world model state currently being examined, chooses an action to apply to 

that state, pushes the alternative actions onto the choice-stack, and returns T. Or, if there 

are no more action alternatives for the current state, the function returns NIL, indicating 

that backtracking is required. Backtracking affects the world model, the choice-stack, and 

the stack that maintains the state of the decision loop (including the current mode and the 

current world model state). If the system tries to backtrack off the end of the choice-stack, 

this is an indication that the planner has failed to find a plan, and some modifications to 

the design specifications will be necessary, as diagrammed in Figure 3.2.

By casting the main processing loop in this form, we have made the system highly 

modular, so that additional decision processes (like postprocessing phases) can be added 

easily. The explicit state of this implementation also has an advantage over recursive imple

mentations, because in this formulation it is fairly easy to interrupt and resume the TAP 

planner.
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(defun run-TAP-planner (ftaux result)
(do-until (equal *mode* ’end)

(setf result
(case *mode*

(plan-action (plan-action))
(check-intermediate-plan (check-intermediate-plan)) 
(generalize-tests (generalize-tests))
(assign-sensors (assign-sensors))
(build-taps (build-taps))
(schedule-taps (schedule-taps))))

(if (null result) (backtrack-all))))

F igu re  5.5: The main loop for the AIS TAP planner.

5 .3 .1  P la n n in g  A ctio n s

Because the world model state space is exponential in the number of world features, the 

AIS mechanisms that build TAP plans are actually given a much more compact representa

tion of the world. The input to these mechanisms is divided into three types of information: 

transition descriptions, initial state descriptions, and goal descriptions. Transition descrip

tions are simple production Tules that detail the changes the world can undergo, much like 

STRIPS operators [59]. Figure 5.6 shows example rules from the Puma domain. Note 

that the preconditions and postconditions need not fully specify all features of the states 

to which the transitions apply. These descriptions are implicitly generalized by the lack of 

certain feature specifications. Action transition descriptions also include information about 

their worst-case execution times and the required actuator resources.

Initial state descriptions currently must specify all features of the world, as illustrated 

in Figure 5.7. Recall that each TAP plan is being built to achieve some goals that are 

part of a longer-term sequence of steps determined by the AIS interpreter. Thus the AIS 

chooses the initial state description and goal description for each TAP plan according to its 

position in the long-term plan. In the future, it might be useful to allow the AIS to specify 

only partial initial state descriptions, indicating that the new TAP plan might be started 

in any of several states achieved by the previous TAP plan. It would be straightforward 

to have the TAP planner enumerate the set of possible initial states I  before beginning the 

planning process.

Goal descriptions do not usually specify the entire state of the desired world: in fact, 

many describe just a single feature (such as (part-in -box  T )). These partial descriptions
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EVENT emergency-alert
PRECONDS: ((emergency nil))
POSTCONDS: ((emergency T))

TEMPORAL emergency-failure
PRECONDS: ((emergency T))
POSTCONDS: ((failure T))
MIN-DELAY: 30 [seconds]

ACTION push-emergency-button
PRECONDS: ((robot-status free) (part-in-gripper nil)) 
POSTCONDS: ((emergency nil) (robot-position over-button)) 
RESOURCES: (arm gripper)
WCET: 3.5 [seconds]

F igure  5.6: Example transition descriptions given to the AIS.

are not expanded into an explicit set of acceptable states; instead, the AIS uses the descrip

tions as litmus tests for states which it generates on-the-fly, as detailed below.

T he  P lann ing  A lgorithm

Given this input information, the AIS dynamically constructs the graph model and 

the plan of actions together in a single depth-first search process, essentially similar to a 

forward-chaining STRIPS planner [59]. This process operates on a stack of states (the state- 

stack), examining each state in turn and planning actions that achieve goals and preempt 

temporal transitions that lead to failure. The flowchart in Figure 5.8 illustrates the planning 

algorithm.

To initiate the processing, each of the completely specified initial states is pushed onto 

the state-stack. Then, as long as the stack is not empty, the AIS pops a state off the 

stack and considers it the current state. If the current state is unreachable2, the AIS will 

ignore it and pop the next state off the stack. If the current state is reachable, the AIS 

finds all the event transitions and temporal transitions that apply to the current state. The 

applicable transitions are simulated by substituting their postconditions into the current 

state description, yielding either new states that have not been examined yet or states 

that have already been processed (i.e., states for which actions have already been planned). 

New states are pushed onto the state stack, while old states are simply updated with the

2 A non-initial s ta te  on the stack may become unreachable if actions are planned to  preem pt every tem poral 
transition leading into th a t state , and no event or planned action transitions lead into th a t state.
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INITIAL-STATE
FEATURES: ((failure nil)

(emergency nil)
(know.type.of.conveyor.part nil) 
(know.type.of.table.part nil) 
(part_in.gripper nil)
(conveyor.status free) 
(robot.status free) 
(robot.position over.table) 
(part.on.table nil) 
(part.on.conveyor nil) 
(part.in.box nil))

GOALS: ((part.in.box T)
(part.on.conveyor nil)
(part.on.table nil)
(part_in.gripper nil))

F ig u re  5.7: Example initial state and goal descriptions given to the AIS.

information that they have a new source state. The AIS then finds all the acceptable action 

transitions that could be taken from the current state. If there are no temporal transitions 

to failure from the current state, then all action transitions that apply to the current state 

are acceptable, including the null action NO-OP. If there are any temporal transitions to 

failure, only action transitions that can be implemented quickly enough to preempt the 

failure are considered acceptable. The AIS chooses from amongst the acceptable actions 

the one that leads to the best next state, as determined by a heuristic scoring function 

(described below in Section 5.3.1). The other acceptable actions are retained on the choice- 

stack, so that the next-best alternative will be chosen if the system later backtracks to this 

point in the search.

Chronological backtracking is initiated when one of two conditions is satisfied. First, the 

system backtracks when it detects an action loop (see Section 4.11). Whenever a planned 

action leads to a state S„id that has already been processed, the system searches for action 

loops by looking back recursively along the action transitions leading to the current state, 

checking to see if any originated at S0id• The second condition for backtracking is the 

recognition that there are no remaining action choices for the current state. In that case, it 

is clear that the planner has found an unavoidable failure— either there are no acceptable
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Design Phase

Event/temporal/action transition descriptions. 
Goal descriptions.
Initial states.

No
teachable?

Yes

Choice-point

No Stack
empty?

Yes

Pop current state from stack.

Push initial states onto stack.

Find acceptable actions for current state.

Find all applicable event/temporal 
transitions.

Scan for actions loops. 
Backtrack to previous choice-point 

if any found.

Apply chosen action to current 
state and push resulting state(s) onto 

stack if not already processed.

Apply each transition to current state, 
pushing resulting states onto stack 

if not already processed.

Backtrack to previous choice-point 
if no acceptable actions.

Choose best action for current state, and 
push alternatives onto choice-stack.

Done planning actions

Figure 5.8: A flowchart for the action-planning algorithm.
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actions to preempt a temporal transition to failure from the current state, or the system 

must have explored all possible worlds beyond this state and backtracked to reach this state, 

otherwise NO-OP would be a choice.

By running the planning process until the state-stack is empty, the AIS simulates out 

all of the paths the world might feasibly take while the agent is controlled by a particular 

set of action transitions. More importantly, that set of action transitions is dynamically 

defined as the AIS works, in response to the recognition that a failure state is reachable. 

The basic action-planning algorithm terminates when no failure state is reachable. Using 

chronological backtracking to consider every acceptable action at each state, the AIS can 

perform a complete search of the set of action plans.

Com plexity

We noted in Chapter 1 that the complexity of some environments may make it imprac

tical to enumerate all possible situations. This is one of the arguments frequently used 

against ad hoc real-time systems that are simply tested exhaustively to demonstrate that 

they meet hard deadlines [76]. How, then, does CIRCA’s enumerative world modeling 

technique differ?

The most important difference is that the AIS does not enumerate the entire domain 

state space. As discussed earlier, the AIS’ high-level planning explicitly divides long-term 

goals into shorter-term subgoals, which are then separately implemented by control plans. 

This restricted context means that the state space of the control planner is not the entire 

set of states the system and world can ever enter.

Furthermore, the planner avoids enumerating even this restricted space because, while 

it is generating the world model, it is also generating the plan of actions. Each time an 

action is planned, it restricts the world’s behavior and thus prunes out states that the AIS 

never even considers. In the Puma domain, one of the problem variations has a complete 

model space of over 5100 world states. To build a complete control plan that guarantees 

all control-level goals and also achieves the task-level goals, the AIS only enumerates 330 

unique states. The final plan restricts the world to a safely-controlled set of 158 possible 

(reachable) states. For a problem in which the world is described by eleven different features, 

and eight actions are planned for 144 different states, the size of the space actually searched 

seems quite reasonable.

In general, any system making guarantees must somehow ensure that those guarantees
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hold for all possible worlds. This requires either an exponential enumeration of states or 

some dependency information that allows the system to extend guarantees made for one 

state to other states without examining the others individually. Recent work by Godefroid 

and Kabanza [24] illustrates one way in which such dependency information can reduce 

search spaces; their results allow a system to examine only a single ordering of independent 

actions, rather than enumerating all possible orderings. These results are not immediately 

applicable to CIRCA, because their world model does not include external events. This 

omission simplifies the concept of action independence to a condition on the action descrip

tions. In the CIRCA model, this condition alone is not sufficient to determine if actions 

are independent: by enabling or disabling event transitions, an action can affect another 

even if its description includes no overlapping terms. We are actively investigating ways of 

deriving independence conditions in CIRCA’s model of agent/environment interactions.

However, the most important point to remember is that the planning done by CIRCA’s 

AIS is isolated from the real-time domain deadlines. The AIS does not need to meet 

deadlines while producing control plans, so the complexity of the planner is decoupled 

from the agent’s interactions with the world. In fact, the complexity of planning is one 

of the fundamental motivations for CIRCA’s distinction between the AIS and RTS: the 

high-variance search for plans to achieve goals must be isolated from ongoing, real-time 

interactions with the environment.

Incremental Improvement

Currently, the system makes only a crude distinction between control-level and task-level 

goals. All control-level goals must be achieved, or the system backtracks. If some task-level 

goals are not achieved by a control plan, the system may still consider the plan acceptable. 

In the future, we may add more information so that the system can make intelligent decisions 

about risk-taking in the pursuit of task-level goals. This information might include criticality 

ratings for goals and event probabilities, so that the system could compute the utility of 

guaranteeing different subsets of control-level goals. In general, however, our initial focus on 

guaranteed behavior has led us to ignore such difficult information; we have concentrated 

instead on developing a system that can make rigid, complete guarantees within the scope 

of its limited knowledge. Given that most rigorous capability, we can easily modify the 

system so that it can forgo various goals when necessitated by resource restrictions [57].

With the action-planning algorithm described above, we can derive every possible action
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(defun check-intermediate-plan ()
(let ((plan (find-all-planned-actions))

(states (remove-if-not # ’state-is-reachable-p (find-all-states))) 
(goals-done 0))

(dolist (goal *goals*) ;; Count goals that are reachable.
(if (any # ’state-has-feature-p states goal) (++ goals-done)))

;; If current plan did better than stored, or have none stored yet,
;; store this one. Stored in global as a list (plan goals-done).

(if (or (not *stored-plan*) (> goals-done (second *stored-plan*)))
(setf *stored-plan* (list plan goals-done)))

(cond ((= goals-done (length *goals*)) ;; If all goals reachable,
(setf *mode* ’generalize-tests) ;; move on to next phase
T) ;; and don’t backtrack.
(T nil)))) ;; Else, backtrack for new plan.

Figure 5.9: A decision function implementing an incremental improvement method.

plan that guarantees to avoid control-level failure. What we really want, if possible, is a plan 

that guarantees the control-level goals and also either guarantees or at least makes possible 

the task-level goals. To find those plans, we have formed the action-planning algorithm as 

an imprecise computation [41, 54] that will continue generating new plans until no more 

are available, or until a plan that achieves all of the task-level goals is found. In the current 

implementation, a plan is considered to achieve a task-level goal if any state satisfying 

that goal is reachable. The decision function check-interm ediate-plan, illustrated in 

Figure 5.9, is placed in the loop shown in Figure 5.5, to be run after the plan-action phase 

runs out of states to plan for. If the current plan does not achieve all of the control-level 

goals, and does not make the task-level goals at least reachable, the decision function returns 

NIL and the system backtracks to find a better plan. A more restrictive criterion might test 

to make sure that task-level goals are reachable from all states in the world model, or that 

the control plan always drives the system towards the task-level goals.

If the AIS decides, based on task-level time pressures, that it needs to produce the next 

control plan quickly, it can interrupt the planning loop of Figure 5.5 and use the current 

acceptable plan stored in *stored-plan*. If the AIS has more time available, it can continue 

producing plans for as much time as is convenient, and then use the best plan stored so 

far. In this way, the AIS can itself implement an any-time planning algorithm [9, 65]. This
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feature is useful because, although achieving control-level goals is never dependent on timely 

responses from the AIS, achieving non-critical, task-level goals may be. For example, in the 

Pum a domain, the system implements the control-level goal of making sure tha t nothing 

falls off the conveyor belt by (in the worst case) putting the part it is currently holding 

down on the table. The control plan must also be able to stop the conveyor when the table 

is full. When tha t happens, the robot will continue to satisfy its control-level goals (even 

easier with the conveyor stopped!), and no catastrophes will occur. However, the faster the 

AIS figures out how to pack the parts sitting on the table, the faster the system will achieve 

its task-level goal of generating a packed box.

T he Scoring H euristic

The scoring function used to choose actions is the only heuristic knowledge currently 

used by the TAP planner. The scoring function performs a recursive TV-step lookahead, 

finding and returning a value corresponding to the best state reachable in N  transitions 

from the current state. Based on this analysis, the control-level planner chooses to perform, 

for each state, the action which leads to the best scoring state. Note that backtracking may 

lead the system to make alternative choices if the initial choice leads to a failure.

To find the score for a transition applied to a given state with i-step  lookahead, the 

scoring function simulates the proposed transition to build a description of the resulting 

state. The function then derives and saves a score for the value of that state. If x  > 0, 

the function then finds all the transitions which may apply to that state, and recursively 

calls itself to find the score for each of those possible transitions when applied to the new 

state, with m — 1 steps of lookahead. The results from those recursive calls are saved, and 

the function returns the best score of among all those saved. If x = 0, no recursive calls are 

made, and the function simply returns the score of the state resulting from the application 

of the transition.

The current heuristic scoring mechanism considers several factors. First and foremost, 

the scoring function expresses preferences for states based on how completely they satisfy 

the system’s control-level and task-level goals. Since control-level goals are defined to be 

those which the system is trying to guarantee, they are weighted as more important than 

task-level goals. In fact, we consider violations of control-level goals to be equivalent to 

risking the safety of the system, and thus a violation of any single control-level goal is 

considered worse even than a  violation of all the system’s task-level goals.
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The planner may choose an action that leads into a state from which a temporal trans

ition leads to failure. Clearly, the longer the m inA  of that temporal transition to failure, 

the easier it will be to avoid failure by taking another action. Thus the scoring function also 

expresses a preference for states which have the longest possible delays until failure o c c u t s .

To guide the system towards choosing the shortest path to success, the scoring function 

also takes into account the number of transitions which must be traversed to reach a state 

with a desirable set of features. At each level of recursive lookahead, which corresponds to 

following an additional transition, the scoring function adds a small penalty to its resulting 

score, so that the value of a particular state is degraded partially by the “distance” separ

ating it from the current state, as measured by the number of transitions between them. In 

the future, a more useful measure of the cost of a transition path might take into account 

the associated delays as well as the cost of the agent’s actions.

One final consideration is necessary to choose correct actions in the Puma example. 

The representation of the Puma domain is encoded at a fairly high level of abstraction, 

to avoid excessive detail and the accompanying state-space explosion. We will discuss this 

topic more fully in Section 5.4; for now, it is sufficient to note that we do not want the 

domain model to include a feature that would be subject to “counting.” That is, a domain 

feature expressing how many parts are in the box, or how many parts are on the table, 

would be a very unfortunate choice, because it would lead to a potentially infinite (or at 

least very large) search space, as the planner would have to reason about a complete set of 

world states where one part was in the box, and another set where two parts were in the 

box, etc.

So instead, we encode the world with a boolean feature that simply indicates whether a 

part is in the box or not. And the goal, in such a domain, is to achieve states where (part- 

in-box T) holds. But now consider what happens when the planner reasons about states 

where the robot has already placed a part in the box, and it is now processing another part. 

The goal (part-in-box T) already holds, so there is no scoring differential to encourage 

the system to place the new part in the box as well.

To deal with this sort of difficulty, CIRCA also allows the system designer to designate 

repeat goals. These are goals which it is valuable to achieve again, even if they are already 

true. With this consideration added to the scoring function already described, the TAP 

planner is able to choose intuitively correct actions in all situations that arise in the Puma 

domain (given sufficient lookahead). In the current domain implementations, a lookahead
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value N  of four is sufficient to allow the planner to always choose the correct action.

5 .3 .2  M in im izin g  T ests

Because an action may be useful in several world states, we do not build up complete 

TAPs with sensing requirements as soon as an action is planned: if the action applies to 

several states, we would end up with multiple TAPs implementing the same action with 

different, but probably similar, tests. This would make the scheduling operation much 

harder. Instead, we wait until all of the actions have been planned, and we have a full 

description of their sets of domain states. Then, in the second phase of processing, the AIS 

attempts to maximally generalize the preconditions for each action, so that as few tests as 

possible are necessary to decide when to apply the action. This phase is especially crucial 

when actions are applied to several states: the minimization phase can eliminate the need 

to test some specified features if the omission of those tests will not allow the action to be 

applied to a state for which it was not planned.

The test minimization process is essentially equivalent to the minimization of switching 

circuits [34]. Each action can be considered separately as a circuit whose minterms are the 

features of the states for which it has been planned. All states that are not reachable in 

the world model are considered “don’t-cares,” because it does not matter whether the final 

testing expression includes their features or not; they can never occur.

For example, in the Puma domain, the planner initially plans to take the action push- 

em ergency-button in 54 states, each of which has eleven features. After minimization, the 

action is associated only with tests for ((em ergency T) (part-in-gripper nil)). The new 

tests do not check all eleven state features 54 times each, so they will take much less time to 

execute. Of course, with only those two preconditions, the resulting TAP will match many 

more than the originally planned 54 world states. However, the minimization algorithm 

has determined that none of those additional matching states are reachable, and thus they 

do not matter. Note that the minimization phase can even remove preconditions that 

are required to execute the action. In this example, the push-em ergency-button action 

transition description in Figure 5.6 included the precondition (robot-status free), but 

that precondition was removed during minimization because it is not needed to distinguish 

the 54 planned states.

The general test minimization problem is NP-complete, so we have avoided using a 

complete algorithm. Instead, the minimization phase is implemented using the heuristic
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SENSOR overhead-camera
DETECTS: (type-of-conveyor-part type-of-table-part robot-position) 
HCET: .1 [seconds]

V-SENSOR robot-status?
DETECTS: (robot-status)
P-WCET: .02 [seconds]
USES: ((overhead-camera 1)(moving? 1))

Figure 5.10: Example sensor and virtual sensor descriptions.

ID3 program3 [62], which is given the states for which an action has been planned as 

positive examples and all the other planned (possible) states as negative examples, ID3 

incrementally builds a decision tree to distinguish the positive examples from the negative 

examples. While this approach does not guarantee an optimally small decision tree, it yields 

reasonable results with very little processing.

5 .3 .3  P lan n in g  Sensing

Once the action preconditions have been minimized, the AIS plans sensing actions to 

implement the TAP test expressions. To plan sensing actions, the AIS examines descriptions 

of the system’s sensors that include what world features the sensor detects and its worst-case 

execution time. Figure 5.10 shows two example sensor descriptions.

The first example describes a physical sensor in the system, the overhead camera that 

returns information about part shapes and the position of the robot. The second example 

describes a “virtual sensor,” a software construct that may access several physical sensors 

(and/or several readings from a single sensor) and combine their values. In the example, 

the virtual sensor robot-status? combines single readings from the camera and another 

virtual sensor (moving?) to determine the robot’s status. The worst-case execution time 

for the virtual sensor is determined by adding the time needed to access the component 

sensor values to the worst-case processing time, indicated by P-WCET.
Virtual sensors can also access the limited RTS world model, which is essentially a set 

of storage locations that hold status information. For example, the virtual sensor moving? 
accesses an RTS storage location to determine whether the robot is currently moving. The 

actions that start and stop motion set the value of this storage location. No physical sensor

3Marcel Schoppers suggested this approach.



93

readings are required, and thus the moving? virtual sensor executes very quickly.

One of the areas in which CIRCA is currently being extended is the automatic assign

ment of additional internal storage locations to buffer physical sensor readings that will be 

useful to future precondition tests. If a physical sensor reading is fairly costly to acquire 

and its value is known to persist for a sufficient time, then several actions that test that 

value in their preconditions could instead access the stored result of a single physical sensor 

execution. This automatic planning of the use of internal storage to avoid excessive sensing 

could greatly enhance the system’s efficiency, allowing the AIS to produce TAP schedules 

for domains which would otherwise be too demanding.

Some systems may have multiple sensors capable of detecting a particular world feature, 

and some sensors may detect multiple world features. Thus the task of assigning sensors 

to action preconditions is a covering problem, involving finding a minimal set of sensing 

actions that will test all the preconditions. The AIS can solve this problem via a depth-first 

search process over all the possible covering sets. Each covering set would be checked to 

make sure that, when combined into a TAP, the resulting worst-case execution time does 

not exceed the mm A of the temporal transition the action has been planned to preempt. If 

it does, the system would backtrack to try the next possible covering set of sensing actions. 

If no set of sensing actions can be built that will yield a sufficiently short TAP, then the 

backtracking propagates back to the previous processing phases, and the system would 

search for a different control plan.

The sensor-planning functionality, as described above, has not been fully implemented 

in the Puma domain, but could be easily added to the modular TAP planning loop as 

another decision function. The search-based sensor-planning function would operate in 

much the same manner as the action-planning function, choosing a sensor mapping on each 

invocation, and backtracking by simply returning NIL.

The sensor-planning phase has been implemented in the Puma domain in a slightly 

simplified form. The simplification retains the essential purpose of the sensor-planning 

concept, which is to allow CIRCA to map abstract world model state features to different 

real-world features. For example, the world model feature know-type-of-conveyor-part 

indicates whether CIRCA knows how to pack the particular shape of the current part on 

the conveyor into the box. Because the set of “known” part shapes changes over time, 

as CIRCA derives packing methods for more and more parts, the precise meaning of the 

know-type-of-conveyor-part feature changes over time. This change must be propagated
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into the TAPs executed by the RTS, so that the TAPs act appropriately and use the new 

packing methods. Thus the mapping of this world model feature to actual tests of real-world 

features must change.

During the sensor-planning phase, the AIS currently uses an association list to map 

world model features to combinations of detectable, real-world features. The association 

list essentially bypasses the search processing that might otherwise be used to perform 

sensor planning. The association list can be changed by the same KSs that derive new 

knowledge for the system, such as the KSs that figure out how to pack new part shapes.

For example, when the system is first introduced to the Puma domain it is only told how 

to pack square parts into the box, so the sensor-planning phase maps a TAP precondition 

of (know-type-of-conveyor-part T) into the test (type-of-conveyor-part ’square). 

Likewise, a TAP precondition of (know-type-of-conveyor-part nil) is mapped to (not 

(type-of-conveyor-part ’square)). After the system has seen a rectangle arrive and has 

developed a new packing method for both squares and rectangles, the association list is 

changed so that the abstract feature is mapped to a different expression: (or (type-of- 

conveyor-part ’square) (type-of-conveyor-part ’rectangle)).

Thus this feature-mapping mechanism is useful for translating abstract domain descrip

tions into more realistic, dynamic conditions on the environment. This type of variable 

sensor planning is crucial both to implementing abstract descriptions of the environment, 

and to the flexible use of multiple sensing modalities.

5 .3 .4  A ssig n in g  T A P  P eriod s

Once the sensing actions have been chosen, the complete set of TAPs is built and their 

worst-case execution times are available. In the final phases of processing, the AIS assigns 

periods to the TAPs and builds schedules that meet those periodic constraints. Assigning 

TAP periods is largely a trivial task, except for TAPs that deal with dependent temporal 

transitions. For other TAPs, the preemption equation described earlier shows that each 

TAP’s period should be just less than the corresponding temporal transition’s m in A  minus 

the TAP’s worst-case execution time.

For TAPs dealing with dependent temporal transitions, the problem is complicated by 

the dependencies between TAP periods. For example, Figure 5.11 shows a chain of temporal 

transitions where Tt \ is the initial temporal transition applicable to state X , and the actions 

v41 and A2 do not remove the cause of the temporal transition. Thus dependent versions
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A1 A2 A3

Tn

Figure 5.11: Example actions dealing with dependent temporal transitions.

of the temporal transition apply to the succeeding states Y  and Z. As presented earlier, it 

is easy to compute the minimum delays until the dependent transitions are enabled:

minA(7V2) = minA(7Vi) — P{tai) -  wcet(rAi)

minA(TT3) = m inA(Tr2) -  P (ta2) -  w c e t ( T A 2 )

= minA(Tri) -  P(rA 1) -  wcet(rAi) -  P(rA2) -  wcet(rA2)

where tAi and t a 2 are the TAPs that implement the respective actions. In the general 

case, where n actions are needed to end the chain of dependent temporal transitions, we 

see that
n  — 1

minA(TTn) = minA{TTX) -  ^  [F(rAi) + wcet(rAi)]
i = l

We also know that, for the preemption condition to hold for the final action An that 

terminates the chain, we must have mmA(Trn) > P ( T A n )  + w c e t ( T A n ) .

Substituting, we see that
n

minA{TTl) > ^ [ jP(t >»-) + w c e t ( T Ai)]
i=l

This equation essentially shows that the minA  of the initial temporal transition must 

be long enough to accommodate all TAPs invoked in the dependent chain. Rearranging the 

equation to solve for the periods, we have
n  n

X ) p (rAi) < minA(TTl) -  £  w c e t (T Ai)
1 = 1  t = i

In other words, the sum of the TAP periods must be less than the total slack time 

remaining in the original temporal transition when all of the TAPs use their worst-case 

execution time. Unfortunately, we cannot solve this equation alone for the TAP periods 

because there are n free variables and only one independent equation. Thus additional con

straint equations must be added. We synthesize those constraints based on the observation
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that scheduling periodic tasks is easier if their utilization is low; that is, if their execution 

times are relatively small compared to their periods. To keep each TAP’s utilization low, 

the choice of each TAP’s period should be influenced by the length of the TAP’s execution. 

For example, assigning a short period to a complex, costly TAP will leave little slack time 

between its invocations for the other TAPs to run. Thus longer TAPs should be given longer 

periods, and shorter TAPs can be given shorter periods without leading to excessively high 

utilization. To achieve this effect, we can distribute the total slack time among the TAP 

periods in proportion to each TAP’s worst-case execution time:

E"=i wcet(rAj)
m inA(Tr i ) -  ^  wcet(rAi)

j = i

So, for chains of states with dependent temporal transitions, the system adds up the total 

worst-case execution time for the TAPs in the chain, subtracts that from the m inA  of the 

first temporal transition in the chain, and divides the remaining slack time proportionally 

among all of the TAPs. This distribution has the effect of making each TAP have the same 

utilization.

Unfortunately, the intuitive motivation for this equal-utilization strategy is not entirely 

accurate: it is not always best to have TAPs with equal utilizations, particularly when TAPs 

may have widely-varying worst-case execution times. For example, consider two TAPs, A 

and B, with worst-case execution times of 10 and 100 milliseconds respectively. Suppose 

that these two TAPs are required to preempt a dependent temporal transition chain with 

m m A (T n) =  500 milliseconds, as described above. Using the equal-utilization strategy, 

TAP A  would be assigned a period of (10/110) * (500 — 110) «  35 msec4. However, it is 

immediately obvious that this will not lead to a feasible schedule, because wcet(B) > P(A). 

No schedule will ever be possible if this condition holds, because any invocation of TAP B  

would immediately imply that TAP A  had missed its deadline.

Therefore, it is clear that every TAP must have a period that is at least greater than 

the maximum worst-case TAP execution time (wcet(TM)) that will be scheduled. We can 

incorporate that requirement into our period assignment strategy by pre- allocating at least 

that much time to each TAP period:

P{rAi) < wcet(TM) + wcett rA')
E " = i  ™cet(rAj)

m inA(TTl) — ^ w c e t ( r Aj) — n * wcet(T\f) 
j = i

4 N ote th a t we trunca te  the  actual com puted value to  m aintain the required inequality.
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For the example TAPs, this results in setting P( A)  = 100 + (10/110)* (500 — 110 — 2* 

100) «  117 and P{B)  = 272, These period assignments lead easily to the simple feasible 

schedule AB.

While this simple two-TAP example works well, experiments have shown tha t, when 

more TAPs are being scheduled, the TAP periods may still be assigned so tha t shorter TAPs 

have periods tha t are too short to allow enough other TAPs to execute between invocations. 

Thus it has proven useful to  increase the pre-allocation of time to all TAPs above and 

beyond the required wcet(TM), The amount of this increased allocation is determined by 

multiplying wcet(TM) by a value greater than one. For the Puma domain, a multiplicative 

factor of 1.2 has provided the best performance, although experimentation was limited to 

a  few scheduling problems.

While this approach to assigning TAP periods is designed to make scheduling the TAPs 

as easy as possible, other considerations might usefully influence the period-assignment 

phase. For instance, if the various states in the chain have different levels of desirability, it 

might be preferable to  bias the TAP periods so th a t the system spends more time in the 

preferred states. In the example of Figure 5.11, if an event led from state Y  to a highly- 

valued new state, it might make sense to increase the period of t a 2, so that the system might 

remain in state Y  longer, giving more time for the beneficial event to occur. Improved TAP 

period assignment algorithms could prove a vital area of future work, of particular interest 

to scheduling and real-time systems researchers, who usually assume that these periods are 

pre-determined.

5 .3 .5  S ch ed u lin g  T A P s

In the final phase of generating TAP control plans, the AIS sends the accumulated 

information about the TAPs to the Scheduler module. The Scheduler tries to build a cyclic 

schedule tha t runs TAPs at least as frequently as their periods require. Chapter 6 provides 

complete details on the scheduling algorithm currently implemented. If the Scheduler cannot 

build a  successful schedule to  guarantee all the TAP timing constraints, it will return a 

failure message to the AIS. At tha t time, the AIS may backtrack to generate a different 

proposed TAP plan, or it may make other alterations to its world model to trade off some 

aspect of its performance, in an attem pt to relax the scheduling constraints that made a 

TAP schedule impossible to find.
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5.4 D iscussion

Our goal in developing CIRCA’s AI Subsystem was not to build the “ultimate planner,” 

but rather to investigate the requirements for building guaranteed real-time control plans. 

As a result, the AIS implementation we have developed is not highly optimized. Instead, 

we have focused our attention on the reasoning and representation capabilities tha t allow 

the prototype AIS to build plans with well-understood temporal behavior. The following 

discussion of the AIS’ TAP planner is thus focused on describing the assumptions, strengths, 

and weaknesses of the system’s representations and reasoning mechanisms.

To begin this discussion, it will be helpful to examine CIRCA’s approach to the repres

entation and reasoning issues in a common domain called the Wesson Oil Problem.

5 .4 .1  C lean in g  U p  th e  W esson  O il P rob lem

Research into reactive systems has just begun to develop a set of standardized problems 

which can be used to compare systems. From the perspective of intelligent real-time control, 

one of the more interesting new benchmarks is the Wesson Oil Problem (WOP), as described 

by Gat [21, p. 40]:

The name derives from a television commercial for Wesson Oil in which a 
housewife is frying chicken (in Wesson Oil, of course) when one of her children 
suddenly falls down and has to be taken to the hospital. However, before going 
to the hospital the housewife turns off the stove...

The action of turning off the stove... is an example of a clean-up procedure 
which is executed when a high-priority task (taking the kid to the hospital) 
interrupts a low-priority task (frying chicken).

Gat discussed the Wesson Oil Problem to motivate the need for clean-up procedures in

his reactive ALFA language. Using a mechanism similar to the Lisp u n v in d -p ro tec t, he was 

able to protect low-priority tasks so that, when interrupted, a specially-tagged procedure 

was run to clean up their activities. This mechanism was used solely by hand-coded reactive 

plans.

Gat also noted that, ideally, cleanup procedures should be conditional on aspects of the 

world other than simply the fact that a low-priority process is interrupted. His example: 

“If a stranger walks into your kitchen with a gun, turning off the stove before running for

your life may or may not be the right thing to do.”
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CIRCA’s approach to this problem is unique in two ways. First, CIRCA does not 

simply permit users to design cleanup procedures, CIRCA actually automatically plans them 

itself. Second, CIRCA’s planned cleanup procedures are fully context-sensitive; CIRCA 

will build different reactions to deal with the injured child and the invading stranger. To 

demonstrate these advantages, we now describe in detail CIRCA’s reasoning about the 

WOP, as illustrated in Figure 5.12.

State A  represents the initial state, where the housewife is peacefully cooking and the 

child is uninjured. The oil-ignites temporal transition to failure (state T )  indicates that, if 

the stove is left on too long, the oil will overheat and catch fire. For now we will ignore this 

problem, and consider what happens if the world follows the child-falls event transition 

to state B. Reasoning about that state, the TAP planner will find there are two applicable 

actions: either the housewife can leave the kitchen to help the child, or she can turn off the 

stove. Looking ahead to the subsequent states, the scoring function will find that state C, 

following the leave-kitchen action, still has a temporal transition to failure, while state V  

following the turn-off-stove action, does not. Therefore, the scoring function will prefer 

the latter option, and CIRCA will plan a TAP that implements the turn-off-stove action 

immediately after the child is hurt. Thus CIRCA has automatically planned a cleanup 

action to preserve the system’s safety.

To demonstrate that the cleanup action planning is context-sensitive, consider the 

stranger-arrives transition from state A  to state Q. In this case, the (emergency T) 
world feature is used to represent the armed stranger’s threat, and the short minA  of the 

stranger-shoots-housewife temporal transition to failure indicates that the situation is 

highly urgent. Reasoning about this situation, the TAP planner will again project the 

two possible actions leave-kitchen and turn-off-stove. Presumably, the threat from the 

stranger is so dire that the housewife will not have time to turn off the stove (or else this 

situation is no different from the previous case). Thus, the planner will recognize that it 

cannot choose the turn-off-stove action, because then failure would be possible due to the 

stranger firing. Therefore, the planner will eliminate that possibility and choose to leave 

the kitchen instead.

Thus CIRCA’s planning behavior results in two different TAPs, one that detects ap

propriate situations to turn off the stove, and one for leaving the kitchen. CIRCA has 

automatically derived reactions that clean up ongoing processes, but only when appropri

ate. While this example has demonstrated the strength of the CIRCA approach to planning
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Figure 5.12: The Wesson Oil Problem world model.

HOUSEWIFE-POSmON OUTSIDE
STOVE-STATUS OFF

■ CHICKEN-STATUS PARTLY-COOKED
CHILD-STATUS HURT
EMERGENCY NIL I   „

! go-to-boqxtiJ 
*



child-falla HOUSEWJFB'POSJTIOK IN-KITCHBN 
STOVE-STATUS ON 
CHICKEN-STATUS COOKING 
CHILD-STATUS HURT 
BMBRCSNCY NIL

F ig u re  5.13: A portion of the modified Wesson Oil Problem world model.

situated cleanup actions, it also reveals a limitation of the world model and the represent

ation of transitions.

5 .4 .2  T h e  T ran sition  R ep resen ta tio n

We noted above that the oil-ignites temporal transition from state A  means tha t failure 

may occur if the stove is left on too long. With just that transition represented, CIRCA 

would plan to turn off the stove immediately, thus preventing the fire. However, the stove 

must be left on for some period of time, in order to cook the chicken. An intuitive way to 

represent the required cooking time would be to use a temporal transition, as shown in the 

modified domain fragment in Figure 5.13. Unfortunately, this representation does not have 

the desired effect in the current CIRCA implementation. We would expect the food-cooks 

transition to preempt the oil-ignites transition, because of the respective m in A  labels of 

5 minutes and 10 minutes. However, the current semantics of temporal transitions do not 

allow this: a temporal transition is not guaranteed to occur, so it cannot preempt any other 

transition. Thus the scenario shown in Figure 5.13, if actually given to CIRCA, would 

still result in a plan to turn off the stove immediately from state A , because otherwise 

the failure due to fire would always be possible. CIRCA cannot yet represent non-atomic 

time-consuming activities tha t are guaranteed to occur; all guaranteed activities must be 

primitives, as discussed earlier in Section 4.3.

Another limitation of the current representation for world model transitions is the in

ability to include situation-dependent effects— the postconditions of a transition cannot 

contain variables referring the results of the precondition tests. For example, suppose that 

picking up a part from the table in the Puma domain leads to different loads on the robot
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ACTION pickup-part
PRECONDS: ((part-in-gripper nil) (part-in-reach T) (part-shape ?pa)) 
POSTCONDS: ((part-in-gripper T) (arm-load (weight-from-shape ?ps))) 
RESOURCES: (arm)
WCET: 2 [seconds]

Figure 5.14: An illegal transition, containing parameterized postconditions.

arm, depending on the part’s shape. Figure 5.14 shows how we might like to represent 

such a transition, where the postcondition value of arm-load is determined by the binding 

of the part-shape variable ?ps in the preconditions. CIRCA cannot yet deal with such 

transition forms, in part because they simply hide state space complexity— the parameter

ization allows the single representation of Figure 5.14 to act as many different transitions, 

depending on the binding of the ?ps variable. CIRCA currently forces the system designer 

to enumerate those transitions manually; separate transitions would need to be encoded for 

each possible value of ?ps. Extensions to the AIS planning algorithm to handle parameter

ized transitions are relatively straightforward, but the RTS and TAP execution mechanisms 

would require considerable modification to allow the dynamic specification of variables that 

are bound during the tests of TAPs and used during the actions.

5 .4 .3  T h e  T A P R ep resen ta tion

The TAP representation was developed primarily as a simple model for reactive beha

viors which could be automatically generated by CIRCA’s reaction planning system. As 

such, it is not a fully-developed robot programming language like RPL [50] or ALFA [20], 

designed for humans building complex programs. Instead, the TAP mechanisms implement 

a “programmable production system,” where the primitives used by the TAP “productions” 

are defined by arbitrary, user-produced C code (or, in an earlier version of the RTS, in Lisp). 

The RTS TAP execution environment provides only the IF—THEN conditional construct, as 

well as the boolean functions AND, OR, and NOT.
On the positive side, this simplicity means that it is easy for the AIS planner (or another 

system implementation) to build and manipulate TAPs that are directly executable by the 

RTS. Their structure is very simple, and there are no complex language elements (such as 

scoped identifiers) which would make parsing or altering the TAPs difficult. For example, 

the test-minimization phase discussed in Section 5.3.2 was implemented using generic ID3
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code with the addition of a very simple filter that modifies the ID3 test-tree output to the 

TAP test format.

Another benefit of TAP simplicity is predictable behavior: because they have essentially 

only two activity modes (either the action is executed or it is not), they provide a basis 

for plan guarantees without complex reasoning about arbitrary programs. All the planning 

system needs to understand is whether or not the TAP will be executed. Likewise, this 

aspect leads to simple TAP timing characteristics that make it easier to account for a 

reaction’s resource usage, and easier to implement if-time TAPs. If arbitrary programming 

constructs were allowed in the representation of reactions, the RTS might not be able to 

detect when a reaction is not going to use all of its assigned resources, and an if-time 

reaction may proceed. With TAPs, the boundary between test and action portions gives 

the RTS a simple indication of when to check the current resource usage and possibly fire 

if-time TAPs.

On the negative side, the same simplicity limits the power of the representation. Explicit 

loops, variables, ELSE clauses, and other common programming constructs are not available. 

However, it is important to note that the functionality of many of these constructs can be 

implemented at both higher and lower levels of the architecture. Loops, for example, can be 

implemented at a higher level by multiple TAPs or at a lower level by C-coded primitives. 

In fact, CIRCA frequently automatically builds loops of TAPs that will maintain some 

desired set of states. ELSE clauses can also be implemented by multiple TAPs checking 

complementary preconditions, or by C primitives with their own conditional branching.

At issue, then, is not really absolute representational power of the TAPs executed by the 

RTS, but the balance between representational power at the planned-reaction, interpreted- 

code level and at the compiled level. At the C level, almost any programming constructs 

are possible. Those C constructs are compiled into primitives, which are then dynamically 

invoked by the TAP interpreter.

5.4 .4  A IS C om p lex ity  and A bstraction  for D om ain  E ncoding

Although we argued in Section 5.3.1 that the world model planner will not enumerate the 

entire state space, it is unfortunately true that even the smaller set of “possible” world model 

states is still exponentially complex. For example, the Puma domain was originally encoded 

with separate state features indicating the shape of the parts held in the gripper, arriving on 

the conveyor, and last placed on the table. A NIL value for one of these features meant that
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F ig u re  5.15: The exponential growth of the world model state space.

no part was present in that location. When these three state features had only one possible 

non-NIL value (i.e., only parts of one shape were possible), the corresponding world model 

contained 330 possible states. Adding another possible part shape did not simply double 

the state  space size, because of the need to enumerate each of the possible combinations 

of part types on the table, in the gripper, and on the conveyor. The resulting exponential 

growth of the enumerated state space is illustrated by the two graphs in Figure 5.15.

If we consider just the three part-shape features and their initial two possible values, 

we see there are 23 =  8 possible combinations of values. Given the enumerated state space 

size of 330, we can see there are about 330/8 = 41.25 states enumerated for each possible 

combination. If we use that scaling factor to project the number of enumerated states for 

larger numbers of possible part shapes, the results match quite closely with the experimental 

results. For example, if there are three possible values for the part shape features, we project 

that there will be 41.25* 33 = 1114 states; the actual state space contained 1294 possible 

states.

This exponential growth of the state space is highly undesirable because the time to 

search for control plans, while isolated from the real-time deadlines of the environment, 

nevertheless affects the speed with which the system can achieve its long-term goals. For
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example, while the AIS builds a TAP plan that can pack a new type of part, the RTS may 

have to halt the conveyor belt if it has filled up the table (buffer) capacity. In that case, the 

slow planning system is delaying achievement of the system’s long-term goal of filling boxes, 

although the RTS is still guaranteeing the control-level goals of avoiding failure. In other 

words, while CIRCA does isolate the planner from the environment’s control-level deadlines, 

there are still longer-term, non-critical timeliness concerns that motivate the desire for a 

system which builds plans more rapidly.

One way to address this type of exponential explosion is to use abstraction— we can 

reduce the enumeration of part-shape features by using more abstract values for those 

features. In the Puma domain, this approach was easily implemented by defining two 

abstract classes of part shapes: KNOWN and UNKNOWN. The system is assumed to have already 

derived a part-packing strategy for all KNOWN parts, while UNKNOWN parts must be put on 

the table until a suitable algorithm is derived. With these changes, the part-shape features 

have only three possible values, and the state space is reduced to 826 enumerated states, 

no matter how many different actual part shapes are possible. The state space in this case 

is smaller than the previous three-value case (1294) because the system does not know how 

to put UNKNOWN parts in the box. In the previous case, the box could be packed with two 

of the three “types” of parts (all but NIL), but the abstraction allows only one of the three 

types (KNOWN) to be packed.

Abstraction has the additional benefit of reducing the complexity of the transitions for 

the domain. In the Puma example, the original encoding method required separate trans

itions that applied to each of the individual part shapes, so that there was a pickup-square- 

from-table action transition, a pickup-triangle-from-table transition, etc. With the use 

of abstraction, these can all be compacted into a single pickup-part-from-table action 

transition, leaving the planner fewer transitions to match against.

5.4 .5  Indexical Features and Looping

Another technique similar to abstraction proves useful in domain encoding to avoid 

enumeration problems that might result from individuating specific objects in the envir

onment. As we shall see in a moment, the use of indexical features (or variables) [1] and 

nondeterminism also has advantages in the representation of repetitive agent behaviors.

Consider the problems that would arise in the Puma domain if the AIS planner attemp

ted to reason about and distinguish between individual parts in its environment: i.e., if it
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assigned names to arriving parts and had to reason individually about square21, rect- 

anglel3, etc. Clearly the system would have to know all the possible parts that might 

arrive ahead of time, or else it would need the ability to generate new names as it postu

lates the arrival of new parts, and the state space would be infinite (what would stop it 

from continuing to postulate new part arrivals?). Even if the set of arriving parts is finite, 

the state space would still be vast, since each state would have to specify the position of 

each named part.

We have already seen the solution to this problem: rather than individuating parts, 

we must encode the environment using indexical features, which refer to objects by their 

relationship to our agent. For example, in the Puma domain there is a feature representing 

whether or not a part is held in the robot’s gripper, but the specific name or identity of that 

part is never established. The only important information, from the agent’s perspective, 

is the part’s relationship to the robot. Thus indexical features abstract away from the 

identity of objects, but they do so in a slightly unusual fashion. For example, if square21 

is held in the robot’s gripper, it will be affected by the actions referring to part-in-gripper 

(and CIRCA will never give it a name like square21). Later, that same part might be 

affected by actions referring to part-on-table. Thus the mapping of individual objects to 

their “classification” by indexical features is dynamic, changing as objects move through 

the world.

Indexical methods are frequently described in the control of reactive systems, but their 

use in planners is less common. CIRCA’s combination of indexical variables and non- 

deterministic transitions leads to a uniquely powerful approach to planning repetitive and 

looping behaviors. Normally, planning looping behaviors (such as the Puma task of packing 

parts, hammering a nail, or driving a screw [52]) causes problems for planners because they 

reason about individual objects, and cannot recognize that they are building loops. For ex

ample, in the Puma domain, if a non-indexical planner first plans to deal with square21 by 

picking it up, moving it over the box, and packing it in the box, each of those operators will 

have variables bound to the specific object (square21) being affected. If the planner later 

plans to perform the same actions on rectanglel4, the actual representation of the plan 

operators will be different, because the variable bindings will be different. So recognizing a 

loop would require mapping back to general operators and comparing at that level. Even if 

this is done, it is still difficult to see how the planner would know when to look for a loop: 

when should it invoke the mapping and comparison functions, and on what portions of the
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ACTION hammer-blow
PRECONDS: ((arm-raised T) (in-gripper hammer))
POSTCONDS: ( ((arm-raised nil) (nail-flush T)) ;; Either done

((arm-raised nil) (nail-flush nil)) ) ;; or not yet. 
RESOURCES: (arm)
WCET: .5 [seconds]

F ig u re  5.16: A simple nondeterministic transition that can be used to build 
dynamically-terminated plan loops.

current plan?

Using indexical variables solves at least part of the problem in recognizing loops, be

cause operators are not specialized with variable bindings. In our Puma example, we plan 

actions that deal with part-on-conveyor and p a rt- in -g rip p e r— separate operators are 

not planned or created for individual parts, and the fact that all arriving parts are picked 

up by the same repeated action is not derived by some inspection of the plan, it is already 

represented explicitly in the single planned operator.

We will see in a moment how CIRCA addresses the other part of the loop-planning prob

lem: actually representing the loop. But first, we note that CIRCA’s use of nondeterministic 

transitions also provides leverage on the problem. When a traditional planner is building a 

looping behavior, it may have particular difficulty deriving the termination conditions for 

the looping operator. If the loop has some known number of required repetitions, a simple 

counter can be used (as in NOAH). But what if the loop termination condition is dynamic, 

and cannot be precisely determined before run-time? Suppose, for example, that the task is 

to hammer a nail into a board, and uncertainty in the wood’s density and the nail’s shape 

does not allow us to predict exactly how many hammer blows will be required. How can a 

traditional planner with fixed, deterministic operators represent this? The effects of each 

hammer blow are not really certain; either the blow may finish the task by pushing the nail 

flush, or it may leave some part of the task undone, requiring additional repetitions. CIRCA 

has no trouble representing this uncertainty, as shown by the transition in Figure 5.16.

Planning a repetitive behavior in CIRCA is equally simple, as illustrated by the world 

model for the simple nailing domain, shown in Figure 5.17. In state B , when the ham m er- 

blow action transition is applicable, the planner will project forward both of its possible 

sets of postconditions, and will recognize that it may lead to the desired state C, where
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Figure 5.17: The nailing domain world model, demonstrating nondeterministic trans
itions and looping,

(nail-flush T) holds. Thus the operator will be chosen correctly to accomplish the task. 

Projecting forward the other branch of the nondeterministic postconditions, the planner 

will also realize that the action transition may loop back onto state A, which the planner 

has already considered. Since the planner has already selected an action for that state, no 

further planning is necessary. Thus CIRCA can easily plan looping behaviors with dynamic 

termination conditions that are determined only at run-time.

The looping itself, the repetition, is inherent in all the control plans that CIRCA builds, 

because they are implemented not as traditional sequential plans but as reactive TAP 

plans. The RTS continually loops over the schedule of TAPs, repeatedly testing their 

applicability conditions and executing their actions whenever appropriate. Thus, if a world 

model contains a loop (i.e., the planner thinks the world may re-enter a state it has been in 

before), the TAP form of the control plan already ensures that the state will be recognized 

and appropriate action taken, if necessary. The planner does not need to perform any 

additional reasoning to accommodate repeated behaviors.

5.5 Summary o f AIS Features

In sum, our AIS implementation satisfies the functional requirements useful for intelli

gently designing and controlling a real-time system, as presented in Section 5.1. The AIS 

includes the following features:

• Flexible, Lisp-based Knowledge Sources.

— Unconstrained precondition expressions.

-  Unconstrained action expressions/routines.

• A multiple meta level interpreter.

• Interrupt-driven input.
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• Automatic reaction plan generation from a description of world model, goals, and 
capabilities.

• Automatic, heuristic TAP test minimization.

• Automatic TAP period assignment.

•  Automatic mapping of abstract world model features to sensing primitives.

We have presented implementation details of these mechanisms, and we have described 

guidelines for using the representations and algorithms efficiently. In particular, we have 

focused on the use of abstraction in domain modeling to combat both state-space explosion 

and related problems with planning loops and counting domains.



C H A PT E R  6 

TH E SC H ED U LER  & REAL-TIM E SU B SY ST E M  

IM PLEM ENTATIO NS

In this chapter we describe the prototype implementations of the Scheduler module and 

the Real-Time Subsystem (RTS). We provide detailed descriptions both to clarify precisely 

the way CIRCA is intended to operate, and to demonstrate the practicality of meeting the 

functional constraints imposed by the architecture.

6.1 T he Scheduler

In the final phase of generating TAP control plans, the AIS sends the accumulated 

information about the planned TAPs to the Scheduler module. The Scheduler tries to 

build a cyclic schedule that runs TAPs at least as frequently as their periods require. In 

the current implementation, the RTS can run only one TAP at a time, and TAPs are not 

interruptible, so the Scheduler does not need to consider TAP preemption.

The CIRCA diagram of Figure 1.1 showed the Scheduler as a separate entity from the 

AIS, communicating over explicit links. For ease of development and experimentation, 

those links have been simplified to simple procedure calls within the AIS; the Scheduler 

is currently implemented in Lisp within a KS run by the AIS interpreter. The main cost 

of that simplification is that the scheduling process can no longer be performed in parallel 

with other deliberative processing. In the Puma domain, this has little or no effect, since 

the scheduling process is much less time-consuming than the TAP planning.

The Scheduler uses a modified deadline-driven scheduling algorithm [42, 78] to build 

a TAP schedule. This algorithm specifies that, each time the system can choose which 

TAP to run, it should run the available TAP with the earliest deadline. To derive a cyclic 

schedule with this mechanism for choosing the next TAP to run, the Scheduler simulates the
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operation of a dynamic scheduler, incrementing a time counter and deciding which TAPs 

to run as simulated time passes. After the simulation has progressed far enough that all 

of the TAPs that must be scheduled have been invoked at least once, the Scheduler begins 

scanning the trace of the simulation, attempting to extract a loop of TAP invocations which 

meets all TAP timing requirements. The maximum possible loop size is equal to the least 

common multiple of the TAP MAX-PERIQDs.

If the Scheduler cannot build a schedule that guarantees all the TAP timing constraints, 

it will return a failure message to the AIS. At that time, the AIS may backtrack to generate 

a different proposed TAP plan, or it may make other alterations to its world model to trade 

off some aspect of its performance, in an attempt to relax the scheduling constraints that 

made a TAP schedule impossible to find. Chapter 7 will discuss those tradeoff methods in 

detail.

6 .1 .1  M od ified  D ea d lin e-D riv en  Schedu ling

The simple deadline-driven criterion for selecting the next TAP to run is optimal in 

the sense that, if any schedule is possible, this method will produce one. However, given 

the scheduling problem posed to CIRCA’s Scheduler, the deadline-driven algorithm does 

not produce particularly efficient schedules. As a simple example, consider the problem 

of scheduling two TAPs, A  and B, where A  has a runtime of 4 seconds and a maximum 

period of 10 seconds, and B  has a runtime of 5 seconds, with a maximum period of 50 

seconds. If we use the trivial deadline-driven algorithm, the schedule of TAPs will have 

11 invocations of TAP A , followed by one invocation of TAP B , and then repeat that 

pattern, as illustrated in Figure 6.1. This schedule is perfectly acceptable because it meets 

the frequency requirements for both of the TAPs. However, it is clearly not the shortest 

schedule that meets those requirements. In fact, the very simple schedule composed of 

alternating invocations of A  and B  also meets the requirements, and it is much shorter. 

This short schedule length is a major advantage from the CIRCA perspective, because the 

Scheduler is simulating this scheduling process forward to generate the appropriate loop of 

TAPs. The longer the loop, the longer it takes to generate, and the more resources that 

computation consumes. Therefore, we have modified the basic deadline-driven algorithm 

so that it will tend to produce shorter, more compact schedules. The modifications do not 

alter the optimal nature of the Scheduler: in the worst case, the Scheduler will essentially 

use just deadline-driven scheduling.
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run tim e =  4  
m ax-period  = 10

ru n t im e ^  5 
m ax-period  =  50

. A  A . A  A  A  A  A . A . A  A . A  B 
D ead line-d riven  schedu le; ----------1----------1----------1----------1--------- j----------1----------1----------1---------------  1-----■ ■ ■ ■

M odified  D D  schedu le: 

T im e;

i B A
•  •  •

;

4 4  49

F ig u re  0.1: A simple example of how pure deadline-driven scheduling can produce 
undesirable, lengthy schedules.

The primary change to the scheduling algorithm is the addition of a second “level” of 

scheduling priorities, used to schedule TAPs that would not necessarily be chosen by the 

deadline-driven criterion, when slack time is available. Slack time is defined as the time 

between the current instant in the simulated schedule, and the latest possible start time 

of the TAP T d d  chosen by the deadline-driven criterion. Essentially, this slack time is the 

amount of time available for other processing, before the system definitely must run T d d - 

If other TAPs can be found which fit within this slack time, they can be scheduled to run 

before T d d ■ Therefore, the Scheduler first finds T d d , then finds the set of “feasible” TAPs 

whose runtimes will fit in the consequent slack time. If none are available, T D d  is chosen 

to run next. Otherwise, to maintain a “fair” distribution of invocations of the TAPs, the 

Scheduler chooses to run the feasible TAP which was least-recently invoked in the schedule 

so far. This has the effect of producing a modified round-robin effect, rotating the privilege 

of a slack-time invocation among the feasible TAPs. This is not a perfectly fair round-robin, 

because at each scheduling point different sets of TAPs may fit within the slack time of the 

current T D d -

W ith these modifications to the TAP selection criterion, the Scheduler is able to produce 

the second schedule shown in Figure 6.1. At time 0, the simple deadline-driven criterion 

indicates tha t T d d  is TAP A ,  because its deadline is 10, while TAP B  has a  deadline of 

50. However, because A’s runtime is 4, there are 6 seconds of slack time before it must be 

invoked. Since J?’s runtime of 5 fits in that slack time, the system selects B  to run first. 

At the next scheduling point, time 5, Tdd  is A again, but this time only 1 second of slack
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time remains, B  will not fit, and A is selected1. At this point, since both A  and B  have 

been scheduled, the system will begin scanning for acceptable loops in the schedule so far, 

and the simple loop B A  meets all constraints.

As an example of how the Scheduler can fail, consider what would happen if TAP B  had 

a runtime of 7 seconds. At time 0, the deadline-driven criterion would select TAP A, and 

now B  would not fit in the slack time, so A would be scheduled. This would continue as 

shown in the upper schedule of Figure 6.1 until time 44, at which time B  would be selected. 

However, at this point the invocation of B  would finish after its deadline of 50, and the 

Scheduler would recognize this error condition.

Actually, this simple example can easily be recognized as unschedulable without any 

forward simulation. If we consider any single invocation of TAP A, we can see from its 

period and runtime tha t there will be at most 10 — 4 = 6 seconds of time available for other 

TAPs between the required invocations of A. Thus the seven-second runtime of B  in this 

example makes it impossible to ever schedule these two TAPs together. More generally, it 

must always be tha t case tha t, for any two of the N  TAPs being scheduled, the sum of their 

runtimes (worst-case execution times) is less than either TAP’s period.

6 .1 .2  T h e  I f-t im e  S erver  T A P

If the Scheduler is able to produce a  TAP schedule that includes all of the TAPs that 

must be guaranteed, it is possible that there are enough slack resources in the RTS to also 

guarantee some of the if-time TAPs. Putting if-time TAPs into the guaranteed schedule 

can have the beneficial effect of speeding CIRCA’s reactions.

One way to achieve this benefit would be to iteratively include additional if-time TAPs 

in the list of TAPs being scheduled, increasing the number until the Scheduler finally fails. 

At th a t time, the last successful schedule could be retrieved, and it would provide some 

of the if-time TAPs with guaranteed, scheduled invocations. The main problem with this 

simple iterative approach is that it does not share the benefits of the slack time evenly over 

the if-time TAPs: it is not “fair.” Whichever if-time TAPs actually get scheduled receive 

the full benefit of being guaranteed, while the remaining if-time TAPs may never be invoked 

at all, because they remain on the if-time list.

To avoid this difficulty while still taking advantage of possible slack resources, we have

1 Actually, even if B  did fit it would not be selected here; the T d d  T A P  is included in the least-iecently-run 
round-robin , so A  would be selected.
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implemented an “if-time server” TAP, which tries to fairly distribute the available slack time 

amongst all of the if-time TAPs. Instead of scheduling individual if-time TAPs when slack 

resources are available, the AIS builds an instance of the if-time server TAP and passes it 

to the Scheduler with the guaranteed TAPs. When executed by the RTS, the if-time server 

TAP performs its own round-robin over the if-time TAPs. On each invocation, the server 

TAP executes the if-time TAP pointed to by its round-robin pointer, and then increments 

that pointer to the next if-time TAP. The overhead of the server TAP is extremely small, 

because it only increments that single pointer.

The if-time server TAP could also implement a more complex method of choosing the 

next TAP to run. For example, the server could use priorities assigned to TAPs, and 

maintain a multi-level priority queue similar to an operating system. Or, the server TAP 

could be given additional knowledge of the domain and the constraints between TAPs, and 

select appropriate TAPs to run based on that information. There are two constraints on this 

sort of more complex server. First, the overhead of the server would be increased by this 

complexity, consuming more of the available slack time. Second, the additional knowledge 

of priorities or other information must be derived and built into the server TAP. For now, 

the round-robin server provides a low-overhead, low-information alternative that distributes 

slack time as evenly as possible.

The server TAP is able to invoke any of the if-time TAPs because the AIS builds it with 

a worst-case execution time set to the maximum of the worst-case execution times of all 

of the if-time TAPs. Deciding on a MAX-PERIOD to assign to the server TAP is somewhat 

more difficult. Ideally, the if-time server TAP would be given a period tha t would cause 

it to be invoked frequently enough to use the slack resources, but not so frequently as to 

make a schedule impossible. Since it is not possible to directly determine this value, we 

have implemented a simple iterative heuristic to try to optimize the MAX-PERIOD assigned 

to the if-time server TAP.

As a starting point, the server TAP is assigned a MAX-PERIOD equal to the period of 

the first schedule produced (containing just the required TAPs, without any if-time server 

TAP). Thus if all other scheduling constraints aTe met, the server TAP will be invoked once 

per cycle through the new TAP schedule. If the Scheduler is able to produce a successful 

schedule with these constraints, the AIS then decreases the server’s period by some amount 

(currently by 25%), and repeats the scheduling process. This iteration terminates when the 

Scheduler fails, and the last successful schedule is restored and used. If the initial server
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TAP MAX-PERIOD assignment does not result in a feasible schedule, the AIS can also increase 

the value iteratively for a few cycles, until a successful schedule is produced.

6 .1 .3  D iscu ssion

We have shown how the Scheduler is able to produce cyclic schedules of TAPs that can 

be shorter than those built by simple deadline-driven scheduling, and how the if-time server 

TAP can allow the system to make guaranteed utilization of slack time. It is important 

to note that our modifications to the deadline-driven algorithm take effect only when the 

schedule utilization is fairly low; when the utilization is high, slack time is minimized and the 

second level of scheduling is never possible. As a result, our modifications alter the Scheduler 

performance for low-utilization domains, but in worst-case, high-utilization domains they 

have no effect, and the system defaults to pure deadline-driven scheduling.

Experiments using these mechanisms on hundreds of variations of the Puma domain 

(involving different goals, part arrival rates, emergency alert rates, etc.) have shown that 

the Scheduler produces efficient, short schedules very quickly, or else rapidly recognizes 

that a particular set of TAPs is not schedulable. Most Puma domain schedules consist of 

between 15 and 35 TAP invocations, and are generated in well under a minute.

However, in the worst case, the Scheduler might have to construct a schedule as long 

as the maximum possible loop size, equal to the least common multiple (LCM) of the 

TAP MAX-PERIODs. While this does not pose a problem for many hand-crafted real-time 

systems, in which the task periods are carefully arranged to be simple multiples of each 

other, the automatically-generated TAP periods created by CIRCA are not so convenient. 

For example, in one version of the Puma domain, the maximum possible schedule loop 

for ten TAPs includes at least 1042 TAP invocations2. Thus the implementation of the 

Scheduler within an interruptible KS is a good choice; the AIS can use a timer interrupt to 

make sure that the Scheduler returns a result within a reasonable amount time, as described 

in Section 5.2.1. If the timer interrupt halts the Scheduler, then the AIS might decide that 

some modifications are necessary to the planned TAPs to make the scheduling processing 

easier.

For example, the AIS might decide to use a heuristic method for reducing some of 

the TAP periods so that they have a smaller LCM, thus making the worst-case schedule 

much shorter. By only reducing periods, not increasing them, this sort of modification

2 As it tu rns out, th e  successful schedule loop for th a t example required only 21 TA P invocations.
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retains or improves upon the response-time guarantees that motivated the original period 

assignments. However, while the worst-case schedule may be shorter, the schedulability of 

the set of TAPs is also decreased; shorter TAP periods mean higher utilization, making it 

more difficult to fit all the TAPs into a schedule. Furthermore, there is no obvious heuristic 

for choosing how much to decrease the TAP periods to achieve a useful LCM. Currently, 

this modification has not been implemented.

6.2 T he R eal-T im e Subsystem  (RTS)

The RTS was originally prototyped in Lisp, and has since been re-implemented and 

enhanced in C. Both versions have the same basic functionality, but the C version provides 

increased speed, efficiency, and predictability.

The main program loop of the RTS is shown in C-like pseudo code in Figure 6.2. The 

RTS begins by initializing numerous variables and communication links and then loading a 

bootstrap TAP schedule. The bootstrap schedule is designed to read in a new TAP schedule 

as soon as possible from the AIS. After that initialization, the RTS simply executes the 

current TAP schedule as long as the ru n -cu rren t-schedu le  flag is set. If tha t flag is 

turned off by a TAP, that indicates to the RTS that a new schedule has been read in, 

and the RTS will drop out of its TAP-execution loop just long enough to install the new 

schedule. Switching to a new schedule is merely a matter of adjusting several pointers, such 

as the pointer indicating the current TAP within the schedule being executed.

Within the TAP-execution loop, the RTS runs through the guaranteed TAP schedule, 

evaluating the test expression for each TAP and firing those TAPs whose tests return true. 

If a guaranteed TAP does not use all of its allocated worst-case execution time, the RTS 

uses the resulting slack time to search for and invoke one or more of the unguaranteed, if- 

time TAPs. The decision to look for additional if-time TAPs to execute takes into account 

the overhead of the RTS processing time itself.

The pseudo code of Figure 6.2 is simplified in several ways from the actual C code. 

One major difference is that the TAPs for the current schedule are not kept in a linked 

list, as implied in the pseudo-code. Instead, the RTS is built with two large pre-allocated 

arrays of TAP structures. At any one time, one of those arrays holds the TAPs currently 

being executed and the other array may be loaded with the TAPs for the next schedule. 

The sw itch-to -new -schedule() routine simply swaps the array pointers used by the TAP
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initialize_rts(); 
load_bootstrap_Bchedule(); 
while (!halt)

i
while (run_current_achedule)

{
start_tap_time = current_time();
if (execute_test_expression(cur_tap)) execute.action(cur_tap); 
cur_tap - cur_tap->next; 
end_tap_time = current_time();
slack_time = cur_tap->wcet - (end_tap_time - start.tap.time); 
while (slack.time > rts_iftime.overhead)

<.
start_tap_time = current_time();
if ( cur_iftime_tap->wcet < slack_time - rts_iftime_overhead 

&& execute_test_expresaion(cur_iftime.tap) ) 
execute_action(cur_iftime_tap); 

cur_iftime_tap * cur_iftime_tap->next; 
end_tap_time = current.timeQ; 
slack.time -= end_tap_time - start_tap_time;

>
y

switch_to_new_schedule();
>

Figure 6.2: Pseudo-code for the RTS main loop.

execution and TAP downloading routines.

The primary motivation for this TAP array mechanism is to avoid replicating the TAP 

structures. A single TAP schedule may contain many invocations of each TAP, particularly 

when the TAP periods aTe diverse. If the TAPs were stored as a linked list (as they were 

n the Lisp-based RTS), then each invocation of a TAP would correspond to a replication 

of the TAP structure. This would be very inefficient, since the data within the replicated 

structures would be completely identical, except for the pointer to the next TAP. The array 

system avoids this problem, because TAPs are represented independently from the TAP 

schedule; each TAP is only stored once. Another pre-allocated array is used to hold the 

schedule, which is now represented as simply a list of indices into the TAP array. Figure 6.3 

illustrates the actual details of the implemented storage scheme. The array mechanism 

avoids a potentially large amount of data replication that might result from an inefficient 

method of storing TAPs. In the earlier version, this data replication not only used storage
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RTS inteipreter

current-TAP -pointer
Schedule array

TAP array

Action

Figure 6.3: The array-based storage scheme for TAP schedules.

space inefficiently, it also slowed down the communication of TAP schedules to the RTS; 

each TAP in the schedule was transmitted to the RTS in order, so the replication was 

propagated over the communication channel as well. The use of pre-allocated arrays and 

schedules represented by array indices avoids this inefficiency, and also avoids the time cost 

of allocating a new TAP structure each time a TAP is downloaded.

6 .2 .1  D ow nload ing a N ew  TA P Schedule

From just the main RTS code loop of Figure 6.2, it is not clear how the RTS ever gets 

a new TAP schedule. The approach is simple: the TAP schedule itself includes a TAP that 

executes the get-new -schedule function, illustrated in Figure 6.4. This function causes 

the RTS to read in a new TAP schedule from the AIS, as part of the processing of the current 

schedule. Therefore, by building this TAP into the schedule, the AIS actually determines 

how often the RTS is checking to see if a new schedule is available. When the AIS expects 

the environment to be highly dynamic and challenging for the RTS, it can cause the RTS 

to spend less time checking its input communication buffers, by increasing the maximum 

period of the get-new -schedule TAP.

The get-new -schedule function is crucial to the guaranteed performance of the RTS 

because it reads in the new TAP schedule incrementally. Each time there is data waiting 

from the AIS, the RTS will read in a constant amount (MAX_READ_LENGTH) of the new 

schedule from the AIS. This has the effect of interleaving the downloading of the next 

schedule with the execution of the current schedule, avoiding unpredictably long periods in 

which the RTS is involved in communication. All incoming communication is broken up 

into fixed-size packets whose processing is explicitly scheduled.
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char buffer [BUFFER.LENGTH]; 
int buffer.position;

void get.new.scheduleQ 
{

int read.length, end.of.message;

read.length = read.socket.message(AIS_socket,buffer+buffer.position,
MAX.READ.LENGTH, ftend.of.message);

buffer.position += read.length; 
if (end_of.message)

parse.new.schedule(buffer); 
buffer.position * 0; 
new.schedule.ready = 1;

>
>

Figure 0.4: The get-new-schedule function.

When the AIS has sent a complete new TAP schedule, it terminates the message to 

the RTS with a special flag character (‘# ’). The read-socket-m essage() function detects 

this character and sets the end-of- message flag, indicating that the schedule has been 

completely read into the RTS input buffer. At that time, as shown in Figure 6.4, the RTS 

parses the new TAP schedule all at once. This non-incremental behavior is not desirable, 

but proved easiest to implement with available automatic parser generators. Extensions to 

more powerful, incremental parsers should be completely straightforward. The grammar of 

the TAP schedule download language is described in Appendix B, which also includes an 

example schedule download message. Once the new TAP schedule is completely downloaded 

and processed, the global new-schedule-ready flag is set.

6.2 .2  Transferring Control to  a N ew  TA P Schedule

Switching control to the new TAP schedule is somewhat complex, because the system 

must continue to ensure its safety during and after the switch. From the graph model 

viewpoint, the system must only switch to a new schedule when the world is in a state 

shared by the models used to generate both the old and new schedules, as discussed in 

Section 4.6. The world states accounted for by the new schedule must include at least one 

state that is also reachable with the old schedule. If the new schedule completely subsumes
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TAP switch-to-new-schedule 
:TEST (schedule.ready T)
:ACTION (run.new.schedule)
:MAX-PERIOD 0 ;; An if-time TAP.
:TEST-TIME .0005 
:ACTION-TIME .005

Figure 6.5: A simple TAP used to transfer control to a new TAP schedule.

int schedule.ready ()

if (new_schedule_ready) return(T); 
else return(NIL);

>

void run_new_schedule ()

run_current.schedule = Oj
>

F igure  6.6: RTS primitives used in transferring control to a new TAP schedule.

the old, then the switch can occur at any time.

This is most often the case in the Puma domain, where the AIS is usually simply adding 

more capabilities to the TAP schedules by deriving new part-packing methods. As a result, 

the new TAP schedules can handle all of the same world states as the old schedules, and 

more. For these simple transfers, the TAP illustrated in Figure 6.5 is sufficient to accomplish 

a switch to the new schedule, using the RTS primitive functions illustrated in Figure 6.6. 

The TAP simply tests to see if a new schedule has been completely received, and, if one 

has, it resets the run-current-schedule flag. The RTS then terminates the TAP execution 

loop, performs several pointer swaps, and immediately returns to executing the new TAP 

schedule, as shown in Figure 6.2. Thus the transition between TAP schedules is extremely 

rapid, and can be subsumed by the execution time requirements of the switch-to-new- 

schedule TAP without great cost.

In other domains, it is more likely that the AIS will have to decide on one or more states 

from which it will switch to the next plan phase, and download TAPs to detect when the 

world is in one of those states and a new TAP schedule is available. For example, in a 

mobile robot domain each TAP schedule might be used to implement a distinct phase of a
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path plan, and the transfer of control between plans should only be accomplished when the 

robot has reached the end of one TAP plan’s path region. The world states possible once 

the robot has reached the end of the first TAP plan’s path are presumably shared with the 

TAP plan for the next path region. In that case, the transfer TAP’s test expression might be 

modified to read something like: (and  (ro b o t-s ta tu s  a t-d e s tin a tio n ) (schedu le-ready  

T )).

When building a TAP plan Pi, it is possible that the AIS will not be able to decide 

ahead of time which world model states are appropriate for the transfer of control to the 

subsequent TAP plan P j . In that case, the AIS can still implement a safe transfer by using 

a combination of the methods described above. First, the AIS builds into the current TAP 

plan P{ the simple sw itch-to-new -schedule TAP, so that Pt will transfer control to a new 

schedule as soon as it is downloaded, with no other conditions required. Then, once the 

AIS has derived the subsequent TAP plan Pj and the appropriate states in which a transfer 

should be made from Pi to Pj, the AIS downloads to the RTS a slightly-modified copy of 

Pi , in which the trivial sw itch-to-new -schedule TAP is replaced by a TAP that transfers 

control only when it detects the appropriate states3. The RTS can swap in this new plan 

without risk, because the new plan completely subsumes the current plan Pi. Finally, the 

AIS can download the new plan Pj,  and the transfer will be accomplished in the appropriate 

states.

6 .2 .3  F eedback to  th e  A IS

Communication out of the RTS to the AIS is also accomplished only within TAPs, 

as illustrated in Figure 6.7. The u nknow n-part-a rrived  TAP detects when unknown

shaped parts arrive, and notifies the AIS that a new part-packing plan is required. The 

TAP includes an explicit message-sending function, notify-A IS, whose execution time is 

included in the ACTION-TIME for the TAP. Similarly, the I/O  time required to communicate 

with the sensors and actuators is included in the timing characteristics of the TAPs that 

use those channels. Thus all communication into and out of the RTS is scheduled explicitly 

within TAPs, avoiding unpredictable I/O  delays.

This scheduled communication not only allows the RTS to behave predictably, it also 

gives the AIS control over the amount of feedback data which the RTS sends to the AIS,

3This more-complex te st expression will increase the transfer T A P ’s worst-case execution tim e. E ither 
th e  original s w itc h - to -n e w -s c h e d u le  TA P can be scheduled with ex tra  tim e, or th e  schedule can be re
generated w ith the new param eters, or the transfer TAP can be m ade an if-time TAP.
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TAP unknown-part-arrived
:TEST (typo_of.conveyor_part unknown)
:ACTION (notify.AIS unknown-arrived)
:MAX-PERIOD 0 ;; An if-time TAP.
:TEST-TIME .0025 
:ACTION-TIME .04

F igu re  6.7: A feedback TAP that detects when unknown-shaped parts arrive and 
notifies the AIS.

allowing a dynamic filtering similar to that used by Guardian [28]. If the AIS needs to keep 

close track of an environmental feature, such as the state of the Puma-domain emergency 

alert light, or the charge-status of a mobile robot’s battery, it can build a TAP that will 

send the value of that feature back to the AIS as frequently as necessary. Or, if the AIS only 

needs to be notified of rare failures or undesirable events, it can plan less-frequent feedback 

TAPs. If some feedback information is optional, the AIS could plan if-time TAPs to send 

the data only if the RTS is not busy performing other, more important tasks.

There are two significant research issues related to such feedback TAPs:

• How does the AIS decide which world model states to select for feedback TAPs?

• How does the AIS decide what information the feedback TAPs should return to the 

AIS?

Neither of these issues has yet been fully addressed. However, we have begun investigating 

preliminary approaches to these problems.

W h en  to  Send Feedback

Feedback TAPs appear to be useful in two general situations. First, the AIS might 

want to be notified of any type of progress in the system, to ensure that the TAP plans are 

achieving their goals. For example, the AIS might like to be notified when each new TAP 

plan takes control, so that it can monitor the progress of the plans. The need for this type 

of feedback is outside the limits of the world model used for TAP planning: the world model 

does not represent the state of the AIS’ knowledge. Since our focus has been on planning 

TAPs using the world model, we have not investigated general progress-monitoring feedback 

TAPs.
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We distinguish this general need for progress reports from the second type of feedback, 

used to report that a TAP plan has encountered some problem which might prevent it from 

achieving all its goals. For example, when a part of unknown shape arrives, the RTS must 

put it on the table, and it cannot pack that part into the box until a new TAP plan is 

provided. This means that the RTS will not be able to achieve its (part-on-table nil) 

goal. In terms of the world model used for TAP planning, the system has reached a dead-end 

state. That is, the world has now entered a state from which there is no way to reach any 

ideal state achieving all the system’s goals. Note that this does not mean a control-level 

goal will be violated: if the system has guaranteed all of its control-level goals, there is no 

risk of catastrophe. Only the achievement of task-level goals can become jeopardized in this 

way. This characteristic can be used by the AIS to automatically recognize situations in 

which feedback TAPs should be executed by the RTS to alert the AIS.

We have implemented a preliminary module for detecting dead-end states in the world 

model and building feedback TAPs for them. The current version successfully locates the 

many dead-ends in the Puma domain (including all the states in which an unknown-shaped 

part has already been placed on the table). In practice, the only problem with this approach 

is that it results in too many notification messages to the AIS: after an unknown part has 

arrived, every world state is a dead-end.

We are beginning to investigate two approaches to solving this problem. The simplest 

approach is to make the feedback TAP “one-shot,” so that it sends a single message to 

the AIS and then disables itself. This is a practical, simple approach but clearly not ideal, 

particularly because it is outside the scope of the world model’s representation.

The second approach is to detect the move into the dead-end region, notifying the AIS 

on that transition and not otherwise. This approach shows promise for limiting the number 

of feedback messages to the AIS and keeping the representation and motivation for that 

limitation within the bounds of the world model. This approach might lead to a TAP like 

the one illustrated in Figure 6.7, detecting when the unknown-shaped part first arrives, 

because after that the current TAP plan can never maintain all of its goals.

W hat Feedback to  Send

A significant research issue that has not yet been addressed is how the system decides 

exactly what information should be returned to the AIS. For example, in the Puma-domain 

example above, it is clear that the AIS needs to know more than simply that an unknown
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shaped part has arrived; the AIS also needs to know something about the shape of the new 

part. One possible solution is to have the RTS send back to the AIS all the information it 

has about the domain, including the shape information it extracts from a camera image or 

other sensor modality. This approach is certain to provide all the necessary information to 

the AIS, but it is tremendously inefficient. The RTS may have a great deal of sensor data 

available, and one of its purposes is to isolate the AIS from that complexity.

An alternative approach would be to have the AIS reason about what features distinguish 

the feedback-triggering world model state from the similar states in which feedback is not 

required. In the example scenario, the AIS has planned a feedback action for the arrival 

of unknown parts, but the similar arrival of known parts is dealt with by other planned 

actions. Thus a comparison of the respective world model state descriptions would reveal 

that the feedback-trigger state differs in the (type-of-conveyor-part unknow n) feature. 

The AIS must then associate that feature with the related sensor information and decide 

what should be sent as feedback.

6.3 Discussion: The RTS Really is Real-Time

We have stressed that CIRCA combines the ability to run arbitrarily complex, unpre

dictable AI methods with guaranteed, predictably real-time performance of critical control 

tasks. It is trivial to prove that CIRCA’s AIS is capable of implementing very complex 

algorithms: the system is clearly Turing complete, since it incorporates arbitrary Lisp code. 

Therefore, to completely justify our claim of combined real-time and AI, we must show that 

the RTS really can provide predictable, guaranteed real-time performance, and that the 

RTS guarantees are truly isolated from the AIS.

This seems an appropriate time to reiterate the fact that the goal of real-time systems is 

not to be “fast,” but to be “predictably fast enough.” That is, a real-time system must be 

known to operate at a rate sufficient to meet the demands of its environment. Since mere 

processing speed is easily varied by using different computer hardware, the most important 

aspect of real-time systems is actually predictability.

To show that CIRCA’s RTS is truly predictable, and thus that it provides a suitable 

execution environment for TAPs implementing real-time reactions, we will examine the 

possible sources of unpredictability in the system, including communication delays, context 

switching, and dynamic memory. We will describe how the RTS avoids unpredictability in
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dealing with each of these potential problems.

6.3 .1  C om m unication  and Interrupts

From an architectural standpoint, the I/O mechanisms of the RTS are perhaps its most 

important features, because they provide the crucial isolation of the predictable perform

ance of the RTS from the uncertain operations of the AIS and Scheduler. Unbounded 

communication delays are avoided by making all socket I/O calls nonblocking using fixed- 

maximum-length operations. Calls to socket-read, for example, are made with a limited 

input buffer size to be filled, and they return immediately no matter how much (or how 

little) data is available on the connection. Calls to socket-w rite return immediately after 

putting a limited amount of data onto the connection, whether or not the receiving end has 

gotten that data yet. Therefore, given a real-time operating system with well-understood 

system calls having bounded behavior themselves, the communication in and out of the 

RTS is incapable of causing unexpected delays, and the RTS remains fully predictable even 

while communicating with the AIS.

Unlike many systems which attempt to ensure real-time performance through rapid 

response to interrupts, the RTS does not accept any interrupts. As discussed above, the 

RTS is expected to have TAPs that explicitly check for all important conditions as quickly 

as necessary. In a sense, we have moved the polling loop out of the interrupt hardware and 

into the software RTS, so that the AIS and Scheduler can reason explicitly about the form 

and frequency of that loop. Moving the polling loop decreases its frequency, since many 

processor instructions are involved in running each TAP. For example, the pSOS+ real- 

time kernel can provide interrupt service in 6 microseconds (see Section 6.3.7), while the 

fastest possible TAP schedule can only respond in about 70 microseconds (see Section 6.4)4. 

However, moving the polling loop to software increases the architecture’s ability to control 

and predict the responses of the system. If the RTS accepted interrupts, it would be 

very difficult to make any guarantees about its performance, since the system would have 

to account for the many unpredictable aspects of interrupt-driven systems. For example, 

lower-priority interrupt handlers could never be guaranteed, since higher-priority interrupts 

would preempt and override their behaviors. Furthermore, incoming interrupts might be 

lost if they arrived during the handling of equal- or higher-priority interrupts. Because

4 Interestingly, when running under Unix, the response time using polling in the RTS is much faster 
than using interrupts, because of the expensive Unix context switch. The interrupt response tim e on the 
Unix-based RTS host machine was measured at 25000 to  90000 microseconds!
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of these and other problems, interrupt-driven systems are less suited to predictability and 

guarantees than the polling behavior of the RTS.

6 .3 .2  D y n a m ic  M em ory  A llo ca tio n

Because new TAP schedules are downloaded from the AIS and are not known a priori, 

the RTS must have the ability to dynamically allocate storage for the new TAP structures 

and schedules. This allocation is performed within the get-new -schedule TAP that reads 

in and parses a new schedule, and it is therefore fully scheduled. The maximum amount 

of memory that may have to be allocated in a single get-new -schedule TAP invocation 

is determined by the maximum size message that the TAP can read in from the AIS. 

Naturally, the host computer^ operating system must provide a predictable system call to 

implement the allocation, and the system must be provided with enough memory for the 

task. If a suitably guaranteed operating system primitive is not available then the RTS 

could be implemented to preallocate a large amount of memory before bootstrapping, and 

then allocate that memory itself in a bounded, predictable manner.

To avoid running out of memory for allocation, the RTS should also deallocate memory 

that was allocated for TAPs used by schedules that are no longer being run. There are 

several ways to implement this functionality, in order to spread the cost of deallocation 

in different ways. If the cost of deallocation is sufficiently small, the code which reads 

in a new schedule can deallocate the memory allocated to the TAP schedule which was 

last running (not the one that is currently running). In the current implementation, this 

method is available but is not necessary, because the TAP schedules we have investigated are 

not large enough to tax the several megabytes of available memory; even the larger Puma 

domain schedules use less than 2500 bytes of memory per schedule, so the AIS would have 

to send at least 400 new schedules to use up a single megabyte of RTS memory. However, 

memory preservation could prove crucial for larger-scale TAP schedules, and distributing 

the cost of deallocation across the multiple invocations of the get-new -schedule TAP may 

be useful.

An alternative would be to avoid deallocation completely unless the AIS deems it neces

sary. The AIS could either model and keep track of the amount of memory the downloaded 

TAP schedules will have consumed, or it could have the RTS run a TAP specifically designed 

to watch for low-memory conditions and notify the Scheduler and AIS if such a situation 

arises. The AIS would then download TAPs which would include memory deallocation op
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erations (and the Scheduler would be sure of not building schedules larger than the available 

RTS resources). The advantage of this approach is that it allows the system to avoid all of 

the overhead of deallocation when the overhead is not absolutely necessary. A disadvantage 

of this approach is that, because deallocation is put off as long as possible, it may lead to 

temporarily unacceptable performance degradation when the system must suddenly spend 

much of its time deallocating and reorganizing memory.

In many ways, these approaches parallel the methods used for dynamic memory and 

garbage collection in Lisp. The main difference is that the RTS does not have a difficult 

task in discovering which memory elements are no longer used: any allocated memory not 

being used by the current TAP schedule (or the schedule currently being downloaded) is 

unused, and may be deallocated. As a result, incremental deallocation is actually quite 

simple and fast for the RTS. In fact, since the pointers to the last-run schedule are available 

while a new schedule is being read in, it is trivial to recognize and deallocate those memory 

locations before allocating new memory for the new schedule. However, if we put off the 

deallocation indefinitely, the RTS will have to implement some new functionality to keep 

track of old schedules and their memory allocations, for later deallocation on demand. Thus 

incremental deallocation is much simpler for the RTS, and has the advantage of spreading 

the overhead more smoothly over the system’s operations.

TAPs themselves may perform dynamic allocation of memory, if that allocation is con

sidered as a resource consumption by the Scheduler, and thus is known to cause no problems. 

In the current implementation, TAPs could perform allocation because the C primitives they 

invoke have that ability, but we have found no use for this mechanism (yet). In the Puma 

domain, for example, proper use of indexical variables avoids the need to “gensym” a new 

symbol or variable for each instance of a block (as discussed more fully in Section 5.4.5).

6 .3 .3  C ontext Sw itching

Once a new TAP schedule is input to the RTS, the system must perform a context 

switching operation to begin executing the new schedule. As described in Section 6.2, 

the RTS implements this capability in an extremely efficient and completely predictable 

manner. The context switch is accomplished by a TAP action which sets the flag run- 

current-schedule to FALSE, making the inner RTS loop terminate. Falling out of that 

loop, the RTS performs several pointer swaps to make the relevant array variables point 

to the new schedule arrays (guaranteed TAPs, if-time TAPs, and schedule of TAPs), and
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ACTION push-emergency-button
PRECONDS: ((robot-status free) (part-in-grippor nil))
POSTCONDS: ((emergency nil) (robot-position over-button))
RESOURCES: (arm gripper)
WCET: 3.5 [seconds]

Figure 0.8: The push-emergency-button action transition.

a series of variable initializations to make the RTS read the next incoming schedule into 

the unused arrays. Thus the context switch does not require any looping or other complex 

computations, and has bounded time and resource requirements. In fact, these resource 

requirements are included within the specification of the RTS primitive which triggers the 

context switch, so that even the time used outside of the TAP loop, in the context switch 

code, is predicted and scheduled.

6 .3 .4  Shared R esources

Contention over shared resources is another potential source of unbounded delays. 

However, this poses no difficulty for the RTS because all resource usage is scheduled within 

TAPs (including the context switch time noted above). TAPs which require resources other 

than time (such as a TAP that requires the Puma gripper) will automatically include tests 

to make sure that those resources are available, unless the AIS has determined that these 

tests are redundant and unnecessary, based on its simulation of the possible world states 

(see Section 5.3.2).

For example, consider the simple push-em ergency-button action transition descrip

tion shown in Figure 6.8. The preconditions specify that the robot must be free (i.e., not 

busy) and its gripper must be empty. After the planner determines the 54 states for which 

this action is appropriate, the resulting TAP has the simple tests: (and (part-in-gripper 

nil) (em ergency T )). Note that the TAP does not bother testing the robot-status fea

ture, despite the fact that the robot (a resource) is actually required for the TAP’s action. 

The test generalization phase has determined that this test is unnecessary, because any time 

this TAP is executed and the gripper is not holding anything, then emergency alerts are 

the most important priority- the robot will not choose to do anything except respond to 

the emergency. Contention for resources is automatically avoided, because only one action 

is planned for each possible world state.
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6.3 .5  A dd itional Sources o f U ncertainty

If the RTS allows TAPs to execute loops or recursive functions, it must be sure that those 

program structures will still have a predictable worst-case performance. Therefore, although 

the system does not restrict the structure of RTS primitives, the user is required to specify 

a worst-case processing time for each primitive. If looping or recursion is involved, the 

user may ensure bounded resource usage either by using any-time algorithm methods (see 

Section 2.2.2) or by otherwise limiting the worst-case number of iterations or recursions that 

will occur. This does not preclude programming structures whose termination condition is 

determined at run-time; a worst-case bound must always be available, but the primitives 

are free to use less than that amount of time.

Faults in processing hardware, software, I/O devices, sensors, or actuators might lead to 

unpredictable performance by the RTS and the devices it controls. The RTS does not yet 

make any provisions to deal with such faults: it is currently assumed that lower-level fault- 

tolerant mechanisms are available to detect and correct all possible faults. However, the 

design of CIRCA has been tailored for future extensions in which fault-tolerance issues can 

be addressed through the use of “homeostatic” [4] or internal-state monitoring and control 

primitives. The RTS could execute TAPs which examine the state of its execution envir

onment to detect all types of faults and implement short-term, control-level workarounds 

for intermittent or temporary system failures. Longer-term faults would trigger feedback 

communication to the AIS and Scheduler, which would then modify their models of the 

capabilities of the RTS and the system it controls, to represent the faulted component. 

With this modified world model, the AIS and Scheduler would then automatically build 

new control plans that account for the faults in the system, and CIRCA as a whole would 

be cognizant of its faults and able to make rigorous statements about its behavior despite 

those faults. Of course, the immediate real-time response to faults would remain the re

sponsibility of the RTS: the system’s behavior immediately following a fault would only be 

guaranteed if the AIS had predicted the problem and scheduled a TAP to at least prevent 

any potential control-level failures.

For example, suppose that one of a mobile robot’s obstacle-detecting sensors fails, and 

the RTS is able to detect this failure during the execution of a monitoring TAP. The TAP 

could then send a message to the AIS indicating that the sensor is permanently unavailable. 

Furthermore, because the AIS has predicted that this problem might occur, the RTS will 

have TAPs that switch to an alternate sensor or perhaps implement some other actions (such
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as halting the robot) that will prevent the system from failing by colliding with obstacles. 

When the AIS builds the next control plan, it will never try to invoice the failed sensor 

because of the modified world model, so the fault will be taken into account. The AIS will 

still build plans as usual, and will still attem pt to make performance guarantees, given its 

(now more-restricted) resources.

The usefulness of this type of internal monitoring and feedback is one of the motivations 

for keeping the CIRCA Scheduler module a separate entity from the AIS, so tha t it may be 

tied more closely to the RTS than in the current implementation. Because the Scheduler 

reasons about resources available to the RTS in building TAP schedules, it is a good location 

for detailed information about faulted system components. That information may have a 

direct effect on scheduling TAPs, as well as planning and building them.

As with all fault-tolerant systems, this approach would still be subject to overload 

and failure in the presence of an excessive number of faults, or faults in unprotected system 

components. In a sense, this approach to building fault-tolerant control plans is no different 

than the normal CIRCA planning process, which considers that various occurrences in the 

world may lead to unacceptable failure. The basic CIRCA planner derives TAPs that detect 

undesirable situations where failure is impending, and prevents the failure from occurring. 

Fault recognition and handling are essentially the same problem, so CIRCA’s methods 

for planning and recognizing its ability to handle different domain deadlines are equally 

applicable to recognizing its ability to handle different faults.

6 .3 .6  T h e  R ea l P rob lem : U n ix

As noted earlier, the current RTS implementation runs under Unix, and therefore is 

subject to the vagaries of that operating system’s scheduler. The complexity of the Unix 

scheduling scheme, as well as the large number of servers and other processes on a Unix 

multiprocessing system, make it essentially impossible to guarantee any service rate or com

putation speed for a given task. Therefore, running under Unix, the RTS cannot actually 

enforce real-time guarantees in a rigorous fashion.

To illustrate the problem, Figure 6.9 show the timing behavior of a simple cursor- 

tracking TAP used in an Xwindows-based demonstration— the TAP checks to see if the 

cursor has moved in the demo window, and if it has it redraws a circle around the cursor. 

The graph shows two primary bands of timing values, one near 5000 microseconds (when 

the cursor did not move) and two bursts of timing values near 12000 microseconds, cor-
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Figure  6.9: Timing behavior of a cursor-tracking TAP, showing the unpredictability 
introduced by Unix.

responding to two periods of cursor movement when the TAP’s action was executed, using 

an additional 7000 microseconds to draw the circle. Interspersed among these clear char

acteristics are several outlying timing values that result from spurious Unix interrupts and 

delays. For example, the timing values over 15000 microseconds near the 100th invocation 

are the result of high-priority disk accesses that were audibly occurring during this test.

After briefly reviewing the steps taken to avoid some of the problems of Unix, we will 

discuss the potential for porting the current RTS to the pSOS+ real-time executive kernel.

Ideally, the RTS would be executed on a dedicated processor which would not be shared 

with other tasks, thereby making the service rate for the RTS process constant. Unix 

allows multiple processes to share a singe processor using a flexible priority-based scheduling 

algorithm, so we execute the RTS with the highest possible user-task priority, in an effort 

to make sure that it is scheduled to run as frequently as possible. Still, system tasks such 

as disk and network I/O take precedence, and the RTS may be interrupted and idled for 

potentially lengthy amounts of time (on the order of milliseconds) when these I/O demands
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are high. If the Unix machine is heavily loaded, it is also possible that the interrupted 

RTS task could be swapped out of main memory onto disk- this would result in extremely 

long delays when resuming execution of the RTS. While this event is highly unlikely on 

the current workstations with 16 or more megabytes of memory5, the RTS still takes the 

precaution of telling the Unix kernel on startup to avoid this “swapping out” behavior.

6 .3 .7  P o rtin g  th e  RTS to  pSO S+

The real solution to these problems with Unix would be to port the RTS to a platform 

running a real-time operating system, which could provide guaranteed CPU allocations 

for the RTS. During the main development phase of the current CIRCA prototype, we 

did not have access to any suitable computing platforms that were set up to control real- 

world or simulated devices. Therefore, we have not actually implemented the RTS on a 

real-time kernel. However, we have analyzed the feasibility of that task by comparing the 

programming features of the pSOS+ real-time executive [74] with the requirements of the 

current RTS implementation.

The pSOS+ kernel provides a fairly complete set of operating system primitives which 

all have completely predictable, bounded execution time. In addition, the kernel provides 

very fast and predictable context switching and interrupt response times. Running on a 

Motorola 68020 at 25MHz, pSOS+ requires 6 microseconds to respond to an interrupt, and 

19 microseconds to switch contexts to a new task. The current RTS design does not adhere 

to the philosophical orientation of pSOS+, which advocates building real-time applications 

based largely on separate, interrupt-driven tasks. However, the predictability of the pSOS+ 

system makes it well-suited to supporting the RTS polling mechanisms as well.

Each of the operating-system-related sources of uncertainty discussed above is addressed 

by a feature of the pSOS+ development system. For example, pSOS+ provides fixed-time 

memory allocation and deallocation primitives that would ensure that the RTS processing 

involved in building a new TAP plan is predictable. Likewise, pSOS+ supports standard 

socket communication methods, and non-blocking sockets can be set up as described above, 

to avoid unpredictable communication delays. The pSOS+ scheduling mechanism is pre

emptive and rigidly priority-driven, so that the highest-priority task is always running on 

the processor. Therefore, there would be no danger of a pSOS+-based RTS being swapped 

out unexpectedly, since the RTS could simply be specified as the highest-priority task.

5 The RTS occupies about 550 kilobytes of memory.
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In sum, pSOS+ is an appropriate environment for an implementation of the RTS which 

would provide the completely predictable performance required to enforce CIRCA’s guar

antees. Modifications to the current RTS code would be minimal, primarily surrounding 

the use of sockets and other system calls such as system clock accesses.

6.4 RTS Perform ance M etrics

Although the absolute speed of the RTS is unimportant, it is certainly true that we 

would like the RTS to be fast relative to its environment. Therefore, when considering 

the domains to which the current CIRCA implementation is applicable, it is important to 

consider the speed of the RTS, and the overhead involved in its processing.

For that reason (and not to show that the RTS is “real-time” ), we provide several 

measures of RTS performance, running on a Sun SPARCstation IPC. As noted above, 

this Unix machine does not provide truly predictable performance, so we characterize RTS 

performance by average values, rather than worst-case values. In the worst case, the RTS 

response time may occasionally be orders of magnitude slower than the average value, 

because of operating system context switches and interference from other tasks running on 

the host computer.

To measure the absolute speed and overhead of the RTS implementation (compiled 

with optimization enabled), we ran several hundred thousand iterations of a trivial TAP 

consisting of a test that always evaluates to T and a no-op action. The average time to 

execute each iteration of this TAP was approximately 70 microseconds. Over several runs 

of this test, the results varied on the order of plus or minus 5 microseconds, depending on 

the other loads running on the machine.

To factor out the execution time of the trivial test and action functions, and thus derive 

the actual overhead of the TAP selection, execution, and monitoring code, we also timed a 

simple sequence of the same test and action functions used in the trivial TAP. The test and 

action code took approximately .5 microseconds to execute. The time used by the trivial 

TAP is thus negligible, and the overhead of the RTS mechanisms can be considered to be 

approximately 70 microseconds per TAP invocation. The maximum possible frequency of 

TAP execution is therefore approximately 14200 TAPs per second.

Within the 70 microseconds of RTS overhead time, at least 56 microseconds (or 80%) is 

used up by the two gettim eofdayQ  system calls used to time the execution of each TAP
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to decide whether slack time is available for if-time TAPs. Clearly, minimizing the cost of 

such system calls should be a major goal of real-time operating systems development for 

applications in which timing information is required. In fact, the pSOS+ system discussed 

above provides much faster constant-time access to clock services, requiring 15 microseconds 

to get the current time on a 20MHz 68020.

Similar RTS tests were used to measure the overhead involved in the code that looks 

for an if-time TAP to execute when slack time is available. This code also contains two 

g e ttim eo fd ay () calls, to record the amount of time used by the process of finding and 

executing an eligible if-time TAP. This code, very similar to that which selects a guaranteed 

TAP, also required about 70 microseconds.

Based on individual timings of the TAP schedule downloading process for schedules of 

several different sizes, the overhead cost of reading in and parsing the new schedule is about 

30 microseconds per character. Thus the time used by the get-new -schedule  TAP on 

each invocation can be easily controlled by varying the number of characters it will read in. 

For most of the experiments in this dissertation, the TAP was allowed to read in up to 500 

characters per invocation, limiting its run-time to approximately 15 milliseconds.

These figures for RTS performance should not be misinterpreted to indicate that our 

example applications have run at a rate of thousands of TAPs per second; rather, these 

low overhead figures are meant to show that, in our example domains, the domain-specific 

processing required for TAP tests and actions is the dominant factor, and far outweighs 

the RTS overhead. For example, in the simulated Puma domain, each primitive that must 

communicate over a socket with the simulator requires nearly .04 seconds to execute, sev

eral orders of magnitude longer than the RTS overhead. In the Xwindows demonstration 

domain6, the fastest-response domain we have investigated, the RTS executes on the order 

of 20 TAPs per second (although, as described in Section 7.1.1, this rate is much slower 

than necessary, in order to make the user interaction have more obvious effects).

Absolute speed measures of the RTS implementation are useful only as a guideline in 

choosing domains to which this system may be applied. The RTS we have described can 

run hundreds or thousands of TAPs per second at best, and thus it is not suited to domains 

requiring nanosecond response times. However, for many domains in which the system will 

control physical devices such as robots, the speed of the current RTS implementation is 

more than adequate, because the slow domain speeds and the inertial effects of mass make

6 Described fully in Section 7.1.1.
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control frequencies above 10 to 100 cycles per second unnecessary. Likewise, applications 

requiring communication with sensors or human users have limits on the required interaction 

frequencies that should be within the current RTS’ capabilities.



C H A PT E R  7

EVALUATION: TR A D EO FF M ETHODS

The goal of evaluating CIRCA is not to demonstrate quantitative improvements over 

the performance of traditional AI, reactive, or real-time systems. We do not wish to 

show that CIRCA runs faster than previous systems, or uses less memory, or other such 

implementation-dependent measures. Rather, our goal is to show that CIRCA provides per

formance capabilities that are fundamentally, qualitatively different from those previously 

available.

We have already proven that CIRCA combines the ability to run arbitrarily complex, 

unpredictable AI methods with guaranteed, predictably real-time performance of critical 

control tasks. One particularly interesting aspect of CIRCA’s introspective nature is that it 

performs its own plan evaluation and verification; that is, if the Scheduler and AIS are able 

to build a complete TAP schedule, then CIRCA guarantees all of its control-level tasks, and 

no external performance proofs are necessary. Assuming that the system is given correct 

descriptions of its primitive capabilities and the environment, CIRCA automatically derives 

correct, fully-scheduled control plans whose behaviors are well-understood.

Thus, if the system is given sufficient resources to guarantee all of its goals, there is very 

little to evaluate. Instead, our evaluation of the CIRCA implementation and its collective 

behavior will focus on the system’s abilities when resources are overconstrained. By reas

oning explicitly about its own guaranteed behaviors, CIRCA is able to make “conscious” 

tradeoffs along performance dimensions which have been inaccessible to previous intelligent 

control systems. This ability is fundamentally different from other systems which base their 

performance tradeoffs on estimates or experimentation. Because CIRCA is able to expli

citly and accurately reason about its own predictable performance, it can not only recognize 

overconstraining domains, it can also analyze the potential effects of various changes to its 

goals or plans.

136
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To demonstrate the CIRCA tradeoff mechanisms and show how they provide qualitat

ively unique performance, this chapter describes the results of several experiments in which 

CIRCA makes different performance tradeoffs, automatically yielding behaviors tailored to 

the available resources. Note that these tradeoff methods are not heuristics themselves; 

they can be implemented by simple procedures making bounded changes to the CIRCA 

data  structures describing the world model, the current control plan, etc. Furthermore, the 

effects of those changes are well-understood; CIRCA can explicitly reason about the impact 

of applying its various tradeoff methods on the system’s performance. However, choosing 

which tradeoff method to apply in a particular situation remains a heuristic decision we 

have not yet addressed.

The experimental data in the following sections was produced using several variations 

of the basic Puma domain, as detailed in each discussion section. The complete description 

of the basic Puma domain is listed in Appendix E, including the timing values used for each 

of the RTS primitives.

7.1 T actical Tradeoffs by the RTS

As discussed in Chapter 2, CIRCA is designed to implement both tactical and strategic 

performance tradeoff methods, by combining the strengths of the real-time subsystem and 

the AI subsystem. Tactical, run-time tradeoffs are the responsibility of the RTS, which 

dynamically adjusts its use of resources to meet the current state  of the world. In this 

section, we will demonstrate two ways the RTS implements these tradeoffs.

7 .1 .1  T radeoffs v ia  I f-t im e  T A P s

The if-time TAPs executed by the RTS can allocate resources that only become available 

at run-time. To demonstrate the if-time TAP capacity for dynamic tradeoffs, we performed 

tailored experiments in the simple “bouncing box” domain, shown in Figure 7.1. This 

domain provides an interactive, highly visual, and intuitive illustration of the if-time TAP 

mechanism. In this graphical simulation domain, the CIRCA control system is responsible 

for meeting two hard deadlines. First, the system must bounce the left, filled box around 

the graphics window, moving the box a small amount at least once every .05 seconds. This 

simple, regular task emulates many types of “heartbeat” real-time tasks tha t do not vary 

over time. The second real-time task is more dynamic: whenever the mouse-controlled
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Figure 7.1: The simple “bouncing box” domain.

cursor is moved in the window, the control system must track its motion by drawing a 

circle around it, at least once every .05 seconds. This task has the visual effect of producing 

a circle that smoothly tracks the cursor motion. The cursor-tracking task represents a 

dynamic, unpredictable load on the system which may vary at run-time between requiring 

no resources (when the cursor is not moving) and requiring some fixed maximum amount 

of resources (used to draw the circle). To take advantage of the resources that may thus 

be made available at run-time, the domain also includes an optional task of bouncing the 

rightmost box, drawn hollow to distinguish it from the box which must be bounced regularly. 

The complete domain description given to CIRCA is listed in Appendix E.

By implementing the optional box-bouncing operation as an if-time TAP, CIRCA is able 

to take advantage of the dynamic nature of the environment. Figure 7.2 shows how many 

iterations of the individual TAPs for each task were executed under varying loads of cursor 

motion, created by a human user moving the mouse for varying amounts of time.

As shown in the graph, when the cursor was not moving at all, the optional box-bouncing 

TAP was executed nearly as many times as the mandatory, real-time box-bouncing TAP1. 

However, as the amount of cursor motion increased, the cursor tracking TAP used up its 

allocated time more frequently, and the optional box-bouncing TAP was able to use slack

1 There are actually slightly fewer if-time TA P executions because occasional Unix delays decrease the 
am ount of slack time available below the amount needed for the if-time TAP. See Section 6.3.6 for more.
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F ig u re  7.2: Performance results as an if-time TAP makes tactical tradeoffs.

time less frequently. At the extreme, when the cursor tracking TAP was executing on every 

iteration, the optional TAP was completely shut out, and received no execution resources at 

all. Thus if-time TAPs can implement a form of any-resource algorithm (see Section 2.2.2), 

using as much resource (here, computation time) as available, but providing no guaranteed 

performance quality (here, the if-time box stops entirely when the cursor is moving too 

much).

It is interesting to note that the primitives used in this domain are much faster than 

actually necessary to meet the deadlines assigned. We added artificial delays to the primit

ives and chose the relatively long deadline timings for two reasons. First, the longer timing 

values reduce the relative magnitude of the timing variations introduced by Unix (see Sec

tion 6.3.6). Second, the slower primitives make the user’s interaction (changing the mouse 

position) have more significant effects on the behavior of the system. If the primitives are 

used without added delays, the RTS can execute several hundred TAPs each second, so 

only a small percentage of the cursor-tracking TAPs will ever be executed to actually track 

the cursor (because Xwindows does not update its readings of the cursor position quickly 

enough).
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7.1 .2  Tradeoffs v ia  P lanned  B eh aviors

The RTS can also implement dynamic performance tradeoffs simply by executing the 

reactive plan sent to it by the AIS. This plan itself may specify how to make tradeoffs in 

behaviors based on conditions that can only be determined when the plan is being executed. 

Each step of a reactive TAP plan is conditioned on various tests, and some planned processes 

that are initiated by TAPs may be interrupted, halted, and resumed, whenever necessary. 

These interruptions are planned behaviors, implemented as separate TAPs, but their effect 

is to make the RTS dynamically assign resources (such as the Puma arm) to different tasks 

depending on the environment.

To demonstrate this capacity in the Puma domain, we disabled the conveyor belt and 

initialized the simulation with four parts already queued on the table, waiting to be packed 

in the box. The conveyor was eliminated to avoid the complicating effects of newly-arriving 

parts. Both the TAPs performing the packing operations and the TAPs that respond to the 

emergency alert light were put onto the guaranteed TAP schedule. This does not mean that 

the entire packing sequence was guaranteed to succeed, but rather that the several TAPs 

required for that sequence were definitely being executed periodically, as opposed to in an 

if-time manner. This has the effect of isolating the planned behaviors implemented by the 

TAPs from the complicating dynamic effects of the if-time mechanism. So, in this modified 

domain, the Puma must try to pack the waiting parts into the box, but that behavior may 

be interrupted by emergency alerts. To demonstrate the long-term tradeoff behavior of 

these planned TAPs, we varied the arrival rate of alerts, and measured the effect of that 

parameter on the total time required to pack all of the waiting parts.

Each time an alert arrived, the Puma would have to make sure its gripper was empty (by 

putting back down a part, if it had already picked one up from the table), and then move to 

push the emergency button. Once the button was pushed and the emergency cancelled, it 

would immediately resume the process of picking up and packing the parts from the table. 

As shown in Figure 7.3, the RTS behaved as expected, packing the parts more quickly when 

fewer alerts arrived during the packing task. The zoomed-in graph in Figure 7.3b shows 

that there was considerable variation in the actual amount of time required for the packing 

task given any particular number of interrupts. This variation is the result of the differing 

costs of responding to interrupts that occurred during various phases of the part-packing 

plan— if the interrupt occurs before the robot has picked up a part, the response time can 

be faster, and the part-packing will be resumed more quickly. If a part is already being
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F ig u re  7.3: Trading off packing parts for emergency responses.

moved towards the box and the interrupt arrives, the robot must move back over the table 

stacking area, put the part down, and then push the button.

This example clearly illustrates the system’s ability to make tradeoffs in run-time per

formance based on planned reactive behaviors. Because the system is able to interrupt the 

ongoing execution of the part-packing series of reactions, in order to respond to the more- 

urgent emergency alert, it trades off the timeliness of achieving the task-level goal of filling 

boxes for the timeliness of responding to control-level emergencies and preventing failure.

7.2 S trategic Tradeoffs by th e AIS: B eing Intelligent A bout 

R eal-T im e

Given the truly predictable, real-time performance of the RTS demonstrated in Sec

tion 6.3, CIRCA’s major innovation is its ability to reason about, design, and adjust that 

real-time performance based on its analysis of the domain: that is, CIRCA is “intelligent 

about real-time.” To illustrate and evaluate this capability, we have designed a number 

of experiments that show how CIRCA can respond to constraints on its environment and 

its resources by making explicit, intelligent tradeoffs in the behaviors it implements on the
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RTS.

CIRCA currently has several ways of recognizing that the domain is overconstrained, 

and that the system cannot guarantee all of its control-level goals. During the action- 

planning phase, CIRCA may finish a complete search of the space of possible reaction plans 

and find that there are no suitable plans that can prevent failure. In that case, the TAP 

planner will essentially backtrack off the top of its stack, and the AIS interpreter can trap 

this error and recognize the problem. Or, if the AIS spends too much time trying to build 

a TAP plan or schedule, it may time-out and be alerted by the timer interrupt described 

in Section 5.2.1. Finally, the TAP planner may come up with a set of desired TAPs which 

are then rejected as unschedulable by the Scheduler. This is the most common way of 

recognizing an overconstrained domain: a suitable TAP plan exists, but it cannot all be 

guaranteed. At this point, the standard TAP planning method would backtrack to make a 

different choice and produce a modified TAP plan. Alternatively, the AIS might decide to 

make a tradeoff instead, somehow easing the scheduling problem to make the current TAP 

plan more acceptable.

In response to any one of these signals that a particular domain is proving difficult, 

CIRCA may make one of several tradeoffs. The following sections describe the tradeoff 

methods that have been implemented on the prototype CIRCA system. The tradeoff meth

ods are generally cast as either alterations to the world model used for planning TAPs, or as 

changes to the TAPs themselves. For each of the main tradeoff techniques, we first provide 

details on the type of changes being made to the system, and a general description of the 

expected effects. We then describe experimental results from an example application of the 

tradeoff method, and we generalize these experimental results to examine the broader issues 

relating to the tradeoffs, including what types of information are required, and when each 

particular tradeoff might be appropriate.

7.2.1 Ignoring a Tem poral Transition to  Failure

We have identified and implemented several methods by which the AIS can modify 

its world model to account for resource limitations, so that it builds TAP plans that make 

various types of performance tradeoffs. These modifications correspond to the various types 

of transitions (temporal, event, and action) used in the model structure. We begin by 

describing the planning-time tradeoffs achieved by simply deleting or ignoring one or more 

temporal transitions that lead to failure in the world model. This corresponds to the planner
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not even considering that some ongoing process will ever lead to failure. As a result, the 

TAP that was planned to preempt that temporal transition to failure (TTF) may be affected 

in several ways. In the following material, we will examine in detail one example of the 

types of performance tradeoffs that result from simply ignoring a TTF. The experimental 

results for this first example are particularly lengthy because we describe several aspects 

of the domain that initially interfered with the desired behavior. We then outline several 

other possible outcomes, but do not investigate them in depth because they represent minor 

variations.

O ne Possible R esult of Ignoring a T T F

If the AIS ignores a TTF from a particular state, it is possible that the AIS will still 

choose the same action for that state, but that the action will no longer be preventing a 

failure. Because the action is not preempting a TTF, it will be implemented by an if-time 

TAP. Thus, ignoring a TTF can have the net effect of moving a TAP from the guaranteed 

list to the if-time list, making the scheduling problem easier. However, performance will 

suffer because the system no longer guarantees to execute the affected TAP.

Assuming that the relaxation of the TAP scheduling requirements due to ignoring the 

TTF makes a schedule feasible, this change to the world model effectively voids the guar

antees that CIRCA was previously trying to ensure. The system will no longer guarantee 

to avoid the failure led to by the ignored TTF. However, because in this case an action was 

planned even without the TTF, the system will still avoid failure whenever the if-time TAP 

implementing the planned action is able to fire and preempt failure.

In the Puma domain, for example, the AIS might decide to ignore the possibility of a 

part falling off the conveyor, perhaps because it is highly unlikely that the part will really 

fall. As a result, when examining a state in which a part is waiting on the conveyor, the AIS 

will no longer be required to plan a pickup-part-from -conveyor action to avoid failure. 

However, the action will still be planned because it is useful in achieving the system’s goals: 

the robot must pick up the part in order to pack it in the box, which satisfies the goal 

(part-in -box  T).

Schedulability Effects o f Ignoring a  T T F

Figure 7.4 shows the effect on schedulability for a range of arrival rates for emergency 

alerts and parts. If the arrival rates match a point below the lower, “normal plan” curve,
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Figure 7.4: The improved schedulability achieved by ignoring a TTF.

then the system can build a schedule that will guarantee to both avoid emergency failures 

and prevent parts from falling off the conveyor. The form of this curve illustrates the 

tradeoff that the scheduling mechanism can make between tasks; when the emergency rate 

is relatively high, the system will still build a schedule, as long as the part arrival rate is 

sufficiently low that the Scheduler can allocate more resources to the tasks that respond to 

the alert. Conversely, when the emergency rate is lower, the system can deal with a faster 

rate of arriving parts. If the arrival rates match a point above the lower curve, then the 

system cannot build a schedule that will guarantee to avoid both emergency failures and 

dropping parts. However, if the system ignores the part-falls-off-conveyor TTF, then it 

can build guaranteed schedules for all of the instances below the upper line, the maximum 

rate of emergency alert arrivals that can be handled with the given primitives. The part 

arrival rate is no longer critical to the scheduling problem, because the pickup-part-from- 

conveyor TAP, with a period determined by the part-falls-off-conveyor TTF, is no 

longer being scheduled and guaranteed.



145

Performance Effects o f Ignoring a TTF

To illustrate the non-guaranteed nature of the resulting behavior, we implemented this 

tradeoff method in the Puma domain, increasing the rate of emergency alerts and part 

arrivals so that the original plan of actions is not schedulable. The AIS then removes 

the part-falls-off-conveyor TTF from the world model, re-plans, and builds a new TAP 

plan in which the pickup-part-from-conveyor action is implemented by an if-time TAP 

rather than a guaranteed TAP. We expected that, as parts and emergency alerts arrived 

more frequently, the number of parts falling off the conveyor would increase, as the system 

had less and less free time to apply to if-time behaviors.

Interestingly, our initial experiments with this method of modifying the world model 

revealed an aspect of the resulting behavior which we did not anticipate. Figure 7.5 illus

trates the behavior displayed by the first few test runs, comparing the number of failures 

(due to parts falling off the conveyor) with the arrival rate of parts. For these experiments, 

the delay between emergency-alert arrivals was fixed at 25 seconds, and the failure count 

was collected after eight parts had arrived and either fallen off of or been removed from the 

conveyor. As shown in the figure, the number of dropped parts is not strongly correlated 

with the rate of part arrivals, although at the higher arrival rates there is a tendency to 

have more dropped parts. Still, even at the lowest arrival rate shown, there were instances 

where many of the arriving parts fell off the conveyor. The cause of this behavior is not an 

aberration in the if-time TAPs or some other fault; rather, it is a result of a choice that was 

made during the planning phase.

When the planner was no longer required to guarantee that parts would be removed 

from the conveyor before a deadline, the goal of having no parts on the conveyor [(part- 

on-conveyor NIL)] became equally ranked with another goal, that of having no parts 

left on the table [(part-on-table NIL)]. As a result, when the planner chose an action 

for a non-emergency state in which parts are available on both the conveyor and table, 

neither part was preferred for packing into the box. Using arbitrary ordering information 

to resolve this tie, the planner initially chose to pick up and pack the part from the table. 

With the emergency alert arrival rate set near the maximum possible response rate, the 

system was frequently interrupted by an emergency while trying to pack a part from the 

table into the box. It would then replace the part on the table, push the emergency button, 

and return to the part on the table. This looping behavior, once started, left the system 

unable to respond to any subsequently-arriving parts on the conveyor belt. Thus, no matter
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Figure 7.5: The non-guaranteed, if-time behavior resulting from ignoring the part- 
falls-off-conveyor TTF. Note that circles represent more than one data 
point. The scale was chosen to match later graphs, for ease of comparison.

what the frequency of part arrivals, once the system entered this pathological cycle it was 

unable to respond to later arrivals. Note that this behavior is not erroneous: the planner 

was explicitly told that it no longer needed to guarantee to avoid dropping parts, by the 

removal of the TTF. Thus, without any other preference knowledge, parts off the table or 

off the conveyor are equivalent.

To resolve the tie between picking up parts on the table and on the conveyor in a 

more rigorous fashion, we simply employed the repeat-goals mechanism in the planner (see 

Section 5.3.1) to add priority to the (part-on-conveyor NIL) goal. This makes picking 

up parts from the conveyor yield the extra benefit of achieving a repeat goal, so the planner 

selects that action over picking up a part from the table, when both are applicable.

Even with this change in the TAP plan, the system still displays unusual behavior, 

as shown by the data in Figure 7.6. Observations of the modified TAP plan actually 

running revealed another source of fluctuations in the number of parts dropped. Because 

the emergency alert arrival rate was fixed at a constant value, it was possible for the phases of
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the periodic part arrivals and emergency alerts to match in both beneficial and detrimental 

ways. At some times, the arrivals rates would be “in sync,” so that the robot would finish 

packing a part just as an emergency alert arrived. Because the RTS did not need to perform 

any cleanup actions (such as putting a part down on the table), the emergency received a 

rapid response, and thus when the next part arrived there was still some delay before the 

next emergency could occur. The sharp dip in Figure 7.6 at a part arrival frequency of 5 

parts per minute is caused by precisely this effect: the arrival rate of parts and emergencies 

were nearly on harmonic frequencies (12 seconds between parts, about 25 seconds between 

alerts). The relatively short duration of this test (only 8 parts arriving) allowed the system 

to remain in the beneficial portion of the synchronization for long enough to pack almost all 

of the parts, despite the lower quality of performance achieved at both immediately higher 

and lower part arrival rates.

In other situations, the arrivals could be synchronized in a detrimental way, so that 

the emergency alert would arrive immediately after the robot had just picked up a part.
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As above, this leads to an extended sequence of actions to respond to the emergency, thus 

squandering the delay before the next emergency, and making it more likely that the next 

part picked up will also not be packed.

As with the previously-described behavior, these synchronization effects are not errors— 

in fact, the detrimental synchronization described above is precisely the sort of condition 

used to derive the worst-case performance of TAPs (see Section 4.3). Thus the guarantees 

made by the planner still hold in these situations. Since the planner has given no guarantee 

that it will avoid dropping parts off the conveyor, it is simply doing its best to avoid these 

problems. These results show that it might be very useful for a system to have a way 

to recognize and avoid such pathological synchronizations; a small added delay or altered 

decision could dramatically alter performance in some cases. For example, if the system 

recognized that it had arrived at the emergency alert button only after a relatively long 

delay, and thus another alert might be imminent, it could hesitate near the alert button, 

ready to respond quickly and then switch to packing parts during the subsequent alert-free 

period.

To nullify the synchronization effects and show more clearly that the revised plan per

forms better in less-heavily-loaded situations (when the if-time TAPs can more frequently 

pack parts), we modified the simulation environment so that emergency alerts arrived with 

random delays uniformly distributed in the range of 25 to 30 seconds. With this change to 

the environment, the system displays behavior more in line with our intuitions, as show in 

Figure 7.7.

Generalizing Experim ental Results

In any-dimension algorithm terms, this modification of the world model has traded off 

many aspects of the system’s performance in exchange for guaranteeing a subset of reactions. 

The timeliness and completeness of the reactive system’s behaviors (i.e., the guarantee that 

it will respond correctly, and in time, to all situations) has been lost, because there are some 

states for which its reactions are not guaranteed. However, it is notable that the system can 

still make guarantees about some of the world states: it can, for example, guarantee that it 

will avoid failures resulting from the emergency alert, because the actions preempting the 

em ergency-failure TTF are still guaranteed.

Thus this technique of ignoring a TTF in order to reduce the resource requirements 

of a particular environment is useful in situations where the resulting loss of guarantees is
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Figure 7.7: The final behavior after ignoring the part-falls-off-conveyor TTF, pri
oritizing parts arriving on the conveyor, and randomizing emergency alert 
arrivals.

tolerable. There are two reasons that CIRCA might decide this is the appropriate method:

1. The TTF to be ignored represents a process that rarely actually operates at its worst- 

case rate, so in all likelihood the RTS will prevent failures even with an unguaranteed, 

if-time TAP.

2. The failure mode which the TTF leads to may be reconsidered and treated as non- 

catastrophic. In the Puma example, this would correspond to modifying the part- 

falls-off-conveyor transition to lead instead to a non-failure state, possibly distin

guished by an additional feature such as (part-on-floor T).

A lternative R esults o f  Ignoring a TTF

Several other outcomes are possible when the AIS chooses to ignore a TTF. For example, 

it is possible that, by ignoring one TTF from a state, a different temporal transition becomes 

dominant and still causes the planned action for that state to meet a deadline. In general
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this will mean that the m inA  for the planned action will be longer, but the TAP will still 

need to be scheduled. The resulting tradeoffs are similar to those above, in that the system 

can no longer guarantee to avoid all types of failures. In this case, however, no TAPs 

are moved out of the guaranteed list: instead, the MAX-PERIOD of one of the TAPs will 

be increased, thus decreasing the desired utilization, and making the scheduling problem 

easier.

In the Puma domain, for example, the periods of many of the TAPs are constrained by 

both the part arrival rate and the emergency arrival rate. Consider, for example, a state 

in which the emergency light is on, the robot is holding a part, and a part has arrived 

on the conveyor belt. An abstracted version of one such state is illustrated in Figure 7.8. 

Both the em ergency-failure TTF and the part-falls-off-conveyor TTF are applicable 

to this state. In response to these threats of failure, the planner will build a TAP to place 

the part from the robot’s gripper onto the table as quickly as possible. If the m in A  of 

the em ergency-failure TTF is fairly long, then it is possible that the tightest constraint 

on the planned TAP will be derived from the m inA  of the part-falls-off-conveyor TTF. 

Now, if the part-falls-off-conveyor TTF is ignored because the AIS has decided to make a 

performance tradeoff, the same action will still be planned for this state— it is still necessary 

to avoid failure due to the emergency-failure TTF. However, now the TAP’s MAX-PERIOD 

will be increased, because it is derived from the longer m in A  of the em ergency-failure 

TTF.

Because this result of ignoring a TTF keeps all the same TAPs on the guaranteed 

schedule, it is preferable to the previous example in which a TAP was moved to the if- 

time list. Leaving the TAP guaranteed means that it is still assured of being run at some 

frequency, albeit lower than that required by the ignored TTF. In the previous case, the 

affected TAP may never be run at all, if slack time is not available.

Another slightly different result is possible if the action that was planned to preempt the
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ignored TTF is also used to preempt some other TTF out of some other state. As above, 

the m in A  for the action may be relaxed if the ignored TTF was the dominant, shortest 

deadline for which the action was planned. In addition, however, the number of domain 

states for which the action transition is planned will be reduced, and the complexity of the 

TAP implementation may be either increased or decreased.

The complexity of the TAP test expression may increase (despite intuition) because of 

the test minimization operation (see Section 5.3.2). The decision tree formed by ID3 may 

be more complex if a smaller set of positive cases (states where an action is applicable) 

is given to the algorithm. With a larger set of positive examples, it is possible that the 

system would be able to find a more-general, shorter set of tests which would suffice. With 

a smaller set of positives, it may be necessary to include more feature tests to increase the 

selectiveness of the TAP. As a result, the exact effects of ignoring a TTF in this situation are 

hard to predict. While the schedulability of the system will generally be improved, because 

the period of the TAP is increased, the potential for increasing TAP tests may offset that 

improvement. More costly tests may make the affected TAP more difficult to schedule.

In the extreme case, ignoring a TTF may cause the planner to completely eliminate one 

or more planned actions, thus removing TAPs from the list to be scheduled. If an action 

was only planned originally to preempt failure (or as a “precursor” to that preemption), and 

was not instrumental in achieving any other system goals, then the action may be removed 

entirely. For example, if CIRCA ignores the em ergency-failure transition in the Puma 

domain, it will completely alter the world model and avoid planning the push-em ergency- 

button action. Depending on the frequency of part arrivals, it may also eliminate the need 

to put parts on the table temporarily, and thus ignoring this one TTF could also remove 

the stop-m oving and place-part-on-table actions from the plan. These latter actions 

are precursors that were included in the plan to establish the preconditions of the action 

tha t was planned to preempt the TTF, and thus they are also unnecessary.

While moving a TAP to the if-time list means that, in non-worst-case situations it may 

be still executed quickly enough, deleting a TAP altogether provides no such potential. 

Since if-time TAPs do not use any resources when the RTS is pressed for time, avoiding 

building if-time TAPs does not save any significant RTS execution-time resources.

The only additional benefit of not building a TAP is that it saves AIS planning time. 

Because of that effect, this tradeoff method can be usefully applied if the AIS has timed 

out during the planning process because the domain is simply too complex.
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Sum m ary o f Ignoring a TTF

We have seen how the simple world model change of ignoring a TTF can have dramatic, 

varied effects on the overall behavior of a CIRCA system. In particular, this modification 

of the model can result in the following direct effects:

• Moving a guaranteed TAP to the if-time list.

• Increasing the MAX-PERIOD of a guaranteed TAP.

• Increasing or decreasing the complexity of a guaranteed TAP’s test expression.

• Eliminating a guaranteed TAP entirely.

An important feature of this tradeoff method, and of the CIRCA approach in general, is 

tha t the system can introspectively examine the predicted effects of a particular tradeoff. In 

other words, CIRCA might evaluate the worth of various tradeoff methods by examining the 

expected results in the world model. If the AIS considers ignoring a TTF, it can immediately 

recognize that the failure resulting from that TTF will be possible with the modified TAP 

plan. In addition, the AIS can examine the new world model and TAP plan to recognize 

more detailed aspects of the tradeoff. For example, if the new plan still includes all the 

same guaranteed TAPs as the original plan, then the AIS can conclude that the reaction 

previously planned to preempt the TTF is still being enforced, but at a lower rate. If the 

AIS knows that the worst-case rate of the ignored TTF is rarely achieved, this tradeoff 

option may be very attractive, because it has exchanged a decrease in one TAP’s response 

rate for the ability to schedule and guarantee the entire TAP set.

7 .2 .2  Ig n orin g  an A rb itrary  T em poral T ran sition

The intuitive motivation behind ignoring TTFs is that it prevents the system from 

considering some source of failure, and thus prevents the system from committing resources 

to avoiding that failure. It is also possible to have the planner ignore other temporal 

transitions that do not lead directly to failure, but may still provide opportunities to lower 

the required resource usage.

Ignoring non-failure temporal transitions can have most of the effects listed above, be

cause it may make some arbitrarily large part of the world model state space unreachable. 

If, for example, the temporal transition being ignored is the only connection between the 

initial states and all of the states for which a particular action is planned, then those states
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will become unreachable and the action will not be planned.

Ignoring non-failure temporal transitions can have one additional, even more dramatic 

effect on the planner: it may make one or more goals unachievable. If a critical temporal 

transition is removed from the world model, there may be no path from the initial states to 

a goal state. In the Puma domain, if we ignore the arrive-over-box temporal transition, 

which represents the duration of the process of moving over the box, then there is no way for 

the robot to actually pack a part in the box (because it can never achieve (robot-position  

over-box)). Thus, ignoring temporal transitions related to the controlled agent’s behavior 

is probably not a very useful approach, as it corresponds to reducing the capabilities of the 

agent, rather than reducing the environmental constraints or requirements.

Since the original motivation for making a performance tradeoff often comes from an 

inability to schedule guaranteed TAPs, which are generally planned to preempt TTFs, 

it is frequently more useful to ignore TTFs than other, non-failure temporal transitions. 

Furthermore, ignoring TTFs is safer in the sense that it cannot make any goals unreachable, 

because TTFs are never in the path to success.

7.2 .3  Ignoring an E vent Transition

Just as the AIS may decide to alter its treatment of temporal transitions, it may also 

choose to change how it considers event transitions. Ignoring an event transition may have 

many of the effects described above for temporal transitions: it may cut off parts of the world 

model state space, possibly making some goals unreachable. Ignoring an event transition 

can thus reduce the planning time and decrease the number of TAPs planned, allowing the 

system to make guarantees for some subset of desired behaviors which were not previously 

schedulable.

As with the above tradeoffs, the AIS would only be motivated to ignore an event if it 

finds that its initial attempts at building a plan are unsuccessful, either because the planning 

is taking too much time, or because the resulting TAPs are not schedulable. Choosing which 

event to ignore will generally be a highly domain-dependent decision, possibly based on the 

system’s evaluation of the probability of that event occurring, the benefits of ignoring the 

event, and the costs of having the event occur when the system has not planned for it.

For example, in the Puma domain, ignoring the em ergency-alert event transition 

provides a large reduction in the planning time, because many states are eliminated from 

the model— in fact, the state space for our running example is reduced from 330 enumerated
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states and 158 reachable states to 106 enumerated and a mere 58 reachable states. Fur

thermore, a large number of contingency reactions are eliminated from the plan, and thus 

the complexity of the TAPs is reduced, and the scheduling problem is eased. Because the 

emergency alert is no longer of concern, the system is able to react to parts on the conveyor 

belt even more quickly than if the predicted alert rate is very slow (as in the extreme right 

edge of Figure 7.4). While the example of Figure 7.4 could handle parts arriving at most 

every 33 seconds, the plan built by ignoring the em ergency-alert transition can handle 

parts arriving every 27 seconds, an 18% improvement in capacity. Of course, the tradeoff 

is that the system is no longer monitoring the emergency light, and it will not react to an 

alert. If the AIS thinks that an alert is unlikely, or finds that the cost of failing to respond 

to an alert is sufficiently low, it may judge that the reduced planning time and improved 

part-packing reaction time are worth the risk involved in ignoring alerts.

More generally, we can see that ignoring an event transition can have the desirable effects 

of reducing planning time and simplifying the scheduling problem. The disadvantage, of 

course, is that this tradeoff method removes planned contingency actions entirely, as opposed 

to just moving the relevant TAPs to the if-time list (as ignoring a TTF can do). Because 

event transitions represent instantaneous events in the world, as opposed to the ongoing 

processes represented by temporal transitions, it seems plausible that the AIS could have 

knowledge of event probabilities that would be helpful in guiding the use of this tradeoff 

method. Ignoring highly improbable event transitions would obviously be a good approach, 

in order to ensure that the system is least likely to encounter world situations for which it 

is not prepared. Decision-theoretic methods involving expected utility could also be used 

to account for both the probability of an ignored event and the cost of failing to take the 

originally-planned action.

7 .2 .4  M od ify in g  T em poral T ransitions

In addition to these drastic methods involving ignoring various transitions, the AIS 

can make more subtle, deliberate changes to the duration of temporal transitions to effect 

performance tradeoffs. The basic approach is to extend a temporal transition to give the 

system more time in which to react and avoid undesirable consequences. For example, the 

AIS might decide to extend the TTF representing the delay until a part falls off the conveyor, 

instead of ignoring that TTF altogether. The duration of the TTF, or the minimum time 

until failure, can be extended in this example by simply slowing down the conveyor, giving
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the Puma more time to pick up an arriving part.

While the complex physical modeling required to determine the exact relationships 

between the Puma speed and the conveyor rate is beyond the current AIS’ abilities, it is 

able to make relatively simple decisions about which TTF to modify, and how to achieve 

that modification. The AIS may learn from the Scheduler, for example, that the TAP 

which failed to meet its deadline during scheduling was built to implement the pickup- 

part-from -conveyor action. The AIS can easily find that this action was planned to 

preempt failure resulting from the part-falls-off-conveyor TTF. Then, the AIS could find 

that the minA of this TTF may be extended by having the RTS invoke the action slow

dow n-conveyor, which also causes the AIS to modify its model of the relevant transitions. 

This has the effect of moving the environmentally-driven resource demands to the left in 

the graph of Figure 7.4, so that the given emergency arrival rate can be handled with the 

decreased part arrival rate.

This type of tradeoff mechanism is useful when the system can alter the environmental 

behavior, as in this example, and also when its own behaviors involve temporal transitions 

whose minA values may be altered. For example, an alternative way of dealing with a 

part arrival rate beyond the system’s initial capacity is to increase the speed with which 

the Puma moves between locations, thus decreasing the minA of the temporal transition 

arrive-over-box , which represents the worst-case time the robot needs to move over the 

box.

On the positive side, this approach to making tradeoffs gives CIRCA the ability to 

fine-tune its behaviors and the environment to work together well. The very notion that 

the system can modify the behavior of the environment to make it more convenient for its 

own goals is relatively uncommon in planning systems, and has recently drawn attention 

in work by Agre [2] and Hammond [25]. The way CIRCA uses this technique is perhaps 

unique in that it is motivated by a strong understanding of exactly what the agent is and 

is not capable of achieving, and thus why the environmental modifications are required in 

the first place.

On the negative side, this approach requires extensive domain knowledge even beyond 

the static behavioral information CIRCA already needs. The system must be able to derive 

a causal mapping between temporal transitions and the parameters that affect their dura

tion, and also decide what actions the agent can take to modify those parameters, in the 

appropriate way. Qualitative physics [11, 16] might prove to be an excellent way to derive



156

this information.

7 .2 .5  M o d ify in g  T A P  Im p lem en ta tio n s  (M e th o d  S e le c t io n )

In addition to making changes to the world model in response to resource restrictions, 

the AIS can also make changes directly to the implemented form of the actions planned in 

the world model. In particular, the AIS can make two major types of changes to the TAPs 

built to implement action transitions. The first and most powerful modification is to  simply 

alter the specific primitives used to perform the various tests and action required by a TAP. 

The sensor planning phase of the TAP-generation process implements this functionality, as 

described in Section 5.3.3. The AIS may have several different methods for performing an 

action (or a test), and it can choose amongst them according to the resources available. 

This tradeoff method is equivalent to the “configuration selection” [35], “version selection” 

[47], and “design-to-time” [19] approaches.

For example, suppose that the Puma control system provides the RTS with two dif

ferent types of part-placement operations, a slow, high-accuracy, “fine-motion" operation 

and a faster, lower-accuracy, “coarse-motion” operation. This means tha t the system has 

two possible primitive operators for the place-part-in-box action transition. Using the 

fine-motion operator allows the system to place the parts very close together, thus yielding 

densely-packed boxes. But the fine-motion operator needs four seconds to finish the place

ment operation. Using the coarse-motion operator requires the system to leave more space 

between the parts, since the placement is less-certain. As a result, the system will produce 

less-densely packed boxes, but it can produce them more quickly, because the coarse-motion 

operator only needs 2.5 seconds. Thus, in this example, method selection allows the system 

to trade off the quality of its results (the packing density) for the timeliness of its long-term 

and short-term behaviors (the speed of packing whole boxes and individual parts). Given 

the faster coarse-motion operator, the system may be able to guarantee to respond in time 

to  a higher frequency of emergency alerts than with the slower operator.

Experimental Results of M e t h o d  Selection

To provide a more quantitative demonstration of this tradeoff, we ran experiments using 

the coarse/fine operators described above. The fine-motion operator was defined to require 

no space at all surrounding parts being placed in the box: essentially, it could achieve 100%
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Figure 7.9: Schedulability variations using different TAP implementations.

packing density with a fortuitous series of part arrivals2. The coarse-motion operator, on 

the other hand, required one inch of clearance on all sides of the parts in order to place 

them in the box. Naturally, the achievable packing density is lower with this operator, since 

parts necessarily occupy spaces larger than their actual size.

Figure 7.9 shows the improvement in response-time achieved by using the coarse-motion 

operator, displayed here by the increased rate of emergency alerts and part arrivals that 

can be handled. The upper curve shows the response tradeoffs that can be made using 

the faster coarse-motion packing operator, while the lower curve shows the performance 

for the fine-motion operator used in the rest of the plans discussed in this chapter (and 

previously graphed in Figure 7.4). The coarse-motion operator reduces the time allocated 

to the place-part-in-box TAP, and therefore the system can respond in time to more 

frequent part arrivals, emergency alerts, or both.

However, Figure 7.10 shows the corresponding decrease in performance quality that 

resulted from the coarse-motion operator, when applied to 100 trials using randomly ordered

2 None of the packing strategies deliberately reorder the parts by placing them on the table and packing 
them later. Parts were only put on the table if their shape was unknown, or if the packing operation was 
aborted to deal with an emergency. In this experiment, no unknown parts were included.
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Figure 7.10: Performance variations using different TAP implementations.

arrivals of four different part shapes. On average, the density of the packed box was reduced 

from 70% using the fine-motion operator to 59% with the coarse-motion operator. In these 

experiments, simulations of the box-packing algorithm were continued until the first arrival 

of a part that did not fit in the box. The fine-motion version was able to pack an average 

of 45 parts in the box, while the coarse-motion version packed an average of only 26 parts. 

Thus we can see that the improved schedulability and response time illustrated in Figure 7.9 

are only achieved at the cost of stiff performance degradation.

Generalizing M e t h o d  Selection

To use the method selection approach, the system obviously must have alternative meth

ods for implementing feature tests and actions on the RTS. In addition, to make intelli

gent decisions about method selection, the system would require performance information 

describing the output quality and resource requirements of each method. This informa

tion could be relatively simple, or could be as complex as a full performance profile (see 

Chapter 2). In any case, because method selection retains the consideration of all world 

model states and does not remove any TAPs from the schedule, it is one of the more subtle 

tradeoff techniques, capable of altering the resource needs of the system without drastic
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effects on its performance guarantees. Depending on the assortment of different meth

ods available, the method-selection approach can alter almost any quality measure of the 

reactive system’s performance, including precision, accuracy, number of parts packed, etc.

7.2 .6  R em oving TA P Tests

The AIS can also make an unusual type of tradeoff by removing one or more feature 

tests from the precondition expression of a TAP. Removing an expensive test can make 

it easier to schedule the TAP, because the resources required for the precondition will be 

reduced. However, this modification reduces the state discrimination abilities of the TAP, 

giving the overall plan decreased confidence. The AIS is no longer sure that only planned, 

appropriate actions will be taken by the RTS.

This sort of modification is obviously fairly risky, since drastically inappropriate actions 

could result. In the Puma domain, for example, the push-emergency-button TAP is 

originally built with the test expression (and (part-in-gripper nil) (emergency T)). 
If the AIS removes the (part-in-gripper nil) portion, the RTS may fire this TAP and 

push the emergency button any time the emergency light is on. If the Puma happens to be 

grasping a part when the TAP fires, the RTS would obliviously jam the part and gripper 

into the emergency button, possibly resulting in damage to any or all of these devices.

However, this approach may be useful if the AIS can determine that some expensive 

test is not used to discriminate between common states, and is only present in the test 

expression for some rare exception. In that case, the AIS may decide that the benefits of 

removing the test outweigh the slight risk of taking an inappropriate action.

Removing a test may make a TAP apply to either a larger or smaller set of states, 

depending on how the particular feature test was invoked within the overall test structure. 

If the removed test is used in a disjunction, the resulting test expression will apply to a 

smaller set of states, while if the removed test was used in a conjunction, the new test 

expression will succeed for a larger set of states.

For example, consider the test expression of the stop-moving TAP planned for the 

Puma domain, shown in Figure 7.11. The original TAP will apply only to states where the 

robot is moving and either there is a part waiting on the conveyor, or the emergency light is 

activated. Its purpose is to interrupt the process of carrying a part to the box, so that the 

robot can quickly place the current part on the table and respond to either the emergency 

alert or the newly arrived part. If the AIS removes the (robot-position changing) test,
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TAP stop-moving
•.TEST (and (robot-position changing)

(or (part-on-conveyor T)
(and (part-on-conveyor nil)

(emergency T))))
:ACTION (stop.moving)
:MAX-PERIOD 8.84 
:TEST-TIME .18 
:ACTION-TIME .02

Figure 7.11: A stop-moving TAP for the Puma domain.

the TAP is now applicable to a larger set of states; any time a part arrives or the alert 

light goes on, the TAP may fire, regardless of whether the robot is actually moving or 

not. Alternatively, suppose the AIS removes all the tests of the part-on-conveyor feature. 

In that case, the reduced test is (and (robot-position changing) (emergency T)), 
meaning tha t the TAP now only applies when the emergency light is on. Thus the set of 

applicable states is reduced, since parts waiting on the conveyor will no longer trigger the 

TAP.

The first case, where the range of applicability is increased, shows how removing a TAP 

test can lead to unplanned but acceptable actions, rather than just disastrously inappro

priate actions. In this case, the system may follow an action loop, taking an action that 

has essentially no effect on the world (see Section 4.11). Any time part-on-conveyor is 
true, the system may execute the stop-moving action, even if the robot is already halted. 

In terms of the AIS world model, this would correspond to an action with identical domain 

and range states, which therefore has no use. The only cost of such an action loop is the 

overhead required to execute the useless action. Note that there is no danger of the system 

getting caught in an infinite loop, since the RTS will continue cycling over the schedule, 

testing and executing the other TAPs as well.

The second case, removing tests of the part-on-conveyor feature, leads to an inter

esting form of behavior because the system has reduced the number of states in which it 

will halt to interrupt the action of moving over the box. This tradeoff has the effect of 

prioritizing the completion of the packing operations for a part once it has been picked up. 

To demonstrate the performance effects of this change, we tested the resulting plan.
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Experim ental R esults of Removing a TAP Test

Extensive simulations show, as illustrated in Figure 7.12, that in some situations the 

modified TAP has the effect of increasing the number of parts that are successfully packed 

into the box. To understand this effect, consider the original plan: when the robot was 

carrying a part over to the box, if another part arrived the robot would immediately halt 

and place the current part on the table, so that it can pick up the part from the conveyor. 

The revised TAP disables that behavior, so that any time the robot is carrying a part over 

to the box, the only event that can interrupt the process is an emergency alert. When the 

part arrival rate is synchronized so that parts frequently arrive in the middle of the process 

of carrying the previous part to the box, the original plan will be forced to place more parts 

on the table than the plan with the modified TAP. Thus Figure 7.12 shows that, at 7.5 

parts per minute, the modified plan packs significantly more parts into the box than the 

original plan (on average). At both lower and higher arrival rates, the two plans perform 

very similarly, because the world states affected by the change to the stop-m oving TAP 

rarely occur. At lower part-arrival rates, the robot is able to finish packing most parts 

before the next ones arrive. At higher rates, the parts arrive so quickly that the robot never 

even begins moving them over the box, it just tries to pick them up and put them on the 

table as quickly as possible.

This is a somewhat anomalous result, showing somewhat improved performance with a 

partially-mutilated TAP plan. In general, removing a test from a TAP will result in non- 

optimal behavior caused by inappropriate actions or the failure to take a desired action.

This tradeoff method is clearly most useful when there are some world features that 

are quite costly to test, so that eliminating those tests is worth the resulting increase in 

behavioral uncertainty. In the Puma domain, testing is relatively fast compared to the 

duration of the robot actions, so the schedulability of a TAP plan is hardly affected by 

eliminating a small number of feature tests. However, if vision processing or other costly 

sensing methods were in use, this tradeoff technique might prove very effective at decreasing 

a TAP plan’s resource requirements without excessively damaging its performance.

As with the earlier tradeoff methods that ignore transitions, one of the most powerful 

aspects of removing a test from a TAP is that the effects of this change can be considered 

in the context of the world model. The AIS could scan over the reachable model states 

and check when the modified TAP would be applicable, comparing those occasions with the 

originally-planned states. This would allow the AIS to determine whether the TAP would
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Figure 7.12: Performance effects of removing the part-on-conveyor tests from the 
stop-moving TAP.

be applied to inappropriate situations, and whether those applications could lead to serious 

problems. Similarly, the AIS could recognize when the revised TAP would fail to implement 

a critical transition because it would no longer apply to the appropriate state. Using this 

capacity to project and examine the results of a proposed TAP modification, the AIS could 

make sound decisions about what types of performance tradeoffs would provide a good 

match of maximum increased schedulability with minimal decreased schedule confidence.

7.3 Summary

In this chapter we have investigated a variety of ways in which CIRCA can make per

formance tradeoffs in the face of resource limitations. This capability is a fundamental 

requirement for intelligent real-time systems, since the very nature of real-time domains 

includes resource constraints.

We have shown that the RTS can implement tactical, run-time performance tradeoffs 

through both if-time TAPs and planned, interruptible behaviors. If-time TAPs allow
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CIRCA to take advantage of slack time that only becomes available at runtime. Planned 

behavior tradeoffs, on the other hand, are reflected in the world model, and are thus subject 

to the introspective reasoning of CIRCA’s AIS.

We have also demonstrated several different strategic tradeoff methods that the AIS 

can use to modify its plans. Table 7.1 presents a summary of the various strategic tradeoff 

methods we have investigated, showing briefly how each method can affect several important 

measures of CIRCA’s performance:

Schedulability: The ease with which the Scheduler can build a TAP schedule meeting all 

timing constraints. The application of tradeoff methods is generally motivated by an 

inability to schedule the desired TAPs for a particular domain.

Planning completeness: Does the AIS consider all possible world model states when 

generating the TAP plan? Clearly, if planning completeness is sacrificed, reaction 

completeness is also.

Reaction completeness: Does the TAP plan specify reactions for all of the states that 

require action? Together, reaction completeness and reaction confidence lead to per

formance guarantees: if a TAP schedule can be produced that is fully complete and 

confident, CIRCA guarantees to prevent failures.

Reaction confidence: How certain can we be that the TAP plan will indicate the appro

priate reactions?

Reaction quality: A domain-dependent measure of how well the system’s reactions deal 

with the environment. Example quality measures include precision, accuracy, utility, 

etc. In the Puma domain, for example, quality might be the number of parts packed 

into a single box.

The explicit tradeoffs charted in Table 7.1 are a critical feature of the CIRCA approach, 

allowing the AIS to dynamically, gracefully degrade the guaranteed performance it demands 

from the RTS. Furthermore, the system has the ability to project the results of these tradeoff 

methods, as described above. Thus the AIS can decide whether a tradeoff will lead to 

acceptable performance or not, and it can use this information to guide a search for the 

best tradeoff to choose.



Tradeoff method Schedulability Planning

Completeness

Reaction

Completeness

Reaction

Confidence

Reaction

Quality

Ignore a temporal transition ft ft ft

Ignore an event transition ft ft ft

Modify a temporal transition ft ft

Method selection ft ft

Remove a disj. TAP test ft ft ft ft

Remove a conj. TAP test ft ft ft

Table 7.1: Comparing the effects of various strategic tradeoff methods. Arrows indicate the relative increase or decrease in the 
performance characteristics.
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CONCLUSION

This dissertation began with the goal of merging real-time computing and AI methods. 

In pursuit of that goal, we first developed a clear view of the various approaches to real

time AI and their differing objectives. To facilitate this understanding, we introduced the 

any-dimension algorithm concept in Chapter 2. This conceptual framework was used to 

classify approaches to making performance guarantees, and was also used to understand 

the immutable laws limiting the use of iterative improvement methods in pursuit of real

time AI (namely, that simple conjunctions of quality-based and resource-based termination 

conditions are not effective). The conclusion: purely tactical, on-line methods of making 

guarantees, such as any-time algorithms, are not sufficient to provide the guarantees of 

timeliness and result quality required by hard real-time domains.

In Chapter 3 we presented a review of previous work categorized into three main areas: 

AI systems embedded in real-time domains, real-time reactions embedded in AI systems, 

and cooperative real-time and AI systems. Our research on CIRCA epitomizes the final 

approach, having goals somewhat different than the first two approaches. CIRCA does 

not attempt to force its AI methods to meet deadlines; instead, it focuses on isolating 

its AI methods from the domain-imposed deadlines, while still maintaining clear lines of 

communication and control between the AI subsystem and the real-time subsystem. CIRCA 

combines aspects of both strategic and tactical methods to build and execute guaranteed 

reactive plans. As such, a major contribution of this work has been the delineation of the 

CIRCA subsystem responsibilities, and the way in which those subsystems cooperatively 

implement both performance guarantees and unpredictable AI algorithms.

Chapter 4 presented the world model that CIRCA uses to build real-time control plans. 

This model forms the basis for CIRCA’s fundamental conceptual contribution, the notion 

that the system’s AI methods can be isolated from the domain deadlines by using a set

165
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of safety-maintaining control reactions. The characterization of a safely-controlled set of 

world model states represents a unique transfer of the control-theoretic concept of stability 

to the classical discrete AI planning model.

In addition to supporting the isolation of real-time and AI in CIRCA, the world model 

also allows the system to implement efficient reasoning about the worst-case possible behavi

ors of the environment. The world model’s minimal representation of time and uncertainty 

provides a sound basis for the derivation of reactive TAP schedules that can enforce guar

antees of safety. As such, CIRCA represents a notable contribution because it internally 

reasons about and modifies its set of performance guarantees, as opposed to previous sys

tems having fixed sets of guarantees derived externally,

CIRCA thus has a general capability to “consciously” trade off all of its dimensions of 

resource usage and performance. The architecture and the graph model provide a unified 

framework for reasoning about focusing sensing, restricting deliberation, and modifying 

performance parameters such as timeliness, confidence, and precision. This represents a 

significant advance in flexibility over previous systems tailored to reason about a limited 

set of performance or resource dimensions.

Our research on CIRCA has not been focused solely on the theoretical basis for the 

system’s guarantees. We have also developed a prototype implementation of CIRCA, ex

ploring the practical issues in meeting the demands of the architectural design. We have 

described the development of several unique and powerful software systems that, acting in 

concert, address the full range of problems involved in intelligent real-time control. These 

mechanisms include:

• The AIS in te rp re te r, which combines the ability to run arbitrary Lisp code with 

meta-level reasoning, timeouts, and interrupt-based communication. These facilities 

make our AIS well-suited to deliberation about real-time systems, because the system 

can not only run classical AI planning algorithms, it can also introspect on its own 

performance and that of the real-time subsystem it is guiding. This allows the AIS 

to provide both deliberation and deliberation scheduling, both long-term lookahead 

planning and alertness to environmental changes.

• The TA P planner module, which uses modular decision functions to build reactive 

control plans based on the world model. The planner implements a simplified temporal 

logic useful for planning preemptive reactions, and incorporates other special features
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such as the ability to reason about nondeterministic transitions. The decision function 

form makes extensions to the planner straightforward, and the planner’s explicit stack 

allows it to be interrupted and resumed without great cost.

• The Scheduler module, which implements algorithms to efficiently produce cyclic 

schedules of reactions selected by the AIS. By reasoning explicitly about the timing be

havior of the RTS, the Scheduler sets CIRCA apart from most other Al-based systems, 

which have no capacity to guarantee timely responses in worst-case circumstances.

• T he RTS, which provides completely predictable execution of TAPs by using polling, 

bounded communication primitives, and a low-overhead context-switch scheme. The 

RTS also executes if-time TAPs to utilize scheduled time that becomes available at 

runtime.

The prototype CIRCA implementation has been equipped with several methods for 

making performance tradeoffs, as discussed in Chapter 7. Experiments have demonstrated 

a  wide range of performance tradeoffs that the system can implement in a self-aware fashion, 

recognizing the resulting changes in resource requirements and output quality.

In sum, we have successfully designed, implemented, and tested the CIRCA approach 

to combining real-time and AI methods. The current implementation is fairly complex, 

and has not been carefully optimized. However, the system has been applied to several 

domains, and has demonstrated its unique combination of AI methods with guaranteed 

real-time reactive plans.

8.1 Future Directions

Many research areas remain open for future expansion of this work on CIRCA, and on 

real-time AI in general. The following topics seem well-suited to immediate research and 

development:

• P red ic tive  sufficiency. In Section 4.12 we introduced the notion of predictive suf

ficiency. Currently, CIRCA does not implement the testing necessary to make sure 

that conditions of predictive sufficiency hold; the system designer is still responsible 

for those details. However, there is potential to automate this task as well, and al

low explicit reasoning about predictive sufficiency to have impact on the planner’s 

decisions. For example, the system might recognize that it does not have the ability
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to avoid inappropriate actions from a particular world state (see Section 4.12), and 

thus it should pursue a different plan. In Appendix D we discuss preliminary ideas 

on adding this capability to CIRCA, and illustrate the application of those ideas to 

avoiding inappropriate actions and also to automating decisions about caching sensor 

data.

• TA P im provem ents. The Scheduler currently builds schedules of individual TAPs, 

which can lead to rather inefficient behavior, particularly when different TAPs share 

many feature tests. While efforts to improve the caching of sensed data can help 

combat this inefficiency, as discussed in Appendix D, this approach will not solve 

the underlying problem. Much of the time, individual TAPs are not applicable, and 

their scheduled worst-case execution time is filled in by if-time TAPs. An alternative 

approach would be to group together TAPs into larger composite TAPs that could 

share the results of various sensing actions and be scheduled as a mutually-exclusive 

group, requiring less time on the schedule and leading to higher average utilization 

of that scheduled time. Appendix C discusses more details on the composite TAP 

approach, giving examples showing when this approach has advantages, and when it 

does not.

• Scheduler feedback im provem ents. In the prototype implementation, the Sched

uler returns either a successful schedule or n i l .  We plan to investigate ways in which 

the Scheduler can provide more informative feedback about the cause of a schedul

ing failure, so that the AIS can make intelligent decisions about how to modify the 

TAPs, the system goals, or the world model. For example, the Scheduler might indic

ate which TAP timing constraints or resource requirements were most restrictive and 

prohibited a successful schedule. This research has the potential to move towards a 

new view of scheduling as an iterative negotiation process requiring feedback.

• R ational tradeoff m otivations. Currently, the AIS relies on human advice to 

decide which of its several tradeoff methods should be used in a particular situation. 

There is obviously potential to develop more rigorous, automated methods for making 

these decisions. Decision theory holds promise as a principled method for choosing 

between alternative tradeoffs, using the concept of expected utility. To employ decision 

theoretic methods, representations of probabilities and payoffs must be added to the 

world model. The payoff information might take the form of a more general set of goal
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priorities, as opposed to the binary priorities currently available (critical and not).

• M ulti-agent considerations. The world model shows how the AIS reasons about 

the control-level deadlines it must guarantee through the RTS. From one perspective, 

control-level deadlines can be seen as the results of commitments with the environ

ment (e.g., starting forward motion commits a mobile robot to an obstacle detection 

behavior). Similarly, many task-level, non-critical, or “soft” deadlines can be viewed 

as resulting from commitments with other agents. For example, a mobile robot’s 

deadline of reaching a landmark by a certain time might be based on an obligation to 

rendezvous with another vehicle. In the Puma domain, the robot arm’s desire to pack 

parts into boxes stems from its commitments to other agents on the assembly line.

These task-level deadlines have no intrinsic source; they only result from commit

ments (implicit or explicit) with other agents. Thus it may be possible to avoid or 

ameliorate violations of such task-level deadlines by re-negotiating the source com

mitment, in order to alter the associated deadline. This would provide an additional 

method to avoid task-level failure, supplementing the tradeoff approaches discussed 

in Chapter 7. Investigating this view of task-level deadlines will require examining 

issues of modeling other agents’ goals and plans, as well as commitments and negoti

ation with those agents. The possibility of negotiating new task-level deadlines also 

reveals tradeoffs between spending time negotiating and altering performance to meet 

existing deadlines.



A PPEN D IC ES

A P P E N D IX  A  

THE PU M A  SIMULATOR

The Puma simulator runs within the Deneb Robotics Igrip simulation environment, and 

incorporates a number of unusual features required by that system. Igrip was selected as a 

basis for the simulator because it provides built-in graphical display capabilities, CAD-like 

three-dimensional object design, simulation of linear and angular joint motion, and even an 

existing Puma robot model complete with inverse kinematics. Given these existing features, 

developing the simulation domain for this thesis should have posed little difficulty. As will 

be seen, however, various limitations in the Igrip system have made the actual development 

quite time-consuming, and the resulting product is less-than-ideal.

To interface the RTS with the Igrip simulation (and also to the real-world Hero robot), 

Unix sockets were used to communicate robot and sensor commands, as well as their res

ults. The simulator thus includes a command interpreter which parses these incoming RTS 

commands and executes the appropriate simulation routines. The interpreter is written in 

Igrip’s Graphical Simulation Language (GSL), which allows the user to specify a device’s 

movements, as well as controlling communication and simulated sensing. Much of the com

plexity of the simulation resides in this Puma command interpreter, as will be described 

below.

The conveyor belt and arriving parts are simulated in a simple but deceptive way: the 

belt itself is a static device that does not move, while the parts arriving on the belt are 

actually programmed devices moving themselves. Each part runs the same GSL program, 

which varies its behavior based on the unique name of the actual part running the program. 

The part.g sl program simply looks up the specific part’s name in a statically-defined list, 

finds the associated starting position programmed by the user, and moves the part to that 

position when the simulation begins. It then issues a single motion command directing the 

part to move at a fixed rate towards the end of the conveyor— the result is a sequence of
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paTts “marching in step” down the belt. The user can easily specify fixed spacings between 

the arriving parts, or add in programmed random disturbances.

The emergency alert light is also implemented by a simple GSL program which re

peatedly delays for some amount of time determined by a user-controlled random number 

generator, and then turns on the alert light and sets a global variable indicating an emer

gency is present. This global variable is accessible to all programs running in the simulation 

environment. When the Puma interpreter completes the process of pushing the button, it 

also resets that global variable and turns off the graphical alert light display. An emergency 

failure is considered to have occurred if the global variable is already set when the alert 

program tries to set it (i.e., the Puma did not respond to the last emergency before the 

next one arrives).

Simulated robot sensors have been implemented in several forms. Initially, the sensor 

that detects when a part is available on the end of the conveyor was implemented using 

an Igrip ray-casting primitive triggered by the Puma interpreter. An invisible ray was 

extended out from the end of the conveyor, and if its intersection with the nearest part 

on the conveyor was close enough, the part was considered reachable. This process proved 

quite time-consuming, so a much simpler alternative is now in use. When a part reaches 

the end of the conveyor, the move command issued by its instantiation of p a rt.g s l returns, 

and the part simply sets a global part-on-conveyor variable indicating it has arrived. The 

puma interpreter resets this global after picking up a part. This simple approach also allows 

the system to automatically keep track of the number of parts that arrive and the number 

tha t “fall” off the end of the conveyor; if the part-on-conveyor global is already set when 

another part arrives, then the part is considered to have fallen off, and a global counter is 

incremented. At the end of a simulation run, the Puma interpreter can print out or return 

to the RTS the statistics on emergency alerts and part arrivals, and the associated failures.

Similar approaches have been used to implement detection of the arriving p art’s shape. 

Rather than simulate a realistic sensor, information on part shape is made available in

ternally by arriving parts, and the Puma interpreter accesses those internal representations 

to Tespond to  RTS queries about part shape. While these simplifications make the simu

lated sensors unrealistically reliable, they were useful both for achieving sufficient simulation 

speed and for getting the Igrip simulation running with a reasonable amount of effort. In the 

next section, we describe the main issues which made the simulator development non-trivial.
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Program m ing C hallenges

Two issues are at the center of most of the interesting Igrip simulator development 

problems. The first is Igrip’s inability to interrupt ongoing robot motion; once the simulator 

is given a command to move the robot’s joints by a certain amount, it will not return control 

to the interpreter until tha t process has finished. This is a problem because the CIRCA 

model of the Pum a domain sensibly includes the possibility of interrupting ongoing, long

term  motion processes if the environment dictates that a change of course is necessary. For 

example, the movement of the Puma over the box is modeled by a temporal transition, 

which may take an indeterminate amount of time. Thus the system must also be able to 

follow the s to p -m o v in g  action transition, so tha t it can halt and respond to emergency 

alerts tha t may arise during the process of moving over the box.

Implementing interruptible motion required convoluted programming using an approach 

originally designed and implemented by Mike Hucka. Essentially, the approach is to split 

up robot motion commands into very small movements that can be completed within a 

reasonably small time, which is then taken to be the smallest unit cycle time of the sim

ulation (and thus the minimum time before an interrupt can be processed). In the Puma 

simulation, each motion command sent to the interpreter is saved into registers th a t record 

the number of degrees of motion desired for each of the robot’s six joints. On each cycle 

of the interpreter (every .05 seconds), each joint with a non-zero degrees-to-go register is 

moved by a small increment computed from the jo int’s speed assignment and the cycle 

time. This rapid, incremental motion yields a relatively smooth-moving graphical display, 

largely because of the very fast graphics processing of the Silicon Graphics computer it runs 

on. Ongoing motion commands are easily interrupted by simply resetting the degrees-to-go 

registers to new values (or zero).

The second main problem with the Igrip implementation is more serious, and not easily 

solved. Essentially, the timing primitives supplied by the Igrip environment are not accurate 

(or even consistent), and thus adjusting the timing behavior of the simulator is more an 

art than an exact science. Timing in Igrip can be specified in several ways; experience has 

shown that perhaps the best way is to simply specify a total time requirement for each 

robot or part motion command sent to the Igrip environment. Thus each incremental joint 

movement of the Puma is specified to take a certain number of milliseconds, and likewise the 

motion of parts down the conveyor is assigned a total required time. Unfortunately, while
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these timing values are usually kept relatively consistent (i.e., a three-second motion does 

take approximately three times longer than a one-second motion), they are not strongly 

tied to wall-clock time. That is, a motion command that is assigned for three seconds 

may take anywhere from three to fifteen seconds to simulate, depending on the other loads 

on the simulator. Igrip does not seem to make strong efforts to link real-world time with 

simulation time. While this is fine for an isolated simulation (and probably even desirable, 

so that simulations can be run faster than real-time), it is a problem when the simulation 

is interacting with an external process like the RTS, which is attempting to make reliable 

guarantees on timely behaviors in the simulation.

Extensive experimentation revealed no way to solve this problem directly, so the exper

iments described in this thesis using the Puma simulator have been hand-calibrated. The 

actual speed of the simulation depends on the number of parts being simulated on the con

veyor, as well as the rate of sensor accesses and other RTS activity. Thus part arrivals and 

alert arrivals were adjusted for each specific experiment to achieve common rates, within 

the relatively loose bounds possible given the Igrip limitations.

All these problems with the simulation environment should be taken into account in 

future plans to develop simulations using Igrip— in general, this system seems too slow and 

inconsistent to be fully effective. While the easy access to graphics and inverse kinematics 

are a huge bonus, the lack of timing control available to the user makes the final simulation 

system almost as difficult to work with as a real-world robot.
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A P P E N D IX  B 

C O M M U N IC A T IN G  W IT H  T H E RTS

The TAP schedules executed by the RTS are sent to it by the AIS over a socket, in a 

special language form described by the grammar shown in Figure B .l. The download begins 

with the material defining each of the TAPs that will be used in the schedule. Each TAP 

is made up of a test section, defining the set of AND/OR combinations of primitives tests 

that should be executed, and an action section, listing the primitive actions that should 

be performed if the tests return true1. Tests are described by the name of a primitive 

testing function that should be executed to yield some result value describing the current 

state of the world, and a testing value against which that result value should be compared. 

Figure B.2 illustrates an example TAP schedule download message.

As each TAP is read in by the RTS, it is assigned a unique integer index corresponding 

to its position in the list of TAPs. These indices are then used to communicate the actual 

schedule of TAP executions, following the BEGIN-SCHEDULE keyword. The schedule is 

thus a list of TAP indices, in the order in which they should be executed. Because of differing 

periods and the effects of the Scheduler, this list may contain many repetitions of each TAP 

index. This observation is the motivation for using this index method for communicating 

the TAP schedule: the initial TAP definitions are used to form data structures on the RTS, 

which are then easily and efficiently referenced by the indices, rather than communicating 

multiple definitions of the same TAP for each of its invocations in the schedule.

The looping to be performed at the end of the TAP schedule is implicit at the end 

of the list of TAP indices, tagged by the END-SCHEDULE keyword. The list of if-time 

TAPs is communicated in a similar fashion, except that in this case the order of the TAP 

indices has no significance, and no repetition will be included, because the RTS dynamically

1 Currently, the AIS only plans one action per TAP, and the RTS can only parse one action per TAP. 
Extensions to  the RTS parser for multiple actions are trivial.
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(schedule) —»•
(tap-list) B E G IN -S C H E D U L E  (tap-index-list)
E N D -S C H E D U L E  (if-time-section) #

(if-time-section) —►
B E G IN -IF T IM E  (tap-index-list) E N D -IF T IM E  |
e

(tap-list) —> (tap) (tap-list) | (tap)

(tap) -►
B E G IN -T A P  (test-expr) A C T IO N  (action-primitive) E N D -T A P  j 
B E G IN -C O M P O S IT E  (tap-index-list) E N D -C O M P O S IT E

(test-expr) —*
(test) |
(N O T  (test-expr) ) |
(A N D  (test-expr-list) ) |
(O R  (test-expr-list) )

(test-expr-list) —► (test) (test-expr-list) | (test)

(test) —► ( (test-primitive) (value) )

(test-primitive) —► (identifier)

(action-primitive) —► (identifier)

(value) —► (identifier)

(identifier) —► (alpha) | (identifier) (alpha) | (identifier) (digit)

(tap-index-list) —»• (tap-index) (tap-index-list) | (tap-index)

(tap-index) (integer)

(integer) —> (digit) (integer) | (digit)

(alpha) ^  A |B |C |D |E |F |G |H |I |J |K |L |M |N |0 |P |Q |R |S |T |U |V |W |X |Y |Z |_ |-  

(digit) —> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

F ig u r e  B .l :  A pseudo-BNF grammar for downloading TAP schedules to the RTS.
Non-terminals are bracketed by ( ) and alternatives are separated by |.
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BEGIN-TAP (BOX1.BOUNCED NIL) ACTION BOUNCE.BOXl END-TAP 
BEGIN-TAP (CURSOR_MOVED_IN_WINDOW T) ACTION MARK.CURSOR END-TAP 
BEGIN-TAP (AND (CURSOR_MOVED_IN_WINDOW NIL)

(AND (BOX1.BOUNCED T) (BOX2_BOUNCED NIL)))
ACTION B0UNCE_B0X2 END-TAP 

BEGIN-SCHEDULE 0 1 END-SCHEDULE 
BEGIN-IFTIME 2 END-IFTIHE #

F igure B.2: A simple TAP schedule download from the AIS to the RTS, for the 
bouncing box domain.

decides when each if-time TAP will be executed. The # acts as a message terminator, 

letting the RTS know that it has received the entire TAP schedule download and should 

begin processing the schedule and making it ready for execution. Currently, the RTS does 

incrementally download the new schedule, but it cannot parse/process the new schedule 

until it has all been received. So the # triggers the parsing processing, whose runtime 

actually depends on the length of the new schedule, but is very short in any case. A more 

complex re-implementation in f le x  (rather than lex) would allow incremental parsing.

Sharing Identifiers

The grammar of Figure B.l shows that primitive tests, comparison values, and primitive 

actions are communicated to the RTS using standard alphanumeric identifiers. However, 

because the RTS is written in C and the AIS is written in Lisp (and runs on a different 

processor), the programs must have some additional mechanisms to ensure that the meaning 

of these identifiers is “common knowledge.” In other words, when the AIS sends a TAP 

to the RTS invoking the push-em ergency-bu tton  action, the RTS must be sure to bind 

that identifier to its routine that performs the appropriate action.

Several fancy programming tricks are used to make sure that this binding process is 

done correctly, with very little effort by the system designer. The goal of these tricks 

is to make sure that an identifier used in the Lisp description of a domain (from the file 

“trans.lisp”) is bound to an RTS primitive (from the file “primitives.c” ) with the same name. 

To get the naming to match up, we use a p e r i program that parses both “trans.lisp” and 

“primitives.c,” and produces a series of files that will enable the appropriate mapping.
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The peri program, parse-trans, makes the RTS implement this mapping by actu

ally defining (before compile-time) part of the lexical analyzer used by the RTS to scan 

incoming messages from the AIS. Parse-trans reads the “trans.lisp” file and extracts the 

names of tests, values, and actions used in the world model description. It then reads the 

“primitives.c” file and extracts the names of defined C primitive functions. A mapping file 

“primitives.h” is generated to automatically map the Lisp test and action names to indices 

(unique integers). The file “primdefs.c” is also generated, to initialize (at run time) an array 

of function pointers indexed by the indices defined in “primitives.h.” Then parse-trans 
builds a partial lex source file “auto.lex” that defines the necessary lexical analysis ma

chinery to parse the Lisp primitive names and interpret them as their respective indices, 

which can then be used by the RTS interpreter mechanism.

So, in summary, the RTS’ lex-generated parser will translate incoming Lisp test and 

action names (identifiers) into indices, which index the automatically-generated array of C 

function pointers. To execute downloaded TAP tests and actions, then, is merely a m atter 

of de-referencing the corresponding function pointers.

For further clarification, we now present a short example. Suppose the Lisp file “trans.lisp” 

has a transition defined as:

;; in trans.lisp, user generated 
(my-make-instance 'temporal

:name "emergency-failure"
:preconds ’((emergency T))
:postconds ’((failure T)))

Then parse-trans will recognize “emergency” as a test primitive and build a line in 

“primitives.h” that gives that name an index:

/* in primitives.h, auto generated */
\#define EMERGENCY 24

Then parse-trans will look for some C code in “primitives.c” defining a corresponding 

primitive function:

/ *  in primitives.c, user generated * /  
int emergency () /* TIMING: 400 */

{ . . .  >

Finding that, parse-trans will make entries in “primdefs.c” that make that primitive 

accessible (note that the timing information is made available, for possible use by the RTS):
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/* in primdefs.c, auto generated */ 
primitives [EMERGENCY] = emergency; 
wcet[EMERGENCY] * 400;

And finally, the entry in “auto.lex” will allow the RTS to parse incoming TAPs from 

the AIS that include the string “EMERGENCY”:

< in auto.lex, auto generated >
EMERGENCY parse-prim(24);

The main advantage of parse-trans is that it allows the user to make additions to the 

set of available primitives without ever hand-modifying the lexical analyzer or the #def ines 
mapping names to indices, etc. Adding a new primitive is only a matter of defining the C 

code and using it in the Lisp world model transitions, rather than also making all those 

other code modification, which would present too many chances for errors or forgetting to 

add one new entry to some file.
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A PPE N D IX  C 

COM POSITE TAPS

Consider three TAPs A, B, and C, scheduled to run sequentially, as shown in Figure C.la. 

Suppose that these TAPs have been planned to respond sequentially to some domain event, 

detected initially by TAP A. After TAP A detects and responds, the plan calls for TAPs B 

and C to respond, at which time the response will be complete. This type of situation 

arises in the Puma domain, for example, when the robot is moving a part to the box and 

the emergency light activates: a TAP detects the situation and stops the motion, another 

TAP puts the part on the table, and a third TAP finally makes the robot push the button 

to cancel the emergency.

The casual observer might have the impression that, in the worst case, the response time 

guarantee that could be made for the completion of that sequence of responses would be 

tests(A) + tests(B) + tests(C) + P  (where P  = wcet(A) + wcet(B) + wcet(C)), as shown in 

the hypothetical timeline of Figure C.lb. Unfortunately, this intuitively desirable derivation 

is not correct.

The first problem with the timeline is that it ignores the effects of if-time TAPs: when if- 

time TAPs are available, the RTS will execute them as many times as possible to fill unused 

scheduled time. Thus the first invocation of TAP A in the timeline will not use up just its 

test time: the if-time TAPs may use up the action time as well. Making this correction 

to the timeline, as shown in Figure C.lc, we might then postulate that the appropriate 

response guarantee would be 2 * P. However, this response deadline cannot be derived by 

the current Planner and Scheduler, and is not necessarily correct.

The remaining problem is that this formulation makes assumptions about dependencies 

between the TAPs. The Figure C.lc timeline assumes that TAP B will execute its actions 

on its second invocation because TAP A was fired immediately before then. However, the 

Scheduler has no knowledge of the dependencies we have postulated between these TAPs,
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Figure C .l: Deriving the response time for a sequence of TAPs.
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so it has no way of knowing tha t, because TAP A fired, we expect the preconditions of 

TAP B to hold. Furthermore, there are many cases where sequentially ordered TAPs would 

not actually fire immediately following one another. In the above Puma example, suppose 

the TAP that halts the robot before putting the part on the table does so by sending a 

command which may have slightly delayed effects, so that the robot may still be moving for 

a  few milliseconds after the TAP has completed. In that case, if the preconditions of the 

subsequent p lace -p a rt-o n -tab le  TAP require the robot to be not moving, then the test 

may return false, and thus TAP B might not fire immediately. In tha t case, the RTS will 

have to finish another cycle of the schedule before the sequence of TAP firings continues. As 

illustrated in Figure C .ld , this means that each TAP in the schedule actually has a  worst- 

case possible response time of wcet(r) +  P, as derived earlier (and despite any sequential 

constraints we might derive from the plan). The effect of this equation, in the case of 

sequential TAPs, is to add a  full TAP cycle period to the guaranteed response time for each 

TAP in the sequence. In general, for a sequence of TAPs Ti, r2, ...r„, the best guarantee 

tha t can be made for the overall sequence response time is

^ (w cet(r .-) +  P(Ti))
1 = 1

Thus the best guarantee that can be made for the A -B-C sequence of this example is 4 * P.

This bound on response time is caused by the individual scheduling of TAPs, so that 

regardless of how frequently they are applicable, their full worst-case execution time is al

ways scheduled, and if-time TAPs will use that time if the TAP tests fail. For sequences 

of TAPs, it should be clear that this leads to rather inefficient and frequently unacceptable 

response-time results. For example, consider the Puma domain example above, in which 

three TAPs must fire in a sequence to respond to the emergency alert. Suppose, for sim

plicity, that each of those TAPs requires three seconds to execute, in the worst case (this 

includes the time for robot motion, so it is not a  very unrealistic value). W ith only those 

three TAPs in the schedule, the invocation period for each TAP would be 9 seconds. Thus 

the best response that could be guaranteed for the sequence of three TAPs would be 36 

seconds, despite the fact that only 9 seconds of actual TAP execution is required.

Motivated by this observation, we have investigated a  method for building composite 

TAPs out of individual TAPs, combining their functions in search of greater efficiency.
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w orst-case 
' execu tion  pa th

F ig u re  C .2: Two composite TAPs.

Building C om posite T A Ps

The construction of composite TAPs is illustrated in Figure C.2. In Figure C.2a, the 

three TAPs from the previous example have been combined into a  single TAP which acts 

like a Lisp cond construct, sequentially running the tests of each TAP until one returns 

true, and then executing the appropriate actions. If none of the TAPs’ tests return true, 

the composite TAP completes, and the RTS may fill in the unused scheduled time with 

if-time TAPs, as usual.

The worst-case execution time of a composite TAP is determined by the worst-case 

path through its component TAPs. In Figure C.2a, the worst-case path involves testing 

for TAPs A and B but not executing their actions, and then testing TAP C and executing 

its actions. Of course, the worst-case path may not always result from executing the last 

component TAP’s actions. Figure C.2b shows a composite TAP in which the worst-case 

path involves executing the second TAP; all other execution paths are shorter, even those 

involving execution of a later component TAP’s actions.

The max-period of a composite TAP C  is derived to ensure that each of its component 

TAPs Tx, r2, ...r„ is executed frequently enough to guarantee its required m inA .  Accordingly, 

the following equation is used:
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max — period(C) = niin (min A(r,) — wceti(C))

where wceti(C) is the worst-case execution time of the composite TAP in the case when 

the actions of the component TAP r, are executed.

A crucial element underlying the success of the composite TAP approach is the fact 

that individual TAPs always apply to different states: they are never testing for the same 

state. The testing operations of a composite will never yield more than one appropriate 

TAP, so no conflict resolution is necessary. As a result, we know that combining TAPs into 

the composite execution form will never cause a TAP to miss some world state it would 

otherwise have detected. For example, suppose we have a TAP T  that the planner has 

determined should be run at least once every second, in order to detect some state S  and 

avoid imminent failure. If we combine T  into a composite TAP, the above constraints ensure 

that the composite TAP will be executed at least once every second. We know that the 

state S must persist for at least one second before any reaction must occur, because the 

planner based the period of the original T  on that information. Therefore, since no other 

TAPs will fire for the given state, the composite that includes T  will detect and react to 

the state, just as the original version did.

The advantage of composite TAPs is that they avoid scheduling TAPs individually, 

and thus they avoid having large quantities of schedule time being filled by if-time TAPs. 

Instead, the composite TAPs provide a more rapid, focused use of RTS time to assess the 

current world state and invoke the appropriate reaction. Composite TAPs will provide a 

higher run-time utilization of the RTS for guaranteed reactions, because they apply to more 

situations than individual TAPs, and less scheduled time is filled by if-time TAPs.

The main disadvantage of composite TAPs is that they add to the worst-case execution 

time of TAPs that are later in the ordered composite list. As a result, choosing which TAPs 

to include in a composite can be important, and the ordering of the component TAPs is 

also very important. Combining TAPs with time-consuming tests can make it difficult or 

impossible to schedule the resulting composite, even if the individual TAPs can be scheduled 

separately. Two trivial examples will serve to illustrate these problems.

The example in Figure C.3 shows two TAPs which can scheduled to meet their respect

ive min A requirements separately, but cannot be scheduled if they are combined into a 

composite TAP in the wrong order. In Figure C.3a, the TAP with the longer tests (A)
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5 | 2 | 1 I 1 I minA(A) = 16

^  B minA(B) = 11

wcet A(C) = 7
A P = m in(16-7,11-7) = 4

wcet ^ C ) = 7

wcet^(C) = 8
P = m in(16-8,ll-2) = 8

wcet ̂ C ) = 2

Figure C.3: Example TAPs showing that ordering in a composite is significant.

has been placed first, and as a result the worst-case execution time for the composite path 

which invokes TAP B is much longer than the TAP B alone. The original schedule was 

able to execute TAP B with a period of 9, and therefore could meet a min A requirement of 

P(B) + wcet(B) = 9 + 2 = 11. To meet this minA  with the composite TAP, however, would 

require a period P  = m inA(B) -  wcetB(C) = 11 -  7 = 4. Since the composite TAP has 

a worst-case execution time of 7, there is no way it can be scheduled to run with a period 

of 4. However, Figure C.3b shows the opposite ordering, which is feasible, and actually can 

achieve a shorter period than the individually scheduled TAPs. In this case, because the 

costly tests of TAP A are not executed before TAP B, the smaller m inA  of TAP B can still 

be met.

However, proper ordering will not necessarily solve these sorts of problems. Figure C.4 

shows two TAPs and the two possible composites which can be formed from them. In both 

cases (a) and (b), the excessive penalty of executing the first TAP’s test portion makes the 

second TAP so delayed that it can no longer meet its minA  requirements. In Figure C.4a, 

for example, TAP B is executed second, and its worst-case execution time is expanded from 

6 (in the individual case) to 11 in the composite. Thus to meet its original m inA  of 19, 

the composite would need to be executed with a period of 8. But since the composite has 

a worst-case execution time of 11, this is clearly not possible.

These examples should make it clear that building good composite TAPs is not a simple 

task: the introduction of interactions between TAP tests and actions essentially makes the

b)
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5 I 2 | 4 I 2

a)

A 1 B

1 5 1 2 j
1 A 1

1 4 1 2 1

-

1 B 1

minA(A) = 20 

minA(B) = 19

wcetA(C) = 7

wcet J O  =1 1
P = min(20-7,19-11) = 8

b)
wcet^CC) = 11

wcet J O -
P = min(20-ll, 19-6) = 9

F ig u re  C .4: Example TAPs showing how composites may be completely infeasible 
regardless of ordering.

construction of composite TAPs a scheduling problem by itself. While we have implemented 

mechanisms to build, download, and execute composite TAPs, we are still in the process 

of developing reliable heuristics for selecting which TAPs should be grouped together, and 

how they should be ordered.

The notion of composite TAPs also points the way towards merging the automatically- 

generated, scheduled, guaranteed-response-time concepts of TAPs with the form of Uni

versal Plans [66]. Composite TAPs are not particularly efficient because, although they 

combine multiple TAPs, they leave the test sections of those TAPs discrete and independ

ent. Thus each TAP’s tests may repeat checks of state features that have been examined 

earlier in the same composite TAP (this is not possible in individual TAPs because of the 

nature of the decision trees ID3 produces). A better approach, as long as we are combining 

TAPs, would be pass the information about which of the component TAP actions to apply 

to which states into ID3 to produce a single decision tree with multiple decision values 

corresponding to which action to execute. The resulting decision tree, resembling a partial 

Universal Plan for the composite TAP’s “states of interest,” could be much more efficient 

than the separate TAP tests, and it would eliminate repetitive tests within the composite 

TAP.



186

A P PE N D IX  D  

IM PLEM ENTING PREDICTIVE SUFFICIENCY

In this Appendix we describe predictive sufficiency in more detail, and present sug

gestions and ideas about how CIRCA could explicitly reason about and use predictive 

sufficiency to its advantage.

To accurately describe the concept of predictive sufficiency, we must begin with some 

notation. We will use a simple temporally-qualified modal logic to describe the state of 

a control system’s knowledge. The logical statement K{p[ti],tj) indicates that the system 

knows, at time tj, that the proposition p holds at time t*. For convenience, we will also use 

statements of the form K(p[ta,tp],tj), indicating that the system knows, at time tj, that p 

holds continuously over the time interval from ta to tp,

A control system’s operations can be generally expressed as the acquisition of an obser

vation, the logical deduction of what that observation means about the state of the world 

at the time the observation was made, the deduction of the predictions that the observation 

allows the system to make about the world following the observation, and the selection of 

an action based on that knowledge. In our notation, we have: 

interpret
0 [ti] _  Vpe P? : K(p[ti],tj)

predict
— ► Vp e Pp : K(p[tpa, tpf)],tk)

select

where 0[ti\ is a sensory observation made at time tt, PP is the set of propositions which 

can be inferred about the world at time f* from the observation, and Pp is the set of 

propositions that can be predicted over the respective intervals [tpa,tpfj], These intervals 

are the “intervals of predictive sufficiency,” during which the observation O is sufficient to
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predict the value of the propositions Pp° . The time tj is the time by which the system’s 

processing has derived its knowledge of Pf*, and the time tk is the time by which the system 

knows P ° . Following those deductions, the action a is chosen and executed during the time 

interval [taa>tap\.

We use the concept of predictive sufficiency to show how an action can be guaran

teed to be appropriate when it is executed. The key to avoiding an inappropriate action 

is to ensure that the value of the propositions used to choose an action will remain un

changed before and during the action. This can be achieved by making action choices 

based on propositions whose intervals of predictive sufficiency cover the time during which 

the action’s preconditions are necessary. More formally, suppose the action a requires a 

set of propositions Pa to hold during the respective intervals [tp, a,tPap}- If Pa C Pp and 

Vp € Pa : (ipa < tp,a) A (tpp > tPafj), then the intervals of predictive sufficiency that are 

supported by the observation O ensure that the required propositions will hold as necessary.

For example, consider an intelligent autonomous vehicle that is waiting at an intersection 

for the traffic signal to turn green. At some point, the controlling agent will make an 

observation confirming the proposition “the light is green” (PP). This proposition alone 

is not sufficient to justify crossing the intersection, because there is no guarantee that, at 

the time tj when PP is known, the light is still green. The knowledge resulting directly 

from interpreting sensor readings can only describe past states of the world. However, if 

the system knows some information about the domain’s dynamic behavior, it can derive 

additional propositions that describe the current and future worlds. In this example, the 

system might know that the traffic signal will switch to yellow for at least five seconds before 

it turns red. So, although the system does not know if the light is still green, it can conclude 

that, for at least five seconds after the light was seen to be green, the light must be either 

green or yellow and the intersection will be “safe” to cross (P °). If the agent is sure that 

the time it takes to infer these propositions from its observations and cross the intersection 

is less than five seconds, it can guarantee that it will never be in the intersection during a 

red light.

Thus the addition of domain modeling information has allowed the system to make 

explicit predictions about the future state of the world, based on stored sensor readings. 

Given further information about the agent’s own performance, these predictions are then 

shown to be sufficient to justify certain actions. This example illustrates how predictive 

sufficiency can cover the sense/act gap, avoiding inappropriate actions.



188

5 seconds

60 seconds 25 seconds

sense state &
J cross-intersection

I 3 seconds
cross-intersection

no-op

2 seconds

- Green
- safe2X

- Yellow
- safe2X- unsafe2X

-Red

-green
- across intersection

- yellow
- across intersection

Figure D .l:  An abstracted portion of the world model for the stoplight scenario.

Avoiding Inappropriate Actions

Figure D.l shows an example portion of the graph-based world model for the stoplight 

scenario. The model shows that the stoplight has three main states, Red, Yellow, and 

Green, corresponding to its signal colors. In the Yellow and Green states, it is safe for 

the agent to cross (“safe2X”), but not in the Red state. In this simple example we have 

abstracted out all of the agent’s own state except for the indication of whether it has crossed 

the intersection or not. The different states of the traffic signal are connected by temporal 

transitions (double arrows) indicating that, as time passes, the signal will transition to 

subsequent states. Each temporal transition is labeled with the minimum possible delay 

before the transition occurs, perhaps derived from the agent’s previous experience with this 

traffic signal. For example, the transition between the Red and Green states indicates that 

the signal will stay red for at least 60 seconds before turning green.

If CIRCA is told that the Red state is its initial condition, it will first try to plan an 

action for that state. Since the state is not safe for crossing, the only applicable action is 

no-op (shown as a dashed line in Figure D.l). The system then applies its domain rules 

and derives the temporal transition leading to the new Green state. Again an action is 

chosen for the new state, but this time the c ro ss - in te rse c tio n  action is chosen because 

it is applicable (Green is safe to cross) and because it leads to the desired result. So at this 

point CIRCA has planned a simple reaction indicating that, when the light is green, the 

agent should cross. But the system has not yet shown why this action is guaranteed to be 

appropriate when executed; it has not yet addressed the sense/act gap, and the possibility
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that the light will change before the c ro s s - in te rs e c t ion action is completed.

CIRCA could explicitly address these issues by ensuring that the propositions used to 

satisfy the action’s preconditions are covered by intervals of predictive sufficiency. The 

system knows the worst-case execution time of all of its sensing and action primitives, as 

well as their combinations. Thus the system knows exactly how long it will take, in the 

worst case, to detect the green light and cross the intersection (here, three seconds). To 

check for predictive sufficiency, the system should continue its planning and look for other 

domain processes that may be occurring during the action. In this case, domain knowledge 

indicates the temporal transition leading from the Green state to the Yellow state after a 

minimum of 25 seconds.

As noted above, CIRCA does not know how long the light has been green when it is 

observed; therefore, in the worst case, it should assume that the temporal transition to 

the Yellow state occurs at the same time the system initiates the transition to cross the 

intersection. This corresponds to the “ghost” action transition in the figure (the dotted line 

leaving the Yellow state), showing that the action may actually be applied to the Yellow 

state, leading to a new state where the signal is yellow, but there is now a minimum of only 

two seconds before a temporal transition leads to a red light state.

In this process of looking at transitions out of the Green state for which the action is 

planned, CIRCA has shown that, although alternate results are possible, the precondition 

of the action (“safe2X”) is known to hold for five seconds. This is the interval of predictive 

sufficiency: seeing a green light allows the system to guarantee at least five more seconds 

of safe crossing time. Because the process of sensing the green light and then crossing the 

street takes no more than three seconds, the interval of predictive sufficiency is long enough 

to cover the sense/act gap. Therefore, CIRCA can plan this action and guarantee that it 

will only be executed in appropriate situations.

When CIRCA continues the planning process and tries to choose an action for the Yellow 

state, it finds that the c ro s s - in te rse c tio n  action is applicable and leads to the desired 

state. However, when the system tries to ensure that the “safe2X” precondition can be 

predicted to hold while the action is executed, it would find that the transition leaving the 

Yellow state leads to the Red state, which is “unsafe2X.” Therefore, since the system does 

not know how much time may have passed in the Yellow state before the state was detected, 

and the subsequent state does not satisfy the action’s preconditions, the action would be 

rejected. In summary, CIRCA could use its explicit understanding of predictive sufficiency
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F igure D .2: An abstracted portion of the world model for the modified stoplight 
scenario with a response-time deadline.

to derive a common rule of thumb used by drivers who glance at a traffic signal: if the light 

is green, go ahead and cross; if the light is yellow, do not start crossing, because the light 

may turn red too soon.

Real-Tim e R esponse Guarantees

An interesting feature of this approach to avoiding inappropriate actions is that it 

requires no information about how frequently a particular sensory observation is being 

acquired— the example said nothing about how often the system checks to see if the light 

is green. If the system never even checks to see if the light is green, and thus never takes 

the c ro s s - in te r s e c t io n  action, it will never perform an inappropriate action. Clearly, 

this type of proof is only useful for goals that have no deadline. For real-time goals, that 

require response-time guarantees, this method is not sufficient.

Suppose we alter the traffic signal domain slightly, so that the system is now required 

to cross the entire intersection during the first available green light (perhaps because there 

is an impatient driver behind the autonomous vehicle). This deadline scenario is illustrated 

in Figure D.2, showing that if the system has not crossed by the end of the green light, it 

has failed.

CIRCA recognizes this potential failure when it examines the transitions leading out of 

the Green state, and realizes that it must preempt the temporal transition. That is, CIRCA 

decides it must execute some action that will definitely occur before the earliest time the 

temporal transition to failure can occur. To preempt the transition, CIRCA commits to
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repeatedly executing the behavior that checks for the crossing conditions, at least frequently 

enough to ensure that the crossing action will be completed before failure can occur.

It is fairly obvious that, to guarantee that it will simply detect the first Green state, 

which has a minimum possible duration (m tnA (^°)) of 25 seconds, CIRCA must test 

for the state at least once every 25 seconds. However, detecting the Green state is not 

sufficient: the system must be able to finish crossing before the signal changes to yellow. 

To provide this predictive sufficiency, CIRCA could rely on its additional knowledge about 

the frequency with which it will be obtaining sensory information. For example, if the period 

of the repeated observations is p(O) seconds, then an observation in which the condition 

does hold, following an observation in which the condition does not hold, indicates that the 

change of state must have occurred in the last p(0)  seconds. Therefore, the condition must 

continue to hold for at least mmA(Ft°) — p{0) seconds.

Thus we have a modified interval of predictive sufficiency, based on both knowledge of 

the domain and knowledge about the ongoing performance of the reactive system itself. 

The AIS could actually reason about the performance of the reactive system it is designing 

to derive the predictive sufficiency of the observations it plans to make. To guarantee that 

every real-time reaction will be checked and executed before its corresponding deadline, 

CIRCA must show that the predictive sufficiency of the observations covers the sense/act 

gap. That is, m inA(PP) — p (0 ) > tap — t{. In our modified traffic signal example, we have 

25 — p (0 ) > 3, so that p(0 )  < 22. If CIRCA can guarantee to execute the reaction that 

tests for Green and crosses at least once every 22 seconds, it can guarantee that it will not 

fail to cross on the first green light.

A utom atically A llocating Internal State

Storing sensory data in internal state is desirable because a system that caches sensory 

data can access that information many times without incurring the high cost of repeated 

sensor accesses. However, relying on cached data increases the risk of executing inap

propriate actions or missing deadlines, because it increases the sense/act gap. Predictive 

sufficiency thus plays a role in determining when caching sensory data is acceptable. We 

are investigating an intriguing approach to automatically planning the use of stored sensory 

data in the context of CIRCA’s RTS.

The first line in Figure D.3 shows an abstract representation of a simple TAP schedule
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sense

OPTION 1:
sense  &  store sense  Sl storem em ory

slack time

OPTION 2:
sense  &  store m em ory m em ory

F ig u re  D .3: An example TAP schedule and two modifications that use memory ac
cesses instead of sensor accesses.

that includes three different TAPs (A, B, and C). CIRCA’s planner has determined that 

TAPs B and C must be run more frequently than TAP A, so the schedule loop includes two 

invocations of B and C for each invocation of A.

Suppose that both TAP A and TAP B access the same sensor to get information about 

the same world feature. If accessing that sensor is costly, it may be worthwhile to try to 

minimize sensor accesses, and rely instead on cached sensor readings when possible. To do 

this, however, we must know that the added delay between when a sensor reading is actually 

acquired and when it is used (from memory) will not cause problems. This is precisely the 

knowledge described above: we must know the interval of predictive sufficiency of the sensor 

reading.

Figure D.3 shows two simple modifications to the existing schedule that might be used to 

decrease the number of sensor accesses and rely more on memory. In the first modification, 

the more-frequent TAP B has been modified to store the value that it senses into a memory 

location1. The less-frequent TAP A no longer accesses the sensor, instead relying on the 

cached values provided by the most recent invocation of TAP B. With these changes, it 

is clear that TAP A is still using sensor data that is polled at a high-enough frequency: 

the sensor data is still updated at least once per cycle, so the real-time reaction guarantees

1 Because each invocation of a  TA P in C IR C A ’s schedules is a pointer to  a single TA P struc tu re , there 
is currently  no way to  modify a single invocation. T hus we cannot (yet) have only the  second invocation of 
T A P  B save the  sensor value.
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discussed in above are preserved. However, there is now a longer gap between the time the 

data is sensed and when it is used by TAP A. Thus, to avoid failures due to inappropriate 

actions, the sensor’s predictive sufficiency must cover the time from when it is accessed 

in TAP B through the time TAP A uses the cached value (the shaded region below the 

OPTION 1 line).

The advantage of making these modifications to the TAP schedule is tha t, because 

memory accesses take much less time than sensor accesses, the same set of TAPs will use 

less time. As a result, CIRCA can use the slack time (the black bar) to either schedule 

more TAPs or run the same set of TAPs more frequently.

In the second modification option, TAP A stores the result of its sensor access, and the 

two invocations of TAP B access tha t stored value rather than the sensor itself. Clearly 

this option can provide greater savings than the first, since two sensor accesses have been 

eliminated rather than one. Figure D.3 reflects this improvement in the longer slack time 

bar following the OPTION 2 schedule. However, this option has correspondingly more 

stringent constraints which must be met for the system to remain functionally correct. In 

the first option, the maximum frequency of sensor accesses for each TAP was not changed, 

so all the TAPs still could be guaranteed to not miss any conditions they were originally 

scheduled to detect. In the second option, the sensor is now only accessed once per cycle, 

so TAP B is no longer working with information updated at the original frequency2. Thus, 

to  make sure no transient conditions are missed, the system would have to check th a t the 

maximum possible frequency of change for the sensed feature is actually lower than the 

cycle frequency of the entire TAP schedule, rather than the previous (higher) frequency of 

TAP B invocations.

Furthermore, as with the first option, the system must ensure tha t the predictive suffi

ciency of the data spans each of its uses. In this case, the data acquired by TAP A must 

be predictively sufficient all the way until it is used by the second invocation of TAP B, as 

shown by the shaded bar below the OPTION 2 line in Figure D.3.

The increases in efficiency obtained by these two modification options are only pos

sible because predictive sufficiency allows the system to ensure tha t its functionality is not 

changed; we cannot arbitrarily cache sensor data, because of the increased sense/act gap. 

Thus, decisions about the use of internal state result from the principled application of

2In fact, the second invocation of TA P B is redundant and removable if its te s ts  do not access any other 
sensors or m ore-recently-updated memory values.
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knowledge about the system and the environment in which it is embedded. While informa

tion at higher abstraction levels may generally have longer intervals of predictive sufficiency

[22], the explicit representation of predictive sufficiency allows the benefits of internal state 

to be accrued even at lower levels of abstraction.

In sum, predictive sufficiency is a critical concept for embedded agents, because it per

mits a system to make guarantees about its behaviors. We have shown how CIRCA could 

use an implementation of predictive sufficiency to guarantee that it will not execute in

appropriate actions and that it will react to its environment frequently enough to meet 

real-time deadlines. A great deal of work remains to be done in implementing this approach 

and ensuring that all the possible cases of domain interactions are handled correctly.

Explicitly reasoning about predictive sufficiency also allows us to break away from the 

mindset that decreasing the delay between sensing and acting is always desirable. Spe

cifically, knowing the predictive sufficiency of an observation can allow a system to cache 

sensory data and maximize the use it gets out of each observation, potentially reducing the 

frequency of observation and the resulting overhead. We have shown how CIRCA could 

use this approach to streamline its schedule of reactive behaviors and enhance its real-time 

performance.
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A P P E N D IX  E 

D O M A IN  DESCRIPTIO NS FOR TH E AIS

The following sections list the domain descriptions provided to the AIS for the examples
used throughout this thesis. All timing values are listed in microseconds.

The Pum a Robot Domain
;;----------- Actions for picking part up and putting in box.

(my-make-instance ’action
:narae "pickup_known_part_from_conveyor"
:preconds ’( (robot_statUB free)

(part_on_conveyor T)
(know_type_of_conveyor_part T)
(part_in_gripper nil)

)
-.postconds *( (know_type_of_gripper_part T)

(part_in_gripper T)
(robot.position over.table)
(part_on_conveyor nil)
(know_type_of_conveyor_part nil)

)
:delay 3500000)

(my-make-instance ’action
:name "pickup_unknown_part_from_conveyor" 
rpreconds ’( (robot.status free)

(part_on_conveyor T)
(know_type_of_conveyor_part nil)
(part_in_gripper nil)

)
:postconds ’( (know_type_of_gripper_part nil)

(part_in_gripper T)
(robot.position over.table)
(part_on_conveyor nil)
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:delay 3500000)

----------- Moving over box is a process: start, stop, can halt early.

(my-make-instance 'action
‘.name "start_moving_over_box"
:preconds '((robot.status free))
:postconds ’( (robot_status moving_over_box)

(robot_position changing)
)

:delay 20000)

(my-make-instance 'action
:name "stop_moving_over_box"
ipreconds '( (robot_status moving_over_box)

(robot.position over.box)
)

.'postconds ’( (robot_status free)
(robot_position over.box)

)
:delay 20000)

(my-make-instance 'action
:name "stop_moving"
:preconds '((robot.position changing))
:postconds ’((robot_status free) (robot_position unknown))
:delay 20000)

;;----------- This TT shows that process of moving over box may eventually
;; succeed (after at least 2 seconds).

(my-make-instance 'temporal
:name "arrive_over_box"
ipreconds '((robot.status moving_over_box)

(robot_position changing)) 
ipostconds ’((robot.position over.box))
:delay 2000000)

(my-make-instance 'action
:name "place_known_part_in_box" 
ipreconds ’( (robot.position over_box)

(robot.status free)
(know_type_of_gripper_part T)
(part_in_gripper T)

)
ipostconds ’( (part_in_box T)

(part_in_gripper nil)
(know_type_of_gripper_part nil)
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)
:delay 4000000)

;;----------- Just putting part on table takes less time:

(my-make-instance 'action
:name "place_known_part_on_table"
:preconds '( (robot_status free)

(know_type_of_gripper_part T)
(part_in_gripper T)

)
rpostconds '( (part_on_table T)

(know_type_of„table_part T)
(robot_position over_table)
(part_in_gripper nil) 
(know_type_of_gripper_part nil)

)
:delay 2000000)

(my-make-instance 'action
:name "place_unknown_part_on_table"
:preconds ’( (robot_status free)

(know_type_of_gripper_part nil) 
(part_in_gripper T)

)
:postconds ’( (part_on_table T)

(know_type_of_table_part nil)
(robot_position over_table)
(part_in_gripper nil)

)
:delay 2000000)

..-----------  Note the various nondeterministic postconditions: after
; : picking up a part off table, may be known, unknown, or
;; no parts left on table.

(my-make-instance 'action
:name "pickup_known_part_from_table" 
ipreconds ’(

(robot_status free)
(part_in_gripper nil)
(know_type_of_table_part T)
(part_on_table T)

)
rpostconds ’( ((part_on_table T)

(know_type_of_table_part T)
(robot_position over_table)
(know_type_of_gripper_part T)
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(part_in_gripper T)
)
((part.on.table T)
(know.type_of_table.part nil)
(robot.position over_table) 
(know.type_of_gripper.part T)
(part.in.gripper T)

)
((part.on.table nil)
(know.type_of_table.part nil)
(robot.position over.table)
(know_type_of.gripper.part T)
(part_in_gripper T)

)
)

:delay 3000000)

;;-----------  Events for arrival of parts on conveyor.

(my-make-instance 'event
:name "known_part_arrives11 
rpreconds '((conveyor.status free)) 
rpostconds '( (part_on_conveyor T)

(conveyor.status busy)
(know.type_of_conveyor.part T)

) )

(my-make-instance 1 event
rname "unknown.part.arrives" 
rpreconds ’((conveyor.status free)) 
rpostconds '( (part_on.conveyor T)

(conveyor.status busy)
(know.type.of_conveyor.part nil)

) )

;;----------- After a part has arrived and conveyor goes busy, it can
;; become free again after some delay (for next 'part slot’
;; to arrive) and then the event of a peart arriving can occur.

(my-make-instance 'temporal
:name "conveyor.moves_to.next_slot" 
rpreconds ’((conveyor.status busy)) 
rpostconds '((conveyor.status free))
:delay 50000000)

;;-----------  Failure by part falling off conveyor if not processed
;; before next part arrives.
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(my-make-instance ’temporal
:name "part.falls.off.conveyor" 
rpreconds ’((part_on_conveyor T)) 
ipostconds ’((failure T))
:delay 50000000)

;;  Emergency alert stuff...

(my-make-instance ’event
iname "emergency.alert" 
ipreconds ’((emergency nil)) 
ipostconds ’((emergency T)))

(my-make-instance ’action
:name "push.emergency.button" 
ipreconds ’( (robot.status free)

(part_in_gripper nil)) 
ipostconds ’( (emergency nil)

(robot.position over.button))
:delay 3500000)

(my-make-instance ’temporal
iname "emergency.failure" 
ipreconds ’((emergency T)) 
ipostconds ’((failure T))
:delay 25000000)

;;------------ Definition of goals.

(setf *goals* ’((part.in.box T)
(part.on.conveyor nil)
(part.on.table nil)
(part_in.gripper nil)

) )
(setf *repeat-goals* ’( (part.in.box T) ))

;;------------ Definition of initial state.

(setf *initial-states* (list
(my-make-instance ’state

ifeatures ’((failure nil)
(emergency nil)
(know.type_of_conveyor.part nil) 
(know.type_of_table.part nil) 
(psart_in.gripper nil) 
(conveyor.status free)
(robot.status free) 
(robot.position over.table)
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(part_on_table nil)
(part_on_conveyor nil)
(part_in_box nil)

))
))

T he B ouncing B ox D om ain

Box 1 is the left box requiring guaranteed, real-time service. Box 2 is the if-time box,
which does not lead to failure if it is not serviced by a deadline.

; ; ------------Actions for bouncing boxes

(my-make-instance ’action
:name "bounce.boxl" 
ipreconds *((boxl_bounced nil) ) 
ipostconds ’((box1.bounced T))
:delay 10000)

(my-make-instance ’action
iname "bounce_box2" 
ipreconds ’((box2_bounced nil)) 
ipostconds ’((box2_bounced T)) 
idelay 10000)

..-----------  Boxes should be bounced every few cyclesi i.e., they become
;; unbounced quickly.

(my-make-instance ’temporal
iname "boxl.notbounced" 
ipreconds ’((box1.bounced T)) 
ipostconds ’((boxl_bounced nil)) 
idelay 100)

(my-make-instance ’temporal
iname "box2_notbounced" 
ipreconds ’((box2_bounced T)) 
ipostconds ’((box2_bounced nil))
:delay 100)

;;-----------  It is critical to bounce boxl before some deadline...

(my-make-instance 'temporal 
iname "boxl_failure" 
ipreconds ’((boxl.bounced nil)) 
ipostconds ’((failure T)) 
idelay 400000)
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..----------- Action to draw a circle around the mouse-driven cursor.

(my-make-instance ’action 
:name "mark.cursor"
rpreconds ’((cursor_moved_in_window T))
:postconds ’((cursor_moved_in.window nil))
:delay 12000)

----------- Cursor can move as an instant event.

(my-make-instance 'event
rname “cursor.moves"
rpreconds ’((cursor.moved.in.window nil)) 
rpostconds ’((cursor.moved.in.window T)))

;;-----------  If don’t track cursor before some time, failure...

(my-make-instance ’temporal
rname "cursor.failure"
rpreconds ’((cursor.moved.in.window T))
rpostconds ’((failure T))
:delay 900000)

..-----------  Define the task-level goals.

(setf *goals* ’((box2_bounced T)(event.not.processed nil)))

..-----------  Define the initial state.

(setf *initial-states* (list
(my-make-instance ’state

:features ’((failure nil)
(cursor.moved.in.window nil)
(boxl.bounced nil)
(box2_bounced nil)

) )  
))
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