
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note wifi indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI
University Microfilms International

A Bell & Howell Information C om pany
300 North Z eeb Road. Ann Arbor, Ml 48106-1346 USA

313/761-4700 800/521-0600

O rder N um ber 9409710

Task a llo ca tio n an d red istr ib u tion in d istr ib u ted rea l-tim e
sy stem s

Hou, Chao-Ju, Ph.D.

The University of Michigan, 1993

Copyright ©199S by Hou, Chao-Ju. All rights reserved.

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

TASK ALLOCATION AND REDISTRIBUTION IN DISTRIBUTED

REAL-TIME SYSTEMS

by

Chao-Ju Hou

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
1993

Doctoral Committee:
t

Professor Kang G. Shin, Chair
Professor John F. Meyer
Professor Stephen Pollock
Assistant Professor Chinya V. Ravishankar
Associate Professor Demosthenis Teneketzis

Chao-Ju Hou 1993
All Rights Reserved

To my parents

ii

ACKNOWLEDGEMENTS

My deepest gratitude goes to my advisor Professor Kang G. Shin for his constant

guidance, encouragement, and support throughout the course of this work. He has always

encouraged me to cultivate my potential when I was not even sure I was capable of pursuing

a Ph.D. During the course of my study, he has always been eager to discuss our problems

and has made many inspiring comments and insightful suggestions without which this work

would not have been commpleted. Moreover, in spite of the tremendous demand on his

time, he has always been concerned my academic progress and personal life. I would also

like to express my appreciation to Professors John Meyer, Demosthenis Teneketzis, Stephen

Pollock, and Chinya Ravishankar for serving on this doctoral committee, and for their

constructive suggestions on this dissertation.

I have greatly benefited from my discussions with several previous and present

members of the Real-Time Computing Laboratory. In particular, Yi-Chieh Chang intro­

duced me the topic of load sharing and indicated to me possible directions to pursue. The

early work on real-time task allocation and scheduling by Dar-Tzeng Peng also inspired the

work constituting Chapter 2 of the thesis. Alan Olson helped me understand the Condor

package based on which we implemented our load sharing mechanism. Thomas Kaeppel

Tsukada collaborated with me on the implementation and experiments of our load sharing

mechanism.

I would also like to gratefully acknowledge the Department of EECS, the Office

of Naval Research, and National Science Foundation for providing financial support during

the course of my graduate study. Thanks to James Dolter and Daniel Kiskis for helping

me with many M?gX problems encountered in preparing this document. Thanks to Atri

Indiresan for many discussions on coursework and on student social life. Thanks also to

Wafa Wei, Ya-Wen Ko, Shou-Te Chang, Petra Deker, and Anant Chiarawongse for making

my stay in Ann Arbor more enjoyable.

A special thank goes to Muh-Ling Ger for his help, encouragement, and under­

standing, and for our very special friendship. Finally, I deeply thank my parents for their

weekly letters that went across the Pacific Ocean and were never absent for a single week

during the last six years, for their constant support and never-ending love.

TABLE OF CONTENTS

D E D IC A T IO N .. ii

A C K N O W LED G EM EN TS.. iii

LIST OF TABLES ... vi

LIST OF FIGURES ..viii

LIST OF A P P E N D IC E S ...xiii

CHAPTER

1 IN T R O D U C T IO N .. 1
1.1 B ack g ro u n d .. 1
1.2 Research Objectives.. 6
1.3 Approaches .. 8
1.4 Outline of the D issertation... 10

2 ALLOCATION OF PERIODIC TASK MODULES W ITH PRECE­
DENCE AND DEADLINE CONSTRAINTS 13
2.1 Introduction . .. 13
2.2 Task and System M odels .. 15
2.3 Module Allocation A lg o r ith m ... 21
2.4 Evaluation of T im eliness.. 23
2.5 Evaluation of Logical C orrectness... 36
2.6 Branching and Bounding T ests ... 39
2.7 Numerical Examples .. 43
2.8 Conclusion... 52

3 LS USING BAYESIAN DECISION T H E O R Y 53
3.1 In troduction .. 53
3.2 Basic Ideas of the Proposed Schem e.. 54
3.3 Bayesian Decision M o d e l ... 57
3.4 Region-Change Broadcasting, Prior/Posterior Probability Distribu­

tions and Loss-Minimizing D ecis io n s.. 60
3.5 Performance Evaluation .. 63
3.6 Conclusion... 93

4 ANALYTIC MODELS OF ADAPTIVE LS SCH EM ES.................. 94
4.1 In troduction .. 94

4.2 System Model and LS Schemes ... 96
4.3 Analytic M odels... 98
4.4 Computation/Communication Overheads... 106
4.5 Performance A nalysis... 109
4.6 C onclusion.. 123

5 LS W ITH CONSIDERATION OF FUTURE A R R IV A L S 125
5.1 In troduction 125
5.2 The Proposed Mechanism .. 126
5.3 Consideration of Future Task A rrivals... 130
5.4 Parameter Estim ation... 137
5.5 Numerical Examples ... 141
5.6 Conclusion.. 153

6 INCORPORATION OF OPTIMAL TIMEOUTS INTO LS 155
6.1 In troduction ... 155
6.2 The Proposed M ech an ism .. 157
6.3 Determination of the Optimal Timeout P e rio d 160
6.4 Derivation of P(T„t > t | node i is operational)...................................... 162
6.5 Numerical E x a m p le s ... 169
6.6 Conclusion.. 179

7 AN EXAMPLE: INTEGRATED LS ON H A R T S 181
7.1 In tro d u ctio n ... 181
7.2 System Model and Load Sharing Mechanism for H A R T S 182
7.3 Performance A nalysis... 188
7.4 Numerical Examples ... 200
7.5 C onclusion.. 208

8 IMPLEMENTATION BASED ON C O N D O R209
8.1 In tro d u ctio n .. 209
8.2 Overview of Condor Software Package... 210
8.3 Incorporation of Distributed LS Policies into C o n d o r 215
8.4 Implementation Issues .. 224
8.5 Related W o r k ... 226
8.6 Conclusion and Current Status ... 230

9 DISCUSSION AND FUTURE W O R K ...232
9.1 Research C ontributions.. 232
9.2 Future D irec tions... 234

A P P E N D IC E S ... 237

BIBLIO G R A PH Y ... 249

v

LIST OF TABLES

Table

2.1 Parameters needed to calculate Pnd\ (®) for the TG in Fig. 4........................ 36

2.2 The number and percentage of vertices visited in the search tree by M A A .
— indicates less than 10-6 x 100% of nodes in the search-tree were visited. 50

3.1 Tp for a task set with \ ext = 0.8, E T = {0.4,0.8,1.2,1.6) 0.25, and L =
{ l ,2 ,3 }1/3.. 69

3.2 Effects of the number and values of thresholds on Pdyn................................... 70

3.3 Effect of the number of state regions on Pdyn. Task set: E T = {0.4,0.8,1.2,
1*6}o.26 and L = {1,2, 3}i/3... 70

3.4 PdVn\i vs. task laxity I for different task sets under different schemes (N = 16). 73

3.5 Pdyn\d for a task set with E T = {0.4,0.8,1.2,1.6}0.2s and L = {1, 2, 3}i/3
under the ideal condition... 75

3.6 Comparison of mean response time among different LS schemes................... 78

3.7 Comparison of task transfer ratio among different schemes............................ 79

3.7 (continued) Comparison of task transfer ratio among different schemes. . . 80

3.8 Pdyn\t versus task laxity £ for different task sets under different schemes
(N = 64).. 83

3.9 Comparison of the traffic overhead associated with collecting state informa­
tion between the state probing and the proposed schemes.............................. 84

3.10 Comparison of computation overheads for a task set with E T — {0.4,0.8,1.2,
1.6}o.2s and L = {1,2, 3}i/3 between the state probing scheme and the pro­
posed scheme... 86

3.11 Performance (Pdyn) comparison of using FCFS/MLFS as the measure of
workload. Task set I: Aer‘ = 0.8, E T = {0.4,0.8,1.2,1.6}o.25> and L =
{1,2 ,3}i/3. Task set II: Aeit = 0.2, E T = {0.4,0.8,1.2,1.6}o.25, and L =
{1,2, 3}i/3. Task set III: X est = 0.8, E T = {0.4,0.8,1.2,1.6}0.25, and L =
{1.4,1.5, 1.6}i/3... 87

3.12 Performance comparison of using CET/QL as the measure of workload. . . 88

3.13 Effect of communication delays on Pdyn for a task set with E T = {0.4,0.8,1.2,
1.6}o.26 and L = {1,2, 3}i/3 under different schemes... 90

vi

3.14 PdVn\i with/without the use of Bayesian analysis in the proposed scheme. . 92

4.1 CET distributions for different task sets under different schemes (N = 16). I l l

4.2 Pdyn\t vs. laxity I for different task sets under different schemes (N = 16). . 115

4.3 Pdyn\t for a task set with E T = {0.4,0.8, 1.2, 1.6}0.2s and L = {1,2,3}i/3
under the ideal c o n d itio n ... 116

4.4 Comparison of mean response time among different LS schemes..................... 118

4.4 (continued) Comparison of mean response time among different LS schemes. 119

4.5 Comparison of task transfer-out ratio among different LS schemes................ 120

4.6 Effects of communication delay on Pdyn for a task set with E T = {0.4,0.8,1.2,
1-6}o.25 and L = {1,2, 3}i/3 under different schemes.. 122

4.7 Pdyn\t vs. task laxity t for a task set with E T = {0.4,0.8, 1.2, 1.6}0.2s and
L = {1,2,3}i/3) in 64-node homogeneous/heterogeneous distributed systems. 124

5.1 (a) Validation of the Poisson assumption with the Kolmogorov-Smirnov test:
if D < D* = 0.136, then the approximation is valid for the significance level
0.05... 144

5.1 (b) Validation of the Poisson assumption with the chi-square test: if x 2(obs) =
Tlf=i < X2(0*05) = 7.81, then the approximation is valid for the sig­
nificance level 0.05. Note that n, and o, are obtained as follows. We first
break up the domain of interarrival times (i.e., (0, oo)) into C — 5 categories.
Under the assumption that \e~ Xi governs interarrival times, we determine
the number, n<, of t,-’s that are expected to fall into category i. Second, we
count the number, o,, of the k=100 time samples obtained from the simula­
tion which actually fall into category i ... 145

5.2 f u of the proposed approach with and without G2 for a task set E T =
{0.4,0.8,1.2, 1.6}o,25) and L = {1, 2,3}i/3. The task transfer delay is as­
sumed to be 10% of task execution time.. 147

5.3 Performance comparison (w.r.t. t ask t ransfer-out ratio) of different LS ap­
proaches for a 16-node system. A„t = 0.8. The task transfer delay is
assumed to be 10% of task execution time.. 152

6.1 Best timeout periods w. r. t. the initial state, a ht, and XF. A, = 0.8, and
E T = {0.4,0.8,1.2, 1.6}o,25- Node i has 4 state regions determined by TH i —
1.0, T H 2 - 2.0, and T H 3 = 3.0. S1 = [0,2.0], S2 = (2.0, oo)............................ 173

6.2 Best timeout periods w, r. t. the task characteristic and the initial state of
node i. E T = {0.4,0.8,1.2,1.6}0.25* aht = 5 x 10-2 and XF = 10-2. Node i
has 4 state regions determined by TH i = 1.0, T H 2 = 2.0, and TH 3 — 3.0.
Si = [0,2.0], S2 = (2.0, oo)... 175

LIST OF FIGURES

F ig u re

2.1 The planning cycle which specifies the task system {T1? T2, T3}with pi = 3,
p2 = 4, and p3 = 6.. 16

2.2 An example of task flow graph.. 18

2.3 Precedence constraints associated with sen d -rece iv e—re p ly 19

2.4 The modified TG for the TG in Fig. 2.1 where all communication activities
are embedded into precedence relations. The label that appears in the upper
right corner of each box is the acyclic number associated with each module. 20

2.5 An example showing how r .’s and ZC.-’s are computed. All tasks are first
invoked at time 0. (In this particular example, i j = e;-, 1 < j < 12.) 27

2.6 (a) Optimal schedule on N x under allocation x in which Mx, M3, Mb, and
M 6 are assigned to N i, while the other modules are assigned to N 2.............. 28

2.6 (b) Optimal schedule on N 2 under allocation x ... 28

2.7 An example showing how the M SA schedules the modules assigned to a PN.
Note that all modules make their latest completion times under the optimal
schedule.. 30

2.8 Component graphs of the TG in Fig. 2.4. Both release times and latest
completion times are calculated under allocation x in which M u, M i2, M13,
M 14, and M3i(1) are assigned to N i, while other modules are assigned to N 2. 34

2.8 (continued) Component graphs of the TG in Fig. 2.4...................................... 35

2.9 An example showing how a new assignment M,- —► TV* might affect the
module schedule of Nm ^ A*.............................. 42

2.10 An example which shows how vertices in the state-space-search tree are
visited by the M A A 45

2.11 An example showing how the M A A allocates modules................................... 46

2.11 (continued) An example showing how the M A A allocates modules............. 47

2.12 Number of search-tree vertices visited by M A A ... 51

3.1 Operation of the task scheduler on each node.. 55

3.2 Pdyn vs. task arrival rate for a 16-node system with a task set: E T =
{0.4,0.8,1.2,1.6) 0.25, £ = {1 ,2 ,3}1/s.. 72

viii

3.3 Pdyn\t vs. task laxity t for a 16-node system with a task set: Aext = 0.8,
E T = {0.4,0.8,1.2, 1.6}o,25) L = { 1 ,2 ,3 ,4 ,5}0.2)... - 74

3.4 \ ma!C vs. Pdy„ for a 16-node system... 76

3.5 Frequency of task collision vs. external task arrival rate for a 16-node system
with a task set: E T = {0.4,0.8,1.2,1.6}0.25 and L = {1,2, 3}j/3............ 81

3.6 Pdyn vs. task transfer costs for a 16-node system with a task set: A*x< = 0.8,
E T = {0.4,0.8,1.2, 1.6}o,25j i = {1 ,2 ,3}1/3)... 89

3.7 Pdyn vs. queueing delay coefficients for a 16-node system with a task set:
Aext = 0.8, E T = {0.4,0.8,1.2, 1.6}o.25, T = {1 ,2 ,3}i/3) 91

3.8 Pdyn vs. coefficient of variation of task interarrival times for a 16-node system
with a task set: Aext = 0.8, E T = {0.4, 0.8, 1.2, 1.6}o.25, L = {1,2,3}i/3. . . 93

4.1 Operations of the task scheduler on each n o d e .. 97

4.2 A sample path for the evolution of remaining CET on a n o d e 99

4.3 A generic queueing model for each node.. 103

4.4 Probability distribution of CET for a task set with A = 0.8, E T = {0.4,0.8,1.2,
1*6}o.25) and L = {1,2 ,3}i/3. ... 112

4.5 Probability distribution of CET for a task set with A = 0.8, E T = {0.027,0.27,
2.7}i/3, and L = {1,2,3}i/3. ... 112

4.6 Pdyn vs. task arrival rate for a 16-node system with a task set: E T =
{0.4,0.8,1.2, 1.6}o.25) L = {1,2,3}i/3.. 114

4.7 Pdyn\t vs. task laxity I for a 16-node system with a task set: A = 0.8,
E T = {0.4,0.8,1.2, 1.6}o.2s, L = { 1 ,2 ,3 ,4 ,5}0.2... 117

4.8 Pdy„ vs. task transfer costs for a 16-node system with a task set: A = 0.8,
E T — {0.4,0.8,1.2, 1.6}o.25> L = {1,2,3}i/3.. 121

4.9 Pdyn vs. queueing delay coefficients for a 16-node system with a task set:
A = 0.8, E T = {0.4,0.8,1.2,1.6}0.25, L = { 1, 2, 3}1/a.. 123

5.1 Operations of the task scheduler on each node............................ 127

5.2 Future tighter-laxity task arrivals seen by a task T with £ = 13. A task
T with laxity x and execution time y is written as T (x , y). This example
shows (1) the independence of X from the execution order of tasks; (2) the
definition and property of the ET period.. 132

5.2 (continued) Future tighter-laxity task arrivals seen by a task T with £ = 13. 133

5.3 ET periods for Fig. 5.2. Y-axis indicates the CET contributed by those
tasks with laxity < 13 on node i prior to the execution of task T 134

5.4 «Srmf,rma r m , corresponding to the order of service in Fig. 3...................... 137

5.5 P (X < 2 | C E Ti(l) = k) for different values of k. A* = 0.8A. Task execution
time is exponentially distributed with 1.0.. 138

5.6 Conditional probability distribution of X given the estimated CET at node
i is k = 3. \h = 0.8A. Task execution time is exponentially distributed with
1.0 138

5.7 Task arrival and departure processes... 139

5.8 Pdyn of the proposed LS approach with and without G 2 for a task set with
E T = {0.4,0.8,1.2, 1.6}0.2s5 and L = {1,2,3}i/3. The task transfer delay is
assumed to be 10% of task execution time... 146

5.9 Pdyn of the parallel state probing with and without G2 for a task set with
E T = {0.4,0.8,1.2, 1.6}o.25» and L = {1,2,3}j/3. The task transfer delay is
assumed to be 10% of task execution time... 147

5.10 Performance comparison w.r.t. Pdyn among different LS approaches for a
16-node system with a task set E T = {0.4,0.8,1.2, 1.6}0.2Bj L = { 1,2, 3}i/3.
The task transfer delay is assumed to be 10% of task execution time. . . . 149

5.11 Performance comparison (w.r.t. Pdyn) among different LS approaches for a
16-node system with a task set E T = {0.027,0.27,2.7}i/3, L = {1,2,3}i/3.
The task transfer delay is assumed to be 10% of task execution time. . . . 149

5.12 Performance comparison (w.r.t. Pdyn) of different LS approaches for a 16-
node system with a task set E T = {0.4,0.8,1.2, 1.6}o.2b> L = { l}^ The task
transfer delay is assumed to be 10% of task execution time.................. 150

5.13 Effect of task transfer delay on Pdyn for the proposed approach and the
focused addressing approach in a 16-node system with Aex{ = 0.8, E T =
{0.4,0.8,1.2,1.6}o.25, L = { 1 ,2 ,3}1/3... 150

5.14 Aext vs. e. External task arrivals are Poisson. Both task execution time and
laxity are exponentially distributed... 151

5.15 Pdyn vs, coefficient of variation (CV) of external task interarrival times for
a 16-node homogeneous ((Kn,rn) = (1,1)) system with Aer, = 0.8, E T =
{0.4,0.8,1.2, 1.6}o.25) L = {1,2,3}1/3... 152

6.1 Operations of the task scheduler on each node... 159

6.2 P(Tnb > 1 1 node i is operational) derived w. r. t. shape parameter K er. A< =
0.8, E T = {0.4,0.8,1.2, 1.6}0.2b (mean E T = 1.0), and L = {l.O ^.O ^.O ^.
Node i has 4 state regions with each interval equal to 1 (except for the last
interval), i.e., Si = [0,2.0], S2 = (2.0, oo). The state of node i is CET=1.0
in the last broadcast.. 170

6.3 P(Tnb > t t node i is operational) w. r. t. task arrival rate A,-. E T =
{0.4,0.8,1.2, 1.6}o.2B) L = {1.0,2.0,3.0}^, and K „ = 5. Node t has 4 state
regions determined by TH i = 1.0, T H 2 = 2.0, and TH a = 3.0. Si = [0,2.0],
S2 = (2.0, oo). The state of node i is CET=1.0 in the last broadcast... 171

6.4 P(Tnb > t | node i is operational) w. r. t. the initial state node i is in.
A = 0.8, E T = {0.4,0.8,1.2,1.6}02b, L = {1.0,2.0,3.0}it and K er = 5.
Node i has 4 state regions determined by TH i = 1.0, TH 2 = 2.0, and
TH S = 3.0. Si = [0,2.0], S2 = (2.0, oo)... 172

x

6.5 P(Tnb > t | node i is operational) w. r. t. the length of broadcast interval.
A = 0.8, E T = {0.4,0.8,1.2,1.6}0.25, L = {1.0,2.0,3.0}^, and K „ = 5. Node
i has 4 state regions determined by TH i = \T H 2, TH 2, and TH 3 = §T H 2. 172

6.6 Performance comparison w.r.t. PF for different timeout periods in a 16-
node (K np = 16) system. External (local) task attributes for node i: E T =
{0.4,0.8,1.2,1.6}o.2b5 E = {1» 2,3}^, and IC = 5. A*- = 10-2, fip = 0.1, and
a ht = 0.05. The task-transfer delay is assumed to be 10% of the execution
time of the transferred task. Each node has 4 state regions determined by
TH i = 1.0, T H 2 = 2.0, and TH 3 = 3.0. $i = [0, 2.0], S2 = (2.0, oo)...................174

6.7 Performance comparison w.r.t. Pdyn for different timeout periods in a reli­
able 16-node (K np = 16) system. Local task attributes for node i: E T =
{0.4,0.8,1.2, 1 .6 } o .26» L = {1.0,2.0,3.0}^, and K = 5. AF = 10“3, fiF = 0.1,
and otht = 0.05. The task-transfer delay is assumed to be 10% of the execu­
tion time of the transferred task. Each node has 4 state regions determined
by THx = 1.0, T H 2 = 2.0, and TH a = 3.0. Si = [0,2.0], S2 = (2.0, oo). . . . 176

6.8 Performance comparison w.r.t. Pdyn for different timeout periods in a un­
reliable 16-node (K np = 16) system. Local task attributes for node i:
E T = {0.4,0.8,1.2, 1 .6 } o .25j L = {1.0,2.0,3.0}^, and K = 5. A^ = 10"2,
fiF = 0.1, and = 0.05. The task-transfer delay is assumed to be 10%
of the execution time of the transferred task. Each node has 4 state re­
gions determined by TH i = 1.0, TH 2 = 2.0, and TH 3 = 3.0. Si = [0,2.0],
S2 = (2.0, oo)... 177

6.9 Performance comparison w.r.t. Pdyn for different timeout periods in a un­
reliable 64-node (K np = 64) system. Local task attributes for node i:
E T = {0.4,0.8,1.2, 1 .6 } o .25» L = {1.0,2.0,3.0}^, and K = 5. XF = 10"2,
fiF = 0.1, and aht — 9-05. The task-transfer delay is assumed to be 10%
of the execution time of the transferred task. Each node has 4 state re­
gions determined by TH i = 1.0, TH 2 = 2.0, and TH 3 = 3.0. Si = [0,2.0],
S2 = (2.0, oo)... 178

6.10 Pdyn vs. C V of external task interarrival times in a 16-node (N = 16)
system. Local task attributes for node i : E T = {0.4,0.8,1.2, 1.6} o ,2b , L =
{1.0,2.0,3.0}^, and K = 5. XF = 10-2 and f iF = 0.1. The task-transfer
delay is assumed to be 10% of the execution time of the transferred task.
Each node has 4 state regions determined by TH i = 1.0, T H 2 = 2.0, and
TH 3 = 3.0. Si = [0,2.0], S2 = (2.0, oo)... 179

7.1 A C-wrapped hexagonal mesh of dimension 5, H 3................................. 184

7.2 Simple broadcast for a hexagonal mesh of dimension 4, H4. Corner nodes
are shaded. Links between nodes are not drawn for clarity................... 185

7.3 Analysis methodology used for evaluating the integrated LS performance.
The continuous-time Markov chain and the queueing network can be ac­
commodated for other LS schemes and interconnection structures as long as
parameters are properly characterized... 188

7.4 Two situations state inconsistency may arise... 199

xi

7.5 Traffic generated by LS (measured in terms of ArT ,AB, qhy and pct) for differ­
ent external task arrival rate, A. The distribution of task laxity is assumed
to be uniformly distributed over [1,5]. £r = 0.5, £B = 0.05........................ 202

7.5 (continued) Traffic generated by LS (measured in terms of A7t,A b , qhy and
pet) for A... 203

7.6 Effect of threshold values on the traffic generated by LS. The distribution
of task laxity is assumed to be uniformly distributed over [1,5]. £r — 0.5,
7^ = 0.05.. 205

7.7 1—PdVn vs. A and tightness of task laxity ratig. The distribution of task laxity
is uniformly distributed over [1,5] in (a), and is geometrically distributed with
pi+i — r • p iy for 1 < £ < 5. A = 0.8, £r — 0.2, and £B = 0.02. £r — 0.5,
T il = 0.05.. 206

7.8 The Effect of £r on pct and 1 — Piyn. The distribution of task laxity is
uniformly distributed over [1,5], and £r = 0.5.. 207

8.1 Daemons in Condor... 211

8.2 Interactions among Condor daemons.. 212

8.2 (continued) Interactions among Condor daemons....................................... 213

8.3 Job_sta te transition process.. 214

8.4 Preferred list in a 4-cube system... 217

8.5 Daemons in Modified Condor... 218

8.6 Interactions among daemons in the distributed mechanism...................... 219

8.6 (continued) Interactions among daemons in the distributed mechanism. . . 220

8.7 Data structure for machine record... 221

8.8 Remote system calls... 226

LIST OF APPENDICES

Appendix

A VERIFICATION OF FLOW CONSERVATION... 237

B SUMMARY OF RANDOMIZATION TECH N IQ U E....................................... 240

C LIST OF SYMBOLS .. 241

xiii

CHAPTER 1

INTRODUCTION

1.1 Background

The availability of inexpensive, high-performance processors and high-capacity

memory chips has made it attractive to use distributed computing systems for real-time

applications. These systems offer several advantages such as parallel computation, per­

formance scaling, and graceful degradation in case of component failures. Moreover, a

distributed system is ideally suited for environments with considerable physical separation

among the components to be controlled. However, these potentially attractive features

cannot be realized without careful coordination of processing nodes (PNs) and judicious

distribution/redistribution of application tasks in the system. The main goal of this dis­

sertation is to address the problems of statically allocating modules of periodic tasks and

dynamically redistributing non-periodic tasks to PNs in a distributed real-time system.

In a real-time system, the value of a computation depends not only on the logical

correctness of the results, but also on the time at which the results are produced [SR88].

Hence, time is the most important resource in the system, and each real-time task is

characterized by a task deadline. A task that is not completed within its deadline after its

invocation/release is considered failed, regardless of whether it is eventually completed or

not. Consequently, the performance of a real-time system is assessed on a per-task basis,

and the primary performance objective is no longer to minimize average task response time,

but rather, to minimize the probability of a task failing to be correctly completed by its

deadline, which is termed the probability of dynamic failure, Pdyn, in [KS83, SKL85].

Real-time tasks are either periodic or non-periodic. A periodic task is invoked at

fixed time intervals and constitutes the base load of the system. Its attributes, such as

the required resources, the execution time, and the invocation period, are usually known

a priori. A non-periodic task, on the other hand, is invoked randomly in response to en­

vironmental stimuli, especially to unanticipated abnormal situations. To ensure that the

1

2

execution of both periodic and non-periodic tasks must be both logically correct and com­

pleted before their deadline, a real-time task system is usually handled with the following

phases:

Task decom position: partitions periodic tasks into a set of communicating modules char­

acterized by their required execution times, release times, latest completion times, and

precedence relations.

M odule allocation: statically allocates modules of periodic tasks to PNs in a distributed

real-time system subject to task precedence and timing constraints.

Load red is trib u tio n /sh a rin g : dynamically distributes non-periodic tasks as they arrive

according to the load state and task attributes of each PN.

Local scheduling: uses the minimum-laxity-first-served (MLFS) discipline to schedule

all tasks/modules distributed/allocated to a node, because the MLFS discipline has

been shown in [HTT89] to, on average, outperform others in reducing Pdyn.

Partitioning tasks is usually based on some application-dependent criterion and the system

architecture under consideration, which is not the intent of this dissertation; see [PS87]

for an example of partitioning real-time tasks into modules/activities. In this dissertation,

we consider instead the issues of allocating periodic task modules to ensure their timely

completion, and redistributing non-periodic tasks as they arrive at “incapable” nodes which

do not have enough resources to complete them in time.

A llocation o f Periodic Task M odules: Since the attributes of periodic tasks are

usually known a priori, periodic tasks are decomposed into a set of communicating modules,

and are represented by a task flow graph (TFG). To fully specify task behaviors, task

invocations within a specific period during which task behaviors will repeat for the entire

mission are considered. Such a period is called the planning cycle of periodic tasks and

will be elaborated on in Chapter 2. The problem is then to allocate all the modules in a

planning cycle to PNs in the system with respect to their precedence and timing constraints

to ensure that all periodic tasks meet their timing requirements.

The problem of allocating tasks/modules in a distributed system has been stud­

ied by many researchers with respect to different objective functions subject to different

constraints. These objective functions can be roughly grouped into four categories:

O l. Minimization of total computation and communication times in the system [MLT82,

Sto77, L088, Hou90, WM93]. In the case of homogeneous systems, this objective

function reduces to the minimization of the total interprocessor communication time.

3

0 2 . Load balancing by minimizing the statistical variance of processor utilization [BT83,

TT85] or by maximizing the total rewards in the semi-Markov process with rewards

that models the system [CA82].

0 3 . Minimization of maximum computation and communication times on a PN, the ob­

jective function of which was termed the maximum turnaround time in [ST85], the

bottleneck processor time in [CS87, CL87], and the system hazard in [PS89].

0 4 . Maximization of the reliability function of both PNs and communication links [SW89,

SWG92].

Different objective functions lead to different optimality conditions and different

allocation results. The first two objectives are suitable for a distributed system executing

multiple simultaneous non real-time applications, where maximizing the total throughput or

minimizing the average response time is the main concern. However, for real-time systems,

the logical and timing correctness of each individual task must be considered, because failure

to correctly complete a task in time could cause disastrous consequences. Thus, the third

objective function which is based on the worst-case behavior is more suitable for assessing

the timeliness of real-time systems, while the fourth objective function that incorporates

reliability into task/module allocation is more suitable for assessing logical correctness.

The allocation problem has also been shown to be NP-hard for most existing prob­

lem formulations [GJ79, FB89], and some form of enumerative optimization and/or local

search approaches must be sought. As was reviewed in [MLT82, Lo88, BT83, CA82, ST85],

most existing methods are based on graph theory [Sto77, Lo88], mathematical program­

ming/enumeration [MLT82, ST85, PS89], heuristics/approximations [BT83, CS87, CL87],

or Markov decision theory [CA82].

In this dissertation, we address the problem of allocating periodic task modules in

a planning cycle subject to their task precedence and timing constraints to maximize the

probability of completing each task with both logical and timing correctness, PnD = 1 — Pdyn-

By “allocation,” we mean the assignment of modules coupled with the scheduling of all

modules assigned to each PN. Using the branch-and-bound (BB) technique, a module

allocation (MA) algorithm is proposed to find an “optimal” allocation that minimizes the

probability of dynamic failure, Piyn.

Load R ed is tr ib u tio n /S h a rin g : Since non-periodic task arrivals might be temporarily

uneven among PNs in a distributed system, the allocation of periodic task modules might

be “load-unbalanced” among the nodes, and/or the processing power might vary from node

4

to node, some nodes may get temporarily overloaded while others are left underloaded/idle

[KK93]. Livny and Melman [LM82] showed that even in a network of autonomous nodes,

with a large probability at least one node is idle while many tasks are being queued at

other nodes. Thus, we need an effective load redistributing or load sharing (LS) method

to enable “capable” nodes to share the loads of “incapable” ones and to maximize the

probability of non-periodic tasks meeting their deadlines. By “capable node,” we mean a

node with enough resources available to complete transferred-in task(s) in time.

LS in a distributed real-time system is different from that in a general-purpose

system in that the latter tries to either achieve perfect load balancing among the nodes

and/or minimize average task response time, whereas the former is intended to minimize

Pdyn- Upon arrival of a real-time task, each node determines whether or not it can complete

this task in time. If it can, the node will execute the task locally; otherwise, some other

capable node will be chosen to execute the task. As was discussed in [ELZ86, SKS92],

LS in a distributed system is dictated by three component policies: the transfer policy for

determining when to transfer a task, the location policy for determining where to transfer the

task, and the information policy for determining how each node collects state information

from other nodes. In the context of real-time applications, the transfer policy determines

whether or not a task can be completed in time locally, and the location policy determines

which other node is most likely to complete the task to be transferred in time.

According to the properties of the three component policies, LS schemes can be

classified into three categories: deterministic, probabilistic and dynamic/adaptive [NH85,

YL84, HL86]. A deterministic approach allows an overloaded/incapable node to transfer

“overflow” tasks — tasks that cannot be completed locally in time — with a fixed pattern,

e.g., all overflow tasks on node i are transferred to node j . A probabilistic approach, on the

other hand, transfers tasks with pre-specified probabilities, e.g., an overloaded/incapable

node * will transfer its overflow tasks to node j with probability Py.

By contrast, an adaptive approach uses state information for their LS policies. The

state of a node may be the number (or queue length, QL), or the cumulative task execution

time (CET), of tasks queued for execution on the node, the number and type of available

resources, or a function or combination thereof. The node makes LS decisions based on

the information collected via either periodic state broadcasts [Sta84, BS85, HL86, Sta85],

or state probing or bidding [Smi80, LM82, KF84, WM85, SRC85, NXG85, CL86, CK87,

KC87, Zho88, WS88, RSZ89, MTS89b, MTS89a, OK92], or state-change broadcasts [LM82,

HJ87, SC89a, SC89b, SH91, SC90], Both deterministic and probabilistic approaches do not

use state information, and thus, cannot react to dynamic situations. Because an adaptive

5

approach can adjust itself to dynamically-changing conditions, it is naturally expected to

outperform non-adaptive approaches in meeting task deadlines.

Several issues have to be considered in designing an adaptive LS mechanism for

real-tim e applications. The requirement tha t each real-time task should meet its deadline

suggests th a t the transfer policy not be of the static threshold type commonly used for

general-purpose systems [ELZ86, MTS89b], but should instead depend on the laxity of

each task — the latest time the task must start execution in order to meet its deadline. In

other words, upon arrival of a task, a node determines whether or not it can complete the

task in time by checking the CET on the node in front of the newly arrived task is less than

or equal to the laxity of the arrived task.

A node with an overflow task uses the location policy and the state information

gathered to locate a candidate node for task transfer by checking whether or not the candi­

date node has the surplus resource necessary to complete the task in time. Two issues need

to be considered when choosing the receiver of an overflow task:

(a) the probability of transferring the overflow task to an ‘incapable node’ must be mini­

mized.

(b) excessive task transfers resulting from task collisions must be avoided. A task collision

is said to occur if the “guarantee” of one or more tasks queued at a node is deprived

due to the arrival of a new tighter-laxity task. (By “guarantee” , we mean the node

has enough resources to complete the task of interest in time upon its arrival. An

existing guarantee may be deprived later because of tighter-laxity task arrivals under

the MLFS policy.)

The choice of information policy has an impact on the performance as well. LS

based on the periodic exchange of state information requires a good or optimal means of de­

termining the period of information exchange, since the accuracy of state information when

a LS decision has to be made depends heavily on this period. On the other hand, LS based

on bidding/state probing generates at least two additional messages per bidding/probing,

introducing time and communication overheads, and may thus be detrimental to the timely

completion of real-time tasks. Moreover, the resulting LS performance is very sensitive

to the variation of communication delay. LS th a t requires to update the state information

only in case of state-region changes has the advantage of maintaining more up-to -date state

information and collecting it inexpensively before it is needed for a LS decision. However,

the performance is susceptible to node failures, because the node failure is usually detected

through communication timeouts, and for LS with state-region-change broadcasts, if a

6

node has been silent (i.e., does not broadcast its state-region changes) for a long time,

other nodes have no way of knowing whether this is an indication of the node’s failure or

a coincidence of task arrival and completion/transfer activities alternating on the node (so

th a t the node’s state remains in the same state region).

In contrast to other LS approaches proposed for general-purpose distributed sys­

tems, we carefully tailor the transfer policy, the information policy, and the location policy

to handle real-tim e applications, to solve potential problems in a distributed real-tim e en­

vironment, and to ensure each non-periodic task to be completed before its deadline on a

best effort basis.

1.2 R esearch O b jectives

Although distributed systems offer many advantages (as discussed in Section 1.1),

they also present several challenging problems. Our research addresses one of them: task/m odule

allocation and load sharing in distributed real-tim e systems. The primary objectives of our

research are to meet the requirement in hard real-time systems th a t the execution of both

periodic and aperiodic tasks must be not only logically correct but also completed before

their deadline. Specifically, we address the issue of “optimally” (in the sense to be defined

later) allocating periodic task modules to PNs so as to fully utilize the inherent paral­

lelism, modularity, and reliability of the system while alleviating the “saturation effect”

[MLT82] caused by excessive interprocessor communication of data and control messages.

We also treat the dynamic redistribution of non-periodic tasks as an adaptive load sharing

(LS) problem, and design a LS mechanism to reduce the probability of a non-periodic task

missing its deadline.

In particular, we have identified several im portant issues related to MA and LS in

distributed real-tim e systems and have developed solutions to them in subsequent chapters:

C o m b in in g a ss ig n m en t w ith schedu ling in M A : Because of the timing aspects

embedded in the objective function used in real-time systems, the performance of any

resulting module assignment strongly depends on how the assigned modules are scheduled.

T hat is, not only a module allocation method is needed to assign task modules to PNs,

but also a module scheduling algorithm should be used to schedule all modules assigned to

each PN to ensure th a t all tasks may be completed in time. Specifically, modules which

constitute periodic tasks are characterized by its (1) required execution time, (2) earliest

release time which is derived from the task invocation times and precedence relations, and

(3) latest completion time which is derived from task deadline and precedence relations.

7

The latter two quantities form the timing requirements imposed on periodic tasks and the

communication times among modules into the characteristics of modules. Whether or not

to assign a module to a PN depends on whether or not the PN under consideration has

enough resources available to complete the module between its release time and its latest

completion time.

C harac te riza tion o f s ta te inconsistency: No matter which information policy is

used to collect state information, the state information gathered may be out-of-date due to

the communication delay incurred in state-information collection and task transfer [CK87].

That is, a node’s observed states of other nodes may be different from their true states at

the time of making LS decisions. This inconsistency often causes a node to transfer an

overflow task to an actually incapable node, and degrades the performance of adaptive LS

(as was analyzed in [MTS89b, MTS89a]). An on-line characterization approach should be

used to capture the inconsistency between a node’s “observed” state and the corresponding

true state with prior/posterior distributions. Each node should, instead of hastily believing

what it observed, estimates the true states of other nodes with these distributions and

observed states collected via the information policy, and makes LS decisions based on the

estimated states to reduce the probability of transferring a task to an incapable node.

C onsideration o f fu tu re tig h te r- lax ity ta sk arrivals: Under the MLFS scheduling

discipline, a node determines whether or not to queue a task with laxity I upon its arrival

by checking if the CET contributed by tasks with laxity < t at the node is less than or

equal to t . If a node cannot complete a newly-arrived task in time or the deadline of one or

more tasks in its queue is to be missed as a result of inserting the newly-arrived task into

its schedule, the node has to determine — based on some state information — candidate

receiver(s) for task transfer(s). In case of heterogeneous task arrivals at each node (e.g.,

different task arrival rates, distributions of task laxity, or distributions of task execution

time), transferring an overflow task T of laxity I to the node with the least CET may not

be a good choice if that node happens to have a large composite task arrival rate or most

tasks arrived at that node happen to have tighter laxities than the transferred-in task. For

example, a node may become easily incapable as a result of a high local arrival rate or

simultaneous task transfers from multiple nodes to the same node. Transferring T to such

a node may not be a good decision, even if the node was idle/underloaded at the time of

locating the receiver of T . Those tasks subsequently arrived at the node may have to be

transferred as a result of its acceptance of T. T may have to be transferred out again due

8

to the subsequent arrival of a tighter-laxity task under the MLFS scheduling discipline.

That is, tighter-laxity tasks arrived after the arrival of T but prior to its execution may

deprive T of its “guarantee” . Task collisions may thus occur and excessive task transfers

may ensue. Consequently, the impact of future task arrivals should be taken into account

in making a LS decision in real-time systems.

T un ing o f b e s t tim eo u t p e rio d fo r LS w ith ap erio d ic b ro ad cas ts : As discussed in

Section 1.1, failure of a node is usually diagnosed by the other nodes through communication

timeouts. A node is diagnosed as faulty if it has not communicated with other nodes for

a timeout period. However, for LS with aperiodic state-region change broadcasts, the

communication pattern of a node dynamically changes with system load, the attributes of

tasks arrived at the node, and the state the node was initially in. Hence, the best timeout

period used to diagnose whether a node is faulty or not should also be on-line adjusted with

these parameters. A timeout mechanism with an on-line adjustable timeout period should

be incorporated into LS with aperiodic state-region change broadcasts to avoid sending

overflow tasks to failed nodes. In particular, a best timeout period should be determined

on-line to maximize the probability of detecting node failure while keeping the probability

of incorrect diagnosis below a pre-specified level of tolerance.

1.3 A pproaches

D esign o f M A a lg o rith m an d LS m echanism : The goal of this dissertation is to

formulate and solve problems related to task management, or more specifically, task/module

allocation and load redistribution, in distributed real-time systems. We formulate problems

outlined in Section 1.2 in a well-defined analytic framework, and employ the branch-and-

bound method, Bayesian decision theory, queueing theory, hypothesis testing, Markov mod­

eling, and randomization technique to develop solutions in a general setting, which would

be applicable to a variety of real-time systems.

We would also like to model, validate (via event-driven simulations), apply our

solutions to a specific experimental distributed system, and implement our solutions so as to

demonstrate their effectiveness and develop a base for experimenting with real applications.

Specifically, we have carried out the following additional tasks:

A n a ly tic m odeling o f LS schem es using sem i-M ark o v m odels: We develop

analytic semi-Markov models to comparatively evaluate the proposed LS mechanism as

well as three other schemes: no LS, LS with random selection of a receiver node, and

9

LS with perfect information. Specifically, we model the evolution of a node’s load state

as a continuous-time Bemi-Markov process, where CET is used to describe the workload

of a node. We not only address the fundamental differences among different LS schemes

to model their design diversity, but also take into account of implementation overheads

to build a more practical model for accurately analyzing the tradeoff between the design

complexity and the resulting benefit. Several metrics relevant to real-time performance are

derived from these models. We then compare the proposed LS mechanism against other

LS schemes using these performance metrics. We also validate the analytic models with

event-driven simulations.

A p p lica tio n o f in te g ra te d LS to H A R T S : No m atter which information or location

policy is used, we must consider an underlying communication subsystem that supports

all LS-related communications, i.e., exchange of state information and task transfers. In

particular, the interconnection network and protocols affect how tasks or broadcast messages

are routed and whether or not tasks/messages can be delivered by a certain time [SH90],

and the underlying switching scheme determines whether tasks/messages may be queued

a t intermediate nodes or not. That is, the underlying communication subsystem should

be taken as an integrated part of the LS mechanism under consideration as far as the

performance is concerned.

We conduct an integrated LS study on HARTS (Hexagonal Architecture for Real-

Time Systems) [Shi91], an experimental distributed real-time system being developed in

the Real-Time Computing Laboratory at Michigan. Specifically, we use the proposed LS

mechanism to coordinate the nodes in HARTS (which are interconnected by a C-wrapped

hexagonal mesh [CSK90]) to evenly share overflow tasks. We also use the HARTS rout­

ing and broadcasting algorithms in [CSK90, KS91b] for transferring tasks and broadcast­

ing state changes, and the virtual cut-through switching scheme [KK79] implemented in

HARTS [DRS91] for inter-node communication. By exploiting/integrating features of these

communication-related algorithms for/into LS, we rigorously analyze the integrated perfor­

mance of LS in HARTS.

The results obtained from the analytic models are validated through event-driven

simulations, and used to study the impact of varying various design parameters on the

performance of LS while considering the details of LS-related communication activities.

P ro to ty p in g th e LS m echanism w ith softw are: We have implemented a preliminary

version of the proposed LS mechanism based on the Condor software package developed by

10

researchers a t the University of Wisconsin [LLM88]. Both the transfer and location policies

in Condor are realized by a centralized component named the central manager node. This

centralized component makes the LS performance susceptible to single-component failures.

Besides, the periodic information policy used in Condor introduces a potential bottleneck

of network traffic a t the central manager, and makes the fine-tuning of a reporting period

a crucial performance issue. We demonstrate how to enhance the fault tolerance capability

and the performance of Condor by configuring the functions of the central manager into

participating nodes using the schemes.

1.4 O utline o f th e D issertation

This dissertation is organized as follows. In Chapter 2, we design a module allo­

cation algorithm (M A A) to allocate periodic task modules to PNs and then subsequently

schedule all modules assigned to each PN with respect to their precedence and timing re­

quirements so that all periodic tasks may be completed in time. We first model the task

system within a planning cycle with a task flow graph to describe computation and commu­

nication modules as well as the precedence constraints among them. To incorporate both

timing and logical correctness into module allocation, we use the probability of no dynamic

failure, Pn d , as the objective function. The M A A is then applied to find an optimal allo­

cation of task modules. To reduce the computational complexity, we derive (1) a dominance

relation from the requirement of timely completion of tasks and used it to avoid generating

vertices in the state-space search tree which never lead to an optimal solution, and (2) an

upper bound of PND for every partial allocation with which the M A A uses to prune the

intermediate vertices in the search tree. We also perform extensive numerical experiments

to evaluate the effectiveness and practicality of the M A A .

In Chapter 3, we design an effective LS mechanism by tailoring LS component

policies to enable capable nodes to share the loads of overloaded ones so that the probability

of dynamic failure, Pdyn, is minimized. An important feature of the design is the use of

(1) time-stamped region-change broadcasts and prior/posterior probability distribution of

load state to characterize the inconsistency between the state a node observes and the true

systemwide state and (2) Bayesian decision theory to estimate the true states of other nodes.

By characterizing the inconsistency between a node’s ‘observed’ state and the corresponding

true state with prior/posterior distributions, and by using Bayesian decision theory for LS

decisions, the node can first estimate the states of other nodes, and then use them to reduce

the probability of transferring a task to an incapable node. We study (via event-driven

11

simulation) the performance of the LS mechanism, and investigate the effect of statistical

fluctuations of task arrivals on the LS performance.

Chapter 4 presents the analytic models which assess the performance of our pro­

posed LS mechanism as well as other existing LS schemes. The evolution of a node’s load

state is modeled as an M ^ / D / l queue with bulk arrivals, where the cumulative execution

time (CET) is used to describe the workload of a node. Both fundamental differences among

different LS schemes and computation/communication overheads associated with their im­

plementation are taken into account in the models. Several metrics relevant to real-time

performance are then derived from these models with which we use to evaluate the proposed

LS mechanism against other LS schemes.

In Chapter 5, we take into account future task arrivals in the LS decision to

minimize not only the probability of transferring an overflow task to an incapable node,

but also the probability that a remote candidate node fails to complete the transferred

task in time because of future arrivals of tight-laxity tasks there. The probability tha t the

“guarantee” of a transferred task will be deprived (after its transfer) by future tighter-laxity

tasks on a remote node is approximated using queueing analysis, and is used as an index of

the likelihood of future tighter-laxity task arrivals and its impact on the node’s capability

of completing the transferred task. All parameters needed for calculating the probability

of interest (and thus for making the LS decision) are on-line collected/estimated with

Bayesian estimation technique. We examine the performance improvement resulted from

the consideration of future task arrivals in minimizing the probability of dynamic failure,

task collisions, and excessive task transfers.

Chapter 6 addresses the problem of incorporating a timeout mechanism with on­

line adjustable timeout periods into LS with state-region change broadcasts. We formulate

the problem of determining the ‘best’ timeout period as a hypothesis testing (HT) problem,

and maximize the probability of detecting node failures subject to a pre-specified probability

of falsely diagnosing a healthy node as faulty. All the task parameters needed in HT are

again collected on-line with Bayesian estimation. We study the performance improvement

of the LS mechanism made by combining the on-line parameter estimation, the timeout

mechanism, and a few extra, timely broadcasts in reducing the probability of dynamic

failure.

Chapter 7 presents a rigorous analysis of LS in HARTS that includes all LS-related

communication activities, message routing and broadcasting. We adapt our LS mechanism

to HARTS by (1) exploiting the topological properties of HARTS for coordinating nodes in

sharing loads, (2) employing the routing and broadcasting schemes developed for HARTS

12

as the facilities for routing (transferred) tasks and broadcasting state-change messages,

(3) using the virtual cut-through switching scheme currently implemented in HARTS for

message passing. We also construct a continuous-time Markov chain model to describe

task arrival and transfer/completion activities on a node under the LS mechanism and a

queueing network model to describe the communications activities introduced by LS in

HARTS. Then, we integrate these two models to characterize the system operations of

HARTS, and derive several measures related to real-time performance.

In Chapter 8, we describe how to implement, based on the Condor software pack­

age, an initial version of the proposed LS mechanism which incorporates the ideas presented

in Chapter 3. We first give an overview of how Condor daemons collaborate to manage the

job queue at each node and locates target nodes. Then, we discuss how to reconfigure

Condor daemons and incorporate the proposed LS mechanism into them. We also high­

light the implementation features adopted in the proposed mechanism, and discuss related

work on alternative design and implementation approaches used by other process migration

mechanisms.

This dissertation concludes with Chapter 9, which reviews the contributions of this

dissertation and presents a discussion of future directions for the work presented herein.

CHAPTER 2

ALLOCATION OF PERIODIC TASK MODULES WITH

PRECEDENCE AND DEADLINE CONSTRAINTS

2.1 In trod u ction

In this chapter, we develop a module allocation algorithm (M A A) with precedence

and deadline constraints using the branch-and-bound (BB) method. The probability of

completing each task with both logical and timing correctness—which was termed in [SKL85]

as the probability of no dynamic failure, Pjvd—is used as the performance metric for locating

the optimal solution in the search space. Specifically, P ^d is the product of two component

probabilities:

♦ The probability, Pndi , that all tasks within a planning cycle are completed before

their deadline. The planning cycle is the time period within which the task invocation

behavior repeats itself throughout the entire mission, and thus completely specifies

the entire task system. More on this will be discussed in Section 2.2.

• The probability, Pnd 2 , tha t all PNs are operational during the execution of task

modules assigned to them, and the links between communicating PNs1 are operational

for all intermodule communications over these links under a given allocation.

The use of P ^ d as the objective function is in sharp contrast to the other module allocation

approaches reported in the literature which deal with either average task response time or

logical correctness, but not both.

We first model the task system with a task flow graph (TG) which describes

computation and communication modules as well as the precedence constraints among them.

We then use the BB method to search for an optimal module allocation. The computational

1By communicating PNs, we mean a pair of PNs to which two communicating modules are assigned
under a given allocation.

13

14

complexity is reduced by deriving an upper bound of the objective function, Pndi with which

we determine whether to expand or prune intermediate vertices (corresponding to partial

allocations) in the state-space search tree. On the other hand, because of the timing aspects

embedded in the objective function, Pndi the performance of any resulting assignment

strongly depends on how the assigned tasks/modules are scheduled. Thus, when evaluating

an upper-bound (exact) objective function for a partial (complete) allocation, we use a

module scheduling algorithm (M SA) (with polynomial time complexity) to schedule all

the modules assigned to a PN by minimizing the maximum tardiness of modules subject

to precedence constraints. The M A A , combined with the M SA , is guaranteed to find the

optimal allocation of modules to PNs subject to precedence and timing constraints. By

‘allocation,’ we mean the assignment of modules coupled with the scheduling of all modules

assigned to each PN.

Shen and Tsai [ST85] minimized the maximum turnaround time but considered

only a single invocation of each task. They did not take into account precedence constraints

between tasks. Chu et al. [CS87, CL87] chose to minimize the bottleneck processor workload

for tasks/modules assignment, but their algorithm/analysis was solely based on mean task

response times, which eliminates the need to consider the scheduling problem. Peng and

Shin [PS89] are the first to include the important timing aspects in the objective function,

and combine task scheduling with task assignment. They chose to minimize the system

hazard which is defined as the maximum normalized (with respect to task period) task

flowtime. It is, however, not clear how system hazard is related to the probability of no

dynamic failure. The restriction on assigning all modules of the same task to a single PN

may not always be desirable.

Ramamritham [RSS90] used a heuristic-directed search technique with tunable de­

sign parameters to (1) determine whether or not a group of communicating modules should

be assigned to the same PN, and (2) allocate different groups of modules to PNs and sched­

ule them with respect to their latest-start-tim es and precedence constraints. Compared to

this work, we use a finer granularity in modeling the real-time task system. (For example,

we include probabilistic branches/loops in task graphs and allow communications between

periodic tasks.) Although the author of [RSS90] considered fault tolerance via module repli­

cation, the degree of replication is pre-determined in an ad hoc way without any rigorous

justification. Also, no conclusions were made on whether or not his algorithm always leads

to an optimal solution. By contrast, we focus on module allocation subject to precedence

and timing constraints, as well as on the minimization of PND which, as mentioned earlier,

takes into account both timeliness and logical correctness. Also, as will be demonstrated in

15

our simulation study later, the M AA finds, in all experiment runs, the best allocation at

tractable computational costs for task systems with less than 50 modules and/or distributed

systems with less than 40 PNs.

The rest of the chapter is organized as follows. In Section 2.2, we discuss how to

model real-time task systems. The planning cycle which completely specifies the behavior

of task invocations for the entire mission lifetime is defined, and the task flow graphs (TGs)

which model the control flow of the applications and the precedence constraints imposed by

intertask communications are discussed. Assumptions on the distributed system are also

stated there. In Section 2.3, we provide an overview of our module allocation algorithm. The

objective functions, Pn d i(%) and Pn d i{%) — with which an allocation x is assessed in terms

of timeliness and logical correctness — are derived in Sections 2.4 and 2.5. In Section 2.6,

we address how to achieve both branching and bounding efficiencies. Section 2.7 presents

demonstrative examples. This chapter concludes with Section 2.8.

2.2 Task and System M odels

2.2.1 The Task System

As discussed in Chapter 1, periodic tasks are invoked at fixed time intervals and

constitute the base load of the system. Their attributes are usually known a priori. Con­

sequently, periodic tasks are usually partitioned into a set of communicating modules, and

are statically allocated module by module to PNs to a distributed system.

P lann ing cycle: To analyze the behavior of periodic tasks, we only need to consider the

task invocations within a specific period, the task behaviors during which will repeat for

the entire mission lifetime. Such a period is called the planning cycle of periodic tasks and

is defined as the least common multiple (L C M) L of {p i : i = 1,2,..., N t } , where p, is the

period of a task and NT is the total number of periodic tasks in the system. That is,

the planning cycle is the time interval [t0 + fcA, t0 + (k + 1)L), where /0 is the mission start

time, and k is a nonnegative integer. Fig. 2.1 gives an example of a task system { T i,r2,T3}

with pi = 3, p2 = 4, and p3 = 6. All tasks in this example are first invoked at time 0, and

a planning cycle is the time interval [0,12). Note that 7} is invoked I/p,- times within a

planning cycle, each time with a deadline d<, not necessarily equal to p,-.2

A ttr ib u te s and precedence constrain ts am ong modules: Each task can be decom­

posed into smaller units, called modules. (See [PS87] for a detailed account of how to

3The rate monotonic scheduling algorithm in [LL73] is not applicable due to this and the dependence
among periodic tasks.

16

The let The 1st The 1st
invocation invocation invocation

—

of task T1 of task T2 oftaskT3

The 2nd
invocation
of task T1 The 2nd

invocation
of task T2

The 3rd The 2nd
_ invocation invocation

of task Tl of task T3

— The 3rd
invocation

— of task T2
The 4th

_ invocation

—
of task Tl

— T, T 2 T 3

— pl=3 p2=4 p3=6

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 2.1: The planning cycle which specifies the task system {T1} T2, T3} with pi = 3,
p9 = 4, and pa = 6.___

decompose real-time tasks into modules.) Each module Mi requires e< units of execution

time. The execution time of a module could be its worst-case execution time or its real ex­

ecution time if known. Since extensive simulations and testing are required before putting

any real-time system in operation (e.g., fly-by-wire computers), the system designer is

assumed to have a good, albeit sometimes incomplete, understanding of either the exact

execution time or the worst-case execution time of each module.

The execution order of modules imposes precedence constraints among them.

These precedence constraints are of the form Mi —»■ Mj, meaning that the completion

of module M, of a task enables another module Mj of the same task to be ready for exe­

cution (e.g., by letting M, send a short message to enable M,-’s execution and/or update

the data variables/files shared between them [CS87, CL87]). On the other hand, tasks

communicate with one another to accomplish the overall control mission. The semantics of

message communication between two cooperating tasks also impose precedence constraints

between the associated modules of these tasks. This kind of precedence constraints is also

of the form Mi —> Mj except that Mt and Mj now belong to different tasks.

If Mi and Mj are assigned to the same PN, communication between them can

be achieved via accessing shared memory. Overheads for such communications are usually

17

much smaller than those when Mt and Mj reside on different PNs. Any two communicating

modules that reside on two different PNs will incur interprocessor communication (IPC)

which requires extra processing such as packetization and depacketization. IPC introduces

a communication delay which is a function of intermodule communication (IMC) volume

(measured in data units) and the nominal link delay (or delay per data unit) between the

two communicating PNs.

It is important to observe that even if exact module execution times were known

in advance, task execution times are not due to, for instance, the existence of probabilistic

branches /loops in task flow graphs (to be introduced below) and/or inexact knowledge of

IMC/IPC delays.

Task Flow G rap h (TG): A TG is commonly used to describe the logical structure of

modules, and the communications and precedence constraints among them. A TG is com­

posed of four types of subgraphs: chain, AND-subgraph, OR-subgraph, and loop. A chain

is the longest possible sequence of modules connected in series where all but the last mod­

ule have a single successor. An AND-subgraph consists of more than one branch, all of

which must be executed (possibly in parallel) and are enabled by the completion of the

module immediately before the AND-subgraph. The module after the AND-subgraph is

enabled only after the completion of all branches in the AND-subgraph. A branch of the

AND-subgraph may be a single module or any component subgraph of TG. Similarly, an

OR-subgraph consists of more than one branch. However, one and only one branch of the

OR-subgraph is executed, and the probability of choosing a branch is assumed to be given.

Another difference between an AND-subgraph and an OR-subgraph is that a branch of the

OR-subgraph could contain no execution object at all. The last type of subgraph, a loop,

consists of the loop body with the looping-back probability and the maximum allowable

loop count.3 Like a branch of an AND-subgraph, the loop body may be a single module or

any other component subgraph of TG. Fig. 2.2 gives a simple example of a TG.

C om m unication prim itives: The semantics of the most general communication primi­

tive, SEND-RECEIVE-REPLY,4 can be embedded into precedence relations between mod­

ules as shown in Fig. 2.3. If module Ma of task Ti issues a SEND to task 7), T, remains

blocked, or cannot execute module Mt that follows Ma until the corresponding REPLY from

Tj is received. If the module, Mc, responsible for the corresponding communication activity

aThat is, the number of times a loop can be executed is no more than its maximum loop count. Imposing
a maximum loop count for each loop is necessary, since each real-time task must be completed in a finite
time.

4Other communication primitives, such as QUERY-RESPONSE and WAITFOR [PS87] can always be
realized using SEND-RECEIVE-REPLY.

18

send-recdive-
reply activity

T2

Entry Entry

EndEnd End

Entry

Entry

End

Figure 2.2: An example of task flow graph.

19

Send

Reply

Receive-handling
module

_______ Figure 2.3: Precedence constraints associated with sen d -rece iv e-rep ly ._______

on Tj’s side executes a RECEIVE before the SEND arrives, 7} also remains blocked. For

example, the communication activities between tasks in Fig. 2.2 can be embedded into the

precedence constraints between modules as shown in Fig. 2.4.

2.2.2 T he D istributed System

The distributed system considered here consists of Kpn processing nodes (PNs).

For ease of algorithm description, all PNs are assumed to have the same processing power

and the same set of resources. (This assumption can be easily relaxed.) The time required

by an IMC within a PN is assumed to be negligible, while that between two PNs is ex­

pressed as the product of the IMC volume (measured in data units) and the nominal delay

(measured in time units per data unit) between the two PNs on which the communicating

modules reside.5 The nominal delay could be the worst-case communication delay experi­

enced by time-constrained messages in the underlying communication subsystem. Here we

assume that the communication subsystem and protocol support time-constrained commu­

nications (i.e., communication contention is arbitrated with respect to the delivery dead­

lines of messages), and the worst-case delay experienced by time-constrained messages is

bounded and predictable. Two examples of such communication subsystems are the point-

5The time for packetization and depacketization is lumped into module execution time for the clarity of
algorithm description.

20

Send

Send

Reply

Reply

Send

Reply

T 2

Entry

End

Entry

End

EntryEntry

End End

e=l

e=2

e=3
M 14 M7

e=2

e=l

e=l

M 25 Mil

e=l

M 31 M10
e=2

e=2

Figure 2.4: The modified TG for the TG in Fig. 2.1 where all communication activities are
embedded into precedence relations. The label that appears in the upper right corner of
each box is the acyclic number associated with each module.

21

to-point packet-switched communication subsystem described in [KS91a, ZS92] and the

highly responsive token-ring communication subsystem described in [SM89], No restriction

is imposed on the topology of the communication subsystem. Each processing node Nk and

each link i mn between N m and Nn are assumed to fail independently with exponential rates

A* and Amn, respectively.

2 .3 M od u le A lloca tion A lgorithm

Let N m be the number of modules to be allocated within a planning cycle. The

module allocation problem can be formulated as tha t of maximizing P n d (x) = P n d i (x) •

PND7(x) over all possible allocations subject to

K , n

^ 2 xik = 1, for 1 < i < N m,
Jb=l

where Xi* = 1 if and only if Mi is assigned to N k, P n d i (x) is the probability th a t all

tasks meet their deadlines under allocation x, and P n d i { x) is the probability th a t all PNs

are operational during the execution of modules assigned to them and all communication

links are operational during the IPCs tha t use these links under x. As will be clear later,

the precedence constraints among modules are figured in the calculation of module release

times (to be defined later), and the timing constraints on modules/tasks are considered when

evaluating P n d i (x)'-> for example, P n d i (x) = 0 if some of the tasks miss their deadline under

x. The expressions for P n d \ { x) and P n d 2 (x) will be derived in Sections 2.4 and 2.5 along

with the description of the corresponding system parameters.

To solve the above module allocation problem, we use the M A A which employs:

B ra n c b -a n d —b o u n d (B B) m e th o d to implicitly enumerate all possible allocations while

effectively pruning unnecessary paths in the search tree.

M o d u le schedu ling a lg o rith m (M S A) to schedule the modules assigned to each PN

subject to precedence constraints and latest module completion times. (The descrip­

tion and analysis of the M SA will be given in Section 2.4.1.)

The B B method enumerates all possible solutions to a given problem by ‘growing’

the corresponding search tree. Each intermediate (leaf) vertex in the search tree corresponds

to a partial (complete) allocation. This method is composed of two procedures: branching

and bounding. The branching process generates the child vertices of an intermediate vertex

x in the search tree, until an optimal solution is completely specified. On the other hand, to

avoid generating vertices which will never lead to an optimal solution, we have to calculate

22

an upper bound6 of the objective function (UBOF) for each vertex z. Based on the UBOF

value of x , one can decide whether or not x may lead to an optimal solution. The rationale

behind pruning a vertex based on its UBOF is the bounding process.

In order to derive an optimal solution with as little computation as possible, both

branching and bounding processes must effectively prune unnecessary search paths. An

effective branching process must minimize the number of child vertices generated for each

intermediate vertex x, without eliminating any path to an optimal solution. The rules used

by the branching process to limit the growth of the tree are termed dominance relations.

An effective bounding process must prune as early as possible those vertices tha t will never

lead to an optimal solution. This is achieved by deriving a tight (thus expensive to derive)

UBOF for each intermediate vertex z.

The M A A which is based on the BB method works as follows. The problem

of module allocation is represented by a state-space search tree. All modules in the task

system are assumed to be numbered in acyclic order such that if Af< —* Mj then i < j .

For example, the numbers which appear on the upper right corner of the boxes in Fig. 2.4

give an example of acyclic numbering. The M A A begins with a null allocation z0 which

corresponds to the root of the search tree, and allocates modules in the order of their acyclic

numbering. Each intermediate (leaf) vertex z in the search tree corresponds to a partial

(complete) allocation of modules.

Let T’G’(z) denote the set of modules which are already allocated under z ,7 and A N

the set of active vertices in the search tree to be considered for expansion. A N is determined

by the bounding test. Expanding a vertex z £ A N corresponds to allocating the module,

Mi, with the smallest acyclic number in T G \T G (x) to a PN, where \ denotes the difference

of two sets. Only those PNs which have enough idle times to ensure the timely completion

of M, and survive the branching test will be considered as candidates for allocating Mi. The

bounding test is then applied to those vertices expanded from z by allocating Mi to one of

the candidate PNs. The UBOF, -Fta>(j/)i of each newly-generated (intermediate) vertex y

is calculated by scheduling modules 6 TG(y) with the M SA and evaluating P n d i (v) and

PND2(y) with the expressions derived in Sections 2.4 and 2.5, respectively. If a vertex y

has its P n d (v) greater than the currently best objective function value VO) it survives

the bounding test, and will be made active and considered for vertex expansion in the next

stage; otherwise, it will be pruned. The algorithm terminates when an optimal solution is

6 Recall th a t we aim at maximizing, instead of minimizing, the objective function. Thus, an upper bound
of the objective function should be derived for each intermediate vertex.

7TG(x) = TG if x is a complete allocation.

23

found.

The M A A is outlined below. The M SA which schedules the modules assigned to

each PN will be discussed in Section 2.4.1. The expressions of Pndi(v) and P nd 2 {d) will

be derived in Sections 2.4.2 and 2.5, respectively. The branching and bounding tests used

to achieve BB efficiency will be treated in Sections 2.6.1 and 2.6.2, respectively.

M A Algorithm:

Step 1. Generate the root, x 0, of the search tree, which corresponds to a null allocation.
Set A N := {®o}*

S tep 2 . Set T G (x0) := 0, x opt := i 0, and the objective function value achieved by xopt,
Pj!fD = O'O = P n d { x o)‘

Step 3. W hile A N ̂0 do
/* an optimal allocation has not yet been found */

Step 3.1. Node Selection Rule;
Step 3.1.1. Select the vertex x 6 A N with the largest PND(x).
Step 3.1.2. If Pn d (x) < Pndi terminate the M A A , and x opt is the optimal

solution. Otherwise, set Mi to be the module € T G \T G (x) with the smallest
acyclic number, and A N A N \ {x}.

Step 3.2. Branching Test:
Step 3.2.1. Conduct the branching test on each PN. Only those PNs which

survive the branching test will be considered for allocating Mi (Section 2.6.1).
Step 3.2.2. Expand x by generating its valid child vertices, each of which cor­

responds to allocating Mi to one of the surviving PNs.
Step 3.3. Bounding Test: For each newly-generated vertex y,

Step 3.3.1. Use the MSA (Section 2.4.1) to find an optimal schedule for T G (y)
under y and calculate the UBOF, Pn d {v)'

Step 3.3.2. If Pn d (v) < Pndi then prune y. Otherwise, the following two cases
are considered:
Case 1. If y is a partial allocation, then set A N := A N U {y}, i.e., make y

an active vertex.
Case 2. If y represents a complete assignment, Pn d (v) is the actual PNd

achieved under y. Since Pn d (v) > Pndi set x°pt := V an^ Pnd = Pn d {v)
to indicate that y has now become the best allocation found thus far.

2.4 E valuation o f T im eliness

In this section, we evaluate Pn d i(x) for a given allocation x. We first consider

the M S A which schedules all the modules assigned to a PN, say JVt , under x such tha t

the maximum module tardiness is minimized subject to task release times and precedence

constraints. By applying the M SA to each PN, we can obtain an optimal module schedule

under x. Second, we calculate the probability, Pu{Tt | x), that a task Tt will be completed

24

before its deadline under allocation x and the corresponding optimal schedule obtained from

the M SA. Pjvdi(x) can then be calculated from Ptc(T* | x), VT*.

2 .4 .1 T h e M o d u le S ch ed u lin g A lg o r ith m

To facilitate the description and analysis of the M SA, we need to introduce the
following notation:

• TG e: a component task graph of TG. If TG contains loops or OR-subgraphs, it will
be replaced by a set of component task graphs without loops and OR-graphs before
applying the M SA (see Section 2.4.2 for more on this). For the time-being, we only
need to know that TG e contains neither loops nor OR-subgraphs.

• T G e(x): the set of modules € TG C allocated under x.

• Sk(x) = { M i : Xfk = 1}: the set of modules assigned to JV* under x.

• Til the release time of Mi, or the earliest time M,- can start its execution.

• LCc. the latest completion time of Mi to ensure that ah of its succeeding tasks will
meet their deadlines.

• Ci'. the completion time of Mi, which is determined by the M SA.

• e,: the execution time of Mi.
• e,-: the modified execution time of Mt, where

„ _ f e,- if Mi is scheduled to be executed upon its release a t tim e r<
c* “ [Ci — r,- otherwise.

e,- is used to include the effect of queueing Mi on the release times of all those modules
that succeed Mi.

• /i(Ci): the cost incurred by completing Mi at C,-.
• comij(x): the IMC time between M { and Mj under x.

• dij: the IMC volume (measured in data units) between Mi and Mj.
• tmn: the nominal delay (measured in time units per data unit) of link £mn.

• n(k,£): the number of edge-disjoint paths between N k and Nt,
• /(m , n, k, £): the indicator variable such that I(m , n, k,£) = 1 if £mn lies on one of the

n(k,£) edge-disjoint paths between Nk and N t .
 ̂ Kpn Kpn

• = Z7TT\ EE I(m , n, k,£) • tmn: the nominal delay (measured in time units per
m =l n = l

data unit) between Nk and Nt.

• B\ the minimal set of modules that are processed without any idle time in [r(B), c(B)),
where r(B) = minMi€fi r i5 c(B) = r(B) + e(B), and e(B) = T.m^ b «(•

• dgt: the outdegree of Mt within a block of modules under consideration.

Specifically, |5*(x)| modules (possibly belonging to different tasks) are to be sched­

uled preemptively on Nk. Each module Mt becomes available upon its release at time r;

which is initially set to the invocation time of the task to which M,- belongs. Precedence

25

relations (—►) are considered in the entire task system: if Mj —> M,- then Mi cannot start its

execution before the completion of Mj, regardless whether Mi and Mj are assigned to the

same PN or not. Execution of a module may be preempted and then resumed later. Asso­

ciated with each M(is a monotone nondecreasing cost function /,(Cf). We want to find a

schedule for the modules in Sk(x) such that f max(Sk(x)) = m ax^es^*)/«(£'«) *8 minimized.

The schedule with the minimal cost 1® said to be an optimal schedule of Sk(x).

Before proceeding to describe and analyze the MSA, we define the cost function

fi(Ci) and discuss how to calculate the two parameters, XC,- and r,-, Vi. The cost function

is defined as

fi(Ci) = C i - L C i , (2.1)

where XC,- is the latest time Mi must be completed to ensure the timeliness of all of its

succeeding modules, and Ci is the completion time of Mi determined by the MSA. If

Ci > LCi, a positive cost will occur. Thus, minimizing the maximum cost function is

equivalent to minimizing the maximum tardiness of modules in TG C.

The latest completion time, LCi, of Mi € TG C is obtained as follows. Let LC, be

initially set to the deadline of the task to which M,- belongs. Then, modify XC, as

LCi = min{XCi, m.in{LCj - ej - comy (x) : Mt -* Mj}}, i = N m — 1,..., 1, (2.2)

where the modules are assumed to be numbered in acyclic order and

{0, if Mi and Mj are assigned to the same PN under x,

dijYki, if Mi and Mj are assigned to Nk and Ni, respectively, under x.

Note that Eq. (2.2) computes backward from i = NM — 1 to i = 1, because M n has no

successor by the nature of acyclic order, and thus, the latest completion time of A/jv is

exactly the deadline of the task it belongs to. When x is a partial allocation and either Mi

or Mj or both have not yet been assigned, comij(x) may be left undefined. The rules used

to (optimistically) estimate these comij’s will be given in Section 2.6.

The release time, r,-, of M(€ TGc(x) is obtained as follows. Let r4 be initially set

to the invocation time of the task to which Mi belongs. Then, modify r4 as

n = max{rj, max{fj -f e;- + comji(x) : Mj —► Mi}}, 2 < i < N m , (2.3)

where rk is the invocation time of the task to which M\ belongs, and ij = max{C;- - r,-,e; }

is the modified execution time which equals the sum of M, ’s execution time, ej, and M /s

queueing time (if Mj is not scheduled to be executed upon its release), ij is used to include

the effect of queueing M4’s preceding module, Mj, on M,-’s release time.

26

Note tha t the modified execution times of all M i’s preceding modules must be

available prior to the calculation of r,. This is achieved by allocating the modules in the

order of their acyclic numbers. When an intermediate vertex y survives the bounding test

and is put in A N , all modules in T G c(y) will have been scheduled and their completion

times (and thus modified execution times) will be determined in the bounding process (Step

3.3 in the M A A in Section 2.3). Thus, when x is expanded from its parent vertex y in

the next stage by adding the new assignment of Mi, the schedules, completion times and

modified execution times of all modules in T G e(y) (which includes all preceding modules of

M{) must have been determined. So, all the e /s needed in Eq. (2.3) are known a t the time

of calculating r,-.
Fig. 2.5 shows an example of how jys and XC,’s are calculated.8 The allocation x

in Fig. 2.5 assigns M i, M3, M6, and M6 to N x, and the other modules to N 2. Both module
execution times and task deadlines are specified in the figure. The IPC delay is assumed to
be 0.5 unit of time, i.e., dijYkl = 0.5 wherever applicable. For example, the release time r 4
of M4 is calculated as

r4 = max{r4lri + c i + com i4(x),r 2 + e2 + com2 4(ar),r3 + e3 + con»3 4(a:)}

= m ax{0,0 + 1 + 0.5,0 + 1,1.5 + 2 + 0.5} = 4,

and the latest completion time, LC \2, of M i2 is calculated as

XC12 = min{XCi2 , L C i s - e i3 — comi2 13(*)} = m in{10,12 — 1} = 10.

Now, we describe the M SA , the theoretical base of which is grounded on the result

of [BLLK83]. First, we arrange the modules £ Sk(x) in the order of nondecreasing release

times. We then decompose Sk(x) into blocks, where a block B C S k(x) is defined as the min­

imal set of modules processed without any idle time from r(jB) = m in ^ e a until c(B) =

r(B) + e(B), where e{B) = YIm .cb e«- That is, each Mi £ B is either completed no later

than r(B) or not released before c(B). For example, as shown in Fig. 2.6, the set of modules

assigned to N i in Fig. 2.5, Si(x) = {Mi, M3, MB, M6}, can be decomposed into three blocks,

while the set of modules assigned to N 2, S2(x) = {M2, M4, M8, M9, M i0, M n, M i2, Mi3) , can

be decomposed into two blocks.

Obviously, scheduling modules in a block B is irrelevant to that in other blocks,

so we can consider each block separately. Let dgt denote the outdegree of Mi within B, i.e.,

the number of modules Mj £ B such that Mi —> Mj. For each block B , we first determine

the set B = {Mj : Mj £ B,dg, = 0}, i.e., modules without successors in B , and then select

sAs will be discussed later in Section 2.4.2, the task graph in Fig. 2.5 is a component graph of the TG in
Fig. 2.4.

0.5

0.5 0.5

0.5

One planning
cycle

Tl with deadline=10
after invocation timej
pl=12 |

T3 with deadline=4
after invocation time
p3=6

T2 with deadline=12
after invocation time
p2=12

End

Entry EntryEntry

Entry

End

End

End

N 2

M21
r2=0
e2=l
LC2=0

l n M31
rl2=9

' el2=2
'2 LC12=10

M23(3
10 rl0=7

elO=l
2 LC10=7

M M31
. r3=1.5
» e3=2
N i LC3=2.5

M24
rl 1=8
e ll= l
LCI 1=8

el= l
1 LC1=2.5

M il

M25
rl3= ll
el3=l
LC13=12

M22
r4=4
e4=l
LC7=4

*5 r5=5.5
e5=2

fl LC5=7

M12

Figure 2.5: An example showing how r,-’s and L C i s are computed. All tasks are first
invoked at time 0. (In this particular example, e, = e h 1 < j < 12.)

28

T t M t M M t U f Y Y V V
|-----1 Ml (LC1=2.5)

M3 (LC3=2.5)
M5 (LC5=7)
M6 (LC6=10)

 ̂B1 ̂ ̂ B2 ̂ B3 Blocks B1.B2.B3

Ml M3 M5 M6

Optimal Schedule for Bl, B2, and B3

B1={M1}, B2={M3}
B3={M5,M6}

Figure 2.6: (a) Optimal schedule on under allocation x in which M 1? M3, MB,
are assigned to JV1? while the other modules are assigned to JV2.

[Z 3 M2 (LC2 = 0)
M2 ■ ■ M4 (LC4 = 4)

M4 £ 3] M8 (LC8 = 5)

M8 m M9 (LC9 = 6)
M9 |3 3] M 10(LC10 = 7)

M10 H M U (LCI 1=8)
M il I I M12 (LC12 = 10)

M12 M13 (LC13 = 12)
M13

B l

□
M2

B2

M4 M 8 M 9M 10M 11 M12 M13
Blocks B 1.B2

Also optimal schedule
fo rB l andB2

and

Figure 2.6: (b) Optimal schedule on N 2 under allocation x.

29

a module Afm such that

f m{c(B))= min fi(c(B)), (2.4)

i.e., M m has no successor within B and incurs a minimum cost if it is completed last in B.

(In case of a tie, we choose the module with the largest acyclic number.) Now, consider an

optimal schedule for the modules in B subject to the restriction that Mm is processed only

if no other module is waiting to be processed. This optimal schedule consists of two parts:

S ched l: An optimal schedule with the cost f ^ at(B - {Mm}) for the set B - {Mm} which

could be decomposed into a number of subblocks B i ,B 2,. . . ,B y

Sched2: A schedule for Mm, which is given by [t (B) , c (B)] — U^=1[r(Bj),c(Bj)], where

t (B) = m in x es r, and c(B) = r(B) + e(B) with e(B) = c«-

For this optimal schedule, we have

C (a) wi,l> tllc above restriction = max{/m(c(£)), / " „ (B - {M„})} <

(2.5)

where the last inequality comes from:

1- fmaAB) = minmaxAfiGB fi(Ci) > minMi£B fi(c(B)) = m in ^ .^ /j(c (B)) = f m(c(B))

by the way B was constructed from B and Eq. (2.4).

2. Since B - {Af,} is a subset of B, f ^ as(B) > f ^ ax{B - {Af,}), VAf,-.

It follows from Eq. (2.5) that there exists an optimal schedule in which Mm is scheduled

only if no other module is waiting to be scheduled. By repeatedly and recursively applying

the above procedure to each of the subblocks B u B2,..., Bb, we obtain an optimal schedule

for B. The rationale behind the M SA is that a PN is never left idle when there are modules

ready to execute, and by virtue of the cost function defined, it is always the module Mi

with the smallest LCi that will be executed among all released modules.

Fig. 2.7 gives an illustrative example showing how the M SA schedules the modules

assigned to a PN. rt and LCi> 1 < i < 5, are assumed to have been computed from the entire

task graph and are given in the figure. By ordering the modules according to their increasing

release times, we obtain two blocks: 2?i = {Afi, Af2, Af3, Af4} from [0,8] (i.e., r(Bi) = 0,

e(i?i) = 8, and c(2?i) = 8) and B2 = {M5} from [9,11] (i.e., r(B2) = 9, e(B2) = 2, and

c (B 2) = 11). The schedule for B2 is trivial, because B 2 consists of a single module and

itself represents an optimal schedule for B 2. For Bi we have B\ = (Af3, Af4) and select Af3

to be processed only when no other modules are waiting since XC3 > LC4. Now B — {M3}

consists of two subblocks: B n = {M i ,M 2} from [0,3] and B 12 — {M4} from [4,6]. B i2

30

rl=0 M2M l
el=2 LC2=2

r3=2M3

LC3=9

M4
r5=9M5

to a P N
e5=2 LC5=11

1 2 3 4 5 6
I i I I I I

8 9 10 11 12 13 14 15 16
I I I 1 I I I I I

] M l (LC1=6)
M2 (LC2=2)
M3 (LC3=9)
M4 (LC4=6)
M5 (LC5=11)

B l

M l M2 M3 M4

J«-B 12-4

M l M2 M3 M4 M3

■ I —
M l M2 M l M3 M4 M3

t*-B 2 »l

I----------1
M5

B2
rzn

M5

I----------1
M5

B1={M1,M2IM 3IM4}

B1={M3,M4}
B2={M5}

B11={M1,M2}=B11

B12=(M4}

Optimal schedule
fo rB I andB2

Figure 2.7: An example showing how the M S A schedules the modules assigned to a PN.
Note th a t all modules make their latest completion times under the optimal schedule.

31

itself represents an optimal schedule. For B ix we have B n = {Mi, M2} and select Mi to be

processed last since LC\ > LC2. The final optimal schedule for B\ is obtained by combining

the optimal schedule for B n and B i2 (Schedl) and the schedule for M3 (Sched2) which

consists of [0,8] - [0,3] U [4,6]. The result is depicted in the last row of Fig. 2.7.

Take the task graph in Fig. 2.5 as another example, and consider the schedule on

N x. As shown in Fig. 2.6, 5i(®) is composed of three blocks, B x = {Mi}, B 2 = {M3},

and B 3 = {M5,M 6}. The optimal schedule can be readily obtained (Fig. 2.6(a)), since the

schedules for Bt and B 2 are trivial, and for Bx we have B3 = {M6}, meaning tha t M6

has to be processed only when no other module is waiting to be processed. The schedule

on N 2 can be similarly obtained (Fig. 2.6(b)). The fact that not every module in Fig. 2.5

is completed before its latest completion time is due to the undesirable choice of module

allocation. The schedules obtained above are, however, optimal under the given allocation

and the given timing constraints. The M SA along with the time complexity in each step

is summarized below.

MS Algorithm:

Step 1: Compute the latest completion time LCi, 1 < * < NM, for T G C. This computation
requires O (N h) time.

Step 2: Compute the release time r,• for M, € TG c(x) with respect to their precedence
constraints. This computation, in the worst case, requires O(IV^) time.

Step 3: Construct the blocks B x, B2,..., B b of .S’*(a) for every IV* by ordering the modules €
Sk(x) according to their nondecreasing release times. This ordering requires 0(|S*(z)|-
ôff|*S,fc(a!)|) time, VA.

Step 4: For each block 5, , 1 < i < 6, update the outdegree, dgj, of every Mj € B{. This
update requires 0(|iS*(a;)|a) time for all Bfa C <S*(s).

Step 5: For each block B,, select Mm € B, subject to Eq. (2.4), determine the subblocks of
Bi - {Mm},a nd construct the schedule for Mm as given in Sched2. Then, update the
dgj of every Mj € B{ — {Mm} with respect to the subblock of Bi — {Mm} to which Mj
belongs. By repeatedly applying Step 5 to each of the subblocks of Bi — {Mm}, one
can obtain an optimal schedule. The time complexity for all repeated applications of
Step 5 is bounded by 0(|5t(®)|3).

Since the time complexity associated with each step is polynomial, the M SA is a polynomial

algorithm.

2.4.2 C alculation of P n d i { x)

We discuss the calculation of Ptc(Ti | ®) under x and the schedules obtained from

the M SA for every task Tt . The probability, Pmdi(%), that no tasks miss their deadline

under x can then be calculated from Pie(Tt | x), VTt .

32

Conceptually, given T G and x, we can determine the set, Sk(x), of modules G TG

assigned to N k and use the M SA to schedule modules in Sk(x) Vfc. The completion time(s)

of the last module(s) in T* fl T G under these schedules determines whether Tt can be

completed in time or not. But it is not simple to implement the above concept, since TG

may contain loops and/or OR-subgraphs. This leads to the difficulty of determining the

release times, the latest completion times, and the execution times of modules, all of which

are needed by the M SA . Moreover, one cannot determine which module of Tt to execute

last if the last component in Tt is an OR-subgraph.

Component Graphs

To resolve the above difficulty, we first determine the latest completion time, LCi,

of Mi G T G using Eq. (2.2), assuming that

A l . Every OR-subgraph following Mi, if any, is viewed as an AND-subgraph by ignoring

branching probabilities.

A 2 . Every loop L a following Mi, if any, is replaced by a cascade of nLa copies of its loop

body, where is the maximum loop count.

A l and A 2 ensure tha t there is enough CPU time left for the timely completion of OR-

subgraphs and loops after Mi.

Second, we represent the TG with a set of component task graphs. Specifically,

for each loop La G TG we define T G l. ^ i 1 < m < nLa, as the T G with La replaced

by the cascaded m copies of its loop body. In T G i tim, the last copy of Mi € L a bears

the LCi calculated above, while the (nL. - j)- th copy of Mi bears the latest completion

time LCi - j * e{La), where e(La) is the execution time of the loop body. W ith probability

(1—qa)q™~1, the T G will be represented by T G ia>m, where qa is the looping-back probability

of L a. Also, for each OR-subgraph Ob € TG we define TG ob,n> 1 < w < nob, as the T G with

Ob replaced by its n-th branch, where n0h is the number of branches in 0 b. W ith probability

qbi„, the TG will be represented by TG ob,n, where qbin is the branching probability of the

n-th branch of Ob.

Then, we represent the TG with the set of all possible combinations. For example,

if there exists a loop L a and an OR-subgraph 0 b in TG, then there are a total of nj,. x n0i

component graphs of TG, and with probability pc = (l —qa)q™~1 ■Qb.n, the T G is represented

by T G C = TGL.,m\Ob,n, where T G t,(m;o6,n is the TG with L a replaced by the cascaded m

copies of its loop body and 0 b replaced by its n-th branch. (One can trivially extend this

to the case where there are more than one loop and/or OR-subgraph.) Hence, for example,

33

the TG in Fig. 2.4 can be represented by the set of 6 component task graphs shown in

Fig. 2.8.9 Also given in Fig. 2.8 are the probabilities that TG is represented by one of its

component graphs.

For each component graph, TG C, of TG, we then calculate the release time, r,-, of

Mi G TG C using Eq. (2.3). For example, the release time r,- (the latest completion time LCi)

under x is given in the upper (lower) right corner of the box representing Mi in Fig. 2.8.

Using the r,-’s and LCCs determined above, we can apply Steps 3-5 in the M SA to find the

best schedules for all modules in T G e. Note that in a component graph T G C, the release

time, r,', and the number of times M, is executed are both fixed, making it possible to

decompose Sk(x) into blocks.

Calculation

We now calculate the probability, Ptc(Tt \ x), that a task T/ G TG is completed

before its deadline under x. The parameters needed for this calculation are:

• pe: the probability that TG is represented by T G C.

• {TG e}: the set of component graphs of TG.

• Tt = {Mi : Afj G Tt fl TG C, dg{ = 0 with respect to Tt n T G C }: the set of modules
without any successor in Tt fl TG e.

• Dii the critical time of Mi G Tt . Di is obtained in the same way as LCi except that
the precedence relations, Mi -*■ Mj when Mj £ Tt , are ignored. That is, let D, be
initially set to the deadline of Tt to which Mi belongs. Then, it is modified as:

Di = min{A> nxin {D$ - e,- - com,-,(a;) : Mi ->■ Mj}}, i = N - 1, N — 2 ,..., 1.
MjeT t

D{ can be interpreted as the latest completion time of Mj for the timely completion

of Tt , to which Mi belongs. Obviously, D{ > LCi.

The probability, Pte(Tt \ T G c,x), that Tt is completed in time under x for a given T G C is

then calculated as:

Ptc(Tt \T G e,x) = n K D i - C i) , (2 .6)
M i t f t

where £(•) is the step function, i.e., 6(t) = 1 for / > 0, and S(t) = 0 otherwise. Consequently,

we have

Ptc{Tt I x) = £ pc . Ptc(Tt I TGe, x), (2.7)
[T G C}

and,
Nt

P n d i {x) = J J P tc (T t | ®). (2 .8)
t=i

34

Entry Entry

I S

02

0.5

obuined under Al in
Section 42. tSS

Entry
7 S

End

End

M21

M22

M24

M31(2)

M il
M31(l)

M13

M23

M25

M12

Representation of TG with the loop being replaced by
its loop body and the OR-subgraph being replaced by
die first branch.
pr*(i-p)-q

Entry Entiy

End

Obuined under Al ii
Section 4.2.1

7.5

End

Bid

M23

M31(l)

M24

M31(2)

M22

M23

M25

M13

M21M il

M12

Representation of TG with the loop being replaced by
the concatenation of 2 copies of the loop body and

the OR-subgraph being replaced by the fust branch.

pr =(i-p)pq

Entry! i Entry]

I S

obuined under Al in
Section 42.1

End

End

M21M il

M14

M23

M31(l)

M24

M31(2)

M25

M22

M12

Representation of TG with the loop being replaced by
its loop body and the OR-subgraph being replaced by
the second branch.
P (=0-P M H)

Entry Ennyl

M21M il
M31(l)

M22
End

Obuined under A1 in
Section 42.1M12 M23

M23M14

End M24

M31(2)

M25

Representation of TG with the loop being replaced by
die concatenation of 2 copies of the loop body and
the OR-subgraph being replaced by the first branch.
p f = (l-p) .p .(l-q)

Figure 2.8: Component graphs of the TG in Fig. 2.4. Both release times and latest com­
pletion times are calculated under allocation x in which M n , M 12t M ia, M 14, and M ai(l)
are assigned to JVl5 while other modules are assigned to iV2.

35

Entry Entry

03
2 3 0.J 23

04. OS

5 3

End
Entry

End

End

Representation of TG with the loop being replaced by
the concatenation of 3 copies of the loop body and
the OR-subgraph being replaced by the second branch.

Representation of TG with the loop being replaced by
the concatenation of 3 copies of the loop body and
the OR-subgraph being replaced by the first branch.

M12

M id

M il

M 3l(2)

M31(l)

M23M23

M21

M23

Mil

M23

M24

M23

M22

M31(2)

M24

M13
M23

M22

M12

M2SM2S

___________ Figure 2.8: (continued) Component graphs of the TG in Fig. 2.4.___________

Continuing with the example in Fig. 2.8, we have Ti = {M13,M i4}, Tj = {M 2s},

and T3 = (Af3i(l) , M 3i (2) } for all six component graphs, where M3t(k) is the fc-th invocation

of Mai. The completion time C, in U T2 U T3 under x and the schedules obtained from

the M SA are given in Table 2.1(a) along with the critical time, Z \, and latest completion

time, LCi. Ptc{Ti \ T G e,x), 1 < £ < 3, 1 < c < 6, can be readily calculated using Eq. (2.6),

and are listed in Table 2.1(b). Using Eq. (2.7), we get

Pu(Ti | x) = (1 - p)(l - q) + (1 - p)p(l - q) + p 2(l - ?) = (1 - q),

Pte(T2 | x) = 1, and Ptc(T3 \ x) = 1 - p2, where p and q, as denoted in Figs. 2.4 and 2.8,

are the looping-back probability and the branching probability of the OR-subgraph, respec­

tively. So, PNDi(x) = (1 - ?)(1 - p2).

9As one can readily check, the TG in Fig. 2.5 is exactly the 5-th component graph.

36

Task Module Mi LCi Di T G k t g 2 t g 3 t g 4 TGs T G 6
Ti m 13 10 10 10.5 X 10.5 X 10.5 X

M u 10 10 X 9.5 X 9.5 X 9.5
t 2 M 2 5 12 12 10 10 11 11 12 12
t 3 M31(1) 2.5 4 3.5 3.5 3.5 3.5 3.5 3.5

M31(2) 10 10 9 9 10 10 11 11

(a) Module completion times under allocation x.

Ptc(Tt | T G c,x) T G i t g 2 t g 3 t g 4 TG t TGe
Tk 0 1 0 1 0 1
t 2 1 1 1 1 1 1
t 3 1 1 1 1 0 0

(b) Ptc(T i\T G c,x)

Table 2.1: Parameters needed to calculate IV di(x) for the TG in Fig. 4.

2.5 E valuation o f Logical C orrectness

In this section, we calculate the probability, Pnd2(x), that: (i) all PNs are opera­

tional during the execution of modules assigned to them, and (ii) all communication links

are operational during the course of IPCs. The derivation of Pnd 2 {%) is similar to that of

the reliability function in [SW89], but we relax the following two unrealistic assumptions

used in [SW89]: (A l) the network topology is cycle-free, i.e., there is one and only one path

between any pair of PNs; (A2) each module is executed only once in a task invocation.

Instead of the first assumption, we allow an arbitrary network topology, and also

allow the IPCs between N k and Nt to take place over one of the (arbitrarily chosen) edge-

disjoint paths between the two PNs. In contrast to the second assumption, we allow modules

to be contained in loops and/or branches of OR-subgraphs, i.e., modules may be executed

more than once, or not executed at all in a task invocation.

To facilitate the derivation of Pnd2 (%), we need the following notation:

• LP: the set of modules which are contained in loops.

• OR', the set of modules which are on the branches of OR-subgraphs.

• qa: the looping-back probability of loop La.

• qt>t: the branching probability of the £-th branch of an OR-subgraph, 0&.

• n t . : the maximum count of loop La.

• no*: the number of branches in an OR-subgraph Oj.

• Xk: the constant exponential failure rate of N k.

37

• Amn: the constant exponential failure rate of link £mn. Failure occurrences are assumed
to be statistically independent of one another.

• P iM c(h j, nc): the probability that the IMC between Mi and Mj occurs n c times in
one task invocation.

• RmnihJi nc, %)'■ the probability that link £mn is operational during the n c occurrences
of IMC between M,- and Mj under allocation x.

• R-pn(x): the probability that all PNs are operational during the execution of modules
assigned to them under x.

• jRiinifCaQ: the probability that all links are operational for all IMCs under x.

Under allocation x, the probability that all PNs remain fault-free during the exe­
cution of the modules assigned to them is:

K fn

Rpn{x) - { IJ II exP (~ x kXikei)} ■
MigLPuOR Jfc=l

{n s t • n n eip(-Afca:*̂e<) i > •
L*SLP t=1 M%eLa Jbs=l

"o* Kpn
{n Stqh<i■ n n i }• (2-9)

o»6on /= i Mi <= f-th *=i
branch of Ob

Note th a t all factors except the one associated with Xu = 1 in the term n* ^ i exp(—AfcxtJte,)

reduce to 1. The expression within the first pair of braces is the probability tha t the PNs on

which stand-alone modules10 reside are operational during the execution of these modules.

Similarly, the expression in the second (third) pairs of braces is the probability th a t the PNs

on which the modules in loops (OR-subgraphs) reside are operational during the execution

of these modules. In case Mi is contained in a loop La, with probability ^ -1(1 — qa), Mi

requires an execution time £ • eit and in case Mi is on the C-th branch of an OR-subgraph,

Obi with probability <7̂ , M< will be executed. Note tha t Eq. (2.9) can be readily extended

to the case where a loop/OR-subgraph is contained in other loops and/or OR-subgraphs.
Consider Fig. 2.4 as an example, where L P = {M8} and O R = {M6, M7}. If all

modules of T\ are assigned to N\ and all modules of T2 and T3 are assigned to iV2, i.e.,

i/11 = 2/51 = 2/61 = 2/71 = 1 and 2/22 = 2/32 = 2/42 = 2/82 = 2/92 = 2/10 2 = 3/11 2 = 1) then
f»L

Rpn(y) = c -A*(“ +e») • e“A3(e3+es+e4+e*+e,0+eil> • {ge_Al<# + (1 - q)e~Xlt7} ■ ^ (1 - p)pt~le~x,te*.
/ = i

The expression of -Riinfe(®) calls for the derivation of R mn(i , j , n c, x) and PiMc(i,j> n c)-

iZmn(i , j , n e,x) is the probability tha t link l mn is operational during the n c occurrences of

10modules which are contained in neither loops nor OR-subgraphs in the TG.

38

IMC between M,- and Mj under x, and can be expressed as:

Rmn(i , j ,n c,x) = J J | J e x p (- \ m n • xikX jt- I (m ,n ,k ,£)) . (2 .10)
*=i 1=1,t *k n\n ,i)

Two remarks are in order:

• All the K pn(Kpn - 1) terms in Eq. (2.10) — except for the term corresponding to
Xik — Xji = 1 — reduce to 1.

• If is assigned to N k (xik = 1), Mj is assigned to Nt (Xji = 1), and £mn lies on one
of the edge-disjoint paths between N k and Ni (I(m, n, k,£) = 1), then

R m , n { i , h n c, x) = e x p (- \ m n - ^ ™ ^),

where is the average communication time over link £mn contributed by the nc
occurrences of IMC between and Mj.

For example, given the simple distributed system represented by a complete graph
of 3 PNs (where n(k,£) = 2 and J(m,n,fc,£) = 1,1 < m ,n < 3, m ^ n, 1 < &,£ < 3, A ^ £)
and the TG in Fig. 2.4, we have

1 2 (*) j> tte> x) — exp(—Aj2 • ‘ ^ • (x n X j 2 + Zi lXj3 + ®i2 *jl + *,2*j3 + *i3*jl + *»'3*i2)).

Under the allocation y in which modules of Ti and T2 U T3 are assigned to Ni and JV2,

respectively, # i2(l ,4 ,n e,y) = e ip (-A 12 • nJ-^dl1) since ynVii = 1, and # i2(2,4,n e, 2/) = 1,

i.e., the IMCs between M2 and M 4 are accomplished via shared memory and do not use

link £ 1 2 at all.

P iM ci^h ne) is the probability that the IMC between Af,- and Mj occurs ne times

in one task invocation. Obviously, P m c i h h ne) £ 0, nc > 1, holds only when M,- and Mj

communicate with each other, i.e., > 0. Specifically, in the case of dij > 0, we have the

following conditions:

C l . PiMc(i,j, 1) = 1 and P m c (h j , n c) = 0 for ne > 1 if neither of and Mj resides in
a loop or an OR-subgraph.

C 2. P w c (i J , 1) = 1 and P iM c(h j,ne) — 0 for ne > 1 if one of Mi or Mj resides in a
loop, while the other (not contained in an OR-subgraph) resides immediately before
or after the loop.

C3. P iM c(i,j ,nc) = g£e_1(l - 9a), for 1 < nc < nL. - 1, and P /m c (m > z .) = 9aL‘ if both
Mi and Mj reside in the body of a loop La.

C4. PjMc(i,j, 1) = Qb,i and P iM c(h j,nc) = 0 for ne > 1 if either Af,- or Mj resides on
the £-th branch of an OR-subgraph, 0*, while the other resides immediately before or
after 0 4.

CB. Pm c (i J , 1) = 9m and P m c (i , j , nc) = 0 for rac > 1 if both M,- and Mj reside on the

£-th branch of an OR-subgraph, Oj.

39

Let Ct = {(M i,M j) : M,- and Mj satisfy condition Ck and dy > 0}, A: = 1,2;
C3 (La) = {(M i,M j) : both M,- and Mj reside in the loop body of L a and dy > 0}, V L a €
LP\ and C4 (O t,i) = {(Mi, Mj) : either Mi or Mj or both reside on the £-th branch of 0*
and dy > 0}, V 0& € OR, 1 < I < n0b. -Rn-nif(a?) can then be expressed as:

l̂ink(®) = { IT JJ *) } '
(Mj |Mj}£Ci UCj ^mn

{n e 9oe-i(i-«<»)• t n
LtGLP nc=l (Mi.Mj-JeCaCL.) tmn

noh

{ii e «*.<■[n nwu,1,.)]}. (2*n)
Ob£OR 1=1 (Mi,Mj)fzCi(Ol,l) <mn

For clarity of presentation, Eq. (2.11) excludes the case where a loop/OR-subgraph is

contained in other loops and/or OR-subgraphs. It is straightforward to extend Eq. (2.11)

to include such a case.

Consider again the example of allocating the TG in Fig. 2.4 to the distributed

system represented by a 3-complete graph: C4 = { (M i, M4), (M i, M6), (M2, M3), (M2, M4),

(M3,M 4), (M4,M 5), (M9,Mio), (M ^ M n), (M io,M n) }, C2 = { (M4,M 3), (Ms, Mg) },

C3 = 0,C4(Ol t l) = { (M „M 6) }, and C4(O i,2) = { (M i,M 7) }.

^ l in k W - { n
(Afi.ilfjOeCiUCa *mn m̂n

Under the allocation y given in the previous example, we get

l̂ink(y) = n R>mn{ 1)4,1, J/) • n 5,1? y)
m̂n m̂n

_ g — (£ja<ia+̂ 13tja+̂ S3f33)rf|«/2 , g-(AL3tt3+llS<13 + l33tsi)d4B/2

where the first (second) factor in the last expression is contributed by the IMC between Mi

and M4 (between M4 and MB), e.g., e~ X l 3 t l l d l */ 2 is contributed by the IPC between Mi and

M4 which runs through £i2, and e- (*33tsJ+*lstls)<il‘d 2 is contributed by the IPC which routes

through ^i3 and i 32- Finally, we have

Pnd2 (x) = Rj>n(x) • ^ link(*)' (2.12)

2.6 Branching and Bounding Tests

The branching test uses the dominance relation derived from the requirement of

timely completion of tasks to limit the number of child vertices generated in the branching

process. The bounding test derives an upper bound of the objective function (UBOF) for

each intermediate vertex with which one decides whether or not to prune an intermediate

vertex in the bounding process.

40

2.6.1 Branching Test

Recall that expanding an intermediate vertex x in the search tree corresponds to

allocating the module with the smallest acyclic number that has not yet been allocated (so,

a module in TG \ TG(x)). The branching test uses the following dominance relation. Mi

can be invoked after all its precedence constraints are met and must be completed by its

latest completion time, LCi, to ensure that all its succeeding tasks meet their deadlines.

Hence, if (1) the idle time of a PN, say N k, during the interval [r,-,iCi] is smaller than

e,-, and (2) the module, say M j , scheduled to be executed last11 on N k in [r,-, LCi] under

a partial allocation x has tighter timing constraints than Mi (so no preemption on N k to

ensure the completion of M{ before LCi), then allocating to N k is likely to miss Mf’s

latest completion time. Thus, N k should not be a candidate PN for allocating Af,-, i.e., fails

the branching test.

B ranch ing Test;

S tep 1. Calculate optimistic estimates, rf and LC- , of rt and LCi, assuming that

A l . Every pair of communicating modules that have not yet been assigned (i.e.,
G TG \ TG(x)) reside on the same PN. That is, the IMC communication times
in TG \ TG(x) are set to zero.

A2. The OR-subgraph preceding or following Af,, if any, is replaced by the branch
with the smallest flowtime.

A3. The loop preceding, containing, or following M {, if any, is replaced by its loop
body (i.e., the loop executes only once).

S tep 2. Calculate an pessimistic estimate, ZCf, of LCi, assuming that

A4. The IMCs in TG \ TG(x) are executed on N k and Nt with the largest nominal
inter-PN delay Ykt.

A5. The OR-subgraph following Af,- is replaced by the branch with the largest flow­
time.

A 6 . The loop following Mi (if any) is replaced by the cascaded nL copies of its loop
body, where rt£ is its maximum loop count.

S tep 3. For each Nk, check whether the following two conditions are true or not:

C l. The idle time of Nk in [r°,LC°] is less than e*.
C2 . LCj < LCi, where LCj is the latest completion time of the module, Mj, sched­

uled last in [r", LC?] on Nk under the partial allocation i .

If both conditions are true, then Nk fails the test and is not considered for allocating
Mi.

11 By ‘last,’ we mean the module is executed only if no other modules are waiting for processing on Nk.

41

A 1-A 3 ensure rf < r,- and LC f > LCi, thus making the interval [r°, LCf] larger

than [rj, LC,]. A 4-A 0 ensure LCf < LCi, making Af,- likely to preempt other modules on

Nk. Consequently, the use of the optimistic interval, [rf,LCf\, and the pessimistic value,

L C f, ensures that the PNs which fail the branching test cannot indeed complete Af,- in time.

2.6 .2 C alcu lation o f an U B O F for th e B ounding T est

The bounding test calculates an UBOF for each intermediate vertex, and prunes

(keeps) the intermediate vertex when the calculated UBOF < (>) the best objective func­

tion, Pn d > found thus far. The bounding test uses the following principles. A vertex y

is generated from its parent vertex x by adding the assignment Mi —► A* to the partial

allocation x for some Nk that survives the branching test. After including Af,- —► Nk, Nk

needs to re-schedule the modules assigned to it under y (i.e., the modules € Sk{y)) using

the M SA . Because modules are assigned in acyclic order, all preceding modules of Af,- in

Sk(y) have their latest completion times < LCi, and their schedules will not be changed

by the addition of Af,-. On the other hand, if some non-preceding module, M j, of Af,- does

change its schedule as a result of Mi —* Nk, then the release time(s) of all Af)’s succeeding

module(s) have to be changed accordingly. Consequently, the PNs (^ Nk) on which these

succeeding modules of Mj reside need to reconsider their module schedules.

Fig. 2.9 gives an example of how adding Mi —► A* to a partial allocation might

affect the schedules on other PNs. In the partial allocation x prior to the assignment

Me -*■ N \, Mi and M 2 are assigned to JVi, and M3, Af4, and Af5 are assigned to N 2. The

optimal schedules on N i and N 2 for x (obtained from the bounding process of the last stage)

are shown in Fig. 2.9(a). Now, assign M6 to Ni to get the child vertex, y, of x. As shown

in Fig. 2.9(b), Ni needs to re-schedule its assigned modules. (Note tha t the schedule for

M i, however, does not change since Mi is a preceding module of Af6.) Also, the schedule

change on Ni — especially, the schedule change for Af2 — alters the release times of M 2'a

succeeding modules, Af4 and Af5. So, the schedule on N 2, the PN on which Af4 and Me

reside, needs to be changed as well (Fig. 2.9(b)).

Let P N denote the set of PNs which need to reconsider their module schedules as

a result of Af,- —> AT*. Then an UBOF is calculated by the following steps.

C alcu la tion o f a n U B O F ;

S tep 0 . Represent the TG with the set, {TG C}, of component graphs by using the method
in Section 2.4.2.

S tep 1 . Calculate Pn d i (v) as follows:

42

Ml
el=l

)
Assigned
toNl

rl=0

[Entry)

M
e2

12
=3

.0.5...

M4
e4=2

M5
e5=2

M3
c3=l

5,|>

\

"“i - "

Assigned
to N2

0 1 2 3 4 5 6 7 8 9 10
...

N ls schedule

Ml M2
N2's schedule

M4 M5 M3

Before the assignment of M6 -> N1

00

......

Ml
el=l

M6
e6=2

LCI =2

rl=0
M2
e2=3

M3
e3=l

0 5 . /

M4
e4=2

Assigned-,
toNl

6.5

8.5 |
i
i

55

II

M5
e5=2

8.5 i

IO.5I Assigned
toN2

0 1 2 3 4 5 6 7 8 9 10
I I I I I I I I I I

N l’s schedule

Ml M6 M2
N2's schedule

M3 M4 M5

After the assignment of M6 -> NI

(b)

Figure 2.9: An example showing how a new assignment M,- —► N k might affect the module
schedule of N m ^ Nk.

43

S tep 1.1. In each component graph T G C:
S tep 1.1.1 For every Nm 6 P N , re-schedule the modules G Sm(y) by using the

M SA and A l in the branching test.
S tep 1.1.2 . Calculate Ptc(Tt j T G c,y), VT/, by using Eq. (2.6), where Tt in

Eq. (2.6) is modified as
A7. Tt = {Mi : Mi G T/ n TG t{y),dg{ - 0 w.r.t. Tt fl TG e(y)},
i.e., T G e(y) replaces T G C in Eq. (2.6), and is the set of modules G T G C
allocated under y.

S tep 1.2. Calculate Pte{Tt | y), VT/, and Pn d i(v) by using Eqs. (2.7) and (2.8).

S tep 2. Calculate Pjv£»2(j/) by using Eqs. (2.9), (2.11) and (2.12), and

A 8 . Every Mj G TG \ TG(y) is assumed to be allocated to the most reliable PN, and
every pair of communicating modules in TG \ TG(y) reside on the same PN.

S tep 3. Calculate Pn d {.h) = Pn d i(u) ‘pNDi(y)-

Note tha t P n d i (v) derived above is an upper bound of P n d i of any leaf vertex (complete

allocation) generated from y because of A l and A7. When calculating Pndi{v) we can

use A 7 to exclude the case of whether or not modules G TG \ TG(y) can meet their latest

completion times.

2 .7 N u m e r ic a l E x a m p le s

The performance of the M A A is evaluated according to the following sequence: (1)

discussion on the generation of task graphs and distributed systems; (2) the characteristics

of the M A A ; (3) the practicality of the M A A .

2 .7 .1 G e n e ra t io n o f T a sk G ra p h s a n d D is t r ib u te d S y s te m s

There are a large number of parameters that may affect the performance of the

M A A . They can be classified as system parameters which specify the distributed system

under consideration and task parameters which specify the TG. The generation of realis­

tic TGs and distributed systems largely depends on how these parameters are specified.

However, little is reported in the literature about “typical” real-time TGs and their com­

munication patterns. Thus, we randomly generate both system and task parameters in our

numerical experiments. The number of PNs in the distributed system is varied from 3 to

40, and the network topology is arbitrarily generated. The nominal delay, tmn, associated

with l mn is exponentially distributed with mean Q.le, where e is the mean module execution

time. The node failure rate, A,, and the link failure rate, Am„, were varied from 10-6 to

0.5. The number of modules to be allocated is varied from 4 to 50. The execution time

44

of a module is exponentially distributed with mean 1.0 unit of time. The IMC volume

between two communicating modules is uniformly distributed over (0,10] data units. The

precedence constraints and the timing requirements of the TG are also randomly generated.

Before running experiments, we eliminated the TGs which were definitely infeasi­

ble. Infeasibility is detected by calculating release times and latest completion times of all

modules, while ignoring all IMC times. If the interval between the latest completion time

and the release time is less than the execution time for some module(s) in all the component

graphs of a TG, this TG is infeasible (in the sense that some tasks cannot be completed in

time even if infinite resources were available) and is not considered any further.

All experiments were performed on a SPARC station running the SUNOS 4.1.2

operating system. Due to space limitation, we present only a few representative solutions

and statistical results. However, the conclusions drawn from the following summary were

corroborated by all the experiments conducted.

2.7.2 Characteristics o f the M AA

By virtue of the B&B method, the M AA always yields the best allocation.

Fig. 2.10 shows an example of how vertices were visited by the M A A in the state-space

search tree before the optimal vertex was found. The TG, the network topology, and their

attributes used in the example are also given in Fig. 2.10. Only 34 vertices in the search

tree (of 728 vertices) were visited before locating the best allocation.

To further examine the characteristics of the optimal allocation found by the

M A A , experiments were performed on (1) TGs with different degrees of parallelism;12 (2)

task sets with different degrees of deadline tightness; (3) distributed systems with different

nominal link delays and node/link failure rates.

Several interesting properties observed in the experiments are given below.

P i . The M A A tends to allocate sequentially-executing modules subject to the same tight

timing constraints to the same PN. For example, the best allocation of the TG in

Fig. 2.4 to the distributed system represented by a complete graph of 3 PNs and with

homogeneous node failure rates (A* = 0.001) and link failure rates (Am„ = 0.001) is to

assign T\ to JVi, and both T2 and T3 to JV2. The M AA recognizes that the execution

path —► M 3 —* M 4 —► —* Mg —► M l0 -> M n in the TG is critical subject to

12 A TG is said to have a high-degree parallelism if most of its modules can be executed in parallel when
there are enough resources. This could occur if the TG contains AND-subgraphs with a large number of
branches and/or most tasks in the TG do not communicate with one another so that only a few precedence
constraints are imposed on the modules belonging to different tasks.

45

T1 T2
Entry

0.50.5,

M2
e2=2

End

dl=6.0

Entry

M3
e3=3

M4

p=0.3, maximum
— count = 3

M5
e5=2

d2=7.0

IMC data amount = 0.5
wherever applicable

N2] N3

Node failure rate:
^ = 0.1
^2= 0.01
*3 = 0.001

Link failure rate:

Xj2 — 0.01
* 13 = 0.001

X23 = 0.001

Link nominal delay
= 1.0 per data unit

Distributed system configuration
Task Flow Graph

(a) The task graph and the system configuration used.

4,0.99023,0.97272,0.8286

6,0.9770 7,0.99025,0863115,0.9595 16,0.9727

10,0.4505
11,0.6606 12,0.8654 13.0.4453 8,0669517,0.6577 18,0.4308

31-08731 /

23,05913 24,0.6687 25,0,4426 26,05859 27,0.8662 28,05710

32,05480 33,0.6560 34,0.8731

^ ^ ^ O p t l m n l lolution

(b) The vertices visited in the state-space-tree. The numbers beside each box are the order
the vertex was visited in the searching process and the corresponding upper-bound value
of the objective function, respectively.

Figure 2.10: An example which shows how vertices in the state-space-search tree are visited
by the M A A .

46

Task Flow Graph

T1

Eat? Entry

M4

M2Ml
e2-3

M5

M3

End

End

IMC data amount

f e n n y)XM6
C6nl

M7
e7.2

: 1.2 between M4 and MS;
s 0.6 elsewhere.

T2 T3

f e n n y)

Ml
cS»2

M9
c9=l

n s r i *
elO-2

p = 0.3
Maximum count

*3

T4

Deadline constraints used in Experiment I and II:
dl=5.0, d2=6.0, d3=6.0, d4=8.0
Deadline constraints used in Experiment IE and IV:
dl=5,0, <12=6.0, d3=4.0, d4=7.5

Distributed system
configuration

.NI, ,N2,

I

,N4. ,N3,

'23

Node failure rate:

3.! = 2,2= =0.001
^4= 0.01 in Experiment I and m

0.001 in Experiment II
0.5 in Experiment IV

Link failure rate = 0.001

Link nominal dealy = 1.0

(a) The task graph and the system configuration used.

N l:

Ml
rl=0.0
LCI =2.0

M6
i6=0.0
LC6=4,0

M7
r7=4.0
LC7=6,0

N2:

N3:

M8 M4 t— M9 ~ " I M10
r8=0.0 r4=4).0 r9=3.0 LC10=8.0
LC8=3.0 LC4=3.0 LC9=6.0

Die length of this interval
depends on how many times
M9 is executed

M2
*2=0.0
LC2=3.0

M3
r3=3,0
LC3=5.0

r 5=2.0
LC5=6.0

(b) Allocation and PN schedules for Experiment I: Mi, M6, and M 7 are assigned to Ni',

M 4, M8, M9, and M10 are assigned to JV2; M2, M3, and Ms are assigned to JV3.

Figure 2.11: An example showing how the M A A allocates modules.

47

NI:
M6
16=0.0
LC6=Z0

M7
r7=2.0
LC7=4.0

M4 MS
r4=0.0 f5=5.0
LC4=5.0 LC5=6.0

N2:
M8
r8=0.0

LC8=2.5

N3: L
M2
r2=0.0
LC2=3.0

N4: [_
M l
r 1=0.0
LC 1=3.0

— M9 ’
r9=3.0
LC9=5.5

The length of this interval
depends on how many times
M9 is executed

M10
LC10=7.5

M3
r3=3.0
LC3=5.0

(c) Allocation and PN schedules for Experiment II and III: M4, M s, M 6, and M 7 are as­

signed to Ni] Ms, M9, and M w are assigned to iV2; M 2 and M3 are assigned to JV3; and Mi

is assigned to jV4.

4
_L

M6 M7 M4 MS
i6=0.0 r7=10 i4=0.0 rS=5.0
LC6=2.0 LC7=4.0 LC4=5.0 LC5=6.0

N2:

N3;

Ml
rl=0.0
LCI =2.0

M2
r2=0.0
LC2=3.0

M8
r8=0.0

LC8=2.5

— M9
i9=4.0
LC9=5.5

The length of this interval
depends on how many times
M9 is executed

- t M10
LC10=7.5

M3
r3=3.0
LC 3=5.0

(d) Allocation and PN schedules for Experiment IV: M4, Ms, M6, and M? are assigned to

N i’, Mi, M6, Mg, and M w are assigned to N 2\ M 2 and Ma are assigned to Na.

Figure 2.11: (continued) An example showing how the M A A allocates modules.

48

r 3’s deadline and cannot tolerate any IPC delay, thus allocating both T2 and Ta to

the same PN. The resulting best objective function value is Pnd = 9.8227 x 10-1 .

P 2 . Heavily communicating modules may not necessarily be allocated to the same PN. For

example, consider the allocation of the TG in Fig. 2.11(a). The attributes of both the

TG and the distributed system are specified in Experiment I. As shown in Fig. 2.11(b),

the M A A allocates M i, M6 and M7 to N x\ M4, M8, M9 and M i0 to JV2; M2, M3 and

Mg to JV3 so that all modules meet their latest completion times { P n d i = 1-0) and

are allocated to the most reliable PNs, N \-N 3 {Pndi = 9.7933 x 10-1). Although the

IMC between M4 and M8 is twice more than the others, M4 and Me are allocated

to different PNs. This is mainly because T2 has a less tight timing constraint than

others and can thus allow IPCs among its modules. This observation is in sharp

contrast to the common notion that heavily communicating modules should always

be co-allocated [RSS90, BNG92].

P 3 . If the distributed system is homogeneous, the M A A assigns modules, subject to task

timing constraints, in such a way that as few IPCs as possible will occur. To demon­

strate this tendency, consider Experiment II in Fig. 2.11. The attributes of both the

TG and the distributed system remain the same as in Experiment I except that

A4 = 0.001 (i.e., the distributed system becomes homogeneous). Now, the allo­

cation and schedules specified in Fig. 2.11(c) give the best solution { P n d i = 1-0,

Pnd 2 = 9.8096 x 10-1). Note that the only IPC occurs between Mi and M3, which

cannot be eliminated because all modules of 7\ cannot be allocated to the same PN

under 7 \ ’s timing constraint.

P 4 . If both timeliness and logical correctness cannot be achieved at the same time, the

M A A maximizes P n d by making a compromise between these two objectives. This

is demonstrated by conducting three experiments: in Experiment I, the deadlines of

the four tasks are set as = 5.0, d2 = 6.0, d3 — 6.0, and d4 = 8.0. As shown in

Fig. 2.11(b), the M A A allocates modules only to (three) reliable PNs while meet­

ing the timing constraints { P n d i = 1 0 , P n d i = 9.7933 X 10-1). As the deadline

constraints get tighter in Experiment III, i.e., di and d2 remain unchanged while d3

becomes 4.0 and d4 becomes 7.5, the M A A is “forced” to allocate some of the modules

{Mi) to a less reliable PN (JV4) in order to meet all timing constraints. Fig. 2.11(c)

gives the best allocation and schedules: T2 and T3 are now allocated to JVls T4 to

N 2, and Ti to N 3 and N 4 { P n d i = 1-0, P n d 2 = 9.6346 x 10-1). On the other

hand, if N 4 is highly prone to failure as is assumed in Experiment IV (A4 is increased

49

from 0.01 to 0.5), the M A A decides not to use N 4 at the risk of not making task

T4’s deadline, as depicted in Fig. 2.11(d) (Pndi = 0.7, Pn d i = 9.8096 x 10-1 , and

PND = 6.8667 x 10"1).

2 .7 .3 P r a c t ic a l i ty o f th e M A A

To test the practicality of the M A A for reasonably large TGs and/or distributed

systems, we ran experiments on (1) TGs with 4-50 modules, while varying module execution

times, IMC volumes, task deadlines, and randomly generating precedence constraints; (2)

distributed system topologies with 3-40 PNs, while randomly varying link nominal delays

and the degree of network connectivity. We then computed the ratio of the number of

search-tree vertices visited to the total number, K ^ +1 — 1, of vertices in the search tree.

This — rather than the actual CPU run time — gives the general cost characteristics of the

M A A . The numerical results for different combinations of Nm and K pn are summarized

in Table 2.2 and Fig. 2.12. The number of trials in each combination of Nm and K p„ was

determined13 so tha t a 95% (90%) confidence level may be obtained for a maximum error

within 10% of the average numbers reported for Nm < 10 (NM > 10). Also given in each

combination are the worst and best results ever found in these trials.

In all the experiments conducted, no more than 9% of the search-tree vertices were

visited before finding the best allocation for N m > 6 and K pn > 3. Also, the percentage of

search-tree vertices visited falls drastically as N m and/or K pn grows, as shown in Table 2.2.

This is because the ‘increasing ra te’ for the number of vertices visited as N M and/or K pn

grows is far lower than exponential, as depicted in Fig. 2.12. This suggests tha t both the

dominance relation and the UBOF derived effectively prune unnecessary search paths at

, early stages of the B B process.

According to our experimental experiences, however, it takes a significant amount

of CPU run time (usually over 10 hours on a SPARC station) for a single experiment for

N m > 40 and K pn > 30, which makes collecting statistics difficult (although obtaining

the best allocation for a single experiment is still computationally tractable). Some new

techniques might be needed to reduce the search space. For example, based on the observa­

tion P I , one can co-allocate sequentially-executing modules in the TG subject to the same

tight timing constraints. This can be done by calculating the release times and the latest

completion times of all modules, while ignoring all IPC delays. If some module, Mi, has

13Under the assumption th a t the parameter to be estimated (i.e., the mean number of search-tree vertices
visited) has a normal distribution with unknown mean and variance.

N m 6 8 10 15 20 30 40
Best # visited 19 25 166 649 1488 2432 3576
case % visited 0.87% 0.13% 0.09% 0.002% — — —

Average # visited 47 442 2230 12720 37635 56015 68687
case % visited 2.15% 2.25% 1.26% 0.03% 3.60 x 10~4% — —

Worst # visited 159 1240 14680 79905 150304 268420 374572
case % visited 7.27% 6.30% 8.29% 0.19% 1.44 X 10"3% — —

K NU + 1 _ l 2186 19682 177146 4.305 X 107 1.046 x 1010 6.177 x 1014 3.647 x 1019

(a) K pn = 3

K pn 2 3 4 5 6 8 10
Best # visited 21 166 233 426 581 705 814
case % visited 1.03% 0.09% 5.56 X 10"3% 8.72 x 10“4% 1.60 x 10" 4% — —

Average # visited 360 2230 7452 9388 11068 17038 27026
case % visited 17.59% 1.26% 0.178% 0.019% 3.05 x 10"3% 1.98 x 10"3% —

Worst # visited 723 14680 35335 50353 56671 63248 83035
case % visited 35.32% 8.29% 0.842% 0.103% 0.016% 7.36 x 10"4% —

K ?n” + 1 ~ 1 2047 177146 4.194 x 106 4.883 x 107 3.628 x 10® 8.590 x 109 1.00 x 1011

(b) Nm = 10

Table 2.2: The number and percentage of vertices visited in the search tree by M A A . — indicates less than 10~6 x 100% of nodes in
the search-tree were visited.

51

i
■+ -
i

■4- -
1

. X -
I
1/

* I
I-----
I

_ J______
I
I

I I
I I

 / t r r -
4 I I T , c . - f ----------------- I-------1----------

/ i a
bV-----

/ *<■

r»7
/

~>T
/ i

■4"-'
i

I I

♦ — — ♦ Total# of search-tree nodes
A a Best case
 • -------♦ Average case
o - - - o Worst case

10 15 20 25 30

Number of modules (N)

(a) Kpn = 5

jl.Oe+12

; l.O efll

Sl.Ow-lO

! i.0e+O9

} 1.0e+08

'8 1 .0 * 0 7 f - -

1 .0*06

1 .0*05

1.0M04

1.0*03

1.0 * 0 2

1.0*01

4 ♦ Total# of search-tree nodes
—A Best case

♦ Average case
- o Worst case

14 16 i s 20

Number of PNs (K)

(b) N m = 20

Figure 2.12: Number of search-tree vertices visited by M A A

52

LCi — Ti equal to ej14 in all the component graphs of the TG, then this module and both its

preceding and succeeding modules which are subject to the same timing constraint should

be co-allocated.

2.8 C onclusion

We have addressed the problem of allocating periodic task modules in a distributed

real-time system subject to precedence constraints, timing requirements, and intermodule

communications. The probability of no dynamic failure is used as the objective function

to incorporate both the timeliness and logical correctness of real-time tasks/modules into

module allocation. The M A A not only assigns modules to PNs, but also uses the M SA

to schedule all modules assigned to each PN.

An interesting finding from the numerical experiments is that the common notion

in general-purpose distributed systems that heavily communicating modules should be co­

allocated [BNG92, RSS90] may not always be applicable to real-time systems. Based on

a set of experiments using randomly-generated TGs and distributed systems, the M A A

has also been shown to be computationally tractable for N m < 50 and Kpn < 40. The

percentage of search tree vertices visited is also shown to fall drastically as N m and/or Kpn

grows, suggesting that both the dominance relation and the UBOF derived here provide

an effective means of limiting the growth of the search tree without removing those paths

leading to optimal solutions.

Despite its advantages mentioned above, the M A A still takes a significant amount

of time to locate an optimal allocation for the case of N M > 40 and Kpn > 30 due to the fact

that there exist an extremely large number of search paths which might lead to an optimal

solution and thus cannot be pruned at early stages of the BB process. One challenging

extension to this research is to investigate the problem of grouping modules and/or PNs

to reduce the size of the search space without resorting to a heuristic-directed technique.

The conditions under which modules could be co-allocated, e.g., P I and P 2 observed in

Section 2.7, should be explored further.

14or, LCi ei, where f m > 1.0 is empirically determined if suboptimal allocations are allowed.

CHAPTER 3

LS USING BAYESIAN DECISION THEORY

3.1 In trod u ction

As discussed in Chapter 1, each node gathers state information of other nodes

using the information policy, and makes the transfer/location decision based on the state

information gathered. No m atter which information policy is used, the state information

gathered may be out-of-date due to the communication delay incurred in state information

collection and task transfer [CK87]. That is, a node’s observed states of other nodes may be

different from their true states at the time of making LS decisions. This inconsistency often

causes a node to transfer an overflow task to an actually incapable node, and degrades the

performance of adaptive LS. The performance degradation caused by communication delays,

despite its importance, is seldom addressed in literature (except for [MTS89b, MTS89a]).

In this chapter, We propose a new LS scheme using Bayesian decision theory as well as the

concept of buddy sets, preferred lists, and state-change broadcasts in [SC89a] to reduce the

performance degradation caused by communication delays. The basic ideas used are detailed

in Section 3.2. The Bayesian decision model used is presented in Section 3.3. How both the

components of the Bayesian decision model and the concepts presented in [SC89a] can be

accommodated into our LS scheme is also described there. Section 3.4 describes how each

node constructs prior and posterior probability distributions, and updates loss-m inim izing

decisions. Using several performance metrics, such as Pdyni task transfer-out ratio, and

maximum system utilization, we comparatively evaluate the proposed scheme along with

five other schemes: no LS; LS with state probing, focused addressing and random selection;

and perfect LS. As indicated in the numerical results in Section 3.5, the proposed scheme

outperforms all but the perfect LS scheme in minimizing Pdvn. We also study in Section 3.5

via simulation the impact of the time-varying behavior of task arrivals on the performance

of the proposed scheme (in particular, on the accuracy of Bayesian analysis). This chapter

concludes with Section 3.6.

53

54

3.2 Basic Ideas of th e Proposed Schem e

In order to reduce the overheads associated with state collection and task transfer,

the LS scheme in [SC89a] requires each node to collect and maintain the state information of

only those nodes in its physical proximity, called a buddy set. When a node cannot complete

a real-time task in time, only those nodes in its buddy set are considered for transferring

this task. Moreover, these buddy sets overlap with one another so that an overflow task

may be transferred from an overloaded node to some other node which is a member of a

different buddy set. That is, those tasks arrived at a congested region — in which most

nodes cannot complete all of their own tasks in time — can be shared by the entire system,

rather than overloading the nodes in the region.

Based on the topological property of the system, each node orders all the other

nodes according to the distance from itself into its preferred list. Each preferred list should

be arranged so that (P I) every node in the system is selected as the fcth preferred node

of one and only one other node, Vfc; (P2) if node i is the fcth preferred node of node j ,

then node j is the fcth preferred node of node i. If there are multiple nodes of the same

distance, they are ordered based on their location, e.g., east, south, west, and north in case

of square meshes. Once each node’s preferred list is constructed, the node’s buddy set can

be formed with any required number of nodes counting from the top of its preferred list.

When a node is unable to complete a task in time, it will transfer the task to the first

‘capable node’ found in its preferred list. As will be rigorously proved in Chapter 4, with

the properties of (P l) - (P 2) , the preferred list provides a means to select a receiver node

among several possible candidate nodes while minimizing the probability of more than one

overloaded node simultaneously sending tasks to the same underloaded node.

In [SC89a] four state regions determined by three thresholds of QL are used to

characterize the workload of each node: underloaded, medium-loaded, fully-loaded, and

overloaded. A node will broadcast the change of state region to the nodes in its buddy

set only when it switches from underloaded to fully-loaded and vice versa. The state

information kept at each node is thus up-to-date as long as the broadcast delay is not

significant. Communication delays may still occur and thus degrade system performance

unless the size of buddy set is kept very small, in which case the LS capability of the whole

system may not be fully utilized. Thus, Bayesian decision theory is used to counter the

communication delay problem as shown in Fig. 3.1.

Fig. 3.1 shows the actions that the scheduler on each node should take for the

following four cases:

55

At each node:
When a task T, with execution time ef and laxity arrives a t the node:

determine the position, j p, in the task queue Qfsuch tha t £jr- i < 1 % < l j r\
if current .time + efc ̂ U then
begin

receiver_node := table_lookup(0 :observation, f,:laxity)t;
transfer task Tt- to receivermode;

end
else
begin

queue task T, in position j p\
fo r k = j p + l,length(Q)

begin
if current.time + ei ^ 4 then
begin

receiver_node := tableJookup(Oobservation, £*:laxity);
dequeue and transfer T* to receiver_node;

end
end

if current.CET crosses T H 2k, 1 < k < [At] - 1, then
/* T H i, • • - ,T H k , - i are thresholds * /
broadcast the state-region change to all nodes in its buddy set;

end

When a broadcast message arrives from node t, 1 < i < n:
update observation of node t ’s state, 0 ,;
record the (observation, true state) pair needed for constructing probability

distributions;

When current.CET crosses T H 2hi 1 S k < — 1:
broadcast the state-region change to all nodes in its buddy set;

At every Tp clock ticks:
update the probability distributions and the table of loss-minimizing

decisions;

fT he task queue Q is ordered by task laxities.
J lf a node anticipates, based on the current observation O, th a t no other node can complete the task in
time, this task is declared to be lost and discarded.

Figure 3.1: Operation of the task scheduler on each node.

56

(a) When a new task arrives,

(b) When a state-region change broadcast is received,

(c) When current CET crosses T H 2k, 1 < & < - 1> and

(d) At every Tp clock ticks.

Those tasks already queued at a node are sorted by their laxities and executed on

a minimum-laxity-first-served (MLFS) basis. Upon arrival of a real-time task a t a node,

the scheduler checks if the CET on that node contributed by those tasks with laxity smaller

than this task is less than, or equal to, the laxity of the new task. If it is not, the new task

has to be transferred, and the node’s task queue remains unchanged; if it is, the new task

is inserted in the task queue, and if this insertion leads to violation of existing guarantees,1

those tasks whose guarantees are violated need to be transferred to other capable nodes.

K t state regions obtained from K, - 1 thresholds, T H U are used

to describe the workload of each node.2 Each node will broadcast a time-stamped message,

informing all the other nodes in its buddy set of a state-region change whenever its load

crosses T H 2* for some fc, where 1 < k < fAt] — 1. The reason for not broadcasting the

change of state region whenever a node’s load crosses any threshold is to reduce the network

traffic resulting from region-change broadcasts. Moreover, the reason for not combining two

adjacent state regions into one and then broadcasting the change of state region whenever

a node’s load crosses any threshold is to include finer information in each broadcast and

thus construct more accurate posterior distributions.

By collecting time-stamped state samples and by keeping track of the corre­

sponding observations at the times these samples were taken, each node can construct

the prior/posterior distributions. These distributions characterize the inconsistency be­

tween the node’s observed and true states of other nodes, and are used to periodically

(once every Tp clock ticks) update the loss-minimizing decisions with Bayesian decision

theory. As will become clear, the undesirable effects of the delay in broadcasting sta te-

region changes/transferring tasks are eliminated by using these prior/posterior distribu­

tions. Whenever a node cannot complete a task in time, the node’s scheduler looks up the

list of loss-minimizing decisions, and choose — based on the current state information —

the best candidate node for transferring this task such that the expected loss is minimized

’By ‘guarantee’, we mean the node has enough resources to complete the task in time upon its arrival.
A granted guarantee may be deprived later because of the arrivals of tighter-laxity tasks under the MLFS
discipline.

2 K t is a tunable parameter which will be discussed later.

57

with respect to the conditional (or posterior) probability distribution.

3.3 Bayesian Decision M odel

Conceptually, the task scheduler of a node can be modeled as a Bayesian decision

maker. In what follows, we shall describe how the proposed LS scheme can be cast into a

Bayesian decision model.

3.3.1 Prelim inaries

The Bayesian statistical structure is a very powerful modeling tool when one has

to make decisions based on some observations. The elements of a Bayesian decision problem

are a parameter space (a space of state of nature) 12, a decision space D , and a real-valued

loss function L which is defined on the product space 12 x D [Ber86, DeG70j. For any point

(w,d) G 12 x D, the quantity L(u, d) represents the loss when the value of the outcome W

of the space SI is u and d is the decision chosen.

If P is any given probability distribution of the parameter W , then for any decision

d £ D, the expected loss or risk, ((P,d), is given by

C(P,d) = / L{u,d)dP(u). (3.1)
J n

It will be assumed that the integral in Eq. (3.1) is finite for every d £ D .3 We now want to

choose a decision d which minimizes the risk ((P ,d). The Bayes risk £*(P) is thus defined

to be the greatest lower bound for the risks f(P , d), Vd £ D, i.e.,

C (P) = inf C(P,rf). (3.2)

Any decision d* whose risk is equal to the Bayes risk is called a Bayes decision with respect

to the distribution P.

In many decision problems like the one we are going to discuss, before choosing

a decision from 22, we observe the value of a random variable O that is related to the

parameter W. The observation of 0 provides us with some information about the value of

W which may be useful in making a good decision. The essential component of problems

of this kind is, in addition to a parameter space Si, a decision space D, and a loss function

L, a family of sampling functions {Po|w(-1 w), u £ SI} of observation 0 . Let S denote the

sample space of all possible values of 0 . With the family of sampling functions and the

3Any decision d for which this assumption is not true can usually be eliminated from the set D.

58

(prior) probability distribution, P , of W , we can calculate the conditional distribution of

W given 0 , Pw\o, as:

I “ > (3.3)
Jn Av(w)Po|w(o I w)gL>

Now, we must choose a decision function S which specifies, for every possible value o € S,

a decision 6 (o) e D with the expected loss given the observation o as:

C(-fV|o=m^(o)) = f L(w,S(o))dPw\o=o(w). (3.4)
Jn

Note that Eq. (3.4) is almost the same as Eq. (3.1) except tha t P has been replaced by

Pw\o=o- That is, given the observation of 0 , the decision problem remains unchanged

except th a t the distribution of W has changed from the prior to the posterior distribution.

Thus, any minimizing decision S*(o) is simply a decision which yields the smallest expected

loss under the conditional distribution of W when the observed value of 0 is o. In other

words, a*(o) is a Bayes decision against the conditional distribution of W when 0 = o.

3 .3 .2 C om ponents o f th e Bayesian D ecision M odel

This subsection describes how to apply Bayesian decision theory to adaptive LS,

and how to accommodate both the components of the statistical model and the concept of

[SC89a] into our scheme.

Parameter Space

The parameter space is defined as ft = fti x fi2 X... x f t ^ , where NB is the number

of nodes in a buddy set, and ft,' is the parameter space for node i. Note tha t the size of

state space and the overhead of broadcasting state-region changes are greatly reduced by

using buddy sets. The parameter space, ft,-, may be defined by QL, CET, resource available

time (RAT) on node i, or a combination thereof, depending on task characteristics and

performance requirements. For example, if all tasks have an identical execution time, QL

suffices to express each node’s workload; otherwise, CET must be used. Since in a real­

time system, execution time varies from task to task, the state of a node is defined to be its

CET. The dimension of the state can be augmented if more than one resource are needed

to execute tasks.

Probability Distribution on Parameter Space

The probability distribution on parameter space is the joint probability distribu­

tion of ft,’s, e.g., Pw(w) = Pw(wi, w2, . . . ,% B), where is the CET of node t and N B is

59

the number of nodes in a buddy set. The marginal probability distribution on fi,-, iv.,
can be obtained from Pw by integration. We construct these probability distributions by

collecting state samples through region-change broadcasts (to be discussed in Section 3.4).

Set o f Available Decisions

The set of available decisions is D = {d i,d2, •■■}dn), where d, denotes the decision

to move one task from the current node to node i. Other options are also possible. For

example, if a locally overflow task is extremely important, then one may want to move

it simultaneously to two or more nodes so that the probability of dynamic failure can be

minimized. In such a case, a decision dij is added to the set of available decisions, which

denotes the transfer of a task to both node i and node j .

Set o f Loss Functions

The set of loss functions is defined as {LTi, Td 6 (0, Lmax]}, where L describes the

‘loss’ resulting from each combination of state and decision, given that the laxity — which

equals deadline — execution time — current time — of a locally overflow task is Td. Lmax is

the largest task laxity in the system. If Pdyn is the main concern, the loss function may be

defined as:
t T*, a \ u I i i U i - T d > 0 ,L (u,di) = 6 (u>i - Td) = <

(0, otherwise,

where £(x) is the unit step function. In such a case, minimizing the expected loss is equiva­

lent to minimizing the probability of dynamic failure. The loss function can also be defined

as

ZT-(w,d,•) = < * - Td,

if the task needs to be executed not only before its deadline but also as early as possible.4

Sample Space of Observation

The sample space of observation, 5 , is the set of all possible observations. Specifi­

cally, S = Si X S 2 x • • • X Snb i where Si is obtained by dividing the parameter space Wt for

each node i into the K t regions determined by K t - 1 thresholds, TH i, T H 2,..., T H k , - i*

Node i is said to be in the k-th region if T H k < w, < T H k+l, where k > 0, and T H 0 = 0.

Note that the knowledge of a node’s state region is not sufficient to determine

accurately its capability of completing arbitrary tasks in time. For example, a node with

*LTi, could be negative in this case; the more negative LTi, the more early the task is executed.

60

its state in a high-numbered state region may still be able to complete an arrived task with

a large laxity in time, whereas a task with a small laxity may not be completed in time

even by a first-region node if the CET on that node is greater than the task’s laxity. Thus,

unlike in [SC89a, PTS88, WM85, ELZ86], these thresholds only serve as reference points,

rather than indicating a node’s capability of meeting task deadlines. As will be discussed

in Section 3.5, the performance of the proposed scheme is rather insensitive to the choice

of threshold values.

Each node will broadcast a time-stamped message, informing all the other nodes

in its buddy set of a state-region change whenever its state crosses T H 2k, 1 < k < [At] — 1.

Upon receipt of a region-change broadcast, every node in the buddy set will update its

observation of the broadcasting node accordingly. The delay in broadcasting a region-

change may cause inconsistency between the observed and true states of a node. We will

characterize this inconsistency by constructing prior/posterior distributions (to be discussed

in Section 3.4). So, based on the observation o,-, a node can estimate the state of node i

by using the prior/posterior distributions constructed from the samples collected through

time-stamped region-change broadcasts.

Fam ily o f Sam pling Functions

The family of sampling functions, { P o \ w (- I e fl), describes the conditional

probability distribution of the observation 0 given the state W = u. These probability

distributions are derived from the samples gathered through time-stamped region-change

broadcasts. With the prior probability distribution P w and these sampling functions P o \ w ,

one can derive the posterior probability distribution P w \o by using the Bayes rules [Ber86]

that is needed to compute the expected loss with observations.

3.4 R egion-C hange Broadcasting, Prior/Posterior Probability D istribu­

tions and Loss-M inim izing Decisions

As mentioned earlier, the delay in region-change broadcasts may cause the col­

lected information to be out-of-date. For example, consider the following scenario: after

broadcasting a state-region change, say from 3 to 1, node i switches back to region 3 due

to the arrival of new tasks and/or transferred-in tasks.6 Upon receipt of the broadcast

from node i, node j may decide to send a task to node t, since it is unaware that node i

5These tasks may have been sent by other nodes before the broadcast, but arrived at node i after the
broadcast due to task-transfer delay.

61

has switched back to region 3 shortly after broadcasting the 3—>1 region-change. If node

j , instead of hastily believing in what it observed, can compute the probability tha t node

i is indeed capable of completing task(s) in time and decide whether or not to send the

task to node i, then the probability of dynamic failure could be significantly reduced. To

this end, we shall characterize the inconsistency between the observed and true states with

prior/posterior distributions.

The first step is to construct both the probability distribution on the parameter

space and the conditional probability distribution of an observation. These two distribu­

tions, in general, vary over both nodes and time in a dynamic environment. Thus, to

monitor the dynamics of the system, each node must collect state samples on-line and con­

struct these distributions from the samples gathered via region-change broadcasts. The

methods for collecting state samples, constructing probability distributions, and deriving

loss-minimizing decisions are discussed in the following subsections.

3.4 .1 C ollection o f S ta te Sam ples

Whenever a node’s state crosses T H 2k (1 < k < j"^] — 1), the node will broadcast,

to all the other nodes in its buddy set, a time-stamped message which contains node number

i, the state before the change of state region, the state w? after the change, and the time

t0 when was sampled. When the message broadcast by node i arrives at node j , node i ’s

state Uf can be recovered by node j using the node number field and the state field, from

which Pw can then be calculated. Node j can also trace back to find out its observation o,

a t time t0. This observation o{ is node j ’s observation of node i ’s state at the time when

node i was actually in state w*. o,’s along with w?’s are used to construct Po\w- (Here we

assume that the node clocks are synchronized to establish a global time-base. A scheme for

achieving this synchronization is presented in [RKS90].) Any inconsistency between us- and

Oi at time t0 is characterized by this probability distribution. The only effect of the delays

in task transfers and region-change broadcasts is that messages (tasks) may not arrive at a

node immediately after their broadcast (send), and thus, may become obsolete upon their

arrival at other nodes. The correctness of all samples gathered is, however, not affected by

these delays. Besides, u? sent by node i at time t 0 is considered as node j ’s new observation

of node i at the time this message is received, rather than at time > t0.

A primary advantage of region-change broadcasts over periodic state broadcasts

is the elimination of the need to determine an “optimal” exchange period — a very difficult

problem since it depends on workload characteristics, and has to weigh the tradeoff between

the resulting increase in network traffic and the negative effect of using out-of-date infor­

62

mation. Moreover, as we shall see, the threshold values have only minor effects on system

performance (as a result of using Bayesian analysis).

3.4 .2 D erivation o f Probability D istributions

Each node updates, once every Tp units of time, the probability distributions using

all the samples gathered so far, and re-calculates the loss-minimizing decisions. Tp should

be chosen to reflect the fluctuation of system load and the number of samples required for

the specified level of confidence in the results obtained.

The general rule for updating the probability distribution of W is

Pu = aP? + (1 — a)Po

where Pu is the updated probability distribution, Py is calculated from the samples gathered

over the last Tp units of time, and P0 is the old probability distribution. That is, the updated

probability distribution is a weighted sum of the distribution calculated from the samples

gathered within the last Tp units of time and the old probability distribution. The ratio a

(0 < a < 1) represents the tradeoff between obtaining better averages and reflecting load

changes. One may increase (decrease) a if system load varies rapidly (slowly). The same

rule may be applied to update the sampling functions, Po\w•

Non-informative probability distributions (e.g., uniform distributions) or some de­

fault probability distributions (obtained from previous experiences) may be used as the

initial distribution of W and the sampling functions. According to our simulation results,

the performance of the proposed scheme is found to be rather insensitive to the choice of

an initial probability distribution. Each node may initially rely on the preferred list for LS

decisions. This is because both prior and posterior distributions will be iteratively updated

as time goes on, and usually represents the true system characteristics after two or three

updates. Besides, if the task arrival pattern on each node does not change drastically with

time, the probability updating process need not be executed often once the probability

distributions are well-tuned.

3.4.3 C alculation o f Loss-M inim izing Decisions

With the prior distribution of W and the sampling function, Po\w, one can cal­

culate the posterior distribution Pw\o using the Bayes rule (Eq. (3.3)). For each possible

observation o G S and for each possible laxity Td 6 (0,Lmax], a node then computes the

63

expected loss associated with the decision d, given the observation o and the laxity Td as:

^ (^ 10=0, d ,) = / ZT‘(w,dt)emv|O(u0 (3.5)
J n

for i = 1 , Nb- The decision d, = 6 Td(o) that yields the minimum expected loss is chosen

as the optimal decision given the observation o. A tie will be broken by choosing, from the

preferred list, the first d,- with the minimum expected loss.6 Because of the way XTi(w,d,)

was defined and the assumption that Wi is stochastically independent of the state of node

j for j ^ i [ELZ86], the computation of the expected risk, (?d{Pw\o=oi di), depends only on

the marginal probability distribution, PWi\0i{u i)- That is, if d,) = - Td), then

(Ti(Pw\o=o,di) = I 6(ui - Td) Pfv|o=o(w)dw
Jci

= I 6(ui - Td) PWi\o=o(ui)du>i
J Cli

6(u>i - Td) Pwt\Oi=oi(ui)dwi

= > Td I 0{ = o,). (3.6)

In other words, the expected loss of adopting decision d,- given the observation o and the

task laxity Td is the probability that node i ’s CET is greater than Td. The second equality

in Eq. (3.6) follows from the property of total probabilities, and the third equality results

from the assumption that is stochastically independent of the observation Oj of node j ,

j ± i, i.e., pWi\(ouo2 o„)(w,) = PWi\Oi(ui)- Similarly,

CTd(Pw\o=0, di) = I (w,- - Td) • pWi\Oi- 0i{ui) dui,

if LTd (w, di) = Wj-Tj. The set of loss-minimizing decisions, {<5T*(o) : o £ S }Td e (0, Amai]},

is a list of decisions to choose for each possible observation and each possible task laxity.

Once these calculations are completed, a task scheduler only needs to look up a table when

determining a LS decision for a given observation o.

3.5 Perform ance Evaluation

To demonstrate the effectiveness of the proposed LS scheme, we simulated it under

the assumption that inter-arrival times of external tasks are exponentially distributed. Note

that periodic tasks constitute the “base load” of a real-time system and are usually statically

allocated to the nodes in the system as discussed in Chapter 1. A LS scheme is then used

sThe nice property (of the preferred lists) in distributing overflow tasks among capable nodes is thus
maintained in the proposed scheme.

64

to dynamically distribute aperiodic tasks as they arrive, and their arrival is known to be

well modeled as a Poisson process. After their initial allocation, periodic tasks, albeit

rare, may be redistributed subject to aperiodic task arrivals and the current system-wide

state. In such a case, a Poisson task arrival model may prove appropriate for assessing the

performance of the proposed LS scheme. Note, however, th a t the proposed LS scheme is

not restricted to Poisson models.

3.5 .1 LS S ch em es/P aram eters C onsidered

The proposed scheme and three other LS schemes are comparatively evaluated.

The schemes under consideration differ in the way a node treats locally overflow tasks as

follows:

T h e s ta te p ro b in g schem e; a node with an overflow task randomly probes up to some

predetermined number of nodes and transfers the task to the first capable node found during

the probing.

T h e ra n d o m selection schem e each locally overflow task is sent to a randomly selected

node.

T h e focused ad d ress in g schem e; each node exchanges state information periodically.

A node sends its overflow task to a node (called the focused node) which is randomly selected

among those nodes ‘seen’ to be capable of completing the task in time. (If such a capable

node does not exist, the node itself becomes the focused node.) Meanwhile, the node also

sends request-for-bid (RFB) messages to all the other nodes in the system, indicating that

bids (which contain the CET of the bidding node) should be returned to the designated

focused node. If the focused node cannot complete the task in time, it chooses, based

on the bids received, a capable node for transferring the task (ties are broken randomly);

otherwise, the task is queued on the focused node, and the received bids are used to locate

the receiver nodes for those tasks, if any, whose existing guarantees become invalid as a

result of accepting the transferred task. The bids received a t the focused node are also

used to update the observation of other nodes’ states. If neither the focused node nor the

bidding nodes can complete the task in time, the task is declared to be lost and thrown out.

To avoid poor CPU utilization, RFB messages do not require nodes to reserve CPU cycleB

or any other resources needed to execute the task to be transferred until it actually arrives.

When a task arrives at a node whose bid has already been accepted, the node will check

65

again whether or not the task can be completed in time. This is a simplified version of the

scheme proposed in [RSZ89, SRC85]. It also differs slightly from that of [RSZ89, SRC85]

in the way a node chooses the focused node. The authors of [RSZ89, SRC85] used the

percentage of free time during the next window (which is a design parameter) and many

other estimated parameters to determine the focused node or the node to which the task

must be transferred again. However, we use the observed CET of other nodes to determine

the node(s) for transferring tasks.

T h e p roposed schem e; a node sends each overflow task to another node in its buddy

set based on a technique that combines preferred lists, state-region change broadcasts, and

Bayesian analysis.

These schemes are compared with one another as well as with two other baseline

schemes: the non-cooperative scheme (where each node does not have LS capability) and

the quasi-perfect LS scheme (where each node has complete information on the workload

of other nodes without any overheads in collecting it.7)

The performance of LS schemes depends on a large number of parameters which

are classified into the following three groups:

(1). System parameters, such as the number, N , of nodes in the system, the degree of

system heterogeneity, and the communication delay which consists of task-transfer

and medium-queueing delays. The former delay depends on the capacity of the com­

munication network and the size of the transferred task, while the latter dynamically

changes with the system load.

(2). Characteristic parameters of the task set, such as the external task arrival rate, A**‘,

the laxity distribution of external tasks, and the distribution of execution time re­

quired by external tasks, on each node. For all results presented below, we use

{ei,e2, ?.t } to denote the task set in which an external task requires

execution time a with probability qei, Vi. If qti = q Ve,-, then is

condensed to q. Similarly, {A,4> ... &„} is used to describe the laxity

distribution of external tasks.

(3). Design parameters of the proposed LS mechanism, such as the size of buddy sets, N b ,

the number, K t, and values of thresholds, THi,..., T H k , - i, and the posterior proba­

bility update interval Tp.

7This, however, cannot be modeled as an M /G [n queue, as compared to the perfect load sharing in
[ELZ86]. This is because of the transfer policy used which incorporates the consideration of task laxi­
ties/deadlines into the LS decision. Hence, we label this scheme as quasi-perfect.

66

A 16-node regular system8 is used as an example for the simulations. For conve­

nience, ail time-related parameters are expressed in units of average task execution time,

E (R). The size of buddy sets, Nb , is chosen to be 10, since the performance improvement

by increasing it beyond 10 was shown in [SC89a] to be insignificant. The maximum number

of nodes to be probed randomly for each overflow task is restricted to 5 based on the find­

ing in [ELZ86]. The computational overhead for each bidding, state probing, region-change

broadcast, and probability distribution update is assumed to be 1, 1, 1, and 2 % of E(R),

respectively.

Each communication medium/link is equipped with buffers, and transferred tasks

or broadcast messages are queued and/or transmitted in order of their arrival. No priority

mechanism regulates the transmission over the medium, i.e., a FCFS rule is assumed. Unless

specified otherwise, the delay associated with each task transfer is assumed to be 10 % of

the execution time of the task being transferred. The queueing delay due to task transfers,

region-change broadcasts, requests and responses for bids, and state probes dynamically

changes with system load and traffic, and is modeled as a linear function of both (1) the

average external task arrival rate and (2) the number of tasks/messages queued in the

particular medium/link. (The linear coefficients are denoted as queueing delay coefficients.)

The simulation was carried out for a task set with the external task arrival rate

on each node varying from 0.2 to 0.9, the ratio of (1 < j < k — 1) varying from 2 to

10 units of average execution time,9 and the ratio of of ^ (1 < j < n - 1) varying from

2 to 6. Due to space limitation, we present only representative results. In spite of a large

number of possible combinations of task arrival rates, task execution time distributions,

and task laxity distributions, the results are found to be quite robust in the sense that the

conclusion drawn from the performance curves for a task set with the given task execution

and laxity distributions is valid over a wide range of combinations of task execution time

and laxity distributions.

For each combination the simulation ran until it reached a confidence level 95% in

the results for a maximum error (e.g., one half of the confidence interval) of (1) 2% of the

specified probability if Pdvn is the measure of interest, (2) 0.2% of the specified response

time value if response time is the measure, (3) 5% of the task arrival rate if the maximum

system utilization is the measure, and (4) 5% of the ratio, frequency, or fraction value if

task transfer-out ratio, frequency of broadcasts/state probes, or fraction of idle time, is the

* A system is said to be regular if all node degrees are identical.

9 For convenience, E(R) is normalized to 1.

67

measure,10

We first determine the tunable parameters used in the proposed scheme. Second,

we evaluate and compare different schemes with respect to several important performance

metrics obtained from the simulations. Then, we analyze the effect of (1) varying process­

ing/communication overheads, (2) using FCFS (instead of MLFS) as the local scheduling

discipline, (3) using QL (instead of CET) as the measure of workload on these LS schemes,

(4) excluding the Bayesian decision analysis from the proposed scheme, and (5) statistical

fluctuation in task arrival patterns (represented by bursty task arrivals) on the performance

of the proposed LS scheme.

3.5.2 D eterm ination of Tunable Param eters in the Proposed Schem e

The accuracy of prior/posterior distributions depends on the values of such tun­

able parameters as the probability update interval the probability update ratio a, and

the number {Kx) and values of state-region thresholds. It is, however, difficult to ob­

jectively determine an optimal combination of these parameters which will give accurate

prior/posterior distributions while incurring the least overhead. The main reasons for this

are:

• The choice of a and Tp depends on the application-dependent variation of workload.

• The number and values of thresholds must be determined by optimizing the trade­

off between the resolution of state-region division and the overhead of the resulting

region-change broadcasts. It is impossible to determine the optimal number and

values of state-region thresholds without a closed-form expression for this tradeoff.

Moreover, the optimal number and values of thresholds depend on both the laxity

and execution time distributions of the task set.

Thus, we shall determine the tunable parameters for each task set with the following two

steps:

S i. We first fix all but one parameter of interest at a time, and obtain the performance

curve as a function of this parameter from which its optimal value can be determined.

Next, we vary another parameter of interest while keeping the first parameter fixed

at its optimal value and the rest of the parameters fixed at their originally-chosen

values. This process will be repeated until all the parameters have been varied.

10The number of simulation experiments needed to achieve the above confidence interval is calculated
based on the assumption that the parameter to be estimated/measured has a normal distribution with
unknown mean and variance.

68

S2 . Since a different order of examining parameters in S I may lead to different results,

there may may be more than one parameter set from which we choose the one with

the smallest Pdyn and at the same time, reasonably small processing/communication

overheads (e.g., the processing power used for updating distributions and calculating

Bayesian decisions, the frequency of region-change broadcasts, or the task transfer-

out ratio) as the ‘optimal’ parameter set.

The sets of parameters obtained through the above two steps may not be globally

optimal, but our simulation results have shown them to yield good results as compared to

other schemes. Moreover, as will be shown later, our simulation results indicate th a t the

proposed scheme is robust to the variation of the tunable parameters. Thus, the result with

a set of sub-optimal parameters can still give a representative performance of the proposed

scheme.

Summarized below are some of the important findings in determining the tun­

able parameters. The task set with the task arrival rate Xext = 0.8, the distribution

of task execution time E T = {0.4,0.8,1.2, 1 . 6 } 0 . 2 b , and the distribution of task laxity

L = {1.0,2.0,3.0} 1/3 is arbitrarily chosen for an illustrative purpose.

P ro b a b ility U p d a te In te rv a l Tp an d P ro b ab ility U p d a te R a tio g; Frequent prob­

ability updates generate more accurate distributions and thus provide each node with better

knowledge of the inconsistency between its observation of other nodes and the correspond­

ing true states. This benefit must be weighed against the associated overheads. As shown

in Table 3.1, Pdyn for the proposed scheme with the threshold pattern {0.2, 0.6, 1.0} de­

creases first as Tp increases from 10 to 100 (in units of the average task execution time), and

then increases as Tp increases further beyond 100. (The task set with Aex< = 0.4 exhibits

a similar behavior except tha t Tp which results in the smallest Pdyn is slightly increased.)

The probability update ratio a is chosen to be 0.5, since the task arrival rate is constant

over time, and thus, the distribution constructed from the state samples gathered before is

as good as tha t constructed from the state samples collected over the last Tp units of time.

Selection of the default probability distributions (or equivalently, the default risk

function in Eq. (3.6)) at the system startup is shown to have only minor effects on

system performance as long as Tp is properly chosen. So, the initial posterior distribution

of CET is chosen to be uniform. The default risk function can then be expressed as:

(Ti(Pw\o=o,di) = Pwi\oi{W i > T d \ O i = oi)

69

Td > TH 0i+u

Td < TH 0i,

t h . ^ - t h . s otherwise,

0,

1,
THp.+i-Tj

where i > 0 and TH 0 = 0.

T hresho ld P a tte rn s : We first analyze the effect of changing the resolution of state-space

division with the number of regions fixed at 4. As shown in Table 3.2 (a), Pdyn decreases

as the interval between two thresholds gets smaller, which will henceforth be called the

threshold interval. (For convenience, all threshold intervals are assumed to be identical; even

if this assumption does not hold, the following discussion will remain the same except for

more complicated descriptions.) However, the decrease in Pdyn becomes insignificant when

the threshold interval gets smaller than the least task execution time within the task set.

Thus, the threshold interval must not be smaller than the least task execution time. Once

the threshold interval is selected, one can analyze the effects of changing TH i (and thus,

other thresholds). It is shown in Table 3.2 (b) that Pdyn decreases as TH i decreases. The

change in Pdyn again becomes insignificant as TH \ gets smaller than the least task execution

time. Note that in our proposed scheme, selecting TH \ < the least task execution time <

THz is essentially equivalent to implementing the shortest queue policy in [ELZ86] except

that the ways of collecting state information are different (the latter with state probing,

and the former with region-change broadcasting). Thus, a modified shortest queue policy

(or THx < the least task execution time) is preferred for the proposed scheme to minimize

P i y n •

One interesting phenomenon is that the frequency of region-change broadcasts

is relatively high when the thresholds coincide with the task execution times. This is

because the acceptance/completion of a task makes a node’s CET easily cross a certain

threshold, thus resulting in an excessive number of region-change broadcasts. Such type

of thresholds are ruled out. Thus, to implement the shortest queue policy while avoiding

excessive broadcasts, TH \ must be slightly smaller than the least task execution time.

N u m b er o f S ta te R egions; To analyze the effects of the number of state regions on

system performance, we ran simulations while changing the number of regions from 2 to 6.

A node broadcasts the change of state region (i) whenever the node’s CET crosses THx if

only two state regions are used, and (ii) whenever the node’s CET crosses TH^k \i K t > Z

state regions are used, where 1 < k < — 1.

70

T±p Prob. of dynamic failure Percentage of idle time
10 8.0564 x 1 0 -3 0.1874
50 7.9761 x 1 0 -3 0.1902
100 7.1967 x lO '3 0.1913
200 7.4627 x 10“3 0.1946
500 7.8438 x lO"3 0.1951
1000 7.9582 x 10"3 0.1964

Table 3.1: Tp for a task set with A'*' = 0.8, E T = {0.4,0.8,1.2,1.6) 0.25, and L = {1,2, 3 } i / 3 >

Threshold pattern Piyn Task transfer-out ratio, rtt
0.4,0.5,0.6 7.6857 X lO”3 0.228
0.4,0.6,0.8 7.8406 X 10"3 0.220
0.4,0.8,1.2 8.0502 X lO"3 0.214
0.4,1.0,1.6 1.2833 x 10" 2 0.204
0.4,1.2,2.0 1.5104 x 10"2 0.207

(a): Effects of the threshold interval for a task set with Xest = 0.8,

E T = {0.4,0.8,1.2, 1 . 6 } o . 2 5 , and L = {1,2, 3}i/3.

Threshold pattern Pdyn Tti Freq. of broadcasts f t
0.1,0.5,0.9 7.1873 x 10"3 0.230 0.4987
0.2,0.6,1.0 7.1967 x lO"3 0.216 0.4943
0.4,0.8,1.2 8.0502 x 10~3 0.214 0.5723
0.6,1.0,1.4 1.0575 X 10- 2 0.213 0.5122
0.8,1.2,1.6 1.2479 x lO" 2 0.211 0.5249

(b): Effects of of T R \ for a task set with Aeit = 0.8, E T = {0.4,0.8,1 . 2 , 1 . 6 } 0 .2 6 » and

L = { l ,2 ,3 } 1/a.

Table 3.2: Effects of the number and values of thresholds on Pdyn-

71

No. of state regions Piyn Freq. of broadcasts
2 8.0932 x lO '3 0.5079
3 7.3108 x 10"3 0.5086
4 7.1967 X lO"3 0.4943
5 7.1383 x 10"3 0.5942
6 7.1156 x 10“3 0.5967

Table 3.3: Effect of the number of state regions on Pdyn. Task set: E T = {0.4,0.8,1.2,
1>6}o.26 nnd L = {1,2,3}i/3.

As shown in Table 3.3, Pdyn decreases as the number of state regions grows, and

the decrease in Pdyn becomes insignificant when the number of regions grows beyond 4.

Moreover, the frequency of region-change broadcasts remains essentially unchanged when

the number of regions is below 4, but increases as the number of regions grows beyond 5.

This is because a finer resolution of state intervals results in more reference points for region-

change broadcasts. Thus, 3 or 4 state regions suffice to give a satisfactory performance.

One significant result is that the proposed scheme is shown to be robust to the

variation of the tunable parameters, as compared to the other schemes reported in [SC89a,

MTS89a, PTS88]. The change in Pdyn is shown to be less than 10“3 for any given change

in either the threshold interval, or the number of state regions, or the values of thresholds.

This is an important advantage coming from the use of prior/posterior distributions and

Bayesian analysis. The proposed LS scheme can thus provide good performance even with

not well-tuned parameters as long as the general rules discussed above are followed.

3.5.3 Performance Evaluation with respect to Different M easures

Probability of Dynamic Failure

A task is said to be missed and dynamic failure occurs if the sum of its queueing-

for-execution time and the delay in transferring the task exceeds its laxity. Let Pdyn\t denote

the probability of missing deadlines for a task with laxity I. Then,

^mu
Piyn ~ X!] ^ ' Q*'

1=0

Figs. 3.2 and 3.3 are the plots of Pdyn vs. task arrival rate (Ae*‘), and Pdyn\t vs. task laxity

£, respectively. Table 3.4 shows some numerical results of Pdyn\i under different schemes.

As was expected, Pdyn increases as the system load gets heavy and/or the task laxity gets

tight.

72

The random selection scheme outperforms the state probing scheme when the

system load gets heavy (e.g., Table 3.4 (a) vs. (b)) or the task laxity gets tight (e.g.,

L = {1,2,3} vs. L = {1} in Table 3.4 (b)). This is because (1) under heavy loads, most

nodes are likely to become unable of completing tasks in time, which will in turn make

state probing unsuccessful most of the time, and (2) probing other nodes before sending

an overflow task requires two communication messages (one for request and the other for

response), whereas the random selection does not require such messages. This negative

effect becomes more pronounced as laxities get tighter.

The focused addressing scheme outperformed the state probing and random selec­

tion schemes, but was inferior to the proposed scheme, especially when the task laxity is

tight. This is because:

• The focused node or its successor node — the node that the focused node will re­

transfer the task to — among those ‘seen’ capable is basically chosen randomly, thus

increasing the chance of two nodes sending their overflow tasks to the same node.

• Not many RFB messages are issued under light loads, thus making a node unable to

keep its observation of other nodes up-to-date and increasing the chance of trans­

ferring a task to an incapable focused node. This is intolerable to tasks with tight

laxities.

• Requests and replies for bids become excessive under heavy loads, thus increasing

communication delays. The state information collected via periodic state exchanges

or the bids sent from other nodes may thus become out-of-date.

In all cases simulated, the proposed LS scheme is shown to outperform all but the

perfect information scheme in meeting task deadlines, showing its effectiveness achieved by

judicious collection and use of state information. It does not perform as well as the perfect

information scheme due to the additional processing overhead introduced by the probability

update process and the communication delays incurred in task transfers and region-change

broadcasts. See Table 3.5 for the case where all processing/communication overheads are

set to zero while holding the task-transfer delay at 10% of task execution time. If the

processing/communication overheads were ignored, all the realistic schemes would perform

much better than they actually do, thus under-estimating P^yn — which is undesirable for

real-time applications.

73

— i

- 1

— i

1.0e-04 I---

----- 1 1 ----- 11.0e-05 ” 1 ----

i I ' / 1 ------------1 - 7 1 - ----- 1

“I 1 “ 7 “I 1------ 1------- 1---------1

0.80.5 0.6 0.90.4 0.70.1 0.2 0.3

A a No sharing
©•— - o State probing
o - — o Random selection
 •♦ Focused addressing
■ ■ Proposed scheme
• Perfect scheme

Task arrival rate

Figure 3 .2 : Pdyn vs. task arrival rate for a 16-node system with a task set: E T =
{ 0 .4 , 0 .8 , 1 .2 , 1.6}o.25> L = { 1 , 2 , 3) 1/ 3.

XV
1.0e-03 v n — 1 "1 1 - -Vl _

l.Oe-05 1----- 1---—1-----r *.n
x'V 1
. 1 ^ * 1

 (|V 1 — “

1.0o-07

1.0e-08
4.5 5.02.5 4.03.02.0

Proposed scheme

Laxity d

Figure 3.3: Pdyn\i vs- task laxity £ for a 16-node system with a task set: A*®* = 0.8,
E T = {0.4,0.8,1.2, 1.6}o.25, L = {1 ,2 ,3 ,4 ,5}0.2).

(A“ ‘ = 0.8)
Task attributes

Lax.
1

No
sharing

State
probing

Random
selection

Focused
addressing

Proposed
scheme

Perfect
scheme

£ r = {0 .4 ,0 .8 , 1 0.6107 0.1515 0.1214 8.649 x 10~2 2.123 X 10"2 5.093 x 10"3
1.2, 1.6}o.25j 2 0.4317 4.779 x 10"3 2.162 x lO"3 9.746 x 10"4 3.523 x lO"4 6.492 x 10~5

L = { 1 ,2 ,3 } i/3 3 0.3058 3.514 x 10"5 1.231 x 10"5 1.026 x 10"s 7.828 X lO”6 5.721 x 10~8
E T = {0.027, 1 0.7059 0.2476 0.1992 0.1524 4.043 x 10“2 3.090 x lO"2

0.27, 2 .703}i/3, 2 0.6169 5.086 x 10"2 3.372 x lO"2 2.249 x 10“ 2 7.819 x 10"3 2.539 x lO"3
L = { l , 2 , 3 } 1/3 3 0.5061 4.994 x 10"3 2.860 x 10"3 9.594 x 10“4 4.793 x 10"4 1.763 x 10"4
E T = {0 .4 ,0 .8 ,

1.2, 1.6}o.25> 1 0.6075 0.1293 8.016 x lO"2 7.153 x lO"2 2.583 x 10“2 6.012 x lO"3
L = { 1}

(a) Aexl = 0.8.

(Aexl = 0.4)
Task attributes

Lax.
1

No
sharing

State
probing

Random
selection

Focused
addressing

Proposed
scheme

Perfect
scheme

E T = {0 .4 ,0 .8 ,
1.2, 1.6}o,25)

L = { 1 ,2 ,3 } i /3

1
2
3

0.1612
0.0421
0.0117

3.594 x 10"4
5.402 x 10"6
1.782 x 10"7

7.293 x lO"4
1.262 x 10"5
4.296 x lO"7

8.264 x 10"5
9.536 x lO"7
4.846 x lO"8

1.391 x lO”5
2.930 X lO"7
7.497 x 10“9

5.892 x 10"8
1.583 X lO"10

0
E T = {0.027,

0 .27 ,2 .703}i/3,
L = { 1 ,2 ,3 } i/3

1
2
3

0.2854
0.1761
0.0815

2.270 X 10"3
2.346 x 10"5
2.693 x lO"7

5.669 x 10~3
1.053 x 10“4
1.775 x lO"6

9.079 x 1 0 '4
9.896 x 10"6
7.903 x 10"8

2.105 x lO"4
2.970 X lO"6
1.863 x 10"8

3.516 x lO '6
2.835 x 10"8

0
E T = {0 .4 ,0 .8 ,

1.2, 1.6}o.25>
L = { 1}

1 0.1660 8.163 x lO"4 6.250 x 10~4 3.818 x 10"4 7.018 x lO"5 9.476 x 10“8

(b) Aex* = 0.4.

Table 3.4: Pdsn\i vs. task laxity I for different task sets under different schemes (JV = 16).

Arrival Laxity No State Random Focused Proposed Perfect
rate (A“ *) I sharing probing selection addressing scheme scheme

1 0.6107 3.027 x 10~2 4.841 x lO"2 2.878 x 10"2 2.121 x lO"2 5.093 x 10“3
0.8 2 0.4317 2.937 x 10“4 3.161 x 10"4 2.874 x lO"4 2.688 x 10-4 6.492 x 10"5

3 0.3058 8.763 x 10"7 8.754 x lO"6 5.323 x lO '7 1.168 x lO"7 5.721 x 10“8
1 0.1612 1.875 x lO"7 9.372 x lO"5 4.275 x 10"7 2.034 X lO"7 5.892 X lO"8

0.4 2 0.0421 8.764 x 10~8 2.167 x 10"6 9.619 x lO"8 1.457 x lO '8 1.583 x lO"10
3 0.0117 4.763 x lO"10 1.928 x 10"8 5.136 x lO '10 0 0

Table 3.5: Pdsn\d for a task set with E T = {0.4,0.8,1.2,1.6}0.25 and L = {1, 2, 3}i/3 under the ideal condition.

76

k 1 / • * &

No sharing
State probing
Random selection
Focused addressing
Proposed scheme
Perfect scheme

1.0e-07 l.Oe-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 l.Oe+OO

Probability of dynamic failure

Figure 3.4: \ max vs. Pdyn for a 16-node system.

M aximum System Utilization

The system utilization is defined as the ratio of the external task arrival ra te (A***)

to the system service rate (1 /E (R)). The service rate is normalized to 1 in our analysis,

and thus, the system utilization simply becomes A**‘. Since Pdyn increases with system

load (Fig. 3.2), there exists an upper bound for A"*, termed as maximum system utilization

A mar, below which Pdyn < e can be guaranteed for some pre-specified e > 0. Fig. 3.4 shows

plots of the maximum system utilization vs. c for a 16-node regular system. One important

result is tha t we do not have to sacrifice system utilization to lower Pdyn, which is in contrast

to the common notion of trading system utilization for real-time performance. Moreover,

the proposed scheme has the performance closest, among all LS schemes considered, to the

perfect information scheme, and usually outperforms the other realistic schemes by almost

an order of magnitude.

Mean Response Time

Conventionally, mean response time (MRT) is used as a global system performance

index in non-real-time distributed systems, and there have been many approaches to the

goal of minimizing MRT. Table 3.6 gives MRT for the various task attributes under dif­

ferent schemes. MRT increases as the system load increases, or the variance of either the

77

distribution of task execution time or the distribution of task laxity gets large.

One interesting result is that the MRT associated with the proposed scheme varies

least drastically with the change of distributions of task laxity and/or task execution time

as compared to those associated with other LS schemes. This is due to the use of Bayesian

analysis to choose a receiver node for task transfer. Moreover, our LS scheme outperforms

all but the perfect information scheme even when all the processing overheads are taken

into account and MRT is used as the performance index. This is due to the fact that,

to minimize Pdv the proposed scheme aims to share overflow tasks among all capable

nodes in the system, rather than only within a buddy set (by using the preferred lists and

overlapping buddy sets [SC89a]), thus spreading loads throughout the entire system. On

the other hand, a scheme that results in a lower MRT does not always yield a lower Pdyn-

For example, consider the case when Xext = 0.4 in Table 3.G (b) and Table 3.4 (b). The

state probing scheme has a larger average task MRT than the random selection scheme, but

a smaller Pdyn- Consequently, those approaches based on minimizing MRT alone may not

be directly applicable to real-time systems.

Task Transfer-Out Ratio

A task arrived at a node has to be transferred if and only if the CET of that

node exceeds the laxity of the task. The task transfer ratio, r«, is defined as the portion

of arrived tasks (both external and transferred-in tasks) that must be transferred. ru is a

measure of the traffic overhead caused by task transfers. Table 3.7 shows the values of rtt

for the various task attributes under different schemes.

Under light to medium loads (e.g., Xext = 0.2—0.4 in Table 3.7), the task transfer

ratios associated with different schemes are very close to one another. This is because most

tasks can be completed in time locally or with at most one task transfer, and thus, the

location policies employed by different schemes have little influence on system performance.

On the other hand, when the system load gets heavy, the way of choosing a node for task

transfer/re-transfer results in notable differences in performance. The state probing scheme

has the task transfer ratio closest to the perfect information scheme, since it first checks a

node’s LS capability before transferring a task to that node. The proposed scheme is inferior

to the state probing scheme due to its use of imperfect observation to probabilistically decide

the receiver node. However, it does not require any probing overhead at the time of making

a location decision.

The focused addressing scheme performs slightly better than the proposed scheme

under light load. However, when the system load gets heavy, the performance of the focused

(Aex* = 0.8) No State Random Focused Proposed Perfect
Task attributes sharing probing selection addressing scheme scheme

E T = {1} 2.983 1.813 1.788 1.763 1.725 1.718
L = { l,2 ,3 } 1/3 E T = {0.4,0.8,1.2, 1.6}o.25 3.420 1.851 1.814 1.789 1.706 1.692

E T = { 0.027,0.27, 2.703}i/3 6.003 2.149 2.047 1.979 1.799 1.797
L = { 1} 3.420 1.584 1.565 1.502 1.470 1.429

E T = {0.4,0.8, L = { 1,2}o.5 3.420 1.768 1.697 1.679 1.627 1.592
1.2, 1.6}o.25 L = {0.4,0.8,1.2, 1.6}o,25 3.420 1.800 1.658 1.579 1.440 1.405

(a) MRT for different task sets under different schemes (Aext = 0.8).

(A“ ‘ = 0.4)
Task attributes

No
sharing

State
probing

Random
selection

Focused
addressing

Proposed
scheme

Perfect
scheme

E T = {1} 1.336 1.262 1.261 1.259 1.257 1.256
L = { l ,2 ,3 } 1/3 E T = {0.4,0.8, 1.2,1.6}o.25 1.397 1.286 1.267 1.265 1.263 1.259

E T = {0.027,0.27, 2.703}i/3 1.825 1.344 1.322 1.314 1.300 1.295
L = {1> 1.397 1.186 1.173 1.165 1.159 1.158

E T = {0.4,0.8, L = { l,2}0.s 1.397 1.245 1.233 1.233 1.230 1.228
1.2, 1.6}o,25 L = {0.4,0.8,1.2, 1.6}o,25 1.397 1.202 1.178 1.162 1.159 1.155

(b) MRT for different task sets under different schemes (Aext = 0.4).

Table 3.6: Comparison of mean response time among different LS schemes.

79

o.s

3
o 0.7 ------------- j ----------------(---------------- ! ----- 1------ 1 1 “

'o
0.5

- - 1 ---------- 1 / “ “ I ------------ 1 - -0.4 “ 1 1

0.3

- - A 1----- 1 _ —0.2 ---1
m

- - -r- - *1 -

0.0
0.70.2 0.5 0.6 0.8 0.90.1 0.3 0.4

+ • Random selection (simulation)
♦ ------- ♦ State probing (simulation)
■■ Focused address, (simulation)

Proposed scheme (simulation)

Task arrival rate

Figure 3.5: Frequency of task collision vs. external task arrival rate for a 16-node system
with a task set: E T = {0.4,0.8,1.2,1.6}0.2s and L = {1,2, 3}i/3.

addressing scheme deteriorates quickly due to the increased probability of making incorrect

LS decisions based on out-of-date11 state information.

Frequency o f Task Collision

The frequency of task collision, f tc, is defined as the fraction of transferred tasks

tha t are not guaranteed on remote nodes after their transfer. This is a measure for the

capability of the LS algorithms in reducing the probability of task re-transfers. Fig. 3.5

shows the simulation results for different LS schemes.

Generally, f t c increases as the system load gets heavier, the task laxity gets tighter,

and/or as the variance of task execution time increases for the same reason that leads to the

increase of task transfer-out ratio rtt. The state probing scheme has the lowest frequency

of task collision, because it always checks the capability of a node (and thus maintains/uses

the most up-to-date state information) before transferring a task. The random selection

scheme, on the other hand, does not use any state information for LS decision, and thus

necessarily has the highest frequency of task collision. ftc of the proposed scheme lies

between tha t of state probing and tha t of focused addressing. The reason for the focused

11 as a result of the increased communication delays caused by excessive bidding messages.

Arrival rate
(A -)

State
probing

Random
selection

Focused
address.

Proposed
scheme

Perfect
scheme

0.2 0.019 0.021 0.020 0.020 0.019
0.4 0.056 0.065 0.058 0.057 0.053
0.6 0.112 0.152 0.116 0.114 0.107
0.8 0.185 0.333 0.241 0.223 0.184

(a) Task transfer ratio versus task arrival rate for the task set with E T = {0.4,0.8,1.2,1.6}o.25 and L — {1,2,3}i/3 under diiferent schemes.

(Aext = 0.8) State Random Focused Proposed Perfect
Task attributes probing selection address. scheme scheme

E T = {1} 0.160 0.296 0.230 0.224 0.160
L = { l ,2 ,3 } 1/3 E T = { 0 .4 ,0 .8 ,1 .2 ,1 .6 } o.25 0.185 0.333 0.241 0.223 0.184

E T = {0.027,0.27, 2 .703} i / 3 0.277 0.526 0.398 0.367 0.276
L = { 1} 0.300 0.463 0.355 0.351 0.286

E T = {0.4,0.8, L = { 1 ,2 } o.5 0.223 0.383 0.286 0.268 0.219
1.2, 1 .6}o,25 L = { 0 .4 ,0 .8 ,1 .2 ,1 .6 } o.25 0.262 0.449 0.367 0.320 0.280

(b) = 0.8.

Table 3.7: Comparison of task transfer ratio among different schemes.

(A*** = 0.4)
Task attributes

State
probing

Random
selection

Focused
address.

Proposed
scheme

Perfect
scheme

E T = {1} 0.036 0.039 0.037 0.038 0.033
L — { 1 ,2 ,3 } i /3 E T = { 0 .4 ,0 .8 ,1.2, 1.6}o.25 0.056 0.065 0.056 0.057 0.053

E T = {0 .027 ,0 .27 ,2.703}1/3 0.128 0.160 0.130 0.132 0.123
Z = {1} 0.116 0.130 0.117 0.119 0.111

E T = {0 .4 ,0 .8 , L = {1, 2 }o.5 0.076 0.086 0.075 0.076 0.073
1.2 ,1 .6} L = {0 .4 ,0 .8 ,1 .2 ,1 .6 }025 0.121 0.152 0.123 0.128 0.120

(c) A“ * = 0.4.

Table 3.7: (continued) Comparison of task transfer ratio among different schemes.

82

addressing scheme to be inferior to the proposed scheme is that the state information of

other nodes is collected via periodic information exchanges and/or in the bids received

in previous RFB activities, and may be obsolete at the time of choosing a focused node.

The proposed LS scheme may also use obsolete state information, but it neutralizes the

undesirable effect of using out-of-date information with Bayesian decision analysis.

System Size

It is found from the simulations that the larger the system size, the better the

performance of the LS schemes will result. (See Table 3.4 and Table 3.8 for numerical

results.) This is because a larger system has a larger processing capacity to handle bursty

task arrivals at one or more nodes in the system. Besides, task transfers, state probes,

RFB,12 and/or region-change broadcasts do not significantly increase the queueing delay

(as compared to a system with only a few nodes) due to the increased communication

capacity and the decreased chance of transferring two or more tasks through the same link

or to the same node.

Due to the way the buddy sets and the preferred lists constructed [SC89a], the

overflow tasks within each buddy set will be evenly shared by all capable nodes in the entire

system as the system size grows, rather than overloading a few capable nodes within the

same buddy set. Moreover, the preferred list of a node is different from those of other nodes’

in its buddy set. Consequently, the percentage of common nodes in the preferred lists of

the nodes in a buddy set gets smaller as the system size grows, and thus, there is a greater

chance that the overflow tasks of a node may be transferred to some other nodes not in its

buddy set, leading to more even distribution of the overflow tasks.

Frequency of Region-Change Broadcasts vs. Frequency of State Probing/Bidding

In the proposed LS scheme, each node has to broadcast a change of state region

to all the other nodes in its buddy set. Thus, the frequency of region-change broadcasts,

/ t , determines the traffic overhead in collecting state information. On the other hand, the

traffic overhead in both the state probing and focused addressing schemes is determined by

the frequency of state probing, / p, and the frequency of RFB, / r , respectively. Table 3.9

summarizes the simulation results on /&, fp, and f r in terms of number of messages per

E(R).

13To reduce traffic overheads, RFB messages are sent to 10 randomly selected nodes, instead of all the
other nodes in the system.

(Aert = 0.8) Lax. No State Random Focused Proposed Perfect
Task attributes 1 sharing probing selection addressing scheme scheme
ET = {0 .4 ,0 .8 , 1 0.6107 0.1112 8.566 x 10"2 3.011 x 10"2 2.326 x 10“3 2.931 x 10"51.2, 1.6}o.25> 2 0.4317 8.541 x 10"4 3.455 x 1 0 -4 1.046 x 10"4 8.798 x 10~6 8.126 x lO"7
L = { 1 ,2 ,3 } i /3 3 0.3058 5.472 x 10"6 6.237 x 10"6 2.326 x lO"6 1.266 x lO"7 4.256 x lO-10
E T = {0.027, 1 0.7059 0.1687 0.1381 0.1079 1.534 x 10"2 5.156 x 10"4

0 .2 7 ,2.703}i/3, 2 0.6169 1.506 x 10"2 1.580 x 10"2 8.956 X 10"3 2.557 x lO"3 1.070 x lO"5
L = { 1 ,2 ,3 } i/3 3 0.5061 2.927 x 10"4 4.807 x 10"4 1.046 X lO"4 2.032 x 10” 5 8.396 x 10"8
E T = {0 .4 ,0 .8 ,1.2, 1.6}o,25) 1 0.6075 9.108 x 10“2 5.115 x lO"2 2.674 x 10"2 5.335 x 10"3 7.815 x lO"6

! = { ! }

(a) Aer< = 0.8.

(Aex* = 0.4)
Task attributes

Laxity
£

No
sharing

State
probing

Random
selection

Focused
addressing

Proposed
scheme

Perfect
scheme

E T = {0 .4 ,0 .8 ,
1.2, 1.6}o.25j

L = {1,2,3}i/3
1
2
3

0.1612
0.0421
0.0117

1.203 x 1 0 -4
9.320 x lO"7
2.301 x lO '8

6.099 X 10"4
2.489 x lO '6
5.320 x 10"8

4.812 x 10"5
2.872 x 10"7
4.166 X lO"9

1.169 x 10"5
5.148 x lO"8
3.049 x lO"10

6.702 x 10_1°
0
0

E T = {0.027, 0.27,2.703}i/3,
L = { l , 2 , 3 } 1/3

1
2
3

0.2854
0.1761
0.0815

9.263 x 10“4
5.856 X lO"6
2.153 x 10~8

3.715 x 10“3
2.347 x 1 0 -5
9.873 x 10"8

3.146 x 10"4
2.021 x 10"6
1.041 x 10"8

1.083 x 10"4
1.837 x lO"7
5.352 x lO"9

1.962 x lO"8
7.136 x lO"10

0
E T = {0 .4 ,0 .8 ,

1.2, 1.6}o.25>
L = { 1}

1 0.1660 5.468 x 10“4 2.092 x 10~4 1.012 x 10"4 5.848 x 10"6 0

(b) A“ ‘ = 0.4.

Table 3.8: Pdyn\i versus task laxity £ for different task sets under different schemes (JV = 64).

84

Task arrival
Rate (Aext)

State probing
(/ .)

Focused addressing
(fr)

Proposed scheme
(A)

0.2 0.0041 0.0178 0.2948
0.4 0.0287 0.2458 0.4517
0.6 0.1144 0.6821 0.4810
0.8 0.4836 1.2346 0.4943

(a) Frequency o f s ta te in fo rm ation collection vs. different Xexi for a ta sk set w ith

E T = { 0 .4 ,0 .8 ,1 .2 , 1.6} o,25 an d L = { 1, 2, 3} i/ 3.

(Aext = 0.8)
Task attributes

State probing
(A)

Focused addressing
(fr)

Proposed scheme
(/*)

E T = {0.4,0.8,
1.2, 1 .6 } o.26)

L = { l ,2 ,3 }1/3
0.4836 1.2346 0.4943

E T = {0.027,
0.27,2.703}1/3,
L = { l ,2 ,3 }1/3

1.0150 1.3816 0.4781

E T = {0.4,0.8,
1.2, 1.6)o.2s>

L = { 1}
0.9061 1.5023 0.6872

(b) Frequency o f s ta te in fo rm ation collection versus different ta sk se ts w hen Xest = 0.8.

Table 3.9: Comparison of the traffic overhead associated with collecting state information
between the state probing and the proposed schemes.

Under light to medium loads (e.g., Xext = 0.2—0.6 in Table 3.9 (a)), the proposed

scheme introduces more traffic overhead (in the worst case, about 0.5 broadcast per E (R))

than the other two schemes. However, the additional traffic introduced by broadcasts may

not impede the transmission of tasks and/or other messages, since only about 2%—13%

of the arrived tasks (Table 3.7) are transferred to other nodes. Besides, the effect of the

increased communication delay (as a result of broadcasts) on the inconsistency between

a node’s observed and true states of other nodes is taken care of by Bayesian analysis.13

When the system load is heavy, the state probing scheme and the focused addressing scheme

perform worse than the proposed scheme (Table 3.9 (b)). This phenomenon becomes more

pronounced when the variance of task execution time is large or when the task laxity is

tight.

13This is evidenced by the fact tha t the queueing delays due to sta te broadcasts/task transfers as well as
the processing overheads required for probability update/sta te broadcasts were all included in our simulation.

85

Processing Overheads due to Region-Change Broadcasts and Probability Up­

dates

Each node updates, once every Tp units of time, the posterior CET distributions

given the observation of other nodes using the state samples gathered via region-change

broadcasts. The overhead for processing broadcast messages (updating probability distribu­

tions) is determined by the broadcast processing cost Ct (the probability-update processing

cost Cp), and the frequency of region-change broadcasts f t (the frequency of probability

updates, 1/TP). To study the effect of varying the processing overhead, we ran simulations

with Ct = 0.5%, 1.0%, 2.5% of average task execution time, Cp = 1%, 2%, 10% of average

task execution time, and 1/TP = 0.02, 0.01,0.001 per E (R), respectively, and computed the

portion of simulation time during which a node is found to be idle. As shown in Table 3.10,

both Cp and l /T p have only minor effects on the portion of idle time, while Ct has a slightly

larger effect on the portion of idle time. This is expected since region-change broadcasts

occur more often (Table 3.10) than probability updates. Under all circumstances, no more

than 2% of the processing power is used for region-change broadcasts and probability dis­

tribution updates. Thus, these LS mechanisms do not deprive other non-critical tasks of

processing power.

FCFS vs. MLFS

Under the MLFS local scheduling discipline, the task queue a t each node is ordered

by task laxities, and a task with the minimum laxity on the node is always executed first.

Another commonly-used local scheduling discipline is the first-come-first-served (FCFS)

discipline. A newly-arrived task is added at the end of task queue if it can be completed

in time on that node, and will otherwise be considered for transfer. The FCFS discipline is

simple and ensures not to alter the existing guarantees, and the transfer policy under this

discipline becomes a simple dynamic threshold type [WM85, ELZ86, MTS89a, AC88].14

Although the MLFS discipline does not always perform better than the other on

a per-task basis, it is shown in [HTT89] to perform better on the average in reducing Pdyn•

To quantitatively compare the performance of these two disciplines, we ran simulations

with MLFS and FCFS as the local scheduling discipline for a wide range of task attributes.

As shown in Table 3.11, all schemes with FCFS perform worse than their counterparts

with MLFS. No m atter which local scheduling discipline is used, the proposed scheme is

14The threshold may change dynamically with the current state of the node and the time constraints of
tasks.

86

Arrival rate Broadcasting Proposed State Perfect scheme
Xext cost Ct scheme probing simulation analytic

0.5% 0.1930 0.1967
0.8 1.0% 0.1903 0.1944 0.1978 0.20

2.5% 0.1839 0.1851
0.5% 0.5974 0.5988

0.4 1.0% 0.5950 0.5967 0.6014 0.60
2.5% 0.5852 0.5943

(a) Effect of broadcast cost on the proportion of simulation idle time.

Arrival rate Prob. updating Proposed State Perfect scheme
Aest cost Cp scheme probing simulation analytic

1.0% 0.1924
0.8 2.0% 0.1903 0.1944 0.1978 0.20

10.0% 0.1892
1.0% 0.5953

0.4 2.0% 0.5950 0.5967 0.6014 0.60
10.0% 0.5840

(b) Effect of probability update cost on the proportion of simulation idle time.

Arrival rate Prob. updating Proposed State Perfect scheme
y x t freq. l /T p scheme probing simulation analytic

0.02 0.1902
0.8 0.01 0.1903 0.1944 0.1978 0.20

0.001 0.1964
0.02 0.5942

0.4 0.01 0.5950 0.5967 0.6014 0.60
0.001 0.5860

(c) Effect of probability update frequency on the proportion of simulation idle time.

Table 3.10: Comparison of computation overheads for a task set with E T = {0.4,0.8,1.2,
1 . 6 } o , 2 5 and L = {1,2,3}i/3 between the state probing scheme and the proposed scheme.

87

Task
set

Local scheduling
discipline

State
probing

Random
selection

Focused
addressing

Proposed
scheme

I MLFS 5.209 x 10"2 4.119 X 10"2 2.582 x 10"2 7.194 X lO”3
FCFS 6.402 x 10~2 5.594 X lO"2 3.876 x 10-2 1.747 X lO"2

II MLFS 6.017 X lO"6 1.736 x lO"6 3.247 X lO '7 4.124 x 10"8
FCFS 6.204 x 10"6 1.804 X lO”5 3.329 X lO"7 4.236 X 10"8

III MLFS 6.013 X 10”2 5.298 x lO"2 3.464 x 10“2 1.343 x 10“2
FCFS 6.576 X lO-2 5.874 x lO"2 4.187 X 10~2 1.892 x 10"2

Table 3.11: Performance (Pdyn) comparison of using FCFS/MLFS as the measure of work­
load. Task set I: Ae*‘ = 0.8, E T = {0.4,0.8,1.2, 1.6}0 2b, and L = {1,2,3}i/3. Task set
II: A"* = 0.2, E T = {0.4,0.8,1.2,1.6}o.25, and L = { l,2 ,3 } 1/3. Task set III: Aet* = 0.8,
E T — {0.4,0.8,1.2, 1.6}o.2s, and L — {1.4,1.5,1.6}i/g.

shown to outperform the other realistic schemes in meeting deadlines. This demonstrates

the quality of the location policy in the proposed scheme which uses both Bayesian analysis

and preferred lists.

One interesting result is that the performance degradation of the FCFS discipline

is not so significant when (1) the system load is light, and thus, the task queue is often

short (e.g., task set II in Table 3.11), or (2) task laxities are not distributed very widely

(e.g., task set III in Table 3.11); that is, either all laxities are very large or all are very tight.

This makes the quality of local scheduling less important in meeting task deadlines.

CET vs. QL as the Measure of Workload

For ease of analysis, the number of tasks queued for execution on each node, or

QL, is often adopted as the load state of a node [SC89a, NH85, YL84, WM85, ELZ86, HL86,

MTS89a]. This may, however, become inappropriate for real-time applications, because it

is the cumulative execution time (CET) on a node that determines whether or not a task

can be completed in time on that node. A node with only a few tasks queued may not

be able to complete a newly-arrived task in time if a large amount of time is required to

complete each queued task. On the other hand, a node with a large QL may still be capable

of completing an arrived task as long as the total CET on that node does not exceed the

laxity of the task. To show the inappropriateness of QL as the measure of workload, we

ran simulations with both QL and CET as the state of a node. As shown in Table 3.12,

the performance of the proposed scheme with QL is close to (and sometimes worse than15)

ls Now, the proposed scheme essentially degenerates to the random selection scheme but with (1) imperfect
QL state information which correlates GET in an unpredictable manner and (2) overheads due to the region-

88

(A*®* = 0.8)
Task attributes

Laxity
£

Random selection
(state:CET)

Proposed scheme
(state.'QL)

Proposed scheme
(staterCET)

E T = {0.4,0.8, 1 0.1214 1.085 x 10"2 2.123 x 10“ 21.2, 1.6}o,25) 2 2.162 x 10~3 1.625 x 10“3 3.523 x 10~4
Z = { l,2 ,3 } 1/3 3 1.231 x 10-5 9.604 X lO"6 7.828 x 10"6
E T = {0.027, 1 0.1992 0.2286 4.043 X 10"2

0.27,2.703}1/3, 2 3.372 X 10~2 4.924 x 10"2 7.819 x 10“ 3
L = {1,2, 3}i/3 3 2.860 x 10~3 3.142 x lO"3 4.793 X 10-4
E T = {0.4,0.8, 1.2, 1.6}o.25i 1 8.016 X 10-2 7.606 x 10"2 2.583 x 10"2

I = {1}

Table 3.12: Performance comparison of using CET/QL as the measure of workload.

th a t of the random selection scheme. The effect of using QL as the measure of workload for

other schemes is similar to the proposed scheme. The performance degradation gets severer

as the variance of task execution times gets large.

Sensitivity to Communication Delays

There are two types of communication delay to consider: one is the state-collection

delay incurred from region-change broadcasts/state probes, where the queueing delays play

a dominating role, and the other is the delay associated with task transfers, where both the

queueing delays and the transmission delays dominate. To study the effect of communication

delays, Pdvn was computed with (1) the transmission cost associated with each task transfer

being 5 ,10 ,15 , and 20 % of the task execution time, and (2) the queueing delay coefficients

being halved, doubled, and tripled. (Recall that the queueing delay coefficients are the

coefficients in the linear expression used to model the effect of both the average external

task arrival rate and the medium traffic on the queueing delay.)

As shown in Fig. 3.6, the state probing scheme, the random selection scheme, and

the focused addressing scheme are all more sensitive to the variation of the transmission

cost than the proposed scheme. Also, see Table 3.13 (a) for numerical examples. The per­

formance degradation by the state probing scheme occurs because, as the task transmission

delay increases, other tasks may arrive a t a probed node during the period between the time

it was probed and the time an overflow task (of the probing node) arrives at th a t node.

Thus, there is not much correlation between the state when a node was probed and the

change broadcasts and probability updates.

89

0.10

Iu
0.08

a
0.06

0.04

0.02

0.00
5.0 15.0 25.010.0 20.0

Task transfer cost (percentage of task execution time)

o ------- o State probing
o --------o Random selection
♦ ♦ Focused addressing
■------- ■ Proposed scheme

Figure 3.6: Pdyn vs. task transfer costs for a 16-node system with a task set: Aext = 0.8,
E T = {0.4,0.8,1.2, 1.6}o.25) L = { l,2 ,3 } 1/3).

state when an overflow task arrived at the node. (Similarly, one can reason about the per­

formance degradation of the focused addressing scheme.) The performance of the random

selection scheme degrades as the transmission delay increases, due to the combined effect

of higher task transfer-out ratios (Table 3.7) and large transmission costs.

Fig. 3.7 (Table 3.13 (b)) shows the effect of varying queueing-related costs on

the performance of several LS schemes. The state probing scheme is most sensitive to the

variation of queueing delay, because, in addition to suffering the same effect as varying

transmission delays, the state probing scheme generates two additional messages per probe,

thus increasing the possibility of a task missing its deadline, especially when the queueing

delay is large. Varying queueing-related costs has the same effect as varying transmission

costs on the random selection scheme as well as on the focused addressing scheme.

In contrast, our proposed scheme is less sensitive to the communication delays

(both queueing and transmission delays) because of the use of prior/posterior distributions

to characterize the correlation between the observation and the corresponding true state.

Benefit o f Using Bayesian Decision Analysis

To actually measure the benefit of using Bayesian decision analysis, we ran a set of

experiments using a scheme which is identical in all aspects to the proposed scheme except

90

(Aer‘ = 0.8)
Trans, costs

Laxity
I

State
probing

Random
selection

Focused
addressing

Proposed
scheme

1 7.769 X 10"2 0.1090 5.623 x 10"2 1.737 x lO-2
5% 2 7.614 x 10"4 3.257 X 10"3 3.924 x 10"4 1.989 X lO"4

3 3.965 x 10"® 1.167 X 10"® 5.311 X 10"® 3.042 x 10"®
1 0.1515 0.1214 8.649 x 10"2 2.123 X 10-2

10% 2 4.779 X lO"3 2.162 X 10"3 9.746 X 10"4 3.523 x 10“4
3 3.514 x 10"® 1.231 x 10“5 1.026 X 10~® 7.828 x 10"®
1 0.1834 0.1620 0.1328 3.620 X 10"2

15% 2 7.524 X lO"3 5.261 x lO"3 2.678 x 10“3 1.050 x lO"3
3 5.851 x lO"5 2.943 X 10“® 2.436 X lO"8 1.746 x lO"5
1 0.2068 0.1907 0.1708 5.858 x 10"2

20% 2 1.154 x 10“ 2 7.607 X 10"3 3.849 x lO"3 1.604 x 10"3
3 1.878 x 10"4 4.689 X lO-5 5.014 x 10"® 2.346 x 10"®
1 0.2550 0.2408 0.2212 6.128 X 10"2

25% 2 1.394 X 10"2 1.222 x 10"2 8.746 x 10"3 3.312 x lO"3
3 3.869 x lO"4 1.054 X 10"4 9.249 X 10"® 5.022 x 10"®

(a) Effect of task transfer costs on Pdyn\t-

(Ae*‘ = 0.8) Laxity State Random Focused Proposed
Queueing coeff. £ probing selection addressing scheme

1 6.091 x 10"2 8.280 x 10"2 4.206 x lO-2 1.831 X lO"2
halved 2 3.758 x 10“4 1.033 x lO"3 6.270 x 10“4 3.045 x lO"4

3 2.813 x 10"® 6.948 X 10"6 5.708 X lO”6 2.530 x lO"6
values 1 0.1515 0.1214 8.649 x lO"2 2.123 X 10"2
from 2 4.779 x lO"3 2.162 x 1 0 -3 9.746 x lO"4 3.523 x lO"4

simulation 3 3.514 x lO- ® 1.231 X 10"® 1.026 x lO”® 7.828 x 10“®
1 0.2134 0.1978 0.1538 3.041 X 10"2

doubled 2 2.801 x lO"2 7.552 x lO '3 1.537 x lO”3 5.950 x lO"4
3 5.513 X 10"4 1.459 X 10“® 1.324 x 10"® 1.167 x 10“®
1 0.4194 0.2406 0.2173 4.328 X lO"2

tripled 2 7.475 x lO"2 1.450 x lO '2 1.267 x 10“2 7.377 x 10"3
3 3.842 x lO"3 1.996 x lO"4 1.726 x 10“4 2.348 x 10"®

(b) Effect of queueing delays on Pdyn\t-

Table 3.13: Effect of communication delays on Pdyn for a task set with E T = {0.4,0.8,1.2, 1.6}o.2b and L = {1,2,3}i/3 under different schemes.

91

o — —© State probing
O-------o Random selection
♦♦ Focused addressing
■ Proposed scheme

Figure 3.7: Pdyn vs. queueing delay coefficients for a 16-node system with a task set:
Xext = 0.8, E T = {0.4,0.8,1.2,1.6}0 25, L = {1 ,2 ,3}1/3).

tha t no Bayesian analysis is used to capture the inconsistency between the observation and

the true state. As the numerical results in Table 3.14 indicate, the proposed scheme with

the Bayesian analysis does outperform the one without the Bayesian analysis in minimizing

Pdyn, especially when

1. task execution times vary over a wide range (Table 3.14 (a)),

2. the distribution of task laxity gets tight (Table 3.14 (a)),

3. the state-collection/task-transfer delays get large (Table 3.14 (b)).

The possibility of ‘improper’ task transfers as a result of using outdated state information

increases under condition 1 and 3, while under condition 2 tasks with tight laxities are less

immune to improper task transfers. All these conditions can be handled by characteriz­

ing the inconsistency between the true state and the outdated observation with Bayesian

analysis.

Statistical Fluctuations in Task Arrivals

One issue in using a Bayesian decision model is to what extent the proposed

scheme remains effective when the task arrival pattern randomly fluctuates. This effect is

evaluated by simulating different task sets with hyper-exponential interarrival times. This

(times queueing-related coefficients)

92

Task attributes (Aeet = 0.8) laxity I with Bayesian analysis w/o Bayesian analysis
E T — {0.4,0.8, 1 2.123 x 10“2 4.852 X 10~2

1.2, 1 . 6 } o . 2 6 j 2 3.523 x 10"4 5.272 x lO"4
Z = { l,2 ,3 }1/3 3 7.828 x lO”6 1.069 X lO"8
E T = {0.027, 1 4.043 X 10"2 0.1274
0.27,2.703}i/3, 2 7.819 x 10“3 2.134 X 10"2
Z = { l,2 ,3}1/3 3 4.793 x 10~4 8.274 X lO"4oooo'-r-'11£».

1.2, 1 . 6 } o . 2 6 i 1 2.583 x 10"2 6.178 X lO"2

i-HII

(a) Pdyn\t versus task laxity I for different task sets. Task transfer costs are assumed to be

10% of the execution time of the task transferred.

Transfer costs laxity I with Bayesian analysis w/o Bayesian analysis
1 1.737 X 1 0 '2 2.628 x 10"2

5% 2 1.989 x 10"4 3.046 x 10-4
3 3.042 x 10"6 5.116 x 10~6
1 2.123 x 10“2 4.852 x 10"2

10% 2 3.523 x 10"4 5.272 x 10"4
3 7.828 x 10"6 1.069 x lO"5
1 5.858 x 1 0 '2 0.1408

20% 2 1.604 X lO"3 3.180 x 10“3
3 2.346 x 10"5 4.923 X 10"8

(b) Pdyn vs. task transfer costs for the task set with \ txt = 0.8, E T = {0.4,0.8,1.2, 1.6}0.25j

and L = {1,2,3}i/3.

Table 3.14: Pdyn\t with/without the use of Bayesian analysis in the proposed scheme.

93

A — • — A No sharing
o — —o Prop, scheme w/o Bayes analysis
+ ------ + Proposed scheme
♦ Perfect LS

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Coefficient of variation of task interarrival time (CV)

Figure 3.8: Piyn vs. coefficient of variation of task interarrival times for a 16-node system
with a task set: Aer‘ = 0.8, E T = {0.4,0.8,1.2,1.6}0.2s, L = {1,2,3}i/3.

represents a system potentially with bursty task arrivals, and the degree of fluctuation over

short periods is modeled well by varying the coefficient of variation (CV) of the hyper­

exponential task interarrival times. Specifically, let Tt be the task interarrival time. By

Chebyshev’s inequality,

P (| T, - E(T,) | > n£(T ,)) <

i.e., the smaller C V 2, the less likely T, will deviate from its mean, E(Tt). Fig. 3.8 shows

the simulation results under heavy system loads (Ae*‘ = 0.8) where the LS performance

is sensitive to the variation of CV. From Fig. 3.8, we draw the following conclusions: (l)

the two curves labeled as the proposed scheme and the proposed scheme without using

Bayesian analysis give another evidence that LS does benefit from the use of Bayesian

decision theory; (2) the performance of the proposed scheme degrades as CV increases.

However, the proposed scheme remains effective up to CV=5.42 (or C V 2 = 30) beyond

which it reduces essentially to the scheme without using Bayesian decision analysis.

3.6 C onclusion

Using prior/posterior distributions and Bayesian analysis, we proposed a new LS

scheme which can estimate, even with out-of-date state information, the workload of other

1
3 •4O

3
- H =

94

nodes, and select the best candidate receiver of each overflow task. The probability of

dynamic failure as a result of using out-of-date information is thus reduced significantly.

Moreover, as the simulation results indicate, the ability of making Bayesian decisions based

on imperfect state information makes this scheme insensitive to communication delays. The

proposed scheme is also shown to be robust to the variation of tunable parameters used in

adaptive LS.

In Chapter 4, using the continuous time Markov chain embedded in the correspond­

ing Markov process, we shall develop an analytic model that describes the state evolution

of a node with Poisson arrivals for several LS schemes.

CHAPTER 4

ANALYTIC MODELS OF ADAPTIVE LS SCHEMES

4.1 Introduction

In Chapter 3, we proposed, without any modeling analysis, a new decentralized,

dynamic LS scheme that uses the CET of each node and combines the preferred lists, region-

change broadcasts, and Bayesian analysis both to minimize the probability of dynamic

failure and to alleviate the performance degradation caused by communication delays. In

this chapter, we develop analytic models for this scheme as well as three other schemes: no

LS, LS with random selection, and LS with perfect information. Not only the fundamental

differences among the transfer and location policies used by different schemes are addressed,

but also the computation/communication overheads in implementing these schemes are

included in the analytic models. By taking into account these overheads, the analytic

models provide a means of assessing the absolute real-time performance of the schemes

considered. We derive several performance metrics, such as PdVn, task transfer-out ratio,

and maximum system utilization. These metrics are then used to assess the proposed LS

scheme against the other schemes.

The first step in developing the analytic LS models is to define the (load) state of a

node. For ease of analysis, QL is often used as the node’s state [ELZ86, YL84, WM85, HL86,

SRC85, SC89a, NH85]. However, as discussed in Chapter 3, performance analysis based

on QL would be accurate only if all tasks have an identical, or identically-distributed,

execution time, and the mean task response time is used as the performance metric. If

task execution times are neither identical nor identically-distributed, QL is no longer an

adequate measure to characterize the load of a node. For example, a node with only a few

tasks queued may not be able to complete a newly arrived task in time if a large amount

of time is required to complete each queued task. On the other hand, a node with a large

QL may still complete an arrived task in time as long as the total CET of tha t node does

not exceed the laxity of this task. Hence, CET is a better load state in modeling real-time

95

96

applications.

Most LS schemes known to date are concerned with minimizing mean response

time (MRT) for general-purpose distributed systems, except for those in [Sta85, RSZ89,

CL86], where the LS algorithms were evaluated via simulation with respect to either the

percentage of tasks lost or the probability of dynamic failure. Little research has been done

to analytically evaluate LS schemes for real-time applications: Shin and Chang [SC89a]

proposed an embedded Markov chain model, where QL is used as the state of a node.

Moreover, the exact solution to this model is very difficult, if not impossible, to obtain. In

[KC87], performance models were developed using CET as a node’s state, but all tasks are

assumed to have an identical deadline. By contrast, we use Pdyn as the performance metric,

and CET as the load state, and allow both task laxity and task execution time to be drawn

from arbitrary probability distributions.

Another point that differentiate our work from others is that most previous work

has shown that simple LS algorithms can significantly reduce MRT for general-purpose

systems, and the incremental benefits of employing complex LS algorithms become insignif­

icant due to their communication/computation overheads. Using the fraction of tasks lost

as the performance metric, Kurose et al. [KC87] extended this result to soft real-time sys­

tems. However, as both our analytic and simulation results indicate, this extension does

not necessarily hold when Pdyn is used as the performance metric. Our study show that by

making judicious exchange/use of state information, complex schemes—though they incur

more computation/communication overheads—achieve notable improvement in reducing

Pdyn over those simple LS schemes.

The rest of this chapter is organized as follows. Section 4.2 describes the system

model used and outlines the operations of the proposed LS scheme. Section 4.3 presents a

mathematical model based on continuous-time semi-Markov chains that describe the state

evolution of a node under different LS schemes. A two-step iterative algorithm used to

solve the queueing model is also given in Section 4.3. The computation and communication

overheads incurred in implementing the proposed LS scheme are dealt with in Section 4.4. In

Section 4.5, we derive several performance metrics, such as CET distributions, task transfer-

out ratios, and Pdyn for the schemes under consideration, and comparatively evaluate the

proposed LS scheme against others with the derived metrics.1 This chapter concludes with

Section 4.6.

*and simulations, if analytical expression is impossible for the performance metric of interest.

97

4.2 System M odel and LS Schemes

4.2.1 System M odel

The nodes of a distributed system are assumed to be ‘homogeneous’ in the sense

that all nodes have the same arrival rate of external tasks2 and are identical in processing

capability and speed. Consequently, the task arrival/transfer activities experienced by

each node are stochastically identical over a long term. Thus, we can adopt the general

methodology — introduced in [ELZ86], and also used in [KC87, SC89a, LT86] — of first

modeling the state (CET) evolution of a single node in isolation and then combining the

node-level models into a system-level model. This decomposition was first verified (through

simulation) in [ELZ86] to be valid for homogeneous systems of reasonably large size. We

will also check its validity in Section 4.5 by comparing the analytic results with the results

obtained from event-driven simulations.

External tasks (excluding transferred-in tasks) are assumed to arrive locally at

node k according to a Poisson process with rate A* = A \fk. A task requires i units of time

to execute and has j units of laxity time with probability 1 < i < Emax, 0 < j < Lmax,

where E max and Lmax (measured in number of time units) are the largest task execution

time and the largest task laxity in the system, respectively. {q(= £j*=o" <fa, 1 < i < Emax}

and {qj = Qij> 0 < j < Lmax} are the probability distributions of task execution

time and task laxity, respectively. All tasks are assumed to be independent of one another,

so they do not communicate during their execution and thus have no precedence constraints

among themselves. Note that aperiodic tasks in a real-time system are usually independent

of each other. By contrast, periodic tasks often communicate with each other but their

invocation, execution and communication behaviors are usually known a priori and thus

scheduled off-line.

4.2.2 LS Schem es Under Consideration

We shall develop models for the proposed LS scheme as well as three other schemes:

no LS, LS with random selection, and LS with perfect information. Besides, LS with state

probing and LS with focused addressing [SRC85, RSZ89] will be comparatively assessed in

Section 4.5 using simulations.

As was discussed in [ELZ86], a LS approach can be characterized by its transfer

policy and its location policy. For analytical tractability, all LS schemes studied here em-

2These exclude transfer-in tasks.

98

Each node performs the following four operations:

(a): When a task with execution time T, and laxity A arrives:
if current_time + CET > A th en
begin

receiver-node = tableJookup(^:observation)|;
transfer the task to receiver .node;

end
else
begin

CET := CET + T<;
if CET crosses T H 2k, 1 < & < - 1 then

/* TH i, . . . , TH k , - i are thresholds */
broadcast the state-region change to all nodes in its buddy set;

queue the task locally;
end

(b): When a message broadcast by node i, 1 < i < n, arrives:
update observation £*;
record the (observation, true state) pair needed for constructing probability

distributions;

(c): if CET crosses TH2k, 1 < k < \^ f \ - 1 th e n
broadcast the state-region change to all nodes in its buddy set;

(d): At every Tp clock ticks,
update the probability distributions and the table of loss-minimizing

decisions;

flf a node anticipates, based on the current observation x, that no other nodes can complete the task in

time, this task is declared to be lost and thrown away.

Figure 4.1: Operations of the task scheduler on each node

99

ploy the transfer policy with the FCFS local scheduling discipline: a task with laxity I is

transferred from node i if and only if node Vs CET is greater than t . (and the operation of

the task scheduler on each node in Fig. 3.1 is modified accordingly and is shown in Fig. 4.1).

This transfer policy is of the threshold type as in [ELZ86, WM85, MTS89a, AC88], except

tha t the threshold may change dynamically with the current state of the node and the time

constraints of queued tasks. The location policies with which a node treats overflow tasks

are different among LS schemes and are described in Section 3.5 in Chapter 3.

4.3 A n a ly tic M odels

Queueing models are developed to evaluate the performance of the proposed LS

scheme as well as three other schemes: no LS, LS with random selection, LS with perfect

information. We first model the state evolution of a node by a continuous time semi-Markov

chain [Ros70, GH85] which will serve as the underlying model. The parameters of this model

are derived for different LS schemes to characterize task arrival/transfer processes in the

system level. A two-step iterative approach is then taken to obtain a numerical solution to

the semi-Markov model.

4 .3 .1 T h e U nderly ing M odel

The state of a node is defined as the CET of that node, and each node is modeled

as an M ^ / D / l queue with bulk arrivals. (Arrival of a task with i units of execution time

is viewed as the simultaneous arrival of i tasks, each requiring one unit of execution time.)

The case in which all tasks require an identical execution time — and thus the state is QL

— is a special case of this model.

The composite (both external and transferred) task arrival rate at a node is A(T),

which depends on the node’s CET, T, and the location/transfer policies used. Execution

of a task requires i units of time with probability q, , and such a task is called a type-i task,

1 < % < E max. Since at any time a node is either idle or busy executing a task, the node

occupancy (by tasks) is divided into busy slots (measured in terms of system clock cycles)

which axe numbered as relative to any reference point of time (see Fig. 4.2).

Note tha t two adjacent busy slots of a node may be either contiguous or separated by idle

periods. Let Tk denote a node’s remaining CET at the end of B k, and X k represent the

number of type-t arrivals during B k, then

T I r * - i + iXl - ! . if r *-> > (4 D

\ + K H -1 = 0,

100

CET on a node

B1 B2 Time

Airival
of a task
with R=3

Airival Departure Departure
of a task of the first of the second
with R=2 task

Departure Departure

task

Where Bi is the ith busy slot of the node

_______ Figure 4.2: A sample path for the evolution of remaining CET on a node_______

where R is the number of clock cycles required for the node to complete a task which finds

the node idle upon its arrival, and has the distribution {g,-, 1 < i < Emax}. If T*_i = 0, then

the node remains idle until a task with the required execution time, R, arrives. *8

the CET accrued during Bk with each type-i task contributing i units of time for execution.

Eq. (4.1) describes a semi-Markov chain because (i) 2* depends only on Tk-1, and not on

Tk> V k' < k — 1, and (ii) the state residence times — the length of Bk — are deterministic

with value 1, rather than exponentially-distributed.

Eq. (4.1) can be used to get the z-transform of the CET distribution. Let T+

and T denote the CET on a node at some embedding time instant and at some random

time instant, respectively. Because of the embedding points (i.e., at the end of each busy

slot) chosen for the embedded Markov chain, the distribution of T, denoted by Pt (-), is not

necessarily the same as that of T +, denoted by j4 (.) [GH85, CT83]. However, Pt (-) can be

derived from p}(.) as described in [CT83]. So, let us derive p$(.) first.

Let $ +(z) denote the z-transform of CET distribution at the embedding time

points, then

* +(z) = £ p £ (» 0 * B = £(*T+)>
n = 0

where i4 (i) = Pr(T+ = i). Let 6 (x) be the unit step function, then

Tk = Tk-i + £ i . ^ - l + a - t f f l U)) . * ,
i= l

101

and

$ +(z) = E (zT+) = E (z Tk)

= £ (* T*-i+£ f = 7 ‘

= £;(zJ'*-.+(1- « (n - i P - i) f ; (2E " " , ' ijrJ). (4.2)

Note th a t for mathematical tractability of Eq. (4 .2), 5 3 ^ “" — the CET arrival process

during B * — is approximated to be independent of T*_i, which is unrealistic for the location

and transfer policies of the proposed LS scheme as well as others. As will be discussed in

Section 4.3.2, this deficiency is remedied by figuring the dependency of the task arrival

process on CET into task arrival rate. In other words, the task arrival rate A on a node is

determined by the node’s CET, T , i.e., A(.) is a function of T.

>=i k), is computed as follows. Since state

residence times are all 1, we have

P(iXi = in)= ‘̂ M r
ni

and

r c a i - n - * ^ « m e « u m[iXi = /) = j q
otherwise,

where 1 < i < E max, and N is the set of natural numbers. In the above equation we used

the fact tha t if each event of a Poisson process is classified independently of others to be any

of type l,2,...,JE7mox with probability <?,, then the number of type-i arrivals is independent

of others, and is Poisson-distributed with A9, . Let U'k = iX k, then

t = 0

= f y iP(vi = u)
l~Q
00

- 2^ z - e\
1=0

= e****-1'. (4.3)

Assuming independent arrivals of different types of tasks, we then have

^mic
'"I)i y . . . v m = n *<*(*) = n

* ,-=i »=1
= eA(E f=rx f ' 1- 1) = (4.4)

where $ * (2) is the z-transform of the required task execution time.

102

We now compute the first factor of Eq. (4.2). The event, {T*_i - 1 + (1 - tf(2*_i)) •

R = i}, contains two mutually exclusive subevents: (1) Tk- i = 0 and R = i + 1, and (2)

Tk-1 = t + 1:

Pr(2*_i — 1 + (1 — S(Tk-i)) • R = i) = qi+1 -p+(0) + p$(i + 1),

and thus,

£ (* ^ - 1- 1+ = £ Pr(Tk- ! - 1 + (1 - 6 (Th-!))R = n) ■ zn
n = 0
oo

= E (f t» + i , !^ (0) + r i :(« + !)) • * “
n = 0

= ^ 4 (0)$ * (z) + (̂$(z) - p£(0)). (4.5)
z z

Substituting Eqs. (4.4) and (4.5) into Eq. (4.2), and rearranging the terms, we get:

Pt (0) can be obtained from:

1 = $ + (1)

H **(*) - 1) ^ (4,,(')- 1)
- Pr(0) km 1 _ (1/*)CM*,«(*)-1)

- V+(Q). E (R)

where we have used L'HopitaTs rule in evaluating the limit. Consequently,

V+(Q) - 1 - M W
Pt{}} E{R)

= (1 /E (R)) - X , (4.7)

where E{R) is the expected execution time, i.e., E(R) = ift. Note that for the

system to be stable (or for the CET at a node not to grow unboundedly), we must have

< 1, or A < (1 /E (R)) , which is the necessary and sufficient condition for

Pt (0) ^ 0. Thus,

(«)

The above results for the embedded Markov chain do not directly apply to the total

general-time stochastic process. However, the relation between the general-time steady-

state distribution, pr(-)> and the distribution at embedding points, p£(.), is shown in [CT83]

= (4-9)

103

for M ^ / G / l systems, where $ (2) is the z-transform of the general-time CET distribution.

Thus, we have

(- 0)
and

Pt(0) = 1 - AE(R). (4.11)

If all tasks require an identical execution time, i.e., Pr(i2 = 1) = 1, then the state

reduces to QL, and Eq. (4.11) reduces to

M O) = 1 - A,

which is exactly the utilization U = A since the service time is 1, and Eq. (4.10) (and also

Eq. (4.8)) reduces to
(1 — A)(2 - l)e Â “ ^ . .

<) = 1 • (4' 12)
Computing the inverse z-transform of Eq. (4.10) (Eq. (4.12)) numerically yields the CET

(QL) distribution, {M O ,* > 0}- The discussion of a rather subtle technique for the

inversion of Eq. (4.10) can be found in [CT83].

4.3.2 D erivation o f A(T)

The semi-Markov chain model derived above can be used to evaluate different LS

schemes if A(T) characterizes both the corresponding task arrivals and/or task transfers in

the system level. The following variables are necessary to facilitate the derivation of A(T):

• a(n): the rate of transferring tasks out of a node given that the node’s remaining CET

is T. Since the transfer policy determines whether or not a task can be completed in

time locally, this parameter characterizes the transfer policy used.

• f3(T): the rate of transferring tasks into a node given that the node’s remaining CET

is T. This parameter corresponds to the location policy used, since the location policy

determines where to send each overflow task.

• 7 the probability that the remaining CET on a node is no less than j units of time,

i.e., 7j = Pr(T > j) .

• Kj\ the number of nodes that can be chosen by a node, excluding itself, for transferring

a task with laxity j . The distribution of Kj can be expressed in terms of 7j as:

(i - v » r - i X l ■

104

a(n)
Tasks transferred to
other nodes

- 0

P(n) Tasks transferred from
other nodes

where a (n)is the rate of transferring tasks out of a node given that N=n

P (n) is the rate of transferring tasks into a node given that N=n

and X(n) = XT - a (n) + P(n)

_________________ Figure 4.3: A generic queueing model for each node._________________

As shown in Fig. 4.3, A(T) = A - a (T) + (3{T). By appropriately tailoring a (T)

and P(T) to describe the transfer and location policies adopted and by approximating

the combined (external and transferred-in) task arrivals a t each node to follow a Poisson

process, the above semi-Markov chain model can be used to express the operations of

different LS schemes. This approximation is accurate only when (1) task-transfer out of

each node is a Poisson process, implying th a t the decision on whether or not to transfer a

task is independent of the current workload [Kle75], which is not true for our LS scheme,

and (2) task-transfer into each node — the superposition of task transfers out of other nodes

— is Poisson. However, this approximation is verified by our simulation experiments to be

valid for light to medium loaded distributed systems of size > 12. For example, when the

task transfer-out ratio is less than 40% of the task arrival rate, the combined task arrival

processes a t each node have the coefficients of variation of their interarrival times close to

one.3 A statistical approach to validate this assumption will be treated in Section 5.5.1.

Moreover, for all LS schemes the following relationship between a(T) and J3(T)

results from the law of task conservation, A(fc) • pr(k) — A.

T heorem 1 I f task flow of the system is conserved, then

j r , a (k) - p T(k) = j r t l3(k)-pT(kr). (4.13)
4 = 0 4 = 1

3Which is at least a necessary condition for the combined task arrival processes to be modeled as Poisson.

105

The transfer policy used in real-time systems is of the dynamic threshold type: a

task is transferred to other nodes only if it cannot be completed in time locally. Thus, given

a node’s remaining CET = T, all the tasks arrived with laxities smaller than T should be

transferred, thus leading to:

« (r) = £ A f c , (4.14)
j = 0

for all schemes except for no LS in which a(T) = /3(T) = 0, and A(T) = A VT.

Unlike the transfer policy, the location policy depends on each LS scheme. The

random selection scheme selects randomly a receiver node in the system for each overflow

task without using any state information. Thus, we get /3(T) for this scheme as4

I J'mar ^mst
« r) = -ff £ (*•»«) • Mi = £ •»«»*. (4.15)

" ;=i j=i

where N ^ j+1 is the average number of nodes that cannot complete tasks with laxity j in

time in an iV-node system, A<?; is the arrival rate of tasks with laxity j on a node, and the

product of these two is the average rate of transferring tasks with laxity j in the system.

Since all overflow tasks are transferred randomly, each node shares 1/N of these tasks. The

randomness property is reflected in the independence of 0(T) from T. The correctness of

Eq. (4.15) is verified in the Appendix A.

Our proposed LS scheme uses the posterior distributions derived from the state in­

formation gathered from time-stamped region-change broadcasts to estimate the workload

of other nodes, and chooses probabilistically, from the preferred list, the best candidate to

which each overflow task will be transferred. If these distributions are properly constructed,

then fi(T) can be expressed as:

0 (?) = £ Aq j j j+1 • (1 + 7j+i + 7,?+i + + 7 # T 1)
; = T

= £ A*Tr+.' T T ^ T ? <4' 16>
j - T 1 l l + l

where N B is the number of nodes in a buddy set. Note that (1) a node i with CET = T can

complete all tasks with laxity greater than T in time, and thus, the summation is performed

from T to L maz, and (2) the term Xqpj+i is contributed by the node whose most preferred

node is node i, the term A<fy7?+1 is contributed by the node whose second preferred node

is node i and whose most preferred node cannot complete tasks with laxity j in time, and

*0(T) is derived under the assumption tha t the task-transfer into a node — the superposition of task-
transfers out of other nodes — is PoisBon-distributed.

106

the term Aq j 'y f+ i accounts for the situation when all nodes in a buddy set cannot complete

tasks with laxity j in time. The correctness of Eq. (4.16) is verified in the Appendix A.

As discussed in Chapter 3, the preferred list should be constructed so th a t (P I)

and (P 2) are satisfied. These properties minimize the possibility of multiple nodes simulta­

neously sending tasks to the same ‘capable’ node, while ensuring overflow tasks to be evenly

shared by ‘capable’ nodes. More formally, we have the following theorem:

T h e o re m 2 Using the preferred lists and proper prior/posterior distributions, our proposed

scheme balances load in the sense that all overflow tasks are evenly shared by those capable

nodes.

Proof: This theorem is proved by deriving /3(T) based on the idea of even sharing of

overflow tasks among ‘capable’ nodes and comparing the result with the fi(T) in Eq. (4.16).

Even sharing of overflow tasks gives:

« r) = E e ‘ (JygY + i (Â •? t (K i = e)
j = T t= 0

where A % is the arrival rate of tasks with laxity j , N b I j+i is the average number of nodes

which cannot complete tasks with laxity j in time. The product of these two is the average

rate of transferring tasks with laxity j , which will be shared evenly by £ other nodes (in

addition to the node itself) with probability P r(Kj = £). P(T) can be simplified to:

1 j i t

m = T . M u m E
j s T 1=0
^mar 1 — ^ No

= E ■ j—^ («7)

which iB exactly the same as Eq. (4.16). □

The location policy of the quasi-perfect LS scheme is similar to th a t of our scheme

except tha t (i) accurate state information is obtained without incurring any communication

cost, (ii) there is no overhead associated with task transfers, and (iii) the buddy set size N b

equals the number of processing nodes, K p in the distributed system. That is, overflow

tasks are transferred directly and instantaneously to ‘capable’ nodes. A(T) can be expressed

as:

’ e + im = E E = <)
j —T 1= 0

^m«x 11 _ *yIxl>n
= E H • TZ^7' <418>

j= T ' J + 1

The correctness of Eq. (4.18) is also verified in the Appendix A.

107

4 .3 .3 A n Iterative A lgorithm

A(T) (a (T) and (3(T)) must be known before solving the Markov chain model

for p r (.)• However, A(T) depends on 7j which in turn depends on p r (.). An iterative

approach is taken to handle the difficulty associated with this recursion problem. Note

that V i (z) = (Eq. (4.4)) can be interpreted as the pdf of the number of

arrivals5 during one unit of service time (execution time). Thus, we modify Eq. (4.4) as

^ i=1 * 1 = 0

to account for the effect that the task arrival rate varies with the current CET, T , of a

node. Consequently, Eq. (4.10) is modified as

- (1 ~ A E (f l)) (z - l) I £ o c W («'*>-»)g , (0
1] ~ z - £ £ 0 eM0(*i.(*)-i)P r(*)

and Eq. (4.12) as

»-E£o tHW-VprM
In the first step, the modified version of Eq. (4.10) (Eq. (4.12)) is solved for Pt (-) with

both a(T) and /3(T) set to 0, or equivalently, A(T) = A VT. The resulting Pr(-) is used to

compute a(T) and /3(T) in the second step. Then p r(.) is recalculated with the new a(T)

and f3(T) (and thus a new A(T)) using the modified version of Eq. (4.4) and Eq. (4.10).

This result will, in turn, change a(T) and /?(T). This procedure will repeat until pr(*) and

A(T) converge to some fixed values.

4 .4 C om p utation /C om m unication O verheads

To develop a practical model for assessing the performance of different LS schemes,

one should, in addition to addressing the fundamental differences among the LS schemes,

take into account their implementation overheads: for example, the computational over­

heads of our scheme due to probability updates, and communication delays associated

with state-information collection and task transfers. The tradeoff between the associated

complexity and the resulting benefit can be analyzed accurately only if implementation

overheads are included in the model. In this section, we extend our model to include the

overheads of the proposed scheme due to time-stamped region-change broadcasts, periodic

updates of posterior distributions, and task transfers by:

5As mentioned earlier, a type-i task arrival is viewed as t simultaneous arrivals, each with one unit of
execution time.

108

• Augmenting the original task set with a new type of tasks, i.e., the probability up­

dating tasks.

• Modifying the underlying semi-Markov chain model to include the effect of region-

change broadcasts on the CET of a node.

• Considering the effect of communication delay by modifying a (T) and /3(T).

4 .4 .1 O verheads o f P robab ility U p d ates

As mentioned in Chapter 3, each node updates the posterior distributions of other

nodes’ CET once every Tp units of time. Let Cp be the time required for updating probability

distributions, then we introduce a new type of task by modifying the parameters A and qy

(which characterize the task set) as:

V = A + i - , + =
±p ±p J.p

and

4” 7p~) ‘ Qij = ^9«j*

where and qij (A' and A) are the new and old values of the probabilities (task arrival

rates), respectively. That is, a new type of tasks is added to the task set: the one with

execution time Cp and laxity Lmax. Moreover, q ^ s are scaled in accordance with the new

task arrival rate A'. Note that (1) the laxity of the probability updating task is chosen

to be Lmax, since this task is not time-critical, and (2) for ease of analysis, this periodic

task is modeled to have exponential time-to-event distributions with the rates equal to

the reciprocal of the period. The error of this approximation relative to the exact lim it-

equivalent rates is bounded as indicated by Kitchin [Kit88].

4 .4 .2 O verheads o f R egion -C h an ge Broadcasts

Recall tha t each node broadcasts the change of state region to all the other nodes

in its buddy set. Let C* be the time needed for broadcasting a region-change. Since this

broadcasting process is state-dependent, the overheads of region-change broadcasts can be

included by modifying Eq. (4.1), the expression for state evolution as:

{r*_i + Y Z x iX i - 1 + Ct if > 0 and r 4_, € {T H 2t, 1 < I < } - 1}

Tk- 1+ et=i ix i - 1 if > o and r *-i t i TH^ i < t < r^ 'i -1 }

Z?= liX'k + R - l if T]fc_i = 0.
(4.19)

109

In other words, whenever the remaining CET reaches T H 2k (1 < k < — 1), Cj units

of time are added to the state to account for the CET increase due to broadcasts. The

property of semi-Markov chain is retained, because whether or not to increase by Cj units

of time depends only on Tk-i. Similarly, Eq. (4.2) should be rewritten as:

+() = £ (2 t *-1+(+ c‘(E <r5 Ll"‘ iXi)

where 6 '(x) is the impulse function or the derivative of the unit step function, S(x). Following

the same (but more complex) derivation as in Section 4.3, one can get a modified version

of Eq. (4.10):

_ (1 - XE(R) - E j g 1- 1 M T B v M z - I)e><«.<0-1)
" .? _ e ^ (* n (») - i)

_ i x s i g i - 1 MTU*)**"-1) W X* - 1)
+ I _ 1 CA (#*(.)-1) ' $ * (*) - 1 ‘

Note that the above equations reduce to Eq. (4.10) if Ci = 0 (no broadcasting overhead).

Before solving Eq. (4.20) for Pr{-), one has to know the values of pr{TH 2t), 1 < I < [— 1,

which, in turn, depend on $ (2). This recursive dependency can again be handled by using

an iterative approach as follows. 4>(z) is first inverse z-transformed with Pr(TH 2t) set to 0.

The resulting pr(.) (in particular, pT{TH2L)'&) is then used to compute the new $(z) from

which new pr(-) can then be calculated. This process will be repeated until pr(-) converges

to a fixed value.

4.4 .3 Effect o f Com m unication Delays

Communication delays are composed of three components [BG87]: (1) the queue­

ing delay, which is the time between the queueing of a task and the start of its transfer,

(2) the transmission delay, which is the time between the first and last bits of the task

transferred, and (3) the propagation delay, which is the time from the transmission of a bit

at the sending node to its receipt by the destination node. The transmission delay depends

on the size of the transferred task, and is thus assumed to be proportional (with ratio 01)

to the required execution time of the task. The propagation delay depends on the physi­

cal distance/characteristics of the communication medium between the sender and receiver

nodes, is independent of traffic loads, and is thus assumed to be constant, o2. The queueing

delay depends heavily on traffic loads. Since region-change broadcasts and task transfers

introduce additional traffic loads, the queueing delay under the proposed scheme is expected

to be larger than others. However, the exact dependency of the queueing delay on these

operations is difficult to model, because (1) the delay also depends on the capacity of the

110

communication medium and the (contention) protocols used, both of which are application-

dependent, and (2) the effect of region-change broadcasts on this delay depends on the state

of the system, which changes dynamically with time. We thus assume in our model tha t

the queueing delay due to task transfers and region-change broadcasts are proportional to

(with ratio o3 and o4) the task transfer-out ratio (r lt) and external task arrival ra te (A),

respectively6. Let cjt(i) and cP{i) (rfi and rft) denote the communication overheads (task

transfer-out ratios) encountered by a task with i units of execution time in the random se­

lection scheme and the proposed scheme, respectively, then we have cR{i) = ox •t + o2+ o 3-r^

and Cp(i) = oi • i + o2 + 03 • r£ + o4 • A.

Considering the effect of communication delays, a(T) in Eq. (4.14) should be

modified as:
^ m a i jP — 1

= E E <4-21)
i= l j=fc(»)T

where c(i) is cP(i) or cR(i), depending the scheme under consideration. Note tha t for those

tasks whose laxity is less than the communication delay, there is no need to transfer them.

Similarly, (3(T) is modified as:

^ m « c ^ m a r

w) = E E *»+•«« (4-22>
t e l J=[cn(i)l

for the random selection scheme, and

E m a x & m a c 1 -

w) = £ E • r ^ r 1 (4-23)
te l ;=r<=p(«)l 7j+1

for the proposed LS scheme. Correctness of these expressions can be verified similarly to

Corollaries shown in the Appendix A.

4 .5 P erform ance A nalysis

To analytically assess the proposed LS scheme and to validate the analytic models,

we present numerical results for the case when inter-arrival times of external tasks are

exponentially distributed. (Note, however, tha t the proposed LS scheme is not restricted

to exponential distributions.) The proposed scheme and four other LS schemes, i.e., no LS,

LS with random selection, LS with state probing,7 and quasi-perfect LS, are comparatively

evaluated with analytic models.

6The reasons for assuming this linear relationship is th a t we can easily com pute these coefficients using
linear prediction and the data obtained from simulations.

7Only simulation results are shown for this scheme in our analysis.

I l l

The system configuration, the size of the buddy set, the maximum number of nodes

probed for each overflow task, the tunable parameters chosen in the proposed LS scheme,

the computational overheads assumed, the task parameter ranges varied, the confidence

level achieved (in simulations), and the notation used all conform to those described in

Section 3.5. The transmission delay associated with each task transfer is assumed to be

10 % of i.e., oj = 0.1. The propagation delay is assumed to be 1 % of E (R),

i.e., o2 = 0.01. The coefficients associated with the queueing delay due to task transfers

(o3), region-change broadcasts (o4), and state probes (os) are set to 0.1, 0.05, and 0.01,

respectively.8

We validate our analytical models by comparing the numerical results obtained

from analytical models against those obtained from simulations. We also evaluate different

LS schemes with respect to several important performance metrics which are derived from

the analytic models, i.e., the distribution of CET, the probability of dynamic failure, the

mean response time, and the task transfer-out ratio. The performance with respect to

metrics tha t cannot be directly derived from analytical models has been evaluated using

simulations in Section 3.5.3 in Chapter 3.

4.5 .1 E valuation o f Im portant Perform ance M etrics

Distribution o f CET

The CET distribution, pr('), can be obtained by using either Eq. (4.10) or Eq. (4.20),

depending on the scheme under consideration. Table 4.1 gives some numerical examples of

the CET distribution with respect to different distributions of task laxity for different LS

schemes. The CET distribution obtained via simulation is shown to be very close to the

analytic solution, with a 5 % error in the cumulative distribution, indicating the validity

of the analytic models. So, we shall henceforth use the numerical results derived from the

analytic models in the subsequent discussion, unless stated otherwise.

The CET distributions with respect to different distributions of task execution time

are plotted in Fig. 4.4 and Fig. 4.5 with A = 0.8. The numerical results are so close to one

another among the state probing scheme, the random selection scheme, and the proposed

scheme that only one curve corresponding to the proposed scheme is plotted. (Also, the

results for no LS obtained from analytic modeling and simulations are so close to each other

th a t they are almost indistinguishable in Figs. 4.4-4.5.) The CET distributions under

different LS schemes approach unity much faster than those without LS, thus justifying

8 All overhead-related parameters are based on the data obtained from simulations.

(A = 0.8) NoLS State prob. Random selection Proposed scheme Perfect scheme
Task attributes C E T < anal. simul. simul. anal. simul. anal. simu. anal. simul.

0.0 0.2000 0.2138 0.2133 0.2121 0.2212 0.2609 0.2568 0.2914 0.2810
0.8 0.3867 0.3710 0.5995 0.6216 0.6202 0.6920 0.6911 0.6474 0.6421
1.6 0.5281 0.5246 0.8547 0.8602 0.8653 0.9019 0.9080 0.8858 0.8897

E T = {0.4,0.8, 2.4 0.6316 0.6362 0.9642 0.9611 0.9665 0.9811 0.9840 0.9820 0.98671.2, 1.6}o.25» 3.2 0.7263 0.7222 0.9929 0.9887 0.9933 0.9975 0.9987 0.9998 0.9998
L = {1,2,3}x/3 4.0 0.7816 0.7874 0.9981 0.9961 0.9979 0.9982 0.9995 1.0000 1.0000

4.8 0.8412 0.8369 0.9996 0.9990 0.9997 0.9986 0.9998 1.0000 1.0000
5.6 0.8824 0.8751 0.9999 0.9998 1.0000 0.9992 0.9999 1.0000 1.0000
6.4 0.9086 0.9044 1.0000 1.0000 1.0000 0.9998 0.9999 1.0000 1.0000
7.2 0.9293 0.9259 1.0000 1.0000 1.0000 0.9999 0.9999 1.0000 1.0000
0.0 0.2000 0.2153 0.2094 0.2192 0.2287 0.2683 0.2853 0.3428 0.3787
0.8 0.3867 0.3749 0.6473 0.7380 0.7210 0.8614 0.8409 0.8612 0.8469
1.6 0.5281 0.5284 0.8890 0.9184 0.9262 0.9686 0.9770 0.9879 0.9961

E T = {0.4,0.8, 2.4 0.6316 0.6406 0.9581 0.9662 0.9741 0.9860 0.9910 0.9913 0.99911.2, 1.6}o.25j 3.2 0.7263 0.7287 0.9857 0.9892 0.9930 0.9912 0.9957 0.9948 0.9997
L = {0.4,0.8, 4.0 0.7816 0.7902 0.9949 0.9923 0.9980 0.9930 0.9977 0.9968 0.99991.2, 1.6}o.25j 4.8 0.8412 0.8419 0.9980 0.9961 0.9995 0.9948 0.9988 0.9984 1.0000

5.6 0.8824 0.8803 0.9992 0.9984 0.9998 0.9978 0.9992 0.9996 1.0000
6.4 0.9086 0.9128 0.9997 0.9996 1.0000 0.9984 0.9995 1.0000 1.0000
7.2 0.9293 0.9301 0.9998 0.9999 1.0000 0.9990 0.9996 1.0000 1.0000

Table 4.1: CET distributions for different task sets under different schemes (N = 16).

113

----- 1----- 1

0.7

0.5

0.4

0.3 / - 1

0.2
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Cumulative execution time (CET)

Figure 4.4: Probability distribution of CET for a task set with A = 0.8, E T
1>6}o,26i and L = {1,2,3}i/3.

1.0

o
§

0.9 - r — i 1 —

— r T

0.7

£

0.5 I T “ ~ 0 ~ ~ 1-------1 ------- I-------T -------

0.4

0.3

0.2
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Cumulative execution time (CET)

a No LS (analytic)
a No LS (simulation)
O Proposed scheme (analytic)
St Proposed scheme (simulation)
□ Quasi-perfect (analytic)

{0.4,0.8,1.2,

No LS (analytic)
No LS (simulation)
Proposed scheme (analytic)
Proposed scheme (simulation)
Quasi-perfect (analytic)

Figure 4.5: Probability distribution of CET for a task set with A = 0.8, E T = {0.027,0.27,
2-7}i/3, and L = {1,2,3}i/3.

114

the need of LS to handle bursty task arrivals in distributed systems. Besides, the CET

distributions vary significantly as the distribution of task execution time varies; QL is thus

not adequate to measure the workload of a node (as was verified in Section 3.5.3).

One interesting result is that the CET distribution associated with the proposed

scheme does not approach unity with the fastest speed (Table 4.1). However, the proposed

LS scheme does have a higher P(T < t) than others for V t € (0, Lmax\. This is because

the proposed scheme, instead of trying to minimizing the average CET on each node, aims

to make each node’s CET less than the laxity of any arrived task, so that P ^ n can be

minimized.

Another interesting result is that CET distributions vary with the distributions of

task laxity even when the distributions of task execution time are the same. This is because

of the real-time application-oriented transfer policy used, where the laxity of an incoming

task, rather than certain thresholds as in [ELZ86, SC89a, PTS88], is used to determine

whether or not to transfer a task. Consequently, we try to minimize Pdyn with respect to

the distributions of both task laxity and task execution time, instead of balancing load only

with respect to the distribution of task execution time.

Probability o f Dynamic Failure

As discussed in Section 3.5.3, a dynamic failure occurs if the sum of the queueing-

for-execution time and the task-transfer (if any) time exceeds the laxity of a task. Let

Pdyn\i,ti Pdyn\ii and Prfy„ denote the probability of missing the deadline of a task with

execution time e and laxity £, the probability of missing the deadline of a task with laxity

£, and the probability of dynamic failure, respectively. Then,

according to our queueing model, the other two probabilities can be expressed in terms of

7j and as:

1. Non-cooperative scheme (no LS): Pdyn\i,e = Pdyn\i = 7/+i> where j j is calculated from

Eq. (4.10) with X(T) = X VT.

2. LS scheme with random selection:

" J £ m . x

Pdyn\l,e — J J 7(/+l-icn(*))> and Pdyn\t =) 1 Pdyn\t,i 9ij
■=0 i= l

where cn(e) is the communication overhead associated with a task with execution time

c under the random selection scheme, nj = and 7y is obtained from Eq. (4.10)

using a(T) in Eq. (4.21) and f3(T) in Eq. (4.22).

115

A A No LS (analytic)
A A No LS (simulation)
+ ------- + Random selection (analytic)
 ♦--------♦ State probing (simulation)
■ ■ Focused addtess. (simulation)
o — o Proposed scheme (analytic)
• • Proposed scheme (simulation)
0 — • — o Quasi-perfect (analytic)
x m Quasi-perfect (simulation)

0.1 0.2 0.3 0.4 O.S 0.6 0.7 0.8 0.9
Task arrival rote

Figure 4.6: Pdyn vs. task arrival rate for a 16-node system with a task set: E T =
{0.4,0.8,1.2, 1.6}o.25> L = {1,2, 3}i/3.

3. Perfect information scheme: Pdyn\i,t = PdVn\t = It+i > where j j is calculated from

Eq. (4.10) using A(T) in Eq. (4.18), and K pn is the number of processing nodes in the

distributed system.

4. The proposed scheme:
"5

Pdyn\i,e = J J 7(M-l-»cp(e))?
t=0

and
^max

P iyn\t —) 1 Pdyn\l,i 9i)
i=l

where cp(e) is the communication overheads associated with a task with execution

time e under the proposed LS scheme, n\ = , and 7;- is obtained from Eq. (4.20)

using a (T) in Eq. (4.21) and (S(T) in Eq. (4.23).

Figs. 4.6 and 4.7 are the plots of P dyn vs. task arrival rate (A), and Pdyn\t vs. task

laxity (I), obtained from both the analytic models and simulation. Table 4.2 shows numer­

ical examples of Pdyn\t under different schemes. The conclusions inferred to from analytical

results are similar to those from simulation results shown in Section 3.5.3, and hence are

omitted here.

ue+uu

o 1.0e-01

ts 1.0e-O2

3 1.06-03

1.0e-04

1.0e-05

1.0e-06

1.0e-07

(A = 0.8)
Task attributes

Lax.
1

No
sharing

State
probing

Random
selection

Focused
addressing

Proposed
scheme

Quasi-
perfect

E T = {0.4,0.8, 1 0.6184 0.1515 0.1286 8.649 X 10"2 2.438 X 10"2 5.247 X 10~3
1.2, 1.6}o.25i 2 0.4336 4.779 x lO"3 2.302 x lO"3 9.746 x lO"4 3.034 x lO"4 6.316 x 10"s

L = {1,2,3}i/3 3 0.2894 3.514 x 10“5 1.447 x 10~5 1.026 X 10"s 7.156 x 10"6 5.604 x 10"8
E T = {0.027, 1 0.7121 0.2476 0.1856 0.1524 4.342 x 10"2 3.274 x 10"2

0.27,2.703}i /3, 2 0.5896 5.086 x lO"2 3.543 X lO"2 2.249 x lO”2 6.432 x 10"3 2.316 x lO"3
L = {1,2, 3}i/3 3 0.4923 4.994 x 10“3 2.967 x 10"3 9.594 x 10“4 3.617 x 10“4 1.604 x 10“4
E T = {0.4,0.8, 1.2, 1.6}o.25j 1 0.5894 0.1293 8.242 x lO"2 7.153 x lO"2 2.094 x 10"2 5.946 x 10"3

L = { 1}

(a) A = 0.8

(A = 0.4)
Task attributes

Lax.
t

No
sharing

State
probing

Random
selection

Focused
addressing

Proposed
scheme

Quasi-
perfect

E T = {0.4,0.8,
1.2, 1.6}o.25>

£ = { l,2 ,3 } 1/3

1
2
3

0.1578
0.0479
0.0176

5.594 x 10“4
6.402 x 10"6
2.782 x 10"7

7.645 x 10~4
1.178 x lO"5
4.765 x 10"7

8.264 x 10“ 5
9.536 x lO"7
4.846 x 10"8

1.187 X 10~5
2.658 x lO"7
2.184 x 10~9

4.746 X 10"8
1.042 x lO"10

0
E T = {0.027,

0.27,2.703}i/3,
L — {1,2,3}i/3

1
2
3

0.2976
0.1846
0.0796

4.270 x 10"3
2.346 x lO” 5
2.693 x lO"7

5.247 x 10"3
1.685 x 10~4
3.276 x 10"6

9.079 x 10"4
9.896 x 10“6
7.903 x lO"8

2.035 x lO”4
1.875 x lO"6
3.428 x lO"8

3.462 x 10“ 6
1.395 x lO '8

0
E T = {0.4,0.8,

1.2, 1.6}o.25»
L = { 1}

1 0.1736 8.163 x 10"4 5.943 x 10“4 3.818 x 10“4 6.547 x 10"5 8.746 x lO"8

(b) A = 0.4

Table 4.2: Pdyn\t vs. laxity t for different task sets under different schemes (N = 16).

Arrival rate Lax. No State Random Focused Proposed Quasi-
(A) 1 sharing probing selection addressing scheme perfect

1 0.6184 3.027 x lO"2 4.325 x lO"2 2.878 X 10"2 1.862 x lO '2 5.247 x 10~3
0.8 2 0.4336 3.161 X 10“4 2.946 x 10"4 2.874 x 10“4 2.389 x 10“4 6.316 x lO"5

3 0.2894 2.763 X lO"6 8.846 X lO"6 5.323 x 10-7 1.024 x lO"7 5.604 x lO"8
1 0.1578 1.875 x lO"7 7.894 x 10~5 4.275 x lO"7 1.870 x 10~7 4.746 x 10~8

0.4 2 0.0479 8.764 x 10"8 3.376 x lO"6 9.619 x lO"8 3.678 x 10"9 1.042 x lO"10
3 0.0176 4.763 x lO"10 5.416 x 10“8 5.136 x lO"10 0 0

Table 4.3: Pdyn\t for a task set with E T = {0.4,0.8,1.2,1.6}0.25 ami L = {1 ,2 ,3}i/3 under the ideal condition

118

1 i '
 1----- 1 - - a 1

i i i \ i
i i i \ i i \ ‘A ’\i*\

_i ! ------1 - -\n — I - " "V vr
I i i \ ^ J

A
+
♦
■ •
O-
0

■ - A
— +

 •

— O
* “ 0

NoLS
Random selection
State probing
Focused addressing
Proposed scheme
Quasi-perfect

4 .5 5 .0

Laxity d

Figure 4.7: Pdyn\i vs- task laxity £ for a 16-node system with a task set: A = 0.8,
E T = {0.4,0.8,1.2, 1 . 6 } o . 2 5 , L = { 1 ,2 ,3 ,4 ,5}0 2.

Mean Response Time

Probabilistically, the mean response time (MRT) is the sum of the average CET

on a node, *Pr(*)> an<̂ the average required execution time, E(R) = 1, i.e., S =

£ “ o ip r(0 + 1 . It is conventionally used as a global system performance index in general-

purpose distributed systems, and many approaches have been developed to minimize MRT.

Table 4.4 gives MRT with respect to different task attributes under different schemes. Again,

the conclusions drawn from analytical results are similar to those from simulation results

in Section 3.5.3, and thus are omitted here.

Task Transfer-out Ratio

The task transfer ratio, r tt, is defined as the fraction of arrived tasks (both external

and transferred-in tasks) that have to be transferred out, and can be expressed as rtt =

Hj=i" 7j+i9r ftt is a measure of the traffic overheads due to task transfers.

Table 4.5 gives r ((for various task attributes under different schemes. Generally,

rit increases as the system load gets heavier and/or the task laxity gets tighter. Moreover,

as the variance of task execution time increases, the task transfer-out ratio increases. This

is because a node easily becomes incapable of complete tasks in time upon the arrival of

Arrival rate No State Random Focused Prop. Quasi­
(A) LS prob. selection address. scheme perfect
0.2 1.154 1.117 1.115 1.117 1.118 1.108
0.4 1.406 1.302 1.268 1.265 1.257 1.236
0.6 1.868 1.498 1.483 1.466 1.446 1.439
0.8 3.521 1.872 1.836 1.789 1.720 1.668

(a) MRT vs. external task arrival rate for a task set with E T = {0 .4 ,0 .8 ,1 .2 ,1.6}o.2S and L = {1,2, 3}i/3 under different LS schemes

(A = 0.8) No State Random Focused Prop. Quasi­
Task attributes LS prob. selection address. scheme perfect

E T = {1} 3.024 1.796 1.782 1.763 1.704 1.687
L — {1,2,3}i/3 E T — {0.4,0.8,1.2,1.6}o.25 3.521 1.872 1.836 1.789 1.720 1.668

E T = {0.027,0.27, 2.703}i/3 6.106 2.174 2.101 1.979 1.822 1.804
L = { 1} 3.521 1.547 1.536 1.502 1.439 1.411

E T = {0.4,0.8, L = {l,2}o.s 3.521 1.688 1.629 1.679 1.576 1.547
1.2, 1.6}o,25 L = {0.4,0.8, 1.2,1.6}o.25 3.521 1.812 1.604 1.579 1.418 1.386

(b) MRT for different task sets under different LS schemes (A = 0.8)

Table 4.4: Comparison of mean response time among different LS schemes.

(A = 0.4) No State Random Focused Proposed Quasi­
Task attributes LS prob. selection address. scheme perfect

E T = {1} 1.348 1.267 1.264 1.259 1.248 1.240
X = {1,2,3} i /3 E T = {0.4,0.8,1.2, 1.6}o,25 1.406 1.302 1.268 1.265 1.257 1.236

E T = {0.027,0.27, 2.703}i/3 1.806 1.350 1.335 1.314 1.316 1.301
£ = {1} 1.406 1.198 1.184 1.165 1.167 1.154

E T = {0.4,0.8, X = {1,2}o.5 1.406 1.250 1.242 1.233 1.228 1.214
1.2, 1.6}o.25 X = {0.4,0.8,1.2, 1.6}o,25 1.406 1.211 1.190 1.162 1.163 1.148

(c) MRT for different task sets under different LS schemes (A = 0.4)

Table 4.4: (continued) Comparison of mean response time among different LS schemes.

121

Arrival rate State Random Focused Prop. Quasi­
(A) prob. selection address. scheme perfect
0.2 0.019 0.024 0.020 0.021 0.019
0.4 0.058 0.068 0.056 0.056 0.052
0.6 0.114 0.156 0.116 0.112 0.107
0.8 0.185 0.338 0.241 0.224 0.184

(a) r u vs. task arrival rate for the task set with E T = {0.4,0.8,1.2,1.6}o.25 and L = {1,2, 3}i/3
under different LS schemes

(A = 0.8)
Task attributes

State
prob.

Random
selection

Focused
address.

Prop.
scheme

Quasi­
perfect

L = {1,2,3}i/3
E T = {1}
£ r = {0.4,0.8,1.2,1.6}o.25
E T = {0.027,0.27,2.703}1/3

0.162
0.185
0.278

0.296
0.338
0.524

0.232
0.241
0.398

0.227
0.224
0.362

0.158
0.184
0.274

E T = {0.4,0.8,
1.2, 1.6}o,25

L = { 1}
L = {l,2}o.s
L = {0.4,0.8,1.2, 1.6}o,25

0.306
0.221
0.289

0.463
0.383
0.454

0.355
0.286
0.367

0.348
0.266
0.322

0.286
0.216
0.282

(b) A = 0.8

11 o State Random Focused Prop. Quasi­
Task attributes prob. selection address. scheme perfect

E T = {1} 0.039 0.041 0.038 0.040 0.035
L = {1,2,3}i/3 E T = {0.4,0.8,1.2,1.6}0,26 0.058 0.068 0.056 0.056 0.052

E T = {0.027,0.27,2.703} 1Z3 0.129 0.163 0.130 0.131 0.122
L = {1} 0.120 0.136 0.118 0.124 0.110

E T = {0.4,0.8, L = {1,2}o.5 0.076 0.082 0.075 0.074 0.073
1.2, 1.6}o,2b L = {0.4,0.8,1.2,1.6}o,26 0.121 0.154 0.123 0.131 0.120

(c) A = 0.4

Table 4.5: Comparison of task transfer-out ratio among different LS schemes.

122

0.10

u
0 .0 8

13►»
0 .0 6

0 .0 4 — f S

0.02

0.00
5 .0 15 .0 20.0 2 5 .010.0 30 .0

+ -------+ Random selection
♦ — - ♦ State probing
■ m Focused addressing
o — o Proposed scheme

Task transfer cost (percentage of task execution time)

Figure 4.8: Pdyn vs. task transfer costs for a 16-node system with a task set: A = 0.8,
E T = {0.4,0.8,1.2, 1.6}o.25, L = {1 ,2 ,3}i,a.

long tasks or tasks with a short laxity, thus resulting in more task transfers under these

conditions. Again, the observations made from analytical results are similar to those from

simulation results in Section 3.5.3, and hence are omitted here.

Sensitivity to Communication Delays

As discussed in Section 3.5.3, there are two types of communication delay needed

to be considered in LS: (i) the state-collection delay incurred from region-change broad­

casts/state probes, where the queueing delay (or the queueing-related costs, o3, o4, and

o6) plays a dominating role; (ii) the delay associated with task transfers, where both the

queueing delay and the transmission delay (or task transmission cost oi) dominate. To

study the impact of communication delay on the performance, Pdyn was computed for each

scheme with (1) the task transmission costs being 5, 10,15, and 20 % of the task execution

time (i.e. Oi = 0.05,0.10,0.15,0.20), and (2) the queueing-related costs obtained from sim­

ulation (i.e. o2, 03, 04, and o6) being halved, doubled, and tripled. Figs. 4.8-4.9 (Table 4.6)

show the effect of varying transmission delays and queueing delays on the performance of

LS schemes. Similar conclusions can be inferred to from analytical results as well as from

simulation results presented in Section 3.5.3.

123

(A = 0.8) Lax. State Random Focused Prop.
Transfer costs 1 prob. selection address. scheme

1 0.1090 8.074 x lO"2 5.623 x 10"2 1.845 X lO"2
5% 2 3.257 x lO"3 7.316 X 10“4 3.924 x 10“4 1.654 x 10-4

3 1.167 x lO"5 5.239 x lO"6 5.311 X lO"6 1.987 x 10"6
1 0.1515 0.1286 8.649 x 10~2 2.438 X 10"2

10% 2 4.779 x 10-3 2.302 x 10~3 9.746 x lO"4 3.034 x lO-4
3 3.514 x 10"8 1.447 x 10"6 1.026 x 10"8 7.156 x lO"6
1 0.1834 0.1678 0.1328 3.725 X lO"2

15% 2 7.524 x 10"3 6.423 X 10~3 2.678 x 10~3 9.845 x 10"4
3 5.851 x 10"8 3.675 X lO"6 2.436 X lO"8 1.436 X lO"8
1 0.2068 0.1892 0.1708 6.029 X lO” 2

20% 2 1.154 x 10"2 7.467 X 10-3 3.849 x 10"3 1.346 x 10~3
3 1.878 x 10"4 8.386 x 10"8 5.014 X lO"8 2.112 x lO"5
1 0.2550 0.2463 0.2212 6.486 X 10"2

25% 2 1.394 x 10"2 1.018 x 10"2 8.746 x 10“3 3.421 x 10"3
3 3.869 x lO"4 1.846 X lO"4 9.249 x 10"8 6.857 x lO"5

(a) Effect o f ta sk tran sfe r costs on Pdyn

(A = 0.8) Lax. State Random Focused Prop.
Delay coefficients 1 prob. selection address. scheme

1 4.091 x lO" 2 8.415 x 10~2 4.206"2 1.978 X 10"2
halved 2 3.758 x 10"4 1.362 x 10"3 6.270 x 10"4 3.214 X lO" 4

3 2.813 x 10"6 7.145 X 10"6 5.708 x 10"6 3.758 x 10“6
values 1 0.1515 0.1286 8.649 X 10"2 2.438 X lO" 2
from 2 4.779 X 10“3 2.302 x lO-3 9.746 x 10"4 3.034 x 10"4

simulation 3 3.514 x 10"8 1.447 X 10”6 1.026 x lO" 8 7.156 x lO”6
1 0.2134 0.1823 0.1538 3.129 X lO" 2

doubled 2 2.801 X 10"2 7.216 x lO" 3 1.537 x 10"3 6.436 x 10"4
3 5.513 x 10"4 2.875 X lO-8 1.324 x lO" 8 9.578 x lO" 6
1 0.4194 0.2458 0.2173 4.245 X 10"a

tripled 2 7.475 X lO” 2 1.675 x 10"2 1.267 x 10"2 7.213 x lO”3
3 3.842 X lO" 3 2.334 x 1 0 -4 1.726 x lO"4 2.046 x 10"6

(b) Effect o f queueing delays on Pdyn

Table 4.6: Effects of communication delay on Pdyn f°r a task set with E T = {0.4,0.8,1.2,
1.6}o.26 and L = {1,2, 3}i/a under different schemes.

124

a 0 .18

I«30 0 .1 6

0.14 r

0.12

0.10

0.0 8

0 .06 - - T

0 .0 4

0.02

0.00
l.S 2.0 2.S
(times queueing-related coefficients)

3.01.0

+ ■——+ Random selection
♦ - - - ♦ State probing
■■ Focused addressing
o o Proposed scheme

Figure 4.9: Pdyn vs. queueing delay coefficients for a 16-node system with a task set: A = 0.8,
E T = {0.4,0.8,1.2, 1.6}o.25, L = {1 ,2 ,3 } i/a .

4.6 C onclusion

Queueing models are developed to quantitatively assess the proposed mechanism

as well as three other schemes. Instead of the commonly-used QL, CET is used as the load

state of each node. Each node's workload most relevant to a real-time task can thus be

accurately modeled. Moreover, by including all computation/communication overheads, the

proposed analytic models provide a means of evaluating the absolute real-time performance

of LS schemes. The assumptions and approximations made in our analysis were checked

with event-driven simulations.

Both the analytic and simulation results indicate tha t by using judicious ex­

change/use of state information and Bayesian decision mechanism, the proposed LS scheme

though incurring more computation/communication overheads, makes a significant improve­

ment in minimizing Piyn over those simple LS schemes. This is in sharp contrast to the

common notion that simple LS schemes yield performance close to that of complex ones for

general-purpose systems where minimizing the mean response time is the main concern.

Since missing a task deadline can cause a disastrous accident in a real-time environment, a

more complex, but intelligent, LS scheme should be employed to minimize P<tyn.

We assumed a FCFS discipline on each node: a newly-arrived task is inserted at

125

Arrival rate
per node

System
attribute

Laxity
I

Pdyn\t

Homogeneous system 1 3.326 x 10"3

'p II o 2 8.798 x 10“6
A = 0.8 1 < i < 64) 3 1.266 X lO"7

Heterogeneous system 1 1.470 x 10"3
(Ay = 0.65, Au^j’ — 0.95, 2 5.855 x 10~6

^32+i = 0.65, A4 8 +; — 0.95,
1 < j < 16)

3 9.872 x lO"8

Homogeneous system 1 5.079 x lO”5
(Ai = 0.6, 2 2.562 x 10"7

A = 0.6 1 < i < 64) 3 6.745 x 10“ 9
Heterogeneous system 1 1.565 x lO"5

(Ay = 0.65, Aje+y = 0.95, 2 9.782 x 10"8
A32+J = 0.65, A4s+j- = 0.95,

1 < 3 < 16)
3 3.682 x lO"9

Table 4.7: Pdyn\t vs. task laxity I for a task set with E T = {0.4,0.8,1.2, 1.6}o.2b and
L = {1 ,2 ,3}i/3) in 64-node homogeneous/heterogeneous distributed systems.

the end of task queue if it can be completed in time on th a t node, and will otherwise be

considered for transfer. To reduce Pds/n, the minimum-laxity-first-served (MLFS) discipline

is shown to be better [HTT89] for queueing the incoming tasks a t each node. T hat is, the

tasks on a node are ordered by their laxities, and a task with the minimum laxity is always

executed first by the node. If the MLFS discipline is employed, the transfer policy would

not be simply of the threshold type. For example, a newly-arrived task may be inserted

somewhere in the task queue, not necessarily at the end of the queue, thus possibly violating

some of existing guarantees. (Such tasks, if possible, must be transferred to other capable

nodes.) How to modify the parameters a(T) and fi{T) to account for this transfer policy is

worth investigation.

Though we considered only homogeneous systems, the proposed scheme can also

be applied to heterogeneous systems where different nodes may have different arrival rates

of external tasks. Our simulation results indicate th a t the performance improvement is

even more pronounced for heterogeneous systems than homogeneous ones (see Table 4.7).

This is because tha t increasing the degree of heterogeneity increases the possibility that

uneven task arrivals temporarily make some nodes incapable of completing tasks in time

while leaving other nodes idle/underloaded. This situation can be effectively handled by

using the proposed LS scheme. How to extend our analytic models to include the case for

heterogeneous systems is an interesting, but difficult, m atter.

CHAPTER 5

LS WITH CONSIDERATION OF FUTURE ARRIVALS

5*1 Introduction

Two issues must be considered in determining a candidate node for each overflow1

task under the minimum-laxity-first-served (MLFS) discipline in a heterogeneous system:

G l: Minimization of the probability of transferring an overflow task T to an incapable node,

i.e., the receiver of T should be one of those nodes which are observed/estimated to

have sufficient resource surplus to guarantee T.

G 2: Avoidance of task collisions and/or excessive task transfers, and minimization of the

possibility of a task’s guarantee2 being violated due to future tighter-laxity task ar­

rivals.

We considered G l in Chapter 3 by using region-change broadcasts in the information policy,

and preferred lists and Bayesian analysis in the location policy. G 2 need not be considered

in homogeneous systems since the possibility of a task’s guarantee being violated by future

task arrivals is the same for all candidate receivers. The performance of LS can, however,

be improved significantly by incorporating G 2 into LS decisions for heterogeneous systems.

Consideration of G2 is thus the main theme of this chapter.

The idea of not necessarily transferring a job to the node with the most resource

surplus was first proposed by Yum and Schwartz [YS81, YL84] for routing messages in

computer communication networks. Stankovic and Eamamritham [SRC85, RSZ89] con­

sidered the effect of future task arrivals on the guarantee of transferred-in tasks by (1)

exchanging the information containing the percentage of free time among the nodes during

1 Either a newly arrived task which cannot be completed in time on a node or the tasks queued on a node
whose guarantees are deprived of by the insertion of a newly arrived tasks are termed as “overflow” tasks.

2As discussed in Chapter 1, by ‘guarantee’, we mean the node has enough resources to complete the task
in time upon its arrival. A granted guarantee may be deprived later because of the arrivals of tighter-laxity
tasks under the MLFS discipline.

126

127

the next window, the length of which is a tunable design parameter, and (2) using many

parameters computed/estimated on-line to determine whether tasks will be transferred or

not. They used heuristics and/or exhaustive search for on-line estimation/determination of

parameters, and the effectiveness of their approach was evaluated via simulation of a small,

six-node system without analytic modeling. By contrast, we shall take G2 into account

using a well-defined analytic framework, and the parameters needed for G 2 are updated

on-line with Bayesian estimation theory.

In Chapter 3, we proposed a decentralized, dynamic LS mechanism which achieves

G l in the presence of non-negligible communication delays by using the concept of buddy

sets, region-change broadcasts [SC89a], and Bayesian decision theory. This LS mechanism

will be used as an example of taking G2 into account. Likewise, one can include G2 in

other existing LS schemes.

The rest of this chapter is organized as follows. Section 5.2 outlines the proposed

LS mechanism, and formally defines G l and G 2 to be considered for choosing candidate

nodes for real-time tasks to be transferred. Section 5.3 addresses the theoretical basis for

G 2. Section 5.4 discusses how the parameters needed for G 2 are estimated on-line using

Bayesian estimation theory. Section 5.5 presents representative numerical examples. This

chapter concludes with Section 5.6.

5.2 T he Proposed M echanism

In this section, we outline the proposed LS mechanism, and formally define the

two issues, G l and G2, in choosing a candidate receiver for each overflow real-time task.

The operations of a node’s task scheduler which takes into account of future arrivals under

the proposed mechanism are sketched in Fig. 5.1. To facilitate problem formulation and

analysis, we define the following notation.

{ P i (j) , j = 1,..., E max}: the distribution of composite3 task execution time on node i, where

E max is the maximum task execution time. This distribution will be estimated on-line

by each node i.

{Pi(j)5j = 1,..., Lmax}: the distribution of composite task laxity on node i, where L max is

the maximum laxity. This distribution will also be estimated on-line by each node i.

C E Ti(£)i the cumulative execution time (CET) on node i contributed by tasks with laxity

< I under the MLFS discipline.

3both external and transferred

128

At each node n:
When a task TJ with execution time and laxity £t arrives at node n:

determine the position, j p, in the task queue Qt such that t < l i < ljr\
if current-time + Ek > U then
begin

receiver-node := tableJookup(0:observation, ^:laxity){;
transfer task T< to receiver_node;
change the recorded to zero;

end
else
begin

queue task T, at position j p]
for k = j p + 1, length(Q)

begin
if current-time + Et > £k then
begin

receiver-node := tableJookup(0:observation, ijt:laxity){;
dequeue and transfer Tk to receiver_node;
change Ek to 0, and modify {p i(i)}; /* Section 5.4. * /

end
end

if current.CET crosses T H 2k, 1 < k < — 1, then
/* region-change broadcasts: TH^,- ■ ' ,TH Kt- i are thresholds */
broadcast (1) time-stamped CETn(l)'s, I £ [0,ZmM], and (2) An,
{Pn(j)}, and {pn(fc)} to all the other nodes in its buddy set;

end
(An, {pn(i)}. {Pn(fc)}) = parameterjupdate(JSj, £it t,:interarrivalJtime);

When a broadcast message arrives from node i, 1 < i < N:
update observation of node t’s state, 6 [0, £ mai];
record (Oi(l) ,CETi{l)), l £ [0 ,£ m«] pair needed for

constructing probability distributions;
record A,-, {p,(j)}, and {?,•(*)};

At every clock tick:
current.CET := current.CET - 1;
if current.CET crosses T H 2k, 1 < k < f — 1 then

broadcast (1) time-stamped CETn(l)'s, I £ [0,L max], and (2) A„,
{p„(;)}, and {pn(k)} to all the other nodes in its buddy set;

At every Tp clock ticks: /* probability and table update */
update probability distributions and the table of loss-minimizing decisions;

fThe task queue Q is ordered by task laxities,
ftable-lookup is where the proposed location policy takes effect.

Figure 5.1: Operations of the task scheduler on each node.

129

Oi(£): the observation about C E T ^ t) made by some node j i.

Pct(• I 0<(^)): the posterior distribution of CETi(£) given the observation 0<(£). This pos­

terior distribution is constructed by each node j ^ i with the state samples collected

via time-stamped region-change broadcasts, as discussed in Chapter 3.

V itc. the event th a t future tighter-laxity task arrivals at node i do not invalidate the existing

guarantee of a task with laxity £.

Giti: the event tha t a task with laxity £ can be guaranteed (i.e., completed in time) by node

i even in the presence of future tighter-laxity task arrivals.

The proposed LS mechanism which achieves both G l and G 2 works as follows:

upon arrival of a task with laxity d a t node n, the node uses the transfer policy described

in Chapter 3 to check whether or not it can complete the task in time under the MLFS

scheduling discipline, i.e., C E Tn{d) < d. If it can, the task is accepted and queued a t node n

for execution. If the task cannot be completed in time locally or some of existing guarantees

are to be violated by inserting the task into the node’s schedule, the node looks up the list

of best LS decisions and chooses — based on the current observation about other nodes’

states, O , and the laxity of the task(s) to be transferred — the best candidate receiver(s)4

in its buddy set. The list of LS decisions is updated periodically based on both Bayesian

analysis (described in Chapter 3) and queueing analyses.

B ayesian A n a ly sis : is used to minimize the probability of transferring an overflow task T

with laxity £ to an incapable node i given the observation a t the time of locating the receiver

of T . The state information collected through state broad casting/probing may become

out-of-date due to the delays in collecting it. That is, a node’s observation 0{(£) may be

different from CETi{£) at the time of making a LS decision. We countered this problem

in Chapter 3 by using buddy sets, time-stamped region-change broadcasts, and Bayesian

decision analysis. Succinctly, each node broadcasts a time-stamped message, informing all

the nodes in its buddy set of a state-region change and all its on-line estimated parameters.

Upon receiving a broadcast message from node t, each node in node t ’s buddy set updates

its observation, and records the statistical samples which will be used to construct/update

the posterior distribution, pct(’ I Oi(£)), with Bayesian analysis. Each node estimates node

4 If multiple tasks have to be transferred out (as a result of their guarantees being violated by the insertion
of the newly arrived task), the observation about other nodes will be updated before making successive LS
decisions. T hat is, if an overflow task with laxity t and execution time m is to be transferred to node i,
then node i ’s CETi(t) will be updated as CETi{l) + m before choosing candidate nodes for other tasks to
be transferred.

130

Vs true state based on its (perhaps out-of-date) observation via this posterior distribution

of CETi(£) given Oi(£). That is, each node — instead of hastily believing its observation

about node i, 0 ,(£) — estimates CETi(£) based on Oi(£), and determines node i ’s LS

capability via pct{- \ 0{{£)). The sufficient condition for node i to be capable of completing

a task in time with laxity £ is CETi(£) < £, the probability of which can be calculated as:

P(CEZ{1) < t) = Y , Pc.(k | £>,(/)).
*=0

Q ueueing A nalysis: is used to minimize the probability of a task T ’s guarantee being

deprived by subsequent tighter-laxity task arrivals during the period between the transfer

(to node i) and the execution or the laxity of T , whichever occurs first. We calculate this

probability by:

P (7 til | CET{(£) < £) = £ P (V iit | CETi{£) = k) • pCt(k \ 0 ,(Q),
Jt—o

where pct(k | 0,(^)) is constructed in G l, and P (Vi t | CETi(£) = k) relates the effect of

future tighter-laxity task arrivals to the guarantee of T with laxity £. After T is transferred

to node i, it has to wait for the execution of all the tasks which constitute CETi(£). Tag

these tasks as ‘primary’ tasks. During the execution of primary tasks, ‘secondary’ tighter-

laxity tasks may arrive, and have to be executed (or transferred out if they cannot be

completed in time by node i) before T. Similarly, there may be more tighter-laxity task

arrivals during the execution of ‘secondary’ tighter-laxity tasks, and so on. Let X denote

the total execution time contributed by the tighter-laxity tasks arrived at node i after the

transfer of T but prior to the execution, or the laxity, of T whichever occurs first. T will

be completed in time by node i in the presence of future task arrivals if X < £ — CET{{£).

We will derive P (V iit | CETi(£) = k) in Section 5.3 using queueing analysis.

The parameters needed in calculating P(Viti | CETi{£) < £) are the composite

task arrival rate A,, the distribution of task execution time {p,(.}}, and the distribution

of task laxity {£,•(.)} on node i. Since the system state changes dynamically with time,

these parameters have to be measured/estimated on-line by node i, and piggybacked in

region-change broadcast messages to node n. Each node i records the interarrival time, the

execution time, and the laxity of each task upon its arrival, and applies Bayesian estimation

to determine the composite task arrival rate and the distributions of task execution time

and laxity. Bayesian parameter estimation will be discussed in Section 5.4.

131

5.3 C onsideration o f R itu re Task Arrivals

We proposed in Chapter 3 a decentralized, dynamic LS mechanism that achieves

G l by using the concept of buddy sets, time-stamped region-change broadcasts, and

Bayesian decision analysis. The only refinement needed to consider G 2 is that now each

time-stamped broadcast message contains two sets of information:

(1) Node number i, CETi{£), and the time t0 when this message is sent.

(2) On-line estimated task characteristics: A,-, 0 < j < E max}, and {/><(&), 1 < k <

Emax}'

When the message broadcast by node i arrives at node n, node i ’s C E T ((£) at t0, can be

recovered by node n. Node n can also trace back to find its observation about node i,

Oi(£), at time t0. This observation 0,(£) is what node n thought (observed) about node

i when node i actually has CETi(t). Oi(£)’s along with CETi{iy& are used by node n to

compute/update the posterior distribution, pCt(-1 G»(£)), given the observation Oj(£), once

every Tp units of time. Besides, CETi(£) sent by node i at time t0 is transformed into node

n ’s new observation, 0 ,-(£), about node i at the time node n receives this message by the

rule that 0 {(£) = k if T H k < CETi(£) < T H k+i, k > 0, and T H 0 = 0. The second set of

information is used to calculate the criterion of G2. Estimation of these parameters will be

discussed in Section 5.4.

We now discuss how to incorporate G2 in the proposed mechanism, and establish

a theoretical basis for G2. Recall that (?,-,* denotes the event that an overflow task T with

laxity I is estimated to be completed in time by node i in the presence of future task arrivals,

and V iti, the event that future tighter-laxity task arrivals at node i will not invalidate the

guarantee of T . So,

P (G m |0 ,(£)) = f ^ [P (C E T i(£) < e) 'P (V i i t \C E T i(e) = k)] ' p Ct(k \ O i(£))
fc=0

= E i ’(v,, , , |C B r iw = fc)-pc, (t |0 ,m) . (5.1)
Jb=0

The key issue here is how to derive P (V iit \ CETi(£) = k). Given CET{(£) < £ at the time

(say, time 0) of locating the receiver of an overflow task T , the following two conditions

may occur:

C l . Tighter-laxity tasks may arrive after the arrival of T at node i, and have to be executed

before T under the MLFS discipline, thus increasing CETi{£).

132

C 2. The tasks constituting CETi{l) and/or some tighter-laxity tasks arrived later than T

may get their existing guarantees violated due to the subsequent tighter-laxity task

arrivals, and thus have to be transferred.

C 2 violates the work conservation law commonly assumed in queueing analysis.

To remedy this violation, we take into account the effect of C 2 on CETi(£) by adding

p,(0) in the distribution of execution time, {pi(j), 1 < j < Emax}. That is, when collecting

statistics for the execution time distribution, each node i considers and records those tasks

arrived a t node i but eventually transferred out of node i as having null execution time,

i.e., pi(0) is the fraction of tasks arrived at node i tha t will eventually be transferred out.

Moreover, each future tighter-laxity task arrived at node i is estimated5 to contribute j

units of execution time with probability p ,(j), 0 < j < Emax, and must be executed before

T , where j = 0 represents the case when the guarantee of a task is deprived by subsequent

tighter-laxity task arrivals. For example, in the first diagram of Fig. 5.2, the task T(5,3)

with execution time 3 and laxity 5 cannot be completed in time upon its arrival, and is thus

treated by node i (in collecting its statistics) as a task T*(5,0) with execution time 0 and

laxity 5.

With this modification to P i (j) ’s , work conservation, which states that no tasks

depart from node i before they are completely served, can be virtually retained in the subse­

quent derivation. Those tasks which have their guarantees violated because of tighter-laxity

task arrivals are viewed as receiving zero unit of service time before they are transferred

out of node i. On the other hand, because of this modification, our analysis does not model

exactly the original queueing system of interest. However, since one cannot exactly pre­

dict the order of future task arrivals and their attributes and thus cannot know precisely

whether or not a task will be transferred from the task queue, one has to resort to some

statistical measure, e.g., p,-(0), to take into account the effect of tasks being kicked out

of the queue on calculating the distribution of X . Moreover, as our simulation results in

Section 5.5.3 indicate, the performance of the proposed LS mechanism does significantly

improve (by almost an order of magnitude) in reducing Pdyn with the approximate analysis.

This is because the approximate distribution of X suffices to be an index of the likelihood

of future tighter-laxity task arrivals at a node and its corresponding effect on the node’s LS

capability.

6Since we cannot really know the particular laxity and service requirements of future tank arrivals in a
dynamically changing distributed system with LS, we resort to the statistical measures, Pi (j)'b and Pi(j)'s,
based on the da ta gathered/estim ated from the past to represent the attributes of future task arrivals on
node i. p i (j) ’B reflect whether node i tends to receive long or short tasks; Pi(j)’s reflect whether node i tends
to receive tight or loose tasks.

133

T(4j3) T(2|l)

Thij U ik hal to
betnuM fcrredout;
change T(5,3) to
T*(S"0)

T(5,3) T(8,l)

J_ _ _ L

T(lO^)

Thli task hai to
be tranffeired out;
change T(12,l) to
T*O2,0)

T(12,l)

J l_Ll Time

2 3 4 \ ^ 5 6 7

CET1(13) a t timed

Id 11 12 13

T(2,2) T(7,l) T (ld,l)
T*(5,0)

T O T]m

execution of T(13,.)

Actual order of service under MLFS discipline

T*(5,d) execution of T(13P)

4 | - ET period for T(4,3)

ET period
forT(2,l)

h--------------------X ------------------- H

one order of service that may be used in the derivation of P(X <= x)
(T(2,l) is executed first after CET1(13»

Figure 5.2: Future tighter-laxity task arrivals seen by a task T with I = 13. A task
T with laxity x and execution time y is written as T (x ,y) . This example shows (1) the
independence of X from the execution order of tasks; (2) the definition and property of the
ET period.

134

T(4,3) T(2,l)

Thli taik h u l a
be transferred out;
change T(5,3) to
T*(5,0)

T (5,3) T(8,l) T(10J)

*

This taik h u to
be tramfemd out;
change T(12,l) to
T*(12,0)

7(12,1)

Time

0 1 2 3 4 \ 5 t 7 8 9 10 11 12 13

CETI(13)attiraeO

T»(5,0)
7(2,2) T(7,l) T(10,l)

T(2,

Actual order of service under MLFS discipline

T*(5,0)
execution of 7(13,.)

k

Another order of service that may be used in the derivation of P(X <= x)
(T(4,3) Is executed first after CETi(13))

Figure 5.2: (continued) Future tighter-laxity task arrivals seen by a task T with I — 13.

135

CET
on nodei

TXM) T(102)

Time
— I I I L_

0 1 2 3 4 5 « 7 I 9 10 11 12 13 14 15

j"1----- CET1(13) " I* ET period generated by 1X4,3) H
ET period
generated
by H2.1) lob ET period I

fSEi"*1 1
~H I"-

■Ob ET period
generated by
1X10,2)

(a) ET period for Fig. 5.2 (a)

CET
onnodcl

1X1,1) T(1(U)

Time
I I I *

0 1 2 3 4 5 6 7 5 9 10 11 12 13 14 15

h CET1(13)
BT period ET period
generated ■ * generated -H
5yT(4,3) I by T(2,l) |

(b) ET period for Fig. 5.2 (b)

Figure 5.3: ET periods for Fig. 5.2. Y-axis indicates the CET contributed by those tasks
with laxity < 13 on node i prior to the execution of task T.

136

Now, we want to derive P (V i,t \ C E T ^ l) = k) subject to C l . Recall that X

represents the total execution time contributed by tighter-laxity task arrivals at node i

after time 0 or T ’s arrival but prior to T ’s execution (Fig. 5.2). If the distribution of X is
known, then one can compute

P (V iit | CETi(£) = k) = P (X < £ - k). (5.2)

Since (1) node i stays busy (and cannot start execution of T) as long as there are tasks

with laxity < I queued in front of it, and (2) the property of work conservation has been

virtually retained with the way of collecting/estimating p ,(j) ’s, e.g., no task will leave the

system without getting serviced (but possibly with a null service time, the probability of

which is estimated to be p,(0)), we have virtually transformed the original system into a

work-conserving one, and thus can use the well-known result of work-conserving systems

[Kle75, GH85], which states the amount of work present in a work-conserving system does

not depend on the service order of the customers. In our context, the amount of work seen

by T prior to its execution, which is the sum of CETj(£) at time 0 (A: in Eq. 5.2) and X ,

is independent of the service order of the tasks constituting k and X . Fig. 5.2 shows two

examples of this independence. Note that in Fig. 5.2 a task with laxity x and execution time

y is expressed as T(x, y)’t the black blocks represent the tighter-laxity tasks arrived after the

arrival of T but prior to the execution of T ; the other blocks represent the tighter-laxity

tasks queued before the arrival of T .

W ith the observation that the amount of work k + X is independent of the execution

order of tasks constituting k and X , we can permute the execution order of tasks with laxity

< £ on node i so that those tasks contributing to CETi{£) may be executed first (Figs. 5.2

and 5.3). Then, we condition X on the number of tighter-laxity arrivals during CETi(£).

Let S K1> denote the set of tighter-laxity tasks arrived during CETi{£). Each

task Tm 6 «S<X> will contribute to X with tighter-laxity task arrivals during its execution.

Denote the set of these arrivals as S Furthermore, each task Tn G will also

contribute to X with subsequent tighter-laxity task arrivals during its execution, which are

represented by S ^ Tn, and so on. This relation holds recursively for all m and n. We can

thus view each tighter-laxity task arrived during CETi(£) as essentially generating its own

execution time (ET) period. Examples of the ET period are shown in Figs. 5.2 and 5.3.

Fig. 5.4 lists the corresponding S ^ iT r . . ,T m . • By the Markovian property6 of the task

arrival process, all ET periods have the same distribution. We characterize the ET period

sValidity of this approximation about composite task arrivals at each node will be discussed in Sec­
tion 5.5.1 .

137

by its cumulative density function (CDF), G(t), t > 0, whose expression can be derived

using the above recursive relation and will be discussed in the next subsection. Then, we

have

P (X < x | C E U l) = k) = G « \x) }, (5.3)
;= 0 I '

l - l
where G ^ \ x) is the CDF of the j-fold convolution of G'(x) = and Xh = y~) Xpj(n)

n = l

is the arrival rate of tasks with laxity < £ - 1. The first factor inside the braces is the

probability that j tasks with laxity < £ arrives within CETi(£) = k, and the second factor

(j(D(x) is the probability distribution of the sum of j ET periods.

Expression for G(t)

G(t) is the CDF of the ET period generated by a tighter-laxity tasks arrived

during CETi{£). By work conservation and the fact that a nonzero ET period continues

to exist as long as there are unfinished tighter-laxity task arrivals after the beginning of

the ET period (e.g., ^T^,Tm3,...,Tm. ,)> has the same distribution as the well-known

busy period of an M /G f 1 queue. (A busy period is defined to begin with the service (or

equivalently, arrival) of a customer at an idle node and end when the node becomes idle

again.) So, G(t) can be readily expressed as [Ros83]:

Git) = f ; / ' e-**1 (5.4)
n = l Jo n '

where b ^ (t) is the n-fold convolution of b(t), and 6(f) is the probability density function

(PDF) of task execution time expressed as a continuous-time function, i.e.,

^m«x
K t) =

j=0

here tf(.) is the impulse function.

Eq. (5.4) is an explicit expression of G(t) in terms of known (or on-line estimated)

quantities. The problem that arises in the infinite summation of both Eq. (5.4) and Eq. (5.3)

can be solved by properly truncating high-order terms, and the error thus induced can be

bounded by some predetermined value.

138

S <1> = { T (4 ,3) ,T (2 ,1)},
^ T ^ i) = =
* ^ T (4,3) = { ^ * (® » 1) } » ^ T (4 ,3) ,T (8 ,l) = { ^ (^ , 2) } ,

^T(4*3),r(81i)1T(io>2) = $-

(a) 5rmf,rmai...,rm. , corresponding to the order of service in Fig. 2(a).

5<1> = {r (4 ,3),T (2 ,l)} ,
^T(4̂3) = {^*(5) 0), T (8, 1)}, «5^ ^ 3) T.(5 0) = <j) = «Sr^3),T(6,l)>
^ T (2 ^ 1) = { ^ " (^ 0 > 2) } , < 5 r f 2 ^ 1) , T (1 0 , 2) “ 4>'

(b) r m. , corresponding to the order of service in Fig. 2(b).

Figure 5.4: ,rma....r m,_, corresponding to the order of service in Fig. 3.

Figs. 5.5 and 5.6 give two numerical examples of P (X < x \ CETi(t) = k), the

former fixes x at 2 and the latter fixes k at 3. As expected, P (X < x | CETi(£) = A:)

decreases, for a fixed x, as the composite arrival rate of tighter-laxity tasks (A/,) and/or

the CET contributed by the queued tighter-laxity tasks (k) increases. Also, P (X < x |

CETi(£) = k) increases with an increase z (or a decrease in Xh) for a fixed k. Each node n

can (1) use Eqs. (5.1)-(5.3) to compute the probability that an overflow task T with laxity

£ is completed in time by node i with consideration of node i ’s future task arrivals, based

on node n ’s observation about node i, 0 ,-(l), and (2) choose the node i with the largest

P{Gi,i | Oi(£)) when transferring T.

5.4 P aram eter E stim ation

One key issue in applying the proposed adaptive LS mechanism is the on-line

estimation of the composite task arrival rate, A,-, the distribution of composite task laxity,

{pi(j)}, and the distribution of composite task execution time, {p,(j)}. All on-line esti­

mated parameters will then be conveyed to other nodes via region-change broadcasts. We

discuss in this section how each node collects samples and makes on-line estimation of these

parameters.

5.4 .1 O n-L ine E stim ation o f C om posite Task Arrival R ate

139

/—l.Oe+OO
“ 9.06-01
{ | 8.06-01
X 7.06-01
0. 6.06-01

S.0e-01

4.0e-01

3.0e-01

2.06-01

1.06-01
9.06-02
8.06-02
7.06-02
6.0e-02
S.0e-02
4.06-02 -

3.06-02 -

2.06-02

□ -

■■•A rate = 0.1
- e rate = 0.2
- + rate = 0.3

rate = 0.4
—at rate = 0.5
'••o rate = 0.6
- ■ rate = 0.7
- □ rate = 0.8

1.00 2 0 0 3.00 4 .00 5 .0 0 6 .00 7 .00 8.00 9 .0 0 10.00
Avenge Estimate CETi(l), It

Figure 5.5: P (X < 2 | CETi(£) = A:) for different values of k. Xh = 0.8A. Task execution
time is exponentially distributed with 1.0.

8.0e-01

7.0e-01

5.0e-01

1 5 01.00 1.50 100 3 .000 .50

A.........A rate = 0.1
o -------o rate = 0.2
+ ------+ rate = 0.3
 ♦-------♦ rate = 0.4
 *-------m rate = 0.5
oo rate = 0.6
□ -------□ rate = 0.7
■ ------■ rate = 0.8
e -------• rate = 0.9

t (in units of mean task execution time)

Figure 5.6: Conditional probability distribution of X given the estimated CET at node i is
k = 3. A* = 0.8A. Task execution time is exponentially distributed with 1.0.

140

Tasks transferred to other nodes

Local
Task
Arrivals

__________________ Figure 5.7: Task arrival and departure processes.__________________

The composite task arrival process at a node is composed of the local (external)

task arrivals and transferred-in task arrivals, the latter of which is itself a composite process

of transferred-in tasks from different nodes (see Fig. 5.7). One difficulty in estimating the

composite task arrival rate is that the transferred-in task arrival process (and thus the

composite arrival process) may not be Poisson even if the local task arrival process is

Poisson. This is because (121) the probability of sending a task to (or receiving a task from)

a node depends on the state of both nodes, making the splitting process non-Poisson, and

(122) task transmission times may not be exponentially distributed, making the process of

transferred-in tasks non-Poisson. Furthermore, even if we assume the composite arrival

process to exhibit behaviors similar to a Poisson process, the transferred-in task arrival

rate from a node is not known due to the dynamic change of system state, which calls for

the on-line estimation of the composite arrival rate.

Bayesian estimation is used for the on-line computation of the composite task

arrival rate on a node. We consider the case of Poisson external task arrivals.7 We further

approximate the composite task arrival process to be Poisson (in spite of 121 and 122). This

approximation rests on a general result of renewal theory which states that the superposition

of increasingly many component processes (i.e., a reasonably large number of nodes) yields

(in the limit) a Poisson process. We also ran simulations, collected task interarrival times

on-line under the proposed LS mechanism, and used the Kolmogorov-Smirnov test to verify

whether or not the Poisson approximation is valid. The simulation results show that for a

7We will later in the simulation consider the case of hyperexponential task interarrival times which
represents a system potentially with bursty task arrivals, and investigate to what extent the proposed
mechanism remains effective.

— < S >

Composite process of transferred tasks
from other nodes

Task completion

Tasks transferred
from node 1

Tasks transferred
from node 2

Tasks transferred
from node N

141

light to medium loaded system of size > 12, this approximation holds. More on this will be

discussed in Section 5.5.

Bayesian estimation works as follows [DeG70]: each node

1. monitors and records its task interarrival times continuously.

2. uses the noninformative distribution <7i(A<) = const, and / (t | A() = A,e_Ai< as its

prior distribution and likelihood function, respectively.

3. computes the posterior distribution given the time sample t k with

t (\ I f \ _ ffk(Xj) * f(tk | ^i) /_ _v
” /„" S t W ■ f (‘k I A,)dAi' (5'5)

4. uses the posterior distribution /(A< | tk) for the current time sample tk as the prior

3it+i(Ai) for the next time sample tk+i.

To make the above method computationally manageable, it is desirable that both

prior and posterior distributions belong to the same family of distributions. The major

advantage of using a conjugate prior distribution in estimating A,- (or any other parameters)

is that if the prior distribution of A,- belongs to this family, then for any sample size N s and

any values of the observed interarrival times, the posterior distribution of Af also belongs to

the same family. Consequently, the calculation of Eq. (5.5) reduces essentially to updating

the key parameters of a conjugate distribution. The interested readers are referred to

[DeG70] for a detailed account of this.

For the composite arrival rate A,- with an exponential sampling function, one can

show that the 7-distribution

ff(A|«,/J)={ forA>°-
I 0, otherwise.

is its conjugate prior distribution, where T(a) is the gamma function such that T(a) =

(a - 1)! if a is integer. Specifically, given £7(A,- | o = 1,/? = ti) as the prior 7-distribution,

and given N s interarrival time samples, tj, . . . , tNs, we have the posterior 7-distribution

of A,- as
Ns

G(Xi \ a = Ns ,P = ' £ t i).
1=1

We use the mean of A< w.r.t. the posterior distribution as the estimated value which can be

expressed in terms of the time samples only, i.e.,

E(\,) = = £ f ~ . (5.6)
L,k~ 1

Thus, the load information provided by the N s latest interarrival-time samples can be easily

abstracted by updating the key parameters in the conjugate distribution.

142

5 .4 .2 O n - lin e E s tim a tio n o f p ,(j) a n d p ,(j)

The other parameters needed for the proposed LS mechanism are {p*(j')}, and

{Pi{j)}‘ The estimation techniques used to determine {p,(j)} and {p.(i)} are virtually the

same; we will henceforth concentrate on {p,(j)}.
We treat each task arrival as an experiment whose outcome belongs to one of

Lmax mutually exclusive and exhaustive categories, and p,(j) as the probability that the
outcome belongs to the j- th category (1 < j < Lmax), where Pi(j) = 1- Suppose
Ns independent experiment outcomes are available. Let Y = (V i , YLmaz), where Yj
denotes the number of outcomes that belong to category j among these N s outcomes.
Then the likelihood function is a multinomial distribution with parameters Ns and p =

max))>

(^ ^ n -P i(1)!'tP«(2)y3-•■?«•(, V G , Vj > 0, for 1 < j < Lmax,

f (y I N s,p) = < and Y%=“ Vi = Ns,
y 0, otherwise.

(5 .7)

The conjugate family of distributions for the parameter p with a multinomial likelihood

function is the Dirichlet distribution with parametric vector a = (c*i, a 2» •••) i-e->

P e R Lm'%Pi(j) > 0, for 1 < j

V (P I a) = \ < Lmax, and J2f=r Pi(j) = 1»
0, otherwise,

where a 0 = Specifically, each node assumes the non-informative distribution as

the prior distribution of p , e.g., the prior distribution of p is the Dirichlet distribution

with ctj = 1, 1 < j < Lmax. After collecting Ns samples (i.e., after Ns task arrivals), and

computing (yi , y2 , —,yLmai), the posterior distribution of p is updated as

£ (P I (« 1 + 2/1 > “ 2 + 3 /2 , + J / L ra„)) -

We then use the mean of p w.r.t. the posterior distribution as the estimated value, i.e., for

1 — J' ^ Lmax i

E(P,W) = r-L,*1 + a ------

Thus, the information provided by the most recent Ns task arrivals can be abstracted from

the posterior distribution simply by updating the parameters.

5.5 Num erical Exam ples

The performance of the proposed LS mechanism is evaluated according to the

following sequence:

143

• Validation of the Poisson approximation of the composite task arrival process which

was made to facilitate the on-line estimation of task arrival rates.

• Elaboration of the parameters considered/varied in performance evaluation of LS

schemes.

• Performance evaluation. We analyze the effect of considering G 2 on the performance

of LS schemes. Second, we comparatively evaluate (1) no load sharing, (2) the focused

addressing scheme [SRC85, RSZ89], (3) the proposed LS mechanism, and (4) quasi­

perfect LS. Then, we study the impact of statistical fluctuation in task arrivals (by

use of hyperexponential external task arrivals in the simulation) on the performance

of the proposed mechanism.

5.5 .1 On th e Poisson A ssum ption o f C om p osite Task Arrivals

The on-line estimation of the composite task arrival rate is done under the as­

sumption th a t the composite task arrival process can be approximated to be Poisson.8 This

assumption is conjectured to become more realistic as the system size increases and/or as

the system load gets lighter for the following reasons:

1. The superposition of increasingly many component processes yields (in the limit) a

Poisson process. That is, as the system size gets larger, a node’s state (CET) becomes

less dependent on other nodes, the task transfer-out process a t a node depends less

on other nodes’ states, and thus, the renewal assumption gets closer to reality.

2. In the case of Poisson external task arrivals, when the task transfer-out ratio is small,

so is the “disturbance” to the (originally) Poisson arrival process caused by task

transfers.

The validity of this approximation is checked by comparing the hypothesized exponential

distribution and the sample cumulative distribution function. Given an estimate of the com­

posite task arrivals being Poisson with arrival rate A = 1 , the Kolmogorov-Smirnov
w j s l ^

goodness-of-fit test is used to determine if represent a random sample from an

exponential distribution.

For completeness, we summarize below the steps of the Kolmogorov-Smirnov test

used and discuss the data obtained from event-driven simulations. The interested readers

are referred to [DeG86] for a detailed account of the Kolmogorov-Smirnov test. We first

sThe same assumption was also used in [SC89a, MTS89b] without any justification.

144

run simulations and collect interarrival times on-line until k = 100 samples are obtained

on each node. Second, we construct the sample (or empirical) distribution function Fk(t)

which is defined as the portion of the observed samples which are less than or equal to /,

i.e., let /(!) < t(2)... < t(k) be the values of the order statistics of the sample, then

{0, t < t(l),

i /k , t(i) < t < f(<+1), i = 1 , ..., k - 1 , (5 .8)

1, t = t(ky

Now we are interested in testing the following two hypotheses:

H0i tu h , . . . , t k is a random sample drawn from an exponential distribution with parameter

A, i.e., F(t) = plim k^t00Fk (t) = F \(t)y where plim denotes “probabilistic limit” ;

H ki H0 is not true;

where F\(t) = 1 - exp(-Xt) is the hypothesized exponential distribution. The test statistic

Dk, for the Kolmogorov-Smirnov test is defined as the maximum difference between Fk(t)

and F\(t), i.e.,

D k, = sup | Fk(t) - Fx(t)) | .
— 00<t<00

If Dk, is large, there are large differences between F(t) and F \(t), and the null

hypothesis is rejected. To judge whether or not Dk$ is large enough to justify rejecting H0,

we compare Dk, with the critical value D*kt [DeG86] of the Kolmogorov-Smirnov test. For

example, as the sample size k > 40, Dk, can be calculated as ^ (= 0.136 in our case) at

the significance level a k, — 0.05.9 If Dk, > D*kl, we reject H0] otherwise, we accept H0 at

the significance level a kt.

It turns out that in the case of Poisson external task arrivals, we have D < D* =

0 .1 3 6 in the K-S test for all combinations of task attributes, when the number of nodes

in the system > 1 2 , and/or the average task transfer-out ratio < 0 .2 5 — this is always

true in our simulations when the average external task arrival rate A'1* = A' 14 <

0 .8 , where Kpn is the number of processing nodes in the distributed system. Similarly,

we have in the chi-square test, x 2(°^s) < X 2(0 .0 5) = 7 .8 1 (i.e., H0 is accepted) under

the conditions specified above, where x 2(o&s), as D does in Kolmogorov-Smirnov test,

measures the deviation of the empirical distribution from the hypothesized distribution, and

X 2(0 .0 5) is the corresponding critical value at the significance level of 0 .0 5 . See Table 5 .1

for numerical examples. Since both conditions are satisfied for the proposed LS mechanism,

9of*, is the probability tha t Ho is falsely rejected.

145

System size I(pn Average system load A Critical value D
8 0.2 0.084

0.4 0.127
0.6 0.187
0.8 0.289

10 0.2 0.076
0.4 0.092
0.6 0.121
0.8 0.203

12 0.2 0.063
0.4 0.087
0.6 0.104
0.8 0.130

16 0.2 0.056
0.4 0.081
0.6 0.101
0.8 0.117

Table 5.1: (a) Validation of the Poisson assumption with the Kolmogorov-Smirnov test: if
D < D* = 0.136, then the approximation is valid for the significance level 0.05.

the approximation of exponential interarrival times is acceptable at the significance level

ctks = 0.05 for the case of Poisson external task arrivals.

5 .5 .2 P aram eters C onsidered/V aried

The system configuration, the size of the buddy set, the tunable parameters chosen

in the proposed LS mechanism, the computational overheads assumed, the ranges varied

for task parameters (e.g., the average external task arrival rate per node, Xext, the ratio of

and the ratio of the confidence level achieved (in simulation), and the notation

used all conform to those described in Section 3.5.

The transmission delay associated with each task transfer is varied from 10%

to 50% of the execution time of each task being transferred. The broadcast-message-

transmission delay is assumed to be negligible.10 The medium-queueing delay which is ex­

perienced by both broadcast messages and transferred tasks and which dynamically changes

with system load and traffic is modeled as a linear function of the number of tasks/messages

queued for the particular medium.

The numerical experiments on the degree of system heterogeneity were conducted

10The physical transfer of the virtual memory image of a task may require tens of communication packets,
while a region-change broadcast would in all likelihood need at most one packet.

146

System size Kpn Average system load A X2(obs)
8 0.2 5.32

0.4 6.49
0.6 7.93
0.8 8.06

10 0.2 4.68
0.4 6.35
0.6 7.42
0.8 8.26

12 0.2 3.79
0.4 4.23
0.6 5.07
0.8 6.12

16 0.2 2.86
0.4 3.57
0.6 4.35
0.8 5.78

Table 5.1: (b) Validation of the Poisson assumption with the chi-square test: if x 2(obs) =
2 £ i < x 2(0.05) = 7.81, then the approximation is valid for the significance level
0.05. Note tha t n,- and 0; are obtained as follows. We first break up the domain of inter-
arrival times (i.e., (0, oo)) into (7 = 5 categories. Under the assumption tha t Ae-X< governs
interarrival times, we determine the number, rij, of ti’s that are expected to fall into cat­
egory i. Second, we count the number, o,-, of the k=100 time samples obtained from the
simulation which actually fall into category t.

by dividing nodes into K n groups; the nodes in each group <7,1 < g < K ny have an external .
tex t vf .

task arrival rate A*1* such that -ffi- = r„ and J2i=i \ - xl = Aer(, where I(pn is the

number of processing nodes in the distributed system. The performance of the proposed

LS mechanism was simulated while varying K n from 2 to 6, and r„ from 2 to 4.

The case with hyperexponential interarrival times represents a system potentially

with bursty task arrivals, and is used to study the impact of statistical fluctuation in task

arrivals on the LS performance. The squared coefficient of variation of hyperexponential

arrivals (C V 2) is varied from 1 to 64.

5.5 .3 Perform ance Evaluation

Instead of using the mean task response time as the performance metric, we use

the probability of dynamic failure, Pdj/„, maximum system utilization, Xext, (i.e., the highest

frequency of task activations allowed for a specified P<tyn)i the task transfer-out ratio, ru ,

and the frequency of task collision, f ie. Moreover, we present only those results th a t we

147

1.0e-01

 1 1 -----
i i / i / /

_ _l 1 I J_____

---1J t.0e-04

I T

•a (K w M l.l)
■o (Kn,rM4,3), without 02
+ (Kw)=(4,3), with 02
« (Kn,r)=(8,2), without 02
x (Kaj)=(8^), with G2

0.10 0.20 0J0 040 030 040 0.70 040 0.90 1.00
Average Talk Arrival Rate

Figure 5.8: Pi9„ of the proposed LS approach with and without G2 for a task set with
E T = {0.4,0.8,1.2, 1.6}o.25, and L = {1,2, 3}i/3. The task transfer delay is assumed to be
10% of task execution time.

believe are the most relevant, interesting, and/or representative.

Effects o f G2 on th e Perform ance o f LS A lgorithm s: We now analyze the perfor­

mance improvement achievable by considering G2, and compare the performance of the

proposed LS policy with others using trace-driven simulations.

Fig. 5.8 plots the performance of the proposed LS policy with and without con­

sideration of G2 for different degrees of system heterogeneity. When Xext > 0.4 and as the

degree of system heterogeneity increases, one can make a substantial performance gain with

G2. In other words, inclusion of G2 in a LS scheme avoids the possibility of transferring

tasks to those nodes which tend to become overloaded or receive tighter-laxity tasks. This,

in turn, reduces the possibility of task collisions and task re-transfers (and thus P&yn). See

Table 5.2 for numerical examples of f it for the proposed mechanism.

Taking G2 into account is not restricted to the proposed LS mechanism; it can

also be incorporated into other existing LS schemes. For example, a parallel state-probing

approach can be modified to reduce Pdyn as follows. Each node collects and estimates A,-,

< j < Emax}, and {pi(k), 1 < k < Lmax} on-line as discussed in Section 5.4.

148

^ e*t (K n , T n) = (2,2) (t f „ ,rn) = (4,3) (K n , r n) = (8,2)
with G2 without G2 with G2 without G2 with G2 without G 2

0.2 0.018 0.021 0.019 0.027 0.021 0.034
0.4 0.047 0.056 0.050 0.072 0.062 0.087
0.6 0.074 0.118 0.078 0.132 0.097 0.146
0.8 0.176 0.224 0.189 0.247 0.201 0.269

Table 5.2: f te of the proposed approach with and without G2 for a task set E T =
{0.4,0.8,1.2, 1.6}o.25» and L = {1,2, 3}i/3. The task transfer delay is assumed to be 10% of
task execution time.

— 1------1

_ _ r , (r __ _ r -

A -.-A (Kn̂ HM)
o (Kn,r)=(4,3),without02

+ --------+ (Kaj)=(4,3), with 02
♦ -------- ♦ (Knj)=(8 J), without 02
x -------- x (Kw)=(8,2), with 02

OiO 0.60 0.70 0.80 0.90 t.00
Average Task Arrival Rate

0.10 0.20 OJO

Figure 5.9: Pdyn of the parallel state probing with and without G 2 for a task set with
E T — {0.4,0.8,1.2, 1.6}o.2s> and L = {1,2, 3}i/3. The task transfer delay is assumed to be
10% of task execution time.

149

A node with an overflow task probes a predetermined number11 of nodes in parallel. A

probed node i sends the probing node, in addition to its CET, the estimated A,-, Pi(j)%

and pi(k)’s. After receiving this information, the probing node considers G 2 and chooses

the most capable receiver. Fig. 5.9 depicts the performance of the parallel state-probing

approach with and without consideration of G2. Again, the performance improvement

made by G2 becomes substantial as the degree of system heterogeneity increases.

P e rfo rm a n ce C o m p ariso n am ong D ifferen t LS A lg o rith m s: The proposed LS mech­

anism is comparatively evaluated against a simplified version of the focused addressing ap­

proach in [SRC85, RSZ89]. We also compare the proposed LS mechanism with two baseline

schemes, i.e., no LS and quasi-perfect LS. Figs. 5.10-5.12 show the performance curves

of different LS schemes for different task attributes. Three task sets are considered: (I)

E T = {0.4,0.8,1.2, 1.6}o.25» L = { l,2 ,3 } 1/3; (II) E T = {0.027,0.27,2.7}1/3, L = { l ,2 ,3 } 1/3;

and (III) E T = {0.4,0.8,1.2,1.6}0.25, L = {l}i. The average external task arrival ra te Xext

is varied from 0.2 to 0.9. Fig. 5.13 shows the effect of task-transfer delay on the perfor­

mance of different LS mechanism. For clarity, only the performance curves corresponding

to (K n, rn) = (1,1) are shown for no LS and perfect LS.

From these curves, one can observe that the proposed LS mechanism outperforms

the focused addressing approach in minimizing Pdy n , especially when (1) the distribution of

external task laxity is tight, (2) the spectrum of task execution time is wide, (3) the degree of

system heterogeneity is large, and (4) the task-transfer delay is significant. The superiority

of the proposed LS policy under condition (1) comes from the fact tha t an overflow task

with tight laxity cannot tolerate the possibility of being transferred to an incapable node or

a node which will become incapable in near future. (Note tha t the proposed LS mechanism

deliberately eliminates such a possibility.) Under condition (2), a node easily becomes

incapable with the arrival pf even a single task which has a tight laxity and requires a large

execution time. This makes the consideration of future task arrivals crucial in locating the

receiver of each overflow task. The performance improvement under (3) and (4) results

from the consideration of G 2 and G l , respectively.

Fig. 5.14 shows the plot of maximum system utilization Aext versus e. This relates

the worse-case achievable Pdyn to the frequency of task activations. One im portant result

from these curves is that with the clever use/interpretation of state information/statistical

samples, we do not have to sacrifice Aer< for lower Pdy n , which is in contrast to the common

11 This has been set to 5 in our simulations based on the finding in [ELZ86].

150

r - r - r*

l.Oe-OJ

_ v s . + --------------- (.1.0*06 tv

- - V-.t* 1 _ i _ _ y j -

0.10 0.70 aso
Average lU c Anivil Rite

A A (K iuH l.l). NLS
• (Kiu)=(l.l).Focuud Addreaing
o -------o (K n j^ l.l) , Propoied Approich
■ -------■ (KiuW l.l). Perfect LS
 • --------♦ (Kiv)=(8,2), Focuud Addrevlng
o - o (Kiv)=(8.2).PropoiedApproich

Figure 5.10: Performance comparison w.r.t. Pjyn among different LS approaches for a 16-
node system with a task set E T = {0.4,0.8,1.2, 1 . 6 } 0.25j L = {1*2, 3}i/3. The task transfer
delay is assumed to be 10% of task execution time.

—

— ^ ---I • I

t ._ _i <i i (___ _ i

A A (KaiMU).NLS
» ------• (K n/X l.l), Focuied Addreaing
o a (KrvMl.l). Ptopoeed Approedi
■ ------■ (Kiu)=(l,l), Perfect LS

♦ (Knj)=(8,2), Focuied Addteolng
o (Kiu H 8.2), Propoeed Approich

OSO 0.60 0 080 090 «
Tluk Arrival Rite o

0.10
Averag

Figure 5.11: Performance comparison (w.r.t. Pdyn) among different LS approaches for a 16-
node system with a task set E T = {0.027,0.27,2.7}i/3, L = {1,2,3}i/3. The task transfer
delay is assumed to be 10% of task execution time.

151

-a i.ot-oi
I Jb

I___ J i
1

\,< J K“ " / y

_ _ l _ -

i----

— T f — t- —l.Ov-04 - “ t -

- T / - T ------- r - “T ”

 I X I____

0,70 0J0
Avenge T u k Arrival Rate *

0.30 aw

• -A (KjuMU),NLS
* -♦ (Ku)s(l(l), Focused Addrevlug
<->0 (KiuMMJ.Propcwed Approach
■ -■ (Kn^Xl.l), Perfect LS
— ♦ (Kiu)=(8,2), Focuied Ad&eraing
— o (KIUM8.2), Proposed Approach

Figure 5.12: Performance comparison (w.r.t. Pdyn) of different LS approaches for a 16-node
system with a task set E T = {0.4,0.8,1.2,1.6}0.25» L = {l}i- The task transfer delay is
assumed to be 10% of task execution time.

OlOS

0.03

c H--aoi

<100

tnnifcr cost u % tu k execution time

♦ (KivWl, 1). Focused Addressing
o o (Knj)=(l,l), Proposed Approich
♦ ♦ (Kar)=(8,2). Focused Addressing
o — o (KtuMS.Z), Propoced Approtch

Figure 5.13: Effect of task transfer delay on Pdyn for the proposed approach and the focused
addressing approach in a 16-node system with Aert = 0.8, E T = {0.4,0.8,1.2,1 .6 } 0.26,

L = { l,2 ,3}1/3.

152

g

— i----- h------1- - -!-//> I-----0.8
1

0.7 T 7

0.6

 1~

0.4

A A (Knj)=(l,l)JJLS
• — (K n ,rH l,l)lFocused Addressing
o o (K n^)s(l,l)lPropoaed Approach
■ ------ ■ (Kn,r)=(l,l)lPerfect LS
 •----- — • (Kn,r)=(8,2),Focuie4 Addreuing
o -------- o (Ko,rM8,2)1Propo«ed Approach

0.2 /• r

Guaranteed probability of dynamic failure

Figure 5.14: Xext vs. e. External task arrivals are Poisson. Both task execution time and
laxity are exponentially distributed.

notion of trading system utilization for real-time performance. Moreover, the proposed

mechanism outperform^ the focused addressing scheme, and the performance superiority

becomes more visible as the degree of system heterogeneity increases.

Table 5.3 gives numerical results of task transfer-out ratio ru for different LS

schemes. From this table, we observe that ru for the proposed LS approach is smaller than

that for the focused addressing. This indicates the ability of the proposed LS mechanism

in avoiding task transfers to (i) incapable nodes as a result of using out-of-date state

information, and (ii) capable nodes that may easily become incapable as a result of future

task arrivals. The performance improvement becomes more pronounced as the tightness of

task laxity distribution and/or the degree of system heterogeneity increases.

Effect o f Statistical Fluctuation in Task Arrivals on the Proposed Scheme; One

issue in using the Bayesian estimation technique is to what extent the proposed LS mech­

anism remains effective when the attributes of tasks arrived at a node randomly fluctuate.

We study this effect on the estimation of composite task arrival rates by simulating task sets

153

LS mechanism Focused Addressing Proposed Algorithm Perfect LS
(Kn,rn) (14) (8,2) (1,1) (8,2) (1,1) (8,2)

Task set I 0.241 0.278 0.206 0.237 0.184 0.213
Task set II 0.398 0.416 0.304 0.311 0.276 0.294
Task set III 0.355 0.392 0.321 0.347 0.286 0.312

Table 5.3: Performance comparison (w.r.t. task transfer-out ratio) of different LS ap­
proaches for a 16-node system. Aer(= 0.8. The task transfer delay is assumed to be 10%
of task execution time.

H - I “

3 =

1--- -| +'Z----- 1---

3 - ZJTZ 3

■A NLS
o ftoposed approach
• Prop, approach w/o 02

■m Perfect LS

S.0 7.0&02.0 3.0
Coefficient of variation of taik interamval time <CV)

Figure 5.15: Pdyn vs. coefficient of variation (CV) of external task interarrival times for a 16-
node homogeneous ((K„,rn) = (1 , 1)) system with Aext = 0.8, E T = {0.4,0.8,1.2,1 . 6 } 0 .2 5 ,

L = {1,2,3) 1/3.

154

with different hyperexponential task interarrival times (e.g., by varying the coefficient of

variation (CV) of hyperexponential task interarrival times). Fig. 5.15 shows the simulation

results under heavy system load (Aei;t = 0.8, where the LS performance is most sensitive to

the variation of C V) with the window of the sample size N s = 30. From Fig. 5.15, we draw

the following conclusions: as the variance of task interarrival times {CV) becomes greater,

the sample-mean based estimate gets worse. This is because the variability effect due to

task burstiness cannot be totally smoothed out. This accounts, in part, for the performance

degradation of the proposed mechanism. Another reason for performance degradation is

due to the capacity limit of the distributed system; that is, the system inherently cannot

complete simultaneously bursty time-constrained tasks in time. The proposed LS mech­

anism remains effective (despite its gradual degradation) up to CV=7.42 (or C V 2 = 55)

beyond which it reduces essentially to the scheme without the use of Bayesian estimation.

This suggests that within a wide range of statistical fluctuation in task arrival patterns,

parameter estimates based on the Bayesian technique suffice to serve as an index of the

tendency of future task arrivals on a node.

5.6 C onclusion

We enhanced the LS mechanism proposed in Chapter 3 by considering the effects

of future task arrivals on locating the best receiver for each overflow task. The proposed

LS mechanism minimizes not only the probability of transferring an overflow task 7* to an

incapable node, but also the probability of the chosen remote node failing to complete T in

time because of the node’s future arrivals of tighter-laxity tasks. Consideration of future

task arrivals significantly improves the performance of LS (in minimizing Pdyn) when system

workloads are unevenly distributed among nodes.

All parameters needed in the LS decision process — observation/estimation of

other nodes’ states, composite task arrival rates of other nodes, and task execution time

and task laxity distributions of other nodes — are collected/estimated on-line using tim e-

stamped region-change broadcasts and Bayesian estimation theory. This makes the pro­

posed mechanism (1) less sensitive to communication delays and (2) adaptive to dynamically

varying workloads with little computational overhead.

The Poisson approximation of composite task arrivals — which has been used

without justification in other LS schemes (e.g., [SC89a, MTS89b]) — has been carefully

checked by the Kolmogorov-Smirnov goodness-of-fit test. Our simulation results have

indicated that this assumption holds for a system with a reasonably large (> 12) number of

155

nodes and/or with a small (< 0.25) average task transfer-out ratio. The negative impact

of statistical fluctuation in task arrivals on the proposed approach with use of Bayesian

estimation is also shown to be tolerable within a wide range of bursty task arrivals (e.g.,

up to C V 2 = 55, where C V is the coefficient of variation of external task interarrival times

used in the simulation).

CHAPTER 6

INCORPORATION OF OPTIMAL TIMEOUTS INTO LS

6.1 In trod u ction

As discussed in Chapter 3, for the LS scheme that uses state-region change broad­

casts as its information policy, each node t broadcasts a message, informing the other nodes

in its buddy set of a stage-region change whenever its CET crosses a certain broadcast

threshold [SH91]. To detect node failure and to prevent sending overflow tasks to failed

nodes, a timeout mechanism is usually incorporated into this kind of LS scheme as follows.

Each node n makes the transfer and location decisions as specified by the LS scheme. In

addition, node n considers node i failed if it has not heard from node i for the timeout

period, T0„ , since its receipt of node t ’s latest broadcast, and will henceforth not send its

overflow task(s) to node i even if node i is observed (through the state information gathered

in region-change broadcasts) to be capable of completing the task(s) in time. Obviously,

the determination of TfJ? is crucial to the performance of the timeout mechanism, and is

the main subject of this chapter.

There are two possible scenarios of node n not receiving any region-change broad­

cast from node i for

51 . Node i failed sometime after issuing its last broadcast message;

52. Task arrival and completion/transfer activities alternate in such a way tha t the state

or CET of node i oscillates within two adjacent broadcast thresholds, or remains in a

broadcast-threshold interval.

The occurrence of S I is determined by the failure rate of node i, while S2 is determined by

task arrival, completion, or transfer activities on node t, all of which dynamically change

with the composite task arrival rate, the attributes of tasks arrived at node t, and node t ’s

initial state node. Some simple techniques could be used to determine whether S i or S2

occurs: node n may determine whether node i failed or not by probing it a t the time of

156

157

making a LS decision, but in such a case, it has to wait for node Vs response before making

the LS decision. This could introduce unacceptable delays to those tasks to be transferred,

the negative effect of which increases significantly with communication delay [MTS89b].

On the other hand, node n may arbitrarily choose a fixed timeout period a priori.

In this case, node n runs the risk of (1) hastily and falsely diagnosing a healthy node as failed

if the timeout period chosen is too small and (2) failing to detect node failures in a timely

manner if the chosen period is too large. Actually, as will be demonstrated in Section 6.5.2,

the best value of varies drastically with the system load, the attributes of tasks arrived

at node and the state node 2 was initially in, since task arrival and completion/transfer

activities on a node dynamically vary with these parameters. (We will compare the per­

formance of using the best against tha t of using some pre-specified timeout period in

Section 6.5.3.) This calls for a timeout mechanism which on-line collects/estimates these

parameters and dynamically adjusts T0<‘t> accordingly. That is, the timeout mechanism

requires each node i to collect statistics, estimate on-line its “composite”1 task arrival rate

and distributions of task execution time and laxity, and convey the estimated parameters

to other nodes in its buddy set by piggy-backing them in state-region change broadcasts.

This information will then be used by the other nodes to calculate

One key issue in designing a timeout mechanism with on-line adjustable time­

out periods is to express as a function of task attributes and load states. Since the

determination of involves a tradeoff between the performance improvement gained

by reducing TfJ? (thus enabling early detection of a node failure) and the performance

degradation resulting from hasty, incorrect diagnoses, we formulate this problem as a hy­

pothesis testing (HT) problem with two hypotheses, and determine by maximizing

the probability of detecting node failures subject to a pre-specified probability of incorrect

diagnosis.

To further reduce the probability of incorrect diagnosis, the timeout mechanism

is modified as follows: each node n calculates the “best” timeout period, T<£">, for itself

(as well as for other nodes), and broadcasts its state not only at the time of state-region

changes but also when it has remained within a broadcast-threshold interval and has thus

been silent for T ^ >. That is, with a few extra, timely broadcasts, the undesirable effect of

incorrect diagnosis can be reduced while enabling fast detection of node failures.

The LS mechanism in Chapter 3 will be used here as an example to demonstrate

how to incorporate the proposed timeout mechanism into a LS scheme with aperiodic s ta te-

: both external and transferred-in

158

change broadcasts. One can, of course, include the timeout mechanism in other existing LS

schemes.

The rest of the chapter is organized as follows. Section 6.2 outlines the proposed

timeout mechanism. Section 6.3 and 6.4 establishes a theoretical basis for the calcula­

tion of optimal . The HT formulation is treated in Section 6.3, while the probability

distribution needed in the HT formulation is derived in Section 6.4 by applying the ran­

domization technique to a continuous-time Markov chain which characterizes the state

evolution. Section 6.5 presents and discusses representative numerical examples, and this

chapter concludes with Section 6.6.

6.2 T h e P roposed M echanism

We proposed in Chapter 3 a decentralized, dynamic LS mechanism for distributed

real-time systems without considering node failures. In this section, we state the assump­

tions made about the system and the analytical derivation to be performed, and then

discuss how to incorporate the proposed timeout mechanism in distributed LS to tolerate

node failures.

We assume that the node clocks in the system are synchronized to establish a

global time-base. A scheme for achieving this synchronization was presented in [RKS90].

We also assume that the underlying communication subsystem supports reliable broadcasts

[RS88, KS91b] so that a non-faulty node can correctly broadcast its state change to all

other non-faulty nodes in the system. Finally, each node is assumed to have a constant

exponential failure rate Xp. (This assumption is commonly used in reliability evaluation

[EB86, AAS86].)

To facilitate mechanism description and analysis, we introduce the following no­

tation and assumptions:

A*: the composite (external and transferred-in) task arrival rate at node i. We approximate

the composite task arrival process to be Poisson, the validity of which has been treated

in Section 5.5.1. This approximation is used to facilitate the derivation of T f f i and

the on-line estimation of parameters needed for calculating

{p»0)>1 < < E max}\ the distribution of execution times of composite tasks a t node i,

where E max is the maximum task execution time. This distribution will be estimated

on-line by each node i.

{P\ 0)>1 < j 5: Lmax}- the distribution of laxities of composite tasks at node i, where Lmai

is the maximum laxity. This distribution will also be estimated on-line by each node

159

i.

CETc. the cumulative task execution time (CET) on node i.

Tq = (T i;r2; ...;T£riJ : the record for task execution times of the sorted queue on a node,

where 2} = e{e^...ej+1 is an execution-time record of tasks with laxity ji € {1, . . . , Lmax)

currently queued on a node,2 and e{ 6 { 0 ,. . . , E max}, 1 < k < j + 1, is the execution

time required by the k-th task among those laxity-j tasks in the queue, (ej = 0 if

there are less than k laxity-j tasks in the queue.)

the timeout period; node i will be diagnosed as failed if no broadcast message from

node i has been received for this period since the receipt of its latest broadcast.

The operations of a node’s task scheduler which employs the LS mechanism de­

scribed in Chapter 3 and the timeout mechanism are given in Fig. 6.1. The timeout mech­

anism to be incorporated into LS is composed of the following sub-mechanisms.

O n -lin e P a ra m e te r E s tim a tio n : node i records on-line the inter-arrival time, the re­

quired execution time, and the laxity of each task upon its arrival, and applies the Bayesian

technique to estimate the task parameters: A,-, 1 < j < J5mat}, and {p,-(j), 1 <

j < Lmax}- Application of the Bayesian technique to estimate these parameters has been

treated in Section 5.4. These estimated parameters are piggy-backed with the description

of the sorted task queue Tq in region-change broadcasts.

D e te rm in a tio n o f T im eo u t P erio d s an d D etec tion o f N ode F ailu res; upon receiv­

ing a message broadcast by node i, node n uses the task parameters and Tq contained in

the message to calculate T f f i . A theoretical basis for determining will be established

in Sections 6.3 and 6.4 by using the hypothesis testing (HT) and randomization techniques.

Conceptually, the problem of determining T f f i is first formulated as a HT problem by mak­

ing a tradeoff between S I and S2 . Then, the key expression needed in the HT formulation,

i.e., the probability distribution that no message has been received from node i within time

t given that node i is operational is derived by first modeling the state evolution of node i

as a continuous-time Markov chain and then applying the randomization technique on the

constructed Markov chain to derive the distribution of interest.

Node n considers node i failed if it has not heard from node i (via region-change

broadcasts) for since node i ’s latest broadcast, and will not transfer any overflow tasks

3The reason that T, is of the form e(e^...ej+, is because a node can queue, under the MLFS discipline,
at most j + 1 tasks with laxity j , in which case all but the last laxity-j task require 1 unit of execution time,
and there are no tighter-laxity tasks queued at the node.

160

At each node n:
When a task Ti with execution time Ei and laxity £{ arrives at node n:

determine the position, j p, in the task queue Q such that l j r - 1 < < tj,',
if current_time + E k > £(then
begin

receiver_node := table Jookup(0:observation, .̂-.-laxity);
transfer task Ti to receiver_node;

end
else
begin

queue task at position j p;
for k = j p + 1, length(Q)

begin
if current_time + Ei > £k then
begin

receiver-node := table_lookup(0observation, £*:laxity);
dequeue and transfer Tk to receiver_node;

end
end

if current_CET crosses T H 2k, 1 < k < [^ 1 - 1, then
begin /* region-change broadcasts */

broadcast (1) time-stamped CETn’s, and (2) A„, {p„0)}» {Pn(fc)}
to all the other nodes in its buddy set;

calculate and reset timeout_dock„;
end

end
(An, {pn(j)} , {pn(k)}) = parameterJupdate(_E,, £it t,:interarrivalJtime);

When a broadcast message arrives from node i:
update observation of node i's state, 0,-;
if node i is disabled then

enable node i;
else

record (0 , ,C £ 7 |) pair needed for Bayesian decision analysis;
calculate TfJ? using Aj({p ,(j)} and {p<(fc)}, and reset timeout-dockj;

At every clock tick:
current.CET := current.CET - 1;
if (current.CET crosses T H 2k, 1 < k < - 1) or (timeout_clock„ expires)
then

begin
broadcast (1) time-stamped CETn’s, and (2) A„, {pn(i)} i and {pn(fc)}
to all the other nodes in its buddy set;

calculate and reset timeout_clock„;
end

if timeout-clock,- expires then
disable node i ;

At every Tp clock ticks: /* table update * /
update the table of loss-minimizing decisions by Bayesian decision analysis;

Figure 6.1: Operations of the task scheduler on each node.

161

to node i until it receives a broadcast message from node i again. Whenever a failed node

i is recovered, it broadcasts its recovery to all the other nodes in its buddy set. Upon

receiving such a broadcast message, node n will consider node i capable of receiving tasks

if the subsequent region-change broadcasts indicate so. On the other hand, node n also

calculates its own timeout period T ^ > at the time of broadcasting a state-region change.

If node n has remained within a broadcast-threshold interval and has been silent for

it broadcasts an extra message to inform other nodes of its fault-free (or (I am alive’) status.

6.3 D eterm ination of the O ptim al T im eout Period

In this section and the next section, we will establish a theoretical basis for the

determination of Tfj? . The problem of determining T0<,1> is formulated as a HT problem in

this section. The probability distribution needed to solve the HT problem is then derived

using the randomization technique in Section 6.4. For a node n to determine the best

timeout period of node i, T f j f , it needs two sets of parameters, both of which are contained

in the most-recently-received broadcast message from node i :

1. on-line estimation of A,-, {p,(j), 1 < j < Lmax}, and {p,(j), 1 < j < Em„ } .

2. node t ’s sorted task queue, T q .

We discussed how a node estimates the parameters of task attributes (i.e., A,-, pi(j)% and

Pi(j)’s) in Section 5.4. Tq is the record of the task execution times of the sorted queue at

node i. How a node broadcasts its on-line estimated parameters and T q to all the other

nodes in its buddy set in Section 5.3.

Recall that T<Jf is the timeout period after which node i will be diagnosed as

failed by node n ^ i if no broadcast message from node i has been received since the

last broadcast. As mentioned earlier, there are two possible scenarios, S i and S2, that no

broadcast message from node i will be received by node n within T f f i . The determination of

T f f i requires to make a tradeoff between these two possibilities, and can thus be formulated

as a HT problem with two hypotheses. Specifically, let Ob(t) £ {0,1} indicate whether or

not a broadcast message from node i is received within time t, and let T„t be the random

variable representing the time to node i ’s next broadcast. We have two hypotheses:

H0: node i is o pera tional Ob(t) ~ p0l

Hi', node i is fau lty Ob(t) ~ pu

162

where ~ denotes that p0 and pi are the p.d.f. of Ob(t) under the hypothesis H0 and P i ,

respectively. p0 and pi can be expressed as

p0(Ob(t) = 0) = P(no message has been received from node i within t | node i is operational)

= P(Tni > t 1 node i is operational),

Po(Ob(t) = 1) = P(Tnb < t | node i is operational) = 1 - po{Ob{t) = 0),

Pi(Ob{t) = 0) = 1, and pi(Ob(t) = 1) = 0.

Also, the probability th a t H0 or Hi is true without conditioning on any observation can be

expressed a s r 0 = e~Xpt or tti = 1 — e~Xpt, respectively.

Now, a decision 6(Ob(t)) £ {0,1} must be made on which hypothesis must be

accepted based on the observation Ob(t). Two types of error may be encountered: (1)

false -alarm , or H0 is falsely rejected, the probability of which is denoted by Pf (S)\ (2) m iss ,

or Hi is falsely denied, the probability of which is denoted by Pjf(tf). The corresponding

detection probability is Pc (d) = 1 — Pm(^)* A criterion for designing a test for H0 versus

H i , called the Neyman-Pearson criterion [P0088], is to place a bound on the false-alarm

probability and then to minimize the miss probability subject to this constraint; tha t is,

the Neyman-Pearson design criterion is

max4 P d (6) subject to Pp(^) < (6.1)

where a*,* is the significance level of the hypothesis test. Specifically, let the decision £(•)

S (O m = I h if * ' P l (0 ‘ W) - 10 •p»(0 6 (1)) ' (6.2)
(0, otherwise,

where the maximum a posteriori (MAP) probability is used to determine whether to accept

H\ or not. Then, Pp(b) can be expressed as

PF(tf) = P(accept Hi \ H 0 is true) = P 0(tf(06(i)))

= Po(tti • P i(06(t)) > JTo • po{Ob(t)))

= P (* o ’ Pa(Ob(t)) < 7Ti • pi(Ob(t))) • p0(Ob(t))
OKOe{o,i}

= P(p0(Ob(t) = 0) < -) • Po(Ob(t) = 0), (6.3)

where Bo(') and P0(*) denote the expectation and the probability under H0, and the last

equality comes from P(ir0 -Po(l) < ^1 • P i(l)) = 0. Similarly, Pd(0) can be expressed as

PD(b) = = P,(jr, P i (O b (t)) > Xq ■ pa(Ob(t)))

= P(po(Ob(t) = 0) < £ •). (6.4)

163

If the expression of p0(Ob(t) = 0) = P(Tnt > t | node i is operational) can be derived as

a function of t, then the best under the Neyman-Pearson criterion is the minimum t

such that both

Po{Ob(t) = 0) < and pa(Ob(t) = 0) < — = cAf* — 1 (6.5)
7T0

are satisfied, in which case -Pd(<5) = 1 and P f (6) < min{aht, eXrt - 1}.

6.4 D erivation of P (T nb > t | node i is operational)

We now use the randomization technique [Gra77, GM84, MY84] to calculate

P{Tnb > t | node i is operational). Since this technique can be applied only to a finite

state-space continuous-time Markov chain, we model the state evolution of a node as such.

We first describe how the system model is constructed. Then, we derive P(Tnt > t |

node i is operational) using the randomization technique.

6.4.1 System M odel

The state/CET evolution of a node is modeled as a continuous-time Markov chain

{ X (t) , t > 0} on a finite state space S. Transitions in the Markov chain are characterized

by the generator matrix Q = (9 ,7) , where 9 ,7 , 0 < i , j < N , is the transition rate from

state i to state j . The parameters needed in the model are A,-, {p,-(j), 1 < j < Emat.}, and

{pi(fc), 1 < k < Lmax}, all of which are estimated on-line by each node i and piggy-backed

in region-change broadcasts to the other nodes in its buddy set.

We characterize the CET evolution caused by task acceptance/completion under

the non-preemptive MLFS discipline. With a minor modification, our model can also be

applied to the case when the loading state is queue length. To construct a continuous-time

Markov chain on a finite state space, we approximate the deterministic consumption of CET

on node i (at a pace of 1 per unit time) as an Erlang distribution with rate K „ and shape

parameter K „. The Erlang distribution becomes exact (i.e., deterministic with rate 1) as

K er —► 00. We choose K „ such that P(Tnb > t | node i is operational) obtained from the

corresponding M ^ / E kmt/1 model is very close to that obtained from M ^ /E f(,r+i / l model.

In Section 6.5.1, K „ > 5 is shown to satisfy the above criterion for all combinations of

task attributes studied. Each accepted/queued task contributes K trm service stages with

probability Pi(m), 1 < m < Emax, and each service stage is consumed at (an exponential)

rate K „.

164

D efinition o f s ta te : The state of node i is defined asH_ = (H0] f li ; H 2] where

Hj = h { h is a sequence of j + 1 numbers with h{ € {0, . . . , K erE max} representing

the number of service stages contributed by the k - th laxity-y task in the node’s queue. Hj

can be viewed as a record of all laxity-y tasks currently queued on node i. Since all laxity-y

tasks queued on node i must start execution by their laxity, there are a t most j + 1 laxity-y

tasks th a t can be queued on node % (in which case all bu t, perhaps, the last task require

1 unit of execution time). Moreover, let c, = h{ denote the to ta l number of service

stages contributed by all laxity-y tasks, last(Hj) denote the index of the last nonzero entry

in H j, and

' - 1, if 2L = 0;

minimum I s.t. n*=o(l “ ^ >(cj-)) x ^ >(cj) = 1>
if H_ ^ 0, and h{ € {0} U { K erm : 1 < m < E max} Vy;

the only index I s.t. h\ £ {0} U { K erm : 1 < m < E max},

if H_ ^ 0, and 3j s.t. h{ ft {0} U { K erm : 1 < m < E max}

denote the laxity of the task currently under service, where

Lnow(H) = *

A > & \x) i j X’ i f a : > ^) 0 ’
1 0, otherwise.

For example, consider a system model with Lmax = 3, E max = 2, and K tr = 4.

£ now((0; 40; 000; 1000)) = 3 indicates that the task currently being served has 3 time

units of laxity and 1 remaining service stage. Xnow((0; 00; 440; 8000)) = 2 indicates tha t

the task to be served next is the one with 2 time units of laxity and 4 service stages if there

are no new laxity-1 task arrivals before the next state transition.

Under the non-preemptive MLFS discipline, the state H_ has the following prop­

erties:

P I : h{ € J\f is an integer multiple of K er except for perhaps h[, the number of service

stages contributed by the laxity-y task currently under service.

P 2 : The size of the state space is bounded by \ \ ^ ” {K tTE max -f l){E max + 1)' and thus is

finite.

P 3 : Since a task with laxity j is accepted/queued only if the CET contributed by both the

tasks with laxity < j — 1 and the task currently under service is no greater than j

units of time, we have Cj > 0 only if

1
K*r3 ^ ^ 2 cnt Vy € [£ n o w (iD + 1> Lmax\i

n = 0

165

o r > .

Kerj > X > » + h t now(® Vj € [0, l n o w (R) - 1].
n=0

Note th a t cLnow(«J > 0 by the definition of £ now (JL) (except for the case of H_ = Q).

P4: Since every laxity-y task queued on node i must be able to start execution by its laxity,

the number of service stages queued “in front of” it must be < K erj , i.e.,

j - 1 tait(Hj)-1
5 3 Cn + 5 3 — K erj, V j € [Lnow(IL) + 1)

n= 0 n = l

or,
j - l latt(Hj)-l
5 > n + h fnow(^ + 5 2 h i < K erj , Vi € [o, Znow(JZ) - 1].
n= 0 n = l

For example, consider again the system model with L max = 3, E max = 2, and K „ — 4.

The state (0;10;440;8000) is allowed, while (0;10;480;4000) is not, because the task with 3

time units of laxity and 4 service stages (represented by the underlined number 4) in the

la tter state violates P3 and P4. The state (0;48;000;8000) is allowed, while (0;48;000;1000)

is not, because in the latter state the task with 3 time units of laxity (represented by 1)

is currently in service, and thus, the task with 1 time unit of laxity and 8 service stages

(represented by 8) cannot be queued.

As indicated in P2, the size of the state space is bounded and is actually much less

than the given bound because of P I and P 3-P 4. It, however, grows significantly as Lmax

or E max or K er increases, but as will be clearer later in this section, the generator m atrix

Q of the corresponding Markov chain is very sparse, so one can exploit the sparseness of

Q — e.g., use the modified SERT algorithm proposed in [GM84] — to economically store

sparse matrices, and to alleviate the computational difficulty.

D e te rm in a tio n o f tra n s itio n ra te s ; There are two task activities th a t cause sta te tran ­

sitions: one is task acceptance by node i, and the other is CET consumption by node i.

The task transfers resulted from the acceptance of a newly-arrived task under the MLFS

scheduling discipline are figured in task acceptance. (Recall th a t some tasks originally

queued on the node may have their laxities missed as a result of inserting a newly-arrived

task into the sorted task queue, and must thus be transferred out.)

A . T h e tra n s it io n caused by ta sk accep tan ce : Assume tha t the system is in state H_,

and will make a transition to state H't K ri = (H„; H [\ ...; H't \ ...; H'Lmax) upon acceptance of

a task with laxity £ and execution time m, where 1 < £ < L max and 1 < m < E max. Then

166

(1) c'- = Cj (or equivalently, Hj = Hj), 1 < j < £ — 1, i.e., the CET contributed by tasks

with laxity < t — 1 will not be affected by the acceptance of a task with laxity £;

(2) Hj equals Hj, perhaps with the last few entries (£ + 1 < j < L max) replaced by 0

(so c'j < Cj) . That is, the tasks originally queued with laxity > £ may have to be

transferred out because of the insertion of a newly-arrived task.

(3) The number of nonzero entries in Hi is not greater than £, and H[= K erm 0...0,

i.e., H't consists of the nonzero entries in Hi followed by the number K erm (and pos­

sibly a few 0’s to make the number of entries equal to £ + 1).

(4) The corresponding transition rate (under the non-preemptive policy) is
L m a x

qH Ht = ^ ipi (t)p i (m) • Check_Cet(£) • TT {comp(Ht , H[) • Task_Not_Tranafer(f)— JLJL *
i=!4-i

t£xero(C)

where

C heck.C et(l) =

+(1 — comp(Ht ,H ,t)) • Task-Transfer(t)} ,

J A > (K ^ - ^ _ qC j), if

\ ^ (K ‘ r t - (Z ‘=0 cJ + h t « ™ W)) , if

(6 .6)

if Lnow(L[) < t,

if L n o w (£) > t\

zero(C) = th e set of indices j such th a t cj = 0;

f 1, if =
(_ 0, otherwise;

Task-N otJIVansfer^) = <

Task.Transfer(t) = <

1, if t — Lnnw (H) and las t (Ht) — 1,

- (£ j:s c '+ E ' r r 0-1 mm-
if t = Immr lH) and ia s t(f f t) > 1,

A >(Kert - (E ' z J c ' + e ' : ? " 0 - 1 M + ^ now(^)) -
if t < Lnovr(H),

A 2(K .r*-(E S c '+ E 'r ^ 0- 1^)).
if t > Lnow(/£):

a ^ E ' i U + E
if t = Lnav/IH) and laat(H't) > 2,

* > < £ £ « * + M -*«■*>.
if t = Lnavr(H) and laat(H't) = 1,

0, if t — L nnw (ff) and laat(Hf) = 0.

A3t(if.rt - (E ‘: J + E f f ^ -1 *j)>*
A>{(E‘; i c;+ E 'a=‘:t(w|)fc;) - ^ o .

if t > L n o w (W) and laat(H^) ^ 0,

a > (E £ U " * " * > .
if / > Lnnw (H i and laat(H[) = 0,

a - (E j: i + E 'r ,1(Hi)_1 v + /«fnow(£)))x
A>((E *:i 4 + *J) + h i n ° W l M) - *.rt),

if t < Lnavt(H) and laat(H't) ^ 0,

A>(E ':oc; + ^ now<ii)- ^ ‘).
if t < Lnnv/(H) and las t (Hj) = 0;

The physical meanings of Eq. (6.6) are given below:

167

(a) The first factor AiPi(£)pi(m) is the arrival rate of tasks with I time units of laxity and

m units of execution time on node i,

(b) The second factor Check_Cet(£) accounts for the fact that a newly-arrived task with

laxity I will be queued/accepted on node i only if one of the following two conditions

holds: (i) the CET contributed by tasks with laxity < £ is less than or equal to £,

i.e., K trl > E5=q Cj-, if the laxity of the currently executing task < l\ or (ii) the CET

contributed by the tasks with laxity < I and the task currently under service is < i if

the laxity of the currently executing task > I (i.e., no preemption).

(c) The last factor accounts for the possible task transfers caused by the acceptance of

the arrived task. Since only tasks with laxity > I will be affected by the insertion

of the newly-arrived task with laxity I, f] is performed from t = £ + l t o t = Lmax

except for those t ’s with ct = 0. The transition could occur with rate XiPi(£)pi(m) if,

in addition to the conditions in Check„Cet(£), one of the following conditions holds,

Vi G [£ + 1, Lmax] '

(i) Ht = H't and all tasks queued with laxity t can still be completed in time after the

insertion of the arrived task, i.e., K ert > cj -f hj if the laxity of

the currently executing task < f, or, K ert > cj + hj + h fnow^

if the laxity of the currently executing task > i.

(ii) HI equals Ht except with the last (last(Ht) - last(H't)) entries replaced by zero,

i.e., a number (last(Ht) — last(H't)) of tasks with laxity t must be transferred

out. For example, if t > £now(2Q> exactly i tasks with laxity t have to be

transferred out if and only if both £ j"o cj + hj < K ert and £ j ” o cj +

> The cases with t < Tnow(20 and t = Tnow(iL) can

be similarly reasoned about.

B. T he tran s itio n s caused by C E T consum ption: The deterministic consumption
of CET at a pace of 1 per unit time is approximated as a /trer-Erlang distribution with rate
K er• Besides, at the end of each time unit (i.e., at the end of every K tr service stages),
all laxities have to be decremented by 1 to account for the fact that the laxity of a task is
measured w.r.t. the current time. Specifically, the system makes a transition from H_ to
H (t = (£7(5; H [] ...; H't; H ' Lm̂) , with transition rate

f Ker, if
J- U l j 0, O-

. if I = Lnovr(H.), .
. (6 J)otherwise,

where

168

(1) i f (M - l) * { * . r n » : l < n » < E m a x } u { 0 } ,

H i = (h i - l) h l2 . . . h lt + i , and H] = H j V j ? t .

(2) if (h[— 1) G {K „m : 1 < m < Emax } u {0 } ,

H ‘Lnmm = 0, H } = H J + 1 = h { + 1 . . . h H \ , V j G [Q , e - 2] U [(, L m a x - l] ,

tti I (M “ l)h2 "kV if M >!»
*-1 \ if Aj = 1.

The last nonzero transition rate is

<UL& = ~ (X 1 9h ,hiiKerm + X / _,) = -?£.• (6-8)
£,m £

The model constructed above is a continuous-time Markov chain, because (1) the

residence time at each state is exponentially distributed, and (2) the next state the system

will visit depends only on the current state and the task acceptance/completion activities

occurred during the residence a t the current state. The sparseness of Q comes from the fact

th a t all the other entries (except for the transition rates in Eq. (6.6)- (6.8))in Q are zero. For

example, the only possible transitions from state (0;10;400;4800) in the system model with

Lmax = 3, E mai! = 2, and K „ = 4 are to (0;40;480;0000), (0;14;400;4000), (0;18;000;4000),

(0;10;440;4000), (0;10;480;0000), and (0;10;400;4800) with transition rate K „ , A jPj(l)p,(l),

AiPi(2)pi(l), A,pl(l)p ,(2), A,pi(2)p,(2), and - (K er+ E i <£,m <2 A iPi(m)pi(£)), respectively.

The transition (0;10;400;4800) —*■ (0;10;400;4840) is not possible, because the newly-arrived

task with laxity i = 3 (represented by the underlined 4) will not be accepted (i.e., Check_Cet(£) =

0, because J ^ =0 Cj > K „ l) . The transition (0;10;400;4800) -»■ (0;10;480;4000) is not possible

either, because the task queued with 3 time units of laxity and 4 service stages (represented

by the underlined 4) must also be transferred (in addition to the task with 3 units of laxity

and 8 service stages) after inserting the newly-arrived task. Similarly, the only possible tran­

sitions from state (0;40;000;1400) are to (4;00;400;0000), (0;40;400;1400), (0;40;800;1000),

(0;40;000;1440), (0;40;000;1480), and (0;40;000;1400) with transition rate K er, A,pi(l)p,(2),

A»Pi(2)pi(2), \iPi(l)pi(3), A,pi(2)p,(3), and ~ {K er+ respectively. The
l £ m O
2< £ < 3

transition (0;40;000;1400) —► (0;44;000; 1400) is not possible, because the task currently un­

der service has laxity 3 (i.e., Lnow ((0; 40; 000; 1400)) = 3), and the newly-arrived task

with I = 1 (represented by the underlined 4) will not be accepted under a non-preemptive

policy (i.e., £ * =o c;+ /ifnow(-) > K ert).

169

6.4.2 Probability Calculation w ith th e R andom ization Technique

We now use the randomization technique to calculate the probability that a node

does not broadcast any message in [0,t], given it is operational in [0,t]. This technique was

introduced in [Gra77, GM84, MY84] as a method for computing transient probabilities of

Markov processes with finite state spaces [HS93a], and is summarized in the Appendix B.

Recall that in the proposed LS mechanism, a node’s states are divided into K t

disjoint subsets: [0,7\ffi], (TH l t TH 2], ..., where T H k, 1 < k < K t - 1 are

the thresholds of the node’s CET. A node will broadcast to other nodes its change of state

region whenever its state/CET crosses even-numbered thresholds, T H 2j , 1 < j < - 1 .

We thus define Sj = {H : K „ • T H 2U_l} < Z t l * (E u t l K) < • T H 2j) as the

j - th broadcast state region, where T H 0 = 0, the expression £*= i hk is the number of

service stages contributed by laxity-n tasks (i.e., c„), and the expression between inequalities

(£*=i fy?) is simply the total number of service stages queued on the node.

Let rj(n , k), 0 < k < n + 1, be the probability that the discrete-time Markov chain,

Y , obtained after the randomization of X (t) visits k times the states in Sj out of n state

changes. For example, rj(n ,n + 1) is the probability that Y always stays in Sj while there

are n state changes. Then, P(Tnb > t \ node i is operational and was in Sj during the last

broadcast), 1 < j < f ^ l , is the probability that the underlying Markov chain always stays

in Sj, no matter how many state changes have occurred in [0,/]. Thus,

P(Tnb > 1 1 node i is operational and was in Sj during the last broadcast)
00

= ^ Tj(n,n + 1) • P(n state changes in time t)
n=0

= ^ 2 rj(n >n + 1) ’ e-At(At)"/n!
n = 0

where A is the rate of the Poisson process obtained after the randomization.

The error, em, resulting from the truncation of the infinite sum in the above

equation can be easily bounded as

oo m

em = e_A<(At)n/nl • Tj(n, n + 1) < 1 - ^ e-A,(At)'7n!. (6.9)
n = m + 1 n = 0

The < in Eq. (6.9) results from the inequality r j { n , n + 1) < 1. The value of m can be

determined a priori for any given error tolerance.

rj(n , k) (and r;-(n, n + 1), in particular) can be easily calculated using the recursive

approach proposed in [dSeSG86] (and later studied in depth in [dSeSG89]). That is, let

T j{n ,k ,I f) be the probability that the underlying Markov chain Y are k times in Sj out of

170

n state changes and the state visited in the last transition is state 77. T j (n , k , I f) depends

on

• rj(n - 1 ,k — 1 ,#) , V77 € S, if 77 € S), since we have to increment the number of

states 6 visited by one for the previous state change from 77 to 77;

• Tj(n — 1, A;, 77) V77 e S, if 77 ^ Sj, since the number of states 6 Sj visited remains the

same for the current state change from 77 to 77.

So,

= { E / t e W " - 1. * - i . f f l - P / t . a . (# J0)

where V is the transition matrix of Y , and the initial conditions are

{1, if 77 G Sj and 77 is the state representation of Tq,

0, otherwise,

77(0 ,0 ,5 .) = 0, (6.11)

where Eq. (6.11) comes from the fact that given the CET was in Sj during the last broadcast,

the node must be initially in a state € Sj, and the k within the expression of r j(n ,k ,H)

must be > 1. Finally, r j(n ,k) = ri (n ,fc ,5).

Since we are interested in obtaining Tj(n, n + 1), we need only to compute Tj(n, n +

li2L)»V77 e Sj, as r j(n ,n + 1,77) = 0, V77 £ Sj. Thus, Eq. (6.10) reduces to

Tj{n, n + 1,77) = ^ r ,(n - i , n, H) • VH € S j .
3£Sj

6.5 N um erical Exam ples

The proposed timeout mechanism is evaluated in the following sequence:

1. Discussion on the parameters considered/varied in performance evaluation.

2. Discussion on (a) w.r.t. task attributes, and (b) w.r.t. the state in which a node

was during its latest broadcast.

3 . Performance evaluation: First, we comparatively evaluate (a) LS with no timeout mech­

anism, (b) LS with fixed timeouts, (c) LS with the calculated best timeouts, and (d)

LS with immediate detection of each node failure upon its occurrence. Second, we

study the negative impact of statistical fluctuation in external task arrivals on the

proposed LS mechanism.

171

6.5.1 Param eters Considered/Varied

Both 16-node and 64-node regular systems are used in our simulations. Both

node failure and recovery rates are assumed to be exponential with Aj? varying from 10"2

to 10-4 and fiF being fixed at 10"1. The size of the buddy set, the tunable parameters of

the proposed LS mechanism, the computational overheads assumed, the ranges varied for

task parameters (e.g., the average external task arrival rate per node, Aej.t, the ratio of

and the ratio of ^ ±i), the confidence level achieved (in simulation), and the notation used

all conform to those described in Section 3.5.

The transmission delay associated with each task transfer is varied from 10%

to 50% of the execution time of each task being transferred. The broadcast-message-

transmission delay is assumed to be negligible.3 The medium-queueing delay which is ex­

perienced by both broadcast messages and transferred tasks and which dynamically changes

with system load and traffic is modeled as a linear function of the number of tasks/messages

queued for the particular medium. The shape parameter K er is chosen to be 5, since

P(T„t > 1 1 node is operational) thus derived is almost indistinguishable from that derived

with K er > 6 (Fig. 6.2).

The case with hyperexponential interarrival times represents a system potentially

with bursty task arrivals. The squared coefficient of variation of hyperexponential arrivals

(C V 2) is varied from 1 to 91. Again, we present only those results that we believe are the

most relevant, interesting, and/or representative.

6.5.2 Discussion of T ffi

T'0u'(> increases as p0(Ob(t) = 0) = P(Tni > t | node i is operational) for a given

t increases. Figs. 6.3 - 6.5 illustrate how Po(Ob(t) = 0) (and thus, T0<*,>) varies markedly

with the task arrival rate, the state of node i at the time of its latest broadcast, and the

length of broadcast intervals, respectively.

As the composite task arrival rate increases, a node tends to cross its broadcast

thresholds more often if there is a threshold nearby and to the right of the node’s current

state. Thus, in Fig. 6.3, the increase in A; yields a smaller p0(Ob(t) = 0) for a given t (e.g.,

the more likely a broadcast message is issued within time t). Similarly, as evidenced in the

curves labeled as “initial state=2.0” in Fig. 6.4 or in the curves labeled as “init. state=5.0”

in Fig. 6.5, the closer the initial state of a node is to a broadcast threshold, the more likely

3The physical transfer of the virtual memory image of a task may require tens of communication packets,
while a region-change broadcast would in all likelihood need at most one packet.

172

I.0 e4 0 0

a. 1.0e-01

1.0e-02

l.Oe-03

1 .0e-04------

□ --------D atage=1.0
• --------♦ stage=2.0
++ stage=3.0
O - - -O stage=4.0
■ ------- ■ stage=5.0

0.00 5.00 to.oo 15.00 20.00 25.00 30.00 35.00 40.00
time (in unit of mean execution time)

Figure 6.2: P(Tni > 1 1 node i is operational) derived w. r. t. shape parameter K „ . \ = 0.8,
E T = {0.4,0.8,1.2, 1 . 6 } o ,2 5 (mean E T = 1.0), and L = {1.0,2.0,3.0}^. Node i has 4
state regions with each interval equal to 1 (except for the last interval), i.e., Si — [0, 2.0],
Ss = (2.0, oo). The state of node i is CET=1.0 in the last broadcast.

a o.goo

0.700

0,500

0.300

i i i i

-A rate=0.2
o rate=0.4
+ rate=0.6
♦ rate=0.8

0.0000.00 5.00 10.00 15.00 20.00 25.00 30.00
time On unit of mean execution time)

Figure 6.3: P(Tnb > t | node i is operational) w. r. t. task arrival rate A,-. E T =
{0.4,0.8,1.2, 1.6}o,26) L = {1.0,2.0,3.0}^, and K er = 5. Node i has 4 state regions de­
termined by T H \ = 1.0, T H 2 = 2.0, and T H 3 = 3.0. Si = [0,2.0], S% = (2 .0 ,00). The state
of node i is CET=1.0 in the last broadcast.

173

l.Oe-tOO

1-l.Oe-Ol
£

1.0*02

1.0e-03

1.0e-04

l.OeOS

1.0e-06

1.0e-07

1.0e-08

: : i % '------- 1--------1--------1------- t'®.- - -I--------
i i i i V* ii i

i i i i
 1 1 1 1 — -------

i i i i *•-.*
J______I______I_____ I_____U t* .

— & initial state=0.0
■ —A initial state=1.0
• -A initial state=2.0
• • • ♦ initial state=3.0
— O initial state=4.0
■ —at initial state=5.0

0.00 5.00 10.00 15.00 20.00 25.00 30.00
time (in unit o f mean execution time)

Figure 6.4: P(Tnb > t j node i is operational) w. r. t. the initial state node i is in. A = 0.8,
E T = {0.4,0.8, 1.2,1.6}o,25) L = {1.0, 2.0,3.0}^, and K tr = 5. Node i has 4 state regions
determined by T H i = 1.0, T H 2 = 2.0, and T H 3 = 3.0. Si — [0, 2.0], S2 = (2.0, oo).

l.Oe-tOO

S 1.0e-01

c£l.0eO2

1.0e-03

1.0e-04 u - J —i i i i i “m
1.0e-05-----------1 ---------

1.0e-06

l I ■%_ I I
" I V ~ 1

« 1 V------- 1--------1------- ir. _i-----------------
i i i \ i i %
i i i •_ i i

i i

1.0eO7 |— - |
I

l.OeOS------------1------------1---------- 1-------------1 - s - -t------------
I

_______ I _
I1.0*09

1.0e-10

H ■
i i i "a

J _____________I _______________I _________i i i
J ____ I_____I__

i

A A THi=2.0, iniL atate=1.0
O O TH2=3.0,init.atate=1.0
OO THj=4.0, iniL atate=1.0
A A THj=2.0, iniL atate=5.0
 ♦---------♦ TH2=3.0, iniL »tate=5.0
 •• TH2=4.0, iniL state=5.0

0,00 5.00 10.00 15.00 20.00 25.00 30.00
time (in unit o f mean execution time)

Figure 6.5: P (Tnb > t | node i is operational) w. r. t. the length of broadcast interval.
A = 0.8, E T = {0 .4 ,0 .8 ,1.2, 1.6}o.25, L = {1.0,2.0,3.0}^, and K er = 5. Node i has 4 state
regions determined by T H \ = \ T H 2, T H 2, and T H 3 = \ T H 2.

174

the node’s state will cross the threshold, thus increasing the possibility of a region-change

broadcast.

One interesting observation in Fig. 6.4 is that the probability of a node with initial

state 4.0-5.0 broadcasting within time t is smaller than that of a node with initial state

0.0-1.0, when t < 5 (units of mean execution time), but becomes greater when t > 5. This

is because a node with initial state 4.0-5.0 will not accept most of its arrived tasks and

tends to consume its CET. On the other hand, task acceptance and completion activities

may alternate on a node with initial state 0.0-1.0. Consequently, it is more likely for a node

with initial state 4.0-5.0 to reach the broadcast threshold after it consumes all its CET

(e.g., after 5 units of mean execution time).

Fig. 6.5 also demonstrates how the size of each broadcast interval affects p0(Ob(t) —

0). As shown in the curves labeled “init. state=1.0” in Fig. 6.5, the larger the broadcast

interval is, the less likely a node’s state will cross any broadcast threshold, thus resulting

in a higher p0(Ob(t) = 0) for a given t.

Since p0(Ob(t)) varies drastically with the task attributes and the initial state of

a node, the on-line calculation of T f f i is very important to the design of a timeout mech­

anism. Tables 6.1 and 6.2 give some numerical values of T f f i for different task attributes,

confidence intervals a*f, and node failure rates A*-.

6 .5 .3 Perform ance Evaluation

We use the probability of dynamic failure Pdyn and the probability of false alarm Pp

(the probability of falsely diagnosing a healthy node as failed) as the performance measures.

Since each node refrains itself from sending tasks to the falsely-diagnosed nodes (as well

as to the truly failed nodes), Pp is a measure in incorrectly limiting the LS capacity of a

system. That is, a larger Pp will leave a node with fewer candidate nodes for task transfers,

thus deteriorating the LS performance.

Using trace-driven simulations, we comparatively evaluate the performance im­

provement achievable with the on-line calculated best timeout mechanism. We compare

the proposed LS mechanism with the best timeout period against the case of using a fixed

timeout period where a node n (1) considers node i failed if it has not heard from node i

for and (2) broadcasts its fault-free status if it has been silent for Tf£*td, where T f ^ td

is a constant selected independently of node i ’s task attributes and state. We also compare

the proposed timeout mechanism with two baseline mechanisms. The first baseline assumes

no timeout mechanism, while the second is an ideal case where (1) each node immediately

detects the failure of another node upon its occurrence and (2) no false alarm occurs.

175

0.08

1
Jtw

0,07

o
£

0.0S Tk,---- 1------1------1---- I----

0.04 - -1 v - -1---- 1 -

0.03 - "II —

0.02
i iN. ̂ i T
i i i-i 1-----1 — '%—- 1

0.00
0.70.4 0.5 0.6 oa
task arrival rate

0.9

a A LSwithT«-. = 20
• -------- « LS with 1 ^ = 5
o ---------o LS with b « t

Figure 6.6: Performance comparison w.r.t. PF for different timeout periods in a 16-node
(Knp = 16) system. External (local) task attributes for node i: E T = {0.4,0.8,1.2,1.6)0.25,
L = {1,2,3}^, and K = 5. \ F = 10-2, pF = 0.1, and aht = 0.05. The task-transfer delay
is assumed to be 10% of the execution time of the transferred task. Each node has 4 state
regions determined by TH \ = 1.0, T H 2 = 2.0, and TH 3 = 3.0. Si = [0,2.0], S2 = (2.0, 00).

i.ooe-oi

•OOe-02 —

21.00e.03

I.OOe-04

1.00e-05

1.00e-06

1.00e-07
0.10 020 030 040 0.30 0.60 0.70 030 0.90

task arrival rate

a a LS with no tim eout
♦ ♦ LS w ithTfl^r^
o --------o LS with Tfh-rfO
O- - - o LS w ith beat T a
X X LS w ith perfect tim eout

Figure 6.7: Performance comparison w.r.t. Pdyn for different timeout periods in a reliable
16-node (K np = 16) system. Local task attributes for node i : E T = {0.4,0.8,1.2,1.6}o.25,
L = {1.0,2.0,3.0)^, and I< = 5. XF = 10-3, nF = 0.1, and a ht = 0.05. The task-transfer
delay is assumed to be 10% of the execution time of the transferred task. Each node has
4 state regions determined by THi = 1.0, T H 2 = 2,0, and T H 3 = 3.0. Si = [0,2.0],
S2 — (2.0,oo).

176

Distribution of
Task Laxity

Initial
State

Best T;ut
a ht = 0.20,
A p = lO" 2

a ht = 0.05,
A p = 10” 2

a ht - 0.05,
Af = 10“3

a ht = 0.01,
A p = 10~3

0 9.1 11.4 15.6 17.2
1.0 8.0 9.9 14.4 15.7
2.0 3.4 3.4 5.3 5.3
3.0 4.8 4.8 7.1 7.1

{1)2,3} i/3

0 9.1 11.4 15.6 17.2
1.0 8.0 9.9 14.4 15.7
2.0 5.8 6.2 10.4 10.5
3.0 7.2 8.2 12.0 12.5
4.0 8.1 9.5 13.1 13.8
5.0 9.1 10.7 14.1 15.0

{1, 2,3 ,4 ,5}{o.i,o.i,
0.2,0.3,0.3}

0 9.1 11.4 15.6 17.2
1.0 8.0 9.9 14.4 15.7
2.0 7.9 10.4 16.3 18.9
3.0 10.3 14.4 19.3 22.8
4.0 11.8 16.6 21.1 25.1
5.0 11.8 18.1 22.3 26.6
6.0 13.6 19.2 23.2 27.7

Table 6.1: Best timeout periods w. r. t. the initial state, a ^ , and Xp. A,- = 0.8, and E T =
{0.4,0.8,1.2, 1.6}o.2b* Node i has 4 state regions determined by T H \ = 1.0, T H 2 = 2.0, and
T H 3 = 3.0. Si, = [0,2.0], S 2 = (2.0, oo).

Fig. 6.6 and Figs. 6.7 -6.9 plot the curves of Pp and the curves of Pdyn for LS

with different timeout periods w.r.t. different combinations of AF and system size K np,

respectively. From these figures, we make the following observations:

• In general, Pp decreases as (1) task arrivals/transfers get more frequent (i.e., as the

system load increases), and (2) the timeout periods get larger. Thus, in Fig. 6.6

the case of = 20 performs best w .r.t. Pp for medium to heavy system loads

(A*x< > 0.6, where 5 < 7,0<*> < 20 as listed in Table 6.2). For light to medium system

loads (0.2 < A-*' < 0.6), the case of T f j? performs best w .r.t. Pp, because usually

T<Jt> > 20 (Table 6.2).

• The assumed 5% chance of incorrect diagnosis (a/,t = 0.05 in the HT formulation) is

reduced with a few extra, timely messages broadcast by each node to inform other

nodes of its fault-free status after a silence for

• The case with the on-line calculated T<jt> outperforms all the other fixed-timeout

cases tested in reducing Pdyn over a wide range of system load. The case with

Tfi£d — 20 is inferior to tha t with T0<‘t> for medium to heavy system loads due to its

177

A L Initial state Best Tout
0.4 0 32.6

{ lh 1.0 29.8
2.0 3.4*

> 3.0 >4.8*
0 32.6

1.0 29.8
{1,2,3}i/3 2.0 4.6*

3.0 6.4
4.0 7.8

> 5.0 > 9.1
0 32.6

1.0 29.8
2.0 5.5

{1, 2,3 ,4 ,5}{0.i,o.i, 3.0 8.4
0.2,0.3,0.3} 4.0 10.3

5.0 11.8
> 6.0 > 13.0

0.8 0 11.4
{1}! 1.0 9.9

2.0 3.4*
> 3.0 > 4.8*

0 11.4
1.0 9.9

{l)2 ,3}i/a 2.0 6.2
3.0 8.2
4.0 9.5

> 5.0 > 10.7
0 11.4

1.0 9.9
2.0 10.4

{1, 2,3 ,4 ,5}{o.ii0.i, 3.0 14.4
0.2,0.3,0.3} 4.0 16.6

5.0 18.1
> 6.0 > 19.2

(in units of mean task execution time.
* indicates eApt — 1 dominates the determination of Tout •)

Table 6.2: Best timeout periods w. r. t. the task characteristic and the initial state of node
i. E T = {0.4,0.8,1.2,1.6}o,25- ttn = 5 x 10-2 and XF = 10-2. Node i has 4 state regions
determined by T H t = 1.0, T H 2 = 2.0, and TH a = 3.0. Si = [0, 2.0], S2 — (2.0, oo).

178

l .00*02 _ n

 1-----1-------1-r y y - “7----1----

“ *1

1.00*05 1 1 ! 1---“ “I

-----1

1.00*07 "■■■ y I ' 1 1 1 ■ I
0.10 0.20 0J0 040 0.50 0.50 0.70 0.80 0.90

—A LS with no timeout
LSwithTfiupS

- o LS withTftwp20

A
♦
O
o - - - o LS with best T,
x ■X LS with perfect timeout

task azrival rate

Figure 6.8: Performance comparison w.r.t. Piyn for different timeout periods in a unreliable
16-node (K np = 16) system. Local task attributes for node i : E T = {0.4,0.8,1.2,1.6}o.26?
L — {1.0,2.0,3.0}^, and K = 5. XF = 10-2, f t p = 0.1, and a ht = 0.05. The task-transfer
delay is assumed to be 10% of the execution time of the transferred task. Each node has
4 state regions determined by TH i = 1.0, TH i = 2.0, and TH$ = 3.0. Si = [0,2.0],
S 2 = (2.0, oo).

inability of early detection of a node failure, thus increasing the possibility of sending

overflow tasks to a failed node. The case with T f£ ed = 5 is inferior to that with

because of the undesirable effects of false diagnosis (i.e., deterioration of LS capacity).

Frequent ‘I am alive’ messages in case of T0<l,> also consume communication band­

width and compete with transferred tasks and/or regular broadcast messages for the

use of communication medium when the system load ranges from medium to heavy.

Thus, there is a definite performance advantage with on-line parameter estimation

of task attributes and calculation of T f j f . The performance with is> however,

worse than the ideal case with immediate and perfect detection of node failures due

to the fact that node n might keep sending its overflow task to a failed node i during

the period between the occurrence of node Vs failure and its detection by node n.

• A smaller T f£ cd is preferable as the system becomes more prone to node failures,

especially for medium to heavy system loads (i.e., external task arrival rate > 0.5).

For example, the case of Tjixed = 5 outperforms the case of Tjixed = 20 in a more

error-prone system (Fig. 6.8) as external task arrival rate > 0.6. The performance

improvement of frequent timeouts is, however, not as pronounced for a reliable system

179

a — • —a LS with no timeout
♦♦ LS with
o o LS with Tn._.=20
o - - - o LS withbestTgg,
x — x LS with perfect timeout

0.10 0.20 OJO 040 0.50 0.00 0.70 OJIO 0.90
task arrival rate

Figure 6.9: Performance comparison w.r.t. Pdyn for different timeout periods in a unreliable
64-node (K np = 64) system. Local task attributes for node i : E T = {0.4,0.8,1.2,1.6)0.35,
L = {1.0,2.0,3.0}^, and K — 5. XF = 10-2, fiF = 0.1, and aht = 0.05. The task-transfer
delay is assumed to be 10% of the execution time of the transferred task. Each node has
4 state regions determined by TH \ = 1.0, T H 2 = 2.0, and T H 3 = 3.0. Si = [0,2.0],
S2 = (2 .0 ,00).

(Fig. 6.8). This can be explained by the fact tha t as the nodes in a system become

more prone to node failures, the performance deterioration caused by false diagnoses

will get better compensated by the performance improvement due to early detection

of node failures.

• As shown in Fig. 6.8 vs. Fig. 6.9, the effects of false diagnoses become less pronounced

for the case with a smaller Tff>ei (e.g., Tf?>d = 5) as the system size gets large. This

is due to the fact that a larger system has a larger processing capacity and is thus

more resilient to the deterioration of LS capacity caused by false diagnoses.

Impact o f statistical fluctuation in task arrivals on the effectiveness o f Bayesian

estimation: We examined the effect of statistical fluctuation in task arrivals on the

estimation of composite task arrival rates by simulating different task sets with hyperex­

ponential external task inter-arrival times and varying the coefficient of variation {C V) of

the inter-arrival time. Fig. 6.10 shows the simulation results under a heavy system load

Aert = A**‘ = 0.8 (where the performance is most sensitive to the variation of C V) with

the window of the sample size N s = 30. Also shown in Fig. 6.10 are the curves for the

ui.ooe-oi

ii.ooe-02

1.00e-03

1.00e-04

l.OOe-05

1.00e-06

1 rv w t7

A ,y‘\
• \ S ' S ' y

1 / /
I / l / . v is I
' / / L 'S* 1K 1
* 1 11 / s A 1 1

180

— *---------1 -

1.0*01S.0e-02
S.0e-02
7.0*02
6.0*02
S.fe-02
4.0C-02

-1 - -- -i -I -

& - • - a LS with no timeout
• -------- LSwithTM
x x LS with perfect timeout

1.0e-02 S.0
of vtrtidon of tuk ln tm riv tl time (CV)

6.02.0 3.0 4.0
Coefficient of virlidon of tuk tntewrlvil time (CV)

Figure 6.10: Pdyn vs. C V of external task interarrival times in a 16-node (N = 16) system.
Local task attributes for node t : E T = {0.4,0.8, 1 , 2 , 1 . 6 } o . 2 b > L = {1.0,2.0,3.0}^, and
K = 5. Af = 10-2 and fip = 0.1. The task-transfer delay is assumed to be 10% of
the execution time of the transferred task. Each node has 4 state regions determined by
T H i = 1.0, T H 2 = 2.0, and T H 3 = 3.0. = [0, 2.0], S2 = (2.0, oo).

case with no timeout mechanism and the case with immediate, perfect detection of node

failures. As C V gets larger, the sample-mean based estimate deviates more from the true

composite arrival rate A,- due to the fact that the variability effect of task burstiness cannot

be completely smoothed out. This accounts, in part, for the performance degradation of

the proposed LS mechanism. However, the proposed timeout mechanism remains effective

for all the task sets tested. For example, in Fig. 6.10, the performance of LS with T f f i

is still 25% better than LS without any timeout mechanism. This suggests th a t within a

wide range of task burstiness, the A< obtained from Bayesian estimation, although it might

deviate from the true A,-, is good for the calculation of T f f i .

6.6 C onclusion

We proposed a timeout mechanism which, when there are node failures, can

be incorporated into LS with aperiodic state-change broadcasts. By (1) on-line collec­

tion/estimation of parameters relevant to task attributes, and (2) calculating — based on

the observation and the estimated task attributes in the latest broadcast — the best time­

out period used to diagnose a silent node as failed, the probability of dynamic failure can

be significantly reduced, as compared to LS without any timeout mechanism or with a fixed

181

timeout mechanism.

The negative impact of statistical fluctuation in task arrivals on the proposed

timeout mechanism (in particular, Bayesian estimation) is also shown to be tolerable within

a wide range of task arrival burstiness; for example, the performance of LS with is

still 25% better than LS without a timeout mechanism.

Optimizing the tradeoffs involved with the timeout mechanism is an interesting de­

sign problem of its own. For example, there is a tradeoff between the potential performance

improvement gained by reducing the broadcast-threshold interval and the performance de­

terioration resulting from the traffic overhead of region-change broadcasts. This kind of

optimization is a matter of our future inquiry.

CHAPTER 7

A N EXAMPLE: INTEGRATED LS ON HARTS

7.1 Introduction

As discussed in Chapter 1, distributed systems are considered a suitable candidate

for real-time applications due to theiT potential for high performance and high reliability.

To realize part of this potential, at the Real-time Computing Laboratory of the University

of Michigan we are currently building an experimental distributed real-time system, called

HARTS (Hexagonal Architecture for Real-Time Systems) [Shi91].

In this chapter, we consider the issue of LS in HARTS, and adapt the concept of

buddy sets, preferred lists, and region-change broadcasts proposed in Chapter 3 to HARTS

[Shi91]. The nodes in HARTS are interconnected by the underlying interconnection topol­

ogy — a C-wrapped hexagonal mesh1 — and coordinated to evenly share “overflow” tasks.

The HARTS routing and broadcasting algorithms in [CSK90, KS91b] are used for trans­

ferring tasks and broadcasting state-changes. The virtual cut-through switching scheme2

[KK79] implemented in HARTS [DRS91] is used for inter-node communication. Moreover,

by exploiting/integrating features of these algorithms for/into LS, we rigorously analyze the

performance of LS in HARTS while considering all LS-related communication activities.

We first construct a continuous-time Markov chain to describe task arrival, trans­

fer, and/or completion activities under the proposed LS mechanism. Second, we derive the

traffic overheads introduced by LS (i.e., the rates of task transfer and state-change broad­

cast) from the Markov chain. Then, using the LS traffic rates as input and characterizing

the hexagonal mesh topology and the virtual cut-through switching scheme implemented in

HARTS, we construct a queueing network model from which the distribution of packet de­

livery time is derived. Finally, we derive the distribution of task waiting time (i.e., the time

1to be defined in Section 7.2.1.

2to be discussed in Section 7.2.1

182

183

a task is queued for execution plus the delivery time the task experiences if it is transferred),

from which the probability of dynamic failure can be computed.

The impact of communication activities/delays on LS was first analyzed in [MTS89b,

MTS89a]. They developed a continuous-time Markov chain for LS schemes with state prob­

ing, and characterized task transfer delays as with some percentage of mean task service

time, but did not consider the underlying communication topology and the switching scheme

used. We alleviated the negative effect of communication delays on maintaining up-to-date

state information by using Bayesian analysis in Chapter 3 and in [SH91, HS91]. Although

we considered the hypercube as the underlying interconnection system and included the

effect of possible task/message queueing at intermediate nodes on the way to the destina­

tion node of each transfer/broadcast, the performance evaluation conducted in Chapters 3

and 4 does not consider the underlying communication subsystem along with its task rout­

ing, state-change broadcasting, and message-passing functions as an integrated part of the

LS mechanism. To the best of our knowledge, this is the first to analytically evaluate the

integrated LS performance using Pdyn as a yardstick.

The rest of this chapter is organized as follows. Section 7.2 gives a brief description

of HARTS along with its routing and broadcasting algorithms, and its switching scheme.

The LS mechanism proposed in Chapter 3 is then adapted to HARTS in Section 7.2. Sec­

tion 7.3 deals with an integrated performance analysis of the proposed LS mechanism,

the underlying communication subsystem, and the interaction between them. Section 7.4

describes a simulator for modeling the LS operations in HARTS (and for verifying our

analysis), and presents some representative analytic/simulation results. Section 7.5 high­

lights the possible extension of our analysis to other LS schemes and/or interconnection

structures, and concludes this chapter.

7.2 S ystem M odel and Load Sharing M echanism for H ARTS

7.2.1 O verview o f HARTS

HARTS is an experimental distributed real-time system being built a t the Real-

Time Computing Laboratory, the University of Michigan [Shi91]. A set of Application Pro­

cessors (APs) along with a Network Processor (NP) form a node of HARTS. These nodes

are interconnected via a C-wrapped hexagonal mesh topology. The APs execute computa­

tional tasks, and the NP (which contains a custom-designed router, buffer memory, a RISC

processor, and the interface to APs) handles both intra- and inter-node communications.

Specifically, a C-wrapped hexagonal mesh (H-mesh) can be defined succinctly as

184

follows.

D efinition 1 A C-wrapped hexagonal mesh of dimension e, denoted as H e, is comprised of

M = 3e(e — 1) + 1 nodes, labeled from 0 to M — 1, such that each node k has six neighbors

[fc+3e—1]m» [k+3e-2]\{, [fc+3e(e—1)]^, [Ar+3c2—6e+2]^, and [fc+3e2—6e+3]jif,

where the dimension of an H-mesh is defined as the number of nodes on a peripheral edge

o f the H-mesh, and [o]6 denotes a mod b.

C-type wrapping is performed in the following three steps:

51. Partition the nodes of a non-wrapped H-mesh of dimension e into rows in three different

directions, d0, di, d2. The mesh can be viewed as composed of 2e - 1 horizontal rows

(the do direction), 2e - 1 rows in the 60-degree clockwise direction (the dx direction),

or 2e — 1 rows in the 120-degree clockwise direction (the d2 direction).

52. Label from the top the rows L 0 through i 2«-i in each direction.

53. Connect the last processor in Li to the first processor in L(i+e_

For example, Fig. 7.1 shows a simple C-wrapped H-mesh of dimension 5.

C-wrapped H-meshes have several nice properties as reported in [CSK90]. First,

C-type wrapping results in a simple, transparent addressing scheme, where the center node

is labeled as node 0, and the other nodes are labeled in sequence along the d0 direction. (An

example of the addressing for an Ho is shown in Fig. 7.1.) Second, C-type wrapping results

in a homogeneous network. Every node may view the mesh as a set of concentric hexagons

(where each hexagon has one more node on each edge than the one immediately inside of it)

with itself as the center node. Consequently, all nodes are topologically equivalent. Third,

the diameter of an Ht is e - 1. Consequently, any routing/broadcast packet traverses at

most e - 2 intermediate nodes before reaching its destination node. Fourth, simple and

efficient routing and broadcast algorithms can be devised, as discussed in [CSK90, KS91b].

In what follows, we summarize the important features of the routing algorithm

[CSK90], the broadcast algorithm [KS91b], and the virtual cut-through switching scheme

[DRS91], all of which support LS-related communication activities. These will be exploited

in our analysis of the proposed LS mechanism.

F ea tu res o f R ou ting A lgorithm : The routing algorithm derived from the simple ad­

dressing scheme determines all shortest paths between any two nodes given their addresses.

In particular, it determines the number of hops, k 0 , Arx, and k2, from the source node to

the destination node along the d0 ,d i , and d2 directions, respectively. Note that all shortest

52 53 53 54 54 55 55 56 56 57

Figure 7.1: A C-wrapped hexagonal mesh of dimension 5. H r.

paths are completely specified by i = 0, 1, 2, and the number of shortest paths with A,

hops in direction d, is (|fco| + |£i| + |fc2|)!/(|A:o|! All shortest paths between any two
nodes are assumed to be equally used with probability (|fc0|! |fci|! |Ar2|!)/(|^o| + |&i| + l^ l) -

Another notable feature is that at each node on a shortest path there are at most two

different neighbors of the node to which the shortest path runs, i.e., at most two of ft,-,

i = 0 ,1 ,2 , are non-zero [CSK90].

Featu res o f B roadcast A lgorithm ; An example of simple broadcasting in an H+ is

shown in Fig. 7.2, where, without loss of generality, the broadcasting node is placed a t the

center (node 0). For notational convenience, the 6/i nodes which are h hops away from

node 0 are said to be on the h-th ring centered at node 0, 1 < h < e — 1. The algorithm

propagates a packet, ring by ring, toward the periphery of the mesh. The broadcasting node

generates and transmits six copies of each broadcast message, one along each direction, d,-,

186

Figure 7.2: Simple broadcast for a hexagonal mesh of dimension 4, # 4. Corner nodes are
shaded. Links between nodes are not drawn for clarity._______________________________

0 < i < 5. Upon receiving a broadcast message, if the node is a corner node3 relative to the

broadcasting node (node 0) — the node lies along the direction, ds (0 < i < 5) with respect

to node 0 — then it transmits the broadcast packet along the direction 60-degree clockwise

to the direction from which the packet arrived, in addition to propagating the packet to the

next node along the direction of packet receipt. Otherwise, it just forwards the packet to

the next node along the same direction in which it is received.

V irtu a l C u t-T hrough : One of the switching schemes that support message routing and

broadcasting in HARTS is commonly referred to as virtual cut-through switching. For this

type of switching, packets arrived at an intermediate node are forwarded to the next node

in the route without getting buffered if a circuit to the next node can be established. Specif­

ically, the routing controller of HARTS contains six pairs of receivers and transmitters that

are connected to a single time-sliced4 bus. This bus is interfaced to the buffer management

unit (BMU) in the node to store packets that cannot cut through the node, or are generated

by or destined for the node. The operations for handling packets work as follows: when a

packet is received, the receiver first recognizes the packet type. If the packet is of regular

type, the receiver examines the routing tags in the packet header to check whether or not

the packet has reached its destination. If not, it checks the directions in which a packet

can be forwarded and tries to reserve a transmitter in one of these directions. If the reser­

3 Note tha t there are 6 corner nodes on each ring.

4 Each receiver is guaranteed to have access slot to the bus so that it may place on the bus the data it
receives.

187

vation succeeds, the transm itter accepts the packet and forwards it to the next node (i.e.,

a cut-through occurs). If the reservation attempts do not succeed, the receiver requests

BMU to store the packet for later transmission. If the received packet is of broadcast type,

the receiver attem pts to reserve the transmitter in the same direction, and drops a copy of

the packet in the BMU simultaneously. Also, if the receiving node is a corner node, it will

attem pt to send a copy of the packet in the direction 60-degree clockwise to the direction

from which the packet was received. If this reservation attem pt does not succeed, the copy

in the BMU will be transmitted later.

7.2 .2 A d ap tin g th e P roposed Load Sharing M echanism to H A R T S

We now incorporate the LS mechanism proposed in Chapter 3 into HARTS. Salient

features of this LS mechanism are that

1. It exploits the topological properties of the underlying interconnection network to evenly

distribute overflow tasks over the entire system by using the concept of overlapping

buddy sets and preferred lists in both location and information policies.

2. It reduces LS-related traffic while keeping the state information of other nodes as up -

to -date as possible by using region-change broadcasts for the information policy.

The problem of systematically constructing buddy sets and preferred lists for hypercubes has

been addressed in [SC89a]. We discuss here how to construct preferred lists in a C-wrapped

H-mesh to minimize the probability of more than one node simultaneously transferring their

overflow tasks to the same node.

Due to the homogeneity of a C-wrapped H-mesh, any node can consider itself as

the center node (node 0) of the mesh. So, without loss of generality, we can concentrate

on constructing the preferred list of node 0. Each node on the “ring” of h hops away from

node 0 (or simply the h-th ring of node 0) can be reached from node 0 by a sequence of

directions,

dj dj dj rf[i+i]g dp+i]4 dp+1]« =

j items (h-j) items

for some i and j , where we have used the shortest-route feature of routing algorithm in

Section 7.2.1. Also note that all permutations of d{ d ^ / j j lead us to the same node, i.e., all

sequences of directions which are composed of j d,-’s and (h —j) %+i]a’s lead us to the same

node. Consequently, the address of each node can be uniquely determined by the sequence

of directions as follows.

188

Lemma 1 The node reachable from node i with any permutation of the sequence of direc­

tions, axOa— Oj € {d0,d i, ...,d5}, Vj 6 {1,. has address [i + £o+ £i(3e2 — 6e + 3) +

4 (3 e2 - 6e + 2) + 4 (3 c2 - 3e) + £4(3e2 - 1) + 4 3 e2]3<.3_3e+i, where £,• (0 < j < 5) is the

number of times dj appears in the sequence aia2 ...ak, and e is the dimension of the H-mesh.

The proof of this lemma follows directly from the recursive use of Definition 1. For example,

the node reachable from node 0 with the sequence, d0 dj, has address [0 -f 1 + 2(3 • 52 — 6 •

5 + 3)]3.b»-3.6+i = [97]6i = 36 in an Hs (Fig. 7.1).
Now, let the 6h nodes in the h-th ring be ordered as

where d, = d[,+3j*. Node 0’s preference in transferring an overflow task is then determined

ring by ring, beginning with the innermost ring and terminating at the outermost ring.

(Nodes within each ring are ordered as above.) Specifically, the fc-th preferred node of

node 0 can be determined as follows: (1) find h such that J2 j=i 6 j < k < £ * =16j , i.e., h

determines which ring the fc-th preferred node lies, on; (2) set t = k — 6j specifies the

position of the k-th preferred node within the h-th ring. The address of the h-th preferred

node can then be determined by Eq. (7.1) and Lemma 1.

In what follows, we show that the preferred lists constructed above satisfy the

requirements stated in Section 3.2.

Lemma 2 Each node in an H-mesh will be selected as the k-th preferred node by one and

only one other node, 1 < k < 3e(e — 1).

Proof: An H-mesh forms a homogeneous processing surface where a sequence of directions,

d\ leading to a given destination uniquely determines the corresponding source node.

Thus, the lemma follows from the way preferred lists are constructed (i.e., k uniquely

determines h and £ which in turn uniquely determine d{ dji+ijj)- 1=1

Lemma 3 I f node i is the k-th preferred node of node j , then node j is the (k + l)-th

((k — 1)-th) preferred node of node i if k is odd (even).

Proof: Suppose one follows the sequence, d f to reach node j from node i, for some

h, m, and £. (Note that h, m, and £ are uniquely determined by k.) Then one can reach

189

External task arrival rate at a node

Distribution of task laxity Mean packet length, 1B and 1-rr

Traffic introduced by LS
characterized by
(1) the rate of task transfer-outs
(2) the rate of state-change broadcasts

(3) the probability of sending touting
packets to a node hhops away, qh

Probability density lunctioir

ofQL

Probability density function
of packet delivery time

Derivation of task waiting

(queueing+transferring)
time

Continuous-time Markov
chain that characterizes

LS task activities.

Queueing network where

each node forms a G/M/l

queue for handling packets

Computation of prob.
of dynamic failure

Figure 7.3: Analysis methodology used for evaluating the integrated LS performance. The
continuous-time Markov chain and the queueing network can be accommodated for other
LS schemes and interconnection structures as long as parameters are properly characterized.

node t from node j by following the sequence, 5̂ * where 3[*+1̂ is the direction

right after (before) d f within the h-th ring in Eq. (7.1) if k is odd (even). □

This semi-symmetry property5 implies that the task flow in one direction be ap­

proximately counter-balanced by that in the opposite direction. Now, the buddy set of a

node can be formed with the first N B nodes from the top of its preferred list. For ease of

analysis, we assume that N B is chosen such that the buddy set itself is also an H-mesh of

dimension m < e, and NB = 3m(m — 1) + 1.

7.3 Perform ance Analysis

Our analysis method is outlined in Fig. 7.3. We first construct an embedded

continuous-time Markov chain to characterize task arrival/completion/transfer activities

8Unlike hypercubes, the symmetry property — if node t is the fc-th preferred node of node j , then node
j is the Jfc-th preferred node of node t — cannot be achieved by any ordering of nodes due to the fact that
the number of nodes in an H-mesh is odd.

190

under the proposed LS mechanism in HARTS. Two sets of parameters are derived from

the constructed Markov model: (1) the probability density function of QL, PAr(n), n > 0,

and (2) the ra te of transferring tasks, \ TT, the rate of state-change broadcasts, A se t and

the probability of transferring an overflow task to a node h hops away, qh. The la tte r set

of parameters is fed into the queueing network where the handling of (both task-transfer

and broadcasting) packets at each node in HARTS is modeled as a G /M /l queue. The

probability density function of packet delivery time, / d 4(/), can then be derived from the

queueing network model and is used, along with j>Ar(n)> n > 0, to derive the probability

density function of task waiting time, fw k(t)- Finally, the probability of dynamic failure,

Pdyn, can be computed from fw k(t)-

7 .3 .1 LS A n a ly tic M od el

As discussed in Section 7.2.1, the nodes in HARTS are topologically homogeneous

and are identical in processing capability and speed. Besides, all nodes are assumed to

have the same arrival rate of ‘external’ tasks. Consequently, the task arrival/transfer ac­

tivities experienced by each node are stochastically identical over a long term. Under this

assumption, we employ the general methodology of flrst modeling the state evolution of a

single node in isolation and then combining node-level models into a system-level model

(discussed in Chapter 4).

We first model the state evolution of a node by a continuous-time Markov chain

th a t serves as the underlying model. The parameters of this model are then derived to char­

acterize task arrival/transfer/completion activities a t the system level under the proposed

LS strategy. Finally, a two-step iterative approach is taken to obtain a numerical solution

to the Markov chain.

To facilitate the analysis, we make the following assumptions:

A l . External task arrivals at a node are Poisson with rate A. Task execution times are

exponentially distributed with mean

A 2 . Tasks are independent of one another, and are queued/executed on a node on a FCFS

basis.

A 3 . Each task is associated with a laxity I (in units of mean task execution time) with

probability pt , 0 < t < L max, where L max is the maximum task laxity.

A 4. The composite (both external and transferred) task arrivals can be approximated as

Poisson. Also implied in this assumption is tha t task arrival/departure activities on

a node are approximately independent of those on others over a long term.

191

A 1- A 2 are consistent with those assumptions commonly used in the open literature [WM85,

ELZ86, MTS89b, MTS89a, TT89]. The reason for A 2 is two-fold: first, FCFS is more

analytically tractable than other local scheduling disciplines (e.g., MLFS discipline); second,

as shown in Section 3.5 of Chapter 3, the choice of a local scheduling discipline has only

a minimal effect on the qualitative assessment of LS performance. As was discussed in

Chapters 4, A4 serves only as an approximation; however, A 4 is known to become realistic

as the system size grows, was used implicitly in [SC89a, MTS89b, MTS89a, TT89], and has

been verified (via simulations) in Chapter 5 to be valid for systems of reasonably large size

(> 12)-

U nderly ing M odel: The state, N , of a node is defined as its queue length (QL), and

each node is modeled as an M / M /1 queue. The composite (both external and transferred)

task arrival rate at a node with QL= n, denoted as A(n), depends on the node’s QL, and

the location and transfer policies used. The key issue in linking node-level models into a

system-level model is to properly specify A(n), n > 0, so as to describe task arrivals and

transfers in the system level. Once A(n), n > 0, is specified, the QL density function of a

node, {piv(n),n > 0), can be obtained by solving

TT" " 1 L m a z +1

p y (n) ^ i v (0) - llt=0„ ■■ , n > 0 , and £ pN(n) = 1. (7.2)
VT n=0

Let a(n), /3(n), 7;- = P(N > j) and Kj be defined similarly ets in Section 4.3.2 of

Chapter 4 except that now the state, N, is defined as the QL (instead of CET). Then, we

have (see Fig. 4.3),

X(n) = X - a(n) + j3(n). (7.3)

By appropriately specifying o(n) and fl(n) to describe both the transfer and location poli­

cies, one can use a embedded Markov chain model to describe the operations of the proposed

LS mechanism. Following the same derivation in Section 4.3.2 of Chapter 4, we have

ot(n) = \ - J 2 p j , (7.4)
;= 0

1 _ mNb
« ») = (7.5)

j =n Tv + 1

T w o -S tep I te ra tiv e A pproach; A(n) and /?(n) must be known before solving the Markov

chain model for {pw(«)> n > 0} (see Eq. (7.2)). However, A(n) depends on which in turn

depends on pn(n). Again an iterative approach is taken to handle the difficulty associated

192

with this recursiveness. In the first step, pjv(n) is obtained by solving Eq. (7.2) with both

a (n) and /?(n) set to 0, or, equivalently, A(n) = A, Vn. The resulting pjv(n)’s are used to

compute and (3(n) and A(n) in the second step. Then pjv(n)’s are re-calculated with the

new J3(n) and A(n). This procedure repeats until both pjy(n) and A(n) converge to some

fixed values.

7.3.2 LS-R elated Traffic: D erivation o f X t t , Asc> and g*:

In this subsection, we derive (1) the rate of transferring tasks out of a node, Ay y ,

(2) the rate of state-change broadcasts, A sc, and (3) the probability of sending a task (in

the form of a task-transfer message) to a node h hops away, q*, to characterize LS-related

communication activities. As shown in Fig. 7.3, these parameters model the interaction

between LS and the underlying communication subsystem.

D eriva tion o f Ay y t Since a task with laxity j arrived at a node has to be transferred if

QL > j + 1, the task transfer-out rate, XTT, of a node can be expressed as

X y y = £ Ap, 7j +i >
i =o

or,
Ifmoz 00 i f M r 'f l ^ 1 ^ m at + i

Ay y = £ a p j - 5 3 p N (k) = 53 - £ p N (k) - a (k) .

j=0 k=j+l 4=1 i = 0 4=1

D eriva tion o f AS c < Recall that there exist K y state regions defined by (K T — 1) thresh­

olds, T H i , T H 2,..., TH(kt -i) in the state (QL) space, and a node broadcasts a message,

informing the other nodes in its buddy set of its state-region change whenever its state

crosses any of the broadcast thresholds. Thus, the rate of state-change broadcasts, Xsc> is

related to the mean recurrence time, Tu, of the i-th state region, i£j, 1 < i < K y . Specifi­

cally, Tu is the expected time until the first transition into the i-th state region given that

the node starts in the i-th state region, and A sc can be expressed as:

kt ,
A sc = ^ 3 p~'

t = i

Tu, 1 < i < K y , can be derived from the continuous-time Markov chain, M , constructed

in Section 7.3.1. Specifically, by using the property of regenerative processes: for an irre­

ducible, positive recurrent, and non-lattice continuous-time Markov chain (such as M), we

have
T-. — __—__

” pM V

193

where T< is the average time M spends in iZ,-, and can be expressed6 as

T, = —--------- - + V 1 *"1 V' _ T I s
* (°) E f c e / t ! n 6 f l i , n > l ^ + S l t e H , ’

and

Ti ~ n S j * + W) ' E k e Rin ' 1 - 2’

where 7r* is the stationary probability of the underlying discrete-time Markov chain for M

stays in state k. pjv(iZ<) is the probability of M being in iZ,, and can be expressed as

PN(R i)= 'jL'PN(n).
n£Ri

D eriv a tio n o f gf,; Recall that node i transfers its overflow task to the first capable node

found in its preferred list. By the way preferred lists are constructed, node i will transfer

an overflow task to a node h hops away only if the first 3h(h — 1) nodes (tha t are within

h — 1 hops) cannot complete the task in time and at least one of the 6 h nodes on the /i-th

ring can. By A 4 and Lemma 3, Qh can be expressed in terms of 7 j and pj as:

6 h

1 “ m s i

E 7 (1 - 7 ‘+i) ' P i -
j=z 0

7 .3 .3 H A R T S Q u e u e in g N e tw o rk M o d e l

Packet delivery in the H-mesh is modeled as a queueing network, where each of

3e(e— 1)+1 nodes forms a G j M f 1 queue. Broadcast and task-transfer packets are generated

at a node when its state region changes and when the node cannot complete a newly-

arrived task in time, respectively. These occurrences do not follow Poisson. Fortunately,

characterizing packet arrival patterns only in terms of the rate of state-change broadcasts,

A sc , and the Tate of task transfers, ATT, while keeping the packet arrival process general

suffices to derive the probability density function of packet delivery time. Both X s c and

Xt t depend on task arrival and departure activities in a node (and hence the LS mechanism

used), and serve as the connection between the LS model and the HARTS queueing network.

A packet arrived at a node may go to one of its six immediate neighbors if it has

not reached the destination node, or may otherwise exit from the system. The delay tha t a

packet experiences at an intermediate node depends on whether or not it can cut through

tha t node. If the packet establishes a circuit to a neighboring node, it will experience a

9since the distribution of the time until the next transition occurs given that M has just entered a state
n is exponentially distributed with rate h t + A(n).

194

negligible delay (so, we assume it to be 0). Otherwise, the packet requires “services”, i.e.,

buffering and later transmission.

Thanks to the node homogeneity of HARTS, we can concentrate on evaluating the

distribution of delivery time only for those packets generated at the center node, node 0.

We will derive the following parameters in sequence.

• Both transit and non-transit loads handled by node 0. By a ‘transit task-transfer

packet,’ we mean a task-transfer packet traversing a node that is not destined for the

node. By a ‘transit broadcast packet,’ we mean a broadcast packet that should be

forwarded to the next neighbor node(s) (because it has not reached a periphery node

relative to the broadcasting node).

• The probability, p j, that a packet arrived (and receiving services if necessary) at a

node will be forwarded to one of its neighboring nodes.

• The throughput rate, A, at a node.

• The probability, pc, of a packet cutting through an intermediate node.

• The distribution, //>,(<), of the time needed for a packet to travel i hops.

As will be clearer later, the derivation of one parameter depends on the other parameters

derived before it. To facilitate the analysis, we make the following assumptions:

B l . The probability of a node sending a packet to a node h hops away is qh which was

determined in Section 7.3.2.

B 2 . All shortest paths between a pair of nodes are equally used for task-transfer packets.

B 3. The lengths of broadcast packets and task-transfer packets are exponentially dis­

tributed with mean £b and It t -, respectively.

B4. The length of a packet is regenerated at each intermediate node of its route indepen­

dently of its length at other intermediate nodes.

B2 can be justified as follows. The routing algorithm in [CSK90] gives all shortest paths

between a pair of nodes by specifying k0, fcj, and k2. Upon receipt of a task-transfer packet,

the routing algorithm (designed in [DRS91]) determines whether or not the packet has

reached its destination node (i.e., k0 = fcj = k 2 = 0). If not, the packet is forwarded along

one of the directions with nonzero fc,- (and the corresponding fc,- is updated) if cut-through

can be established in that direction. Since the system is homogeneous, the probability of

establishing a cut-through in any one of the forwarding directions is assumed to be equal,

meaning that all shortest paths are equally used for task-transfer packets. B2 along with the

195

topological properties of C-wrapped H-meshes will be used to determine the total number

of shortest routes passing through node 0 for all pairs of communicating nodes. B3—

B4 coincide with Kermani and Kleinrock’s assumptions in [KK79], and B4 is commonly

referred to as the independence assumption [KK79]. Although B4 is unrealistic in practice,

several empirical studies in [KK79, KN74] have shown that the mean packet delay times

computed under this assumption closely match the actual mean message delivery times.

We will use the following notation to describe different packet arrival rates:

• Afl (Ayy): the rate of generating broadcast (task-transfer) packets at a node.

• A^b (Aa ,t t) : the rate of terminal broadcast (task-transfer) packets arrived at a node.

• ATtB (At ,t t) : the rate of transit broadcast (task-transfer) packets arrived at a node.

Derivation of Packet Arrival Rates:

Lemma 4 Ab , Aa ,b > and At ,b are given by

A b = 6(m — l)Asc,

Aa ,b = 3m(m - 1)ASC,

A t ,b = 3(m — l)(m — 2)\sc>

where Xsc *s the rate of state-region changes at node 0, and m < e is the dimension of a

buddy set, Hm.

Proof: As indicated in Fig. 7.2, (1) the broadcasting node generates 6 packets per broadcast,

(2) every non-periphery corner node, upon receiving (and storing) a broadcast packet,

transmits an additional copy along the direction 60-degree clockwise to the direction of

packet receipt. By (1), the rate of generating broadcast packets for node 0 is 6A5C. Also,

by the homogeneity property of an H-mesh, node 0 acts as a non-periphery corner node

relative to 6(m - 2) nodes in its buddy set (see Fig. 7.1), and is responsible for generating

(and forwarding) a new packet upon arrival of a packet broadcast by those 6(m — 2) nodes.

Thus, by (2), node 0 generates broadcast packets for 6(m - 2) other nodes in its buddy set

at the total rate of 6(m - 2)A5C- The expression of AB thus follows from (1) and (2).

Node 0 receives broadcast packets from the other 3m(m - 1) nodes in its buddy

set, and since all nodes are homogeneous each with a state-change broadcast rate ASc,

the expression of XA B follows. On the other hand, node 0 lies on the periphery of the

buddy set of other 6(m - 1) nodes whose broadcast packets will not be forwarded by

node 0. That is, the non-transit load (destined for node 0) is 6(m - l)Asc- At,b is thus

[3m(m - 1) - 6(m - 1)]ASC = 3(m - l)(m — 2)ASc- a

196

Lemma 5 Xa ,t t and Xt ,t t are given by

m — 1

Xa .t t = XTt ‘
t=i

m — 1

Xt p t = Xtt ^ 2 " !)* ?* »
It=2

where Xt t *s the rate o f transferring tasks out o f node 0, and is the probability o f a node

transferring tasks to a node k hops away.

Proof: To calculate Aa ,t t at node 0, we need to determine (1) the load contributed to Aa ,tt

at node 0 by a shortest route tha t passes through node 0; (2) the to tal number of shortest

routes passing through node 0 for all pairs of communicating nodes.

It was verified in [CSK90] tha t all shortest routes between any pair of nodes are

formed by links along a t most two directions and thus can be represented by a sequence of

directions, dj js , where 0 < j < 5, 1 is the length of the shortest route (1 < t < m — 1),

and i and t — i (I < i < (■) are the number of hops from the source to the destination along

dj and d[j+i]g, respectively.

Now, consider a sequence of directions, dj d[?+jJg. The number of shortest routes

associated with dj d ^ | j g that pass through node 0 can be calculated as follows. There are

^ f ^ permutations for d j’s and d[j+i]„’s in the sequence dj d ^ j |g, each of which gives

a possible shortest route. For each possible route, node 0 can be inserted in one of the I

positions (including the destination) to be an intermediate or destination node of the route.

Thus, each sequence of the form dj d^“j]g represents ^ j ^ • I shortest routes tha t pass

through node 0.

The load at node 0 contributed by a single shortest route (represented by dj d ^ j | g)

th a t passes through node 0 can be expressed as XTT' 9t / (i ’ because a node sends packets

to nodes t hops away at a rate of ATt • which is equally shared by all ^ j ^ shortest

routes (under B2).

The rate of task-transfer packets arrived at node 0 can now be expressed as

5 m —1 t

Xa .tt = ^ 2 ^ 2 X > a d contributed by all routes represented by dj d [£ Jg
j = 0 t=1 i = l

5 m — 1 I y \ \ „ 5 m — 1 t m - 1

TTT = E E EVr■«•< = *TTE6(1
/= 1

= E E E (!) - e - j r y = E E E
j = 0 1= 1 i = 1 ' ' I . J j = 0 t = 1 i= l

The proof of the second part of the lemma resembles the first part except th a t for

each possible route tha t can be represented by dj d[f^jjg, node 0 cannot be the destination

197

node. Thus, there are I — 1 positions to insert node 0, and each sequence dj dy+jj, gives

(\) ‘ ~ 1) shortest routes that pass through node 0. The rate of transit traffic, X t ,t t i

at node 0 can now be expressed as

6 m—1 t
X t ,t t = transit load contributed by all routes represented by dj d ^ j] s

j=o e=i i=i
5 m - 1 I , \ \ m —1

= E E E ' (< - ■) ■) ^ = X r r Z W - l) - * - o
j —0 i = i i = i \ / [i) 1=1

D eriva tion o f p/ i The probability, pj , that a packet arrived at a node will be forwarded

to one of its neighboring nodes is the ratio of the traffic bound for immediate neighbors to

all traffic arrived at a node:

_ X b + Xt ,b + X j t 4* Xt ,t t

Xb + Xa,b + X t t + X a,tt

Using the results of Lemmas 4 and 5 along with

m— I
^ 2 6fc • 0* = 1,
Jt=l

we have

_ 3m (m — 1) • XSc + ZT^i 1 • XT t gx
^ 3(m 4- 2)(m — 1) • X s c + [1 + ZZltLi1 6&29fc] • Xt t

D eriva tion o f T h ro u g h p u t o f a N ode: To derive the throughput, A,-, of a node i, we

use the principle of flow conservation. 7 Specifically, let A,• and A*, 0 < k < 5, represent

the throughput of node i and its neighboring nodes in directions d0-d 5, respectively, and

let p jt4k represent the probability tha t a packet completing its service will be forwarded to

the neighboring node in direction d*, then the flow conservation principle enforces

s
A,• = (XB + Xt t) + V '.P ti: • A*.

k=0

Now, by the homogeneity of the C-wrapped H-mesh, all A,-’s are equal. Also, S t= oP/,3̂ =

Pf. Thus, we have

x X b + X t t 3(to + 2)(m - 1) ■ A s c + [1 + 6 ^ Q k] * A t t t c ,__ , \ x \ \
* = 6 (m - l) A s c + ̂ --------- (« (" • - D A * , + A „) .

(7.7)

7which states tha t at any branching point in a queueing network there is no accumulation or loss of
customers.

198

D e riv a tio n o f pc: As discussed in Section 7.2.1, a packet can cut through an intermediate

node only if no packets are being transm itted or waiting at tha t node. Using the Utilization

Law [Kle75] 8 the probability of having no packet at a node is 1 — p, where p is the traffic

intensity
_ Ai_ Aj ‘ l

P ~ V m ~ 6
Here £ is the mean packet length, and can be expressed as

X b + XAB j — X t t + X a ,t t s —
 -----------— :-------- — :------- Is +---------- — :------------— :--------— : &tt •
*A,TT

pe can then be expressed as

£ — _______ B ~ ^AyB t ^ _|_______________ .________ ,

Xt t + XAitt + XB + XAjB Xt t + XAit t + XB + XA>B

Pc - 1 g ,

where A,• is expressed in Eq. (7.7).

D e riv a tio n o f D is tr ib u tio n o f P a c k e t D elivery T im e: The delivery time for a packet

traveling i hops, denoted by D {, depends on whether or not the packet can cut through

intermediate nodes. If the packet cuts through an intermediate node (the probability of

which is pe), its delay at the node is negligible and assumed to be 0. Otherwise, the packet

experiences an exponential buffering delay, Y*, with rate p m(l — p).9 Moreover, the prob­

ability of a packet not cutting through j out of i — 1 intermediate nodes (when it travels i

hops) is

(' ■ ') (> - ? .) ' ? ; - w -

The distribution of can then be expressed as

i —1

P(Di < t) = P(Di < t | buffered at j intermediate nodes) • buffered at j intermediate nodes)
j =o
»—l

= Y , p(y„ + £ y * + y; < 0 - (< i 1)j=0 k=1 ' £

where a packet always gets buffered at the source and destination nodes, and Y0+X Ii=i Yt +

Yi can be shown to have an Erlang distribution with parameters fim(l — p) and j + 2 under

B 4. T hat is, the probability density function of £>,• can be expressed as

/ c ,w = E i M i - p) i , t a - (j +1)!— (' 7 1) (i - p . w 1- ’ -

®Note th a t the Utilization Law is valid for a G /G / l queue.

9 Note th a t the time experienced by a packet buffered at an intermediate node depends on the throughput
of the node, and is accounted for by the factor (1 — p).

199

7.3 .4 D erivation o f Task W aiting T im e and Probability o f D ynam ic Fail­

ure

Having derived the probability density function of QL, {p.iv(n),n > 0}, and the

probability density function of packet delivery time, //>,(£), t > 0, 1 < i < m — 1, we are

now in a position to derive the distribution of task waiting time.

The probability density function of waiting time for a task queued on a node with

state N < k is

f w \ N < k (t | N < k) = ^ 2 fw in)(t I N = n)- ,

where fw (n)(t | JV = n) is the probability density function of waiting time given N = n, and

can be shown under A1 and A 2 in Section 7.3.1 to be n-stage Erlang. Thus,

f m » < « ! * < *) - m ■ + £ (B _ i j r e T = ^ I ’ (7.8)

where 6 (t) is the impulse function such that <$(t) = 0 for t £ 0; S(t) 0 for t = 0, and

/ “ fi(t) dt = 1.
The waiting time for a task with laxity k depends on whether or not the task

arrives at a node with QL < k. If the QL of the node at which the task arrives is < k, then

the task experiences the waiting time with density function /iv|Ar<Jt(* I N < k) . Otherwise,

the task has to be transferred, possibly several times until it arrives at a capable node. That

is, the task experiences the delivery time(s) and the waiting time on a capable node. The

possibility of multiple transfers results from the fact that the state at the selected receiver

node i hops away at the time when the task is sent by the sender node may be different

from that when the transferred task arrives at the receiver node. The possibility of state

inconsistency increases as the packet delivery time, D{, increases.

Specifically, let /iv|at> jt (^) denote the density function of the waiting time experi­

enced by a task with laxity k that arrived at an incapable node and is thus transferred out,

then the density function of waiting time for tasks with laxity k can be expressed as:

fw k{t) = (1 - 7*+i) • fw\N<k(t | N < k) + 7*+i • fw\N>k(t)> (7.9)

where fw\N>k(t) is approximated as:

fw\N>k(t) = T'jfc+r1* (1 —7fcVl) ‘/»((*)* [P*c,i fw\N<k(t I N < A) + (l -p ,c,i) fw\N>k(t)]•
(7.10)

Here * denotes the convolution of two probability density functions, and p ,Cii is the proba­

bility of state consistency within an i-hop delivery time, which is derived below. Note that

200

N odei

A tu k ii completed.
Nodeibrotdcutt
its state change.

A tu k arrive*
during the tnnifer
of tu k T from
node j to node i
Node i broedcuti

its date change

TaikT tmnifetred
fromnodej ia
received.

Nodej

State broadcast packet
from node i ia received.
Nodej updates state
information.

T uk T arrives at node j.
Nodej cannot complete T
in time, and transfers T to
nodei.

Sate broadcast packet
from node i is received
only after nodej transfers
tukT .

Time

(a) State inconsistency results from a tu k arrival at node i
during the transfer of tu k T from nodej to nodei.

Nodei

A tu k is completed
Node i broadcasts
its state change.

A tu k arrives at node i.
Node i broadcasts

its state change. •

T uk T transferred
from nodej is *
received.

Time

Nodej

State broadcast packet
from node i is received.
Nodej updates state
information.

T u k T arrives at nodej.
Note j cannot complete T
in time, and transfers T
to nodei

State broadcast packet
from node i is received
onlyafternode j
transfers tukT .

(b) State inconsistency results from a tu k arrival
at nodej during the travel of a broadcast packet
from nodei to nodej.

Figure 7.4: Two situations state inconsistency may arise.

fw \N > k (t) is expressed as a function of itself, thus a time-frequency domain transformation

(e.g., the Laplace transform) is necessary to obtain numerical solutions for f w \N > k (t) , t > 0.

To derive p , eii, two scenarios in which state inconsistency may occur are considered.

In the first case (Fig. 7.4 (a)), during the transfer of an overflow task T from a sender node

j to a receiver node i, a new task arrives a t node i, making it become unable to complete

the transferred task T upon its arrival. In the second case (Fig. 7.4 (b)), node j receives

an overflow task T and transfers it to an incapable node i before the broadcast packet

(informing node j of node t ’s incapability) from node i reaches node j . Note th a t in both

cases state inconsistency arises because a task arrives during the packet delivery time,

We thus approximate10 pJ<=ii as the probability tha t no tasks arrive during the packet delivery

time, D i, i.e.,

p ,Cii = P(No task arrives within an t-hop delivery time)

- FJo n = 0

10 Note th a t p1C|i errs on the conservative side, because the selected receiver node (node t in Fig. 7.4) of a
transferred task T may still complete T in time after receiving a new task as long as the QL of the receiver
node after receiving the new task is still less than or equal to the laxity of T.

201

Finally, the probability of dynamic failure, Pdyn\ki experienced by a task with laxity

k is
poo

■Fdyn|lb = I dt, and Pdyn = ^ > Pk ' Pdyn\k•
Jk k=0

7.4 N um erical Exam ples

To evaluate the performance of LS while considering all related communication

activities, we used a discrete-event simulator which models the operations of the proposed

LS mechanism in HARTS. The routing, broadcasting, and virtual cut-through schemes in

[CSK90, KS91b, DRS91] are used to facilitate LS-related communication activities. The

goal of the simulation is two-fold: (1) examine the impact of approximations/assumptions

made in the analysis, and (2) evaluate the integrated LS performance.

The simulator was originally developed by the authors of [DRS91] which accurately

models the delivery of each packet by emulating the routing hardware along the route of a

packet at the microcode level. It also captures the internal bus access overheads experienced

by packets as they pass through an intermediate node. For example, when a packet arrives

at a node, the following sequence of events is initiated. First, the receiver for the link on

which the packet arrived waits for the packet header to become available. It then examines

the packet header to determine the packet type. For a broadcast packet, the receiver tries

to schedule two events: one to reserve the transmitter(s) to forward the packet(s), and the

other to the BMU to receive the packet. For a task-transfer packet, it either may have

arrived a t its Anal destination in which case an event is scheduled on the BMU, or could

be transmitted in one of possibly two directions. In the latter case, the receiver attem pts

to reserve the first-choice direction to transmit the packet. If the attem pt to reserve the

transm itter was unsuccessful, an attempt to try for an alternate transmitter is made, if

applicable. If none of these attempts are successful, the packet is queued at this node for

later transmission. Lastly, the receiver schedules events to signal the completion of the

packet transmission at this node. This may involve un-reserving a transmitter if the packet

successfully cuts through and/or informing the module which handles buffered messages.

We modified the simulator to include modules that (1) model task arrival, transfer,

and completion activities under the proposed LS mechanism, (2) generate task-transfer and

broadcast packets (along with their proper headers) at the time of task transfer and state-

region change, and (3) update the preferred list of a node upon receipt of a broadcast

packet, so that the main features of the proposed LS mechanism may be incorporated into

the simulator. The simulator differs from the analytical model in that: (D l) if a node

202

considers none of the nodes in its preferred list is capable of completing its overflow task in

time, the overflow task is declared failed and taken into account of the statistics for Pdyn\

(D2) the length of a packet is determined at the time of its birth and remains unchanged

while the packet traverses through the network. The latter is used to inspect the discrepancy

between the packet delivery time analytically computed under A 4 in Section 7.3.3 and that

observed in practice.

An H 6 is used as an example for all simulation runs. The buddy set is chosen to be

an H-mesh of dimension 4. For convenience, pr is set to 1, and all time-related parameters

are expressed in units of 1/ pr< The threshold values are set to TH \ — 1, T H 2 = 3, and

TH z = 5 unless specified otherwise. Simulations are carried out for a task set with the

external task arrival rate A on each node varying from 0.1 to 0.9, the mean task-transfer

packet length I r varying from 0.1 to 5.0, and the mean broadcast packet length t B varying

from 0.01 to 0.15. The distribution of task laxity is assumed to be a geometric distribution

with pt+i = raiio'Pt, where 1 < £ < 5, and r 0<io is chosen as 0.2, 0.5,1.0, 2.0, and 5.0. Note

that ratio = 1-0 gives a uniform distribution.

For each combination of parameters, the number of simulation runs needed is

determined such that a 95% confidence level in the results for a maximum error of 5% of

the specified probability can be achieved. We also compare the numerical results obtained

with two other baselines whenever appropriate. The first baseline is an M / M / 1 queue,

representing the case of no load sharing, and the second baseline is an M/M/37 queue,

representing the case of perfect load sharing where each node has perfect state information

of other nodes in the buddy set and incurs no time overheads in task transfers and state-

change broadcasts.

The traffic overhead introduced by LS and its impact on the possibility of cut-

through are plotted in Fig. 7.5, where XTT vs. A, Asc vs. A, q2 vs. A, and pct vs. A are

plotted. As expected, XTT, Xsc, and qh all increase as A increases. Consequently, cut-

through is more unlikely to be established at intermediate nodes as A increases (Fig. 7.5

(d)). XTT and qh also increase as the task laxity gets tighter, but Xsc decreases as the laxity

gets tighter, where the tightness of laxity is measured in terms of rati0 as defined above. The

latter phenomenon is perhaps due to the fact that an incapable node tends to locate idle

nodes for its overflow tasks with tight laxities. Under such a scenario, both the sender node

and the idle destination node need not broadcast a region-change message upon arrival of

a tight-laxity task,11 and hence ASc slightly decreases as task laxity gets tighter.

11 Note tha t TH\ — 1, and thus when QL changes from 0 to 1, no message is broadcast.

203

1.0e-01----- 1
1
'S 1.0e-02 I 1” 1

/ - ' ? k i i i i
l.Oe-03 r f - * - \ --------1 -------- 1 --------1--------- 1

1.0e-04

l.Oc-05

0.6 0.7 0.8 0.9
External task arrival rate

0.3 0.402

A--------A r=0.2
+ — • —+ r=0.5
0 - - - 0 r=1.0,analytic
• ♦ r=1.0, simulation
o----- o r=2.0
□□ r=5.0

(a) X t t vs. A.

l.OMOOi-------- r

9.0e-01--------- 1

S.0e-01

•A r=0.2
■+ r=1.0
□ r=S.O

_ 1

0.80.5 0.6 0.7 0.90.3 0.40.2
External task arrival rate

(b) A sc vs. A.

Figure 7.5: Traffic generated by LS (measured in terms of AttiAb, Qht aQd pet) for different
external task arrival rate, A. The distribution of task laxity is assumed to be uniformly
distributed over [1,5]. £r = 0.5, Ib = 0.05.

204

1.0e-03

1 j— t > > h - y \--------N 10e-04 -i r - -

A r=0.2
o r=0.5
+ r=1.0
o r=2.0
□ r=5.0

t*’- ! T 1 I--------1.0e-08

1.0c-09 - “ ' 7 ---------1---------T ----------1---------I---------

1.0e-10 0.10.703 0.60.3 0.40.2
External task arrival rate

(c) 92 vs. A.

S.Oc-Ol

A r=0.2
O r= 1.0, analytic
♦ r= 1.0, simulation
o r=5.0

7-Oe-Ol

S.0e-01 0.90.S0.703 0.60.30.1
External task arrival rate

(d) pet vs. A.

Figure 7.5: (continued) Traffic generated by LS (measured in terms of 9ht an<l Pet)
for A.

205

As shown in Fig. 7.5(a) and (d), the analytical results predict, with a reasonable

accuracy the simulation results (usually within a 6% difference in all our simulation studies).

The fact tha t the analytic model overestimates pct at higher loads is perhaps because the

model does not consider the overhead of processing packet headers. This overhead becomes

non-negligible when the number of packets traversing the network is high.

Fig. 7.6 shows the effect of threshold values on the traffic (Xsc and pet) introduced

by LS. Since a node broadcasts its state only when its QL crosses some threshold, threshold

values are crucial to ASc (and thus pct). As suggested in Fig. 7.6, the threshold pattern of

TH i = 1, T H 2 = 3, and T H 3 — 5 introduces less broadcast traffic as compared to the other

patterns. The pattern of T H i = 0, T H 2 = 2, T H 3 = 4 performs worst at light system loads

(because an idle node crosses TH± = 0 upon a task arrival), while the pattern of T H 1 = 1,

T H 2 = 2, T H 3 = 3 performs worst at high task loads (because the arrival of every task

causes a non-idle node’s QL to cross thresholds).

Fig. 7.7 shows the plots of 1 — Pdyn vs. A and 1 - Pdyn vs. rotio. The proposed

LS mechanism significantly outperforms the case of no LS (the M / M / 1 system) especially

at high system loads or tight task laxity, but is still inferior to perfect LS (the M / M / 3 7

system). The latter also suggests that the time overheads in task transfers and state-

change broadcasts deteriorate the LS performance and thus an efficient communication

system th a t supports time-constrained communication is essential to real-time LS. The fact

th a t the analytic model slightly overestimates 1 — Pdyn &t higher loads is partly because of

D l stated above.

The impact of communication delays on the performance of LS is studied by vary­

ing both I r and l B (and consequently p m). Fig. 7.8 (a) and (b) show the plots of pct vs. l B

and 1 — Pdyn vs. l B , respectively. (The effect of varying I r on LS is similar to, but less pro­

nounced than ,12 tha t of l Bi and thus omitted.) As shown in Fig. 7.8(a), pet drops abruptly

as TU increases beyond a certain value. For example, when A = 0.8, pct equals 8.533 x 10_1,

5.918 x 10"1, 2.616 X 10”1, and 2.089 x 10-2 at l B = 0.01, 0.05, 0.1, and 0.14, respectively.

This indicates that when l B becomes very large (or equivalently, the processing speed of

the BMU is slow), the network becomes saturated and incapable of handling all incoming

packets (introduced by LS). Consequently, packets queue up at every intermediate node,

thus delaying or even blocking the operation of task transfers and state-change broadcasts,

and hence 1 - Pdyn decreases until it reaches approximately the value of Pdy„ of an M /M / 1

system (no LS).

12This is because XB = 6(n — l) A s c and \ a ,b = 3n(n — l) A ? c are usually much larger than Xt t and
Xa ,r , and thus dominate the determination of

206

§>7.0e-01

i I i i I ri i i i i i
 1 1 1 ------------ 1 ------------- 1 —

— — j 1 ------------1 ------------- 1 — ~ X* * ”

— — —i — — —I — — —I — — —I " ^ ^ n ~ — —I -h — — ~

i i i_ j *4*___ i
I I L * < ^ T ^ 4 T I I

 1 — i - -yT~'~ — i — i —
i i / V ? ̂^ i i i

 1 J f - - \ z + ----- 1 --------------1 ------------ 1 -------------1 --------------

1 / X . 1' r f I I I i

6.0e-01
5.0«-01

£ 4.0e-01

3.0e-0l

2,0*-0l

9.0*-02
8.0e*02

A - -
+ ---

0.6 0.7 0.1 0.9
External task arrival rate

(a) Xsc for different sets of threshold values.

_ J 1 i ____ j ___S.Oe-Ol

>tt 7.0e-01 ----- 1

-------1--------j ------- 1---------1 - - I -

 1 1 1 1 (1_4.0e-01

0.6 0.1 0.902 0.3 0.4 0.7
External task arrival rate

(b) pct for different sets of threshold values.

Figure 7.6: Effect of threshold values on the traffic generated by LS.
task laxity is assumed to be uniformly distributed over [1,5]. £r = 0.5,

- A T h ,,'n i2,Tbj= l,3 .5
—+ Th, 1Tha,Thj=0,2,4

n i,1ThJ1Th,=l,2.3

- A Thi,Th2,Th)sl,3,S, analytic
A Th|,Th2,Thj=l,3,5, simulation

—+ Th,,Thj,Thj=0,2,4
Th|,Th2,Thj=l,2,3

The distribution of
h = 0.05.

207

I “ -

w - — • 0 3 • — • -m - — - - o r — — u i — • — i

I - - -T— 1 ----I - i — 1 t
t i ■»* T 1 1-----
► ■ t A. i i ’

' \ i
 1 1 ■ 1 1 - - s i -

 1 1 1 1-

 ! , 1 -------

I M
*

 , , \ -------------

0.4 — _ ! 1 1 1 1 1 -

0 . 3 --------- (- I 1---- 1-----1-----

0.2 J 1 L

o -----
♦
A - -
□ - ■

0 Analytical
♦ Simulation

- A M/M/1 system
—□ M/M/37 system

0.1 0.2 0.3 0.4 0 J 0.6 0.7 0.8 0.9
External task arrival rate

(a.) 1 — P dyn VS. A.

 1-----1 L B-l - -I- - + - -I- “ + " "I” 'I i_ J. - n_ _ i _ i j _ i_| i____17® i ” i “i ~ i i ~ i i i
_ i — i----1_
A , I I I

- -VA
i

-i ■

—a!-'■------1------I-------- 1 —
r’ ♦ I I I

I
. _l _ .

I __
—-i‘—'

I
' 1 ~ '

J _
I ~

0.60 —

— — I-1 I--------------- 1----------I-------1
I I I I I , _ l .

 I- ------- 1 — r '"i------ 1
I i >* i I I

I i
I___ I — I—

j ____ J____l_
■i— — —I — I-
i I ii i- - r

.! !__!_I l l
I-----1 - - I—

■ r ■
i

0.30

l I l I
_l---- f I----- 1.

I £ I I I
- h/- H I 1 ■

/ I I I
y i------1 - - 1--------1 ■
“ i i _ i___ i ,

i i ~ i i_i------- 1 — i--------- 1.

 I I___L

I 1
. I___ I _
I I
I----- 1 -
I I

’ I----- 1 ~
. I___ I „
I I

. I----- 1 -

I I
. I___ I
I I

■I-----1
I I
I-----1
I___ I
I I

. I-----1

I
r

. _ i i
i

-

i
“ r

. _ Ll

I I 1
0.7 1.2 1.7 2.2

<>•-•—O Analytical
♦ ♦ Simulation
A —* —A M/M/1 system
□ --------□ M/M/37 system

2.7 3.2 3.7 4,2 4.7
Tightness of task laxity* r

(b) 1 — Pdyn VS. Tatio — 0 .8).

Figure 7.7: 1 - Pdyn vs. A and tightness of task laxity ratio. The distribution of task laxity
is uniformly distributed over [1,5] in (a), and is geometrically distributed with pt+i = r -p i,
for 1 < £ < 5. A = 0.8, 7^ = 0.2, and 7^ = 0.02. = 0.5, l B = 0.05.

1.0e-01 I I I
________ I . . L J . L L L I J L

-I -
H ■
-I ■
J .
I

T

■ h l - H 4 I- -j - ■
■ h l - H - l h
• I- I- M - t I !■

I II I

A---------A rate=0.2
o --------o rate=0.4
+ ---------+ rate=0.6
0 . - . . - 0 rate=0.8,analytic
♦ ♦ rate=0.8,siniilation

1.00e-02 1.00e-01
Length of broadcast packets, 1B

(a) pet vs. I b .

9-Se-Ol

= 9.0*411

1 IAe-01

1 8.0e-01

7Ae-01

7.0e-01

1
-

-J-------
1

-
-1------

111

i i i m ----------- 1— i— r—r

1 I I 1 11 1 I I I
_4 j _ . Li . i &_ . e „ fi1 i

1 1 1 1 1 1 1 I I
1 1 1 1 1 1 1 «L 1 1 1 1 1 1 11 1 1

1
1
1

1
1 t
1 1
1 1

1 1
1 I
1 1
t t

---------- 1----|-----
1 1
1 1
1 1
1 1

t L U l t _ ♦%! ------l - L J -
1 1 1 1 1 1 ♦j[l 1 I I
l l l 1 1 1 ll I I I
i i i i i i 4rl 1 l l
i i i 1 1 i ll I I I

. S 4 > w 4 a . ------t------1 — t—i—
1 1 1 1 1 I Ŝfe) I I I I
l i n n 1 \ i i i
i i i i 11 i 1L i i i
i i i i 11 j i T j i i

- 1- HM- + 1- - r - h - - T- t- H-
i i i i 11 ! i i i i
i i i i 11 j i i l l
i i i i 11 : i i i i
1 1 1 I I I A 1 I I I

A-------- A rate=0.2
□ - • —□ rate=0.4
o -------- O rate=0.6, analytic
♦ ♦ rate=0.<5, simulation
O — — O rate=0.8

0.01 o.to
length of broadcast packets, lB

(b) 1 — Pdyn VS.

Figure 7.8: The Effect of l B on pci and 1 - P dy„. The distribution of task laxity is uniformly
distributed over [1,5], and in = 0.5.

209

7.5 Conclusion

The analysis presented in this chapter is essential to the design of any LS mech­

anism for real-time applications. First of all, the model gives a quantitative measure of

traffic overheads (through X tt , Xg, and /o ,(f)) introduced by the LS mechanism. Second,

one can determine many LS design parameters (e.g., the size of buddy sets, N g , and the

threshold values, THi's, for state-change broadcasts) by determining the parameter values

which minimize P d y n - Third, one can investigate whether or not the underlying routing

and broadcasting schemes can support the LS mechanism in delivering packets and collect­

ing/maintaining up-to-date state information.

The analysis methodology presented here (Fig. 7.3) is quite general in the sense

that it can be extended to other LS mechanisms and other interconnection topologies such

as hypercubes, rings, or square meshes, to name a few. Extending this methodology to

other LS mechanisms, one only needs to properly derive the parameters a(n) and fl(n)

which characterize the transfer policy and the location policy, respectively. Once o(n) and

/3(n) are determined, the derivation of the others (e.g., Pn (ti) , Xt t , X g , and q^) follows the

same approach. Similarly, extending the methodology to other interconnection topologies,

one only needs to specify the parameters pj and pt . The key to the specification of pf

(and consequently pc) is the determination of transit loads at each node. That is, one

must determine the fraction of shortest routes between all pairs of communicating nodes

that pass through a given node as an intermediate node. Once pj and pc are determined,

the derivation of packet delivery time distribution does not depend on the interconnection

topology.

CHAPTER 8

IMPLEMENTATION BASED ON CONDOR

8.1 In trod u ction

As was discussed in Chapter 1, a LS mechanism can be designed by developing the

transfer, information, and location policies. On the other hand, the implementation issues

commonly considered include where to place the LS mechanism (inside or outside the OS

kernel), how to transfer process state (virtual memory, open files, process control blocks)

during task transfer/m igration, and how to support LS transparency and reduce the effects

of residual dependency1 [D091]. There have been a few LS mechanisms implemented, such

as the V-system [TLC85], the Sprite OS [D091], the Charlotte OS [AF89], and the Condor

software package [LLM88, LL90]. They are designed with different policies for transferring

tasks/processes, collecting workload statistics used for LS decisions, and locating target

workstations. They are implemented with different strategies to detach a migrant process

from its source environment, transfer it with its context (the per-process data structures

held in the kernel), and attach it to a new environment on the destination workstation.

In this chapter, we describe a preliminary implementation of the decentralized LS

mechanism proposed in Chapter 3 tha t is based on Condor. As reported in [LLM88, LL90],

Condor is a software package for executing long-running tasks on workstations which would

otherwise be idle. It is designed for a workstation environment in which the workstation’s

resources are guaranteed to be available to the owner of the workstation. The reason for

choosing Condor as our “base system” is because Condor is implemented entirely outside

the OS kernel and at the user level. This eliminates the need to access/change the internals

of OS. On the other hand, there are several design drawbacks of Condor: it uses a central

manager workstation to allocate queued tasks to idle workstations; th a t is, the location

policy is entirely realized by the central manager. This centralized component makes the LS

1 residual dependency is defined as the need for the source workstation to maintain d a ta structures or
provide functionality for a remote process.

210

211

mechanism susceptible to single-workstation failures. Another drawback is that Condor uses

a periodic information policy; that is, each workstation reports periodically to the central

manager regarding its (workload) state and task-queueing situation. This makes the central

manager a potential bottleneck of network traffic from time to time. The determination of

a reporting period also becomes crucial to the LS performance, and has to be traded off

between the communication overhead introduced by frequent reporting and the possibility

of using out-of-date state information resulting from infrequent reporting.

Hence, we enhance the fault-tolerance capability and the performance of Condor

by configuring and dispatching the functions of the central manager workstation to multiple

workstations, and “transforming” Condor to a decentralized LS mechanism. In particular,

we use the preferred lists and region-change broadcasts proposed in Chapter 3 to achieve this

goal. That is, each workstation collects/maintains elaborate and timely state information

on its own by using region-change broadcasts. Moreover, each workstation determines,

by using the preferred lists, the best target workstation for each task if there are several

workstations available to reduce the possibility of multiple workstations sending their tasks

to the same idle workstation.

The rest of the chapter is organized as follows. In Section 8.2, we give an overview

of Condor software package and discuss how Condor daemons collaborate to manage the

task queue and locates idle target workstations. In Section 8.3, we discuss how to get rid

of the central manager by incorporating our decentralized LS mechanism and reconfigur­

ing Condor component daemons. In Section 8.4, we highlight the implementation features

adopted in the decentralized mechanism. In Section 8.5, we discuss related work and present

alternative design and implementation approaches adopted by other existing process migra­

tion mechanisms. This chapter concludes with Section 8.6.

8.2 O verview of Condor Software Package

In this section, we summarize the functionality of, and the interactions among,

Condor’s daemons. Especially, the task distribution process is described in a step-by-step

manner.

As shown in Fig. 8.1, there are two daemons, Negotiator and Collector, running

on the central manager workstation. In addition, there are two other daemons, Schedd

and Startd, running on each participating workstation. Whenever a task is executed, two

additional processes, Shadow and Starter, shall run on the submitting workstation and on

the executing workstation, respectively (whether or not these two workstations are actually

212

Central Manager Machine

CollectorNegotiator

Startd Schedd Startd Schedd

ShadowStarter

Server Workstation Submitting Home Workstation

Figure 8.1: Daemons in Condor.

identical).

The Condor task relocation mechanism works as follows (Fig. 8.2). A user invokes

a submit program to submit a task. The submit program takes the task description hie,

constructs the corresponding data structures, and sends a reschedule message to Schedd on

the home workstation. Schedd then asks Negotiator on the central manager workstation

to relocate tasks to idle workstations by sending a reschedule message to Negotiator (S I in

Fig. 8.2).

Upon receiving a reschedule message from any of Schedds on the participating

workstations, or upon periodic schedule timeout, Negotiator gets from Collector a list of

machine records which contains the workload and task queue of all participating work­

stations (S2 in Fig. 8.2). Collector receives periodically from Schedd and Startd on each

participating workstation updated information of task queue and workload, respectively

(S3 in Fig. 8.2), and updates accordingly its list of machine records.

After receiving the list of machine records, Negotiator first prioritizes the par­

ticipating workstations: the priority of a workstation is incremented by the number of

individual users with tasks queued on that workstation, and decremented by the number of

tasks which are submitted to that workstation and are currently running (either remotely

213

ss
negotiatorjnfo £
machine_name, machine_prio

Central Manager Workstation

CollectorNegotiator

 „ Give_Status
■" MachineListNegotiate

Process
achedd_info

machine_context

Machine Boundary

Startd ScheddSchedd Startd

reschedule message
from SUBMIT

Server WorkstationHome Workstation

(a) Negotiation process

__________________ Figure 8.2: Interactions among Condor daemons.__________________

or locally). Negotiator then contacts each workstation with queued tasks, one a t a time,

starting with the workstation with the highest priority, and inquires to relocate the task(s)

queued on the workstation. If the swap space on the workstation being inquired is enough

for Shadow processes3, the workstation supplies Negotiator with the information on the

required OS, architecture, and the task size, of a queued task, with which Negotiator finds

a server workstation for the task. A workstation is qualified as a server if (i) both its CPU

and keyboards are idle; (ii) it satisfies the task requirement specified; and (iii) no other task

is currently running on it. The negotiation process will be repeated for each queued task3

until either Negotiator finds for all queued tasks their server workstations, or no server can

be located (S4 in Fig. 8.2). At the end of the negotiation process, Negotiator sends back

the updated record of machine priorities to Collector (S5 in Fig. 8.2).

2As will be discussed below, each executing task will have associated Shadow processes running on the
home workstation.

3The tasks in a local queue are also prioritized with respect to the user-specified priority and the order
in which they are queued.

214

Negotiator

{permission
{ server_name Central Manager Workstation

Machine Boundary

Schedd Startd

startjob
job_context
two communication
ports

Shadow Starter •t
communicatjorf ports

Server WorkstationHome Workstation — proc
CkptName

OrigName

(b) Job transfer process

____________ Figure 8.2: (continued) Interactions among Condor daemons.____________

For each server located, the task transfer process is collaborated on by (a) Nego­

tiator on the central manager workstation, (b) Schedd and Shadow process on the home

workstation, and (c) Startd and Starter on the server workstation in the following steps:

Negotiator sends a permission message followed by the name of the server workstation to

Schedd on the home workstation (S6 in Fig. 8.2). Schedd on the home workstation then

spawns off a Shadow process which connects to Startd on the located server workstation (S7

in Fig. 8.2) and will henceforth take care of remote system calls4 from the server workstation.

Startd on the server workstation, upon being notified by Shadow on the home

workstation of the task transfer decision, re-evaluates its workload situation and amount

of memory space available. If the situation has not changed since the last time Startd

4More on remote system calls will be elaborated in Section 8.4.

215

AvgLoad > 0.3 && Keyboardldle < 5 minu (
SendSIG URSl to Starter

Job-Running

Suspended

Checkpointing

CmrentTime - EnteredCurrentState > 1 0
Send SIGTSTP to Starter

receive a kill_frgn J o b message
Send SIGINT to Starter

.AvgLoad < 0.3 && Keyboardldle > 5
minutes
Send SIGCONT to Starter

receive a ckpt_frgnjob message
Send SIGUSR2 to Starter

CurrentTime • EnteredCurrentState > 10
Send SIGK1LL to Starter

Figure 8.3: J o b -s ta te transition process.

reported to the central manager, Startd creates two communication ports, and sends the

port numbers back to Shadow. Shadow acknowledges the receipt of the port numbers.

S tartd then spawns off a Starter process (which inherits these communication ports and

is responsible for executing the task), and notifies Collector on the central manager of the

workload change in the server workstation. Startd henceforth keeps track of J o b -s ta te of

Starter, and signals Starter to suspend, checkpoint, or vacate the executing process whenever

necessary to ensure tha t workstation owners have the workstation resources at their disposal.

For example, if during the execution of a task (i.e., Jo b _ sta te is JobRunning), and if either

the average workload increases (e.g., A vgLoad > 0.3) or the workstation owner returns

(e.g., K e y b o a rd ld le < 5 minutes), then a SIGUSR1 (suspend) signal is sent to Starter,

J o b -s ta te enters the Suspend state, and Starter will temporarily suspend the task. If the

task has been suspended for more than a certain period (e.g., 10 minutes), a SIGTSTP

(vacate) signal is sent to Starter, Startd enters the C heckpo in ting state, and Starter will

abort the task and return the latest checkpoint file to Shadow on the home workstation.

Fig. 8.3 gives a complete description of how Startd keeps track of the execution status of

Starter and the associated J o b js ta te transition process.

The newly-spawned Starter is responsible for (a) getting the executable6 and other

relevant process information from Shadow via either NFS or RPC whichever available and

* w h ic h is i ts e l f a c h e c k p o in t file w i th o u t s ta c k in fo rm a tio n .

216

spawning off a child process to execute the task; (b) communicating (via remote system calls)

with Shadow on the home workstation for environments/devices-related operations; and

(c) suspending, resuming, or checkpointing the executing process upon being requested by

Startd (Fig. 8.3). Both Starter and Shadow exit when the task completes/stops execution.

8.3 Incorporation of D istributed LS Policies into Condor

As mentioned in Section 8.1, there are several design drawbacks in Condor:

• the central manager component makes Condor susceptible to a single-workstation

crash;

• the information policy periodically invoked introduces a potential bottleneck of net­

work traffic while suffering the effect of using out-of-date state information if the

report period is not fine-tuned;

• the location policy is so designed that it is possible for a task arrived at an idle

workstation to be transferred to other idle workstations for execution (Section 8.2),

since the central manager takes the full responsibility of locating a server workstation.

To remedy the above deficiencies, we eliminate the central manager, and “configure” the

functionality of Negotiator and Collector into every participating workstation. Specifically,

each participating workstation collects and maintains state information on its own. More­

over, each workstation chooses for every arrived task, if the workstation is not idle, the

best server workstation among several candidate workstations, and coordinates with other

workstations to reduce the probability of multiple workstations sending their tasks to the

same idle workstation with the objective of distributing tasks evenly throughout the system.

8.3.1 LS Policies Used

We now discuss how to incorporate our proposed LS policies into Condor to achieve

the above objective:

T ransfer Policy: Upon submission/arrival of a task, Schedd on the home workstation

determines whether or not the task can be locally executed. That is, the transfer policy is

invoked upon arrival of a task, and hence a task transfer, if ever takes place, will occur during

an exec system call and the new address space will be created on the server workstation. This

reduces significantly the process state needed to be transferred. A task is locally executed

on the home workstation if AvgLoad (the current value of UNIX 1-minute average load)

217

is less than or equal to 0.3 and the K e y b o a rd ld le time (the smallest keyboard idle time

observed for all terminals) is greater than 15 minutes, and no other tasks are currently

running on the workstation. If the task cannot be locally executed, a transfer decision is

made and the location policy is invoked to select a server workstation (if possible) for the

task. The workstation rescans its task queue periodically, treats each queued Condor task

(i.e., the task which fails to locate a server workstation at the time of arrival) as it were

newly-arrived, and repeats the transfer policy.

In fo rm a tio n Po licy : Region-change broadcasts are used, and message exchanges

occur only when the state of a workstation changes significantly (i.e., switches from one state

region to another). As discussed in Chapter 3, the communication overheads thus introduced

are reduced while the state information kept at each workstation is more likely to be u p -

to -date . The state defined in our current version is the combination of three quantities:

A vgL oad , K e y b o a rd ld le , and the S ta te (NoJob, JobRunning, Suspended, Vacating, or

Killed) of the workstation, and the state space is divided into two state regions: runnable

and unrunnable. The workstation is said to be in the runnable state region if A vgL oad

< 0.3, K e y b o a rd ld le > 15 minutes, and S ta te is NoJob. Extension to multiple state

regions is conceptually straightforward.

L o ca tio n P o licy : Based on the topological property of the system, each workstation

orders all the other workstations into a preferred list subject to the properties, P I and P 2 ,

mentioned in Section 3.2. For example, Fig. 8.4 gives the preferred list in a 4-cube system.

W hen a workstation is unable to run a task, it will contact the first “runnable workstation”

found in its preferred list, and tries to transfer the task to tha t workstation. It is im portant

to note th a t although the preferred list of each workstation is generated statically, the

actual preference of the workstation in transferring a task may change dynamically with

the state of the workstations in its preferred list. That is, if a workstation’s most preferred

workstation gets unrunnable, this fact will be known to the workstation via a state-region

change broadcast and its second preferred workstation will become the most preferred. (It

will be changed to the second most preferred whenever the original most preferred becomes

runnable, which will be again informed via a state-change broadcast.)

8 .3 .2 D aem on C onfiguration

We come up with three daemons, Collector, Schedd, and Startd, which reside

constantly on each participating workstation for the decentralized LS mechanism (Fig. 8.5).

218

Order o f p referen ce 1 2 3 4 6 6 7 8 9 10 11 12 13 14 15

node 0 1 2 4 8 6 10 12 3 6 9 14 13 11 7 16
node 1 0 3 5 9 7 11 13 2 4 8 16 12 10 6 14
node 2 3 0 6 10 4 8 14 1 7 11 12 16 9 5 13
node 3 2 1 7 11 6 9 16 0 6 10 13 14 8 4 12
node 4 5 6 0 12 2 14 8 7 1 13 10 9 15 3 11
node 5 4 7 1 13 3 16 9 6 0 12 11 8 14 2 10
node 6 7 4 2 14 0 12 10 6 3 16 8 11 13 1 9
node 7 6 6 3 16 1 13 11 4 2 14 9 10 12 0 8
node 8 9 10 12 0 14 2 4 11 13 1 6 6 3 15 7
node 9 8 11 13 1 16 3 6 10 12 0 7 4 2 14 6
node 10 11 8 14 2 12 0 6 9 16 3 4 7 1 13 6
node 11 10 9 16 3 13 1 7 8 14 2 6 6 0 12 4
node 12 13 14 8 4 10 6 0 16 9 6 2 1 7 11 3
node 13 12 16 9 5 11 7 1 14 8 4 3 0 6 10 2
node 14 16 12 10 6 8 4 2 13 11 7 0 3 5 9 1
node 16 14 13 11 7 9 5 3 12 10 6 1 2 4 8 0

____________________ Figure 8.4: Preferred list in a 4-cube system.____________________

Similarly as in Condor, two additional processes, Shadow and Starter, run on the home

workstation and on the server workstation whenever a task is executed. Note tha t we

carefully configure the transfer, information, and location policies only into Schedd, Startd,

and Collector, and retain Shadow and Starter which deal with process transfer, execution,

and checkpoint unchanged for the distributed LS mechanism. The functionality of, and the

interactions among, daemons are depicted in Fig. 8.6, and are described below.

C o llec to r

Collector is responsible for collecting local workload information, broadcasting a

region-change message whenever necessary, updating the workload information of other

workstations in its preferred list upon receiving a broadcast message, and responding to

Schedd and Startd for information requests.

The local task queue, the average workload (in terms of A vgL oad, K e y b o a r­

d ld le , and the J o b -s ta te of the workstation), and the disk/memory space available are

measured upon Collector timeout, or upon receiving a workloadjupdate message from the

S tartd .6 The parameters measured are then used to evaluate whether or not a workstation

is runnable. A workstation is evaluated as runnable (i.e., B usy = false) if the function

ST A R T : (A vgL oad < 0.3) && K ey b o ard ld le > 15 minutes

sWhen a task starts or exits/dies, the Startd notifies the Collector to update workload situation.

Region-change broadcasts

Collector
W orkload
inquiry

ferreqt
fcrred list

Machinejecora

Startd (^ T c h e d d ^ ^)

Starter

Server Workstation

(Collector j
Preferred ^ W orkload

Machin^record \ inquiry

Schedd Startd

Shadow

Submitting Home Workstation

______________________Figure 8.5: Daemons in Modified Condor.______________________

is true and J o b -s ta te of the workstation is NoJob.

A state-region change message is broadcast to Collectors on other workstations in

the preferred list whenever the state switches from from runnable to unrunnable (because

of the increase in average workload, return of the workstation owner, or receipt of a task),

or vice versa (S I in Fig. 8.6). This message is a machine record, the format of which is

given in Fig. 8.7. The machine record contains, among other things,

(11) the hostname, the network address, and the network address type,

(12) the indicator variable of whether or not a Condor task is runnable, B usy , along with

other workload-related parameters, A vgL oad, K e y b o ard ld le , J o b -s ta te ,

(13) the operating system, O pSys, and the architecture, A rch , of the workstation,

(14) the swap space, V irtu a lM em o ry , available in virtual memory, and the disk space,

D isk, available on the file system where foreign checkpoint files are stored. Note tha t

V irtu a lM em o ry is only calculated at the time of state-change broadcasts (but not

periodically at every timeout), because its calculation is expensive.

(15) a time-stamp.

As will be clearer later in the discussion of Schedd, (13) is used to verify whether or

not a workstation’s OS and architecture satisfies the task requirement specified by users;

(14) is used to verify whether or not a workstation has enough memory/disk space for

220

si : si
•*- state_change i — state_change
*- machine_recor<J — machine record

Collector Collector
f woikload_update

t give rny_mach_context
| mj7toach_context

t give_myjMch_.contex:
I my_mach_context

t give_mach_record
1 machine_record

f give_mach_recor 1
1 machine_record

StartdScheddStartd Schedd

Transfer request process

Server Workstation Home Workstation

(a) Negotiation process

________ Figure 8.6: Interactions among daemons in the distributed mechanism.________

running foreign tasks; and (15) is used to indicate the degree of a record being obsolete.

Upon receiving a state-change broadcast from one of the Collectors on other workstations,

the machine record corresponding to the broadcasting workstation in the preferred list is

updated.

There are two possible situations Schedd will ask information from Collector (S2 in

Fig. 8.6): (i) when Schedd receives a new task and asks for its own machine record; (ii) when

Schedd decides to transfer the task and asks for the machine record of the first runnable

workstation available in the preferred list. On the other hand, Startd asks Collector for the

machine context which contains workload-related and memory/disk space-related param­

eters (S4 in Fig. 8.6), when it wants to check whether a running task should be suspended,

checkpointed, resumed, or vacated. (More on this will be discussed in Section 8.3.2.)

221

Machine Boundary

Schedd Startd

startjob
job_context
two communication
ports

Starter j
jommunication ports

Shadow

Server WorkstationHome Workstation proc
CkptName
OrigName

(b) Job transfer process

Figure 8.6: (continued) Interactions among daemons in the distributed mechanism.

Schedd

Schedd determines whether or not a (local or remote) task can be executed on the

workstation, and, in the case of not executing an arrived task, initiates the location policy

to locate a candidate workstation for task transfer. Also, Schedd invokes the location policy

periodically for tasks that did not find their servers upon their arrival and are currently

queued on the workstation.

There are three major events Schedd handles: the arrival of a task, the receipt of

a transfer request, and the periodic timeout:

U pon arrival o f a task : upon receiving a reschedule message from the submit program,

Schedd gets the local machine record from Collector (S2 in Fig. 8.6), evaluates the parameter

B usy, and checks whether or not the task requirement is satisfied. The task requirement

includes the system configuration ((13) in Section 8.3.2) and the disk/memory space needed

for executing the task ((14) in Section 8.3.2).

If the task can be executed locally, a Shadow process is spawned off. Shadow con-

222

typedef struct status.line {
char •name; /* hostname •/
char ♦state; /• state: NoJob, JobAunning, Suspended,

Vacating, Killed •/
float load.avg; /* AvgLoad */
int kbd.idle; /♦ Keyboardldle */
char ♦arch; /* Arch */
char •op.sys; /* OpSys */

> STATUS.LINE;

typedef struct mach.rec {
struct mach.rec •next;
struct mach.rec •prev;
char •name; /* hostname •/
struct in.addr net.addr; /* netvork address */
short net.addr.type; /• netvork address type
CONTEXT •machine.context;

int
int
STATUS.LINE

> HACH.REC;

time.stamp;
busy;
•line;

/* contains VirtualMemory and Disk
information */

/♦ runnable or unrunnable */

Figure 8.7: Data structure for machine record.

tacts the local Startd which then creates two communication ports, sends the port numbers

back to Shadow, and spawns off a Starter. Thus, Starter inherits the two communica­

tion ports and shall actually execute the task. Shadow and Starter then communicate

through the communication ports, and the task execution/checkpoint process proceeds as

in Condor. Note tha t by carefully “reconfiguring” the daemons, we leave the “low-level”

implementation mechanism for task execution and checkpoint unchanged in our distributed

LS mechanism.

If the task cannot be executed locally (either B usy is true, or the task require­

ment is not satisfied), then Schedd checks if there is enough swap space for a new Shadow

process. If the swap space is not enough, the task is queued and will be attem pted for

execution/transfer upon next scheduled timeout. If the swap space is sufficient, Schedd

gets from Collector the machine record of the first runnable workstation in the preferred

list, and checks whether or not the task requirement can be satisfied on tha t workstation.

If not, the machine record of the next runnable workstation available in the preferred list

is fetched from Collector and checked against the task requirement. The process repeats

itself until either a target server workstation is found or the preferred list is exhausted. In

the latter case, the task is queued for later execution/transfer attem pts.

If a target server workstation is located, Schedd sends a transfer request to Schedd

223

on the target server workstation (S3 in Fig. 8 .6). Either a transfer_ok or a transfer_not_ok

message will be received from the target server workstation, depending on whether or not

the target workstation is truly runnable: if a transfer_ok message is received, a Shadow

process is spawned off on the home workstation which notifies the Startd on the target

server workstation of its responsibility to execute the task. If the workload situation has not

changed on the target server workstation since its last region-change broadcast, a s ta r td _ o k

message, along with two communication ports, is received. The communication and task

transfer/execution operations between Shadow and Starter then proceed as in Condor. If

the workload situation has changed and is not runnable anymore, a s ta rtd _ n o t_ o k message

is received, under which case Schedd gets from Collector the machine record of the next

runnable workstation available in its preferred list, and repeats the transfer-request process

until either a target server workstation is found or the preferred list is exhausted. On

the other hand, if a transfer_not_ok message is received, Schedd gets from Collector the

machine record of the next runnable workstation, and repeats the transfer-request process

as described above.

To deal with a possible machine failure, the ioctl system call is used to designate

the sockets as non-blocking: an I/O request tha t cannot be completed is not performed,

and return is made immediately. Moreover, a timer is set for each connection: if no response

has ever come back until the timer expires, return is also immediately made. In either case,

Schedd repeats the transfer-request process for the next runnable workstation available in

the preferred list.

U p o n re c e ip t o f a tra n s fe r re q u e s t: upon receiving a transfer request, Schedd gets

from Collector the local machine record and evaluates the function B u sy . In terms of the

four-component task requirements, Schedd needs only to check V ir tu a lM e m o ry , because

• O pS ys and A rc h are already checked by the home workstation who initiates the

transfer request;

• The D isk space available under the directory where checkpoint files are saved will not

change if no task is executing on the workstation. So, it suffices to assure the D isk

space has not changed by checking if the workstation is non-B usy;

• Since V ir tu a lM e m o ry is calculated at the time of state-region change broadcast, the

V ir tu a lM e m o ry information collected (via state-change broadcasts) by the request­

ing workstation may differ from the actual V ir tu a lM e m o ry information currently

kept if either a broadcast message is lost or not yet received by the requesting work­

224

station before the transfer request was made. Hence, V irtua lM em ory needs to be

re-checked.

If B usy is false and V irtua lM em ory is enough, Schedd responds with a trans­

fer jok message. The Shadow process on the requesting workstation will then contact Startd

on the server workstation (which honors the transfer request) to handle the “low-level”

mechanism of task execution/transfer and checkpoint process. Otherwise, the Schedd replies

a transfer_not_ok message.

U pon scheduled tim eo u t: upon scheduled timeout, Schedd first prioritizes the tasks

currently queued on the local workstation based on their user-specified priority, queueing

time, and whether or not a task was ever executed. Higher priority is given to tasks

with higher user-specified priority, longer queueing time and/or tasks which were vacated

from server workstations because of the return of the server workstation owner or some

abnormal situation on the server workstation. Schedd then initiates the location process

for each queued task, starting from the task with the highest priority.

S ta r td

Upon being notified by a Shadow process of the responsibility to execute a task,

Startd generates two communication ports, spawns off a Starter to execute the task, keeps

track of the execution status of the task, and signals the Starter, whenever necessary, to

suspend, resume, checkpoint, or vacate the executing task. There are five events Startd will

handle: the receipt of a start-task message from the Shadow on a requesting workstation,

the receipt of a SIGCHLD signal (at the exit of Starter), the periodic starter timeout, the

receipt of a checkpoint.task message from Shadow on the home workstation, and the receipt

of a kilLtask message from Schedd on the home workstation.

U pon receip t o f a start-task m essage: upon receiving a start-task message from a

requesting Shadow, Startd gets from Collector its machine context (S4 in Fig. 8.6), and

re-evaluates the B usy function. If the Busy function is false, two communicating ports are

created and returned (along with a s ta r t d .ok message) to the Shadow on the requesting

home workstation. Startd then waits for connection from Shadow to these two ports. When

this connection is made, Startd spawns off a Starter, closes the two communication ports,

changes the Jo b -s ta te of the workstation to JobRunning, and notifies Collector of its

state-change (S5 in Fig. 8.6; in which case Collector updates workload). If the B usy is

true, a startd_not_ok message is returned.

225

U p o n rece ip t o f a SIGCHLD signal: upon receiving a SIGCHLD signal, S tartd clears

up the checkpoint files in the directory where the checkpoint files are stored, changes the

J o b -s ta te of the workstation to NoJob, and notifies Collector of its state_change (S5 in

Fig. 8.6).

U p o n p erio d ic s ta r td tim eo u t: upon periodic Startd timeout, S tartd gets from Col­

lector the parameters A vgL oad and K e y b o a rd ld le (specified in the machine.context, S4

in Fig. 8.6), and properly signals Starter based on these workload-related parameters to

assure tha t workstation owners have the workstation resources at their disposal (Fig. 8.3).

U p o n re c e ip t o f a checkpoint-Job o r a kilLtask m essage: Upon receiving a check-

point-task (kilLtask) message from Shadow (Schedd), Startd sends a SIGUSR2 (SIGINT)

signal to Starter, and enters the C h eckpo in ting state (Fig. 8.3).

8 .4 Im p lem en tation Issues

In this section, we discuss how we handle some of the implementation issues, such

as where to place the LS mechanism (inside or outside the OS kernel), how to transfer process

state (virtual memory, open files, and process control blocks) during task transfer/migration,

and how to support location transparency and reduce the effects of residual dependency.

W h e re th e LS m echan ism is located : We follow Condor’s principles, and implement

the LS mechanism outside the OS kernel in trusted daemon processes. Placing the mecha­

nism outside the kernel incurs execution overhead and latency (e.g., in the form of kernel

calls) in passing statistics (from kernel to daemon processes) and LS decisions (in the other

direction). However, as discussed in [AF89], the dominating factor in assessing LS perfor­

mance lies more in the global communication overhead and aggregate resource management

than in (small) delays incurred by kernel calls. Moreover, placing the mechanism outside

the kernel facilitates later expansion or generalization of our other LS strategies to deal with

large communication latency [SH91], excessive task transfer [HS91], and node/link failure

[HS93b, SH93, CS91]. One inherent limitation resulted from placing the LS mechanism

outside the OS kernel is tha t inter-process communication and signal facilities cannot be

easily implemented, and are not supported in the current implementation.

A p p ro ach to tra n s fe rr in g p rocess s ta te : Process state typically includes the virtual

memory, the open files, message channels, and other kernel states contained in the process

226

control block. In Condor, the state of a process is transferred in the form of checkpoint

files. Before a process is executed for the first time, its executable file is augmented to a

checkpoint file with no stack area, so tha t every checkpoint file is henceforth handled in

the same way. Moreover, every process is periodically checkpointed, and a new checkpoint

file is created from pieces of the previous checkpoint (which contains the text segment) and

a core image (which contains the data and stack segments) as follows: the LS mechanism

causes a running task to checkpoint by sending it the signal SIGTSTP. When a task is

linked, a special version of “crt()” is included which sets up C K PT 0 as the SIGTSTP signal

handler. Information about all open files which the process currently has is kept in a table

by the modified version of the open system call routine. When CK PT() is called, it updates

the table of open files by seeking each one to the current location and recording the file

position. Next a setjmp is executed to save key register contents (e.g., stack pointer and

program counter) in a global data area, then the process sends itself a SIGQUIT signal which

results in a core dump. Starter then combines the original executable file, and the core file

to produce a checkpoint file.

When the checkpoint file is restarted, it starts from the special “crt()” code, and

it will set up the restart() routine as a SIGUSR2 signal handler with a special signal stack

(in the d a ta segment), then send itself the SIGUSR2 signal. When restartQ is called, it will

operate in the temporary stack area and read the saved stack in from the checkpoint file,

reopen and reposition all files, and execute a longjmp back to CKPTQ. When the restart

routine returns, all the stacks have been restored, and CKPT() returns to the routine which

was active a t the time of the checkpoint signal, not “crt()’\

L o ca tio n tra n s p a re n c y a n d re s id u a l d ep en d en cy : Location transparency is one of

the most im portant goals in implementing load sharing. By transparency, we mean a pro­

cess’s behavior should not be affected by its transfer. Its execution environment should

appear the same, it should have the same access to system resources such as files, and it

should produce exactly the same results as if it had not been transferred [AF89, D091].

To maintain location transparency, sometimes the home workstation has to provide data

structure or functionality for a process after the process is transferred from the workstation

[D091]. This need for a home workstation to continue to provide some services for a pro­

cess remotely-executed is termed as residual dependency. In our implementation, location

transparency is achieved at the expense of residual dependency in the following manner:

the LS mechanism preserves the home workstation’s execution environment for the remote

process by using “remote system calls” in which requests for file/device access are trapped

227

Executing MachineInitiating Machine

Shadow User program

(UID=user)

Modified
C LibraryC Library

trap to kernel return coril

Kernel

-F t— 1
p p 5

Looal File pvstem

Figure 8.8: Remote system calls.

and forwarded to the Shadow process on the home workstation. As was discussed in Sec­

tion 8.3, whenever a workstation is executing a task remotely, it also runs a Shadow process

on the home workstation. The Shadow acts as an agent for the remotely executing task in

doing system calls. Specifically, each task submitted to the LS mechanism is linked with a

special version of the C library. The special version contains all of the functions provided

by the normal C library, but the system call stubs have also been changed to accomplish

remote system calls. The remote system call stubs package up the system call number and

arguments and send them to the Shadow via the network. The Shadow, which is linked with

the normal C library, then executes the system call on behalf of the remotely running task

in the normal way. The Shadow then packages up the results of the system call and sends

them back to the system call stub (in the special C library on the submitting machine)

which then returns its result to the calling procedure (Fig. 8.8).

8.5 R elated W ork

In this section, we review several existing load sharing mechanisms, i.e., the V -

system [TLC85, Stu88], the Sprite OS [D091], the Charlotte OS [AF89], and the Condor

software package [LLM88, LL90], with respect to their design policies and implementation

features.

228

8.5.1 D esign Policies

As discussed in Chapter 1, the design of LS mechanisms is characterized by the

transfer, location, and information policies. We now discuss how the existing systems tailor

their LS policies.

V -System : The V-system [TLC85, Stu88] uses a state-change driven information policy.

Each node broadcasts its state whenever its state changes significantly. State information

consists of expected CPU and memory utilization and specification about the machine itself,

such as its processor type. The broadcast state information is cached by all the nodes. If

the distributed system is large, each machine can cache information about only the best N

nodes, e.g., those nodes having idle or underloaded CPU and memory.

The V-system’s transfer policy selects only newly-arrived tasks for transfer. Its

transfer policy defines a node as a receiver if it is one of the M most lightly-loaded nodes in

the system, and as a sender if it is not. Its (decentralized) location policy locates receivers as

follows: when a task arrives at a machine, it consults the local cache and constructs the set

containing the M most lightly-loaded machines that can satisfy the task’s requirements.7 If

the local machine is one of the M machines, then the task is scheduled locally. Otherwise,

a machine is chosen randomly from the set and is polled to verify the correctness of the

cached data. Note that the random selection cannot totally avoid the possibility of multiple

machines selecting the same remote machine for task transfer. If the cached data matches

the machine’s state, the polled machine is selected for executing the task. Otherwise, the

entry for the polled machine is updated and the polling procedure is repeated.

Sprite: The Sprite OS [D091] uses a centralized state-change driven information policy.

Each workstation runs a background process called the load-average daemon, which moni­

tors the usage of that machine. When the workstation appears to be idle, the load-average

daemon notifies a central migration server that the machine is ready to accept migrated

processes. A threshold-based rule is used to decide whether or not a workstation is idle:

when the workstation has had no keyboard or mouse input for at least 30 seconds and

the number of active tasks is less than the number of processors at the workstation, it is

considered idle.

The transfer policy used in Sprite takes place in three cases. In the first case,

tasks may be chosen manually by users for remote execution. The transfer policy is thus

7The V-system’s load index is the CPU utilization at a node. To measure CPU utilization, a background
process that periodically increments a counter is run at the lowest priority.

229

not completely automated, and tasks are submitted for process migration through two

application programs, pmake and mig. Another case arises if foreign tasks executing at

a workstation must be evicted (and migrated back to their home workstations) to ensure

the availability of the workstation’s resources to the workstation owner. The third case is

invoked to ensure fair allocation of computing resources. If the centralized server cannot

find an idle workstation for a remote execution request and it finds that a process has

been allocated more than its fair share of workstations, then the server reclaims one of the

workstations being used by that process and evicts that process. The freed workstation is

then granted to the remote execution request.

The location policy is centralized: to locate a receiver, a workstation contacts the

central migration server (through a standard library procedure) which then selects an idle

workstation at random.

C h arlo tte ; In Charlotte [AF89], transfer and location policies are dictated by Starter

utility processes which base their decisions on statistical information provided by the ker­

nels they control and on state information they exchange among themselves. One can

introduce various transfer/location policies into the Starter utility processes by customiz­

ing and invoking the policy procedure. The policy procedure can choose to request some

source kernel to undertake process migration. Starter-to-Starter negotiation begins when

a process migration operation is invoked and may result in either a decision to migrate a

process or a rejection. In addition, Starters accept advice from privileged utilities (to allow

manually-directed transfers and to enable/disable automatic control).

The information policy is realized by a statistician thread which awakens peri­

odically to sample, average, and report statistics to the Starter. A summary of state

information is then periodically exchanged among the Starter utility processes.

C ondor: Condor is centralized with the central manager acting as a task dispatcher. To

submit a task, a user links it with a special system-call library and places it in a local

queue of background tasks. The transfer policy is invoked either upon submission of a task

or upon a scheduled timeout. In both cases, the central manager finds idle workstations not

only for the submitted task but also for tasks queued on all participating workstations. To

accomplish this, Condor uses a periodic information policy. Each workstations reports to

the central manager periodically the state information on the average workload index, the

keyboard/mouse idle time and the task queue situation. A workstation is considered idle if

the owner has not been active for at least 12.5 minutes. For each waiting task, the central

230

manager negotiates with workstations reported to be idle using the location policy described

in Section 8.2, and if the negotiation succeeds, it transfers the task to tha t workstation.

To ensure that workstation resources are available to the owner of the workstation,

the Startd at each workstation checks for local activity from the owner every 30 seconds if

a foreign background task is being served at that workstation. If the owner has been active

since the previous check, the Startd preempts the foreign task and saves its states. If the

workstation owner remains active for 5 minutes or more, the foreign task is preemptively

transferred back to the home workstation and returned to the waiting queue (Fig. 8.3). The

task may be transferred later, upon a scheduled timeout, to an idle workstation if one such

workstation is located by the central manager.

8.5 .2 Im p lem en tation Issues

As discussed in Sections 8.1 and 8.4, two issues relevant to LS implementation

are where to locate the LS mechanism and how to transfer process state. We now discuss

how the existing systems deal with these issues.

W h e re to p lace th e LS m echanism : The principal reason to place the LS mechanism

in the kernel is to reduce execution overhead and latency. However, integrating the LS

mechanism in the kernel might make the kernel less modularized and make later modification

or generalization difficult. The LS mechanism in the V-system and Sprite OS resides

in the kernel, and is integrated (and closely interplays) with process scheduling, memory

management, and interprocess communication. Condor, on the other hand, is implemented

completely outside the kernel. Charlotte, being somewhere in between, places the LS policies

in utility processes outside the kernel and the low-level process migration facilities inside

the kernel.

S tra teg ie s fo r tra n s fe rr in g process s ta te : Process state typically includes virtual

memory, open files/message channels, and kernel states (maintained in process control

blocks). For virtual memory transfer, Charlotte sends the entire memory image of the

process to the destination workstation at the transfer/migration time. The transfer may

take seconds, during which the process is frozen for execution on either the home or the

destination workstation. To reduce the long freeze time, the V-system uses the pre-copying

scheme where the process is allowed to continue executing while the virtual memory is trans­

ferred. The process is only frozen when some pages are modified on the home workstation

after they have been copied to the destination workstation, in which case the modified pages

231

ate then re-copied. In Sprite, the home workstation freezes the process, flushes its dirty

pages to backing files (which is backing storage for virtual memory and is accessible through

the network file), and discards its address space. On the destination workstation, the pro­

cess starts executing with no resident pages and uses the standard paging mechanisms to

load pages from backing files as they are needed.

In message-based systems such as Charlotte and V, all interactions of a process

with the rest of the system occur through message channels. Once the basic execution state

of a process has been migrated, all the remaining issues can be solved simply by forwarding

message on the process’s message channels. The operating system can use the arranging for

forwarding approach [D091], and need only to change the sender and receiver addresses so

that message to and from the channel can find their way from and to the process. In a system

such as Sprite that is based on kernel calls, an open file is attributed by three components of

the process state: a file reference, caching information, and an access position, all of which

must be properly transferred.

The other state consists almost entirely of fields from the process control block

(which is not bulky and does not involve distributed/shared states), and all three systems

transfer these fields to the destination workstation and reinstate them in the process control

block on the destination.

8.6 Conclusion and Current Status

We discussed a preliminary implementation of our decentralized LS mechanism

proposed in Chapter 3 based on the Condor software package. We removed the central

manager in Condor, and incorporated the functionality of the central manager into every

participating workstation. Each participating workstation collects state information on its

own via region-change broadcasts, and makes LS decisions based on the state information

collected. The probability of multiple machines sending their tasks to the same idle machine

is minimized by using the concept of preferred list in the location policy.

Special care has been taken to fuse our decentralized LS policies into the existing

Condor software so as to require as little modification as possible is needed. The remote

system call and process checkpoint facilities in Condor are adopted to provide location

transparency, to preserve the home workstation’s execution environment, and to transfer

the state of a process.

At the writing of the dissertation, the initial version of the decentralized LS mech­

anism is being implemented/tested, and initial performance measurements are expected to

232

be done shortly. We also plan to incorporate other features proposed in Chapters 3-6 into

the LS mechanism, and equip the LS mechanism with the abilities to deal with large com­

munication latencies, excessive task transfers and task collisions, and component failures.

CHAPTER 9

DISCUSSION AND FUTURE WORK

In this chapter we recapitulate the contributions of the dissertation, and explore

possible extensions and future directions for the work presented here.

9.1 R esearch C ontributions

We recognize that real-time task management is an important problem in dis­

tributed real-time systems. The general methodology for managing a real-time task system

in a distributed environment consists of four phases, and we have focused on the allocation

of periodic task modules and the redistribution of non-periodic tasks.

In particular, we have proposed a module allocation algorithm (M A A), based on

the branch and bound method, to find a module allocation that maximizes the probability

of completing all periodic tasks with both logical and timing correctness. The M A A not

only assigns task modules to PNs, but also uses a module scheduling algorithm (M SA) of

polynomial-time complexity to schedule all modules assigned to each PN so that all periodic

tasks are ensured to be completed by their deadlines [HS92]. Moreover, in order to speed

up the branch-and-bound process, a dominance relation is derived from the requirement

of timely completion of tasks and used in the branching process, and an upper bound for

the objective function is derived for every partial allocation and used to prune intermediate

vertices in the bounding process. As our extensive simulation study demonstrated, the

M A A always finds the best allocation at tractable computational costs for task systems

with less than 50 modules and/or distributed systems with less than 40 PNs.

We have designed an effective LS mechanism to enable underloaded/capable nodes

in a distributed real-time system to share the loads of overloaded/incapable ones so that

(1) the probability of dynamic failure, Pdyn, is minimized. We used the transfer policy of

dynamic threshold type to determine a node’s capability, region-change broadcasts to

reduce the communication overhead while keeping the state information as updated

233

234

as possible, and the preferred list structure to minimize the probability of multiple

nodes sending their overflow tasks to the same underloaded node [SH91].

(2) the undesirable effect of communication delays on the consistency of state information

is alleviated [SH91]. An important feature of this design is the use of time-stamped

region-change broadcasts and prior/posterior distribution of (load) state to charac­

terize the inconsistency between the state a node observes and the true systemwide

state, and Bayesian decision theory to estimate the true states of other nodes based

on out-of-date state information. We have shown the performance of the LS mecha­

nism with Bayesian decision to be less susceptible to communication delays in state

collection and task transfers.

(3) the probability that a remote node fails to complete a transferred task because of future

arrivals of tighter-laxity tasks is reduced [HS91]. The probability that a remote node

fails to complete a transferred task in time because of future tighter-laxity tasks

that arrived after the arrival of the transferred task but prior to the execution of the

transferred task is approximately derived using queueing analysis, and is figured into

the LS decision. All parameters needed for calculating the probability distribution

of interest are on-line collected/estimated with Bayesian estimation. Our simulation

results have shown that with consideration of future task arrivals, the occurrence of

task collisions and excessive task transfers is significantly reduced. We have also shown

that the performance degradation of the LS mechanism (with the use of Bayesian

estimation) due to statistical fluctuations in task arrivals is tolerable within a wide

range of bursty task arrival patterns.

(4) node failures are detected in a timely manner by a simple timeout mechanism with on­

line adjustable timeout periods [HS93b]. We formulate the problem of determining the

‘best’ timeout period as a hypothesis testing problem with the objective of maximizing

the probability of detecting node failures subject to a pre-specified probability of

false alarm. Our simulation results show that the LS mechanism which combines the

timeout mechanism, and a few extra, timely broadcasts can significantly reduce the

probability of missing task deadlines, as compared to other schemes either without

any timeout mechanism or with a fixed timeout period.

We have developed semi-Markov process models to assess analytically the per­

formance of our LS mechanism as well as other existing LS schemes [SH92, SH93]. The

analysis methodology presented in this dissertation is quite general in the sense that it can

be extended to other LS mechanisms and other underlying communication subsystems. For

235

example, extending the methodology to other LS mechanisms, one needs only to properly

derive the parameters that characterize the transfer policy and location policy, respectively.

Once they are determined, the derivation of other metrics follows the same approach.

We have also discussed how to implement, based on Condor, the LS mechanism

that incorporates the concept of buddy set, preferred list, and region-change broadcasts as a

prototype software layer tha t sits on top of the OS (e.g., BSD 4.3 UNIX in our current imple­

mentation) and provides the transparent LS service to application programs [HS93c]. Both

the analytic and simulation results and the experimental measurements have indicated that

by using judicious exchange/use of state information and Bayesian decision mechanisms,

the LS mechanism makes a significant improvement in minimizing Pdyn over those simple

LS schemes. This is in sharp contrast to the common notion that simple LS schemes yield

performance close to that of complex ones for general-purpose systems where minimizing

the mean response time is the main concern. Since missing a task deadline can cause a dis­

astrous accident in a real-time environment, a more complex, but intelligent, LS mechanism

should be employed to minimize Pdyn.

9.2 Future D irections

This work has revealed several promising research issues that are worth further

investigation:

E x p e rim en ta tio n w ith , an d E n h an cem en t of, Im p lem en ted LS M echan ism s:

Expanding the initial version of the implemented prototype LS mechanism will allow us

to conduct several interesting experiments. For example, we will be able to measure the

performance improvement with the consideration of future tighter-laxity task arrivals and

with the incorporation of a timeout mechanism in case of component failure. We will

also be able to measure the overheads of different components in our LS mechanisms, and

experimentally analyze the tradeoffs between the associated complexity and the resulting

benefit. Besides, we can also experiment on different local scheduling disciplines to assess

their effects on LS performance.

In c o rp o ra tio n o f F au lt T o lerance in to LS: We have addressed the issue of detecting

node failures in this dissertation: we incorporated a timeout mechanism with an on-line

adjustable timeout period into LS. The LS mechanism can be enhanced further to handle

node failures. For example, in Chapter 3 we incorporated the concept of preferred list

[SC89a] — ordering fault-free nodes as preferred receivers of overflow tasks — into our

236

LS mechanism. In Chapter 4, we proved that if the preferred list is structured so that

the features of uniqueness and symmetry are retained then the probability of more than

one nodes simultaneously sending their tasks to the same node is minimized. Moreover,

overflow tasks are evenly distributed among capable nodes. One potential problem is that

the occurrence/detection of node failures will destroy the original structure of a preferred

list if the node diagnosed as failed are simply dropped from the list. Moreover, if a node

fails before all the tasks in its queue are completed, those tasks will be lost unless some

fault-tolerant mechanism is provided. Thus, it is desirable to (1) develop an algorithm to

modify the preferred lists in case of node failures in order to retain the desirable features of

the preferred list; and (2) devise an approach to coordinate nodes to keep backup copies of

tasks arrived in the systems in an effective manner.

In te g ra tio n o f R ea l-T im e C om m unications S u b system in to LS: As addressed

in Chapter 7, no matter which information or location policy is used, we must consider

the underlying real-time communication subsystem that supports all LS-related commu­

nications activities. That is, a communication subsystem should be designed to support

time-constrained communication and incorporated into the proposed real-time LS mech­

anism for task transfers and state-change broadcasts. Qualitatively, the communication

subsystem should be able to

(1) deliver messages/tasks within certain deadline constraints;

(2) support broadcast facilities in the physical or data link layer;

(3) offer services such as maintenance of a global time-base (used for time-stamped region-

change broadcasts), and support for group communications.

Our colleagues at Michigan have laid out a framework to handle time-constrained messages

based on a communication abstraction called a real-time channel [KS91a, ZS92]. They have

also developed a broadcast algorithm [KS91b] and a clock synchronization scheme [RKS90].

Our overall goal is to implement these schemes, along with some of the functionalities of the

proposed LS mechanism, in a prototype software that shall be run on the communication

subsystem.

In v estig a tio n o f U nderly ing Services P ro v id ed to LS: In conjunction with the

design/implementation of an experimental LS mechanism, one can (i) investigate basic re­

search issues related to the services which the underlying communication subsystem and OS

should provide to the LS mechanism, e.g., synchronizing network time, reliable broadcasts,

237

remote procedure calls, directory service, and security, and propose design solutions; (ii)

evaluate analytically the resulting performance of the proposed solutions; and (iii) proceed

to build up a layer of service routines that sits on top of the operating system and net­

working transport services, and offers its services in the form of library procedure calls to

applications above (e.g., the LS mechanism), based on the DCE (distributed computing

environment) concepts proposed by the OSF.

APPENDIX A

VERIFICATION OF FLOW CONSERVATION

To verify the correctness of Eq. (4.15), one has to show that flow conservation

holds for the system with the random LS scheme.

C oro llary 1 For the random LS scheme, YhT=o a {k)Pr(k) = /3(k).

Proof.

f>(*)W(*0 = £ (£ 'X > « K (*)
*=0 k=Q i= l j = 0

■Em»* 00 00

= EE E HiPrif)
»=1 j=l k=J+l

= 9tj £ Fr(k)
j = i i= i *=>+i

^mai
= £

;=i
= /?(*),

where the second equality follows from interchanging the summation indices while preserv­

ing the range of summation appropriately, and the third equality follows from g,,- = 0 for

3 - Ffnax -|- 1. ^

To verify the correctness of Eq. (4.16), one has to show that flow conservation

holds for the system with the proposed LS scheme, i.e.,

C oro llary 2 When those tasks being rejected are not considered,

J 2P (k)pr{k) = a(k)pr(k),
k—0 k=0

for the proposed scheme.

238

239

Proof.

OO OO £ m a i 1___

Z m M k) =
1 - 7,+i

£ m a x 1 m j ^ B J

k=o k=o i=fc " 7j+i

?rS 1 — 7i+i

However, from Corollary 1,

>=o ̂ 7y+i *=o
&max

= £ H ‘7 i+ i(l - 7y+i)‘
y=i

OO
£ a(fc)pr(fc) = £ H -7 i+ i*
t=0 ;=1

Inconsistency results from the nonzero probability of dynamic failure, since the difference,

7j+ij is the probability that a task with laxity j will fail to complete in time. If these

failed tasks are not rejected or continuously transferred from node to node, thus conserving

task flow, and/or the probability of dynamic failure is negligibly small, the summation in

Eq. (4.16), 1 + 7J+i + 7?+1 + ... + Trj+l-1 can be replaced by £ “=o7y+i = 1/(1 - 7;)> thus

P(T) = Z f= r H '7 ;+ i/(1 " 7y+i), and £ “=0 P(k)pr(k) = £ “=0 a{k)pr(k). □

To verify the correctness of Eq. (4.18), one has to show that flow conservation

holds for the system with the quasi-perfect LS LS scheme.

C oro lla ry 3 Without considering those tasks being rejected and declared not to meet their

deadlines, we have

£ K k)Pr(k) = A
Jt=o

for the quasi-perfect LS scheme.

Proof.

00 L r

k=0 k=0 ;=* 7 /+ 1

1 _ '\Frn *
A .t 7 i ± i

;=o 1 “ 7;+i jt=o
^m»x

= E w - tS)
,=o

* £ Mi if 7y+T — 0
j =o

= A.

240

Inconsistency again results from the nonzero probability of dynamic failure. If this probabil­

ity (or 'y f rn) is negligibly small and/or the failed tasks are continuously transferred among

nodes, task flow will be conserved. □

241

A PPENDIX B

SUMMARY OF RANDOMIZATION TECHNIQUE

We summarize some important results of the randomization technique.

Consider a continuous-time Markov chain {X (f),t > 0} with generator matrix Q

on a finite state space S of size N + 1. For notations! convenience, we enumerate the elements

of S as 0 ,1 ,. . .,AT. Let A = max0«<Ar ft, then there exists a discrete-time Markov chain

{yn,n = 0 ,1 ,...} and a Poisson process {N (t), < > 0} with rate A, which are independent of

each other, such tha t the process {V/v(t)51 > 0} has the same finite dimensional distributions

as, and is thus probabilistically identical to, { X (t) , t > 0}. In the equivalent process, the

transition rate from state i is A, but only the fraction ft/A of transitions are real and the

remaining fraction 1 — are fictitious transitions. In other words, { Jf(t) ,t > 0} can be

considered as a process which spends a time with an exponential rate A in state i and then

makes a transition to state j with probability Vij , where

= { l f j = *’ (B-1)’" = {i if 3 * i -

The transient probabilities, P (X (t) = t), 0 < i < N , of the continuous-time

Markov chain {X(f), t > 0} can now be easily obtained by conditioning on AT(t), the number

of transitions in (0,t], i.e.,

P (X (t) = i) = P(YN(t) = i) = f] P(YN{t) = i | N (t) = n) • P {N {t) = n)
n = 0

= j t p (Yn = i)e -M(At)n/ n l (B.2)
n = 0

In other words, a continuous-time Markov chain { Jf(t),t > 0} on a finite state space 5 ,

after its randomization, can be viewed as a discrete-time Markov chain, {Yn,n = 0 ,1 ,...} ,

subordinated to a Poisson process {N (t), t > 0}, and thus the transient probabilities can

be easily computed using the discrete-time Markov chain.

242

APPENDIX C

LIST OF SYMBOLS

Notation Used in Chapter 2

Pn d * the probability of no dynamic failure, i.e., the probability of all tasks making their
deadlines.

Pn d i- the probability that all tasks within a planning cycle are completed before their
deadlines.

Pnd’i ' the probability that all PNs are operational during the execution of modules assigned
to them, and the communication links between communicating PNs are operational
for all the intermodule communications that use these links.

N t '. the total number of periodic tasks in the system.

tc, the invocation time of a periodic task T,-.

Pi i the period of a periodic task T,.

dii the deadline of a periodic task T,-.

L: the planning cycle of a set of periodic tasks. It is computed as the least common multiple
of {pf : i = 1, 2,...,N t} .

M{ —► M ji the precedence constraint imposed on modules Mi and Mj which means that
the completion of Mi enables Mj to be ready for execution.

e<: the execution time of a module M, .

N m : the number of modules to be allocated within a planning cycle.

Kpn> the number of PNs available for allocation.

xi an allocation which assigns modules to PNs. xm = 1 if module Mi is assigned to PN TV*.

T G : the task flow graph representing the task system.

TG{x): the set of modules which are already allocated under the allocation x. TG (x) = TG
if £ is a complete allocation.

A N : the set of active nodes in the search tree which can be considered for node expansion
in the next stage.

x0: a null allocation which corresponds to the root of the search tree.

xopt: an optimal allocation.

Pn d : the objective function. vsIug ctchieved by 3?opt*

243

PND(x): the value by which the objective function, Pn d , of all child nodes expanded from
the allocation x is upper-bounded.

Ptc(Tt | x): the probability that a task Tt is completed before its deadline under allocation
x.

T G e: a component task graph of TG.

{TGC}: the set of component task graphs of TG.

pe: the probability that TG is represented by TGC.

T G c(x)i the set of modules 6 T G e which are allocated under s .

Sk(x)i the set of modules which are assigned to Nk under allocation x, i.e., St(x) = {M,- :
x ik = 1}-

r,-: the release time of module Mi which can be interpreted as the earliest time at which
Mi can start its execution.

LC{i the latest completion time of M{. Mi must be completed before ZC7,- to ensure all
tasks to meet their deadlines.

D i‘. the critical time of M,-. M { must be completed before £),• to ensure the task to which
Mi belongs to meet its deadlines.

Ci'. the completion time of M{ which is determined by M SA.

e,-: the modified execution time of M,-. e,- is used to include the effect of queueing Mi on
the release times of all those modules that succeed Af,-.

fi(Ci): the cost incurred by completing Mi at C,.
comij(x): the IMC communication time of Mi and Mj under allocation x.

d{j: the IMC volume (measured in data units) between M,- and Mj.

Ykt; the nominal delay (measured in time units per data unit) between two PNs, Nk and
Nt .

B: the minimal set of modules that are processed without any idle time from r (B) =
minAfjeB fi until c(B) = r(B) + e(B), where e(B) = e<-

6: the number of blocks in £*(x).
dgit the outdegree of Mi within a block under consideration.

B{i a subblock of B — {M m}, where 1 < i < b, b is the number of subblocks in B — {Afm},
and Mm is the module scheduled to be executed if no other modules in B are waiting.

qa: the looping-back probability of the loop La.

»£„: the maximum loop count of the loop L a.

qt l t the branching probability of the £-th branch of an OR-subgraph, Oj.

not : the number of branches in the OR-subgraph Oj.

Ptc(Tt | T G e, x): the probability that a task Tt is completed before its deadline under x for
a given component task graph TG e.

Ti = {Jlfi : Mi £ Tt C\TGe, dg{ = 0 with respect to TL fl TG C }: the set of modules without
any successor in Tt fl TGe.

L P : the set of modules which are contained in loops.

244

OR: the set of modules which are on branches of OR-subgraphs.

A*: the constant exponential failure rate of N k.
A A
Am„: the constant exponential failure rate of link £mn. We assume that At ’s and Amn’s are

statistically independent of one another.

tmn: the nominal delay (measured in time units per data unit) of link l mn.

n(k,£): the number of edge-disjoint paths from N k to JV/.

J(m , n, k, £): the indicator variable such that I (m , n, k,£) = 1 if £mn lies on one of the n(k, £)
edge-disjoint paths from N k to Nt .

P iM c{hji fte): the probability tha t the IMC between M { and Mj occurs ne times in one
task invocation.

R mn(i , j , n c, x): the probability th a t link £mn is operational during ne occurrences of IMC
between M,- and Mj under allocation x.

■Rpn(®): the probability that all PNs are operational during the execution of modules
assigned to them under allocation x.

^ link (*): the probability that all links are operational for performing all the IMCs that
use them under allocation x.

L C f : a pessimistic estimate of LCi used in the branching process.

LCi s an optimistic estimate of LC{ used in the branching process.

r°: an optimistic estimate of used in the branching process,

P N : the set of PNs who need to reschedule the modules assigned to them because of the
addition of Mi -* N k to a partial allocation.

Notation Used in Chapter 3

Piyn: the probability of dynamic failure, or the probability of a task failing to complete
before its deadline.

K t: the number of state regions in region-change broadcasts.

T H f, 1 < i < K t — 1: thresholds tha t divide the (workload) state space into K t state re­
gions.

e,-: the execution time of task T(.

£{i the laxity of task

Tpi the probability update period for prior/posterior distributions.

SI: the parameter space of a Bayesian decision problem.

W : the variable representing the outcome of the parameter space SI.

O : the observation of the parameter W .
S : the sample space of all possible values of the observation, O.

D: the decision space of a Bayesian decision problem.

L: the loss function (defined on the product space fl x D) of a Bayesian decision problem.

C(.P, d): the expected risk for the given distribution, P , of the parameter W , and the decision
d.

245

C*(P): the Bayes risk defined as the greatest lower bound for the risks ((P , d) \fd £ i.e.,
C (P) = 'miD a P ,d).

{PQ|jy(-|w),a> £ fi}: the family of sampling functions of observation 0 .

PjV|o=0(‘): the conditional probability of the state, W , given the observation 0 = o.
S(o): the Bayes decision function that specifies, for each possible observation o £ S, a

decision £ D.
£*(o): the Bayes decision against the conditional distribution of W when 0 = o.

N b : the number of nodes in a buddy set. For example, N B = 3m(m — 1) + 1 if the buddy
set is an H-mesh of dimension m.

wf (wf): the state of node i after (before) the change of state region in a region-change
broadcast.

t0i the time when a region-change broadcast is stamped.

a: the probability update ratio that represents the tradeoff between obtaining better aver­
ages and reflecting load changes.

Xect: external task arrival rate at a node.

{el5 ...,e*}{p.1,,.,p4j[}: the execution time distribution of external tasks, i.e., an external task
requires ef units of execution time with probability pt% in the task set.

the laxity distribution of external tasks, i.e., an external task
has it time units of laxity with probability pti in the task set.

Pdyn\i• the probability of missing the deadline of a task with laxity I.

P<fyn|/,e* the probability of missing the deadline of a task with laxity I and execution time
e.

Amax: maximum system utilization, i.e., the upper bound for A below which Piyn < e can
be achieved for some pre-specified c > 0.

ru : the task transfer-out ratio defined as the portion of arrived composite (both external
and transferred-in) tasks that have to be transferred.

f te: the frequency of task collision defined as the fraction of transferred tasks that are not
guaranteed on remote nodes after their transfer.

fbi fp> fr ‘> the frequency of region-change broadcasts, the frequency of state probing, and
the frequency of request-for-bids, respectively.

Ch,C p : the broadcast processing cost, and the probability-update processing cost.
C V : the coefficient of variation of the hyper-exponential task interarrival times used in the

simulation.

Notation Used in C hapter 4

A(T): the composite (both external and transferred) task arrival rate at a node, given that
the node’s CET, T.

Qi (1 < * < Pmax)- the probability that an external (local) task requires i units of execution
time.

(0 < j < Lmax): the probability that an external (local) task has laxity of j units of
time.

246

Bk’ the fcth busy slot (measured in terms of system clock cycles) relative to any reference
point of time.

T*.: a node’s CET at the end of Bk .

X[i the number of type-i task arrivals during B k.
R t the number of clock cycles required for a node to complete a task which finds the node

idle upon its arrival.

T +,T: the CET on a node at some embedding time instant (i.e., at the end of each busy
slot) and at some random time instant, respectively.

P t (') : the distribution of T and the distribution of T +, respectively.

a(T’): the rate of transferring tasks out of a node given that the node’s CET is T.

/3(T): the rate of transferring tasks to a node given that the node’s CET is T .

7y. the probability tha t the CET on a node is no less than j units of time.

Kjt the number of nodes that can be chosen by a node, excluding the node itself, for
transferring a task with laxity j .

Cn(*)> cp(*): the communication overheads encountered by a task with i units of execution
time in the random selection scheme and the proposed scheme, respectively.

rfi, rfi: the task transfer-out ratio in the random selection scheme and the proposed scheme,
respectively.

Notation Used in Chapter 5

{P i(j) ,j = 1,..., Emax}: the distribution of composite1 task execution time on node i, where
E max is the maximum task execution time. This distribution will be estimated on-line
by each node i.

{ p i(j) , j = 1,..., Lmax}i the distribution of composite task laxity on node i, where L max is
the maximum laxity. This distribution will also be estimated on-line by each node i.

C E T i{t): the cumulative execution time (CET) on node i contributed by tasks with laxity
< £ under the MLFS discipline.

Oi(£): the observation about CET{(£) made by some node j / i.

Pct(' I 0,•(£)): the posterior distribution of CETi{£) given the observation Oi(£). This pos­
terior distribution is constructed by each node j / i with the state samples collected
via time-stamped region-change broadcasts.

Vi t', the event that future tighter-laxity task arrivals at node i do not invalidate the existing
guarantee of a task with laxity £.

the event that a task with laxity £ can be guaranteed by node i even in the presence
of future tighter-laxity task arrivals.

A,-: the exponential composite task arrival rate at node i.

g\(Xi) = const: the non-informative distribution which serves as the prior distribution in
Bayesian estimation.

1botfa external and transferred

247

f (t | A,) = Aie~Xiti the likelihood function of interarrival times given A,-.

/(A< | tjt): the posterior distribution of A< given the sample of interarrival time tk.

Q(A | a ,fl): the 7-distribution of A,- with parameters a and fl.

N st the size of statistical samples used to estimate A,-, {p,(j)}, or {p,-(j)}.

Y = (Yi, the vector recording the numbers of laxity-j tasks in Ns task arrivals,
where Yj denotes the number of laxity-j tasks in N s arrivals.

p : p = (p ,(l),p ,(2),.. .,Pi(Lmax)) is the vector of probabilistic parameters to be esti­
mated.

f i t / I N s ,p): the likelihood function of Y among N s outcomes given p .
V (p | a) : the Dirichlet distribution of p with parameter a = (a x, a 2, . . . , otLmaz).

Fk(t): the empirical distribution function of task interarrival times defined as the proportion
of the observed samples which are < t.

F \(t) = 1 — e-A‘: the hypothesized exponential distribution.

Die,' the test statistic for the Kolmogorov-Smirnov test.

a*,: the significance level used in the Kolmogorov-Smirnov test, i.e., the probability that
the test falsely rejects the hypothesized distribution.

A"*: the external task arrival rate at node i.

Xext: the average external task arrival rate. It is an index of system load.

K n: the number of heterogeneous groups in the system.
A**4r n: the ratio of external task arrival rates between two ‘adjacent’ groups, i.e., -ffi- = r„.

N o ta tio n U sed in C h a p te r 6

CET{'. the cumulative task execution time (CET) on node i.

Tq = (I i ;T 2;.. . ;2£m„) : the description of the sorted task queue on a node, where 7} =
e(ei-"^+ i i® a record of tasks with laxity j € {1 ,.. . ,Lmax} currently queued on a
node, and ej € { 0 , . . Emax], 1 < k < j + 1, is the time required to execute the fc-th
laxity-,7 tas^ *n the queue.

: the timeout period; node i will be diagnosed as failed if no broadcast message from
node i has been received for this period since its latest broadcast.

Xp: the exponential failure rate of a node.

Ob(t): the indicator variable for the event that a broadcast message is received within time
t.

T„ii the random variable representing the time to node i ’s next broadcast (measured relative
to the time of node i ’s last broadcast).

Ho (H i): the hypothesis that node i is operational (faulty).

7r0 (7Ti): the unconditional probability that H0 (H i) is true.

p0 (p i): the probability density function of Ob(t) under the hypothesis of H0 (Hi).

6(Ob(t)) £ {0, 1}: the decision function of whether to accept H0 or Hi based on Ob(t).

248

Pf (S): the probability that H0 is falsely rejected.

Pm (6): the probability that Hi is falsely rejected.

cthti the significance level of the hypothesis test used to determine the best timeout period.

{ X (t) , t > 0}: the continuous-time Markov chain on a finite state-space S , which models
the state evolution of a node.

Q = (qij)i the generator matrix of the continuous-time Markov chain { X (t) ,t > 0), where
0 < h j < -W) is the transition rate from state i to state j and |5j = N + 1. Note

that qu = ~ = “ ?<» and 0 < to < °°-
K eri the rate and the shape parameter K tr of the Erlang distribution which models the

deterministic consumption of CET on node i .

H_ = (tf0; H i\H 2\ ...; the state of a node, where Hj = h{h}2...hi+1 is a sequence of
j + 1 numbers with h{ 6 { 0 ,.. . , K erE max}. h{ represents the number of service stages
contributed by the k -th laxity-j task in the node queue.

Cj = S t t i the total number of service stages contributed by all laxity-j tasks.

la$t(Hj)i the index of the last nonzero entry in Hj, or, equivalently, the number of nonzero
h{’s in Hj.

Lnow (H): the laxity of the task currently in service.

9K<U!t k : rate transition from H_ to H't K m caused by queueing a newly-arrived
task with £ time units of laxity and m units of execution time.

i : the ra*e the transition from H_ to H\ , caused by the consumption of 1 service
stage of the task with laxity I.

{Yn,n = 0 ,1 ,...} : the discrete-time Markov chain abstracted from the continuous-time
Markov chain {A"(t),t > 0} by randomization.

V = (Vij)t is the transition matrix of the discrete-time Markov chain {Y„, n = 0 ,1 ,...} .

{N(t) , t > 0): the Poisson process abstracted from the continuous-time Markov chain { X (*),/>
0} by randomization, such that {10v(<), t > 0} is probabilistically identical to {X(t), t >
0).

A: the rate of the Poisson process {N(t) , t > 0}.

Sji the j -th state broadcast region. Sj = {H_ : K er ■ TH 2y -i) < {£*=i f̂c} <
K e r T H 2j}

Tj(n,k), 0 < k < n + 1: the probability that {Y„} visits the states in Sj k times out of n
state changes.

Tj (n, k ,H)\ the probability that {Y„} stays in Sj k times out of n state changes and the
state visited during the last transition is state H_.

JV„: the number of nodes in the distributed system, e.g., Nn = 3e(e - 1) + 1 in He.

fiF: the exponential node recovery rate.

a fixed timeout period used by node i in the simulation.

249

Notation Used in Chapter 7

H ei A C-wrapped hexagonal mesh of dimension e.

m : the dimension of the buddy set which itself is a hexagonal mesh, i.e., the buddy set is
a Hm.

0 < i < 5: the (60 • t)-degree clockwise direction to the horizon.

Li', the ith row in each direction in an hexagonal mesh.

k,y i = 0, 1, 2: the number of hops from the source node to the destination node along the
di direction. Negative value means that the move is along opposite direction, d[,+3]a.

I//X7 : mean task execution time.

{Pjv(«), n 0}: the probability density function of the queue length of a node.

the probability density function of the time needed for a packet to travel i hops.

fw k{t)' the probability density function of waiting time for tasks with laxity k.

XTT: the rate of transferring tasks out of a node.

A sc?: the rate of state-region-change broadcasts.

qh i the probability of sending a task to a node h hops away.

R{i the i-th state region.

Ta'. the mean recurrent time of Ri\ the expected time until the first transition into R { given
th a t a node’s state starts in f?;.

Ti'. the average time the continuous-time Markov chain, M , constructed in Section 7.3.1
spends in i?,-.

7Tjt: the stationary probability that the underlying discrete time Markov chain for M stays
in state k.

P j : the probability tha t a packet arriving (and receiving services if necessary) a t a node
will be forwarded to one of its neighboring nodes.

A: the throughput rate of a node.

pc: the probability of a packet cutting through an intermediate node,

the mean length of broadcast packets.

i TTi the mean length of task transfer packets.

1: the mean packet length.

An, A a Bt At ,b : the rate of generating broadcast packets at a node, the rate of terminal
broadcast packets arriving at a node, and the rate of transit broadcast packets arriving
a t a node, respectively.

ATTt ^ a ,t Tt At ,t t - the rate of generating task-transfer packets at a node, the rate of ter­
minal task-transfer packets arriving at a node, and the rate of transit task-transfer
packets arriving at a node, respectively.

pi the traffic intensity of the queueing network of interest.

Tatio'. the distribution of task laxity is assumed to be geometric with pi+l — rau0 •Pi•

BIBLIOGRAPHY

[AAS86]

[AC88]

[AF89]

[Ber86]

[BG87]

[BLLK83]

[BNG92]

[BS85]

[BT83]

[CA82]

[CK87]

[CL86]

M. Alam and U. M. Al-Saggaf. Quantitative reliability evaluation of repairable
phased-mission systems using Markov approach. IEEE Trans, on Reliability,
R-35(10):498-503, October 1986.

Rafael Alonso and Luis L. Cova. Sharing jobs among independently owned pro­
cessors. IEEE Proc. 8th International Conf. on Distributed Computing Systems,
pages 282-288,1988.

Y. Artsy and R. Finkel. Designing a process migration facility: the Charlotte
experience. IEEE Computer, 22(9):47-56, September 1989.

James 0 . Berger. Statistical Decision Theory and Bayesian Analysis, Springer-
Verlag, 1986.

Dimitri Bertsekas and Robert Gallager. Data Networks. Prentice-Hall, Inc.,
1987.

K. R. Baker, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan. Preemptive
schedudng of a single machine to minimize maximum cost subject to release
dates. Operations Research, pages 381-386, March-April 1983.

N. S. Bowen, C. N. Nikolaou, and A. Ghafoor. On the assignment problem of
arbitrary process systems to heterogeneous distributed computer systems. IEEE
Trans, on Computers, 41(3), March 1992.

A. B. Barak and A. Shiloh. A distributed load-balancing podcy for a multicom­
puter. Software-Practice and Experience, 15(9):901-913,1985.

Joseph A. Bannister and Kishor S. Trivedi. Task allocation in fault-tolerant
distributed systems. Acta Informatica, 20:261-281,1983.

T. C. K. Chou and J. A. Abraham. Load balancing in distributed systems. IEEE
Trans, on Software Engineering, SE-8(4):401-422, July 1982.

Thomas L. Casavant and Jon G. Kuhl. Analysis of three dynamic distributed
load-balancing strategies with varying global information requirements. IEEE
Proc. 7th International Conf. on Distributed Computing Systems, pages 185-192,
1987.

Hung-Yang Chang and Miron Livny. Distributed scheduling under deadline
constraints :a comparison of sender-initiated and receiver-initiated approaches.
IEEE Real-time Systems Symposium, pages 175-181,1986.

250

251

[CL87]

[CS87]

[CS91]

[CSK90]

[CT83]

[DeG70]

[DeG86]

[D091]

[DRS91]

[dSeSG86]

[dSeSG89]

[EB86]

[ELZ86]

[FB89]

[GH85]

Wesley W. Chu and Kin K. Leung. Module replication and assignment for real­
time distributed processing systems. Proceedings of the IEEE, 75(5):547-562,
May 1987.

Wesley W. Chu and Chi-Man Sit. A batch service scheduling algorithm with
time-out for real-time distributed processing systems. IEEE Proc. 7th Interna­
tional Conference on Distributed Computing Systems, pages 250-257,1987.

Yi-Chieh Chang and Kang G. Shin. Load sharing in hypercube multicomputers
in the presence of node failure. Proc. of IEEE 21th International Symposium on
Fault-Tolerant Computing, pages 188-195,1991.

Ming-Syan Chen, Kang G. Shin, and Dilip D. Kandlur. Addressing, routing, and
broadcasting in hexagonal mesh multiprocessors. IEEE Trans, on Computers,
39(1):10-19, January 1990.

M. L. Chaudhry and J. G. C. Templeton. A First Course in Bulk Queues,
chapter 2-3, pages 58-61,127-130. John Wiley & Sons, Inc., 1983.

Morris H. DeGroot. Optimal Statistical Decisions. Mcgraw-Hill, Inc., 1970.

Morris H. DeGroot. Probability and Statistics. Addison-Wesley Publishing
Comp., second edition, 1986.

F. Douglis and J. Ousterhout. Transparent process migration: design alter­
natives and the Sprite implementation. Software - Practice and Experience,
21(8):757-785, August 1991.

J. W. Dolter, P. Ramanathan, and Kang G. Shin. Performance analysis of
message passing in HARTS: a hexagonal mesh multiprocessor. IEEE Trans, on
Computers, C-40(6):669-680, June 1991.

Edmundo de Souza e Silva and H. Richard Gail. Calculating cumulative op­
erational time distributions of repairable computer systems. IEEE Trans, on
Computers, C-35(4):322-332, April 1986.

Edmundo de Souza e Silva and H. Richard Gail. Calculating availability and
performability measures of repairable computer systems using randomization.
J. of ACM, 36(1):171—193, January 1989.

M. Engelhardt and L. J. Bain. On the mean time between failures for repairable
systems. IEEE Trans, on Reliability, R-35(10):419-422, October 1986.

Derek L. Eager, Edward D. Lazowska, and John Zahorjan. Adaptive load sharing
in homogeneous distributed systems. IEEE Trans, on Software Engineering, SE-
12(5):662—675,1986.

David Fernandez-Baca. Allocating modules to processors in a distributed sys­
tem. IEEE Trans, on Software Engineering, 15(11):1427—1436, November 1989.

Donald Gross and Carl Harris. Fundamentals of Queueing Theory. John Wiley
& Sons, Inc., second edition, 1985.

252

[GJ79]

[GM84]

[Gra77]

[HJ87]

[HL86]

[Hou90]

[HS91]

[HS92]

[HS93a]

[HS93b]

[HS93c]

[HTT89]

[KC87]

M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, N. Y., 1979.

Donald Gross and Douglas R. Miller. The randomization technique as a modeling
tool and solution procedure for transient markov processes. Operations Research,
32(2):343-361, March-April 1984.

W. K. Grassmann. Transient solutions in markovian queueing systems. Com-
put. and Ops. Res., 4:47-53,1977.

Anna Hac and Xiaowei Jin. Dynamic load balancing in a distributed system
using a decentralized algorithm. IEEE Proc. 7th International Conf. on Dis­
tributed Computing Systems, pages 170-184, September 1987.

Chi-Yin Huang Hsu and Jane W.-S. Liu. Dynamic load balancing algorithms
in homogeneous distributed systems. IEEE Proc. 6th International Conf. on
Distributed Computing Systems, pages 216-223,1986.

Catherine E. Houstis, Module allocation of real-time applications for distributed
systems. IEEE Transactions on Software Engineering, 16(7):699—709, July 1990.

C.-J. Hou and K. G. Shin. Load sharing with consideration of future task arrivals
in heterogeneous distributed real-time systems. IEEE Proc. of 12th Real-Time
System Symposium, pages 94-103, December 1991. An enhanced version is
accepted for publication in IEEE Trans, on Computers.

C.-J. Hou and K. G. Shin. Module allocation with timing and precedence con­
straints in distributed real-time systems. IEEE Proc. 13th Real-Time Systems
Symposium, December 1992. An enhanced version is accepted for publication in
IEEE Trans, on Computers subject to minor revision.

C.-J. Hou and Kang G. Shin. Determination of an optimal retry time in multiple-
module computing systems. IEEE Proc. of 2nd In t’l Symp. on Uncertainty
Modeling and Analysis, pages 294-301, April 1993. An enhanced version is
accepted for publication in IEEE Trans, on Computers subject to minor revision.

C.-J. Hou and Kang G. Shin. Incorporation of optimal timeouts into distributed
real-time load sharing. IEEE Proc. of 26th Hawaii In t’l Conf. on Systems Sci­
ence, January 1993. An enhanced version is accepted for publicaiton in IEEE
Trans, on Computers.

C.-J. Hou and Kang G. Shin. Transparent load sharing in distributed systems:
decentralized design alternatives based on condor package, submitted to IEEE
Proc. of 13th In t’l Conf. on Distributed Computing Systems, 1993.

Jiawei Hong, Xiaonan Tan, and Don Towsley. A performance analysis of min­
imum laxity and earliest deadline scheduling in a real-time system. IEEE
Trans, on Computers, C-38(12):1736-1744, December 1989.

J. F. Kurose and R. Chipalkatti. Load sharing in soft real-time distributed
computer systems. IEEE Trans, on Computers, C-36(8):993-999, August 1987.

253

[KF84]

[Kit88]

[KK79]

[KK93]

[Kle75]

[KN74]

[KS83]

[KS91a]

[KS91b]

[LL73]

[LL90]

[LLM88]

[LM82]

[L088]

[LT86]

P. Krueger and R. Finkel. An adaptive load balancing algorithm for a multi­
computer. Technical Report 539, University of Wisconsin-Madison, Dept, of
Computer Science, April 1984.

John F. Kitchin. Practical Markov modeling for reliability analysis. IEEE 1988
Proceedings Annual Reliability and Maintainability Symposium, pages 290-296,
1988.

P. Kermani and L. Kleinrock. Virtual cut-through: A new computer communi­
cation switching technique. Computer Networks, 3:267-286,1979.

L. Kleinrock and W. Korfhage. Collecting unused processing capacity: an anal­
ysis of transient distributed systems. IEEE Trans, on Parallel and Distributed
Systems, 4(5):535-546, May 1993.

Leonard Kleinrock. Queueing Systems, Volume 1: Theory. John Wiley & Sons,
Inc., 1975.

L. Kleinrock and W. E. Naylor. On measures behavior of the ARPA network.
Spring Joint Comput. Conf., AFIPS Conf. Proc., pages 767-780,1974.

C. M. Krishna and Kang G. Shin. Performance measures for multiprocessor
controllers. Performance ’83, A. K. Agrawala and S. K. Tripathi, Eds., pages
229-250,1983. North-Holland.

Dilip D. Kandlur and Kang G. Shin. Design of a communication subsystem
for HARTS. Technical Report CSE-TR-109-91, The University of Michigan,
Dept, of Electr. Eng. and Comput. Science, Fall 1991.

Dilip D. Kandlur and Kang G. Shin. Reliable broadcast algorithms for HARTS.
AC M Trans, on Computer Systems, 9(4):374-398, November 1991.

C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM, pages 174-189,1973.

M. Litzkow and M. Livny, Experience with the Condor distributed batch sys­
tems. Proc. of IEEE Workshop on Experimental Distributed Systems, October
1990.

M. Litzkow, M. Livny, and M. Mutka. Condor — a hunter of idle workstations.
Proc. o f IEEE 8th In t’l Conf. on Distributed Computing Systems, June 1988.

M. Livny and M. Melman. Load balancing in homogeneous broadcast distributed
systems. Proc. ACM Comput. Network Performance Symp., pages 47-55,1982.

Virginia Mary Lo. Heuristic algorithms for task assignment in distributed sys­
tems. IEEE Trans, on Computers, C—37(11):1384—1397, November 1988.

K. J. Lee and D. Towsley. A comparison of priority-based decentralized load
balancing in distributed computer systems. Proc. Performance ’86, pages 70-78,
May 1986.

254

[MLT82] Perng-Yi Ma, Edward Y. S. Lee, and Masahiro Tsuchiya. A task allocation
model for distributed computing systems. IEEE Trans, on Computers, C -
31(1):41—47, January 1982.

[MTS89a] Ravi Mirchandaney, Don Towsley, and John A. Stankovic. Adaptive load sharing
in heterogeneous systems. IEEE Proc. 9th International Conf. on Distributed
Computing Systems, pages 298-306,1989.

[MTS89b] Ravi Mirchandaney, Don Towsley, and John A. Stankovic. Analysis of the effect
of delays on load sharing. IEEE Trans, on Computers, C-38(ll):1513-1525,
November 1989.

[MY84] Benjamin Melamed and Micha Yadin. Randomization procedures in the com­
putation of cumulative-time distributions over discrete state markov processes.
Operations Research, 32(4):926-944, July-August 1984.

[NH85] Lionel M. Ni and Kai Hwang. Optimal load balancing in a multiple proces­
sor system with many job classes. IEEE Trans, on Software Engineering, SE-
11(5):491—496,1985.

[NXG85] Lionel M. Ni, C. W. Xu, and T. B. Gendreau. A distributed drafting algorithm
for load balancing. IEEE Trans, on Software Engineering, SE-11(10):1153-1161,
1985.

[OK92] O.Kremien and J. Kramer. Methodical analysis of adaptive load sharing algo­
rithms. IEEE Trans, on Parallel and Distributed Systems, 3(6):747—760, Novem­
ber 1992.

[P0088] H. Vincent Poor. An Introduction to Signal Detection and Estimation. Dowden
& Culver, Inc., 1988.

[PS87] Dartzen Peng and Kang G. Shin. Modeling of concurrent task execution in a dis­
tributed system for real-time control. IEEE Trans, on Computers, C-36(4):5Q0-
516, April 1987.

[PS89] Dar-Tzen Peng and Kang G. Shin. Static allocation of periodic tasks with prece­
dence constraints in distributed real-time systems. IEEE Proc. 9th International
Conf. on Distributed Computing Systems, pages 190-198, 1989.

[PTS88] Spiridon Pulidas, Don Towsley, and John A. Stankovic. Embedding gradient
estimators in load balancing algorithms. IEEE Proc. 8th International Conf. on
Distributed Computing Systems, pages 482-490,1988.

[RKS90] P. Ramanathan, D. D. Kandlur, and K. G. Shin. Hardware assisted software
clock synchronization for homogeneous distributed systems. IE E E Trans, on
Computers, C-39(4):514-524, 1990.

[Ros70] Sheldon Ross. Applied Probability Models with Optimization Applications.
Holden-Day, San Francisco, 1970.

[Ros83] Sheldon M. Ross. Stochastic Processes. John Wiley & Sons, 1983.

255

[RS88]

[RSS90]

[RSZ89]

[SC89a]

[SC89b]

[SC90]

[SH90]

[SH91]

[SH92]

[SH93]

[Shi91]

[SKL85]

[SKS92]

P. Ramanathan and K. G. Shin. Reliable broadcast in hypercube multicomput­
ers. IEEE Trans, on Computers, C—37(12):1654—1657,1988.

Krithi Ramamritham, John A. Stankovic, and Perng-Fei Shiah. Efficient
scheduling algorithms for real-time multiprocessor systems. IEEE Trans, on
Parallel and Distributed Systems, 1(2):184—194, April 1990.

Krithi Ramamritham, John A. Stankovic, and Wei Zhao. Distributed scheduling
of tasks with deadlines and resource requirements. IEEE Trans, on Computers,
C-38(8):1110-1123, August 1989.

Kang G. Shin and Yi-Chieh Chang. Load sharing in distributed real-time sys­
tems with state change broadcasts. IEEE Trans, on Computers, C-38(8):1124-
1142, August 1989.

Kang G. Shin and Yi-Chieh Chang. Load sharing in hypercube multicomputers
for real-time applications. 4th. Conf. on Hypercube, Concurrent Computers, and
Applications, pages 617-622, 1989.

Kang G. Shin and Yi-Chieh Chang. A coordinated location policy for load
sharing in hypercube multicomputers, submitted for publication, 1990.

Kang G. Shin and C.-J. Hou. Analysis of three contention protocols in dis­
tributed real-time systems. IEEE Proc. of 11th Real-Time Systems Symposium,
pages 136-145, December 1990.

K. G. Shin and C.-J. Hou. Design and evaluation of effective load sharing in
distributed real-time systems. Proc. of Third IEEE Symposium on Parallel and
Distributed Processing, pages 670-677, December 1991. An enhanced version is
accepted for publication in IEEE Trans, on Parallel and Distributed Processing.

K. G. Shin and C.-J. Hou. Analytic models of adaptive load sharing schemes in
distributed real-time systems, presented in Conf. of ORSA Computer Science
and Operations Research: New Developments in Their Interfaces. An enhanced
version is accepted for publication in IEEE Trans, on Parallel and Distributed
Systems, 1992.

Kang G. Shin and C.-J. Hou. Evaluation of load sharing in HARTS with con­
sideration of its communication activities. ACM 1998 Sigmetrics Conf. on Mea­
surement and Modeling of Computer Systems, May 1993. An enhanced version
has been submitted to IEEE Trans, on Computers.

Kang G. Shin. HARTS: A distributed real-time architecture. IEEE Computer,
24(5):25—34, May 1991.

Kang G. Shin, C. M. Krishna, and Y. H. Lee. A unified method for evaluat­
ing real-time computer controllers its application. IEEE Trans, on Automatic
Control, AC-30:357-366, April 1985.

Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal. Load distributing
for locally distributed systems. IEEE Computer Magazine, 25(12):33—44,1992.

256

[SM89]

[Smi80]

[SR88]

[SRC85]

[ST85]

[Sta84]

[Sta85]

[Sto77]

[Stu88]

[SW89]

[SWG92]

[TLC85]

[TT85]

[TT89]

[WM85]

J. K. Strosnider and T. E. Marchok. Responsive, deterministic IEEE 802.5 token
ring scheduling. Journal of Real-Time Systems, 1(2): 133-158, September 1989.

R. G. Smith. The contract net protocol: high-level communication and control in
a distributed problem solver. IEEE Trans, on Computers, C-29(12):1104-1113,
December 1980.

John A. Stankovic and Krithi Ramamritham. Tutorial Hard Real-Time System,
chapter 1, pages 1-11. IEEE Computer Society, 1988.

John A. Stankovic, Krithivasan Ramamritham, and Shengchang Chang. Eval­
uation of a flexible task scheduling algorithm for distributed hard real-systems.
IEEE Trans, on Computers, C-34(12):1130-1141, December 1985.

C. C. Shen and W. H. Tsai. A graph matching approach to optimal task as­
signment in distributed computing systems using a minimax criterion. IEEE
Trans, on Computers, C-34(3):197-203, March 1985.

John A. Stankovic. Simulation of three adaptive, decentralized controlled, job
scheduling algorithms. Computer Networks, 8:199-217,1984.

John A. Stankovic. An application of Bayesian decision theory to decentral­
ized control of job scheduling. IEEE Trans, on Computers, C-34(2):117-130,
February 1985.

H. S. Stone. Multiprocessor scheduling with the aid of network flow algorithms.
IEEE Trans, on software Eng., SE-3:85-93, January 1977.

M. Stumm. The design and implementation of a decentralized scheduling facility
for a workstation cluster. IEEE Proc. Secnod Conf. Computer Workstations,
pages 12-22, 1988.

Sol M. Shatz and Jia-Ping Wang. Model and algorithms for reliability-oriented
task-allocation in redundant distributed-computer systems. IEEE Trans, on
Reliability, 38(l):16-27, April 1989.

S. M. Shatz, J.-P. Wang, and M. Goto. Task allocation for maximizing reliability
of distributed computer systems. IEEE Trans, on Computers, 41(9):1156-1168,
September 1992.

M. Theimer, K. Lantz, and D. Cheriton. Preemptable remote execution facil­
ities for the V-system. Proc. of 10th Symp. on Operating System Principles,
December 1985.

Asser N. Tantawi and Don Towsley. Optimal static load balancing in distributed
computer systems. Journal o f the ACM, 32(2):445-465, April 1985.

Philip Thambidurai and Kishor S. Trivedi. Transient overloads in fault-tolerant
real-time systems. IEEE 10th Real-Time Systems Symposium, pages 126-133,
1989.

Yung-Terng Wang and Robert J. T. Morris. Load sharing in distributed systems.
IEEE Trans, on Computers, C-34(3):204-217, March 1985.

257

[WM93]

[WS88]

[YL84]

[YS81]

[Zho88]

[ZS92]

C. M. Woodside and G. G. Monforton. Fast allocation of processes in dis­
tributed and parallel systems. IEEE Trans, on Parallel and Distributed Systems,
4(2):164-174, February 1993.

Abel Weinrib and Scott Shenker. Greed is not enough: Adaptive load shar­
ing in large heterogeneous systems. IEEE INFOCOM’88-The Conference on
Computer Communications Proceedings, pages 986-994,1988.

Takshing P. Yum and Hua-Chun Lin. Adaptive load balancing for parallel queues
with traffic constraints. IEEE Trans, on Communications, COM-32(12):1339-
1342, December 1984.

Takshing P. Yum and Mischa Schwartz. The join-biased-queue rule and its
application to routing in computer communication networks. IEEE Trans, on
Communications, COM-29(4):505-511, April 1981.

Songnian Zhou. A trace-driven simulation study of dynamic load balancing.
IEEE Trans, on Software Engineering, SE-14(9):1327-1341, September 1988.

Qin Zheng and K. G. Shin. On the ability of establishing real-time channels
in point-to-point packet switched network, to appear in IEEE Transactions on
Communications, 1992.

